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Preface

This volume contains the papers presented at the 16th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX 2013) and the 17th International Workshop on Randomization and Com-
putation (RANDOM 2013), which took place concurrently in UC Berkeley, dur-
ing August 21–23, 2013. APPROX focuses on algorithmic and complexity issues
surrounding the development of efficient approximate solutions to computation-
ally difficult problems, and was the 16th in the series after Aalborg (1998),
Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome (2002), Princeton
(2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton (2007),
Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011), and Boston
(2012). RANDOM is concerned with applications of randomness to computa-
tional and combinatorial problems, and was the 17th workshop in the series
following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000),
Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berke-
ley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009),
Barcelona (2010), Princeton (2011), and Boston (2012).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programmingmethods, combinatorial problems in graphs
and networks, game theory, markets and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analysis
of online algorithms, design and analysis of randomized algorithms, randomized
complexity theory, pseudorandomness and derandomization, random combinato-
rial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings,
error-correcting codes, average-case analysis, property testing, computational
learning theory, and other applications of approximation and randomness.

The volume contains 23 papers, selected by the APPROX Program Commit-
tee out of 46 submissions, and 25 papers, selected by the RANDOM Program
Committee out of 52 submissions. In addition to presentations on these papers,
the program included invited talks by Persi Diaconis (Stanford University, USA),
Luca Trevisan (Stanford University, USA), and Santosh Vempala (Georgia Tech,
USA).

We would like to thank all of the authors who submitted papers, the invited
speakers, the members of the Program Committees, and the external reviewers.
We gratefully acknowledge the support from the Computer Science Division,
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University of California, Berkeley, the Department of Computer Science and
Engineering at the Pennsylvania State University, the Institute of Computer
Science of the Christian-Albrechts-Universität zu Kiel and the Department of
Computer Science of the University of Geneva.

August 2013 Prasad Raghavendra
Sofya Raskhodnikova

Klaus Jansen
José D.P. Rolim
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Spectral Sparsification

in Dynamic Graph Streams

Kook Jin Ahn1,�, Sudipto Guha1,�, and Andrew McGregor2,��

1 University of Pennsylvania
{kookjin,sudipto}@seas.upenn.edu

2 University of Massachusetts Amherst
mcgregor@cs.umass.edu

Abstract. We present a new bound relating edge connectivity in a
simple, unweighted graph with effective resistance in the correspond-
ing electrical network. The bound is tight. While we believe the bound
is of independent interest, our work is motivated by the problem of con-
structing combinatorial and spectral sparsifiers of a graph, i.e., sparse,
weighted sub-graphs that preserve cut information (in the case of com-
binatorial sparsifiers) and additional spectral information (in the case
of spectral sparsifiers). Recent results by Fung et al. (STOC 2011) and
Spielman and Srivastava (SICOMP 2011) show that sampling edges with
probability based on edge-connectivity gives rise to a combinatorial spar-
sifier whereas sampling edges with probability based on effective resis-
tance gives rise to a spectral sparsifier. Our result implies that by simply
increasing the sampling probability by a O(n2/3) factor in the combi-
natorial sparsifier construction, we also preserve the spectral properties
of the graph. Combining this with the algorithms of Ahn et al. (SODA
2012, PODS 2012) gives rise to the first data stream algorithm for the
construction of spectral sparsifiers in the dynamic setting where edges
can be added or removed from the stream. This was posed as an open
question by Kelner and Levin (STACS 2011).

1 Introduction

The main result of this paper is a bound between two basic graph quantities.
First, let λe denote the edge-connectivity of edge e = (s, t) in an unweighted
graph G, i.e., the size of the minimum s-t cut. Second, consider the electrical
network corresponding to G where every edge has unit resistance. Then, let re
denote the effective resistance of edge e = (s, t), i.e., the potential difference
induced between s and t when a unit of current is injected at s and extracted at
t. Then we show that λ−1e ≤ re ≤ O(n2/3)λ−1e .

Furthermore, there exist graphs where this inequality is tight. The first in-
equality is well known but the best existing upper bound for re in terms of λe

� Research supported by NSF awards CCF-0644119, CCF-1117216 and a gift from
Google.

�� Research supported by NSF award CCF-0953754.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 K.J. Ahn, S. Guha, and A. McGregor

is O(
√
m)λ−1e where m is the number of edges in the graph [6]. Hence, our new

bound is a strict improvement when m = Ω(n4/3). Indirectly related is work
by Lyons et al. [17] that showed that for some classes of graphs, the effective
resistance is within a constant factor of the corresponding edge connectivity if
the graph is randomly weighted.

Graph Sparsification. The main idea in graph sparsification [4,20] is to approx-
imate a given graph G = (V,E) by a sparse, weighted subgraph H = (V,E′, w).
Throughout this paper, we will assume that G is unweighted and simple. A use-
ful application of sparsifiers is in the design of faster algorithms for a range of
problems including approximate max-flow [4] and sparsest cut [16]. The idea is
that if H is a good approximation of G in an appropriate sense, then it suffices
to solve the problem of interest on H rather than on G which would potentially
have had many more edges. We say that H is a combinatorial sparsifier if

(1− ε)λG(U) ≤ λH(U) ≤ (1 + ε)λG(U) ∀ cuts (U, V \ U) (1)

where λG(U) is the cardinality of the edges in E that cross the cut and λH(U) is
the total weight of the edges in E′ that cross the cut. A more powerful sparsifier
is a spectral sparsifier defined as follows. Let LG, LH ∈ R

n×n by the Laplacian
matrices of G and H respectively.1 Then we say H is a spectral sparsifier of G if

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ R
n . (2)

It is not hard to show that condition (2) implies condition (1) by relaxing the
condition to only hold for x ∈ {0, 1}n.

It is perhaps surprising that, given any graph G, there exist sparsifiers for
G with only O(ε−2n polylogn) edges. It is also possible to construct these sub-
graphs in near-linear time. In fact, construction is possible via the following two
simple and elegant sampling algorithms:

1. Combinatorial Sparsification [11]: Sample each edge e ∈ E independently
with probability pe = ρ/λe where ρ = Θ(ε−2 log2 n). Add each sampled edge
e to H with weight 1/pe.

2. Spectral Sparsification [19]: Sample Ω(ε−2n logn) edges with replacement
where the probability pe of picking e is proportional to re. Add each sampled
edge e toH with weight se/pe where se is the number of times e was sampled.

Roughly speaking, sampling e with respect to 1/λe is sufficient for preserving
cut sizes whereas sampling e with respect to re also preserves additional spectral
properties. In a sense, re is a more “nuanced” quantity since it takes into account
not just the number of edge-disjoint paths between the end points of e but
also the lengths of these paths. However, a consequence of our result is that
if we simply over-sample by a factor O(n2/3) in the above construction of a
combinatorial sparsifier, we automatically preserve spectral information.

1 Recall that LG = DG − AG where AG is the adjacency matrix of G and DG is the
diagonal matrix whereDG(i, i) is the degree of the ith node. Similarly LH = DH−AH

where AH is the weighted adjacency matrix of H and DH is the diagonal matrix
where DH(i, i) =

∑
j:(i,j)∈E′ wij is the weighted degree of the ith node.
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Dynamic Graph Streams and Sketches. The motivation for this work was the
design and analysis of graph sketching algorithms, i.e., algorithms that use a
(random) linear projection to compress a graph in such a way that relevant
properties of the graph can be estimated from the projection with high accuracy
and confidence. This use of linear projections is well-studied in the context of
processing numerical data, e.g., signal reconstruction in compressed sensing [5,
8], Johnson-Lindenstrauss style dimensionality reduction [1, 12], and estimating
properties of the frequency vectors that arise in data stream applications [7,13].
However, it is only recently that it has been shown that this technique can be
applied to more structured data such as graphs [2, 3].

Specifically, a sketch of a graph is defined as follows:

Definition 1 (Graph Sketches). A linear measurement of a graph on n nodes
is defined by a set of coefficients {ce : e ∈ [n]× [n]}. Given a graph G = (V,E),
the evaluation of this measurement is defined as Mλ(G) =

∑
e∈E ce. A sketch is

a collection of (non-adaptive) linear measurements. The size of this collection is
referred to as the dimensionality of the sketch

It was recently shown that there exist O(ε−2n polylogn)-dimensional sketches
fromwhich a combinatorial sparsifier can be constructed [2,3]. This naturally gave
rise to the first data stream algorithm for cut estimation when the stream is fully-
dynamic, i.e., contains both edge insertions and deletions. The space-use of the al-
gorithm is essentially the dimensionality of the sketch, i.e., O(ε−2n polylogn) and
is therefore referred to as a semi-streaming algorithm [10]. This follows because
each linear measurement can be evaluated on the stream using a single counter:
on the insertion of e, we add ce and on the deletion of e, we subtract ce. In this pa-
per, we develop the first data stream algorithm for constructing a spectral sparsi-
fier. The algorithmusesO(ε−2n5/3 polylogn) space. In the case where there are no
edge deletions, Kelner and Levin [15] designed an algorithm that used
O(ε−2n polylogn) space. They posed the fully-dynamic case as an open problem.

2 Edge Connectivity vs. Effective Resistance

The proof is pleasantly simple and proceeds by considering the execution of the
Edmonds-Karp algorithm [9], i.e., the Ford-Fulkerson algorithm that uses the
shortest augmenting path first. Let de be the length of the �λe/2�-th augmenting
path when executing the algorithm.

We will use the following basic properties of effective resistances:

1. The resistance of a path is the sum of the resisters along the path.
2. The resistance of parallel paths is the harmonic mean of the resistances of

the individual paths.
3. The resistance does not increase if edges are added to a graph.

Therefore the main idea would be to construct a suitable subgraph with the
desired resistance and the result would follow.
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Lemma 1. The effective resistance on e is at most 2deλ
−1
e .

Proof. From the first t = �λe/2� augmenting paths, we can construct t edge-
disjoint paths say p1, p2, . . . , pt. Note that the augmenting paths are directed
and two augmenting paths can use the same original edge in both directions.
Moreover the length of these directed flow augmenting paths is nondecreasing.
As a consequence

∑
i pi ≤ tde.

We now construct actual flow paths �1, �2, . . . , �t. In this process we elimininate
cycles formed by using the edge in both directions. But as a result the length of
a particular flow path can increase. However the cycle cancellation ensures that
the total length is nonincreasing and

∑
i �i ≤

∑
i pi which is sufficient for our

proof here.
First assume these paths are vertex disjoint. If there were no other edges in

the graph, re would be the harmonic mean of �1, . . . , �t. However, adding extra
edges will only decrease the effective resistance and hence

re ≤ 1
1
�1

+ 1
�2

+ · · ·+ 1
�t

≤
∑

i �i
t2
≤ de

t
≤ 2de

λe
.

where the second inequality is an application of the HM-AM inequality.
For the general case, we reduce to the vertex-disjoint case by removing all

edges not in �1, . . . , �t to create circuit C1 where any node v that is used in
multiple paths is replaced by multiple copies (such that each path uses a distinct
copy). Then, the effective resistance of e in the resulting circuit C1 is at most
the harmonic mean of �1, . . . , �t as before. Now consider adding 0 ohm resisters
between each of the copies of an original node to give a new circuit C2. Note
that effective resistances in C2 are less than in C1 because C2 was formed by
adding edges. But then note that effective resistance in C2 is the same as the
effective resistance in the subgraph of G defined by these subset of edges because
the voltage (potential) in each of the copies of an original node will be the same.
Finally, adding additional edges to this subgraph does not increase the effective
resistance. The lemma follows. �

Theorem 1. In a simple, unweighted graph, the effective resistance on e is at

most O(nλ
−3/2
e ).

Proof. Consider the residual graph after �λe/2� steps. The connectivity of e in
the residual graph is �λe/2	 and the shortest path length is at least de. It can

then be shown2 [14] that de = O(nλ
−1/2
e ). Therefore, by appealing to Lemma 1,

the effective resistance of e is at most 2deλ
−1
e ≤ O(nλ−3/2e ). �

Corollary 1. For simple, unweighted graphs, λ−1e ≤ re ≤ O(n2/3)λ−1e .

2 For completeness we include the argument here. Let e = (s, t) and let Γi(s) be the
set of nodes with distance exactly i from s. Because there are still at least �λe/2�
edge disjoint paths between s and t we know (|Γi(s)|+ |Γi+1(s)|)2 ≥ �λe/2� for each
i. Hence, Ω(de

√
λe) =

∑de
i=1 |Γi(s)| ≤ n and therefore de = O(nλ

−1/2
e ) as required.
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Proof. First, note that re ≤ 1 and so if nλ
−3/2
e ≥ 1, we have

re ≤ 1 ≤ (nλ−3/2e )2/3 = n2/3λ−1e ,

as required. On the other hand, if nλ
−3/2
e ≤ 1, then by Theorem 1 we also have

re ≤ O
(
nλ−3/2

e

)
≤ O

(
n2/3λ−1

e

)
.

�

2.1 A Tight Example

We next show that the bound in Corollary 1 is tight. Consider a layered graph
with layers L0 = {s}, L1, . . . , Lk, Lk+1 = {t} with edges

E = {(u, v) : u ∈ Li, v ∈ Li+1 for some i ∈ {0, 1, 2, . . . , k}} ∪ {(s, t)} .
Let e = (s, t). Let k = n/

√
λe. Setting |L1| = |Lk| = λe − 1 and |L1| = |L2| =

. . . = |Lk−1| =
√
λe − 1 ensures that the minimum s − t cut has size λe. The

total number of nodes is Θ(n) on the assumption that λe = O(n). The graph is
illustrated in Figure 1.

ts

L

L L L L

L
1

32

k

k−2 k−1

Fig. 1. Tight example for Corollary 1

The above network, when considered from the perspective of s and t is the same
as the following network in Figure 2; the nodes in L1, . . . , Lk all have the same po-
tential and the capacity (parallel edges) between adjacent nodes is λe− 1. There-
fore, using the fact that for parallel edges the effective resistance is the harmonic
mean of the resistances, the effective resistance betweenLi, Li+1 is 1/(λe−1) when
we ignore edge e. It follows that, if we ignore the edge (s, t), then the effective resis-
tance between s and t is Θ(kλ−1e ) = Θ(nλ−1.5e ) since resistances connected in se-
ries are additive. If we set λe = n2/3 then nλ−1.5e = 1 and consequently re = Θ(1).
Therefore, the edge e = (s, t) satisfies re = Θ(n2/3/λe) and hence Corollary 1 is
tight.

s t

L L LL
0 1 k−1 k

Fig. 2. Network Equivalent to Figure 1 (from the perspective of s, t)
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3 Spectral Sparsification

Our sparsification result uses the following theorem3 due to Spielman and
Srivastava [19].

Theorem 2. Given a graph G, let {ze}e∈E be a set of positive values that satisfy:

1. ze ≥ re for all e ∈ E
2.

∑
e ze = β

∑
e re for some β ≥ 1

Sample q ≥ c0βε
−2n logn edges with replacement where edge e is chosen with

probability pe = ze/
∑
e ze where c0 is an absolute constant. Let H be the weighted

graph where edge e has weight se/(qpe) where se is the number of times e was
sampled. Then,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ R
n ,

with probability at least 1/2.

In what follows ze will take a known value between α/λe and 4α/λe where
α = Θ(n2/3) is chosen according to Corollary 1 such that α/λe ≥ re. Since
re ≥ 1/λe, we have ∑

e

ze ≤
∑

e

4α/λe ≤ 4α
∑

e

re

as required. Therefore, to construct a spectral sparsifier of a dynamic graph
stream, it suffices to emulate that above sampling procedure. To do this, we
divide the procedure into the following two steps:

1. Independent Edge Sampling: We first show how to sample edges such that
each edge is sampled independently and e is sampled with probability ye =
min{8c0zeε−2 log n, 1}. This will be performed in a single-pass over a dy-
namic graph stream using O(ε−2n5/3 polylogn) space. Let S be the set of
samples returned.

2. Emulate Sampling with Replacement: Given the sampled edges S along with
{ze}e∈S and Z =

∑
e ze, we show that it is possible to emulate the required

sampling with replacement. This will be performed in post-processing with-
out requiring an additional pass over the data stream.

In the next section we show how to perform the independent edge sampling with
the required parameters. However, emulating sampling replacement is straight-
forward and is described in the proof of the next lemma.

Lemma 2. Let S = {e1, e2, . . .} be the edges returned by the independent edge
sampling and let {ze}e∈E be the sampling parameters with Z =

∑
e∈E ze. Then,

given a positive integer q ∈ [c0βε
−2n logn, 2c0βε−2n logn] suppose that we sam-

ple each edge e with probability at least ye = min{8c0zeε−2 logn, 1}, then after
the independent edge sampling is done, we can emulate the process of sampling q
edges with replacement such that each edge is chosen with probability proportional
to ze.

3 The theorem follows from Corollary 6 in [19] after a re-parameterization of ε and by
scaling ze such that we ensure ze ≥ re.
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Proof. Consider a Poisson process with parameter ze for each edge e and collect
the first q edges. This sampling process is equivalent to sample q edges with
replacement where the probability of sampling an edge e is ze/Z. Recall Z =
β
∑

e re = β(n− 1) since
∑
e re = n− 1 for any graph [6, 19].

We use the independent sampling to emulate this process with high proba-
bility. Then, the expected number of edges sampled in a unit time in the above
Poisson process is Z and therefore, we sample q edges in 2q/Z time with high
probability assuming that q is sufficiently large (note that q ≥ Ω(nε−2 logn)).

Let te be the random variable which indicates the first time when e appears
in the above Poisson process. If te > 2q/r, we can safely ignore e because then
e is not going to be sampled with high probability. Otherwise, we want to store
e to emulate the process. By the definition, te ∼ Exp(ze) and we have

P

[

te ≤ 2q

Z

]

= 1− exp

(

−ze 2q
Z

)

≤ 2qze
Z
≤ 4c0βnε

−2 logn
β(n− 1)

ze ≤ 8c0zeε
−2 logn

Therefore, if we sample e with the stated probability or higher, we can emulate
the Poisson process for e upto time 2q/Z which is equivalent to emulate the
sampling with replacement with high probability. �

3.1 Independent Edge Sampling

Our sampling makes use of the following two existing algorithms for dynamic
graph streams [2, 3]:

1. k-edge-connect: Given a dynamic graph stream defining a graph G, this
algorithm returns a subgraph S = k-edge-connect(G) such that with high
probability

λS(U) ≥ min(k, λG(U)) for any cut (U, V \ U)

The algorithm uses O(kn polylog n) bits of space.
2. cut-sparsifier: Given a dynamic graph stream defining a graph G, this

algorithm returns a weighted subgraph H = cut-sparsifier(G) such that
with high probability

λG(U) ≤ λH(U) ≤ 2λG(U) for any cut (U, V \ U)

The algorithm uses O(n polylog n) bits of space.

The idea behind our sampling algorithm is to subsample the edges of the graph
at O(log n) different rates, 1/2, 1/4, 1/8, . . .. At each sampling rate, or level, we
maintain a “skeleton” that ensures that we have at least a certain number of
edges across each cut. We then return an edge e if it appears in the skeleton
at a particular level where the level should be chosen proportional to 1/λe. We
use cut-sparsifier as an oracle that can provide estimates for every λe value
in post-processing. Specifically, the new edge-sampling algorithm operates as
follows:
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1. During a single pass of the stream:
– Construct H = cut-sparsifier(G).
– Construct Ti = k-edge-connect(Gzi ) for i = 0, 1, 2, . . . , 2 lgn where
Gzi = (V,Ezi ) is the graph formed by sampling each edge in G with
probability 2−i and k is set to 16 lnn.

– Construct Si = k-edge-connect(Gi) for i = 0, 1, 2, . . . , 2 lgn where
Gi = (V,Ei) is the graph formed by sampling each edge in G with
probability 2−i and k is set to 64c0αε

−2 logn.
2. Post-Processing:

– From H , let λ̃e be an estimate of λe and note that λe ≤ λ̃e ≤ 2λe by the
guarantee of the cut-sparsifier algorithm.

– Using F = {e : e ∈ Ti where i = max(0,
⌊
lg(λ̃e/ lnn)

⌋
− 1)}, estimate

Z =
∑

e ze:

(a) For e ∈ F , compute fe = 2min(0,−�lg(λ̃e/ lnn)	+1) and ze = 2α/λ̃e.
(b) Return Z̃ =

∑
e∈F ze/fe as an estimation of Z (See Lemma 4).

– Let ze = 2α/λ̃e and ye = min{8c0zeε−2 logn, 1}. Note that,

ze ≤ 2α

λe
≤ 2αre and ze =

2α

λ̃e
≥ 2α

2λe
=

α

λe
≥ re ,

which satisfies the desiderata of Theorem 2.
– Return {e : e ∈ Si where i = �lg 1/ye	} as the required set of samples for

Lemma 2. We now have a set of independent samples with replacement
which satisfies Theorem 2 and the sparsifier can be constructed as stated
therein. This is proved in Lemma 3.

Note that, for the sake of analysis, we assume each edge is included in Gi in-
dependently. However, to implement that algorithm in small space we would
actually use Nisan’s pseudo-random generator [18]. While this is not necessarily
the most efficient way to generate the random variables (it adds additional log-
arithmic terms to the running time and space complexity), this approach leads
to a simpler description of the algorithm.

Lemma 3. For all e ∈ E and i = �lg 1/ye	, the edge e is sampled in Gi with
probability between ye and 2ye. With high probability, e ∈ Si iff e ∈ Gi.
Proof. Clearly e ∈ Si implies e ∈ Gi since Si is a subgraph of Gi. For the
other direction, assume e = (s, t) ∈ Gi and let Ee ⊆ E be the edges across the
minimum s-t cut in G. In particular, |Ee| = λe. But

E [|Ee ∩ Ei|] ≤ 32c0αε
−2 logn

and by an application of the Chernoff bound, |Ee∩Ei| < 64c0αε
−2 log n with high

probability. Hence e ∈ Si for k = 64c0αε
−2 logn by appealing to the guarantees

of the k-edge-connect algorithm. By an application of the union bound, this
is true for all e ∈ E with high probability as well. �

The next lemma establishes that we also have a good estimate of Z =
∑

e ze.
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Lemma 4. With high probability, (1− ε)Z ≤ Z̃ ≤ (1 + ε)Z.

Proof. Using an argument almost identical to the proof of Lemma 3 we argue that
the algorithm (with high probability) samples each edge e in F with probability
fe. Since fe is the probability that e ∈ F ,

E

[
Z̃
]
= E

[
∑

e∈F
ze/fe

]

=
∑

e∈E
ze .

In addition, ze/fe ≤ ε2Z/logn. By an application of the Chernoff bound, (1 −
ε)Z ≤ Z̃ ≤ (1 + ε)Z with high probability. �

4 Conclusions

While the bound we establish relating λe and re is tight up to constant factors,
the resulting data stream algorithm need not be optimal. Specifically, we conjec-
ture that spectral sparsification is possible in the semi-streaming model where
the algorithm may use O(n polylogn) space.
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Abstract. We present a 1 − 1√
k

-competitive algorithm for the online stochastic
generalized assignment problem under the assumption that no item takes up more
than 1

k
fraction of the capacity of any bin. Items arrive online; each item has a

value and a size; upon arrival, an item can be placed in a bin or discarded; the
objective is to maximize the total value of the placement. Both value and size
of an item may depend on the bin in which the item is placed; the size of an
item is revealed only after it has been placed in a bin; distribution information is
available about the value and size of each item in advance (not necessarily i.i.d),
however items arrive in adversarial order (non-adaptive adversary).

We also present an application of our result to subscription-based advertising
where each advertiser, if served, requires a given minimum number of impres-
sions (i.e., the “all or nothing” model).

1 Introduction

The generalized assignment problem (GAP) and its special cases multiple knapsack1

and bin packing2 capture several fundamental optimization problems and have many
practical applications in computer science, operations research, and related disciplines.
The (offline) GAP is defined as follows:

Definition 1 (Generalized Assignment Problem). There is a set of n items and m
bins. Each bin has a hard capacity where the total size of items placed in a bin cannot
exceed its capacity. Each item has a value and a size if placed in a bin; both might
depend on the bin. The goal is to find a maximum valued assignment of items to the bins
which respects the capacities of the bins.

For example GAP can be viewed as a scheduling problem on parallel machines, where
each machine has a capacity (or a maximum load) and each job has a size (or a pro-
cessing time) and a profit, each possibly dependent on the machine to which it is as-
signed, and the objective is to find a feasible scheduling which maximizes the total

� Supported in part by NSF CAREER award 1053605, ONR YIP award N000141110662,
DARPA/AFRL award FA8650-11-1-7162, a Google Faculty Research Award, and a University
of Maryland Research and Scholarship Award (RASA).

1 In the multiple knapsack problem, we are given a set of items and a set of bins (knapsacks)
such that each item j has a profit vj and a size sj , and each bin i has a capacity Ci. The goal is
to find a subset of items of maximum profit such that they have a feasible packing in the bins.

2 In the bin packing problem, given a set of items with different sizes, the goal is to find a
packing of items into unit-sized bins that minimizes the number of bins used.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 11–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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profit. Though multiple knapsack and bin packing have a fully polynomial-time approx-
imation scheme (asymptotic for bin packing) in the offline setting [6], GAP is APX-hard
and the best known approximation ratio is 1 − 1/e + ε where ε ≈ 10−180 [10], which
improves on a previous (1− 1/e)-approximation [12].

In this paper we consider the online stochastic variant of the problem:

Definition 2 (Online Stochastic Generalized Assignment Problem). There are n
items arriving in an online manner which can be of different types. There are m (static)
bins each with a capacity limit on the total size of items that can be placed in it. A type
of an item is associated with a value and a size distribution which may depend on the
bin to which the item is placed. Stochastic information is known about the type of an
item and sizes/values of the types. Upon arrival of an item, the type of that item is re-
vealed. However the realization of the size of the item is revealed only after it has been
placed in a bin. The goal is to find a maximum valued assignment of items to the bins.
We consider a large-capacity assumption: no item takes up more than 1

k fraction of the
capacity of any bin.

We emphasize that there are two sources of uncertainty in our model: the type of an
item and the size of the item. The type of an item (which contains a size-distribution) is
revealed before making the assignment, however the actual size of an item is revealed
after the assignment. To the best of our knowledge, Feldman et al. [11] were the first
to consider the generalized assignment problem in an online setting, albeit with deter-
ministic sizes. In the adversarial model where the items and the order of arrivals are
chosen by an adversary, there is no competitive algorithm. Consider the simple case of
one bin with capacity one and two arriving items each with size one. The value of the
first item is 1. The value of the second item would be either 1

ε or 0 based on whether
we place the first item in the bin. Thus the online profit cannot be more than ε fac-
tor of the offline profit. Indeed one can show a much stronger hardness result for the
adversarial model: no algorithm can be competitive for the two special cases of GAP,
namely the adword problem3 and the display ad problem4 even under the large-capacity
assumption [11,19].

Since no algorithm is competitive for online GAP in the adversarial model, Feldman
et al. consider this model with free disposal. In the free disposal model, the total size
of items placed in a bin may exceed its capacity, however, the profit of the bin is the
maximum-valued subset of the items in the bin which does not violate the capacity.
Feldman et al. give a (1 − 1

e − ε)-competitive primal-dual algorithm for GAP under
the free disposal assumption and the additional large-capacity assumption by which
the capacity of each bin is at least O(1ε ) times larger than the maximum size of a single
item. Although the free disposal assumption might be counter-intuitive in time-sensitive
applications such as job scheduling where the machine may start doing a job right af-
ter the job assignment, it is a very natural assumption in many applications including
applications in economics like ad allocation – a buyer does not mind receiving more
items.

3 The adword problem is a special case of GAP where the size and the value of placing an item
in a bin is the same.

4 The display ad problem is a special case of GAP where all sizes are uniform.
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Dean, Goemans, and Vondrak [7] consider the (offline) stochastic knapsack problem
which is closely related to GAP. In their model, there is only one bin and the value of
each item is known. However, the size of each item is drawn from a known distribution
only after it is placed in the knapsack. We note that this is an offline setting in the
sense that we may choose any order of items for allocation. This model is motivated
by job scheduling on a single machine where the actual processing time required for
a job is learned only after the completion of the job. Dean et al. give various adaptive
and non-adaptive algorithms for their model where the best one has a competitive ratio
1
3 − ε. Recently Bhalgat improved the competitive ratio to 1

2 − ε [4]. Other variations,
such as soft capacity constraints, have also been considered for which we refer the
reader to [5,13,16]. Dean et al. [7] also introduce an ordered model where items must
be considered in a specific order, which can be seen as a version of the the online model
with a known order. Dean et al. [7] present a 1

9.5 -competitive algorithm. In general, the
online model can be considered as a more challenging variation of the models proposed
by Dean et al, and we show that the large-capacity assumption is enough to overcome
this challenge.

To the best of our knowledge, the current variation of the online stochastic GAP
has not been considered before. We note that since the distributions are not necessary
i.i.d., this model generalizes the well-known prophet inequalities. 5 Even with stochastic
information about the arriving queries, no online algorithm can achieve a competitive
ratio better than 1

2 [1,14,17,18]. Consider the simple example from before where the
value of the first item is 1 with probability one and the value of the second item is 1

ε
with probability ε, and 0 with probability 1− ε. The algorithm can only select one item.
No online (randomized) algorithm can achieve a profit more than max{1, ε(1ε )} =
1 in expectation. However, the expected profit of the optimum offline assignment is
(1− ε)1+ ε(1ε ) = 2− ε. Therefore without any additional assumption one cannot get a
competitive ratio better than 1/2. We overcome this difficulty by considering the natural
large-capacity assumption which arises in many applications such as online advertising.

A summary of the other related work is presented in the full version of the paper.

1.1 Our Contribution

The loss factor of an online algorithm is the ratio α such that the profit of the algorithm
is at least 1 − α fraction of the optimal offline profit. The main result of the paper can
be summarized in the following theorem (formally stated in Theorem 4).

Theorem. For the stochastic generalized assignment problem, there exists a random-
ized online algorithm (see Definition 6) with the loss factor at most 1√

k
in expectation.

The proposed algorithm initially computes an optimal solution for a linear program
corresponding to a fractional expected instance. In the online stage, the algorithm ten-
tatively assigns each item upon arrival to one of the bins at random with probabilities

5 In the classic prophet inequality problem, given the distribution of a sequence of random vari-
ables, an onlooker has to choose from the succession of these values. The onlooker can only
choose a certain number of values and cannot choose a past value. The goal is to maximize the
total sum of selected numbers.
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proportional to the fractional LP solution. This ensures that the expected total size of
items assigned tentatively to each bin does not exceed its capacity. However, once a bin
becomes full, any item which gets tentatively assigned to that bin will have to be dis-
carded. In general, a straightforward randomized assignment based on the LP solution
could be arbitrarily far from optimal; that is because the probability of an item being
discarded due to a bin being full could be arbitrarily close to 1 for items that arrive
towards the end. To overcome this problem, we incorporate an adaptive threshold based
strategy for each bin so that an item tentatively assigned to a bin is only placed in the
bin if the remaining capacity of the bin is more than a certain threshold. This ensures
the online algorithm discards a tentatively assigned item with a probability at most 1√

k
of the fractional LP assignment. The thresholds are computed adaptively based on pre-
viously observed items.

Indeed by using the fractional solution as a guideline, it is possible to achieve a non-
adaptive competitive algorithm. One may scale down the fractional solution by a factor
1−O( log k√

k
) and assign the items with the modified probabilities, thus achieving a loss

factor O( log k√
k
). By using the Chernoff bound it can be shown that the probability of

exceeding bin capacities is very small. This simple algorithm gives an asymptotically
optimum solution, however there are two drawbacks. The first issue is that the constants
in various implementations of this idea are large. Thus unless the value k is very large,
this algorithm cannot guarantee a reasonable competitive ratio; in contrast, the loss
factor of our algorithm is exactly 1√

k
. On the other hand, in the applications of online

GAP such as the Adword problem, the factor O( log k√
k
) is the loss factor of the millions

of dollars. Therefore our algorithm saves a logarithmic factor in the loss of revenue.
Indeed these drawbacks were also the motivation for improving the loss factor in the
special cases of online GAP in previous papers [2,3].

The threshold based strategy of the online algorithm is presented in Section 3 in
the form of a generalization of the magician’s problem of [1]. The original magician’s
problem can be interpreted as a stochastic knapsack problem with unit size items and
a knapsack of size k and such that each item arrives in one of two possible states (e.g.
good/bad) with known probabilities; the objective being to maximize – simultaneously
for all items – the probability of picking every item that is good. On the other hand, in
the generalized variant presented in the current paper, the size of each item can vary
according to an arbitrary (but known) distribution; in this version k is an integer lower
bound on the ratio of the total size of the knapsack to the maximum possible size of a
single item. Although the bound we obtain for the generalized magician is similar to
that of [1], they are incomparable for small k; in particular for k = 1, one can easily
achieve a 1

2 -competitive algorithm for the magician’s problem with fixed size items,
whereas for the generalized version with variable size items, no constant competitive
algorithm is possible for k = 1 .

Recently, Alaei et al. [3,2]6 use a combination of expected linear programming ap-
proach and dynamic programming to achieve a 1− ε-competitive algorithm for adword
and display ad. They use a relatively simple dynamic programming in combination with

6 In an independent work, Devanur et al.[8] also consider the expected linear program of a
similar problem.
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the LP solution to check whether they should assign an item to a bidder or discard it.
Using an approach similar to “dual fitting” [15], they demonstrate an analysis of the
combination of a dynamic programming approach with an online LP-based algorithm
and prove a loss factor 1√

k+3
for the display ad problem. They use the sand theorem

of [1] as a black-box in their analysis to derive proper dual variables in their dual fit-
ting analysis of the algorithm. A dynamic programming approach needs to know the
stochastic information about the remaining items, while a threshold-based approach
needs to know the past, i.e., they are complements of each other. However, analysis of
the dynamic programming even with uniform sizes is involved. Furthermore, it is not
easy to generalize the approach of [2] to the model of Goemans et al. [7] where the
given sizes show only the expected size of an item.

It is worthwhile to compare the stochastic model of the current paper against other
popular models, i.e., random order model7 and unknown distribution model8. While
both the random order and the unknown distribution models require less stochastic in-
formation, they both treat items uniformly; hence they are more suitable for applications
where items are more symmetric9. The model considered in the current paper is more
suitable when there is a high degree of distribution asymmetry across the items. In par-
ticular, the extra stochastic information allows us to obtain practical bounds even for
small values of k whereas in other stochastic models the obtained bounds often become
meaningful only asymptotically in k.

The all-or-nothing model. The online algorithm of this paper can be applied to a
slightly different model in which each item should still be either fully assigned or dis-
carded, however in case of assignment, unlike GAP, an item can be fractionally split
across multiple bins (i.e., the all-or-nothing assignment model). Note that the LP for
the expected instance is still the same for the all-or-nothing model, therefore our online
algorithm still obtains the same bound in expectation compared to the optimal offline
solution. The all-or-nothing model is suitable for subscription-based advertisement and
banner advertisement.

The subscription-based advertisement problem is an example of an offline ad allo-
cation setting motivated by the banner advertisement. In this problem, there is a set of
contracts proposed by the advertisers and the goal is to accept the contracts of a subset
of the advertisers which maximizes the revenue. The contract proposed by an adver-
tiser specifies a collection of webpages which are relevant to his product, a desired total
quantity of impressions on these pages, and a price. Each webpage has an ad inventory
with a certain number of banner ads. The problem of selecting a feasible subset of ad-
vertisers with the maximum total value does not have any non-trivial approximation.
This can be shown by a reduction from the Independent Set problem on a graph; adver-
tisers represent the vertices of the graph and webpages represent the edges of the graph.
Advertisers desire all the impressions of the relevant webpages. Thus any feasible sub-
set of advertisers would denote an independent set in the graph. This shows maximizing

7 Random arrival model: items are chosen by an adversary, but they arrive in a random order.
8 Unknown distribution model: items are chosen i.i.d. from a fixed but unknown distribution.
9 At a first glance, the random order model may appear to allow for asymmetry, however note

that for any i and j, the ith arriving item and the jth arriving item have the same ex ante
distribution in the random order model.
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the total value does not have a non-trivial approximation. Different pricing models have
also been introduced by Feige et al. [9]. The proof of the following corollary is by a
reduction from the all-or-nothing model.

Corollary. There exists a randomized algorithm for the subscription-based advertise-
ment problem which obtains a loss factor 1√

k
in expectation where the number of avail-

able impressions on each website is at least k times the required impressions of each
relevant advertiser.

Proof. One can show that this is an offline version of the all-or-nothing model where
bins denote the webpages and items denote the advertisers. The size of an item is the re-
quired number of ads of an advertiser and the value of an item is the proposed price. By
Theorem 4, we can achieve at least 1− 1√

k
fraction of the optimal profit in expectation.

2 Preliminaries

Model. We consider the problem of assigning n items to m bins; items arrive online
and stochastic information is known about the size/value of each item; the objective
is to maximize the total value of the assignment. The item i ∈ [n] (arriving at time
i) has ri possible types with each type t ∈ [ri] having a probability of pit, a value of
vitj ∈ R+, and a size of Sitj ∈ [0, 1] if placed in bin j (for each j ∈ [m]); Sitj is a
random variable which is drawn from a distribution with a CDF of Fitj if the item is
placed in bin j. Each bin j ∈ [n] has a capacity of cj ∈ N0 which limits the total size
of the items placed in that bin10. The type of each item is revealed upon arrival and the
item must be either placed in a bin or discarded; this decision cannot be changed later.
The size of an item is revealed only after it has been placed in a bin, furthermore an item
can be placed in a bin only if the bin has at least one unit of capacity left. We assume
that n, m, cj , vitj and Fitj are known in advance.

Benchmark. Consider the following linear program in which s̃itj = ESitj∼Fitj
[Sitj ]

11.

maximize
∑

i

∑

t

∑

j

vitjxitj (OPT )

subject to
∑

i

∑

t

s̃itjxitj ≤ cj , ∀j ∈ [m]

∑

j

xitj ≤ pit, ∀i ∈ [n] , ∀t ∈ [ri]

xitj ∈ [0, 1] ,

The optimal value of this linear program, which corresponds to the expected instance,
is an upper bound on the expected value of the optimal offline assignment.

10 Our results hold for non-integer capacitates, however we assume integer capacities to simplify
the exposition.

11 Throughout the rest of this paper, we often omit the range of the sums whenever the range is
clear from the context (e.g.,

∑
i means

∑
i∈[n], and

∑
j means

∑
j∈[m], etc).
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Theorem 1. The optimal value of the linear program (OPT ) is an upper bound on the
expected value of the offline optimal assignment.

Proof. Let x∗itj denote the ex ante probability that item i is of type t and is assigned to
bin j in the optimal offline assignment. It is easy to see that x∗itj is a feasible assignment
for the linear program. Furthermore, the expected value of the optimal offline assign-
ment is exactly

∑
i

∑
t

∑
j vitjx

∗
itj which is equal to the value of the linear program for

x∗itj which is itself no more than the optimal value of the linear program. Note that the
optimal value of the linear program may be strictly higher since a feasible assignment
of the linear program does not necessarily correspond to a feasible offline assignment
policy.

Section 4 presents an online adaptive algorithm which obtains a loss factor 1√
k

w.r.t. the
optimal value of the above linear program, where k = minj cj . We emphasize that our
adaptive algorithm saves a logarithmic factor in the loss of the outcome compared to the
non-adaptive methods. Next section presents a stochastic toy problem and its solution
which is used in our online algorithm.

3 The Generalized Magician’s Problem

We present a generalization of the magician’s problem, which was originally introduced
in [1]; we also present a near-optimal solution for this generalization.

Definition 3 (The Generalized Magician’s Problem). A magician is presented with a
series of boxes one by one, in an online fashion. There is a prize hidden in one of the
boxes. The magician has a magic wand that can be used to open the boxes. The wand
has k units of mana [20]. If the wand is used on box i and has at least 1 unit of mana,
the box opens, but the wand loses a random amount of mana Xi ∈ [0, 1] drawn from
a distribution specified on the box by its cumulative distribution function FXi

(i.e., the
magician learns FXi

upon seeing box i). The magician wishes to maximize the proba-
bility of obtaining the prize, but unfortunately the sequence of boxes, the distributions
written on the boxes, and the box containing the prize have been arranged by a villain;
the magician has no prior information (not even the number of the boxes); however, it
is guaranteed that

∑
iE[Xi] ≤ k, and that the villain has to prepare the sequence of

boxes in advance (i.e., cannot make any changes once the process has started).

The magician’s problem introduced in [1] is a special case of this model where Xi = 1
for every i.

The magician could fail to open a box either because (a) he might choose to skip the
box, or (b) his wand might run out of mana before getting to the box. Note that once
the magician fixes his strategy, the best strategy for the villain is to put the prize in the
box which, based on the magician’s strategy, has the lowest ex ante probability of being
opened. Therefore, in order for the magician to obtain the prize with a probability of at
least γ, he has to devise a strategy that guarantees an ex ante probability of at least γ
for opening each box. Notice that allowing the prize to be split among multiple boxes
does not affect the problem. We present an algorithm parameterized by a probability



18 S. Alaei, M. Hajiaghayi, and V. Liaghat

γ ∈ [0, 1] which guarantees a minimum ex-ante probability of γ for opening each box
while trying to minimize the mana used. We show that for γ ≤ 1 − 1√

k
this algorithm

never requires more than k units of mana.

Definition 4 (γ-Conservative Magician). The magician adaptively computes a se-
quence of thresholds θ1, θ2, . . . ∈ R+ and makes a decision about each box as follows:
let Wi denote the amount of mana lost prior to seeing the ith box; the magician makes
a decision about box i by comparing Wi against θi; if Wi < θi, it opens the box; if
Wi > θi, it does not open the box; and if Wi = θi, it randomizes and opens the box
with some probability (to be defined). The magician chooses the smallest threshold θi for
whichPr[Wi ≤ θi] ≥ γ where the probability is computed ex ante (i.e., not conditioned
on X1, . . . ,Xi−1). Note that γ is a parameter that is given. Let FWi

(w) = Pr[Wi ≤ w]
denote the ex ante CDF of random variable Wi, and let Yi be the indicator random
variable which is 1 iff the magician opens the box i. Formally, the probability with which
the magician should open box i conditioned on Wi is computed as follows12.

Pr [Yi = 1|Wi] =

⎧
⎪⎨

⎪⎩

1 Wi < θi

(γ − F−Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)

In the above definition, F−Wi
is the left limit of FWi

, i.e., F−Wi
(w) = Pr[Wi < w].

Note that FWi+1
and F−

Wi+1
are fully determined by FWi

and FXi
and the choice of γ

(see Theorem 3). Observe that θi is in fact computed before seeing box i itself.
A γ-conservative magician may fail for a choice of γ unless all thresholds θi are less

than or equal to k − 1. The following theorem states a condition on γ that is sufficient
to guarantee that θi ≤ k − 1 for all i.

Theorem 2 (γ-Conservative Magician). For any γ ≤ 1 − 1√
k

, a γ-conservative ma-
gician with k units of mana opens each box with an ex ante probability of γ exactly.

Proof. See Section 5.

Definition 5 (γk). We define γk to be the largest probability such that for any k′ ≥
k and any instance of the magician’s problem with k′ units of mana, the thresholds
computed by a γk-conservative magician are no more than k′ − 1. In other words, γk
is the optimal choice of γ which works for all instances with k′ ≥ k units of mana. By
Theorem 2, we know that γk must be13 at least 1− 1√

k
.

Observe that γk is a non-decreasing function in k and approaches 1 as k →∞. However
γ1 = 0 which is in contrast to the bound of 1

2 obtained for k = 1 in [1] in which all Xi
are Bernoulli random variables. It turns out that when Xi are arbitrary random variables
in [0, 1], no algorithm exists for the magician that can guarantee a constant non-zero
probability for opening each box.

12 Assume W0 = 0.
13 Because for any k′ ≥ k obviously 1− 1√

k
≤ 1− 1√

k′ .
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Proposition 1. For the generalized magician’s problem for k = 1, no algorithm for the
magician (online or offline) can guarantee a constant non-zero probability for opening
each box.

Proof. Suppose there is an algorithm for the magician that is guaranteed to open each
box with a probability of at least γ ∈ (0, 1]. We construct an instance in which the
algorithm fails. Let n = 	 1γ 
 + 1. Suppose all Xi are (independently) drawn from the
distribution specified below.

Xi =

{
1
2n with prob. 1− 1

2n

1 with prob. 1
2n

, ∀i ∈ [n]

As soon as the magician opens a box, the remaining mana will be less than 1, so he will
not be able to open any other box, i.e., the magician can open only one box at every
instance. Let Yi denote the indicator random variable which is 1 iff the magician opens
box i. Since

∑
iYi ≤ 1, it must be

∑
iE[Yi] ≤ 1. On the other hand, E[Yi] ≥ γ

because the magician has guaranteed to open each box with a probability of at least γ.
However

∑
iE[Yi] ≥ nγ > 1 which is a contradiction. Note that

∑
iE[Xi] < 1 so it

satisfies the requirement of Definition 3.

Computation of FWi
(·). For every i ∈ [n], the equation Wi+1 = Wi + YiXi relates

the distribution of Wi+1 to those of Wi and Xi
14. The following lemma shows that the

distribution of Wi+1 is fully determined by the information available to the magician
before seeing box i+ 1.

Theorem 3. In the algorithm of γ-conservative magician (Definition 4), the choice of
γ and the distributions of X1, . . . ,Xi fully determine the distribution of Wi+1, for every
i ∈ [n]. In particular, FWi+1

can be recursively defined as follows.

FWi+1
(w) = FWi

(w)−Gi(w) +EXi∼FXi
[Gi(w −Xi)] ∀i ∈ [n] , ∀w ∈ R+ (FW)

Gi(w) = min(FWi
(w), γ) ∀i ∈ [n] , ∀w ∈ R+ (G)

Proof. See Section 5.

As a corollary of Theorem 3, we show how FWi
can be computed using dynamic pro-

gramming, assuming Xi can only take discrete values that are proper multiples of some
minimum value.

Corollary 1. If all Xi are proper multiple of 1
D for some D ∈ N, then FWi

(·) can be
computed using the following dynamic program.

FWi+1
(w) =

⎧
⎪⎨

⎪⎩

FWi
(w) −Gi(w) +

∑
�Pr[Xi =

�
D ]Gi(w − �

D ) i ≥ 1, w ≥ 0

1 i = 0, w ≥ 0

0 otherwise.

for all values of i ∈ [n] and w ∈ R+. In particular, the γ-conservative magician makes
a decision for each box in time O(D).

14 Note that the distribution of Yi is dependent on/determined by Wi.
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Note that it is enough to computeFWi
only for proper multiples of 1

D becauseFWi
(w) =

FWi
( �Dw�D ) for any w ∈ R+.

4 The Online Algorithm

We present an online algorithm which obtains at least 1 − 1√
k

-fraction of the optimal

value of the linear program (OPT ). The algorithm uses, as a black box, the solution of
the generalized magician’s problem.

Definition 6 (Online Stochastic GAP Algorithm)

1. Solve the linear program (OPT ) and let x be an optimal assignment.
2. For each j ∈ [m], create a γ-conservative magician (Definition 4) with cj units of

mana for bin j. γ is a parameter that is given.
3. Upon arrival of each item i ∈ [n], do the following:

(a) Let t denote the type of item i.
(b) Choose a bin at random such that each bin j ∈ [m] is chosen with probability

xitj

pit
. Let j∗ denote the chosen bin.

(c) For each j ∈ [m], define the random variable Xij as Xij ← Sitj if j∗ = j,
and Xij ← 0 otherwise15. For each j ∈ [m], write the CDF of Xij on a
box and present it to the magician of bin j. The CDF of Xij is FXij

(s) =
(1−∑t′ xit′j) +

∑
t′ xit′jFit′j(s).

(d) If the magician for bin j∗ opened his box in step 3c, then assign item i to bin j∗,
otherwise discard the item. For each j ∈ [m], if the magician of bin j opened
his box in step 3c, decrease the mana of that magician by Xij . In particular,
Xij = 0 for all j �= j∗, and Xij∗ = Sitj∗ .

Theorem 4. For any γ ≤ γk, the online algorithm of Definition 6 obtains in expecta-
tion at least a γ-fraction of the expected value of the optimal offline assignment (recall
that γk ≥ 1− 1√

k
).

Proof. By Theorem 1, it is enough to show that the online algorithm obtains in expec-
tation at least a γ-fraction of the optimal value of the linear program (OPT ). Let x be
an optimal assignment for the LP. The contribution of each item i ∈ [n] to the value of
bin j ∈ [m] in the LP is exactly

∑
t vitjxitj . We show that the online algorithm obtains

in expectation γ
∑

t vitjxitj from each item i and each bin j.
Consider an arbitrary item i ∈ [n] and an arbitrary bin j ∈ [m]. WLOG, suppose the

items are indexed in the order in which they arrive. Observe that

E [Xij ] =
∑

t

pit
xitj
pit

E [Sitj ] =
∑

t

xitj s̃itj .

Consequently,
∑
iE[Xij ] =

∑
i

∑
t xitj s̃itj ≤ cj .

15 Note that Sitj is learned only after item i is placed in bin j which implies that Xij may not be
known at this point, however the algorithm does not use Xij until after it is learned.
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The last inequality follows from the first set of constraints in the LP of (OPT ). Given
that

∑
iE[Xij ] ≤ cj and γ ≤ γk ≤ γcj , Theorem 2 implies that the magician of

bin j opens each box with a probability of γ. Therefore, the expected contribution of
item i to bin j is exactly

∑
t γpit

xitj

pit
vitj = γ

∑
t xitjvitj . Consequently, the online

algorithm obtains γ
∑

i

∑
j

∑
t xitjvitj in expectation which is at least a γ-fraction

of the expected value of the optimal offline assignment. Furthermore, each magician
guarantees that the total size of the items assigned to each bin does not exceed the
capacity of that bin.

5 Analysis of Generalized γ-Conservative Magician

We present the proof of Theorem 2. We prove the theorem in two parts. In the first part,
we show that the thresholds computed by the γ-conservative magician indeed guarantee
that each box is opened with an ex-ante probability of γ, assuming there is enough
mana. In the second part, we show that for any γ ≤ 1 − 1√

k
, the thresholds θi are less

than or equal to k − 1, for all i, which implies that the magician never requires more
than k units of mana. Below, we repeat the formulation of the threshold based strategy
of the magician.

Pr [Yi = 1|Wi] =

⎧
⎪⎨

⎪⎩

1 Wi < θi

(γ − F−
Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)

Part 1. We show that the thresholds computed by a γ-conservative magician guarantee
that each box is opened with an ex ante probability of γ (i.e., Pr[Yi = 1] = γ),
assuming there is enough mana.

Pr [Yi ≤ w] = Pr [Yi = 1 ∩Wi < θi] +Pr [Yi = 1 ∩Wi = θi]

+Pr [Yi = 1 ∩Wi > θi]

= Pr [Wi < θi] +
γ − F−

Wi
(θi)

FWi
(θi)− F−Wi

(θi)
Pr [Wi = θi] = γ

Part 2. Assuming γ ≤ 1 − 1√
k

, we show that the thresholds computed by a γ-
conservative magician are no more than k − 1 (i.e., θi ≤ k − 1 for all i). First, we
present an interpretation of how FWi

(·) evolves in i in terms of a sand displacement
process.

Definition 7 (Sand Displacement Process). Consider one unit of infinitely divisible
sand which is initially at position 0 on the real line. The sand is gradually moved to the
right and distributed over the real line in n rounds. Let FWi

(w) denote the total amount
of sand in the interval [0, w] at the beginning of round i ∈ [n]. At each round i the
following happens.
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(I) The leftmost γ-fraction of the sand is selected by first identifying the smallest
threshold θi ∈ R+ such that FWi

(θi) ≥ γ and then selecting all the sand in
the interval [0, θi) and selecting a fraction of the sand at position θi itself such
that the total amount of selected sand is equal to γ. Formally, if Gi(w) denotes
the total amount of sand selected from [0, w], the selection of sand is such that
Gi(w) = min(FWi

(w), γ), for every w ∈ R+. In particular, this implies that
only a fraction of the sand at position θi itself might be selected, however all the
sand to the left of position θi is selected.

(II) The selected sand is moved to the right as follows. Consider the given random
variable Xi ∈ [0, 1] and let FXi

(·) denote its CDF. For every point w ∈ [0, θi]
and every distance δ ∈ [0, 1], take a fraction proportional to Pr[Xi = δ] out of
the sand which was selected from position w and move it to position w + δ.

It is easy to see that θi and FWi
(w) resulting from the above process are exactly the

same as those computed by the γ-conservative magician.

Lemma 1. At the end of the ith round of the sand displacement process, the total
amount of sand in the interval [0, w] is given by the following equation.

FWi+1
(w) = FWi

(w)−Gi(w) +EXi∼FXi
[Gi(w −Xi)] ∀i ∈ [n] , ∀w ∈ R+ (FW)

Proof. According to definition of the sand displacement process, FWi+1
(w) can be de-

fined as follows.

FWi+1
(w) = (FWi

(w) −Gi(w)) +
∫∫

ω+δ≤w
dGi(ω) dFXi

(δ)

= FWi
(w) −Gi(w) +

∫

Gi(ω − δ) dFXi
(δ)

= FWi
(w) −Gi(w) +EXi∼FXi

[Gi(w −Xi)]

Proof (Proof of Theorem 3). The claim follows directly from Lemma 1

Consider a conceptual barrier which is at position θi + 1 at the beginning of round i
and is moved to position θi+1 + 1 for the next round, for each i ∈ [n]. It is easy to
verify (i.e., by induction) that the sand never crosses to the right side of the barrier (i.e.,
FWi+1

(θi + 1) = 1). In what follows, the sand theorem implies that the sand remains
concentrated near the barrier throughout the process. The barrier theorem implies that
the barrier never passes k.

Theorem 5 (Sand). Throughout the sand displacement process (Definition 7), at the
beginning of round i ∈ [n], the following inequality holds.

FWi
(w) < γFWi

(w + 1), ∀i ∈ [n] , ∀w ∈ [0, θi) (FW -ineq)

Furthermore, at the beginning of round i ∈ [n], the average distance of the sand from
the barrier, denoted by di, is upper bounded by the following inequalities16 in which the
first inequality is strict except for i = 1.

16 Note that {z} = z − �z�, for any z.
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di ≤ (1− {θi})1− γ
�θi�+1

1− γ + {θi} 1− γ
�θi	+1

1− γ ≤ 1− γ�θi	+1

1− γ <
1

1− γ , ∀i ∈ [n]

(d)

Proof. We start by proving the inequality (FW-ineq). The proof is by induction on i.
The case of i = 1 is trivial because all the sand is at position 0 and so θ1 = 0. Suppose
the inequality holds at the beginning of round i for all w ∈ [0, θi); we show that it holds
at the beginning of round i + 1 for all w ∈ [0, θi+1). Note that θi ≤ θi+1 ≤ θi + 1, so
there are two possible cases:

Case 1. w ∈ [0, θi). Observe that Gi(w) = FWi
(w) in this interval, so:

FWi+1
(w) = FWi

(w)−Gi(w) +EXi
[Gi(w −Xi)] by (FW).

= EXi

[
FWi

(w −Xi)
]

by Gi(w) = FWi
(w), for w ∈ [0, θi).

< EXi

[
γFWi

(w −Xi + 1)
]

by induction hypothesis.

= γEXi

[
FWi

(w −Xi + 1)−Gi(w −Xi + 1) +Gi(w −Xi + 1)
]

≤ γ (
FWi

(w + 1)−Gi(w + 1) +EXi
[Gi(w −Xi + 1)]

)

by monotonicity of FWi
(·)−Gi(·).

= γFWi+1
(w + 1) by (FW).

Case 2. w ∈ [θi, θi+1]. We prove the claim by showing that FWi+1
(w) < γ and

FWi+1
(w + 1) = 1. Observe that FWi+1

(w) < γ because w < θi+1 and because of the
definition of θi+1 in (θ). Furthermore, observe that FWi+1

(w+1) ≥ FWi+1
(θi+1) = 1

both before and after round i all the sand is still contained in the interval [0, θi + 1].
Next, we prove inequality (d) which upper bounds the average distance of the sand

from the barrier at the beginning of round i ∈ [n].

di =

∫ θi+1

0

(θi + 1− w) dFWi
(w)

=

∫ θi+1

0

FWi
(w) dw by integration by part.

=

�θi	∑

�=0

∫ θi+1−�

θi−�
FWi

(w) dw

≤
�θi�∑

�=0

∫ θi+1

θi

γ�FWi
(w) dw +

∫ θi+1

�θi�+1

γ�θi	FWi
(w) dw by (FW-ineq).

≤
�θi�∑

�=0

γ� + {θi} γ�θi	 by FWi
(w) ≤ 1.

= (1− {θi})
�θi�∑

�=0

γ� + {θi}
�θi	∑

�=0

γ�

= (1− {θi})1− γ
�θi�+1

1− γ + {θi} 1− γ
�θi	+1

1− γ ≤ 1− γ�θi	+1

1− γ
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The last inequality follows because (1 − β)L + βH ≤ H for any β ∈ [0, 1] and any
L,H with L ≤ H . Note that at least one of the first two inequalities is strict except for
i = 1 which proves the claim.

Theorem 6 (Barrier). If
∑n

i=1 EXi∼FXi
[Xi] ≤ k for some k ∈ N, and γ ≤ 1 − 1√

k
,

then the distance of the barrier from the origin is no more than k throughout the process,
i.e., θi ≤ k − 1 for all i ∈ [n].

Proof. At the beginning of round i, let di and d′i denote the average distance of the
sand from the barrier and from the origin respectively. Recall that the barrier is defined
to be at position θi + 1 at the beginning of round i. Observe that di + d′i = θi + 1.
Furthermore, d′i+1 = d′i+γ E[Xi], i.e., the average distance of the sand from the origin
is increased exactly by γE[Xi] during round i (because the amount of selected sand is
exactly γ and the sand selected from every position w ∈ [0, θi] is moved to the right by
an expected distance of E[Xi]). By applying Theorem 5 we get the following inequality
for all i ∈ [n].

θi + 1 = d′i + di < γ

i−1∑

r=1

E [Xi] + di

≤ γk + (1− {θi})1− γ
�θi�+1

1− γ + {θi} 1− γ
�θi	+1

1− γ
In order to show that distance of the barrier from the origin is no more than k throughout
the process, it is enough to show that the above inequality cannot hold for θi > k − 1.
In fact it is just enough to show that it cannot hold for θi = k − 1; alternatively, it
is enough to show that the complement of the above inequality holds for θi = k − 1,

i.e., k ≥ γk + 1−γk

1−γ . To complete the proof, consider the the stronger inequality k ≥
γk + 1

1−γ which is quadratic in γ and can be solved to get a bound of γ ≤ 1− 1√
k

.

Theorem 6 implies that a γ-conservative magician requires no more than k units of
mana, assuming that γ ≤ 1− 1√

k
. That completes the proof of Theorem 2.
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Abstract. We show improved NP-hardness of approximating Order-
ing Constraint Satisfaction Problems (OCSPs). For the two most
well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Be-
tweenness, we prove inapproximability of 14/15 + ε and 1/2 + ε.

An OCSP is said to be approximation resistant if it is hard to approx-
imate better than taking a uniformly random ordering. We prove that
the Maximum Non-Betweenness Problem is approximation resistant
and that there are width-m approximation-resistant OCSPs accepting
only a fraction 1/(m/2)! of assignments. These results provide the first
examples of approximation-resistant OCSPs subject only to P �= NP.

Our reductions from Label Cover differ from previous works in two
ways. First, we establish a somewhat general bucketing lemma permit-
ting us to reduce the analysis of ordering predicates to that of classical
predicates. Second, instead of “folding”, which is not available for order-
ing predicates, we employ permuted instantiations of the predicates to
limit the value of poorly correlated strategies.

1 Introduction

We study the NP-hardness of approximating a rich class of optimization problems
known as the Ordering Constraint Satisfaction Problems (OCSPs). An instance
of an OCSP is described by a set of variables X and a set of local ordering
constraints C. Each constraint specifies a set of variables and a set of permitted
permutations of these variables. The objective is to find a permutation of X that
maximizes the fraction of constraints satisfied by the induced local permutations.

A simple example of an OCSP is the Maximum Acyclic Subgraph (MAS)
where one is given a directed graph G = (V,A) with the task of finding an
acyclic subgraph of G with the maximum number of edges. Phrased as an
OCSP, V is the set of variables and each edge u → v is a constraint “u ≺ v”
dictating that u should precede v. The maximum fraction of constraints simul-
taneously satisfiable by an ordering of V is then exactly the normalized size
of the largest acyclic subgraph, also called the value of the instance. Since
the constraints in an MAS instance are on two variables, it is an OCSP of
width 2. Another example of an OCSP is the Maximum Betweenness (Max

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 26–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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BTW) problem; [11] a width-3 OCSP where a constraint on a triplet of vari-
ables (x, y, z) permits either x ≺ z ≺ y or its reverse y ≺ z ≺ x; in other
words, z has to be between x and y and hence the name for the problem.

x z y

a

b

Fig. 1. An MAS in-
stance with value 5/6

Determining the value of a MAS instance is already
NP-hard and one turns to approximation algorithms.
A c-approximation algorithm for some c ≤ 1 is one
that outputs an ordering satisfying at least a c · val(I)
fraction of the constraints. Every OCSP admits a
naive approximation algorithm that picks an order-
ing of X uniformly at random without even looking
at the instance. For MAS, this algorithm yields a
1/2-approximation in expectation as each constraint is
satisfied with probability 1/2. Surprisingly, there is ev-
idence that this mindless procedure achieves the best
approximation ratio possible in polynomial time: as-
suming Khot’s Unique Games Conjecture (UGC) [16],
MAS is hard to approximate within 1/2 + ε for every
ε > 0 [13,12]. An OCSP is called approximation resistant if it exhibits this be-
havior, i.e., if it is NP-hard to improve on the guarantee of the random-ordering
algorithm by ε for every ε > 0. In fact, the results of [12] are much more general:
assuming the UGC, they prove that every OCSP of bounded width.

In many cases, such as for Vertex Cover, Max Cut, and as we just men-
tioned, for all OCSPs, assuming the UGC allows us to prove optimal inapprox-
imability results, much stronger than known plain NP-hardness. For instance,
the problems MAS and Max BTW were to date only known to be NP-hard
to approximate within 65/66 + ε [18] and 47/48 + ε [9], which comes far from
matching the random assignment thresholds of 1/2 and 1/3, respectively. In fact,
while the UGC implies that all OCSPs are approximation resistant, there were
no results proving NP-hard approximation resistance of an OCSP prior to this
work. In contrast, there is a significant body of work on NP-hard approximation
resistance of classical Constraint Satisfaction Problems (CSPs) [15,20,10,6]. Fur-
thermore, the UGC is still very much open and recent algorithmic advances have
given rise to subexponential algorithms for Unique Games [1,5] putting the con-
jecture in question. Several recent works have also been aimed at bypassing the
UGC for natural problems by providing comparable results without assuming
the conjecture [14,6].

1.1 Results

In this work we obtain improved NP-hardness of approximating various OCSPs.
While a complete characterization such as in the UG regime still eludes us, our
results improve the knowledge of what we believe are four important flavors of
OCSPs; see Table 1 for a summary of the present state of affairs.

We address the two most studied OCSPs: MAS and Max BTW. For MAS,
we show a factor (14/15 + ε)-inapproximability, improving the factor from
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Table 1. Known results and our improvements

Problem Approx. factor UG-inapprox. NP-inapprox. This work

MAS 1/2 +Ω(1/log n) [8] 1/2 + ε [13] 65/66 + ε [18] 14/15 + ε

Max BTW 1/3 1/3 + ε [7] 47/48 + ε [9] 1/2 + ε

Max NBTW 2/3 2/3 + ε [7] - 2/3 + ε

m-OCSP 1/m! 1/m! + ε [12] - 1/ �m/2�! + ε

65/66 + ε [18]. For Max BTW, we show a factor (1/2 + ε)-inapproximability
improving from 47/48 + ε [9].

Theorem 1. For every ε > 0, it is NP-hard to distinguish between MAS in-
stances with value at least 15/18−ε from instances with value at most 14/18+ε.

Theorem 2. For every ε > 0, it is NP-hard to distinguish between Max BTW
instances with value at least 1− ε from instances with value at most 1/2 + ε.

The above two results are inferior to what is known assuming the UGC and in
particular do not prove approximation resistance. We introduce the Maximum
Non-Betweenness (Max NBTW) problem which accepts the complement of
the predicate in Max BTW. This predicate accepts 4 of the 6 permutations on
three elements and thus a random ordering satisfies 2/3 of the constraints in
expectation. We show that this is optimal up to smaller-order terms.

Theorem 3. For every ε > 0, it is NP-hard to distinguish between Max NBTW
instances with value at least 1− ε from instances with value at most 2/3 + ε.

Finally, we address the approximability of a generic width-m OCSP as a function
of the width m. In the CSP world, the generic version is called m-CSP and
we call the ordering version m-OCSP. We devise a simple predicate, “2t-Same
Order” (2t-SO) onm = 2t variables that is satisfied only if the first t elements are
relatively ordered exactly as the last t elements. A random ordering satisfies only
a fraction 1/t! of the constraints and we prove that this is essentially optimal,
implying a (1/ �m/2�! + ε)-factor inapproximability of m-OCSP.

Theorem 4. For every ε > 0 and integer m ≥ 2, it is NP-hard to distinguish
m-OCSP instances with value at least 1− ε from value at most 1/ �m/2�! + ε.

1.2 Proof Overview

With the exception of MAS, our results follow a route which is by now standard in
inapproximability: starting from the optimization problem Label Cover (LC),
we give a reduction to the problem at hand using a dictatorship-test gadget, also
known as a long-code test. We describe this reduction in the context of Max
NBTW to highlight the new techniques in this paper.

The reduction produces an instance I of Max NBTW from an instance L of
Label Cover (LC) such that val(I) > 1−η if val(L) = 1 while val(I) < 2/3+η if
val(L) ≤ δ. By the PCP Theorem and the Parallel Repetition Theorem [3,2,19], it
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is NP-hard to distinguish between val(L) = 1 and val(L) ≤ δ for every constant
δ > 0 and thus we obtain the result in Theorem 3. The core component in
this paradigm is the design of a dictatorship test: a Max NBTW instance on
[q]L ∪ [q]R, for integers q and label sets L and R. Let π be a map R→ L. Each
constraint is a tuple (x,y, z) where x ∈ [q]L, while y, z ∈ [q]R. The distribution
of tuples is obtained as follows. First, pick x, and y uniformly at random from
[q]L, and [q]R. Set zj = yj + xπ(j) mod q. Finally, add noise by independently
replacing each coordinate xi, yj and zj with a uniformly random element from
[q] with probability γ.

This test instance has canonical assignments that satisfy almost all the con-
straints. These are obtained by picking an arbitrary j ∈ [R], and partitioning
the variables into q sets S0, . . . Sq−1 where St = {x ∈ [q]L| xπ(j) = t} ∪ {y ∈
[q]R| yj = t}. If a constraint (x,y, z) is so that x ∈ St, y ∈ Su then z /∈ Sv for
any v ∈ {t+1, . . . , u− 1} except with probability O(γ). This is because, (a+ b)
mod q is never strictly between a and b. Further, the probability that any two
of x, y and z fall in the same set Si is simply the probability that any two of
xπ(j), yj , zj are assigned the same value, which is at most O(1/q). Thus, ordering
the variables so that S0 ≺ S1 ≺ . . . ≺ Sq−1 with an arbitrary ordering of the
variables within a set satisfies a fraction 1−O(1/q)−O(γ) constraints.

The proof of Theorem 3 requires a partial converse of the above: every ordering
that satisfies more than a fraction 2/3 + ε of the constraints is more-or-less an
ordering that depends on a few coordinates j as above. This proof involves three
steps. First, we show that there is a Γ = Γ (q, γ, β) such that every ordering O
of [q]

L
or [q]

R
can be broken into Γ sets S0, . . . , SΓ−1 such that one achieves

expected value at least val(O) − β for arbitrarily small β by ordering the sets
S0 ≺ . . . ≺ SΓ−1 and within each set ordering elements randomly. The proof of
this “bucketing” uses hypercontractivity of noised functions from a finite domain.
We note that a related bucketing argument is used in proving inapproximability
of OCSPs assuming the UGC [13,12]. Their bucketing argument is tied to the
use of the UGC, where |L| = |R| for the corresponding dictatorship test, and
does not extend to our setting. In particular, our approach yields a Γ 
 q while
they crucially require a Γ � q in their work. We believe that our bucketing
argument is more general and a useful primitive.

Then, similarly to [13,12], the bucketing argument allows an OCSP to be
analyzed as if it were a CSP on a finite domain, enabling us to use powerful
techniques for this common setting. In particular, one can argue that unless
val(L) > δ, the distribution of constraints (x,y, z) can be regarded as obtained
by sampling x independently; in other words, x is “decoupled” from (y, z). We
note that the marginal distribution of the tuple (y, z) is already symmetric
with respect to swaps: P (y = y, z = z) = P (y = z, z = y). In order to prove
approximation resistance, we combine three of these dictatorship tests: the jth
variant has x as the jth component of the 3-tuple. We show that the combined
instance is symmetric with respect to every swap up to an η error unless val(L) >
δ. This implies that the instance has value at most 2/3 + O(η) hence proving
approximation resistance of Max NBTW.
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For Max BTW and Max 2t-SO, we do not require the final symmetrization
and instead use a dictatorship test based on a different distribution. Finally, the
reduction to MAS is a simple gadget reduction fromMax NBTW. For hardness
results of width-two predicates, such gadget reductions presently dominate the
scene of classical CSPs and also define the state of affairs for MAS. As an
example, the best-known NP-hard approximation hardness of 16/17+ε for Max
Cut is via a gadget reduction from Max 3-Lin-2 [15,21]. The previously best
approximation hardness of MAS was also via a gadget reduction from Max
3-Lin-2 [18], although with the significantly smaller gap 65/66+ ε. By reducing
from a problem more similar to MAS, namely Max NBTW, we improve to the
approximation hardness to 14/15+ε. The gadget in question is quite simple and
we have in fact already seen it in Sect. 1.

Organization. Section 2 sets up the notation used in the rest of the article.
Section 3 gives a general hardness result based on a test distribution which
is subsequently used in Sect. 4 to derive our main results. The proof of the
soundness of the general hardness reduction is largely given in Sect. 5.

2 Preliminaries

We denote by [n] the integer interval {0, . . . , n−1}. Given a tuple of reals x ∈ R
m,

we write σ(x) ∈ Sm for the natural-order permutation on {1, . . . ,m} induced
by x. For a distribution D over Ω1 × · · · × Ωm, we use D≤t and D>t to denote
the projection to coordinates up to t and the rest, respectively.

Ordering Constraint Satisfaction Problems. We are concerned with predicates
P : Sm → [0, 1] on the symmetric group Sm. Such a predicate specifies a width-m
OCSP written as OCSP(P). An instance I of OCSP(P) problem is a tuple (X , C)
where X is the set of variables and C is a distribution over ordered m-tuples of
X referred to as the constraints.

An assignment to I is an injective map O : X → Z called an ordering of
X . For a tuple c = (v1, . . . , vm), O|c denotes the tuple (O(v1), . . . ,O(vm)). An
ordering is said to satisfy the constraint c when P(σ(O|c)) = 1. The value of an
ordering is the probability that a random constraint c← C is satisfied by O and
the value val(I) of an instance is the maximum value of any ordering. Thus,

val(I) = max
O:X→Z

val(O; I) = max
O:X→Z

E
c∈C

[P(O|c)
]
.

We extend the definition of value to include orderings that are not strictly injective
as follows. Extend the predicate to P : Zm → [0, 1] by setting P(a1, . . . , am) =
Eσ [P(σ)] whereσ is drawn uniformly at randomover all permutations inSm such
that σi < σj whenever ai < aj . Note that the value of an instance is unchanged
by this extension as there is always a complete ordering that attains the value of
a non-injective map.

We define the predicates and problems studied in this work. MAS is exactly
OCSP({(1, 2)}). The betweenness predicate BTW is the set {(1, 3, 2), (3, 1, 2)}
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and NBTW is S3 \ BTW. We define Max BTW as OCSP(BTW) and Max
NBTW as OCSP(NBTW). Define 2t-SO as the subset of S2t such that the
induced ordering on the first t elements equals that on the last t elements, i.e.

2t-SO
def
= {π ∈ S2t | σ(π(1), . . . , π(r)) = σ(π(r + 1), . . . , π(2t))}.

This predicate has (2t)!/t! elements and will be used in proving the inapproxima-
bility of the generic m-OCSP with constraints of width at most m.

Label Cover and Inapproximability. The problem LC is a common starting point
of strong inapproximability results. An LC instance L = (U, V,E, L,R,Π) con-
sists of a bi-partite graph (U∪V,E) associating with every edge u, v a projection
πuv : R → L with the goal of labeling the vertices λ : U ∪ V → L ∪ R to maxi-
mize the fraction of projections s.t. “πuv(λ(v)) = λ(u)”. The following theorem
follows from the PCP Theorem [2] and parallel repetition [19].

Theorem 5. For every ε > 0, there exists fixed label sets L and R such that
it is NP-hard to distinguish LC instances of value 1 from instances of value at
most ε.

2.1 Primer on Real Analysis

We state facts about functions over a finite domain Ω taking values in the reals,
that will be necessary in our analysis. We refer to a finite domain Ω along with
a distribution μ as a probability space. Given a probability space (Ω,μ), the nth

tensor power is (Ωn, μ⊗n) where μ⊗n(ω1, . . . , ωn) = μ(ω1) · · ·μ(ωn). The �p norm
of f : Ω → R w.r.t. μ is denoted by ||f ||μ,p and is defined as Ex∼μ [|f(x)|p]1/p
for real p ≥ 1 and maxx∈supp(μ) f(x) for p = ∞. When clear from the context,
we shall omit the distribution μ. The so-called noise operator and its properties
play a pivotal role in our analysis.

Definition 1. Let (Ω,μ) be a probability space and f : Ωn → R be a function
on the nth tensor power. For a parameter ρ ∈ [0, 1], the noise operator Tρ takes
f to Tρf → R defined by

Tρf(x) = E [f(y)|x] ,

where the ith coordinate of y is chosen as yi = xi with probability ρ and otherwise
as an independent new sample.

The noise operator preserves the mass E [f ] of a function while spreading it in
the space. The quantitative bound on this is referred to as hypercontractivity.

Theorem 6 ([23]; Theorem 3.16, 3.17 of [17]). Let (Ω,μ) be a probability
space in which the minimum nonzero probability of any atom is α < 1/2. Then,
for every q > 2 and every f : Ωn → R,

∣
∣
∣
∣Tρ(q)f

∣
∣
∣
∣
q
≤ ||f ||2,



32 P. Austrin, R. Manokaran, and C. Wenner

where for α < 1/2 we set A = 1−α
α ; 1/q′ = 1 − 1/q; and ρ(q, α) =

(
A1/q−A−1/q

A1/q′−A−1/q′

)1/2

. For α = 1/2, we set ρ(q) = (q − 1)−1/2.

For a fixed probability space, the above theorem says that for every γ > 0, there
is a q > 2 such that ||T1−γf ||q ≤ ||f ||2. For our application, we need the easy

corollary that the reverse direction also holds: for every γ > 0, there exists a
q > 2 such that hypercontractivity to the �2-norm holds.

Lemma 1. Let (Ω,μ) be a probability space in which the minimum nonzero
probability of any atom is α ≤ 1/2. Then, for every f : Ωn → R, small enough
γ > 0,

||T1−γf ||2+δ ≤ ||f ||2
for any 0 < δ ≤ δ(γ, α) = 2 log((1−γ)−2)−1

log(A) with A = 1−α
α > 1. Further,

δ(γ, 1/2) = γ(2− γ)(1− γ)−2.
Proof. The estimate for δ(γ, 1/2) follows immediately from the above theorem

assuming γ < 1/2. In the case when α < 1/2, solving ρ2
def
= (1 − γ)2 = (A1/q −

A−1/q)(A1−1/q −A1/q−1)−1 for q gives, for γ < 1−A−1/2,

δ = q−2 =
2 log(A)

log( 1+ρ2A
1+ρ2/A )

−2 ≥ 2
log((1 − γ)−2)− 1

log(A)
. ��

3 A General Hardness Result

In this section, we prove a general inapproximability for OCSPs that, similar to
results for classic CSPs, permit us to deduce hardness of approximation based
on the existence of certain simple distributions. The proof is via a scheme of
reductions from LC to OCSPs. For an m-width predicate P , we instantiate this
scheme with a distribution D over Qt1 ×Qm−t2 , for some parameters t, Q1, and
Q2 to obtain a reduction to OCSP(P) instances. Theorems 2 to 4 follow from
straightforward applications of this result using appropriate distributions.

The reduction itself is composed of pieces known as dictatorship test which is
described in the next section. Section 3.2 uses this test to construct the overall
reduction and also contains the properties of this reduction.Throughout this
section, we assume P is the m-width predicate of interest and that D is the
distribution of the appropriate signature.

3.1 Dictatorship Test

The dictatorship test uses a distribution parametrized by γ, and π and is denoted

by T (γ)
π (D); its definition follows.
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Procedure 1 (Test Distribution).

Parameters:

– distribution D over

t
︷ ︸︸ ︷
Q1 × . . .×Q1×

m−t
︷ ︸︸ ︷
Q2 × . . .×Q2;

– noise probability, γ > 0;
– projection map π : R→ L;

Output: Distribution T (γ)
π (D) over

(x(1), . . . ,x(t),y(t+1), . . . ,y(m)) ∈ (
QL1 × · · · ×QL1

)× (
QR2 × · · · ×QR2

)
.

1. pick a random |L|× t matrix X over Q1 by letting each row be a sample from
D≤t, independently.

2. pick a random |R| × (m − t) matrix Y
def
= (y(t+1), . . . ,y(m)) over Q2 by

letting the i:th row be a sample from D>t conditioned on D≤t = Xπ(i) =

(x
(1)
π(i), . . . ,x

(t)
π(i)).

3. for each entry of X (resp. Y) independently, replace it with a sample from
Q1 (resp. Q2) with probability γ.

4. output (X,Y).

Recall our convention from Sect. 2 of extending P to a predicate P : Zm →
[0, 1]. For a pair of functions (f, g), we denote the tuple (f(x(1)), . . . , f(x(t)),
g(y(t+1)), . . . , g(y(m))) by (f, g) ◦ (X,Y). Then, the acceptance probability on

T (γ)
π (D) for a pair of functions (f, g) where f : QL1 → Z and g : QR2 → Z is:

Accf,g(T (γ)
π (D)) def

= E
(X,Y)←T (γ)

π (D)

[P((f, g) ◦ (X,Y))]. (1)

This definition is motivated by the overall reduction described in the next section.
The distribution is designed so that functions (f, g) that are dictated by a single
coordinate have a high acceptance probability, justifying the name of the test.

Lemma 2. Let g : QR2 → Z and f : QL1 → Z be defined by g(y) = yi and

f(x) = xπ(i) for some i ∈ R. Then, Accf,g(T (γ)
π (D)) ≥ Ex∼D[P(x)]− γm.

Proof. The vector (f(x(1)), . . . , f(x(t)), g(y(t+1)), . . . , g(y(m))) simply equals the
π(i):th row ofX followed by the i:th row ofY. With probability (1−γ)m ≥ 1−γm
this is a sample from D and is hence accepted by P with probability at least
Ex∼D[P(x)]− γm. ��
We prove a partial converse of the above: unless f and g have influential co-
ordinates i and j such that π(j) = i, the distribution D can be replaced by a
product of two distributions with a negligible loss in the acceptance probability.
We define this product distribution below and postpone the analysis to Sect. 5.2
in order to complete the description of the reduction.

Definition 2. Given the base distribution D, the decoupled distribution D⊥ is
obtained by taking independent samples x from D≤t and y from D>t.
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3.2 Reduction from Label Cover

Procedure 2 (Reduction R
(P)
D,γ).

Parameters: distribution D over Qt1 ×Qm−t2 and noise parameter γ > 0.

Input: a Label Cover instance L = (U, V,E, L,R,Π).

Output: a weighted OCSP(P) instance I = (X , C) where X = (U ×QL1 )∪ (V ×
QR2 ). The distribution of constraints in C is obtained by sampling a random edge

e = (u, v) ∈ E with projection πe and then (X,Y) from T (γ)
πe (D); the constraint

is the predicate P applied on the tuple

((u,x(1)), . . . , (u,x(t)), (v,y(t+1)), . . . , (v,y(m))).

An assignment to I is seen as a collection of functions, {fu}u∈U ∪ {gv}v∈V ,
where fu : QL1 → Z and gv : Q

R
2 → Z. The value of an assignment is:

E
e=(u,v)∈E;

(X,Y)∈T (γ)
πe (D)

P ((fu, gv) ◦ (X,Y)) = E
e=(u,v)∈E

[Accfu,gv (T (γ)
πe

(D))].

Lemma 2 now implies that if L is satisfiable, then the value of the instance
output is also high.

Lemma 3. If λ is a labeling of L satisfying a fraction c of its constraints, then
the ordering assignment fu(x) = xλ(u), gv(y) = yλ(v) satisfies at least a fraction

c · (Ex∼D[P(σ(x))] − γm) of the constraints of R
(P)
D,γ(L). In particular, there is

an ordering of R
(P)
D,γ(L) attaining a value val(L) · (Ex∼D[P(σ(x))]− γm) that is

oblivious to the distribution D.
On the other hand, we also extend the decoupling property of the dictatorship
test to the instance output if val(L) is small. This is the technical core of the
paper and is proved in Sect. 5.

Theorem 7. Suppose that D over Qt1×Qm−t2 satisfies the following properties:

– D has uniform marginals.
– For every i > t, Di is independent of D≤t.

Then, for every ε > 0 and γ > 0 there exists εLC > 0 such that if val(L) ≤ εLC
then for every assignment A = {fu}u∈U ∪ {gv}v∈V to I it holds that

val(A;R
(P)
D,γ(L)) ≤ val(A;R

(P)
D⊥,γ(L)) + ε.

In particular, val(R
(P)
D,γ(L)) ≤ val(R

(P)
D⊥,γ(L)) + ε.

4 Applications of the General Result

In this section, we prove the inapproximability of Max BTW and Max NBTW
using the general hardness result of Sect. 3. We also prove the hardness of MAS
using a gadget reduction from Max NBTW. Due to lack of space, the inap-
proximability of Max 2t-SO is deferred to the full version.
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4.1 Hardness of Maximum Betweenness

For an integer q, define the distribution D over {−1, q}× [q]× [q] by picking x1 ∼
{−1, q}, y2 ∼ [q] , and setting y3 = y2+1 mod q if x1 = q and y2−1 otherwise.
This distribution has the following properties which can be readily verified.

Proposition 1. Let (x1,y2,y3) ∼ D. Then the following holds:

1. D has uniform marginals.
2. The marginals y2 and y3 are independent of x.
3. (y2,y3) has the same distribution as (y3,y2).
4. Ex1,y2,y3∼D[BTW(x1,y2,y3)] ≥ 1− 1/q.

Let D⊥ be the decoupled distribution of D which draws the first coordinate in-
dependently of the remaining and γ > 0 a noise parameter. Given a LC instance
L and consider applying Reduction 2 to L with test distributions D and D⊥,
obtaining Max BTW instances I = RBTW

D,γ (L) and I⊥ = RBTW
D⊥,γ(L).

Lemma 4 (Completeness). If val(L) = 1 then val(I) ≥ 1− 1/q − 3γ.

Proof. This is an immediate corollary of Lemma 3 and Prop. 1. ��
Lemma 5 (Soundness). For every ε > 0, γ > 0, q, there is an εLC > 0 such
that if val(L) ≤ εLC then val(I) ≤ 1/2 + ε.

Proof. We note that Prop. 1 asserts that D satisfies the conditions of Theorem 7
and it suffices to show val(I⊥) ≤ 1/2. Let {fu : {0, 1}L → Z}u∈U , {gv : [q]

R →
Z}v∈V be an arbitrary assignment to I⊥. Fix an LC edge {u, v} with projection
π and consider the mean value of constraints produced for this edge by the
construction:

E
x(1),y(2),y(3)←T (γ)

π (D⊥)

[
BTW(fu(x

(1)), gv(y
(2)), gv(y

(3)))
]
. (2)

As noted in Prop. 1, (y(2),y(3)) has the same distribution as (y(3),y(2)) when
drawn from D. Consequently, when drawing arguments from the decoupled test
distribution, the probability of a specific outcome (x(1),y(2),x(3)) equals the
probability of (x(1),y(3),x(2)). For strict orderings, at most one of the two can
satisfy the predicate BTW. Thus, the expression in (2), and in effect val(I⊥), is
bounded by 1/2. ��
Theorem 2 is now an immediate corollary of Lemmas 4 and 5, taking q = �2/ε�
and γ = ε/6.

4.2 Hardness of Maximum Non-betweenness

For an implicit parameter q, define a distribution D over [q]3 by picking x1,x2 ∼
[q] and setting x3 = x1 + x2 mod q.
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Proposition 2. The distribution D satisfies the following:

1. D is pairwise independent with uniform marginals,
2. and Ex1,x2,x3∼D [NBTW(x1,x2,x3)] ≥ 1− 3/q.

A straightforward application of the general inapproximability with t = 1 shows
that x1 is decoupled from x2 and x3 unless val(L) is large. Further, pairwise
independence implies that the decoupled distribution is simply the uniform dis-
tribution over [q]3. However, this does not suffice to prove approximation resis-
tance and in fact the value could be greater than 2/3. To see this, note that
if {fu}u∈U , {gv}v∈V is an ordering of the instance from the reduction, then the
first coordinate of every constraint is a variable of the form fu(·) while the rest
are gv(·). Thus, ordering the fu(·) variables in the middle and randomly ordering
gv(·) on both sides satisfies a fraction 3/4 of the constraints.

To remedy this and prove approximation resistance, we permute D by swap-
ping the last coordinate with each of the coordinates and overlay the instances
obtained by the reduction obtained from each of these distributions. For 1 ≤ j ≤
3, define Dj as the distribution over [q]3 obtained by first sampling from D and
then swapping the jth and third coordinate (in other words, the jth coordinate
is the sum of the other two, which are picked independently at random). Simi-
larly, define NBTWj as the ordering predicate which is true if the j’th argument
does not lie between the other two, e.g., NBTW3 = NBTW.

As in the previous section, take a LC instance L and consider applying Re-

duction 2 to L with the distributions Dj , and write Ij = R
NBTWj

Dj,γ
(L). Similarly

write I⊥j = R
NBTWj

D⊥
j ,γ

(L) for the corresponding decoupled instances.

As the distributions Dj are over the same domain [q]3, the instances I1, I2, I3
are over the same variables. We define a new instance I over the same variables
as the “sum” 1

3

∑
j∈[3] Ij , defined by taking all constraints in I1, I2, I3 (with

multiplicities) and then normalizing their weight by 1/3.

Lemma 6 (Completeness). If val(L) = 1 then val(I) ≥ 1− 3/q − 3γ.

Proof. This is an immediate corollary of Lemma 3 and Prop. 2. ��
Lemma 7 (Soundness). For every ε > 0, γ > 0, q, there is an εLC > 0 such
that if val(L) ≤ εLC then val(I) ≤ 2/3 + ε.

Proof. Again our goal is to use Theorem 7 and we start by bounding val(I⊥).
To do this, note that the decoupled distributions Dj are in fact the uniform
distribution over [q]3 and in particular do not depend on j. This means that the
distributions of variables to which NBTWj is applied in I⊥j is independent of

j, e.g., if I⊥1 contains the constraint NBTW1(z1, z2, z3) with weight w then I⊥2
contains the constraint NBTW2(z1, z2, z3) with the same weight). In other words,
I⊥ can be thought of as having constraints of the form Ej [NBTWj(z1, z2, z3)].
It is readily verified that Ej [NBTWj(a, b, c)]] ≤ 2/3 for every a, b, c.

Getting back to the main task – bounding val(I) – fix an arbitrary assignment

A = {fu : [q]
L}u∈U∪{gv : [q]R}v∈V of I. By Theorem 7, val(A; Ij) ≤ val(A; I⊥j )+
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ε for j ∈ [3]. It follows that val(A; I) ≤ val(A; I⊥)+ ε and therefore, since A was
arbitrary, it holds that val(I) ≤ val(I⊥) + ε ≤ 2/3 + ε, as desired. ��

4.3 Hardness of Maximum Acyclic Subgraph

The inapproximability of MAS is from a simple gadget reduction from the in-
approximability gap of Max NBTW. We claim the following properties of the
directed graph shown in Sect. 1. The proof and the routine application of the
lemma to derive Theorem 1 are given in the full version.

Lemma 8. Consider an ordering O of x, y, z. Then,

1. if NBTW(O(x),O(y),O(z)) = 1, then maxO′ val(O′;H) = 5/6 where the
max is over all extensions O′ : V → Z of O to V.

2. if NBTW(O(x),O(y),O(z)) = 0, then maxO′ val(O′;H) = 4/6 where the
max is over all extensions of O to V.

5 Analysis of the Reduction

In this section we prove Theorem 7 which bounds the value of the instance
generated by the reduction in terms of the decoupled distribution. Throughout,
we fix an LC instance, L, a predicate P , an OCSP instance I obtained by the

procedure R
(P)
D,γ for a distribution D and noise-parameter γ. We further assume

the set {fu}u∈U ∪{gv}v∈V is the assignment we are interested in analyzing. The
proof involves three major steps. First, we show that the functions, which are Z-
valued, can be approximated by functions on a finite domain via bucketing (see
Sect. 5.1). This approximation makes it amenable to tools developed in the
context of analyzing finite-domain CSPs [22,6]; we use these tools in Sect. 5.2 to
prove the decoupling property of the dictatorship test. Finally, this decoupling
is extended to the reduction hence bounding the value of I.

5.1 Bucketing

For an integer Γ , we approximate the function fu : QL1 → Z by partitioning
the domain into Γ pieces. Put q1 = |Q1| and partition the set QL1 into sets

B
(fu)
1 , . . . , B

(fu)
Γ of size qL1 /Γ such that if x ∈ B

(fu)
i and y ∈ B

(fu)
j for some

i < j then f(x) < f(y). Note that this is possible as long as the parameter
Γ divides qL1 which will be the case. Let Fu : QL1 → [Γ ] specify the mapping

of points to the bucket containing it, and F
(a)
u : QL1 → {0, 1} the indicator of

points assigned to B
(fu)
a . Partition gv : QR2 → Z similarly into buckets {B(gv)

a }
obtaining Gv : QR2 → [Γ ] and G

(a)
v : QR2 → {0, 1}.

Now we show that the acceptance probability of the dictatorship test – see
(1) in Sect. 3 – applied to an edge e = (u, v) of the LC instance L can be
approximated by a bucketed version. Fix an edge e = (u, v) and put f = fu,
g = gv. As before, we denote a query tuple, (x(1), . . . ,x(t),y(t+1), . . . ,y(m))
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concisely as (X,Y). Define the bucketed payoff function with respect to f and
g, ℘(f,g) : [Γ ]m → [0, 1] as:

℘(f,g)(a1, . . . , am) = E
x(i)←B(f)

ai
;i≤t

y(j)←B(g)
aj

;t<j

[P((f, g) ◦ (X,Y))]

and the bucketed acceptance probability,

BAccf,g(T (γ)
π (D)) = E

(X,Y)←T (γ)
π (D)

[
℘(f,g)((F,G) ◦ (X,Y))

]
.

In other words, bucketing corresponds to generating a tuple a = (f, g) ◦ (X,Y)
and replacing each coordinate ai with a random value from the bucket ai fell in.

We show that above is close to the true acceptance probability Accf,g(T (γ)
π (D)).

Theorem 8. For every predicate P, every distribution D with uniform marginals,
every pair of orderings f : QL1 → Z and g : QR2 → Z, every γ > 0, projection
π : R→ L, and every Γ ,

∣
∣
∣Accf,g(T (γ)

π (D))− BAccf,g(T (γ)
π (D))

∣
∣
∣ ≤ m2Γ−δ,

for some δ = δ(γ,Q) > 0 with Q = max{|Q1|, |Q2|}.

To prove this, we show that f and g have few overlapping pairs of buckets

and that the probability of hitting any particular pair is small. Let R
(f)
a be the

smallest interval in Z containing B
(f)
a ; and similarly for R

(g)
a .

Lemma 9 (Few Buckets Overlap). For every integer Γ there are at most

2Γ choices of pairs (a, b) ∈ [Γ ]× [Γ ] such that R
(f)
a ∩R(g)

b �= ∅.

Proof. Construct the bipartite intersection graph GI = (UI , VI , EI) where the
vertex sets are disjoint copies of [Γ ], and there is an edge between a ∈ UI

and b ∈ VI iff R
(f)
a ∩ R(g)

b �= ∅. By construction of the buckets, the graph
does not contain any pair of distinct edges (u, v), (u′, v′) such that u < v and
u′ > v′. Consequently, a vertex can have at most two neighbors with degree
greater than one. Let A be the set of degree-one vertices. Then, Δ(GI [A]) ≤ 2
and |E[GI [A]]| ≤ |UI + VI − A| while |E(A,UI + VI)| ≤ |A|. Since |EI | =
|E[GI [A]]|+ |E(A,UI + VI)| ≤ |UI + VI −A|+ |A| ≤ 2Γ. ��

Next, we prove a bound on the probability that a fixed pair of the m queries fall
in a fixed pair of buckets. For a distribution D over QL1 × QR2 , define D(γ) as
the distribution that samples from D and for each of the |L| + |R| coordinates
independently with probability γ replaces it with a new sample from D. D(γ) is

representative of the projection of T (γ)
π (D) to two specific coordinates and we

show that noise prevents the buckets from correlating well.
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Lemma 10. Let D be a distribution over QL1 ×QR2 whose marginals are uniform
in QL1 and QR2 and D(γ) be as defined above. For every integer Γ and every pair
of functions F : QL1 → {0, 1} and G : QR2 → {0, 1} such that E [F (x)] =
E [G(y)] = 1/Γ ,

E
(x,y)∈D(γ)

[F (x)G(y)] ≤ Γ−(1+δ)

for some δ = δ(γ,Q) > 0 where Q = min{|Q1|, |Q2|}.
Proof. Without loss of generality, let |Q1| = min{|Q1|, |Q2|}. Set q = 2 + δ′ > 2

as in Lemma 1, 1/q′ = 1− 1/q, and define H(x)
def
= Ey|x [T1−γG(y)]. Then,

E
(x,y)∈D(γ)

[F (x)G(y)] = E
x
[T1−γF (x)H(x)] ≤ ||T1−γF ||q||H ||q′

≤ ||F ||2||H ||q′ = ||F ||2||T1−γG||q′
≤ ||T1−γF ||q||G||q′ = Γ−(1/2+1/q′) = Γ−(1+δ′/2(2+δ′)),

using Lemma 1, convexity of norms, and the contractivity of T1−γ . ��
Note that the above lemma applies to queries to the same function as well,
setting F = G, etc. To complete the proof of Theorem 8, we apply the above

lemma to every distinct pair of the m queries made in T (γ)
π (D), bounding the

difference between the true acceptance probability and the bucketed version.

Proof (of Theorem 8). Note that the bucketed payoff ℘(f,g)((F,G) ◦ (X,Y)) is
equal to the true payoff P((f, g) ◦ (X,Y)) except possibly when two pairs of
outputs fall in an overlapping pair of buckets. Hence it suffices to bound the
probability of this happening by m2Γ−δ/2.

Fix a pair of inputs, say x(i) and y(j); the argument is the same if we choose
two x inputs or two y inputs. Let a = F (x(i)) and b = G(y(j)). By Lemma 9
there are at most 2Γ possible values (a, b) such that the buckets indexed by a
and b are overlapping. From Lemma 10, the probability that F (x(i)) = a and
G(y(j)) = b is at most Γ−1−δ. By a union bound, the two outputs F (x(i)),
G(y(j)) consequently fall in overlapping buckets with probability at most 2Γ−δ.
As there are at most

(
m
2

) ≤ m2/2 pairs of outputs, the proof is complete. ��

5.2 Soundness of the Dictatorship Test

We now reap the benefits of bucketing and prove the decoupling property of the
dictatorship test alluded to in Sect. 3.

Lemma 11. For every predicate P and distribution D satisfying the conditions
of Theorem 7, and any noise rate γ > 0, projection π : R → L, and bucketing
parameter Γ , the following holds. For any functions f : QL1 → Z, g : QR2 → Z

with bucketing functions F : QL1 → [Γ ], G : QR2 → [Γ ] it holds that
∣
∣
∣Accf,g(T (γ)

π (D))− Accf,g(T (γ)
π (D⊥))

∣
∣
∣

≤ γ−1/2m1/24mΓm
∑

a,b∈[Γ ]

CrInf(1−γ)π

(
F (a), G(b)

)1/2

+ 2Γ−δm2.
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Due to space limitations, the proof of Lemma 11 is deferred to the full ver-
sion. Roughly, the idea is to prove a similar bound for the bucketed acceptance

probability BAccf,g(T (γ)
π (D)) and then use the Theorem 8. The bound for the

bucketed value goes via the invariance principle and uses a few sophisticated but
standard estimates developed in the works of, amongst others, Mossel [17] and
Wenner [22]. With Lemma 11 in place, Theorem 7 can be derived using standard
influence-decoding techniques; this is also deferred to the full version.

6 Conclusion

We gave improved inapproximability for several important OCSPs. Our char-
acterization is by no means complete and leave behind several interesting open
problems. Closing the gap in the approximability of MAS is wide open and
probably no easier than resolving the approximability for Max Cut and other
2-CSPs. In particular, getting any factor close to 1/2 seems to require new ideas.
Max BTW has an approximation algorithm that satisfies half of the constraints
if all the constraints can be simultaneously satisfied. Thus improving our result
to obtaining perfect completeness is particularly enticing. Finally, improving our
general hardness result to only requiring that D is pairwise independent is in-
teresting especially in light of the analogous results for CSPs [4,6].
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Abstract. Given data stream D = {p1, p2, . . . , pm} of size m of numbers from
{1, . . . , n}, the frequency of i is defined as fi = |{j : pj = i}|. The k-th
frequency moment of D is defined as Fk =

∑n
i=1 f

k
i . We consider the prob-

lem of approximating frequency moments in insertion-only streams for k ≥ 3.
For any constant c we show an O(n1−2/k log(n) log(c)(n)) upper bound on the
space complexity of the problem. Here log(c)(n) is the iterative log function.
Our main technical contribution is a non-uniform sampling method on matrices.
We call our method a pick-and-drop sampling; it samples a heavy element (i.e.,
element i with frequency Ω(Fk)) with probability Ω(1/n1−2/k) and gives ap-
proximation f̃i ≥ (1 − ε)fi. In addition, the estimations never exceed the real
values, that is f̃j ≤ fj for all j. For constant ε, we reduce the space complex-
ity of finding a heavy element to O(n1−2/k log(n)) bits. We apply our method
of recursive sketches and resolve the problem with O(n1−2/k log(n) log(c)(n))
bits. We reduce the ratio between the upper and lower bounds from O(log2(n))
to O(log(n) log(c)(n)). Thus, we provide a (roughly) quadratic improvement of
the result of Andoni, Krauthgamer and Onak (FOCS 2011).
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1 Introduction

Given a sequence D = {p1, p2, . . . , pm} of size m of numbers from {1, . . . , n}, a
frequency of i is defined as

fi = |{j : pj = i}|. (1)
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The k-th frequency moment of D is defined as

Fk =

n∑

i=1

fki . (2)

The problem of approximating frequency moments in one pass overD and using sublin-
ear space has been introduced in the award-winning paper of Alon, Matias and Szegedy
[1]. In particular, they observed a striking difference between “small” and “large” values
of k: it is possible to approximate Fk, k ≤ 2 in polylogarithmic space, but polynomial
space is required when k > 2. Since 1996, approximating Fk has become one of the
most inspiring problems in the theory of data streams. The incomplete list of papers on
frequency moments include [24, 19, 4, 13, 5, 25, 16–18, 20, 23, 9, 30, 10, 28, 29, 32,
34, 6, 12, 26, 2, 21, 22, 36, 27, 3, 7] and references therein. We omit the detailed history
of the problem and refer a reader to [31, 35] for overviews.

In this paper we consider the case when k ≥ 3. In their breakthrough paper Indyk
and Woodruff [25] gave the first solution that is optimal up to a polylogarithmic factor.
Numerous improvements were proposed in the later years (see the references above)
and the latest bounds are due to Andoni, Krauthgamer and Onak [2] (and concurrently
Braverman and Ostrovsky [10]) and Ganguly [21]. The latest bound by Ganguly [21] is

O(k2ε−2n1−2/kE(p, n) log(n) log(nmM)/min(log(n), ε4/k−2))

where, E(k, n) = (1 − 2/k)−1(1 − n−4(1−2/k). This bound is roughly
O(n1−2/k log2(n)) for constant ε, k. The best known lower bound for insertion-only
streams is Ω(n1−2/k), due to Chakrabarti, Khot and Sun [13].

We consider the problem of approximating frequency moments in insertion-only
streams for k ≥ 3. For any constant c we show an O(n1−2/k log(n) log(c)(n)) up-
per bound on the space complexity of the problem. Here log(c)(n) is the iterative log
function. To simplify the presentation, we make the following assumptions: n and m
are polynomially far1; approximation error ε and parameter k are constants. We observe
a natural bijection between streams and special matrices2. Our main technical contribu-
tion is a non-uniform sampling method on matrices that are accessed in a row-by-row
way. We call our method a pick-and-drop sampling; it samples a heavy element (i.e.,
element i with frequencyΩ(Fk)) with probability Ω(1/n1−2/k) and gives approxima-
tion f̃i ≥ (1 − ε)fi. In addition, the estimations never exceed the real values, that is
f̃j ≤ fj for all j. As a result, we reduce the space complexity of finding a heavy element
to O(n1−2/k log(n)) bits. To reduce the problem of the Fk to the problem of finding
heavy element we use our method of recursive sketches [8]. As a result, we resolve
the problem with O(n1−2/k log(n) log(c)(n)) bits. We do not try to optimize the space
complexity as a function of ε.

1 Our proofs are correct even without this assumption but become longer. If we drop this as-
sumption then the factor log(n) in our final bound should be replaced with O(log(nm)).

2 We stress that the bijection is for the presentation purposes only. We do not address problems
related to linear algebra such as [15].
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1.1 Pick-and-Drop Sampling

Pick-and-drop sampling has been inspired by a very natural behavior of children. We
observed the following pattern: a child picks a toy, briefly plays with it, then drops the
toy and picks a new one. This pattern is repeated until the child picks the favorite toy
and keeps it for a long time. Indeed, children develop algorithms for selectivity [33].

To illustrate the pick-and-drop method by example, assume that m = r ∗ t where
r = �n1/k� and consider r× t matrix M with entries mi,j = pt(i−1)+j . For m ≤ n we
aim to solve the following promise problem with probability 2/3:

– Case 1: all frequencies are either zero or one.
– Case 2: z appears in every row of M exactly once (thus fz = r). All other frequen-

cies are either zero or one.

Consider the following sampling method. Pick r i.i.d. random numbers I1, . . . , Ir,
where Ii is uniformly distributed on {1, 2, . . . , t}. For each i = 1 . . . r − 1 we check if
there is a duplicate of mi,Ii in the row i + 1. If the duplicate is found then we output
“Case 2” and stop; otherwise we repeat the test for i + 1. That is, the i-th sample is
“dropped,” and the (i + 1)-th sample is “picked”. We repeat this experiment T times
independently and output “Case 1” if no duplicate is found. Note that if the input repre-
sents Case 1 then our method will always output “Case 1.” Consider Case 2 and observe
that ifmi,Ii = z then our method will output “Case 2”. Indeed, since z appears in every
row, the duplicate of z will be found. Note that

P (∩ri=1(z �= mi,Ii)) =

(

1− 1

t

)rT
. (3)

Recall that m ≤ n,m = rt, r = �n1/k�. If T = O(n1−2/k) with sufficiently large
constant then the probability of error (3) is smaller than 1/3. We conclude that our
promise problem can be resolved with O(n1−2/k log(n)) space. Note how our solution
depends on r. In general, the matrix should be carefully chosen.

Unfortunately the distribution of the frequent element in the stream can be arbitrary.
Also our algorithm must recognize “noisy” frequencies that are large but negligible.
Clearly, the sampling must be more intricate but, luckily, not by much. In particular,
the following method works. We introduce a local counter for each sample that counts
the number of times mi,Ii appears in the suffix of the i-th row (this counting method is
used in [1] for the entire stream). We maintain a global sample (and a global counter)
as functions of the local samples and counters. Initially the global sample is the local
sample of the first row. Under certain conditions, the global sample can be “dropped.”
If this is the case then the local sample of the current row is “picked” and becomes the
new global sample. The global sample is “dropped” when the local counter exceeds the
global one. Also, the global sample is dropped if the global counter does not grow fast
enough. We use function λq where λ is a parameter and q is the number of rows that the
global counter survived. If the global counter is smaller than λq then the global sample
is “dropped.”

In our analysis we concentrate on the case when 1 is the heavy element, but it is
possible to repeat our arguments for any i. Our main technical contribution is Theorem
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1 that claims that 1 will be outputted with probability Ω( f1t ) for sufficiently large f1.
Interestingly, Theorem 1 holds for arbitrary distributions of frequencies. In Theorem 2
we show that there exist r, t, λ such that a bound similar to (3) holds. We combine our
new method with [8] and obtain our main result in Theorem 4.

Our pick-and-drop sampling has been inspired by the first sublinear method for the
large frequency moments: the sampling algorithm from the award-winning paper of
Alon, Matias and Szegedy [1]. Specifically, the sampling from [1] can be seen as the
sampling on the matrix with a single row, thus omitting the “dropping” steps. As a
result we improve the sampling of Alon, Matias and Szegedy by the factor of roughly
Ω(n1/k) and generalize their result.

2 Pick-and-Drop Sampling

Let M be a matrix with r rows and t columns and with entries mi,j ∈ [n]. For i ∈
[r], j ∈ [t], l ∈ [n] define:

di,j = |{j′ : j ≤ j′ ≤ t,mi,j′ = mi,j}|, (4)

fl,i = |{j ∈ [t] : mi,j = l}|, (5)

fl = |{(i, j) : mi,j = l}|, (6)

Fk =
n∑

l=1

fkl , Gk = Fk − fk1 . (7)

Note that there is a bijection between r× tmatricesM and streams D of size r× t with
elements pi(t−1)+j = mi,j where the definitions (2), (1) and (6), (7) define equivalent
frequency vectors for a matrix and the corresponding stream. W.l.o.g, we will consider
streams of size r × t for some r, t and will interchange the notions of a stream and its
corresponding matrix.
Let {Ij}rj=1 be i.i.d. random variables with uniform distribution on [t]. Define for i =
1, . . . , r:

si = mi,Ii , ci = di,Ii (8)

Let λ be a parameter. Define the following recurrent random variables:

S1 = s1, C1 = c1, q1 = 1. (9)

Also (for i = 2, . . . r) if
(Ci−1 < max{λqi−1, ci}) (10)

then define
Si = si, Ci = ci, qi = 1; (11)

otherwise, define

Si = Si−1, Ci = Ci−1 + fSi,i, qi = qi−1 + 1 (12)
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Theorem 1. Let M be a r × t matrix. Then there exist absolute constants3 α ≥ 2 ∗
104, β ≤ 0.5 ∗ 10−4 such that

α(λr +
G3

λt
+
G2

t
) ≤ f1 ≤ βt (13)

then

P (Sr = 1) ≥ f1
2t
. (14)

2.1 Proof of Theorem 1

Proof. Denote Q = {(i, j) : mi,j = 1}. For (i, j) ∈ Q define

Ti,j = (Ai,j ∪Bi,j ∪Hi,j), (15)

where for i > 1:
Ai,j = ((Ci−1 ≥ di,j) ∩ (Si−1 �= 1)), (16)

for i < r:

Bi,j =

(
r⋃

h=i+1

(

di,j +
h−1∑

u=i+1

f1,u < ch

))

, (17)

Hi,j =

(
r⋃

h=i+1

(

di,j +

h−1∑

u=i+1

f1,u < (h− i)λ
))

, (18)

and A1,j = Br,j = Hr,j = ∅. We have

((si = 1) ∩ (Si−1 �= 1) ∩ Ai,Ii) ⊆ ((si = 1) ∩ (Ci−1 < ci)) ⊆
((Si = 1) ∩ (qi = 1)). (19)

Consider the case when Si = 1 and qi = 1 and

di,Ii +

h−1∑

u=i+1

f1,u ≥ max(λ(h− i), ch)

for all h > i. In this case Sh will be defined by (12) and not by (11); in particular,
Sh = Si = 1. Therefore,

((Si = 1) ∩ (qi = 1) ∩Bi,Ii ∩Hi,Ii) ⊆ (

r⋂

h=i

(Sh = 1)). (20)

Define V1 = ((s1 = 1) ∩ T1,I1) and, for i > 1, Vi = ((si = 1) ∩ (Si−1 �= 1) ∩ Ti,Ii).
If follows from (19), (20) that, for any i ∈ [r]:

Vi ⊆ (Sr = 1), (21)

3 We did not try to optimize the constants.
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Vi ∩ Vj = ∅. (22)

Thus,
r∑

i=1

P (Vi) = P (∪ri=1Vi) ≤ P (Sr = 1). (23)

For any i > 1:

P (Vi) ≥ P ((si = 1) ∩ Ti,Ii)− P (si = Si−1 = 1).

Also,
r∑

i=2

P (si = Si−1 = 1) ≤
r∑

i=2

P ((si = 1) ∩ (∪h �=i(sh = 1))) ≤

(

r∑

i=1

P (si = 1))2 =

(
f1
t

)2

.

For any fixed (i, j) ∈ Q events Ii = j and Ti,j are independent. Indeed, Ai,j is
defined by {Si−1, Ci−1} that, in turn, is defined by {I1, . . . , Ii−1}. Similarly, Bi,j
is defined by {Ii+1, . . . , Ir}. Note that Hi,j is a deterministic event. By definition,
{I1, . . . , Ii−1, Ii+1, . . . , Ir} are independent of Ii; thus event Ii = j and
Ti,j = (Ai,j ∪Bi,j ∪Hi,j) are independent. Thus,

r∑

i=1

P ((si = 1) ∩ Ti,Ii) =
∑

(i,j)∈Q
P ((Ii = j) ∩ Ti,j) =

∑

(i,j)∈Q
P (Ii = j)P (Ti,j) =

1

t

∑

(i,j)∈Q
P (Ti,j). (24)

Thus,

P (Sr = 1) ≥ 1

t

∑

(i,j)∈Q
P (Ti,j)−

(
f1
t

)2

.

Lemma 1 implies that
∑

(i,j)∈Q P (Ti,j) ≥ 0.8f1. Thus if β < 0.3 then:

P (Sr = 1) ≥ f1
t
(0.8− f1

t
) ≥ f1

2t
.

Here we only use the second part of (13). The first part is used in the proof of Lemma
1.

2.2 Technical Lemmas

Lemma 1. There exist absolute constants α, β such that (13) implies
∑

(i,j)∈Q
P (Ti,j) > 0.8f1.

It follows from Lemmas 7, 14, 12 and the union bound that there exists at least
0.97f1 pairs (i, j) ∈ Q such that P (Ai,j ∪ Bi,j ∪ Hi,j) ≤ 0.02. Recall that
Ti,j = (Ai,j ∪Bi,j ∪Hi,j); the lemma follows.
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Events of type A For (i, j) ∈ Q s.t. i > 1 and for l > 1 define:

Yl,(i,j) = 1Ai,j 1(Si−1=l),

Yl,i =
∑

j∈[t],(i,j)∈Q
Yl,(i,j),

Yl =

r∑

i=2

Yl,i,

Y =

n∑

l=2

Yl,

Fact 2 Ci ≤ fSi . Also, if qi = 1 then Ci ≤ fSi,i.

Proof. Follows directly from (11), (12). It is sufficient to prove that, for any i, there
exists a set Qi such that Ci = |Qi| and simultaneously Qi is a subset of {(i′, j) :
mi′,j = Si, i

′ ≤ i}. We prove the above claim by induction on i. For i = 1 the claim
is true since we can define Q1 = {(1, j) : j ≥ I1}. For i > 2 the description of the
algorithm implies the following. If qi = 1 then we can put Qi = {(i, j) : j ≥ Ii}.
If qi > 1 then define Qi = Qi−1 ∪ {(i, j) : mi,j = Si}. Note that in this case
Si = Si−1. The second part follows from the description of the algorithms: if pi = 1
then Ci = ci, Si = si and ci = di,Ii(si) ≤ fsi,i.
Fact 3

1. Yl,i ≤ fl,
2. If qi−1 = 1 then Yl,i ≤ fl,i−1.

Proof. Let (i, j) ∈ Q be such that di,j > fl; then:

Yl,(i,j) = 1(Ci−1≥di,j)1(Si−1=l) = 1(fl≥Ci−1)1(Ci−1≥di,j)1(Si−1=l).

We use Fact 2 for the last equality. Thus, Yl,(i,j) = 0. Definition of di,j implies |{j :
(i, j) ∈ Q, di,j ≤ fl}| ≤ fl for any fixed i and l. Thus,

Yl,i =
∑

j∈[t],(i,j)∈Q
Yl,(i,j) ≤ fl.

Part 2 following by repeating the above arguments and using the second statement of
Fact 2.

Definition 1. Let 1 ≤ r1 ≤ r2 ≤ r and l ∈ [n]. Call a pair [r1, r2] an l-epoch if

∀i = r1, . . . , r2 : Si = l,

and
qr1 = qr2+1 = 1,

and
∀i = r1 + 1, . . . , r2 : qi = qi−1 + 1.
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Lemma 4. Let [r1, r2] be an l-epoch. If r2 > r1 then

r2 − r1 ≤ 1

λ

r2−1∑

i=r1

fl,i.

Proof. First, observe that qr2−1 = r2− r1. Second, qi > 1 implies that Si is defined by
(12) and not by (11) for all r1 < i ≤ r2. In particular, Cr1 ≤ fl,r1 and for r1 < i ≤ r2
we have Ci = Ci−1 + fl,i. Thus,

Cr2−1 ≤
r2−1∑

i=r1

fl,i.

Third, Cr2−1 ≥ λqr2−1 since (10) must be false for i = r2. Therefore,

r2 − r1 = qr2−1 ≤
1

λ
Cr2−1 ≤

1

λ

r2−1∑

i=r1

fl,i.

Lemma 5. Yl ≤ f2
l

λ + fl.

Proof. Observe that the set {i : Si = l} is a collection of disjoint l-epochs. Recall that
Yl =

∑r
i=2 Yl,i and Yl,i is non-zero only if Si−1 is equal to l. Thus we can rewrite Yl

as:

Yl =
∑

(r1,r2)is an l-epoch

(
r2+1∑

i=r1+1

Yl,i

)

.

For any epoch such that r2 > r1 we have by Lemmas 3 and 4:

r2∑

i=r1+1

Yl,i ≤ (r2 − r1)fl ≤ fl
λ

r2−1∑

i=r1

fl,i.

Since all epochs are disjoint we have

Yl =
∑

(r1<r2)is an l-epoch

(
r2+1∑

i=r1+1

Yl,i

)

+
∑

(r1=r2)is an l-epoch

Yl,r2+1 =

∑

(r1<r2)is an l-epoch

(
r2∑

i=r1+1

Yl,i

)

+
∑

(r1,r2)is an l-epoch

Yl,r2+1 ≤

fl
λ

∑

(r1<r2)is an l-epoch

(
r2−1∑

i=r1

fl,i

)

+
∑

(r1,r2)is an l-epoch

fl,r2+1 ≤

f2
l

λ
+ fl.
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Lemma 6. P (Yl > 0) ≤ fl
t .

Proof. Since Ii are independent and 0 ≤ fl,i
t ≤ 1 we can apply Fact 8:

P (∩ri=1(mi,Ii �= l)) =

r∏

i=1

(1− fl,i
t
) ≥ (1 − fl

t
).

Thus,

P (Yl > 0) ≤ P (∪ri=1(mi,Ii = l)) ≤ fl
t
. (25)

Lemma 7. There exists an absolute constant α such that (13) implies that P (Ai,j) ≤
0.01 for at least 0.99f1 pairs (i, j) ∈ Q.

Proof. From Lemmas 5, 6:

E(Yl) ≤ fl
t
(
f2
l

λ
+ fl),

E(Y ) =
n∑

l=2

E(Yl) ≤ G3

λt
+
G2

t
.

If follows that
∑

(i,j)∈Q 1Ai,j = Y . Recall that by (13):

|Q| = f1 ≥ α(G3

λt
+
G2

t
) ≥ αE(

∑

(i,j)∈Q
1Ai,j ).

To summarize Y is the sum of f1 indicators such that E(Y ) ≤ 10−4f1 for α ≥ 104.
We apply Fact 9 with u = f1, μ = 104 and obtain that there must exist at least 0.99f1
indicators with expected value at most 0.01. The lemma follows.

The following fact is a well known. For completeness we present the proof.

Fact 8 Let α1, . . . , αr be real numbers in [0, 1]. Then

r∏

i=1

(1− αi) ≥ 1− (

r∑

i=1

αi).

Proof. If
∑r

i=1 αi ≥ 1 then

r∏

i=1

(1 − αi) ≥ 0 ≥ 1− (

r∑

i=1

αi).

Thus we can assume that
∑r

i=1 αi < 1. We will prove the claim by induction on r. For
r = 2 we obtain (1 − α1)(1 − α2) = (1 − α1 − α2x + α1α2) ≥ (1 − α1 − α2). For
r > 2, we have, by induction,

r∏

i=1

(1− αi) ≥ (1− (

r−1∑

i=1

αi))(1 − αr) ≥ 1− (

r∑

i=1

αi).
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Fact 9 Let X1, . . . , Xu be a sequence of indicator random variables. Let S = {i :
P (Xi = 1) ≤ ν}. IfE(

∑u
i=1Xi) ≤ μu then |S| ≥ (1− μ

ν )u. Specifically, if μ ≤ 10−4

then there exists S ⊆ [u] such that |S| ≥ 0.99u and P (Xi = 1) ≤ 0.01 for all i ∈ S.

Proof. Indeed,
μu ≥

∑

i/∈S
P (Xi = 1) ≥ ν(u− |S|).

Events of type B For (i, j) ∈ Q let Z(i,j) = 1Bi,j . Let Z =
∑

(i,j)∈Q Z(i,j). We use
arguments that are similar to the ones from the previous section. To stress the similarity
we abuse the notation and denote by Yl,h,(i,j) the indicator of the event that h > i + 1,
sh = l and (

di,j +
h−1∑

u=i+1

f1,u

)

< ch.

Define Yl,h =
∑

(i,j)∈Q Yl,h,(i,j), Yl =
∑r

h=1 Yl,h.

Fact 10 Yl ≤ fl.
Proof. Repeating the arguments from Fact 3 we have ch1sh=l ≤ fl,h and thus Yl,h ≤
fl,h.

Fact 11 P (Yl > 0) ≤ fl
t .

Proof. The proof is identical to the proof of Lemma 6.

Lemma 12. There exist absolute constants α, β such that (13) implies that P (Bi,j) ≤
0.01 for at least 0.99f1 pairs (i, j) ∈ Q.

Proof. Denote Y =
∑n
l=1 Yl. If follows that Z ≤ Y and E(Z) ≤ E(Y ). By Facts 11

and 10 if follows that E(Yl) ≤ f2
l

t . Thus by (13):

E(Z) ≤ E(Y ) ≤ F2

t
=
G2

t
+ f1

f1
t
≤ (α−1 + β)f1.

Recall that we defineα−1+β ≤ 10−4. Thus, we can repeat the arguments from Lemma
7.

Events of type H

Definition 2. Let U = {u1, . . . , ut} and W = {w1, . . . , wt} be two sequences of non-
negative integers. Let (i, j) be a pair such that 1 ≤ i ≤ t and 1 ≤ j ≤ ui. Denote (i, j)
as a loosing pair (w.r.t. sequences U,W ) if there exists h, i ≤ h ≤ t such that:

−j +
h∑

s=i

(us − ws) < 0.

Denote any pair that is not a loosing pair as a a winning pair.
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In this section we consider the following pair (U,W ) of sequences. For i = 1, . . . , r let
ui = f1,i and wi = λ.

Fact 13 If (i, j) is a winning pair w.r.t. (U,W ) then Hi,j′ does not occur where j′ is
such that mi,j′ = 1 and di,j′ = f1,i − j + 1.

Proof. By Definition 2, for every i ≤ h ≤ r:

−j +
h∑

l=i

ul ≥
h∑

l=i

wl. (26)

Since
∑h

l=i wi = (h− i+ 1)λ and di,j′ = f1,i − j + 1 we have for every i ≤ h ≤ r:

di,j′ +

h∑

l=i+1

dl,1 = fi,1 − j + 1 +

h∑

l=i+1

fl,1 =

−j + 1 +

h∑

l=i

ul ≥ −j +
h∑

l=i

ul ≥
h∑

l=i

wl = (h− i+ 1)λ.

Substitute h by h− 1 (for h > i):

di,j′ +

h−1∑

l=i+1

dl,1 ≥ (h− i)λ.

Thus Hi,j′ does not occur, by (18).

Lemma 14. There exists an absolute constant α such that (13) implies that Hi,j does
not occur for at least 0.99f1 pairs (i, j) ∈W .

Proof. By Lemma 15 there exist at least

r∑

i=1

(ui − wi)

winning pairs (i, j) w.r.t. the (U,W ). Also,
∑r
i=1 ui =

∑r
i=1 f1,i = f1 and

∑r
i=1 wi =

λr. Thus there exist at least f1 − λr winning pairs (i, j) w.r.t. the (U,W ). In the state-
ment of Fact 13 the mapping from j to j′ is a bijection; thus there exist at least f1 − λr
pairs (i, j′) s.t. mi,j′ = 1 and Hi,j′ does not occur. By (13) we have f1 ≥ αλr and the
lemma follows.

Due to the lack of space we omit the proof of the following lemma and refer the reader
to [11].

Lemma 15. If
∑t

s=1(us − ws) > 0 then there exist at least
∑t

s=1(us − ws) winning
pairs.
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3 Streaming Algorithm for Heavy Elements

Let D be a stream. Define

ψ =
n1−(1/k)G1/k

k

F1
, δ = 2�0.5 log2(ψ)�, t =

⌈
δF1

n1/k

⌉

, λ =

⌈
F1δ

3

n

⌉

, (27)

where we use (2) to define Fk . We will make the following assumptions:

f1 ≤ 0.1F1, t ≤ F1, F1(modt) = 0. (28)

Then it is possible to define a matrix a r× tmatrixM , where r = F1/t and with entries
mi,j = pit+j .

Theorem 2. Let M be a r × t matrix such that (27) is true. Then there exist absolute
constants4 α ≥ 2 ∗ 104, β ≤ 0.5 ∗ 10−4 such that

αG
1/k
k ≤ f1 ≤ βt (29)

imply

P (Sr = 1) ≥ δ

2n1−(2/k) . (30)

Proof. By (29) and Facts 19, 18, 17:

6α(λr +
G3

λt
+
G2

t
) ≤ f1 ≤ βt.

Also, (27) implies f1/t ≥ δ
n1−(2/k) . Thus, (30) follows from Theorem 1.

Algorithm 1 describes our implementation of the pick-and-drop sampling.

Theorem 3. Denote fki > 100
∑
j �=i f

k
j as a heavy element. There exist a (construc-

tive) algorithm that makes one pass over the stream and uses O(n1−2/k log(n)) bits.
The algorithm outputs a pair (i, f̃i) such that f̃i ≤ fi with probability 1. If there exists
a heavy element fi then also with constant probability the algorithm will output (i, f̃i)
such that (1 − ε)fi ≤ f̃i.
Proof. Define t as in (27). W.l.o.g., we can assume that F1 is divisible by t. Note that
if t > F1 or f1 ≥ 0.1F1 then it is possible to find a heavy element with O(n1−2/k) bits
by existing methods such as [14]. Otherwise, a stream D defines a matrix M for which
we computeO(n1−2/k/εδ) independent pick-and-drop samples. Since we do not know
the value of δ we should repeat the experiment for all possible values of δ. Output the
element with the maximum frequency. With constant probability the output of the pick-
and-drop sampling will include a (1−ε) approximation of the frequency fi. Thus, there
will be no other fj that can give a larger approximation and replace a heavy element.
The total space will define geometric series that sums to O(n1−2/k log(n)).

If we know F1 ahead of time then we can compute the value of t for any possible
δ and thus solve the problem in one pass. However, one can show that the well-known
doubling technique (when we double our parameter t each time the size of the stream
doubles) will work in our case and thus one pass is sufficient even without knowing F1.

4 We did not try to optimize the constants.
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Algorithm 1. P&D(M, r, t, λ)

Generate i.i.d. r.v. {Ij}rj=1 with uniform distribution on [t].
S1 = m1,I1 ,
C1 = d1,I1 ,
q1 = 1.
for i = 2→ r do

compute si = mi,Ii , ci = di,Ii
if (Ci−1 < max{λqi−1, ci}) then

Si = si,
Ci = ci,
qi = 1

else
Si = Si−1,
Ci = Ci−1 + fSi,l,
qi = qi−1 + 1

end if
end for
Output (Sr, Cr).

Recall that in [8] we develop a method of recursive sketches with the following
property: given an algorithm that finds a heavy element and uses memory μ(n) (where
μ = Ω(nα) for some constantα)8, it is possible to solve the frequency moment problem
in space O(μ(n) log(c)(n)). In [8] we applied recursive sketches with the method of
Charikar et.al. [14]. Thus, we can replace the method from [14] with Theorem 3 and
obtain:

Theorem 4. Let ε and k be constants. There exists a (constructive) algorithm that
computes (1 ± ε)-approximation of Fk, uses O(n1−2/k log(n) log(c)(n)) memory bits,
makes one pass and errs with probability at most 1/3.

3.1 Useful Facts and Inequalities

Fact 16 1 ≤ δ ≤ 2n(k−1)/2k.

Proof. Indeed, G1 ≤ G
1/k
k n1−1/k by Hölder inequality and since f1 ≤ 0.1F1 by (28)

we have ψ ≥ 0.5; thus, �0.5 log2(ψ)� ≥ 0 and the lower bound follows. Also, F 1/k
k

is the Lk norm for the frequency vector since since all frequencies are non-negative.
Since Lk ≤ L1 we conclude that ψ ≤ n1−1/k and the fact follows.

Observe that there exists a frequency vector with δ = O(1): put fj = 1 for all i ∈ [n].
At the same time there exists a vector with δ = Ω(n(k−1)/2k): put f1 = n and fj = 1
for j > 2. It is not hard to see that if δ is sufficiently large then a naı̈ve sampling method
will find a heavy element. For example, in the latter case, the heavy element occupies
half of the stream.

Fact 17 λr ≤ 4G
1/k
k .
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Proof. Recall that F1 = rt. The fact follows from the definitions of λ and t.

Fact 18
G2

t
≤ G1/k

k .

Proof. Define α = k−3
2(k−2) . We have by Hölder inequality:

Gα2 ≤ G
2α
k

k nα(1−
2
k ) = G

k−3
k(k−2)

k n
k−3
2k . (31)

Also, by Fact 20

G1−α
2 = G

k−1
2(k−2)

2 ≤ G
1

2(k−2)

k G
1
2
1 . (32)

Thus,

G2 ≤ G
k−3

k(k−2)

k n
k−3
2k G

1
2(k−2)

k F
1
2
1 =

G
1
k

k

F1

n1/k

(
G

1
k

k n
k−1
k

F1

)1/2

= tG
1
k

k .

Fact 19 G3

λt ≤ G1/k
k .

Proof. By Hölder inequality,

G3 ≤ G3/k
k n1−(3/k). (33)

Thus
G3

λt
=
n1+(1/k)G3

F 2
1 δ

4
≤ n2−(2/k)G3/k

k

F 2
1 δ

4
≤ G1/k

k .

Fact 20 Let v1, . . . , vn be a sequence of non-negative numbers and let k > 2. Then

(
n∑

i=1

v2i

)(k−1)
≤

(
n∑

i=1

vki

)(
n∑

i=1

vi

)(k−2)

Proof. Define λi = vi∑n
j=1 vj

. Since g(x) = xk−1 is convex on the interval [0,∞) we

can apply Jensen’s inequality and obtain:

(∑n
i=1 v

2
i∑n

i=1 vi

)(k−1)
= (

n∑

i=1

λivi)
(k−1) ≤ (

n∑

i=1

λiv
(k−1)
i ) =

∑n
i=1 v

k
i∑n

i=1 vi
.
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1 Introduction

The celebrated paper of Alon, Matias and Szegedy [1] defined the following streaming
model:

Definition 1. Let m,n be positive integers. A stream D = D(n,m) is a sequence of
size m of integers p1, . . . , pm, where pi ∈ {1, . . . , n}. A frequency vector is a vector of
dimensionality n with non-negative entries fi, i ∈ [n] defined as:

fi = |{j : 1 ≤ j ≤ m, pj = i}|.

Definition 2. A k-th frequency moment of D is defined by Fk(D) =
∑

i∈[n] f
k
i . Also

F∞ = maxi∈[n] fi.

Alon, Matias and Szegedy [1] initiated the study of approximating frequency mo-
ments with sublinear memory. Their surprising and fundamental results imply that
for k ≤ 2 it is possible to approximate Fk with polylogarithmic space; and
that polynomial space is necessary for k > 2. Today, research on frequency
moments is one of the central directions for streaming; many important discov-
eries have been made since [1]. The incomplete list of relevant work includes
[22,19,3,14,4,16,17,18,20,21,27,25,7,9,26,28,30,5,13,24].

Indyk and Woodruff in their ground-breaking paper [23] gave the first optimal, up
to polylogarithmic factor, algorithm for Fk. Their presented a two-pass algorithm with

space complexity of O
(

1
ε12 · (log2 n)(log6m) · n1− 2

k

)
and then shown how their two-

pass algorithm can be converted to one-pass algorithm with additional poly-log multi-
plicative factors. Let us describe, very informally, the fundamental approach of Indyk
and Woodruff [23]. They split the frequency vector into “layers,” where each layer
contains all entries with frequencies between, e.g., γi and γi+1 for a carefully chosen
γ > 1. Then they approximate the contribution of each layer by sampling the stream
and by finding the heavy elements that contribute to the layer. Their elegant analysis
shows that such a procedure ensures a good approximation with high probability. The
method of Indyk and Woodruff reduces the problem of Fk to the problem of computing
heavy hitters in the streaming manner. Their reduction requires polylogarithmic over-
head in term of the space complexity. Since 2005 the method of Indyk and Woodruff
has been used in numerous applications and has become a standard tool for streaming
computations.

Our method has been inspired by the algorithm of Indyk and Woodruff. Specifically,
we ask:

Question 1. For which functions w : R �→ R, it is possible to reduce the problem
of computing

∑n
i=1 w(fi) to the problem of finding all j ∈ [n] such that w(j) =

Ω(
∑n

i=1 w(fi))? More generally, given an implicit vector V , when it is possible to
reduce the problem of approximating |V | (the L1 norm) to the problem of finding heavy
elements?

In this paper we answer Question 1 for all non-negative functionsw. For streaming ap-
plications, recursion can be helpful if it is possible to reduce computations to a single
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instance of a smaller problem. We show that it is possible to reduce such a problem on
a vector of size n to a single computation of a random vector of size approximately
1
2n. In particular, O(log(n)) overhead is sufficient for any frequency-based function.
Our main technical result is shown in Theorem 1. For frequency-based functions that
require polynomial space our reduction only requires log(c)(n) overhead. This result is
shown in Theorem 4. We illustrate the generality of our method by several applications:
frequency moments, frequency based functions, spatial data streams and measuring in-
dependence of data sets.

The correctness of the basic step in our algorithm follows from elementary analysis.
We then employ the basic step recursively and show that log(n) recursive calls can give
an algorithm that reduces the problem of approximating the sum to the problem of find-
ing heavy hitters. Further, it is possible to reduce the number of recursive calls log(n) to
log log(n) by applying the same argument, but stopping after O(log log(n)) steps. At
the depthO(log log(n)) of the recursion, the number of positive frequencies in a corre-
sponding vector is polylogarithmically smaller than n, with constant probability. Thus,
any algorithm that works in polylog(n,m)nα space (where 0 < α < 1 is a constant)
will approximate such a vector with negligible cost. Employing such an algorithm at the
bottom of log log(n) recursion reduces the log(n) factor to a poly(log log(n)) factor.
Further, the same idea may be repeated at least constant number of times; this is how
we achieve our final bound. The simplest variant of the argument requires only pairwise
independence, giving an algorithm that requires only 4-wise independence.

1.1 Roadmap

In Section 2 we introduce the basic argument and extend it to a special case, stuitable
for streaming applications, case in Section 3. In Section 4 we describe a generic algo-
rithm for recursive computations. In Section 5 we discuss our result and demonstrate its
generality by explaining several applications.

2 Recursive Sketches

In this paper we denote by |V | the L1 norm of V , i.e., |V | =∑j∈[n] vj .

Definition 3. Heavy elements
Let V be a vector of dimensionality n with non-negative entries vi ≥ 0. Let 0 < α ≤ 1.
An element vi is a α-heavy with respect to V if: vi ≥ α|V |. A set S ⊆ [n] is a α-core
w.r.t. V if i ∈ S for any α-heavy vi.

Lemma 1. Let V ∈ R[n] be a fixed vector and let S be an α-core w.r.t. V . Let H be a
random vector with uniform zero-one entries hi, i ∈ [n] that are pairwise-independent.
Define

X =
∑

i∈S
vi + 2

∑

i/∈S
hivi.

Then P (|X − |V || ≥ ε|V |) ≤ α
ε2 .
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Proof. Clearly, E(X) = |V |. By the properties of variance, by pairwise independence
of hi and by the definition of α-core:

V ar(X) = 4
∑

i/∈S
v2i V ar(hi) =

∑

i/∈S
v2i ≤ α|V |2.

Thus, by Chebyshev inequality:

P (|X − |V || ≥ ε|V |) ≤ α

ε2
.

Corollary 1. Let V ∈ R[n] be a random vector and let S be an α-core w.r.t. V . Let H
be a random vector independent of V and S with uniform zero-one entries hi, i ∈ [n]
that are pairwise-independent. Define

X =
∑

i∈S
vi + 2

∑

i/∈S
hivi.

Then
P (|X − |V || ≥ ε|V |) ≤ α

ε2
.

Proof. For any fixed V and S the main claim is true since H is independent of V and
S and by Lemma 1. Thus, the corollary follows.

Recursive Computations. Let φ be a parameter. Let H1, . . . , Hφ be i.i.d. random
vectors with zero-one entries that are uniformly distributed and pairwise independent.
For two vectors of dimensionality n define Had(V, U) to be their Hadamard product;
i.e., Had(V, U) is a vector of dimensionality n with entries viui. Define:

V0 = V, and Vj = Had(Vj−1, Hj) for j = 1, . . . , φ.

Denote by vji and hji the i-th entry of Vj and Hj respectfully. Let S0, . . . , Sφ be a
sequence of subsets of [n] such that Sj is an α-core of Vj . Define the sequence

Xj =
∑

i∈Sj

vji + 2
∑

i/∈Sj

hj+1
i vji , j = 0, . . . , φ− 1,

and Xφ = |Vφ|.
Fact 2

P (

φ⋃

j=0

(|Xj − |Vj || ≥ ε|Vj |)) ≤ (φ+ 1)α

ε2
.

Proof. Consider fixed j < k. It follows from the definitions that Hj+1 is independent
of Vj and Sj . Applying Corollary 1 and the union bound we obtain the proof.

Consider the following recursive definition:

Yφ = Xφ, Yj = 2Yj+1 +
∑

i∈Sj

(1− 2hj+1
i )vji .
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Lemma 3. For any φ, γ, vector V and α = Ω( γ
2

φ3 ):

P (|Y0 − |V || ≥ γ|V |) ≤ 0.2.

Proof. Denote Err1j = |Vj | −Xj and Err2j = |Vj | − Yj . We can rewrite

Xj = 2|Vj+1|+
∑

i∈Sj

(1− 2hj+1
i )vji .

Thus Xj − Yj = 2(|Vj+1| − Yj+1) = 2Err2j+1 and

|Err2j | = |Yj − |Vj || ≤ |Xj − |Vj ||+ |Xj − Yj | = |Err1j |+ 2|Err2j+1|.
By definition Err1φ = Err2φ = 0. Thus we can rewrite:

|Err20 | ≤ |Err10 |+ 2|Err21 | ≤ · · · ≤
φ∑

j=0

2j|Err1j |.

Choose ε = γ
10(φ+1) ; we have by Fact 2:

P (|Y0 − |V || ≥ γ|V |) = P (|Err20 | ≥ γ|V |) ≤ P (
φ∑

j=0

2j|Err1j | ≥ γ|V |) ≤

P

⎛

⎝

⎛

⎝
φ∑

j=0

2j |Err1j | ≥ γ|V |
⎞

⎠ ∩
⎛

⎝
φ⋂

j=0

(
|Err1j | < ε|Vj|

)
⎞

⎠

⎞

⎠ + P

⎛

⎝
φ⋃

j=0

(|Xj − |Vj || ≥ ε|Vj |)
⎞

⎠ ≤

P

⎛

⎝
φ∑

j=0

2j|Vj | ≥ 10(φ+ 1)|V |
⎞

⎠+
(φ+ 1)α

ε2
.

For j > 0 we note that |Vj | is a random variable defined as:

|Vj | =
∑

i∈[n]
vi

(
j∏

t=1

hti

)

.

Since all Hj are mutually independent, we conclude that

E(

φ∑

j=0

2j |Vj |) =
φ∑

j=0

2j

⎛

⎝
∑

i∈[n]

vi

(
j∏

t=1

E(ht
i)

)⎞

⎠ =

φ∑

j=0

2j

⎛

⎝
∑

i∈[n]

vi2
−j

⎞

⎠ = (φ+ 1)|V |.

Thus, and by Markov inequality, we have

P (

φ∑

j=0

2j |Vj | ≥ 10(φ+ 1)|V |) ≤ 0.1.

Also, (φ+1)α
ε2 ≤ 0.1 for sufficiently large α = Ω( γ

2

φ3 ). Thus,

P (|Y0 − |V || ≥ γ|V |) ≤ 0.2.
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3 An Extension: Approximate and Random Cores

There are many ways to extend our basic result. We will explore one direction, when the
cores are random and contain approximations of heavy hitters with high probability1.
We consider vectors from a finite domain [m]n.

Definition 4. Let Ω be a finite set of real numbers. Define Pairst to be a set of all sets
of pairs of the form:

{(i1, w1), . . . , (it, wt)}, 1 ≤ i1 < i2 < . . . it ≤ n, ij ∈ N,wj ∈ Ω.
Further define

Pairs = ∅ ∪
(

n⋃

t=1

Pairst

)

.

Definition 5. A non-empty set Q ∈ Pairst, i.e., Q = {(i1, w1), . . . , (it, wt)} for some
t ∈ [n], is (α, ε)-cover w.r.t. vector V ∈ [M ]n if the following is true:

1. ∀j ∈ [t](1− ε)vij ≤ wj ≤ (1 + ε)vij .
2. ∀i ∈ [n] if vi is α-heavy then ∃j ∈ [t] such that ij = i.

Definition 6. Let D be a probability distribution on Pairs. Let V ∈ [m]n be a fixed
vector. We say that D is δ-good w.r.t. V if for a random element Q of Pairs with distri-
bution D the following is true:

P (Q is (α, ε)-cover of V ) ≥ 1− δ.
Definition 7. Let g be a mapping from [M ]n to a set of all distributions on Pairs. We
say that g is δ-good if for any fixed V ∈ [M ]n the distribution g(V ) is δ-good w.r.t.
V . Intuitively, g represents an output of an algorithm that finds heavy hitters (and their
approximations) of input vector V w.p. 1− δ.

Definition 8. For non-empty Q ∈ Pairs define Ind(Q) to be the set of indexes of
Q. Formally, for Q ∈ Pairs, denote Ind(Q) = {i : ∃j < t such that for j-th pair
(ij , wj) ofQ it is true that ij = i}. For i ∈ Ind(Q) denote by wQ(i) the corresponding
approximation, i.e. if i = ij then wQ(i) = wj . (Note that since ij < ij+1 this is a valid
definition.) For completeness, denote wQ(i) = 0 for i /∈ Ind(Q) and Ind(∅) = ∅.
Now we are ready to repeat the arguments from the previous section.

Corollary 2. Let V ∈ R[n] be a random vector. Let g be a δ-good mapping and let Q
be a random element of Pairs that is chosen according to a distribution g(V ). Let H
be a random vector independent of V and Q with uniform zero-one entries hi, i ∈ [n]
that are pairwise-independent. Define

X ′ =
∑

i∈Ind(Q)

vi + 2
∑

i/∈Ind(Q)

hivi.

1 In this section we limit our discussion to finite sets and discrete distributions. This limitation
is artificial but sufficient for our applications; on the other hand it simplifies the presentation.
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Then
P (|X ′ − |V || ≥ ε|V |) ≤ ε

α2
+ δ.

Proof. Consider a fixed vector V0 and an event that V = V0. Conditioned on this event,
the distribution g(V ) is fixed and δ-good w.r.t. V0. Consider the event that Q = Q0,
where Q0 is an (α, ε)-cover w.r.t. V0. Conditioned on this event, Ind(Q) is an α-cover
w.r.t. V0. Since H is independent of Q the claim is true for any such V0 by Lemma 1
and by union bound. Thus, the corollary follows.

Recursive Computations Let φ be a parameter. Let H1, . . . , Hφ be i.i.d. random
vectors with zero-one entries that are uniformly distributed and pairwise independent.
Define:

V0 = V, and Vj = Had(Vj−1, Hj) for j = 1, . . . , φ.

Denote by vji and hji the i-th entry of Vj andHj respectfully. Let g be a δ-good mapping
and letQi be a random element of Pairs with distribution g(Vi). Definewj(i) = wQj (i).
Define the sequence:

X ′j =
∑

i∈Ind(Qj)

vji + 2
∑

i/∈Ind(Qj)

hj+1
i vji , j = 0, . . . , φ− 1,

and X ′φ = |Vφ|. From Corollary 2 and by repeating the arguments from Fact 2 we
obtain

Fact 4

P (

φ⋃

j=0

(|X ′j − |Vj || ≥ ε|Vj |
)
) ≤ (φ+ 1)(

α

ε2
+ δ).

Consider the following recursive definition. Let Y ′φ = Y ′φ(Vφ) be a random variable that
depends on random vector Vφ and such that for any fixed Vφ:

P (|Y ′φ − |Vφ|| ≥ ε|Vφ|) ≤ δ.
Also, define for j = 0, . . . , φ− 1:

Y ′j = 2Y ′j+1 +
∑

i∈Ind(Qj)

(1− 2hj+1
i )wji .

Lemma 5. For any φ, γ, vector V ; for α = Ω( γ
2

φ3 ) and δ = Ω( 1φ ):

P (|Y ′0 − |V || ≥ γ|V |) ≤ 0.2.

Proof. DenoteErr1j = |Vj |−X ′j ,Err2j = |Vj |−Y ′j andErr3j =
∑

i∈Ind(Qj)
|wj(i)−

vji |. We can rewrite

X ′j = 2|Vj+1|+
∑

i∈Ind(Qj)

(1− 2hj+1
i )vji .
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Thus |X ′j − Y ′j | ≤ 2|Err2j+1|+ |Err3j | and

|Err2j | = |Y ′j − |Vj || ≤ |X ′j − |Vj ||+ |X ′j − Y ′j | ≤ |Err1j |+ |Err3j |+ 2|Err2j+1|.

Thus we can rewrite:

|Err20 | ≤ |Err10 |+ |Err30 |+2|Err21 | ≤ · · · ≤ 2kErr2φ+

φ∑

j=0

2j|Err1j |+
φ∑

j=0

2j |Err3j |.

Choose ε = γ
30(φ+1) and denote Z = 2kErr2φ +

∑φ
j=0 2

j |Err1j |+
∑φ

j=0 2
j|Err3j |.

Then
P (|Y ′0 − |V || ≥ γ|V |) = P (|Err20 | ≥ γ|V |) ≤ P (Z ≥ γ|V |) ≤

P

⎛

⎝(Z ≥ γ|V |) ∩
⎛

⎝
φ⋂

j=0

(
|Err1j | < ε|Vj |

)
⎞

⎠ ∩
⎛

⎝
φ⋂

j=0

(
|Err3j | < ε|Vj |

)
⎞

⎠ ∩
(
|Err2φ| < ε|Vφ|

)
⎞

⎠+

P
(|Err2φ| ≥ ε|Vφ|

)
+ P

⎛

⎝
φ⋃

j=0

(|Err1j | ≥ ε|Vj |
)
⎞

⎠+ P

⎛

⎝
φ⋃

j=0

(|Err3j | ≥ ε|Vj |
)
⎞

⎠ .

Note that by the definition of Y ′φ, we have P (|Err2φ| ≥ ε|Vφ|) ≤ δ. Also, by the
definition of Qj and union bound,

P (

φ⋃

j=0

(|Err3j | ≥ ε|Vj |)) ≤ (φ+ 1)δ.

Thus and by Fact 4:

P (|Y ′0 − |V || ≥ γ|V |) ≤ P
⎛

⎝
φ∑

j=0

2j |Vj | ≥ 10(φ+ 1)|V |
⎞

⎠+ (φ+ 2)(
α

ε2
+ 2δ).

The lemma follows by repeating the concluding arguments from Lemma 3.

4 A Generic Algorithm

Let D be a stream as in Definition 1. For a function H : [n] �→ {0, 1}, define DH

to be a sub-stream of D that contains only elements p ∈ D such that H(p) = 1.
Let V = V (D) be an implicit vector of dimensionality n defined by a stream, e.g., a
frequency moment vector from Definition 1. We say that a vector V is separable if for
any H , we have Had(V (D), H) = V (DH). Let HH(D,α, ε, δ) be an algorithm that
produces (α, ε)-cover w.r.t. V (D) w.p. 1 − δ, i.e., produces δ-good distribution w.r.t.
V (D) for some suitable finite set of Pairs, as defined in Definition 4.
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Algorithm 6 . Recursive Sum[0](D, ε)

1. Generate φ = O(log(n)) pairwise independent zero-one vectors
H1, . . . , Hφ. Denote Dj to be a stream DH1H2...Hj .

2. Compute, in parallel, random cores Qj = HH(Dj ,
φ3

ε2 , ε,
1
φ )

3. If F0(Vφ) > 1010 then output 0 and stop. Otherwise compute pre-
cisely Yφ = |Vφ|.

4. For each j = φ− 1, . . . , 0, compute

Yj = 2Yj+1 −
∑

i∈Ind(Qj)

(1− 2hji )wQj (i).

5. Output Y0.

Theorem 1. Algorithm 6 computes (1± ε)-approximation of |V | and errs w.p. at most
0.3. The algorithm usesO(log(n)μ(n, 1

ε2 log3(n)
, ε, 1

log(n))) memory bits, where μ is the
space required by the above algorithm HH .

Proof. The correctness follows directly from the description of the algorithm and
Lemma 5 and Markov inequality. The memory bounds follows from the direct com-
putations.

5 Discussion and Applications

We propose a new recursive sketch that generalizes and improves the reduction of In-
dyk and Woodruff. Our method works for any non-negative frequency-based function in
several models, including the insertion-only model, the turnstile model and the sliding
window model. For frequency-based functions with sublinear polynomial space com-
plexity our reduction requires O(log(c)(n)) overhead. We believe that there are many
other potential applications for our method, e.g., the algorithms that currently employ
the method of Indyk and Woodruff. Improving the bounds for these problems is an in-
teresting direction for the future work. Reducing the factor to o(log(c)(n)) is another
important open question.

5.1 Approximating Large Frequency Moments on Streams with CountSketch

We apply our technique to the problem of frequency moments.

Fact 7 Let V be a vector of dimensionality n with non-negative entries and let n0 be
a number of non-zero entries in V . Let 0 < α < 1 and let vi be such that vki ≥
α
∑

j∈[n] v
k
j . Then v2i ≥ 0.5α

2
kn

2
k−1
0

∑
j �=i v

2
j .

Proof. If n0 = 0 the fact is trivial. Otherwise, by Hölder’s inequality,
∑

j �=i v
2
j ≤

n
1− 2

k
0

(∑
j �=i v

k
j

) 2
k ≤ n1− 2

k
0 α−

2
k v2i .
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The famous Count-Sketch [15] algorithm finds all α-heavy elements. In particular, the
following is a corollary from [15].

Theorem 2. (from [15]) Let at be the frequency of the t-th most frequent element. There
exists an algorithm that w.p. 1 − δ outputs t pairs (i, f ′i) such that (1 − ε)fi ≤ f ′i ≤
(1+ε)fi and such that all elements with fi ≥ (1−ε)at appear in the list. The algorithm

uses O((t+
∑

i∈[n],fi<at
f2
i

(εat)2
) log(m/δ) log(m)) memory bits.

Combining with Fact 7 we obtain

Corollary 3. There exists an algorithm that w.p. 1 − δ outputs O(α−1) pairs
(i, f ′ki ) such that (1 − ε)fki ≤ f ′ki ≤ (1 + ε)fki and such that all ele-
ments with fki ≥ α

∑
j∈[n] f

k
j appear in the list. The algorithm uses O((α−1 +

k2

ε2 α
−2/kn1−2/k) log(m/δ) log(m)) memory bits.

The algorithm from Corollary 3 defines a δ-good distribution w.r.t. to the in-
put vector V (D) over some finite set2 from Definition 4. Denote the algo-
rithm from Corollary 3 by CS(D,α, ε, δ). Thus, combining with Algorithm 6 if
gives an algorithm errs w.p. δ, outputs (1 ± ε)-approximation of Fk and uses
O( k2

ε2+4/kn
1−2/k
0 log(mn) log(m) log1+6/k(n) log(1/δ)) memory bits, nearly match-

ing the bound in [6]. Denote this algorithm by A0(D, ε, δ). We can improve the bound
further recursively:

Algorithm 8 . Recursive Fk[1](D, ε)

1. Generate φ = O(log log(n)) pairwise independent zero-one vectors
H1, . . . , Hφ. Denote Dj to be a stream DH1H2...Hφ

.

2. Compute, in parallel, Qj = CS(Dj ,
ε2

φ3 , ε,
1

100φ )

3. Compute Yφ = A0(Dφ, ε, 0.1).
4. For each j = φ− 1, . . . , 0, compute

Yj = 2Yj+1 −
∑

i∈Ind(Qj)

(1− 2hji )wQj (i).

5. Output Y0.

There exists a constant c such that for φ = c log log(n), except with a small con-
stant probability, F0(Dφ) ≤ n

log10(n)
. Thus, executing A0 for n′ = n

log10(n)
we

obtain an approximation of Fk(Dφ) using O( k2

ε2+4/kn
1−2/k log(mn) log(m)) mem-

ory bits. Since φ = O(log log(n)), the complexity of the new algorithm becomes
O( k2

ε2+4/kn
1−2/k log(m log(n)) log(m)(log log(n))4). Repeating this argument a con-

stant number of times we arrive at3:
2 Indeed, we can define the finite set Ω from Definition 4 as a set of all possible outputs of

Count-Sketch executed over all vectors on [m]n. This is a finite set (for finite n,m) and thus
we can define Pairs accordingly.

3 We note that this algorithm was proposed in the previous version of the paper [11].
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Theorem 3. Define g1(n) = log(n) and gt(n) = log(gt−1(n)). For any constant t
there exist an algorithm computes a (1± ε)-approximation of Fk(D), errs w.p. at most
1
3 and uses O(ctk2ε−2−(4/k)n1− 2

k gt(n) log
2(m)) memory bits, where ct is a constant

that depends on t.

5.2 Recursive Sketches for Frequency-Based Functions with Sublinear
Polynomial Space Complexity

Theorem 3 can be generalized to any non-negative frequency based functions with sub-
linear polynomial space complexity. In particular, we show that the problem of approx-
imating |V | and finding heavy hitters are almost equivalent.

Theorem 4. Define g1(n) = log(n) and gt(n) = log(gt−1(n)). Let V a vector such
that it is possible to find heavy elements using space S(n) = Ω(nα) for some constant
α such that 0 < α < 1. Then for any constant ε and for any constant t there exist an
algorithm that computes (1 ± ε)-approximation of |V |, errs w.p. at most 1

3 and uses
O(ctn

αgt(n)) memory bits, where ct is a constant that depends on t and ε.

5.3 Other Models of Streaming Computations

Our method can be directly translated to any model that allows separability and
preserves non-negative values of the implicit vector. Specifically, we need the non-
negativity to apply the Markov inequality. For example, we can apply the reduction to
the turnstile model where we observe two streams D1 and D2 and need to compute
the
∑n
i=1 w(|ui − zi|) where ui and zi are frequencies in D1 and D2. Similarly, our

reduction will work for the sliding window model. For example, it should improve (by
polylog factor) the results for the frequency moments from [9].

5.4 Approximating Large Frequency Moments on Streams with Pick-and-Drop
Sampling

In [8] we combine our method of recursive sketches with the pick-and-drop sampling
and compute Fk withO(n1−2/k log(n) log(c)(n)) bits. We reduce the ratio between the
upper and lower bounds from O(log2(n)) to O(log(n) log(c)(n)). Thus, we provide a
(roughly) quadratic improvement of the result of Andoni, Krauthgamer and Onak [2].
To the best of our knowledge, this is the best currently known result for constant ε and
for insertion-only streams.

5.5 Spatial Data Streams

Recursive sketching is not limited to the frequency moments or to the insertion-only
streams. For example, the method has found applications in the work of Tirthapura and
Woodruff [29] on spatial data streams. Specifically, Tirthapura and Woodruff say “We
choose to follow [11] since it provides a simpler exposition and has several properties
we will exploit.”
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5.6 Frequency-Based Functions and Measuring Independence of Datasets

In [12] we consider zero-one frequency laws for the frequency-based functions. As
one of the key steps we employ general reduction from sums to heavy hitters. Our
method follows the ideas of Indyk and Woodruff and involves large polylogarithmic
factors. Replacing our method in [12] we should be able to achieve polylogarithmic
improvements in space. Similar polylogarithmic improvement should be possible for
measuring independence (in terms of total variation distanced) of datasets [10].
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Abstract. In this paper, we study the approximability of the capacitated net-
work design problem (Cap-NDP) on undirected graphs: Given G = (V,E) with
non-negative costs c and capacities u on its edges, source-sink pairs (si, ti) with
demand ri, the goal is to find the minimum cost subgraph where the minimum
(si, ti) cut with u-capacities is at least ri. When u ≡ 1, we get the usual SNDP
for which Jain gave a 2-approximation algorithm [9]. Prior to our work, the ap-
proximability of undirected Cap-NDP was not well understood even in the single
source-sink pair case. In this paper, we show that the single-source pair Cap-NDP
is label-cover hard in undirected graphs.

An important special case of single source-sink pair undirected Cap-NDP is
the following source location problem. Given an undirected graph, a collection
of sources S and a sink t, find the minimum cardinality subset S′ ⊆ S such
that flow(S′, t), the maximum flow from S′ to t, equals flow(S, t). In general,
the problem is known to be set-cover hard. We give a O(ρ)-approximation when
flow(s, t) ≈ρ flow(s′, t) for s, s′ ∈ S, that is, all sources have max-flow values
to the sink within a multiplicative ρ factor of each other.

The main technical ingredient of our algorithmic result is the following theo-
rem which may have other applications. Given a capacitated, undirected graph G
with a dedicated sink t, call a subset X ⊆ V irreducible if the maximum flow
f(X) from X to t is strictly greater than that from any strict subset X ′ ⊂ X, to
t. We prove that for any irreducible set, X, the flow f(X) ≥ 1

2

∑
i∈X fi, where

fi is the max-flow from i to t. That is, undirected flows are quasi-additive on ir-
reducible sets.

1 Introduction

In the capacitated network design problem (Cap-NDP), we are given a graph G =
(V,E). Each edge e has a cost c(e) and a capacity u(e) which we assume to be non-
negative integers. We are also given a collection of pairs of terminals (s1, t1), (s2, t2),
. . . , (sk, tk), where each si and ti lies in V . Each pair is associated with an integer ri.
The objective is to find a minimum cost subgraph ofG in which every si can send a flow
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of at least ri units to ti. We are not requiring these flows to be satisfied concurrently;
the concurrent requirement leads to a different problem.

The problem generalizes many problems, the simplest of which is probably the
minimum knapsack problem induced when the graph has two nodes and parallel edges
between them. When all the capacities are unit, and the graph is undirected, then the
problem is what is called the survivable network design problem (SNDP) for which a 2-
approximation is known [9]. SNDP is label-cover hard [4] in case of directed graphs; this
already shows the hardness of the above problem for directed networks. In fact, Cap-NDP
is label-cover hard for directed graphs even when there is a single pair of terminals [5,3].

For undirected graphs, algorithmically nothing better is known, and the hardness
results were weaker. Hajiaghayi et al. [8] showed that the single pair Cap-NDP is as
hard as the group Steiner tree problem. This implies aΩ(log2 n) hardness. At this point
we should stress that we are disallowing picking multiple copies of an edge; if this were
allowed, then a O(log k)-approximation algorithm is known for undirected graphs [3].
In this paper, we prove that the single source-sink pair Cap-NDP is label-cover hard
even in undirected graphs. More precisely, unless NP ⊆ DTIME(npolylogn), for any
δ > 0, there is no 2log

1−δ n-approximation for the problem.

1.1 A Source Location Problem

Consider a capacitated network with a dedicated sink t and a subset of terminals S ⊆ V .
Given a subset X ⊆ S, let f(X) ∈ R denote the maximum flow that can be sent from
X to t. We use fi as a shorthand for f({i}). It is a standard fact that f is monotone and
submodular: indeed, f is monotone because adding a new source can only increase the
total flow, and f is submodular since the marginal flow due to a terminal decreases as
X becomes larger.

We consider the following problem: find the minimum cardinality subset X ⊆ S
such that f(X) = f(S). This is a special case of Cap-NDP where we create a super-
source s1 and connect it to each source s ∈ S by an edge of cost 1 and capacity f({s}).
Each edge in the original graph has cost 0 and capacity equal to its original capacity.
The sink t1 is the vertex t, and the requirement is r1 is set to f(S). Then the minimum
cost graph H which can support a flow of r1 between s1 and t1 exactly corresponds to
the minimum cardinality set of sources which can send a flow f(S) to the sink t.

The above problem is a special case of a widely studied class of problems known
as source location problems. In its generality, each vertex v ∈ G has a cost c(v) and
demand d(v), and the goal is to pick a minimum cost subset X such that for all v,
f(X, v) ≥ d(v). We obtain the above problem by setting c(v) = 1 for v ∈ S, and infin-
ity otherwise, and demands d(t) = 1, and 0 otherwise. Source location problems have
been studied extensively (see, for instance, [12]), and many special cases are known to
be polynomial time solvable ([11,14,15,2]). For example, Kortsarz et al. [11] showed
that the problem is polynomial time solvable when the maximum demand is at at most
3, and Arata et al. showed that the problem is easy if the set S of terminals is V . In
general, the problem is as hard as set cover ([13,1]), and in fact, the reductions therein
show that the above special case is also set-cover hard. Algorithmically, there is a loga-
rithmic approximation [13], and for the above problem such a result follows by noting
that problem is a special case of submodular set cover [16].
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Irreducible Sets. In order to understand the above problem better, in this paper we
study the behavior of the function f on undirected graphs. In particular, given a set
X ⊆ S, can we lower bound f(X) in terms of the fi’s for i ∈ X? Our main result
answers this question affirmatively for a natural class of terminal sets X which we call
irreducible sets. A subset X ⊆ V is irreducible if f(X) > f(X ′) for all strict subsets
X ′ � X . That is, removing any vertex from X strictly decreases the maximum flow
that can be sent to the sink.

We now state our main positive result which shows that on such sets, the submodular
function f behaves ‘almost’ additively.

Theorem 1. Given an undirected graph G and any irreducible set X ,

f(X) ≥ 1

2

∑

i∈X
fi.

Furthermore, there is an (X, t) flow of value f(X) such that the total out-flow from
terminal i is at least fi/2 for all i ∈ X .

We note that an analogous result is not true for directed graphs; in fact, the ratio∑
i∈X fi/f(X) may be as large as |X |. To see this consider a collection of terminals

with an arc to a vertex v and an arc from vertex v to t. All these arcs have capacity 1.
Furthermore, each terminal has a direct arc to t of capacity ε. Note thatX is irreducible;
each terminal sends nonzero flow through its ‘private’ arc. However,

∑
i∈X fi/f(X)

tends to |X | as ε tends to 0. It is instructive to note that if the arcs were undirected, then
the set X becomes reducible; the direct arcs aren’t private anymore and other termi-
nals can send flow through them. Thus the above example also shows irreducibility is
necessary for the above theorem to hold.

We believe the condition of irreducibility is a natural extremal condition. For in-
stance, in the source location problem above, it is easy to see that any reasonable
solution will be irreducible. Therefore, we believe the theorem above can have many
applications, we will illustrate the source location application in the following section.
To take another example, in a telecommunication setting, the above theorem states that
in an undirected capacitated network, any irreducible set of transmitters can transmit
concurrently at, at least, half their maximum rates. The condition of irreducibility may
be imposed by the central designer interested in the total throughput, to reduce operative
costs.

Application to the above Source Location Problem. Our main corollary of Theo-
rem 1 is the following. Call an instance of the problem ρ-regular, if all the fi’s are
within a ρ-multiplicative factor of each other.

Corollary 1. For ρ-regular instances, there is a 2ρ-approximation to the source loca-
tion problem.

Proof. The algorithm is extremely simple: starting with S, keep on deleting vertices in
any order as long as the deletion doesn’t decrease the total flow to t, ending with a subset
X ⊆ S. Now, by the nature of this procedure, f(X) = f(S), and also X is irreducible
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as deleting any more vertices decreases the flow. We can now appeal to Theorem 1
to get that f(S) = f(X) ≥ 1

2

∑
i∈X fi ≥ 1

2 |X |fmin, where fmin = mini fi. This
gives |X | ≤ 2f(S)/fmin. However, any solution X∗ with f(X∗) = f(T ) satisfies
|X∗|fmax ≥

∑
i∈X∗ fi ≥ f(S), implying |X∗| ≥ f(S)/fmax ≥ |X | · fmin

2fmax
. The

proof follows from the ρ-regularity assumption.

We remark that even with this regularity assumption., the directed version is inapprox-
imable to within a factor of o(log n).1 Furthermore, our approximation factor is optimal
(assuming the unique games conjecture [10]): source location on undirected regular in-
stances captures the vertex cover problem in regular graphs, which is inapproximable
to within a factor of 2− ε, assuming the unique games conjecture [10,6].

Proof Technique. How would one prove a theorem as Theorem 1? Arguably, one needs
a handle on the structure of the cuts separating a subset of terminals from a given ver-
tex. In undirected graphs the structure of cuts has been extensively investigated. For
instance, there exist cactus representations for all the minimum cuts of the graph, and
the Gomory-Hu tree captures the local edge connectivities of the graph. However, we
are unaware of structural results capturing cuts separating a set of terminals from a sink.

Another syntactic way would be to deduce inequalities involving the flow function
for various subsets of the irreducible set and combine them to obtain the stated result.
For instance, suppose |X | = 3. Then, essentially, there are a constant number of types
of vertices and edges, depending on which cuts they appear in. Subsequently, one can
write inequalities capturing the cut conditions, and can obtain Theorem 1 for this special
case. In fact, it may be a illuminating exercise for the reader to try this out. However,
for larger sets, although this process is possible, it may not be feasible to do in a ‘brute
force’ manner.

Our approach can be thought of as a clever way of performing the above ‘inequality
setting’. We first show a mapping from every graph on to the k-dimensional hypercube,
where k is the number of terminals. This mapping is ‘cut-expanding’: for every subset
of terminals, the min-cut separating their images from the image of the sink is larger
than that in the original graph. Furthermore, and this is the non-trivial part, certain min-
cuts remain unchanged. This includes, in particular, the cut separating all the terminals
from the sink. With this mapping, we show that the theorem need only be proved for
the ‘hypercube networks’ that we construct. Our mapping is very similar to those used
to generate what are called mimicking networks, and was first described by [7]. Once
we go to the hypercube network, we show that the setting up of inequalities can be
performed easily.

2 Proof of Theorem 1

Let G be an undirected network with an irreducible set T of terminals. We let k denote
the number of terminals, that is, |T |. Also, for a subset S ⊆ V (G), let δG(S) denote
the capacity of the cut (S, V (G) \ S) in G.

1 Set cover is hard even restricted to instances with the regularity property, i.e., instances with
uniform set sizes, via a simple approximation-preserving reduction from general instances.
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We let Hypk be the graph associated with the k-dimensional Boolean hypercube
{0, 1}k. The vertices of Hypk are the k-dimensional Boolean vectors, and there is an
edge between two vectors if and only if they differ in exactly one coordinate. We letHk

denote the graph Hypk along with an extra vertex t∗ connected to the all 1s vector, 1k.

2.1 From Graphs to Hypercubes

We now describe a mapping Φ : V (G) → V (Hk) along with a capacity assignment
to the edges of Hk. Let Si ⊆ V (G) be the inclusion-wise minimal min-cut separating
the terminal set Ti := T \ i from t. Obviously, all j ∈ T \ i lies in Si. Note that
δG(Si) = f(T \i) < f(T ) by the irreducibility of T . Therefore, i /∈ Si, since otherwise
the minimum cut separating T from t would be strictly less than f(T ), violating the
max-flow-min-cut theorem. This is the place where irreducibility is crucially used.

Let S denote the inclusion-wise min-cut separating T from t. We claim that Si ⊆ S
for all i ∈ T . SupposeSi �⊆ S. The sets Si∪S and Si∩S respectively separate T and Ti
from the sink, so δG(Si ∪ S) ≥ δG(S) and δG(S ∩ Si) > δG(Si). Note that the second
inequality is strict, thanks to the minimality of Si. Thus δG(Si ∪ S) + δG(Si ∩ S) >
δG(S) + δG(Si), contradicting the submodularity of the cut function.

Given S and Si’s for all i ∈ T , we define the mapping Φ as follows. If v /∈ S, then
Φ(v) = t∗. For v ∈ S, Φ(v) is the element of Hypk such that Φ(v)i = 0 if v ∈ Si;
Φ(v) = 1 otherwise. Observe the following: (a) Φ(t) = t∗; (b) for i ∈ T , Φ(i) is the
unit vector ei which has 0’s in all but the ith coordinate. This follows from our previous
discussion that i /∈ Si but i ∈ Sj for all j �= i.

We now describe the capacities on the edges of Hk. Initially all edges have capacity
0. For each edge (u, v) ∈ E(G) of capacity cuv , we will add capacities on the edges
of E(Hk). If both u and v are outside S, we do nothing. If both u and v are in S,
and thus Φ(u) and Φ(v) lie in V (Hypk), then we add capacity cuv on all the edges of
the canonical path between Φ(u) to Φ(v). The canonical path from x to y in Hypk is
x =: x0, x1, . . . , xk := y where xi agrees with y on the first i coordinates, and with x
in the last (k − i) coordinates. Note that xi could be the same as xi+1 if x and y have
the same ith coordinate. If u ∈ S and v /∈ S, then we add a capacity cuv on all edges
on the canonical path from Φ(u) to 1k, and also to the edge (1k, t∗).

To differentiate between G and Hk, given a subset X of terminals, we henceforth
let fG(X) denote f(X), that is, the maximum flow from X to t in G. We let fH(X)
denote the maximum flow from Φ(X) to t∗ in Hk with edge capacities as described
above. Here, we use Φ(X) as a shorthand for {Φ(x) : x ∈ X}.
Theorem 2. Given a graph G = (V,E) and an irreducible set of terminals T ⊆ V of
size k, the mapping Φ : V (G) → V (Hk) as described above along with the capacity
assignment on E(Hk), has the following properties.

1. fG(X) ≤ fH(X) for all subsets X ⊆ T . In particular, for singletons X = {i}.
2. fG(T ) = fH(T ).
3. fG(T ′) = fH(T ′) for all subsets T ′ ⊆ T of size k − 1.

Proof. 1. Consider any flow in the graphG from X to t. For any edge (u, v) ∈ E(G)
carrying positive flow, if u and v are both outsideS, thenΦ(u) = Φ(v) = t∗,
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so we do nothing. If both are inside S, then send the same amount of flow fromΦ(u)
to Φ(v) along the canonical path in the hypercube. By the capacity assignment, this
is a feasible flow. If exactly one of them, say u, is in S, then we use the canonical
path from u to 1k, followed by the edge (1k, t∗). This shows a feasible flow of value
fG(X) from Φ(X) to t∗ in Hk.

2. From part (1), it suffices to show that the capacity of the (1k, t∗) edge in Hk equals
the (T, t) min-cut δG(S). By our construction, the (1k, t∗) gets capacity cuv only
for edges (u, v) with exactly one end point in S. This is precisely δG(S).

3. Let T ′ = T \ i. From part (1), it suffices to exhibit a cut in Hk separating Φ(T \ i)
and t∗ of value fG(T \ i) = δG(Si). We claim that the ith dictator cut suffices.
That is, the cut separating vertices Di := {x ∈ Hypk : xi = 0} from the rest of
the vertices in Hk. Firstly note that Di contains Φ(T \ i) and t∗ lies outside Di.
So this is a valid (Φ(T \ i), t∗) cut. Furthermore, the only edges crossing this cut
belong to Hypk.

Consider an edge (x, y) in Hypk crossing Di with say xi = 0. The capacity
on this edge is contributed by edges (u, v) which have (x, y) in the canonical path
from Φ(u) to Φ(v). In particular, Φ(u)i = 0 and Φ(v)i = 1; that is, u ∈ Si and
v /∈ Si and (u, v) ∈ δG(Si). Furthermore, since this is a dictator cut, no canonical
path crosses this cut more than once. In particular, the capacity of this cut is exactly
the total capacity of these edges (u, v), and thus is precisely δG(Si).

2.2 Bounding the Flow on the Hypercube Graph Hk

Lemma 1. fH(T ) ≥ 1
2

∑
i∈T fH(i).

Proof. For 1 ≤ i < k, let Li denote the set of edges (x, y) ∈ E(Hypk) such that x
has precisely i ones and y has (i+ 1) ones. Moreover, let Lk consist of the single edge
(1k, t∗). We abuse notation and let Li also denote the total capacity of the edges in Li.
Recall, Φ(i) = ei. Thus the ‘singleton cut’ separating ei from the remaining vertices
is an upper bound on fH(i). Furthermore, all these singleton cuts are disjoint, and their
union is L0 ∪ L1. This gives

L0 + L1 ≥
∑

i∈T
fH(i). (1)

Observe that for any 1 ≤ i ≤ k, the edge set Li separates t∗ from Φ(T ). Therefore, we
get

Li ≥ fH(T ). (2)

Finally, recall from the proof of (iii) of Theorem 2, that each dictator cut Di has value
fG(T \ i) < fG(T ) = fH(T ). Since each edge of the hypercube appears in exactly one
dictator cut Di, by adding this over all 1 ≤ i ≤ k, we get

∑

0≤i≤k−1
Li ≤ k · fH(T ). (3)

Using (2) for 2 ≤ i ≤ k − 1, the above inequality becomes

L0 + L1 ≤ 2 · fH(T ). (4)
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Comparing (1) and (4) gives the lemma.

Theorem 2 and Lemma 1 imply the first part of Theorem 1.
To prove the second part, we introduce a dummy source s to G and connect it to

every vertex in T with capacity of (s, i) edge being fi/2. We claim that the minimum
cut in this network is of value precisely

∑
i∈T fi/2. If so, then the resulting max-flow

will imply the second part of Theorem 1.
Suppose not, and let the min-cut be (Z, V ∪s\Z)with s ∈ Z . LetX := T∩Z . Let F

be the edges in δ(Z) which have endpoints in V . LetC be the total capacity of the edges
in F . Since the mincut is <

∑
i∈T fi/2, we get that C <

∑
i∈X fi/2. However, F

separatesX from t, and thus the maxflow fromX to t is≤ C. ButX ⊆ T is irreducible
as well, and thus this violates part one of Theorem 1. To see this irreducibility ofX note
that if f(X \ i) = f(X), by submodularity of f , this would imply f(T \ i) = f(T ) as
well.

3 Hardness of Single Source-Sink Pair Cap-NDP

We show that the single source undirected Cap-NDP is label cover hard. The reduction
is actually from the directed instances which showed label-cover hardness for directed
Cap-NDP [5,3].

Consider a collection G of graphs obtained as follows. V consists of the following
vertices. A set A of nodes partitioned into sets A1, . . . , Ak. A set B partitioned into
B1, . . . , Bk. There are directed arcs of cost 0 and capacity 1 all of which are directed
from some node in Ai to some node in Bj . There are nodes a1, . . . , ak and similarly
b1, . . . , bk. There is an arc (ai, v) of capacity∞ and cost C, for all v ∈ Ai. Similarly,
there is an arc (v, bj) of capacity∞ and cost C, for all v ∈ Bj . Finally, there is an arc
(s, ai) of cost 0, capacity∞ for all i ∈ [k], and an arc (bj , t) of cost 0, capacity∞ for
all j ∈ [k]. Let’s call the capacity∞ edges big edges. There is only one pair (s, t) with
requirement R for some R (see Figure 1(a)). The reductions of [5,3] show that single
source Cap-NDP is label-cover hard even on these instances.

Theorem 3 ([5,3]). Unless NP ⊆ DTIME(npolylog(n)), there is no 2log
1−δ(n)-

approximation algorithm for Cap-NDP for directed graphs coming from class G.

We now show how we obtain the hardness result for undirected graphs. If we simply
make all edges undirected, the instance is not necessarily hard since the flows may
travel along reverse directions. Given an undirected graph G obtained from the above
instance by removing directions, we describe a simple trick that makes all capacity-1
edges (the edges between A and B) directed from left to right. This is enough for the
hardness result.

Let M denote the number of capacity-1 edges. We add nodes s′ and t′ to V , edges
(s, s′), (t′, t) of cost 0 and capacity M/2. Furthermore, we add edges (s′, v) for all
v ∈ B and (t′, v) for all v ∈ A. The capacity of these edges are d(v)/2, where d(v)
is the number of capacity-1 edges incident to v. The costs of all these edges are 0.
Finally, we change the capacities of the capacity-1 edges to 1/2. The demand rst is set
to R+M/2 (see Figure 1(b)).
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Fig. 1. The graph on the left side is the hard instance of Cap-NDP for directed graphs, and the
graph on the right side is the hard instance of Cap-NDP for undirected graphs. Solid lines rep-
resent edges of cost C and dashed lines represent edges of cost 0. All edges in the left graph
have capacities∞, except for the edges from A to B, which have capacities 1. In the right graph,
(s, s′) and (t′, t) have capacities M/2, where M is the number of edges between A and B. An
edge between s′ and v ∈ B has capacity d(v)/2, where d(v) is the number of edges between v
and A. An edge between v ∈ A and t′ has capacity d(v)/2, where d(v) is the number of edges
between v and B. The edges between A and B have capacities 1/2. All other edges have capacity
∞.

The intuition for the above construction is as follows. Since the capacity-1/2 edges
(original capacity-1 edges) and the newly added edges have cost 0, we can assume they
are included in the solution. With these edges, we can send M/2 units flow from s to t
in the natural way: the flows go from s to s′, then to vertices in B, then to vertices in
A, to t′ and finally to t. The flows use all the capacities of these edges. The remaining
task is to select some other edges so that we can send R units flow in the residual
graph. Notice that in the residual graph, all the capacity-1/2 edges are directed from
left to right, with capacities 1. It is easy to see that the new added edges are useless in
the residual graph. Thus, the remaining problem is equivalent to the original instance
(Figure 1(a)) of Cap-NDP for directed graphs.

Now we give a more formal proof. Consider a solution to the undirected Cap-NDP.
We may assume all the cost 0 edges are picked. Let F be the non-zero cost edges in the
solution. Note that all of these are of the form (ai, v) for some v ∈ Ai, or (v, bj) for
some v ∈ Bj . We abuse notation and let F also denote the corresponding arcs in the
original digraph.

Claim. F , along with the 0-cost arcs, is a valid solution for the directed Cap-NDP
instance.

Proof. Let S ⊆ A be the set {v : (ai, v) ∈ F for some i}. Similarly, let T ⊆ B
be the set of endpoints in B neighboring to some edge in F . We claim that the edges
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with one endpoint in S and the other in T , which we denote as E(S : T ), satisfies
|E(S : T )| ≥ R. Assuming this, we are done since the arcs are indeed directed from
S to T , and since each vertex in S can receive R units of flow from s, and each vertex
in T can send R units of flow to t (since these are neighboring to F ), we get a feasible
solution for the directed case.

Consider the following cut in the undirected graph with F and 0-cost edges. On the
s side we have s, {a1, . . . , ak}, s′ and S ∪B \ T . The t side contains the complement,
that is, t, {b1, . . . , bk}, t′ and T ∪ A \ S. Observe there are no big edges in the cut. Big
edges are either of the form (s, ai),(t, bj) or (ai, v),(bj , v). The first type are inside the
s side or the t side; the second type has only F and the endpoints are made sure to be
on the same side of the cut.

Therefore, the cut edges are precisely E(S : T ), E(A \ S : B \ T ) and the new
edges E(s′ : T ) ∪ E(S : t′). Let the capacities of these three sets be C1 ,C2, and C3

respectively. Now, C1 = 1
2 |E(S : T )| is the quantity of interest, and C3 = 1

2d(S) +
1
2d(T ), where d(X) is a shorthand for

∑
v∈X d(v). Also,

2C2 = d(A \ S)− |E(A \ S : T )| = d(A)− d(S)− (d(T )− |E(S : T )|)
= d(A)− d(S)− d(T ) + |E(S : T )|.

Thus the total capacity of this cut is C1+C2+C3 = 1
2 (d(A) + 2|E(S : T )|) =M/2+

|E(S : T )|, since d(A) is nothing but the number of capacity 1 edges. The capacity of
the cut is ≥ M/2 + R since F is a feasible solution, which implies |E(S : T )| ≥ R.
Therefore, F with the 0-cost arcs form a valid solution to the directed problem as well.

The above claim, along with Theorem 3, gives the following theorem.

Theorem 4. Unless NP ⊆ DTIME(npolylog(n)), there is no 2log
1−δ(n)-

approximation for undirected, single source-sink pair Cap-NDP.

4 Conclusion

We conclude the note with a few observations. There is a special case of Cap-NDP,
which has been called the k-bipartite flow problem by [8], where given a bipartite graph
with node costs and unit capacity edges, the goal is to find subsets of nodes A,B from
the left and right part of minimum total cost such that the edge connectivity between A
and B is at least k. In directed graphs this generalizes the densest k-subgraph problem
(the version where one needs to pick the minimum number of vertices which has at least
k induced edges). A similar reduction as above shows that the undirected case, and thus
undirected, single source Cap-NDP, is as hard as the densest k-subgraph problem. If
the goal is to just pick a min-cost subset A from one part and the set B is fixed, then
a logarithmic approximation exists, and a reduction as above shows that the problem is
as hard as the set cover problem.

However, one should note that the inapproximability described above only rules out
unicriteria results. For instance, we haven’t ruled out a solution of cost polylog(n)OPT
which sends ≥ R/2 flow. In fact, for the k-bipartite flow stated above, there is a solu-
tion [1] via the Räcke decomposition into trees, which obtains a solution of cost equal-
ing OPT and sends R/polylog(n) flow. We think this direction may be feasible; as a
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starting point we ask whether there is a (O(polylog(n)), O(1))-approximation for the
k-bipartite flow problem.
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Abstract. A test scheduling instance is specified by a set of elements, a set of
tests, which are subsets of elements, and numeric priorities assigned to elements.
The schedule is a sequence of test invocations with the goal of covering all ele-
ments. This formulation had been used to model problems in multiple application
domains from network failure detection to broadcast scheduling. The modeling
considered both SUMe and MAXe objectives, which correspond to average or
worst-case cover times over elements (weighted by priority), and both one-time
testing, where the goal is to detect if a fault is currently present, and continuous
testing, performed in the background in order to detect presence of failures soon
after they occur. Since all variants are NP hard, the focus is on approximations.

We present combinatorial approximations algorithms for both SUMe and
MAXe objectives on continuous and MAXe on one-time schedules. The approx-
imation ratios we obtain depend logarithmically on the number of elements and
significantly improve over previous results. Moreover, our unified treatment of
SUMe and MAXe objectives facilitates simultaneous approximation with respect
to both.

Since one-time and continuous testing can be viable alternatives, we study
their relation, which captures the overhead of continuous testing. We establish
that for both SUMe and MAXe objectives, the ratio of the optimal one-time to
continuous cover times is O(log n), where n is the number of elements. We show
that this is tight as there are instances with ratio Ω(log n). We provide evidence,
however, by considering Zipf distributions, that the typical ratio is lower.

1 Introduction

An instance (E,S,p) of a test scheduling problem is specified by a set E of elements,
a set S of tests, where each test is a subset of elementsE, and priorities pe ∈ [0, 1] over
elements e ∈ E. An invocation of a test s ∈ S tests all elements included in the set s
and returns the faulty elements, if any exist. We seek schedules, which are sequences
of tests, which cover the elements as efficiently as possible, namely, minimize the time
until a fault is discovered.

We consider two objective functions: The SUMe objectives, which minimize the
prioritized sum of cover times of individual elements and MAXe objectives, which
minimize the maximum cover time of an element, weighted by priority. Operationally,
we distinguish between two different modes: one-time testing, where the goal is to
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detect if an existing fault is present by initiating a sequence of tests, and continuous
testing, performed as a background process and appropriate when failures of elements
may occur any time and we would like to detect the failure soon after it occurs. For the
continuous testing we consider the worst or average case over time, and either way, its
cover time is always at least that of the optimal one-time testing.

This formulation naturally extends the classic set cover problem and had been used
to model problems arising in different application domains. Since all variants are NP-
complete, the focus is on designing approximation algorithms.

A recently studied application is silent failure detection in networks [14,12,13,6]: El-
ements correspond to physical or logical network elements (links, nodes, or forwarding
rules in the software defined network) and tests correspond to routing paths. Invoking a
test translated to sending a probe packet. Once a failure is detected, heavy-weight tools
are applied to bypass or localize and correct it.

The special case of singletons, where each test contains a single element, was exten-
sively studied in the context of scheduling Teletext [2], broadcast disks [1,10,3,3,3,4],
and search in unstructured p2p networks [7].

One-time schedules of subset tests with respect to SUMe objectives were studied
by Feige et al [9], who gave a 4-approximation algorithm (and matching inapproxima-
bility result) (see also [5]). We recently studied stochastic and deterministic contin-
uous schedules [6]. We gave deterministic approximation algorithms for both MAXe
and SUMe objectives by derandomizing optimal memoryless schedules (memoryless
schedules are a subclass of stochastic schedules which can be optimized by an LP or
convex programs). Our work here builds on the results in [9,6] which are discussed in
more detail in Section 2.

Contributions: We present novel combinatorial approximation algorithms for deter-
ministic schedules with approximation factors O(log2 n) for MAXe and O(log n) for
SUMe on continuous schedules and O(log n) for MAXe on one-time schedules (Sec-
tion 3), where n = |E|. These ratios significantly improve over previous results [6]
whose approximation ratios depend logarithmically on the number of tests contain-
ing an element, which can be exponential in the number of elements: Indeed, experi-
mentally in [6], the set of tests had to be artificially restricted in order to obtain good
schedules.

In some contexts, including network testing, both one-time or continuous testing are
applicable, and to support informed choice, we aim to understand their relation (Section
4). Since the cover time of the optimal one-time testing is no larger than the cover time
of optimal continuous testing, we are interested to study the ratio of continuous to one-
time optima, which measures the overhead of continuous testing. We show that this
ratio is O(log n) for both SUMe and MAXe objectives, and that this is tight, in the
sense that some families of instances haveΩ(logn) ratios. We also give indications, by
analyzing instances with priorities that are Zipf distributed, that in practice the ratio is
typically lower.

In Section 5 we consider a restriction which we refer to as choose-� scheduling,
where each element must be committed to at most � of the tests that include it during
run-time. In Section 6 we briefly explain how to concurrently approximate both SUMe

and MAXe objectives.
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2 Preliminaries

A testing schedule is a sequence σ of tests. The sequence is infinite for continuous
testing and finite for one-time testing. The cover time T(e, t|σ) of element e at time
t by the schedule σ is the number of tests issued following test t until a test which
includes e is invoked, that is T(e, t|σ) = min{Δ ≥ 1 | e ∈ σt+Δ}.

We follow notation from [6]. For a time t, Me[t|σ] = maxe peT(e, t|σ) is the
(weighted) maximum over elements and Ee[t|σ] =

∑
e peT(e, t|σ) is the weighted

sum over the elements of the cover time of e at t. The weighting, in both cases, is
according to the priorities p. For an element e, Mt[e|σ] is the supremum over time t
of the cover time of e at time t. We sometimes use Mt, Ee, and Me as combinable
operators which respectively take the maximum (supremum for time) or average over
elements/time. When clear from context, we omit the reference to the schedule σ in the
notation.

We study two natural objectives: MAXe, which aims to minimize MeMt the (weighted)
maximum over elements, and SUMe, which aims to minimize EeMt the weighted sum
over elements. For convenience, with MAXe objectives we assume priorities are scaled
so that the maximum entry is 1 and with SUMe, they are normalized so that the sum of
entries is 1. With this normalization, when p is a probability distribution over elements,
SUMe is the expected time to cover an element that is selected according to the distribu-
tion. For concreteness, we use the fault detection application for describing objectives
in the sequel.

A schedule is stochastic, when the test σt invoked at each time t is determined ac-
cording to a probability distribution which depends on the history σ1, . . . , σt−1. With
stochastic schedules, we redefine T(e, t|σ) to be the expected number of steps until e
is covered [6]. We append the prefix opt to an objective to denote the optimum of the
objective over stochastic schedules. We append the prefix optD to denote the optimum
of the objective over deterministic schedules.

2.1 One-Time Testing

One-time testing checks for presence of a failed element at a single specific time when
we start the sequence. The schedule σ is finite, and we execute it until either a test
detects the presence of a faulty element or to termination, when no fault is present. For
element e, T(e, 0|σ) = min{j | e ∈ σj} is the cover time of e. The one-time SUMe

and MAXe are

SUMe: Ee[0|σ] =
∑

e

peT(e, 0|σ)

MAXe: Me[0|σ] = max
e
peT(e, 0|σ) .

An optimal deterministic one-time schedule never performs a particular test more than
once, since only the first occurrence is significant and other occurrences, if any, can only
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extend the cover time of yet uncovered elements. Moreover, each test should contain at
least one previously uncovered element, and therefore, an optimal schedule has length
at most n = |E|.

A stochastic one-time schedule defines a distribution over finite deterministic se-
quences which is obtained by executing the stochastic schedule and stopping when
all elements are covered. The maximum length of a sequence may not be bounded
but the distribution is well defined for every stochastic schedule with finite expected
cover times Ee[0|σ] or Me[0|σ]. The SUMe cover time of the stochastic schedule is
the expectation over this distribution of the SUMe value of the deterministic sequences.
Therefore, there is always a deterministic schedule with objective that is at most that ex-
pectation and opt-Ee[0] = optD-Ee[0]. Hence, there is no advantage in using a stochas-
tic schedule when optimizing SUMe. In contrast, it is possible for the MAXe stochastic
cover time to be lower than the deterministic optimum, that is, opt-Me[0] ≤ optD-Me[0].
The inequality can be strict even for singleton instances: Consider a singleton instance
with n equal priority elements. The optimal stochastic schedule selects a random per-
mutation and has Me[0] = (n + 1)/2. The optimal deterministic schedule uses a fixed
permutation and has Me[0] = n. We discuss this further in the sequel.

Singleton Instances are fully specified by the assignment of priorities p to elements
(tests). Both objectives Ee[0|σ] and Me[0|σ] are minimized by the schedule σ that
tests elements in order of decreasing priority pi. Assuming elements are indexed by
decreasing priority p1 ≥ · · · ≥ pn, the optimal cover times are

opt-Ee[0](p) =
n∑

i=1

ipi (1)

optD-Me[0](p) = max
i∈[n]

ipi . (2)

Subset Tests: We summarize previous results for Ee[0|σ] and Me[0|σ], which establish
NP hardness and approximability.

SUMe (Ee[0|σ]): A simple greedy algorithm which sequentially selects the test that
maximizes the sum of priorities of uncovered elements computes a schedule σ which
has Ee[0|σ] ≤ 4opt-Ee[0] (see, [9,5]). The problem of minimizing Ee[0|σ] (or approx-
imating within factor of 4− ε for any positive ε > 0) is NP hard [9].

MAXe (Me[0|σ]): When priorities are uniform, optimizing deterministic Me[0|σ] is
equivalent to computing a minimum set cover: The optimal Me[0|σ] is the size of the
minimum cover. From hardness of approximation of set cover, Me[0|σ] is hard to ap-
proximate better than a lnn ratio [8]. When priorities are uniform, the greedy set cover
algorithm guarantees a schedule with approximation ratio of lnn for Me[0|σ].
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2.2 Continuous Testing

We first define the objectives for continuous testing. In this case the detection might start
at any possible time t, and our objective considers the worse case time t.1 Formally, for
a schedule σ we have:

SUMe[σ] = EeMt[T(e, t|σ)] =
∑

e

pemax
t

T(e, t|σ)

MAXe[σ] = MeMt[T(e, t|σ)] = max
e

max
t
peT(e, t|σ) .

With continuous testing, stochastic (expected) cover times can be lower than the corre-
sponding optimal deterministic cover times also for both MAXe and SUMe [6]. Opti-
mizing MAXe and SUMe over either stochastic or deterministic schedules is NP-hard.

Memoryless. A natural subclass of stochastic schedules is memoryless schedules [6].
Memoryless schedules are specified by a distribution q on tests, so that at each time,
the invoked test is selected according to q (independently of history). For a memoryless
schedule specified by q we have

SUMe[q] =
∑

e

pe
Qe

MAXe[q] = max
e

pe
Qe

,

where Qe =
∑

i|e∈si qi is the testing frequency of element e.
In [6] it was shown that the optimal memoryless cover times, with respect to either

SUMe and MAXe, are at most twice the optimal stochastic ones. Moreover, optimal
memoryless schedules can be computed efficiently, via a Linear Program (MAXe) or
a convex program (SUMe). Optimal deterministic cover times2 are at least the mem-
oryless optimum, but can exceed the memoryless optimum by at most a logarithm of
the number of elements and of �, which we define to be the maximum number of tests
which include an element. To summarize:

opt-MAXe ≤ optM -MAXe ≤ 2opt-MAXe (3)

opt-SUMe ≤ optM -SUMe ≤ 2opt-SUMe (4)

optM -MAXe ≤ optD-MAXe ≤ O(log n+ log �)optM -MAXe (5)

optM -SUMe ≤ optD-SUMe ≤ O(log �)optM -SUMe . (6)

1 For completeness, we mention that in [6] we also considered these objectives with respect
to the (limit of the) average over time t. Since the dependence on time and elements may
not commute, we obtained three different objectives within each of the SUMe (MtEe, EeMt,
EeEt) and MAXe (MeMt, EeMt, MtEe) classes. We showed that over stochastic schedules,
the optimum is the same for all three variations. Over deterministic schedules, the variants that
we focus on here, which take the supremum over time are the most strict and have the largest
optimal cover times.

2 For the variants we consider here, which take the supremum over time.
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The optimal memoryless schedule on singleton instances has frequencies qe ∝ pe (i.e.,
qe = pe/

∑
j pj) to optimize MAXe and qe ∝ √pe (i.e, qe =

√
pe/

∑
j

√
pj) to

optimize SUMe [11], where the latter is also known as Kleinrock’s square-root law.
The respective optima are (we use the prefix optM to denote the memoryless optimum):

optM -MAXe[p] = max
e

pe
qe

=
∑

e

pe (7)

optM -SUMe[p] =
∑

e

pe
qe

= (
∑

e

√
pe)

2 . (8)

We use the following in our constructions of continuous schedules:

Lemma 1. [3,6] For given frequencies q, we can always construct a deterministic
schedule so that the interval between invocations of test i is at most 2/qi.

At a high level, the deterministic schedule is obtained by rounding frequencies down
to integral powers of 2: q′i ← 2−�log2 qi�. A set of frequencies that are integral powers
of 2 that sum to at most 1 can be optimally scheduled so that each test is invoked with
a period of at most 1/q′i [3,6]. This is done by mapping frequencies q′i to nodes of a
binary tree so that frequency 2−h is mapped to a node in depth h. The mapping is such
that we prune all nodes below a mapped node. When frequencies sum to at most 1, this
can always be done by mapping greedily according to decreasing h. We then construct
a cyclic schedule which corresponds to traversing the leaves of the complete binary tree
with depth determined by the smallest frequency. The leaves are visited by order of their
reverse binary bit representation. A test is scheduled when any of the leaves under the
node it is mapped to is scheduled. Lastly, we omit leaves with no mapped node above
them. This can only reduce visit time.

3 Deterministic MAXe Schedulers

We present a O(log n) approximation for one-time deterministic MAXe scheduling
and O(log2 n) approximation for continuous deterministic MAXe scheduling. Both al-
gorithms use the same partition over the elements: Assuming priorities are scaled so
that the largest priority is equal to 1, elements are partitioned according to the value of
�− log2 pe	, so that the setEi for i ≥ 0 contains all elements for which �− log2 pe	 = i.
We then compute a (greedy) set cover Ci for each set Ei. Pseudo code for computing
the partition and covers is in Algorithm 1. The one-time final schedule σ is a concate-
nation of the set covers Ci by increasing i ≥ 0. (See ONETIMEMAXSCHEDULE in
Algorithm 2 for pseudocode.)

Theorem 1. Consider the one-time schedule σ computed by ONETIMEMAXSCHED-
ULE when the covers in PARTITIONP2 are computed using the greedy set cover algo-
rithm. Then

Me[0|σ] ≤ O(lnn)optD-Me[0] .

Proof. We first upper bound the optimal value:

opt-Me[0] ≤ Me[0|σ] ≤ max
e
pe

∑

j≤�− log2 pe�
|Cj | ≤ max

i≥0
2−i

∑

j≤i
|Cj | (9)
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Algorithm 1. Partition elements by powers-of-2
1: function PARTITIONP2(p, E)
2: p← p/max(p) � Scale p so that the maximum priority is 1.
3: for i ≥ 0 do
4: Ei ← {e ∈ Ei | pe ∈ (2−(i+1), 2−i]} � Partition E according to priorities

5: U ← ∅
6: for i ≥ 0 do
7: Ei ← Ei \ U � remove elements already covered by higher-priority tests
8: Ci ←SET-COVER(Ei,S)
9: U ← U ∪ {elements covered by Ci}

return p,E,C � E = {Ei} and C = {Ci},

We now lower bound the optimal value:

optD-Me[0] ≥ max
e

pe|OPT-COVER{h ∈ E | ph ≥ pe}|
≥ max

i≥0
2−(i+1) max

j≤i
|OPT-COVER{Ej}| ≥ max

i≥0
2−(i+1)|OPT-COVER{Ei}|(10)

≥ max
i≥0

2−(i+1) |Ci|
ln |Ei| ≥

1

2 lnn
max
i≥0

2−i|Ci| (11)

To verify (11), note that a lower bound on optD-Me[0] is the maximum over elements e
of the product of pe by the size of the minimal set cover of all elements with priority at
least pe. For e ∈ Ei, this is lower bounded by 2−(i+1) (the lowest possible priority of a
member of Ei) times the size of the minimum set cover of Ei, which is lower bounded
in turn by the size of the greedy cover |Ci| divided by the worst-case approximation
ratio ln |Ei|.

Combining (9) and (11), to conclude the proof it suffices to establish

max
i≥0

2−i
∑

j≤i
|Cj | ≤ 2max

i≥0
2−i|Ci| . (12)

Let k be the value i which maximizes 2−i
∑

j≤i |Cj |. From our choice of k,

2−k
∑

j≤k
|Cj | ≥ 2−k+1

∑

j≤k−1
|Cj | . (13)

We expand and substitute (13) to obtain

2−k
∑

j≤k
|Cj | = (1/2)

(

2−k+1
∑

j≤k−1
|Cj |

)

+ 2−k|Ck|

≤ (1/2)

(

2−k
∑

j≤k
|Cj |

)

+ 2−k|Ck| (14)

This implies that

2−k
∑

j≤k
|Cj | ≤ 2 · 2−k|Ck| (15)
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We are now ready to establish (12), using (15):

max
i

2−i
∑

j≤i
|Cj | = 2−k

∑

j≤k
|Cj | ≤ 2 · 2−k|Ck| ≤ 2max

i
2−i|Ci| . 
�

Algorithm 2. One-Time and Continuous schedules for MAXe
1: function ONETIMEMAXSCHEDULE(p, E)
2: (p,E,C)←PARTITIONP2(p, E)
3: σ ← C1, C2, . . .
4: return σ
5: function CONTMAXSCHEDULE(p, E)
6: (p,E,C)←PARTITIONP2(p, E)
7: for i ≥ 0 do
8: for s ∈ Ci do
9: q[s]← 2−i

10: return CONTSINGLETONSCHEDULE ( q∑
i q[i]

) � Return a schedule constructed

according to the specified frequencies as described in Lemma 1

To obtain a deterministic continuous-testing schedule σ (A Pseudocode of the con-
struction is CONTMAXSCHEDULE in Algorithm 2), we first compute the partition and
covers (PARTITIONP2 in Algorithm 1, using the greedy set cover algorithm). For all
i, we assign frequencies 2−i to the tests participating in the cover Ci and normalize
so that the sum of frequencies is 1. The deterministic schedule is obtained from these
frequencies by applying Lemma 1.

Theorem 2. The schedule σ computed by CONTMAXSCHEDULE satisfies

MAXe[σ] ≤ O(ln2 n)optD-MAXe.

The proof of the Theorem uses the following Lemma:

Lemma 2. The schedule σ computed by CONTMAXSCHEDULE satisfies

MAXe[σ] ≤ 2
∑

j≥0
2−j|Cj | , (16)

where C is the set of covers returned by PARTITIONP2 (Algorithm 1).

Proof. Consider the normalization of q in line 10 of Algorithm 2. The sum of qi before
normalization is

∑
i 2
−i|Ci|, and thus the final frequency of tests in Ci is 2−i

∑
i 2

−i|Ci| .
Consider an element e ∈ Ei. It is covered by a test s in Cj for some j ≤ i with
frequency at least q[s] ≡ 2−i/

∑
i 2
−i|Ci|. The schedule σ invokes s at least every

2/q[s] steps (by Lemma 1). Therefore,

Mt[e|σ] ≤ 2pe/q[s] ≤ 2 · 2−i
∑

j≥0
2−j|Cj |/2−i = 2

∑

j≥0
2−j|Cj | .

Since this holds for all elements, we obtain the bound for MAXe[σ] = MeMt[e|σ].
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Proof of Theorem 2. The optimum optD-MAXe is lower bounded by the smallest prior-
ity in the set Ei times the size of the optimal set cover of Ei. We obtain the same lower
bound we used for one-time schedules (11) in the proof of Theorem 1:

optD-MAXe ≥ max
i≥0

2−(i+1)|OPT-COVER{Ei}|

≥ max
i≥0

2−(i+1)|Ci|/ ln(|Ei|) ≥ 1

2 ln(n)
max
i≥0

2−i|Ci| . (17)

By combining the upper bound in Lemma 2 and the lower bound (17), we obtain that to
establish the approximation ratio of O(log2 n), it suffices to show that for some fixed
constant k,

∑

j≥0
2−j|Cj | ≤ k log(n)max

j≥0
2−j|Cj | . (18)

To establish (18), we consider the sequence |Ci|, marking selected positions. We mark
C0 and then mark Ci if |Ci| > 1.5|Cj |, where Cj is the previously marked item. The
number of marked positions is ≤ log1.5 n. This is because for all i, |Ci| ≤ |Ei| ≤ n.
Consider now two consecutive marked items Ch and Ch′ where h′ > h. We have
that |Cj | ≤ 1.5|Ch| for every j ∈ [h, h′). Therefore,

∑h′−1
j=h 2−j|Cj | ≤ 3 · 2−h|Ch|.

Summing over the entire sequence we get that

∑

j≥0
2−j|Cj | ≤ 3 log1.5 nmaxj 2

−j |Cj | ≤ 6 log2 nmaxj 2
−j |Cj | . (19)


�

4 Relating One-Time and Continuous Testing

We study the ratio of optimal continuous to optimal one-time cover times and provide
both upper and lower bounds, for both the SUMe and MAXe objectives. We show that
the continuous deterministic optimum (and therefore also continuous stochastic and
memoryless optima) is within O(lnm) of the one-time deterministic optimum, where
m ≤ n is the number of tests in the optimal one-time schedule.

Our lower bounds use a family of instances where instance Im has m tests and the
ratio of the memoryless (continuous) optimum to the one-time deterministic optimum
for instance Im is Hm, where Hi =

∑i
j=1 1/j is the ith Harmonic number. Using

the relations (3)–(6), this implies a logarithmic lower bound on the ratio also for the
stochastic and deterministic continuous schedules.

4.1 Ratio for SUMe

Theorem 3. On any instance I = (E,S,p),

optM -SUMe(I) ≤ ln(m)opt-Ee[0](I) (20)

optD-SUMe(I) ≤ 2 ln(m)opt-Ee[0](I) (21)
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where m is the number of tests in the optimal one-time schedule. Moreover, there is a
family of instances Ii (i ≥ 1), where instance Ii has i tests, for which

optM -SUMe(Im)

opt-Ee[0](Im)
= ln(m) +O(1) . (22)

Proof. Given a one-time schedule σ = s1, . . . , sm with m tests, we construct a mem-
oryless schedule q so that SUMe[q] is at most lnm times Ee[0|σ]. The memoryless
schedule q invokes test si with frequency qi = 1

iHm
. For any element e, the cover time

is

Mt[e|q] = 1
∑

i|e∈si qi
≤ 1

qmin{i|e∈si}
= Hmmin{i|e ∈ si} .

To establish (20), we can see that SUMe[q], which must be at least optM -SUMe, is

SUMe[q] = EeMt[q] =
∑

e

peMt[e|q] =
∑

e

pe∑
i|e∈si qi

≤ Hm

∑

e

pemin{i|e ∈ si} = HmEe[0|σ] ≤ ln(m)Ee[0|σ] .

To establish (21), we construct a deterministic continuous schedule σ′ by applying
Lemma 1 with respect to frequencies qi for si. The resulting schedule invokes si at
least once every 2/qi ≥ 2−�log2(iHm)� consecutive steps. We obtain that for any e, the
cover time is at most

Mt[e|σ′] ≤ 2/ max
i|e∈si

qi ≤ 2/qmin{i|e∈si} = 2Hmmin{i|e ∈ si} .

Therefore,

SUMe[σ
′] = EeMt[σ

′] =
∑

e

peMt[e|σ′] ≤ 2
∑

e

peHmmin{i|e ∈ si}

= 2HmEe[0|σ] .
We now establish the second claim. For eachm > 1, we construct a singletons instance
Im with m tests/elements with priorities pi = 1

i2
1
Sm

, where Sm =
∑m

j=1 1/i
2 ≤ π2/6.

The optimum Ee[0] for this instance is attained by invoking tests by decreasing pi and
according to (1), has:

opt-Ee[0](Im) =
∑

i

ipi = Hm/Sm . (23)

The optimal memoryless SUMe for Im has square-root frequencies (8) qi = 1/(iHm):

optM -SUMe(p) = (
∑

e

√
pe)

2 = H2
m/Sm . (24)

Combining (23) and (24), we get the relation optM -SUMe(Im)
opt-Ee[0](Im) = Hm. 
�
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4.2 SUMe Continuous Schedulers

The proof of (21) in Theorem 3 includes an efficient construction of a continuous de-
terministic schedule from a one-time schedule. We apply this in two stages to obtain
an O(log n) approximate continuous SUMe scheduler. We first apply the greedy al-
gorithm of [9,5] to obtain a 4-approximate one-time schedule σ′. We then apply our
construction, assigning frequency 1/(iHm) to the ith test of the one-time schedule σ′,
and then applying Lemma 1 to obtain a deterministic continuous schedule σ based on
these frequencies.

The SUMe of the resulting continuous schedule is at most O(log n) times Ee[0] of
the original one-time schedule. Now recall that opt-Ee[0] ≤opt-SUMe. We obtain the
following:

Theorem 4. The construction we outlined produces a deterministic continuous sched-
ule σ so that

SUMe[σ] ≤ O(lnn)opt-SUMe.

4.3 Ratio for MAXe

Theorem 5. On any instance I = (E,S,p),
optD-MAXe(I) ≤ O(ln(m))optD-Me[0](I) (25)

where m is the number of tests in the optimal one-time sequence. Moreover, there is a
family of instances Ii (i ≥ 1), where instance Ii has i tests, for which

optM -MAXe(Im)

optD-Me[0](Im)
= ln(m) +O(1) . (26)

Proof. Consider the output of PARTITIONP2 (Algorithm 1) when used with an optimal
set cover subroutine. From (10), we obtain the lower bound:

optD-Me[0] ≥ max
e
pe|OPT-COVER{h ∈ E | ph ≥ pe}| ≥ max

i
2−(i+1)|Ci| . (27)

Consider a continuous schedule σ computed by CONTMAXSCHEDULE (Algorithm 2)
when PARTITIONP2 (Algorithm 1) is used with an optimal set cover subroutine. From
Lemma 2, we have

MAXe[σ] ≤ 2
∑

j≥0
2−j|Cj |

Using (19) we have

optD-MAXe

opt-Me[0]
≤ 2

∑
j≥0 2

−j|Cj |
maxi 2−(i+1)|Ci| ≤ 6 log2 n .

which establishes (25).
We construct a family of singletons instances, where instance In has n elements/tests

and element i has priority pi = 1/i. The optimal one-time schedule includes tests
by decreasing priority pi and according to (2) has opt-Me[0](In) = maxi ipi = 1.
The optimal memoryless schedule uses qi ∝ pi and from (7) has optM -MAXe(In) =∑

i pi = Hn. 
�
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The bound on the ratio of the continuous to one-time optima also holds for stochastic
schedules:

Lemma 3.
opt-MAXe = O(log n)optM -Me[0]

Proof. The proof follows that of deterministic schedules (25), but instead of using inte-
gral set cover, we work with fractional covers. We defineCi to be the optimal fractional
cover of elements in Ei and define |Ci| to be its size (sum of fractions). We combine
the upper bound opt-Me[0] ≥ 1

2 maxi 2
−i+1|Ci| on the one-time optimum with an up-

per bound of 2
∑
j≥0 2

−j|Cj | on the continuous optimum, noting that Inequality (19)
holds. 
�

4.4 Singletons with Zipf Priorities

We study the ratio for singleton instances with Zipf priorities. The instance Im,α is
specified by the number of elements/tests m and the parameter α, where the priority
of element i is pi ∝ i−α. In order to understand the “typical” ratio, we examine it for
general α. Recall that the ratio is Θ(lnm) for SUMe when α = 2 and for MAXe when
α = 1. We show that for α = 2, the ratio for SUMe is constant, and similarly, for
α = 1, the ratio for MAXe is constant.

Ratio for SUMe when α = 2. We use the expressions (1) for the one-time optimum
opt-Ee[0] and (8) for the memoryless optimum:

optM -SUMe(Im,α)

opt-Ee[0](Im,α)
=

(
∑m

i=1

√
pi)

2

∑m
i=1 ipi

=
(
∑m
i=1 i

−α/2)2
∑m

i=1 i
1−α

≤ (1 +
∫m
1
x−α/2dx)2

1 +
∫m
2
x1−αdx

=
(1 + 2

2−α (m
1−α/2 − 1))2

1 + 1
2−α (m

2−α − 22−α)

=
4m2−α + α2 − 2αm1−α/2

(2 − α)2
(

1− 22−α/(2− α) +m2−α/(2− α)
) .

We take the limit of this upper bound on the ratio asm→∞. We obtain that for α < 2,
the limit is 4/(2− α). For α > 2 the limit is α2/(α− 2)2.

Ratio for MAXe for α = 1. We use the expressions (2) for the one-time optimum and
(7) for the memoryless optimum.

optM -MAXe(Im,α)

opt-Me[0](Im,α)
=

∑m
i=1 pi

maxi∈[m] ipi
=

∑m
i=1 i

−α

maxi∈[m] i1−α

≤ 1 +
∫m
1 x−αdx

maxi∈[m] i1−α
=

m1−α − α
(1− α)maxi∈[m] i1−α
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The one-time optimum is maxi∈[m] i
1−α = 1 (realized for i = 1) when α > 1, and is

maxi∈[m] i
1−α = m1−α (realized for i = m) when α < 1. The memoryless optimum

is (m1−α − 1)/(1− α) for α < 1 and ≈ 1/(α− 1) for α > 1. We obtain that for large
m, the ratio is ≈ α/(α− 1) for α > 1 and ≈ 1/(1− α) for α < 1.

5 Choose-� Testing

Choose-� continuous testing is a natural restriction, where each element has to commit
to at most � of the tests which include it, so that only the selected tests may cover e at run
time. Continuous scheduling as we defined it is choose-m whereas the most restricted
variant is choose-1.

Theorem 6. The choose-1 MAXe or SUMe deterministic optimum is at most O(lnn)
times the unrestricted respective (MAXe or SUMe) deterministic optimum. Moreover,
this is tight for MAXe, as there are instances with choose-1 optimum that is Ω(lnn)
times the unrestricted optimum.

Proof. For the upper bound, we observe that the analysis for the schedule constructed in
the proof of Theorem 2 for MAXe and Theorem 4 for SUMe applies also in the choose-1
testing. With Theorem 2, we can associate each element with the test containing it which
participates in Ci for the smallest i. With Theorem 4, starting from a deterministic one-
time schedule, we associate each element to the first test that covers it in the one-time
schedule. In both cases, we obtain a choose-1 schedule which has cover time (SUMe or
MAXe) at most O(lnn) times the unrestricted optimum.

For the lower bound, we present a family of instances where the ratio is Ω(log n).
Our instances correspond to complete binary trees, with elements corresponding to
nodes and each test to a root to leaf path. Each path is labeled by the bit string of
the position of the leaf. The priority of element at level i is ∝ 2−i. The optimal choose-
m schedule chooses paths in reverse bit order of the leaf labels. This schedule covers
a level i node every 2i steps and optimizes MAXe. If pr is the priority of the root, the
MAXe value is Θ(pr), where d is the depth of the tree. We show that the choose-1
optimum is logarithmically larger than the unrestricted optimum. Consider an assign-
ment of elements to one of the paths traversing them. We now mark paths and elements
top-down as follows. A node and the path traversing it are marked only if the node
is not included on a marked path. We use M for the set of marked nodes. For any
h, at least half the nodes on level ≤ h are marked. This means that the sum of pri-
orities of marked nodes is

∑
e∈M pe ≥ Ω(d)pr. Let qe be the average frequency of

testing the path associated with e. The sum of qe over marked nodes is at most 1. Since
MAXe≥ maxe∈M pe/qe, we obtain that for each e, pe ≤ qeMAXe. Summing over
e ∈ M , we obtain MAXe ≥

∑
e∈M pe/

∑
e∈M qe ≥

∑
e∈M pe ≥ Ω(d)pr . This is

factor Ω(d) larger than the unrestricted MAXe. 
�
Closer look also shows that our bounds on the ratio between optimal continuous and
one-time schedules hold for choose-1 testing, that is, the one-time deterministic opti-
mum is at leastΩ(1/ logn) the continuous choose-1 deterministic optimum (for MAXe
and SUMe).

Using results in [6], we obtain
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Corollary 1. (i) The optimal choose-� memoryless and deterministic schedules satisfy

optD-MAXe ≤ O(log n+ log �)optM -MAXe
optD-SUMe ≤ O(log �)optM -SUMe .

(ii) The optimal MAXe and SUMe over choose-� memoryless schedules is at most twice
the respective stochastic optimum.

Proof. (i) is obtained by restating the upper bounds (5) and (6). (ii) is obtained by ex-
amining the proof in [6] of the relations (3) and (4) between stochastic and memoryless
schedules.

Combining these results, we obtain that the choose-1 deterministic optimal MAXe is at
most O(log n) times the stochastic choose-1 optimum. The ratio for SUMe is O(1).

5.1 Choose-1 Continuous Scheduling

When we are given an assignment S(e) of elements to tests, we can obtain a deter-
ministic schedule which is O(1) optimal with respect to this assignment. We asso-
ciate with test i the priority pi =

∑
e|S(e)=i pe. We then treat tests as singletons to

obtain frequencies qi. For SUMe, we use qi ∝
∑
e|S(e)=i pe and for MAXe, we use

qi ∝
√∑

e|S(e)=i pe. We then obtain a deterministic schedule from these frequencies

using Lemma 1. Such a choose-1 assignment S is implicit in the SUMe scheduler in
Theorem 4, where elements are assigned to the first test in the one-time schedule which
covers them, and in the MAXe scheduler in Theorem2 (This implicit relation is also
used and detailed in the proof of Theorem 6).

6 Combinations of Objectives

To concurrently approximate MAXe and SUMe objectives, we can interleave two sched-
ules optimized for the different objectives, obtaining a schedule which has at most a
factor of 2 loss in the approximation quality. In practice, we can improve on that with
continuous schedules, by recalling that our continuous schedulers for MAXe and SUMe

associate frequencies with tests and construct a schedule from these frequencies. With
two objectives, we take the test-wise maximum frequency (and renormalize). This again
results in losing at most a factor of two in the approximation of each objective.
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Abstract. For two convex bodies, C and D, consider a packing S of n
positive homothets of C contained in D. We estimate the total perimeter
of the bodies in S, denoted per(S), in terms of n. When all homothets of
C touch the boundary of the container D, we show that either per(S) =
O(log n) or per(S) = O(1), depending on how C and D “fit together,”
and these bounds are the best possible apart from the constant factors.
Specifically, we establish an optimal bound per(S) = O(log n) unless D
is a convex polygon and every side of D is parallel to a corresponding
segment on the boundary of C (for short, D is parallel to C). When D
is parallel to C but the homothets of C may lie anywhere in D, we show
that per(S) = O((1 + esc(S)) log n/ log log n), where esc(S) denotes the
total distance of the bodies in S from the boundary of D. Apart from
the constant factor, this bound is also the best possible.

Keywords: Convex body, perimeter, maximum independent set, homo-
thet, traveling salesman, approximation algorithm.

1 Introduction

A finite set S = {C1, . . . , Cn} of convex bodies is a packing in a convex body
(container) D ⊂ R

2 if the bodies C1, . . . , Cn ∈ S are contained in D and they
have pairwise disjoint interiors. The term convex body above refers to a compact
convex set with nonempty interior in R

2. The perimeter of a convex body C ⊂ R
2

is denoted per(C), and the total perimeter of a packing S is denoted per(S) =∑n
i=1 per(Ci). Our interest is estimating per(S) in terms of n.
We start with a few immediate observations. (1) If the convex bodies in the

packing S are arbitrary, then we can assume that the packing S is in fact a tiling
of the container, that is, D =

⋃n
i=1 Ci. It is then easy to show that per(S) ≤

per(D)+2(n−1) diam(D), where diam(D) is the diameter of D. This bound can
be achieved by subdividing D into n compact convex tiles via n−1 near diameter
segments. (2) If all bodies in S are congruent to a convex body C, then per(S) =
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by NSERC (RGPIN 35586) and NSF (CCF-0830734).
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n per(C), and bounding per(S) from above reduces to the classical problem of
determining the maximum number of interior-disjoint congruent copies of C that
fit in D [2].

In this paper, we consider packings S that consist of positive homothets of a
convex body C. We establish an easy general bound in this case.

Proposition 1. For every pair of convex bodies, C and D, and every packing S
of n positive homothets of C in D, we have per(S) ≤ ρ(C,D)

√
n, where ρ(C,D)

depends on C and D. Apart from this multiplicative constant, this bound is the
best possible.

Fig. 1. A packing of disks in a rectan-
gle container, where all disks touch the
boundary of the container

Motivated by applications to the travel-
ing salesman problem with neighborhoods
(TSPN), we would like to bound per(S)
in terms of n if all homothets in S touch
the boundary of D (see Fig. 1). Specifi-
cally, for a pair of convex bodies, C andD,
let fC,D(n) denote the maximum perime-
ter per(S) of a packing of n positive ho-
mothet of C in the container D, where
each element of S touches the bound-
ary of D. We would like to estimate the
growth rate of fC,D(n) as n goes to infin-
ity. We prove a logarithmic upper bound
fC,D(n) = O(log n) for every pair of con-
vex bodies, C and D.

Proposition 2. For every pair of convex bodies, C and D, and every packing S
of n positive homothets of C in D, where each element of S touches the boundary
of D, we have per(S) ≤ ρ(C,D) log n, where ρ(C,D) depends on C and D.

The upper bound fC,D(n) = O(log n) is asymptotically tight for some pairs C
and D, and not so tight for others. For example, it is not hard to attain an
Ω(log n) lower bound when C is an axis-aligned square, and D is a triangle
(Fig. 2, left). However, fC,D(n) = Θ(1) when both C and D are axis-aligned
squares. We start by establishing a logarithmic lower bound in the simple setting
where C is a circular disk and D is a unit square.

Theorem 1. The total perimeter of n pairwise disjoint disks lying in the unit
square U = [0, 1]2 and touching the boundary of U is O(log n). Apart from the
constant factor, this bound is the best possible.

We determine fC,D(n) up to constant factors for all pairs of convex bodies of
bounded description complexity. (A planar set has bounded description complex-
ity if its boundary consists of a finite number of algebraic curves of bounded
degrees.) We show that either fC,D = Θ(log n) or fC,D(n) = Θ(1) depending on
how C and D “fit together”. To distinguish these cases we need the following
definitions.
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esc(C)

C

D

Fig. 2. Left: a square packing in a triangle where every square touches the boundary
of the triangle. Middle: a packing of homothetic hexagons in a square where every
hexagon touches the boundary of the square. Right: a convex body C in the interior of
a trapezoid D at distance esc(C) from the boundary of D. The trapezoid D is parallel
to C: every side of D is parallel and “corresponds” to a side of C.

Definitions. For a direction vector d ∈ S
1 and a convex body C, the supporting

line �d(C) is a directed line of direction d such that �d(C) is tangent to C,
and the closed halfplane on the left of �d(C) contains C. If �d(C) ∩ C is a
nondegenerate line segment, we refer to it as a side of C.

We say that a convex polygon (container) D is parallel to a convex body C
when for every direction d ∈ S

1 if �d(D) ∩ D is a side of D, then �d(C) ∩ C is
also a side of C. Figure 2(right) depicts a trapezoid D parallel to a convex body
C. For example, every positive homothet of a convex polygon P is parallel to P ;
and all axis-aligned rectangles are parallel to each other.

Classification. We generalize the lower bound construction in Theorem 1 to
arbitrary convex bodies, C and D, of bounded description complexity, where D
is not parallel to C.

Theorem 2. Let C and D be two convex bodies of bounded description com-
plexity. For every packing S of n positive homothets of C in D, where each
element of S touches the boundary of D, we have per(S) ≤ ρ(C,D) log n, where
ρ(C,D) depends on C and D. Apart from the factor ρ(C,D), this bound is the
best possible unless D is a convex polygon parallel to C.

If D is a convex polygon parallel to C, and every homothet of C in a packing S
touches the boundary of D, then it is not difficult to see that per(S) is bounded.

Proposition 3. Let C and D be convex bodies such that D is a convex polygon
parallel to C. Then every packing S of n positive homothets of C in D, where
each element of S touches the boundary of D, we have per(S) ≤ ρ(C,D), where
ρ(C,D) depends on C and D.

In the special case that D is a convex polygon parallel to C, it is also of interest
to establish asymptotically tight upper bounds for per(S) without the assump-
tion that the bodies in S touch the boundary of the container D. The desired
dependence is in terms of n and the total distance of the bodies in S from the
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boundary of D. Specifically, for two convex bodies, C ⊂ D ⊂ R
2, let the escape

distance esc(C) be the distance between C and the boundary of D (Fig. 2, right);
and for a packing S = {C1, . . . , Cn} in a container D, let esc(S) =

∑n
i=1 esc(Ci).

We prove the following bound for pairs of convex bodies C and D, where D is a
convex polygon parallel to C.

Theorem 3. Let C and D be two convex bodies such that D is a convex polygon
parallel to C. For every packing S of n positive homothets of C in D, we have

per(S) ≤ ρ(C,D) (per(D) + esc(S))
logn

log logn
,

where ρ(C,D) depends on C and D. Apart from the constant factor ρ(C,D),
this bound is the best possible.

Motivation. In the Euclidean Traveling Salesman Problem (ETSP), given a set
S of n points in R

d, we wish to find a closed polygonal chain (tour) of minimum
Euclidean length whose vertex set is S. The Euclidean TSP is known to be NP-
hard, but it admits a PTAS in R

d, where d ∈ N is constant [1]. In the TSP with
Neighborhoods (TSPN), given a set of n sets (neighborhoods) in R

d, we wish to
find a closed polygonal chain of minimum Euclidean length that has a vertex in
each neighborhood. The neighborhoods are typically simple geometric objects
(of bounded description complexity) such as disks, rectangles, line segments, or
lines. Since ETSP is NP-hard, TSPN is also NP-hard. TSPN admits a PTAS for
certain types of neighborhoods [10], but is hard to approximate for others [4].

For n connected (possibly overlapping) neighborhoods in the plane, TSPN can
be approximated with ratio O(log n) by an algorithm of Mata and Mitchell [9].
See also the survey by Bern and Eppstein [3] for a short outline of this algorithm.
At its core, the O(log n)-approximation relies on the following early result by
Levcopoulos and Lingas [8]: every (simple) rectilinear polygon P with n ver-
tices, r of which are reflex, can be partitioned into rectangles of total perimeter
O(per(P ) log r) in O(n logn) time.

One approach to approximate TSPN (in particular, it achieves a constant-
ratio approximation for unit disks) is the following [5,7]. Given a set S of n
neighborhoods, compute a maximal subset I ⊆ S of pairwise disjoint neigh-
borhoods (i.e., a packing), compute a good tour for I, and then augment it by
traversing the boundary of each set in I. Since each neighborhood in S \ I in-
tersects some neighborhood in I, the augmented tour visits all members of S.
This approach is particularly appealing since good approximation algorithms are
often available for pairwise disjoint neighborhoods [10]. The bottleneck of this
approach is the length increase incurred by extending a tour of I by the total
perimeter of the neighborhoods in I. An upper bound per(I) = o(OPT(I) log n)
would immediately imply an improved o(log n)-factor approximation ratio for
TSPN.

Theorem 2 confirms that this approach cannot beat the O(log n) approxima-
tion ratio for most types of neighborhoods (e.g., circular disks). In the current
formulation, Proposition 2 yields the upper bound per(I) = O(log n) assuming a
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convex container, so in order to use this bound, a tour of I needs to be augmented
into a convex partition; this may increase the length by a Θ(log n/ log logn)-
factor in the worst case [6,8]. For convex polygonal neighborhoods, the bound
per(I) = O(1) in Proposition 3 is applicable after a tour for I has been aug-
mented into a convex partition with parallel edges (e.g., this is possible for
axis-aligned rectangle neighborhoods, and an axis-aligned approximation of the
optimal tour for I). The convex partition of a polygon with O(1) distinct ori-
entations, however, may increase the length by a Θ(log n)-factor in the worst
case [8]. Overall our results confirm that we cannot beat the current O(log n)
ratio for TSPN for any type of homothetic neighborhoods if we start with an
arbitrary independent set I and an arbitrary near-optimal tour for I.

An improved approximation for TSPN may require additional properties of I
or the initial tour for I. Alternatively, it may not be necessary to traverse the
entire perimeter of all elements in I to obtain a tour for S. The escape distance
esc(C) is a tool for measuring the necessary detour to visit a neighborhood
C ∈ S \ I. Theorem 3 indicates that the total perimeter per(I ′) of a second
independent set I ′ ⊂ S \ I may be significantly larger than per(I).

2 Preliminaries: A Few Easy Pieces

Proof of Proposition 1. Let μi > 0 denote the homothety factor of Ci, i.e., Ci =
μiC, for i = 1, . . . , n. Since S is a packing we have

∑n
i=1 μ

2
i area(C) ≤ area(D).

By the Cauchy-Schwarz inequality we have (
∑n

i=1 μi)
2 ≤ n

∑n
i=1 μ

2
i . It follows

that

per(S) =

n∑

i=1

per(Ci) = per(C)

n∑

i=1

μi

≤ per(C)
√
n

√
√
√
√

(
n∑

i=1

μ2
i

)

≤ per(C)

√
area(D)

area(C)

√
n.

Set now ρ(C,D) := per(C)
√

area(D)/area(C), and the proof of the upper bound
is complete.

For the lower bound, consider two convex bodies, C and D. Let U be a
maximal axis-aligned square inscribed in D, and let μC be the largest positive
homothet of C that fits into U . Note that μ = μ(C,D) is a constant that
depends on C and D only. Subdivide U into �√n	2 congruent copies of the
square 1

�√n�U . Let S be the packing of n copies of μ
�√n�C (i.e., n translates),

with at most one in each square 1
�√n�U . The total perimeter of the packing is

per(S) = n · μ
�√n�per(C) = Θ(

√
n), as claimed. �

Proof of Proposition 2. Let S = {C1, . . . , Cn} be a packing of n homothets
of C in D where each element of S touches the boundary of D. Observe that
per(Ci) ≤ per(D) for all i = 1, . . . , n. Partition the elements of S into subsets
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as follows. For k = 1, . . . , �log2 n	, let Sk denote the set of homothets Ci such
that per(D)/2k < per(Ci) ≤ per(D)/2k−1; and let S0 be the set of homothets
Ci of perimeter less than per(D)/2�log2 n�. Then the sum of perimeters of the
elements in S0 is per(S0) ≤ n per(D)/2�log2 n� ≤ per(D) since S0 ⊆ S contains
at most n elements altogether.

For k = 1, . . . , �log2 n	, the diameter of each Ci ∈ Sk is bounded above by

diam(Ci) < per(Ci)/2 ≤ per(D)/2k. (1)

Consequently, every point of a body Ci ∈ Sk lies at distance at most per(D)/2k

from the boundary of D, denoted ∂D. Let Rk be the set of points in D at
distance at most per(D)/2k from ∂D. Then

area(Rk) ≤ per(D)
per(D)

2k
=

(per(D))2

2k
. (2)

Since S consists of homothets, the area of any element Ci ∈ Sk is bounded from
below by

area(Ci) = area(C)

(
per(Ci)

per(C)

)2

≥ area(C)

(
per(D)

2k per(C)

)2

. (3)

By a volume argument, (2) and (3) yield

|Sk| ≤ area(Rk)

minCi∈Sk
area(Ci)

≤ (per(D))2/2k

area(C)(per(D))2/(2k per(C))2
=

(per(C))2

area(C)
· 2k.

Since for Ci ∈ Sk, k = 1, . . . , �log2 n	, we have per(Ci) ≤ per(D)/2k−1, it follows
that

per(Sk) ≤ |Sk| · per(D)

2k−1
≤ 2

(per(C))2

area(C)
per(D).

Hence the sum of perimeters of all elements in S is bounded by

per(S) =

�log2 n�∑

k=0

per(Sk) ≤
(

1 + 2
(per(C))2

area(C)
�log2 n	

)

per(D),

as required. �

Proof of Proposition 3. Let ρ′(C) denote the ratio between per(C) and the length
of a shortest side of C. Recall that each Ci ∈ S touches the boundary of polygon
D. Since D is parallel to C, the side of D that supports Ci must contain a side
of Ci. Let ai denote the length of this side.

per(S) =

n∑

i=1

per(Ci) =

n∑

i=1

ai
per(Ci)

ai
≤ ρ′(C)

n∑

i=1

ai ≤ ρ′(C) per(D).

Set now ρ(C,D) := ρ′(C) per(D), and the proof is complete. �
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3 Disks Touching the Boundary of a Square: Proof of
Theorem 1

Let S be a set of n interior-disjoint disks in the unit square U = [0, 1]2 that touch
the boundary of U . From Proposition 2 we deduce the upper bound per(S) =
O(log n), as required.

To prove the lower bound, it remains to construct a packing of O(n) disks in
the unit square [− 1

2 ,
1
2 ]× [0, 1] such that every disk touches the x-axis, and the

sum of their diameters is Ω(logn). To each disk we associate its vertical projec-
tion interval (on the x-axis). The algorithm greedily chooses disks of monotoni-
cally decreasing radii such that (1) every diameter is 1/16k for some k ∈ N; and
(2) if the projection intervals of two disks overlap, then one interval contains the
other.

For k = 0, 1, . . . , �log16 n�, denote by Sk the set of disks of diameter 1/16k,
constructed by our algorithm. We recursively allocate a set of intervals Xk ⊂
[− 1

2 ,
1
2 ] to Sk, and then choose disks in Sk such that their projection intervals lie

in Xk. Initially, X0 = [− 1
2 ,

1
2 ], and S0 contains the disk of diameter 1 inscribed

in [− 1
2 ,

1
2 ]× [0, 1]. The length of each maximal interval I ⊆ Xk will be a multiple

of 1/16k, so I can be covered by projection intervals of interior-disjoint disks of
diameter 1/16k touching the x-axis. Every interval I ⊆ Xk will have the property
that any disk of diameter 1/16k whose projection interval is in I is disjoint from
any (larger) disk in Sj , j < k.

I1(Q)

Q

I2(Q)I3(Q)I1(Q) I2(Q) I3(Q) x

y

−1
2

1
2

1
2

Fig. 3. Disk Q and the exponentially decreasing pairs of intervals Ik(Q), k = 1, 2, . . ..

Consider the disk Q of diameter 1, centered at (0, 12 ), and tangent to the
x-axis (see Fig. 3). It can be easily verified that:

(i) the locus of centers of disks tangent to both Q and the x-axis is the parabola
y = 1

2x
2; and

(ii) any disk of diameter 1/16 and tangent to the x-axis whose projection interval
is in I1(Q) = [− 1

2 ,− 1
4 ] ∪ [ 14 ,

1
2 ] is disjoint from Q.
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Indeed, the center of any such disk is (x1,
1
16 ), for x1 ≤ − 5

16 or x1 ≥ 5
16 , and

hence lies below the parabola y = 1
2x

2. Similarly, for all k ∈ N, any disk of
diameter 1/16k and tangent to the x-axis whose projection interval is in Ik(Q) =
[− 1

2k
,− 1

2k+1 ] ∪ [ 1
2k+1 ,

1
2k
] is disjoint from Q. For an arbitrary disk D tangent to

the x-axis, and an integer k ≥ 1, denote by Ik(D) ⊆ [− 1
2 ,

1
2 ] the pair of intervals

corresponding to Ik(Q); for k = 0, Ik(D) consists of only one interval.
We can now recursively allocate intervals in Xk and choose disks in Sk (k =

0, 1, . . . , �log16 n�) as follows. Recall that X0 = [− 1
2 ,

1
2 ], and S0 contains a single

disk of unit diameter inscribed in the unit square [− 1
2 ,

1
2 ]× [0, 1]. Assume that we

have already defined the intervals in Xk−1, and selected disks in Sk−1. Let Xk

be the union of the interval pairs Ik−j(D) for all D ∈ Sj and j = 0, 1, . . . , k− 1.
Place the maximum number of disks of diameter 1/16k into Sk such that their
projection intervals are contained in Xk. For a disk D ∈ Sj (j = 0, 1, . . . , k − 1)
of diameter 1/16j, the two intervals in Xk−j each have length 1

2 · 1
2k−j · 1

16j =
8k−j

2 · 1
16k , so they can each accommodate the projection intervals of 8k−j

2 disks
in Sk.

We prove by induction on k that the length of Xk is 1
2 , and so the sum

of the diameters of the disks in Sk is 1
2 , k = 1, 2, . . . , �log16 n�. The interval

X0 = [− 1
2 ,

1
2 ] has length 1. The pair of intervals X1 = [− 1

2 ,− 1
4 ] ∪ [ 14 ,

1
2 ] has

length 1
2 . For k = 2, . . . , �log16 n�, the set Xk consists of two types of (disjoint)

intervals: (a) The pair of intervals I1(D) for every D ∈ Sk−1 covers half of the
projection interval of D. Over all D ∈ Sk−1, they jointly cover half the length
of Xk−1. (b) Each pair of intervals Ik−j(D) for D ∈ Sk−j , j = 0, . . . , k − 2,
has half the length of Ik−j−1(D). So the sum of the lengths of these intervals
is half the length of Xk−1; although they are disjoint from Xk−1. Altogether,
the sum of lengths of all intervals in Xk is the same as the length of Xk−1. By
induction, the length of Xk−1 is 1

2 , hence the length of Xk is also 1
2 , as claimed.

This immediately implies that the sum of diameters of the disks in
⋃�log16 n	
k=0 Sk

is 1 + 1
2�log16 n�. Finally, one can verify that the total number of disks used is

O(n). Write K = �log16 n�. Indeed, |S0| = 1, and |Sk| = |Xk|/16−k = 16k/2,
for k = 1, . . . ,K, where |Xk| denotes the total length of the intervals in Xk.

Consequently, |S0|+
∑K

k=1 |Sk| = O(16k) = O(n), as required. �

4 Homothets Touching the Boundary: Proof of
Theorem 2

The upper bound per(S) = O(log n) follows from Proposition 2. It remains to
construct a packing S of perimeter per(S) = Ω(log n) for given C and D. Let C
and D be two convex bodies with bounded description complexity. We wish to
argue analogously to the case of disks in a square. Therefore, we choose an arc
γ ⊂ ∂D that is smooth and sufficiently “flat,” but contains no side parallel to a
corresponding side of C. Then we build a hierarchy of homothets of C touching
the arc γ, so that the depth of the hierarchy is O(log n), and the homothety
factors decrease by a constant between two consecutive levels.
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γ

Qp

αp

βp

p

�p

I(Q)

I1(Q)

q

Fig. 4. If a homothet Cp is tangent to γ ⊂ ∂D at point p, then there are polynomials
αp and βp that separate γ from Cp. We can place a constant number of congruent
homothets of C between αp and βp whose vertical projections cover I1(Q). These
homothets can be translated vertically down to touch γ.

We choose an arc γ ⊂ ∂D as follows. IfD has a side with some direction d ∈ S
1

such that C has no parallel side of the same direction d, then let γ be this side
of D. Otherwise, ∂D contains an algebraic curve γ1 of degree 2 or higher. Let
q ∈ γ1 be an interior point of this curve such that γ1 is twice differentiable at
q. Assume, after a rigid transformation of D if necessary, that q = (0, 0) is the
origin and the supporting line of D at q is the x-axis. By the inverse function
theorem, there is an arc γ2 ⊆ γ1, containing q, such that γ2 is the graph of a
twice differentiable function of x. Finally, let γ ⊂ γ2 be an arc such that the part
of ∂C that has the same tangent lines as γ2 contains no segments (sides).

For every point p ∈ γ, let p = (xp, yp), and let sp be the slope of the tangent
line of D at p. Then the tangent line of D at p ∈ γ is �p(x) = sp(x − xp). For
any homothet Q of C, let Qp denote a translate of Q tangent to �p at point p
(Fig. 4). If both C and D have bounded description complexity, then there are
constants ρ0 > 0, κ,∈ N and A < B, such that for every point p ∈ γ and every
homothety factor ρ, 0 < ρ < ρ0, the polynomials

αp(x) = A|x− xp|κ + sp(x− xp) and βp(x) = B|x− xp|κ + sp(x− xp)

separate γ from the convex body Qp = (ρC)p.
Similarly to the proof of Theorem 1, the construction is guided by nested pro-

jection intervals. Let Q = (ρC)p be a homothet of C that lies in D and is tangent
to γ at point p ∈ γ. Denote by I(Q) the vertical projection of Q to the x-axis. For
k = 1, . . ., we recursively define disjoint intervals or interval pairs Ik(Q) ⊂ I(Q)
of length |Ik(Q)| = |I(Q)|/2k. During the recursion, we maintain the invariant
that the set Jk(Q) = I(Q) \⋃j<k Ij(Q) is an interval of length |I(Q)|/2k−1 that
contains xp. Assume that I1(Q), . . . , Ik−1(Q) have been defined, and we need to
choose Ik(Q) ⊂ Jk(Q). If xp lies in the central one quarter of Jk(Q), then let Ik(Q)
be a pair of intervals that consists of the left and right quarters of Jk(Q). If xp lies
to the left (right) of the central one quarter of Jk(Q), then let Ik(Q) be the right
(left) half of Jk(Q). It is now an easy matter to check (by induction on k) that
|x− xp| ≥ |I(Q)|/8k for all x ∈ Ik(Q).
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Consequently,

βp(x)− αp(x) ≥ (B −A) ·
( |I(Q)|

8k

)κ
(4)

for all x ∈ Ik(Q). There is a constant μ > 0 such that a homothet μkQ with
arbitrary projection interval in Ik(Q) fits between the curves αp and βp. Refer
to Fig. 4. Therefore we can populate the region between curves αp and βp and
above Ik(Q) with homothets ρQ, of homotety factors μk/2 < ρ ≤ μk, such that
their projection intervals are pairwise disjoint and cover Ik(Q). By translating
these homothets vertically until they touch γ, they remain disjoint from Q and
preserve their projection intervals. We can now repeat the construction of the
previous section and obtain �log(2/μ) n	 layers of homothets touching γ, such
that the total length of the projections of the homothets in each layer is Θ(1).
Consequently, the total perimeter of the homothets in each layer is Θ(1), and
the overall perimeter of the packing is Θ(log n), as required. �

5 Homothets in a Parallel Container: Proof of Theorem 3

Upper bound. Let S = {C1, . . . , Cn} be a packing of n homothets of a convex
body C in a container D such that D is a convex polygon parallel to C. For each
element Ci ∈ S, esc(Ci) is the distance between a side of D and a corresponding
side of Ci. For each side a of D, let Sa ⊆ S denote the set of Ci ∈ S for which a
is the closest side of D (ties are broken arbitrarily). Since D has finitely many
sides, it is enough to show that for each side a of D, we have

per(Sa) ≤ ρa(C,D) (per(D) + esc(S))
log |Sa|

log log |Sa| ,

where ρa(C,D) depends on a, C and D only.
Suppose that Sa = {C1, . . . , Cn} is a packing of n homothets of C such that

esc(Ci) equals the distance between Ci and side a of D. Assume for convenience
that a is horizontal. Let c ⊂ ∂C be the side of C corresponding to the side
a of D. Let ρ1 = per(C)/|c|, and then we can write per(C) = ρ1|c|. Refer to
Fig. 5(left).

Denote by b ⊂ c the line segment of length |b| = |c|/2 with the same midpoint
as c. Since C is a convex body, the two vertical lines though the two endpoints
of b intersect C in two line segments denoted h1 and h2, respectively. Let ρ2 =
min(|h1|, |h2|)/|b|, and then min(|h1|, |h2|) = ρ2|b|. By convexity, every vertical
line that intersects segment b intersects C in a vertical segment of length at
least ρ2|b|. Note that ρ1 and ρ2 are constants depending on C and D. For each
homothet Ci ∈ Sa, let bi ⊂ ∂Ci be the homothetic copy of segment b ⊂ ∂C.

Put λ = 2�logn/ log log n	. Partition Sa into two subsets Sa = Sfar ∪ Sclose

as follows. For each Ci ∈ Sa, let Ci ∈ Sclose if esc(Ci) < ρ2|bi|/λ, and Ci ∈ Sfar

otherwise. For each homothet Ci ∈ Sclose, let proji ⊆ a denote the vertical
projection of segment bi onto the horizontal side a (refer to Fig. 5, right). The
perimeter of each Ci ∈ Sa is per(Ci) = ρ1|ci| = 2ρ1|bi| = 2ρ1|proji|. We have
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C

h1

h2

c b

Ci

bi

proji

Cj

projj

D

a

Ci

bi

bj

Fig. 5. Left: A convex body C with a horizontal side c. The segment b ⊂ c has length
|b| = |c|/2, and the vertical segments h1 and h2 are incident to the endpoints of b.
Right: Two homothets, Ci and Cj , in a convex container D. The vertical projections
of bi and bj onto the horizontal side a are proji and projj .

per(Sfar) =
∑

Ci∈Sfar

per(Ci) =
∑

Ci∈Sfar

2ρ1|bi| ≤
∑

Ci∈Sfar

2ρ1
esc(Ci)λ

ρ2

≤ 2ρ1esc(S)

ρ2
λ. (5)

It remains the estimate per(Sclose) as an expression of λ.

∑

Ci∈Sclose

per(Ci) = 2ρ1
∑

Ci∈Sclose

|proji|. (6)

Define the depth function for every point of the horizontal side a by

d : a→ N, d(x) = |{Ci ∈ Sclose : x ∈ proji}|.
That is, d(x) is the number of homothets such that the vertical projection of
segment bi contains point x. For every positive integer k ∈ N, let

Ik = {x ∈ a : d(x) ≥ k},
that is, Ik is the set of points of depth at least k. Since Sclose is finite, the
set Ik ⊆ a is measurable. Denote by |Ik| the measure (total length) of Ik. By
definition, we have |a| ≥ |I1| ≥ |I2| ≥ . . . . A standard double counting for the
integral

∫
x∈a d(x) dx yields

∑

Ci∈Sclose

|proji| =
∞∑

k=1

|Ik|. (7)

If d(x) = k for some point x ∈ a, then k segments bi, lie above x. Each Ci ∈ Sclose

is at distance esc(Ci) < ρ2|bi|/λ from a. Suppose that proji and projj intersect
for Ci, Cj ∈ Sclose (Fig. 5, right). Then one of them has to be closer to a than
the other: we may assume w.l.o.g. esc(Cj) < esc(Ci). Now a vertical segment
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between bi ⊂ Ci and proji ⊂ a intersects bj. The length of this intersection
segment satisfies ρ2|bj| ≤ esc(Ci) < ρ2|bi|/λ. Consequently, |bj | < |bi|/λ (or,
equivalently, |projj| < |proji|/λ) holds for any consecutive homothets above
point x ∈ a. In particular, for the k-th smallest projection containing x ∈ a, we
have |projk| ≤ |a|/λk−1 = |a|λ1−k.

We claim that
|Ik| ≤ |a|λλ−k for k ≥ λ+ 1. (8)

Suppose, to the contrary, that |Ik| > |a|λλ−k for some k ≥ λ+1. Then there are
homothets Ci ∈ Sclose of side lengths at most |a|/λk−1, that jointly project into
Ik. Assuming that |Ik| > |a|λλ−k, it follows that the number of these homothets
is at least

|a|λλ−k
|a|λ1−k = λλ−1 =

(

2

⌈
logn

log logn

⌉)2� log n
log log n �−1

> n,

contradicting the fact that Sclose ⊆ S has at most n elements. Combining (6),
(7), and (8), we conclude that

per(Sclose) = 2ρ1

∞∑

k=1

|Ik| ≤ 2ρ1

(

λ|I1|+
∞∑

k=λ+1

|Ik|
)

≤ 2ρ1

⎛

⎝λ+

∞∑

j=1

1

λj

⎞

⎠ |a|

≤ 2ρ1(λ+ 1) per(D). (9)

Putting (5) and (9) together yields

per(Sa) = per(Sclose) + per(Sfar) ≤ 2ρ1

(

(λ+ 1) per(D) +
esc(S)

ρ2
λ

)

≤ ρ(C,D) (per(D) + esc(S)) λ = ρ(C,D) (per(D) + esc(S))
logn

log logn
,

for a suitable ρ(C,D) depending on C and D, as required; here we set ρ(C,D) =
2ρ1max(2, 1/ρ2).

Lower bound for squares. We first confirm the given lower bound for squares,
i.e., we construct a packing S of O(n) axis-aligned squares in the unit square
U = [0, 1]2 with total perimeter Ω((per(U) + esc(S)) log n/ log logn).

Let n ≥ 4, and put λ = �logn/ log logn�/2. We arrange each square Ci ∈ S
such that per(Ci) = λ esc(Ci). We construct S as the union of λ subsets S =
⋃λ
j=1 Sj , where Sj is a set of congruent squares, at the same distance from the

bottom side of U .
Let S1 be a singleton set consisting of one square of side length 1/4 (and

perimeter 1) at distance 1/λ from the bottom side of U . Let S2 be a set of 2λ
squares of side length 1/(4 ·2λ) (and perimeter 1/(2λ)), each at distance 1/(2λ2)
from the bottom side of U . Note that these squares lie strictly below the first
square in S1, since 1/(8λ) + 1/(2λ2) < 1/λ. The total length of the vertical
projections of the squares in S2 is 2λ · 1/(8λ) = 1/4.
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Similarly, for j = 3 . . . , λ, let Sj be a set of (2λ)j−1 squares of side length
1

4·(2λ)j−1 (and perimeter 1/(2λ)j−1), each at distance 1/(2j−1λj) from the bot-

tom side of U . These squares lie strictly below any square in Sj−1; and the total
length of their vertical projections onto the x-axis is (2λ)j−1 · 1

4·(2λ)j−1 = 1/4.

The number of squares in S =
⋃λ
j=1 Sj is

λ∑

j=1

(2λ)j−1 = Θ
(
(2λ)λ

)
= O(n).

The total distance from the squares to the boundary of U is

esc(S) =
λ∑

j=1

(2λ)j−1
1

2j−1λj
= λ

1

λ
= 1.

The total perimeter of all squares in S is

4 ·
λ∑

j=1

1

4
= λ = Ω

(
logn

log logn

)

= Ω

(

(per(U) + esc(S))
logn

log logn

)

,

as required.

General lower bound. We now use establish the lower bound in the general
setting. Given a convex body C and a convex polygon D parallel to C, we
construct a packing S of O(n) positive homothets of C in D with total perimeter
Ω((per(D) + esc(S)) log n/ log logn).

Let a be an arbitrary side of D. Assume w.l.o.g. that a is horizontal. Let UC
be the minimum axis-aligned square containing C. Clearly, we have 1

2per(UC) ≤
per(C) ≤ per(UC). We first construct a packing SU of O(n) axis-aligned squares
in D such that for each square Ui ∈ SU , esc(Ui) equals the distance from the
horizontal side a. We then obtain the packing S by inscribing a homothet Ci of C
in each square Ui ∈ SU such that Ci touches the bottom side of Ui. Consequently,
we have per(S) ≥ per(SU )/2 and esc(S) = esc(SU ), since esc(Ci) = esc(Ui) for
each square Ui ∈ SU .

It remains to construct the square packing SU . Let U(a) be a maximal axis-
aligned square contained in D such that its bottom side is contained in a. SU is a
packing of squares in U(a) that is homothetic with the packing of squares in the
unit square U described previously. Put ρ1 = per(U(a))/per(U) = per(U(a))/4.

We have per(S) ≥ 1
4 ρ1 Ω

(
(per(U) + esc(S)) logn

log log n

)
, or

per(S) ≥ ρ(C,D)

(

(per(D) + esc(S))
logn

log logn

)

,

where ρ(C,D) is a factor depending on C and D, as required. �
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Abstract. Given an interval I = {1, 2, ..., n} of points, a collection I
of subintervals of I and a fraction 0 ≤ r ≤ 1, we consider the following
variation of partial set cover. We wish to find an optimal subset of I
covering at least an r-fraction of I . While this problem is easily solved
exactly in quadratic time using classical methods, we focus on developing
scalable algorithms which return near-optimal solutions and run in near-
linear time. We give a (1 + ε)-approximation algorithm running in O( 1

ε
·

min{n+|I|, |I| log |I|}}) time. We also prove a tight approximation ratio
of 2 for a simple greedy algorithm for this problem, improving on the
bound of 9 given in [10].

1 Introduction

The explosive growth in size of modern datasets has given rise to a wealth of
information; efforts to analyze such large volumes of data have presented some
new computational challenges. Some datasets arising naturally from complex
systems such as communication, biological, or social networks, are so big that
classical algorithms offering quadratic running times can be too slow to be exe-
cuted in a reasonable amount of time. It is therefore highly desirable to design
algorithms which either return optimal solutions or solutions with provably small
approximation ratios that scale well to large input, for example with very fast
running times. In this paper we obtain a result within this paradigm. We present
a near-linear time approximation algorithm for a variant of the set cover problem
which trades off some quality of solution for greatly improved efficiency.

Given a finite universe with n elements and a collection of t subsets of these
elements, the set cover problem asks for a smallest collection of subsets whose
union covers the entire universe. Set cover is a classical NP-complete problem
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(see [15]) which arises frequently in optimization and analysis of data. Its di-
verse applications include facility location [7], machine learning [16], resource
allocation [20], and data mining [9].

Johnson [14] and Lovász [19] showed that the straightforwardgreedy algorithm,
which iteratively chooses a subset covering the maximum number of uncovered
elements, returns a cover of size no more than Hn ≤ lnn+ 1 times the size of an
optimal cover.1 Chvátal [4] strengthened this, showing that when in addition each
set is given a cost and a cover of minimum cost is desired, the greedy algorithm
returns a cover of total cost nomore thanHn ≤ lnn+1 times the cost of an optimal
cover. A more precise bound was given by Slav́ık [22] who showed that the greedy
algorithm’s approximation ratio is lnn − ln lnn + Θ(1). This is essentially best
possible, since it is NP-hard to approximate set cover to within a multiplicative
factor of c logn, for some constant c (see [21], and later [1]).

In this work we investigate a natural generalization of set cover. In partial set
cover we are given a rational number r ∈ [0, 1] and wish to find a smallest col-
lection of subsets covering rn elements in the universe. Since r = 1 is set cover,
partial set cover is also NP-complete. Together with its variations, it has been
well-studied in the literature (see for example [16,2,8,18,17]). The greedy approx-
imation algorithm naturally extends to this setting and Slav́ık’s analysis shows
it has the same approximation ratio. Partial set covering has many applications,
for example, data quality analysis [11,10], protein mixture identification [13],
and recommendation systems [3].

In practice however, the greedy algorithm often performs very well, often
choosing only a small fraction more than an optimal solution would. Gomes
et al. [12] give experimental evidence showing the greedy algorithm on average
chooses at most 7 percent more sets in the cardinality case and at most 13 percent
more total cost in the weighted case than an optimal solution, both with very
small variation. Unfortunately, the promise that ‘usually’ the algorithm returns
a solution which is fixed fraction bigger than an optimal solution may be not be
good enough for specific sensitive applications.

The approximation guarantee of the algorithm may not be the only issue.
Algorithms with quadratic (or worse) performance guarantees can be computa-
tionally infeasible for use on extremely large datasets. Even though the greedy
algorithm algorithm takes at most O(tn) time, it may be useless on such large
datasets. Further, such datasets may be too large to fit into memory and so the
standard random access model of computation may not accurately represent the
running time of the algorithm. Recently, Cormode, Karloff, and Wirth [6] ob-
served that the greedy set cover algorithmmust make many random disk accesses
leading to inefficiency when the dataset is large and partially disk resident. They
describe a new (1+ c lnn)-approximation algorithm for set cover, for some c > 1
and give experimental evidence that on large datasets it greatly outperforms the
standard greedy algorithm in practice.

Our focus in this article is on instances of partial set cover in which the universe
is an interval (that is, the elements are ordered) and the subsets are subintervals

1 Here Hn denotes the nth harmonic number.
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of this interval. Formally, an instance of the problem consists of a positive integer
n, a rational number 0 ≤ r ≤ 1, an interval [1, n] ⊂ N, and a set of subintervals I,
each of the form [a, b] where a and b are integers between 1 and n. We refer to the
integers between 1 and n as the points, and say that a subinterval [a, b] ∈ I covers
the point x in [1, n] if a ≤ x ≤ b. The partial interval cover problem, or PICP, asks
to either find the minimum number of subintervals which cover at least rn of the
points of [1, n], or determine that no such set of subinterval exists.

Golab et al. [10] considered the PICP in the context of data quality assess-
ment and knowledge discovery for ordered datasets. Examples of such natural
orderings are time stamps corresponding to events in a social network, stock
prices, and sequences of genome data, etc. The authors propose a method which
quickly determines exceptional, such as missing, extra or out-of-order, records
in an ordered dataset. The backbone of their method is an efficient method for
PICP. They describe a dynamic programming approach which constructs an op-
timal solution in O(n2) time, where their dataset maps to the interval [1, n].
Furthermore, they show that the greedy algorithm can be implemented in linear
time, specifically in O(n) time, and give an upper bound of 9 times the size of
an optimal solution for the approximation guarantee.

Our main contributions are as follows. We give a scalable algorithm for PICP
which still yields a provably high quality solution. Our algorithm has an ap-
proximation ratio of (1 + ε) and runs in near-linear (with respect to n) time.
Specifically, we prove:

Theorem 1. There exists an algorithm which given ε > 0, a set I of subintervals
of [1, n] and a rational number r ∈ [0, 1] either returns I ′ ⊆ I covering at least
rn points of [1, n] and |I ′| ≤ (1+ ε)OPT , where OPT is the value of an optimal
solution to the PICP, or determines that no such feasible solution exists, in
O(1ε ·min{n+ |I|, |I| log |I|}}) time.

Further, improving on the result from [10] we give a tight proof that the linear
time greedy algorithm in this setting has an approximation ratio of 2.

We remark that determining if an instance of PICP is feasible can be trivially
done in O(|I|) time since we need only check if the union of all subintervals in I
covers at least rn points. Our proof of Theorem 1 relies on two main subroutines;
the first subroutine constructs a data structure which prioritizes the intervals of
I regardless of the value of r, and the second subroutine uses the value of r
to construct a near-optimal solution. The first subroutine is the source of the
bottleneck in the running time of Theorem 1, whereas the second subroutine
takes O(min{|I|, n}) time. Neither subroutine has a running time dependant on
the value of r.

The rest of the paper is organized as follows. In Section 2, we prove a weaker
version of Theorem 1; we give anO(min{n+|I|, |I| log |I|})-time 2-approximation
for PICP. This weakening shares many key ideas with our proof of Theorem 1,
which is found in Section 3. Due to space considerations, we omit the proof
of a tight approximation ratio of 2 for the greedy algorithm for PICP in this
manuscript. A longer version of the paper, containing all omitted proofs is avail-
able online at www.cs.princeton.edu/~ke/intervals.pdf.
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2 Main Idea

In this section we prove a weaker version of our main result, Theorem 1. We
describe an algorithm which determines a 2-approximate solution for PICP in
O(min{n+ |I|, |I| log |I|}) time. The ideas contained in this simpler algorithm
will figure prominently in later sections and provide some intuition for our main
algorithm. We begin with a preprocessing step that will allow us to make three
simplifying assumptions about our input for the remainder of our discussion. For
a subinterval I we denote by left(I) and right(I) the left and right endpoints
of I, respectively.

1. The intervals in I are sorted in increasing order of left endpoints.
Depending on the cardinality of I, we use two different sorting algorithm

to sort the intervals. If |I| log |I| ≤ n + |I|, then we apply classical meth-
ods, for example heap sort, to sort the |I| intervals in O(|I| log |I|) time.
Otherwise, we sort using a simple variant of bucket sort. We create n buck-
ets S1, ..., Sn, then for I ∈ I place interval I in bucket Sleft(I). Finally we
traverse the buckets to recover the intervals in sorted order. Since there are
n buckets each containing at most |I| intervals, this takes O(n + |I|) time.
For further background on sorting algorithms see, for example, [5]. It follows
that the input can be sorted in O(min{n+ |I|, |I| log |I|}) time.

2. No subinterval in I is contained in any other.
Suppose there are subintervals I ⊆ J in the input I. For any feasible so-

lution to PICP containing I, there is a corresponding feasible solution con-
taining J of equal or lesser value so we may safely ignore I. The removal of
properly contained intervals can be implemented in O(|I|) time on the sorted
input I. To do so, let Q be an initially empty queue of subintervals. Consid-
ering each subinterval [a, b] in order, we first remove each subinterval [c, d] on
the front ofQ for which d < a. Letting [e, f ] be the first element inQ, if b < f
then we discard [a, b] (since, e < a); otherwise, we add [a, b] to Q.

3. Each point in I is covered by some subinterval in I.
Let P denote the set of points not covered by any interval in I. Note that if
rn

n−|P | > 1 then the instance of PICP has no feasible solution. Otherwise, we

delete these |P | points from {1, 2, ...., n} and set r ← rn
n−|P | . This reduction

can be implemented to run in O(|I|) time on input I satisfying Assumptions
1 and 2.

Note that after preprocessing, each point in [1, n] is the left (resp., right) endpoint
of at most one subinterval in I. Thus we may unambiguously refer to the leftmost
and rightmost intervals in I.

Clearly, when r ≤ 1
n solving PICP is trivial. Conversely when n−1

n < r ≤ 1,
the problem is simply an instance of set cover in which the sets are all intervals.
For this case, we now describe a greedy algorithm which finds an optimal solution
in O(min{n+ |I|, |I| log |I|}) time. Indeed, we can compute an optimal solution
(on preprocessed input) to 1-ICP by iterating over the subintervals in order.
Observe that there exists a unique subinterval J1 ∈ I for which left(J1) = 1.
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Bk

1 = b0 b1 b2 bk−1

B3

n

B1 B2

Fig. 1. Partitioning the interval into blocks

We choose it to be part of our solution and then inductively consider the problem
of covering the subinterval [right(J1) + 1, n] with the subintervals whose left
endpoints are greater than right(J1)+1 together with the rightmost subinterval
covering right(J1) + 1. We leave it to the reader to verify that the solution
generated is optimal, and that this algorithm can be implemented in O(|I|)
time.

We now turn to the general case of PICP. The remainder of this section
contains a proof of the following which shows how to obtain a 2-approximate
solution for PICP.

Theorem 2. There exists an algorithm which given a set I of subintervals of
[1, n] and a rational number r ∈ [0, 1] either returns I ′ ⊆ I covering at least
rn points of [1, n] and |I ′| ≤ 2OPT , where OPT is the value of an optimal
solution to the PICP, or determines that no such feasible solution exists, in
O(1ε ·min{n+ |I|, |I| log |I|}}) time.

Our approach is the following. We partition the interval [1, n] into smaller in-
tervals (called blocks) B1, ..., Bk in such a way that each Bj is covered by two
subintervals in I. For each block Bj we find a subinterval of I which contains
a maximal number of points in Bj (denoted I1j ) and a set of two subintervals

in I whose union covers every point in Bj (denoted I2j ). Then we find a 2-
approximate solution to the original instance by greedily combining the best
solutions from the blocks.

2.1 Finding the Blocks

The first step of the algorithm is to find a partition of I into blocks. We choose
breakpoints 1 = b0, b1, ..., bk−1 which specify blocks Bj = [bj−1, bj − 1] for 1 ≤
j ≤ k−1 and Bk = [bk−1, n] as in Figure 1. The key is to choose the breakpoints
so that each block admits a bounded size solution, as guaranteed by the next
lemma.

Lemma 1. There exists a choice of breakpoints b0, . . . , bk−1 such that

1. every subinterval of I contains at most one breakpoint, and
2. for every 1 ≤ j ≤ k, there exist two subintervals inI whose union contains

the block Bj.

Further, such breakpoints can be computed in O(|I|) time.

Before computing the breakpoints, we introduce some notation.
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Definition 3. For any interval S ⊆ [1, n], the restriction of I to S is
I|S = {I ∩ S �= ∅; I ∈ I}. The proper restriction of I to S is I|PS = {I ∈ I|S :
∀J ∈ I|S , I �⊂ J}. For each subinterval J ∈ I|PS , a preimage of J is any interval
J ′ ∈ I such that J = J ′ ∩ S.

Proof (Proof of Lemma 1).
Set b0 = 1. We pick b1, ..., bk−1 iteratively. Given b0, ..., bj−1 for j ≥ 1, pick bj

as follows. First, let I1j be the unique leftmost subinterval of I|P[bj−1,n]
. Let i =

right(I1j )+1. Similarly, let I2j be the leftmost subinterval of I|P[i,n]. If right(I2j )+
1 < n, then set bj = right(I2j ) + 1; otherwise, we are done.

We immediately see that each block is covered by two subintervals, namely
I1j and I2j . Moreover, the choice of the breakpoints ensures that no subinterval
in I contains more than one breakpoint. Hence, our chosen intervals satisfy
Properties 1 and 2. This process considers each subinterval at most once and
therefore can be implemented in O(|I|) time.

Now, for each block Bj it is easy to compute I1j and I2j . Indeed, we set I2j =

{I1j , I2j }, as in the proof of Lemma 1 and to find I1j , a collection of exactly one
subinterval of I which covers a maximal number of points in Bj , we simply
scan through the intervals of I|PBj

. For convenience, we define I0j = ∅ for each j
between 1 and k.

2.2 Greedily Combining the Partial Solutions

It remains to find a 2-approximate solution S by combining the partial solutions.
For each block Bj we restrict ourselves to choosing either the subintervals inI0j ,
I1j or I2j . Therefore a solution can be represented as a vector x ∈ {0, 1, 2}k,
where for each j = 1, ..., k, Ixj

j is the set of subintervals chosen from the block

Bj . The cost of a solution x is cost(x) =
∑k

j=1 xj . We find a vector x∗ ∈ {0, 1, 2}k
minimizing cost(x) and subject to

∣
∣
∣
⋃k
j=1 I

x∗
j

j

∣
∣
∣ ≥ rn.

Starting with x0 = (0, 0, ...0), we use a greedy picking technique: for each
iteration � = 0, 1, ..., find x�+1 by increasing by 1 an element of x� which yields

a largest possible increase in the value of

∣
∣
∣
∣
⋃k
j=1 I

x�+1
j

j

∣
∣
∣
∣. We claim that for each

iteration �, x� covers as many points as any other solution whose cost is �.

Hence, by stopping at iteration �′ when
∣
∣
∣
∣
⋃k
j=1 I

x�′
j

j

∣
∣
∣
∣ ≥ rn, it follows that our

final solution x∗ = x�
′
is the desired vector. This claim is a special case of

Lemma 4 proven below, and so here, we only sketch the key ideas.
For any j = 1, 2, ..., k and i = 0, 1, 2, the intervals of Iij are completed con-

tained in Bj . Hence, we can quantify the increase of

∣
∣
∣
∣
⋃k
j=1 I

x�
j

j

∣
∣
∣
∣ given by increas-

ing the value of the j-th element in x� as follows.
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Definition 4. For each j ∈ 1, ..., k and r < 2, let the marginal of Ir+1
j , denoted

g(Ir+1
j ), be the number of points covered in Bj by the intervals of Ir+1

j minus

the number of points covered in Bj by the intervals of Irj , that is, g(Ir+1
j ) =

∣
∣
∣
⋃
I∈Ir+1

j
I
∣
∣
∣−
∣
∣
∣
⋃
I∈Irj I

∣
∣
∣.

Observation 5. Given x� = (x�1, ..., x
�
t , ..., x

�
k) where x

�
t < 2 and letting x�+1 =

(x�1, ..., x
�
t + 1, ..., x�k) we have

∣
∣
∣
∣
∣
∣

k⋃

j=1

Ix
�+1
j

j

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

k⋃

j=1

Ix
�
j

j

∣
∣
∣
∣
∣
∣
+ g

(
Ix�

t+1
t

)
.

So, the largest increase in

∣
∣
∣
∣
⋃k
j=1 I

x�+1
j

j

∣
∣
∣
∣ is given by increasing some x�j < 2 which

has maximum marginal. To prove that x�+1 covers as many points as any other
solution whose cost is � + 1 we show that for each block the marginals are
decreasing.

Fact 6. For each j, g(I1j ) ≥ g(I2j ).

Proof. Since
∣
∣
∣
⋃
I∈I0j I

∣
∣
∣ = 0, we have g(I1j ) =

∣
∣
∣
⋃
I∈I1j I

∣
∣
∣, and so, g(I1j ) + g(I2j ) =∣

∣
∣
⋃
I∈I2j I

∣
∣
∣ . If g(I1j ) < g(I2j ) then 2

∣
∣
∣
⋃
I∈I1j I

∣
∣
∣ = 2g(I1j ) <

∣
∣
∣
⋃
I∈I2j I

∣
∣
∣. So, the

longest subinterval in I2j is longer than the subinterval of I1j , contradicting our

choice of I1j .
This suggests intuitively that it is always a disadvantage to increase an element
whose corresponding marginal is not maximum and that there is no disadvantage
to increase any element whose corresponding marginal is maximum. We omit
further details.

I1

I2

I3

I4

I5
I6

B1 B2

4 82 6 10

Fig. 2. Blocks B1, B2 on points [1, 10] and containing six subintervals I1 = [1, 2], I2 =
[2, 4], I3 = [3, 5], I4 = [6, 8], I5 = [7, 9], I6 = [8, 10]. A possible partial solution for
B1 is I01 = ∅, I11 = {I2} and I21 = {I1, I3} and for B2 is I02 = ∅, I12 = {I4} and
I22 = {I4, I6}. Since I01 covers 0 points, I11 covers 3 points and I21 covers 5 points,
the marginals are g(I11) = 3 and g(I21) = 2. Similarly, g(I12) = 3 and g(I21) = 2.
Now, if r = .7 then a possible set of iterations for the greedy picking algorithm are
x0 = (0, 0), x1 = (1, 0), x2 = (1, 1), x3 = (2, 1). x3 yields the final solution {I1, I3, I5},
which covers 8 points.
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2.3 Performance Analysis

We prove in this section that there exists a solution to PICP containing at most
2OPT subintervals. To do so, we show that there exists a vector o ∈ {0, 1, 2}k
such that cost(o) ≤ 2OPT and

∣
∣
∣
⋃k
j=1 Iojj

∣
∣
∣ ≥ rn. It follows that the vector

x∗ ∈ {0, 1, 2}k as found in Section 2.2 also satisfies cost(x∗) ≤ 2OPT and∣
∣
∣
⋃k
j=1 I

x∗
j

j

∣
∣
∣ ≥ rn. We recall that the subintervals in each Iij are restrictions of

subintervals to blocks. So, we can determine a solution of PICP corresponding

to x∗ by determining a collection S of preimages of the subintervals in
⋃k
j=1 I

x∗
j

j .
It follows immediately that S is the desired solution.

To find such a vector o, we consider some optimal solution I∗ to PICP. For
1 ≤ j ≤ k, let o∗j be the number of subintervals in I∗ which cover only points in
block Bj , and for 1 ≤ j ≤ k − 1, define g∗j to be the number of subintervals in
I∗ which cover points in both Bj and Bj+1. Since no subinterval contains two

breakpoints, we have OPT =
k∑

j=1

o∗j +
k−1∑

j=1

g∗j .

Now, let o1 = min{o∗1 + g∗1 , 2}, for each 2 ≤ j ≤ k − 1, oj = min{o∗j + g∗j−1 +
g∗j , 2}, and ok = min{o∗k + g∗k−1, 2}. We have

k∑

j=1

oj ≤
k∑

j=1

o∗j + 2

k−1∑

j=1

g∗j ≤ 2

⎛

⎝
k∑

j=1

o∗j +
k−1∑

j=1

g∗j

⎞

⎠ = 2OPT.

To complete the proof it is enough to show that
⋃k
j=1 Iojj covers at least rn

points. To do so, we show that
⋃k
j=1 Iojj covers as least as many points as the

optimal solution I∗, which covers at least rn points. Notice that

– if oj = 0 then I∗ covers no points in Bj ,
– if oj = 1 then exactly one subinterval in I∗ covers any points in Bj and I1j
covers as many points of Bj as any other subinterval in I, and

– if oj = 2 then I2j covers every point in Bj .

It follows that the subintervals in
⋃k
j=1 Iojj cover at least as many points as the

subintervals in I∗.

2.4 Running Time Analysis

Having described the algorithm of Theorem 2, we now discuss its running time.
The process which computes the breakpoints in the proof of Lemma 1 runs in
O(|I|) time. As described above, the solutions I2j can be stored while computing

the breakpoints, and determining the solutions I1j requires just one scan of the
subintervals. Therefore this step can also be implemented in O(|I|) time. Finally
the construction of the solution S requires sorting the partial solutions for the
blocks, which we can do in O(min{n+ |I|, |I| log |I|}) time. This step dominates
the running time of the algorithm. This completes the proof of Theorem 2.
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3 Proof of Theorem 1

In this section, we prove our main result. As in Section 2, we assume that our
input has been preprocessed. We proceed analogously by decomposing the in-
terval I = [1, n] into blocks, however rather than requiring that each block can
be covered by two subintervals of I, we instead choose the blocks so that each
one can be covered by a carefully chosen constant number of subintervals. This
condition is formalized as follows.

Definition 7. An interval J ⊆ I is �-compact with respect to I if there exist �
subintervals {J1, . . . , J�} ⊆ I|PJ such that each point of J is covered by at least
one of J1, . . . , J�.

3.1 Partitioning the Interval

The key to the algorithm is once again the choice of the breakpoints. Let c =
�(4ε)−1 + 1. We choose breakpoints 1 = b0, b1, ..., bk−1 which specify blocks
Bj = [bj−1, bj − 1] for 1 ≤ j ≤ k− 1 and Bk = [bk−1, n] (refer again to Figure 1).
This time we choose the breakpoints such that they satisfy more sophisticated
conditions.

Lemma 2. There exists a choice of breakpoints b0, . . . , bk−1 such that

1. every subinterval of I contains at most one breakpoint,
2. Bj is 16c-compact for 1 ≤ j ≤ k, and
3. for any 1 ≤ j ≤ k− 1, suppose K ∈ I is a subinterval which covers bj. Then

for some j′ ∈ {j, j+1}, there exist at least 2c disjoint subintervals in I that
are at least as long as K each of which covers only points in Bj′ \ {bj′−1}.

Further, such breakpoints can be computed in O(|I|) time.

I1

I2

Bj

J1

J2

J3 J4

bj
bj−1

Fig. 3. An example illustrating Condition 3 of Lemma 2. Assuming c = 1, Bj \ {bj−1}
contains at least 4 intervals, namely J1, J2, J3 and J4, each of which is at least as long
as the two intervals, I1 and I2, which cover bj .

For each � between 1 and 16c and block Bj we determine a set of at most �
subintervals covering the most points in Bj . Then we find a (1+ ε)-approximate
solution to the original instance by greedily combining these partial solutions.
The proof of Lemma 2 can be found in Section Appendix A. We now briefly
example the three properties.
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Properties 1 and 2 are analogous to their counterparts in Lemma 1, ensuring
that each subinterval is contained in at most one block and that each block can
be covered by a constant number of intervals. To understand Property 3, suppose
that our choice of breakpoints were so fortuitous as to have the additional prop-
erty that no subinterval simultaneously covered points in two different blocks.
Then it is not difficult to see that this approach would yield an optimal solution.
Intuitively speaking, we require Property 3 in Lemma 2 so that we force optimal
solutions to prefer using subintervals that do not contain the breakpoints. This
idea will be made precise in the analysis below.

3.2 Computing and Combining the Partial Solutions

Just as we did in the 2-approximation algorithm, we want to use greedy picking
to select intervals from the blocks to form our solution. However now the blocks
Bj are not 2-compact, but 16c-compact, and so we need to keep more partial
solutions.

Definition 8. Let 1 ≤ i ≤ 16c and 1 ≤ j ≤ k. We define Iij to be a collection

of at most i subintervals from I|PBj
whose union covers the maximum number of

points in Bj out of any such collection.

An important observation is that for each block Bj , it is possible to find the
solutions {I0j , ..., I16cj } in O(16c · |I|PBj

|) time.

Lemma 3. There exists an algorithm which given a (preprocessed) collection J
of subintervals of an interval J and a constant �, finds J 0, ...,J � where for each
0 ≤ i ≤ �, J i is a subset of J such that |J i| ≤ i and the subintervals in J i
cover at least as many points as any other K ⊆ J with |K| ≤ i, in O(� · |J |)
time.

The proof of Lemma 3 uses dynamic programming and is omitted due to space
considerations.

To determine our final solution S, we use the greedy picking technique. The
solution S will be a collection of preimages of between 0 and 16c subintervals from
each block. Hence, a solution can be represented as a vector x ∈ {0, 1, ..., 16c}k,
where for each j = 1, ..., k, Ixj

j is the set of intervals chosen from I|PBj
. We find

a vector x∗ ∈ {0, 1, ..., 16c}k minimizing cost(x) and subject to
∣
∣
∣
⋃k
j=1 I

x∗
j

j

∣
∣
∣ ≥ rn.

We generalize Fact 6 to prove the following.

Definition 9. Let x ∈ {0, 1, ..., 16c}k. For each j ∈ 1, ..., k with xj < 16c, define

the marginal of Ixj+1
j as g(Ixj+1

j ) = |⋃
I∈Ixj+1

j

I| − |⋃
I∈Ixj

j
I|

Lemma 4. For each j = 1, ..., k and i = 0, 1, ..., 16c, g(Iij) ≥ g(Ii+1
j ).

Since the marginal is always a nonnegative integer, Lemma 4 is equivalent to the

statement that for each j the function fj(i) =
∣
∣
∣
⋃
J∈Iij J

∣
∣
∣ is concave. For brevity

we have omitted the proof of this fact.
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Starting with x0 = (0, 0, ...0), we use the greedy picking technique: for each
iteration � = 1, 2, ..., find x� by increasing an element of x�−1 which gives the

maximum possible marginal by 1. We stop when

∣
∣
∣
∣
⋃k
j=1 I

x�
j

j

∣
∣
∣
∣ ≥ rn. A simple

argument using Lemma 4 implies that at each iteration �, x� covers as many
points as any other solution whose cost is �. Hence, our final solution is the
desired vector x∗. The proof of this fact has been omitted.

3.3 Performance Analysis

We prove in this section that there exists a solution to PICP containing at most
(1+ε)OPT subintervals. To do so, it is enough to show that there exists a vector

o ∈ {0, 1, ..., 16c}k such that cost(o) ≤ (1+ ε)OPT and
∣
∣
∣
⋃k
j=1 Iojj

∣
∣
∣ ≥ rn. Indeed,

the existence of o implies the vector x∗ found by the greedy picking technique also

satisfies cost(x∗) ≤ (1 + ε)OPT and |⋃kj=1 I
x∗
j

j | ≥ rn. We determine a solution
of PICP corresponding to x∗ by determining a collection S of preimages of the

subintervals in
⋃k
j=1 I

x∗
j

j . It follows immediately that S is the desired solution.

To find such vector o ∈ {0, 1, ..., 16c}k, we consider an optimal solution
I∗ to PICP in which the number of subintervals which cover a breakpoint in
{b1, . . . , bk−1} is minimized over all optimal solutions. For each 1 ≤ j ≤ k, define
o∗j as the number subintervals in I∗ which only cover points in Bj \ {bj−1}. For
0 ≤ j ≤ k − 1, define g∗j as the number of subintervals in I∗ which cover the
breakpoint bj . By optimality, g∗j ∈ {0, 1, 2}. Since no subinterval contains two

breakpoints, we have OPT =
∑k
j=1 o

∗
j +

∑k−1
j=0 g

∗
j , and note that I∗ minimizes

∑k−1
j=1 g

∗
j .

Now, let o1 = min{o∗1 + g∗0 , 16c}, for each j ∈ {2, . . . , k − 1}, oj = min{o∗j +
g∗j−1 + g∗j , 16c}, and ok = min{o∗k + g∗k−1, 16c}.

Suppose that g∗j ≥ 1 for some j ≥ 1. Then we claim that Lemma 2 and
the minimality of I∗ guarantee that either o∗j ≥ c − 1 or o∗j+1 ≥ c − 1. To see
this suppose to the contrary that there is some subinterval K ∈ I∗ covering the
breakpoint bj, but o

∗
j , o
∗
j+1 < c−1. Assume that there exists a set J of 2c disjoint

subintervals, each of length at least |K|, covering only points in Bj \ {bj−1} (the
case where the 2c subintervals cover points in Bj+1 is similar). There are fewer
than c − 1 subintervals in I∗ covering points in Bj \ {bj−1}, and each of them
can intersect at most two of the subintervals in J , since no subinterval in I is
contained in another. Further any subinterval in I∗ covering bj−1 or bj intersects
at most one of the subintervals in J . Therefore there is a subinterval K ′ ∈ J ,
with |K ′| ≥ |K| such that I∗ does not cover any points in K ′. This contradicts
the minimality of I∗, since (I∗ \K) ∪K ′ covers at least as many points in I as
I∗, while covering fewer breakpoints. Therefore, for each 1 ≤ j ≤ k− 1, we have
g∗j ≤ 2

c−1o
∗
j or g∗j ≤ 2

c−1o
∗
j+1, and so,

∑k−1
j=1 g

∗
j ≤ 2

∑k
j=1

2
c−1o

∗
j . Hence,

k∑

j=1

oj ≤
k∑

j=1

o∗j + 2

k−1∑

j=1

g∗j ≤
k∑

j=1

o∗j +

k−1∑

j=1

g∗j + 2

k∑

j=1

2

c− 1
o∗j ≤ OPT +

4

c− 1
OPT = (1 + ε)OPT
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Finally, we need to show that
⋃k
j=1 Iojj covers at least rn points. This follows

easily because the optimal solution I∗ uses at most oj intervals from I|PBj
. By

definition of the oj , the union of subintervals in Iojj cover at least as many points
in block Bj as the optimal solution I∗ does.

3.4 Running Time Analysis

To finish the proof of Theorem 1, we need to analyze the running time. Lemma 2
ensures that the breakpoints can be computed in O(|I|) time. By Lemma 2, we
see that for each j the computation of the solutions Iij takes time O(16c · |I|PBj

|).
As a consequence we can compute all of the Iij in time O(16c ·∑j |I|PBj

|) =

O( |I|ε ). Finally the construction of the solution S requires sorting the partial
solutions for the blocks, which we can do in O(min{n + |I|, |I| log |I|}) time.
The running time of the algorithm is therefore O(1ε ·min{n+ |I|, |I| log |I|}}).

This completes the proof of Theorem 1.

4 Concluding Remarks

We have presented two scalable algorithms for PICP: the linear time greedy 2-
approximation algorithm and the near-linear (1 + ε)-approximation algorithm
given by Theorem 1. The authors believe that the overarching paradigm dis-
cussed here of improving algorithms which are theoretically tractable to be scal-
able is a fundamental direction for future research. Natural generalizations of
our work in this direction are to consider weighted PICP or even the generalized
partial set cover studied by Könemann et al. in [18].
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2010. In addition we would like to thank Volodymyr Kuleshov for stimulating
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Appendix A Finding the Break Points

In this section, we prove Lemma 2. Recall that we are given an interval I =
[1, n], a collection of proper subintervals I = {I1, . . . , It} which are sorted by
left endpoint, and a constant c. We describe an algorithm which determines
breakpoints b1, . . . , bk−1 such that 1) no subinterval contains two breakpoints,
2) the blocks determined by these breakpoints are each 16c-compact, and 3) for
each 1 ≤ j ≤ k − 1, for some j′ ∈ {j, j + 1}, there exist at least 2c disjoint
subintervals in I that are at least as long as any subinterval covering bj and
each of which covers only points in Bj′ \ {bj′−1}.

A rough idea of the algorithm is as follows. We first scan through the subin-
tervals in I, marking some points 1 = d1, d2, . . . , d�, d�+1 = n+ 1 as candidates
to be breakpoints. For each candidate dj (1 ≤ j ≤ �), we will also keep track of a
longest subinterval Kj in I which contains it. Crucially, our choice of candidates
will ensure the following two properties hold:

i) For any 1 ≤ i < j ≤ �+ 1, the interval [di, dj − 1] is (j − i)-compact.
ii) The subintervals K2,K4,K6, . . . are pairwise disjoint.
iii) No subinterval I ∈ I contains two or more distinct candidates.

We then choose the breakpoints from these candidates. Properties i), ii) and iii)
will be the key to choosing the desired breakpoints in linear time.

Our algorithm proceeds to determine the breakpoints into two steps: The first,
Algorithm 1, determines the candidates d1, d2, . . . , d� and corresponding subin-
tervals K1,K2, . . . ,K�, and the second, Algorithm 2, uses these to determine the
breakpoints.

Algorithm 1 sets d1 = 1 and K1 to be the unique subinterval covering d1.
Given K1, ...,Kt and d1, ..., dt for iteration t ≥ 1, it sets dt+1 to be the left most
uncovered point, namely right(Kt) + 1, and Kt+1 to be the longest subinterval
covering dt+1. It scans through the subintervals exactly once, and hence, runs
in O(|I|) time. We now prove that upon termination properties i), ii) and iii)
hold. In doing so, we focus on the intervals J1, . . . , J�, which we have included
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in the algorithm to simplify its analysis. Note that the subintervals J1, . . . , J�
cover the interval I = [1, n]. More strongly, defining d�+1 = n + 1, we have
[dj , dj+1 − 1] ⊆ Jj for each 1 ≤ j ≤ �, and so, for any 1 ≤ i < j < �, the interval
[di, dj+1 − 1] is (j − i)-compact, implying i) holds. In fact, Jj is the rightmost
subinterval covering dj , and so, right(Kj) < right(Jj) + 1 = dj+1. From this
fact it is straightforward to prove that ii) and iii) hold. Property ii) holds since
Jj+1 is the rightmost subinterval covering dj+1, in particular, Kj+2 does not
cover dj+1, hence, left(Kj+2) > dj+1 > right(Kj). Property iii) holds since the
existence any subinterval I containing both dj and dj+1 would contradict that
Jj is the rightmost subinterval containing di.

Algorithm 2 describes how given the subintervals K1, ...,K� and candidates
d1, d2, ..., d�+1, we compute the breakpoints b0, b1, ..., bk. The algorithm works
with chunks of 8c candidate breakpoints and focuses on two sets, the 2c smallest
even indexed candidates and the 2c largest even indexed candidates. We then
choose the breakpoint to be dt, one of these 4c candidates, such that its cor-
responding Kt is no longer than any of the subintervals corresponding to the
remaining 4c − 1 subintervals. We now prove that the runtime is O(|I|). For
each j, the values of b1j and b2j can be computed by scanning through the inter-
vals Ki,Ki+1, ...,Ki+8c−1 exactly once. Furthermore, we consider each of these
subsets of 8c subintervals exactly once. Hence, Algorithm 2 takes O(�) = O(|I|)
time. Hence the proof of Lemma 2 follows by showing that the determined break-
points satisfy Properties 1, 2 and 3.

Property iii) of the candidates d1, ..., d�+1 immediately implies that Property 1
holds. For any two consecutive breakpoints bj and bj+1 we have that there exists
an i and indices �′ and �′′ such that bj = d�′ , dj+1 = d�′′ and i ≤ �′ < �′′ ≤ i+16c.
Hence, Property i) of Algorithm 1 implies [bj , bj+1−1] is 16c-compact, satisfying
Property 2. We need only show that Property 3 holds.

Consider any breakpoint bj with 1 ≤ j ≤ k. Without loss of generality assume
that in this iteration |Kb2j

| ≤ |Kb1j
| (the argument when |Kb2j

| > |Kb1j
| is sym-

metrical), and so bj = db2j . Each of the 2c subintervals considered in computing
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b1j (i.e., the intervals with even indices of Ki,Ki+1, ...,Ki+4c−1) is at least as
long as Kb2j

and disjoint by Property ii). We remind the reader that Kb2j
is a

longest subinterval containing bj . Furthermore, as i is odd at the beginning of
each iteration, Ki is not one of these 2c intervals, and hence, bj−1 is not con-
tained in any of these 2c interval Ki+1,Ki+3, ...,Ki+4c−1. Together these facts
imply that I|PBj

contains at least 2c disjoint subintervals completely contained

in Bj−{bj−1} which are at least as long as any subinterval containing bj . Hence
Property 3 holds, which completes the proof of Lemma 2.
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Abstract. In 1967, Moon and Moser proved a tight bound on the critical
density of squares in squares: any set of squares with a total area of at
most 1/2 can be packed into a unit square, which is tight. The proof
requires full knowledge of the set, as the algorithmic solution consists
in sorting the objects by decreasing size, and packing them greedily into
shelves. Since then, the online version of the problem has remained open;
the best upper bound is still 1/2, while the currently best lower bound
is 1/3, due to Han et al. (2008). In this paper, we present a new lower
bound of 11/32, based on a dynamic shelf allocation scheme, which may
be interesting in itself.

We also give results for the closely related problem in which the size of
the square container is not fixed, but must be dynamically increased in
order to accommodate online sequences of objects. For this variant, we
establish an upper bound of 3/7 for the critical density, and a lower bound
of 1/8. When aiming for accommodating an online sequence of squares,
this corresponds to a 2.82 . . .-competitive method for minimizing the
required container size, and a lower bound of 1.33 . . . for the achievable
factor.

Keywords: Packing, online problems, packing squares, critical density.

1 Introduction

Packing is one of the most natural and common optimization problems. Given a
set O of objects and a container E, find a placement of all objects into E, such
that no two overlap. Packing problems are highly relevant in many practical ap-
plications, as well as in geometric and abstract settings. Simple one-dimensional
variants (such as the Partition case with two containers, or the Knapsack
problem of a largest packable subset) are NP-hard. Additional difficulties occur
in higher dimensions: as Leung et al. [9] showed, it is NP-hard even to check
whether a given set of squares fits into a unit-square container.

When dealing with an important, but difficult optimization problem, it is
crucial to develop a wide array of efficient methods for distinguishing feasible
instances from the infeasible ones. In one dimension, a trivial necessary and
sufficient criterion is the total size of the objects in comparison to the container.
This makes it natural to consider a similar approach for the two-dimensional
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version: What is the largest number δ, such that any family of squares with area
at most δ can be packed into a unit square? An upper bound of δ ≤ 1/2 is trivial:
two squares of size 1/2 + ε cannot be packed. As Moon and Moser showed in
1967 [11], δ = 1/2 is the correct critical bound: sort the objects by decreasing
size, and greedily pack them into a vertical stack of one-dimensional “shelves”,
i.e., horizontal subpackings whose height is defined by the largest object.

This approach cannot be used when the set of objects is not known a priori,
i.e., in an online setting. It is not hard to see that a pure shelf-packing approach
can be arbitrarily bad. However, other, more sophisticated approaches were able
to prove lower bounds for δ: the current best bound (established by Han et al. [4])
is based on a relatively natural recursive approach and shows that δ ≥ 1/3.

Furthermore, it may not always be desirable (or possible) to assume a fixed
container: the total area of objects may remain small, so a fixed large, square con-
tainer may be wasteful. Thus, it is logical to consider the size of the container itself
as an optimization parameter. Moreover, considering a possibly larger container
reflects the natural optimization scenario in which the full set of objects must be
accommodated, possibly by paying a price in the container size. From this per-
spective, 1/

√
δ yields a competitive factor for the minimum size of the container,

which is maintained at any stage of the process. This perspective has been studied
extensively for the case of an infinite strip, but not for an adjustable square.

Our Results. We establish a new best lower bound of δ ≥ 11/32 for packing
an online sequence of squares into a fixed square container, breaking through
the threshold of 1/3 that is natural for simple recursive approaches based on
brick-like structures. Our result is based on a two-dimensional system of multi-
directional shelves and buffers, which are dynamically allocated and updated. We
believe that this approach is interesting by itself, as it may not only yield worst-
case estimates, but also provide a possible avenue for further improvements, and
be useful as an algorithmic method.

As a second set of results, we establish the first upper and lower bounds for a
square container, which is dynamically enlarged, but must maintain its quadratic
shape. In particular, we show that there is an upper bound of δ ≤ 3/7 < 1/2 for
the critical density, and a lower bound of 1/8 ≤ δ; when focusing on the minimum
size of a square container, these results correspond to a 2.82 . . .-competitive
factor, and a lower bound of 1.33 . . . for the achievable factor by any deterministic
online algorithm.

Related Work: Offline Packing of Squares. One of the earliest considered
packing variants is the problem of finding a dense square packing for a rectan-
gular container. In 1966 Moser [12] first stated the question as follows:

“What is the smallest number A such that any family of objects with total
area at most 1 can be packed into a rectangle of area A?”

The offline case has been widely studied since 1966; there is a long list of results
for packing squares into a rectangle. Already in 1967, Moon and Moser [11] gave
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the first bounds for A: any set of squares with total area at most 1 can be packed
into a square with side lengths

√
2, which shows A ≤ 2, and thus δ ≥ 1/2; they

also proved A ≥ 1.2. Meir and Moser [10] showed that any family of squares
each with side lengths ≤ x and total area A can be packed into a rectangle of
width w and height h, if w, h ≥ x and x2+(w−x)(h−x) ≥ A; they also proved
that any family of k-dimensional cubes with side lengths ≤ x and total volume
V can be packed into a rectangular parallelepiped with edge lengths a1, . . . , ak
if ai ≥ x for i = 1, . . . , k and xk +

∏k
i=1 (ai − x) ≥ V . Kleitman and Krieger

improved the upper bound on A to
√
3 ≈ 1.733 [7] and to 4/

√
6 ≈ 1.633 [8]

by showing that any finite family of squares with total area 1 can be packed
into a rectangle of size

√
2 × 2/

√
3. Novotný further improved the bounds to

1.244 ≈ (2 +
√
3)/3 ≤ A < 1.53 in 1995 [13] and 1996 [14]. The current best

known upper bound of 1.3999 is due to Hougardy [5].

Online Packing of Squares. In 1997, Januszewski and Lassak [6] studied
the online version of the dense packing problem. In particular, they proved that
for d ≥ 5, every online sequence of d-dimensional cubes of total volume 2(12 )

d

can be packed into the unit cube. For lower dimensions, they established online
methods for packing (hyper-) cubes and squares with a total volume of at most
3
2 (

1
2 )
d and 5

16 for d ∈ {3, 4} and d = 2, respectively. The results are achieved by
performing an online algorithm that subsequently divides the unit square into
rectangles with aspect ratio

√
2. In the following, we call these rectangles bricks.

The best known lower bound of 2( 12 )
d for any d ≥ 1 was presented by Meir and

Moser [10].
Using a variant of the brick algorithm, Han et al. [4] extended the result to

packing a 2-dimensional sequence with total area ≤ 1/3 into the unit square.
A different kind of online square packing was considered by Fekete et al. [2,3].

The container is an unbounded strip, into which objects enter from above in
a Tetris-like fashion; any new object must come to rest on a previously placed
object, and the path to its final destination must be collision-free. Their best
competitive factor is 34/13 ≈ 2.6154 . . ., which corresponds to an (asymptotic)
packing density of 13/34 ≈ 0.38 . . ..

2 Packing into a Fixed Container

As noted in the introduction, it is relatively easy to achieve a dense packing of
squares in an offline setting: sorting the items by decreasing size makes sure that
a shelf-packing approach places squares of similar size together, so the loss of
density remains relatively small. This line of attack is not available in an online
setting; indeed, it is not hard to see that a brute-force shelf-packing method
can be arbitrarily bad if the sequence of items consists of a limited number
of medium-sized squares, followed by a large number of small ones. Allocating
different size classes to different horizontal shelves is not a remedy, as we may
end up saving space for squares that never appear, and run out of space for
smaller squares in the process; on the other hand, fragmenting the space for
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large squares by placing small ones into it may be fatal when a large one does
appear after all.

Previous approaches (in particular, the brick-packing algorithm) have side-
stepped these difficulties by using a recursive subdivision scheme. While this
leads to relatively good performance guarantees (such as the previous record of
1/3 for a competitive ratio), it seems impossible to tighten the lower bound; in
particular, 1/3 seems to be a natural upper bound for this relatively direct ap-
proach. Thus, making progress on this natural and classical algorithmic problem
requires less elegant, but more powerful tools.

In the following we present a different approach for overcoming the crucial
impediment of mixed square sizes, and breaking through the barrier of 1/3. Our
Recursive Shelf Algorithm aims at subdividing the set of squares into different
size classes called large, medium and small, which are packed into pre-reserved
shelves. The crucial challenge is to dynamically update regions when one of them
gets filled up before the other ones do; in particular, we have to protect against
the arrival of one large square, several medium-sized squares, or many small
ones. To this end, we combine a number of new techniques:

– Initially, we assign carefully chosen horizontal strips for shelf-packing each
size class.

– We provide rules for dynamically updating shelf space when required by the
sequence of items. In particular, we accommodate a larger set of smaller
squares by inserting additional vertical shelves into the space for larger
squares whenever necessary.

– In order to achieve the desired overall density, we maintain a set of buffers
for overflowing strips. These buffers can be used for different size classes,
depending on the sequence of squares.

With the help of these techniques, and a careful analysis, we are able to establish
δ ≥ 11/32. It should be noted that the development of this new technique may
be more significant than the numerical improvement of the density bound: we
are convinced that tightening the remaining gap towards the elusive 1/2 will be
possible by an extended (but more complicated) case analysis.

In the following Section 2.1, we describe the general concept of shelf-packing.
In Section 2.2 we give an overview of the algorithm. Section 2.3 sketches the
placement of large objects, while Section 2.4 describes the packing created with
medium-sized squares. The packing of small squares is discussed in Section 2.5.
The overall performance is analyzed in Section 2.6. Due to limited space, various
proof details and detailed pseudocode had to be omitted and can be found in
the full version of the paper.

2.1 Shelf Packing

For a given subset of squares with maximum size h, a shelf S is a subrectangle
of the container that has height h; a shelf packing places the squares into a shelf
next to each other, until some object no longer fits; see Fig. 1(a). When that
happens, the shelf is closed, and a new shelf gets opened.
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Fig. 1. (a) A shelf packed with squares of one height class. (b) Different areas of a
shelf S . end(S): hatched region to the right, occupied(S): total area of squares (dark
gray) and usedSection(S): region with light gray background (incl. occupied(S)). (c)
Assignment of the extra area of Q (hatched) to S when square Q causes on overflow
of shelf S .

In the following, we will subdivide the set of possible squares into subsets,
according to their size: We let Hk denote the height class belonging to the
interval (2−(k+1), 2−k]. In particular, we call all squares in H0 large, all squares
in H1 medium, and all other squares (in H≥2) small.

The proof for the following useful lemma (according to Moon and Moser [11])
is straightforward and omitted.

Lemma 1. Let S be a shelf of height class Hk with width w and height h that is
packed with a set P of squares all belonging to Hk. Let Q be an additional square
of Hk with side length x that does not fit into S. Then the total area of all the

squares packed into S plus the area of Q is greater than ‖S‖2 − (h/2)2 + x · h2 .
Notation. In the following, we let wS denote the width of a shelf S, hS denote
its height and P(S) denote the set of squares packed into it. We define used-
Section(S) as the horizontal section of S that contains P(S); see Fig. 1(b). We
denote the (possibly empty) section with width hS/2 and height hS at the end
of S by end(S). The total area of the squares actually packed into a shelf S is
occupied(S). The part of the square Q extending over the upper half of S is the
extra area of Q. When Q causes a shelf S to be closed, we assign extra(Q) to
S; see Fig. 1(c). The total area assigned this way is referred to as assigned(S).
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(a)

Q1

Q2

(b)

Fig. 2. (a): The L-shaped packing created with the squares of height class H1. (b)
Analysis of the Ceiling-Packing Algorithm: The algorithm packs at least as much as
the gray area shown on the left. The parts of the packed squares that are used to fill
the gaps appearing in the top right corner are depicted as hatched regions.

We let Ã(S) denote the total of occupied and assigned area of S minus the extra
area of the squares in P(S).

2.2 Algorithm Overview

We construct a shelf-based packing in the unit square by packing small, medium
and large squares separately. We stop the Recursive Shelf Algorithm when the
packings of two different subalgorithms would overlap. As it turns out, this can
only happen when the total area of the given squares is greater than 11/32;
details are provided in the “Combined Analysis” of Section 2.6, after describing
the approach for individual size classes.

2.3 Packing Large Squares

The simplest packing subroutine is applied to large squares, i.e., of size greater
than 1/2. We pack a square Q0 ∈ H0 into the top right corner of the unit square
U . Clearly, only one large square can be part of a sequence with total area
≤ 11/32. Hence, this single location for the squares in H0 is sufficient.

2.4 Packing Medium Squares

We pack all medium squares (those with side lengths in (1/4, 1/2]) separately;
note that there can be at most 5 of these squares, otherwise their total area is
already bigger than 3/8 > 11/32. Moreover, if there is a large square, there can
be at most one medium square (otherwise the total area exceeds 3/8), and both
can be packed next to each other.

We start with packing the H1-squares from left to right coinciding with the
top of the unit square U . If a square would cross the right boundary of U , we
continue by placing the following squares from top to bottom coinciding with
the right boundary; see Fig. 2(a).

We call the corresponding subroutine the Ceiling Packing Algorithm. With-
out interference of other height classes, the algorithm succeeds in packing any
sequence of H1-squares with total area ≤ 3/8.
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Theorem 2. The Ceiling Packing Subroutine packs any sequence of medium
squares with total area at most 3/8 into the unit square.

2.5 Packing Small Squares

As noted above, the presence of one large or few medium squares already assigns
a majority of the required area, without causing too much fragmentation. Thus,
the critical question is to deal with small squares in a way that leaves space for
larger ones, but allows us to find extra space for a continuing sequence of small
squares.

In the Recursive Shelf Algorithm we pack all small squares according to the
packSmall subroutine, independent of the large and medium square packings.
This method is also based on shelf packings. We partition the unit square into
shelves for different height classes, such that for certain subsections we maintain
a total packing density of 1/2.

Distribution of the Shelves. The general partition of the unit square is
depicted in Fig. 3(a). The regions M1, . . . ,M4 (in that order) act as shelves for
height class H2. We call the union M of the Mi the main packing area; this is
the part of U that will definitely be packed with squares by our algorithm. The
other regions may stay empty, depending on the sequence of incoming squares.
The regions B1, . . . , B4 provide shelves for H3. We call the union B of the Bj
the buffer area. In the region A we reserve Hk-shelf space for every k ≥ 4. We
call A the initial buffer area. The ends Ei of the main packing regions Mi serve
as both: parts of the main packing region and additional buffer areas. We call
the union E of the Ei the end buffer area.

Packing Approach. During the packing process, we maintain open shelves for
all the height classes for which we already received at least one square as input;
we pack them according to the shelf-packing scheme described above. We start
the packing of small squares in the lower half H� of U . The region M1 serves
as the first H2-shelf. The left half of B1 serves as the initial buffer shelf for
H3. As soon as we receive the first square of a height class Hk with k ≥ 4, we
open an initial buffer shelf with width 1/4 and height 2−k on top of the existing
shelves in A. All of these shelves are packed from left to right; see Fig. 3(b) for
the packing directions. In case the initial buffer for a height class Hk with ≥ 3
cannot accommodate another Hk-square, we continue packing Hk-squares into
vertical shelves that we cut out of the main packing region. To achieve a packing
density of 1/2 for these vertical shelves, we assign and occupy additional buffer
space in B ∪E.

The reason for choosing this unit-square subdivision and packing scheme is
to establish the following lemma.

Lemma 3. In each step of the algorithm, the total area of the small squares
packed into U is at least ‖usedSection(M) \ E‖/2.
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Fig. 3. (a) Region types in packingSmall. (b) Packing directions. (c) Area occupation
in the main packing region (dark gray) and the usable buffer area (light gray).

We will argue that when the algorithm terminates, we have packed as much area
as marked in Fig. 3(c). In the following, we describe the packings for the different
small height classes in more detail.

Packing H2-Squares. In the main packing area, we always maintain an open
shelf for height classH2 that is packedwithH2-squares, as described in Section 2.1.
In order to avoid early collisions with large and medium squares, we start with
packingM1 from left to right, continuing with packingM2 from right to left. Then
we alternately treatM3 andM4 as the current main packing region, placing H2-
squares into the region whose usedSection is smaller. When the length of usedSec-
tion(M4) becomes larger than 3/8, we prefer M3 over M4 until M3 is full. This
way, we can use the end E3 as an additional buffer for vertical shelves inM4 while
ensuring that no overlap with the packing of H1-squares can occur, unless the to-
tal area of the input exceeds 11/32. We know that each square of H2 has a side
length of at least half the height of the H2-shelves. Consequently, if we only pack
H2-squares into the main packing area, the used sections of theMi regions will be
at least half full. However, if we receive a large number of H≥3-squares as input,
we may use these regions to accommodate H≥3 as well.
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Fig. 4. Sample packing of square into a part of the main packing region according to
the vertical shelf packing scheme

Packing of H≥3-Squares. For Hk≥4 we reserve space in the initial buffer area
A. As soon as we receive the first square of a height class Hk with k ≥ 4, we open
an Hk-shelf of length 1/4 on top of the existing shelves in A. We call this shelf
initialBuffer(k) and pack it from left to right with all subsequent Hk-squares
according to the shelf-packing concept. If the initialBuffer(k) is full, we start
allocating space in form of vertical Hk-shelves in the main packing region.

The same initial buffer packing is performed with H3-squares, with the differ-
ence that we use B instead of A as the initial buffer packing location. As soon
as the placement of a square Q would cause the initial buffer packing for H3 in
B to exceed a length of 1/4, we open a vertical H3-shelf with Q in the main
packing region and stop using B for the initial buffer packing.

Vertical Shelves. In contrast to the situation in general shelf packings, we do
not only pack H2-squares into the H2-shelves in the main packing region, but
also cut out rectangular slices that serve as shelves for smaller height classes
with a full initial buffer. We treat these vertical shelves as usual shelves for their
corresponding height class. The width of each vertical main shelf for a height
class Hk is always 2−k and its height is always 1/4, as it was formed by a slice of
an H2-shelf; see Fig. 4 for a sample packing. When closed, the resulting vertical
shelf packings have a density of at least 3/8; see Lemma 1. To achieve a total
packing density of 1/2 also for closed vertical shelves, we use the additional space
reserved in the buffer area.

Buffer Assignments. There are three different ways to assign a buffer to a
vertical shelf S for Hk with width wS .

1. If there is enough unassigned but occupied buffer area in region B, we simply
assign a wS/2-wide slice of this area to S.

2. Otherwise, we occupy further parts of the buffer area B by either
(a) opening a wS/2-wide buffer subshelf B for height class Hk (if k > 3) or
(b) simply packing the square into the buffer area (if k = 3).
In both cases we assign a (wS/2)2 part of the newly occupied area to S.

If an overflow occurs at a vertical buffer subshelf for height class Hk, we want
to pack the non-fitting square into the corresponding vertical main packing shelf
S. Hence, we start allocating buffer space for S when there is just enough space
left in S to place another Hk-square. In particular, we open buffer subshelf B as
soon as the next square would intersect head(S), the top wS × wS part of S.
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In the following, we explain why this assignment is sufficient to establish the
desired density in the main packing region.

By Lemma 1, we have Ã(S) ≥ ‖S\end(S)‖/2 for any closed shelf S of our pack-
ing. Thus, for each vertical shelf S with width wS , we need to reserve an area of at
most ‖end(S)‖/2 = (wS/2)2 in the buffer region in order to establish Lemma 3.

In case we create a vertical buffer subshelf B of width wB (=wS) and height
hB, we assign a (wB/2)2-sized part of B to the corresponding vertical shelf S
and have an area of wB/2 · hB/2 to spare. We release this extra space as an
occupied but unassigned buffer slice of density 1/2. We do the same with the
extra area of an H3-square that was placed in the buffer region. This way we
ensure that every vertical shelf of width w effectively allocates a buffer of total
length w/2 and that the area assigned in case 1 is sufficient. Thus, we get the
following property of closed vertical main packing shelves; see the full paper for
a detailed proof.

Lemma 4. Let S be a closed vertical shelf for Hk that has a buffer part assigned
to it. Then Ã(S) ≥ ‖S‖/2.
The gaps remaining in an open vertical main packing shelf S may be larger.
However, whenever we open a vertical shelf S for a height class Hk, we assign
the occupied area of the initial buffer of Hk to it. This way we establish the
following property.

Lemma 5. If S is an open vertical shelf for Hk, then Ã(S) ≥ ‖S‖/2.
Restricting the Used Buffer Region. To avoid early collisions with large
and medium squares, we only pack new squares into the buffer region if there is
not enough unassigned, occupied area remaining in the buffer regions.

Let S be a vertical main shelf for H3, bufferlength be the total width of the
occupied buffer sections and requiredBufferLength be the total buffer width re-
quired for the vertical shelves. If bufferlength ≥ requiredBufferLength, there must
be an occupied but unassigned buffer slice, which we assign to S. Otherwise, we
need the area of an H3-square Q to get the remaining buffer part. We distinguish
two cases:

1. If bufferlength+x ≤ requiredBufferLength+1/16, we pack Q into B, ensuring
the used buffer section to be at most 1/16 ahead of the section required.

2. Otherwise, the placement of Q in the buffer region would result in an unde-
sirable buffer growth. In this case, we pack Q instead into its corresponding
vertical main shelf and assign its potential extra space of (x − 1/16) · x to
the buffer region. This way, a (x− 1/16)-wide buffer part is gained from Q,
and the new buffer length is bufferlength+ x− 1/16 > requiredBufferLength.

Buffer Region Overflow. A packing overflow may also occur in the buffer
regions B1, . . . , B4. In this case, we proceed as in every other shelf: we pack the
current H3-square or buffer subshelf into the next Bi-region in order and assign
potential extra space from H3-squares to the overflowing buffer shelf.
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If an H≥4-square cannot be placed at the end of usedSection(B4), we pack it
into the end of any of the other buffer regions of B ∪ E. We claim that there
must be enough space for this in at least one of the Bj-regions, as long as the
total input area does not exceed 11/32.

By construction, we only need a w/2-wide buffer slice for each vertical main
shelf with width w. Thus, the total buffer length required for M \ E is at most
22/16. Unfortunately, the buffer region B = B1 ∪ · · · ∪ B4 does only provide a
total usable buffer length of 17/16 in the worst case. To get the missing buffer
space of length 5/16, we also use the initial buffers and allocate extra space at
the end of the main packing regions as buffer area.

Additional End Buffer Usage. The actual buffer space available in the Ei-
regions depends on the lengths of the main packing sections that overlap with
them. We call the part of usedSection(Mi) that overlaps with the considered Ei
region L. We denote the width of L by �. Depending on �, we choose between
two different packing schemes for using Ei as a buffer.

1. If � > wEi/2: Then close the buffer shelf Ei (without having actively used

it as an H3-buffer-shelf) and simply use Ã(L) as additional buffer area.
2. If � ≤ wEi/2: Then treat Ei \ L similar to the normal buffer regions Bj ; see

Fig. 5(a).

We keep packing squares into Ei \ L, according to the buffer-packing scheme,
until the packing reaches a length of 2/16. We combine the area occupied this

way with the area Ã(L) of L to get proper buffers; see Fig. 5(b) and the full
paper for pseudocode. We use 0.5/16 of the gained buffer length to achieve a
density of 1/2 for L and hence get an additional buffer length of 1.5/16 from each
of the Ei-regions. We start using (a part of) Ei as an additional buffer region, as
soon as the corresponding main shelf Mi is closed. With the extra buffer length
gained in E, we provide enough buffer space to fill the gaps remaining in all
vertical main packing shelves in M \ E.

Lemma 6. The total buffer space provided in A ∪ B ∪ E is sufficient for the
vertical shelves in M \ E.

Lemmas 4, 5 and 6 directly prove the invariant of Lemma 3. That is, we can
assume a density of 1/2 for the used sections of M \ E. By construction, the
algorithm successfully packs all small squares, until a square Q would intersect
the top left corner of U in M4. At this time the total area of small input squares
must be greater than ‖⋃3

i=1(Mi \ Ei) ∪M4‖/2 = 11/32.

Theorem 7. The packSmall Subroutine packs any sequence of small squares
with total area at most 11/32 into the unit square.

2.6 Combined Analysis

In the previous sections we proved that the algorithm successfully packs large,
medium and large squares separately, as long as input has a total area of at most
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Fig. 5. (a) The packing performed in the end buffer regions: (left) packing of a fitting
H3-square, (center) extra area assignment from a non-fitting H3-square and (right)

subshelf packing of H≥4 squares. (b) The assignment of Ã(L), when Ei is closed: (left)

we use all of Ã(L) to extend the horizontal subshelves to a total length of wEi , (center)

we use one half of Ã(L) for the horizontal subshelf extensions and the other for an H3-

buffer or (right) we must use all of Ã(L) for H3-buffer assignment.

11/32. A case distinction over all possible collisions that may appear between
the packings of these height classes can be used to prove the main result. An
important property for this proof is the following; see the full paper for details.

Lemma 8. Let Q be a small square with side length x in the buffer region B.
Let � be the total usable length of the buffer (value of bufferlength) right before
Q was packed into B and let P be the set of small squares packed into U . Then
the total area of the small input squares ‖P‖ is greater than (�+ x− 1/16) · 1/4.
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Fig. 6. Different choices in the lower-bound sequence: (a) Packing after choosing a side
position. (b) Packing after choosing a center position. (c) The recurring pattern. (d)
Packing a last square.

Theorem 9. The Recursive Shelf Algorithm packs any sequence of squares with
total area at most 11/32 into the unit square.

3 Packing into a Dynamic Container

Now we discuss the problem of online packing a sequence of squares into a
dynamic square container. At each stage, the container must be large enough to
accommodate all objects; this requires keeping the container tight early on, but
may require increasing its edge length appropriately during the process.

In the following, we give a non-trivial family of instances, which prove that no
online algorithm can maintain a packing density greater than 3/7 for an arbitrary
input sequence of squares and introduce an online square packing algorithm that
maintains a packing density of 1/8 for an arbitrarily input sequence of squares.

3.1 An Upper Bound on δ

If the total area of the given sequence is unknown in advance, the problem of
finding a dense online packing becomes harder. As it turns out, a density of 1/2
can no longer be achieved.

Theorem 10. There are sequences for which no deterministic online packing
algorithm can maintain a density strictly greater than 3/7 ≈ 0.4286.

Proof. We construct an appropriate sequence of squares, depending on what
choices a deterministic player makes; see Fig. 6. At each stage, the player must
place a square Q3 into a corner position (Fig. 6(a)) or into a center position
(Fig. 6(b)); the opponent responds by either requesting another square of the
same size (a), or two of the size of the current spanning box. This is repeated.
A straightforward computation shows that the asymptotic density becomes 2/3,
if the player keeps choosing side positions, and 3/4, if he keeps choosing center
positions; for mixed choices, the density lies in between. Once the density is
arbitrarily close to 3/4, with the center position occupied, the opponent can
request a final square of size 3/4 of the current spanning box, for a density close
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Fig. 7. The modified Brick-Packing algorithm for an input square Q. Occupied bricks
are hatched, free bricks are blank. (a) A first square gets placed into the lower left
corner, Bmax = S(Q). (b) If S(Q) >Bmax, we double Bmax until Q fits. (c) If Q does
not fit into Bmax, but ‖S(Q)‖ < ‖Bmax‖, we double Bmax and subdivide the resulting
brick. (d) If Q fits into Bmax, we pack it into the smallest free fitting subbrick.

to 3/4+(3/4)2

(7/4)2 = 3/7; if the center position does not get occupied, the density is
even worse. 	


3.2 A Lower Bound on δ

When placing squares into a dynamic container, we cannot use our Recursive
Shelf Algorithm, as it requires allocating shelves from all four container bound-
aries, which are not known in advance. However, we can adapt the Brick Algo-
rithm by [6]: we consider bricks with side lengths equal to a power of

√
2 (and

aspect ratio 1/
√
2 or

√
2). We let Bk denote the brick of size (

√
2
k
,
√
2
k+1

) and
let S(Q) denote the smallest brick Bi that may contain a given square Q.

There are two crucial modifications: (1) The first square Q is packed into
a brick of size S(Q) with its lower left corner in the origin and (2) instead of
always subdividing the existing bricks (starting with three fixed ones), we may
repeatedly double the current maximum existing brick Bmax to make room for
large incoming squares. Apart from that, we keep the same packing scheme:
Place each square Q into (a subbrick of) the smallest free brick that can contain
Q; see Fig. 7 for an illustration.
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Theorem 11. For any input sequence of squares, the Dynamic Brick Algorithm
maintains a packing density of at least 1/8.

Proof. By construction, every occupied brick has a density of at least 1/(2
√
2).

It is easy to see that in every step of the algorithm at most half the area of Bmax
consists of free bricks; compare [6]. Because Bmax always contains all occupied
bricks (and thus all packed squares), the ratio of ‖Bmax‖ to the area of the
smallest enclosing square is at least 1/

√
2. Therefore, the algorithm maintains

an overall density of at least (1/(2
√
2)) · (1/2) · (1/√2) = 1/8. 	


3.3 Minimizing Container Size

The above results consider the worst-case ratio for the packing density. A closely
related question is the online optimization problem of maintaining a square con-
tainer with minimum edge length. The following is an easy consequence of The-
orem 11, as a square of edge length 2

√
2 can accommodate a unit area when

packed with density 1/8. By considering optimal offline packings for the class of
examples constructed in Theorem 10, it is straightforward to get a lower bound
of 4/3 for any deterministic online algorithm.

Corollary 12. Dynamic Brick Packing provides a competitive factor of 2
√
2 =

2.82 . . . for packing an online sequence of squares into a square container with small
edge length. The same problem has a lower bound of 4/3 for the competitive factor.

4 Conclusion

We have presented progress on two natural variants of packing squares into a
square in an online fashion. The most immediate open question remains the crit-
ical packing density for a fixed container, where the correct value may actually
be less than 1/2. Online packing into a dynamic container remains wide open.
There is still slack in both bounds, but probably more in the lower bound.

There are many interesting related questions. What is the critical density
(offline and online) for packing circles into a unit square? This was raised by
Demaine et al. [1]. In an offline setting, there is a lower bound of π/8 = 0.392 . . .,
and an upper bound of 2π

(2+
√
2)2

= 0.539 . . ., which is conjectured to be tight.

Another question is to consider the critical density as a function of the size of
the largest object. In an offline context, the proof by Moon and Moser provides
an answer, but little is known in an online setting.
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Abstract. We consider scheduling jobs online to minimize the objective∑
i∈[n] wig(Ci− ri), where wi is the weight of job i, ri is its release time,

Ci is its completion time and g is any non-decreasing convex function.
Previously, it was known that the clairvoyant algorithm Highest-Density-
First (HDF) is (2 + ε)-speed O(1)-competitive for this objective on a
single machine for any fixed 0 < ε < 1 [1]. We show the first non-trivial
results for this problem when g is not concave and the algorithm must
be non-clairvoyant. More specifically, our results include:

• A (2 + ε)-speed O(1)-competitive non-clairovyant algorithm on a
single machine for all non-decreasing convex g, matching the perfor-
mance of HDF for any fixed 0 < ε < 1.

• A (3+ ε)-speed O(1)-competitive non-clairovyant algorithm on mul-
tiple identical machines for all non-decreasing convex g for any fixed
0 < ε < 1.

Our positive result on multiple machines is the first non-trivial one even
when the algorithm is clairvoyant. Interestingly, all performance guaran-
tees above hold for all non-decreasing convex functions g simultaneously.
We supplement our positive results by showing any algorithm that is
oblivious to g is not O(1)-competitive with speed less than 2 on a single
machine. Further, any non-clairvoyent algorithm that knows the func-
tion g cannot be O(1)-competitive with speed less than

√
2 on a single

machine or speed less than 2− 1
m

on m identical machines.

1 Introduction

Scheduling a set of jobs that arrive over time on a single machine is perhaps
the most basic setting considered in scheduling theory. A considerable amount
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of work has focused on this fundamental problem. For examples, see [2]. In this
setting, there are n jobs that arrive over time, and each job i requires some
processing time pi to be completed on the machine. In the online setting, the
scheduler becomes first aware of job i at time ri when job i is released. Note
that in the online setting, it is standard to assume jobs can be preempted.

Generally, a client that submits a job i would like to minimize the flow time of
the job defined as Fi := Ci − ri, where Ci denotes the completion time of job i.
The flow time of a job measures the amount of time the job waits to be satisfied
in the system. When there are multiple jobs competing for service, the scheduler
needs to make scheduling decisions to optimize a certain global objective. One
of the most popular objectives is to minimize the total (or equivalently average)
flow time of all the jobs, i.e.,

∑
i∈[n] Fi. It is well known that the algorithm

Shortest-Remaining-Processing-Time (SRPT) is optimal for that objective in
the single machine setting. The algorithm SRPT always schedules the job that
has the shortest remaining processing time at each point in time. Another well
known result is that the algorithm First-In-First-Out (FIFO) is optimal for
minimizing the maximum flow time, i.e., maxi∈[n] Fi on a single machine. The
algorithm FIFO schedules the jobs in the order they arrive.

These classic results have been extended to the case where jobs have prior-
ities. In this extension, each job i is associated with a weight wi denoting its
priority; large weight implies higher priority. The generalization of the total flow
time problem is to minimize the total weighted flow time,

∑
i∈[n] wiFi. For this

problem it is known that no online algorithm can be O(1)-competitive [3]. A
generalization of the maximum flow time problem is to minimize the maximum
weighted flow time maxi∈[n] wiFi. It is also known for this problem that no online
algorithm can be O(1)-competitive [4,5].

Due to these strong lower bounds, previous work for these objectives has ap-
pealed to the relaxed analysis model called resource augmentation [6]. In this
relaxation, an algorithm A is said to be s-speed c-competitive if A has a com-
petitive ratio of c when processing jobs s times faster than the adversary. The
primary goal of a resource augmentation analysis is to find the minimum speed
an algorithm requires to be O(1)-competitive. For the total weighted flow time
objective, it is known that the algorithm Highest-Density-First (HDF) is (1+ε)-
speed O(1ε )-competitive for any fixed ε > 0 [7,8]. The algorithm HDF always
schedules the job i of highest density, wi

pi
. For the maximum weighted flow ob-

jective, the algorithm Biggest-Weight-First (BFW) is known to be (1+ ε)-speed
O(1ε )-competitive [5]. BFW always schedules the job with the largest weight.

Another widely considered objective is minimizing the �k-norms of flow time,
(∑

i∈[n] F
k
i

)1/k

[9,10,11,12,13,14]. The �k-norm objective is most useful for k ∈
{1, 2, 3,∞}. Observe that total flow time is the �1-norm of flow time, and the
maximum flow time is the �∞-norm. The �2 and �3 norms are natural balances
between the �1 and �∞ norms. These objectives can be used to decrease the
variance of flow time, thereby yielding a schedule that is fair to requests. It is
known that no algorithm can be nΩ(1)-competitive for minimizing the �2-norm
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[9]. On the positive side, for ε > 0, HDF was shown to be (1 + ε)-speed O( 1
ε2 )-

competitive for any �k-norm objective, k ≥ 1 [9].
These objectives have also been considered in the identical machine scheduling

setting [15,16,17,18,19,20,21,22]. In this setting, there are m machines that the
jobs can be scheduled on. Each job can be scheduled on any machine and job
i requires processing time pi no matter which machine it is assigned to. In the
identical machine setting it is known that any randomized online algorithm has
competitive ratio Ω(min{ nm , logP}), where P denotes the ratio between the
maximum and minimum processing time of a job [15]. HDF as well as several
other algorithms are known to be scalable for weighted flow time [8,16,22,21].
For the �k-norms objective the multiple machine version of HDF is known to be
scalable [21] as well as other algorithms [16,22]. For the maximum unweighted
flow it is known that FIFO is (3−2/m)-competitive, and for weighted maximum
flow time a scalable algorithm is known [4,5].

The algorithms HDF and SRPT use the processing time of a job to make
scheduling decisions. An algorithm which learns the processing time of a job
upon its arrival is called clairvoyant. An algorithm that does not know the pro-
cessing time of a job before completing the job is said to be non-clairvoyant.
Among the aforementioned algorithms, FIFO and BFW are non-clairvoyant.
Non-clairvoyant schedulers are highly desirable in many real world settings. For
example, an operating system typically does not know a job’s processing time.
Thus, there has been extensive work done on designing non-clairvoyant sched-
ulers for the problems discussed above. Scalable non-clairvoyant algorithms are
known for the maximum weighted flow time, average weighted flow time, and
�k-norms of flow time objectives even on identical machines [5,16].

It is common in scheduling theory that algorithms are tailored for specific
scheduling settings and objective functions. For instance, FIFO is considered the
best algorithm for non-clairvoyantly minimizing the maximum flow time, while
HDF is considered one of the best algorithms for minimizing total weighted flow
time. One natural question that arises is what to do if a system designer wants
to minimize several objective functions simultaneously. For instance, a system
designer may want to optimize average quality of service, while minimizing the
maximum waiting time of a job. Different algorithms have been considered for
minimizing average flow time and maximum flow time, but the system designer
would like to have a single algorithm that performs well for both objectives.

Motivated by this question, the general cost function objective was considered
in [1]. In the general cost function problem, there is a function g : R+ → R

+

given, and the goal of the scheduler is to minimize
∑
i∈[n] wig(Fi). One can think

of g(Fi) as the penalty of making job i wait Fi time steps, scaled by job i’s prior-
ity (its weight wi). This objective captures most scheduling metrics. For example,
this objective function captures total weighted flow time by setting g(x) = x.
By setting g(x) = xk, the objective also captures minimizing

∑
i∈[n] F

k
i which

is essentially the same as the �k-norm objective except the outer kth root is not
taken. Finally, by making g grow very quickly the objective can be designed
to capture minimizing the maximum weighted flow time. As stated, one of the
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reasons this objective was introduced was to find an algorithm that can optimize
several objectives simultaneously. If one were to design an algorithm that opti-
mizes the general cost function g while being oblivious to g, then this algorithm
would optimize all objective functions in this framework simultaneously.

In [1], the general cost function objective was considered only assuming that g
is non-decreasing. This is a natural assumption since there should be no incentive
for a job to wait longer. It was shown that in this case, no algorithm that is
oblivious to the cost function g can be O(1)-competitive with speed 2 − ε for
any fixed ε > 0. Surprisingly, it was also shown that HDF, an algorithm that
is oblivious to g, is (2 + ε)-speed O(1/ε)-competitive. This result shows that it
is indeed possible to design an algorithm that optimizes most of the reasonable
scheduling objectives simultaneously on a single machine. Recall that HDF is
clairvoyant. Ideally, we would like to have a non-clairvoyant algorithm for general
cost functions. Further, there is currently no known similar result in the multiple
identical machines setting.

Results: In this paper, we consider non-clairvoyant online scheduling to minimize
the general cost function on a single machine as well as on multiple identical ma-
chines. In both the settings,we give thefirst nontrivial positive resultswhen the on-
line scheduler is required to be non-clairvoyant.We concentrate on cost functions
g which are differentiable, non-decreasing, and convex. We assume without loss of
generality that g(0) = 0. Note that all of the objectives discussed previously have
these properties. We show the following somewhat surprising result (Section 4).

Theorem 1. There exists a non-clairvoyant algorithm that is (2+ε)-speedO(1/ε)-
competitive for minimizing

∑
i∈[n] wig(Ci− ri) on a single machine for any ε > 0,

when the given cost function g : R+ → R
+ is differentiable, non-decreasing, and

convex (g′ is non-decreasing). Further, this algorithm is oblivious to g.

We then consider the general cost function objective on multiple machines for
the first time, and give a positive result. This algorithm is also non-clairvoyant.

Theorem 2. There exists a non-clairvoyant algorithm that is (3+ε)-speedO(1/ε)-
competitive for minimizing

∑
i∈[n] wig(Ci− ri) on multiple identical machines for

any ε > 0, when the given cost function g : R
+ → R

+ is differentiable, non-
decreasing, and convex (g′ is non-decreasing). Further, this algorithm is oblivious
to g.

Note that we do not know if there exists a constant competitive non-clairvoyant
algorithm even for a single machine with any constant speed when the cost
function is neither convex nor concave. We leave this gap as an open problem.

We complement these positive results by extending the lower bound presented
in [1]. They showed that for any ε > 0, no oblivious algorithm can be (2−ε)-speed
O(1)-competitive on a single machine when the cost function g is non-decreasing,
but perhaps discontinuous. We show the same lower bound even if g is differen-
tiable, non-decreasing, and convex. Thus, on a single machine, our positive result
is essentially tight up to constant factors in the competitive ratio, and our algo-
rithm achieves the same performance guarantee while being non-clairvoyant.
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Theorem 3. No randomized clairvoyant algorithm that is oblivious to g can
be (2− ε)-speed O(1)-competitive for minimizing

∑
i∈[n] wig(Ci− ri) on a single

machine even if all jobs have unit weights and g is differentiable, non-decreasing,
and convex.

We go on to show that even if a non-clairvoyant algorithm knows the cost func-
tion g, the algorithm cannot have a bounded competitive ratio when given speed
less than

√
2.

Theorem 4. Any deterministic non-clairvoyant (possibly aware of g) algorithm
for minimizing

∑
i∈[n] wig(Ci − ri) on a single machine has an unbounded com-

petitive ratio when given speed
√
2−ε for any fixed ε > 0 where g is differentiable,

non-decreasing, and convex..

Finally, we show that at least 2 − 1
m speed is needed for any non-clairvoyant

algorithm to be constant competitive on m identical machines. This is the first
lower bound for the general cost function specifically designed for the multiple
machine case.

Theorem 5. Any randomized non-clairvoyant (possibly aware of g) algorithm
on m identical machines has an unbounded competitive ratio when given speed
less than 2− 1

m − ε for any fixed ε > 0 when g is differentiable, non-decreasing,
and convex..

Techniques: To show Theorem 1, we consider the well-known algorithm
Weighted-Shortest-Elapsed-Time-First (WSETF) on a singe machine, and first
show that it is 2-speed O(1)-competitive for minimizing the fractional version of
the general cost function objective. Then with a small extra amount of speed aug-
mentation, we convertWSETF’s schedule into the one that is (2+ε)-speedO(1)-
competitive for the integral general cost function. This conversion is now a fairly
standard technique, and will be further discussed in Section 2. This conversion
was also used in [1] when analyzing HDF. One can think of the fractional objec-
tive as converting each job i to a set of pi unit sized jobs of weight wi/pi. That
is, the weight of the job is distributed among all unit pieces of the job. Notice
that the resulting weight of the unit time jobs as well as the number of them de-
pends on the job’s original processing time. Thus, to analyze a non-clairvoyant
algorithm for the fractional instance one must consider the algorithm’s decisions
on the original instance and argue about the algorithm’s cost on the fractional in-
stance. This differs from the analysis of [1], where the clairvoyant algorithmHDF
can assume full knowledge of the conversion. Due to this, in [1] they can argue
directly aboutHDF’s decisions for the fractional instance of the problem. Since a
non-clairvoyant algorithm does not know the fractional instance, it seems difficult
to adapt the techniques of [1] when analyzing a non-clairvoyant algorithm.

If the instance consists of a set of unweighted jobs, WSETF always processes
the job which has been processed the least. Let qAi (t) be the amount WSETF
has processed job i by time t. When jobs have weights, WSETF processes
the job i such that wi

qAi (t)
is maximized where wi is the weight in the integral
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instance. One can see that WSETF will not necessarily process the jobs with
the highest weight at each time, which is what the algorithm HDF will do if
all jobs are unit sized. Further, WSETF may round robin among multiple jobs
of the same priority. For these reasons, our analysis of WSETF is substantially
different from the analysis in [1], and relies crucially on a new lower bound we
develop on the optimal solution. This lower bound holds for any objective that is
differentiable, non-decreasing, and convex. Our lower bound gives a way to relate
the final objective of the optimal solution to the volume of unsatisfied work the
optimal solution has at each moment in time. We then bound the volume of
unsatisfied jobs in the optimal schedule at each moment in time and relate this
to WSETF’s instantaneous increase in its objective function. We believe that
our new lower bound will be useful in further analysis of scheduling problems
since it is versatile enough to be used for many scheduling objectives.

Other Related Work: For minimizing average flow time on a single machine,
the non-clairvoyant algorithms Shortest Elapse Time First (SETF) and Lat-
est Arrival Processor Sharing (LAPS) are known to be scalable [6,23]. Their
weighted versionsWeighted Shortest Elapse Time First (WSETF) andWeighted
Latest Arrival Processor Sharing (WLAPS) are scalable for average weighted
flow time [9,24], and also for (weighted) �k norms of flow time [9,10].

In [1], Im et al. showed Weighted Latest Arrival Processor Sharing (WLAPS)
is scalable for concave functions g. They also showed that no online randomized
algorithm, even with any constant speed-up, can have a constant competitive
ratio, when each job i has its own cost function gi, and the goal is to mini-
mize

∑
i∈[n] gi(Fi). This more general problem was studied in the offline setting

by Bansal and Pruhs [25]. They gave an O(log lognP )-approximation (without
speed augmentation), where P is the ratio of the maximum to minimum process-
ing time of a job. This is the best known approximation for minimizing average
weighted flow time offline, and a central open question in scheduling theory is
whether or not a O(1)-approximation exists for weighted flow time offline.

2 Preliminaries

The Fractional Objective: In this section we define the fractional general
cost objective and introduce some notation. We will refer to the non-fractional
general cost objective as integral. For a schedule, let pi(t) denote the remaining
processing time of job i at time t. Let βi(p) be the latest time t such that pi(t) = p
for any p where 0 ≤ p ≤ pi.

The fractional objective penalizes jobs over time by charging in proportion to
how much of the job remains to be processed. Formally, the fractional objective
is defined as:

∑

i∈[n]

∫ Ci

t=ri

wipi(t)

pi
g′(t− ri)dt (1)
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Generally when the fractional objective is considered, it is stated in the form
(1). For our analysis it will be useful to note that this objective is equivalent to:

∑

i∈[n]

wi
pi

∫ pi

p=0

g(βi(p)− ri)dp (2)

As noted earlier, considering the fractional objective has proven to be quite useful
for the analysis of algorithms in scheduling theory, because directly arguing
about the fractional objective is usually easier from an analysis viewpoint. A
schedule which optimizes the fractional objective can then be used to get a good
schedule for the integral objective as seen in the following theorems. In the first
theorem (6), the algorithm’s fractional cost is compared against the optimal
solution for the fractional objective. In the second theorem (7), the algorithm’s
fractional cost is compared against the optimal solution for the integral instance.

Theorem 6 ([1]). If a (non-clairvoyant) algorithm A is s-speed c-competitive
for minimizing the fractional general cost function then there exists a (1 + ε)s-

speed (1+ε)c
ε -competitive (non-clairvoyant) algorithm for the integral general cost

function objective for any 0 ≤ ε ≤ 1.

Theorem 7 ([1]). If a (non-clairvoyant) algorithm A with s-speed has frac-
tional cost at most a factor c larger than the optimal solution for the integral

objective then there exists a (1 + ε)s-speed (1+ε)c
ε -competitive (non-clairvoyant)

algorithm for the integral general cost function objective for any 0 ≤ ε ≤ 1.

These two theorems follow easily by the analysis given in [1]. We note that the
resulting algorithm that performs well for the integral objective is not necessarily
the algorithm A. Interestingly, [1] shows that if A is HDF then the resulting al-
gorithm is still HDF. However, if A is WSETF, the resulting integral algorithm
need not be WSETF.

Notation: We now introduce some more notation that will be used throughout
the paper. For a schedule B, let CBi be the completion time of job i. Let pBi (t)
denote the remaining processing time for job i at time t. Let qBi (t) = pi − pBi (t)
be the amount job i has been processed by time t. Let pBi,j(t) = (min{wj

wi
pi, pj}−

qBj (t))
+. Here (·)+ denotes max{·, 0}. Let pi,j = min{wj

wi
pi, pj} = pBi,j(rj). If the

schedule B is that produced by WSETF and t ∈ [ri, C
B
i ] then pBi,j(t) is exactly

the amount of processing time WSETF will devote to job j during the interval
[t, CBi ]. In other words, the remaining time job i waits due to WSETF processing
job j. Let QB(t) be the set of job released but unsatisfied by B at time t. Let
ZBi (t) =

∑
j∈QB(t) p

B
i,j(t). When the algorithm B is the optimal solution (OPT)

we set B to be O and if the algorithm is WSETF we set B to be A. For example
QA(t) is the set of released and unsatisfied jobs for WSETF at time t. Finally,
for a set of possibly overlapping time intervals I, let |I| denote the total length
of their union.
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3 Analysis Tools

In this section we introduce some useful tools that we use for our analysis. First
we present our novel lower bound on the optimal solution. This lower bound
is the key to our analysis and the main technical contribution of the paper.
The left-hand-side of the inequality in the lemma has an arbitrary function
x(t) : R+ → R

+ \ {0}, while the right-hand-side is simply a fractional cost of the
schedule in consideration. This lower bound is inspired by one presented in [11].
However, the lower bound given in [11] involves substantially different terms, and
is only for the �k-norms of flow time. Our proof is considerably different from
[11], and perhaps simpler. Since this lower bound applies to any objective that
fits into the general cost function framework, we believe that this lower bound
will prove to be useful for a variety of scheduling problems. The assumption in
the lemma that g is convex is crucial; the lemma is not true otherwise. The
usefulness of this lemma will become apparent in the following two sections. We
prove this lemma in Section 6 after we show the power of the lemma.

Lemma 1. Let σ be a set of jobs on a single machine with speed s′. Let B be any
feasible schedule and B(σ) be the total weighted fractional cost of B with objective
function g that is differentiable and convex (g′ is non-decreasing), with g(0) = 0.
Let x(t) : R+ → R

+\{0} be any function of t. Let pBx,i(t) = (min(wix(t), p
B
i (t))−

qBi (t))
+. Finally, let ZBx (t) =

∑
i∈QB(t) p

B
x,i(t). Then,

∫ ∞

t=0

1

x(t)
g(ZBx (t)/s

′)dt ≤ 1

s′
B(σ).

Next we show a property of WSETF that will be useful in relating the volume
of work of unsatisfied jobs in WSETF’s schedule to that of the optimal solu-
tion’s schedule. By using this lemma we can bound the volume of jobs in the
optimal solution’s schedule and then appeal to the lower bound shown in the
previous lemma. This lemma is somewhat similar to one shown for the algorithm
Shortest-Remaining-Processing-Time (SRPT) [2,22]. However, we are able to get
a stronger version of this lemma for WSETF.

Lemma 2. Consider running WSETF using s-speed for some s ≥ 2 on m iden-
tical machines and the optimal schedule at unit speed on m identical machines.
For any job i ∈ QA(t) and time t, it is the case that ZAi (t)− ZOi (t) ≤ 0.

Proof. For the sake of contradiction, let t be the earliest time such that ZAi (t)−
ZOi (t) > 0. Let j be a job where pAi,j(t) > pOi,j(t). Consider the interval I = [rj , t].
Let Ij be the set of intervals where WSETF works on job j during I and let
I ′j be the rest of the interval I. Knowing that pAi,j(t) > pOi,j(t), we have that

|Ij | < 1
s |I|. If this fact were not true, then qAj (t) = s|Ij | ≥ |I|, but since OPT

has 1 speed, qOj (t) ≤ |I|, and therefore qAj (t) ≥ qOj (t), a contradiction of the

definition of job j. Hence, we know that |I ′j | ≥ (1 − 1
s )|I|. At each time during

I either WSETF is scheduling job j or all m machines in WSETF’s schedule
are busy scheduling jobs which contribute to ZAi (t). Thus the total amount of
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work done by WSETF during |I| on jobs that contribute to ZAi (t) is at least
qAj (t) +ms|I ′j | ≥ ms(1 − 1

s )|I| = m(s − 1)|I|. The total amount of work OPT

can do on jobs that contribute to ZOi (t) is m|I|. Let S denote the set of jobs
that arrive during I. The facts above imply that

ZAi (t)− ZOi (t) ≤ (ZAi (rj) +
∑

k∈S
pi,k −m(s− 1)|I|)− (ZOi (rj) +

∑

k∈S
pi,k −m|I|)

= (ZAi (rj)−m(s− 1)|I|)− (ZOi (rj)−m|I|)
≤ ZAi (rj)− ZOi (rj) [s ≥ 2]

≤ 0 [t is the first time ZAi (t)− ZOi (t) > 0 and rj < t].

�

4 Single Machine

We now show WSETF is 2-speed O(1)-competitive on a single processor for
the fractional objective. We then derive Theorem 1. In Section 5, we extend our
analysis to bound the performance of WSETF on identical machines as well
when migration is allowed.

Assume that WSETF is given a speed s ≥ 2. Notice that ZAi (t) always
decreases at a rate of s for all jobs i ∈ QA(t) when t ∈ [ri, Ci]. This is because
ZAi (t) is exactly the amount of remaining processing WSETF will do before job
i is completed amongst jobs that have arrived by time t. Further, knowing that
OPT has 1 speed, we see ZOi (t) decreases at a rate of at most 1 at any time t.
We know that by Lemma 2 ZAi (ri) − ZOi (ri) ≤ 0. Using these facts, we derive
for any time t ∈ [ri, C

A
i ],

ZAi (t)− ZOi (t) ≤ −(s− 1) · (t− ri).

Therefore,
ZO

i (t)
s−1 ≥ (t − ri) for any t ∈ [ri, C

A
i ]. Let a(t) denote the job that

WSETF works on at time t. By the second definition, WSETF’s fractional
cost is

∫ ∞

t=0

s · wa(t)

pa(t)
g(t−ra(t))dt ≤ s

∫ ∞

t=0

wa(t)

pa(t)
g
(ZO

a(t)(t)

s− 1

)
dt ≤ s

s− 1

∫ ∞

t=0

wa(t)

pa(t)
g(ZO

a(t)(t))dt

The last inequality follows since g(·) is convex, g(0) = 0, and 1
s−1 ≤ 1. By

applying Lemma 1 with x(t) = pa(t)/wa(t), s
′ = 1 and B being OPT’s schedule,

we have the following theorem.

Theorem 8. WSETF is s-speed (1+ 1
s−1 )-competitive for the fractional general

cost function when s ≥ 2.

This theorem combined with Theorem 6 proves Theorem 1.
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5 Multiple Identical Machines

Here we present the proof of Theorem 2. In the analysis of WSETF on a single
machine, we bounded the cost of WSETF’s schedule for the fractional objective
to the cost of the optimal solution for the fractional objective. In the multiple
machines case, we will not compare WSETF to the optimal solution for the
fractional objective but rather compare to the cost of the optimal solution for
the integral objective. We then invoke Theorem 7 to derive Theorem 2. We
first consider an obvious lower bound on the optimal solution for the integral
objective. For each job i, the best the optimal solution can do is to process job
i immediately upon its arrival using one of its m unit speed machines. We know
that the total integral cost of the optimal solution is at least

∑

i∈[n]
wig(pi). (3)

Similar to the single machine analysis, when a job is processed we charge the
cost to the optimal solution. However, if a job i is processed at time t where
t− ri ≤ pi we charge to the integral lower bound on the optimal solution above.
If t − ri > pi, then we will invoke the lower bound on the optimal solution
shown in Lemma 1 and use the fact that the an algorithm’s fractional objective
is always smaller than its integral objective.

Assume that WSETF is given speed s ≥ 3. If job i ∈ QA(t) is not processed
by WSETF at time t, then there must exist at least m jobs in QA(t) processed
instead by WSETF at this time. Hence, for all jobs i ∈ QA(t), the quantity
pAi (t)+Z

A
i (t)/m decreases at a rate of s during [ri, C

A
i ]. In contrast, the quantity

ZOi (t)/m decreases at a rate of at most 1 since OPT has m unit speed machines.
Further, by Lemma 2, we know that ZAi (ri)−ZOi (ri) ≤ 0, and pAi (ri)+Z

A
i (ri)−

ZOi (ri) ≤ pi . Using these facts we know for any job i and t ∈ [ri, C
A
i ] that

pAi (t) + (ZAi (t)− ZOi (t))/m ≤ pi − (s− 1)(t− ri). Notice that if t− ri ≥ pi, we
have that pAi (t)+(ZAi (t)−ZOi (t))/m ≤ −(s−2)(t−ri). Therefore, t−ri ≤ ZO

i (t)
m(s−2)

when t− ri ≥ pi.
Let W (t) be the set of jobs that WSETF processes at time t. By definition,

the value of WSETF’s fractional objective is

s

∫ ∞

t=0

∑

i∈W (t)

wi
pi
g(t− ri)dt.

We divide the set of jobs in W (t) into two sets. The first is the set of ‘young’
jobs Wy(t) which are the set of jobs i ∈ W (t) where t− ri ≤ pi. The other set is
Wo(t) =W (t)\Wy(t) which is the set of ‘old’ jobs. Let OPT denote the optimal
solution’s integral cost. We see that WSETF’s cost is at most the following.
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s

∫ ∞

t=0

∑

i∈W (t)

wi

pi
g(t− ri)dt ≤ s

∫ ∞

t=0

∑

i∈Wy(t)

wi

pi
g(t− ri)dt + s

∫ ∞

t=0

∑

i∈Wo(t)

wi

pi
g(t− ri)dt

≤
∫ ∞

t=0

∑

i∈Wy(t)

wi
s

pi
g(pi)dt + s

∫ ∞

t=0

∑

i∈Wo(t)

wi

pi
g(t− ri)dt

≤
∑

i∈[n]

wig(pi) + s

∫ ∞

t=0

∑

i∈Wo(t)

wi

pi
g(t− ri)dt

≤ OPT + s

∫ ∞

t=0

∑

i∈Wo(t)

wi

pi
g
( ZO

i (t)

m(s− 2)

)
dt

[by the lower bound of (3) on OPT]

≤ OPT +
s

s− 2

∫ ∞

t=0

∑

i∈Wo(t)

wi

pi
g(ZO

i (t)/m)dt

The third inequality holds since a job i can be in Wy(t) only if i is processed
by WSETF at time t, and job i can be processed by at most pi before it is
completed. More precisely, if i is in Wy(t), then it is processed by s · dt during
time [t, t+ dt). Hence,

∫∞
t=0

1[i ∈ Wy(t)] · s · dt ≤ pi, where 1[i ∈Wy(t)] denotes
the 0-1 indicator variable such that 1[i ∈ Wy(t)] = 1 if and only if i ∈ Wy(t).
The last inequality follows since g(·) is convex, g(0) = 0, and 1

s−2 ≤ 1. We
know that a single m-speed machine is always as powerful as m unit speed
machines, because a m-speed machine can simulate m unit speed machines.
Thus, we can assume OPT has a single m-speed machine. We apply Lemma 1
with x(t) = pi/wi for each i ∈ Wo(t), s

′ = m and B being OPT’s schedule.
Knowing that |Wo(t)| ≤ m, we conclude that

∫∞
t=0

∑
a∈Wo(t)

wa

pa
g(ZOa (t)/m) is

at most the optimal solution’s fractional cost. Knowing that any algorithm’s
fractional cost is at most its integral cost, we conclude that WSETF’s fractional
cost with s-speed is at most (2 + 2

s−2 ) times the integral cost of the optimal
solution when s ≥ 3. Using Theorem 7, we derive Theorem 2.

6 Proof of the Main Lemma

In this section we prove Lemma 1.

Proof of [Lemma 1]
The intuition behind the lemma is that each instance of ZBx (t) is composed of

several infinitesimal job ‘slices’. By integrating over how long these slices have
left to live, we get an upper bound on ZBx (t). We then argue that the integration
over each slice’s time alive is actually the fractional cost of that slice according to
the second definition of the fractional objective. Recall βBi (p) denotes the latest
time t at which pBi (t) = p. For any time t, let

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp,



Non-clairvoyantly Scheduling 153

and let Λ(t) =
∑

i∈QB(t) Λi(t).
The proof of the lemma proceeds as follows. We first show a lower bound

on Λ(t) in terms of 1
x(t)g(Z

B
x (t)/s′). Then we show an upper bound on Λ(t) in

terms of the fractional cost of B’s schedule. This strategy allows us to relate
1
x(t)g(Z

B
x (t)/s′) and B’s cost. For the first part of the strategy, we prove that

s′
x(t)g(Z

B
x (t)/s′) ≤ Λ(t) at all times t. Consider any job i ∈ QB(t) with pBx,i(t) >

0. Suppose pi ≤ wix(t). Then,

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp ≥
1

x(t)

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βBi (p)− t)dp.

If pi > wix(t), then by definition of pBx,i(t),

pBi (t)

pBx,i(t)
≥ pBi (t) + qBi (t)

pBx,i(t) + qBi (t)
[Since pBi (t) ≥ pBx,i(t)]

=
pi

min(wix(t), pBi (t))− qBi (t))+ + qBi (t)

≥ pi

(wix(t)− qBi (t)) + qBi (t)
[Since pBx,i(t) > 0]

=
pi

wix(t)
.

In this case,

Λi(t) =
wi

pi

∫ pBi (t)

p=0

g′(βB
i (p)− t)dp

≥ pBi (t)wi

pBx,i(t)pi

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βB
i (p)− t)dp [Since g is non-decreasing, convex]

≥ 1

x(t)

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βB
i (p)− t)dp [Since pBi (t)/pBx,i(t) > pi/(wix(t))].

(4)

In either case, Λi(t) has a lower bound of quantity (4). By convexity of g, the
lower bounds on Λi(t) are minimized if B completes pBx,i(t) units of i as quickly
as possible for each job i. Schedule B runs at speed s′, so we have

Λ(t) ≥ 1

x(t)

∫ ZB
x (t)

p=0

g′(p/s′)dp =
s′

x(t)

∫ ZB
x (t)/s′

p=0

g′(p)dp ≥ s′

x(t)
g(ZBx (t)/s′).

This proves that lower bound on Λ(t). Now we show an upper bound on Λ(t) in
terms of the B’s fractional cost. We show

∫∞
t=0 Λ(t)dt ≤ B(I). Fix a job i. We

have
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∫ ∞

t=0

Λi(t)dt =

∫ ∞

t=0

wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dpdt =
wi
pi

∫ pi

p=0

∫ βB
i (p)

t=0

g′(t)dtdp

=
wi
pi

∫ pi

p=0

g(βBi (p))dp.

By summing over all jobs and using the definition of fractional flow time, we
have that

∫∞
t=0

Λ(t)dt ≤ B(I). Further, the given lower bound and upper bounds

on
∫∞
t=0 Λ(t)dt show us that

∫∞
t=0

s′
x(t)g(Z

B
x (t)/s′)dt ≤ ∫∞

t=0 Λ(t)dt ≤ B(I), which

proves the lemma. �

7 Lower Bounds

We now present the proof of Theorem 3. This lower bound extends a lower
bound given in [1]. In [1], it was shown that no oblivious algorithm can be O(1)-
competitive with speed less than 2−ε for the general cost function. However, they
assume that the cost function was possibly discontinuous and not convex. We
show that their lower bound can be extended to the case where g is convex and
continuous. This shows that WSETF is essentially the best oblivious algorithm
one can hope for. In all the proofs that follow, we will consider a general cost
function g that is continuous, non-decreasing, and convex. The function is also
differentiable except at a single point. The function can be easily adapted so
that it is differentiable over all points in R

+.

Proof of [Theorem 3]: We appeal to Yao’s Min-max Principle [26]. Let A be any
deterministic online algorithm. Consider the cost function g and large constant
c such that g(F ) = 2c(F − D) for F > D and g(F ) = 0 for 0 ≤ F ≤ D. It
is easy to see that g is continuous, non-decreasing, and convex. The constant
D is hidden to A, and is set to 1 with probability 1

2c(n+1) and to n + 1 with

probability 1 − 1
2c(n+1) . Let E denote the event that D = 1. At time 0, one big

job Jb of size n+1 is released. At each integer time 1 ≤ t ≤ n, one unit sized job
Jt is released. Here n is assumed to be sufficiently large. That is n > 12c

ε2 . Note
that the event E has no effect on A’s scheduling decision, since A is ignorant of
the cost function.

Suppose the online algorithm A finishes the big job Jb by time n+2. Further,
say the event E occurs; that is D = 1. Since 2n+ 1 volume of jobs in total are
released and A can process at most (2−ε)(n+2) amount of work during [0, n+2],
A has at least 2n+ 1 − (2 − ε)(n + 2) = ε(n + 2)− 3 volume of unit sized jobs
unfinished at time n+2. A has total cost at least 2c(ε(n+2)−3)2/2 > c(εn)2/2.
The inequality follows since n > 12c

ε2 . Knowing that Pr[E ] = 1
2c(n+1) , A has an

expected cost greater than Ω(n). Now suppose A did not finish Jb by time n+2.
Conditioned on ¬E , A has cost at least 2c. Hence A’s expected cost is at least
2c(1− 1

2c(n+1)) > c.

We now consider the adversary’s schedule. Conditioned on E (D = 1), the adver-
sary completes each unit sized job within one unit time and hence has a non-zero
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cost only for Jb. The total cost is 2c(n + 1). Conditioned on ¬E (D = n + 1),
the adversary schedules jobs in a first in first out fashion thereby having cost 0.
Hence the adversary’s expected cost is 1

2c(n+1) (2c)(n+ 1) = 1. Knowing that n

is sufficiently larger than c, the claim follows since A has cost greater than c in
expectation. �
Next we show a lower bound for any non-clairvoyant algorithm that knows g.
In [1] it was shown that no algorithm can be O(1)-competitive for a general
cost function with speed less than 7/6. However, the cost function g used in
the lower bound was neither continuous nor convex. We show that no algorithm
can have a bounded competitive ratio if it is given a speed less than

√
2 > 7/6

even if the function is continuous and convex but the algorithm is required to
be non-clairvoyant.

Proof of [Theorem 4]: Let A be any non-clairvoyant deterministic online al-
gorithm with speed s. Let the cost function g be defined as g(F ) = F − 10
for F > 10 and g(F ) = 0 otherwise. It is easy to verify that g is continuous,
non-decreasing, and convex. At time t = 0, job J1 of processing length 10 units
and weight w1 is released. At time t = 10(

√
2 − 1), job J2 of weight w2 is re-

leased. Weights of these jobs will be set later. The processing time of job J2 is
set based on the algorithm’s decisions, which can be done since the algorithm A
is non-clairovyant.

Consider the amount of work done by A on the job J2 by the time t = 10.
Suppose algorithm A worked on J2 for less than 10(

√
2−1) units by time t = 10.

In this case, the adversary sets J2’s processing time to 10 units. The flow time of
job J2 in A’s schedule is (10−10(

√
2−1))+(10−10(

√
2−1))/s ≥ 10+10(

√
2−

1)ε/(
√
2− ε) when s = √2− ε. Let ε′ = 10(

√
2− 1)ε/(

√
2− ε). Hence, A incurs

a weighted flow time of ε′w2 towards J2. The optimal solution works on J2 the
moment it arrives until its completion, so this job incurs no cost. The optimal
solution processes J1 partially before J2 arrives and processes it until completion
after job J2 is completed. The largest flow time the optimal solution can have
for J1 is 20, so the optimal cost is upper bounded by 10w1. The competitive
ratio of A ε′w2

10w1
can be made arbitrarily large by setting w2 to be much larger

than w1.
Nowconsider the casewhereAworks onJ2 for 10(

√
2−1) units by time t = 10. In

this case, the adversary sets the processing time of job J2 to 10(
√
2−1). Therefore,

A completes J2 by time t = 10.However,A can not complete J1 with flow time of at
most 10units, if givena speedof atmost

√
2−ε.HenceA incurs a cost of εw1 towards

flow time of J1. It is easy to verify that for this input, the optimal solution first
schedules J1 until its completion and then processes job J2 to completion. Hence,
the optimal solution completes both the jobs with flow time of at most 10 units,
incurring a cost of 0. Again, the competitive ratio is unbounded. �
Finally, we show a lower bound for any non-clairvoyant algorithm that knows
g on m identical machines. We show that no algorithm can have a bounded
competitive ratio when given speed less than 2− 1

m . Previously, the only previous
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lower bounds for the general cost function on identical machines were lower
bounds that carried over from the single machine setting.

Proof of [Theorem 5]: We use Yao’s min-max principle. Let A be any non-
clairvoyant deterministic online algorithm onm parallel machines with the speed
s = 2 − ε, for any 0 < ε ≤ 1. Let L > 1 be a parameter and we take m > 1

ε .
Let the cost function g(F ) be defined as follows: g(F ) = F − L for F > L and
g(F ) = 0 otherwise. It is easy to verify that, g is continuous, non-decreasing,
and convex. At time t = 0, (m− 1)L+ 1 jobs are released into the system, out
of which (m − 1)L jobs have unit processing time and one job has processing
time L. The adversary sets the job with processing time L uniformaly at random
amongst all the jobs.

Consider the time t = L(m−1)+1
sm . At the time t, there exist a job j that

has been processed to the extent of at most 1 unit by A since the most work
A can do is smt = L(m − 1) + 1, which is the total number of jobs. With
probability 1

L(m−1)+1 , j has a processing time of L units. In the event that j

has the processing time of L units, the earliest A can complete j is t + L−1
s =

L(m−1)+1
sm + L−1

s > L when L is sufficiently large and s ≤ 2 − ε (note that
m > 1

ε ). In this case, j has a flow time greater than L time units. Therefore, in
expectation A incurs a positive cost.

Let us now look at the adversary’s schedule. Since the adversary knows the
processing times of jobs, the adversary processes the job j of length L on a
dedicated machine. The rest of the unit length jobs are processed on other ma-
chines. The adversary completes all the jobs by the time L and hence pays
cost of 0. Therefore, the expected competitive ratio of the online algorithm A is
unbounded. �
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Abstract. We consider two new variants of online integer programs
that are dual to each other. In the packing problem we are given a set
of items and a collection of knapsack constraints over these items that
are revealed over time in an online fashion. Upon arrival of a constraint
we may need to remove several items (irrevocably) so as to maintain
feasibility of the solution. Hence, the set of packed items becomes smaller
over time. The goal is to maximize the number, or value, of packed items.
The problem originates from a buffer-overflow model in communication
networks, where items represent information units broken to multiple
packets. The other problem considered is online covering: There is a
universe we need to cover. Sets arrive online, and we must decide whether
we take each set to the cover or give it up, so the number of sets in
the solution grows over time. The cost of a solution is the total cost of
sets taken, plus a penalty for each uncovered element. This problem is
motivated by team formation, where the universe consists of skills, and
sets represent candidates we may hire.

The packing problem was introduced in [8] for the special case where
the matrix is binary; in this paper we extend the solution to general
matrices with non-negative integer entries. The covering problem is in-
troduced in this paper; we present matching upper and lower bounds on
its competitive ratio.

1 Introduction

In this paper we study two related online problems based on the classic packing
and covering integer programs. The first is a general packing problem called
Online Packing Integer Programs (abbreviated opip). In this problem we
are given a set of n items and a collection of knapsack constraints over these
items. Initially the constraints are unknown and all items are considered packed.
In each time step, a new constraint arrives, and the online algorithm needs to
remove some items (irrevocably) so as to maintain feasibility of its solution. The
goal is to maximize the number, or value, of packed items. Formally, the offline
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version of the problem we consider is expressed by the following linear integer
program (N denotes the set of non-negative integers):

max

n∑

j=1

bjxj

s.t.
n∑

j=1

aijxj ≤ ci ∀i

xj ≤ pj ∀j
xj ∈ N ∀j

(PIP)

We assume that A ∈ N
m×n and c ∈ N

n. The value of xj represents the number
of copies of item j that are packed, pj is an upper bound on the number of copies
of item j, bj is the benefit obtained by packing item j, and ci is the capacity of
the ith constraint. The online character of opip is expressed by the following
additional assumptions: (i) knapsack constraints arrive one by one, and (ii) the
variables can only be decreased. The special case, where A ∈ {0, 1}m×n and
c = 1n is known as Online Set Packing [8].

An LP-relaxation of (PIP) is obtained by replacing the integrality constraints
by xj ≥ 0, for every j. It follows that the integral version of the dual of the
LP-relaxation is:

min
m∑

i=1

ciyi +
n∑

j=1

pjzj

s.t.

m∑

i=1

aijyi + zj ≥ bj ∀j
yi ∈ N ∀i
zj ∈ N ∀j

(TF)

The program (TF) describes the second problem that is considered in this paper,
called the Team Formation problem (for reasons that will become apparent
below). In this problem we are given n elements, where element j has a covering
requirement bj and a penalty pj . There are m sets, where the coverage of set
i of element j is aij and its cost is ci. The solution is a collection of the sets,
where multiple copies of sets are allowed. The cost of a solution is the cost of
selected sets plus the penalties for unsatisfied covering requirements. In (TF),
the value of yi represents the number of copies of i taken by the solution. Our
online version of the Team Formation problem, denoted otf, is as follows.
Initially, the elements are uncovered—and hence incur a unit penalty per each
unit of uncovered element. Sets with various coverage and cost arrive online.
In each time step, a new set arrives, and the algorithm must decide how many
copies of the arriving set to add to the solution. The goal is to minimize the
total cost of sets taken plus penalties for uncovered elements.

Our main figure of merit, as is customary with online algorithms, is the com-
petitive ratio: in the covering case, the ratio of cost incurred by the algorithm
(expected cost if the algorithm is randomized) to the best possible cost for the
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given instance, and in the packing case, the ratio between the benefit earned by
the optimum solution to the (expected) benefit earned by the algorithm.

Motivation. The otf problem is an abstraction of the following situation (cor-
responding to a binary matrix and binary requirements). We are embarking on
a new project, which requires some n skills. The requirement for skill j can be
satisfied by outsourcing for some cost pj, or by hiring an employee who possesses
skill j. The goal is to minimize the project cost under the following procedure:
We interview candidates one by one. After each interview we know what are
the skills of the candidate and what is the cost of hiring her, and then we must
decide: do we hire the candidate? If we don’t, we lose her forever.

The opip problem came out of the following natural networking situation [8].
High-level information units, called frames, may be too large to fit in a single
network packet, in which case the frames are fragmented to multiple packets. As
packets traverse the network, they may arrive at a bottleneck link which cannot
deliver them all, giving rise to a basic online question: which packets to drop so
as to maximize the number of frames that are completely delivered. If we ignore
buffers, this question is precisely our version of opip: in each time step i, a burst
of packets arrives, which corresponds to the ith constraint in (PIP): aij is the
size of the packet from frame j that arrives at step i, and ci is the total size that
the link can deliver at time i.

Our problems appear unique in the literature of online computation in that
solutions get progressively smaller with time. Traditionally, the initial solution
is expected to be the empty set, and its value or cost only gets larger as the input
is progressively presented. In our class of problems, some aspects of the input
are known, inducing a näıve initial solution. The presented input progressively
elucidates the structure of the instance, adding more constraints (in maximiza-
tion problems) or providing increasing opportunities for cost reductions or opti-
mizations (in minimization problems). In reality, often the issue is not what to
include, but what to keep. We feel that this complementary viewpoint is natural
and deserves further treatment.

Contribution and Results. The contributions of this paper are twofold. In
the conceptual level, to the best of our knowledge we are the first to formalize
the otf problem (the opip problem was introduced in [8]).

On the technical level, we present new results for both the opip and the otf
problems. For opip, we extend the results of [8] from a binary matrix to the
case of general non-negative integer demands. This is a useful extension when
we consider our motivating network bottleneck scenario: it allows the algorithm
to deal with packets of different size, while previous solutions were restricted to
uniform-size packets. For the case of unit caps (i.e., p = 1), the competitive ratio
of our algorithm is O(Cmax

√
ρmax), where Cmax the maximal sum of entries in

a column, and ρmax is the maximal ratio of the sum of entries in a row i to its
cap ci. An additional

√
maxj pj factor is incurred for non-unit cap. We remark

that the extension is non-trivial, although it uses known techniques.
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Regarding otf, we prove matching upper and lower bounds on the compet-
itive ratio: We show that even randomized algorithms cannot have competitive
ratio better than Ω(

√
γ), where γ is the maximal ratio, over all elements, be-

tween the highest and lowest cost of covering a given element. This result holds
even for the case where the algorithm may discard a set from its running solution
(but never takes back a set that was dismissed). On the other hand, we give a
simple deterministic algorithm with a competitive ratio of O(

√
γ).

Related Work. Online packing was studied in the past, but traditionally the
elements of the universe (equivalently, the constraints) were given ahead of time
and sets arrive on-line (e.g., in [2]). In the similar vein, online set cover was defined
in [1] as follows. A collection of sets is given ahead of time. Elements arrive online,
and the algorithm is required to maintain a cover of the elements that arrived: if
the arriving element is not already covered, then some set from the given collection
must be added to the solution. Our problems have the complementary view of
what’s known in advance and what arrives online (see also [5]).

As mentioned above, our notion of opip was essentially introduced in [8].
Let us first review some results for the off-line packing problem pip. The single
constraint case (m = 1) is simply the Knapsack problem which is NP-hard
and has an FPTAS [20,16]. If the number of constraints is constant, the offline
version of pip becomes the Multi-dimensional Knapsack problem that has
a PTAS [11], while obtaining an FPTAS for it is NP-hard [17]. Raghavan and
Thompson [19] used randomized rounding to obtain solutions whose benefit is
t1 = Ω(opt/m1/α) for pip, where α = minj mini

cj
aij

. A solution of benefit t2 =

Ω(opt/m1/(α+1)) is also given for the case where A ∈ {0, 1}m×n. (In this case
α = minj cj .) Srinivasan [21] improved these results by obtaining solutions whose

benefits are Ω(t
α/(α−1)
1 ) and Ω(t

α/(α−1)
2 ). Chekuri and Khanna [6] showed that,

for every fixed integer α and fixed ε > 0, pip with c = αm and A ∈ {0, 1}m×n
cannot be approximated within a factor of m1/(α+1)−ε, unless NP=ZPP. They
also showed that pip with uniform capacities cannot be approximated within a
factor ofm1/(α+1)−ε, unless NP=ZPP, even with a resource augmentation factor
α. (In this case the solution x satisfies Ax ≤ αc.)

As mentioned before, the special case of pip, where A ∈ {0, 1}m×n and c = 1n

is known as set packing. This problem is as hard as Maximum Independent
Set even when all elements have degree 2 (i.e., A contains at most two non-zero
entries in each row), and therefore cannot be approximated to within a factor
of O(n1−ε), for any ε > 0 [14]. In terms of the number of elements (constraints,
in pip terms) set packing packing is O(

√
m)-approximable, and hard to ap-

proximate within m1/2−ε, for any ε > 0 [13]. When set sizes are at most k (A
contains at most k non-zero entries in each column), it is approximable to within
(k + 1)/3 + ε, for any ε > 0 [7], and within (k + 1)/2 in the weighted case [4],
but known to be hard to approximate to within o(k/ log k)-factor [15].

opip was introduced in [8], assuming that the matrix is binary, namely each set
requires either one or zero copies of each element. In [8], a randomized algorithm
was given for that case, obtaining competitive ratio of O(k

√
σ), where k is the
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maximal set size and σ is the maximal ratio, over all elements, between the
number of sets containing that element to the number of its copies. In opip terms
this bound is O(Cmax

√
ρmax). A nearly matching lower bound of Ω̃(k

√
σ) was

also given. Subsequent work extended these results to allow for redundancy [18],
i.e., when the benefit of a set is earned by the algorithm even if up to a β < 1
fraction of its elements are not assigned to it.

Previously, the online packing problem where sets arrive online and con-
straints are fixed was defined in [2]. They give an algorithm with competitive
ratio O(log n) assuming that no set requires more than a 1/ logn fraction of
the cap of any element. A matching lower bound shows that this requirement is
necessary to obtain a polylogarithmic competitive ratio.

Regarding team formation, we are unaware of any prior formalization of the
problem, let alone analysis. The online cover problem defined in [1] has an al-
gorithm with competitive ratio O(log n logm). Another related problem is the
secretary problem (see, e.g., [12,10]; some more recent results and references can
be found in [9,3]). In this family of problems a n candidates arrive in random
order (or with random value), and the goal is to pick k of them (classically,
k = 1) which optimizes some function of the value set, such as the probability
of picking the candidates with the top k values, or the average rank of selected
candidates. The difficulty, similarly to our otf formulation, is that the decision
regarding each candidate must be taken immediately upon her arrival. However,
the stipulation that the input is random makes the secretary problem very dif-
ferent from otf. Another difference is that unlike otf, the number of candidates
to pick is set in advance.

Paper Organization. The remainder of this paper is organized as follows.
In Section 2 we introduce some notation. In Section 3 we describe our online
algorithm for opip, and in Section 4 we consider otf.

2 Preliminaries

In this section we define our notation. Given a matrix A ∈ N
m×n, let R(i) =∑

j aij be the sum of entries in the ith row, and let C(j) =
∑
i aij be the sum

of entries in the jth column. Denote Rmax = maxiR(i) and Cmax = maxj C(j).
Given an opip instance, define ρ(i) = R(i)/ci. Observe that if

∑
j aij ≤ ci for

some i, then constraint i is redundant. Hence we assume w.l.o.g. that
∑
j aij > ci

for every i, which means that ρ(i) > 1, for every i. We assume hereafter that
lcm(ai1, . . . , ain, ci) = 1, for every i. This does not change ρ(i), but it may
decrease Cmax and our bound on the competitive ratio. On the other extreme,
we assume that aij ≤ ci for every i and j: if aij > ci then item j is not a member
in any feasible solution.

Given a subset of items J and a constraint i, let J(i) = {j ∈ J : aij > 0} be
the subset of items from J that participate in constraint i. For example, if opt
is the set of items in some fixed optimal solution, then opt(i) denotes the items
in opt that are active in constraint i. Also, let RJ(i) =

∑
j∈J aij .
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Given a subset of items J , let b(J) =
∑
j∈J bj . Also, we define the normalized

benefit of a constraint i as b̄(i) =
∑
j aij · bj .

Recall that ρ(i) = R(i)
ci

= 1
ci

∑
j aij . Given an otf instance,

∑
j aij is the

coverage potential of a single copy of set i, while ci is the cost of set i. Hence,
1/ρ(i) stands for the cost per unit of coverage that may be covered by i. We
denote

γj = max

{

pj · max
i:aij>0

ρ(i), 1

}

.

In other words, γj is the ratio between the penalty for not covering a unit of
coverage of j and the minimum possible cost per unit of coverage that may be
obtained to cover j. Also, denote γmax = maxj γj .

3 Online Packing Integer Programs

In this section we describe a randomized algorithm for opip with unit caps,
namely for the case where pj = 1, for every j. The competitive ratio of our
algorithm is 2Cmax

√
ρmax. We note that the algorithm is a slight generalization

of the algorithm given in [8], which allows us to deal with non-binary instances.
We note that one may solve the general case by treating each item j as pj
items, but this simplistic approach results in an additional multiplicative factor
of
√
maxj pj to the competitive ratio.

Random Variables. For w > 0, let Dw : R → [0, 1] be a (cumulative) distri-
bution function of a random variable Z that is defined by

Dw(z) = Pr[Z ≤ z] =

⎧
⎨

⎩

0 if z < 0;
zw if 0 ≤ z < 1;
1 if 1 ≤ z.

Note that D1 is the uniform distribution over [0, 1] and, in general, for a positive
integer q, Dq is the distribution of the maximum of q independent and identically
distributed variables, each uniformly distributed over [0, 1].

Algorithm RP. For each item j, we independently choose a random priority
p(j) ∈ [0, 1] with distribution Dbj . When constraint i arrives, we construct ci
subsets Si1, . . . , Sici as follows. Each item j chooses aij subsets at random. Then,
for each subset Si�, 	 ∈ {1, . . . , ci}, we reject all items but the one with the
highest priority. Observe that an item survives only if it has the highest priority
in all of its chosen sets.

Intuitively, the approach is to prefer items with high priority. In the special
case where aij ∈ {0, 1}, one may simply choose the ci items with highest priority.
A somewhat more subtle approach, based on a reduction to the unit capacity
case is used in [8]: Items are randomly partitioned into ci equal-size subsets; from
each subset only the top priority item survives. Our Algorithm RP extends this
approach: we construct ci subsets whose expected sizes are equal, such that item
j is contained in exactly aij subsets.
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Analysis. Observe that each subset Si� induces the following constraint:∑
j∈Si�

xj ≤ 1. Hence, we construct a new uniform capacity opip instance by

defining the matrix A′ ∈ {0, 1}(
∑

i ci)×n as follows: a∑
t<i ck+�,j

= 1 if and only

if j ∈ Si�. Each row of A′ corresponds to one of the random constraints created
by the algorithm.

Observation 1. C(j) = C′(j), for every j, and E[R′(
∑

t<i ct + 	)] = ρ(i), for
every i and 	.

Proof. C(j) = C′(j), since the item j appears in aij new constraints with co-
efficient 1, for every such constraint i. Each item j participates in the 	th new
constraint corresponding to original constraint i with probability aij/ci. Hence,

E[R′(
∑

t<i

ct + 	)] =
∑

j

E[a′∑
t<i ct+�,j

] =
∑

i

aij
ci

=
R(i)

ci
.

�	
Let N [j] denote the items that are in conflict with j, namely

N [j] = {k : ∃i, 	 s.t. j, k ∈ Si�} .
Notice that j ∈ N [j]. We also define N(j) = N [j]\{j}. Clearly, item j is satisfied
by the algorithm if and only if its priority is higher than that of all other items
with whom it competes, i.e., if p(j) > p(k), for every k ∈ N(j).

First, we consider the probability of satisfying an item j.

Lemma 2. Pr[p(j) > max{p(k) : k ∈ N(j)}] = E

[
bj

b(N [j])

]
.

Proof. Supposed that N(j) = N and let pmax = max{p(k) : k ∈ N}. Then, for
z ∈ [0, 1] we have

Pr[pmax < z] =
∏
k∈N Pr[p(k) < z] =

∏
k∈N z

bk = z
∑

k∈N bk = zb(N) ,

that is, pmax has distribution Db(N). Hence,

Pr[p(j) > pmax] =

∫ 1

0

Pr[pmax < z] · fp(j)(z)dz =

∫ 1

0

zb(N) · bjzbj−1dz

=
bj

b(N) + bj
.

It follows that

Pr[p(j) > max{p(k) : k ∈ N(j)}]
=
∑

N

Pr[N(j) = N ] · Pr[p(j) > max{p(k) : k ∈ N}|N(j) = N ]

=
∑

N

Pr[N(j) = N ] · bj
b(N) + bj

= E

[
bj

b(N(j)) + bj

]

as required. �	
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Next, we provide a lower bound on the expected performance of the algorithm.

Lemma 3. For any subset of items J , E[b(RP)] ≥ b(J)2

E[
∑

j∈J b(N [j])]
.

Proof. By Lemma 2, Pr[j ∈ RP] = E

[
bj

b(N [j])

]
. Thus, by linearity of expectation,

we obtain

E[b(RP)] =
∑
j∈J bj · E

[
bj

b(N [j])

]
= E

[∑
j∈J

b2j
b(N [j])

]
≥ E

[
(
∑

j∈J bj)
2

∑
j∈J b(N [j])

]

,

where the inequality is due to the following consequence of the Cauchy-Schwarz
inequality (with bj for αj and b(N [j]) for βj): for positive reals α1, . . . , αn and

β1, . . . , βn, we have
∑

j

α2
j

βj
≥ (

∑
j αj)

2

∑
j βj

. Jensen’s inequality (for a non-negative

random variable X , E
[
1
X

] ≥ 1
E[X]) implies that

E[b(RP)] ≥ E

[
(
∑

j∈J bj)
2

∑
j∈J b(N [j])

]

≥ (
∑

j∈J bj)
2

E[
∑

j∈J b(N [j])]
,

and the lemma follows. �	
Our next step is to bound

∑
j∈J b(N [j]).

Lemma 4. Let J be a subset of items. Then,
∑
j∈J b(N [j]) ≤ ∑m′

i=1 R
′
J(i)b̄

′(i).

Proof. Observe that
∑

j∈J
b(N [j]) =

∑

j∈J

∑

k∈N [j]

bk

≤
∑

j∈J

∑

(i,�):j∈Si�

∑

k∈Si�

bk

=
∑

j∈J

∑

(i,�):j∈Si�

b(Si�)

=

m∑

i=1

ci∑

�=1

|Si� ∩ J | · b(Si�) =
m′
∑

i=1

R′J (i)b̄′(i) ,

as required. �	
To complete the analysis we find appropriate upper bounds for the denominator
when J = [n] and when J = opt.

Lemma 5.

E

⎡

⎣
m′
∑

i=1

R′[n](i)b̄′(i)

⎤

⎦ < 2

m∑

i=1

ρ(i)b̄(i) , (1)

E

⎡

⎣
m′
∑

i=1

R′opt(i)b̄′(i)

⎤

⎦ ≤
∑

j∈[n]
C(j)bj +

∑

j∈opt
C(j)bj ≤ 2

∑

j∈[n]
C(j)bj . (2)
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Proof. Consider i′ ∈ [m′] that corresponds to the 	th new constraint of original
constraint i, and two items j �= k. We have that

Pr[j, k ∈ Si�] = Pr[j ∈ Si�] · Pr[k ∈ Si�] = aij
ci
· aik
ci

,

due to the independence of the random choices of j and k. Hence, for i ∈ [m] we
have that

E

[
ci∑

�=1

R′J

(
∑

t<i

ct + 	

)

b̄′
(
∑

t<i

ct + 	

)]

=
∑

j∈J(i)

∑

k

ci∑

�=1

bk Pr[j, k ∈ Si�]

=
∑

j∈J(i)

aij
ci

∑

k �=j
cibk

aik
ci

+
∑

j∈J(i)
cibj

aij
ci

≤
∑

j∈J(i)

aij
ci
· b̄(i) +

∑

j∈J(i)
aij · bj

≤ ρJ(i)b̄(i) + b̄J(i) .

It follows that

E

⎡

⎣
m′
∑

i=1

R′J(i)b̄′(i)

⎤

⎦ ≤
∑

i

ρJ(i)b̄(i) +
∑

i

b̄J(i) . (3)

Since ρ(i) > 1, for every i, Inequality (1) is obtained by assigning J = [n] in (3).
To prove Inequality (2) we assign J = opt. In this case, ρopt(i) ≤ 1, for every

i, since opt is a feasible solution. Hence

E

⎡

⎣
m′
∑

i=1

R′opt(i)b̄′(i)

⎤

⎦ ≤
∑

i

b̄(i) +
∑

i

b̄opt(i)

=
∑

i

∑

j

aijbj +
∑

i

∑

j∈opt
aijbj

=
∑

j

bi
∑

i

aij +
∑

j∈opt
bj
∑

i

aij

=
∑

j

bjC(j) +
∑

j∈opt
bjC(j) ,

and the lemma follows. �	
Lemma 5 implies that

Theorem 1.

E[b(RP)] ≥ max

{
b([n])2

2
∑

i ρ(i)b̄(i)
,

b(opt)2

2
∑

j C(j)bj

}

≥ b([n])b(opt)

2
√∑

i ρ(i)b̄(i) ·
∑

j C(j)bj
.
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Theorem 1 implies the following:

Corollary 1. There is an opip algorithm with competitive ratio at most
2Cmax

√
ρmax.

Proof.
∑

i

ρ(i)b̄(i) = ρmax

∑

i

∑

j

aijbj = ρmax

∑

j

bjC(j) ≤ ρmaxb([n])Cmax ,

and
∑

j C(j)bj ≤ Cmaxb([n]). Hence,

E[b(RP)] ≥ b([n])b(opt)

2
√
ρmaxb([n])Cmax · Cmaxb([n])

=
b(opt)

2Cmax
√
ρmax

,

and we are done. �	

4 Competitive Team Formation

In this section we provide a deterministic online algorithm for otf and a match-
ing lower bound that holds even for randomized algorithms. Furthermore, our
lower bound holds for a more general case, where the commitment of the online
algorithm is only “one way” in the following sense. Once a set is dismissed it
cannot be recruited again, but a set in the solution at one point may be thrown
out of the solution later.

4.1 An Online Algorithm

Our algorithm generates a monotonically growing collection of sets based on
a simple deterministic threshold rule. Recall that γ is the maximal ratio,
over all elements, between the highest and lowest cost of covering a given
element. Algorithm Threshold assumes knowledge of γ and works as fol-
lows. Let y be the set vector that is constructed by Threshold. Also, define
zij = max

{
bj −

∑
�<i a�jy�, 0

}
, namely zij is the amount of missing coverage for

element j. Note that zij is monotone non-increasing with i.
Upon arrival of a new candidate i, assign yi ← v, such that v is the maximum

integer that satisfies

v · ci ≤
∑

j min
{
v · aij , zi−1j

} · pj√
γ

. (4)

Intuitively, we take the maximum possible number of units of set i that al-
lows us to save a factor of at least

√
γ over the penalties it replaces. Note that

min{vaij , zi−1j } is the amount of coverage v copies of set i add to element j.
Hence, the total amount of penalties that are saved by v copies of set i is∑

jmin{vaij , zi−1j }pj. Also notice that v is well-defined because (4) is always
satisfied by v = 0.

We show that the competitive ratio of Threshold is at most 2
√
γ.
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Theorem 2. Let (y, z) be the solution computed by Algorithm Threshold, and
let (y∗, z∗) be an optimal (integral) solution. Then,

∑

i

ciyi +
∑

j

pjzj ≤ 2
√
γ
∑

i

ciy
∗
i + (1 + 1/

√
γ)
∑

j

pjz
∗
j .

Proof. We first bound
∑

i ciyi. Using condition (4), we then have that

∑

i

ciyi ≤ 1√
γ

∑

i

∑

j

min{aijyi, zi−1j } · pj

=
1√
γ

∑

j

pj
∑

i

min{aijyi, zi−1j }

≤ 1√
γ

∑

j

pjbj ,

where the second inequality follows since min{aijyi, zi−1j } is the amount of cov-
erage that is added to j in the ith round, and therefore the total coverage of j,∑

imin{aijyi, zi−1j }, is at most bj−zj ≤ bj. On the other hand, by the definition

of γj we have that γj ≥ pj · ρ(i) = pj
R(i)
ci

, for any i such that aij > 0. Hence,

∑

i

ciy
∗
i =

∑

i

ci
R(i)

y∗i
∑

j

aij

≥
∑

i

∑

j

y∗i
pj
γj
aij

≥ 1

γ

∑

j

pj
∑

i

y∗i aij

≥ 1

γ

∑

j

pj(bj − z∗j ) .

It follows that

∑

i

ciyi ≤ 1√
γ

∑

j

pjbj

=
1√
γ

⎛

⎝
∑

j

pj(bj − z∗j ) +
∑

j

pjz
∗
j

⎞

⎠

≤ √γ
∑

i

ciy
∗
i +

1√
γ

∑

j

pjz
∗
j

Next, we turn to bound the penalties that (y, z) pays and (y∗, z∗) does not pay,
namely we bound

∑
j pj max{zj−z∗j , 0}. Define Δi = max {y∗i − yi, 0}. If Δ = 0,

then zj ≤ z∗j , for every j, and we are done. Otherwise, let i be an index such
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that Δi > 0. Due to condition (4) in the ith step, we have that

ciyi ≤
∑
j min{aijyi, zi−1j } · pj√

γ

while

ciy
∗
i >

∑
j min{aijy∗i , zi−1j } · pj√

γ
.

Observe that j’s coverage increases by min{aijyi, zi−1j } = zij − zi−1j in the ith

step. If we further increase yi to y
∗
i we may gain min{Δiaij , z

i
j} additional cov-

erage for item j. Hence,

ciΔi = ciy
∗
i − ciyi >

∑
jmin{aijΔi, z

i
j} · pj√

γ
≥
∑

j min{aijΔi, zj} · pj√
γ

.

It follows that

√
γ
∑

i

ciΔi >
∑

i

∑

j

min{aijΔi, zj} · pj

≥
∑

j

pj min

{
∑

i

aijΔi, zj

}

≥
∑

j

pj max{zj − z∗j , 0} ,

where the last inequality follows from the fact that y+Δ ≥ y∗ and therefore Δ
covers at least max{zj − z∗j , 0}, for every j. Hence,

∑

j

pj max{zj − z∗j , 0} ≤
√
γ
∑

i

ciΔi ≤ √γ
∑

i

ciy
∗
i .

Putting it all together, we get that

∑

i

ciyi +
∑

j

pjzj ≤
∑

i

ciyi +
∑

j

pjz
∗
j +

∑

j

pj max{zj − z∗j , 0}

≤ 2
√
γ
∑

i

ciy
∗
i + (1 + 1/

√
γ)
∑

j

pjz
∗
j ,

as required. �	
This leads us to an upper bound on the competitive ratio.

Corollary 2. Algorithm Threshold is 2
√
γ-competitive.

We note that the same approach would work for the variant of otf in which
there is an upper bound ui on the number of copies of set i that can be used,
i.e., yi ≤ ui. In this case the value of v in condition (4) is also bounded by ui.
The rest of the details are omitted.
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4.2 A Lower Bound

In this section we present a matching lower bound, which holds for randomized
algorithms, and even for the case where the algorithm may discard a set from
its running solution (but never takes back a set that was dismissed).

We start with a couple of simple constructions. In the first the input consists
of sets of size one, and in the second all costs and penalties are the same.

Theorem 3. The competitive ratio of any randomized algorithm for otf is
Ω(
√
γ). This bound holds for inputs with only two elements and sets of size

one.

Proof. Let alg be a randomized algorithm. Consider an input sequence consist-
ing of two or three elements with unit covering requirement and penalty p. The
arrival sequence is composed of two or three sets. The first set to arrive is {1}
of cost 1. (The goal of the first set is to make sure that the ratio between the
penalty and the minimum cost is p.) The second set is {2} of cost

√
p. If alg

takes this set with probability less than half, then the sequence ends; otherwise,
the third set {2} of cost 1 arrives.

In the first case the optimal cost is 1 +
√
p, while alg pays at least 1 + 1

2p.
Otherwise, the optimal cost is 2, while alg pays at least 1+ 1

2

√
p. Notice that we

may repeat the second part of this sequence as many times as needed. Finally,
notice that γ = p. �	
Theorem 4. The competitive ratio of any randomized online algorithm is at
least Ω(

√
γ). This bound holds for inputs with unit costs and penalties.

Proof. Let alg be a randomized algorithm. Assume unit penalties and unit cov-
erage requirements. Consider the input sequence that starts with

√
n candidates,

each with
√
n fresh skills and cost 1. Let 	 be the expected number of candi-

dates alg takes from this sequence. If 	 <
√
n/2, this is the whole input. In this

case the expected cost of alg is at least 1
2n, whereas the optimal cost is

√
n. If

	 ≥ 1
2

√
n, then we add an omnipotent candidate (who has all skills) at the end,

with cost 1. It follows that alg pays at least 1
2

√
n in expectation, while opt

pays only 1. Finally, notice that γ = n. �	
Next, we give a lower bound construction that applies to the more general setting
in which the algorithm may discard a set from its solution.

Theorem 5. The competitive ratio of any randomized algorithm for otf is
Ω(
√
γ). This bound holds even if the algorithm is allowed to discard sets. Fur-

thermore, it holds also in the binary case, where all demands, coverages, penalties
and costs are either 0 or 1.

Proof. Our lower bound construction uses affine planes defined as follows. Let
n = q2, where q is prime. In our construction, each pair (a, b) ∈ Zq × Zq corre-
sponds to an element. Sets will correspond to lines: a line in this finite geometry
is a collection of pairs (x, y) ∈ Zq × Zq satisfying either y ≡ ax + b (mod q),
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for some given a, b ∈ Zq, or of the form (c, ∗) for some given c ∈ Zq. There are
q2 + q = Θ(n) such lines.

The important properties we use are the following:

1. All points can be covered by q disjoint (parallel) lines.
2. Two lines that intersect in more than a single point are necessarily identical.

We now describe the lower bound scenario. The elements correspond (in a 1-1
fashion) to the points in the affine plane. All elements have unit penalty and unit
covering requirement, i.e., pj = 1 and bj = 1, for every j. The input sequence
starts with a sequence of q2+q sets corresponding to all distinct lines of the plane,
each with unit cost. Fix any randomized online algorithm alg. We proceed by
cases, depending on the expected number r of these sets that alg retains at this
point. If r ≤ √n/2 or r > n/2, then we are already done: at this time the cost
to the algorithm is Ω(n) (due either to penalties or to the cost of sets retained),
while the optimal cost at this time is

√
n by virtue of Property (1) above.

Otherwise,
√
n/2 < r ≤ n/2. Let L be a line chosen uniformly at random. The

probability that L is retained by the algorithm is at most 1/2, since r ≤ n/2. We

now extend the input sequence by one more set Lc
def
= {1, ..., n} \ L, and assign

Lc unit cost. Note that by Property (2), if L is not retained by the algorithm,
then the number of other lines that cover the points of L cannot be smaller
than |L| = √n, and hence the expected cost of alg due only to the points of L
(either by covering set costs or by incurred penalties) is at least

√
n/2. Obviously,

throwing out any set from the solution at this time will not help to reduce the
cost. On the other hand, the optimal solution to this scenario is the sets L and
Lc, whose cost is 2, and hence the competitive ratio is at least Ω(

√
n). �	

Remarks. First, we note that in the proof above, the unit-cost set Lc can be
replaced by

√
n − 1 sets, where each set covers

√
n elements and costs 1√

n−1 .
Second, we note that one may be concerned that in the first case, the actual γ
of the instance is not n. This can be easily remedied as follows. Let the instance
consist of 2n elements: n elements in the affine plane as in the proof, and another
n dummy elements. The dummy elements will be all covered by a single set that
arrives first in the input sequence. The remainder of the input sequence is as
in the proof. This allows us to argue that the actual γ is indeed n, whatever
the ensuing scenario is, while decreasing the lower bound by no more than a
constant factor.
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Abstract. We consider some generalizations of the Asymmetric Travel-
ing Salesman Path Problem. In these variants, we have multiple salesmen
that we are to move around a metric and the goal is to have each node
visited by at least one salesman. This should be done while minimizing
the total distance travelled by all salesmen.

In the first variant, we are given two nodes s, t and an integer k and the
goal is to find k paths from s to t whose union covers all nodes. We give an
efficient bicriteria approximation for this problem that uses at most k+
k/b paths of total length at most O(b log |V |) times the optimum value of
a natural LP relaxation. By setting b appropriately, we can obtain a true
O(k log n)-approximation, an O(log n)-bicriteria approximation using at
most 2k paths, or, more generally, an O( 1

ε
log n)-bicriteria approximation

using at most (1 + ε)k paths. Prior to this work, only an O(k2 log n)-
approximation and an O(log n)-bicriteria approximation using at most
O(k log n) paths were known.

Next, we consider the case where we have k pairs of nodes {(si, ti)}ki=1.
The goal is to find an si− ti path for every pair such that each node of G
lies on at least one of these paths. Simple approximation algorithms are
presented for the special cases where the metric is symmetric or where
si = ti for each i. We also show that the problem can be approximated
within a factor O(log n) when k = 2. On the other hand, we demonstrate
that the general problem cannot be approximated within any finite ratio
unless P = NP.

Keywords: Traveling Salesman Problem, Linear Programming.

1 Introduction

In the classic form of the Traveling Salesman Problem (TSP), the goal is to
find the shortest Hamiltonian cycle in a symmetric metric. The idea is that this
describes the fastest way a salesman can visit a given set of clients and then
return to their starting position. Christofides’ famous algorithm efficiently finds
a Hamiltonian cycle of length at most 3

2 times the optimum solution length [7].
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Unfortunately, it is NP-hard to efficiently approximate the optimum solution
within any constant better than 123

122 [16].
Variants of this standard formulation are also natural to consider. For ex-

ample, the salesman may be required to start and end at given locations, the
objective might instead be to minimize the average time a location waits before
it is visited by the tour, we might have multiple salesmen at our disposal, etc.
Many such variants of TSP in symmetric metrics have constant upper and lower
bounds on their approximability. However, the approximability of TSP in asym-
metric metrics is not as well understood (see Section 1.1 for some examples). We
consider problems of this sort; coordinating the movements of multiple salesmen
in an asymmetric metric to ensure each location is visited at least once.

An asymmetric metric is a complete directed graph G = (V,A) where V is the
set of nodes/locations having nonnegative distances/costs duv for arcs uv ∈ A.
These distances satisfy the directed triangle inequality duv ≤ duw + dwv for any
three distinct nodes u, v, w ∈ V . However, in general it may be that duv �= dvu
for some nodes u, v ∈ V . If duv = dvu for every pair u, v ∈ V then we say that
the metric is a symmetric metric and we view G as a complete undirected graph.
It will sometimes be convenient to say dvv = 0 for every v ∈ V even though we
do not have any loops in G. Throughout, we will let n denote the number of
nodes in G.

The two main problems we consider are defined as follows. First, in the k-
Person Asymmetric Traveling Salesmen Path Problem (k-ATSPP) we are given
an asymmetric metric G = (V,A) and two distinct nodes s, t ∈ V . The goal is
to find k paths from s to t of minimum total cost in G such that every node
v ∈ V lies on at at least one of these paths. Next, we define General k-ATSPP
to be the following generalization. We are given k pairs of nodes {(si, ti)}ki=1 in
an asymmetric metric G and the goal is to find an si− ti path for each i so that
each node lies on at least one such path. This should be done while minimizing
the total cost of these paths. The case k = 1 for both problems is simply the
well-studied Asymmetric Traveling Salesman Path Problem (ATSPP).

What makes k-ATSPP an attractive variant of ATSPP is that the gap between
optimum solutions for different values of k in an asymmetric metric may be
arbitrarily large. For example, the instance in Figure 1 has a solution of cost
0 using k = 2 paths but any single path has cost at least 1. We do not have
this large gap in symmetric metrics because a single salesman can cover all k
paths by traveling back and forth along these paths between s and t and cover
all locations with no greater distance than the total distance of of all k paths (if
k is even then one final step from s to t makes this an s− t path while inflating
the total distance by at most a (1 + 1

k )-factor).

1.1 Related Work

As mentioned earlier, Christofides’ algorithm [7] is a polynomial-time approx-
imation algorithm for classic TSP that finds a Hamiltonian cycle with cost at
most 3

2 times the cost of the optimum solution. Despite the numerous recent ad-
vances made on variants and special cases of TSP, no better approximations are
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s

 

t

 

Fig. 1. The pictured arcs all have cost 0 and the missing arcs have cost 1. The gap
between optimum solutions for k = 1 and k = 2 is unbounded.

known for TSP. Hogeveen [14] adapted this approach to TSP Path and obtained
a 3

2 -approximation if at most one endpoint is specified and a 5
3 -approximation

if both endpoints are specified. In the case that both endpoints are specified,

An, Kleinberg, and Shmoys recently described a 1+
√
5

2 < 1.6181-approximation
[1] which was subsequently improved by Sebő to a 8

5 = 1.6-approximation [22].
Currently, the best lower bound on approximating these problems is provided
by Karpinski, Lampis, and Schmied who show that there is no c-approximation
for any constant c < 123

122 unless P = NP [16].
In asymmetric metrics, Frieze, Galbiati, and Maffioli [9] gave the first approxi-

mation algorithm for ATSP with an approximation ratio of log2 n where n = |V |.
A series of papers improved on this ratio by constant factors [4,15,8] with the
last being 2

3 log2 n. Finally, Asadpour et al. [2] produced an asymptotically bet-
ter approximation algorithm for ATSP with ratio O(log n/ log logn). Karpinski,
Lampis, and Schmied have also shown that there is no c-approximation for these
problems for any constant c < 75

74 unless P = NP [16]. Determining if ATSP has
a constant-factor approximation is also a very important open problem.

The variant of finding Hamiltonian paths in asymmetric metrics, namely AT-
SPP, has only recently been studied from the perspective of approximation algo-
rithms. The first approximation algorithm was an O(

√
n)-approximation by Lam

and Newman [17]. Following this, Chekuri and Pal [6] brought the ratio down to
O(log n). Finally, Feige and Singh [8] proved that an α-approximation for ATSP
implies a (2+ε) ·α-approximation for ATSPP for any constant ε > 0. Combining
their result with the ATSP approximation in [2] yields an O(log n/ log logn)-
approximation for ATSPP.

There is a linear programming (LP) relaxation for each of these problems
based on the Held-Karp relaxation for TSP [13]. For TSP, this relaxation is

minimize :
∑

uv∈E duvxuv
such that : x(δ({v})) = 2 ∀ v ∈ V

x(δ(S)) ≥ 2 ∀ ∅ � S � V
xuv ∈ [0, 1] ∀ uv ∈ E

where δ(S) denotes the edges with exactly one endpoint in S and x(F ) =∑
uv∈F xuv for any subset of edges F .
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Many approximation algorithms for other optimization problems require in-
tegrality gap bounds for TSP variants. For example, Nagarajan and Ravi use
integrality gap bounds for ATSP in their approximations for the Directed Orien-
teering and Minimum Density Rooted Cycle problems [18], Bateni and Chuzhoy
use ATSP integrality gap bounds in their study of the Directed k-Stroll and
k-Tours problems [3], and papers by Nagarajan and Ravi [19] and Friggstad,
Salavatipour, and Svitkina [11] both rely on integrality gap bounds for ATSPP
in their study of the Minimum Directed Latency problem. While stated slightly
differently in [11], the latter also requires a bicriteria approximation for k-ATSPP
whose cost can be compared to the optimum solution to LP (1) (see Section 2.1)
for the case k = 2. We do not attempt to list the numerous applications of
integrality gap bounds for symmetric TSP. One recent example is the work of
Chakrabarty and Swamy on LP-based formulations for the Minimum Latency
Problem in [5].

Many, but not all, of the approximations known for TSP variants also bound
the integrality gaps of their respective LP relaxations. For TSP, Wolsey [24]
proved the solutions found by Christofides’ algorithm [7] are within 3/2 of the op-
timal solution to the above LP relaxation. For ATSP, Williamson [23] proved that
the algorithm of Frieze et al. [9] bounds the integrality gap of the correspond-
ing Held-Karp LP by log2 n. The improved O(log n/ log logn)-approximation
for ATSP in [2] improved the bound on gap to the same ratio. Sebő’s 1.6-
approximation for TSP Path also bounds the integrality gap of its relaxation
by the same factor [22].

On the other hand, it is not clear that one can adapt the analysis of the
first O(log n)-approximation for ATSPP by Chekuri and Pál [6] to an integrality
gap bound nor is it clear that the results in [8] relating the approximability
of ATSP and ATSPP extend to their integrality gaps. The first integrality gap
bound demonstrated for ATSPP was O(

√
n) by Nagarajan and Ravi [19]. This

bound was improved to O(log n) and then to O(log n/ log logn) in [11] and [10],
respectively.

In the full version of [11], the authors studied extensions of their O(log n)-
approximation for ATSPP to k-ATSPP. They demonstrated that k-ATSPP can
be approximated within O(k2 logn) and that this bounds the integrality gap of
LP (1) by the same factor. While not explicitly mentioned in [11], it is easy to get
an O(log n)-bicriteria approximation for k-ATSPP that uses at most O(k logn)
paths using their techniques. As far as we know, nothing is known for General
k-ATSPP even for the case k = 2.

One other problem related to the problems considered in this paper is the
following. We are given 2k distinct nodes S = {s1, . . . , sk} and T = {t1, . . . , tk}
in a symmetric metric. We want to find k paths whose union spans all nodes.
This should be such that each node in S is the start node of exacly one path
and each node in T is the end node of exactly one path. Matroid intersection
techniques used by Rathinam and Sengupta [20] can be easily adapted to get a
2-approximation for this problem.
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1.2 Our Results

By the directed triangle inequality, it is easy to see that there is an optimum
solution for an instance of k-ATSPP where each node in V −{s, t} lies on precisely
one of the k paths. Such an optimum solution corresponds to an integer point
in LP (1) (found in Section 2.1) of the same cost. So the optimum value of LP
(1), say OPTLP , is a lower bound for the minimum cost k-ATSPP solution. Our
main result for k-ATSPP is the following.

Theorem 1. For any integer b ≥ 1, there is an efficient algorithm for k-ATSPP
that finds between k and k + k

b paths of total cost at most O(b logn) ·OPTLP .
This is a true O(k logn)-approximation when b = k + 1 and an O(log n)-
approximation using at most 2k paths when b = 1. More generally, setting
b = 1

ε results in an O(1ε logn)-approximation using at most (1 + ε)k paths. The
algorithm is also easy to implement with the most complicated subroutine being
that of finding a minimum weight perfect matching in a bipartite graph. The
running time is dominated by O(b log n) calls to the matching subroutine. In
particular, we are not required to solve LP (1) and we only mention that the
approximation guarantee can be stated with respect to OPTLP , and not simply
OPT (the optimum k-ATSPP solution cost), to broaden potential applications
of this work.

We proceed to study variants of k-ATSPP that vary how the start and/or
end locations are specified. Examples are when the start locations are not fixed
or when we have a set of k start nodes S and a set of k end nodes T and the
start and end locations of the paths should establish a bijection between S and
T . Our approximation algorithm for k-ATSPP easily extends to these variants.

Finally, we consider numerous aspects of General k-ATSPP. Our first result
is the following.

Theorem 2. There is an O(log n)-approximation for General 2-ATSPP.

We also have a 3-approximation for General k-ATSPP in symmetric metrics and
an O(log n)-approximation for General k-ATSPP when si = ti for all i. However,
it turns out that General k-ATSPP is quite hard if one does not assume any
further restrictions.

Theorem 3. It is NP-hard to distinguish between instances of General k-ATSPP
whose optimum solution has cost 0 and instances whose optimum solution has
cost at least 1.

This implies the problem cannot be efficiently approximated within any finite
ratio unless P = NP. While the reduction uses k = n/4 different (si, ti) pairs,
modifications can be made to prove similar hardness results (under assumptions
stronger than P �= NP) with k being as small as polylogarithmic in n.

To summarize, Section 2 presents the algorithm for k-ATSPP, proves Theo-
rem 1, and discusses some variations of k-ATSPP on how the start and/or end
locations are specified. In Section 3 we demonstrate an O(log n)-approximation
for General 2-ATSPP, discuss approximation algorithms for other restrictions of
General k-ATSPP, and prove Theorem 3. Section 4 then concludes this paper
and identifies some directions for future work.
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2 A Bicriteria Approximation for k-ATSPP

In this section, we will develop a bicriteria approximation algorithm that finds
approximately k paths from s to t in an asymmetric metric G = (V,A) whose
total cost is within some bounded ratio of the optimum value of LP relaxation
(1). The algorithm is parameterized by a positive integer b; different bicriteria
approximation guarantees result from different choices of b.

2.1 Preliminaries

IfX is a flow between two nodes or a circulation then we letXuv denote the value
that X assignes to arc uv ∈ A. For S ⊆ V we let X(δ+(S)) =

∑
u∈S,v∈V−S Xuv

and X(δ−(S)) =
∑

v∈V−S,u∈SXvu. For brevity, we let X(δ+(v)) := X(δ+({v}))
and X(δ−(v)) := X(δ−({v})) for v ∈ V . When the underlying graph may not
be clear from the context, we use the notation δG to indicate that the set of
edges considered in the cut come from graph G. We say X is integral if Xuv is
an integer for each arc uv ∈ A. The cost of X is

∑
uv∈A duv ·Xuv. All flows and

circulations X in this paper will have Xuv ≥ 0 for each arc uv ∈ A. The value
of an s− t flow F is F (δ+(s)) − F (δ−(s)), the amount of flow sent from s to t.
We say that an s− t flow F is supported by a node v �= s, t if F (δ+(v)) > 0.

Our starting point will be to use structures similar to cycle covers from [9]
and path/cycle covers from [17] and [11].

Definition 1. A k-path/cycle cover from s to t is an integral s− t flow F such
that F (δ+(v)) = F (δ−(v)) = 1 for each v ∈ V −{s, t}, F (δ+(s)) = F (δ−(t)) = k,
and F (δ−(s)) = F (δ+(t)) = 0.

Note that in a k-path/cycle cover F the flow Fuv across any arc uv ∈ A− {st}
is either 0 or 1 and Fst ≤ k. If we regard F as a multiset of arcs, then F may
be decomposed into k paths from s to t and a collection of cycles where every
v ∈ V − {s, t} lies on exacly one path or exactly one cycle. We can efficiently
find a minimum-cost k-path/cycle cover using a simple reduction to minimum
weight perfect matching in a bipartite graph with n+ k− 2 nodes on each side.

LP (1) is the LP relaxation for k-ATSPP we consider. It is similar to the LP
relaxation for ATSPP considered in [10,11,19].

minimize :
∑

e∈A
duvxuv (1)

subject to : x(δ+(v)) = x(δ−(v) = 1 ∀v ∈ V − {s, t}
x(δ+(s)) = x(δ−(t)) = k

x(δ−(s)) = x(δ+(t)) = 0

x(δ+(S)) ≥ 1 ∀{s} ⊆ S � V (2)

xuv ≥ 0 ∀ uv ∈ A
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2.2 The Algorithm

Let b ≥ 1 be an integer, this is the b in the statement of Theorem 1. For notational
convenience, we will let L be (b + 1)
log2 n� for the remainder of this section.

The algorithm consists of two phases. The first phase is identical to the first
phase of the algorithm in [11] that repeatedly finds k-path/cycle covers and
discards some carefully chosen nodes in each iteration. Again, we emphasize
that while we are comparing the cost of the solution to the optimum solution
value of LP (1), the algorithm itself is purely combinatorial and does not need
to explicitly solve the LP. The following follows from work in [11].

Lemma 1. There is an efficient algorithm that finds a subset of nodes W con-
taining s and t, an integral s − t flow F of value k · L that is not supported by
any v ∈ V −W , and an integral circulation C such that:

1. The support of F is acyclic.
2. F (δ+(v)) = F (δ−(v)) ≥ L− 
log2 n� = b
log2 n� for each v ∈W − {s, t}.
3. C(δ+(v)) = C(δ−(v)) ≥ 1 for each v ∈ V −W .

4. Every strongly connected component in the support of C has a node in W .
5. F + C has cost at most L ·OPTLP .

Viewing F as a collection of k · L paths, we can immediately get a bicriteria
k-ATSPP approximation with similar guarantees as the algorithm in [11] in the
following way. Since each component of C is already Eulerian, we can transform
it to a Hamiltonian cycle on the same set of nodes of no greater cost. Since each
component of C is “anchored” in some node covered by F then these cycles
can be grafted into the paths of F . The total cost of this solution would be
at most L · OPTLP which provides an O(b log n)-approximation using at most
L · k = O(bk logn) paths. Using b = 1 recovers the result from [11].

However, Theorem 1 states that the number of paths used in the solution
decreases as b increases. In particular, it promises that at most k + k

b are used.
This is accomplished by the second phase of our algorithm. The main goal of this
phase is to identify an integral flow F ′ of value at most k + k

b such that F ′ ≤ F
(on an arc-by-arc basis) such that F ′ is supported by each v ∈ W − {s, t}. The
key observation here is that each v ∈ W supports a lot of flow in F (part 2
of Lemma 1), so scaling F by a large amount results in a (fractional) flow of
much smaller value that still passes through each v ∈W to an extent of 1. Using
integrality of flows plus the fact that F is acyclic, we can find an integral flow
of no greater cost that is still supported by each v ∈ W . Then we can graft the
circulations of C into these at most k+ k

b paths in the manner described above.
The details of this procedure are described below.

2.3 The Second Phase

Consider the acyclic integral flow F found by the first phase (cf. Lemma 1). The
main object of concern in this step is the following polytope P(D) where D ∈ R.
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In P(D), we have a variable zuv for every arc uv in the subgraph G[W ] of the
asymmetric metric G induced by W . The full description of P(D) is:

z(δ+(w)) = z(δ−(w)) ≥ 1 ∀w ∈ W − {s, t} (3)

z(δ+(s)) = z(δ−(t)) = D (4)

z(δ−(s)) = z(δ+(t)) = 0 (5)

0 ≤ zuv ≤ Fuv ∀ arcs u, v in G[W ] (6)

Since the support of F is acyclic and the support of z is required to be a subset
of the support of F , then any integral point z ∈ P(D) corresponds to an integral
flow P of cost at most the cost of F such that a path decomposition of P yields
a collection of D paths from s to t whose union covers all nodes in W . Thus,
our goal is to find a value D ∈ [k, k + k

b ] for which P(D) has an integer point.
When D is an integer, P(D) describes an s− t flow with integer upper and lower
bounds on the amount of flow across each edge and the amount of flow through
each vertex. So, the following holds because of total unimodularity (eg. [21]).

Lemma 2. Every extreme point of polytope P(D) is integral when D is an
integer.

Thus, to prove P(D) has an integer point for some integer D it suffices to prove
that P(D) contains any point. That is, for D ∈ Z if there is some point z ∈ P(D)
with, perhaps, rational entries, then there is also an integral point z′.

The following lemma is the first step to finding a good integer D for which
P(D) �= ∅.

Lemma 3. P
(

kL
b�log2 n�

)
�= ∅.

Proof. Define a point z by zuv = Fuv

b�log2 n� for every arc uv in G[W ]. Then Lemma

1 implies z(δ+(w)) = z(δ−(w)) = F (δ+(w))
b�log2 n� ≥ 1 for each w ∈ W − {s, t} so

Constraint (3) holds. Similarly, Constraints (4) and (5) hold because F (δ+(s)) =
F (δ−(t)) = kL and F (δ−(s)) = F (δ+(t)) = 0. Finally, b ≥ 1 means b
log2 n� ≥ 1
so we have the component-wise domination z ≤ F .
Note that the kL

b�log2 n� may not be an integer. This is easily remedied.

Lemma 4. If P(D) �= ∅, then P(
D�) �= ∅.
Proof. If D is an integer, then there is nothing to show. Otherwise, let z∗ be
any point in P(D). Consider the variant P ′(D) of P(D) obtained by relaxing
Constraints (4) to


D� ≤ z(δ+(s)) = z(δ−(t)) ≤ �D.

Note that z∗ ∈ P ′(D) as P(D) ⊆ P ′(D).
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Since P ′(D) describes an s− t flow with integer upper and lower bounds, then
by total unimodularity (eg. [21]) z∗ can be decomposed as a convex combination
of integer flows in P ′(D). Since z∗(δ+(s)) = D < �D (as D is not an integer),
then this convex combination supports a point z′ with z′(δ+(s)) = 
D�. In
particular, z′ ∈ P(
D�).
Corollary 1. There is an integer k′ ∈ [k, k + k

b ] such that P(k′) �= ∅. That is,
we can efficiently find between k and k+ k

b paths from s to t whose union spans
all nodes in W . Furthermore, the cost of these paths is at most the cost of the
flow F constructed in the first phase.

Proof. We just provedP
(⌊

kL
b�log2 n�

⌋)
�= ∅ and an integral point can be efficiently

found in this LP because we can efficiently find an extreme point of the polytope
(flow-based techniques can also be used). The result follows since

k ≤
⌊

kL

b
log2 n�
⌋

≤ k(b+ 1)
log2 n�
b
log2 n�

= k +
k

b
.

To complete the proof of Theorem 1, we form a circulation C′ in the following
way. View the paths from Corollary 1 as an integral flow of value k′, add the
circulation C from Lemma 1, and set the value of the arc ts in C′ to k′.

Lemma 5. C′ is an integral circulation whose support is strongly connected in
G(V,A).

So, when viewing C′ as a multiset of arcs, we see the resulting graph is Eulerian
whose total arc cost is at most L ·OPTLP plus the cost of the k′ arcs form t to s.
Follow an Eulerian circuit and remove the k′ different t− s arcs to get k′ walks
from s to t whose union spans all nodes. By triangle inequality, these walks can
be shortcut to paths of cost at most L ·OPTLP so that each node in V − {s, t}
lies on exactly one such path.

2.4 Varying the Endpoints

Consider the following different ways to specify the start locations of the paths
of a k-ATSPP instance: each path may start at any node (No Source), all paths
start at a common node s (Common Source), or there are nodes s1, . . . , sk where
each must be the start of some path (Multiple Sources). We can also consider
analogous ways to specify the end locations of the paths. In Multiple Sources,
Multiple Sinks instances, we only require each path start at some si and end
at some tj . It may be that some paths start and end at locations with different
indices.

The following theorems are easy to verify and the proofs are only briefly
sketched. We let OPT be the cost of the optimum solution using exactly k paths
for the k-ATSPP variant in question.
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Theorem 4. For any integer b ≥ 1, there is an algorithm for the No Source,
Single Sink variant of k-ATSPP that finds between k and k + k

b paths of total
cost at most O(b logn) ·OPT .
Proof. Simply add a new start node s and set sv = 0 and vs = ∞ for every
v ∈ V . Then use the approximation algorithm from Theorem 1.

Theorem 5. For any integer b ≥ 1, there is an algorithm for the Multiple
Sources, Single Sink variant of k-ATSPP that finds between k and k + k

b paths
of total cost at most O(b log(n+ k)) · OPT .
Proof. Let s1, . . . , sk be the multiple sources. Create a start node s and k other
new nodes s′1, . . . , s′k. Add cost 0 arcs from s to s′i and from s′i to si for each i.
Add a cost ∞ arc from v to s for every v ∈ V . Use Theorem 1 on the shortest
paths metric of this graph. The intermediate nodes s′i are to ensure that each si
is the start location of some path.

Combining the constructions in Theorems 4 and 5 can also be used to combine
different start and end location specifications (eg. No Source, Multiple Sinks).

3 General k-ATSPP

Recall that in General k-ATSPP, we are given k pairs of nodes (s1, t1), . . . , (sk, tk).
The goal is to find an si − ti path for each 1 ≤ i ≤ k so that every v ∈ V lies
on at least one such path. This differs from the Multiple Sources, Multiple Sinks
variant described in Section 2.4 since the path at si must end at ti, rather than
merely requiring that the start and end nodes of the paths establish a bijection
between {s1, . . . , sk} and {t1, . . . , tk}.

3.1 Approximating General 2-ATSPP

Let (s1, t1) and (s2, t2) be pairs of nodes we are to connect. Furthermore, suppose
all four of these endpoints are distinct (by creating multiple copies of locations
if necessary). This means there is an optimum General 2-ATSPP solution where
the two paths are vertex disjoint.

Let P ′1 and P ′2 be s1 − t1 and s2 − t2 paths, respectively, in a fixed optimum
solution of cost OPT . For two nodes u, v we write u ≺ v if both u and v appear
on a common path P ′1 or P ′2 and u appears earlier than v on this path.

Notice that the optimum Multiple Sources, Multiple Sinks 2-ATSPP solution
for the case with sources {s1, s2} and sinks {t1, t2} is a lower bound for OPT .
The first step of the algorithm is to run an α-approximation for this variant of
2-ATSPP. This gives us two paths P1, P2 starting at s1, s2, respectively. If P1

ends at t1 (equivalently, P2 ends at t2), then these paths form a valid solution
for the General 2-ATSPP problem with cost at most α · OPT . Otherwise, we
use the following lemma which implies a cheap and efficient way to modify these
paths to get a feasible General k-ATSPP solution.
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Fig. 2. i) An illustration of the case y ∈ P ′
2 with immediate successor w �= x on P2.

The white nodes lie on P ′
1 and the gray nodes lie on P ′

2. A dashed arc v → v′ indicates
v ≺ v′ on P ′

1 and a gray arc v → v′ indicates v ≺ v′ on P ′
2. ii) The s1 − t1 and s2 − t2

paths Q1, Q2 formed in the proof of Lemma 7 for this case.

Lemma 6. There are nodes u1, v2 on P1 and v1, u2 on P2 such that the following
hold: a) u1 = v2 or u1v2 is an arc on P1, b) v1 = u2 or v1u2 is an arc on P2

and c) du1u2 + dv1v2 ≤ OPT .
Proof. Let a, b be such that a is on P ′1, b is on P ′2 and a appears immediately
before b on P1. Such nodes exist because P1 begins with s1 ∈ P ′1 and ends in
t2 ∈ P ′2 so at some point along P1 there is an arc beginning in P ′1 and ending in
P ′2. If there are multiple such points a, b, then choose the one where a appears
earliest on P1.

Let x be the first node along P2 such that a ≺ x. We know such a node exists
because a ≺ t1 and t1 ∈ P2. Now, let y be the furthest node along P2 but still
before x such that either y ∈ P ′1 or y ∈ P ′2 and y ≺ b. Again, such a node exists
because s2 ∈ P ′2 and s2 ≺ b.

Suppose y ∈ P ′2 with y ≺ b. If y is immediately followed by x on P2 then we
let u1 = a, u2 = x, v1 = y, v2 = b. Otherwise, say w is the immediate successor
of y on P2. By our choice of y we have w ∈ P ′2 and b ≺ w. In this case, we set
u1 = b, u2 = w, v1 = y, v2 = b. This case is illustrated in Figure 2.

Next, suppose y ∈ P ′1. Let z be the first node on P2 that lies on P ′1. Note that
z occurs no later than y on P2 (it may be equal to y). Now, by our choice of a
on P1, every node between s1 and a on P1 also lies on P ′1. We also have that s1
appears before z on P ′1 (since s1 is the start of P ′1) and, by our choice of x and
the fact that z appears before x on P2, we have that z appears before a on P ′1.
So, there must be some arc cd on the subpath of P1 starting at s1 and ending
at a such that c appears before z on P ′1 and d appears after z on P ′1. We let
u1 = c, u2 = z, v1 = z, v2 = d in this case.
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In all cases, we can easily verify that conditions a) and b) in the statement
of the lemma are satisfied. Also, in any case we have that one of the following is
true:

1. u1 ≺ u2 and v1 ≺ v2 with u1 and v1 appearing on different paths in P ′1, P ′2
2. v1 ≺ v2 = u1 ≺ u2
3. u1 ≺ u2 = v1 ≺ v2
For any of these, it is easy to see that the triangle inequality implies du1u2 +dv1v2
is a lower bound on the total cost of P ′1 and P ′2. That is, du1u2 + dv1v2 ≤ OPT .
Lemma 7. If there is an α-approximation for the Multiple Sources, Multiple
Sinks variant of 2-ATSPP then there is an (α + 1)-approximation for General
2-ATSPP.

Proof. Asmentioned before, we use the α-approximation for theMultiple Sources,
Multiple Sinks variant of 2-ATSPP with starting nodes {s1, s2} and ending nodes
{t1, t2}. Say P1 and P2 are the two paths starting at s1 and s2, respectively. If P1

also ends at t1 then P2 ends at t2 and we are done.
Otherwise, we proceed as follows. Try all O(n2) guesses for u1, u2 on P1 and

v1, v2 on P2 where either u1 = v2 or u1v2 is an arc on P1 and either v1 = u2 or
v1u2 is an arc on P2. For each guess, construct a path Q1 by traveling along P1

from s1 to u1, then using the u1u2 arc in G, and then traveling along P2 from
u2 to t1. Similarly construct Q2 by traveling from s2 to v1 on P2, then using the
v1v2 arc in G, and then traveling along P1 from v2 to t2.

It is easy to see that Q1 and Q2 form a feasible solution for this General
2-ATSPP instance. Since each arc on P1 and P2 is traversed at most once by Q1

and Q2, then the total cost of Q1 and Q2 is at most α · OPT + du1u2 + dv1v2 .
Output the cheapest solution found over these guesses. When the algorithm
guesses nodes u1, u2, v1, v2 from Lemma 6 we have du1u2 + dv1v2 ≤ OPT . So the
final cost of Q1 and Q2 is at most (α+ 1) · OPT .
By setting b = 3 and using Theorem 5 composed with an analogous result
for Multiple Sinks instances, we get an O(log n)-approximation for the Multiple
Sources, Multiple Sinks variant of 2-ATSPP. Combining this approximation with
Lemma 7 proves Theorem 2.

3.2 Approximating Other Restrictions of General k-ATSPP

We briefly mention a couple of variants of General k-ATSPP that can be ap-
proximated well. We leave their full descriptions to the full version of this paper.

The first variant is when the metric is symmetric. In this case, there is a
simple 3-approximation using a tree doubling approach. Next, if si = ti for each
1 ≤ i ≤ k, then the problem is to find a cycle cover where each cycle contains
some root node si where we allow cost 0 loops on the nodes si (corresponding
to the salesman at si going directly to ti). This version can be approximated
within 
log2(n − k)�+ 1 using a modification of the ATSP algorithm by Frieze
et al. [9].
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3.3 Hardness of General k-ATSPP

The following NP-complete [12] problem is used in our reduction.

Definition 2. In the Tripartite Triangle Partition problem, we are given a tri-
partite graph G = (U ∪ V ∪W,E) with |U | = |V | = |W | = n where no edge in E
has both endpoints in a common set U, V , or W . The problem is to determine if
it is possible to find n vertex-disjoint triangles (size 3 cliques) in G.

Technically, [12] only proves NP-completeness of the Partition Into Triangles
problem where the problem is to determine if a general graph can be partitioned
into cliques of size 3. However, if we use their reduction starting with a 3D
Matching instance (instead of the more general problem Exact Cover by 3-Sets
they use), then the resulting graphs are indeed tripartite and that the tripartition
is explicitly computed in the reduction so it can be presented as part of the input
of the resulting Tripartite Triangle Partition instance.

Let G = (U ∪ V ∪W,E) be an instance of Tripartite Triangle Partition with
|U | = |V | = |W | = n. Create a directed graph H with four layers of nodes
X1, X2, X3, X4 where X1 and X4 are disjoint copies of U , X2 is a copy of V , and
X3 is a copy of W . For every edge e in G, there is a unique index 1 ≤ i ≤ 3 such
that the endpoints of e lie in Xi and Xi+1. Add this arc to H , direct it from Xi

to Xi+1, and set its cost to 0. This is illustrated in Figure 3.
Set k := n and consider the General k-ATSPP instance on H ′ obtained from

the shortest paths metric H where we set the cost of a uv arc to be 1 if there is
no u − v path in H . For each u ∈ U , we have a source/sink pair from the copy
of u in X1 to the copy of u in X4. The details of the following claim are simple
and the proof of Theorem 3 immediately follows.

ba

f

e

c

d

a ac e

fb bd

i) ii)

U

VW

X X X X1 2 3 4

Fig. 3. i) An instance of tripartite triangle partition with n = 2. ii) The corresponding
graph H .

Claim. There is a Tripartite Triangle Partition solution in G if and only if the
optimum General k-ATSPP solution in H ′ solution has cost 0.
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Note that the value k is n/4 in the above reduction where we now let n be the
number of nodes in the resulting General k-ATSPP instance. Through padding
arguments, we can establish the same result with k = nε for any constant ε > 0.
Furthermore, under the Exponential Time Hypothesis one can show that there
is no polynomial-time, finite-ratio approximation for General k-ATSPP with
k = O(logc n) for some constant c. The details behind these claims are deferred
to the full version of this paper. The complexity of approximating the case when
k is a constant at least 3 remains open.

4 Future Directions

Our best approximation for k-ATSPP that uses exactly k paths has an approxi-
mation guarantee of O(k logn). Can the dependence on k in the approximation
ratio be reduced? Perhaps there is an O(polylog(n, k))-approximation for k-
ATSPP that uses only k paths. On the other hand, the problem might be hard
to approximate much better than k. Also, as far as we know the integrality gap
of LP (1) could be Ω(k).

For General k-ATSPP, the case k = 1 is simply ATSPP and we described
an O(log n)-approximation for k = 2. Is there a more general O(f(k) · logn)-
approximation for General k-ATSPP whose running time is polynomial when k
is a constant?

Finally, rather than minimizing the total cost of all paths we might want to
minimize the cost of the most expensive path. This can be thought of as mini-
mizing the time it takes for agents moving simultaneously to visit all locations.
From Theorem 1 and the observation that the total cost of k paths is at most k
times the cost of the most expensive path, we get an O(bk logn)-approximation
for this variant that uses at most k + k

b paths.
Using known algorithms for related vehicle routing problems, we can signifi-

cantly reduce the approximation ratio at the expense of increasing the number
of paths used in the final solution.

Theorem 6. If there is an α-approximation for the Point-to-Point Directed Ori-
enteering problem, then we can efficiently find O(kα logn) paths of length at most
OPT .

Theorem 7. If there is an α-approximation for the Directed k-Stroll problem,
then we can efficiently find O(k logn) paths of length at most α ·OPT each.

In particular, the current best approximation algorithms for Directed Orienteer-
ing [18] and Directed k-Stroll [3] imply the following.

Corollary 2. We can efficiently find O(k log3 n/ log logn) paths where the cost
of each path does not exceed OPT .

Corollary 3. There is an O(log3 n/ log logn)-bicriteria approximation using at
most O(k logn) paths.
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We leave it as an open problem to improve these bounds. In particular, is it
possible to obtain a polylogarithmic approximation that uses only O(k) paths?
We also note that the hardness results for General k-ATSPP proven in this paper
also hold for the the variant where we want to minimize the maximum cost of
the si − ti paths.
Acknowledgements. The author would like to thank Anupam Gupta, Mo-
hammad R. Salavatipour, and Zoya Svitkina for insightful discussions on these
problems.
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Abstract. We consider two stochastic multi-armed bandit problems in
this paper in the Bayesian setting. In the first problem the accrued reward
in a step is a concave function (such as the maximum) of the observed
values of the arms played in that step. In the second problem, the ob-
served value from a play of arm i is revealed after δi steps. Both of these
problems have been considered in the bandit literature but no solutions
with provably good performance guarantees are known over short hori-
zons. The two problems are similar in the sense that the reward (for the
first) or the available information (for the second) derived from an arm is
not a function of just the current play of that arm. This interdependence
between arms renders most existing analysis techniques inapplicable.

A fundamental question in regard to optimization in the bandit setting
is indexability, i.e., the existence of near optimal index policies. Index
policies in these contexts correspond to policies over suitable single arm
state spaces which are combined into a global policy. They are extremely
desirable due to their simplicity and perceived robustness, but standard
index policies do not provide any guarantees for these two problems.
We construct O(1) approximate (near) index policies in polynomial time
for both problems. The analysis identifies a suitable subset of states for
each arm such that index policies that focus on only those subsets are
O(1)-approximate.

1 Introduction

In the Multi-Armed Bandit (MAB) problem an agent decides on allocating re-
sources between competing actions (arms) with uncertain rewards and can only
take a small set of actions at a time (play the arms). The agent observes the out-
comes (termed as “values”) from only the arms which are played – and collects a
reward which is a suitable function of the observed values. For the problems we
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consider in this paper, the goal of the agent is to maximize the sum of per-step
rewards over a horizon of T steps. The task of an algorithm in this context is to
provide the agent with a decision policy which is a mapping from the current state
of the system (comprising the states of all the arms and possibly a few other pa-
rameters) to an action, such as playing a subset of arms or stopping altogether. Of
particular interest are decomposable index policies, where each arm is reduced to a
single priority value based on current state of that arm (and possibly a few global
parameters) and the feasible subset of arms with the highest combined priority is
played. See [9,8,16] for detailed surveys of the MAB literature.

The problems we consider herein are set apart from most problems in the
literature due to the presence of three aspects (i) The number of arms are large in
comparison to the optimization horizon (ii) There exist prior information about
the reward that can be accrued from each arm and (iii) There exists natural
constraints such as budgets. All three of these aspects hold (with varying levels)
in context of advertising, content delivery, and route selection, where the arms
correspond to advertisers, (possibly machine generated) webpages, and (machine
generated) routes respectively.

The first aspect is motivated by the fact that MAB problems are increas-
ingly being used to model situations where the arms (available actions, say n
in number) are machine generated and large in comparison to the optimization
horizon T . This is in contrast to the historical development of MAB problems
which considered few alternatives (such as in medical treatments or hypothesis
testing) – the fact that T/n is not overwhelmingly large implies that standard
concentration of measure type results do not provide good bounds. Optimization
under short horizons necessitate a model, which brings us to the second aspect.
Moreover many of the application scenarios for MABs are repetitive, that is,
multiple instances are required to be solved. This suggests a Bayesian model
where prior information is available and is updated (using Bayes’ rule) as the
algorithm proceeds. The third aspect of budgets (the total reward that can be
derived from any specific alternative) arise naturally in many variants of the
applications mentioned above – budgets are the most natural constraints in any
optimization and especially in resource allocation problems. We now formally
define the Bayesian MAB setting we consider.

Definition 1 (Finite Horizon Bayesian MAB Setting). We have a set of
n independent arms. Arm i provides rewards based on an unknown distribution
Di drawn from a known prior distribution1 Di. At each step, the decision policy
can play a set of arms and observe the outcome of only the played arms. Based
on the outcomes, the priors of the arms that were played in the previous step
are updated using Bayes’ rule. If arm i was played then one more observation is
available and the state of arm i transitions to the appropriate posterior distri-
bution, which acts as the prior for the next play of arm i. The evolution of the
arm i is modeled naturally by a DAG Si where each vertex u ∈ Si corresponds
to a prior distribution. The root corresponds to the initial prior Di. Every other

1 This paper does not assume any specific prior, but assumes that (a) the prior can be
updated efficiently and (b) the underlying true object is a distribution.
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state u ∈ Si corresponds to a set of observations2, and hence to the posterior Xiu

obtained by applying Bayes rule to Di with the those observations. Si is defined
to be the state space of the arm i.

We consider two problems in the Bayesian MAB setting, focusing on concave
rewards and delayed feedback.

Problem 1 ( MaxMAB Problem). In the MaxMAB problem3 we make at
most K simultaneous plays on different arms at a step and the accrued reward
at a step is the maximum of the observations which are available immediately.
The goal is to maximize the expected sum of the rewards over the T time steps,
where the expectation is taken over the priors as well as the outcome of each
play. While several variants can be defined based on budgets (the total reward
that can be accrued from any arm), the most interesting variant corresponds to
the case where only the budget of the arm contributing to the reward is depleted.

Such problems arise in fault-tolerant computation – for example, the same packet
may be sent onK independent routes [2], but the reward is no greater if multiple
copies of the packet are received. This also models an Ad-exchange where on
seeing an opportunity to show an ad, the exchange solicits bids from K different
advertisers (ad-networks) and the highest bidder is allocated the ad and charged
their bid. The losing bidders incur no charge.

Problem 2 (Delayed Feedback). In this problem the observed reward from a
play of arm i is obtained after some δi time steps. For simplicity we assume
that a single arm is played at a time step. The arms have budgets which can
be incorporated in the statespace. The goal, again, is to maximize the expected
reward over the T steps as in the previous problem.

Delayed feedback was introduced by Anderson [4] in an early work in mid 1960s.
Since then, though there have been additional results [32,10], a theoretical guar-
antee on adaptive decision making under delayed observations has been elusive,
and the computational difficulty in obtaining such has been commented upon
in [12,5,29,13]. One recent example of this problem arose in information gather-
ing and polling [1]. The notion of delays are also discussed in context of adaptive
query processing [33], reflective control in cloud services [11], or unmanned aerial
vehicles [28]. Observe that in the presence of budgets we cannot play an arm
continuously without considering the obtained reward or using clever estimation
techniques.

The two problems are similar, even though they appear to be very different.
In the first problem the reward derived from an arm is not just the function of
the current play of the arm, because the other arms may have larger or smaller
values. In the latter, the information derived about an arm is not a function of

2 Since the underlying true object is a distribution, the specific sequence of observation
is not important.

3 The authors of [31] consider a similarly named problem but that paper maximizes
the maximum value seen at any time across any arm and does not consider budgets.
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the current play of the arm — we may have delayed information about arm i due
to a previous play δi steps ago even when we are playing arm j currently. It may
therefore appear that arm i is more interesting than arm j′ – even though we
did not play either i, j′. Observe that this entanglement of decisions is sufficient
to make the MaxMAB problem Max-SNP hard even if the distributions are
known, that is the priors are completely resolved (stochastic optimization case,
[18]). To achieve a O(1) approximation for even this special case one needs to
solve submodular optimization under knapsack constraints [27]. However if the
distributions are unknown, neither of Problem 1 or 2 is submodular – both of
them violate the idling bandit property; that is, the reward obtained from an
arm in any state is not affected by when the arm is scheduled for play. The idling
bandit property is at the core of all existing analysis of stochastic (including
both Bayesian and prior free problems) MAB problems with provable guarantees
[26,6,17,8]. The exchange properties required for defining submodularity as well
as its extensions such as sequence or adaptive submodularity [30,19,3] imply the
idling bandit property. It may appear that the issue can be avoided by appealing
to non-stochastic/adversarial MABs [7] – but it is well known that online convex
analysis cannot be analyzed well in the presence of large number of arms and
a “state” that couples the time steps [14]. Budgets, delays and concave reward
functions all enforce such a state. In light of the above, the goal of the paper
is to design algorithms that produce provably near optimal policies for the two
problems in polynomial time. We show:

Theorem 1. The MaxMAB problem has a O(1)-approximate (almost) index
policy which can be found in polynomial time (polynomial in

∑
i |Si|, n and T ).

Theorem 2. Assuming δi = o(T/ logT ), in polynomial time we can find an
O(1)-approximate (almost) index policy for delayed feedback.

The standard of efficiency in the MAB context is an algorithm which is poly-
nomial in

∑
i |Si|, n and T . Standard computation of index policies in literature

use dynamic programming over single arm state spaces Si for each i, and have
running time which is polynomial in

∑
i |Si|, n and T , see [17,8]. If the number

of per-arm outcomes is a small constant, (e.g., success or failure of treatment,
click or no click, delivery or failure of packets) each Si is polynomial in T .

Technical Contributions: We follow a template that has been used in [21];
where the optimization is expressed as a relaxed decision problem where the
goal is to find a collection of single-arm policies (whose states and actions are
defined only for a single arm). Note that the solution to the relaxation will not
be feasible since it need not encode many constraints that make a policy feasible
– for instance, it will not encode that only T plays are allowed in any realization
of the reward distributions. The goal will be to combine these single arm policies
in a meaningful manner. This suggests a recipe which can be stated as follows:
(i) Identify a tractable state space for single arms, which is a function of Si, (ii)
Reason that good single arm policies exist in that space, (iii) Find such policies
feasible for a small set of coupling constraints (using step (i)) and (iv) Schedule
the single arm policies into a globally feasible policy.
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Step (iii) will often involve the use of convex programming or Lagrangians
– these are standard. The difficulty is that step (iii) has to be performed on a
suitable state space as identified in (i), proved effective in (ii), and proved easy
to schedule as in (iv). The technical complexity of the paper lies in steps (i), (ii),
and (iv), which we discuss below:

1. Succinct Expression of Policies: For the problems considered above, the
state of the policy at any time step is complicated, and does not lend to
an easy way of performing steps (i) and (ii). For instance, in the MaxMAB
problem, the reward depends on the specific set of K arms that are played at
any step. This does not correspond naturally to any policy whose execution
is restricted to a single arm. Similarly, in the delayed feedback problem, the
state for a single arm depends on the time steps in the past where plays were
made and the policy is awaiting feedback – this is exponential in the length
of the delay. Our first contribution is to show that in each case, there are
different state space for the policy which has size polynomial in

∑
i |Si|, T ,

over which we can write a relaxed decision problem.
2. Index policies and Scheduling: A second technically novel step is the

combination of single-arm policies into a globally feasible policy. The single
arm policies derived from the previous step do not preserve their accrued
reward when they are combined in a naive fashion. We show techniques for
scheduling these policies so that we can still obtain a good fraction of the
reward. This aspect is surprising for both the problems we consider: For
MaxMAB, the relaxation does not even encode that we receive the max
reward every step, and instead only captures the sum of rewards over time
steps. Yet, we can schedule the single-arm policies so that the max reward
at any step yields a good approximation. For delayed feedback, the single-
arm policies wait different amounts of time before playing, and we show how
to interleave these plays to obtain good reward. We note that scheduling
ideas have been independently applied to MABs in [24]; but that setting is
different and we need newer ideas for concave rewards.

One final technical issue is that the process of scheduling single-arm policies
might violate the feasibility of the time horizon. We crucially need a Truncation
Theorem which we present next. A very similar claim is provided by Farias and
Madan[15, Lemma 2]; where the proof is provided by induction. We provide
a slightly modified statement since we use the theorem for delayed feedback
settings as well which creates some (but minor) complications for the inductive
argument. The details can be found in the full version [22].

Theorem 3. (Truncation Theorem) Given any arbitrary single arm policy P
(see Definition 4) which traces out a path over the state space S (does not gain
information magically) and where the outcomes at each step are drawn from an
underlying non-negative reward distribution, consider a policy P ′ that is identical
to P on each decision path but stops early, such that P ′ makes at least β fraction
of the plays made by P on any decision path. Then (i) R(P ′) ≥ βR(P) and (ii)
T (P ′) ≤ T (P) where R(P), T (P) are the reward and plays (both in expectation).
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2 Preliminaries

2.1 Priors and State Spaces

We have already discussed the Bayesian MAB setting in Definition 1. Playing
the arm in state u yields a transition to state v with probability puv, provided
v can be obtained from u in one additional observation; the probability puv is
simply the probability of this observation conditioned on the posterior Xiu at u.
The expected posterior mean at a state u ∈ Si, denoted by ru = E[Xiu] satisfies
a Martingale property ru =

∑
v puvrv.

Definition 2. Given a random variable X define Tail(X,λ) =
∑
x≥λPr[X =

x] · x. Define Excess(X,λ) =
∑

x>λPr[X = x] · (x− λ).
It is easy to see that both Tail(Xiu, λ),Excess(Xiu, λ) are martingales over Si.

Example Priors and State Spaces. Consider an example Si that arises from a
fixed but unknown distribution over two outcomes (success or failure of treat-
ment, click or no click, conversion or no conversion, delivery or failure). This
is a Bernoulli(1, θ) trial where θ is unknown. The states are represented with
parameters α0, α1 ∈ Z

+; and correspond to the distribution Beta(α1, α0) whose
p.d.f. is of the form cθα1−1(1− θ)α0−1, where c is a normalizing constant. Given
the distribution Beta(α1, α0) as our prior, the expected value of θ is α1

α1+α0
.

On seeing a 1, the posterior (of the current sample, and the prior for the next
sample) is updated to Beta(α1 + 1, α0). On seeing a 0, the new distribution is
Beta(α1, α0 + 1). Note the hard case for any algorithm (and the case that does
arise in practice) is when the input to the problem is a set of arms {i} with priors
Di ∼ Beta(α1i, α0i) where α0i � α1i which corresponds to a set of poor prior
expectations of the arms. For a horizon of size T , the entire information is cap-
tured by a DAG of size O(T 2). The example naturally extends to Dirichlet priors
which are conjugate priors of multinomials and generalize Beta distributions for
multiple outcomes.

2.2 Decision Policies and Single-arm Policies

Definition 3. A decision policy is a mapping from the current state of the
overall system to an action, which involves playing K arms.

We use the term state both to denote Si, which is the state corresponding to
the posterior of the arm, as well as the state of the decision policy, which could
involve the joint states {u ∈ Si} of all the arms at any step, the remaining time
horizon, remaining budgets, and other variables (such as outstanding feedback
of all arms in the delayed feedback version). Therefore, the “state” used by a
decision policy could be much more complicated than the product space of Si.
Definition 4. Given an execution of the global policy P, define its projection
on arm i to be the policy Pi defined by the actions induced on Si; we term this a
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single-arm policy. Note that the global policy may take an action in arm i based
on information regarding other arms (an entangled state) – that side information
is lost in the projection.

In a single-arm policy for the MaxMab problem, we can further compress idle-
time of an arm as follows: If the global policy plays arm i, and then waits t steps
before playing next (because it was playing other arms), in the projection, we
make these plays consecutive. By the bandit property, the outcome of the next
play is stochastically preserved in this process. Therefore, the state of the policy
Pi is only captured by the state u ∈ Si and the outstanding budget. This is not
feasible in the delayed feedback setting.

Definition 5. A policy P is a decomposable index policy, if each arm is re-
duced to a single priority value based on current state of that arm and possibly
a few global parameters. The feasible set with the highest priority is played in
every step.

2.3 Modeling Budgets

One ingredient in our problem formulations is natural budget constraints in
individual arms. As we will see later, these constraints introduce non-trivial
complications in designing the decision policies. There are three types of budget
constraints we can consider.

Play Budget: This corresponds to the number of times an individual arm i can
be played, typically denoted by Ti where Ti < T . In networking, each play
attempts to add traffic to a route and we may choose to avoid congestion. In
online advertising, we could limit the number of impressions of a particular
advertisement, often done to limit advertisement-blindness.

Observed Value Budget: The total obtained from arm i should be at most
its budget Bi.

Achieved Reward Budget: In MaxMab, the reward of only the arm that is
maximum is used, and hence only this budget is depleted. In other words,
there is a bound on the total reward achievable from an arm (call this Ai),
but we only count reward from an arm when it was the maximum value arm
at any step.

Observed that the play and observed value budgets simply involve truncating
the state space Si, so that an arm cannot be played if the number of plays or
observations violates the budget constraint. The achieved reward budget is more
complicated to handle, and perhaps the most relevant since arms that “lost out”
(were not the desired ones) should not be charged. We discuss only the achieved
reward budget in Section 3. However the observed value budget, even for K = 1
simultaneous plays is nontrivial in the context of delays in feedback, we discuss
that model in Section 4 further.
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3 Problem 1: MaxMAB and Concave Objectives

In MaxMAB, at each step, the decision policy can play at most K arms but
the reward obtained is the maximum of the values that are observed. In other
words, the policy plays K arms each step, but is allowed to choose the arm
with the maximum observed value and obtain its reward. Note that the states
of all K arms evolve to their respective posteriors, since all arms were observed.
We assume that only the chosen arm loses its budget – otherwise the budgets
can be incorporated in the state space. To simplify the discussion, we make
two assumptions, but these assumptions do not lose any generality. First we
assume that all reward values q are powers of two. This assumption loses a
factor of 2 in the approximation ratio, since we can round q down to powers of
2 while symbolically maintaining their distinction in the prior updates. Second
we assume for any q observed by arm i we have q ≤ Bi. We allow the reward of
the last step to count completely – the final policy stops when the budget is Bi,
thereby losing at most a factor 2 in reward.

Extending the choice to single arm policies: Recall that the goal would be to
devise global policies that arise from combination of single arm policies. In this
setting, the state of a single-arm policy is captured by the state u ∈ Si as well
as the outstanding budget. Note that a global policy can play an arm, but only
obtains reward if the arm is chosen as the maximum. Since we project onto
the behavior of a single arm, we distinguish between a “play” of an arm, and a
“choice”, which is the subset of plays that yield reward. Therefore, a single-arm
policy for arm i takes one of several actions in each state: (i) Stop execution; (ii)
Play arm i; (iii) Choose arm i after the arm has been played, yielding reward.
If the arm is chosen when the observed value from that play is q then we collect
a reward q. The state evolves whenever the arm is played.

Definition 6. The single-arm policy Pi is considered feasible if the total reward
on any decision path (taking into account the “choice” action) is at most Bi. Let
the set of feasible policies for arm i be Fi.
A modified goal is therefore to find a collection of feasible single-arm policies Pi.

The Overall Optimization Approach: We will use the four fold recipe suggested
in the introduction. We express the problem as an optimization problem over
policies and then show that after a few steps of relaxations we can express the
resultant as natural linear optimization problems; which can then be solved using
many different techniques including techniques including existing index policies.
The steps of relaxation indicate which states in the single arm state space are
relevant, albeit with a loss of approximation factor.

Definition 7. Let T (Pi) be the expected number of plays of the policy Pi.
Definition 8. For any single-arm policy Pi, let N(q,Pi) denote the expected
number of times the policy observes the value q and chooses arm i.
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OPT ≤ LPMaxMab = max
{Pi∈Fi}

∑

i

∑

q

qN(q,Pi)

s.t.
∑

i

∑

q

N(q,Pi) ≤ T and
∑

i

T (Pi) ≤ KT

The Lagrangian of only the first constraint gives us:

LagMaxMab(λ) = max
{Pi∈Fi}

λT +
∑

i

∑

q

(q − λ)N(q,Pi) s.t.
∑

i

T (Pi) ≤ KT

Steps 1 and 2: Suitable subset of states: In the absence of any constraint
the optimal policy for every arm i, has the following property: If it plays the
arm in state u ∈ Si, then it chooses the arm if the observed reward is q ≥ λ.
In presence of budgets, such a fact is not true — observe that the N(q,Pi) is
determined after Pi is chosen. Not choosing to take a reward immediately allows
us to explore a larger state space. The next definition and lemma provide a
characterization of the states and observations that are useful.

Definition 9. For any parameter ν, define the truncated state space Si(ν) as
follows. The state u is retained in the truncated state space iff the total value
from all observations of q ≥ ν is at most Bi — the horizon depends on ν (but
still at most T ).

Lemma 1. For any λ ≥ 0, there exists {Pi} such that (i) The policy Pi runs
on state space Si(νi(λ)), and (ii) It always chooses the arm if the reward is ≥ ν
and (iii) {Pi} provide a 4 approximation to LagMaxMab(λ).

Proof. Define q to be small if q ∈ [λ, 2λ) and large otherwise. Since q values
are powers of 2, there is only one small value of q; call this value qs. Consider
the optimal solution to LagMaxMab(λ). Either half the objective value in
LagMaxMab(λ) is achieved by choosing qs (Case 1) or by choosing large
q > qs (Case 2). The policies will be different depending on the two cases —
the algorithm need not know which case applies; we will solve both cases and
choose the better solution. In Case 1, we set ν = λ, and in Case 2 we set ν =
min{q|q ≥ 2λ}. Consider the collection of optimal policies for LagMaxMab(λ).
Modify each policy Pi as follows: Keep playing as long as the state is feasible
in Si(ν); otherwise stop playing. Clearly the new policy is also feasible for the
constraint

∑
i T (Pi) ≤ KT since the original policy was. In the new policy,

whenever a reward observed is at least ν choose the arm even if the original policy
had not chosen it. We now bound the value of the new policy by considering
every decision path of the original policy and considering the contribution to
the objective of LagMaxMab(λ) in this decision path.

Case 1: Suppose choosing qs contributes more than half of the optimal objective.
In this case, ν = λ. Consider just the contribution of qs − λ on any decision
path, and suppose qs is chosen k times, so that kqs ≤ Bi. If the modified policy
chooses this q for k′ ≥ k times, then its value clearly dominates the original
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policy’s contribution. Otherwise, suppose the modified policy chooses qs some
k′ < k times, then the choices of the remaining q must have exhausted the
budget. Since per unit q, the policy generates value at least 1−λ/qs, a knapsack
argument shows that the value generated in the modified policy on all q is at
least the value generated by the original policy on the qs − λ values which is at
least:

Bi

(

1− λ

qs

)

≥ kqs
(

1− λ

qs

)

= k(qs − λ)

Note that the contribution from qs in the original policy is k(qs − λ).
Case 2: Suppose the large q values contribute to at least half the optimal ob-
jective. In this case, we have ν = min{q|q ≥ 2λ}. On any decision path, consider
just the contribution of large q− λ. Note that q − λ ≥ q/2 for such q, so that in
the worst case, the new policy exhausts its budget and contributes Bi/2 to the
objective while the original policy could have contributed Bi. If the new policy
does not exhaust its budget, it must match the value of the original policy on
large q. We lose a factor two in splitting the analysis into two cases, and a factor
of 2 within the second case. Therefore, the new policy is a 4 approximation and
satisfies the properties in the statement. �

Step 3: Finding the single arm policies. The next theorem provides us the
policies based on approximately optimal Lagrangian solutions, see [25]. We need
to use that idea twice.

Theorem 4. In time polynomial in
∑

i Si, T we can find λ∗ and policies {Pi(λ∗)}
with associated {νi(λ∗)} that satisfy the properties in Lemma 1 and that are a 16(1+
ε)-approximation to the solution to LPMaxMab.

Proof. We will use Lagrangians twice. First, fix λ. Observe that under the char-
acterization of Lemma 1, we always choose any value which is ν(λ) or above. So
consider

LagMaxMab(λ, ζ) = max
{Pi∈Fi}

λT + ζKT +
∑

i

(
∑

q

(q − λ)N(q,Pi)− ζT (Pi)

)

Thus LagMaxMab(λ, ζ) is completely an unconstrained policy; and the solu-
tion is easy if we know ν(λ). We can compute the solution by a bottom up
dynamic programming (DP). At each node u we have the policies for all its
children available (using the subpolicies constructed by the DP so far). The re-
ward available at node u is

∑
q≥ν(λ)(q − λ)Pr[Xiu = q] where Xiu is the value

distribution at node u. The cost of playing at node u is ζ. For each child node v
which we reach with probability puv suppose the subpolicy is Pv and its reward
(from values ν(λ) or above) is R(Pv). Then the decision at u is if:

∑

v

puv (R(Pv)− ζT (Pv)) +
∑

q≥ν(λ)
(q − λ)Pr[Xiu = q] > ζ

If the answer is yes, then we will play at node u and otherwise we will not play.
Once we compute the decision at the root of Si we are done.
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However we have a slight problem – we know ν(λ) is one of two values! We
repeat the computation for both and choose the better policy for each arm. Let
this policy be Pi. Therefore the objective function:

LagMaxMab(λ, ζ) ≥ 1

4
LagMaxMab(λ) + ζ

(

KT −
∑

i

T (Pi)
)

We now observe that for ζ = 0 if we have
∑

i T (Pi) ≤ KT we are done. Let us
assume

∑
i T (Pi) > KT . For ζ =∞ we will never make a play and

∑
i T (Pi) = 0.

We can now binary search over ζ such that we have two values ζ+ > ζ− and for
ζ+ we have the policies {P+

i } satisfying
∑
i T (P+

i ) < KT and for ζ− we have
the policies {P−i } satisfying

∑
i T (P−i ) > KT . Note at equality, we can simply

return the policies; and the ζ (KT −∑i T (Pi)) term will vanish. We perform
the binary search till |ζ+ − ζ−| is at most ε

4nKT times the maximum reward
of any arm (which is a lower bound on LagMaxMab(λ)). Now if we take a
convex combination a+

∑
i T (P+

i )+a−
∑

i T (P−i ) = KT then the reward of the
convex combination of the two policies will be a 4+ε/2 approximation (for small
ε� 1). Observe that either half of the contribution arises from the {P+

i } being
chosen with probability a+ or half of the contribution arises from the {P−i }
being chosen with probability a−. This gives a randomized 8 + ε approximation
to LagMaxMab(λ).

We now apply the same idea to λ and
∑

i

∑
qN(q,Pi). If for λ = 0 we have∑

i

∑
qN(q,Pi) ≥ T then we already have a feasible solution and therefore we

can assume that
∑

i

∑
qN(q,Pi) > T for λ = 0. Now is λ is the largest possible

value we immediately know that
∑
i

∑
q N(q,Pi) = 0 since there will no benefit

to choosing any value. We perform a binary search till |λ+ − λ−| ≤ ε
T times the

maximum reward from any single arm (which is at most ε
nT times LPMaxMab).

Once again we lose another factor 2 and the theorem follows. �

Step 4: Scheduling and Designing the Final (almost) Index Policy:
Consider the single-arm policies Qi constructed in Theorem 4. Modify these
policies so that they stop executing after T/2 steps. Choose a subset S0 of arms,
where each arm is placed in S0 independently with probability 1

24 . Order the
arms in S0 arbitrarily. Each arm in S0 is in one of three possible states: Ready,
Current, and Finished. Initially, all arms are Ready. Make the first K arms
Current, and denote the set of Current arms as S. We execute the policies Qi
for i ∈ S as described below. Whenever a policy terminates, we mark this arm
as Finished, remove it from S, and place any Ready arm in S. At any step,
suppose the arms in S are i1, . . . , iK in states u1, . . . , uK . Then the policy is
below (observe that one of the three is always true); for reward always choose
the arm with the maximum observed value.

All: If
∑K

s=1 Pr[Xisus ≥ νis(λ∗)] ≤ 2
3 then we play all the arms.

Stall: Play is such that Pr[Xisus ≥ νis(λ∗)] ≥ 1
3 .

Throttle: Play a subset S′ such that
∑
s∈S′ Pr[Xisus ≥ νis(λ∗)] ∈

[
1
3 ,

2
3

]
.

Lemma 2. If the policies Qi are modified to stop execution after T/2 steps, this
reduces their expected reward by at most a factor of 2.
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Proof. Given a random variable X let Tail(X, ν) =
∑

x≥ν Pr[X = x] · x. Since
Tail(Xiu, ν) is a martingale over Si(ν), the lemma now follows by applying
Theorem 3 to Si(νi(λ∗)). �

Lemma 3. Conditioned on j ∈ S0, the policy Qj executes to completion with
probability at least 1

2 on all its paths.

Proof. To bound the probability of this event, assume arm j is placed last in the
ordering, and only marked Current after all other policies are marked Finished
- this only reduces the probability that Qj executes to completion on any of
its decision paths. For the arms i 	= j, observe that at each step, either at
least K arms are played, or sufficiently many arms are played so that the sum
of the probabilities that the observed value of arm i exceed νi(λ

∗) is at least
1
3 . Therefore, at each step, if S is the set of arms marked Current, Zit is an
indicator variable denoting whether arm i is played, and Wiqt is an indicator
variable denoting whether arm i is observed in state q, we must have:

∑

i∈S

⎛

⎝
∑

q≥νi(λ∗)

Wiqt +
Zit
K

⎞

⎠ ≥ 1

3

If Y denotes the random variable corresponding to the total time for which
policies for arms i 	= j execute, by linearity of expectation:

E[Y ]

3
≤ E

⎡

⎣
∑

t

∑

i�=j

⎛

⎝
∑

q≥νi(λ∗)

Wiqt +
Zit
K

⎞

⎠

⎤

⎦

= ES0

⎡

⎣
∑

i∈S0,i�=j

(
∑

q

N(q,Qi) + T (Qi)
K

)⎤

⎦ ≤ 2T

24

Therefore, E[Y ] ≤ T/4 so that Pr[Y ≤ T/2] ≥ 1/2 by Markov’s inequality. In
this event, Qj executes to completion, since its horizon is at most T/2. �

Lemma 4. Consider the event j ∈ S0 and j is marked Finished. In this event,
suppose we count the contribution from this arm to the overall objective only
when it is the only arm that observes a value larger than νj(λ

∗). Then, the
expected contribution from arm j is at least 1

3 times the value of policy Qj.
Proof. We have

∑
iPr[Xiu ≥ νi(λ

∗)] ≤ 2
3 whenever the arm j is played simul-

taneously with any other arm. Since the other arms are independent of arm j,
if j is observed at q ≥ νj(λ

∗) then with probability at least 1
3 all other arms i

are observed to be less than the respective νi(λ
∗). �

Combining Theorem 4, and Lemmas 2, 3, and 4, we observe that with constant
probability Qj executes to completion on all its decision paths, and in this event,
has expected value a constant factor of the LP contribution. By linearity of
expectation, we have the following theorem;
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Theorem 1. The MaxMAB problem has a O(1)-approximate policy which is a
throttled index policy. The policy can be found in time polynomial in

∑
i |Si|, T .

4 Problem 2: Delayed Feedback

In this problem if an arm is played, the feedback about the reward outcome
is available only after δi time steps. For simplicity of exposition assume that
we are playing one arm at a time, i.e., K = 1. As a consequence we are in
a simpler model regarding budgets – the only constraint we now have is that
the total reward from arm i is at most Bi. Define ti = T/δi. We assume that
δi = o(T/ logT ), which implies that the horizon is slightly separated from the
delays and ti = ω(log δi). We show the following theorem. In the interest of
space, the details of the proof are in the full paper [22].

Theorem 2. Assuming δi = o(T/ logT ), there is a constant factor approxi-
mation to the Finite Horizon MAB problem with delayed feedback. The running
time for computing this policy is poly(T,

∑
i |Si|).

We show the above theorem by identifying a tractable state space for single arms,
which is a function of Si; reasoning that good single arm policies exist in that
space and computing them using linear programming; and finally scheduling the
single arm policies into a globally feasible policy. We use LPDelay to bound of
the reward of the best collection of single-arm policies - the goal is to find one
policy per arm so that the total expected number of plays is at most T and the
expected reward is maximized.

Definition 10. Let Ci(T ) be the set of all single-arm policies for arm i over a
horizon of T steps, obeying the above budget constraint.

Lemma 5. OPT ≤ LPDelay = max{Pi∈Ci(T )} {
∑

iR(Pi) |
∑
i T (Pi) ≤ T }

However, in the case of delayed feedback, describing a single-arm policy is more
complicated. This policy is now a (randomized) mapping from the current state
of the arm to one of the following actions: (i) make a play; (ii) wait some number
of steps (less or equal to T ), so that when the result of a previous play is known,
the policy changes state; (iii) wait a few steps and make a play (without extra
information); or (iv) quit. The state of the system is now captured by not only
the current posterior u ∈ Si, but also the plays with outstanding feedback and
the remaining time horizon. Note that the state encodes plays with outstand-
ing feedback, and this has size 2δi . Therefore, it is not even clear how to even
express LPDelay in polynomial space. The main idea is to perform a sequence
of transformations that will show that for any single-arm policy in Pi ∈ Ci(T ),
there is a different single-arm policy that is much more structured than Pi that
achieves at least a constant-factor of the reward of Pi.

Denote single-arm policies for arm i restricted to a horizon T as P(i, T ).
Step 1: Block Structured Policies. We first show that all single-arm policies
can be replaced with block structured policies of the following form:
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Definition 11. A single-arm policy is said to be Block Structured if the policy
executes in phases of size (2δi + 1). At the start of each phase (or block), the
policy makes at most δi + 1 consecutive plays. The policy then waits for the rest
of the block in order to obtain feedback on these plays, and then moves to the
next block. A block is defined to be full if exactly δi + 1 plays are made in it.

Lemma 6. Any policy P(i, T ) can be converted it to a Block Structured policy
P ′(i, 2T ) such that R(P(i, T )) ≤ R(P ′(i, 2T )) and T (P ′(i, 2T )) ≤ T (P(i, T ))

The idea behind this proof is simple – we simply insert delays of length δi after
every chunk of plays of length δi.

Step 2: Well-Structured Policies.We now define a compact delay free policy:

Definition 12. Define a block-structured policy to be c-delay-free for c ≤ 1 if
the first time the policy encounters a block with at least cδi plays, it plays every
step (without waiting) beyond this point (using feedback from δi plays ago) until
it stops executing.

Lemma 7. Given any Block Structured policy P(i, 2T ) we can construct a c-
delay-free Block-structured policy P ′(i, 2T ), such that R(P(i, 2T )) ≤ R(P ′(i, 2T ))
and T (P ′(i, 2T )) ≤ (1 + 1

c )T (P(i, 2T )).

The proof uses the idea of simulation - we make more plays initially, but hold
on to the outcomes of the extra plays. When the original policy makes plays in
a subsequent block, we eliminate these plays and instead use the outcomes of
the saved up plays. We next use the proof idea of Lemma 7 recursively to prove
Lemma 8. Note, any policy uses at most T

δi
= ω(log δi) blocks.

Definition 13. For constant α < 1, define a c-delay-free block-structured single-
arm policy P to be (α, c)-well-structured if after encountering at most q = (α+
o(1))ti blocks, the policy switches to playing continuously. Here ti = T/δi.

Lemma 8. For any α < 1 and c ≤ α
α+2 , given a c-delay-free policy P(i, 2T ),

there is a (α, c)-well-structured policy P ′ such that R(P(i, 2T )) ≤ R(P ′(i, 2T ))
and T (P ′(i, 2T )) ≤ (1 + 2

α )T (P(i, 2T )).

Step 3: Finding Well-Structured Policies: We prove the following theorem.

Theorem 5. LPDelay has a 1/α-approximation over (α, α
α+2 )-well structured

policies for α ≤ 1/8 truncated to a horizon of T/2. The new LP has the relaxed
constraint:

∑
i T (Ps(i, T/2)) ≤ γT where γ = 2(1 + 1/α)(1 + 2/α).

The LP yields one randomized well-structured policy Pr(i, T/2) for each arm i.
This policy is described as: If the state at the beginning of a block is σ then

1. Choose  with probability p(i, σ, ), and make  plays in the current block.
2. Wait till the end of the block; obtain feedback for the  plays; update state.
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Step 4: Priority Based Combining. At this point we have a collection of ran-
domized policies Pr(i, T/2) s.t. ∑i T (Pr(i, T/2)) ≤ T and

∑
iR(Pr(i, T/2)) =

Ω(OPT ). We now show how to combine these into a globally approximate and
feasible solution. Since multiple policies must remain active in the combination,
we need a novel priority based scheme for combining the policies.

Consider the execution of Pr(i, T/2). We describe the arm as active if it is
either making plays or is at the beginning of a block where it can make plays;
and passive if it is waiting for feedback on the plays within the block. Any arm
which completed its waiting for the feedback turns from passive to active mode.
The final policy is:

1. Choose an arbitrary order the arms {i} denoted by π. Each arm “partici-
pates” with probability 1/4. Initially, all participating arms are active.

2. On each new play, among all participating arms:
(a) Find the lowest rank arm, say i′, that is active.
(b) Allocate the current play to i′ according to the policy Pr(i′, T/2). (As a

result the arm may become passive and wait for feedback.)

Lemma 9. The expected contribution of i from the combined policy is at least
R(Pr(i, T/2))/8.
The above lemma along with Theorem 5, prove Theorem 2 by linearity of ex-
pectation, concluding the analysis.

Acknowledgements. We thank Martin Pál for many useful discussions.
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Abstract. In the Binary Paintshop problem, there are m cars appear-
ing in a sequence of length 2m, with each car occurring twice. Each car
needs to be colored with two colors. The goal is to choose for each car,
which of its occurrences receives either color, so as to minimize the to-
tal number of color changes in the sequence. We show that the Binary
Paintshop problem is equivalent (up to constant factors) to the Mini-
mum Uncut problem, under randomized reductions. By derandomizing
this reduction for hard instances of the Min Uncut problem arising from
the Unique Games Conjecture, we show that the Binary Paintshop prob-
lem is ω(1)-hard to approximate (assuming the UGC). This answers an
open question from [BEH06,MS09,AH11].

1 Introduction

The paintshop problem is defined as follows: we are given a 2m length sequence
containingm cars, where each car appears twice. Each car need to be colored red
in one occurrence, and blue in the other. We need to choose which occurrence
for each car to color with which color — the goal is to minimize the number of
times we need to change the current color. E.g., for m = 3, we may represent the
3 cars by x, y, z. If the sequence is x1x2y1z1y2z2, where the subscripts denote
the first and second occurrence of each car, we could use the colors BRRRBB, to
get two color changes, which is the minimum possible. This problem (along with
generalizations) was introduced by Epping, Hottstättler and Oertel [EHO01];
their motivation was a natural application in the automotive industry.

Let us formalize the definition: in the basic Binary Paintshop problem, the
input is a sequence of length n (which is usually associated with the set [n] :=
{1, 2, . . . , n}), along with a matching H on the points in [n]. A feasible coloring
f : [n]→ {B,R} of the vertices must ensure that the endpoints of each matching
edge (i, j) ∈ H are bi-colored—i.e., feasibility means f(i) �= f(j) for all (i, j) ∈
� This author thanks IBM T.J. Watson Research Center for the generous hospitality
while this work was done.
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H . The cost of a coloring, also called the number of color changes is the number
of pairs (i, i+ 1) for i ∈ [n− 1] that are bichromatic; i.e.,

cost(f) :=

n−1∑

i=1

1(f(i) �= f(i+ 1)) .

For an instance of the Binary Paintshop problem Γ , we denote by Opt(Γ ) the
cost of the minimum cost coloring. The goal is to find a feasible coloring f that
(approximately) minimizes the cost. We refer to the edges of H as the constraints
in the instance.

Epping et al. [EHO01], along with defining the problem, gave an exponential-
time dynamic programming algorithm to solve the problem exactly, and showed
NP-hardness for it as well. Subsequently, Bonsma et al. [BEH06] and Meunier
and Sebö [MS09] showed the problem to be APX-hard. They posed the question
of whether the problem admitted a constant-factor approximation algorithm. We
resolve this question negatively assuming the Unique Games Conjecture (UGC)
of Khot [Kho02]:

Theorem 1. Assuming the UGC, the (basic) Binary Paintshop problem is NP-
hard to approximate within any constant factor.

The above theorem follows via reduction fromMin Uncut and is proved in Section
4. The Min Uncut problem is the complement of Maximum Cut, and is defined
formally in Section 1.2. We present an approximation preserving (up to constant
factors) reduction from Min Uncut to Binary Paintshop in Section 3.1. Assuming
the Unique Games Conjecture, Khot et al. [KKMO07] showed that Min Uncut
is NP-hard to approximate within any constant factor. Using their result and a
specific instantiation of the reduction in Section 3.1 yields the proof of Theorem
1. A connection between the Binary Paintshop and Min Uncut problems was also
noted by Meunier and Sebö [MS09], but they could only show an APX-hardness
using this connection.

We also consider a generalization of this problem: in the generalized Binary
Paintshop problem instead of being given a sequence of n points (which is nat-
urally associated with a path graph on n nodes), we are given a general graph
G = (V,E). Moreover, instead of the constraints H forming a matching on
V , we have a bipartite graph H = (V,EH) on V . The feasibility of a coloring
f : V → {B,R} still requires that all constraint edges in H are bi-colored—i.e.,
f(i) �= f(j) for all (i, j) ∈ EH . Note that the bipartiteness of H is essential to en-
sure feasibility, if H is not bipartite there is no feasible coloring. The interesting
cases of this problem are when the constraint graph H has many components—
e.g., when H is a matching and hence potentially has n/2 components.1 The
cost of f is defined naturally as

cost(f) :=
∑

(i,j)∈E(G)

1(f(i) �= f(j)) .

1 This is because the problem can be solved in time exponential in the number of
connected components of H (and polynomial in n = |V (G)|) by enumerating over
the 2-colorings of each component of H .
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Our second result, proved in Section 3.2, is that the generalized Binary Paintshop
problem is no harder than the Min Uncut problem:

Theorem 2. A ρ-approximation algorithm for Min Uncut can be used to give a
ρ-approximation for the (generalized) Binary Paintshop problem.

Using the algorithm of Agarwal et al. [ACMM05], we now get an O(
√
logn)-

approximation for Binary Paintshop. Note that the hardness result is shown for
the most restrictive (basic) Binary Paintshop problem, whereas the algorithm is
for the generalized Binary Paintshop problem.

1.1 Related Work

Other than considering the complexity of the problem as mentioned above, pre-
vious work analyzed the performance of greedy algorithms for the paintshop
problem, since this type of algorithms are actually used in real life instances of
the problem. Meunier and Sebö [MS09] showed a class of instances for which the
greedy algorithm is optimal. Amini et al. [AMMM10] showed that the greedy
algorithm is optimal for even a larger class of instances and also proved that
the expected number of color changes given by the greedy coloring on a random
sequence is at most 2n/3. Andres and Hottstättler [AH11] improved this upper
bound to n/2. They also considered a hybrid greedy algorithm whose expected
number of color changes is 2n/5.

1.2 Notation and Definitions

In the Min Uncut problem, the input is an undirected, unweighted graph G =
(V,E) on n := |V | vertices, with every vertex having degree at most poly(n)
(thus we allow parallel edges). The goal is to find a cut (U,U) for U ⊆ V to
minimize the number of uncut edges—i.e., the edges in E[U ]∪E[U ], where E[S]
is the set of edges both of whose edges lie within the set S. With some abuse
of notation, for an instance of the Min Uncut problem G, we denote by Opt(G)
the optimal value. The current best algorithm for Min Uncut is an O(

√
logn)-

approximation due to Agarwal et al. [ACMM05].

2 Dispersive Permutations

For our hardness proofs, we will need that random permutations satisfy a certain
property, which we call dispersion. In this section, we record this proof.

Definition 1. Given a coloring f : [m] → {B,R}, the complement coloring f
is obtained by switching the assignments of f from B to R and vice versa. The
coloring f is called M -non-monochromatic for M = min

{|f−1(B)|, |f−1(R)|}.
Definition 2. Given a coloring f : [m]→ {B,R} that isM -non-monochromatic,
a permutation σ : [m]→ [m] is called dispersive for f if either f or (f ◦σ) has at
least M/16 color changes. If a permutation is dispersive for all colorings, then
it is simply called dispersive.
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Lemma 1. For any m ≥ 108, a uniformly random permutation σ : [m] → [m]
is dispersive with probability at least 1− 1

512m .

Proof. Fix any M ∈ [m/2] and let f be an M -non-monochromatic coloring.
Observe that when M < 16, the coloring f trivially has at least M/16 color
changes; so we assume M ≥ 16 below.

We first count the number of colorings with at most M/16 color changes. For
any number r ≤M/16, to estimate the number of colorings with exactly r color
changes, we note that any such coloring f gives rise to a subset of r indices
{i1, i2, . . . , ir} ⊆ [m − 1] where the coloring changes color, i.e. for each such ik,
we have f(ik) �= f(ik + 1). The number of such subsets is

(
m−1
r

)
, and each such

subset can give rise to two colorings with r-color changes. Hence, the number of
colorings with at most M/16 color changes is bounded by

N :=

M/16∑

r=0

2

(
m− 1

r

)

≤ M

8

(
m− 1

M/16

)

.

Since for a uniformly random permutation σ, (f ◦ σ) is a uniformly random
M -non-monochromatic coloring with the opposite minority color of f , of which
there are

(
m
M

)
, the probability that (f ◦ σ) has at most M/16 color changes is

bounded by

p :=

M/16∑

r=0

[
2
(
m−1
r

)

(
m
M

)

]

≤
M

(
m−1
M/16

)

8
(
m
M

) . (1)

Thus, for any fixed M -non-monochromatic coloring f , at most p fraction of
permutations σ yield a “bad” coloring (f ◦ σ), i.e. (f ◦ σ) has at most M/16
color changes. However, we are only concerned with colorings f which are “bad”
to begin with, i.e. f has at most M/16 color changes. As above, the number of
such colorings is bounded by N . Thus, by the union bound, the probability that
a random permutation σ is not dispersive for some coloring f that is M -non-
monochromatic is at most

Np ≤
M2

(
m−1
M/16

)2

64
(
m
M

) ≤ (m/2)2

64m4
≤ 1

256m2
, (2)

where the second inequality uses Claim 3 below. Summing this probability bound
for all m/2 integer values for M , we complete the proof of the lemma.

Claim 3. Suppose m ≥ 108. For any integers 16 ≤M ≤ m
2 , we have

(
m−1
M/16

)2 ≤
1
m4 ·

(
m
M

)
.

Proof. The proof is by the following two calculations.

Suppose M ≥ 32 lnm. We have
(
m−1
M/16

)2 ≤ (
16em
M

)M/8
and

(
m
M

) ≥ (
m
M

)M
. So

the ratio of these is at most:
(
16em

M

)M/8

·
(
M

m

)M

=
(
16e(M/m)7

)M/8 ≤ (
16e(1/2)7

)M/8 ≤ e−M/8 ≤ 1

m4
,
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where the first inequality follows because M ≤ m/2, and the last because M ≥
32 lnm.

Now suppose M ≤ 32 lnm. We have
(
m−1
M/16

)2 ≤ mM/8 and
(
m
M

) ≥ (
m
M

)M
.

Thus the ratio is at most

mM/8 · M
M

mM
≤ mM/2

mM
≤ 1

m4
,

where the first inequality follows because for m ≥ 108, we have M ≤ 32 ln(m) ≤
m3/8, and the second because M ≥ 8.

3 Relationship to Min Uncut

In this section we show formal connections between the Min Uncut problem and
the Binary Paintshop problem. Recall the Min Uncut problem from Section 1.2,
in which we want to find a cut that minimizes the number of uncut edges. We
show that the two problems have the same asymptotic approximability under
randomized reductions.

3.1 Reducing Min Uncut to Binary Paintshop

Theorem 4. A ρ-approximation algorithm for Binary Paintshop implies a ran-
domized algorithm for Min Uncut that returns an O(ρ)-approximation with prob-
ability at least 0.99.

The success probability can be boosted to arbitrarily close to 1 by repeating the
algorithm with different random seeds and returning the best solution found.

The proof works as follows. Given an instance of the Min Uncut problem, we
give a gadget transformation to an instance of the Binary Paintshop problem.
This gadget has a block of nodes for each node in the Min Uncut instance, and
matchings between different blocks represent edges in the Min Uncut instance.
Since a solution to the Binary Paintshop instance is forced to color the end-
points of each matching edge differently, within every block we can interpret
the different colors assigned as “votes” for the side of the cut that the node in
the Min Uncut instance should lie on. One can then round this solution to the
Binary Paintshop instance to a solution for the Min Uncut instance by taking
the majority vote within each block. To ensure that the cost of the obtained
solution to the Min Uncut can be bounded in terms of the cost of the solution
to the Binary Paintshop instance, we need to relate the minority vote in each
block to the number of color changes. To do this, we add an additional block for
each node together with a matching provided by a dispersive permutation into
the original block which serves to “mix up” the coloring of the original block.
This ensures that the total number of the color changes within the two blocks
for each node is at least a constant fraction of the minority vote. The details
follow.
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The Binary Paintshop Instance ΓG. We are given a graph G(V,E) as input
to the Min Uncut problem. Let n = |V | where vertices are indexed {1, 2, . . . , n}.
Let d(i) denote the degree of vertex i ∈ [n]. We choose an integer parameter
T ≤ poly(n) to be specified later, and consider the multigraph G′ obtained by
making T copies of each edge in G, so each vertex i has degree Td(i) in G′,
and we order the corresponding edges arbitrarily. For each i ∈ [n], we choose a
random permutation σi on Td(i) elements. Our instance ΓG of Binary Paintshop
contains for each vertex i ∈ [n], two sequences of points Ri and Si. (See Figure 1.)

Sequence Ri: This contains 2Td(i) points and is given by

〈xi,1, yi,1, xi,2, yi,2, · · · , xi,Td(i), yi,Td(i)〉.
There are Td(i) x-points corresponding to edges incident to vertex i in G′, and
the remaining are y-points which will be used to enforce a feasible coloring.

Sequence Si: This contains Td(i) points

〈zi,1, zi,2, · · · , zi,Td(i)〉.

Final sequence W : The final sequence W of the instance ΓG is just a concatena-
tion of the sequences constructed above.

W := R1 ◦R2 ◦ · · · ◦Rn ◦ S1 ◦ S2 ◦ · · · ◦ Sn. (3)

The instance ΓG of Binary Paintshop now consists of the path whose vertices
correspond to the points in W , in that order. Note the length of this path
is 3T

∑n
i=1 d(i) = 6T |E|, which is polynomial in the size of G. Now for the

constraints in ΓG—recall these must form a matching H on the points in W .
There are two kinds of matching pairs: edge pairs and permutation pairs, which
are defined below.

Edge pairs: For each edge e in G′, if e is the rth edge incident to vertex i and
the sth edge incident to vertex j, then we define {xi,r, xj,s} to be an edge pair.

Permutation pairs: For each vertex i ∈ [n] and each � ∈ {1, 2, · · · , T d(i)}, we
have a permutation pair

{
yi,�, zi,σi(�)

}
, where σis are the random permutations

chosen above.

Relating Opt(ΓG) and Opt(G). We now relate the optimal solutions on any
Min Uncut instance G, and the Binary Paintshop instance ΓG created by the
above process.

Lemma 2. Given any feasible solution to the Min Uncut problem on G with
M uncut edges, we can construct a feasible solution to the Binary Paintshop
instance ΓG of cost at most 2MT + 2n. Thus Opt(ΓG) ≤ 2T ·Opt(G) + 2n.

Proof. Let (U,U) be a cut in G withM uncut edges. We now construct a feasible
solution to the Paintshop instance ΓG of cost at most 2MT + 2n. We first
construct an initial coloring Finitial of the points in ΓG as follows. (This initial
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R2

S2

Rn

Sn

R1

S1

Fig. 1. High level view of the construction. The rectangles represent the sequences Ri

and Si, and the dotted line represents their concatenation in the final sequence W .
The edge pairs are represented by the dashed lines, whereas the permutation pairs are
solid lines.

coloring will be infeasible, but we shall see that incurring a small extra cost
will make it feasible.) For each 1 ≤ i ≤ n, the points in the sequence Ri are
colored R if i ∈ U and B otherwise. Similarly, all points in the sequence Si are
colored B if i ∈ U and R otherwise, for 1 ≤ i ≤ n. (In Figure 1, all points within
each rectangle have the same color, and any pair of vertically aligned rectangles
has opposite colors.) Note that every permutation pair is bichromatic and hence
satisfied. Before we fix the monochromatic edge pairs, let us first count the
number of color changes in Finitial . Clearly, since each of the sequences Si and
Ri are monochromatic, the only color changes are between adjacent sequences
of the form Ri and Ri+1, Si and Si+1, or Rn and S1. So the total number of
color changes in Finitial is at most 2n.

However, as mentioned above, some of the edge pairs may be monochromatic.
If an edge e = {i, j} is not separated by the cut (U,U), then all T pairs, corre-
sponding to the copies of this edge in G′, are monochromatic. To fix this, we flip
the color of one of the endpoints in every such pair. Call this new coloring F ∗,
which is feasible by construction. Observe that this process incurs an additional
cost of at most 2T for each uncut edge in G, since flipping the color of a point
may make both its neighboring edges in W two-colored. Since the total number
of uncut edges in the Min Uncut instance is M , and handling each one incurs
an extra cost of at most 2T , the number of color changes in F ∗ is at most 2MT
greater than that in Finitial , and hence at most 2MT + 2n.

Lemma 3. Suppose all the permutations σi chosen in the reduction are disper-
sive. Then given a feasible coloring for ΓG with C color changes, we can construct
a feasible solution to minimum uncut on G with cost at most 33 (C/T ). Thus we
have Opt(G) ≤ 33

T ·Opt(ΓG).

Proof. Consider some feasible coloring F for ΓG, with cost (a.k.a. number of
color changes) C. We will construct a feasible solution to minimum uncut on G
where the number of uncut edges is at most O(C/T ).
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For each i ∈ [n], define the majority color of i (under the feasible coloring
F for ΓG) to be the one that is represented at least |Ri|/2 times among the
points in Ri; the minority color of i is defined to be the opposite color. Also,
for i ∈ [n], let qi ≤ |Ri|/2 denote the number of points in Ri colored with the
minority color. Let U ⊆ [n] denote the vertices i having majority color B, and
hence U is the set of vertices having majority color R. In the rest of the proof,
we show that the cost of the solution (U,U) to Min Uncut is D ≤ 33 · CT .

Consider any uncut edge (u, v) in this solution (U,U). There are T edge-pairs
between points of Ru and Rv. By the feasibility of F , these must be colored with
opposite colors. Since u and v are either both in U or both in U , they have the
same majority color: so the 2T points in Ru ∪ Rv corresponding to edge (u, v)
contribute at least T minority colors at u and v. Thus the total number of points
colored with the minority color is

∑n
i=1 qi ≥ T ·D. Rearranging,

D ≤ 1

T

n∑

i=1

qi. (4)

Fix any i ∈ [n]. Since qi equals the number of minority colors in Ri, by Defini-
tion 1, the coloring F [Ri] is qi-non-monochromatic. Now we can use the disper-
sive property of the permutation σi to prove the following claim.

Claim 5. For any i ∈ [n], let the total number of color changes in Ri and Si be
Ci. Then qi ≤ 33Ci.

Proof. Let Ri := Xi ∪ Yi where Xi and Yi consist of the x-points and y-points,
respectively. Let F [Yi] be the coloring F restricted to the subsequence of the
y-points. Say the minority color in F [Yi] is B, and let By denote the number of
B-colored points in Yi. This implies that F [Yi] is By-non-monochromatic.

We first claim that By ≤ 16Ci. Suppose (for a contradiction) that By > 16Ci.
Then since σi is dispersive, either F [Yi] or F [Yi◦σi] has at least By/16 > Ci color
changes. Note that F [Yi ◦ σi] is precisely the coloring F [Si] since the points in
Yi and Si are paired (under permutation σi) and so have opposite colors by the
feasibility of F . Note also that the number of color changes in F [Ri] is at least
that number in F [Yi] since Yi is a subsequence of Ri. It follows that the number
of color changes in F [Ri] and F [Si] is greater than Ci, giving us a contradiction.
Thus we must have By ≤ 16Ci.

Finally, the sequence Ri is obtained by alternating between Xi and Yi. Since
the number of color changes in F [Ri] is at most Ci, the number of B-colored
points in F [Xi] and F [Yi] must differ by at most Ci. The latter quantity is at
most 16Ci by the previous argument, so the number of B-colored points in F [Xi]
is at most 17Ci. It follows that the total number of B-colored points in Ri is at
most 33Ci, and hence qi ≤ 33Ci.

Using the bound from Claim 5 for each i ∈ [n], along with (4),

D ≤ 1

T

n∑

i=1

qi ≤ 33

T

n∑

i=1

Ci ≤ 33
C

T
.

This completes the proof of Lemma 3.
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Completing the proof of Theorem 4. Having related the optima for the
Min Uncut instance G and the Binary Paintshop instance ΓG, we can now prove
Theorem 4.

Proof. We may assume that Opt(G) ≥ 1: the case Opt(G) = 0 corresponds
exactly to checking that G is bipartite and this can be easily done in polynomial
time. By the assumption of the theorem, there is a ρ-approximation algorithm
for Binary Paintshop, where ρ ≥ 1. Choosing T = max{108, n} means that the
probability of some fixed permutation chosen in the gadget not being dispersive
is at most 1

512n ; by a union bound, the probability that all permutations chosen
are dispersive is at least 1−1/512 > 0.99. If we run the claimed ρ-approximation
algorithm for the Binary Paintshop instance ΓG, we get a feasible coloring for
ΓG with C ≤ ρOpt(ΓG) color changes. By Lemma 2 we know that Opt(ΓG) ≤
2T Opt(G) + 2n. Using the “decoding” algorithm from Lemma 3, we can now
construct a feasible solution to the Min Uncut instance G with cost at most

33
C

T
≤ 33ρ

Opt(ΓG)

T
≤ 33ρ

(
2T Opt(G) + 2n

T

)

≤ 132 ρOpt(G),

since Opt(G) ≥ 1 and T ≥ n. This completes the proof of Theorem 4.

3.2 Reducing Binary Paintshop to Minimum Uncut

We now give a reduction in the opposite direction, showing that the Binary
Paintshop problem is essentially a special case of Min Uncut. In fact, we show
that even the generalized Binary Paintshop problem can be solved using an
algorithm for Min Uncut.

Theorem 6. Given a ρ-approximation algorithm for the Min Uncut problem,
we get a ρ-approximation algorithm for generalized Binary Paintshop.

Proof. Consider an instance of generalized Binary Paintshop: recall that this
consists of a graph G = (V,EG), and the constraint graph H = (V,EH), and
we want to find a coloring that bi-colors each of the edges in EH while cutting
the fewest edges in EG. Let C denote the cost of the optimal solution to this
instance; let |VG| = n and hence C ≤ |EG| ≤

(
n
2

)
.

Let H1, H2, . . . , Hk be the k connected components of H = (V,EH). Since H
is bipartite, it is easy to see that each Hi is bipartite with a unique bipartition
of vertices we denote by (V 0

i , V
1
i ), i = 1, . . . , k. The instance I = (U,EI) of

Min Uncut is constructed as follows. The vertex set U := ∪ki=1{u0i , u1i }. For each
i = 1, . . . , k, add t := ρn2 edges between u0i and u1i in graph I.

Consider an edge e ∈ EG whose end points lie in V ai and V bj for some i ≤ j

and a, b ∈ {0, 1}. Add a corresponding edge in graph I between ua
′
i and ubj ,

where a′ = 1 − a. Note that this may lead to self-loops in I. The number of
edges in I is |EG|+ tk.

Consider a feasible solution to the Binary Paintshop instance. This solution
colors all the nodes in V 0

i the same color, and the opposite color for all the nodes
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in V 1
i , for i = 1, . . . , k. To construct a solution for the Min Uncut instance I,

add each uai to one side of the cut according to the color of V ai for i = 1, . . . , k
and a ∈ {0, 1}. This separates all the edges between u0i and u1i . The only edges
that may remain uncut are those corresponding to edges in EG. An edge e ∈ EG
with end points in V ai and V bj for some i ≤ j and a, b ∈ {0, 1} corresponds to an

edge e′ ∈ EI between ua
′
i and ubj , where a

′ = 1− a. Thus, e′ is cut in the uncut
solution if and only if e was monochromatic in the Binary Paintshop solution.
That is, the number of edges in EI that are not separated (the uncut objective
value) is exactly equal to the number of non-monochromatic edges in EG (the
paintshop objective value).

Conversely, any solution to the Min Uncut instance I that separates each
pair {u0i , u1i } (i = 1, . . . , k) can be turned into a feasible solution for the Binary
Paintshop instance of the same cost by coloring each V ai according to the side
of the cut containing uai for a ∈ {0, 1}. Now, the output of the ρ-approximation
algorithm for Min Uncut on I must separate each pair {u0i , u1i }: else, its cost
is at least t = ρn2 > ρC, contradicting the fact that the output cut is a ρ-
approximation.

Combining Theorems 4 and 6, we get that the approximability of these two
problems is the same (up to constant factors) under randomized reductions.

Remark. It is easy to extend our results to weighted versions of the Binary
Paintshop problem where each adjacent pair in the sequence comes with some
cost.

4 UGC Hardness of Approximation

In this section we shall prove the desired Unique Games Conjecture based hard-
ness of approximation for the Binary Paintshop problem via the above connection
to the Min Uncut problem. We begin by stating the current best UGC based
inapproximability result for Min Uncut. The following theorem is based on UGC
for regular Unique Games – where the degree is a constant depending on the
completeness and soundness of the instance2.

Theorem 7 ([KKMO07]). Assuming the Unique Games Conjecture [Kho02]
the following holds. For every constant ε > 0, there is a positive integer d := d(ε)
such that given a d-regular n-vertex graph G as an instance of Min Uncut, it is
NP-hard to decide between the following two cases:

1. YES Case: Opt(G) ≤ 1
2εnd.

2. NO Case: Opt(G) ≥ 1
4

√
εnd.

The formal statement of the reduction is given below and, along with Theorem
7, implies Theorem 1.

2 Applying a pre-processing step of Dinur (Lemma 4.1 of [Din07]) using constant de-
gree expanders followed by Parallel Repetition [Raz98], a general instance of Unique
Games can be deterministically converted to a regular instance and thus, one can
assume UGC holds for regular instances of Unique Games.
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Theorem 8. There is a polynomial-time (deterministic) reduction from
instances G of Min Uncut given by Theorem 7 with parameter ε > 0, to in-
stances Γ of the Binary Paintshop problem on a sequence of length N = poly(n)
such that,

1. YES Case: If G is a YES instance of Min Uncut then OPT(Γ ) ≤ εN
2. NO Case: If G is a NO instance of Min Uncut then OPT(Γ ) ≥ 1

400

√
εN .

Proof. We instantiate the reduction of Section 3.1 with T = max{108, 1/ε}. Since
all nodes have the same degree d, we only require a single dispersive permutation
σ : [dT ] → [dT ]. Since dT is a constant (depending on ε), such a permutation
can be found using a brute-force search. Note that the length of the Binary
Paintshop instance generated is N = 3ndT .

Now if G is a YES instance of Min Uncut then Lemma 2 implies that

Opt(Γ ) ≤ 2TOpt(G) + 2n ≤ εndT + 2n ≤ εN.

If G is a NO instance of Min Uncut then Lemma 3 implies that

Opt(Γ ) ≥ T

33
Opt(G) ≥ 1

132

√
εndT ≥ 1

400

√
εN.

5 A Ternary Paintshop Problem

A natural extension of the (generalized) Binary Paintshop problem is to the
case where there are three or more colors. The goal is again to ensure that
the constraint edges are not monochromatic, and to minimize the number of
bichromatic edges in G. One natural hurdle in this case is that checking whether
there exists a feasible solution becomes NP-hard, since we would have to check
whether the given constraint graph H is k-colorable for k ≥ 3. However, even
when the constraints are trivially k-colorable, and the graph G is very simple,
we show that the problem remains very hard to approximate.

Specifically, consider the ternary case with k = 3 colors, where the underly-
ing graph G is a collection of disjoint paths, and the constraint graph H is a
matching. We show it is NP-hard to identify whether the optimal cost is zero
or not, and hence NP-hard to approximate to any factor. Indeed, take a graph
Gc = (Vc, Ec) that is an instance of 3-coloring, and construct an instance (G,H)
of ternary paintshop as follows: for each vertex v ∈ Vc, construct δ(v) vertices
in V (G), with one copy corresponding to each edge e ∈ Ec incident to v, and
connect all these δ(v) copies by a path Pv. These

∑
v∈Vc

δ(v) = 2|Ec| vertices
and

∑
v∈Vc

(δ(v)− 1) = 2|Ec| − |Vc| edges form the graph G. Now for each edge
e = (u, v) ∈ Ec, add a constraint edge in H between the corresponding copies
of u and v in V (G) — hence the constraint edges H form a matching. Now Gc
has a valid 3-coloring if and only if the ternary paintshop instance (G,H) has
a solution that monochromatically colors each of the |Vc| paths and cuts zero
edges.
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In the above reduction we crucially used the fact that G was a forest, and
had disconnected components. This can be remedied to show a slightly weaker
hardness result. Define the (basic) ternary paintshop problem as follows: given a
sequence of length n (again associated with the integers [n] = {1, 2, . . . , n}), and
a matching H on the points [n], find a coloring f that ensures that each edge in
H is bichromatic, and minimizes the number of bichromatic pairs (i, i+ 1).

Theorem 9. For any constant ε > 0, the basic ternary paintshop problem is
NP-hard to approximate to within n1−ε in polynomial time.

Proof. Consider the same reduction from a 3-coloring instance Gc = (Vc, Ec) to
the ternary paintshop instance (G,H) on disconnected paths, but now take T
copies of the graphs (G,H). Obtain a sequence of length N := T · |V (G)| by
considering the vertices of Vc in some order, and laying down all the paths Pv
for the same vertex in each of these T copies consecutively; the constraints are
inherited from the original instances (G,H). This gives the instance Γ for the
basic ternary paintshop problem with sequence length N . Note that a 3-coloring
for Gc naturally gives a ternary coloring of [N ] with at most |Vc|− 1 many color
changes. On the other hand, if Gc is not 3-colorable, each of the T instances of
(G,H) must incur at least one color change, and the number of color changes
in Γ is at least T . If n := |Vc|, then setting T = n2/ε means it is NP-hard to
distinguish the case when the optimum is at most n ≈ Nε and when it is at least
T ≈ N1−ε, giving us the claimed hardness.

A different version of the ternary paintshop problem (e.g., from [MS09]) is where
the constraints are hyperedges of size 3, and also form a matching — i.e., none
of the hyperedges share vertices from [n]. A constraint {i, j, k} now means the
three vertices i, j, k must be given distinct colors. The reduction from Theorem 9
easily extends to show hardness for this variant too: for each constraint e = {i, j}
in that reduction, add a new dummy vertex ve and use the constraint {i, j, ve}.
Other extensions considered in previous papers, with constraints of the form
“the set S ⊆ [n] must contain exactly tiS nodes of color i for each color i ∈ [k],
where

∑
i∈[k] tiS = |S|”, are thus at least as hard.
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Abstract. In the Movement Repairmen (MR) problem we are given a
metric space (V, d) along with a set R of k repairmen r1, r2, . . . , rk with
their start depots s1, s2, . . . , sk ∈ V and speeds v1, v2, . . . , vk ≥ 0 re-
spectively and a set C of m clients c1, c2, . . . , cm having start locations
s′1, s

′
2, . . . , s

′
m ∈ V and speeds v′1, v

′
2, . . . , v

′
m ≥ 0 respectively. If t is the

earliest time a client cj is collocated with any repairman (say, ri) at a
node u, we say that the client is served by ri at u and that its latency is t.
The objective in the (Sum-MR) problem is to plan the movements for all
repairmen and clients to minimize the sum (average) of the clients laten-
cies. The motivation for this problem comes, for example, from Amazon
Locker Delivery [Ama10] and USPS gopost [Ser10]. We give the first
O(log n)-approximation algorithm for the Sum-MR problem. In order
to solve Sum-MR we formulate an LP for the problem and bound its
integrality gap. Our LP has exponentially many variables, therefore we
need a separation oracle for the dual LP. This separation oracle is an
instance of Neighborhood Prize Collecting Steiner Tree (NPCST) prob-
lem in which we want to find a tree with weight at most L collecting
the maximum profit from the clients by visiting at least one node from
their neighborhoods. The NPCST problem, even with the possibility to
violate both the tree weight and neighborhood radii, is still very hard
to approximate. We deal with this difficulty by using LP with geomet-
rically increasing segments of the time line, and by giving a tricriteria
approximation for the problem. The rounding needs a relatively involved
analysis. We give a constant approximation algorithm for Sum-MR in
Euclidean Space where the speed of the clients differ by a constant factor.
We also give a constant approximation for the makespan variant.
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1 Introduction

In the well-known Traveling Repairman (TR) problem, the goal is to find a tour
to cover a set of clients such that the sum of latencies seen by the clients is
minimized. The problem is also known as the minimum latency problem, see
[GK98], the School-bus driver problem, see [WAW93] etc. This problem is well
studied in the operations research literature and has lots of applications in real
world, see for example [BYCR93]. The problem is NP-Hard even in tree met-
rics [Sit06]. Blum et al. [BCC+94] give the first constant-factor approximation
algorithm for the TR problem. They also observe that there is no PTAS ((1+ε)-
approximation algorithm for an arbitrary constant ε > 0) for the problem unless
P = NP . After a sequence of improvements, Chaudhuri et al. [CGRT03] give a
3.59-approximation algorithm for TR which is the current best approximation
factor for this problem.

Fakcharoenphol et al. [FHR03] generalize the TR problem to the k-Traveling
Repairman (k-TR) problem in which instead of one repairman, we can use k
repairmen to service the clients where all the repairmen start from the same de-
pot. They give a 16.994-approximation algorithm for k-TR. Chekuri and Kumar
[CK04] give a 24-approximation algorithm for the “multiple-depot” version of
the k-TR problem where the repairmen can start from different depots.

Chakrabarty and Swamy [CS11] give a constant-factor approximation algo-
rithm for the classical TR problem by introducing two new LPs. Their work is
significant as it is the first LP approach to solve the problem.

We generalize [CS11] for the k-TR problem by allowing the repairmen to start
from different starting depots and to have different speeds. More importantly, we
give the clients ability to move with different speeds, which makes the problem
significantly harder. We formally define Sum-MR as follows.

Definition 1. In the Sum-MR problem the inputs are given as follow.

– A metric spaceM = (V, d) where V is the set of nodes and d : (V ×V )→ Q
+

is the distance function.
– A set R of k repairmen r1, r2, . . . , rk. Each repairman ri has a start depot
si ∈ V and speed vi ∈ Q

+.
– A set C of m clients c1, c2, . . . , cm. Each client cj has a start location s′j ∈ V

and speed v′j ∈ Q
+.

A solution to the problem consists of the following.

– A pair (uj , tj) for each client cj such that cj can reach node uj by time tj
considering its speed v′j (i.e., d(s′j , uj) ≤ v′j · tj).

– A path pi for each repairman ri. In general pi may not be a simple path and
can contain a node or an edge multiple times. Repairman ri can travel along
pi with maximum speed vi.

– For each pair (uj , tj) assigned to client cj there has to be at least one repair-
man (ri) such that ri visits uj at time tj when it travels path pi.

The objective for Sum-MR is to minimize
∑m

j=1 tj.
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The problem is very natural and is also motivated by the following real-world
scenario. Amazon Locker Delivery is an optional shipping method in Amazon
online stores. In this method clients have an option to select a certain locker
location to pick up their purchased items. Afterwards, Amazon puts the items
into a locker in the specified location and sends the locker number and its key
combination, to the customer. The package can be picked up by the customer
who can go to the locker location by her own means. A very similar delivery
option is also offered by the United States Postal Service which is known as
gopost [Ser10].

Our algorithm can be used directly in order to plan the movements to min-
imize the average latency (or the maximum latency). Here the locations of the
Amazon stores, clients’ homes and locker locations can be thought as the nodes
in the metric space in Sum-MR and the repairmen are the shipping vehicles
starting from the Amazon stores with different speeds. Moreover, we can take as
input how customers are going to pick up their packages (e.g. by a car, public
transport, bike, and etc.) which realizes the different speeds for the clients. Note
that unlike Sum-MR in this scenario it is not necessary for both a repairman
and a client to meet at the same node and the same time in order to serve; but if
a repairman visits a node at time t a client can visit the node at any time after
t and still get served. We formalize these methods of serving and show that the
difference in the objective of Sum-MR for the two methods is at most 3 + ε in
Section 3.1.

In Section 2 we give the outlines of our techniques and summarize all our
results. Section 3 contains the detailed explanation of our method to solve
Sum-MR in three subsections. Subsection 3.1 contains the necessary prelimi-
naries, in Subsection 3.2 we give our LP formulation, show how to solve it in
Subsection 3.3, and finally in Subsection 3.4 we show how to round a fractional
solution to the LP to get an integral solution to the Sum-MR.

We describe in detail connection of Sum-MR to the movement framework,
neighborhood TSP problems, and orienteering problems in the full version of
this paper [HKKK13]. It turns out that the separation oracle for our LP is a
generalization of the Neighborhood TSP problem, we give the results related to
the separation oracle problem in the full version of this paper [HKKK13]. We
also give the formal proof of our results for Euclidean space and the materials
related to the Max-MR problem in the full version.

2 Results and Techniques

In this section we summarize all our results along with the overview of their
proofs. All the ideas explained here are new in this context.

Our main result is an O(log n)-approximation algorithm for Sum-MR. More
precisely we prove the following theorem.

Theorem 1. There is an O(log n)-approximation algorithm for the Sum-MR
problem which also upper bounds the integrality gap of its LP formulation.
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We present the novel properties (in this context) of our techniques. First we
relax conditions on serving the clients. If a client collocates with a repairman at
a certain node of the metric space during the movements we say it gets served
perfectly. On the other hand if a client visits a node through which a repairman
has passed no later than the arrival of the client, we say it gets served indirectly.
We design a procedure that transforms any solution to the Sum-MR problem
where the clients are served indirectly to a solution where all the clients are
served perfectly by increasing the total latency with a multiplicative factor at
most 3+ε. We solve Sum-MR for the case when we serve the clients indirectly and
use the procedure to serve the clients perfectly. We give an LP formulation for
Sum-MR (to serve the clients indirectly) and bound its integrality gap. However
there are two major challenges in order to do so. First, solving the LP which
has exponentially many variables and second, rounding a solution to the LP
efficiently to an integral solution.

In order to solve the LP we need a separation oracle for its dual which turns
out to be the following problem.

Definition 2. Neighborhood Prize Collecting Steiner Tree (NPCST): An in-
stance of the NPCST problem consist of an ordered tuple (V, d, r, C, L) where V
is the set of nodes, d is a metric distance function on the set V , r ∈ V is the
root node, C is the set of clients, and L is the cost budget. Each client c ∈ C
is associated with a profit θc and a neighborhood ball B(c, tc) which contains all
the nodes u with d(u, c) ≤ tc. The goal is to find a Steiner tree TOPT such
that cost(TOPT) ≤ L and the sum of the profits of the clients whose B-ball hits
TOPT is maximized.

The vehicle routing problems become significantly harder when instead of vis-
iting a node, it is sufficient to visit a neighborhood around it. For example in
the Neighborhood Steiner Tree (NST) problem, we are given a graph G with
a set of clients C where each client c is associated with a neighborhood ball.
The objective for NST is to find a tree T with minimum weight that serves at
least one node from each client’s neighborhood ball. We will prove the following
hardness result about the NST problem which shows the source of difficulty in
our problem.

Theorem 2. There is no O(log2−ε n)-approximation algorithm for the NST
problem unless NP has quasi-polynomial Las-Vegas algorithms.

To avoid this hardness we allow relaxing the NPCST constraints. More formally
we accept a tri-criteria approximation algorithm for NPCST as our separation
oracle defined formally below.

Definition 3. A (σ, φ, ω)-approximation algorithm for the instance (V, d, r, C, L)
of the NPCST problem finds a Steiner tree T with the following properties; T is
said to hit a client c with B-ball B(c, tc) if T has at least one node in B(c, tc ·σ),
the weight of T is at most φ · L, and sum of the profits of the clients got hit by
T is at least 1

ωopt where opt is the amount of profit an optimum tree collects
with no violation in any bound.
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Accepting a tri-criteria approximation algorithm for NPCST has two benefits.
Firstly, it reduces the difficulty of solving the NPCST problem to avoid the
hardness results similar to Theorem 2. Secondly, later when we transform the
solution of the algorithm to a solution of Sum-MR, it allows the approximation
factor on the traveling time for a client and a repairman to reach to a certain node
(latency) to get split between both the client (violating its neighborhood) and
the repairman (violating the weight of the tree). However a solution to NPCST
resulting from a tri-criteria approximation algorithm is harder to transform to
a solution of Sum-MR. We prove the following general theorem to transform
any tri-criteria approximation algorithm to the NPCST problem to an efficient
approximation algorithm for Sum-MR.

Theorem 3. Given a (σ, φ, ω)-approximation algorithm for NPCST, we can
find an O(max(σ, 2φ) · ω)-approximation algorithm for Sum-MR.

Proving Theorem 3 has two parts. The first part is to use the tri-criteria approx-
imation algorithm to find a feasible solution for our LP and the second part is to
round the feasible solution. For the first part we introduce a new relaxed LP for
Sum-MR to absorb the violations of the tri-criteria approximation algorithm
while keeping the optimal value of the relaxed LP to be at most the optimal
value of the original LP. Then we show that using the (σ, φ, ω)-approximation
algorithm for NPCST, we can find a feasible solution to the relaxed LP with the
objective value at most the optimum value of the original LP.

For the second part of the proof, we round the feasible solution found in the
previous part to an integral solution for Sum-MR with the total latency at most
O(max(σ, 2φ) ·ω) times the optimal value of our LP. Our algorithm (later given
in Figure 1) for the rounding part is easy to state and implement but needs
a relatively complicated analysis. The algorithm runs in several steps where
each step represents a time-stamp. The time-stamps increase geometrically, i.e.,
the time-stamp of a step is twice as the time-stamp of the previous step. At
each step we randomly select a tour for each repairman from the set of all
tours with the length at most the time-stamp times the repairman’s speed. The
random selection is done using the LP values. The output of our algorithm is
the concatenation of all the tours selected at each step. The idea for the analysis
of our algorithm is as follows. Let the time-stamp for a certain step be 2a and F
be the (fractional) number of clients that are served by time 2a according to the
LP values. We show the expected number of clients that our algorithm serves in
the step is at least 3F

4 . We show that this condition is enough to bound the total
latency of the clients. Finally, we show that our algorithm can be derandomized.
The derandomization is done by a recursive algorithm which takes an arbitrary
subset (R′) of R and selects a path for a repairman r in R′ and calls itself with
parameter R′ \ {r}. It selects a path for r which covers the maximum number of
clients from the set of clients that are served fractionally by repairmen of R′ in
the LP solution but not served by the paths we have selected till now. We prove
that the greedy algorithm serves at least � 3F4 � clients by induction on the size
of set R′.



Approximation Algorithms for Movement Repairmen 223

We prove the following theorem about the NPCST problem for the general
metrics which is of independent interest and non-trivial. In order to prove The-
orem 1, we plug this result about the NPCST problem in Theorem 3.

Theorem 4. There is an (O(log n), O(log n), 2)-approximation algorithm for the
NPCST problem in general metrics.

Remember that in the NPCST problem we have to find a tree T to maximize
the number of clients whose B-ball contain a node of T . To prove the above
theorem we embed the graph into a distribution of tree metrics[FRT04]. Note
that the B-balls for the clients are not preserved in the tree metrics. We define a
new problem on the tree metrics as follows. Given a budget L′ we want to find
a tree T with weight at most L to maximize the size of the set of served clients
C′ where T serves set C′ if the sum of distances of the clients in C′ to T is at
most L′. We solve the new problem efficiently in the tree metrics with dynamic
programming. Finally we show by violating the radii of the B-balls of the clients
by a constant factor, T actually serves a good fraction of the clients in C′ (by
Markov’s Inequality) through hitting their B-balls.

An anonymous referee pointed out that we can also obtain an
(O(1), O(1), O(log n))-approximation algorithm for the NPCST problem in gen-
eral metrics using the ideas in [GKK+01] and [SK04]. This algorithm is interest-
ing since as opposed to the algorithm of Theorem 4 there is no violation on the
cost of the tree and the neighborhoods’ radii but it collects an O(log n) fraction
of the optimal profit. Note that by plugging this algorithm into Theorem 3 we
get the same result for the NPCST problem as in Theorem 1. The description
of the algorithm and an outline of the proof given by the referee is brought in
the full version of this paper [HKKK13].

Motivated from the application of Sum-MR in Amazon Locker Delivery
[Ama10] and USPS gopost [Ser10] which occurs in the Euclidean space, we
prove the following theorem to get a constant-factor approximation algorithm
for Sum-MR in the Euclidean space. The neighborhood problems are also es-
pecially studied in the geometric settings. The usual assumption in the neigh-
borhood TSP problems for getting a constant factor approximation is to assume
the radius of the biggest neighborhood is at most a constant factor larger than
the smallest one. We plug the following theorem in Theorem 3 to get a con-
stant factor approximation algorithm for Sum-MR. Here the radius constraints
means the maximum speed of the clients is at most a constant factor larger than
the minimum speed which is an acceptable constraint for the package delivery
problem motivating Sum-MR.

Theorem 5. There is an (O(P ), O(1), O(1))-approximation algorithm for the
NPCST problem in the Euclidean space where the radius of the greatest neigh-
borhood is at most P times larger than the radius of the smallest neighborhood.

Our last result is a constant-factor approximation algorithm for Max-MR.

Theorem 6. There is a constant-factor approximation algorithm for the Max-
MR problem when the repairmen have the same speed.
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3 The Sum Movement Repairmen Problem

3.1 Preliminaries

First we formalize the conditions that have to be met in order to serve the clients.
If a client collocates with a repairman at a node u of the metric space at time
t we say it is served perfectly with latency t. On the other hand, if a repairman
visits a node u at time t and a client visits u at time t′ ≥ t we say the client is
served indirectly with latency t′.

The following lemma shows serving indirectly instead of perfectly does not
change the total latency by more than a constant factor.

Lemma 1. Suppose a solution (sol) to Sum-MR has sum of latencies l where
all the clients are served indirectly, then sol can be transformed to a solution
(sol′) in which all the clients are served perfectly with sum of latencies at most
(3 + ε) · l where ε > 0 is a fixed constant.

Proof. Remember Definition 1, solution sol assigns a path pi to each repairman
ri and a node uj to each client cj such that cj can go to uj by time tj while a
repairman has visited uj before or at time tj . Suppose repairman ri can travel
pi in ti units of time considering its speed. In other words, the length of pi is at
most vi · ti where vi is the speed of ri. When ri serves the clients indirectly it is
better for him to travel pi as fast as possible and does not wait for the clients
to arrive since the clients can arrive in the nodes of pi later and are still served
indirectly.

We design the movements in sol′ as follows. The movement for the clients are
the same as sol, each client cj is assigned to same node uj as in sol and go to the
assigned node by time tj . Each repairman ri starts from depot si (its starting
node) and goes one unit of time along path pi with its maximum speed vi and
comes back to si, we refer to this as round 0, then it goes α units of time and
comes back to si (round 1) where α = 1+ 2

ε . In general at each round x it travels
αx units of time along pi and comes back. If at round y the given time αy is
enough to travel pi completely, repairman ri travels pi completely and stays at
the last node to finish time αy and then comes back to si

1.
Now we prove that if a client is served indirectly with latency q in sol it will

be served perfectly with latency (3 + ε)q in sol′. Suppose an arbitrary client
cj is served indirectly with ri at time q in a node uj of path pi. Note that q
either represents the time when both ri and cj arrive at uj or the time when cj
arrives at uj but ri is already passed uj. In sol

′, when cj reaches uj it waits for
repairman ri to visit uj after or at time q during its back and forth travels.

Note that each round x takes 2αx units of time. Repairman ri can serve cj
perfectly the first time it visits uj after time q. The first �logα q	 rounds take

1 In fact, if at round y repairman ri comes back to si as soon as it finishes traveling
pi results in a better total latency in some cases. We avoid this because it is harder
to analyze and explain. Moreover, in the worst case the total latency remains the
same.
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∑�logα q�
x=0 2αx units of time which is equal to 2(α�logα q�+1−1)/(α−1) and hence

greater than q. Therefore ri serves cj perfectly at most at round �logα q	 + 1.
At round �logα q	 + 1, repairman ri needs at most another q units of time to

reach to uj. Therefore when ri travels at most
∑�logα q�
x=0 2αx + q units of time,

it visits uj and serves cj perfectly. Thus, the latency of client cj getting served

perfectly is at most
∑�logα q�

x=0 2αx + q ≤
(
3 + 2

α−1
)
q which is equal to (3 + ε) · q

by replacing back α = 1+ 2
ε . The lemma follows by applying the same argument

to all the clients. 
�
We focus on finding a solution to the Sum-MR problem where the clients are
served indirectly and then transform it to a solution which serves the clients
perfectly using Lemma 1. Therefore, from now on whenever we use serving we
mean serving indirectly.

We start with some important definitions.

Definition 4. Let neighborhood B(c, tc) denote the set of all nodes whose dis-
tances from s′c, the starting node of client c, are at most tc.

Definition 5. Let P(r, tr) denote the set of all non-simple paths (i.e., they can
visit nodes or edges multiple times) with length at most tr starting from sr, the
starting depot of r.

Using the above two definition we can formalize the notion of serving as follows.

Definition 6. We call a repairman r serves client c or client c getting served
by r at time t if the path selected for r hits neighborhood B(c, v′c · t) where v′c is
the speed of client c.

Let mv be the maximum speed of all the clients and repairmen. We multiply
all the edges of the graph by 2 · mv which scales all the service times by fac-
tor 2 ·mv. Now we can assume that the minimum service time a client can see
is at least 1. Let T be the largest service time a client can see, here we up-

per bound T to be 2·MST (G)
mini vi

which is the units of time required to travel all
the edges by the slowest repairman and hence serving all the clients. We use
set Q = {1, 2, . . . , 2i, . . . , 2�log T�+�logm�/2+1} to index geometrically increasing
time-stamps. The greatest element of Q is chosen such that all the clients are
guaranteed to be served by our algorithm after this time-stamp. Note that we
have �logT � + �logm� /2 + 1 elements in Q and hence its size is polynomially
bounded by the size of input.

3.2 LP formulation for Sum-MR

In this section we introduce an LP formulation for the Sum-MR problem and
show how to solve this LP approximately. We use the following LP for Sum-MR
inspired by the ideas from LPs introduced by Chakrabarty and Swamy [CS11].
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min
∑

c∈C

∑

t∈Q
t · yc,t (PLP)

s.t.
∑

p∈P(r,vr·t)
xr,p,t ≤ 1 ∀t ∈ Q, ∀r ∈ R (1)

∑

r∈R

∑

p∈P(r,vr·t):p∩B(c,v′c·t) 
=∅
xr,p,t ≥

∑

t′≤t
yc,t′ ∀c ∈ C, ∀t ∈ Q (2)

∑

t∈Q
yc,t ≥ 1 ∀c ∈ C (3)

x, y ≥ 0 (4)

The variable xr,p,t is the indicator variable showing whether repairman r travels
path p ∈ P(r, vr · t) completely by time t. Note that if p is in set P(r, vr · t), from
the definition of P(r, vr · t), r can complete traveling p within time t. Variable
yc,t is the indicator variable showing if client c is served at time t.

Constraints (3) guarantee that every client gets served. Constraints (1) require
each repairman r to travel at most one path by time t. The amount

∑
t′≤t yc,t′

shows the fraction of service, client c demands until time t and the amount∑
r∈R

∑
p∈P(r,vr·t):p∩B(c,v′c·t) 
=∅ xr,p,t shows the fraction of service c gets from

the repairmen until time t. Constraints (2) guarantee that the total service from
all the repairmen is at least as large as the demand from the client c. Note that
Constraints (2) just require the total demand by client c should be served by
the repairmen at anytime before time t which is the case for serving indirectly.

Note that we only consider times that are in the set Q but in a solution of
Sum-MR the clients may be served at any time.

Lemma 2. The optimal value of PLP is at most twice the optimal solution of
Sum-MR.

Proof. Before proving the lemma, note that we assumed that the smallest ele-
ment of Q (the smallest latency seen by the clients) is one. Remember it does
not change our analysis since the time-stamps in Q grow exponentially which
guarantees that the size of Q is polynomial in terms of the inputs.

Intuitively the factor two comes from the fact that we only consider the powers
of 2 for the time-stamps in set Q, because if a client must served at time t in an
optimal solution in the LP it might wait for the next power of two to get served
which can be at most 2t. More formally, we show every integral solution (ŝol)
to the Sum-MR problem with total latency �∗ can be transformed to a feasible
solution (x̂, ŷ) to PLP with the objective value at most 2�∗. If repairman ri
travels path pi by time ti in ŝol we set x̂ri,pi,ti = 1. If client c is served at time

t in ŝol, we set yc,t′ = 1 where t′ = 2�log t�. We set all the other non-set entries
of (x̂, ŷ) to zero. The objective value for (x̂, ŷ) is at most twice the total latency

of ŝol because if a client (c) is served at time t in ŝol, c contributes at most t′

in the objective value for (x̂, ŷ) where t′ < 2t since 2�log t� < 2log t+1. Thus the
optimal value of PLP is at most twice the total latency of an optimal solution
for Sum-MR. 
�
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In the next subsection we show that we are able to find a solution to the Sum-MR
problem which has total latency at most O(log n) times the optimum value of
PLP which along with Lemma 2 upper bounds the integrality gap of the LP,
where n = |V | is the number of nodes in the metric space.

3.3 Solving PLP in Polynomial Time

The first difficulty to solve PLP is that it has exponentially many variables.
In order to solve the LP we formulate its dual. The dual LP has exponentially
many constraints but polynomially many variables therefore we need a separa-
tion oracle for the constraints in order to solve the dual LP in polynomial time.
The dual LP for PLP is as follows.

max
∑

c∈C
λc −

∑

r∈R,t∈Q
βr,t (DLP)

s.t.
∑

c:p∩B(c,v′c·t) 
=∅
θc,t ≤ βr,t ∀r ∈ R, ∀t ∈ Q, ∀p ∈ P(r, vr · t) (5)

λc ≤ t+
∑

t≤t′
θc,t′ ∀c ∈ C, ∀t ∈ Q (6)

λ, β, θ ≥ 0 (7)

We have exponentially many Constraints (5), therefore we need a separation
oracle for them in order to use Ellipsoid algorithm to solve DLP. Given a candi-
date solution (λ, β, θ) for any repairman ri ∈ R and time-stamp t ∈ Q we define
Separation Oracle Problem SOP (ri, t) as follows. Assume that each client c has
profit θc,t and B-ball B(c, v′c · t). The objective is to find a path in P(ri, vi · t)
(has maximum length t · vi) which collects the maximum profit where a path
collects the profit of any client whose B-ball is hit by the path. If for all ri ∈ R
and t ∈ Q the optimal path collects at most βr,t profits, there is no violating
constraint and (λ, β, θ) is a feasible solution; otherwise there exists a separating
hyperplane.

The separation oracle explained above is NP-Hard since it contains the ori-
enteering problem as a special case where the radius of all the B-balls are zero.
Therefore, we can only hope for an approximate solution for the separation oracle
unless P = NP .

Note that SOP (ri, t) is the same as instance (V, d, ri, C, t · vi) of the NPCST
problem (Definition 2) except instead of finding an optimum tree we have to
find an optimum path. Because paths are the special cases of the trees, the opti-
mum value for the NPCST instance is at least the optimum value of SOP (ri, t).
Therefore, if we solve the NPCST instance we collect at least the same amount of
profit. We will use the

(
O(log n), O(log n), 2

)
-approximation algorithm in Theo-

rem 4 to solve the NPCST instance and transform the resulting tree to a path
by doubling the edges and taking an Eulerian tour which increases the length of
the path by a factor of 2. In fact, we approximately solve SOP (ri, t) by violating
the budget on the resulting path, the radius of clients’ B-balls, and not collecting
the maximum profit.
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Due to all the violations explained above on the constraints of SOP (ri, t)
we cannot bound the objective value of the feasible solution resulting from the(
O(log n), O(log n), 2

)
-approximation algorithm. To this end, we introduce a re-

laxation of PLP (PLP (μ,ω)) in the following, when μ, ω are constant integers
greater than or equal to 1.

min
∑

c∈C

∑

t∈Q
t · yc,t (PLP (μ,ω))

s.t.
∑

p∈P(r,μ·vr·t)
xr,p,t ≤ ω ∀r ∈ R, ∀t ∈ Q (8)

∑

r∈R

∑

p∈P(r,μ·vr·t):p∩B(c,μ·v′c·t) 
=∅
xr,p,t ≥

∑

t′≤t
yc,t′ ∀c ∈ C, ∀t ∈ Q (9)

∑

t∈Q
yc,t ≥ 1 ∀c ∈ C (10)

x, y ≥ 0 (11)

Constraint (8) is the same as Constraint (1) except instead of P(r, vr · t) we have
P(r, μ · vr · t) which allows repairman r to take a path which is μ times longer
than a regular path in P(r, vr · t). Moreover by putting ω instead of 1 we allow
each repairman to take ω routes instead of one. Constraint (9) is the same as
Constraint (2) except instead of B(c, v′c · t) we have B(c, μ · v′c · t) and instead of
P(r, vr · t) we have P(r, μ · vr · t) which allow both the repairmen and clients to
take paths that are μ times longer.

In the following lemma we show a (σ, φ, ω)-approximation algorithm for
NPCST can be used to find a feasible solution to PLP (μ,ω) whose cost is at
most the optimum solution of PLP. The proof of this lemma which is provided
in detail in the full version of the paper [HKKK13] is relatively involved and is
quite more general than a lemma used in [CS11].

Lemma 3. Given a (σ, φ, ω)-approximation algorithm for NPCST, one can find
a feasible solution to PLP (μ,ω) in polynomial time, where μ = max(σ, 2 ·φ), with
objective value at most opt(1 + ε) for any ε > 0 where opt is the optimal value
of PLP.

3.4 Rounding the LP

We show how to use feasible solution (x, y) taken from Lemma 3 to obtain an
integral solution to Sum-MR with the total latency at most O(max(σ, 2φ) ·
ω · opt) and thus finish the proof of Theorem 3. Sum-Movement Repairmen
Algorithm (Sum-MRA) shown in Figure 1 is our algorithm to do so.
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1. For each q ∈ Q in ascending order do:
(a) For each f ∈ [4 · ω] do:

i. Perform Append-path(q, f).

Append-path(q, f):

1. For each repairman r, select a path (pfr ∈ P(r, μ ·vr ·q)) independently at random
where the probability of path p gets selected is equal to value 1

ω
xr,p,q computed

from PLP (μ,ω). Each repairman r travels its selected path and comes back to its
starting depot.

2. Serve all the clients, that are yet unserved but can reach to a node in a selected
path by time q · μ.

Fig. 1. Movement Repairmen Algorithm (Sum-MRA)

As explained earlier Q in Sum-MRA is the set {1, 2, . . . , 2i, . . . ,
2�log T�+�logm�/2+1} where T is the latest service time a client can see which

was upper bounded by 2·MST (G)
mini vi

and the value �logT �+ �logm� /2+1 is chosen
to guarantee that Sum-MRA serves all the clients after it finishes. Moreover, μ
and ω are the constants in PLP (μ,ω).

Sum-MRA serves clients in multiple steps. It starts serving clients with paths
that have the maximum latency 1 · μ then it concatenate paths of maximum
latency 2 ·μ, then 4 ·μ and so on. These paths come from the set P(r, μ ·vr ·q) for
q ∈ Q and the selection is done using PLP (μ,ω) variables xr,p,q. In fact, for each
q ∈ Q we select 4 ·ω paths by executing Append-path(q, f) 4 ·ω times where f is
just used to iterate over set [4 ·ω]. This is because we want to have independence
between the paths selected at each execution of Append-path(q, f) which helps
us to better analyze the number of clients get served in the execution.

We use the following definitions to refer to the clients served by Sum-MRA.

Definition 7. Let Aq,f denotes the set of non-served clients getting served at
Instruction 2 of Append-path(q, f). i.e., Aq,f is the set of clients c such that c
is not served before the execution of Append-path(q, f) but it can reach a node
v by time μ · q such that there exists a repairman r with v ∈ pfr (remember pfr is
the path selected for r in Append-path(q, f)).

Definition 8. Set Aq,f =
⋃

(q′,f ′)≤(q,f)A
q′,f ′

is the set of all clients served by

Sum-MRA up to and including the execution of Append-path(q, f). Here the
operator ≤ is the lexicographic ordering for the ordered pairs where the first
entry has more priority than the second one.

We define function prev(q, f) as follows.

prev(q, f) =

{
(q, f − 1) f = 1
( q2 , 4 · ω) f = 1
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Definition 9. Let (q′, f ′) = prev(q, f) and Append-path(q′, f ′) be the predeces-
sor of Append-path(q, f). Let F q,f denote the value of

∑
c∈C\Aq′,f′

∑
t≤q yc,t. In-

tuitively, F q,f can be taught as the fractional number of clients that are (fraction-
ally) served in feasible solution (x, y) by the time q, but not served by Sum-MRA
before the execution of Append-path(q, f).

We would like in Aq,f , be a large fraction of F q,f . First we prove the following
lemma to lower bound the probability of a client getting served in the execution
of Append-path(q, f).

Lemma 4. Let q be any element of Q and c be any client in C. If we randomly
select a path for each repairman r ∈ R such that the probability of selecting
p ∈ P(r, μ · vr · q) is 1

ω · xr,p,q, then the probability of c getting served (a selected
path visits a node from B(c, μq)) is at least 1

2ω ·
∑
q′≤q yc,q′ .

Proof. The probability of a client c getting served by an arbitrary repairman r ∈
R is Dr =

1
ω

∑
p∈P(r,μ·vr·t):p∩B(c,μ·v′c·t) 
=∅ xr,p,t from the probability distribution

used in the rounding. To simplify the notations, let B =
∑

r∈R′ Dr and Yc =
1
ω

∑
q′≤q yc,q′ .

The probability that a client c is not served by any repairman in R is
∏
r∈R(1−

Dr).

∏

r∈R
(1 −Dr) ≤

( |R| −∑
r∈RDr

|R|
)|R|

Arithmetic and Geometric

Means Inequality 2

=

(

1− B

|R|
)|R|

(replacing by B)

=

(

1− 1
|R|
B

) |R|
B B

≤ e−B
≤ e−Yc Constraint (9)

From the above inequality we conclude that client c gets served with probability
at least 1− e−Yc . The following inequalities finish the proof of the lemma.

2 For any set of n non-negative numbers x1, . . . , xn we have x1+...+x2
n

≥
n
√
x1 · x2 · . . . · xn
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1− e−Yc = 1−
( ∞∑

i=0

(−Yc)i
i!

)

by Taylor Expansion

≥ Yc − Y 2
c

2
as 0 ≤ Yc ≤ 1

≥ 1

2
Yc as 0 ≤ Yc ≤ 1

≥ 1

2ω
·
∑

q′≤q
yc,q′ definition of Yc 
�

We use the following lemma (proof appears in the full version of the paper
[HKKK13]) to derandomize selections of the paths in Append-path(q, f) and to

show that Aq,f is at least
⌈
F q,f

2·ω
⌉
.

Lemma 5. We can derandomize Append-path(q, f) to deterministically select
a path pfr ∈ P(r, q ·vr ·μ) for each repairman r, such that the set of newly served

clients (Aq,f as defined in Definition 7) to be at least
⌈
F q,f

2·ω
⌉
.

We prove the following lemma in the full version of the paper [HKKK13] which
combined with Lemma 3 finishes the proof of Theorem 3.

Lemma 6. A feasible solution (x, y) to the PLP (μ,ω) with objective value opt
(the optimum value for PLP) can be rounded to an integral solution to Sum-MR
with total latency O(μ · ω) · opt.
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Approx+Random 2013 conference who provided us with helpful comments and
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Abstract. We prove that for sufficiently large K, it is NP-hard to color

K-colorable graphs with less than 2Ω(K1/3) colors. This improves the

previous result of K versus K
1
25

logK in Khot [1].

1 Introduction

A vertex coloring of a graph G(V,E) is an assignment of colors to its vertices
such that no two adjacent vertices receive the same color. The minimum number
of colors needed for such a coloring is called the chromatic number of G, denoted
by χ(G). As a classical combinatorial optimization problem, vertex coloring is
closely related to other problems such as finding maximum independent sets
and probabilistically checkable proofs (PCPs) with certain special properties. In
addition to being an important theoretical challenge, graph coloring also has a
number of applications such as scheduling and register allocation.

It is known that determining the chromatic number of a graph exactly is
NP-hard [2]. However, in many applications, it suffices to find a good enough
approximation. In other words, given a K-colorable graph, we would like to
color it with as few colors as possible. Wigderson [3] gave an algorithm us-
ing O(n1−1/(K−1)) colors. This was improved by Berger and Rompel [4] to
O
(
(n/logn)1−1/(K−1)

)
colors. Karger, Motwani and Sudan [5] used semi-definite

programming to achieve Õ(n1−3/(K+1)), which was adapted in Blum and Karger
[6] to an algorithm that colors a 3-colorable graph with Õ(n3/14) colors. For 3-
colorable graphs, the best known algorithm is by Kawarabayashi and Thorup [7]
which uses O(n0.2038) colors, based on results by Arora and Chlamtac [8] and
Chlamtac [9].

There have been many works on the hardness side as well. It is known that
coloring 3-colorable graphs with 4 colors is NP-hard, and for general K-colorable
graphs it is NP-hard to color with K + 2�K3 � − 1 colors [10,11]. For sufficiently
large K, the best known gap is by Khot [1] which proved that it is NP-hard to

color a K-colorable graph with K
1
25 logK colors. Assuming a variant of Khot’s

2-to-1 Conjecture, Dinur, Mossel and Regev [12] proved that it is NP-hard to
K ′-color a K-colorable graph for any 3 ≤ K < K ′. The dependency between
the hardness of graph coloring and the parameters of 2-to-1 Label Covers was

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 233–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



234 S. Huang

made explicit and improved by Dinur and Shinkar [13], who showed that it is
NP-hard to logc n-color a 4-colorable graph for some constant c > 0 assuming
the 2-to-1 Conjecture. Guruswami and Sinop [14] proved that assuming the
2-to-1 Conjecture, it is NP-hard to find an independent set with more than
O
(

n
Δ1−c/(k−1)

)
vertices in a k-colorable graph of maximum degree Δ for some

absolute constant c ≤ 4.
Khot’s hardness result [1] can be derived either using PCPs from H̊astad and

Khot [15] or Samorodnitsky and Trevisan [16]. We can view the results in both
works as showing approximation resistance for a family of Boolean predicates
that have very few accepting inputs — it is NP-hard to approximate Max CSP
better than just picking random assignments on instances whose constraints are
expressed with those predicates. For each integer k > 0, the approximation resis-
tant predicates we get from [15] and [16] have k variables (and thus 2k possible

assignments) but only have 2O(
√
k) accepting assignments. The predicate from

H̊astad and Khot [15] is approximation resistant even on satisfiable instances
— or have perfect completeness in PCP language — while the predicate from
Samorodnitsky and Trevisan [16] is not. It is noted in Khot [1] that having per-
fect completeness is not necessary but makes the reduction for coloring easier.

In a recent breakthrough, Chan [17,18] proved approximation resistance for
a family of predicates on k variables but only has k + 1 accepting assignments
whenever k is of the form k = 2r − 1. Previously, approximation resistance
of those predicates was only known assuming the Unique Games Conjecture,
proved by Samorodnitsky and Trevisan [19]. Hast [20] proved that predicates
on k variables having at most 2�k/2�+ 1 (= k in the current setting) accepting
inputs are not approximation resistant, thus these results are almost tight.

In [17], Chan also showed that for any K ≥ 3, there is ν = o(1) such that
given a graph with an induced K-colorable subgraph of fractional size 1 − ν, it
is NP-hard to find an independent set of fractional size 1/2K/2 + ν. Although
this gives a larger gap than Khot [1], the result lacks “perfect completeness”
and thus is not comparable with Khot [1]. We refer to [21,22,17] for additional
discussions on Almost-Coloring.

In this paper, we show improved hardness of approximating chromatic number
using the above results.

Theorem 1. For all sufficiently large K, it is NP-hard to color a K-colorable

graph with 2Ω(K1/3) colors. Moreover, this hardness result holds for graphs that

have degree bounded by O(K2K
1/3

).

Stated in terms of degree, Theorem 1 says that there exists some constant c, such
that for all large enough Δ, it is NP-hard to color a (logΔ)3-colorable graph of
maximum degree bounded by Δ with O (Δc) colors.

Our approach follows that of Khot [1]. The main part of the work is to adapt
Khot’s technique so that it works with the new PCP construction by Chan [17],
which gives much better dependency between soundness and the arity of the
Max CSP, and is also the main source of the improvement in Theorem 1. This
reduction alone will give us graphs with degree at least doubly exponential in
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K. To get a tighter dependency of degree, we apply a technique in Trevisan [23]
to sparsify the output of the reduction.

2 Preliminaries

In this section we review the basics of Label Cover and PCPs and describe
Chan’s improved PCP construction.

Let (U, V,E, L,R,Π) be an instance of Label Cover, where R = dL for some
constant d, the tuple (U, V,E) is a bipartite graph, vertices in U are assigned
labels from [L], and vertices in V are assigned labels from [R]. Each edge e =
(u, v) is associated with a d-to-1 mapping πe : [R] → [L]. Given a labeling A :
U → [L], V → [R], we say that the constraint on e is satisfied if πe(A(v)) = A(u).
The value of a labeling is the fraction of edges that are satisfied, and the value
of a Label Cover instance is the maximum value over all possible labelings of its
vertices. The following theorem combines the celebrated PCP theorem [24,25]
with Raz’s parallel repetition theorem [26] and shows hardness of Label Cover.

Theorem 2. For any constant 0 < σ < 1, there are d, L ≤ poly(1/σ) such that
the problem of deciding satisfiability of a 3-SAT instance with n variables can be
Karp-reduced in poly(n) time to the problem of deciding whether a Label Cover
instance of size poly(n) has value 1 or at most σ. The graph in Label Cover is
a bi-regular bipartite graph with left- and right-degrees poly(1/σ).

As is the case with many inapproximability results, the above Label Cover will
be the starting point of our reduction. Formally, let P : {−1, 1}k → {−1, 1} be
a Boolean predicate of arity k, where we follow the convention of having −1 as
“True” and 1 as “False”. In a Max-P problem, we are given an instance on n
Boolean variables x1, · · · , xn with m clauses. All clauses have form P (l1, · · · , lk),
where each literal li is either a variable or its negation, and the variable of the
literals are distinct. The goal of the Max-P problem is to find an assignment to
x1, · · · , xn that maximizes the number of clauses satisfied by the assignment. The
reduction from Label Cover to Max-P typically translates labelings for u ∈ U and
v ∈ V to 2|L| and 2|R| Boolean variables, respectively. These variables are viewed
as functions fu : {−1, 1}|L|→ {−1, 1} and gv : {−1, 1}|R|→ {−1, 1}. We require

that these functions are folded, that is, for any x ∈ {−1, 1}|L|, y ∈ {−1, 1}|R|,
fu(−x) = −fu(x) and gv(−y) = −gv(y). For each pair of queries (x,−x), we
select one of them. If x is selected, then when f(−x) is needed we return −f(x)
instead. Hence in the actual reduction we only use 2|L|−1 Boolean variables for
each u ∈ U and 2|R|−1 variables for each v ∈ V . This is also why we need to allow
negated literals in the CSP instances. In a correct proof for a satisfiable Label-
Cover instance, the functions are long codes for the corresponding labelings of
u and v, that is, having fu(x) = xσU (u), and g

v(y) = yσV (v).
Now we describe the clauses in Max-P . For an edge (u, v) in the Label-Cover,

we sample queries
(x(1), · · · , x(m), y(m+1), · · · , y(k))
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according to some carefully chosen test distribution T . The distribution T has the
property that for any l ∈ L and r ∈ R such that π(u,v)(r) = l, the predicate P

accepts (fu(x
(1)
l ), · · · , fu(x(m)

l ), gv(y
(m+1)
r ), · · · , gv(y(m+1)

r )) with probability 1
(or 1−ε for some constant ε if we are considering non-perfect completeness). One
can verify that if the Label Cover instance has value 1 and the test distribution
T satisfies the above property, then any correct proof of a correct labeling has
the required completeness. In the soundness analysis, we are given functions fu

and gv that achieve non-trivial acceptance probability in the above test, and we
need to decode those functions and obtain non-trivial labelings of the original
Label Cover instance.

In [17], Chan developed a new way of constructing efficient PCPs and proved
that the following Hadamard predicate HK : {−1, 1}K → {−1, 1} is approxima-
tion resistant. For K = 2r − 1, the predicate HK is on variables {xS}∅�=S⊆[r],
defined as

HK(x) =

{−1 ∀S ⊆ [r], |S| > 1, xS =
∏
i∈S x{i}

1 otherwise.

This predicate hasK+1 accepting assignments. Samorodnitsky and Trevisan [19]
showed that HK is approximation resistance assuming the Unique Games Con-
jecture — a conjecture stating that finding an approximately optimal solution
for a certain special kind of Label Cover is NP-hard. Using his new technique,
Chan proved that this is true assuming only P 
= NP .

The main idea in Chan’s reduction is to consider a direct sum of PCPs. We
now sample K edges and run K independent copies of the above test. In the i-th
PCP, the i-th query is a uniform random string from {−1, 1}|L| and all other
queries are sampled from {−1, 1}|R| as described below in Definition 2. In a
correct proof, the strategies are expected to be products of long codes encoding
the labeling of the vertices.

We now formally define the PCP and how queries are sampled. In the following
description, we identify integers from [K] and non-empty subsets of [r] in some
canonical way. First we describe the test distribution for a single PCP, indexed
by non-empty sets ∅ 
= S ⊆ [r].

Definition 1. Let eS be an edge and π be the constraint on e. Denote the set
of possible queries to the T -th position by QT , where

QT =

{ {−1, 1}|L| T = S

{−1, 1}|R| T 
= S.

The test distribution TS,eS is a distribution on
∏
T⊆[r]QT . To sample query

(qT )T⊆[r] from TS,eS , first sample qS from {−1, 1}|L| uniformly at random. Then,
for each i ∈ [R], let {qT,i}T �=S be a uniformly random accepting assignment of
HK , conditioned on the S-th bit being equal to qS,π(i). Finally, independently for
each bit, we add noise by resampling from the uniform distribution on {−1, 1}
with probability η.

The final test distribution in the PCP is a product of the above distribution.
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Definition 2. Let (U, V,E, L,R,Π) be a label cover instance. For i ∈ [K], de-
fine Vi = V i−1 × U × V K−i. For each v ∈ Vi, the proof contains function

fv :
({−1, 1}R)i−1 × {−1, 1}L × ({−1, 1}R)K−i → {−1, 1}. The verifier checks

the proof as follows:

1. Sample independently K = 2r − 1 uniformly random edges {eS}∅�=S⊆[r]. De-
note eS = (uS , vS).

2. Sample queries {qi}Ki=1 from distribution
∏
∅�=T⊆[r] TT,eT .

3. Let vi = (v1, · · · , vi−1, ui, vi+1, · · · , vK). Accept if

HK(fv1(q1), · · · , fvK (qK)) = −1 .

In a correct proof, the function fv is the product of long codes encoding the
labeling of each vertex in v.

Remark. As in the ordinary case, we require that the functions fv are folded
in the following sense — for any j ∈ [K], query {qj,i}i∈[K] and i0 ∈ [K] we have

fv(qj,1, · · · ,−qj,i0 , · · · ,qj,K)

= −fv(qj,1, · · · ,qj,i0 , · · · ,qj,K).

Theorem E.1 along with Theorem A.1, 6.9 and C.2 of Chan [18] shows complete-
ness and soundness of the above reduction and we summarize in the following
theorem.

Theorem 3. Fix some small η, δ > 0. Let σ be the soundness of Label Cover,
satisfying δ = poly(K/η) · σΩ(1). Given a Label Cover instance LCL,dL, we have
the following:

1. If LCL,dL has value 1, the above verifier accepts a correct proof with proba-
bility at least 1−K2η.

2. If LCL,dL has value at most σ, then given any proof the verifier accepts with
probability at most (K + 1)/2K + 2δ.

Let ε > 0 be some small constant. In the rest of the paper, let δ = ε · 2−K ,
and η = ε/K2. By Theorem 3, we require the soundness of Label Cover to
be σ = (δ/poly(K/η))O(1) = 2−Ω(K). This means that the size of the label
L = poly(1/σ) = exp(Θ(K)).

3 Hardness of Approximating Chromatic Number

In this section, we prove Theorem 1 — for sufficiently large K, it is NP-hard

to color a K-colorable graph with less than 2Ω(K1/3) colors. For convenience of
notation, we in fact prove a gap of O(K3) versus 2Ω(K).

The overall approach follows that in Khot [1]. We start by describing the
FGLSS graph [27] of the PCP as described in Definition 2. The vertices in the
FGLSS graph are function queries and corresponding accepting configurations,
denoted as (fv,q, z). The weight of the vertex is the probability that query
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(fv,q) is picked. The total weight of the graph is therefore K+1, the number of
accepting assignments of HK . Two vertices are connected if they are clearly in-
consistent (returning different answers for the same query to the same function).
An independent set in the graph corresponds to a strategy / set of functions,
and its weight is the acceptance probability of such strategy. Note that if the
maximum weight independent set of the FGLSS graph has weight w, then we
need at least (K+1)/w colors to color the whole graph since vertices having the
same color must form an independent set.

To use the FGLSS graph for coloring results, we also need to show that if a
PCP has acceptance probability 1−ε, we can color the FGLSS graph with a small
number of colors. Note that in this case, we know that there is an independent
set of weight 1−ε in the FGLSS graph, corresponding to a correct proof. Khot’s
idea in [1] is to modify the definition of the PCP so that the correct proofs are
parameterized by some global parameter α ∈ {0, 1}t. This gives us 2t different
correct proofs and thus 2t independent sets of weight 1− ε, and by choosing the
right t, we expect those independent sets cover most of the FGLSS graph of the
modified PCP and thus gives a coloring of at most 2t colors.

Formally, we modify Definition 2 so that the functions in the proof become

fvi :
(
{−1, 1}R·2t

)i−1
×{−1, 1}L·2t×

(
{−1, 1}R·2t

)K−i
→ {−1, 1}. Alternatively,

we can think of this as modifying Label Cover by appending a t-bit binary string
to all the labels and defining the new projection in the Label Cover instance as
π′e(r ◦ α) = πe(r) ◦ α for r ∈ R and α ∈ {0, 1}t, where “◦” denotes string
concatenation. The value of this new Label Cover instance is exactly the same
as the original setting. Consider the FGLSS graph in this new setting. Soundness
is straightforward. If the new proof makes the verifier accept with probability at
least (K + 1)/2K + 2δ, then by Theorem 3, the value of the new Label Cover is
at least σ and hence the original instance also has value at least σ.

Now let us consider the case of completeness. If the original Label Cover
instance has value 1, then extending a valid labeling with any α ∈ {0, 1}t gives us
a valid labeling for the modified instance, which corresponds to an independent
set of weight at least 1− ε in the modified FGLSS graph. We need to show that
the 2t independent sets corresponding to different α ∈ {0, 1}t cover almost all
of the FGLSS graph of the modified PCP. In fact, we can efficiently identify
a small fraction of the vertices that contains all vertices that are not covered
by any independent sets of the above form and remove them from the FGLSS
graph.

To this end, we follow Khot’s notation and introduce the following definition
characterizing whether we can cover certain vertex with independent sets.

Definition 3. Consider any K tuples of labelings l = {(li, ri)}Ki=1, where li ∈
[L], ri ∈ [R] for all i ∈ [K]. Define the i-th mixed labeling

mi(l) = (r1, · · · , ri−1, li, ri+1, · · · , rK) .

Let fi,l be the product of long codes encoding the labelings in mi. Denote by
lα := {(li ◦ α, ri ◦ α)}Ki=1 the labelings extended by α. Define fαi,l similarly.
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A set of queries q = (q1, · · · , qK) is good if for any K tuples of labelings l
and any accepting assignment z = (z1, · · · , zK) of the Hadamard predicate, there
exists a global extension α, such that fαi,l(qi) = zi for all i ∈ [K].

To verify if a set of queries is good, we only need to check all K tuples of
labelings and all accepting assignments of the Hadamard predicate HK . Those
are all constants depending only on K (and ε). The following lemma shows that
the fraction of bad queries is small.

Lemma 1. Let t be such that 2t = C ·K3 for some large constant C. For large
enough K, at most a weighted fraction of exp(−Θ(K)) of the queries is not good.

Before proving the lemma, let us see how it leads to our main theorem.
Remove the vertices in the FGLSS graph that correspond to queries that

are not good. By Lemma 1, the fraction of vertices removed is bounded by
exp(−O(K)). In the soundness case coloring the FGLSS graph still needs at
least (K + 1)(1 − exp(−Θ(K)))/2−K = 2Ω(K) colors. In the completeness case,
the Label Cover instance has value 1. Fix a labeling that satisfies all the edges.
For a vertex (fv,q,x) in the modified FGLSS graph, let lv be the set of K
tuples of labelings of the sampled vertices. Each α ∈ {0, 1}t is associated with
an independent set consisting of vertices of the form (fv,q, z), where zi = fαi,lv(qi)
for all i ∈ [K].

Consider any vertex (fv,q,x) in the modified FGLSS graph. We know that q
is good so by definition there exists α0 ∈ {0, 1}t such that fα0

i,lv
(qi) = xi for all

i ∈ [K]. Hence, it is covered by the independent set associated with α0. Therefore
the modified FGLSS graph can be colored with 2t = O(K3) colors.

Proof (Proof of Lemma 1.). For query q, let Q(q) be the event that q is not
good in the sense of Definition 3: there exists some labeling l and some accepting
assignment z, such that for any α, there exists i ∈ [K], fαi,l(qi) 
= zi. It suffices
to bound Prq [Q(q)].

Fix some K tuples of labeling l of the label cover instance and some accepting
assignment z. Consider α ∈ {0, 1}t. Over the queries sampled, the probability
that fαi,l(qi) = zi for all i ∈ [K] is 1/(K + 1) before adding noise. To estimate
the effect of noise, note that there are K functions, each being a product of K
long codes, therefore the answers {fαi,l(qi)}i∈[K] depends on K2 bits. If none of

these K2 bits are corrupted, then the answer is exactly z. This gives an overall
probability of Θ(1/K · (1 − η)K2

) = Θ(e−ηK
2

/K) = Θ(1/K). The contribution
of probability from other sources is negligible.

Note that for different extension α, the bits that fαi,l reads from q are com-
pletely independent, so we have

Pr
q

[∀α, ∃i, fαi,l(qi) 
= zi
]
= (1−Θ(1/K))2

t

= exp(−Θ(2t/K)) .

Picking large enough constant C and taking union bound over all possible label-
ings and accepting configurations, we get that the weighted fraction of q that
are bad is

Pr
q
[Q(q)] ≤ RK−1 · L · (K + 1) exp(−Θ(2t/K)) = exp(−Θ(K)) .
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Now let us consider the degree of the graph produced by the above reduction.
Consider a vertex (fv,q, z). Fix some i ∈ [K]. Let z′ be some accepting assign-
ment ofHK with z′i 
= zi. We first estimate the number of queries q′ with q′i = qi.
Let us consider the i-th test distribution Ti,ei , where ei is the edge sampled for
the i-th test, and denote the constraint on ei by π. Recall that for each l ∈ [L]
and r ∈ π−1(l) ⊆ [R], the bits {q′j,r}j �=i are sampled by uniformly picking an
accepting assignment x of HK conditioned on xi = q′i,l. Thus there are at least

((K + 1)/2)
|R|

= 2exp(Ω(K)) possible choices of q′. Note that for any such q′,
there is an edge between (fv,q

′, z′) and (fv,q, z). Therefore the degree of the
graph produced by the above reduction is at least double exponential in K. We
now use the approach in Clementi and Trevisan [28] and Trevisan [23] to reduce
the degree to O(K32K).

For ease of presentation, we look at the argument on the original FGLSS
graph without removing bad queries. The same argument applies to the graph
with bad queries removed because removing vertices from the graph does not
increase the maximum degree, and, as seen above, does not significantly affect
the soundness and completeness of the reduction.

Denote the FGLSS graph corresponding to the PCP in Theorem 3 as G. We
first turn G into an unweighted graph. Let wmin be the minimum weight of
vertices in G, and λ be the ratio between the minimum and maximum weight
of vertices in G. Since in the test distribution in Definition 2 edges of the Label
Cover instance are sampled uniformly, we have that λ depends only on K. Let
ξ be some granularity parameter. We obtain an unweighted version G′ of G by
duplicating vertices — we make �w/wmin · 1/ξ� ≤ 1/λξ vertices for a vertex
of weight w, and connect the duplicated vertices with all the neighbors. This
step blows up the size of the graph by O(1/λ2ξ2), and the fractional size of the
maximum independent set in G′ is within a multiplicative factor of O(ξ) from
that of G due to error introduced by �·� when duplicating vertices.

As observed in [23], the graph G′ is a union of bipartite complete subgraphs.
More precisely, for every index i and i-th query (fvi ,qi), there is a complete
bipartite graph between configurations that answer zero for query (fvi ,qi) —
denoted as Zfvi

,qi — and configurations that answer one for the same query —
denoted as Ofvi

,qi . By the way we construct the FGLSS graph, it follows that
these complete bipartite subgraphs cover the whole G′. Let l be the maximum
size of such sets. We claim that l depends only on K, λ and ξ. To estimate l,
consider how many tuples (fv,q, z) can include (fvi ,qi) on the i-th position.
By Theorem 2, the degree of the Label Cover graph is poly(1/σ) = exp(Θ(K)),
thus the fvi coordinate has at most exp(Θ(K2)) neighbors. For qi, consider an
edge e the bits in qi that are mapped to the same label l ∈ [L] according to
mapping πe (or a single bit if e is the i-th edge). There are exactly (K + 1)/2
possible queries. Enumerating over all labels and sampled edges, this gives an
upper-bound of 2exp(Θ(K)). Since each of them can be duplicated by at most
1/λξ times, we have l = 2exp(Θ(K))/λξ. Also since for each input bit to the
predicate HK , exactly half of the accepting assignments of HK set that bit to 1
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and exactly half to −1 — a property also known as HK being balanced — we
have |Zfvi

,qi | = |Ofvi
,qi|.

We now replace the above bipartite complete graphs in G′ with the following
construction on the same set of vertices Zffi ,qi and Offi ,qi .

Proposition 1 ([23]). For every ζ > 0 and b ≥ 1, there is a bipartite graph
([b], [b], E) of degree at most d = 3ζ−1 log(ζ−1) such that for any A,B ⊆ [b],
|A| ≥ �ζb�, |B| ≥ �ζb�, we have (A×B) ∩ E 
= ∅.
Trevisan [23] called such graphs (b, ζ)-dispersers, and he used a probabilistic
argument to prove the above proposition. As argued above, l is a constant de-
pending only on K, thus we can find the desired disperser by exhaustive search.
An important property of bipartite dispersers is that given an independent set
I of a (b, ζ)-disperser, we have that either |I ∩A| ≤ ζb or |I ∩B| ≤ ζb.

Denote the replaced graph by G′′. To understand how much the above re-
placement step increases the size of the maximum independent set, note that
for any independent set in a disperser, we can get an independent set in the
complete bipartite graph by discarding all vertices on one side, which is at most
a ζ fraction if we choose the smaller side. Also, each vertex in the FGLSS graph
is involved in at most K complete bipartite graphs of this kind, thus the size of
the independent set in the new graph is at most Kζ larger than G′. By choosing
ζ = O(2−K/K), ξ = O(2−K), we have that in the soundness case the maximum
independent set G′ has size O(2−K). The maximum degree of G′′ is bounded by
K · 3ζ−1 log(ζ−1) = O(K32K).

4 Discussions

In this paper, we proved a gap of K3 vs. 2Ω(K) for approximating chromatic
number. Let us take a closer look at how we get to the power 3 in K3. The
soundness of the Label Cover problem has to be at most 2−Ω(K), which means
that the size of the labels are exp(Θ(K)). Definition 3 involves all possible label-
ings and accepting assignments of K. The reduction in Definition 2 samples K
edges, therefore there would be RK−1 · L = exp(Θ(K2)) possible labelings and
a union bound results in a factor of exp(Θ(K2)) in the probability of a query
being bad. The other factor of K is due to the fact that the Hadamard predicate
HK has K + 1 accepting assignments and they are sampled uniformly.
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for the Genus of Hamiltonian Graphs
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Abstract. The genus of a graph is a very basic parameter in topologi-
cal graph theory, that has been the subject of extensive study. Perhaps
surprisingly, despite its importance, the problem of approximating the
genus of a graph is very poorly understood. It has been shown to be NP-
complete by Thomassen [Tho89], and the best known upper bound for
general graphs is an O(n)-approximation that follows by Euler’s charac-
teristic.

We give a polynomial-time pseudo-approximation algorithm for the
orientable genus of Hamiltonian graphs. More specifically, on input a
graph G of orientable genus g, and a Hamiltonian path in G, our algo-
rithm computes a drawing into a surface of either orientable, or non-
orientable genus gO(1).

1 Introduction

A drawing of a graph G into a surface S is a mapping that sends every vertex
v ∈ V (G) into a point ϕ(v) ∈ S, and every edge into a simple curve connecting
its endpoints, so that the images of different edges are allowed to intersect only
on their endpoints. A surface is called orientable if it can be embedded into R

3,
and non-orientable otherwise. The genus of a graph G is the minimum g ≥ 0,
such that G can be drawn into a surface of genus g. Similarly, the orientable
(resp. non-orientable) genus of a graph is the minimum genus of an orientable
(resp. non-orientable) surface into which G can be drawn.

Drawings of graphs into various surfaces are of central importance in graph
theory (e.g. [GT01, MT01]), topology, and mathematics in general (e.g. [Whi01]),
and have been the subject of intensive study. Graphs of small genus are also of
great importance in computer science, and engineering, since they can be used
to model a wide variety of natural objects. For further background, we refer
the reader to Gross and Tucker [GT01] for topological graph theory and to
Hatcher [Hat02] for algebraic topology.
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Computing the genus of a graph exactly. It was shown by Thomassen that com-
puting the orientable genus [Tho89], and the non-orientable genus of a graph
[Tho93], are both NP-complete problems. Deciding whether a graph has genus 0,
i.e. planarity testing, can be done in linear time by the seminal result of Hopcroft
& Tarjan [HT74]. Filotti et al. [FMR79] were the first to obtain an algorithm
for computing a drawing of an n-vertex graph of genus g, into a minimum-genus
surface, in time nO(g). For fixed g, Robertson & Seymour [RS90], as part of
their Graph Minor project, gave an O(n3) time algorithm for determining the
genus of a graph. This was improved by a breakthrough result of Mohar [Moh99]
who gave a linear-time algorithm for computing a minimum-genus drawing, for
any fixed g. A relatively simpler linear-time algorithm has been subsequently
obtained by Kawarabayashi, Mohar & Reed [KiMR08]. The running time of the
above algorithms is at least exponential in g.

Approximating the genus of a graph. Perhaps surprisingly, the problem of ap-
proximating the genus of a graph is very poorly understood. In general, the
genus of a graph can be as large as Ω(n2) (e.g. for the complete graph Kn).
Euler’s characteristic implies that any n-vertex graph of genus g has at most
O(n+ g) edges. Since any graph can be drawn into a surface that has one han-
dle for every edge, this immediately implies a O(n/g)-approximation, which is
a Θ(n)-approximation in the worst case. In other words, even though we cur-
rently cannot exclude the existence of a O(1)-approximation, the state of the art
only gives a trivial O(n)-approximation. We also remark that by Euler’s formula,
there is a trivial O(1)-approximation for sufficiently dense graphs (i.e. of average
degree at least 6 + ε, for some fixed ε > 0).

For graphs of bounded degree, better results are known. Chen, Kanchi, and
Kanevsky [CKK97] described a simple O(

√
n)-approximation for graphs of

bounded degree, which follows by the fact that graphs of small genus have small
balanced vertex-separators. Following the present paper, Chekuri & Sidiropoulos
[CS] obtained a polynomial time algorithm which given a graph G of bounded

degree, and of genus g, outputs a drawing into a surface of genus gO(1) logO(1) n.
Combined with the result of Chen et al., this implies a n1/2−α approximation
for bounded-degree graphs, for some constant α > 0.

What about graphs of unbounded degree? The only positive result prior to our
work for a non-trivial family of graphs of unbounded degree, is due to Mohar
[Moh01], who gave an elegant characterization of the genus of apex graphs
(i.e. graphs that can be made planar by the removal of a single vertex). This can
in turn be used to obtain a O(1)-approximation for such graphs. Perhaps surpris-
ingly, except for the above result for apex graphs, essentially all currently known
approximation algorithms for genus [CKK97, CS], and related parameters, such
as crossing number [LR99, CMS11, Chu11, CH11, PH10, MC08], and edge-
planarization [LR99, Chu11, CS], apply only to the case of graphs of bounded
degree. In many cases, the reason for this phenomenon appears to be that an
algorithm relies heavily on divide & conquer via balanced edge-separators. How-
ever, graphs of small genus, and unbounded degree, are not guaranteed to have
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small edge-separators. This seemingly small technical difference, is a major ob-
stacle towards obtaining approximation algorithms for general graphs. To the
best of our knowledge, our result is the most general approximation algorithm
for any of the above graphs parameters, that works on graphs of unbounded
degree.

Our results. We present a pseudo-approximation algorithm for the orientable
genus of Hamiltonian graphs.1 More specifically, we obtain a polynomial-time
algorithm which given a graph G, and a Hamiltonian path P in G, computes a
drawing of G into a surface of either orientable, or non-orientable genus O(g7),
where g is the orientable genus of G. The dependence of the running time is
polynomial in both g, and n. Combined with the simple O(n/g)-approximation
described above, our result immediately gives a O(n6/7)-pseudo-approximation
for the orientable genus of Hamiltonian graphs. The following summarizes our
main result.

Theorem 1.1. There exists a polynomial-time algorithm which given a graph G
of orientable genus g, and a Hamiltonian path P in G, outputs a drawing of G
into a surface of either orientable, or non-orientable genus O(g7). The running
time is polynomial in both n, and g.

1.1 Overview

In this section, we present a very informal and somewhat imprecise overview of
our algorithm. We are given a Hamiltonian graphG of genus g and a Hamiltonian
path P in G. Our high-level approach is to cover the graph G by O(g) subgraphs
of constant genus, then independently draw each of them on a surface of small
genus and finally combine all drawings. More precisely, our algorithm consists
of the following steps:

Step 1: Cover G by O(g) toroidal subgraphs G1, . . . , Gk.
Step 2: For each pair of graphs Gi, Gj , compute a drawing of Gi ∪Gj .
Step 3: Combine the drawing of all pairs Gi ∪Gj , to obtain a drawing of G.

Step 1: Greedy band covering. The goal in this step is to cover G be O(g)
toroidal graphs. Fix an optimal drawing of G into a surface of genus g. Let us
sat that an edge e ∈ E(G) \ E(P ) is global if after contracting P , e becomes
a noncontractible loop. Otherwise, we say that e is local. We can show that G
can be covered by a collection of toroidal graphs G∗1, . . . G

∗
k, k = O(g), such

that every local edge appears in exactly one G∗i , and every global edge appears
in exactly two graphs G∗i , G

∗
j . Roughly speaking, we walk along the path, and

we find maximal edge-disjoint subpaths Q1, . . . , Qk in P , such that all edges on
either side of each Qi are homotopic (after contracting P ). Below is an example
of such a covering. For clarity, we omit local edges from the figure.

1 We use the term pseudo-approximation to denote the fact that even though we
approximate the orientable genus of the input graph, the output surface is allowed
to be non-orientable.
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We refer to the graphs G1, . . . , Gk as elementary bands. A key property is
that we can compute such a covering by elementary bands G1, . . . , Gk, for some
k = O(g), even if we do not have access to a drawing of G. Of course, this means
that the elementary bands G1, . . . , Gk we compute might differ from G∗1, . . . , G

∗
k.

This introduces certain complications as we explain next.

Step 2: Drawing a pair of bands. Even though we have O(g) graphs Gi and
each of them has genus at most 1, we cannot naively combine their drawings.
Roughly speaking, the problem is that graphs Gi share global edges: the way
an edge e is drawn in the drawing of Gi may be inconsistent with the way it
is drawn in the drawing of Gj . This can happen because in Step 1, when we
greedily compute the covering by elementary bands, we can only keep track of
the local edges in the current band. As a result, when we try to combine the
drawings of two bands, the local edges can introduce conflicts between the two
drawings. The following figure depicts an example of such a conflict:

In this example, the graphG is covered by two toroidal (in fact, planar) graphs
G1, G2. However, in the drawing of G1, all global edges are drawn on one side of
P , while in the drawing of G2 the global edges alternate between the two sides of
P . We overcome this obstacle by showing that, roughly speaking, for every pair
of bands Gi, Gj , there are drawings that are nearly consistent. This is a very
technical part of the paper, and we refer the reader to the next sections for a
precise definition. We just note here that, at the high level, we decompose each
band into gO(1) subgraphs, such that each such subgraph has a certain structure
allowing us to find a drawing into a surface of genus gO(1) in polynomial time.

Step 3: Combining the drawings of all pairs. In this last step we combine
the drawing of all pairs of bands into a drawing of G. The key idea is that for
every pair Gi∪Gj , we can modify its drawing, such that the global edges that are
shared between either Gi, or Gj , and some other elementary band G�, are con-
tained in a small number of homotopy classes (after contracting P ). Intuitively,
this means that we can combine the drawings of all pairs by introducing a small
number of “interface” handles between them. A precise definition appears in the
rest of the paper.
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1.2 Why a Pseudo-approximation?

Our current algorithm is a pseudo-approximation, which means that given a
graph G of orientable genus g, it outputs a drawing into a surface of either
orientable, or non-orientable genus gO(1). However, we believe that our approach
can be generalized to obtain a (true) approximation algorithm. That is, given
a graph of genus g, compute a drawing into a surface of genus gO(1), with the
same orientability type as G. Doing so, requires an extension of the definition of
an elementary band, to account for graphs that can be drawn into the projective
plane (i.e. elementary bands of non-orientable genus at most 1). This small
modification causes the number of different types of elementary bands to grow
by a constant factor. Unfortunately, as a consequence, the (already lengthy) case
analysis in the proof becomes dauntingly long. The rest of our proof remains
essentially unchanged. We are not aware of a way to simplify this case analysis,
so in the interest of clarity we have decided to omit it from the present paper.

1.3 Organization

In Section 3, we show how to find the elementary band covering. In Section 4,
we explain how to combine two drawings, by decomposing then into smaller
subgraphs. The drawing of these subgraphs is described in the full version of
this paper. In Section 5, we put all pieces of our algorithm together, and show
how to find a drawing of G. Due to lack of space, we omit many proofs in the
conference version of this paper. They will appear in the full version of the
paper.

2 Preliminaries

Definition 2.1 (Combinatorial restriction). Let G1 be a graph, and let G2

be a subgraph of G1. Let f1 be a drawing of G1 into some surface S1. The
combinatorial restriction of f1 on G2 is defined to be the combinatorial drawing
f2 of G2 induced by defining for every v ∈ V (G2), the ordering of the edges
incident to v in G2 to be their in f1. By gluing a disk along every facial walk in
f2 we obtain a surface S2. Then this does not cause confusion, we will naturally
identify f2 with the induced drawing of G2 into S2. Note that the genus of S2
can be smaller than the genus of S1.
Lemma 2.1 (Malnič & Mohar [MM92]). Let M be an orientable surface
of genus g, and let x ∈ M. Let X be a collection of noncontractible, pairwise
nonhomotopic curves, such that for every C,C′ ∈ X , we have C ∩C′ = x. Then,
|X | ≤ 6g − 3.

3 Band Coverings of Hamiltonian Graphs

In this section, we describe a greedy algorithm that partitions the input graph
to a set of O(g) simple toroidal graphs, which we call bands. One of the tools
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that we have developed for this section is based on the notion of ribbons and
petals. Intuitively, ribbons and petals describe minimal topological subspaces
that contain the edges of a band. Due to space limitations, the formal definitions
and lemmas of ribbons and petals are described in the appendix.

Definition 3.1 (Bands in Hamiltonian graphs). Let G be a graph, and let
P be a Hamiltonian path in G. Let B ⊆ E(G) \E(P ). Let Q be a subpath of P ,
such that every edge e ∈ B has at least one endpoint in V (Q). Then, B is called
a band. We also say that B has spine P , and primary segment Q. An edge in
B is called global if exactly one of its endpoints is in V (Q); it is called local if
both of its endpoints are in V (Q). Note that every set B ⊆ E(G) \ E(P ) is a
band with spine P , and primary segment P .

Definition 3.2 (Elementary bands). Let G be a graph, and let P be a Hamil-
tonian path in G. Let B ⊆ E(G) \ E(P ) be a band with spine P , and primary
segment Q ⊆ P . We define the following types of bands.

(i) We say that B is of type-1 (see Figure 1(a)) if the following conditions are
satisfied. There exist subpaths P1, P2, P3, P4 ⊂ P , with P1, P2, P3, P4, Q being
pairwise edge-disjoint, and such that the set M of global edges in B can be
decomposed into M =M1∪M2∪M3∪M4, such that for every i ∈ {1, . . . , 4},
every edge in Mi has one endpoint in V (Q), and one in V (Pi). Moreover,
there exists a planar drawing ϕ of the graph H = B ∪ Q ∪ P1 ∪ . . . ∪ P4,
satisfying the following. For every i ∈ {1, . . . , 4}, ϕ(Pi) lies in the outer
face, and all the curves ϕ(e), e ∈Mi, are attached to the same side of ϕ(Pi).
We say that the paths P1, . . . , P4 are the outlets of B.

(ii) We say that B is of type-2 (see Figure 1(b)) if the following conditions
are satisfied. There exist subpaths P1, P2, P3 ⊂ P , with P1, P2, P3, Q being
pairwise edge-disjoint, and such that the set M of global edges in B can be
decomposed into M =M1 ∪M2 ∪M3, such that for every i ∈ {1, 2, 3}, every
edge in Mi has one endpoint in V (Q), and one in V (Pi). Moreover, there
exists a planar drawing ϕ of the graph H = B∪Q∪P1∪P2∪P3, satisfying the
following. If we denote by ϕ′ the drawing induced by ϕ on H \V (P3), then for
every i ∈ {1, 2}, ϕ′(Pi) lies in the outer face. Also, there exists v ∈ V (P3),
such that ϕ(v) also lies in the outer face. Moreover, for every i ∈ {1, 2}, all
the curves ϕ(e), e ∈ Mi, are attached to the same side of ϕ(Pi). Note that
the curves ϕ(e), e ∈ M3 are allowed to be attached to both sides of ϕ(P3).
We say that the paths P1, and P2 are the outlets of B, and that the path P3

is the double outlet of B.

We say that ϕ is a canonical drawing of B (or a canonical drawing of H, when
B is clear from the context). For an elementary band of type-2, we can pick ϕ so
that the curves ϕ(Q), ϕ(P1), ϕ(P2), ϕ(P3) become segments of a horizontal line
�, with ϕ(Q) appearing to the left of ϕ(P3). We call � the canonical line of ϕ. Let
≺ be the total ordering of V (Q) ∪ V (P3) induced by a left-to-right traversal of
�. We say that ≺ is the canonical ordering of ϕ. We extend ≺ to B as follows.
Let {x, y}, {x′, y′} ∈ B, with x, x′ ∈ V (Q). Then, we define {x, y} ≺ {x′, y′} if
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either x ≺ x′, or (x = x′)∧(y ≺ y′). Since G does not contain any parallel edges,
it follows that ≺ is a total ordering of B.

We remark that a band can be of both type-1, and type-2 (e.g. the trivial band).
Figure 1 depicts examples of all different types of elementary bands.

(a) Type-1. (b) Type-2.

Fig. 1. The different types of elementary bands. The primary segment is in bold.

Definition 3.3 (Band coverings for Hamiltonian graphs). Let G be a
graph, and let P be a Hamiltonian path in G. A band covering with spine P for
G is a collection B = {(Bi, Qi)}ti=1 satisfying the following conditions:

(1) For every i ∈ {1, . . . , t}, Bi is an elementary band with spine P , and pri-
mary segment Qi.

(2)
⋃
i∈{1,...,t}Bi = E(G) \ E(P ).

(3) For every i �= j ∈ {1, . . . , t}, we have V (Qi) ∩ V (Qj) = ∅.
We remark that every edge in E(G) \ E(P ) is contained in at least one, and at
most two bands in the band covering B. If it is contained in exactly one band,
then we say that it is local, and otherwise we say that it is global.

First we show that a band covering that is composed of O(g) bands exists. The
main intuition for this proof is looking and the homotopy classes of the edges
in E(G) \ P in an optimal embedding. Moreover, we show that we can compute
a band covering of size O(g). Note that this band covering that we compute
is not necessarily optimal, however, its size is within a constant factor of the
optimal band covering size. The main tool that our algorithm uses is a so-called
ribbon-petal covering. See A for the description of ribbon petal covering and the
proof of the following lemmas.

Lemma 3.1 (Existence of a small band covering). Let G be a graph of
orientable genus g, and P a Hamiltonian path in G. Then, there exists a band
covering B = {(Bi, Qi)}ti=1, with spine P for G, with t = O(g).

The main technical result of this section is the following.

Lemma 3.2 (Computing a small band covering). Let G be a graph of
orientable genus g, and P a Hamiltonian path in G. Then, given G and P , we
can compute in polynomial time a band covering for G with spine P , of size
O(g).
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4 Compatible Pairs of Planar Drawings

In the previous section, we show how to decompose the input graph to a col-
lection of toroidal graphs. We use Mohar’s algorithm to find an embedding for
all those toroidal graphs in linear time. Nevertheless, the computed embeddings
are not necessarily consistent. To fix this issue, we consider all pairs of bands
and corresponding toroidal embeddings and change them to make their inter-
sections consistent. We obtain a drawing of each pair of bands on a surface of
genus O(g3). In the next section, we show how to resolve the remaining slight
inconsistencies to acquire the final embedding. Many of the proofs of this section
are presented in the full version of this paper.

Consider two bands B1 and B2 with disjoint primary segments Q1 and Q2,
respectively. Let B = B1∩B2 (the set of edges going from Q1 to Q2). Denote the
set of local edges incident on vertices in Q1 by L1, and the set of edges incident
on vertices in Q2 by L2 (see Figure 2.).

The main result of this section is Theorem 4.1.

Theorem 4.1. There is a polynomial time algorithm that finds a drawing of
P ∪B ∪ L1 ∪ L2 on a surface of genus O(g3).

We first prove the following decomposition theorem and then show that it implies
Theorem 4.1.

Theorem 4.2. There is a polynomial algorithm that does the following. It di-
vides segments Q1 and Q2 into consecutive segments Q1

1, . . . , Q
s
1 and Q1

2, . . . , Q
s
2,

respectively, where p = O(g). These segments do not share any vertices ex-
cept possibly for endpoints. Also it partitions all edges in B into p disjoint sets
T1, ..., Ts such that all edges in Ti go between Qi1 and Qi2. For each i ∈ {1, . . . , s},
the algorithm finds a drawing ψi of Q1 ∪Q2 ∪Ti ∪L1 ∪L2 on a surface of genus
O(g2). Additionally, the combinatorial restriction of ψi to Q1 ∪Q2 ∪ L1 ∪ L2 is
planar and canonical.

We consider canonical drawings ϕ1 and ϕ2 of B1 and B2, respectively. Each of
the drawings draws paths Q1 and Q2 on a horizontal line � and hence defines a
total ordering of vertices in Q1 and Q2. Let ≺1 be the ordering defined by ϕ1

and ≺2 be the ordering defined by ϕ2. By changing the orientation of the line
� in one of the drawings, if necessary, we may assume that ≺1 and ≺2 agree on
V (Q1). However, orderings ≺1 and ≺2 may define either the same or opposite
order on V (Q2). In the former case, we say that the band intersection is regular ;
in the latter case, we say that the band intersection is irregular. In the Appendix,
we show that in the irregular case the intersection of bands B1 and B2 can be
drawn on a surface of genus 8. Thus Theorems 4.1 and 4.2 follow (with s = 1).

Lemma 4.1. In the irregular case, the intersection of bands B1 and B2 can be
drawn on a surface of genus 8.

In the rest of this section, we will analyze the regular case. Since in the regular
case orderings ≺1 and ≺2 agree on V (Q1) ∪ V (Q2), we will just denote this
ordering by ≺.
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Definition 4.1. Let us say that two edges {x, y}, {x′, y′} ∈ B ∪ L1 ∪ L2 (with
x ≺ y and x′ ≺ y′) are in conflict if x ≺ x′ ≺ y ≺ y′ or x′ ≺ x ≺ y′ ≺ y. We
consider an auxiliary conflict graph C on the set of edges B ∪L1 ∪L2 in which e
and e′ are connected with an auxiliary edge if e and e′ are in conflict. We denote
the set of connected components of C[B] (the subgraph of C induced by B) by S.
(See Figure 2.)

Fig. 2. The figure on the left shows two bands with primary segments Q1 and Q2,
global edges B = {1, 2, 3, 4, 5}, local edges L1 = {a, b} and L2 = {c}. The right figure
shows the corresponding conflict graph C. Note that graphs C[B ∪ L1] and C[B ∪ L2]
are bipartite as claimed by Lemma 4.2. However, the graph C is not bipartite since it
contains an odd cycle 2 → 5 → c → 3 → b → 2. The graph C[B] has three connected
components S1 = {1}, S2 = {2, 4, 5} and S3 = {3} with S1 � S2 � S3.

The motivation for Definition 4.1 is that if two edges e and e′ are not conflict, we
can draw them in the plane on one side of � or on opposite sides of �. However,
if two edges are in conflict we can only draw them on one side of �. Accordingly,
if the conflict graph is bipartite, then we can simultaneously draw all the edges
(the nodes of the conflict graph) in the plane. The following lemma shows that
for every S ∈ S, C[S∪L1∪L2] is bipartite (we prove this lemma in the appendix).

Lemma 4.2. Graphs C[B∪L1] and C[B∪L2] are bipartite. Moreover, for every
S ∈ S, C[S ∪ L1 ∪ L2] is bipartite.

Definition 4.2. We define a partial order 	 on edges as follows: e 	 e′ for two
edges e = (x, y) and e′ = (x′, y′) if x � x′ and y � y′ (here, we assume wlog that
x ≺ y and x′ ≺ y′), where one of the two inequalities is strict. We write S 	 S′

for two sets of edges S and S′ if e 	 e′ for every e ∈ S and e′ ∈ S′.
Note that two edges e, e′ ∈ B are comparable w.r.t. 	 if and only if e and e′ are
not in conflict.

Claim. The set S is totally ordered by 	. That is, for every two distinct connected
components S and S′ in S either S 	 S′ or S′ 	 S.

We order elements of S (connected components of C[B]) w.r.t. to the order 	:
S1 	 · · · 	 Sr. We note that sets S1, . . . , Sr satisfy most properties we require
in Theorem 4.1. Since sets S1, . . . , Sr are ordered w.r.t. 	, endpoints of edges
in sets Si divide Q1 and Q2 into r consecutive segments. By Lemma 4.2, each
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graph C[S ∪L1 ∪L2] is bipartite and therefore the graph Q1 ∪Q2 ∪ S ∪L1 ∪L2

is planar. The only obstacle is that the number r of sets Si can be arbitrarily
large (it is not bounded by a function of g). To resolve this issue, we will join
together some consecutive sets Si and obtain the desired sets Tj. We do that
using a simple greedy algorithm: We define numbers t0, t1, t2, . . . by induction.
First, we let t0 = 0. Let tq+1 be the largest t such that one of the following two
conditions holds

1. the graph C[Stq+1 ∪ · · · ∪ St ∪ L1 ∪ L2] is bipartite;
2. all edges in Stq+1, . . . , St are in conflict with some local edge ê ∈ L1 ∪ L2.

We stop this procedure when we process all sets Si. We obtain numbers t0, . . . , ts
(for some s > 0). Let Tq = Stq−1+1 ∪ · · · ∪ Stq for every q ∈ {1, . . . , s}.

Since each set Tj is the union of consecutive sets Si, we have that T1 	T2 · · · 	
· · · 	 Ts. For every p consider all vertices in Q1 incident to edges in Tp. Let Q

p
1

be the segment between the leftmost and rightmost among such vertices; define
Qp2 similarly. Then Q1

1 � Q2
1 � · · · � Qs1, and Q

1
2 � Q2

2 � · · · � Qs1. Note that

Qi1 and Qi+1
1 share at most one vertex and Qi1 and Qj1 are disjoint if |i− j| > 1.

Recall that we need to find a drawing of each graph Tq∪Q1∪Q2∪L1∪L2 on a
surface of genusO(g2) and prove that s = O(g). Note that if C[Stq−1+1∪· · ·∪Stq∪
L1∪L2] is bipartite (the first stopping condition holds) then Tq∪Q1∪Q2∪L1∪L2

is planar. So besides proving that s = O(g), we only need to analyze the case
when all edges in Stq−1+1, . . . , Stq are in conflict with some local edge ê ∈ L1∪L2.
We need the following definition that captures this case.

Definition 4.3 (Comb). Let B1 and B2 be two bands. Let B′ ⊂ B1 ∩ B2.
Suppose that all edges in B′ are in conflict with a local edge ê ∈ L1. Let ϕ1 and
ϕ2 be canonical drawings of H1 = Q1∪Q2 ∪B′∪L1 and H2 = Q1∪Q2 ∪B′∪L2

respectively (as in Definition 3.2). Note that all edges in B′ are drawn on one
side of � since all edges in B′ are in conflict with ê; we assume w.l.o.g. that all
edges in B′ are drawn above �.

Then, we say that ((B1, Q1, ϕ1), (B2, Q2, ϕ2), B
′) is a comb with spine P , or

simply a comb, when P is clear from the context.

Lemma 4.3. For every set Tp, we have

– there is a canonical planar drawing ϕ of Q1 ∪Q2 ∪ L1 ∪ L2 ∪ Tp, or
– there are drawings ϕ1 and ϕ2 such that ((B1, Q1, ϕ1), (B2, Q2, ϕ2), Tp) is a

comb, or
– there are drawings ϕ1 and ϕ2 such that ((B2, Q2, ϕ2), (B1, Q1, ϕ1), Tp) is a

comb.

We present an algorithm that finds a drawing of a comb on a surface of genus
O(g2) in the full version of this paper.

It remains to show s = O(g). Roughly speaking, we observe that Ti ∪ Ti+1 ∪
Q1∪Q2∪L1∪L2 is not planar because if it was planar our greedy algorithm would
include Ti+1 in Ti. Then we consider s/2 graphs Ti∪Ti+1∪Q1∪Q2∪L1∪L2 for
i ∈ {1, 3, 5, . . .}. Each of them is not planar and there are s/2 of them. Note that
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the union of k disjoint non-planar graphs has genus at least k. So we want to
argue that s/2 ≤ g as otherwise the union of graphs Ti∪Ti+1∪Q1∪Q2∪L1∪L2

would have genus at least s/2 > g, which would contradict the fact that the
genus of G is g. However, this approach does not work as stated because graphs
Ti∪Ti+1∪Q1∪Q2∪L1∪L2 share local edges. To overcome this obstacle, for each
set Ti we define sets Λ

i
1 ⊂ L1 and Λ

i
2 ⊂ L2 such that Ti∪Ti+1∪Q1∪Q2∪Λi1∪Λi2

is not planar and sets Λi1 and Λj1 do not intersect if |i − j| > 2. This resolves
the problem in the argument we outlined above (we choose indices i with some
sufficiently large constant gap). We present the formal proof in the full version
of this paper. We obtain the following lemma, which concludes the proof of
Theorem 4.2.

Lemma 4.4. We have, s = O(genus(G)).

Proof of Theorem 4.2. We presented an algorithm that finds a drawing ψi of
Q1 ∪ Q2 ∪ Ti ∪ L1 ∪ L2 on a surface of genus O(g2) for each i. Now to prove
Theorem 4.2, we show how to combine all drawings ψi in one drawing ψ. We
assume that the drawing of � and Q1 ∪ Q2 are the same in all drawings ψi (we
can do that without loss of generality since all vertices in Q1 ∪ Q2 are ordered
w.r.t. ≺ in all drawings ψi).

First we take care of global edges in Ti. Consider the drawing ψi. Recall that
if Ti is not a comb then the drawing ψi is planar. Otherwise, it is a drawing on
a plane with attached handles. In the latter case, all handles are attached to the
plane above or below either Qi1 or Qi2. We make four puncture in the plane: one
above Qi1 (sufficiently far away from �), one below Qi1, one above Qi2 and one
below Qi2. We attach a handle HU between two punctures above �, and another
handle HD between two punctures below �. Now we redraw all global edges that
go above � on the handle HU , and all edges that go below � on the handle HD.
We cut the part of the plane that lies above and below Qi1 and Qi2. We denote
this part by Ti. The boundary of Ti consists of 4 vertical lines that pass through
the left end of Qi1, the right end of Qi1, the left end of Qi2, and the right end of
Qi2. We combine these parts Ti together and get a surface T of genus at most
O(g3); we do not identify boundaries of Ti except for points of � that belong to
boundaries of several sets Ti (at this point, surface might be disconnected). We
also add line � to T . Now we partially define the drawing ψ on T . We draw Q1

and Q2 in ψ in the same way as they are drawn in ψi. We draw each global edge
e ∈ Ti in the same way it is drawn in ψi (on Ti). We perform this step for all i
and obtain a drawing of all global edges.

Now we take care of local edges. Consider a local edge e whose drawing ψi
partially lies in Ti. We draw the segment of e that lies in Ti on T in the same
way it is drawn on Ti. It remains to draw missing segments of local edges and
connect all segments together. We describe how we do that for edges in L1; we
process edges in L2 in exactly the same way.

Consider two consecutive sets Ti and Ti+1. Let u be the the rightmost vertex
of Qi1 and v be the leftmost vertex of Qii+1. Let ei be a global edge in Ti inci-
dent on u, and ei+1 be a global edge in Ti+1 incident on v, Let hu be the line
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perpendicular to u in Ti and hv be the line perpendicular to v in Ti+1. There
are two possibilities. Either u = v or u ≺ v.

First, we consider the case u = v. Let A be the set of edges e = (x, y) with
x ≺ u and u ≺ y. All edges in A are in conflict with both e and e′. Thus all
edges in A are drawn on one side of � in ψi and ψi+1 (in particular, no two
edges in A are in conflict). Consider all crossing points of edges in A and line hu
ordered descendingly by their distance from �. Since the drawing of local edges
in ψi is combinatorially planar, crossing points are ordered in the same way as
corresponding edges ordered by ≺: if e1 ≺ e2 then the crossing point of e1 is
further away from � than the crossing point of e2. Similarly, the crossing points
of edges in A and line hv are ordered in the same way as edges in A. Thus edges
cross lines hu and hv in the same order. We attach a handle between Ti and Ti+1

and then for every edge e ∈ A draw a curve that connects the segment of e in
Ti and the segment of e in Ti+1.

Now consider the case when u ≺ v. Let A be the set of edges e = (x, y) with
x ≺ u and v ≺ y. We treat edges in A in exactly the same way as before; we
attach one handle and connect segments of edges in A drawn on Ti and on Ti+1.
It remains to draw edges in the set D = {e = (x, y) : x ≺ u ≺ y ≺ v or u ≺ x ≺
v ≺ y or u ≺ x ≺ y ≺ v}. Note that A ≺ D thus all crossing points of edges
in D with hu and hv lie closer to � then crossing points of A with hu and hv,
respectively.

Denote the conflict graph C[D ∪ {ei, ei+1}] by H .

Lemma 4.5. The graph H is bipartite.

Proof. Consider connected components of C[D]. We show that there is at most
one connected component C that is connected with both ei and ei+1 in H .
Assume to the contrary that there are two such connected components C1 and
C2. Repeating the proof of Claim 4, we get that if two connected components
C1 and C2 of C[D] are connected with ei then either C1 	C2 or C2 	C1. Without
loss of generality, C1 	 C2. Then for every edge e = (x, y) ∈ C1 (with x ≺ y) we
have x � C2 and C2 � y. Thus x ≺ u and v ≺ y, which contradicts to the fact
that e /∈ A.

Let C be a connected component of C[D]. By Lemma 4.2, graphs C∪{ei} and
C ∪ {ei+1} are bipartite. Since there is no edge between ei and ei+1 in H , the
graph C ∪ {ei} ∪ {ei+1} is also bipartite. We color the graph H with two colors
as follows. If there is a connected component of C[D] which is connected to both
ei and ei+1, we first color it with 2 colors. Otherwise, we arbitrarily color nodes
ei and ei+1 of H . Every other connected component of C[D] is connected to at
most one of nodes ei and ei+1. We color it with 2 colors so that its coloring
agrees with the coloring of ei and ei+1. We obtain a valid 2-coloring of H .

Since H is bipartite there exist a canonical drawing γ of edges of D, in which
all edges that are in conflict with ei lie on one side of � and all edges that are in
conflict with ei+1 lie on one side of �. We attach a slab Ti,i+1 above and below
the segment between u and v of Q1 to T . Then we draw segments of all edges
in D on Ti,i+1 in the same way they are drawn in γ. Now the leftmost vertex of
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Ti,i+1 is u and the rightmost vertex of Ti,i+1 is v. So we can use the argument
we used above to connect drawings of segments of e ∈ D drawn on Ti, Ti,i+1,
and Ti+1.

5 Drawing a Hamiltonian Graph

In previous sections, we showed how to obtain O(g2) embeddings that are almost
consistent. In the full version of this paper, we show how to resolve all remaining
inconsistencies to obtain the final embedding.

Theorem 5.1 (Main result). There exists a polynomial time algorithm which
given a graph G of orientable genus g, and a Hamiltonian path in G, outputs a
drawing of G into a surface of either orientable, or non-orientable genus O(g7).
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A Ribbons and Petals

Definition A.1 (Ribbon). Let Q be a simple open curve in a surface F . A set
A ⊂ F is called a Q-ribbon if it satisfies one of the following conditions:

(1) The set A is the image of a simple curve with endpoints x, y ∈ Q, and such
that A ∩Q = {x, y}.

(2) Intuitively, A is a deformed triangle in F that intersects Q only on a vertex
and its opposite edge. Formally, let T be 2-simplex, let a be a vertex of T ,
and let � be the edge of T opposite to a. Then, there exists a continuous
mapping f : T → F such that f is a homeomorphism on T \ {a}, and on �.
Moreover, f(a ∪ �) ⊆ Q, f(T \ (a ∪ �)) ∩Q = ∅, and f(T ) = A.

(3) Intuitively, A is a deformed rectangle in F that intersects Q only on two
opposite edges. Formally, let f : [0, 1]2 → F be a continuous mapping such
that f is a homeomorphism on (0, 1)×[0, 1], on {0}×[0, 1], and on {1}×[0, 1].
Moreover, f((0, 1)× [0, 1])∩Q = ∅, f({0, 1}× [0, 1]) ⊆ Q, and f([0, 1]2) = A.

We say that the points f((0, 0)), f((0, 1)), f((1, 0)), f((1, 1)) are endpoints of
A. Figure 3(a) depicts examples of ribbons.

(a) Examples of sets R that are Q-ribbons. (b) Not a Q-
ribbon.

Fig. 3. Ribbons

Definition A.2 (Petal). Let Q be a simple open curve in a surface F . A set
X ⊂ F is called a Q-petal if there exists a continuous mapping f : [0, 1]2 → F ,
so that f is a homeomorphism on [0, 1] × (0, 1], with f((0, 1] × [0, 1]) ∩ Q = ∅,
f({0} × [0, 1]) ⊆ Q, and f([0, 1]2) = X. We distinguish between the following
three types of petals:
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(1) The Q-petal X is called single if f is a homeomorphism on [0, 1]2.
(2) The Q-petal X is called double if it is not single, and if there exists x ∈

[0, 1], so that f is a homeomorphism on {0} × [0, x], and on {0} × [x, 1].
(3) The Q-petal X is called triple if it is not single, and it is not double, and

if there exist x < y ∈ [0, 1], so that f is a homeomorphism on {0} × [0, x],
on {0} × [x, y], and on {0} × [y, 1].

We say that the points f((0, 0)), and f((0, 1)) are endpoints of X. Figure 4
depicts examples of the three different types of petals.

Fig. 4. From left to right: A single Q-petal, a double Q-petal, and a triple Q-petal X

Definition A.3 (Ribbon-petal covering). Let G be a graph of genus g, and
let P be a Hamiltonian path in G. Let ϕ be a drawing of G into a surface S
of genus g. Let X be a collection of subsets of S. Then, we say that X is a
ribbon-petal covering for (G,P, ϕ), if the following conditions are satisfied:

(i) Every X ∈ X is either a ϕ(P )-ribbon, or a ϕ(P )-petal.
(ii) For every X,X ′ ∈ X , with X �= X ′, we have X ∩X ′ ⊆ ϕ(P ).
(iii) For every e ∈ E(G) \ E(P ), there exists X ∈ X , such that ϕ(e) ⊆ X.

Lemma A.1. Let G be a graph of genus g, and let P be a Hamiltonian path in G.
Let ϕ be a drawing of G into a surface S of genus g. For every e ∈ E(G)\E(P ),
let Pe be the subpath of P between the endpoints of e, and define the cycle Ce =
Pe ∪ {e}. Let E∗ = {e ∈ E(G) \ E(P ) : ϕ(Ce) is non-contractible in S}. Let
X ⊆ E∗, such that for every e �= e′ ∈ X, the cycles ϕ(Ce) and ϕ(Ce′ ) are
non-homotopic. Then, |X | ≤ 6g − 3.

Proof. Let S ′ be the surface obtained from S by contracting ϕ(P ) into a single
point. Let G′ be the graph obtained from G by contracting P into a single
vertex p. Note that G′ contains a single vertex p, and multiple loops. Let ϕ′ be
the induced drawing of G′ into G. Note that S ′ has genus g. For every e ∈ X ,
let C′e be the loop in G′ containing e and p. Moreover, for any e �= e′ ∈ X , the
cycles ϕ(Ce) and ϕ(Ce′ ) are homotopic in S if and only if ϕ′(C′e) and ϕ′(C′e′)
are homotopic in S ′. Therefore, by Lemma 2.1 we obtain that |X | ≤ 6g − 3.

Lemma A.2 (Existence of small ribbon-petal coverings). Let G be a
graph of genus g, and let P be a Hamiltonian path in G. Let ϕ be a drawing
of G into a surface S of genus g. Then, there exists a ribbon-petal covering X
for (G,P, ϕ), with |X | ≤ 24g − 12.
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Proof. For every e ∈ E(G) \ E(P ), let Pe be the subpath of P between the
endpoints of e, and define the cycle Ce = Pe ∪ {e}. Let

E∗ = {e ∈ E(G) \E(P ) : ϕ(Ce) is non-contractible in S}.

Consider the partition E∗ = Y1 ∪ . . . ∪ Yk, such that for every i ∈ {1, . . . , k},
for every e, e′ ∈ Yi, the cycles ϕ(Ce) and ϕ(Ce′ ) are homotopic, and for every
i �= j ∈ {1, . . . , k}, for every e ∈ Yi, e′ ∈ Yj , the cycles ϕ(Ce) and ϕ(Ce′ ) are
non-homotopic. By Lemma A.1, we have k ≤ 6g − 3.

Let i ∈ {1, . . . , k}. Since for all e ∈ Yi, all the cycles ϕ(Ce), e ∈ Yi are
homotopic, it follows that there exists an ordering e1, . . . , eki of the edges in Yi,
and a continuous mapping fi : [0, 1]

2 → S, with fi([0, 1]× {0, 1}) ⊆ ϕ(P ), and
moreover for every ej ∈ Yi, there exists xj ∈ [0, 1], so that fi(xj× [0, 1]) = ϕ(ej).
Since for every i′ �= i ∈ {1, . . . , k} and for every e ∈ Yi, e′ ∈ Yi′ , the cycles ϕ(Ce)
and ϕ(Ce′ ) are non-homotopic, it follows that we can pick the maps f1, . . . , fk
so that for every i �= i′ ∈ {1, . . . , k} the sets fi([0, 1]

2) and fi′([0, 1]
2) have

disjoint interiors. It therefore suffices to show how every set Ai = fi([0, 1]
2) can

be decomposed into at most three ϕ(P )-ribbons with disjoint interiors. To that
end, we consider the following cases: Let a, b be the two endpoints of ϕ(P ).

(i) If fi([0, 1]× {0}), and fi([0, 1]× {1}) are both single points, then the set
fi([0, 1]

2) is clearly a ϕ(P )-ribbon.
(ii) If fi([0, 1]×{0}) is a single point, and fi([0, 1]×{1}) is not a single point,

then we can pick fi so that there exist at most two values x < y ∈ [0, 1] such
that for every z ∈ [0, 1]\{x, y}, we have f((z, 1)) /∈ {a, b}. It follows that the sets
fi([0, x]× [0, 1]), fi([x, y]× [0, 1]), fi([y, 1]× [0, 1]) are the desired ϕ(P )-ribbons.

(iii) If fi([0, 1]×{0}) is not a single point, and fi([0, 1]×{1}) is a single point,
we can decompose fi([0, 1]

2) into at most three ϕ(P )-ribbons as in the previous
case.

(iv) If fi([0, 1]× {0}) is not a single point, and fi([0, 1]× {1}) is not a single
point, then we can pick fi so that there exist at most two values x < y ∈ [0, 1]
such that for every z ∈ [0, 1] \ {x, y}, we have f((z, 1)) /∈ {a, b}, and f((z, 0)) /∈
{a, b}. It follows that the sets fi([0, x]× [0, 1]), fi([x, y]× [0, 1]), fi([y, 1]× [0, 1])
are the desired ϕ(P )-ribbons.

We perform the above decomposition to each set fi([0, 1]
2), i ∈ {1, . . . , k}.

For every e ∈ E∗, the cycle ϕ(Ce) is contractible in S. Therefore, it bounds a
disk De ⊂ S, and this disk is a ϕ(P )-petal. Let e, e′ ∈ E∗. Since ϕ(e) ∩ ϕ(e′) ⊂
ϕ(P ), we have that either De ⊂ De′ , or De′ ⊂ De, or De∩De′ ⊂ ϕ(P ). It follows
that we can cover all the disks {De}e∈E(G)\E∗ by using at most one ϕ(P )-petal
between every two consecutive ribbons on every side of ϕ(P ), and possibly one
more ϕ(P )-petal for every one of the two endpoints of ϕ(P ). Since every ribbon
intersects ϕ(P ) in at most two segments, in total we obtain a collection of at
most k petals satisfying the assertion.



A Local Computation Approximation Scheme
to Maximum Matching

Yishay Mansour� and Shai Vardi��

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
{mansour,shaivar1}@post.tau.ac.il

Abstract. We present a polylogarithmic local computation matching algorithm
which guarantees a (1 − ε)-approximation to the maximum matching in graphs
of bounded degree.

Keywords: Local Computation Algortithms, Sublinear Algorithms, Approxima-
tion Algorithms, Maximum Matching.

1 Introduction

Finding matchings - sets of vertex disjoint edges in a graph - has been an important
topic of research for computer scientists for over 50 years. Of particular importance
is finding maximum matchings - matchings of maximal cardinality. Algorithms that
find a maximum matching have many applications in computer science; in fact, their
usefulness extends far beyond the boundaries of computer science - to disciplines such
as economics, biology and chemistry.

The first works on matching were based on unweighted bipartite graphs (representing
problems such as matching men and women). Hall’s marriage theorem [6] gives a nec-
essary and sufficient condition for the existence of a perfect matching1. The efficient
algorithms for the weighted bipartite matching problem date back to the Hungarian
method [12,18]. In this work we focus on maximum matchings in general unweighed
graphs. Berge [3] proved that a matching is a maximum matching if and only if the
graph has no augmenting paths with respect to the matching. Edmonds used augment-
ing paths to find a maximum matching in his seminal work [5], in which he showed that
a maximum matching can be found in polynomial time. Much work on matching been
done since (e.g., [7,9,16,17]). Our work uses ideas from Hopcroft and Karp’s algorithm
for finding maximal matching in bipartite graphs [9], which runs in time O(n2.5).

Local computation algorithms (LCAs) [20] consider the scenario in which we must
respond to queries (regarding a feasible solution) quickly and efficiently, yet we never
need the entire solution at once. The replies to the queries need to be consistent; namely,
the responses to all possibly queries combine to a single feasible solution. For example,
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an LCA for matching in a graph G, receives an edge-query for an edge e ∈ G and
replies “yes” if and only if e is part of the matching. The replies to all the possible edge
queries define a matching in the graph.

In this work we present a local computation approximation scheme to maximum
matching. Specifically, we present an LCA such that for any ε > 0, the edge-query
replies comprise a matching that is a (1 − ε)-approximation to the maximum match-
ing. Our LCA requiresO(log3 n) space, and with probability at least 1− 1/n2, for any
edge-query, it runs in timeO(log4 n). To the best of our knowledge, this is the first local
computation approximation algorithm for a problem which provably does not have an
LCA.

Related Work. In the distributed setting, Itai and Israeli [10] showed a randomized
algorithm which computes a maximal matching (which is a 1/2-approximation to the
maximum matching) and runs in O(log n) time with high probability. This result has
been improved several times since (e.g., [4,8]); of particular relevance is the approx-
imation scheme of Lotker et al. [13], which, for every ε > 0, computes a (1 − ε)-
approximation to the maximum matching in O(log n) time. Kuhn et al., [11] proved
that any distributed algorithm, randomized or deterministic, requires (in expectation)
Ω(

√
log n/ log logn) time to compute a Θ(1)-approximation to the maximum match-

ing, even if the message size is unbounded.
Rubinfeld et al., [20] showed how to transform distributed algorithms to LCAs, and

gave LCAs for several problems, including maximal independent set and hypergraph
2-coloring. Unfortunately, their method bounds the running time of the transformed
algorithm exponentially in the running time of the distributed algorithm. Therefore,
distributed algorithms for approximate maximum matching cannot be (trivially) trans-
formed to LCAs using their technique.

Query trees model the dependency of queries on the replies to other queries, and
were introduced in the local setting by Nguyen and Onak [19]. If a random permutation
of the vertices is generated, and a sequential algorithm is simulated on this order, the
reply to a query on vertex v depends only on the replies to queries on the neighbors
of v which come before it in the permutation. Alon et al., [2] showed that if the run-
ning time of an algorithm is O(f(n)), where f is polylogarithmic in n, a 1/n2 - almost
f(n)-independent ordering on the vertices can be generated in time O(f(n) log2 n),
thus guaranteeing the polylogarithmic space bound of any such algorithm. Mansour et
al., [14] showed that the size of the query tree can be bounded, with high probability, by
O(log n), for graphs of bounded degree. They also showed that it is possible to trans-
form many on-line algorithms to LCAs. One of their examples is an LCA for maximal
matching, which immediately gives a 1/2-approximation to the maximum matching. In
a recent work, [15], LCAs were presented for mechanism design problems. One of their
impossibility results shows that any LCA for maximum matching requires Ω(n) time.

2 Notation and Preliminaries

2.1 Graph Theory

For an undirected graph G = (V,E), a matching is a subset of edges M ⊆ E such that
no two edges e1, e2 ∈ M share a vertex. We denote by M∗ a matching of maximum
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cardinality. An augmenting path with respect to a matching M is a simple path whose
endpoints are free (i.e., not part of any edge in the matching M ), and whose edges
alternate between E \M andM . A set of augmenting paths P is independent if no two
paths p1, p2 ∈ P share a vertex.

For sets A andB, we denoteA⊕B def
= (A∪B)\(A∩B). An important observation

regarding augmenting paths and matchings is the following.

Observation 1. If M is a matching and P is an independent set of augmenting paths,
then M ⊕ P is a matching of size |M |+ |P |.
A vertex u ∈ V is a neighbor of vertex v ∈ V if (u, v) ∈ E. Let N(v) denote the set of
neighbors of v, i.e., N(v) = {u : (v, u) ∈ E}. We assume that we have direct access
both to N(v) and to individual edges.

An independent set (IS) is a subset of vertices W ⊆ V with the property that for
any u, v ∈ W we have (u, v) �∈ E, namely, no two vertices u, v ∈ W are neighbors in
G. The IS is maximal (denoted by MIS) if no other vertices can be added to it without
violating the independence property.

2.2 Local Computation Algorithms

We use the following model of local computation algorithms (LCAs)[20].2 A (t(n),
s(n), δ(n)) - local computation algorithm LA for a computational problem is a (ran-
domized) algorithm which receives an input of size n, and a query x. Algorithm LA
uses at most s(n) memory, and with probability at least 1− δ(n), it replies to any query
x in time t(n). The algorithm must be consistent, that is, the replies to all of the possible
queries combine to a single feasible solution to the problem.

2.3 Query Trees

LetG = (V,E) be a graph of bounded degree d. A real number r(v) ∈ [0, 1] is assigned
independently and uniformly at random to every vertex v in the graph. We refer to this
random number as the rank of v. Each vertex in the graph G holds an input x(v) ∈ R,
where the range R is some finite set. A randomized Boolean function F is defined
inductively on the vertices in the graph such that F (v) is a function of the input x(v) at
v as well as the values of F at the neighbors w of v for which r(w) < r(v).

We would like to upper bound the number of queries that are needed to be made
vertices in the graph in order to compute F (v0) for any vertex v0 ∈ G. We turn to
the simpler task of bounding the size of a certain d-regular tree, which is an upper
bound on the number of queries. Consider an infinite d-regular tree T rooted at v0. Each
node w in T is assigned independently and uniformly at random a distinct real number
r(w) ∈ [0, 1]. For every node w ∈ T other than v0, let parent(w) denote the parent

2 Our model differs slightly from the model of [20] in that their model requires that the LCA
always obeys the time and space bounds, and returns an error with some probability. It is easy
to see that any algorithm which conforms to our model can be modified to conform to the
model of [20] by forcing it to return an error if the time or space bound is violated.
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node of w. We grow a (possibly infinite) subtree T of T rooted at v as follows: a node
w is in the subtree T if and only if parent(w) is in T and r(w) < r(parent(w)) .
We keep growing T in this manner such that a node w′ ∈ T is a leaf node in T if the
ranks of its d children are all larger than r(w′). We call the random tree T constructed
in this way a query tree and we denote by |T | the random variable that corresponds to
the size of T . Note that |T | is an upper bound on the number of queries.

If the reply to a query q depends (only) on the replies to a set of queries, Q, we call
Q the set of relevant queries with respect to q.

2.4 Random Orders

Let [n] denote the set {1, . . . , n}.
A distribution D : {0, 1}n → R

≥0 is k-wise independent if, when D is restricted
to any index subset S ⊂ [n] of size at most k, the induced distribution over S is the
uniform distribution.

A random ordering Dr induces a probability distribution over permutations of [n].
It is said to ε-almost k-wise independent if for any subset S ⊂ [n] of size at most
k, the variation distance between the distribution induced by Dr on S and a uniform
permutation over S is at most ε. We use the following Theorem from [2].

Theorem 2 ([2]). Let n ≥ 2 be an integer and let 2 ≤ k ≤ n. Then there is a construc-
tion of 1

n2 -almost k-wise independent random ordering over [n] whose seed length is
O(k log2 n).

We provide a short, intuitive explanation of the construction. We can construct n k-wise
independent random variables Z = (z1, . . . , zn), using a seed of length k log n (see
[1]). We generate 4 logn independent copies of k-wise independent random variables,
Z1, . . . Z4 log n. For i ∈ [n], taking the i-th bit of each Zj , 1 ≤ j ≤ 4 logn makes
for a random variable r(i) ∈ {0, 1}4 log n, which can be expressed as an integer in
{0, 1, . . . , n4 − 1}. The order is induced by r (u comes before v in the order if r(u) <
r(v)). The probability that there exists u, v ∈ [n] such that r(u) = r(v) is at most 1/n2,
hence the ordering is 1/n2-almost k-wise independent.

3 Approximate Maximum Matching

We present a local computation approximation scheme for maximum matching: We
show an LCA that, for any ε > 0, computes a maximal matching which is a (1 − ε)-
approximation to the maximum matching.

Our main result is the following theorem:

Theorem 3. Let G = (V,E) be a graph of bounded degree d. Then there exists an
(O(log4 n), O(log3 n), 1/n) - LCA that, for every ε > 0, computes a maximal matching
which is a (1− ε)-approximation to the maximum matching.

Our algorithm is, in essence, an implementation of the abstract algorithm of Lotker
et al., [13]. Their algorithm, relies on several interesting results due to Hopcroft and
Karp [9]. First, we briefly recount some of these results, as they are essential for the
understanding of our algorithm.
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3.1 Distributed Maximal Matching

While the main result of Hopcroft and Karp [9] is an improved matching algorithm for
bipartite graphs, they show the following useful lemmas for general graphs. The first
lemma shows that if the current matching has augmenting paths of length at least �, then
using a maximal set of augmenting paths of length � will result in a matching for which
the shortest augmenting path is strictly longer than �. This gives a natural progression
for the algorithm.

Lemma 4. [9] LetG = (V,E) be an undirected graph, and letM be some matching in
G. If the shortest augmenting path with respect to M has length � and Φ is a maximal
set of independent augmenting paths of length �, the shortest augmenting path with
respect to M ⊕ Φ has length strictly greater than �.

The second lemma shows that if there are no short augmenting paths then the current
matching is approximately optimal.

Lemma 5. [9] Let G = (V,E) be an undirected graph. Let M be some matching in G,
and let M∗ be a maximum matching in G. If the shortest augmenting path with respect
to M has length 2k − 1 > 1 then |M | ≥ (1 − 1/k)|M∗|.
Lotker et al., [13] gave the following abstract approximation scheme for maximal match-
ing in the distributed setting.3 Start with an empty matching. In stage � = 1, 3, . . . , 2k−
1, add a maximal independent collection of augmenting paths of length �. For k =
�1/ε, by Lemma 5, we have that the matching M� is a (1 − ε)-approximation to the
maximum matching.

In order to find such a collection of augmenting paths of length �, we need to define
a conflict graph:

Definition 6. [13] Let G = (V,E) be an undirected graph, let M ⊆ E be a matching,
and let � > 0 be an integer. The �-conflict graph with respect to M in G, denoted
CM (�), is defined as follows. The nodes of CM (�) are all augmenting paths of length
�, with respect to M , and two nodes in CM (�) are connected by an edge if and only if
their corresponding augmenting paths intersect at a vertex of G.4

We present the abstract distributed algorithm of [13], AbstractDistributedMM.
Note that forM�, the minimal augmenting path is of length at least �+2. This follows

since Φ(M�−2) is a maximal independent set of augmenting paths of length �. When
we add Φ(M�−2) to M�−2, to get M�, by Lemma 4 all the remaining augmenting paths
are of length at least �+ 2 (recall that augmenting paths have odd lengths).

Lines 4 - 7 do the task of computing M� as follows: the conflict graph CM�−2
(�) is

constructed and an MIS, Φ(M�−2), is found in it. Φ(M�−2) is then used to augment
M�−2, to give M�.

3 This approach was first used by Hopcroft and Karp in [9]; however, they only applied it effi-
ciently in the bipartite setting.

4 Notice that the nodes of the conflict graph represent paths in G. Although it should be clear
from the context, in order to minimize confusion, we refer to a vertex in G by vertex, and to a
vertex in the conflict graph by node.
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Algorithm 1 - AbstractDistributedMM - Abstract distributed algorithm with input
G = (V,E) and ε > 0

1: M−1 ← ∅ � M−1 is the empty matching
2: k← �1/ε�
3: for �← 1, 3, . . . , 2k − 1, do
4: Construct the conflict graph CM�−2(�)
5: Let I be an MIS of CM�−2(�)
6: Let Φ(M�−2) be the union of augmenting paths corresponding to I
7: M� ← M�−2 ⊕ Φ(M�−2) � M� is matching at the end of phase �
8: end for
9: Output M� � M� is a (1− 1

k+1
)-approximate maximum matching

We would like to simulate this algorithm locally. Our main challenge is to simulate
Lines 4 - 7 without explicitly constructing the entire conflict graph CM�−2

(�). To do
this, we will simulate an on-line MIS algorithm.

3.2 Local Simulation of the On-Line Greedy MIS Algorithm

In the on-line setting, the vertices arrive in some unknown order, and GreedyMIS op-
erates as follows: Initialize the set I = ∅. When a vertex v arrives, GreedyMIS checks
whether any of v’s neighbors, N(v), is in I . If none of them are, v is added to I . Oth-
erwise, v is not in I . (The pseudocode for GreedyMIS can be found in the full version
of the paper.)

In order to simulate GreedyMIS locally, we first need to fix the order (of arrival)
of the vertices, π. If we know that each query depends on at most k previous queries,
we do not need to explicitly generate the order π on all the vertices (as this would take
at least linear time). By Theorem 2, we can produce a 1

n2 -almost-k-wise independent
random ordering on the edges, using a seed, s, of length O(k log2 n).

Technically, this is done as follows. Let r be a function r : (v, s)→ [cn4], for some
constant c.5 The vertex order π is determined as follows: vertex v appears before vertex
u in the order π if r(v, s) < r(u, s). Let G′ = (V ′, E′) be the subgraph of G induced
by the vertices V ′ ⊆ V ; we denote by π(G′, s) the partial order of π on V ′. Note that
we only need to store s in the memory: we can then compute, for any subset V ′, the
induced order of their arrival.

When simulating GreedyMIS on the conflict graphCM (�) = (VCM , ECM ), we only
need a subset of the nodes, V ′ ⊆ VCM . Therefore, there is no need to construct CM (�)
entirely; only the relevant subgraph need be constructed. This is the main observation
which allows us to bound the space and time required by our algorithm.

5 Alternately, we sometimes view r as a function r : (v, s) → [0, 1]: Let r′ be a function
r′ : (v, s) → [cn4], and let f : [cn4] → [0, 1] be a function that maps each x ∈ [cn4] − {1}
uniformly at random to the interval ((x− 1)/cn4, x/cn4], and f maps 1 uniformly at random
to the interval [0, 1/cn4]. Then set r(v, s) = f(r′(v, s)).
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3.3 LCA for Maximal Matching

We present our algorithm for maximal matching - LocalMM, and analyze it. (The pseu-
docode for LocalMM can be found in the full version of the paper.) In contrast to the
distributed algorithm, which runs iteratively, LocalMM is recursive in nature. In each
iteration of AbstractDistributedMM, a maximal matching M�, is computed, where
M� has no augmenting path of length less than �. We call each such iteration a phase,
and there are a total of k phases: 1, 3, . . .2k − 1. To find out whether an edge e ∈ E is
in M�, we recursively compute whether it is in M�−2 and whether it is in Φ(M�−2), a
maximal set of augmenting paths of length �. We use the following simple observation
to determine whether e ∈M�. The observation follows since M� ←M�−2⊕Φ(M�−2).

Observation 7. e ∈M� if and only if it is in either in M�−2 or in Φ(M�−2), but not in
both.

Recall that LocalMM receives an edge e ∈ E as a query, and outputs “yes/no”. To
determine whether e ∈M2k−1, it therefore suffices to determine, for � = 1, 3, . . . , 2k−
3, whether e ∈M� and whether e ∈ Φ(M�).

We will outline our algorithm by tracking a single query. (The initialization param-
eters will be explained at the end.) When queried on an edge e, LocalMM calls the
procedure ISINMATCHING with e and the number of phases k. For clarity, we some-
times omit some of the parameters from the descriptions of the procedures.

Procedure ISINMATCHING determines whether an edge e in in the matching M�. To
determine whether e ∈M�, ISINMATCHING recursively checks whether e ∈M�−2, by
calling ISINMATCHING(�− 2), and whether e is in some path in the MIS Φ(M�−2) of
CM�−2

(�). This is done by generating all paths p of length � that include e, and calling
ISPATHINMIS(p) on each. ISPATHINMIS(p) checks whether p is an augmenting path,
and if so, whether it in the independent set of augmenting paths. By Observation 7, we
can compute whether e is in M� given the output of the calls.

Procedure ISPATHINMIS receives a path p and returns whether the path is in the MIS
of augmenting paths of length �. The procedure first computes all the relevant aug-
menting paths (relative to p) using RELEVANTPATHS. Given the set of relevant paths
(represented by nodes) and the intersection between them (represented by edges) we
simulate GreedyMIS on this subgraph. The resulting independent set is a set of inde-
pendent augmenting paths. We then just need to check if the path p is in that set.

Procedure RELEVANTPATHS receives a path p and returns all the relevant augmenting
paths relative to p. The procedure returns the subgraph of CM�−2

(�), C = (VC , EC),
which includes p and all the relevant nodes. These are exactly the nodes needed for the
simulation of GreedyMIS, given the order induced by seed s�. The set of augmenting
paths VC is constructed iteratively, by adding an augmenting path q if it intersects some
path q′ ∈ VC and arrives before it (i.e., r(q, s�) < r(q′, s�)). In order to determine
whether to add path q to VC , we need first to test if q is indeed a valid augmenting path,
which is done using ISANAUGMENTINGPATH.
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Procedure ISANAUGMENTINGPATH tests if a given path p is an augmenting path. It is
based on the following observation.

Observation 8. For any graph G = (V,E), let M be a matching in G, and let p =
e1, e2, . . . , e� be a path in G. Path p is an augmenting path with respect to M if and
only if all odd numbered edges are not in M , all even numbered edges are in M , and
both the vertices at the ends of p are free.

Given a path p of length �, to determine whether p ∈ CM�−2
(�), ISANAUGMENT-

INGPATH(�) determines, for each edge in the path, whether it is in M�−2, by calling
ISINMATCHING(� − 2). It also checks whether the end vertices are free, by calling
Procedure ISFREE(�), which checks, for each vertex, if any of its adjacent edges are in
M�−2. From Observation 8, ISANAUGMENTINGPATH(�) correctly determines whether
p is an augmenting with respect to M�−2.

We end by describing the initialization procedure INITIALIZE, which is run only
once, during the first query. The procedure sets the number of phases to �1/ε. It is im-
portant to set a different seed s� for each phase �, since the conflict graphs are unrelated
(and even the size of the description of each node, a path of length �, is different). The
lengths of the k seeds, s1, s3, . . . , s2k−1, determine our memory requirement.

3.4 Bounding the Complexity

In this section we prove Theorem 3. We start with the following observation:

Observation 9. In any graph G = (V,E) with bounded degree d, each edge e ∈ E
can be part of at most �(d − 1)�−1 paths of length �. Furthermore, given e, it takes at
most O(�(d − 1)�−1) time to find all such paths.

Proof. Consider a path p = (e1, e2, . . . , e�) of length �. If p includes the edge e, then e
can be in one of the � positions. Given that ei = e, there are at most d − 1 possibilities
for ei+1 and for ei−1, which implies at most (d − 1)�−1 possibilities to complete the
path to be of length �. ��
Observation 9 yields the following corollary.

Corollary 10. The �-conflict graph with respect to any matching M in G = (V,E),
CM (�), consists of at most �(d − 1)�−1|E| = O(|V |) nodes, and has maximal degree
at most d(�+ 1)�(d− 1)�−1.

Proof. (For the degree bound.) Each path has length �, and therefore has �+1 vertices.
Each vertex has degree at most d, which implies d(�+1) edges. Each edge is in at most
�(d− 1)�−1 paths. ��
Our main task will be to compute a bound on the number of recursive calls. First, let us
summarize a recursive call. The only procedure whose runtime depends on the order in-
duced by s� is RELEVANTPATHS, which depends on the number of vertices VC (which
is a random variable depending of the seed s�). To simplify the notation we define the
random variableX� = d(�+1)�(d−1)�−1|VC |. Technically, GreedyMIS also depends
on VC , but its running time is dominated by the running time of RELEVANTPATHS.
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Calling procedure Called Procedures
ISINMATCHING(�) 1× ISINMATCHING(�− 2) and

�(d− 1)�−1× ISPATHINMIS(�)
ISPATHINMIS(�) 1× RELEVANTPATHS(�) and 1× GreedyMIS

RELEVANTPATHS(�) X�× ISANAUGMENTINGPATH(�)
ISANAUGMENTINGPATH(�) �× ISINMATCHING(�− 2) and 2× ISFREE(�)

ISFREE(�) (d− 1)× ISINMATCHING(�− 2)

From the table, it is easy to deduce the following proposition.

Proposition 11. ISANAUGMENTINGPATH(�) generates at most � + 2(d − 1) calls to
ISINMATCHING(� − 2), and therefore at most (� + 2d − 2) · �(d − 1)�−1 calls to
ISPATHINMIS(�− 2).

We would like to boundX�, the number of calls to ISANAUGMENTINGPATH(�) during
a single execution of ISPATHINMIS(G, p, �, S). We require the following theorem, the
proof of which appears in Section 4.

Theorem 12. For any infinite query tree T with bounded degree d, there exists a con-
stant c, which depends only on d, such that for any large enough N > 0,

Pr[|T | > N ] ≤ e−cN .
As a query tree T of bounded degree D = d(� + 1)�(d − 1)�−1 is an upper bound to
X� (by Corollary 10, D is an upper bound on the degree of CM�−2

(�)), we have the
following corollary to Theorem 12.

Corollary 13. There exists an absolute constant c, which depends only on d, such that
for any large enoughN > 0,

Pr[X� > N ] ≤ e−cN .
Denote by f� the number of calls to ISANAUGMENTINGPATH(�) during one execution
of LocalMM. Let f =

∑2k−1
�=1 f�.6 The base cases of the recursive calls LocalMM

makes are ISANAUGMENTINGPATH(1) (which always returns TRUE). As the execu-
tion of each procedure of LocalMM results in at least one call to ISANAUGMENTING-
PATH, f (multiplied by some small constant) is an upper bound to the total number of
computations made by LocalMM.

We state the following proposition, the proof of which appears in Section 4.

Proposition 14 Let Wi be a random variable. Let z1, z2, . . . zWi be random variables,
(some possibly equal to 0 with probability 1). Assume that there exist constants c and μ
such that for all 1 ≤ j ≤ Wi, Pr[zj ≥ μN ] ≤ e−cN , for all N > 0. Then there exist
constants μi and c′i, which depend only on d, such that for any qi > 0,

Pr[

Wi∑

j=1

zj ≥ μiqi|Wi ≤ qi] ≤ e−c′iqi .

Using Proposition 14, we prove the following:

6 For all even �, let f� = 0.
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Proposition 15. For every 1 ≤ � ≤ 2k − 1, there exist constants μ� and c�, which
depend only on d and ε, such that for any large enough N > 0

Pr[f� > μ�N ] ≤ e−c�N .

Proof. The proof is by induction. For the base of the induction, we have, from Corollary
13, that there exists an absolute constant c2k−1, which depends only on d, such that for
any large enough N > 0, Pr[X2k−1 > N ] ≤ e−c2k−1N . Assume that the proposition
holds for � = 2k − 1, 2k − 3, . . . �, and we show that it holds for �− 2.

Let b� = (� + 2d− 2) · �(d− 1)�−1. From Proposition 11, we have that each call to
ISANAUGMENTINGPATH(�) generates at most b� calls to ISPATHINMIS(� − 2), and
hence b� ·X�−2 calls to ISANAUGMENTINGPATH(�− 2). From Corollary 13, we have
that there exists an absolute constant c, which depends only on d, such that for any large
enoughN > 0,

Pr[X�−2 > N ] ≤ e−cN .

Setting W� = b�f�, f�−2 =
∑Wi

j=1 zj , qi = b�μ�y�, and μi = μ�−2/b�μ�, and letting
c′i = c′�/b�μ� in Proposition 14 implies the following:

Pr[f�−2 > μ�−2y�|f� ≤ μ�y�] ≤ e−c′�y� . (1)

We have

Pr[f�−2 > μ�−2N ] =Pr[f�−2 > μ�−2N |f� ≤ μ�N ] · Pr[f� ≤ μ�N ]

+ Pr[f�−2 > μ�−2N |f� > μ�N ] · Pr[f� > μ�N ]

≤Pr[f�−2 > μ�−2N |f� ≤ μ�N ] + Pr[f� > μ�N ]

≤e−c′�N + e−c�N (2)

=e−c�−2N ,

where Inequality 2 stems from Inequality 1 and the induction hypothesis. ��

Taking a union bound over all k levels immediately gives

Lemma 16. There exists a constant c, which depends only on d and ε, such that

Pr[f > c logn] ≤ 1/n2.

Proof (Proof of Theorem 3). Using Lemma 16, and taking a union bound over all possi-
ble queried edges gives us that with probability at least 1− 1/n, LocalMM will require
at most O(log n) queries. Therefore, for each execution of LocalMM, we require at
most O(log n)-independence for each conflict graph, and therefore, from Theorem 2,
we require �1/ε seeds of length O(log3n), which upper bounds the space required by
the algorithm. The time required is upper bound by the time required to compute r(p)
for all the required nodes in the conflict graphs, which is O(log4 n). ��
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4 Combinatorial Proofs

We want to bound the total number of queries required by Algorithm LocalMM.
Let T be a d-regular query tree. As in [2,14], we partition the interval [0,1] into

L ≥ d + 1 sub-intervals: Ii = (1 − i
L+1 , 1 − i−1

L+1 ], for i = 1, 2, · · · , L and IL+1 =

[0, 1
L+1 ]. We refer to interval Ii as level i. A vertex v ∈ T is said to be on level i if

r(v) ∈ Ii. Assume the worst case, that for the root of the tree, v0, r(v0) = 1. The
vertices on level 1 form a tree T1 rooted at v0. Denote the number of (sub)trees on
level i by ti. The vertices on level 2 will form a forest of subtrees {T (1)

2 , · · · , T (t2)
2 },

where the total number of subtrees is at most the sum of the number of children of
all the vertices in T1. Similarly, the vertices on level i > 1 form a forest of subtrees
Fi = {T (1)

i , · · ·T (ti)
i }. Note that all these subtrees {T (j)

i } are generated independently
by the same stochastic process, as the ranks of all of the nodes in T are i.i.d. random

variables. Denote fi = |Fi|, and let Yi =
i∑

j=1

fj . Note that Fi+1 can consist of at most

Yi subtrees.
We prove the following theorem.

Theorem 12. For any infinite query tree T with bounded degree d, there exists a con-
stant c, which depends only on d, such that for any large enough N > 0,

Pr[|T | ≥ N ] ≤ e−cN .
We require the following Lemma from [14].

Lemma 17 ([14]). Let L ≥ d + 1 be a fixed integer and let T be the d-regular infinite
query tree. Then for any 1 ≤ i ≤ L and 1 ≤ j ≤ ti, there is an absolute constant c,
which depends only on d, such that for all N > 0,

Pr[|T (j)
i | ≥ N ] ≤ e−cN .

We first prove the following proposition:

Proposition 18. For any infinite query tree T with bounded degree d, there exist con-
stants μ1 and c1, which depend only on d, such that for any 1 ≤ i ≤ L − 1, and any
yi > 0,

Pr[fi+1 ≥ μ1yi|Yi = yi] ≤ e−c1yi .
Proof. Fix Yi = yi. Let {z1, z2, . . . zyi} be integers such that ∀1 ≤ i ≤ yi, zi ≥ 0 and

let xi =
yi∑

i=1

zi. By Lemma 17, the probability that Fi+1 consists exactly of trees of size

(z1, z2, . . . zyi) is at most
yi∏

i=1

e−czi = e−cxi . There are
(
xi+yi
yi

)
vectors that can realize

xi.7 We want to bound Pr[fi+1 = μyi|Yi = yi] for some large enough constant μ > 0.
Letting xi = μyi, we bound it as follows:

7 This can be thought of as yi separators of xi elements.
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Pr[fi+1 = xi|Yi = yi] ≤
(
xi + yi
yi

)

e−xi

≤
(
e · (xi + yi)

yi

)yi
e−cxi

=

(
e · (μyi + yi)

yi

)yi
e−cμyi

= (e · (1 + μ))yie−cμyi

= eyi(−cμ+ln(1+μ)+1)

≤ e−c′μyi ,

for some constant c′ > 0. It follows that

Pr[fi+1 ≥ μyi|Yi = yi] ≤
∞∑

k=μyi

e−c
′k

≤ e−c1yi ,
for some constant c1 > 0. ��
Proposition 18 immediately implies the following corollary.

Corollary 19. For any infinite query tree T with bounded degree d, there exist con-
stants μ and c, which depend only on d, such that for any 1 ≤ i ≤ L − 1, and any
yi,

Pr[fi+1 ≥ μyi|Yi ≤ yi] ≤ e−cyi .
Corollary 19, which is about query trees, can be restated as follows: let Wi = Yi,
qi = yi and

∑Wi

i=1 zi = fi+1. Furthermore, let c′i = c1 and μ′i = μ1 for all i. This
notation yields the following proposition, which is unrelated to query trees, and which
we used in Section 3:

Proposition 14 Let Wi be a random variable. Let z1, z2, . . . zWi be random variables
(some possibly equal to 0 with probability 1). Assume that there exist constants c and μ
such that for all 1 ≤ j ≤ Wi, Pr[zj ≥ μN ] ≤ e−cN , for all N > 0. Then there exist
constants μi and c′i, which depend only on d, such that for any qi > 0,

Pr[

Wi∑

j=1

zj ≥ μiqi|Wi ≤ qi] ≤ e−c′iqi .

We need one more proposition before we can prove Theorem 12. Notice that f1 = |T1|.

Proposition 20. For any infinite query tree T with bounded degree d, for any 1 ≤ i ≤
L, there exist constants μi and ci, which depend only on d, such that for and anyN > 0,

Pr[fi ≥ μiN ] ≤ e−ciN .
The proof is similar to the proof of Proposition 15. We include it for completeness.



272 Y. Mansour and S. Vardi

Proof. The proof is by induction on the levels 1 ≤ i ≤ L, of T .
For the base of the induction, i = 1, by Lemma 17, we have that there exist some

constants μ1 and c1 such that

Pr[f1 ≥ μ1N ] ≤ e−c1N ,

as f1 = |T1|.
For the inductive step, we assume that the proposition holds for levels 1, 2, . . . , i−1,

and show that it holds for level i.

Pr[fi ≥ μiN ] =Pr[fi ≥ μiN |Yi−1 < μi−1N ] · Pr[Yi−1 < μi−1N ]

+ Pr[fi ≥ μiN |Yi−1 ≥ μi−1N ] · Pr[Yi−1 ≥ μi−1]
≤Pr[fi ≥ μiN |Yi−1 < μi−1N ] + Pr[Yi−1 ≥ μi−1]
≤e−cN + e−ci−1N (3)

≤e−ciN ,

for some constant ci. Inequality 3 stems from Corollary 19 and the inductive hypothesis.
��

We are now ready to prove Theorem 12.

Proof (Proof of Theorem 12). We would like to bound Pr[|T | =
L∑

i=1

fi ≥ μN ]. From

Proposition 20, we have that for 1 ≤ i ≤ L,

Pr[fi ≥ μiN ] ≤ e−ciN .

A union bound on the L levels gives the required result. ��
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Abstract. We develop linear sketches for estimating the Earth-Mover
distance between two point sets, i.e., the cost of the minimum weight
matching between the points according to some metric. While Euclidean
distance and Edit distance are natural measures for vectors and strings
respectively, Earth-Mover distance is a well-studied measure that is nat-
ural in the context of visual or metric data. Our work considers the case
where the points are located at the nodes of an implicit graph and de-
fine the distance between two points as the length of the shortest path
between these points. We first improve and simplify an existing result
by Brody et al. [4] for the case where the graph is a cycle. We then gen-
eralize our results to arbitrary graph metrics. Our approach is to recast
the problem of estimating Earth-Mover distance in terms of an �1 regres-
sion problem. The resulting linear sketches also yield space-efficient data
stream algorithms in the usual way.

1 Introduction

Given two multi-sets A,B ⊆ X where |A| = |B| = k and a metric d on X , the
Earth-Mover Distance (EMD) between A and B is defined as the minimum cost
of a matching between A and B, i.e.,

EMDd(A,B) = min
π:A→B

∑

a∈A
d(a, π(a))

where π ranges over all bijective mappings between A and B. Earth-Mover dis-
tance is a natural and well-studied notion of the difference between two point
sets. It was initially proposed in the context of image retrieval and has been
shown to correspond closely to the perceptual difference between two images [14].
While Euclidean distance and Edit distance are natural measures of dissimilarity
for vectors and strings respectively, EMD is perhaps the most natural measure
for metric and visual data.

Linear sketching is a popular and powerful technique for processing large data
sets. See Cormode et al. [7] for a survey. The basic idea is to take random linear
projections of the data set and then post-process these projections in order to
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P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 274–286, 2013.
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evaluate properties of the original data. The main parameters of the sketch
are the size, or dimension, of the projection and the time required to perform
the post-processing. Important applications of sketching include processing data
streams or distributed data. A significant fraction of the work on linear sketches
has focused on the problem of distance estimation and estimating the Earth-
Mover distance is a long-standing open question [9, 12] that has remained open
(in the case where the point sets lie on a Δ×Δ grid) despite a substantial body
of work dedicated to the problem [3,4,8,10,17]. The best known results achieve a
logarithmic approximation with sketches of poly-logarithmic size and an O(1/ε)
approximation with sketches of Δε size. The most relevant work to this paper is
a recent paper by Brody et al. [4] in which they consider the more restricted case
where X corresponds to the nodes of a cycle and d is the shortest-path metric
on this cycle (see also Cabrelli and Molter [5] for an optimal solution in the
offline, non-streaming case). In this case, they show that (1 + ε)-approximation
is possible with sketches of poly-logarithmic size.

1.1 Our Techniques and Results

In this paper, we consider d to be the shortest-path metric in an arbitrary graph
G = (V,E) on n = |V | nodes with m = |E| edges. Note that the graph structure
is assumed to be known in advance1 and the input is point sets A and B of size
k. Our results are as follows.

1. Cycles: O(ε−2 polylognk)-size sketches for approximating EMD(A,B) up to
a (1+ε) factor with high probability. This improves over the existing sketch of
Brody et al. which used sketches of size O(ε−3 polylognk). We then show how
to ensure that post-processing the sketch can be performed in O(polylog n)
time. Our analysis also has the advantage of being significantly simpler. See
Section 3.

2. Trees: O(ε−2 polylognk)-size sketches for approximating EMD(A,B) up to
a (1+ ε) factor with high probability. By combining recent results on range-
summable random variables by Tirthapura and Woodruff [16] with a natural
path-decomposition, we show how such a sketch can be applied in the data-
stream setting with O(polylog n) update time whereas, even in the cycle
case, the existing sketch has Ω(n) update time. See Section 4.

3. Arbitrary Graphs: O(ε−2 · t · polylognk)-size sketches for approximating
EMD(A,B) up to a (1+ε) factor with high probability where t = m−n+1 is
the number of edges that need to be removed from G such that the resulting
graph is acyclic. This generalizes our result on cycles in which t = 1. While
our results hold for arbitrary t, our results are most interesting in the case
where there are relatively few cycles and hence t is moderate in size. See
Section 5.

1 This is in contrast to recent work in graph sketching [1,2] where the goal is to sketch
the actual graph. Note that the space used in the algorithms we present will be
sufficient to maintain an explicit representation of the graph structure.
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Technical Approach. The general approach is follows. We define vectors x, y ∈
R
|E| corresponding to the two multi-sets A and B. We then relate EMD(A,B)

to an �1-regression problem involving x, y, and a set of vectors defined by the
structure of the underlying graph. To achieve our results, we first sketch the
vectors, i.e., construct random projections of these vectors, and then perform
the �1-regression on the sketched vectors rather than manipulating the original
vectors explicitly.

2 Preliminaries

Notation. We use [n] to denote the set {1, 2, . . . , n}. We say an algorithm
is an (ε, δ)-approximation for a quantity Q if the value returned Q̃ satisfies

P

[
|Q− Q̃| < εQ

]
≥ 1− δ. Given a tree T = (V,E) and u, v ∈ V we define,

PT (u, v) = {e ∈ E : e on the path between nodes u and v} .
We denote the �1-norm of a vector x by ‖x‖1 =

∑
i |xi|.

Sketches for �1-norm estimation. �1-norm estimation is one of the canonical
sketching and data stream problems. We will make extensive use of the following
result due to Kane et al. [11].

Theorem 1 (�1 Sketching [11]). There exists a distribution ν over linear maps
from R

n → R
q where q = O(ε−2 logn log δ−1) and a “post-processing” function

f : Rq → R such that for any x ∈ R
n with polynomially-bounded entries,

Pr
M∼ν

[|‖x‖1 − f(Mx)| ≤ ε‖x‖1] ≥ 1− δ .

Note that it immediately follows by rescaling δ and applying the union bound,
that if we increase q to O(ε−2 logn log(tδ−1)) we ensure that for any t vectors
X = {x1, . . . , xt},

Pr
M∼ν

[∀x ∈ X ; |‖x‖1 − f(Mx)| ≤ ε‖x‖1] ≥ 1− δ .

In particular, if X consists of all linear combinations of some set {y1, . . . , yr}
where the linear coefficients are from the set {−k,−k + 1, . . . , k − 1, k} then
t = (2k + 1)r and we can estimate the �1 norm of any vector x ∈ {x1, . . . , xt}
from O(rε−2 log n log(kδ−1))-dimensional sketches My1,My2, . . . ,Myr since

M(
∑

i∈[r]
λiyi) =

∑

i∈[r]
λiMyi .

One-Dimensional EMD. We next describe an important folklore result for sketch-
ing earth-mover distance in one dimension. For the sake of future sections, it will
be helpful to describe this result in terms of graph distances when the graph is
a path. Let G = (V,E) be a path on n nodes, i.e., V = {1, 2, . . . , n} and edges
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E = {e1, e2, . . . , en−1} where ei = {i, i + 1}. Suppose A,B ⊂ V and define the
distance between i ∈ A and j ∈ B to be shortest path distance d(i, j) = |i− j|.

We can relate EMD(A,B) to a norm estimation problem as follows. Define
the vectors x, y ∈ R

n−1 where:

∀i ∈ [n− 1] ; xi = |{a ∈ A : i ≥ a}| and yi = |{b ∈ B : i ≥ b}| .

Then the following theorem establishes that EMD(A,B) equals ‖x− y‖1.
Theorem 2 (Folklore). EMD(A,B) = ‖x− y‖1.
We will actually prove a more general result in Lemma 5 from which the above
theorem follows. For intuition, suppose A = {i} and B = {j} and i < j < n.
Then, x = (0, . . . , 0, 1, . . . , 1) where the first “1” is in the i-th position and
y = (0, . . . , 0, 1, . . . , 1) where the first “1” is in the j-th position. Therefore ‖x‖1
and ‖y‖1 correspond to the distances that would be covered moving points i and
j to node n. However, y − x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where (y − x)k = 1 iff
i ≤ k < j and so ‖y− x‖1 = |j − i|. Essentially, the effect of moving both points
i and j to n cancels out along edges on which both points are being moved. The
following example illustrates that the theorem applies in a less trivial case.

Example 1. Suppose A = {2, 3, 10} and B = {3, 4, 8} and note that EMD(A,B)
= 4. Then

x = (0, 1, 2, 2, 2, 2, 2, 2, 2) and y = (0, 0, 1, 2, 2, 2, 2, 3, 3)

and ‖x− y‖1 = 4 as required.

3 Cycles

Consider a cycle on n nodes {1, 2, . . . , n} and edges e1, e2, . . . , en where ei =
{i, i + 1} for i ∈ [n − 1] and en = {n, 1}. The basic idea for solving EMD on
the cycle is to reduce it to the one-dimensional, or path metric, case by simply
ignoring the last edge en. This has the effect of changing the distance between
nodes i and j from

d(i, j) = min(|i − j|, |i− n|+ 1 + |1− j|, |i− 1|+ 1 + |n− j|)

to a new distance

d′(i, j) = |i− j| .
Depending on the point sets, A and B, this can change the earth-mover distance
significantly since two points that were previously close may now be far apart.
For example, if A = {n} and B = {1} then the earth-mover distance increases
from EMDd(A,B) = 1 to EMDd′(A,B) = n− 1.

To rectify this issue, we will effectively make a series of guesses {−k,−k +
1, . . . , k − 1, k} for how many pairs of points will be paired using the edge en.
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(a) Original Cycle Instance where
EMDd(A,B) = 4.
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(b) Linear Instance with λ = 1 where
1 + EMDd′(A+ Cλ, B + C−λ) = 14.
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2 8

4

(c) Linear Instance with λ = −1 where
1 + EMDd′(A+ Cλ, B + C−λ) = 4.

Fig. 1. Reducing Cyclic EMD to Linear EMD. Points in A are denoted by circles and
points in B are denoted by stars. Dotted lines indicate a minimum cost matching.

Lemma 1. For λ ∈ {−k,−k+1, . . . , k−1, k}, let Cλ be the multi-set consisting
of λ copies of “1” if λ > 0 and |λ| copies of “n” if λ < 0. Then,

EMDd(A,B) ≤ |λ|+ EMDd′(A+ Cλ, B + C−λ)

with equality for some λ ∈ {−k,−k + 1, . . . , k − 1, k}.
Proof. Consider a bijection π between A+Cλ and B +C−λ. We first will show
that π induces a bijection σ between A and B such that

∑

a∈A
d(a, σ(a)) ≤ |λ|+

∑

a∈A+Cλ

d′(a, π(a)) , (1)
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and this establishes the first part of the lemma.
It will be convenient to enumerate the elements of Cλ = {c1, c2, . . . , cλ} and

C−λ = {d1, d2, . . . , dλ} such that we may assume that π(ci) = dj implies i = j.
We then define σ as follows. If π(a) ∈ B for a ∈ A then define σ(a) = π(a) and
hence

d(a, σ(a)) = d′(a, π(a)) . (2)

If π(a) = di for some a ∈ A and di ∈ C−λ then define σ(a) = π(ci). Hence,

d(a, σ(a)) ≤ d′(a, di) + 1 + d′(ci, π(ci)) .

Note that there are at most |λ| elements a ∈ A such that π(a) ∈ C−λ and
together with Eq. 2 this establishes Eq. 1.

To prove that there exists λ such that EMDd(A,B) = |λ|+EMDd′(A+Cλ, B+
C−λ) consider the bijection σ = argminσ

∑
a∈A d(a, σ(a)). Suppose there are λ1

elements a ∈ A such that the shortest path from a to σ(a) visits n then 1.
Similarly, suppose there are λ2 elements a ∈ A such that the shortest path
from a to σ(a) visits 1 then n. Note that at most one of λ1 and λ2 is non-
zero since σ is the minimal cost bijection. Then setting λ = λ1 − λ2 ensures
EMDd(a, σ(a)) = |λ|+ EMDd′(A+ Cλ, B + C−λ) as required.

3.1 Sketch Details

To construct the sketch we first define the vectors x, y ∈ R
n where for i ∈ [n−1]

xi = |{a ∈ A : i ≥ a}| and yi = |{b ∈ B : i ≥ b}| .
and xn = yn = 0. Define z = x− y and let c = (1, 1, . . . , 1, 1) ∈ R

n.

Lemma 2. min−k≤λ≤k ‖z + λc‖1 = EMD(A,B).

Proof. Let z[n−1] and c[n−1] be the vectors corresponding to the first n − 1
elements of z and c respectively and note that

‖z + λc‖1 = |λ|+ ‖z[n−1] + λc[n−1]‖1 .
The proof then follows from Theorem 2 and Lemma 1.

We define the function f(λ) = ‖z + λc‖1. From the above lemma, it suffices to
find minλ f(λ). From Theorem 1 (and the surrounding discussion), it is possible
to compute estimates {f̃λ}λ∈{−k,...,k} from a O(ε−2 logn log(kδ−1))-dimensional
sketch of z such that

P

[
∀λ ∈ {−k, . . . , k} : |f̃λ − f(λ)| ≤ εf(λ)

]
≥ 1− δ .

Hence, if we return min f̃λ then we have an (ε, δ)-approximation for EMD(A,B).
However, rather than evaluating every f̃λ to find the minimum, in the next
section we next show that it is possible to find minλ∈{−k,...,k} f̃λ while only
evaluating O(log k) of the terms.
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3.2 Improved Post-processing

The main observation is that since f(λ) =
∑

i |zi+λci| is a sum of convex func-
tions, f(λ) itself is convex and can therefore be minimized by using something
like a binary search.

Lemma 3. f(λ) = ‖z + λc‖1 is convex.

However, although f(λ) is convex, the errors in our estimates f̃λ of f(λ) may
violate the convexity property. To accommodate this we perform a quaternary
search that includes tolerances for these errors. See Algorithm 1.

Algorithm 1. Approximate Quaternary Search

(l, u)← (−k, k)
while l �= u do
(a, b, c)← (⌊

3l+u
4

⌋
,
⌊
2l+2u

4

⌋
,
⌊
l+3u
4

⌋)

if max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) <
1+ε
1−ε or f̃b = max(f̃a, f̃b, f̃c) then

return f̃b
else

(l, u)←
{
(a, u) if f̃a = max(f̃a, f̃b, f̃c)

(l, c) if f̃c = max(f̃a, f̃b, f̃c)

end if
end while
return f̃l

Lemma 4. Algorithm 1 returns a value that is within a factor 1 ± O(ε) of
minλ f(λ).

Proof. Let λ∗ = argminλ∈{−k,...,k} f(λ). We first prove the invariant that l and
u always satisfy l ≤ λ∗ ≤ u. Note that it is true initially since l = −k and
u = k. Suppose it is true at a given iteration, then (by symmetry) it suffices to
show that if max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) ≥ 1+ε

1−ε and f̃a = max(f̃a, f̃b, f̃c) then
a ≤ λ∗. Then,

f(a)

min(f(b), f(c))
≥ f̃a/(1 + ε)

min(f̃b/(1− ε), f̃c/(1− ε))
=

1− ε
1 + ε

· max(f̃a, f̃b, f̃c)

min(f̃a, f̃b, f̃c)
≥ 1 .

and hence f(a) ≥ min(f(b), f(c)). By the convexity of f we deduce that a ≤ λ∗
as required.

It remains to show that when the algorithm terminates, the return value is
sufficiently accurate.
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Case 1: If l = u then
f̃l = (1± ε)f(l) = (1± ε)f(λ∗) .

Case 2: Suppose that max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) <
1+ε
1−ε and therefore

max(f(a), f(b), f(c))

min(f(a), f(b), f(c))
<

(
1 + ε

1− ε
)2

.

By symmetry, assume that λ∗ ≤ b. Then, by the convexity of f we have:

f(λ∗) ≥ f(b)− 1/2 · f(c)− f(b)
1/4

= f(b)(3− 2f(c)/f(b)) ≥ (1 −O(ε))f̃b .

Case 3: Suppose that f̃b = max(f̃a, f̃b, f̃c), and assume by symmetry λ∗ ≤ b.
Then

(1 + ε)2f(b) ≥ (1 + ε)f̃b ≥ (1 + ε)f̃c ≥ f(c)
which gives us that the difference between f(c) and f(b) is at most (2ε +
ε2)f(b). By convexity, the difference between f(b) and f(λ∗) is at most twice
this, since λ∗ is at most twice as far from b as c is, so

f(λ∗) ≥ f(b)− 2(2ε+ ε2)f(b) = (1−O(ε))f(b) .

4 Trees

In this section, we generalize the one-dimensional case discussed in Section 2
to trees. Let T = (V,E) be a tree on n nodes. Suppose A,B ⊆ V where for
a ∈ A, b ∈ B, d(a, b) is the length of the unique path between a and b.

To relate EMDd with the tree metric to �1 norms we first pick an arbitrary
root r of T . Now define the vectors x, y ∈ R

E where

xe = |{a ∈ A : e ∈ PT (a, r)}| and ye = |{b ∈ B : e ∈ PT (b, r)}| .
and define z = x− y. Recall that PT (u, v) is the set of edges on the unique path
in T between u and v. The following lemma generalizes Theorem 2 (the “root”
in the path case was implicitly chosen to be node n) and will play an important
role in the next section.

Lemma 5. ‖z‖1 = EMDd(A,B).

Proof. For each edge e = (u, v) ∈ T where u is a child of v, define the value

we =
∣
∣|A ∩ Vu| − |B ∩ Vu|

∣
∣

where Vu is the set of nodes of the subtree rooted at u. Then EMDd(A,B) =∑
e∈E we since in the optimal bijection, either all points in A∩Vu will be mapped

to elements in B∩Vu or vice versa and hence the edge e appears in exactly ||A∩
Vu|− |B∩Vu|| of the shortest paths between matched points. But we = |xe− ye|
since e ∈ PT (v, r) iff v ∈ Vu. Hence, EMD(A,B) =

∑
e∈E we =

∑
e∈E |xe−ye| =

‖z‖1 . as required.
Therefore, appealing to the �1 sketch result in Theorem 1, it immediately follows
that there is an O(ε−2 logn log δ−1)-dimensional sketch that returns an (ε, δ)
approximation for EMDd(A,B) when d is a tree metric.
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4.1 Improved Update Time

A naive implementation of the above algorithm requires Ω(n) update time since
every update requires updating as many as n− 1 entries of the vector. However,
this can be reduced to O(polylog n) time using the range-efficient �1 sketching
algorithm of Tirthapura and Woodruff [16]. This allows contiguous segments of
the vector z to be updated in O(polylog n) time rather than O(w polylogn) time
where w is the length of the segment. Hence, if we can ensure that any update
of z involves updating O(log n) contiguous segments we enable any update to
be performed in O(polylogn) time. To do this, we will use the following path
decomposition of the tree.

Lemma 6. For any tree T = (V,E) on n nodes with � leaves and root r, it is
possible to decompose E into � paths P1, . . . , P� such that for any u ∈ V , PT (u, r)
intersects at most O(log �) paths.

Proof. We define the segments P1, . . . , P� as follows. Start a segment for each
leaf consisting of the edge incident on it, and associate a value of 1 with the
segment. Extend these segments in the direction of the root until each reaches a
node of degree ≥ 3. At each such node, we continue the segment with the highest
value (ties broken arbitrarily) but add the sum of the values of the concluded
segments to the value of the continued segment. Note that this value is now at
least twice the value of any of the segments that were concluded. We continue
in this manner until we reach the root. In the end, each edge will belong to
exactly one segment. Note that the path from an arbitrary node u ∈ V to the
root can intersect with at most log � of the resulting segments because the value
of successive intersecting segments at least doubles and the maximum value is �.

Then, if we let the first |P1| elements of z correspond to P1, the next |P2| elements
correspond to P2, etc. we ensure that when we add (or subtract) 1 to each entry
corresponding to PT (u, r) for some u, this involves only O(log n) updates of
contiguous intervals.

5 Arbitrary Graphs

In this final section, we generalize all our previous results and design a sketch
for earth-mover distance for arbitrary graph metrics. Let G = (V,E) be a graph
on n nodes. Define a metric d where for a, b ∈ V , d(a, b) is the length of the
shortest path between a and b in G.

The approach to estimating EMDd(A,B) is to reduce to the tree-metric case
solved in the previous section. This naturally extends the approach in Section
3 where we reduced the cycle case to the path-metric case. Specifically, let T =
(V,ET ) be an arbitrary spanning tree and let F = E \ ET . For example, see
Figure 2 where ET = {e1, e2, e3, e4} and F = {f1, f2}. The tree T defines a
metric d′ where for a, b ∈ V , d′(a, b) is the length of the shortest path between
a and b in T .
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The next lemma shows that it is possible to express EMDd(A,B) in terms
of EMDd′(A

′, B′) where A ⊆ A′ and B ⊆ B′. The lemma is a generalization of
Lemma 1.

Lemma 7. For f = (u, v) ∈ F and λ ∈ {−k,−k+1, . . . , k− 1, k}, let Cfλ be the
multi-set consisting of λ copies of “u” if λ > 0 and |λ| copies of “v” if λ < 0.
Then,

EMDd(A,B) ≤
∑

f∈F
|λf |+ EMDd′(A+

∑

f∈F
Cfλf

, B +
∑

f∈F
Cf−λf

) (3)

with equality for some set of coefficients λf .

Proof. Consider a bijection π between A′ = A +
∑

f∈F C
f
λf

and B′ = B +
∑

f∈F C
f
−λf

. We will show that π induces a bijection σ between A and B such
that ∑

a∈A
d(a, σ(a)) ≤

∑

f∈F
|λf |+

∑

a∈A′
d′(a, π(a)) , (4)

and this will establish the first part of the lemma.
It will be convenient to enumerate the elements of Cfλf

and Cf−λf
:

Cfλf
= {cf1 , cf2 , . . .} and Cf−λf

= {df1 , df2 , . . .}

such that we may assume that π(cfi ) = dfj implies i = j. If π(a) ∈ B, let
σ(a) = π(a). Otherwise, define the sequence:

sa = (a, df1i1 , c
f1
i1
, df2i2 . . . , c

fk−1

ik−1
, dfkik , c

fk
ik
, b)

where each successive element is uniquely defined by π and the indexing of the
elements in each Cfλf

and Cf−λf
:

df1i1 = π(a) , df2i2 = π(cf1i1 ) , . . . , dfkik = π(c
fk−1

ik−1
) , and b = π(cfkik ) .

Given sa, define σ(a) = b, i.e., we match a with the last element of the sequence.
Note that

d(a, π(a)) ≤ d′(a, df1i1 ) + 1 + d′(cf1i1 , d
f2
i2
) + 1 + . . .+ 1 + d′(cfkik , b) .

Summing over all a ∈ A, gives Eq. 4 since each pair (dfi , c
f
i ) appears in at most

one sequence because π is a bijection.
To prove that there exists a set of coefficients such that Eq. 3 is tight, consider

the bijection σ = argminσ
∑

a∈A d(a, σ(a)). Then, for each f = (u, v), let

λf = |{a ∈ A : u appears before v on path between a and σ(a)}|
−|{a ∈ A : u appears before v on path between σ(a) and a}| .
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roote1 e2 e3

e4
f2

f1

Fig. 2. An instance of earth-mover distance on an arbitrary graph metric. See the text
in Example 2. Points in A are denoted by circles and points in B are denoted by stars.

Then,

EMDd′(A+ Cfλf
, B + Cf−λf

) ≤ EMDd(A,B)−
∑

f∈F
|λf |

since with the addition of the Cfλf
and Cf−λf

sets we can consider the matching

between A+ Cfλf
and B + Cf−λf

induced by removing all edges f ∈ F .

5.1 Sketch Details

For a graph G = (V,E), let T = (V,ET ) be an arbitrary spanning tree with root
r. Define the vectors x, y ∈ R

E and z = x− y where

xe =

{
|{a ∈ A : e ∈ PT (a, r)}| if e ∈ ET
0 otherwise

ye =

{
|{b ∈ B : e ∈ PT (b, r)}| if e ∈ ET
0 otherwise

.

For each f = (u, v) ∈ F , we define a vector cf where

cfe =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if e ∈ PT (u, r) \ PT (v, r)
−1 if e ∈ PT (v, r) \ PT (u, r)
1 if e = f

0 otherwise

The intuition behind the definition of cf is that if z corresponds to point sets A
and B, then z + λfc

f corresponds to point sets A+ Cfλf
and B + Cf−λf

.

Example 2. Consider the instance in Figure 2. In this case

x = (1, 1, 0, 1, 0, 0) , y = (0, 1, 1, 0, 0, 0) , z = (1, 0,−1, 1, 0, 0)
cf1 = (1, 1,−1, 0, 1, 0) and cf2 = (0, 0, 1,−1, 0, 1) .
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Note that ‖z+0cf1+1cf2‖1 = ‖(1, 0, 0, 0, 0, 1)‖1 = EMDd(A,B) and for arbitrary
λ1, λ2 we have

‖z + λ1c
f1 + λ2c

f2‖1 ≥ EMD(A,B) .

Lemma 8. min−k≤λ1,...,λt≤k ‖z +
∑

f∈F λf c
f‖1 = EMDd(A,B).

Proof. Let z[n−1] and cf[n−1] be the vectors corresponding to the first n − 1

elements of z and cf for each f . Note that

‖z +
∑

f∈F
λfc

f‖1 =
∑

f∈F
|λf |+ ‖z[n−1] +

∑

f∈F
λfc

f
[n−1]‖1 .

The proof then follows from Lemma 7 and Theorem 2.

Extending the idea in Section 3, we now define the function f(λ1, . . . , λt) =
‖z +∑f∈F λf c

f‖1. From the above lemma, it suffices to estimate

min
−k≤λ1,...,λt≤k

f(λ1, . . . , λt) .

From Theorem 1 (and the surrounding discussion), it is possible to compute esti-
mates {f̃λ1,...,λt}−k≤λ1,...,λt≤k from a O(tε−2 logn log(kδ−1))-dimensional sketch
of z such that with probability at least 1− δ, for all −k ≤ λ1, . . . , λt ≤ k

|f(λ1, . . . , λt)− f̃λ1,...,λt | ≤ εf(λ1, . . . , λt) .
Hence, if we return the minimum estimate then we have an (ε, δ) approximation
for EMD(A,B). However, as in the cycle case, rather than evaluating every
f̃λ1,...,λt to find the minimum, it is possible to find the minimum more efficiently.
One option is to exploit the convexity of f as in Section 3 using a recursive
regression algorithm [13] or to use recent results on robust regression via sub-
space embeddings [6, 15].
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Abstract. Energy efficient algorithms are becoming critically impor-
tant, as huge data centers and server farms have increasing impact on
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model. We are given m machines, each with some energy activation cost
ci and d dimensions (i.e., components). There are n jobs which arrive
online and must be assigned to machines. Each job induces a load on
its assigned machine along each dimension. We must select machines to
activate so that the total activation cost of the machines falls within a
budget B and the largest load over all machines and dimensions (i.e.,
the makespan) by assigning jobs to active machines is at most Λ.

We first study the model in which machines are unrelated and can have
arbitrary activation cost. In this problem, which we call Machine Acti-
vation, we extend previous work to handle jobs which arrive online. We
consider a variant where the target makespan Λ and budget B are given.
The first main result is an online algorithm which is O(log(md) log(nm))-
competitive on the load Λ and O(d log2(nm))-competitive on the energy
budget B. We also address cases where one parameter is given and we
are asked to minimize the other, or where we want to minimize a con-
vex combination of the two. Running our previous algorithm in phases
gives results for these variants. We prove lower bounds indicating that
the effect on the competitive ratio due to multiple phases is necessary.

Our second main result is in the same setting except all machines
are identical and have no activation cost. We call this problem Vector
Load Balancing, our objective is to minimize the largest load induced
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induced load on each machine (energy). We give an online algorithm that
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1 Introduction

1.1 Motivation and Applications

Billions of dollars are spent every year to power computer systems, and any
improvement in power efficiency could lead to significant savings [25]. With the
rise of huge data centers and server farms, energy costs and cooling costs have
become a significant expense as demand for computing power, servers, and stor-
age grows. Indeed, energy costs and cooling costs are likely to exceed the cost
of acquiring new hardware and servers. Managers of data centers wish to opti-
mize power consumption without sacrificing any performance to minimize energy
costs and cooling costs due to heat dissipation [22]. For these reasons, algorithms
for energy efficient scheduling are very valuable, and even a small improvement
could lead to significant savings and a positive impact on the environment.

As data centers and server farms grow in size, it becomes increasingly im-
portant to decide which machines should stay active and which should be shut
down. In particular, there are opportunities for energy conservation and mone-
tary savings due to cooling costs [22]. Moreover, these larger data centers have
huge fluctuations in work loads, ranging from very high peaks to very low val-
leys. Hence, when demand is low, it is possible to shut down some machines
which would allow for significant savings [17]. Certain jobs may need access to
particular machines (due to data availability or device capability), and hence it
makes sense to consider a subset of machines to activate for a given set of jobs.
Once the appropriate machines have been activated, the pending jobs may then
be scheduled. Note that the process of choosing which machines to activate is
naturally an online problem, since jobs arrive dynamically over time.

In [24, 25, 27], methods were developed to measure power consumption at a
high sampling rate. This allows us to measure energy requirements of recurring
jobs at various speeds, and also to use machine learning techniques to estimate
these requirements for new jobs. In [25] measurements were made for the energy
effects of resource contention between jobs. The results indicated that jobs which
make heavy use of different system components can be parallelized in a power-
efficient manner, whereas jobs which make heavy use of the same components do
not parallelize well. Their results motivate our belief that optimizing the schedul-
ing of jobs tominimize power consumption is a non-trivial problem in real systems.
From the standpoint of virtualization software such as VMware, it is important
to effectively distribute jobs among machines so that resource contention (and
thus energy use) is minimized. Multidimensional load balancing has applications
in cutting stock, resource allocation, and implementation of databases for share-
nothing environments [10–12]. This problem also has applications in multidimen-
sional resource scheduling for parallel query optimization in databases. Query ex-
ecution typically involves multidimensionality, particularly among time-sharing
system resources such as the CPU or disk [11]. This motivates representing jobs
as having d dimensions where each dimension represents the load induced by the
job on the component. Real jobs often involvemore than two components (and real
network speeds depend on internet congestion). It is important to model the load



Online Multidimensional Load Balancing 289

placed on various system components (processor, network, memory, etc.) and the
key to obtaining good performance (both in terms of completion times and power)
is to balance the loads appropriately.

1.2 Problem Definitions

We consider two problems in this domain. Our first problem considers online
allocation of jobs to unrelated machines with arbitrary activation costs and d
dimensions, which we call the Machine Activation problem:

Definition 1 (Machine Activation Problem). We are given a set of m un-
related machines each with d dimensions (i.e., components such as CPU, mem-
ory, network) and an activation cost ci. Moreover, a set of n jobs j arrive online,
each inducing a load of pkij if assigned to machine i on dimension k. We must
select a set A of machines to activate such that

∑
i∈A ci ≤ B for a constraint

budget B, and assign jobs to active machines such that the total pkij for jobs
assigned to machine i along dimension k is at most a load constraint Λ.

The main setting we study is when Λ and B are given to the algorithm. Our
competitive guarantees hold if there is an offline integral solution with makespan
Λ and budget B. Note that we also consider variants in which the load Λ or
budget B may not necessarily be specified, in which case we seek to minimize
the corresponding objective.

Our second problem considers online allocation of jobs to identical machines
with multiple components and no activation costs.

Definition 2 (Vector Load Balancing Problem). We have m identical ma-
chines each with d components. Jobs pj arrive online and are to be assigned to
machines upon arrival. Here, the k’th coordinate pkj gives the load placed on

component k by job j. Let �ki denote the sum of pkj over all jobs j on machine

i. The load �i of machine i is maxk �
k
i . Our goal is to simultaneously minimize

the makespan, maxi �i, and the energy,
∑

i �i.

1.3 Our Contributions and Techniques

For the Machine Activation problem, we design an online algorithm in Sec-
tion 2 that is O(log(md) log(nm))-competitive on the load and O(d log2(nm))-
competitive on the energy budget for the case when the load Λ and the budget B
are given. It extends the result of [17] to an online setting and the work of [4] to
the multidimensional setting. Our main technique considers the linear relaxation
of an integer program. We approximately solve the linear relaxation online as
constraints arrive, such that everything except the budget and load constraints is
feasible. We develop a novel algorithm and technique for analyzing the primal lin-
ear program, with a unique combination of multiplicative and additive updates.
This innovative approach ensures that key inequalities are feasible and keeps
the total number of iterations of the algorithm small. Our fractional solution
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is O(log(md) log(nm))-competitive on the load and O(d log(nm))-competitive
on the energy budget. Our analysis includes a non-trivial potential function to
obtain our competitive result on the load. We then describe an online random-
ized rounding scheme to produce a competitive ratio of O(log(md) log(nm)) on
the load and O(d log2(nm)) on the budget. Combining our approach with the
rounding scheme of the Generalized Assignment Problem [26] also gives an of-
fline result similar to [17] with a substantially simpler rounding scheme. Since
our problem generalizes both set cover even in the one-dimensional setting (by
setting the processing times to 0 or ∞) and load balancing (by setting all ci
to 0), we can apply lower bounds from the online versions of these problems
from [1, 2] to get polylogarithmic online lower bounds. We also show that no
deterministic algorithm can be competitive.

In Section 3, we give upper and lower bounds for variants of the Machine
Activation problem. We consider variants where one parameter (either B or Λ)
is given up front and the goal is to minimize the other. We obtain our positive
results by running our online algorithm from Section 2 in phases. Though this
induces a logarithmic dependence on the value of the optimal solution, we show
that such dependence is necessary for a fully online algorithm, suggesting a semi-
online algorithm that is given a good estimate of the optimum performs much
better. Lastly, we consider the case where neither parameter is given and the goal
is to minimize a linear combination of the maximum load and the energy cost
(say cΛΛ

∗+cBB∗, where Λ∗, B∗ are the makespan and energy cost of a schedule,
respectively). Our algorithm is O(d log2(nm))-competitive on this objective.

In Section 4, for the Vector Load Balancing problem, we design an online algo-
rithm which is O(log d)-competitive on the makespan, improving even the best
known offline result [9]. Our algorithm is simultaneously O(log d)-competitive
on the energy usage if we are given a small piece of information (the maxi-
mum load induced by any single job on any single component). Without this
information, we show our competitive ratios on the two criteria must have prod-
uct Ω(min(d, logm)). Our main technique involves adapting a result of Aspnes
et al. [2] which works by assigning jobs greedily based on an exponential cost
function. A direct application of their proof technique requires a near-optimum
offline solution (which we do not have) and obtains competitive ratio O(logmd),
matching random assignment [9]. We modify their technique to make use of suit-
able rough bounds on the optimum load and exploit the fact that our machines
are identical to obtain an O(log d) bound. Our analysis also includes the use of
a non-trivial potential function argument. The work of [5] considers a similar
problem from a bin packing perspective. They also develop a greedy algorithm
based on exponential cost functions and some of the techniques they use are
similar, though the works were done independently of one another. It is perhaps
interesting that similar algorithms can be used for both online multidimensional
bin packing and load balancing to obtain strong competitive ratios for the two
problems.
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1.4 Related Work

For the Machine Activation problem, the recent work of [17] studies the same
problem in the offline setting. They give an algorithm for the unrelated Ma-
chine Activation problem which produces a schedule with makespan at most
(2+ε)Λ and activation cost at most 2(1+ 1

ε )(ln
n

OPT +1)B for any ε > 0 (where
OPT is the number of active machines in the optimal solution), assuming there
is a schedule with makespan Λ and activation cost B. They also give a poly-
nomial time approximation scheme for the uniformly related parallel machines
case (where machine i has speed si and pij =

pj
si
), which outputs a schedule

with activation cost at most B and makespan at most (1 + ε)Λ, for any ε > 0.
In [20], a generalized version of the Machine Activation problem is considered in
the offline setting where each machine’s activation cost is a function of the load
assigned to the machine. An algorithm is given which assigns at least n− ε jobs
fractionally with cost at most (1 + ln(n/ε))OPT .

In addition, [20] studies an offline version of the Machine Activation prob-
lem in which each machine has d linear constraints. For this version, they give
a solution which is O(1ε logn) times the optimal activation cost while breaking
the d machine constraints by at most a factor of 2d + ε. This can be com-
pared with our online, multidimensional guarantees of O(log(nm) log(md)) on
the load and O(d log2(nm)) on the activation cost. There is also the recent
work of [4], which we extend to the multidimensional setting. The work of [4]
studies several problems. For their generalized framework, which is referred to
as the Online Mixed Packing and Covering (OMPC) problem, a deterministic
O(logP log(vρκ))-competitive algorithm is given, where P is the number of pack-
ing constraints, v is the maximum number of variables in any constraint, and ρ
(respectively, κ) is the ratio of the maximum to the minimum non-zero packing
(respectively, covering) coefficient respectively. Hence, if all coefficients are ei-
ther 0 or 1, this is O(logP log v)-competitive. Note that we cannot simply apply
the general scheme in [4] for OMPC, since our packing constraints are not given
offline (indeed, this is precisely where the online nature of our problem comes
into play). The OMPC framework only models programs in which packing con-
straints are given offline. The work of [4] also studies a problem called Unrelated
Machine Scheduling with Startup Costs (UMSC), which is similar to our problem
in the single dimensional case. In particular, when d = 1, they give an O(logm)-
competitive result on the makespan and an O(log(mn) logm)-competitive result
on the energy budget. We extend this result to the multidimensional setting.
Note that it is not clear how to adapt their algorithm to the multidimensional
setting, and we develop our own framework which uses a novel combination of
additive and multiplicative updates in our fractional algorithm.

In [2], they consider the online load balancing problem without activation
costs. They give an O(logm)-competitive algorithm for unrelated machines and
an 8-competitive algorithm for related machines. In [3], they consider the online
load balancing problem without activation costs where the load on a machine is
measured according to the Lp norm. Their main result is that the greedy algo-
rithm is O(p)-competitive under the Lp norm, and any deterministic algorithm
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must be Ω(p)-competitive. In [26], they give the first constant approximation
(offline) for the unrelated machines case. In [8], the identical machines case is
studied in the online setting without activation costs. It is shown that greedy
is globally O(logm)-balanced in the restricted assignment model and globally
O(logm)-fair in the 1-∞ model (see [8] for details). Our problem and techniques
are substantially different, as we do not design or analyze a greedy algorithm.
For a survey on power management and energy minimization, see [15]. Also, see
[23] for a comprehensive survey on online scheduling.

For the Vector Load Balancing problem, the single-dimensional case has an
offline PTAS [14] and a (2 − ε)-competitive online algorithm for a small fixed
ε [7]. The multidimensional version was introduced by [9], which includes an of-
fline PTAS with running time exponential in the number of dimensions d and an
offline O(log2 d)-approximation with polynomial running time. They also prove
that a simple randomized algorithm is O( logmd

log logmd)-competitive (with m ma-

chines and d dimensions), and that no polynomial-time offline algorithm can
attain a constant-factor approximation under standard complexity assumptions.

Most of the prior work (including a substantial portion of [9]) focuses on
vector bin packing where we have a hard constraint on the makespan and must
minimize the number of machines (bins). Some of these results include [6, 9, 13,
16, 18, 19, 21] with the best being O(log d)-approximations. The recent work
of [5] studies vector bin packing in the online setting. The algorithm they design
for their positive result is similar to ours for Vector Load Balancing, though the
two works were done independently of each other.

2 Machine Activation

2.1 LP and Algorithm

We formulate the problem as an integer program, where yi = 1 means machine
i is activated, and xij = 1 means job j is assigned to machine i. We assume
the target load Λ and budget B are given, and that there is an offline integral
solution with makespan at most Λ and budget at most B.

1. For all 1 ≤ i ≤ m, we have 0 ≤ yi ≤ 1.
2. For all 1 ≤ i ≤ m and 1 ≤ j ≤ n we have xij ≥ 0.
3. For all j, we have

∑m
i=1 xij ≥ 1.

4. For all i, j we have xij ≤ yi.
5. For all i, k, we have

∑n
j=1 xijp

k
ij ≤ Λyi.

6. We have
∑m

i=1 yici ≤ B.

Our goal is to design an online algorithm to solve the integer version of this
linear system, while violating constraints 5 and 6 by at most a bounded factor.
We will do this by first providing an online solution to the linear relaxation
above, which may also violate the first constraint by possibly having yi ≥ 1,
then describe an online rounding technique to produce an integer solution in
Section 2.3. We will assume that either B

m ≤ ci ≤ B or ci = 0 for all i (if more
then discard machine i as offline cannot use it, if less then simply buy machine
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i and assume ci = 0 for a constant factor increase in the total cost). Note that
we can normalize B to anything we wish - we will choose B = Θ(m) so that any
non-zero ci is at least a constant (for instance, at least 1). We define qkij = pkij/Λ

and �ki =
∑

j q
k
ij max{xij − 1

jm , 0}. Let a ≥ 1 be a constant to be set later.
We first give some intuition for our algorithm. When a job j arrives, most

constraints are satisfied except for
∑m

i=1 xij ≥ 1. To fix this, we need to raise
the xij variables until this inequality is satisfied. However, this may cause other
inequalities such as xij ≤ yi and

∑n
j=1 xijp

k
ij ≤ Λyi to be violated. Hence, we

will only increase xij if xij ≤ yi will continue to hold (if we do raise xij , then
we also increase yi to satisfy the load inequalities). If increasing xij would cause
xij > yi, then we simply increase yi. We increase xij multiplicatively, so that the
larger xij is, the larger the increase. Moreover, it seems intuitively clear that we
should increase xij for job j less aggressively if pkij , ci, or �

k
i is large (in fact, we

penalize machine i with an exponential cost function for the load �ki to obtain
our competitive ratio on the load constraints). We also increase yi multiplica-
tively whenever it is too small (again, intuitively, yi should be increased less
aggressively if ci is large). When a variable is small, it may take many iterations
for multiplicative updates to increase its value substantially. We use additive
updates to avoid this issue, and couple the additive updates with multiplicative
ones to achieve our feasibility and competitive guarantees by keeping the number
of iterations in our algorithm small. See Algorithm 1 for details.

1 Initialize xij ← 0 for all i, j and yi ← 0 for all i

2 When job j arrives, set xij ← 1
jm

for each i such that pkij ≤ Λ for all k and

yi ← yi +
1

jm
for all i

3 while job j has
∑m

i=1 xij < 1 do

4 for each 1 ≤ i ≤ m : pkij ≤ Λ for all k do
5 Set zij ← xij

∑
k pkij(a

�k
i +ci)+1

6 if xij + zij ≤ yi then

7 Set xij ← min{xij + zij , 1} and yi ← yi + zij maxk q
k
ij

8 else
9 Set yi ← yi(1 +

1
dΛci

)

Algorithm 1. Fractional Assignment

2.2 Analysis

We prove certain feasibility properties which our algorithm maintains.

Theorem 1. Inequalities 3, 4, and 5 of the linear program are satisfied.

Proof. Inequality 3 follows from the termination condition of step three of the
algorithm. The other two inequalities hold initially since all variables are zero.
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When j arrives, we set xij ← 1
jm for every i where qkij ≤ 1 along each dimension

k, but we also increase all yi by
1
jm , so both inequalities will continue to hold.

Later, we might increase xij by some zij . However, we will only do this if
xij + zij ≤ yi, so xij ≤ yi still holds. When we increase xij in this way, we
will also increase yi by zij maxk q

k
ij , which guarantees that

∑
j xijp

k
ij ≤ Λyi will

continue to hold for all i and all k. ��
Each time through the loop at line three of the algorithm will be called a re-
inforcement step. Let rj represent the number of reinforcement steps which
occur on the arrival of j.

Lemma 1. For a ≥ 1, when job j arrives, the rj reinforcement steps increase
∑m

i=1

∑d
k=1 a

�ki by at most a−1
Λ rj.

Proof. Each reinforcement step increases �ki by at most zijq
k
ij for each i and k.

Thus the total increase in the summation is bounded by
∑m
i=1

∑k
i=1 a

�ki (azijq
k
ij −

1). By the definition of zij , we will always have zijq
k
ij ≤ 1. In general for any

a ≥ 1 we will have ax−1 ≤ (a−1)x whenever 0 ≤ x ≤ 1, and applying this allows

us to bound the summation by
∑m
i=1

∑d
k=1 a

�ki (a− 1)(zijq
k
ij). We can substitute

zij ≤ xij
∑

k p
k
ija

�k
i +1

and use the fact that
∑
i xij < 1 prior to the reinforcement to

get that
∑m

i=1
a−1
Λ xij ≤ a−1

Λ . ��
Lemma 2. The total number of reinforcement steps is bounded by

∑
j rj ≤

Λ(lognm)(
∑

i

∑
k a

�ki + 2dB) + n(1 + logmn).

Proof. We split the reinforcements occurring on the arrival of j into two sets.
Suppose i is the machine to which j is assigned by the optimum solution. We
have r̄j load reinforcing steps where xij + zij ≤ yi and r̂j cost reinforcing
steps where the opposite was true. Clearly rj = r̄j + r̂j .

Each time a load reinforcing step occurs, xij increases by a factor of at least 1+
1

∑
k p

k
ij(a

�k
i +ci)+1

(except for possibly the last and only reinforcement step for job

j in which xij is set to 1 instead of xij+zij at line seven). Thus every
∑
k p

k
ij(a

�ki +
ci) + 1 such steps increase xij by a constant factor. Since xij is initially at least
1
mn , the total number of such steps is bounded by log(nm)(

∑
k p

k
ij(a

�ki + ci) +
1) + 1. Summing over all machines i used by the optimum solution, we get
∑

j r̄j ≤ Λ log(nm)(
∑

i∈OPT
∑

k a
�ki + dB) + n log(mn) + n.

Consider all cost reinforcing steps for jobs which the optimum assigns to
machine i. The initial value of yi is

1
m . Each time we apply a cost reinforcing

step, we increase this by a multiplicative 1 + 1
dΛci

. Note that we will never have
xij + zij ≥ 2, as we would not perform a reinforcing step unless xij < 1, from
which zij < 1 follows. Thus, to perform a cost reinforcing step we must have
yi ≤ 2. It follows that the total number of cost reinforcing steps performed for j
with optimum assignment i is at most dΛci log 2m. If we sum this over all active
machines i in the optimum solution (and observe that the optimum solution
must not exceed the budget B) we get

∑
j r̂j ≤ dBΛ log 2m. Combining the

equations along with the assumption n ≥ 2 gives the lemma. ��
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Lemma 3. If we set a = 1+ 1
2 log nm , then the final value of the potential function

Φ =
∑

i

∑
k a

�ki after all jobs have arrived is at most 3md+ 2dB.

Proof. Initially, the potential function equals md (since all loads �ki = 0). The
function Φ increases with each reinforcement step, so by Lemmas 1 and 2, the

final value is Φ ≤ md+ a−1
Λ

∑
j rj ≤ md+ a−1

Λ (Λ log(nm)(
∑

i

∑
k a

�ki + 2dB) +

n(1 + logmn)). For a = 1 + 1
2 lognm , this implies that the final value is Φ ≤

3md+ 2dB (we can normalize Λ to anything, so we choose Λ = Θ(n)). ��

Theorem 2. For a = 1+ 1
2 lognm , we have yi ≤ [ log nm +4+2 log(nm) log(3md+

2dB)] for all i.

Proof. Applying Lemma 3 along with the value of a specified in the theorem,

we know for any k that
∑

i a
�ki ≤ 3md + 2dB (where �ki is the final load on

machine i). Since each term in the summation is non-negative, we can bound
the �ki values by taking the log of both sides as �ki ≤ 2 log(nm) log(3md+ 2dB).

We observe that yi increases at several points in the algorithm. The total
increase at step two of the algorithm can be at most logn

m . The increases at line
nine can only occur if yi ≤ 2, and will not cause yi to exceed four (since we can
ensure 1 + 1

dΛci
≤ 2 by scaling Λ and B appropriately). The increases at line

seven always increase �ki by the same amount as yi, so the total increase in yi
due to these steps is at most �ki , which is bounded as above. Combining these
gives the result. ��

Theorem 3. The algorithm satisfies
∑
i yici ≤ B logn+(6md+8dB+4) lognm.

Proof. Initially the left side of the equation is zero. When j arrives, every yi
increases by 1

jm . Since each yi has ci ≤ B (otherwise we drop that machine), the

total increase in cost due to this is at most B
j . Thus in total all arrivals increase

the cost by at most
∑

j
B
j = B logn.

We also increase the yi values when we perform a reinforcing step. Some yi
values increase by an additive zij maxk q

k
ij ≤ xij

Λci
, while others increase by a

multiplicative 1+ 1
dΛci

. The increase in cost due to additive increases is at most
∑

i xij

Λ , while for multiplicative increases it is at most
∑

i
yi
dΛ . For the multiplica-

tive increase to happen we must have yi < xij + zij < 2xij , so the multiplicative

increase is at most
2
∑

i xij

dΛ . Since each i appears in only one of the two sum-
mations, the total increase in cost is at most 2

Λ for each reinforcement step.
The number of reinforcement steps is bounded in Lemma 2 along with Lemma 3
(note that we normalize Λ as in Lemma 3). Combining these gives the result. ��

We can normalize B to whatever value we like. Given the expressions for the
competitive ratio on the load and the cost, it is natural to set B = Θ(m). This
will guarantee a competitive ratio of O(d log nm) on the cost, and a competitive
ratio of O(log(md) log(nm)) on the load.
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2.3 Rounding

We now show how to round our fractional solution to an integral solution. Our
integral solution is O(log(nm) log(md))-competitive on the load with high prob-
ability and O(d log2 nm)-competitive on cost. Suppose we have some online
fractional algorithm which guarantees that the values of xij and yi never de-
crease, and maintains inequalities from the linear program in Section 2.1 except
that it relaxes the first inequality to 0 ≤ yi ≤ ρΛ and the last inequality to∑m

i=1 yici ≤ BρB. In fact, our fractional algorithm also guarantees that xij ≤ 1.
We will show that this can be rounded in an online manner to produce inte-
gral x̂ij and ŷi. Observe that our algorithm from Section 2.1 will satisfy the
constraints with ρΛ = O(log(nm) log(md)) and ρB = O(d log nm).

Our rounding procedure is as follows. For each machine i, we compute a
uniformly random ri ∈ [0, 1]. We set ŷi ← 1 as soon as yi log 2nm ≥ ri. We
define M(j) as the set of machines with ŷi = 1 immediately after job j arrives.
For each job j, let yi(j) = min{yi, 1} immediately after job j arrives. We observe
that xij ≤ yi(j), since the fourth linear program equation must hold at all times
and xij ≤ 1. We define sj =

∑
i∈M(j)

xij

yi(j)
. If sj <

1
2 , then we immediately set

ŷi ← 1 for all machines i and recompute sj . We select exactly one machine i
from M(j) to assign j, setting x̂ij ← 1 for this machine only. Each machine is
selected with probability

xij

yi(j)sj
.

Lemma 4. The probability that we ever have sj <
1
2 after any j arrives is at

most 1
m ; thus the increase in the expected total cost of the solution due to this

case is at most B.

Proof. Let A(j) be the set of machines for which yi(j) ≥ 1
log 2nm . Clearly A(j) ⊆

M(j) since all of these machines are active with probability one. Observe that
if

∑
i∈A(j) xij ≥ 1

2 , then sj ≥ 1
2 with probability 1. Hence, we consider the

case when
∑

i∈A(j) xij <
1
2 . Since

∑
i xij ≥ 1, it follows that

∑
i/∈A(j) xij >

1
2 .

The actual value of sj will depend on the random choices of ri, since sj is
computed by summing over only the active machines. We can write the equation
sj ≥

∑
i/∈A(j)

xij

yi(j)
ŷi. Since i /∈ A(j), we can guarantee E[ŷi] = yi(j) log 2nm,

implying E[sj ] ≥ 1
2 log 2nm.

The value of sj is a sum of independent Bernoulli variables, each of which has
value at most 1 (since xij ≤ yi(j)). Even though the variables range in between
0 and 1, we can still apply Chernoff type bounds to conclude: P

[
sj <

1
2

] ≤
P
[
sj < (1− 1

2 )E[sj ]
] ≤

(
e−.5

.5.5

)E[sj ] ≤
√

2
e

1
2 log 2nm

≤ 1
nm (assuming the base of

the logarithm is a sufficiently small constant). Applying the union bound, we
can sum this over all j and conclude that the probability of ever having sj <

1
2

for any j is less than 1
m . Hence, the increase in expected total cost due to this

case is at most 1
m

∑
i ci ≤ B. ��

Lemma 5. Every job is assigned to exactly one active machine. The expected
total cost of the solution is bounded by E[

∑
i ŷici] ≤ BρB log 2nm.
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Proof. The rounding scheme assigns each job to exactly one active machine,
and the set of active machines only grows over time as the yi values are non-
decreasing. The manner in which the ŷi are determined along with the inequality∑

i yici ≤ BρB produce the cost bound (since E[ŷi] ≤ yi log 2nm). Note that
the additional expected cost as specified in Lemma 4 in the case that sj <

1
2 is

negligible and does not change the competitive ratio asymptotically. ��

Lemma 6. For any active machine i with ŷi = 1 and dimension k, with high
probability the total load of

∑
j x̂ijp

k
ij is at most Λ[2ρΛ + 4 logm + β log(md)]

where β is a suitably chosen constant.

Proof. Consider active machine i. Each job j is assigned to this machine with
probability

xij

yi(j)sj
. The total load of the machine on dimension k is

∑
j x̂ijp

k
ij ; we

will assume that pkij ≤ Λ since otherwise xij = 0 and thus x̂ij = 0. The problem
here is that the yi(j) values change over time; if we could replace them all with
the final yi then we could use the linear program inequalities to conclude that
the expected load is at most ρΛΛ and then apply Chernoff bounds.

Instead, we define phase α to consist of those times when 2α

m ≤ yi(j) < 2α+1

m ,
for each 0 ≤ α ≤ logm. Even though yi > 1 is possible, we will never have yi(j) >
1 so every j arrives in some phase. Let J(α) be the jobs which arrive during
phase α. For α < logm we have: E[

∑
j∈J(α) x̂ijp

k
ij ] ≤

∑
j∈J(α)

xij

yi(j)sj
pkij ≤

∑
j∈J(α) 2xijp

k
ij
m
2α . However, we know

∑
j∈J(α) xijp

k
ij ≤ Λ 2α+1

m for any phase

except the last, so we can apply this inequality to conclude E[
∑

j∈J(α) x̂ijp
k
ij ] ≤

4Λ. Thus the expected total load is at most 4Λ logm from all phases but the last.
For the last phase, the expected load is at most 2ρΛΛ, since yi(j) = 1 throughout.
We observe that the loads are sums of Bernoulli variables with values at most
Λ, so we can apply Chernoff bounds to show that with high probability the load
will not exceed its mean plus βΛ log(md) on any dimension of any machine. ��

2.4 Offline Scheme and Lower Bound

For the offline case, we can simply solve the linear program, so ρΛ = ρB = 1.
Instead of rounding up when yi log 2nm ≥ ri, we can round up when yi log 2n ≥
ri. This increases the probability of the bad event where some sj <

1
2 to be a

small constant instead of 1
m , but we can simply discard our solution and retry

whenever this occurs. This means we can get a solution of cost O(log n) times
B, such that a fractional solution exists which exceeds Λ by at most a constant
factor on any machine. We can then convert our fractional solution to an integer
solution using the rounding approach of the Generalized Assignment Problem
[26]. This attains roughly the same bounds as [17] for the offline case with a
substantially simpler rounding scheme.

There is a simple example which indicates that no deterministic approach to
this problem can succeed. We simply give a series of requests each of which can
run on every machine except the ones where the preceding requests were scheduled.
This forces a deterministic algorithm to pay for all m machines, whereas the
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offline optimum could activate only a single machine. The Online Set Cover
result of Alon et al. [1] got around this by presuming that we know in advance
the set of elements (jobs) which might be requested in the future, and allowed
the competitive ratio to depend on the size of this set. This approach seems less
reasonable for our problem than theirs, but in any case a modification of their
derandomization should work in the same model.

3 Machine Activation Variants

We study four versions of online load balancing with activation costs. For the
version where both Λ and B are given, Section 2 gives an algorithm that is
O(log(nm) log(md))-competitive on the load and O(d log2(nm))-competitive on
cost. We also consider variants where either B is not given up front or Λ is not
given up front (or both are not given). Due to space constraints, the following
proofs can be found in the full version of our paper. Our positive results are
obtained by guessing the value of the objective function to be optimized in an
online manner using doubling techniques combined with our algorithm from
Section 2.3. The logarithmic dependence on the optimum load (or budget) in
some of the results is undesirable, and we observe that it would not occur in
the offline setting (where we can discard the solution of previous phases and
start over with each new phase). However, we can show that this dependence is
necessary for a fully online algorithm.

Theorem 4. For the version where we are given a budget B and asked to min-
imize load Λ, we can produce a solution which spends at most BρB and has
competitive ratio ρΛ on the load against the optimum offline with budget B.
Here ρΛ = O(log(md) log(nm)) but ρB = O(d log2(nm) logΛ∗) where Λ∗ is the
optimum load (assuming we have a lower bound on the load of one; otherwise it
is the ratio of maximum to minimum possible non-zero load).

Theorem 5. For the version where we are given load Λ and asked to minimize
the budget B, we can produce a solution with load at most ρΛΛ which has com-
petitive ratio ρB against the optimum offline which does not exceed load Λ. Here
ρB = O(d log2 nm) but ρΛ = O(log(md) log(nm) logB∗) where B∗ is the ratio
of the optimum budget to the minimum non-zero cost of a machine.

Theorem 6. Consider the version where we are given a budget B and asked
to minimize load Λ. Suppose that the actual optimum load is Λ∗, and we are to
guarantee that we spend a budget at most ρBB and obtain load at most ρΛ times
optimum. Then ρB = Ω(min{ logΛ∗

log logΛ∗+log ρΛ
,m}).

Theorem 7. If a deterministic algorithm guarantees to be ρΛ-competitive on
the makespan while using at most ρBB budget, then the algorithm necessarily

has ρB = Ω
(

logΛ∗(logn−log logm−log logΛ∗)(logm−log logΛ∗)
(log ρΛ+log logn+log logm+log logΛ∗)(log logn+log logm)

)
.
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Theorem 8. Consider the version where we are given a load Λ and asked to
minimize the cost B. Suppose that the optimum cost is B∗ to stay within load
Λ. We are to guarantee load at most ΛρΛ and cost at most ρB times B∗. Then
ρΛ = Ω(min{ logB∗

log 2ρB
,m}).

Theorem 9. There is an O(d log2 nm)-competitive algorithm for minimizing a
linear combination of the cost B and load Λ, namely cBB + cΛΛ. Here, the
coefficients cB, cΛ are constants and cBB + cΛΛ is the value of the objective
function on a schedule with energy cost B and makespan Λ.

4 Vector Load Balancing

We give an O(log d)-competitive algorithm to minimize the makespan, improving
over the offline O(log2 d)-approximation in [9] (for arbitrary d). Note that [9]
shows that even in the offline case, no constant approximation is possible unless
NP = ZPP. We extend our algorithm to be simultaneously O(log d)-competitive
on energy, provided we know Λmax = maxk,j p

k
j in advance (pkj is the load of job

j on component k). We show that this additional information is necessary.

4.1 Minimizing the Makespan

The algorithm of [2] depends heavily on maintaining an estimate Λ of the opti-
mum value. We use the maximum coordinate of any single job Λmax = maxk,j p

k
j

and the load induced by placing all jobs on one machine Λtot = maxk
∑

j p
k
j as

lower bounds in Algorithm 2. We run in phases where for each phase, we use an
estimate Λ of the optimum makespan. If Λ is too small, we adjust and start a
new phase. We also make use of a = 1+ 1

γ for some γ > 1. Let �kxi (j) be the load
normalized by Λ on component k of machine i during phase x after all jobs up
through j are assigned (we sometimes omit j if the context is clear). Let pkj be

the load induced on dimension k by job j, and qkj = pkj /Λ. Lemma 7 is proved
in the full version of our paper (this is a modification of the proof in [2]).

Lemma 7. In Algorithm 2, during each phase x:
d∑

k=1

m∑

i=1

a�
kx
i (γ − 1) ≤ γmd.

At this point, we can follow [2] and use Lemma 7 for an O(log dm) bound.
We will improve our competitive ratio by exploiting the identical nature of our
machines. Let μx = maxi,k �

kx
i .

Lemma 8. For all machines i, i′ and phases x, we have
∑d
k=1 a

�kx
i (f) ≤ d +

μx

γ

∑d
k=1 a

�kx
i′ (f), where f is the final job of phase x.

Proof. Let Ji be the set of jobs given to machine i during phase x. If j ∈ Ji,
machine i must minimize Δi(j) =

∑d
k=1 a

�kx
i (j−1)+qkj − a�kx

i (j−1). Hence, for any
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1 Initialize Λ← 1, x← 0, �kti ← 0 for all i, k, t
2 while jobs j arrive do
3 Update Λmax and Λtot

4 if Λ < max{Λmax,
1
m
Λtot} then

5 End phase x; let x← �log2 max{Λmax,
1
m
Λtot}�, Λ← 2x

6 Place job j on machine s = argmini

∑d
k=1[a

�kx
i +qkj − a�kx

i ]; let

�kxs ← �kxs + qkj for all k

Algorithm 2. Assign-Jobs

i′,
∑d

k=1(a
�kx
i (f)−1) = ∑

j∈Ji
Δi(j) ≤

∑
j∈Ji

Δi′(j) ≤
∑d

k=1 a
�kx
i′ (f)

∑
j∈Ji

(aq
k
j −

1). Since pkj ≤ Λ, we have 0 ≤ qkj ≤ 1 and thus γ(aq
k
j − 1) ≤ qkj . This allows us

to bound
∑d

k=1 a
�kx
i′ (f)

∑
j∈Ji

(aq
k
j − 1) by

d∑

k=1

a�
kx
i′ (f)

∑

j∈Ji

qkj
γ

=
d∑

k=1

a�
kx
i′ (f) �

kx
i (f)

γ
≤ μx

γ

d∑

k=1

a�
kx
i′ (f).

Putting our inequalities together and rearranging terms finishes the proof. ��
Theorem 10. Algorithm 2 is O(log d)-competitive on the makespan.

Proof. Fix phase x and let s and s′ be the machines with maximal and minimal
∑d

k=1 a
�kx
i (respectively) at the end of x. Combining Lemmas 7 and 8 gives

aμ
x ≤

d∑

k=1

a�
kx
s (f) ≤ d+ μx

γ

d∑

k=1

a�
kx
s′ (f) ≤ d+ μx

γ

(
γd

γ − 1

)

= d+
μxd

γ − 1
.

Taking the logarithm of both sides gives μx ≤ loga

(
d

γ−1
)
+ loga(μ

x + γ − 1).

Thus, μx − loga(μ
x + γ − 1) = O(log d). Note that if for some constant c we

have c − loga(c + γ − 1) = c
2 , then for all μx ≥ c, we have μx = O(log d). The

makespan during phase x is 2xO(log d). For our last phase g, our total load is at
most 2g+1O(log d). Since g = 
log(max{Λmax, 1

mΛtot})� and max{Λmax, 1
mΛtot}

is a lower bound on optimum, our algorithm is O(log d)-competitive. ��

4.2 Simultaneously Minimizing Energy

Given the value of Λmax in advance, we compress all jobs onto a small number
of machines, then gradually open up more machines as our estimate of Λtot
increases. Algorithm 3 does this with virtual machines. As there are at most
2m virtual machines in total, we identify two virtual machines with each real
machine. We prove Theorem 12 in the full version of our paper, which establishes
that advance knowledge of Λmax (or some comparable advance knowledge) is
necessary to have a competitive ratio independent of m.
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1 Initialize M ← 1
2 while M < m do
3 Run algorithm Assign-Jobs on M new virtual machines until Λtot > MΛmax

M ← min{2M,m}
4 while jobs are still arriving do
5 Run algorithm Assign-Jobs on all real machines ignoring previous loads

Algorithm 3. Power-and-Makespan

Theorem 11. Algorithm 3 is O(log d)-competitive on both makespan and power.

Proof. Within a call to Assign-Jobs, we guarantee that Λtot ≤MΛmax. Thus by
Theorem 10, we place a load of at most ΛmaxO(log d) on any virtual machine.
Then after all jobs are placed, the load of any real machine is at most the sum
of the loads of two virtual machines (each at most ΛmaxO(log d)), plus any load
placed by the last instance of Assign-Jobs when M = m. Thus the makespan
is at most 2ΛmaxO(log d) +

1
mΛtotO(log d). We observe that at most 2M ma-

chines have non-zero load, so the total power is at most 4MΛmaxO(log d) +
2ΛtotO(log d). Optimum power is Λtot and the algorithm guarantees Λtot >
M
2 Λmax, which completes the proof. ��
Theorem 12. Suppose we have an online algorithm which is α-competitive on
the makespan and β-competitive on energy. Then β ≥ 1

2α min(d, log2αm).
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Abstract. Kolla and Tulsiani [KT07, Kol11] and Arora, Barak and
Steurer [ABS10] introduced the technique of subspace enumeration, which
gives approximation algorithms for graph problems such as unique games
and small set expansion; the running time of such algorithms is expo-
nential in the threshold-rank of the graph.

Guruswami and Sinop [GS11, GS12], and Barak, Raghavendra, and
Steurer [BRS11] developed an alternative approach to the design of ap-
proximation algorithms for graphs of bounded threshold-rank, based on
semidefinite programming relaxations in the Lassere hierarchy and on
novel rounding techniques. These algorithms are faster than the ones
based on subspace enumeration and work on a broad class of problems.

In this paper we develop a third approach to the design of such algo-
rithms. We show, constructively, that graphs of bounded threshold-rank
satisfy a weak Szemeredi regularity lemma analogous to the one proved
by Frieze and Kannan [FK99] for dense graphs. The existence of efficient
approximation algorithms is then a consequence of the regularity lemma,
as shown by Frieze and Kannan.

Applying our method to the Max Cut problem, we devise an algorithm
that is faster than all previous algorithms, and is easier to describe and
analyze.

1 Introduction

Kolla and Tulsiani [KT07, Kol11] and Arora, Barak and Steurer [ABS10] proved
that the Unique Games problem can be approximated efficiently if the adjacency
matrix of a graph associated with the problem has few large eigenvalues; they
show that, for every optimal solution, its indicator vector is close to the sub-
space spanned by the eigenvectors of the large eigenvalues, and one can find a
solution close to an optimal one by enumerating an ε-net for such a subspace.
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Such subspace enumeration algorithm runs in time exponential in the dimension
of the subspace, which is the number of large eigenvalues; such a parameter is
called the threshold rank of the graph. Arora, Barak and Steurer show that the
subspace enumeration algorithm can approximate other graph problems, in reg-
ular graphs, in time exponential in the threshold rank, including the Uniform
Sparsest Cut problem, the Small-Set Expansion problem and the Max Cut prob-
lem. We remark that the subspace enumeration algorithm does not improve the
0.878 approximation guarantee of Goemans, Williamson [GW95], but it finds a
solution of approximation factor 1 − O(ε) if the optimum cuts at least 1 − ε.
fraction of edges.

Barak, Raghavendra and Steurer [BRS11] and Guruswami and Sinop [GS11,
GS12, GS13] developed an alternative approach to the design of approximation
algorithms running in time exponential in the threshold rank. Their algorithms
are based on solving semidefinite programming relaxations from the Lasserre
hierarchy and then applying sophisticated rounding schemes. The advantage of
this approach is that it is applicable to a more general class of graph problems
and constraint satisfaction problems, that the approximation guarantee has a
tighter dependency on the threshold used in the definition of threshold rank
and that, in same cases, the algorithms have a running time of f(k, ε) · nO(1)

where k is the threshold rank and 1± ε is the approximation guarantee, instead
of the running time of nO(k) which follows from an application of the subspace
enumeration algorithm for constant ε.

In this paper we introduce a third approach to designing algorithms for graphs
of bounded threshold rank, which is based on proving a weak Szemeredi regularity
lemma for such graphs.

The regularity lemma of Szemeredi [Sze78] states that every dense graph can
be well approximated by the union of a constant number of bipartite complete
subgraphs; the constant, however, has a tower-of-exponentials dependency on the
quality of approximation. Frieze and Kannan [FK96, FK99] prove what they call
a weak regularity lemma, showing that every dense graph can be approximated
up to an error εn2 in the cut norm by a linear combination of O(1/ε2) cut ma-
trices (a cut matrix is a bipartite complete subgraph) with bounded coefficients.
Frieze and Kannan also show that such an approximation can be constructed
“implicitly” in time polynomial in 1/ε and that, for a weighted graph which is
a linear combination of σ cut matrices, several graph problems can be approx-
imated in time exp(Õ(σ)) + poly(n) time. Combining the two facts one has a
exp(poly(1/ε))+poly(n) time approximation algorithm for many graph problems
on dense graphs.

We prove that a weak regularity lemma holds for all graphs of bounded thresh-
old rank. Our result is a proper generalization of the weak regularity lemma of
Frieze and Kannan, because dense graphs are known to have bounded thresh-
old rank1. For a (weighted) G = (V,E) with adjacency matrix A, and diagonal
matrix of vertex degrees D, D−1/2AD−1/2 is called the normalized adjacency
matrix of G. If the square sum of the eigenvalues of the normalized adjacency

1 The normalization used for dense graphs is different.
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matrix outside the range [−ε/2, ε/2] is equal to k (in particular, if there are
at most k such eigenvalues), then we show that there is a linear combination
of O(k/ε2) cut matrices that approximate A up to 2ε|E| in cut norm; further-
more, such a decomposition can be found in poly(n, k, 1/ε) time. (See Theorem
1 below.) Our regularity lemma, combined with an improvement of the Frieze-
Kannan approximation algorithm for graphs that are linear combination of cut

matrices, gives us algorithms of running time 2Õ(k1.5/ε3) + poly(n) for several
graph problems on graphs of threshold rank k, providing an additive approxi-
mation of 2ε|E|. In problems such as Max Cut in which the optimum is Ω(|E|),
this additive approximation is equivalent to a multiplicative approximation.

We remark that there are several generalizations of the weak regularity lemma
to the matrices that are not necessarily dense, e.g., [DKKV05, CCF09], but to
the best of our knowledge, none of these generalizations include matrices of low
threshold rank. For example, Coja-Oghlan, Cooper and Frieze [CCF09] consider
sparse matrices that have a suitable boundedness property. For S, T ⊆ V , let
the density of sub-matrix A(S, T ) be the ratio of sum of the entries in A(S, T )
to |S| · |T |. Coja-Oghlan et al. [CCF09] generalizes weak regularity lemma to
matrices where the density of each A(S, T ) is within a constant factor, C, of the

density of A, for any S, T such that |S|, |T | ≥ Ω(n/2C
2

). But, if A represents the
adjacency matrix of a graph that is a union of a constant number of constant
degree expanders, then although A has a bounded threshold rank, it doesn’t
satisfy the boundedness property.

Table 1. A comparison between previous algorithms applied to Max Cut and our
algorithm. [BRS11] needs to solve r rounds of Lasserre hierarchy, for r = O(k/ε4).

Reference Running time Parameter k

[BRS11]* 2O(k/ε4) · poly(n) # of eigenvalues not in range [−c · ε2, c · ε2], c > 0

[GS11] nO(k/ε2) # of eigenvalues ≤ −ε/2
[GS12] 2k/ε

3 · nO(1/ε) # of eigenvalues ≤ −ε/2
this paper 2Õ(k1.5/ε3) + poly(n) sum of squares of eigenvalues not in range [−ε/8, ε/8]

Table 1 gives a comparison between previous algorithms applied to Max Cut
and our algorithm. Unlike the previous algorithms, our algorithm rounds the
solution to a fixed size LP, as opposed to a SDP hierarchy. The advantages over
previous algorithms, besides the simplicity of the algorithm, is a faster running
time and the dependency on a potentially smaller theshold-rank parameter, be-
cause the running time of our algorithm depends on the sum of squares of eigen-
values outside of a certain range, rather than the number of such eigenvalues.
(recall that the eigenvalues of D−1/2AD−1/2 are in the range [−1, 1].)

We now give a precise statement of our results, after introducing some notation.
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2 Statement of Results

2.1 Notations

Let G = (V,E) be a (weighted) undirected graph with n := |V | vertices. Let
A be the adjacency matrix of G. For a vertex u ∈ V , let d(u) :=

∑
v∼uA(u, v)

be the degree of u. For a set S ⊂ V , let the volume of S be the summation
of vertex degrees in S, d(S) =

∑
v∈S d(v), and and let m := d(V ). Let D be

the diagonal matrix of degrees. For any matrix M ∈ R
V×V , we use MD to

denote the symmetric matrix D−1/2MD−1/2. Observe that if G is a d-regular
graph, then MD = M/d. We call AD the normalized adjacency matrix of G. It
is straightforward to see that all eigenvalues of AD is contained in the interval
[−1, 1].

For two functions f, g ∈ R
V , let 〈f, g〉 := ∑

v∈V f(v)g(v). Also, let f ⊗ g be
the tensor product of f, g; i.e., the matrix in R

V×V such that (u, v) entry is
f(u) · g(v). For a function f ∈ R

V , and S ⊆ V let f(S) :=
∑

v∈S f(v).
For a set S ⊆ V , let 1S be the indicator function of S, and let

dS(v) :=

{
d(v) v ∈ S
0 otherwise.

For any two sets S, T ⊆ V , and α ∈ R, we use the notation CUT(S, T, α) :=
α(dS ⊗ dT ) to denote the matrix corresponding to the cut (S, T ), where (u, v)
entry of the matrix is αd(u) ·d(v) if u ∈ S, v ∈ T and zero otherwise. We remark
that CUT(S, T, α) is not necessarily a symmetric matrix.

Definition 1 (Matrix Norms). For a matrix M ∈ R
V×V , and S, T ⊆ V , let

M(S, T ) :=
∑

u∈S,v∈T
Mu,v.

The Frobenius norm and the cut norm are defined as follows:

‖M‖F :=

√∑

u,v

M2
u,v,

‖M‖C := max
S,T⊆V

|M(S, T )|

Definition 2 (Sum-Squares Threshold Rank). For any unweighted graph
G, with normalized adjacency matrix AD, let λ1, . . . , λn be the eigenvalues of AD
with the corresponding eigenfunctions f1, . . . , fn. For δ > 0, the δ sum-squares
threshold rank of A is defined as

tδ(AD) :=
∑

i:|λi|>δ
λ2i .

Also, the δ threshold approximation of A is defined as,

Tδ(AD) :=
∑

i:|λi|>δ
λifi ⊗ fi.
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2.2 Matrix Decomposition Theorem

The following matrix decomposition theorem is the main technical result of this
paper.

Theorem 1. For any graph G, and ε > 0, let k := tε/2(AD). There is a algorithm

that writes A as a linear combination of cut matrices,W (1),W (2), . . . ,W (σ), such
that σ ≤ 16k/ε2, and

∥
∥
∥A−W (1) − . . .−W (σ)

∥
∥
∥
C
≤ εm,

where eachW (i) is a cut matrix CUT(S, T, α), for some S, T ⊆ V , such that |α| ≤√
k/m. The running time of the algorithm is polynomial in n, k, 1/ε.

2.3 Algorithmic Applications

Our main algorithmic application of Theorem 1 is the following theorem that ap-

proximates any cut on low threshold rank graphs with a running time 2Õ(k1.5/ε3)+
poly(n).

Theorem 2. Let G = (V,E), and for a given 0 < ε, let k := tε/8(AD). There
is a randomized algorithm such that for either of maximum cut, the minimum

cut problem on sets of volume Γ , in time 2Õ(k1.5/ε3) + poly(n), with constant
probability finds a set S such that |d(S) − Γ | ≤ εm and for any S∗ of size
d(S∗) = Γ ,

A(S, S) ≥ A(S∗, S∗)− εm
if it is a maximization problem, otherwise,

A(S, S) ≤ A(S∗, S∗) + εm.

We can use the above theorem to provide a PTAS for maximum cut, maximum
bisection, and minimum bisection problems.

Corollary 1. Let G = (V,E), and for a given ε > 0, let k := tε/8(AD). There
is a randomized algorithm that in time 2Õ(k1.5/ε3)+poly(n) finds an εm additive
approximation of the maximum cut.

Proof. We can simply guess the size of the optimum within an εm/2 additive
error and then use Theorem 2. �

Corollary 2. Let G = (V,E), and for a given ε > 0, let k := tε/8(AD). For
any of the maximum bisection and minimum bisection problems, there is a ran-

domized algorithm that in time 2Õ(k1.5/ε3) + poly(n) finds a cut (S, S) such that
|d(S) −m/2| ≤ εm and that A(S, S) provides an εm additive approximation of
the optimum.

Proof. For the maximum/minimum bisection the optimum must have size m/2.
So we can simply use Theorem 2 with Γ = m/2. �
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We remark although in the literature a bisection is typically defined as the cut
with equal number of vertices in the both sides, above corollary finds a cut with
(approximately) equal volume. This is a limitation of spectral algorithms (c.f.
Cheeger’s inequality for finding the minimum bisection). Nonetheless, the appli-
cations are very similar (e.g. we can use above corollary in divide and conquer
algorithms to partition the graph into small pieces with few edges in between).

3 Regularity Lemma for Low Threshold Rank Graphs

In this section we prove Theorem 1. The first step is to approximate A by a low
rank matrix B. In the next lemma we construct B such that the value of any
cut in A is approximated within an small additive error in B.

Lemma 1. Let A be the adjacency matrix of G. For 0 ≤ δ < 1, let

B := D1/2Tδ(AD)D1/2.

Then, ‖A−B‖C ≤ δm.

Proof. Let λ1, . . . , λn be the eigenvalues of AD, with the corresponding eigen-
functions f1, . . . , fn. For any S, T ⊆ V , we have

〈1S , (A−B)1T 〉 = 〈D1/21S , (A−B)DD1/21T 〉
= 〈
√
dS , (AD − Tδ(AD))

√
dT 〉

≤ δ
∑

i:|λi|≤δ
〈
√
dS , fi〉〈

√
dT , fi〉

≤ δ
√ ∑

i:|λi|≤δ
〈
√
dS , fi〉2 ·

√ ∑

i:|λi|≤δ
〈
√
dT , fi〉2

≤ δ
∥
∥
∥
√
dS

∥
∥
∥
∥
∥
∥
√
dT

∥
∥
∥ ≤ δ

∥
∥
∥
√
dV

∥
∥
∥
2

= δm,

where the second inequality follows by the Cauchy-Schwarz inequality. The
lemma follows by noting the fact that ‖A−B‖C is the maximum of the above
expression for any S, T ⊆ V . �
By the above lemma if we approximateB by a linear combination of cut matrices,
that also is a good approximation of A. Moreover, since tδ(AD) = tδ(BD), B has
a small sum-square threshold rank iff A has a small sum-square threshold rank.

Lemma 2. For any graph G with adjacency matrix A, and δ > 0, let B :=
D1/2Tδ(AD)D1/2. Then,

‖BD‖2F = tδ(AD).
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Proof. The lemma follows from the fact that the square of the frobenius norm
of any matrix is equal to the summation of square of eigenvalues. If λ1, . . . , λn
are the eigenvalues of AD, then

‖B‖2F = traceB2 =
∑

|λi|>δ
λ2i = tδ(AD) .

�
The next proposition is the main technical part of the proof of Theorem 1.
We show that we can write any (not necessarily symmetric) matrix B as a

linear combination of O(‖B‖2F /ε2) cut matrices such that the cut norm of B
is preserved within an additive error of εm. The proof builds on the existential
theorem of Frieze and Kanan [FK99, Theorem 7].

Proposition 1. For any matrix B ∈ R
V×V , k = ‖BD‖2F , and ε > 0, there exist

cut matrices W (1),W (2), . . . ,W (σ), such that σ ≤ 1/ε2, and for all S, T ⊆ V ,

∣
∣
∣
(
B −W (1) −W (2) − . . .−W (σ)

)
(S, T )

∣
∣
∣ ≤ ε

√
k · d(S) · d(T ),

where each W (i) is a cut matrix CUT(S, T, α), for some S, T ⊆ V , and α ∈ R.

Proof. Let R(0) = B. We use the potential function h(R) := ‖RD‖2F . We show

that as long as ‖R‖C > ε
√
km, we can choose cut matrices iteratively while

maintaining the invariant that each time the value of the potential function
decreases by at least ε2h(B). Since h(R(0)) = h(B), after at most 1/ε2 we obtain
a good approximation of B.

Assume that after t < 1/ε2 iterations, R(i) = B −W (1)− . . .−W (i). Suppose
for some S, T ⊆ V ,

∣
∣
∣R(i)(S, T )

∣
∣
∣ > ε

√
h(B) · d(S) · d(T ). (1)

Choose W (i+1) = CUT(S, T, α), for α = R(i)(S, T )
/
d(S)d(T ), and let R(i+1) =

R(i) −W (i+1). We have,

h(R(i+1))− h(R(i)) =
∑

u∈S,v∈T

(R
(i)
u,v − αd(u)d(v))2 −R(i)

u,v

2

d(u)d(v)

= −2αR(i)(S, T ) + α2d(S)d(T )

=
−R(i)(S, T )2

d(S)d(T )
≤ −ε2 · h(B),

where the second to last equation follows from the definition of α, and the last
equation follows from equation (1). Therefore, after at most σ ≤ 1/ε2 iterations,
(1) must hold for all S, T ⊆ V . �



310 S. Oveis Gharan and L. Trevisan

Although the previous proposition only proves the existence of a decomposi-
tion into cut matrices, we can construct such a decomposition efficiently using
the following nice result of Alon and Naor [AN06] that gives a consant factor
approximation algorithm for the cut norm of any matrix.

Theorem 3 (Alon and Naor [AN06]). There is a polynomial time random-
ized algorithm such that for any given A ∈ R

V×V , with high probability, finds
sets S, T ⊆ V , such that

|A(S, T )| ≥ 0.56 ‖A‖C .
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let δ := ε/2, and B := D1/2Tδ(AD)D1/2. By Lemma 1, we
have that ‖A−B‖C ≤ εm/2. So we just need to approximate B by a set of cut

matrices within an additive error of εm/2. For a matrix R, let h(R) := ‖RD‖2F .
By Lemma 2 we have h(B) = k.

Let ε′ := ε/
√
4k. We use the proof strategy of Proposition 1. Let R(i) =

B −W (1) − . . .−W (i). If
∥
∥R(i)

∥
∥
C
≥ ε′
√
km, then by Theorem 3 in polynomial

time we can find S, T ⊆ V such that
∣
∣
∣R(i)(S, T )

∣
∣
∣ ≥ ε′ ·

√
k ·m/2 ≥ ε′ ·

√
h(B) ·m/2. (2)

Choose W (i+1) = CUT(S, T, α), for α = R(i)(S, T )/m2, and let R(i+1) = R(i) −
W (i+1). We get,

h(R(i+1))−h(R(i)) = −2αR(i)(S, T )+α2d(S)d(T ) ≤ −R
(i)(S, T )2

m2
≤ − ε

′2 · h(B)

4
.

Since h(R(0)) = h(B), after σ ≤ 4/ε′2 = 16k/ε2, we have
∥
∥R(σ)

∥
∥
C
≤ ε′
√
km,

which implies that
∥
∥
∥A−W (1) − . . .−W (σ)

∥
∥
∥
C
≤ ‖A−B‖C +

∥
∥
∥B −W (1) − . . .−W (σ)

∥
∥
∥
C
≤ εm.

This proves the correctness of the algorithm. It remains to upper bound α. For
each cut matrix W (i) = CUT(S, T, α) constructed throughout the algorithm we
have

|α| = |R
(i)(S, T )|
m2

=
1

m2

∣
∣
∣
∣
∣
∣

∑

u∈S,v∈T
R(i)
u,v

√
d(u)d(v)

√
d(u)d(v)

∣
∣
∣
∣
∣
∣

(3)

≤ 1

m2

√
√
√
√

∑

u∈S,v∈T

R
(i)
u,v

2

d(u)d(v)

√
d(S)d(T )

≤
√
h(R(i))

m
≤
√
h(B)

m
=

√
k

m
.

where the first inequality follows by the Cauchy-Schwarz inequality, the second
inequality uses d(S), d(T ) ≤ m, and the last inequality follows by the fact that
the potential function is decreasing throughout the algorithm. This completes
the proof of theorem. �
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4 Fast Approximation Algorithm for Low Threshold
Rank Graphs

In this section we prove Theorem 2. First, by Theorem1 in time poly(n, 1/ε) we
can find cut matricesW (1), . . . ,W (σ) for σ = O(k/ε2), such that for all 1 ≤ i ≤ t,
W (i) = CUT(Si, Ti, αi), αi ≤

√
k/m, and

‖A−W‖C ≤ εm/4,

where W :=W (1) + . . .+W (σ). It follows from the above equation that for any
set S ⊆ V ,

|A(S, S)−W (S, S)| = |A(S, S)−
σ∑

i=1

αi · d(S ∩ Si) · d(S ∩ Ti)| ≤ εm

4
. (4)

Fix S∗ ⊆ V of size d(S∗) = Γ (think of (S∗, S∗) as the optimum cut), and let
s∗i := d(Si ∩ S∗), and t∗i := d(Ti ∩ S∗). Observe that by equation (4),

∣
∣
∣
∣
∣
A(S∗, S∗)−

σ∑

i=1

αis
∗
i t
∗
i

∣
∣
∣
∣
∣
≤ εm

4
. (5)

Let αmax := max1≤i≤σ |αi|. Choose Δ = Θ(ε3m/k1.5) such that

Δ ≤ min
{ε3 ·m

48
,

ε

48αmax · σ
}
. (6)

Note that this is achievable since k ≥ 1.
We define an approximation of s∗i , t

∗
i by rounding them down to the nearest

multiple of Δ, i.e., s̃∗i = Δ�s∗i /Δ�, and t̃∗i = Δ�t∗i /Δ�. We use s̃∗, t̃∗ to denote
the vectors of the approximate values. It follows that we can obtain a good
approximation of the size of the cut (S∗, S∗) just by guessing the vectors s̃∗, and
t̃∗. Since |s∗i − s̃∗i | ≤ Δ and |t∗i − t̃∗i | ≤ Δ, we get,

σ∑

i=1

|s∗i t∗iαi− s̃∗i t̃∗iαi| ≤ σ ·αmax(2 ·Δ ·m+Δ2) ≤ 3αmax ·σ ·Δ ·m ≤ ε ·m/16. (7)

where we used (6).
Observe that by equations (4),(5),(7), if we know the vectors s̃∗, t̃∗, then we

can find A(S∗, S∗) within an additive error of εm/2. Since s̃∗i , t̃
∗
i ≤ m, there are

only O(m/Δ) possibilities for each s̃∗i and t̃∗i . Therefore, we afford to enumerate
all possible values of them in time (m/Δ)2σ , and choose the one that gives the
largest cut. Unfortunately, for a given assignment of s̃∗, t̃∗ the corresponding cut
(S∗, S∗) may not exist. Next we give an algorithm that for a given assignment
of s̃∗, t̃∗ finds a cut (S, S) such that A(S, S) =

∑
i s̃
∗
i t̃
∗
iαi ± εm, if one exists.

First we distinguish the large degree vertices of G and simply guess which side
they are mapped to in the optimum cut. For the rest of the vertices we use the
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solution of LP(1). Let U := {v : d(v) ≥ Δ} be the set of large degree vertices.
Observe that |U | ≤ m/Δ. Let P be the coarsest partition of the set V \ U such
that for any 1 ≤ i ≤ σ, both Si \U and Ti \U can be written as a union of sets
in P , and for each P ∈ P , d(P ) ≤ Δ. Observe that |P| ≤ 22σ+m/Δ. For a given
assignment of s̃∗, t̃∗, first we guess the set of vertices in U that are contained in
S∗, US∗ := S∗ ∩ U , and US∗ := U \ US∗ . For the rest of the vertices we use the
linear program LP(1) to find the unknown d(S∗ ∩ P ).

LP(1)

0 ≤ yP ≤ 1 ∀P ∈ P
Γ − εm/2 ≤

∑

P

yPd(P ) + d(US∗) ≤ Γ + εm/2 (8)

s̃∗i ≤
∑

P⊆Si

yPd(P ) + d(US∗ ∩ Si) ≤ s̃∗i +Δ ∀1 ≤ i ≤ σ

(9)

t̃∗i ≤
∑

P⊆Ti

(1− yP )d(P ) + d(US∗ ∩ Ti) ≤ t̃∗i +Δ ∀1 ≤ i ≤ σ.

(10)

Observe that yP = d(S∗∩P )
d(P ) is a feasible solution to the linear program. In the

next lemma which is the main technical part of the analysis we show how to
construct a set based on a given solution of the LP.

Lemma 3. There is a randomized algorithm such that for any S∗ ⊂ V , given
s̃∗i , t̃

∗
i and US∗ returns a random set S such that

P

[

W (S, S) ≥ A(S∗, S∗)− 3εm

4
∧ |d(S)− Γ | ≤ εm

]

≥ ε

10
(11)

P

[

W (S, S) ≤ A(S∗, S∗) + 3εm

4
∧ |d(S)− Γ | ≤ εm

]

≥ ε

10
. (12)

Proof. Let y be a feasible solution of LP(1). We use a simple independent
rounding scheme to compute the random set S. We always include US∗ in S. For
each P ∈ P , we include P in S, independently, with probability yP . We prove
that S satisfies lemma’s statements. First of all, by linearity of expectation,

E [d(S ∩ Si)] = d(US∗) +
∑

P⊆Si

yPd(P ), and

E
[
d(S ∩ Ti)

]
= d(US∗) +

∑

P⊆Ti

(1 − yP )d(P ).

In the following two claims, first we show that with high probability the size
of d(S) is close to Γ . Then, we upper bound the expected value of W (S, S) −
A(S∗, S∗).
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Claim 1
P [|d(S)− d(S∗)| ≥ εm] ≤ ε

8
,

Proof. We use the theorem of Hoeffding to prove the claim:

Theorem 4 (Hoeffding Inequality). Let X1, . . . , Xn be independent random
variables such that for each 1 ≤ i ≤ n, Xi ∈ [0, ai]. Let X :=

∑n
i=1Xi. Then,

for any ε > 0

P [|X − E [X ] | ≥ ε] ≤ 2 exp

(

− 2ε2
∑n

i=1 a
2
i

)

.

Now, by the independent rounding procedure, we obtain

P [|d(S)− E [d(S)] | ≥ εm/2] ≤ 2 exp

(

− ε2m2

2
∑
P d(P )

2

)

≤ 2 exp

(

− ε
2m2

2mΔ

)

≤ 2 exp(−16/ε) ≤ ε

8
.

where the second inequality follows by the fact that d(P ) ≤ Δ and
∑
P d(P ) ≤ m

and the third inequality follows by (6). The claim follows from the fact that by
(8), |E [d(S)]− Γ | ≤ εm/2. �

Claim 2 ∣
∣E
[
W (S, S)

]−A(S∗, S∗)∣∣ ≤ εm

2
.

Proof. First, observe that

E
[
W (S, S)

]
= E

[
σ∑

i=1

d(S ∩ Si)d(S ∩ Ti)αi
]

=

σ∑

i=1

αiE

⎡

⎣(
∑

P∈P:P⊆Si

d(P )I [P ⊆ S])(
∑

Q∈P:Q⊆Ti

d(Q)I
[
Q ⊆ S])

⎤

⎦

+

σ∑

i=1

αi(d(US∗ ∩ Si)E
[
d(S ∩ Ti)

]
+ d(US∗ ∩ Ti)E [d(S ∩ Si)])

=

σ∑

i=1

αi
∑

P⊆Si,Q⊆Ti

d(P )d(Q)E
[
I [P ⊆ S] I [Q ⊆ S]]

+

σ∑

i=1

αi(d(US∗ ∩ Si)ti + d(US∗ ∩ Ti)si). (13)

where si := E [d(S ∩ Si)] and ti := E
[
d(S ∩ Ti)

]
.

Since the event that P ⊆ S is independent of Q ⊆ S, iff P �= Q we get

E
[
I [P ⊆ S] I [Q ⊆ S]] =

{
yP (1− yQ) ifP �= Q

0 otherwise.
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Then, by (13) and above equation,

E
[
W (S, S)

]
=

σ∑

i=1

αisiti −
σ∑

i=1

αi
∑

P∈P
yP (1 − yP )d(P )2. (14)

On the other hand, by equations (9) and (10), for all 1 ≤ i ≤ σ, we get s̃∗i ≤
si ≤ s̃∗i +Δ and t̃∗i ≤ ti ≤ t̃∗i +Δ. Hence, similar to equation (7) we can show,

σ∑

i=1

|αisiti − αis̃∗i t̃∗i | ≤
εm

8
. (15)

Therefore, using equation (5) we get
∣
∣
∣E
[
W (S, S)

] − A(S∗, S∗)
∣
∣
∣

≤
∣
∣
∣E
[
W (S, S)

] −
σ∑

i=1

αis
∗
i t
∗
i )
∣
∣
∣+

εm

4

=
∣
∣
∣

σ∑

i=1

(αisiti − αis∗i t∗i )−
σ∑

i=1

∑

P∈P
αiyP (1− yP )d(P )2

∣
∣
∣+

εm

4

≤
σ∑

i=1

|αisiti − αis̃∗i t̃∗i |+
σ∑

i=1

|αis̃∗i t̃∗i − αis∗i t∗i |+ σαmaxmΔ+
εm

4

≤ εm

2
,

where the equality follows by (14), the second inequality follows by the fact that
d(P ) ≤ Δ for all P ∈ P and

∑
P d(P ) ≤ m, and the last inequality follows by

equations (15) and (7). This proves the claim. �
Now we are ready finish the proof of Lemma 3. Here, we prove (11). Equation

(12) can be proved similarly. By Claim 2,

A(S∗, S∗)− εm

2
≤ E

[
W (S, S)

]

≤ E
[
W (S, S) | |d(S)− Γ | ≤ εm]+mP [|d(S)− Γ | > εm]

≤ E
[
W (S, S) | |d(S)− Γ | ≤ εm]+ εm

8
.

where the second inequality holds by the fact that the size of any cut in G is at
most m/2, thus by (4) for any S ⊆ V , W (S, S) ≤ εm/4 + m/2 ≤ m, and the
last inequality follows by Claim 1. Hence,

E
[
W (S, S) | |d(S)− Γ | ≤ εm] ≥ A(S∗, S∗)− 5εm

8

Since W (S, S) ≤ m,

P

[

W (S, S) ≥ A(S∗, S∗)− 3εm

4

∣
∣
∣ |d(S)− Γ | ≤ εm

]

≥ ε

8

Therefore, (11) follows by an application of Claim 1. �
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Our rounding algorithm is described in Algorithm 1. First, we prove the correct-
ness, then we calculate the running time of the algorithm. Let S be the output set
of the algorithm. First, observe that the output always satisfy |d(S)− Γ | ≤ εm.
Now let A(S∗, S∗) be the maximum cut among all sets of size Γ (the minimiza-
tion case can be proved similarly). In the iteration that the algorithm correctly
guesses s̃∗i , t̃

∗
i , US∗ , there exists a feasible solution y of LP(1). by Lemma 3, for

all 1 ≤ i ≤ 10/ε,

P

[

W (Ry(i), Ry(i)) ≥ A(S∗, S∗)− 3εm

4
∧ |d(Ry(i))− Γ | ≤ εm

]

≥ ε

10

Since we take the best of 10/ε samples, with probability 1/e the output set S
satisfiesW (S, S) ≥ A(S∗, S∗)−3εm/4. Therefore, by (4), A(S, S) ≥ A(S∗, S∗)−
εm. This proves the correctness of the algorithm.

Algorithm 1. Approximate Maximum Cut (S, S) such that d(S) = Γ ± εm
for all possible values of s̃∗i , t̃

∗
i , and US∗ ⊆ U do

if there is a feasible solution y of LP(1) then
for i = 1→ 10/ε do

Ry(i)← US∗ .
For each P ∈ P include P in Ry(i), independently, with probability yP .

end for
end if

end for
return among all sets Ry(i) sampled in the loop that satisfy |d(Ry(i))− Γ | ≤ εm,
the one that W (Ry(i), Ry(i)) is the maximum.

It remains to upper-bound the running time of the algorithm. First observe
that if |U | = O(k/ε2), the running time of the algorithm is dominated by the
time it takes to compute a feasible solution of LP(1). Since the size of LP is

2Õ(k/ε2), in this case Algorithm 1 terminates in time 2Õ(k/ε2). Note that for any
sample set Ry(i), both d(Ry(i)) and W (Ry(i), Ry(i)) can be computed in time

2Õ(k/ε2), once we know |Ry(i) ∩ P | for any P ∈ P .
Otherwise if |U | � k/ε2, the dependency of the running time of the algorithm

to ε, k is dominated by the step where we guess the subset of US∗ = U ∩ S∗.
Since αmax ≤

√
k/m and σ = O(k/ε2), we get

|U | ≤ m

Δ
≤ 12mαmaxσ

ε
= O

(
k1.5

ε3

)

.

Therefore, Algorithm 1 runs in time 2Õ(k1.5/ε3). Since it takes poly(n, k, 1/ε) to
compute the decomposition into W (1), . . . ,W (σ), the the total running time is

2Õ(k1.5/ε3) + poly(n). This completes the proof of Theorem 2.
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Abstract. We introduce approximation algorithms and strong NP-
completeness results for interdiction problems on planar graphs. Inter-
diction problems are leader-follower games in which the leader is allowed
to delete a certain number of edges from the graph in order to maximally
impede the follower, who is trying to solve an optimization problem on
the impeded graph. We give a multiplicative (1 + ε)-approximation al-
gorithm for the weighted maximum matching interdiction problem on
weighted planar graphs. The algorithm runs in pseudo-polynomial time
for each fixed ε > 0. We also show that weighted maximum matching
interdiction remains strongly NP-complete on planar graphs. In the pro-
cess, we show that the budget-constrained flow improvement, directed
shortest path interdiction, and minimum perfect matching interdiction
problems are strongly NP-complete on planar graphs. To our knowledge,
our budget-constrained flow improvement result is the first planar NP-
completeness proof that uses a one-vertex crossing gadget.
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graphs, crossing gadget, approximation scheme.
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on a graph, one can formulate an interdiction variant by creating a leader-follower
game. In edge interdiction problems, every edge of the graph has an interdiction
cost associated with it. The leader is given a budget and is allowed to delete any
set of edges with total cost less than the given budget. The follower then solves
the given optimization problem on the remaining graph. The leader wants to
pick the set of edges to delete that impedes the follower as much as possible.

In this paper, we focus on edge interdiction problems relating to shortest
path interdiction, maximum flow interdiction, and matching interdiction. We
give formal definitions for these problems here.

For a given directed graph G with a nonnegative edge capacities, let α(G, s, t)
denote the value of the maximum flow from s to t. The Budget-Constrained
Flow Improvement Problem (BCFIP) [20], a problem that is closely related to
the maximum flow interdiction problem, is defined as follows:

Input: A directed graph G = (V,E) with a capacity function w : E → Z≥0, a
transport cost function c : E → Z≥0, an integer budget B > 0, and two distinct
distinguished nodes s, t ∈ V .

Output: A subsetN ⊆ E with c(N) ≤ B that maximizes α(G[N ], s, t), where
G[N ] denotes the subgraph of G induced by the edges in N .

Let αEB(G, s, t) denote the optimal value for BCFIP.
Let ρ(G, u, v) denote the total weight of the shortest path between u and

v in an edge-weighted graph G. The Directed Shortest Path Edge Interdiction
Problem (DSPEIP) is defined as follows:

Input: An edge-weighted directed graph G = (V,E) with a weight function
w : E → Z≥0, an interdiction cost function c : E → Z≥0, an integer interdiction
budget B > 0, and two distinct nodes u, v ∈ V .

Output: A subset I ⊆ E with c(I) ≤ B that maximizes ρ(G\I, u, v).

Let ρEB(G, u, v) denote the optimal value for DSPEIP.
A perfect matching in a graph is a matching such that every vertex in the

graph is incident with some edge in the matching. For an edge-weighted graph
G, let μ(G) denote the weight of the minimum weight perfect matching if it
exists. If no perfect matching exists in G, let μ(G) = ∞. An instance of the
Minimum Perfect Matching Edge Interdiction Problem (MPMEIP) is specified
as follows:

Input: An edge-weighted graph G = (V,E) with edge weight function w :
E → Z≥0, interdiction cost function c : E → Z≥0, and interdiction budget
B > 0. It is assumed that, for every set I ⊆ E with c(I) ≤ B, G\I has a perfect
matching.

Output: A subset I ⊆ E with c(I) ≤ B that maximizes μ(G\I).

Let μEB(G) denote the optimal value for MPMEIP.
A matching in a graph is a set of edges such that no two edges share an

endpoint. For an edge-weighted graph G = (V,E) with edge weight function
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w : E → Z≥0, let ν(G) be the weight of a maximum weight matching in G. The
Maximum Matching Edge Interdiction Problem (MMEIP), originally defined by
Zenklusen in [23], is defined as follows:

Input: An edge-weighted graph G = (V,E) with a weight function w : E →
Z≥0, an interdiction cost function c : E → Z≥0, and an integer interdiction
budget B > 0.

Output: A subset I ⊆ E with c(I) ≤ B that minimizes ν(G\I).

Let νEB (G) denote the optimal value for MMEIP.

1.1 Prior Work

Interdiction problems have practical applications in assessing the robustness of
infrustructure networks. Some previous applications include drug trafficking [22],
military planning [9], protecting utility networks from terrorist attacks [14], and
controlling the spread of an infection [2].

Many researchers have worked towards understanding the complexity of inter-
diction problems on general graphs. BCFIP is known to be strongly NP-complete
on bipartite graphs and weakly NP-complete on series parallel graphs [20]. Di-
rected shortest path interdiction is strongly NP-complete on general graphs [16]
and is strongly NP-hard to approximate within any factor better than 2 on gen-
eral graphs [15]. A node-wise variant of the shortest path interdiction problem is
solvable in polynomial time [15]. Heuristic solutions are known for shortest path
interdiction. Israeli and Wood [13] gave a MIP formulation and used Benders’
Decomposition to solve it efficiently on graphs with fewer than 5000 vertices.

Themaximumflow interdiction problem is stronglyNP-hard on general graphs,
though a continuous variant of the problem has a pseudoapproximation that for
every ε > 0 either returns a solution within a 1 + 1

ε -factor of the optimum or
returns a better than optimal solution that uses at most 1+ ε times the allocated
budget [5, 22]. A standard linear programming relaxation of the maximum flow
interdiction problem, even after adding two families of valid inequalities, has an
integrality gap of Ω(n1−ε) for all ε ∈ (0, 1) [1].

MMEIP is strongly NP-complete on bipartite graphs, even with unit edge
weights and interdiction costs. Zenklusen [23] introduced a constant factor ap-
proximation algorithm for MMEIP on graphs with unit edge weights. This
algorithm makes use of iterative LP rounding. Dinitz and Gupta provided a
constant-factor approximation algorithm for a generalization of matching inter-
diction called packing interdiction[6]. Zenklusen [23] also showed that MMEIP
is solvable in pseudo-polynomial time on graphs with bounded treewidth.

Fewer researchers have worked on interdiction problems restricted to planar
graphs. Phillips [18] gave a pseudo-polynomial time algorithm for the directed
maximum flow edge interdiction problem. Zenklusen [24] extended this algorithm
to allow for some vertex deletions and showed that the planar densest k-subgraph
problem reduces to maximum flow interdiction with multiple sources and sinks
on planar graphs. Zenklusen [23] left the complexity of matching interdiction on
planar graphs as an open problem.
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1.2 Our Contributions

In this paper, we give a pseudo-polynomial time approximation scheme for
MMEIP on undirected planar graphs. A pseudo-polynomial time approximation
scheme (Pseudo-PTAS) is an algorithm that takes a parameter ε ∈ (0, 1) as ad-
ditional input and outputs a solution with objective value within a multiplicative
(1 + ε)-factor of the optimum (or a (1 − ε) factor for maximization problems).
Furthermore, the algorithm terminates in pseudo-polynomial time for fixed ε. In
Section 3, we give an algorithm that achieves the following guarantee:

Theorem 1. Let I be an edge set with c(I) ≤ B that minimizes ν(G\I). There
is an algorithm that, for every ε > 0, returns a set Î of edges for which

ν(G\Î) ≤ (1 + ε)ν(G\I)
and c(Î) ≤ B. Furthermore, for every fixed ε, the algorithm runs in polynomial
time with respect to the size of the graph, the sum of the edge weights, and the
sum of the interdiction costs of all edges (pseudo-polynomial time).

We also show that BCFIP, DSPEIP, MPMEIP, and MMEIP are strongly NP-
complete even on planar graphs. The proofs of Theorems 3, 4, and 5 are deferred
to the full version of the paper [17], while the proof of Theorem 2 is given in
Section 4.

Theorem 2. Given an integer budget B > 0, an integer k ≥ 0, a directed planar
graph G with polynomially-bounded edge integer capacities and edge transport
costs (w(e), c(e) ≤ P (|V (G)|) for all e ∈ E(G) and a fixed polynomial P : Z →
Z), and two vertices s and t adjacent to a common face, it is NP-complete to
decide whether or not αEB(G, s, t) > k.

Theorem 3. Given an edge-weighted directed planar graph G with polynomially-
bounded integer edge weights and interdiction costs, an integer B > 0, an integer
k > 0, and two vertices u, v ∈ V (G), it is NP-complete to decide whether or not
ρEB(G, u, v) > k.

Theorem 4. Given an edge-weighted undirected bipartite planar graph G with
polynomially-bounded integer edge weights and interdiction costs, an integer B >
0, and an integer k > 0, it is NP-complete to decide whether or not μEB(G) > k.

Theorem 5. Given an edge-weighted undirected bipartite planar graph G with
polynomially-bounded integer edge weights and interdiction costs, an integer B >
0, and an integer k > 0, it is NP-complete to decide whether or not νEB (G) < k.

The strong NP-completeness of MMEIP on planar graphs implies that our
Pseudo-PTAS is optimal with respect to approximation ratio, resolving the ques-
tion asked by Zenklusen [23] about the complexity of MMEIP on planar graphs.

To obtain our Pseudo-PTAS for MMEIP, we extend Baker’s technique for
interdiction problems on planar graphs. We give two simple conditions for local
maximization problems on graphs that guarantee the existence of a (Pseudo-
)PTAS for their interdiction variants. Let ζ be a real-valued function on the set
of undirected graphs with the following two properties:
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1. (P1) For any subgraph H ⊆ G, ζ(H) ≤ ζ(G).
2. (P2) For a partition of the edge set E1∪E2 = E of G, ζ(G[E1])+ζ(G[E2]) ≥
ζ(G), where G[E1] denotes the subgraph of G induced by the edges in E1.

Consider an interdiction cost function c : E → Z≥0. If a set I ⊆ E with c(I) ≤
B that minimizes ζ(G\I) (the interdiction variant of ζ) can be computed in
(pseudo-)polynomial time for graphs G with bounded treewidth, then we show
that there is a (Pseudo-)PTAS for the interdiction variant of ζ on planar graphs.
Maximum weight matchings satisfy these conditions, which we show gives a
Pseudo-PTAS for MMEIP.

We show that the BCFIP problem is strongly NP-complete on directed planar
graphs with a novel crossing removal technique. We start by offering a new
method for showing that BCFIP is strongly NP-complete on general graphs.
This method uses a reduction from the maximum independent set problem. We
note that if no two crossing edges have the same capacity, then we can add
one vertex at every crossing without changing the value of the maximum flow
in which every edge has no flow or full flow. We exploit the observation by
introducing a sweepline technique that assigns weights and costs to the edges in
order to ensure that an optimal BCFIP flow must use full flow or no flow at all
edges. Our NP-completeness result differs from prior NP-completeness results
on planar graphs (e.g. [8, 7, 21]) in that it uses the specific structure of instances
arising from the maximum independent set problem in order to replace crossings
with just one vertex.

We defer complexity results depending on the strong NP-completeness of pla-
nar BCFIP to the full version [17]. First, we show that the reduction from maxi-
mum flow interdiction (with source and sink on the same face) to multi-objective
shortest path on planar graphs [18] also gives an approximation-preserving re-
duction from planar BCFIP to planar DSPEIP. A well-known reduction from
the shortest path problem to the assignment problem [11] fails to preserve pla-
narity. We give a new approximation-preserving and planarity-preserving reduc-
tion that reduces DSPEIP to MPMEIP. We also reduce MPMEIP to MMEIP on
planar graphs using edge weight manipulations. Our results distinguish BCFIP,
DSPEIP, MPMEIP, and MMEIP from the maximum flow interdiction problem,
which is solvable in pseudo-polynomial time on planar graphs.

In Section 2, we give some notation that we use throughout this paper. In
Section 3, we present our Pseudo-PTAS for MMEIP. In Section 4, we prove
that BCFIP is strongly NP-complete on planar graphs. We conclude this ex-
tended abstract with Section 5, in which we discuss open problems relating to
interdiction.

2 Preliminaries

For a (undirected or directed) graph G, let V (G) denote its vertex set and
E(G) denote its edge set. Edges in a directed graph are denoted by ordered
pairs (u, v) for u, v ∈ V (G), while edges in an undirected graph are denoted
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Problem name General hardness Planar hardness

Max-Flow Interdiction Strongly NP-C Pseudo-polynomial[18]

DSPEIP (2− ε)-inapproximable (NP-H) [15] Strongly NP-C

BCFIP Strongly NP-C [20] Strongly NP-C

MPMEIP (introduced) Strongly NP-C Strongly NP-C

MMEIP Strongly NP-C [23] Strongly NP-C

Problem name General approximation Planar approximation

Max-Flow Interdiction Open 1[18]

DSPEIP Open Open

BCFIP Open Open

MPMEIP (introduced) Open Open

MMEIP O(1) weighted [6], 4 unweighted[23] Pseudo-PTAS

Fig. 1. A summary of known results about the problems we consider. Our results are
displayed in bold. “Open” means that no nontrivial approximation algorithm is known.
“NP-C” abbreviates “NP-complete.” “NP-H” abbreviates “NP-hard.”

by unordered pairs {u, v}. For a (undirected or directed) graph G, let G[U ]
denote the subgraph induced by the vertices in U ⊆ V (G), i.e. the subgraph
of G for which V (G[U ]) = U and E(G[U ]) = {{u, v} ∈ E(G) : u, v ∈ U}
(undirected graph, for a directed graph replace {u, v}with (u, v)). For F ⊆ E(G),
let G[F ] denote the subgraph of G induced by the edges in F , i.e. the graph with
V (G[F ]) = {v ∈ V (G) : ∃w{w, v} ∈ F} (undirected) or V (G[F ]) = {v ∈ V (G) :
∃w(w, v) ∈ F ∨ (v, w) ∈ F} (directed) and E(G[F ]) = F .

For a set S ⊆ V (G), let δ(S) ⊆ E(G) be the set of edges with exactly one
endpoint in S. For a directed graph, let δ+(S) = {(u, v) ∈ E(G) : u ∈ S, v /∈ S}
and let δ−(S) = {(u, v) ∈ E(G) : u /∈ S, v ∈ S}. Note that δ(S) = δ−(S)∪δ+(S)
for any S ⊆ V (G) if G is directed. For a vertex v ∈ V (G), let δ(v) = δ({v}),
δ+(v) = δ+({v}), and δ−(v) = δ−({v}). For any function f : E(G) → R and
F ⊆ E(G), let f(F ) =

∑
e∈F f(e).

For a set S, let 2S denote its power set. For an undirected graph G, a tree
decomposition [19, 10] of G is a pair (T, f : V (T ) → 2V (G)) where T is a tree.
Furthermore, f has the following properties:

– ∪w∈V (T )f(w) = V (G)
– For all {u, v} ∈ V (G), there is some w ∈ V (T ) such that u, v ∈ f(w).
– For any v ∈ V (G), let Uv ⊆ V (T ) be the set of vertices w ∈ V (T ) for which
v ∈ f(w). Then, T [Uv] is connected.

Let kT = maxw∈V (T )(|f(w)| − 1) denote the width of T . The treewidth of G is
the minimum width of any tree decomposition of G.

For an integer k > 0, call an undirected graph G a k-outerplanar graph if it
is planar and every vertex of G is at most k− 1 edges away from a distinguished
face called the infinite face. Bodlaender [4] showed the following theorem:
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Theorem 6. k-outerplanar graphs have treewidth at most 3k− 1. Furthermore,
a tree decomposition of width at most 3k − 1 can be found in O(kn) time.

3 A Pseudo-PTAS for Maximum Matching Interdiction

In this section, we introduce a pseudo-polynomial time approximation scheme
for the maximum matching interdiction problem (MMEIP). We will use many
ideas from Baker’s framework introduced in [3]. First, we will state the following
three properties of maximum weight matchings, which encapsulate our use of
the structure of matchings to obtain a Pseudo-PTAS:

Proposition 1. Let G be an edge-weighted graph with weight function w :
E(G)→ Z≥0 and let H be a subgraph of G. Then, ν(H) ≤ ν(G).
Proposition 2. Let G be an edge-weighted graph with weight function w :
E(G)→ Z≥0. Consider any F ⊆ E(G). Let G1 be the subgraph of G induced by
the edge set F and let G2 be the subgraph of G induced by the edge set E(G)\F .
Then, ν(G) ≤ ν(G1) + ν(G2).

Proposition 3. Let G be an edge-weighted graph with weight function w :
E(G) → Z≥0. Pick any node v ∈ V (G) and do a breadth-first search start-
ing from v and mark the vertices of G with their distance from v. Let Ei be the
set of edges from a vertex marked with i to a vertex marked with i + 1. Fix an

integer k > 1. For all i ∈ {0, 1, . . . , k − 1}, let Fi = ∪�
r−i
k �

j=0 Ei+jk (where r is the
radius of the graph) and let Gi be the subgraph of G induced by Fi. Then,

k−1∑

i=0

ν(Gi) ≤ 2ν(G)

Proof. Note that for k > 1, no edge in Ei+jk shares an endpoint with any edge

in Ei+j′k for j �= j′. Therefore, if Ĝi denotes the subgraph of G induced by Ei,
then

ν(Gi) =

� r−i
k �∑

j=0

ν(Ĝi+jk)

Let F ′ = ∪� r2 �j=0E2j and let F ′′ = ∪�
r−1
2 �

j=0 E2j+1. Let G
′ be the subgraph of G

induced by F ′ and let G′′ be the subgraph of G induced by F ′′. Then, reindexing
shows that

k−1∑

i=0

ν(Gi) =

r∑

j=0

ν(Ĝj) = ν(G′) + ν(G′′) ≤ 2ν(G)

Now, we will use these properties to construct a Pseudo-PTAS. We will use
Zenklusen’s algorithm for bounded treewidth graphs in [23] as a subroutine.
Consider the following algorithm:
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Data: An edge-weighted graph G with edge weight function
w : E(G)→ Z≥0, interdiction cost function c : E(G)→ Z≥0,
interdiction budget B ≥ 0, and an approximation threshold ε > 0

Result: An interdiction set Î ⊆ E(G) with c(Î) ≤ B
Let k = � 2ε ;
Fix an arbitrary vertex v;
Do a BFS of G from v to obtain edge sets {Ei}ri=0;
foreach i ∈ {0, 1, . . . , k − 1} do

Let Fi = ∪�
r−i
k �

j=0 Ei+jk ;

Let Gi be the subgraph of G induced by E(G)\Fi;
Let Hi be the subgraph of G induced by Fi;
for b = 0, b ≤ B, b = b+ 1 do

Run Zenklusen’s Algorithm on Gi with budget b to obtain a set
Iib1 ⊆ E(Gi);
Run Zenklusen’s Algorithm on Hi with budget B − b to obtain a
set Iib2 ⊆ E(Hi);
Let Iib = Iib1 ∪ Iib2;

end

end
Return the set Iib for i ∈ {0, 1, . . . , k − 1} and b ∈ {0, 1, . . . , B} that
minimizes ν(G\Iib);

Algorithm 1. Algorithm for MMEIP on planar graphs

We prove Theorem 1 by proving two theorems about the performance of
Algorithm 1. We restate them here:

Theorem 7 (Approximation guarantee for Algorithm 1). Let I be an

edge set with c(I) ≤ B that minimizes ν(G\I). The set Î returned by Algorithm
1 satisfies

ν(G\Î) ≤ (1 + ε)ν(G\I)
Proof. By Proposition 3 applied to G\I, there is some i such that ν(Hi\I) ≤
2
kν(G\I). Let b = c(I ∩ (E(G)\Fi)). Since c(I) ≤ B, c(I ∩ Fi) ≤ B − b.
Zenklusen’s algorithm returns the optimal interdiction sets on Gi and Hi for
the budgets b and B − b respectively. Therefore, ν(Gi\Iib1) ≤ ν(Gi\I) and
ν(Hi\Iib2) ≤ ν(Hi\I). By Proposition 1, ν(Gi\I) ≤ ν(G\I). Summing inequali-
ties and applying Proposition 2 shows that

ν(G\Iib) ≤ ν(Gi\Iib1) + ν(Hi\Iib2)
≤ ν(Gi\I) + ν(Hi\I)
≤ (1 +

2

k
)ν(G\I)

≤ (1 + ε)ν(G\I)
Since ν(G\Î) ≤ ν(G\Iib), we are done.
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Theorem 8 (Runtime guarantee for Algorithm 1). For fixed ε, this algo-
rithm terminates in pseudo-polynomial time on planar graphs. More precisely,
on planar graphs, it terminates in time

O((2B/ε)(|V (G)|(C + 1)8
2/ε+2

) + (2B/ε)|E(G)|
√
|V (G)|)

where C = w(E(G)).

Proof. Zenklusen’s algorithm [23] has runtime O(|V (G)|(C + 1)2
t+1

) on graphs
with treewidth at most t. The breadth-first search at the beginning of the algo-
rithm takes O(|E| + |V |) time. The innermost for loop is run B + 1 times per
execution of the outermost for loop, which runs at most k ≤ 2

ε + 1 times. By
Theorem 6, the treewidths of Gi and Hi are at most 3k − 1 and 2 respectively.
The computation on Gi dominates the computation on Hi. Using the Hopcroft-
Karp algorithm [12] to find the best interdiction set on the last line of Algorithm
1 gives the last term of the runtime.

4 Strong NP-Hardness of Budget-Constrained Flow
Improvement on Planar Graphs

In this section, we sketch the proof of Theorem 2. We reduce from the maximum
independent set problem on general graphs. Before outlining the proof Theorem
2, we discuss the proof of the following easier result, which was shown using a
different reduction in [20]:

Lemma 1. The decision version of BCFIP is strongly NP-complete on general
directed graphs.

Proof. Since maximum flow is in P, BCFIP is in NP. To show NP-hardness, we
reduce from the maximum independent set problem on general graphs. Consider
an undirected graph G and suppose we are given an integer k > 0 for which we
want to determine if the maximum independent set in G contains more than k
vertices. Create a graph G1 with one vertex for every vertex of G, one vertex
for every edge of G, and two distinguished vertices s and t. The edges in G1 are
split into four sets E1, E2, E3, and E4. There are directed edges in G1 of the
following types:

1. One edge from s to each vertex corresponding to a vertex of G. (E1)
2. For every edge e = {u, v} ∈ E(G), two directed edges (u, e) and (v, e) in
E(G1). (E2)

3. One edge from each vertex corresponding to an edge of G to t. (E3)
4. One edge from each vertex corresponding to a vertex of G to t. (E4)

Let d be the maximum degree of any node in G. The capacity function w1 :
E(G1)→ Z≥0 is:



326 F. Pan and A. Schild

w1(e) =

⎧
⎪⎪⎨

⎪⎪⎩

d : e ∈ E1

1 : e ∈ E2

1 : e ∈ E3

d− degG(η(e)) : e ∈ E4

where η : E4 → V (G) returns the vertex of G corresponding to the left endpoint
of the input edge of G1. The cost function c1 : E(G1)→ Z≥0 is:

c1(e) =

{
1 : e ∈ E1

0 : e /∈ E1

This construction is depicted in Figure 2. The proof of the following proposition
is deferred to the full version of the paper [17].

Proposition 4. αEk (G1, s, t) = kd if and only if there is an independent set in
G of size at least k.

We prove Theorem 2 by removing crossings from G1. First, we will informally
discuss the key idea. Note that the existence of an independent set of size at
least k guaranteed that all edges transfered either no flow or full flow. There is
only enough budget to pay for edges with full flow in the network. This means
that if two edges with different edge weights cross and we add a node at the
intersection of the two edges, there is no way for the flow to “change direction,”
as doing so would leave an edge with partial flow. Since there is not enough
money to pay for edges with partial flow, we ensure that adding a vertex at the
crossing does not change the behavior of the network.

We now describe how to remove crossings from G1 to obtain a graph G2

with an associated capacity function w2 : E(G2) → Z≥0 and cost function
c2 : E(G2) → Z≥0. Every edge in G2 is a segment between two edge crossings
in G1 and originates from a parent edge in G1. The transport cost of an edge
is we(se + 1), where we is the weight and se is the number of sweeplines that e
crosses (not including the endpoints):

1. (Sweepline creation step) Embed G1 in an x − y coordinate system so that
it has the following properties:
– s has coordinates (0, 0)
– t has coordinates (1, 0)
– all right endpoints of edges in E1 (left endpoints of E2 and E4) have
x-coordinate 1

3
– all right endpoints of edges in E2 (left endpoints of E3) have x-coordinate

2
3

– all edges in E1, E2, and E3 are embedded as line segments
– all edges in E4 are embedded so that they do not cross edges in E3

2. (Crossing addition step) Obtain G2 by adding vertices at all edge crossings
in the x−y coordinate embedding of G1. Note that all of the added crossings
will have x-coordinate in the interval (13 ,

2
3 ). These added vertices split edges

of E2 and E3 into child edges. An edge in G2 has a unique parent edge in G1

from which it was obtained by vertex additions at crossings.



Interdiction Problems on Planar Graphs 327

3. (Edge weighting step) Now, construct w2 as follows:

(a) Arbitrarily label the vertices of G1 that correspond to edges of G with
the integers 1 through |E(G)| inclusive.

(b) For any edge e ∈ E(G2) with its parent (a copy of itself) in E1 (within
G1), let w2(e) = |E(G)|2.

(c) For any edge e ∈ E(G2) with its parent in E2, let w2(e) be the label of
the right endpoint of the parent of e in G1.

(d) For any edge e ∈ E(G2) with its parent (a copy of itself) in E3, let w2(e)
be the label of the left endpoint of the parent of e in G1.

(e) For any edge {u, v} ∈ E(G2) with its parent in E4, let

w2({u, v}) = |E(G)|2 −
∑

e∈δ+(u)∩κ(δ+(u)∩E2)

w2(e)

where κ : 2E(G1) → 2E(G2) returns the set of all child edges for a given
input set of edges in G1.

4. (Transport cost step) Finally, construct c2 as follows:

(a) Sort the crossing vertices added to G1 in increasing order by x-coordinate
(with ties broken arbitrarily) to obtain a list {vi}ri=1, where r denotes
the number of added points.

(b) For any edge e ∈ E(G2) with its parent in E1, let c2(e) = w2(e) =
|E(G)|2.

(c) For any edge e = {vi, vj} ∈ E(G2) with its parent in E2 or E4, let
c2(e) = (j − i)w2(e).

(d) For any edge e = {u, vi} ∈ E(G2) with its parent in E2 or E4 and u
having x-coordinate 1

3 , let c2(e) = iw2(e).

(e) For any edge e = {vi, w} ∈ E(G2) with its parent in E2 and w having
x-coordinate 2

3 , let c2(e) = (r + 1− i)w2(e).

(f) For any edge e = {vi, t} ∈ E(G2) with its parent in E4, let c2(e) =
(r + 2− i)w2(e).

(g) For any edge e = {u,w} ∈ E(G2) with its parent in E2, u with x-
coordinate 1

3 , and w with x-coordinate 2
3 , let c2(e) = (r + 1)w2(e).

(h) For any edge e = {u, t} ∈ E(G2) with its parent in E4 and u with
x-coordinate 1

3 , let c2(e) = (r + 2)w2(e).

(i) For any edge e = {w, t} ∈ E(G2) with its parent in E3 and w with
x-coordinate 2

3 , let c2(e) = w2(e).

Suppose that G1 had r edge crossings. Note that r ≤ (|E(G)|
2

)
+ |V (G)||E(G)|,

which is polynomially bounded in the size of the graph. This crossing removal
construction depicted in Figure 3 has several properties, which follow from the
three properties previously stated:

Proposition 5. For any positive integer k, the total edge cost of a flow with
value at least k|E(G)|2 must be at least (r + 3)k|E(G)|2.
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Proof. The embedding construction in Part 2 of the construction can be asso-
ciated with r + 3 cuts in order by x-coordinate. The cost of an edge e in this
network is w2(e) times the number of these r + 3 cuts that e is in. Therefore, it
suffices to show that at least k|E(G)|2 units of cost are required to send k|E(G)|2
units of flow accross the cut. This follows from the definition of the cost function,
completing this proof.

Proposition 6. For any positive integer k, the total edge cost of a flow with
value at least k|E(G)|2 that has partial flow along at least one edge must be at
least (r + 3)k|E(G)|2 + 1.

Proof. Let e ∈ E(G2) be an edge with partial flow under a flow f : E(G2)→ Z≥0.
Consider one of the r + 3 cuts discussed in the proof of Lemma 5 that contains
e. It suffices to show that the cost of edges in this cut is at least k|E(G)|2 + 1.
Since the capacities and flows through edges are integers, c2(e)−f(e) ≥ 1, which
implies the result.

Proposition 7. Let G2 be the planar graph that results from edge crossing re-
moval. Consider two edges e, e′ ∈ E(G1) that cross in the x − y embedding of
G1. Consider any edges f, f ′ ∈ E(G2) that originated from e and e′ respectively
after crossing removal. Then, w2(f) �= w2(f

′).

Proof. Note that all children of e have the same maximum capacity. The same
holds for children of e′. Parts (a) and (c) of Part 3 of the construction ensure
that if e, e′ ∈ E2, then w2(f) �= w2(f

′). Note that no two edges in E4 cross in the
embedding of G1. Therefore, the only other possible scenario with a crossing oc-

curs when e ∈ E2 and e′ ∈ E4. It suffices to show that w2(f
′) ≥ |E(G)|2−|E(G)|

2 >
|E(G)| if |E(G)| ≥ 4 (if |E(G)| ≤ 3, we can solve the instance with brute force
in constant time). This suffices because the weight of any edge with a parent in
E2 is at most |E(G)|.

Since children of e′ have the same capacity, we may let f ′ be the unique child
that has as a left endpoint e′’s left endpoint. Let w be this left endpoint. Since
G1 is a simple graph, w has at most |E|+ 1 outgoing edges and the sum of the

capacities of edges besides f ′ must be at most
∑|E|
n=1 = |E|2+|E|

2 . By Part (3e),

w2(f
′) = |E(G)|2 −

∑

e∈δ+(u)∩κ(δ+(u)∩E2)

w2(e) ≥ |E(G)|2 − |E(G)|
2

as desired.

These three properties are important for proving the next lemma. This lemma
implies Theorem 2 since the reduction takes polynomial time, the edge weights
are polynomially bounded in the size of the graph, and G2 is planar. We defer
the proof of the lemma to the full version of the paper [17].

Lemma 2. G has an independent set of size at least k if and only if there is a
flow on G2 with total edge cost at most (r + 3)k|E(G)|2 with value k|E(G)|2.
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a

b

c

d

3|1

3|1

3|1

3|1

1|0,a

1|0,b

1|0,c

1|0,d

1|0

1|0

2|0

Fig. 2. The reduction in the proof of Lemma 1, with w|c as the edge labels. Dashed
edges must be paid for, while dark edges are never deleted (since they have cost 0). All
edges in E2 (which are the unlabeled edges here) have label 1|0.

16|16

16|16

16|16

16|16

1|1,a

2|2,b

3|3,c

4|4,d

1|7

1|1

1|3
1|3

2|2

2|12

2|4

2|6
2|4

3|6

3|12
3|3

3|21

4|12

4|16
4|28

13|52

13|52
12|60

12|36

7|42
7|14

12|36

12|60

Fig. 3. The result of crossing removal in the proof of Theorem 2 on the second graph in
Figure 2. Labels are w|c. Note that six crossings were added, so r = 6 in this example.
It costs at least 9 units of budget to send a unit of flow from s to t. Furthermore, at
any added crossing, the capacities of the incoming edges are distinct.

5 Conclusion and Open Problems

In this extended abstract, we described the complexity of edge interdiction prob-
lems when restricted to planar graphs. We presented a Pseudo-PTAS for the
weighted maximum matching interdiction problem (MMEIP) on planar graphs.
The algorithm extends Baker’s Technique for local bilevel min-max optimization
problems on planar graphs. Furthermore, we gave strong NP-hardness results for
budget-constrained maximum flow (BCFIP), directed shortest path interdiction,
minimum perfect matching interdiction, and maximum matching interdiction
(MMEIP) on planar graphs. The latter three results followed from the strong
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NP-completeness of BCFIP on directed planar graphs with source and sink on
a common face. This strong NP-completeness proof first reduced the maximum
independent set problem to BCFIP on general directed graphs. We then noticed
that optimal flows on these directed graphs had either full flow or no flow along
all edges. To take advantage of this fact, we introduced a sweepline technique
for assigning transportation costs and edge capacities in order to ensure that
no two crossing edges had the same capacity. After introducing this embedding
technique, edge crossings could be replaced with just one vertex.

There are many interesting open problems relating to interdiction. While
hardness of approximation results are known for shortest path interdiction [15],
it is only known that a (2 − ε)-factor pseudo-polynomial time approximation
would imply that P = NP . While heuristic solutions are known for the short-
est path interdiction problem [13], no approximation algorithms with nontrivial
approximation (or pseudoapproximation) guarantees are known. For the max-
imum matching interdiction problem, Zenklusen [23] showed several hardness
of approximation results. Nonetheless, no hardness of approximation results are
known for MMEIP (computing νEB (G) within a multiplicative factor). A pseu-
doapproximation is known for a continuous variant of the maximum flow inter-
diction problem [5]. However, no algorithms and no hardness of approximation
results are known for the (discrete) maximum flow interdiction problem on gen-
eral directed graphs.

While we now know that BCFIP, directed shortest path interdiction, mimi-
mum perfect matching interdiction, and MMEIP are strongly NP-complete on
planar graphs, there are no known Pseudo-PTASes for BCFIP, shortest path in-
terdiction, and minimum perfect matching interdiction when restricted to planar
graphs.
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Abstract. This paper studies a class of probabilistic models on graphs,
where edge variables depend on incident node variables through a fixed
probability kernel. The class includes planted constraint satisfaction prob-
lems (CSPs), as well as more general structures motivated by coding and
community clustering problems. It is shown that under mild assumptions
on the kernel and for sparse random graphs, the conditional entropy of
the node variables given the edge variables concentrates around a de-
terministic threshold. This implies in particular the concentration of the
number of solutions in a broad class of planted CSPs, the existence of
a threshold function for the disassortative stochastic block model, and
the proof of a conjecture on parity check codes. It also establishes new
connections among coding, clustering and satisfiability.

Keywords: Planted models, constraint satisfaction problems, graphical
models, community clustering, parity-check codes, entropy, concentra-
tion, interpolation method.

1 Introduction

This paper studies a class of probabilistic models on graphs encompassing mod-
els of statistical learning theory, coding theory, and random combinatorial opti-
mization. Depending on the framework, the class may be described as a family of
conditional random fields, memory channels, or planted constrained satisfaction
problems. We start by providing motivations in the latter framework.

Constrained satisfaction problems (CSPs) are key components in the theory of
computational complexity as well as important mathematical models in various
applications of computer science, engineering and physics. In CSPs, a set of vari-
ables x1, . . . , xn is required to satisfy a collection of constraints involving each a
subset of the variables. In many cases of interest, the variables are Boolean and
the constraints are all of a common type: e.g., in k-SAT, the constraints require
the OR of k Boolean variables or their negations to be TRUE, whereas in k-
XORSAT, the XOR of the variables or their negations must equal to zero. Given
a set of constraints and a number of variables, the problem is to decide whether

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 332–346, 2013.
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there exists a satisfying assignment. In random CSPs, the constraints are drawn
at random from a given ensemble, keeping the constraint density1 constant. In
this setting, it is of interest to estimate the probability that a random instance is
satisfiable. One of the fascinating phenomenon occurring for random instances is
the phase transition, which makes the task of estimating this probability much
easier in the limit of large n. For a large class of CSPs, and as n tends to infinity,
the probability of being satisfiable tends to a step function, jumping from 1 to 0
when the constraint density crosses a critical threshold. For random k-XORSAT
the existence of such a critical threshold is proved [18,17,15,41]. For random k-
SAT, k ≥ 3, the existence of a n-dependent threshold is proved in [24]. However
it remains open to show that this threshold converges when n tends to infinity.
Upper and lower bounds are known to match up to a term that is of relative
order k 2−k as k increases [9]. Phase transition phenomena in other types of
CSPs are also investigated in [7,39,9]

In planted random CSPs, a “planted assignment” is first drawn, and the con-
straints are then drawn at random so as to keep that planted assignment a
satisfying one. Planted ensembles were investigated in [11,28,6,5,29,3], and at
high density in [8,4,22]. In the planted setting, the probability of being SAT
is always one by construction, and a more relevant question is to determine
the actual number of satisfying assignments. One would expect that this prob-
lem becomes easier in the limit of large n due to an asymptotic phenomenon.
This paper shows that, indeed, a concentration phenomenon occurs: for a large
class of planted CSPs (including SAT, NAE-SAT and XOR-SAT) the normal-
ized logarithm of the number or satisfying assignment concentrates around a
deterministic number. Moreover, this deterministic threshold is n-independent.

It is worth comparing the result obtained in this paper for planted CSPs,
with the one obtained in [1] for non planted CSPs. In that case, the number
of solution is zero with positive probability and therefore the logarithm of the
number of solution does not have a finite expectation. Technically, standard
martingale methods does not allow to prove concentration, even around an n-
dependent threshold. In [1] an interpolation method [26] is used to prove the
existence of the limit of a ‘regularized’ quantity, namely the logarithm of the
number of solutions plus one, divided by the number of variables. A technical
consequence of this approach is that the concentration of this quantity around a
value that is independent of n can only be proved when the UNSAT probability
is known to be O(1/ log(n)1+ε).

This paper shows that –in the planted case– the concentration around an n-
independent value holds unconditionally and is exponentially fast. We use again
the interpolation technique [26,20,21,42,10,1] but with an interesting twist. While
in all the cited references, the entropy (or log-partition function) is shown to be
superaddittive, in the present setting it turns out to be subaddittive.

Let us also mention that a fruitful line of work has addressed the relation
between planted random CSPs and their non planted counterparts in the

1 The ratio of the expected number of constraints per variables.
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satisfiable phase [3], and in [32,45]. These papers show that, when the number of
solutions is sufficiently concentrated, planting does not play a critical role in the
model. It would be interesting to use these ideas to ‘export’ the concentration
result obtained here to non planted models.

In this paper, we pursue a different type of approach. Motivated by appli-
cations2, in particular in coding theory and community clustering, we consider
extensions of the standard planted CSPs to a setting allowing soft probabilis-
tic constraints. Within this setting, the planted solution is an unknown vector
to be reconstructed, and the constraints are regarded as noisy observations of
this unknown vector. For instance one can recover the case of planted random
k-SAT as follows. Each clause is generated by selecting first k variable indices
i1, . . . , ik uniformly at random, representing the hyperedge of a random graph.
Then a clause is drawn uniformly among the ones that are satisfied by the vari-
ables xi1 , . . . , xik appearing in the planted assignment. The clause can hence be
regarded as a noisy observation of xi1 , . . . , xik . More generally the formula can
be seen as a noisy observation of the planted assignment.

Our framework extends the above to include numerous examples from cod-
ing theory and statistics. Within LDPC or LDGM codes [25,44], encoding is
performed by evaluating the sum of a random subset of information bits and
transmitting it through a noisy communication channel. The selection of the
information bits is described by a graphs, drawn at random for the code con-
struction, and the transmission of these bits leads to a noisy observation of the
graph variables. Similarly, a community clustering block model [27] can be seen
as a random graph model, whereby each edge is a noisy observation of the com-
munity assignments of the adjacent nodes. Definitions will be made precise in
the next section.

The conditional probability of the unknown vector given the noisy observa-
tions takes the form of a graphical model, i.e. factorizes according to an hyper-
graph whose nodes correspond to variables and hyperedges correspond to noisy
observations. Such graphical models have been studied by many authors in ma-
chine learning [33] under the name of ‘conditional random fields’, and in [38] in
the context of LDPC and LDGM codes. The conditional entropy of the unknown
vector given the observations is used here to quantify the residual uncertainty of
the vector. This is equivalent to considering the mutual information between the
node and edge variables. In such a general setting, we prove that the conditional
entropy per variable concentrates around a well defined deterministic limit. This
framework allows a unified treatment of a large class of interesting random com-
binatorial optimization problems, raises new connections among them, and opens
up to new models. We obtain in particular a proof of a conjecture posed in [43]
on low-density parity-check codes, and the existence of a threshold function for
the disassortative stochastic block model [16].

2 Planted models are also appealing to cryptographic application, as hard instances
with known solutions provide good one-way functions.
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2 The Model

Let k and n be two positive integers with n ≥ k.

– Let V = [n] and g = (V,E(g)) be a hypergraph with vertex set V and
edge set E(g) ⊆ Ek(V ), where Ek(V ) denotes the set of all possible

(
n
k

)

hyperedges of order k on the vertex set V . We will often drop the term
“hyper”.

– Let X and Y be two finite sets called respectively the input and output
alphabets. Let Q(·|·) be a probability transition function (or channel) from
X k to Y, i.e., for each u ∈ X k, Q(·|u) is a probability distribution on Y.

– To each vertex in V , we assign a node-variable in X , and to each edge in
E(g), we assign an edge-variable in Y. We define

Pg(y|x) ≡
∏

I∈E(g)

Q(yI |x[I]), x ∈ X V , y ∈ YE(g), (1)

where yI denotes the edge-variable attached to edge I, and x[I] denotes the
k node-variables attached to the vertices adjacent to edge I. This defines for
a given hypergraph g the probability of the edge-variables given the node-
variables.

The above is a type of factor or graphical model, or a planted constraint satis-
faction problem with soft probabilistic constraints. For each x ∈ X V , Pg(·|x) is a
product measure on the set of edge-variables. We call Pg a graphical channel
with graph g and kernel Q. We next put the uniform probability distribu-
tion on the set of node-variables X V , and define the a posteriori probability
distribution (or reverse channel) by

Rg(x|y) ≡ 1

Sg(y)
Pg(y|x)2−n, x ∈ X V , y ∈ YE(g), (2)

where

Sg(y) ≡
∑

x∈XV

Pg(y|x)2−n (3)

is the output marginal distribution.
We now define two probability distributions on the hypergraph g, which are

equivalent for the purpose of this paper:

– A sparse Erdös-Rényi distribution, where each edge is drawn independently
with probability p = αn

(nk)
, where α > 0 is the edge density.

– A sparse Poisson distribution, where for each I ∈ Ek(V ), a number of edges
mI is drawn independently from a Poisson distribution of parameter p = αn

(nk)
.

Note that mI takes value in Z, hence G is now a multi-edge hypergraph. To
cope with this more general setting, we allow the edge-variable yI to take
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value in YmI , i.e., yI = (yI(1), . . . , yI(mI)), and define (with a slight abuse
of notation)

Q(yI |x[I]) =
mI∏

i=1

Q(yI(i)|x[I]). (4)

This means that for each I, mI i.i.d. outputs are drawn from the kernel Q.
If mI = 0, no edge is drawn. We denote by Pk(α, n) the above distribution
on (multi-edge) hypergraphs.

Since p = αn

(nk)
, the number of edges concentrates around its expectation given

by αn and the two models are equivalent in the limit of large n — at least they
are equivalent for the subsequent results.

3 Main Results

We now define the conditional entropy between the node and edge variables.
This is equivalent, up to a constant shift, to the mutual information between the
node and edge variables.

Definition 1. Let X be uniformly drawn in Xn, G be a random sparse hyper-
graph drawn from the Pk(α, n) ensemble independently of X, and Y be the output
of X through the graphical channel PG defined in (1) for a kernel Q. We define

H
(n)
G (X |Y ) ≡ −2−n

∑

x∈XV

∑

y∈YE(G)

PG(y|x) logRG(x|y), (5)

H(n)(X |Y ) ≡ EGH
(n)
G (X |Y ), (6)

where PG and RG are defined in (1) and (2) respectively. Note that H
(n)
G (X |Y )

is a random variable since G is random, and for a realization G = g, H
(n)
g (X |Y )

is the conditional entropy of X given Y , which can be expressed as H
(n)
g (X |Y ) =

EyH
(n)
g (X |Y = y). Note that the mutual information between the node and edge

variables is also obtained as I
(n)
g (X |Y ) = n−H(n)

g (X |Y ).

Definition 2. We denote by M1(X l) the set of probability measures on X l. For
a kernel Q from X k to Y, we define

Γl : M1(X l)→ R (7)

ν �→ Γl(ν) =
1

|Y|
∑

u(1),...,u(l)∈Xk

[
∑

z∈Y

l∏

r=1

(1−Q(z|u(r)))

]
k∏

i=1

ν(u
(1)
i , . . . , u

(l)
i ) .

(8)

Hypothesis H. A kernel Q is said to satisfy hypothesis H if Γl is convex for
any l ≥ 1.
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Despite the lengthy expression, it is important to note that the definition of
Γl depends solely on the kernel Q. We will see in Section 4 that a large vari-
ety of kernels satisfy this hypothesis, including kernels corresponding to parity-
check encoded channels, planted SAT, NAE-SAT, XORSAT, and disassortative
stochastic block models.

We first show a sub-additivity property for the expected conditional entropy
of graphical channels.

Theorem 1. Let Q be a kernel satisfying hypothesis H and n = n1 + n2, with
n1, n2 ≥ k. Then

H(n)(X |Y ) ≤ H(n1)(X |Y ) +H(n2)(X |Y ). (9)

The proof of this theorem is outlined in Section 5.

Corollary 1. Let Q be a kernel satisfying hypothesis H. There exists Ck(α,Q)
such that

1

n
H(n)(X |Y )→ Ck(α,Q), as n→∞. (10)

The following is obtained using previous corollary and a concentration argument.

Theorem 2. Let Q be a kernel satisfying hypothesis H, then, almost surely,

lim
n→∞

1

n
H

(n)
G (X |Y ) = Ck(α,Q), (11)

with Ck(α,Q) as in Corollary 1.

The proof can be found in [2].

4 Applications

We next present three applications of the general model described in previous
section. While planted CSPs and parity-check codes are directly derived as par-
ticular cases of our model, the stochastic block model is obtained with a limiting
argument. One of the advantages of relying on a general model class, is that it
allows to consider new hybrid structures. For example, one may consider codes
which are not linear but which rely on OR gates as in SAT, or on community
models whose connectivity rely on collections of k nodes.

4.1 Planted Constraint Satisfaction Problems

Definition 3. A CSP kernel is given by

Q(z|u) = 1

|A(u)|1(z ∈ A(u)), u ∈ X k, z ∈ Y, (12)

where A(u) is a subset of Y containing the “authorized constraints”, with the
property that |A(u)| is constant (it may depend on k but not on u).
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We next show that a graphical channel with a CSP kernel corresponds to a
planted CSP. We derive first a few known examples from this model.

– For planted k-SAT, Y = {0, 1}k and A(u) = {0, 1}k \ ū, where ū is the vector
obtained by flipping each component in u. Using this kernel for the graphical
channel means that for any selected edge I ∈ Ek(V ), the edge variable yI is
a vector in {0, 1}k \ x̄[I] uniformly drawn, representing the negation pattern
of the constraint I. Note that using u rather than ū leads to an equivalent
probabilistic model, ū is simply used here to represent u as a “satisfying
assignment”. Note that |A(u)| = 2k − 1.

– For planted k-NAE-SAT, Y = {0, 1}k and A(u) = {0, 1}k \ {u, ū}, with
|A(u)| = 2k − 2.

– For k-XOR-SAT, Y = {0, 1} and A(u) = ⊕ki=1ui and |A(u)| = 1.

In general, a graphical channel with graph g and kernel Q as in (12) leads to a
planted CSP where the constraints are given by A(x[I]) 
 yI for any I ∈ E(g).
For example, for planted k-SAT, the constraints are x̄[I] �= yI , whereas for
planted k-NAE-SAT, the constraints are x̄[I] /∈ (yI , ȳI). If y is drawn from the
output marginal distribution Sg (cf. (3)), then there exists a satisfying assign-
ment by construction.

Lemma 1. For a graphical channel with graph g and CSP kernel Q as in (12),
and for y in the support of Sg,

Hg(X |Y = y) = logZg(y) (13)

where Zg(y) is the number of satisfying assignments of the corresponding planted
CSP.

Corollary 2. For a graphical channel with CSP kernel Q as in (12), and for a
graph drawn from the ensemble P(α, n),

H(n)(X |Y ) = EG,Y logZG(Y ), (14)

where ZG(Y ) is the number of satisfying assignments of the corresponding ran-
dom planted CSP.

Lemma 2. For any k ≥ 1, and for the CSP kernel corresponding to planted
k-SAT, the operator Γl is convex for any l ≥ 1.

Lemma 3. For any k ≥ 1, and for the CSP kernel corresponding to planted
k-NAE-SAT, the operator Γl is convex for any l ≥ 1.

Lemma 4. For any k even, and for the CSP kernel corresponding to planted
k-XOR-SAT, the operator Γl is convex for any l ≥ 1.

Using Theorem 2 and previous lemmas, the following is obtained.

Corollary 3. For random planted k-SAT, k-NAE-SAT, and k-XOR-SAT
(k even), the normalized logarithm of the number of solutions concentrates in
probability.
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4.2 Stochastic Block Model

The problem of community clustering is to divide a set of vertices in a net-
work (graph) into groups having a higher connectivity within the groups and
lower connectivity across the groups (assortative case), or the other way around
(disassortative case). This is a fundamental problem in many modern statistics,
machine learning, and data mining problems with a broad range of applications
in population genetics, image processing, biology and social science. A large va-
riety of models have been proposed for community detection problems, we refer
to [40,23,27] for a survey on the subject.

At an algorithmic level, the problem of finding the smallest cut in a graph
with two equally sized groups, i.e., the min-bisection problem, is well-known to
be NP-hard [14]. Concerning average-case complexity, various random graphs
models have been proposed for community clustering. The Erdös-Rényi random
graph is typically a very bad model for community structures, since each node is
equally connected to any other nodes and no communities are typically formed.
The stochastic block model is a natural extension of an Erdös-Rényi model with
a community structure. Although the model is fairly simple (communities emerge
but the average degree is still constant3), it is a fascinating model with several
fundamental questions open.

We now describe the stochastic block model (SBM), also called planted bi-
section model, with two groups and symmetric parameters. Let V = [n] be the
vertex set and a, b be two positive real numbers. For a uniformly drawn assign-
ment X ∈ {0, 1}V on the vertices, an edge is drawn between vertex i and j
with probability a/n if Xi = Xj and with probability b/n if Xi �= Xj , and each
edge is drawn independently. We denote this model by G(n, a, b). Note that the
average degree of an edge is (a + b)/2, however, a 0-labelled node is connected
in expectation with a/2 0-labeled nodes and with b/2 1-labeled nodes.

This type of model was introduced in [14], in the dense regime. The attention
to the sparse regime described above is more recent, with [13] and [31,16,36]. In
particular, [16] conjectured a phase transition phenomenon, with the detection
of clusters4 being possible if (a−b)2 > 2(a+b) and impossible otherwise. In [36],
a remarkable proof of the impossibility part is obtained, leaving the achievability
part open.

We next define a parametrized kernel which will allow us to approximate the
above SBM model with a graphical channel.

Definition 4. An SBM kernel is given by

Q(z|u1, u2) =
{
a/γ if u1 = u2,

b/γ if u1 �= u2,
(15)

where u1, u2, z ∈ {0, 1}.

3 Models with corrected degrees have been proposed in [31].
4 Obtaining a reconstruction positively correlated with the true assignment.
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Lemma 5. There exists n0 = n0(γ, a, b) and C = C(a, b) such that the following
holds true. Let X be uniformly drawn on {0, 1}V , Y be the output (the graph)
of a sparse stochastic block model of parameters a, b, and Yγ be the output of
a graphical channel with graph ensemble P(γ, n) and kernel (15), then, for all
n ≥ n0

∣
∣H(n)(X |Y )−H(n)(X |Yγ)

∣
∣ ≤ Cn

γ
. (16)

Lemma 6. For the SBM kernel given by (15), a ≤ b (disassortative case) and
γ large enough, the operator Γl is convex for any l ≥ 1.

Corollary 4. For the disassortative SBM, the limit of H(X(n)|Y )/n exists and
satisfies

lim
n→∞

1

n
H(n)(X |Y ) = lim

γ→∞ lim
n→∞

1

n
H(n)(X |Yγ) . (17)

In a work in progress, the assortative case is investigated with a different proof
technique. The computation of the above limit is also expected to reflect a phase
transition for the SBM [16,36].

4.3 Parity-Check Encoded Channels

The Shannon celebrated coding theorem states that for a discrete memoryless
channel W from X to Y, the largest rate at which reliable communication can
take place is given by the capacity C(W ) = maxX I(X ;Y ), where I(X ;Y ) is the
mutual information of the channelW with a random input X . To show that rates
up to capacity are achievable, Shannon used random code books, relying on a
probabilistic argument. Shortly after, Elias [19] showed that random linear codes
allow to achieve capacity, reducing the encoding complexity from exponential
to quadratic in the code dimension. However, Berlekamp, McEliece, and Van
Tilborg showed in [12] that the maximum likelihood decoding of unstructured
linear codes is NP-complete.

In order to reduce the complexity of the decoder, Gallager proposed the use
sparse linear codes [25], giving birth to the LDPC codes, with sparse parity-
check matrices, and LDGM codes, with sparse generator matrices. Various types
of LDPC/LDGM codes depend on various types of row and column degree dis-
tributions. Perhaps one of the most basic class of such codes is the LDGM code
with constant right degree, which corresponds to a generator matrix with column
having a fixed number k of one’s. This means that each codeword is the XOR
of k uniformly selected information bits. In other words, this is a graph based
code drawn from an Erdös-Rényi or Poisson ensemble Pk(α, n). The dimension
of the code is m = αn and the rate is r = 1/α. The code can also be seen as a
planted k-XOR-SAT formula.

Despite the long history of research on the LDPC and LDGM codes, and their
success in practical applications of communications, there are still many open
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questions concerning the behaviour of these codes. In particular, even for the
simple code described above, it is still open to show that the mutual information
1
nI(X

n;Y m) concentrates, with the exception of the binary erasure channel for
which much more is known [35,34]. In the case of dense random codes, standard
probability arguments show that concentration occurs with a transition at ca-
pacity for any discrete memoryless channels. But for sparse codes, the traditional
arguments fail. Recently, the following was conjectured in [43] for constant right
degree LDGM codes and binary input symmetric output channels 5,

P{ 1
m
I(X ;Y ) < C(W )} →

{
0 if α < Ck(W )

1 if α > Ck(W )
(18)

where Ck(W ) is a constant depending on k and W .
We provide next a concentration result for this model, which implies the above

conjecture for even degrees.

Definition 5. An encoded symmetric kernel is given by

Q(z|u) =W (z| ⊕ki=1 ui), (19)

where W is a binary input symmetric output (BISO) channel from X to Y.

Note that this corresponds to the output of a BISO W when the input to the
channel is the XOR of k information bits. This corresponds also to the constant
right-degree LDGM codes considered in the conjecture of [43].

Lemma 7. For an encoded symmetric kernel with k even, the operator Γl is
convex for any l ≥ 1.

Corollary 5. Let X be uniformly drawn in GF (2)n, U = XG be the output of
a k-degree LDGM code of dimension αn, and Y be the output of U on a BISO
channel W . Then 1

nI(X ;Y ) converges in probability to a constant Ck(α,W ).

Note that

1

m
I(X ;Y ) =

1

m
H(Y )−H(W ), (20)

where H(W ) denotes the conditional entropy of the channel W . Hence

1

m
I(X ;Y ) < 1−H(W ) ≡ 1

m
H(Y ) < 1. (21)

Since 1
mH(Y ) converges from previous corollary, and since the limit must be

decreasing in α (increasing in r), the conjecture (18) follows.

5 This means that the channel is a weighted sum of binary symmetric channels.
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5 Proof Outline for Theorem 1: Interpolation Method
for Graphical Channels

We now show the sub-additivity of H(n)(X |Y ),

H(n)(X |Y ) ≤ H(n1)(X |Y ) +H(n2)(X |Y ). (22)

Note that if we partition the set of vertices [n] into two disjoint sets of size n1

and n2 with n1+n2 = n, and denote by g1 and g2 the restriction of g onto these
subsets obtained by removing all the crossing hyperedges, then the following
is obtained by basic properties of the entropy

H(n)
g (X |Y ) ≤ H(n)

g1 (X |Y ) +H(n)
g2 (X |Y ). (23)

Hence the above is true for a random graph G drawn from the ensemble Pk(α, n).
However, the terms H

(n)
Gi

(X |Y ), i = 1, 2, do not correspond to H
(ni)
Gi

(X |Y ), since
the edge probability is αn

(nk)
and not αni

(ni
k )

. Consequently, the above does not imply

H(n)(X |Y ) ≤ H(n1)(X |Y )+H(n2)(X |Y ). To obtain the proper term on the right
hand side, one should add the edges lost in the splitting of the vertices (e.g., via a
coupling argument), but this gives a lower bound on the right hand side of (23),
conflicting with the upper bound. The interpolation method provides a way to
compare the right quantities.

The interpolation method was first introduced in [26] for the Sherrington-
Kirkpatrick model. This is a model for a spin-glass (i.e. a spin model with ran-
dom couplings) on a complete graph. It was subsequently shown in [20,21,42]
that the same ideas can be generalized to models on random sparse graphs,
and applications in coding theory and random combinatorial optimization were
proposed in [37,30] and [10,1]. We next develop an interpolation method to es-
timate the conditional entropy of general graphical channels for different values
of n. Interestingly, the planting flips the behaviour of the entropy from supper
to sub-additive.

Definition 6. We define a more general Poisson model for the random graph,
where a parameter εI ≥ 0 is attached to each I ∈ Ek(V ), and the number of
edges mI(εI) is drawn from a Poisson distribution of parameter εI . This defines
a random hypergraph whose edge probability is not homogenous but depends on
the parameters εI . Denoting by ε the collection of all

(
n
k

)
parameters εI , we

denote this ensemble as Pk(ε, n). If for any I, εI = αn

(nk)
, Pk(ε, n) reduces to

Pk(α, n) as previously defined.

Lemma 8. Let X be uniformly drawn over Xn, G be a random hypergraph
drawn from the ensemble Pk(ε, n) independently of X, and Y (ε) be the output
of X through PG defined in (1) for a kernel Q. Then

∂

∂εI
H(n)(X |Y (ε)) = −I(YI ;XI |Y (ε)) , (24)

where YI and Y (ε) are independent conditionally on X (i.e., YI is drawn under
Q(·|X [I]) and Y (ε) is drawn independently under RG(·|X)).
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We define a path as a differentiable map t �→ ε(t), with t ∈ [0, T ] for some
T ≥ 0. We say that a path is balanced if

∑

I∈Ek(V )

dεI
dt

(t) = 0 . (25)

We will write ε̇I(t) for the derivative of εI(t) along the path and Y (t) for Y (ε(t)).

Corollary 6. For a balanced path

d

dt
H(X |Y (t)) = −

∑

I∈Ek(V )

H(YI |Y (t)) ε̇I(t) . (26)

Given a partition V = V1  V2, we define the associated canonical path ε : t ∈
[0, 1]→ ε(t) ∈ [0, 1]Ek(V ) as follows. Let ni = |Vi|, mi = |Ek(Vi)|, i ∈ {1, 2}, and
m = |Ek(V )|. We define

εI(0) ≡ αn

m
, ∀I ∈ Ek(V ), (27)

εI(1) ≡

⎧
⎪⎨

⎪⎩

αn1

m1
if I ∈ Ek(V1)

αn2

m2
if I ∈ Ek(V2)

0 otherwise.

(28)

and

ε(t) = (1− t)ε(0) + tε(1). (29)

Note that the canonical path is balanced. Moreover, at time t = 0, Pk(ε(0), n)
reduces to the original ensemble Pk(α, n), and at time t = 1, Pk(ε(1), n) reduces
to two independent copies of the original ensemble on the subset of n1 and n2

variables: Pk(α, n1)× Pk(α, n2).
Applying Lemma 6, we obtain the following.

Corollary 7. For the canonical path

d

dt
H(X |Y (t)) = αnEIH(YI |Y (t))− αn1EI1H(YI1 |Y (t))− αn2EI2H(YI2 |Y (t)) ,

(30)

where I is drawn uniformly in Ek(V ), and Ii, i ∈ {1, 2}, are drawn uniformly
in Ek(Vi).

We recall that

H(YI |Y (t)) = −EY,YI log
∑

x

Q(YI |x[I])RG(t)(x|Y ) (31)

= −EY (t),YI
logEX|Y (t)Q(YI |X [I]) , (32)

where Y (t) is the output of PG(t) and EX|Y (t) is the conditional expectation over
RG(t).
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Lemma 9

1

α|Y|
d

dt
H(X |Y (t)) = −

∞∑

l=2

1

l(l − 1)
EX(1),...,X(l) [nΓl(V )− n1Γl(V1)− n2Γl(V2)]

(33)

where

Γl(V ) ≡ EI,WI

l∏

r=1

(
1− P (WI |X(r)[I])

)
, (34)

I is uniformly drawn in Ek(V ), WI is uniformly drawn in Y, and X(1), . . . , X(l)

are drawn under the probability distribution

∑

y

l∏

i=1

RG(t)(x
(i)|y)

∑

u

PG(t)(y|u)2−n. (35)

This means that X(1), . . . , X(l) are drawn i.i.d. from the channel RG(t) given a
hidden output Y , these are the ‘replica’ variables, which are exchangeable but not
i.i.d.. Note that denoting by ν the empirical distribution of X(1), . . . , X(l), the
above definition of Γl(V ) coincides with that of Γl(ν), hence the abuse of notation
with definition (8). Hypothesis H ensures that Γl is convex for any distribution on
X l, hence in particular for the empirical distribution of the replicas. Therefore,
previous lemma implies Lemma 1 and Theorem 1 follows by the sub-additivity
property.
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32. Krzakala, F., Zdeborová, L.: Hiding quiet solutions in random constraint satisfac-
tion problems. Phys. Rev. Lett. 102, 238701 (2009)

33. Lafferty, J.: Conditional random fields: Probabilistic models for segmenting and
labeling sequence data, pp. 282–289. Morgan Kaufmann (2001)

34. Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.A., Stemann, V.: Practi-
cal loss-resilient codes. In: 29th Annual ACM Symposium on Theory of Computing,
pp. 150–159 (1997)

35. Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.A.: Efficient erasure
correcting codes. IEEE Trans. on Inform. Theory 47(2), 569–584 (2001)

36. Mossel, E., Neeman, J., Sly, A.: Stochastic Block Models and Reconstruction.
arXiv:1202.1499 [math.PR]

37. Montanari, A.: Tight bounds for LDPC and LDGM codes under MAP decoding.
IEEE Trans. on Inform. Theory 51, 3221–3246 (2005)

38. Montanari, A.: Estimating random variables from random sparse observations.
European Transactions on Telecommunications 19(4), 385–403 (2008)

39. Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and Clustering in Random
Constraint Satisfaction Problems. CoRR abs/0904.2751 (2009)

40. Newman, M.E.J.: Communities, modules and large-scale structure in networks.
Nature Physics 8(1), 25–31 (2011)

41. Pittel, B., Sorkin, G.B.: The Satisfiability Threshold for k-XORSAT.
arXiv:1212.1905 (2012)

42. Panchenko, D., Talagrand, M.: Bounds for diluted mean-field spin glass models.
Prob. Theor. Rel. Fields 130, 319–336 (2004)

43. Raj Kumar, K., Pakzad, P., Salavati, A.H., Shokrollahi, A.: Phase transitions for
mutual information. In: 2010 6th International Symposium on Turbo Codes and
Iterative Information Processing (ISTC), pp. 137–141 (2010)

44. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press,
Cambridge (2008)
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Abstract. Motivated by Dvir et al. and Wigderson and Yehudayoff
[3,10], we examine the question of discovering the set of heavy hitters
of a distribution on strings (i.e., the set of strings with a certain mini-
mum probability) from lossy or noisy samples. While the previous work
concentrated on finding both the set of most probable elements and their
probabilities, we consider enumeration, the problem of just finding a list
that includes all the most probable elements without associated prob-
abilities. Unlike Wigderson and Yehudayoff [10], we do not assume the
underlying distribution has small support size, and our time bounds are
independent of the support size. For the enumeration problem, we give
a polynomial time algorithm for the lossy sample model for any con-
stant erasure probability μ < 1, and a quasi-polynomial algorithm for
the noisy sample model for any noise probability ν < 1/2 of flipping
bits. We extend the lower bound for the number of samples required for
the reconstruction problem from [3] to the enumeration problem to show
that when μ = 1− o(1), no polynomial time algorithm exists.

Keywords: Population Recovery, Enumeration of Heavy Hitters, Learn-
ing Discrete Distributions.

1 Introduction

Say that you are an investigator investigating DNA evidence at a crime scene.
You can collect and analyze random DNA strands available at the scene, and you
want to find DNA from each person involved in the crime, whether perpetrator or
victim. There are several complications that make your task more difficult. First,
it is not possible to exhaustively search through the huge number of microscopic
strands of DNA at the scene; the best you can do is randomly pick strands
and sequence them. Secondly, much of the DNA might have nothing to do with
the crime. There might be small amounts of trace DNA from a huge number
of people who passed by the scene at some time before the crime took place,
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and there might be contamination later. Thirdly, even the DNA from the people
involved will be only partially recoverable, with either missing pieces or random
noise.

Ideally, a complete crime scene analysis would give not just which DNA se-
quences were found, but their relative proportions. However, it would also be
extremely useful to know the set of sequences present. You couldn’t hope to get
a complete list of trace sequences without sequencing every single strand. But
you would want to filter out trace elements anyway, to concentrate on those from
likely suspects.

This example illustrates the general issue of trying to analyze a distribution
from lossy or noisy samples. Such problems are central to statistics, and arise in a
variety of scientific circumstances. In theoretical computer science, Kearns et al.
[6] introduced the general question of when a distribution can be identified from
samples, and gave the first algorithms for formulations of the problem above.
After that, attention was mainly focused on the continuous version of learning
mixtures of Gaussians, which had been introduced by the statistician Pearson
in the nineteenth century and was already a subject of great interest in AI and
statistics. This problem spurred some highly interesting and deep algorithmic
work (for example, [2,9,8,1] ).

The equally fascinating case of lossy or noisy discrete distributions, e.g., lossy
or noisy distributions on strings, only started getting attention again relatively
recently. In particular, Dvir et al. [3] used an algorithm to infer a distribution on
strings from lossy samples as a sub procedure in a learning algorithm for DNFs
in the restriction model. Their goal was to learn the underlying distribution by
giving an explicit description of a distribution which is close to the distribu-
tion that the samples were drawn from. For this reason, the problem as they
formalized it assumed that the distribution had small support, with at most k
non-zero probability elements, for a known parameter k which could affect the
running time of the algorithm. However, none of the techniques they used relied
on this assumption. On the other hand, the quasi-polynomial recovery algorithm
of Wigderson and Yehudayoff [10] from noisy samples does rely on the fact that
the support size is small.

In this work, we introduce a goal that is less ambitious but potentially more
robust. There are many situations, like the crime scene investigation mentioned
above, when it is desirable to identify a set containing all the probable elements,
but it is not necessary to provide a complete description of the distribution. For
example, perhaps one wants to identify gene patterns that are relatively common
among the DNA of drug-resistant bacteria, texts that are most duplicated on
web pages, or snippets of code that appear in many computer viruses. This
problem of identifying the “heavy hitters” of a distribution, has been extensively
studied in the context of streaming algorithms, see, for example, [5]. While just
identifying the heavy hitters requires less information than exactly characterizing
the distribution, for the same reason, it makes sense even when the distribution
has no nice description, e.g., when the distribution has a constant fraction of mass
divided among a very large, arbitrary set of strings. In this sense, algorithms for
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heavy hitters can be agnostic in the sense of agnostic learning.We wish to find the
best fit to a distribution with small support without relying on the assumption
that the distribution actually has small support.

We consider two basic error models. In the lossy sample model, each bit of
the sample drawn from the distribution is independently erased with probability
μ. For the lossy model, we provide a polynomial time algorithm that identifies
heavy hitters for any constant erasure probability μ < 1. The error models for
which our algorithm works are very general, and we do not require independence
of noise in a bit from either the noise in other bits or the input, as long as the
chance of erasure is never too large. For the case of independent erasures, the
estimation algorithms of [3,7] can also solve the enumeration problem. As a
converse, we also show that, if the erasure probability is 1− o(1), no polynomial
time algorithm exists for enumerating the heavy hitters.

In the noisy sample model, each bit of the sample drawn from the distribution
is independently flipped with probability ν. For the noisy sample model, we
give a quasi-polynomial time algorithm for identifying heavy hitters, for any
constant ν < 1/2. This algorithm is related but incomparable to the quasi-
polynomial distribution recovery algorithm of Dvir et al. [10]. On the one hand,
our algorithm is considerably faster (our exponent is doubly logarithmic rather
than logarithmic), and does not require the distribution to have small support.
On the other hand, they solve the harder problem of estimating the probabilities
for each heavy hitter.

1.1 Problem Definitions and Formal Statements of Our Results

The general issue of learning about distributions from noisy samples has many
variations and interesting formulations. Below, we will consider the ingredients
of such formulations and how they relate to each other.

Underlying distribution. In all versions, the samples come from some un-
derlying distribution D on {0, 1}n. D is unknown to the algorithm. The
algorithm can only access samples drawn from the D after errors are intro-
duced. As mentioned earlier, [3,10] make the assumption that D has support
size at most k, where k is given to the algorithm. Run times are given in
terms of k and n. We call this the small support size case. We mainly con-
sider the case when D is arbitrary. One could also consider other families of
distributions, e.g., easily sampled distributions, high-entropy distributions
or distributions that consist of independent pairs of strings x, y.

Error models. Like [3,10], we examine two basic types of error. The basic lossy
error model is as follows. After a string x = x1 . . . xn is drawn from D, the
observed sample has the form y1 . . . yn where for each i independently, we set
yi = ∗ with probability μ, and yi = xi otherwise, where ∗ is a new symbol.
The difficulty of the problem in the lossy model depends on the constant μ,
the larger the μ the more difficult the problem is. Some of our algorithms
and one of the algorithms in Dvir et al. [3] only work for μ smaller than a
specified constant.
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In the noisy model, the observed sample has the form y1 . . . yn where for
each i independently, we set yi = 1 − xi with probability ν, and yi = xi
otherwise.

We can also consider the problem for other error models. For example,
our lossy enumeration algorithm works equally well in a semi-random erasure
model, where, after erasures occur, an adversary is allowed to “un-erase” an
arbitrary set of positions. It is easy to see that estimation is not possible in
such a model.

Goal. We distinguish three goals for an algorithm. We are primarily concerned
with the enumeration problem. Here, the algorithm has as input a parameter
ε > 0, and needs to output a list L that contains all ε-heavy hitters of D,
i.e., all the strings z so that P[x = z] ≥ ε. L may contain some non-heavy
hitters, but we expect the algorithm to explicitly list the elements of L, so
an efficient algorithm cannot output a large list. There may in general be
1/ε heavy hitters, so an ideal algorithm runs in polynomial time in n and
1/ε.

In the estimation problem, the algorithm is given z and ε, and is required
to output an estimate of P[x = z] that is correct within additive error ε.
Even without errors, getting such an estimate would require 1/ε2 samples,
so again polynomial time in n and 1/ε is the best we could hope for.
Finally, in the recovery problem, we wish to find a list of elements that con-
tains all 2ε-heavy hitters and only contains ε-heavy hitters, and for each
element on our list we wish to have an estimate of its probability that is
within an additive error of at most ε. Note that, for distributions with sup-
port k, a recovery algorithm with ε = δ/k will provide an explicit description
of a distribution that is within δ of the actual one. This is the sense that a
recovery algorithm actually “recovers” the original distribution.

The recovery problem combines the enumeration and estimation problems, but
Dvir et al. [3] observe that any estimation algorithm can be used to solve the
recovery problem with only a factor n overhead, via a “branch-and-prune” ap-
proach. Thus, we only need to actually look at enumeration and estimation, and
estimation is the more difficult problem.

We devise or analyze algorithms for several of these problems. The results we
present in this extended abstract are:

1. For any constant μ < 1, we give a polynomial time (in n and 1/ε) algorithm
for enumeration of the ε-heavy hitters from lossy samples where μ is the bit
erasure probability. Here, the distribution is arbitrary and the time does not
depend on the support size of the distribution. The list size is a polynomial
in 1/ε that does not depend on n.

In fact, we need only the following property of the erasure model: There is
a parameter T so that, for any subset of T bit positions, the probability that
all bits are erased is o(ε2), whereas the probability that no bit is erased is at
least poly(ε). For independent erasures, both are true when T = C log 1/ε,
where C is a constant depending on μ. But this property will also be inherited
by any samples with fewer erasures, such as the semi-random distribution
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mentioned above. It will also hold for e.g., T -wise independent distributions
on erasures.

2. For samples with independent noise ν for any constant ν < 1/2, we give an
enumeration algorithm that takes polynomial time in n, and quasi-polynomial
time in 1/ε (more precisely, time poly(n)εO(log log ε)) time . Here, the distri-
bution is arbitrary and the time does not depend on the support size of the
distribution. The list size does not depend on n.

3. [3] give a super-polynomial lower bound for estimation from lossy samples even
for small support distributions when μ = 1 − o(1). We give a similar lower
bound for enumeration from lossy samples for small support distributions.

4. Dvir et al. [3] also observe that LP-duality can be used to characterize
the sample complexity of algorithms for estimation for arbitrary distribu-
tions, for any error model. We give a relaxation of this LP program that
shows a “Yao principle” for such estimation problems. We show that either
there is an algorithm for estimation using a certain number of samples or
a polynomially-related lower bound via two distributions whose noisy ver-
sions are indistinguishable. [3] also introduce the notion of “local inverse”
to a matrix. We show that the existence of any algorithm for estimation for
arbitrary distributions in an error model implies one via a local inverse to
the corresponding matrix.

In the full paper, we will include some additional results, not directly related to
enumeration:

1. We give a new algorithm for estimation from lossy samples that works in
time polynomial in n and exponential in 1/ε whenever μ ≤ 2/3.

2. Dvir et al. [3] have shown that their estimation algorithm for lossy samples
will work for arbitrary distributions for μ < 0.614.... We give a tighter anal-
ysis of their algorithm, showing that it works when μ < 1− 1/

√
2 = 0.69....

We present numerical computations that suggest that the real threshold for
this algorithm is μ = .75.

1.2 State-of-the-Art

For lossy samples with independent erasures, the current best algorithms for all
versions of the problem are due to Moitra and Saks [7], who, subsequently to
our work, solve the hardest version of this problem. They give a polynomial time
algorithm for estimation for arbitrary distributions, which implies similar algo-
rithms for enumeration and recovery. This result improves on the estimation and
recovery algorithms of [3], and is better than the algorithms from the first two
of our additional results to appear in the full paper. Our enumeration algorithm
is still useful if the erasures are not actually independent.

For noisy samples, for distributions of small support size, the current best al-
gorithm for estimation and recovery problems is the quasi-polynomial algorithm
of [10]. For any constant level of noise, this algorithm runs in time polynomial
in n and klog k when the support size is k. Our second result above is the only
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non-trivial algorithm known algorithm for enumeration when the distribution is
arbitrary, and is the fastest algorithm for enumeration even when the support
is small. For the estimation and recovery problems when the distributions are
arbitrary, no algorithms better than exponential time in n are known.

Combining the lower bound of [3] and the lower bound in result three above, all
versions of these problems require more than polynomially many samples when
the bit erasure probability μ = 1 − o(1) or when the bit flipping probability is
ν = 1/2− o(1).

2 Branch-and-Prune Algorithms

Our algorithms for enumeration follow the same “branch-and-prune” paradigm
as those of [3,10]. This paradigm can be viewed as a form of classical dynamic
programming [11], but in the context of probabilistic algorithms for enumeration,
the first example we know of is the Goldreich-Levin algorithm for list decoding
the Hadamard code. [4]. Dvir et al. [3] used a branch-and-prune method to
reduce the recovery problem to the estimation problem. In this section, we revisit
this connection and present a self-contained explanation. We also emphasize the
minimal set of conditions that a pruning algorithm needs to have to be useful
for enumeration.

Let D be the underlying distribution on n bit strings. For 1 ≤ m ≤ n, let Dm

be the distribution on the first m bits of a string drawn from D. In the context
of enumerating heavy hitters, we observe that the distribution on the firstm bits
of the observed sample is equal to the distribution on lossy/noisy samples from
Dm with the same error parameter μ or ν. Also note that the m-bit prefix of any
heavy hitter for D is a heavy hitter forDm. Our goal is, form from 1 to n, to find
a set Sm of candidates that contains all the heavy hitters of Dm. Then the heavy
hitters for Dm+1 are contained in the set Tm+1 = {x0|x ∈ Sm} ∪ {x1|x ∈ Sm}.
This is the “branch” stage. However, to prevent this set of candidates from
growing exponentially, it is necessary to “prune” this set back to a smaller subset
Sm+1.

To be more precise, a pruning algorithm takes a set of m-bit strings T and
can request lossy or noisy samples from Dm, and produces a subset S ⊂ T . We
say the strings in T − S are pruned by the algorithm. Our pruning algorithms
have a parameter s and we need two properties to ensure their efficiency:

Correctness. With high probability (1− o(1/(ns))), no heavy hitter for Dm is
pruned.

Efficiency. If |T | > s, then with high probability S is a strict subset of T .

Note that an estimation algorithm can be used as a pruning algorithm: Estimate
the probability of each element of T to within an additive term of ε/3. Prune the
ones whose estimates are less than 2/3ε. Assuming the estimates are correct, all
ε heavy hitters are maintained. Furthermore, all but at most s = 3/ε elements
with probability at least ε/3 are pruned.

If both of these conditions hold, we can use the pruning algorithm for enumer-
ation. We maintain a set Sm that with high probability contains all heavy hitters
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for Dm. We construct Tm+1 as above, and prune it until the size remaining is
at most s. Since Tm+1 has at most 2s elements at the start, and each time we
prune we get a strict subset, pruning can happen at most s times for any m. The
probability of pruning a heavy hitter in any one run of the pruning algorithm is
o(1/(sn)) so with high probability, we never prune a heavy hitter. We will need
to use the pruning algorithm O(ns) times on a set of strings of size O(s).

If we have an estimation algorithm and an enumeration algorithm, we can
enumerate a list Sn of heavy hitters and estimate the probability of each of the
candidate heavy hitters in Sn to get a recovery algorithm.

Thus, it suffices to describe an algorithm for estimation or pruning in order
to specify an algorithm for recovery or enumeration, respectively.

3 Enumeration Algorithms

In this section, we give a polynomial time enumeration algorithm for lossy sam-
ples for any μ < 1, and a quasi-polynomial time algorithm for noisy samples for
any ν < 1/2. As described before, we only need to give a pruning algorithm in
each case.

3.1 Lossy Samples

We describe here the pruning algorithm for lossy samples. Let ε > 0. For some
polynomial s = nO(1)ε−O(1), we are given a set T of at most 2s strings that
includes all ε-heavy hitters, and want to find a subset S that contains all ε-
heavy hitters, but has at most s strings. When the parameter ε is clear from the
context, we will simply refer to an ε-heavy hitter as a heavy hitter.

The pruning algorithm works in two phases. In the Phase I, we will collect
a maximal set B ⊆ T of centers of small size such that the centers are at a
distance of at least d = C log 4

ε from each other, where C is a constant which
only depends on μ and will be determined later. Since B is maximal, each heavy
hitter is either in B or at most at a distance of d from an element in B. In the
second phase, for each center, we consider the elements of T close to it and prune
them.

Phase I: In Phase I, we start with a set B of centers (initially an empty set)
of size no more than 2/ε and greedily place non-pruned strings from T into B
as long as |B| ≤ 4/ε so that all centers in B are at least a distance d from each
other. If the size of B never equals 
4/ε�, we proceed to Phase II. If not, we
execute the following sub procedure to prune the non-heavy hitters from B so
that the size to B reduces to no more than 2/ε. We then repeat the greedy of
process of growing B.

Pruning B: At this point, we have |B| = 4/ε. Our goal is to cut the size of B
by half by pruning away sufficiently many non-heavy centers of B.

For v, w ∈ T define Δv,w = {i|vi �= wi}. In other words, Δv,w is the set of
positions where the strings v and w differ. For u, u′ ∈ B and for a lossy sample
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y, we say that y is (u, u′)-discriminatory if for at least one position in Δu,u′ , the
value is not erased in y. We say y is discriminatory if it is (u, u′)-discriminatory
for all u, u′ ∈ B. y is consistent with a string u ∈ T if it never disagrees with u
in a revealed bit. Note that y is always consistent with the original sample.

To prune non-heavy strings in B, we draw t = poly(1/ε) lossy samples. For
each center u, we compute the fraction pu of samples that are discriminatory
and consistent with u. Each sample can contribute to at most one center since
a discriminatory sample can be consistent with at most one center. If a discrim-
inatory sample y were to be consistent with centers u and u′, then there is a
position in Δu,u′ which is not erased in y where u and u′ agree, a contradiction.
Finally, if pu < ε/2, we prune u.

We will argue that at least 2/ε strings of B are pruned by the procedure
so we will end up with a B of size at most 2/ε. Let y be a lossy sample. y is
discriminatory with probability at least 7ε/8 since

P[y is not discriminatory] ≤
∑

u,u′∈B
P[y is not (u, u′)-discriminatory]

≤ (8/ε2)μd ≤ (8/ε2)μC log 4/ε

= (8/ε2)(ε3/64) for C = 3/ log 1
μ

≤ ε/8

Let u be a ε-heavy hitter. The probability that y is discriminatory and is consis-
tent with u is at least 7ε/8. Let pu be the fraction of discriminatory samples con-

sistent with u. P[pu ≤ ε/2] ≤ e−2(3ε/8)2t by Chernoff-Hoeffding bound since the
expected fraction is at least 7ε/8.P[∃ an ε-heavy center u such that pu ≤ ε/2] ≤
1
ε e
−2(3ε/8)2t by union bound since there are at most 1/ε such centers. Since

t = poly(1/ε), and since there are at most 2/ε centers that pass the threshold
of ε/2, with high probability, we will have pruned at least 2/ε centers while
retaining all heavy hitters in B.

Phase II: At this point, we have a set B of centers of size at most 4/ε such
that every non-pruned element of T is within a distance of d from some center.
Assign each non-pruned element of T to its closest center. For u ∈ B, let Bu
denote the set of elements of T assigned to u.

For each u, we prune Bu so that its size is bounded by a polynomial in 1/ε.
Since there are at most 4/ε centers, we will end up with the desired bound after
pruning. Fix u ∈ Bu. In the following, we outline how to prune Bu.

For v ∈ Bu, let Δv denote the set of positions where u and v differ. We say
that a sample y is revelatory for v if for no position i in Δv, yi = ∗.

We draw t lossy samples. For each v, we compute the fraction of samples that
are revelatory for and consistent with v. Each sample can contribute to at most
one element of Bu since a sample y can be revelatory for and consistent with
at most one v ∈ Bu. For every v, v′ ∈ Bu and v �= v′, there exists a position in
Δv ∪ Δv′ where one of v and v′ agrees with u and the other disagrees with u.
If y were to be revelatory for and consistent with both v and v′, then v and v′
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agree on every position in Δv ∪Δv′ , which is a contradiction. If the fraction for
v does not exceed the target εC

′+1/2, we prune it, where C′ is a constant that
depends only on μ.

Let v ∈ Bu and y be a sample. We will show that the probability a sample y
is revelatory for v is not small.

P[y is revelatory for v] ≥ (1− μ)|Δv | ≥ (1− μ)d = (1− μ)3 log 4
ε / log

1
μ

= (ε/4)C
′
for some constant C′ which only depends on μ

Let v ∈ Bu be an ε-heavy hitter. The probability that y is revelatory for and
consistent with v is at least (ε/4)C

′+1. Let pv be the fraction of samples that are

revelatory for and consistent with v. P[pv ≤ (ε/4)C
′+1/2] ≤ e−2((ε/4)

C′+1/2)2t

by Chernoff-Hoeffding bound since the expected fraction is at least (ε/4)C
′+1.

P[∃ an ε-heavy v such that pv ≤ (ε/4)C
′+1/2] ≤ 1

ε e
−2((ε/4)C′+1/2)2t by union

bound since there are at most 1/ε such elements. Since t = poly(1/ε), with
high probability, at most 2/(ε/4)C

′+1 elements remain after pruning since there
are at most 2/(ε/4)C

′+1 elements v ∈ Bu such that pv ≥ (ε/4)C
′+1/2.

A General Lossy Error Model: Our algorithm for enumerating ε-heavy hit-
ters in the lossy error model and its analysis does not require that each bit
position is erased independently with probability μ. Our algorithm and its anal-
ysis can be easily extended to lossy error models that satisfy weaker conditions.

Let x be an arbitrary sample drawn according to the original distribution D.
Let y be a lossy model obtained from x according to a lossy error model. In the
following we provide a sufficient condition for lossy error models that guarantees
the correctness and performance of the above algorithm.

For all ε > 0, there exists a t such that for all sets S of t positions,

1. P[values in all positions of S are erased|x] ≤ ε3/64, and
2. P[none of the values in positions of S are erased|x] ≥ εO(1).

3.2 Noisy Samples

Here we give a quasi-polynomial enumeration algorithm for the noisy case for any
constant 0 ≤ ν < 1/2. As before, we present just the pruning algorithm. As in
the lossy case, it works in two phases. First, we locate a small number of centers
so that every heavy hitter is C log 1/ε distance from one of the centers, where
C is a constant that only depends on μ. This already gives a s = nO(log 1/ε))

algorithm, which works under a very general noise condition. However, we can
improve it to s = (1/ε)O(log(log(1/ε))) in the second stage that requires noise to be
exact and independent. In the second stage, for each center, we enumerate the
heavy hitters within d = O(log 1/ε) Hamming distance to the center. For each
fixed center, this is equivalent to enumerating all of the low Hamming weight
heavy hitters, which we can identify with the set of positions with value 1. To do
this, we give a potential function for a set of positions A, which upper bounds
the total probability of small Hamming weight strings that could contain A.
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In addition to A, we’ll maintain a set of positions R so that we only need to look
at heavy hitters whose 1’s are in R. We show that we can divide the extensions
A ∪ {i} into two categories, one that significantly lowers the potential function,
and another that significantly reduces the set R of positions we need to consider
in the future. If the potential function drops below ε, we can prune the search.
If R becomes very small, we can use a brute force search on small subsets of R.

The first phase works very similarly to the erasure case. We start with a set
B of centers (initially an empty set) of size no more than 2/ε and greedily place
non-pruned strings from T into B as long as |B| ≤ 4/ε so that all centers in B
are at least a distance d from each other. If the size of B never equals 
4/ε�, we
proceed to phase two. If not, we execute the following sub procedure to prune
the non-heavy hitters from B so that the size to B reduces to no more than 2/ε.
We then repeat the greedy of process of growing B.

For u, v ∈ B, let Δi,j be the set of positions where u and v differ. We say
that a noisy sample y favors u ∈ B if for every v ∈ B, y agrees with u in strictly
more than half the positions in Δu,v. Note that, if u is itself is the original
sample, each bit of the noisy sample y agrees with that of u with probability
1 − ν > 1/2. So the probability that at least half the positions of y in Δu,v

disagree with u, by Chernoff-Hoeffding bound, is at most e−Ω(d(1/2−ν)2) < ε/16
for some C = O(1/(1/2 − ν)2). So by a union bound over the 4/ε centers, if
the original sample is u, the conditional probability that y does not favor u is at
most 1/4. (This is the only place where we use the bound on the noise in the first
phase.) Thus, for any ε-heavy hitter u, y will favor u with probability at least
3ε/4. Also note that y can favor at most one center u, because otherwise y would
have to agree with both u and u in more than half the places where they differ.
So we estimate, using O(1/ε2 log s/ε) samples, the fraction of y’s that favor each
center, and prune all but the 2/ε centers where this estimate is greater than ε/2.

At this point, B, the set of centers, has size less than 4/ε, where every un-
pruned string of T is within Hamming distance d of one of the centers. Note that
there can be at most O(nd/ε) = nO(log 1/ε) candidates left at this point, so if
noise is not independent, we can simply use this phase as our pruning algorithm
to get a quasi-polynomial time enumeration algorithm.

In phase two, for each center, we enumerate those heavy hitters that are
within d to that center. The union of these lists will include all heavy hitters. By
taking the bit-wise parity of the noisy samples with the center in question, we
can without loss of generality assume that the center in question is the all-zero
string. Thus, the problem is now equivalent to enumerating all heavy hitters
of small Hamming weight, i.e., d or less. For a string x, let Δx be the set of
positions where x is 1.

Our procedure is recursive. At each point, we have two sets of positions
A, |A| ≤ d and R, and we are trying to enumerate all low Hamming weight
heavy hitters x with A ⊆ Δx ⊆ A ∪ R. Initially, A is empty, and R will
be all n positions (but we show that very quickly, R will decrease to just
poly(1/ε) positions.) We use a potential function 0 ≤ QA,R ≤ 1 that allows us to
prune some branches that cannot lead to actual heavy hitters. A large value of
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potential function is necessary but not sufficient for there to be such a heavy
hitter x with A ⊆ Δx ⊆ R ∪ A. QA,R has the following properties:

1. If |A| ≤ d, QA,R can be approximated to within any poly(ε) additive error
in time poly(1/ε).

2. If there is an ε-heavy hitter x of Hamming weight ≤ d with A ⊆ Δx ⊆ A∪R,
then QA,R ≥ ε/2.

3. If |R| > O(log2 1/ε) and QA,R ≥ ε/2, then the average value of QA∪{i},R for

i ∈ R−A is at most |R|−1/4QA,R.
Property 1 allows us to compute the potential function. Property 2 allows us to
prune any branch where the potential function is too small. Property 3 says that
the potential function decreases dramatically for most cases where we extend A.
We first define QA,R and prove it has the above properties, then describe the
enumeration algorithm in terms of the properties. In the following, we use x to
refer to the original sample and y to the corresponding noisy sample.

Let a and b be constants (depending on ν) so that aν + b(1 − ν) = 0, and
a(1− ν) + bν = 1 (equivalently a = (1− ν)/(1− 2ν) and b = −ν/(1− 2ν)). For
bit position i, let vi be a if yi = 1 and b if yi = 0. Then the equations above say
that the conditional expectation of vi is xi. (This method is borrowed from the
unbiased sampler for the estimation problem from [3]. Unfortunately, using that
estimator takes exponential time. We get around this by only using it within A,
which has size at most d = O(log 1/ε).) Let wR−A be the number of 1’s in y
within R−A. Let EA,R be an indicator variable for the event that wR−A ≤ ν|R−
A|+d−|A|. Let VA,R be the random variable (Πi∈Avi)EA,R . Note that, for a fixed
x, all of the factors in VA,R are independent, so E[VA,R|x] = P[EA,R|x]Πi∈Axi.
(This equation uses the fact that the noise in each bit is independent.) Let
QA,R be the expectation of VA,R. The above shows that although VA,R may
be a polynomially large positive or negative number, QA,R is always between 0
and 1.

The absolute values of the vi’s are bounded by a constant, and we multiply
at most d of them, so the maximum value of V is polynomial in 1/ε. Thus, we
can estimate QA,R up to any polynomial in ε additive error by averaging VA,R
for poly(1/ε) samples. This establishes the first property.

If x has Hamming weight at most d, and A ⊆ Δx ⊆ R ∪ A, then if the
expected number or fewer of bit flips occur in R − A, EA,R will be true. Thus,
for such an x the conditional probability of EA,R is at least 1/2. For such an
x, E[VA,R|x] ≥ 1/2Πi∈Axi = 1/2. Since the conditional expectation is never
negative, if there is any ε-heavy hitter as above, QA,R ≥ ε/2. This establishes
the second property.

To establish the third property, let h0 = (d − |A|)/(1 − 2ν) + 4
√|R| log 1/ε.

Fix any x, and let h be the Hamming weight of x in R − A. We claim that∑
j∈R−AE[VA∪{j},R|x] ≤ h0(E[VA,R|x] + ε2). Note that for any j ∈ R − A,

EA∪{j},R implies EA,R. Then
E[VA∪{j},R|x] = xj(Πi∈Axi)P[EA∪{j},R|x] ≤ xj(Πi∈Axi)P[EA,R|x] =

xjE[VA,R|x]. Summing all j ∈ |R−A|, we get an upper bound of hE[VA,R|x] for
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the conditional expectation of the sum. So the inequality holds conditioned on
any x with h ≤ h0.

For the other case, fix x with h = fh0, f ≥ 1. Then the expected Hamming
weight of y within R is ν|R|+h(1−2ν), and our cut-off for EA,R to occur is ν|R|+
(d−|A|). Applying Chernoff bounds, we can upper bound the probability of EA,R
given such an x as at most ε2f

2

. Then the overall expectation of hE[VA,R|x] ≤
Ah0ε

2f2

, which is decreasing with f . So setting f = 1 gives us an upper bound
which holds in general, of h0ε

2 which is the second error term.
By linearity of expectation, then

∑
j QA∪{j},R ≤ h0(QA,R + ε2) ≤ 2h0QA,R

since QA,R ≤ ε/2. So this is at most O(
√|R−A| log 1/ε)QA,R. Dividing by

|R−A| and using the assumptions |R| ≥ C′(log 1/ε)2 for some sufficiently large
constant C′ gives us that the average value of QA∪{j},R is at most QA,RR

−1/4.
This establishes the last property.

We use this potential function QA,R in our algorithm as follows: At any point,
we will be enumerating those heavy hitters x with Hamming weight at most d
so that A ⊂ Δx ⊂ R for some sets A, |A| ≤ d and R.

If R < C′ log2 1/ε, we just enumerate all d-tuples by brute force. If QA,R <
ε/2, we can just terminate and return the empty set.

Otherwise, we compute QA∪{j},R for each j ∈ R−A. Divide those j into the

“exceptional” ones with QA∪{i},R ≥ |R|−1/8QA,R and the remaining “typical”

ones. By the third property and Markov’s inequality, at most O(|R|7/8) can be
exceptional. Let R′ be the set of exceptional positions.

For any heavy hitter x with A ⊆ Δx ⊂ R, either Δx − A ⊆ R′ or j ∈ Δx

for some j ∈ R − R′. So we output A to the list of heavy hitters, then recurse
on (A,R′) and recurse on (A ∪ j, R) for each j ∈ R − R′. This covers all of the
above cases recursively.

We now have to give a time analysis for the above algorithm. Let K =
�2QA,R/ε� be a measure of how far we are from being able to prune our current
set. Let r represent the size of R. We give our bound in terms of the number
of recursive calls T (K, r) needed for these values. First, if K = 0, we prune
and terminate. So T (0, r) = 1. If r < O(log2 1/ε), we use brute force search
and take time (1/ε)O(log log 1/ε). If r > O(1/ε8), we make only one recursive
call that isn’t immediately pruned, to a subset R′ of size at most O(|R|7/8). So
we shrink R without branching until r = O(1/ε8). Otherwise, we make up to
r “typical j” recursive calls where K decreases by a r−1/8 factor, and one “ex-
traordinary” recursive call where r becomes O(r7/8). Thus, we have the recursion
T (K, r) ≤ rT (Kr−1/8, r) + T (2/ε, r7/8). Unwinding the first part of the recur-
sion, each time we lose a factor of r1/8 from K, it costs us a factor of r. So we
get T (K, r) ≤ K8T (2/ε, r7/8). This recursion has O(log log r) = O(log log 1/ε)
depth, each giving a factor of (2/ε)8 for a total of (1/ε)O(log log 1/ε) recursive calls.
The leaves of the recursion cost us a similar factor as mentioned earlier. During
each recursion, we have to compute Q r times, which gives another polynomial
factor to the total running time. Thus the total time is (1/ε)O(log log 1/ε), as is
the list length.
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4 Lower Bounds on Enumeration

We first review the result from [3] on the lower bound for the number of samples
required for estimation. Let n = log 1/α. Consider two distributions D0 and D1.
D1 is the uniform distribution over n-bit strings, D0 the uniform distribution
on those n-bit strings with even parity. In D0 the all-zero string has probability
2α, and in D1, α, so any α/3 estimation algorithm has to distinguish between
the two.

However, both distributions are uniform when we restrict strings to any proper
subset of the bit positions. Let Q = (Q1, Q2, · · · , Qt) be any sequence where for
1 ≤ i ≤ t, Qi ⊂ [1..n] is a set of bit positions. Assume that for each 1 ≤ i ≤ t, i’th
sample reveals exactly the bits in positions given by Qi. Based on this condition
and assuming that none of the Qi is the entire set of positions, the induced
distributions on lossy samples are identical. Any distinguishing algorithm has to
wait until it sees at least one sample with all bits revealed. The probability of
this occurring with any one sample is (1 − μ)n, so the time required is at least
(1−μ)−n = (1− μ)logα = αlog(1−μ). Hence if μ = 1− o(1), this is (1/α)ω(1) and
is super-polynomial.

Note that these two distributions give no lower bound on the number of
samples required for enumeration, since an enumeration algorithm could just
list all 1/α strings of length n without seeing any samples at all. However, we
will present a very similar argument that shows a lower bound for enumeration.
For this, we need to increase the value of n without increasing the support size.
To achieve this condition, we look at sparse distributions. We will use the fact
that we are unlikely to reveal even a small constant fraction of the bit positions
when μ = 1−o(1). The following lemma and its corollary establish the existence
of the desired distribution, which are stated without proof.

Lemma 1. Let 1/2 > γ > 0. There is a γn-wise independent distribution on

strings of length n that has support size 2O(γ log( 1
γ )n).

Corollary 1. For any string x of length n, there is a distribution on strings
of length n that is γn-wise independent, and where x has probability at least

2−O(γ log( 1
γ )n).

Now, let μ = 1 − 1/L. If μ = 1 − o(1), L = ω(1). We will show that the sam-
ple complexity or the list size of any algorithm the enumerates ε-heavy hitters
from lossy samples with erasure probability μ is super-polynomial in 1/ε. Let

G be such that L = eG1+ G
log G and let γ = 1/G. G will be Θ(logL) (since

the right side is 2Θ(G)). For any n, select a random n-bit string x and run the

enumeration algorithm with ε = 2−Ω(γn log 1
γ ) = 2−O(logG/G) using the γn-wise

independent distribution with x in its support as obtained from the corollary.
Say that the algorithm gets t lossy samples and enumerates a list of size t′.
Let S = (S1, · · · , St) be the sequence of sets of revealed bit positions in the
samples. If every set in the sequence S has size at most γn, the observed sam-
ples are independent of x. Hence the conditional probability that x is on the
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list is at most t′/2n. So either t′ = Ω(2n) = (1ε )
Ω(G/ logG) = (1ε )

Ω(logL/ log logL)

or there is a constant probability that some |Si| > γn. Since each position is
revealed with probability 1/L and there are

(
n
γn

) ≤ (e/γ)γn = (eG)n/G sub-
sets of γn positions, the probability that any one Si is of size ≥ γn is at
most (eG)n/G(1/L)n/G = (eG/L)n/G. Hence, for any one of the Si to have
size more than γn, we must have t > (L/eG)n/G = (GG/ logG)n/G by our
choice of G. Now, ε = 2−Ω((n logG)/G) = G−Ω(n/G), so in this case we have
t = ε−Ω(G/ logG = (1ε )

Ω(logL/ log logL). Thus, if L is ω(1), then either the list size
or the number of samples must be super-polynomial in 1/ε, with exponents of
the form Ω(logL/ log logL).

The quantitative bound we get here for enumeration is almost as good as the
one above for estimation. As far as we know, these are the best known lower
bounds for these problems. However, they are pretty far from the upper bounds.

5 Canonical Upper and Lower Bounds for Estimation

Here, we use LP duality to show that either there is a lower bound for estimation
of a certain canonical form, or an algorithm of a canonical form.

The lower bound for estimation shown in [3] has the following form: there are
two distributions that differed by at least α in their probability of 0n, the all-
zero string. However, the induced distributions on lossy samples were statistically
close. The distributions in [3] were completely indistinguishable unless all bits
were revealed, which can only happen with small probability. Consider for now
the noisy case with bit-flipping probability of ν. Any distributions D0, D1 that
differ by α in the all-zero string must be distinguishable by an α/3 estimation
algorithm. Let N0, N1 be the corresponding noisy distributions, and let λ be
the statistical distance of N0 and N1. Then any algorithm that distinguishes the
two requires t = Ω(1/λ) samples. Now, without loss of generality, we can assume
that both distributions are symmetric, so that the probabilities of outputting a
Hamming weight i string for 0 ≤ i ≤ n determine them. Let Δi be the difference
of these two probabilities for weight i. Then Δ0 > α,

∑
Δi = 0 and

∑ |Δi| ≤ 2.
Conversely, any values of Δi satisfying these inequalities give rise to two such
distributions whose differences are Δi for 0 ≤ i ≤ n.

Let mi,j be the probability that a noisy version of a sample of Hamming
weight i ends up with Hamming weight j. An explicit formula for mi,j is mi,j =∑

k

(
i
k

)
(1 − μ)kμi−k(n−ij−k

)
μj−k(1 − μ)n−i−j+k , but we will not be using partic-

ular noisy error model right now. Our treatment works more generally for any
Hamming weight to Hamming weight transformation matrix. Then the differ-
ence between N0 and N1’s probabilities of producing a Hamming weight j string
is

∑
imi,jΔi. Thus, if we include the inequality

∑
j |

∑
imi,jΔi| ≤ λ in addi-

tion to the ones above, we get that the statistical distance of the noisy versions
is at most λ. Thus, these linear inequalities characterize the existence of such
distributions.

In fact, these inequalities make sense in a very general setting. Let M be a
stochastic n1 × n2 metric with entries mi,j representing the probability: if the
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original sample is of type i, that the observed sample is of type j. The above
inequalities say that there are two distributions on types so that 1/λ observed
samples are required to distinguish them, but differ by α in the probability of
type 0 in the original distributions. So, in particular, any α/3 estimator of the
probability of type 0 requires 1/λ samples. Call such a pair of distributions
(α, λ)-fooling pair of distributions for M .

We now consider a somewhat simplified relation of the inequalities above, but
which preserve the parameters to within polynomial factors. Fix a value for λ.
The primal relaxation has objective to maximize Δ0 subject to the following
inequalities in variables Δ0, . . . , Δn: 1.

∑i=n
i=0 Δi = 0, 2. For each 0 ≤ i ≤ n1,

−1 ≤ Δi ≤ 1, and 3. For each 0 ≤ j ≤ n2,−λ ≤
∑
mi,jΔi ≤ λ

If there is a solution with Δ0 ≥ α, we can give two distributions N0 and N1

as follows. Let R be the sum of the positive Δi. Note that n1 + 1 ≥ ∑
i |Δi| ≥

R ≥ Δ0 ≥ α. N0 is supported on those i with Δi > 0, and the probability of
strings with Hamming weight i solutions is Δi/R for such i. N1 is supported on
those i with Δi < 0, and the probability of Hamming weight i is −Δi/R.

For any i, the difference between the probabilities is Δi/R. Thus, the differ-
ence between their probabilities of the all-zero string is Δ0/R ≥ α/(n1 + 1),
and the statistical distance between the noisy versions is:

∑
j |

∑
imi,jΔi/R| =

1/R
∑

j |
∑
imi,jΔi| ≤ λ(n2 + 1)/R ≤ λ(n2 + 1)/α.

So if the optimum objective is greater than α, there are two distributions such
that their noisy versions are indistinguishable to within λ(n2 + 1)/α. Thus, any
α/(3(n1 + 1)) estimation algorithm will require α/((n2 + 1)λ) samples.

If the optimum objective is less than α, consider the dual system of inequal-
ities. Say we multiply the first equation by w > 0, the lower bound in the i’th
example of the second set of inequalities by ui > 0, the upper bound by vi > 0,
the lower bound in the j’th example in the third set of inequalities by yj > 0
and the upper bound by zj > 0. Then we get the induced inequality∑

i(w + vi − ui +
∑

j(zj − yj)mi,j)Δi ≤
∑

i(ui + vi) + λ
∑

j(yj + zj).
So the dual is to minimize

∑
i(ui + vi) + λ

∑
j(yj + zj) subject to w + v0 −

u0 +
∑
j(zj − yj)m0,j = 1 and w+ vi− ui+

∑
j(zj − yj)mi,j = 0 for n1 ≥ i ≥ 1.

Note that if the objective is less than α, then so is each ui and vi, each yj and
zj are at most α/λ, and w < |v1 − u1|+maxj |zj − yj | = O(α/λ).

Let βj = (zj − yj) + w, and consider the algorithm : Let J be the random
variable given by the observed type of the noisy sample. Estimate the expected
value of βJ to within O(α). The constraints say that, on a type 0 input, the
expectation of βJ is 1+O(α) and on any other Hamming weight, the expectation
is O(α) in absolute value.

Thus, the expectation of βJ will be within O(α) of the probability of the orig-
inal sample being type 0. Since each |βj | is at most O(α/λ), we can estimate the
expectation to within α using O(1/λ2) samples. In the language of [3]. the vector
β is a local inverse of M at 0. We summarize the discussion in the following:

Theorem 1. Let M be any n1 × n2 stochastic matrix, and let 0 < α, λ < 1.
Then either there is an pair of (α, λ)-fooling distributions for M (and hence,
any α/3-estimator for the probability of 0 requires Ω(1/λ) samples ) or there is
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a local inverse for M with maximum coefficients of size O(n1n2α/λ) (and hence
there is a time polynomial in n1, n2 and 1/λ algorithm to estimate the probability
of 0 within O(α)).
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Abstract. We compare the sample complexity of private learning and
sanitization tasks under pure ε-differential privacy [Dwork, McSherry,
Nissim, and Smith TCC 2006] and approximate (ε, δ)-differential pri-
vacy [Dwork, Kenthapadi, McSherry, Mironov, and Naor EUROCRYPT
2006]. We show that the sample complexity of these tasks under approx-
imate differential privacy can be significantly lower than that under pure
differential privacy.
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1 Introduction

Learning and sanitization are often applied to collections of sensitive data of
individuals and it is important to protect the privacy of these individuals. We
examine the sample complexity of these tasks while preserving differential pri-
vacy [9]. Our main focus is on private learning [14] and sanitization [4] and we
show starking differences between the required sample complexity for these tasks
under ε-differential privacy [9] (also called pure differential privacy) and its vari-
ant (ε, δ)-differential privacy [7] (also called approximate differential privacy).

An algorithm A satisfies the requirement of Pure Differential Privacy if for
every two databases that differ on exactly one entry, and for every event defined
over the output of the algorithm, the probability of this event is close up to a
multiplicative factor of ≈ 1 + ε whether A is applied on one database or on the
other. Informally, to satisfy the requirement of Approximate Differential Privacy
the above guarantees needs to be satisfied only for events whose probability is
at least ≈ δ. We show that even negligible δ > 0 can have a significant effect on
sample complexity of two fundamental tasks: private learning and sanitization.

� Research supported by the Israel Science Foundation (grants No. 938/09 and
2761/12) and by the Frankel Center for Computer Science at Ben-Gurion University.
Work done while the second author was a Visiting Scholar at the Harvard Center
for Research on Computation and Society (CRCS). Work partially done when the
third author was visiting Harvard University supported in part by NSF grant CNS-
1237235 and a gift from Google, Inc.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 363–378, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



364 A. Beimel, K. Nissim, and U. Stemmer

Private Learning. Private learning was introduced in [14] as a combination of
Valiant’s PAC learning model [21] and differential privacy (applied to the ex-
amples used by the learner). The work on private learning has since mainly
focused on pure privacy. On the one hand, this work showed, via generic con-
structions [3,14], that every finite concept C class can be learned privately, using
sample complexity proportional to poly(log |C|) (often efficiently). On the other
hand, a significant difference was shown between the sample complexity of tra-
ditional (non-private) learners (crystallized in terms of VC(C) and smaller than
log |C| in many interesting cases) and private learners, when the latter are re-
quired to be proper (i.e., output a hypothesis in C).

As an example, let POINTd be the class of point functions over the domain
{0, 1}d (these are the functions that evaluate to one on exactly one point of
the domain). Consider the task of properly learning POINTd where, after con-
sulting its sample, the learner outputs a hypothesis that is by itself in POINTd.
Non-privately, learning POINTd requires merely a constant number of examples
(as VC(POINTd) = 1). Privately, Ω(d) examples are required [1]. Curiously, the
picture changes when the private learner is allowed to output a hypothesis not
in POINTd (such learners are called improper), as the sample complexity can
be reduced to O(1) [1]. This, however, comes with a price, as it was shown [1]
that such learners must return hypotheses that evaluate to one on exponentially
many points in {0, 1}d and, hence, are very far from all functions in POINTd. A
similar lower bound of Ω(d) samples is known also for properly and privately
leaning the class INTERVALd of threshold functions over the interval [0, 2d − 1]
(no corresponding sample-efficient improper private learner is known, that is,
the best previously known private learning algorithm (proper or improper) for
INTERVALd has sample complexity O(d)). A complete characterization for the
sample complexity of pure private learners was recently given in [2], in terms of
a new dimension – the Representation Dimension, that is, given a class C the
number of samples needed and sufficient for privately learning C is RepDim(C).

We show that the sample complexity of proper private learning with ap-
proximate differential privacy can be significantly lower than that with pure
differential privacy. Our starting point for this work is an observation that with
approximate (ε, δ>0)-differential privacy, sample complexity of O(log(1/δ)) suf-
fices for learning points properly. This gives a separation between pure and ap-
proximate proper private learning for δ = 2−o(d). Anecdotally, combining this
with a result from [1] gives a learning task that is not computationally feasible
under pure differential privacy and polynomial time computable under approxi-
mate differential privacy.

Sanitization. The notion of differentially private sanitization was introduced in
the seminal work of Blum et al. [4]. A sanitizer for a class of predicates C is a
differentially private mechanism translating an input database S to an output
database Ŝ s.t. S, Ŝ agree (approximately) on the fraction of the entries in S
satisfying ϕ for all ϕ ∈ C. Blum et al. gave a generic construction of pure differ-
entially private sanitizers exhibiting sample complexity O(VC(C) log |X |), and
lower bounds partially supporting this sample complexity were given by [17,1,13]
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(the construction is not generally feasible [10,20,19]). As with private learning,
we show significant differences between the sample complexity required for san-
itization of simple predicate classes under pure and approximate differential
privacy.

1.1 Our Contributions

To simplify the exposition, we omit in this section dependency on all variables
except for the complexity variable d corresponding, e.g., to domain size and
(logarithm of) concept class size.

Tools. A recent instantiation of the Propose-Test-Release framework [8] by Smith
and Thakurta [18] results, almost immediately, with a proper learner for points,
exhibiting O(1) sample complexity while preserving approximate differential pri-
vacy. This simple technique does not suffice for our other constructions of learners
and sanitizers, and we, hence, introduce new tools for coping with proper pri-
vate learning of intervals, sanitization for point functions, and sanitization for
intervals:

– Choosing mechanism: Given a low-sensitivity quality function, one can
use the exponential mechanism [16] to choose an approximate solution. This
method requires, in general, a database of size logarithmic in the number of
possible solutions. We identify a sub family of low-sensitivity functions, called
bounded-growth functions, for which it is possible to significantly reduce the
necessary database size when using the exponential mechanism.

– Recursive algorithm for concave promise problems: We define a fam-
ily of optimization problems, which we call Concave Promise Problems. The
possible solutions are ordered, and concavity means that if two solutions
f ≤ h have quality ≥ X , then any solution f ≤ g ≤ h also has quality
≥ X . The optimization goal is, when there exists a solution with a promised
quality ≥ r, to find a solution with quality ≈ r. We observe that a concave
promise problem can be privately approximated using a solution to a smaller
instance of a concave promise problem. This allows us to construct an ef-
ficient recursive algorithm solving such problems privately. We show that
the task of learning INTERVALd is, in fact, a concave promise problem, and
can be privately solved using our algorithm with sample size roughly 2log

∗ d.
Sanitization for INTERVALd does not exactly fit the model of concave promise
problems but can still be solved by iteratively defining and solving a small
number of concave promise problems.

Implications for Private Learning and Sanitization. We give new proper private
learning algorithms for the classes POINTd and INTERVALd. Both algorithms ex-
hibit sample complexity that is significantly lower than bounds given in prior
work, separating pure and approximate proper private learning. Similarly, we
construct sanitizers for these two classes, again with sample complexity that is
significantly lower than bounds given in prior work, separating sanitization in
the pure and approximate privacy cases.
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Santization vs. Private Learning. In [11], a reduction is given in both directions
between agnostic learning of a concept class C, and the sanitization task for the
same class C. They consider learners and sanitizers with limited access to the
data, using statistical queries [15] (a non-private SQ learner could be transformed
into a private learner, as was shown in [14]). In Section 5 we show a different (and
natural) reduction from the task of privately learning a concept class C to the
sanitization task of a slightly different concept class C′, where the sanitizer’s ac-
cess to the database is unrestricted. We then exploit lower bounds on the sample
complexity of private learners and show a class of predicates C over a domain X
for which every private sanitizer requires databases of size Ω(VC(C) log |X |). A
similar lower bound was already shown by Hardt and Rothblum [13], achieving
better results in terms of the approximation parameter. Their work ensures the
existence of such a concept class, but does not give an explicit one.

Label Privacy. In Section 6 we examine private learning under a relaxation of
differential privacy called label privacy (see [5] and references therein) where
the learner is required to only protect the privacy of the labels in the sample.
Chaudhuri et al. [5] gave lower bounds for label-private learners in terms of the
doubling dimension of the target concept class. We show that the VC dimension
completely characterizes the sample complexity of such learners.

1.2 Related Work

Mostly related to our work is the work on private learning and its sample com-
plexity [14,3,1,5] and the early work on sanitization [4] mentioned above. An-
other related work is the work of De [6] who proved a separation between pure
ε-differential privacy and approximate (ε, δ>0)-differential privacy. Specifically,
he demonstrated that there exists a query where it is sufficient to add noise
O(

√
n log(1/δ)) when δ > 0 and Ω(n) noise is required when δ = 0. Earlier

work by Hardt and Talwar separated pure from approximate differential privacy
for δ = n−O(1) [12].

2 Preliminaries

Notation. We use Oγ(g(d)) as a shorthand for O(h(γ) · g(d)) for some non-
negative function h. We use X to denote an arbitrary domain, and Xd for the
domain {0, 1}d. Databases S1 ∈ Xm and S2 ∈ Xm over a domain X are called
neighboring if they differ in exactly one entry.

2.1 Differential Privacy

Definition 1 ([9,7]). A randomized algorithm A is (ε, δ)-differentially private
if for all neighboring databases S1, S2, and for all sets F of outputs, PrA[A(S1) ∈
F ] ≤ exp(ε)·PrA[A(S2) ∈ F ]+δ. When δ = 0 we omit it and say that A preserves
ε-differential privacy.

We use the term pure differential privacy when δ = 0 and the term approximate
differential privacy when δ > 0.
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2.2 PAC Learning and Private PAC Learning

A concept c : X → {0, 1} is a predicate that labels examples taken from the
domain X by either 0 or 1. A concept class C over X is a set of concepts map-
ping X to {0, 1}. A learning algorithm is given examples sampled according to
an unknown probability distribution D over X , and labeled according to an un-
known target concept c ∈ C. The goal of the learning algorithm is to output a
hypothesis h that approximates c well over samples from D.
Definition 2. The generalization error of a hypothesis h : X → {0, 1} is defined
as errorD(c, h) = Prx∼D[h(x) �= c(x)]. If errorD(c, h) ≤ α we say that h is α-
good for c and D.
Definition 3 (PAC Learning [21]). Algorithm A is an (α, β,m)-PAC learner
for a concept class C over X using hypothesis class H if for all concepts c ∈ C,
all distributions D on X, given an input of m samples S = (z1, . . . , zm), where
zi = (xi, c(xi)) and xi are drawn i.i.d. from D, algorithm A outputs a hypothesis
h ∈ H satisfying Pr[errorD(c, h) ≤ α] ≥ 1− β. The probability is taken over the
random choice of the examples in S according to D and the coin tosses of the
learner A. If H ⊆ C then A is called a proper PAC learner; otherwise, it is called
an improper PAC learner.

Definition 4. For a labeled sample S = (xi, yi)
m
i=1, the empirical error of h

w.r.t. S is errorS(h) =
1
m |{i : h(xi) �= yi}|.

In private learning, we would like to accomplish the same goal as in non-private
learning, while protecting the privacy of the input database.

Definition 5 (Private PAC Learning [14]). Let A be an algorithm that gets
an input S = {z1, . . . , zm}. Algorithm A is an (α, β, ε, δ,m)-PPAC learner for
a concept class C over X using hypothesis class H if (i) Algorithm A is (ε, δ)-
differentially private; and (ii) Algorithm A is an (α, β,m)-PAC learner for C
using H. When δ = 0 (pure privacy) we omit it from the list of parameters.

2.3 Private Data Release

Given a concept c : X → {0, 1}, the counting query Qc : X
∗ → [0, 1] is defined

as Qc(S) =
1
|S| · |{xi ∈ S : c(xi) = 1}|. That is, Qc(S) is the fraction of entries

in S that satisfy the concept c. Given a database S, a sanitizer for a concept
class C is required to approximate Qc(S) for every c ∈ C.
Definition 6 (Sanitization [4]). Let C be a class of concepts mapping X to
{0, 1}. Let A be an algorithm that on an input database S ∈ X∗ outputs a de-
scription of a function est : C → [0, 1]. Algorithm A is an (α, β, ε, δ,m)-improper-
sanitizer for predicates in the class C, if (i) A is (ε, δ)-differentially private; and,
(ii) For every input S ∈ Xm, PrA

[∀c ∈ C ∣
∣Qc(S)− est(c)

∣
∣ ≤ α] ≥ 1− β.
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If on an input database S algorithm A outputs another database Ŝ ∈ X∗, and
est(·) is defined as est(c) = Qc(Ŝ), then algorithm A is called a proper-sanitizer
(or simply a sanitizer). As before, when δ = 0 (pure privacy) we omit it from
the set of parameters. A database S and a function est (or two databases S, Ŝ)
are called α-close if |Qc(S)− est(c)| ≤ α for every c ∈ C.
Ignoring computational complexity, an (α, β, ε, δ,m)-improper-sanitizer can al-
ways be transformed into a (2α, β, ε, δ,m)-sanitizer, by finding a database Ŝ of
m entries that is α-close to the returned estimation est (such a database exists,
i.e., S itself).

2.4 Basic Differentially Private Mechanisms

The Laplace Mechanism. The most basic construction of differentially pri-
vate algorithm is via the Laplace mechanism as follows.

Definition 7 (The Laplace Distribution). A random variable has probability

distribution Lap(b) if its probability density function is f(x) = 1
2b exp(− |x|b ).

Definition 8 (Sensitivity). A function f : Xm → R has sensitivity k if for
every neighboring D,D′ ∈ Xm, it holds that |f(D)− f(D′)| ≤ k.
Theorem 1 (The Laplacian Mechanism [9]). Let f : Xm → R be a sensi-
tivity k function. The mechanism A which on input D ∈ Xm outputs A(D) =
f(D) + Lap(kε ) preserves ε-differential privacy. Moreover, Pr[|A(D) − f(D)| >
Δ] = exp

(− εΔk
)
.

The Exponential Mechanism. Let X be a domain and H a set of solutions.
Given a quality function q : X∗ ×H → N, and a database S ∈ X∗, the goal is
to chooses a solution h ∈ H approximately maximizing q(S, h). The exponen-
tial mechanism, by McSherry and Talwar [16], chooses a solution h ∈ H with
probability proportional to exp(ε · q(S, h)/2).
Proposition 1 (Properties of the Exponential Mechanism). (i) The ex-
ponential mechanism is ε-differentially private. (ii) Let ê � maxf∈H{q(S, f)}.
The exponential mechanism outputs a solution h such that q(S, h) ≤ (ê −Δm)
with probability at most |H| · exp(−εΔm/2).

Stability and Privacy. We restate a simplified variant of algorithm Adist by
Smith and Thakurta [18], which is an instantiation of the PTR framework [8].
Let q : X∗ × F → N be a sensitivity-1 quality function over a domain X and a
set of solutions F . Given a database S ∈ X∗, the goal is to chooses a solution
f ∈ F maximizing q(S, f), under the assumption that the optimal solution f
scores much better than any other solution in F .
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Algorithm Adist
Input: parameters ε, δ, database S ∈ X∗, sensitivity-1 quality function q.
1. Let f1 �= f2 be two highest score solutions in F , where q(f1, S) ≥
q(f2, S).

2. Let gap = q(f1, S)− q(f2, S) and gap∗ = gap + Lap(4ε ).
3. If gap∗ < 4

ε ln(
1
δ ) + 2 then output ⊥1 and halt.

4. If gap = 0 then output ⊥2, otherwise output f1.

Proposition 2 (Properties of Adist [18]). (i) Algorithm Adist is (ε, δ)- differ-
entially private. (ii) When given an input database S for which gap ≥ 4

ε ln(
2
βδ ),

algorithm Adist outputs f1 maximizing q(f, S) with probability at least (1− β).

3 Learning with Approximate Privacy

We present proper (ε, δ)-private learners for two simple concept classes, POINTd
and INTERVALd, demonstrating separations between pure and approximate pri-
vate proper learning.

3.1 (ε, δ)-PPAC Learner for POINTd

For j ∈ Xd let cj : Xd → {0, 1} be defined as cj(x) = 1 if x = j and
cj(x) = 0 otherwise. Define the concept class POINTd = {cj}j∈Xd

. Note that
the VC dimension of POINTd is 1, and, therefore, there exists a proper non-
private learner for POINTd with sample complexity Oα,β(1). Beimel at el. [1]
proved that every proper ε-private learner for POINTd must have sample com-
plexity Ω(d) = Ω(log | POINTd |). They also showed that there exists an improper
ε-private learner for this class, with sample complexity Oα,β,ε(1).

As we will now see, algorithm Adist (defined in Section 2.4) can be used as a
proper (ε, δ)-private learner for POINTd with sample complexity Oα,β,ε,δ(1). This
is our first (and simplest) example separating the sample complexity of pure and
approximate private learners. Consider the following algorithm.

Input: parameters α, β, ε, δ, and a database S ∈ Xm
d+1.

1. For every x, define q(S, x) as the number of appearances of (x, 1) in S.
2. ExecuteAdist on S with the quality function q and parameters α2 ,

β
2 , ε, δ.

3. If the output was j then return cj .
4. Else, if the output was ⊥1 or ⊥2 then return a random ci ∈ POINTd.

Lemma 1. Let α, β, ε, δ be s.t. 1
αβ ≤ 2d. The above algorithm is an efficient

(α, β, ε, δ)-PPAC proper learner for POINTd using a sample ofm = O
(

1
αε ln(

1
βδ )

)

labeled examples.

The proof is omitted from this extended abstract. For intuition, consider a tar-
get concept cj and an underling distribution D. Whenever D(j) is noticeable, a
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typical sample S contains many copies of the point j labeled as 1. As every other
point i �= j will be labeled as 0, we expect q(S, j) to be significantly higher than
any other q(S, i), and we can use algorithm Adist to identify j.

3.2 Towards a Proper (ε, δ)-PPAC Learner for INTERVALd

For 0 ≤ j ≤ 2d let cj : Xd → {0, 1} be defined as cj(x) = 1 if x < j and
cj(x) = 0 otherwise. Define the concept class INTERVALd = {cj}0≤j≤2d . Note that
VC(INTERVALd) = 1, and, therefore, there exists a proper non-private learner for
INTERVALd with sample complexity Oα,β(1). As | INTERVALd | = 2d + 1, one can
use the generic construction of Kasiviswanathan et al. [14] and get a proper
ε-private learner for this class with sample complexity O(d). Beimel et al. [1]
showed that this is in fact optimal, and every proper ε-private learner for this
class must have sample complexity Ω(d). It is unknown whether there exists an
improper ε-private learner for INTERVALd with sample complexity o(d).

Our learner for POINTd relied on a strong “stability” property of the prob-
lem: Given a labeled sample, either a random concept is (w.h.p.) a good output,
or, there is exactly one consistent concept in the class, and every other con-
cept has large empirical error. This, however, is not the case when dealing with
INTERVALd. In particular, many hypotheses can have low empirical error, and
changing a single entry of a sample S can significantly affect the set of hypothe-
ses consistent with it.

In Section 3.3, we present a proper (ε, δ)-private learner for INTERVALd exhibit-

ing sample complexity Õα,β,ε,δ(16
log∗(d)). We use this section for motivating the

construction. We start with two simplifying assumptions. First, when given a la-
beled sample S, we aim at choosing a hypothesis h ∈ INTERVALd approximately
minimizing the empirical error (rather than the generalization error). Second,
we assume that we are given a “diverse” sample S that contains many points
labeled as 1 and many points labeled as 0. Those two assumptions (and any
other informalities made hereafter) will be removed in Section 3.3.

Assume we are given as input a sample S = (xi, yi)
m
i=1 labeled by some un-

known c� ∈ INTERVALd. We would now like to choose a hypothesis h ∈ INTERVALd
with small empirical error on S, and we would like to do so while accessing the
sample S only through differentially private tools.

We will refer to points labeled as 1 in S as ones, and to points labeled as
0 as zeros. Imagine for a moment that we already have a differentially private
algorithm that given S outputs an interval G ⊆ Xd with the following two
properties:

1. The interval G contains “a lot” of ones, and “a lot” of zeros in S.

2. Every interval I ⊆ Xd of length ≤ |G|k does not contain, simultaneously, “too
many” ones and “too many” zeros in S, where k is some constant.

Such an interval will be referred to as a k-good interval. The figure below illus-
trates such an interval G, where the dotted line represents the (unknown) target
concept, and the bold dots correspond to sample points.



Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 371

G

Given such a 4-good interval G, we can (without using the sample S) define a
set H of five hypotheses, s.t. at least one of them has small empirical error. To
see this, consider the figure below, where G is divided into four equal intervals
g1, g2, g3, g4, and 5 hypotheses h1, . . . , h5 are defined s.t. the points where they
switch from one to zero are uniformly spread inside G. Now, as the interval G
contains both ones and zeros, it must be that the target concept c� switches
from 1 to 0 inside G. Assume without loss of generality that this switch occurs

inside g2. Note that g2 is of length |G|4 and, therefore, either does not contain
too many ones, and h2 is “close” to the target concept, or does not contain too
many zeros, and h3 is “close” to the target concept.

g1 g2 g3 g4

h1 h2 h3 h4 h5

After defining such a setH , we could use the exponential mechanism to choose
a hypothesis h ∈ H with small empirical error on S. As the size of H is constant,
this requires only a constant number of samples. To conclude, finding a k-good
interval G (while preserving privacy) is sufficient for choosing a good hypothesis.
We next explain how to find such an interval.

Assume, for now, that we have a differentially private algorithm that given a
sample S, returns an interval length J s.t. there exists a 2-good interval G ⊆ Xd

of length |G| = J . This length J could be used to find an explicit 4-good interval
as follows. Divide Xd into intervals {Ai} of length 2J , and into intervals {Bi}
of length 2J right shifted by J as in the figure below.

A1 A2 A3 A4 A4

B1 B2 B3 B4

As the promised 2-good interval G is of length J , at least one of the above
intervals contains G. If, e.g., G ⊆ A2 then A2 contains both a lot of zeros and
a lot of ones. The target concept must switch inside A2, and, therefore, every
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other Ai �= A2 cannot contain both zeros and ones. For every interval Ai, define
its quality q(Ai) to be the minimum between the number of zeros in Ai and the
number of ones in Ai. We have, therefore, that q(A2) is big, while q(Ai) = 0
for every Ai �= A2. That is, A2 scores much better than any other Ai under
this quality function q. The sensitivity of q() is one and we can use algorithm
Adist to privately identify A2. Recall that G ⊆ A2 is a 2-good interval, and that
|A2| = 2|G|. The identified A2 is, therefore, a 4-good interval.

To conclude, if we could indeed find (while preserving privacy) a length J s.t.
there exists a k-good interval G of that length – our task would be completed.

Computing the Interval Length J. At first attempt, one might consider
preforming a binary search for such a length 0 ≤ J ≤ 2d, in which every com-
parison will be made using the Laplace mechanism. This will indeed preserve
privacy. However, as there are d noisy comparisons, this solution will require a
sample of size dΩ(1) in order to achieve reasonable utility guarantees.

As a second attempt, one might consider preforming a binary search, not
on 0 ≤ J ≤ 2d, but rather on the power j of an interval of length 2j. That is,
preforming a search for a power 0 ≤ j ≤ d for which there exists a 2-good interval
of length 2j . Here there are only log(d) noisy comparisons, and the sample size

will be reduced to logΩ(1)(d). More specifically, for every power 0 ≤ j ≤ d, define

Q(j) = max
[a,b]⊆Xd

b−a=2j

{

min

{
number of

zeros in [a, b]
,

number of
ones in [a, b]

}}

.

If, e.g., we have that Q(j) = 100 for some j, then there exists an interval [a, b] ⊆
Xd of length 2j that contains at least 100 ones and at least 100 zeros. Moreover,
every interval of length ≤ 2j either contains at most 100 ones, or, contains at
most 100 zeros.

A binary search on 0 ≤ j ≤ d can (privately) yield an appropriate length
J = 2j s.t. Q(j) is “big enough” (and so, there exists an interval of length 2j

containing lots of ones and lots of zeros), while Q(j − 1) is “small enough” (and
so, every interval of length 1

22
j can not contain too many ones and too many

zeros simultaneously).

Remark 1. A binary search as above would have to operate on noisy values of
Q(·) (as otherwise differential privacy cannot be obtained). For this reason we
set the bounds for “big enough” and “small enough” to overlap. Namely, we
search for a value j such that Q(j) ≥ (1− 3α

4 )m and Q(j−1) ≤ (1− α
4 )m, where

α is our approximation parameter, and m is the sample size.

We will apply recursion to reduce the costs of computing J = 2j to 2O(log∗(d)).
The tool performing the recursion would be formalized and analyzed in the next
section. This tool will later be used in our construction of a proper (ε, δ)-private
learner for INTERVALd.
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3.3 Privately Approximating Concave Promise Problems

Definition 9. A function Q(·) is concave if Q(i), Q(j) ≥ x implies Q(
) ≥ x
for every i ≤ 
 ≤ j.
Definition 10 (Concave Promise Problem). A Concave Promise Problem
consists of an interval of possible solutions [0, T ] = {0, 1, . . . , T }, a database
S ∈ Xm, a sensitivity-1 quality function Q : X∗× [0, T ]→ R, an approximation
parameter α, and another parameter r (called a quality promise).

If Q(S, ·) is concave and if there exists an solution p ∈ [0, T ] for which
Q(S, p) ≥ r then a good output for the problem is a solution k ∈ [0, T ] satis-
fying Q(S, k) ≥ (1 − α)r. The outcome is not restricted otherwise.

We are interested in solving concave promise problems while preserving differ-
ential privacy (privacy must be preserved even when Q(S, ·) is not concave or
Q(S, p) < r for all p ∈ [0, T ]). Our algorithm Rec is presented in Fig. 1 (see
inline comments for some of the underlying intuition).

Lemma 2. When executed on a range [0, T ], a sensitivity-1 quality function Q,
and parameters ε, δ, algorithm Rec preserves (ε′, 4 log∗(T )δ)-differential privacy,
where ε′ =

√
6 log∗(T ) ln( 1

log∗(T )δ ) · ε+ 6 log∗(T ) · ε2.

Lemma 3. Let Q : X∗ × [0, T ] → R be a sensitivity-1 quality function, and
let S ∈ X∗ be a database s.t. Q(S, ·) is concave. Let α ≤ 1

2 and let β, ε, δ, r

be s.t. L(S, 0) � maxi{Q(S, i)} ≥ r ≥ (
2
α

)log∗(T ) 16
αε ln

(
32
βδ

)
. When executed on

S, [0, T ], r, α, ε, δ, algorithm Rec fails to outputs an index j s.t. Q(S, j) ≥ (1−α)r
with probability at most 2β log∗(T ).

Remark 2. The computational efficiency of algorithmRec depends on the quality
function Q(·, ·). Note, however, that it suffices to efficiently implement the top
level call (i.e., without the recursion). This is because an iteration of algorithm
Rec, operating on a range [0, T ], can easily be implemented in time poly(T ), and
the range given as input to recursive calls is logarithmic in the size of the initial
range.

AlgorithmRec can be used as a proper (α, β, ε, δ,m)-private learner for INTERVALd.
The details of this straight forward application are omitted from this extended
abstract.

Theorem 2. There exists an efficient proper (α, β, ε, δ,m)-PPAC learner for

INTERVALd, where m = Oα,β,ε

(
16log

∗(d)
√
log∗(d) log(1δ ) log

(
1
δ log

∗(d)
))

.

4 Sanitization with Approximate Privacy

Beimel et al. [1] showed that every pure ε-private sanitizer for POINTd, must op-
erate on databases of Ω(d) elements. In this section we state the existence of an
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Algorithm Rec
Inputs: range [0, T ], quality function Q, quality promise r, parameters α, ε, δ, and a
sample S.

1. If T ≤ 32, then use the exponential mechanism with the quality function Q and
the parameter ε to choose and return an index j ∈ [0, . . . , T ].

2. Let T ′ be the smallest power of 2 s.t. T ′ ≥ T , and define Q(S, i) = 0 for
T < i ≤ T ′.

3. For 0 ≤ j ≤ log(T ′) let L(S, j) = max
[a,b]⊆[0,T ′]
b−a+1=2j

(
min

i∈[a,b]

(
Q(S, i)

))
. For j =

log(T ′) + 1 let L(S, j) = min{0, L(S, log(T ′)}.
% If L(S, j) = x then in every interval I ⊆ [0, T ′] of length 2j there exists a

point i ∈ I s.t. Q(S, i) ≤ x. Moreover, there exists an interval I ⊆ [0, T ′] of
length 2j s.t. Q(S, i) ≥ x for all i ∈ I. Note that, as L(S, j + 1) maximizes
the minimum over intervals bigger than I, it must be bounded by x.

4. Define the function q(S, j) = min
(
L(S, j) − (1 − α)r, r − L(S, j + 1)

)
where

0 ≤ j ≤ log(T ′).
% If q(S, j) is high for some j, then there exists an interval I = [a, a+ 2j − 1]

s.t. every i ∈ I has a quality Q(S, i) >> (1 − α)r, and for every interval
I ′ = [a′, a′ + 2j+1 − 1] there exists i′ ∈ I ′ with quality Q(S, i) << r.

5. Let R = α
2
r.

% R is the promise parameter for the recursive call. Note that for the maximal
j with L(S, j) ≥ (1− α

2
)r we get q(S, j) ≥ α

2
r = R.

6. Execute Rec recursively on the range {0, . . . , log(T ′)}, the quality function q(·, ·),
the promise R, and α, ε, δ. Denote the returned value by k, and let K = 2k.
% Assuming the recursive call was successful, k is s.t. q(S, k) ≥ (1 − α)R =

(1−α)α
2
r. That is, L(S, k) ≥ (1− α

2
− α2

2
)r and L(S, k+1) ≤ (1− α

2
+ α2

2
)r.

7. Divide [0, T ′] into the following intervals of length 8K (the last ones might be
trimmed):
A1 = [0, 8K − 1], A2 = [8K, 16K − 1], A3 = [16K, 24K − 1], . . .
B1 = [4K, 12K − 1], B2 = [12K, 20K − 1], B3 = [20K, 28K − 1], . . .
% We show that in at least one of those two partitions (say the {Ai}’s), there

exists a “good” interval Ag s.t. Q(S, i) = r for some i ∈ Ag, and Q(S, i) ≤
(1− α

2
+ α2

2
)r for all i ∈ {0, . . . , T} \Ag.

8. For every such interval I ∈ {Ai} ∪ {Bi} let u(S, I) = max
i∈I

(
Q(S, i)

)
.

9. Use algorithm Adist with parameters ε, δ and the quality function u(·, ·), once
to choose an interval A ∈ {Ai}, and once more to choose an interval B ∈ {Bi}.
% By the properties of Adist, w.h.p. at least one of the returned A and B is

“good”.

10. Denote A = [a, b] and B = [c, d], and define H = {a+iK
2
: 0 ≤ i ≤ 15}∪{b+iK

2
:

0 ≤ i ≤ 15}.
% We show that H contains an index with high quality.

11. Use the exponential mechanism with the quality function Q(·, ·) and parameter
ε to choose and return an index j ∈ H.

Fig. 1. Algorithm Rec
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(ε, δ)-private sanitizer for POINTd with sample complexity Oα,β,ε,δ(1). This sep-
arates the database size necessary for (ε, 0)-private sanitizers from the database
size sufficient for (ε, δ)-private sanitizers.

Recall that in our private PAC learner for POINTd, given a typical labeled
sample, there exists a unique concept in the class that stands out (we used
algorithm Adist to identify it). This is not the case in the context of sanitization,
as a given database S may have many α-close sanitized databases Ŝ. We will
overcome this issue using the following private tool for approximating a restricted
class of choosing problems.

4.1 The Choosing Mechanism

A function q : X∗ × F → N defines an optimization problem over the domain
X and solution set F : Given a dataset S over domain X choose f ∈ F which
(approximately) maximizes q(S, f). We are interested in a subset of these op-
timization problems, which we call bounded-growth choice problems. For this
section we think of a database S ⊆ X∗ as a multiset.

Definition 11. Given q and S define optq(S) = maxf∈F{q(S, f)}. A solution
f ∈ F is called α-good for a database S if q(S, f) ≥ optq(S)− α|S|.
Definition 12. A scoring function q : X∗ ×F → N is k-bounded-growth if:
1. q(∅, f) = 0 for all f ∈ F .
2. If S2 = S1 ∪ {x}, then (i) q(S2, f) ≥ q(S1, f) ≥ q(S2, f) − 1 for all f ∈ F ;

and (ii) there are at most k solutions f ∈ F s.t. q(S1, f) < q(S2, f).

In words, the second requirement means that (i) Adding an element to the
database could either have no effect on the score of a solution f , or can in-
crease the score by exactly 1; and (ii) There could be at most k solutions
whose scores are increased (by 1). Note that a k-bounded-growth scoring func-
tion is, in particular, a sensitivity-1 function as two neighboring S1, S2 must be
of the form D ∪ {x1} and D ∪ {x2} respectively. Hence, q(S1, f) − q(S2, f) ≤
q(D, f) + 1− q(D, f) = 1 for every solution f .

The choosing mechanism below is a private algorithm for approximately solv-
ing bounded-growth choice problems. Step 1 of the algorithm checks whether a
good solutions exist, as otherwise any solution is approximately optimal (and
the mechanism returns ⊥). Step 2 invokes the exponential mechanism, but with
the small set G(S) instead of F . We get the following lemma.

Choosing Mechanism

Input: a database S of m ≥ 16
αε ·max

(
( ε4 + ln(1δ )), ln(

16k
αβε )

)
elements, and

parameters α, β, ε, δ.
1. Set best(S) = maxf∈F {q(S, f)}+ Lap(4ε ). If best(S) <

αm
2 then halt

and return ⊥.
2. Let G(S) = {f ∈ F : q(S, f) ≥ 1}. Choose and return f ∈ G(S) using

the exponential mechanism with parameter ε
2 .
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Lemma 4. When q is a k-bounded-growth quality function, the choosing mech-
anism is (ε, δ)-differentially private. Moreover, given a database S the choosing
mechanism outputs an α-good solution for S with probability at least 1− β.

4.2 (ε, δ)-Private Sanitiazers

Using the above choosing mechanism, we construct a private sanitizer for POINTd.
We also construct a recursive sanitizer for INTERVALd, using both algorithm Rec
and the choosing mechanism. Here we only state the results.

Theorem 3. Fix α, β, ε, δ. There exists an efficient (α, β, ε, δ,m)-improper- san-

itizer for POINTd, where m = O
(

1
α1.5ε

√
ln(1δ ) ln(

1
αβεδ )

)
.

Theorem 4. Fix α, β, ε, δ. There exists an efficient (α, β, ε, δ,m)-proper- sani-

tizer for INTERVALd, where m = O
(

1
α2.5ε8

log∗(d)
√
log∗(d) log( 1

αδ ) log
(

log∗(d)
αβεδ

))
.

5 Sanitization and Proper Private PAC

Similar techniques are used for both data sanitization and private learning, sug-
gesting relationships between the two. We now explore one such relationship in
proving a lower bound on the sample complexity needed for sanitization (under
pure differential privacy). In particular, we show a reduction from the task of
private learning to the task of data sanitization, and then use a lower bound on
private learners to derive a lower bound on data sanitization.

Notation. We will refer an element ofXd+1 as x◦y, where x ∈ Xd, and y ∈ {0, 1}.

5.1 Sanitization Implies Proper PPAC

For a given predicate c over Xd, we define the predicate clabel over Xd+1 as

clabel(x ◦ y) =
{
1, c(x) �= y.

0, c(x) = y.

Note that clabel(x ◦ σ) = σ ⊕ c(x) for σ ∈ {0, 1}. For a given class of predicates
C over Xd, we define Clabel = {clabel : c ∈ C}.

The next theorem states that for every concept class C, a sanitizer for Clabel

implies a private learner for C.

Theorem 5. Let α, ε ≤ 1
8 , and let C be a class of predicates. If there exists an

(α, β, ε,m)-sanitizer A for Clabel, then there exists a proper ((3α+2β), 2β, ε, t)-
PPAC learner for C, where t = Oα,β(m).

Remark 3. Given an efficient proper-sanitizer for a class C, and assuming the
existence of an efficient non-private learner for C, this reduction results in an
efficient private learner for the class C.
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Using the above reduction together with known lower bounds on the sample
complexity of private learners, we get:

Theorem 6. There exists an explicit concept class C over Xd such that every
(α, β, ε,m)-sanitizer for C requires databases of size

m = Ω

(
1

αε
VC(C) · log |Xd|

)

.

6 Generic Label-Private Learner

The model of label privacy was defined as a relaxation of private learning, where
privacy must only be preserved for the labels of the elements in the database,
and not necessarily for the elements themselves. This is a reasonable privacy
requirement when the elements are public and only their labels are private.

Consider a database S = (xi, yi)
m
i=1 containing labeled points from some do-

main X . We denote Sx = (xi)
m
i=1 ∈ Xm, and Sy = (yi)

m
i=1 ∈ {0, 1}m.

Definition 13 (Label-Private Learner [5]). Let A be an algorithm that gets
as input a database Sx ∈ Xm and its labeling Sy ∈ {0, 1}m. Algorithm A is an
(α, β, ε,m)-Label Private PAC Learner for a concept class C over X if

Privacy. ∀Sx ∈ Xm, algorithm A(Sx, ·) = ASx(·) is ε-differentially private (as
in Definition 1);

Utility. Algorithm A is an (α, β,m)-PAC learner for C (as in Definition 3).

Chaudhuri et al. [5] show lower bounds on the sample complexity of label-private
learners for a class C in terms of its doubling dimension. As the next theorem
states, the correct measure for characterizing the sample complexity of such
learners is the VC dimension, and the sample complexity of label-private learners
is actually of the same order as that of non-private learners (assuming α, β and
ε are constants).

Theorem 7. Let C be a concept class over a domain X. For every α, β, ε, there
exists an (α, β, ε,m)-Label Private PAC learner for C, wherem = Oα,β,ε(V C(C)).
The learner might not be efficient.

Acknowledgments. We thank Salil Vadhan and Jon Ullman for helpful dis-
cussions of ideas in this work.
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Abstract. For the hard-core model (independent sets) on Z
2 with fugacity λ, we

give the first explicit result for phase coexistence by showing that there are mul-
tiple Gibbs states for all λ > 5.3646. Our proof begins along the lines of the
standard Peierls argument, but we add two significant innovations. First, building
on the idea of fault lines introduced by Randall [19], we construct an event that
distinguishes two boundary conditions and yet always has long contours associ-
ated with it, obviating the need to accurately enumerate short contours. Second,
we obtain vastly improved bounds on the number of contours by relating them to a
new class of self-avoiding walks on an oriented version of Z2. We also extend our
characterization of fault lines to show that local Markov chains will mix slowly
when λ > 5.3646 on lattice regions with periodic (toroidal) boundary condi-
tions and when λ > 7.1031 with non-periodic (free) boundary conditions. The
arguments here rely on a careful analysis that relates contours to taxi walks and
represent a sevenfold improvement to the previously best known values of λ [19].

1 Introduction

The hard-core model was introduced in statistical physics as a model for lattice gases,
where each molecule occupies non-trivial space in the lattice, requiring occupied sites
to be non-adjacent. Viewing a lattice such as Z

d as a graph, allowed configurations of
molecules naturally correspond to independent sets in the graph.

Given a finite graph G, let Ω be the set of independent sets of G. Given a (fixed)
activity (or fugacity) λ ∈ R

+, the weight associated with each independent set I
is w(I) = λ|I|. The associated Gibbs (or Boltzmann) distribution μ = μG,λ is de-
fined on Ω, assuming G is finite, as μ(I) = w(I)/Z , where the normalizing constant
Z = Z(G, λ) =

∑
J∈Ω w(J) is commonly called the partition function. Physicists

are interested in the behavior of models on an infinite graph (such as the integer lattice
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Z
d), where the Gibbs measure is defined as a certain weak limit with appropriate con-

ditional probabilities. For many models it is believed that as a parameter of the system
is varied – such as the inverse temperature β for the Ising model or the activity λ for the
hard-core model – the system undergoes a phase transition at a critical point.

For the classical Ising model, Onsager, in seminal work [17], established the precise
value of the critical temperature βc(Z2) to be log(1+

√
2). Only recently have the anal-

ogous values for the (more general) q-state Potts model been established [3]. Establish-
ing such a precise value for the hard-core model with currently available methods seems
nearly impossible. Even the existence of such a (unique) critical activity λc, where there
is a transition from a unique Gibbs state to the coexistence of multiple Gibbs states, re-
mains conjectural for Zd (d ≥ 2; it is folklore that there is no such transition for d = 1),
while it is simply untrue for general graphs (even general trees, in fact, thanks to a re-
sult of Brightwell et al. [7]). Regardless, a non-rigorous prediction from the statistical
physics literature [2] suggests λc ≈ 3.796 for Z2.

Thus, from a statistical physics or probability viewpoint, understanding the precise
dependence on λ for the existence of unique or multiple Gibbs states is a natural and
challenging problem. Moreover, breakthrough works of Weitz [25] and Sly [22] have
recently identified λc(TΔ) – the critical activity for the hard-core model on an infinite
Δ-regular tree – as a computational threshold where estimating the hard-core partition
function on general Δ-regular graphs undergoes a transition beyond which there is no
PTAS unless NP = RP , further motivating the study of physical transitions and their
computational implications. While it is not surprising that for many problems comput-
ing the partition function exactly is intractable, it is remarkable that even approximating
it for the hard-core model above a certain critical threshold also turns out to be hard.

Starting with Dobrushin [8] in 1968, physicists have been developing techniques to
characterize the regimes on either side of λc for the hard-core model. Most attention has
focused on establishing ever larger values of λ below which there is always uniqueness
of phase. The problem has proved to be a fruitful one for the blending of ideas from
physics, discrete probability and theoretical computer science (see, e.g., [18] [4], [25]).
The state of the art is work by Vera et al. [24], expanding on ideas from Weitz [25] and
Restrepo et al. [20], establishing uniqueness for λ < 2.48.

Much less is known about the regime of phase coexistence. Dobrushin [8] established
phase coexistence for all λ > C, but did not explicitly calculateC. Borgs had estimated
that C = 80 was the theoretical lower limit of Dobrushin’s argument [5], but a recent
computation by the second author suggests that the actual consequence of the argument
is more like C ≈ 300. We are now prepared to state our first main result.

Theorem 1. For λ > 5.3646, the hard-core model onZ2 with activity λ admits multiple
Gibbs states.

From a computational standpoint, there are two natural questions to ask concerning the
hard-core model on a finite graph. Can the partition function be approximated, and how
easy is it to sample from a given Gibbs distribution? For both, a powerful method is
given by Markov chain algorithms – carefully constructed random walks on the space
of independent sets of a graph whose equilibrium distributions are the desired Gibbs
distributions. One of the most commonly studied families are the local-update chains,
such as Glauber dynamics, that change a bounded number of vertices at each step.
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The efficiency of the Markov chain method relies on the underlying chain being
rapidly mixing; that is, it must fairly quickly reach a distribution that is close to station-
ary. For many problems, local chains seem to mix rapidly below some critical point,
while mixing slowly above that point. Most notably for the Ising model on Z

2, simple
local Markov chains are rapidly mixing (in fact, with optimal rate) for β < βc(Z

2) and
slowly mixing for β > βc(Z

2). Recently the Ising picture was completed by Lubezky
and Sly [13], who showed polynomial mixing at β = βc(Z

2).
Once again, the known bounds are less sharp for the hard-core model. Luby and

Vigoda [14] showed that Glauber dynamics on independent sets is fast when λ ≤ 1 on
the 2-dimensional lattice and torus. Weitz [25] reduced the analysis on the grid to the
tree, thus establishing that in this same setting Glauber dynamics is fast up to the critical
point for the 4-regular tree, in effect for λ < 1.6875. Again, the best result to date is
due to Vera et al. [24] who proved that Glauber dynamics on the space of hard-core
configurations on boxes in Z

2 is rapidly mixing for all λ < 2.48.
As with phase-coexistence, it is believed there is a critical value λmix

c at which
Glauber dynamics for sampling hard-core configurations flips from mixing in time poly-
nomial in n, to exponential in n, and that it coincides with λc. Borgs et al. [6] showed
that Glauber dynamics is slow on toroidal lattice regions in Z

d (for d ≥ 2), when λ is
sufficiently large, in particular establishing a finite constant above which mixing is slow
on Z

2. The first effective bound was provided by Randall [19], who showed slow mix-
ing for λ > 50.526 on boxes with periodical boundary conditions, and for λ > 56.812
on boxes with free boundary 1 (but did not address the question of phase coexistence).

Our second main result establishes slow mixing of Glauber dynamics on boxes in Z
2

for λ that is an order of magnitude lower than the previously best known bounds.

Theorem 2. For λ > 5.3646, the mixing time of Glauber dynamics for the hard-core
model on n by n boxes in Z

2 with periodic boundary conditions and activity λ is expo-
nential in n. For free boundary conditions, we have the same result with λ > 7.1031.

The proofs of Theorems 1 and 2 utilize combinatorial, computational and physical in-
sights. The standard approach to showing multiple Gibbs distributions, introduced by
Dobrushin [8], is to consider the limiting distributions corresponding to two different
boundary conditions on boxes in the lattice centered at the origin, and find a statistic
that separates these two limits. For the hard-core model, it suffices (see [4]) to compare
the even boundary condition – all vertices on the boundary of a box at an even distance
from the origin are occupied – and its counterpart the odd boundary condition, and the
distinguishing statistic is typically the occupation of the origin. Under odd boundary
condition the origin should be unlikely to be occupied, since independent sets with odd
boundary and (even) origin occupied must have a contour – a two-layer thick unoccu-
pied loop of vertices separating an inner region around the origin that is in “even phase”
from an outer region near the boundary that is in “odd phase”. For large enough λ, such
an unoccupied layer is costly, and so such configurations are unlikely.

As we will see presently, the effectiveness of this approach, known as a Peierls argu-
ment, is driven by the number of contours of each possible length – better upper bounds
1 Note that stronger bounds were reported in [19] due to a missing factor of 2 in the compu-

tations; see http://www.math.gatech.edu/~randall/ind-fix.pdf for the cor-
rected version.

http://www.math.gatech.edu/~randall/ind-fix.pdf


382 A. Blanca et al.

on the number of contours translate directly to better upper bounds on λc. Previous
(unpublished) work on phase coexistence in the hard-core model on Z

2 had viewed
contours as simple polygons in Z

2, which are closely related to the very well stud-
ied family of self-avoiding walks. While this is essentially the best possible point of
view when applying the Peierls argument on the Ising model, it is far from optimal
for the hard-core model. One of the two major breakthroughs of the present paper is
the discovery that hard-core contours, if appropriately defined, can be viewed as sim-
ple polygons in the oriented Manhattan lattice (orient edges of Z2 that are parallel to
the x-axis (resp. y-axis) positively if their y-coordinate (resp. x-coordinate) is even,
and negatively otherwise), with the additional constraint that contours cannot make two
consecutive turns. The number of such polygons can be understood by analyzing a new
class of self-avoiding walks, that we refer to as taxi walks. The number of taxi walks
turns out to be significantly smaller than the number of ordinary self-avoiding walks,
leading to much better bounds on λc than could possibly have been obtained previously.

The number c̃n of taxi walks of length n is asymptotically controlled by a single
number μt > 0, the taxi walk connective constant, in the sense that (c̃n)1/n ∼ μt as
n→ ∞. Adapting methods of Alm [1] we obtain good estimates on μt, allowing us to
understand c̃n for large n. It is difficult to control c̃n for small n, however, presenting
a major stumbling block to the effectiveness of the Peierls argument. Using the statistic
“occupation of origin” to distinguish the two boundary conditions, one inevitably has
to control c̃n for both small and large n. The lack of precise information about the
number of short contours leads to discrepancies between theoretical lower limits and
actual bounds, such as that between C = 80 (theoretical best possible) and C ≈ 300
for phase coexistence on Z

2, discussed earlier.
The second breakthrough of the present paper is the idea of using an event to distin-

guish the two boundary conditions with the property that every independent set in the
event has a long contour. This allows us to focus exclusively on the asymptotic growth
rate of contours/taxi walks, and obviates the need for an analysis of short contours. The
immediate result of this breakthrough is that the actual limits of our arguments agree
exactly with their theoretical counterparts. The distinguishing event we use extends the
idea of fault lines, which we discuss in more detail below in the context of slow mixing.

The traditional argument for slow mixing is based on the observation that when λ
is large, the Gibbs distribution favors dense configurations, and Glauber dynamics will
take exponential time to converge to equilibrium. The slow convergence arises because
the Gibbs distribution is bimodal: dense configurations lie predominantly on either the
odd or the even sublattice, while configurations that are roughly half odd and half even
have much smaller probability. Since Glauber dynamics changes the numbers of even
and odd vertices by at most 1 in each step, the Markov chain has a bottleneck.

Our work builds on a novel idea from [19], namely using fault lines to establish
slow mixing for Glauber dynamics on hard-core configurations for large λ, improving
upon what was best known at that time. Randall [19] gave an improvement by realizing
that the state space could be partitioned according to certain topological obstructions in
configurations, rather than the relative numbers of odd or even vertices. This approach
gives better bounds on λ, and also greatly simplifies the calculations. First consider an
n× n lattice regionG with free (non-periodic) boundary conditions. A configuration I
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(a) (b) (c)

Fig. 1. Independent sets with (a) a spanning path with four alternation points in G♦, (b) a fault
line with one alternation point and (c) a fault line with no alternation points

is said to have a fault line if there is a width two path of unoccupied vertices in I from
the top of G to the bottom or from the left boundary of G to the right. Configurations
without a fault line must have a cross of occupied vertices in either the even or the odd
sublattices forming a connected path inG2 from both the top to the bottom and from the
left to the right of G, where G2 connects vertices at distance 2 in G. Roughly speaking
the set of configurations that have a fault line forms a cut set that must be crossed to
move from a configuration that has an odd cross to one with an even cross, and it was
shown that fault lines are exponentially unlikely when λ is large. Likewise, if Ĝ is an
n×n region with periodic boundary conditions, it was shown that either there is an odd
or an even cross forming non-contractible loops in two different directions or there is a
pair of non-contractible fault lines, allowing for a similar argument.

We improve the argument by refining our consideration of fault lines, which had
previously been characterized as (rotated) self-avoiding walks in Z

2. Here we observe
that, suitably modified, they are in fact taxi walks and so the machinery developed for
phase coexistence can be brought to bear in the mixing context.

2 Combinatorial Background: Crosses, Fault Lines and Taxi
Walks

We begin by introducing the notions of crosses and fault lines. Let G = (V,E) be
a simply connected region in Z

2, say the n × n square. We define the graph G♦ =
(V♦, E♦) as follows. The vertices V♦ are the midpoints of edges in E. Vertices u and v
in V♦ are connected by an edge in E♦ if and only if they are the midpoints of incident
edges in E that are perpendicular. Notice that G♦ is a region in a smaller Cartesian
lattice that has been rotated by 45 degrees. We will also make use of the even and odd
subgraphs of G. For b ∈ {0, 1}, let Gb = (Vb, Eb) be the graph whose vertex set
Vb ⊆ V contains all vertices with parity b (i.e., the sum of their coordinates has parity
b), with (u, v) ∈ Eb if u and v are at Hamming distance 2. We refer to G0 and G1 as
the even and odd subgraphs. The graphs G♦, G0 and G1 play a central role in defining
features of independent sets that determine distinguishing events in our proof of phase
coexistence and the partition of the state space for our proofs of slow mixing.

Given an independent set I ∈ Ω, we say that a simple path p in G♦ is spanning if
it extends from the top boundary of G♦ to the bottom, or from the left boundary to the
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(a) (b) (c)

Fig. 2. The figure shows: (a) G1, (b) an independent set with an odd bridge in G1, and (c) two
odd bridges forming an odd cross in G1

right, and each vertex in p corresponds to an edge in G such that both endpoints are
unoccupied in I . It will be convenient to color the vertices on p according to whether
the corresponding edge in G has an odd or an even vertex to its left as we traverse the
path. Specifically, suppose vertex v ∈ V♦ on the path p bisects an edge ev ∈ E. Color
v blue if the odd vertex in ev is to the left when the path crosses v, and red otherwise
(note that each v ∈ E has one odd and one even endvertex). When the color of the
vertices along the path changes, we have an alternation point (see Fig. 1 (a) and (b)). It
was shown in [19] that if an independent set has a spanning path, then it must also have
one with zero or one alternation points. We call such a path a fault line, and let ΩF be
the set of independent sets in Ω with at least one fault line (see Fig. 1 (b) and (c)).

We say that I ∈ Ω has an even bridge if there is a path from the left to the right
boundary or from the top to the bottom boundary in G0 consisting of occupied vertices
in I . Similarly, we say it has an odd bridge if it traverses G1 in either direction. We say
that I has a cross if it has both left-right and a top-bottom bridges. See Fig. 2.

Notice that if an independent set has an even top-bottom bridge it cannot have an
odd left-right bridge, so if it has a cross, both of its bridges must have the same parity.
We let Ω0 ⊆ Ω be the set of configurations that contain an even cross and let Ω1 ⊆ Ω
be the set of those with an odd cross.

We can now partition the state space Ω into three sets, with one separating the other
two; this partition is critical to the proofs of both Theorem 1 and Theorem 2. The fol-
lowing lemma was proven in [19].

Lemma 1. The set of independent sets on G can be partitioned into sets ΩF , Ω0 and
Ω1, consisting of configurations with a fault line, an even cross or an odd cross. If
I ∈ Ω0 and I ′ ∈ Ω1 then |I�I ′| > 1.

It will be useful to extend these definitions to the torus as well. Let n be even, and let Ĝ
be the n × n toroidal region {0, . . . , n − 1} × {0, . . . n − 1}, where v = (v1, v2) and
u = (u1, u2) are connected if v1 = u1±1(mod n) and v2 = u2 or v2 = u2±1(mod n)
and v1 = u1. Let Ω̂ be the set of independent sets on Ĝ and let π̂ be the Gibbs distribu-
tion. As before, we consider Glauber dynamics that connect configurations with sym-
metric difference of size one. We define Ĝ♦, Ĝ0 and Ĝ1 as above to represent the graph
connecting the midpoints of perpendicular edges (including the boundary edges), and
the odd and even subgraphs. As with Ĝ, all of these have toroidal boundary conditions.
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Given I ∈ Ω̂, we say that I has a fault F = (F1, F2) if there are a pair of vertex-
disjoint non-contractible cycles F1, F2 in Ĝ♦ whose vertices correspond to edges in Ĝ
whose endpoints are unoccupied, and such that the vertices on each cycle are all red or
all blue (i.e., the endpoints in Ĝ to one side of either cycle have the same parity). We say
that I has a cross if it has at least two non-contractible cycles of occupied sites in I with
different winding numbers. The next lemma (from [19]) utilizes faults to partition Ω̂.

Lemma 2. The set of independent sets on Ĝ can be partitioned into sets Ω̂F , Ω̂0, Ω̂1,
consisting of configurations with a fault, an even cross or an odd cross. If I ∈ Ω̂0 and
I ′ ∈ Ω̂1 then |I�I ′| > 1.

The strategy for the proofs of phase coexistence and slow mixing will be to use a Peierls
argument to define a map from ΩF to Ω that takes configurations with fault lines to
ones with exponentially larger weight. The map is not injective, however, so we need
to be careful about how large the pre-image of a configuration can be, and for this it
is necessary to get a good bound on the number of fault lines. In [19] the number of
fault lines was bounded by the number of self-avoiding walks in G♦ (or Ĝ♦ on the
torus). However, this is a gross overcount because this includes all spanning paths with
an arbitrary number of alternation points. Instead, we can get much better bounds by
only counting self-avoiding walks with zero or one alternation points.

To begin formalizing this idea, we put an orientation on the edges of G♦. Each edge
(u, v) ∈ E♦ corresponds to two edges in E that share a vertex w ∈ V . We orient the
edge “clockwise” around w if w is even and “counterclockwise” if w is odd. For paths
with zero alternation points, all of the edges must be oriented in the same direction (with
respect to this edge orientation). If we rotate G♦ so that the edges are axis aligned, then
this simply means that the horizontal (resp. vertical) edges alternate direction according
to the parity of the y- (resp. x-) coordinates, like in many well-known metropolises.

We now define taxi walks. Let Z2 be an orientation of Z2 in which an edge parallel to
the x-axis (resp. y-axis) is oriented in the positive x-direction if its y-coordinate is even
(resp. oriented in the positive y-direction if its x-coordinate is even), and is oriented in
the negative direction otherwise (note that this agrees with the orientation placed onG♦
above). It is common to refer to Z

2 as the Manhattan lattice: streets are horizontal, with
even streets oriented East and odd streets oriented West, and avenues are vertical, with
even avenues oriented North and odd avenues oriented South.

Definition 1. A taxi walk is an oriented walk in Z
2 that begins at the origin, never

revisits a vertex, and never takes two left or two right turns in a row.

We call these taxi walks because the violation of either restriction during a real taxi ride
would cause suspicion among savvy passengers.

Lemma 3. If an independent set I has a fault line F with no alternations, then it also
has a fault line F ′ so that either F ′ or F ′R (the reversal of F ′) is a taxi walk.

Proof: It is straightforward to see that if I has a fault line F with no alternation points,
then it must have all of its edges oriented the same way (in G♦) and it must be self-
avoiding. Suppose F is a minimal length fault line in I without any alternations, and
suppose that F has two successive turns. Because of the parity constraints, the vertices
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immediately before and after these two turns must both connect edges that are in the
same direction, and these five edges can be replaced by a single edge to form a shorter
fault line without any alternations. This is a contradiction to F being minimal. �
The same argument shows that if F is a fault line with an alternation point, then there
is a fault line that is the concatenation of two taxi walks (or the reversals of taxi walks).
Lemma 3, and the extension just mentioned, are key ingredients in our proofs of both
phase coexistence and slow mixing. They allow us to assume, as we do throughout, that
all fault lines we work with are essentially taxi walks. For phase coexistence we will
also need to understand the connection between Peierls contours and taxi walks.

Given an independent set I in Z
2, let (IO)+ be the set of odd vertices in I together

with their neighbors. Let R be any finite component of (IO)+, and let W be the unique
infinite component of Z2 \ R. Let C be the complement of W (going from R to C
essentially "fills in holes” in R). Finally, let γ be the set of edges with one end in W
and one in C, and write γ♦ for the subgraph of G♦ induced by γ.

Lemma 4. In G♦, γ♦ is a directed cycle that does not take two consecutive turns.
Consequently, if an edge is removed from γ, the resulting path in Z

2 (suitably translated
and rotated) is a taxi walk.

Proof: Because γ separatesW from its complement, γ♦ must include a cycle surround-
ing a vertex of C, and since γ is in fact a minimal edge cutset (W and C are both
connected), γ♦ must consist of just this cycle. To see both that γ♦ is correctly (i.e.
uniformly) oriented in G♦, and that it does not take two consecutive turns, note that
if either of these conditions were violated then we must have one of the following: a
vertex of W (or C) all of whose neighbors are in C (or W ), or a unit square in Z

2 with
both even vertices in C and both odd vertices in W (an easy case analysis). All of these
situations lead to a 4-cycle in γ♦, a contradiction since γ♦ is a cycle whose length is
evidently greater than 4 (in fact it must have length at least 12). �
A critical step in our arguments will be bounding the number of taxi walks. We start by
recalling facts about standard self-avoiding walks (which have been studied extensively,
although many basic questions remain; see, e.g., [15]). On Z

2, the number cn of walks
of length n grows exponentially with n as 2n ≤ cn ≤ 4× 3n−1, since there are at most
3 ways to extend a self-avoiding walk of length n− 1 and walks that only take steps to
the right or up can always be extended in 2 ways. Hammersley and Welsh [11] showed
that cn = μn exp(O(

√
n)), where μ ≈ 2.64 is known as the connective constant. It

is believed that exp(O(
√
n)) here can be replaced by Θ(n11/32) (this is supported by

considerable experimental and heuristical evidence).
Letting c̃n be the number of taxi walks of length n, we quickly get 2n/2 < c̃n <

4×3n−1. The upper bound here uses c̃n < cn, and for the lower bound we observe that
if we take two steps at a time in one direction we can always go East or North. With
little extra work, we can make a significant improvement:

Lemma 5. Let c̃n be the number of taxi walks of length n. Then c̃n = O((1+
√
5)/2)n.

Proof: At each vertex there are exactly two outgoing edges in Z
2. If we arrive at v

from u, then one of the outgoing edges continues the walk in the same direction and
the other is a turn. The two allowable directions are determined by the parity of the
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coordinates of v, so we can encode each walk as a bitstring s ∈ {0, 1}n−1. If s1 = 0
then the walk starts by going East (along a street) and if s0 = 1 the walk starts North
along an avenue. For all i > 1, if si = 0 the walk continues in the same direction as
the previous step, while if si = 1 then the walk turns in the permissible direction. In
this encoding, the condition forbidding consecutive turns forces s to avoid having two
1’s in a row, and hence c̃n ≤ fn = O(φn), where fn is the nth Fibonacci number and
φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio. �

General considerations (discussed in Section 5) imply that there is a taxi walk connec-
tive constant μt > 0 such that c̃n = ft(n)μ

n
t , where ft(n) grows sub-exponentially. A

consequence of this is that

if μ > μt then for all large n, c̃n < μn. (1)

Lemma 5 implies μt ≤ φ, and as we shall see from Theorems 4 and 5 below, this is
enough to obtain phase coexistence, and slow mixing on the torus, for all λ > φ4 −
1 ≈ 5.85. To obtain the stronger Theorems 1 and 2 we use more sophisticated tools,
described in Section 5, to improve our bounds on c̃n.

Theorem 3. We have 1.5196 < μt < 1.5884 and 4.3332 < μ4
t − 1 < 5.3646.

3 Proof of Theorem 1 (phase coexistence on Z
2 for large λ)

We work towards the following statement that implies Theorem 1 via Theorem 3.

Theorem 4. The hard-core model on Z
2 with activity λ admits multiple Gibbs states

for all λ > μ4
t − 1, where μt is the connective constant of taxi walks.

We will not review the theory of Gibbs states, but just say informally that an interpre-
tation of the existence of multiple Gibbs states is that the local behavior of a randomly
chosen independent set in a box can be made to depend on a boundary condition, even
in the limit as the size of the box grows to infinity. See e.g. [10] for a general treatment,
or [4] for a treatment specific to the hard-core model on the lattice.

Let Un be the box [−n,+n]2, and Ie the independent set consisting of all even ver-
tices of Z2. Let J e

n be the set of independent sets that agree with Ie off Un, and μe
n

the distribution supported on J e
n in which each set is selected with probability propor-

tional to λ|I∩Un|. Define μo
n analogously (with “even” everywhere replaced by “odd”).

We will exhibit an event A with the property that for all large n, μe
n(A) ≤ 1/3 and

μo
n(A) ≥ 2/3. This is well known (see e.g. [4]) to be enough to establish existence of

multiple Gibbs states.
The eventA depends on a parameterm = m(λ) whose value will be specified later.

Specifically, A consists of all independent sets in Z
2 whose restriction to Um contains

either an odd cross or a fault line. We will show that μe
n(A) ≤ 1/3 for all sufficiently

large n; reversing the roles of odd and even throughout, the same argument gives that
under μo

n the probability of Um having either an even cross or a fault line is also at most
1/3, so that (by Lemma 1) μo

n(A) ≥ 2/3.
Write Ae

n for A ∩ J e
n ; note that for all large n we have μe

n(A) = μe
n(Ae

n). To show
μe
n(Ae

n) ≤ 1/3 we will use the fact that I ∈ Ae
n is in even phase (predominantly even-

occupied) outside Un, but because of either the odd cross or the fault line in Um it is
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not in even phase close to Um; so there must be a contour marking the furthest extent of
the even phase inside Un. We will modify I inside the contour via a weight-increasing
map, showing that an odd cross or fault line is unlikely.

3.1 The Contour and Its Properties

Fix I ∈ Ae
n. If I has an odd cross inUm, we proceed as follows (using the notation from

the discussion preceding Lemma 4). Let R be the component of (IO)+ that includes a
particular odd cross. Note that because I agrees with Ie off Un, R does not reach the
boundary of Un, and so as in the discussion preceding Lemma 4, we can associate to R
a cutset γ separating it from the boundary of Un.

Notice that γ is an edge cutset in Un separating an interior connected region that
meets Um from an exterior connected region that includes the boundary of Un, with all
edges from the interior of γ to the exterior that all go from an unoccupied even vertex to
an unoccupied odd vertex. This implies that |γ|, the number of edges in γ, is a multiple
of 4, specifically four times the difference between the number of even and odd vertices
in the interior of γ. Because the interior includes two points of the odd cross that are
at distance at least 2m+ 1 from each other in Um, we have a lower bound on γ that is
linear in m; in particular, clearly |γ| ≥ m. Note also that by Lemma 4, γ♦ must be a
closed taxi walk. (See Fig. 3 (a).)

We now come to the heart of the Peierls argument. If we modify I by shifting it
by one axis-parallel unit (positively or negatively) in the interior of γ and leaving it
unchanged elsewhere, then the resulting set is still independent, and we may augment
it with any vertex in the interior whose neighbor in the direction opposite to the shift is
in the exterior. This is a straightforward verification; see [6, Lemma 6] or [9, Proposition
2.12] where this is proved in essentially the same setting. Furthermore, from [6, Lemma
5] each of the four possible shift directions free up exactly |γ|/4 vertices that can be
added to the modified independent set.

We now describe the contour if I has a fault line in Um. If there happens to be an
odd occupied vertex in Um then we construct γ as before, starting with some arbitrary
component of (IO)+ that meets Um in place of the component of an odd cross. If the
resulting γ has a fault line in its interior, then γ and its associated γ♦ satisfy all the
previously established properties immediately.

Otherwise, choose a fault line, which we can assume by Lemma 3 is a taxi walk or
the concatenation of two taxi walks. Whether it has zero or one alternation points, we
can find a path P = u1u2 . . . uk in Z

2 with k linear in m, with u1 and uk both odd,
with no two consecutive edges parallel, and with the midpoints of the edges of the path
inducing an alternation-free sub-path of the chosen fault line (essentially we are just
taking a long piece of the fault line, on an appropriately chosen side of the alternation
point, if there is one). This sub-path F1 is a taxi walk. Next, we find a second path
in G♦, disjoint from F1, that always bisects completely unoccupied edges, and that
taken together with F1 completely encloses P . If there are no occupied odd vertices
adjacent to even vertices of P , such a path is easy to find: we can shift F1 one unit in
an appropriate direction, and close off with an additional edge at each end (see Fig. 3
(b)). If there are some odd occupied vertices adjacent to some even vertices of P , then
this translate of F1 has to be looped around the corresponding components of (IO)+.
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Um

P

Fig. 3. Independent sets inAe
n with (a) an odd cross in Um with the corresponding C and γ♦ and

(b) a fault line in Um with the corresponding P and γ♦

Such a looping is possible because (IO)+ does not reach the boundary of Un, nor does
it enclose the fault line (if it did, we would be in the case of the previous paragraph).

This second path we have constructed may not be a taxi walk; however, following
the proof of Lemma 3, we see that a minimal path F2 satisfying the conditions of our
constructed path is indeed a taxi walk. We take the concatenation of F1 and F2 to be
γ♦ in this case, and take γ to be the set of edges that are bisected by vertices of γ♦.
The contours in this case satisfy all the properties of those in the previous case. The
standard strategies outlined in [6] and [9] can easily be used to derive the properties in
this case. The one difference is that now γ♦ may not be a closed taxi walk; but at worst
it is the concatenation of two taxi walks, both of length linear in m (and certainly it can
be arranged that each has length at least m/2).

3.2 The Peierls Argument

For J ∈ J e
n set w(J) = λ|J∩Un|. Our aim is to show that w(Ae

n)/w(J e
n) ≤ 1/3.

For I ∈ Ae
n, let ϕ(I) be the set of independent sets obtained from I by shifting in the

interior parallel to (1, 0) and adding all subsets of the |γ|/4 vertices by which the shifted
independent set can be augmented. For J ∈ ϕ(I), let S denote the set of added vertices.
Define a bipartite graph on partite sets Ae

n and J e
n by joining I ∈ Ae

n to J ∈ J e
n if

J ∈ ϕ(I). Give edge IJ weight w(I)λ|S| = w(J) (where S is the set of vertices added
to I to obtain J).

The sum of the weights of edges out of those I ∈ Ae
n with |γ(I)| = 4� is (1 + λ)�

times the sum of the weights of those I . For each J ∈ J e
n , the sum of the weights of

edges into J from this set of I’s is w(J) times the degree of J to the set. If f(�) is a
uniform upper bound on this degree, then

w(Ae
n)

w(J e
n )
≤
∑

�≥m/4

f(�)

(1 + λ)�
. (2)

The lower bound on � here is crucial. The standard Peierls argument takes A to be the
event that a fixed vertex is occupied, and the analysis of probabilities associated with
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this event requires dealing with short contours, leading to much weaker bounds than we
are able to obtain.

To control f(�), observe that for each J ∈ J e
n and contour γ of length 4� there is at

most one I with γ(I) = γ such that J ∈ ϕ(I) (I can be reconstructed from J and γ,
since the set S of added vertices can easily be identified; cf. [9, Section 2.5]). It follows
that we may bound f(�) by the number of contours of length 4� with a vertex of Um in
their interiors.

Fix μ > μt. By the properties of contours we have established, up to translations of
contours this number is at most the maximum of μ4� and

∑
j+k=4�: j,k≥m/2 μ

jμk =

4�μ4� (for all large m, here using (1). The restriction of G♦ to Um has at most 4(2m+
1)2 ≤ 17m2 edges, so there are at most this many translates of a contour that can have
a vertex of Um in its interior. We may bound f(�) by 68m2�μ4� and so the sum in (2)
by
∑

�≥m 68m2�(μ4/(1 + λ))�. For any fixed λ > μ4 − 1, there is an m large enough
so that this sum is at most 1/3; we take any such m to be m(λ), completing the proof.

4 Proof of Theorem 2 (slow mixing of Glauber dynamics)

Let G ⊂ Z
2 be an n × n lattice region and let Ω be the set of independent sets on G.

Our goal is to sample from Ω according to the Gibbs distribution, where each I ∈ Ω
is assigned probability π(I) = λ|I|/Z , where Z =

∑
I′∈Ω λ

|I′|. Glauber dynamics
is a local Markov chain that connects two independent sets if they have symmetric
difference of size one. The Metropolis probabilities [16] that force the chain to converge
to the Gibbs distribution are given by

P (I, I ′) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2n min

(
1, λ|I

′|−|I|
)
, if I ⊕ I ′ = 1,

1−∑J∼I P (I, J), if I = I ′,
0, otherwise.

The conductance, introduced by Jerrum and Sinclair [21], is a good measure of a chain’s
mixing rate. Let

Φ = min
S∈Ω:π(S)≤1/2

∑
x∈S,y/∈S π(x)P (x, y)

π(S)
,

where π(S) =
∑

x∈S π(x). From [21] we know that Φ2

2 ≤ Gap(P ) ≤ 2Φ, where
Gap(P ) is the spectral gap of the transition matrix. The spectral gap is well-known to
be a measure of the mixing rate of a Markov chain, so a partition of the state space
witnessing exponentially small conductance is sufficient to show slow mixing. The ma-
chinery of Section 2 provides such a partition.

We are now ready to present the proof of slow mixing, starting first with the two-
dimensional torus. In the interest of space, we defer the proof of the second part of
Theorem 2 showing slow mixing on regions with free boundary conditions for the full
version of the paper. The proof is similar to the argument described in [19] and utilizing
the improvements given here for the torus.

Let n be even, and let Ĝ = {0, . . . , n−1}×{0, . . . , n−1} be the n×n lattice region
with toroidal boundary conditions. Let Ω̂ be the set of independent sets on Ĝ, and π̂ the
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Gibbs distribution. Lemma 2 shows that Ω̂ may be partitioned into Ω̂F (independent
sets with a fault), Ω̂0 (independent sets with an even cross) and Ω̂1 (independent sets
with an odd cross), and that furthermore Ω̂0 and Ω̂1 are not directly connected by moves
in the chain. It remains to show that π̂(Ω̂F ) is exponentially smaller than both π̂(Ω̂0)

and π̂(Ω̂1). (Clearly π̂(Ω̂0) = π̂(Ω̂1) by symmetry.) Notice that on the torus we may
assume that fault lines have no alternation points; since they start and end at the same
place, the number of alternation points must be even.

For an independent set I ∈ Ω̂F with fault F = (F1, F2), partition I into two sets,
IA and IB , depending on which side of F1 and F2 they lie. Define the length of F to
be the number of edges (in G♦) on F1 and F2. Note that if F1 has no alternation points
then it has length N = 2n+ 2� for some positive integer �.2

Let I ′ = σ(I, F ) be the configuration formed by shifting IA one to the right. Let
F ′1 = σ(F1) and F ′2 = σ(F2) be the images of the fault under this shift. We define
the points that lie in F1 ∩ F ′1 and F2 ∩ F ′2 to be the points that fall “in between” F
and F ′ := (F ′1, F

′
2). It will be convenient to order the set of possible fault lines so that

given a configuration I ∈ Ω̂F we can identify its first fault. The following results are
modified from [19] and rely on the new characterization of faults as taxi walks.

Lemma 6. Let Ω̂F be the configurations in Ω̂F with first fault F = (F1, F2). Write the
length of F as 4n+ 4�. Then π(Ω̂F ) ≤ (1 + λ)−(n+�).

Proof: We define an injection φF : Ω̂F × {0, 1}n+� ↪→ Ω so that π̂(φF (I, r)) =

π̂(I)λ|r|. The injection is formed by cutting the torus Ĝ along F1 and F2 and shifting
one of the two connected pieces in any direction by one unit. There will be exactly n+�
unoccupied points near F that are guaranteed to have only unoccupied neighbors. We
add a subset of the vertices in this set to I according to bits that are one in the vector r.
Given this map, we have

1 = π̂(Ω̂) ≥
∑

I∈Ω̂F

∑

r∈{0,1}n+�

π̂(φF (I, r)) =
∑

I∈Ω̂F

π̂(I)
∑

r∈{0,1}n+�

λ|r|.

�

Theorem 5. Let Ω̂ be the set of independent sets on Ĝ weighted by π̂(I) = λ|I|/Z ,
where Z =

∑
I∈Ω̂ λ

|I|. Let ΩF be the set of independent sets on Ĝ with a fault. Then
for any λ > μ4

t − 1, there is a constant c > 0 such that π̂(ΩF ) ≤ e−cn.

Proof: Fix μ satisfying λ > μ4 − 1 > μ4
t − 1, where μt is the taxi walk connective

constant. Summing over locations for the two faults F1 and F2 and using Lemma 6,

π̂(Ω̂F ) =
∑

F

π̂(Ω̂F ) ≤
∑

F

(1 + λ)−(n+�) ≤ n2

(n2−2n)/2∑

i=0

(
μ4

1 + λ

)n+i
.

2 In [19, Section 2.2] this is erroneously presented as N = n + 2�, and the missing factor 2
remains absent for all the remaining calculations; the corrected calculations lead to the weaker
bounds quoted in the introduction.
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The second inequality here uses Theorem 3. By our choice of μ we get (for large n)
π(ΩF ) ≤ e−cn for some constant c > 0; and we can easily modify this constant to deal
with all smaller values of n. �
From Theorem 3, we know that μ4

t − 1 < 5.3646. From Theorem 5, we thus get the
first part of Theorem 2, as well as the following stronger result.

Corollary 1. Fix λ > μ4
t − 1. Glauber dynamics for sampling independent sets on the

n×n torus Ĝ takes time at least ecn to mix, for some constant c > 0 (depending on λ).

Proof: We will bound the conductance by considering S = Ω̂0. It is clear that π̂(S) ≤
1/2 since S = Ω̂F ∪ Ω̂1 and π̂(Ω̂0) = π̂(Ω̂1). Thus,

Φ≤
∑

s∈Ω̂0,t∈Ω̂F π̂(s)P (s, t)

π̂(Ω̂0)
=

∑
s∈Ω̂0,t∈Ω̂F π̂(t)P (t, s)

π̂(Ω̂0)
≤
∑

t∈Ω̂F π̂(t)

π̂(Ω̂0)
=
π̂(Ω̂F )

π̂(Ω̂0)
.

Given Theorem 5, it is trivial to show that π̂(Ω̂0) > 1/3, thereby establishing that the
conductance is exponentially small. It follows that Glauber dynamics takes exponential
time to converge. �

5 Taxi Walks: Bounds and Limits

We conclude by justifying the upper bound on the number of taxi walks given in The-
orem 3, as well as providing a lower bound on μt. It is necessary to first establish the
submultiplicativity of c̃n (or, equivalently, the subadditivity of log c̃n).

Lemma 7. Let c̃n be the number of taxi walks of length n and let 1 ≤ i ≤ n− 1. Then
c̃n ≤ c̃i c̃n−i.
Proof: As with traditional self-avoiding walks, the key is to recognize that if we split
a taxi walk of length n into two pieces, the resulting pieces are both self-avoiding. Let
s = s1, . . . , sn be a taxi walk of length n and let 1 ≤ i ≤ n−1. Then the initial segment
of the walk sI = s1, . . . , si+1 is a taxi walk of length i. Let p = (x, y) be the ith vertex
of the walk s. Let sF be the final n− i steps of the walk s starting at p. We define f(sF )
by translating the walk so that f(p) is the origin, reflecting horizontally if px is odd and
reflecting vertically if py is odd. Notice that this always produces a valid taxi walk of
length n− i and the map f is invertible given p. Therefore c̃n ≤ c̃i c̃n−i. �
It follows from Lemma 7 that an = log c̃n is subadditive, i.e., an+m ≤ an + am. By
Fekete’s Lemma (see, e.g., [23, Lemma 1.2.2]) we know limn→∞ an/n exists and

lim
n→∞

an
n

= inf
an
n
. (3)

Thus, we can write the number of taxi walks as c̃n = μnt ft(n), where μt is the connec-
tive constant associated with taxi walks and ft(n) is subexponential in n.

Subadditivity gives us a strategy for getting a better bound on μt. From (3) we see
that for all n, log c̃n/n is an upper bound for logμt. We exactly enumerated taxi walks
of length n, for n ≤ 60; see http://nd.edu/~dgalvin1/TD/ for this and other

http://nd.edu/~dgalvin1/TD/
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data. Using c60 = 2189670407434 gives a bound of μt < 1.6058. Note that exact
counts for larger n will immediately improve our bounds on both μt and λc.

The connective constant for ordinary self-avoiding walks has been well studied, and
some of the methods used to obtain bounds there can be adapted to deal with taxi walks.
In particular, a method of Alm [1] is useful. Fix n > m > 0. Construct a square matrix
A(m,n) whose ij entry counts the number of taxi walks of length n that begin with the
ith taxi walk of length m, and end with the jth taxi walk of length m, for some fixed
ordering of the walks of length m. To make sense of this, it is necessary to choose, for
each v ∈ Z

2, an orientation preserving map fv of Z2 that sends the origin to v; saying
that a walk of length n ends with the jth walk of length m means that if the length
m terminal segment of the walk is transformed by f−1v to start at the origin, where
v is the first vertex of the terminal segment, then the result is the jth walk of length
m. Then a theorem of Alm [1] may be modified to show that μt is bounded above
by λ1(A(m,n))1/(n−m), where λ1 indicates the largest positive eigenvalue. (Note that
when m = 0 this recovers the subadditivity bound discussed earlier).

We have calculated A(20, 60). This is a square matrix of dimension 20114, and a
simple symmetry argument reduces the dimension by a factor of 2. Using MATLAB,
we could estimate the largest eigenvalue to obtain μt < 1.5884 and μ4

t − 1 < 5.3646.
A similar strategy can be used to derive lower bounds on μt in order to determine

the theoretical limitations of our approach of characterizing contours by taxi walks. We
have already given the trivial lower bound μt ≥

√
2. To improve this, we consider

bridges (introduced for ordinary self-avoiding walks by Kesten [12]). A bridge, for our
purposes, is a taxi walk that begins by moving from the origin (0, 0) to the point (1, 0),
never revisits the y-axis, and ends by taking a step parallel to the x-axis to a point on
the walk that has maximum x-coordinate over all points in the walk (but note that this
maximum does not have to be uniquely achieved at the final point).

Let bn be the number of bridges of length n. Then bridges are supermultiplicative,
i.e., bn ≥ bibn−i (and log bn is superadditive). To see this, note that if β1 and β2 are
bridges, then they both begin and end at vertices whose y-coordinates are even because
they are taking steps to the East. If the parities of the x-coordinates of the first vertices
in β1 and β2 agree, then the concatenation of β1 and an appropriate translation of β2
is also a bridge; if the parities are different then concatenation of β1 with a translation
of β2 after reflecting horizontally will be a valid bridge. Notice that the parity of the
x-coordinate of the two pieces allows us to recover whether a reflection was necessary
to keep the walk on the directed Manhattan lattice, so bridges are indeed supermul-
tiplicative. It similarly follows that there are at least bkn taxi walks of length kn (just
concatenate k length n bridges), so that

μt = lim
m→∞ c̃

1/m
m ≥ lim

k→∞
(bkn)

1/nk = b1/nn .

We have enumerated bridges of length up to 60, in particular discovering that b60 =
80312795498, leading to μt > 1.5196 and μ4

t − 1 > 4.3332.
A consequence of our lower bound on μt is that our approach to phase coexistence

cannot give anything better than λc ≤ 4.3332; this tells us that new ideas will be needed
to reach the value of 3.796 suggested by computations as the true value of λc.
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Abstract. We revisit the problem of accurately answering large classes
of statistical queries while preserving differential privacy. Previous ap-
proaches to this problem have either been very general but have not had
run-time polynomial in the size of the database, have applied only to very
limited classes of queries, or have relaxed the notion of worst-case error
guarantees. In this paper we consider the large class of sparse queries,
which take non-zero values on only polynomially many universe elements.
We give efficient query release algorithms for this class, in both the in-
teractive and the non-interactive setting. Our algorithms also achieve
better accuracy bounds than previous general techniques do when ap-
plied to sparse queries: our bounds are independent of the universe size.
In fact, even the runtime of our interactive mechanism is independent of
the universe size, and so can be implemented in the “infinite universe”
model in which no finite universe need be specified by the data curator.

1 Introduction

A database D represents a finite collection of individual records from some data
universe X , which represents the set of all possible records. We typically think of
X as being extremely large: exponentially large in the size of the database, or in
some cases, possibly even infinite. A fundamental task in private data analysis
is to accurately answer statistical queries about a database D, while provably
preserving the privacy of the individuals whose records are contained in D. The
privacy solution concept we use in this paper is differential privacy, which has
become standard, and which we define in section 2.

Accurately answering statistical (i.e. linear or counting) queries is the most
well studied problem in differential privacy, and the results to date come in
two types. There are a large number of extremely general and powerful tech-
niques (see for example [BLR08, DNR+09, DRV10, RR10, HT10, HR10]) that
can accurately answer arbitrary families of statistical queries which can be ex-
ponentially large in the size of the database. Unfortunately, these techniques all
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have running time that is at least linear in the size of the data universe |X | (i.e.
possibly exponential in the size of the database), and so are in many cases im-
practical. There are also several techniques that do run in polynomial time, but
that are limited: either they can answer queries from a very general and struc-
turally rich class (i.e. all low-sensitivity queries), but can only answer a linear
number of such queries (i.e. [DMNS06]), or they can answer a very large number
of queries, but only from a structurally very simple class (i.e. intervals on the
unit line1 [BLR08]), or as in several recent results (for conjunction and parity
queries respectively) [GHRU11, HRS12] they run in polynomial time, but offer
only average case guarantees for randomly chosen queries. One of the main open
questions in data privacy is to develop general data release techniques compara-
ble in power to the known exponential time techniques that run in polynomial
time. There is evidence, however, that this is not possible for arbitrary linear
queries [DNR+09, UV11, GHRU11].

In this paper, we consider a restricted but structurally rich class of linear
queries which we call sparse queries. We say that a query is m-sparse if it takes
non-zero values on only m universe elements, and that a class of queries is m-
sparse if each query it contains is m′ sparse for some m′ ≤ m. We will typically
think of m as being some polynomial in the database size n. Note that although
each individual query is restricted to have support on only a polynomially sized
subset of the data universe, different queries in the same class can have different
supports, and so a class of sparse queries can still have support over the entire
data universe. This is what prevents previous algorithms from being made effi-
cient, simply by running them on a restricted universe: it may not be possible to
consider a restricted universe for a set of sparse queries, because every universe
element may take positive value on some query in a sparse class! Note that the
class ofm-sparse queries is both very large (of size roughly |X |m), and very struc-
turally complex (the class of m-sparse queries have VC-dimension m). Sparse
queries represent questions about individuals whose answer is rarely “yes” when
asked about an individual who is drawn uniformly at random from the data
population. Nevertheless, such questions can be useful to a data analyst who
has some knowledge about which segment of the population a database might
be drawn from. For example, a database resulting from a medical study might
contain individuals who have some rare disease, but the data analyst does not
know which disease – although there may be many such queries, each one is
sparse. Alternately, a data analyst might have knowledge about the participants
of several previous studies, and might want to know how much overlap there
is between the participants of each previous study and of the current study. In
general, sparse queries will only be useful to a data analyst who has some knowl-
edge about the database, beyond that it is merely a subset of an exponentially
sized data universe. Our results can therefore be viewed as a way of privately re-
leasing information about a database that is useful to specialists – but is privacy
preserving no matter who makes use of it. In general, this work can be thought

1 The algorithm of [BLR08] can be generalized to answer axis-aligned rectangle queries
in constant dimension, but this is still a class that has only constant VC-dimension.
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of as part of an agenda to find ways to make use of the domain knowledge of the
data analyst, to make private analysis of large-scale data-sets feasible.

1.1 Results

We give two algorithms for releasing accurate answers to m-sparse queries while
preserving differential privacy: one in the interactive setting, in which the data
curator acts as an intermediary and must answer an adaptively chosen stream of
queries as they arrive, and one in the non-interactive setting, in which the data
curator must in one shot output a data-structure which encodes the answers to
every query of interest. In the interactive setting, we require that the running
time needed to answer each query is bounded by a polynomial in n, the database
size (so to answer any sequence of k queries takes time k · poly(n)). In the non-
interactive setting, the entire computation must be performed in time polynomial
in n, and the time required to evaluate any query on the output data structure
must also be polynomial. Therefore, from the point of view of running time, the
non-interactive setting is strictly more difficult than the interactive setting.

In the interactive setting, we give the following utility bound:

Theorem 1 (Informal, some parameters hidden). There exists an (ε, δ)-
differentially private query release mechanism in the interactive setting, with
running time per query Õ(m/α2) that is α-accurate with respect to any set of k
adaptively chosen m-sparse queries with:

α = O

(
(logm)1/4

(
log 1

δ log k
)1/2

(εn)1/2

)

In the non-interactive setting, we give the bound:

Theorem 2 (Informal, some parameters hidden). There exists an (ε, δ)-
differentially private query release mechanism in the non-interactive setting, with
running time polynomial in the database size n,m, and log |X |, that is α-accurate
with respect to any class of k m-sparse linear queries, with:

α = Õ

⎛

⎝log k

√
m log

(
1
δ

)

εn

⎞

⎠

Several aspects of these theorems are notable. First, the accuracy bounds do not
have any dependence on the size of the data universe |X |, and instead depend
only on the sparsity parameter m. Therefore, in addition to efficiency improve-
ments, these results give accuracy improvements for sparse queries, when com-
pared to the general purpose (inefficient) mechanisms for linear queries, which
typically have accuracy which depends on log |X |. Since we typically view |X | as
exponentially large in the database size, whereas m is only polynomially large
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in the database size for these algorithms to be efficient, this can be a large
improvement in accuracy.

Second, the interactive mechanism does not even have a dependence on |X | in
its running time! In fact, it works even in an infinite universe (e.g. data entries
with string valued attributes without pre-specified upper bound on length)2. In
this setting, queries may still be concisely specified as a list of polynomially many
individuals from the possibly infinite universe that satisfy the query. Moreover,
because the accuracy of this mechanism depends only very mildly on m, and
the running time is linear in m, it can be used to answer m-sparse queries for
arbitrarily large polynomial values of m, where the mechanism is constrained
only by the available computational resources.

The non-interactive mechanism in contrast has a worse dependence on m.
This bound essentially matches the error that would result from releasing the
perturbed histogram of the database, but does so in a way that requires com-
putation and output representation only polynomial in n (rather than linear in
|X |, as releasing a histogram would require). Because accuracy bounds > 1 are
trivial, this mechanism only guarantees non-trivial accuracy for m-sparse queries
with m << n2/ log k (This is still of course a very large class of queries: there

are roughly |X |n2/ log k such queries, i.e., super-exponentially many in n). Nev-
ertheless, there are distinct advantages to having a non-interactive mechanism
that only needs to be run once. This is among the first polynomial time non-
interactive mechanisms for answering an exponentially large, unstructured class
of queries while preserving differential privacy.

We note that our results give as a corollary, more efficient algorithms for
answering conjunctions with many literals. This complements the beautiful re-
cent work of Hardt, Rothblum, and Servedio [HRS12], who give more efficient
algorithms for answering conjunctions with few literals, based on reductions to
threshold learning problems.

1.2 Techniques

Our interactive mechanism is a modification of the very general multiplicative
weights mechanism of Hardt and Rothblum [HR10]. We give the interactive
mechanism via the framework of [GRU12] which efficiently maps objects called
iterative database constructions (defined in section 3) into private query release
mechanisms in the interactive setting. IDC algorithms are very similar to online
learning algorithms in the mistake bound model, and we use this analogy to
implement a version of the multiplicative weights IDC of Hardt and Rothblum
[HR10] analogously to how the Winnow algorithm is implemented in the infinite

2 The algorithm must be able to read a name for each universe element it deals
with, and so it can of course not deal with elements that have no finite description
length. But for a (countably) infinite universe, the running time would depend on
the length of the largest string used to denote a universe element encountered during
the running of the algorithm, and not in any a-priori way on the (unboundedly large)
size of the universe.
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attribute model of learning, defined by Blum [Blu90]. The algorithm roughly
works as follows: the multiplicative weights algorithm normally maintains a dis-
tribution over |X | elements, one for each element in the data universe. It can
be easily implemented in such a way so that when it is updated after a query
Q arrives, only those weights corresponding to elements in the support of the
query Q are updated: for an m-sparse query, this means it only need update m
positions. It also comes with a guarantee that it never needs to perform more
than log |X |/α2 updates before achieving error α, and so at most m log |X |/α2

elements ever need to be updated. The key insight is to pick a smaller universe,
X̂ , such that X̂ ≥ m log X̂/α2, but not to commit to the identity of the elements
in this universe before running the algorithm, letting all elements be initially
unassigned. The algorithm then maintains a hash table mapping elements of X
to elements of X̂ . Elements in X are assigned temporary mappings to elements
in X̂ as queries come in, but are only assigned permanent mappings when an
update is performed. Because only log X̂/α2 updates are ever performed, and X̂
was chosen such that X̂ ≥ m log X̂/α2, the algorithm never runs out of elements

of X̂ to permanently assign. Because |X̂ | depends only on the desired accuracy
α and the sparsity parameter m, and not on X in any way, the algorithm can be
implemented and run without any knowledge of X (even for infinite universes),
and neither the running time nor the resulting accuracy depend on |X |. We
emphasize that the advantage of this approach over an alternative technique of
running multiplicative weights on a small random projection of the data uni-
verse, is that our approach works even with adaptively chosen queries. Hashing
the data-universe to a smaller size using standard methods would no longer
permit guarantees for queries that may be adaptively chosen.

The non-interactive mechanism releases a random projection of the database
into polynomially many dimensions, together with the corresponding projection
matrix. Queries are evaluated by computing their projection using the public
projection matrix, and then taking the inner product of the projected query
and the projected database. The difficulty comes because the projection matrix
projects vectors from |X |-dimensional space to poly(n) dimensional space, and
so normally would take |X |poly(n)-many bits to represent. Our algorithms are
constrained to run in time poly(n), however, and so we need a concise repre-
sentation of the projection matrix. We achieve this by using a matrix implicitly
generated by a family of limited-independence hash functions which have con-
cise representations. This requires using a limited independence version of the
Johnson-Lindenstrauss lemma, and of concentration bounds. This algorithm also
gives accuracy bounds which are independent of |X |.

1.3 Related Work

Differential privacy was introduced by Dwork, McSherry, Nissim, and Smith
[DMNS06], and has since become the standard solution concept for privacy in the
theoretical computer science literature. There is now a vast literature concerning
differential privacy, so we mention here only the most relevant work, without
attempting to be exhaustive. Dwork et al. [DMNS06] also introduced the Laplace
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mechanism, which is able to efficiently answer arbitrary low-sensitivity queries
in the interactive setting. The Laplace mechanism does not make efficient use of
the privacy budget however, and can answer only linearly many queries in the
database size.

Blum, Ligett, and Roth [BLR08] showed that in the non-interactive setting, it
is possible to answer exponentially sized families of counting queries. This result
was extended and improved by Dwork et al. [DNR+09] and Dwork, Rothblum,
and Vadhan [DRV10], who gave improved running time and accuracy bounds,
and for (ε, δ)-differential privacy gave similar results for arbitrary low sensitivity
queries. Roth and Roughgarden [RR10] showed that accuracy bounds compara-
ble to [BLR08] could be achieved even in the interactive setting, and this result
was improved in both accuracy and running time by Hardt and Rothblum, who
give the multiplicative weights mechanism, which achieves nearly optimal ac-
curacy and running time [HR10]. Gupta, Roth, and Ullman [GRU12] generalize
the algorithms of [RR10, HR10] into a generic framework in which objects called
iterative database constructions efficiently reduce to private data release mech-
anisms in the interactive setting. Unfortunately, the running time of all of the
algorithms discussed here is at least linear in |X |, and so typically exponential
in the size of the private database. Moreover, there are both computational and
information theoretic lower bounds suggesting that it may be very difficult to
give private release algorithms for generic linear queries with substantially better
run time [DNR+09, UV11, GHRU11]. As in this work, these algorithms give a
guarantee on the worst-case error of any answered query.

There is also a small body of work giving more efficient query release mech-
anisms for specific classes of queries. [BLR08] gave an efficient (running time
polynomial in the database size n) algorithm for releasing the answers for 1-
dimensional intervals on the discretized unit-line in the non-interactive setting.
As far as we know, prior to this work, this was the only efficient mechanism in
either the interactive or non-interactive settings for releasing the answers to an
exponentially sized family of queries with worst-case error. This class is however
structurally very simple: it has VC-dimension only 2. Other efficient algorithms
relax the notion of utility, no longer guaranteeing worst-case error for all queries.
[BLR08] also give an efficient algorithm for releasing halfspace queries in the unit
sphere, but this algorithm only guaranteed accurate answers for halfspaces that
happened to have largemargin with respect to the points in the database. Gupta
et al [GHRU11] gave an algorithm for releasing conjunctions over d attributes to
average error α over any product distribution (over conjunctions), which runs in
time dO(1/α). This was improved to have running time O(dlog 1/α) by Cheraghchi
et al. [CKKL12]. Note that these algorithms only run in polynomial time for con-
stant values of α, and only give accuracy bounds in expectation over random
queries. Recently, Hardt, Rothblum, and Servedio [HRS12] gave an algorithm
for releasing conjunctions defined on k out of d literals with an average-error

guarantee for any pre-specified distribution in time dÕ(
√
k). Using the private

boosting algorithm of [DRV10], they leverage this result to give an algorithm for
releasing k-literal conjunctions with worst-case error guarantees, which increases
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the running time to dÕ(k), although still only requiring databases of size dÕ(
√
k).

They also gave an efficient (i.e. running time polynomial in n) algorithm for
releasing parity queries to low average error over product distributions. We re-
mark that our results give a complementary bound for large conjunctions (with
a better sample complexity requirement). Our online algorithm can release all
conjunctions on d− k out of d literals with worst-case error guarantees in time

dÕ(k), requiring databases of size only Õ(k1.5 log d).
The efficient interactive mechanism we give in section 3 is based on an analogy

between iterative database construction (IDC) algorithms and online learning al-
gorithms in the mistake bound model. We implement the multiplicative weights
IDC of Hardt and Rothblum [HR10] analogously to how Winnow is implemented
in the infinite attribute model of Blum [Blu90]. In our setting, it can be thought
of as an infinite universe model that has no dependence on the universe size in
either the running time or accuracy bounds. This involves running the multi-
plicative weights algorithm on a much smaller universe. Hardt and Rothblum
[HR10] also gave a version of their algorithm which ran on a small subset of
the universe to give efficient run-time guarantees. The main difference is that we
select the subset of the universe that we run the multiplicative weights algorithm
on adaptively, based on the queries that arrive, whereas [HR10] select the sub-
set nonadaptively, independently of the queries. [HR10] give average case utility
bounds for linear queries on randomly selected databases; in contrast, we give
worst-case utility bounds that hold for all input databases, but only for sparse
linear queries.

The efficient non-interactive mechanism we give in section 4 is based on ran-
dom projections using families of limited independence hash functions, which
have previously been used for space-bounded computations in the streaming
model [CW09, KN10]. Limited independence hash functions have also previ-
ously been used for streaming algorithms in the context of differential privacy
[DNP+10].

2 Preliminaries

A database D is a multiset of elements from some (possibly infinite) abstract
universe X . We write |D| = n to denote the cardinality of D. For any x ∈ X we
can also write D[x] to denote: D[x] = |{x′ ∈ D : x′ = x}| the number of elements
of type x in the database. Viewed this way, a database D ∈ N

|X | is a vector with
integer entries in the range [0, n].

A linear query Q : X → [0, 1] is a function mapping elements in the universe
to values on the real unit interval. For notational convenience, we will define
Q(∅) = 0. We can also evaluate a linear query on a database. The value of a
linear query Q on a database is simply the average value of Q on elements of
the database:

Q(D) = 1

n

∑

x∈D
Q(x) =

1

n

∑

x∈X
Q(x)D[x]
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Similarly to how we can think of a database as a vector, we can think of a query
as a vector Q ∈ [0, 1]|X | with Q[x] = Q(x). Viewed this way, Q(D) = 1

n 〈Q,D〉.
It will sometimes be convenient to think of normalized databases (with entries

that sum to 1). For a database D of size n, we define the corresponding nor-
malized database D̂ to be the database such that D̂[x] = D[x]/n. We evaluate a
linear query on a normalized database by computing Q(D̂) =∑x∈X Q(x)D̂[x] =
〈Q, D̂〉. Note that Q(D) = Q(D̂).
Definition 1 (Sparsity). The sparsity of a linear query Q is |{x ∈ X : Q(x) >
0}|, the number of elements in the universe on which it takes a non-zero value.
We say that a query is m-sparse if its sparsity is at most m. We will also refer
to the class of all m-sparse linear queries, denoted Qm.

In this paper, we will assume that given an m-sparse query, we can quickly (in
time polynomial in m) enumerate the elements x ∈ X on which Q(x) > 0.

Remark 1. While the assumption that we can quickly enumerate the non-zero
values of a query may not always hold, it is indeed the case that for many natural
classes of queries, we can enumerate the non-zero elements in time linear in m.
For example, this holds for queries that are specified as lists of the universe
elements on which the query is non-zero, as well as for many implicitly defined
query classes such as conjunctions, disjunctions, parities, etc.3 Of course, classes
like conjunctions are typically not sparse, but conjunctions with d − O(log n)
literals are, and their support can be quickly enumerated (even though there are
superpolynomially many such conjunctions).

2.1 Utility

We will design algorithms which can accurately answer large numbers of sparse
linear queries. We will be interested in both interactive mechanisms and non-
interactive mechanisms. A non-interactive mechanism takes as input a database,
runs one time, and outputs some data structure capable of answering many
queries without further interaction with the data release mechanism. An inter-
active mechanism takes as input a stream of queries, and must provide a numeric
answer to each query before the next one arrives.

Definition 2 (Accuracy for non-Interactive Mechanisms). Let Q be a set
of queries. A non-interactive mechanism M : X ∗ → R for some abstract range
R is (α, β)-accurate for Q if there exists a function Eval : Q × R → R s.t. for
every database D ∈ X ∗, with probability at least 1 − β over the coins of M ,
M(D) outputs r ∈ R such that maxQ∈Q |Q(D)−Eval(Q, r)| ≤ α. We will abuse
notation and write Q(r) = Eval(Q, r).

3 The set of conjunctions over the d-dimensional boolean hypercube with d − log(n)
literals are n-sparse. Even though there are superpolynomially many such conjunc-
tions, it is simple to enumerate the entries on which these conjunctions take non-zero
value in time linear in n. We can simply enumerate all of the 2log n = n values that
the unassigned variables can take.
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M is efficient if both M and Eval run in time polynomial in the size of the
database n.

Definition 3 (Accuracy for Interactive Mechanisms). Let Q be a set of
queries. An interactive mechanism M takes as input an adaptively chosen stream
of queries Q1, . . . , Qk ∈ Q and for each query Qi, outputs an answer ai ∈ R

before receiving Qi+1. It is (α, β)-accurate if for every database D ∈ X ∗, with
probability at least 1− β over the coins of M : maxi |Qi − ai| ≤ α.
M is efficient if the update time for each query (i.e. the time to produce answer

ai after receiving query Qi) is polynomial in the size of the database n.

2.2 Differential Privacy

We will require that our algorithms satisfy differential privacy, defined as follows.
We must first define the notion of neighboring databases.

Definition 4 (Neighboring Databases). Two databases D,D′ are neighbors
if they differ only in the data of a single individual: i.e. if their symmetric dif-
ference is |D	D′| ≤ 1.

Definition 5 (Differential Privacy [DMNS06]). A randomized algorithm
M acting on databases and outputting elements from some abstract range R is
(ε, δ)-differentially private if for all pairs of neighboring databases D,D′ and for
all subsets of the range S ⊆ R the following holds:

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ

Remark 2. For a non-interactive mechanism, R is simply the set of data-
structures that the mechanism outputs. For an interactive mechanism, be-
cause the queries may be adaptively chosen by an adversary, R is the set of
query/answer transcripts produced by the algorithm when interacting with an
arbitrary adversary. For a detailed treatment of differential privacy and adaptive
adversaries, see [DRV10].

Additional preliminaries can be found in the full version [BR11].

3 A Fast IDC Algorithm for Sparse Queries

In this section we use the abstraction of an iterative database construction that
was introduced by Gupta, Roth, and Ullman [GRU12]. It was shown in [GRU12]
that efficient IDC algorithms automatically reduce to efficient differentially pri-
vate query release mechanisms in the interactive setting. Roughly, an IDC mech-
anism works by maintaining a sequence of data structures D1,D2, . . . that give
increasingly good approximations to the input database D (in a sense that de-
pends on the IDC). Moreover, these mechanisms produce the next data struc-
ture in the sequence by considering only one query Q that distinguishes the real
database in the sense that Q(Dt) differs significantly from Q(D).



404 A. Blum and A. Roth

Syntactically, we will consider functions of the form U : RU ×Q×R→RU.
The inputs to U are a data structure in RU, which represents the current data
structure Dt; a query Q, which represents the distinguishing query, and may
be restricted to a certain set Q; and also a real number which estimates Q(D).
Formally, we define a database update sequence , to capture the sequence of
inputs to U used to generate the database sequence D1,D2, . . . .

Definition 6 (Database Update Sequence). Let D ∈ N
|X | be any database

and let{
(Dt, Qt, Ât)

}

t=1,...,T
∈ (RU × Q × R)T be a sequence of tuples. We say the

sequence is an (U,D,Q, α, T )-database update sequence if it satisfies the fol-
lowing properties:

1. D1 = U(∅, ·, ·),
2. for every t = 1, 2, . . . , T , |Qt(D) −Qt(Dt)| ≥ α,
3. for every t = 1, 2, . . . , T ,

∣
∣
∣Qt(D)− Ât

∣
∣
∣ < α,

4. and for every t = 1, 2, . . . , T − 1, Dt+1 = U(Dt, Qt, Ât).
Definition 7 (Iterative Database Construction). Let U : RU ×Q×R→
RU be an update rule and let B : R → R be a function. We say U is a B(α)-
iterative database construction for query class Q if for every database D ∈ N

|X |,
every (U,D,Q, α, T )-database update sequence satisfies T ≤ B(α).

Note that the definition of an B(α)-iterative database construction implies
that if U is a B(α)-iterative database construction, then given any maximal
(U,D,Q, α, T )-database update sequence, the final database DT must satisfy
maxQ∈Q |Q(D)−Q(DT )| ≤ α or else there would exist another query satisfying
property 2 of Definition 6, and thus there would exist a (U,D,Q, α, T + 1)-
database update sequence, contradicting maximality.
B(α)-IDC algorithms generically reduce to (ε, δ)-differentially private (α, β)-

accurate query release mechanisms in an efficiency preserving way. This frame-
work was implicitly used by [RR10] and [HR10].

Theorem 3 ([GRU12]). If there exists a B(α)-IDC algorithm for a class of
queries Q using a class of datastructures RU that take time at most p(n, α, |X |)
to update their hypotheses, and time at most q(n, α, |X |) to evaluate a query on
any D ∈ RU, then for any 0 < ε, δ, β < 1 there exists an (ε, δ)-differentially
private query release mechanism in the interactive setting that has update time
at most O(p(n, α,X ) + q(n, α,X )) and is (α, β)-accurate with respect to any
adaptively chosen sequence of k queries from Q where α is the solution to the

following equality: α =
3000
√
B(α) log(4/δ) log(k/β)

εn

In this section we will give an efficient IDC algorithm for the class of m-sparse
queries, and then call on Theorem 3 to reduce it to a differentially private query
release mechanism in the interactive setting.

First we introduce the Sparse Multiplicative Weights data structure, which
will be the class of datastructures RU that the Sparse Multiplicative Weights
IDC algorithm uses.:
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Definition 8 (Sparse Multiplicative Weights Data Structure). The
sparse multiplicative weights data structure DSMW of size s is composed of three
parts. We write DSMW = (D, h, ind).
1. D is a collection of s real valued variables x1, . . . , xs, with xi ∈ [0, 1] for all

i ∈ [s]. Variable xi for i ∈ [s] is referenced by D[i]. Initially xi = 1/s for all
i ∈ [s]. We define D[i] = 0 for all i > s.

2. h is a hash function h : X → [s] ∪ ∅ mapping elements in the universe X to
indices i ∈ [s]. Elements x ∈ X can also be unassigned in which case we write
h(x) = ∅. Initially, h(x) = ∅ for all x ∈ X We write h−1(i) = x if h(x) = i,
and h−1(i) = ∅ if there does not exist any x ∈ X such that h(x) = i.

3. ind ∈ [s+1] is a counter denoting the index of the first unassigned variable.
For all i < ind, there exists some x ∈ X such that h(x) = i. For all i ≥ ind,
there does not exist any x ∈ X such that h(x) = i. Initially ind = 1.

If ind ≤ s, we can add an unassigned element x ∈ X to DSMW. Adding an
element x ∈ X to DSMW sets h(x) ← ind and increments ind ← ind + 1. If
ind = s + 1, attempting to add an element causes the data structure to report
FAILURE.

A linear query Q is evaluated on a sparse MW data structure DSMW = (D, h)
as follows.

Q(DSMW) =
∑

x∈X :Q(x)>0∧h(x) �=∅
Q(x) · D[h(x)] +

∑

x∈X :Q(x)>0∧h(x)=∅
Q(x) · D[ind]

We now present Algorithm 3, the Sparse Multiplicative Weights (SMW) IDC al-
gorithm for m-sparse queries. The algorithm is a version of the Hardt/Rothblum
Multiplicative Weights IDC [HR10], modified to work without any dependence
on the universe size. It will run multiplicative weights update steps over the
variables of the SMW data structure, using the SMW data structure to delay
assigning variables to particular universe elements x ∈ X until necessary. Note
that it is not simply running the multiplicative weights algorithm from [HR10]
implicitly: doing so would yield guarantees that depend on the cardinality of the
universe |X |. Instead, the guarantees we will get will depend only on m, and so
will carry over even to the infinite-universe setting.

Theorem 4. The Sparse Multiplicative Weights algorithm is a B(α)-IDC for
the class of m-sparse queries Qm, where:

B(α) = 4
log s+ 1

α2

and s is the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.

The analysis largely follows the Multiplicative Weights analysis given by Hardt
and Rothblum [HR10]. The main difference is that rather than using one global
potential function, we must use a different potential function for each database
update sequence, defined as a function of the state of the hash table in the last
SMW datastructure in the sequence. We must also argue that we never run
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SMW(DSMW
t = (Dt, ht, indt), Qt, Ât):

1. If DSMW
t = ∅

(a) Let s be the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.
(b) Return a new Sparse MW data structure DSMW

1 = (D1, h1, ind1) of size s
with h1(x) = ∅ for all x ∈ X , xi = 1/s for all i ∈ [s], and ind1 = 1.

2. Let DSMW
t+1 = (Dt+1, ht+1, indt+1)← DSMW

t

3. Update: For all x ∈ X such that Qt(x) > 0: If ht+1(x) = ∅ then add x to
DSMW

t+1 .

4. If Ât < Qt(DSMW
t ) Then Update: For all x ∈ X such that Qt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(−ηQt(x))
5. Else Update: For all x ∈ X such that Qt(x) > 0: Let Dt+1[ht+1(x)] ←
Dt+1[ht+1(x)] · exp(ηQt(x))

6. Normalize: For all i ∈ [s]: Dt+1[i] =
Dt+1[i]∑s

j=1 Dt+1[j]

7. Output DSMW
t+1 .

Fig. 1. The Sparse Multiplicative Weights (SMW) IDC Algorithm for m-sparse queries,
adapted from the MW IDC of [HR10]. It is instantiated with an accuracy parameter
η = α/2. It takes as input a sparse MW datastructure DSMW, an m-sparse query

Q ∈ Qm, and an estimate of the query value Â.

out of variables to assign in the SMW data structure, which would cause it to
return FAILURE. To argue this, we apply the technique of Blum Hellerstein
and Littlestone [BHL95], used to adapt Winnow to the infinite attribute model.
The proof appears in the full version.

Finally, we may observe that both the update time for the SMW IDC and
the time to evaluate a query on the SMW datatructure is O(s) = Õ(m/α2).
Therefore, we may instantiate Theorem 3 with the SMW IDC algorithm to
obtain the main result of this section:

Theorem 5. For any 0 < ε, δ, β < 1 there exists an (ε, δ)-differentially private
query release mechanism in the interactive setting, with running time per query
Õ(m/α2) that is (α, β)-accurate with respect to the set of all m-sparse linear
queries Qm, with:

α = O

⎛

⎜
⎝
(logm)

1/4
(
log 4

δ log
k
β

)1/2

(ε · n)1/2

⎞

⎟
⎠

Proof. The proof follows by instantiating Theorem 3 with the SMW IDC al-

gorithm, together with the bound B(α) = 4(log s+1)
α2 proven in Theorem 4, and

recalling that s is the smallest integer such that s/(log s+ 1) ≥ 4m/α2.

3.1 Applications to Conjunctions

In this section, we briefly mention a simple application of this algorithm to the
problem of releasing conjunctions with many literals. The algorithm given in



Fast Private Data Release Algorithms for Sparse Queries 407

this section leads to new results for releasing conjunctions on d − k out of d
literals. This complements the recent results of Hardt, Rothblum, and Servedio
[HRS12] for releasing conjunctions on k out of d literals. The class of conjunctions
are defined over the universe X = {0, 1}d equal to the d-dimensional boolean
hypercube.

Definition 9. A conjunction is a linear query specified by a subset of variables
S ⊆ [d], and defined by the predicate QS : {0, 1}d → {0, 1} where QS(x) =∏
i∈S xi. We say that a conjunction QS has t literals if |S| = t.

Remark 3. The set of all conjunctions of d−k literals, denoted Cd−k is 2k sparse,
and of size |C| ≤ dk.
We can release the answers to all queries in Cd−k by running the sparse multiplica-
tive weights algorithm on each query. We therefore get the following corollary:

Corollary 1. There exists an (ε, δ)-differentially private algorithm in the non-
interactive release setting with running time at most

Õ

(

|Cd−k| · 2
k

α2

)

= Õ

(
(2d)k

α2

)

that is (α, β)-accurate for the set of all conjunctions on d − k literals, which
requires a database of size only:

n ≥
k1.5 log 1

δ log
d
β

εα2

We note that the running time of this algorithm is comparable to the running
time of the algorithm of [HRS12] for releasing all conjunctions of k out of d literals
to worst case error (time roughly Õ(|Ck|) = Õ(dk)), but requires a database of

size only roughly k1.5 log d, rather than dÕ(
√
k) as required by [HRS12]. Of course,

conjunctions on k literals are a more natural class than conjunctions on d − k
literals, but the results are complementary.

Moreover, applying the sparse multiplicative weights algorithm in the interac-
tive setting gives polynomially bounded running time per query for conjunctions
on d− k literals for any k = O(log n). Note that this is still a super-polynomially
sized class of conjunctions, with |CO(logn)| = dO(logn). This is the first interac-
tive query release algorithm that we are aware of that is simultaneously privacy-
efficient and computationally-efficient for a super-polynomially sized class of
conjunctions (or any other family of queries with super-constant VC-dimension).

4 A Non-interactive Mechanism via Random Projection

In this section, we give a non-interactive query release mechanism for sparse
queries based on releasing a perturbed random projection of the private database,
together with the projection matrix. Note that when viewing the database D as a
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vector, it is an |X |-dimensional object: D ∈ R
|X |. A linear projection of D into T

dimensions is obtained by multiplying it by a |X |×T matrix, which cannot even
be represented explicitly if we require algorithms that run in time polynomial in
n = |D| for n << |X |. It is therefore essential that we use projection matrices
which can be represented concisely using hash functions drawn from limited-
independence families.

We will use a limited-independence version of the Johnson-Lindenstrauss
lemma presented in [KN10], first proven by [Ach01, CW09].

Theorem 6 (The Johnson-Lindenstrauss Lemma with Limited
Independence [Ach01, CW09, KN10]). For d > 0 an integer and any
0 < ς, τ < 1/2, let A be a T × d random matrix with ±1/√T entries that are
r-wise independent for T ≥ 4 · 642ς−2 log(1/τ) and r ≥ 2 log(1/τ). Then for any
x ∈ R

d: PrA[|||Ax||22 − ||x||22| ≥ ς ||x||22] ≤ τ
We will use the fact that random projections also preserve pairwise inner prod-
ucts. The following corollary is well known:

Corollary 2. For d > 0 an integer and any 0 < ς, τ < 1/2, let A be a T × d
random matrix with ±1/√T entries that are r-wise independent for T ≥ 4 ·
642ς−2 log(1/τ) and r ≥ 2 log(1/τ). Then for any x, y ∈ R

d: PrA[|〈(Ax), (Ay)〉−
〈x, y〉| ≥ ς

2 (||x||22 + ||y||22)] ≤ 2τ

Definition 10 (Random Projection Data Structure). The random projec-
tion datastructure Dr of size T is composed of two parts: we write Dr = (u, f).

1. u ∈ R
T is a vector of length T .

2. f : [|X | · T ] → {−1/√T , 1/√T} is a hash function implicitly representing
a T × |X | projection matrix A ∈ {−1/√T , 1/√T}T×|X |. For any (i, j) ∈
T × |X |, we write A[i, j] for f(|X | · (i− 1) + j).

To evaluate a linear query Q on a random projection datastructure Dr = (u, f)
we first project the query and then evaluate the projected query. To project
the query we compute a vector Q̂ ∈ R

T as follows. For each i ∈ [T ] Q̂[i] =
∑

x∈X :Q(x)>0Q[x] · A[i, x] Then we output: Q(Dr) = 1
n 〈Q̂, u〉.

Theorem 7. SparseProject is (ε, δ)-differentially private.

Theorem 8. For any 0 < ε, δ < 1, and any β < 1, and with respect to any
class of m-sparse linear queries Q ⊂ Qm of cardinality |Q| ≤ k, SparseProject

is (α, β)-accurate for: α = Õ

(

log
(
k
β

) √
m log( 1

δ )
εn

)

where the Õ hides a term

logarithmic in (m+ n).

4.1 Applications to Conjunctions

In this section, we again briefly briefly mention a simple application of our non-
interactive mechanism to the problem of releasing conjunctions with many liter-
als. This gives the first polynomial time algorithm for non-interactively releasing
a super-polynomially sized set of conjunctions.
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SparseProject(D, ε, δ, β,m, k)

1. Let τ ← β
4k
, T ← 4 · 642 · log ( 1

τ

) (
m3/2

2
+ n4

2
√

m
+
√
mn2

)
, σ ← ε√

8 ln(1/δ)

2. Let f be a randomly chosen hash function from a family of 2 log(kT/2β)-wise
independent hash functions mapping [T × |X |]→ {−1/√T , 1/√T}. Write A[i, j]
to denote f(|X | · (i− 1) + j).

3. Let u, ν ∈ R
T be a vectors of length T .

4. For i = 1 to T
(a) Let ui ←∑

x:D[x]>0D[x] ·A[i, x]

(b) Let νi ← Lap(1/σ)
5. Output Dr = (u+ ν, f).

Fig. 2. SparseProject takes as input a private database D of size n, privacy parameters
ε and δ, a confidence parameter β, a sparsity parameter m, and the size of the target
query class k

Remark 4. The set of all conjunctions of d−k literals, denoted Cd−k is 2k sparse,
and of size |Cd−k| ≤ dk.
Sparseproject therefore gives the following corollary:

Corollary 3. There exists an (ε, δ)-differentially private algorithm in the non-
interactive release setting with polynomially bounded running time, that is (α, β)-
accurate for the class of conjunctions Cd−logn on d − logn literals for: α =

Õ

(
(
logn log d+ log 1

β

) √
log( 1

δ )
ε
√
n

)

Note that Cd−logn is a super-polynomially sized set of conjunctions. As far as we
know, this represents the first algorithm in the non-interactive setting with non-
trivial accuracy guarantees for a super-polynomially sized set of conjunctions
that also achieves polynomial running time.
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Abstract. A local property reconstructor for a graph property is an al-
gorithm which, given oracle access to the adjacency list of a graph that
is “close” to having the property, provides oracle access to the adjacency
matrix of a “correction” of the graph, i.e. a graph which has the property
and is close to the given graph. For this model, we achieve local property
reconstructors for the properties of connectivity and k-connectivity in
undirected graphs, and the property of strong connectivity in directed
graphs. Along the way, we present a method of transforming a local re-
constructor (which acts as a “adjacency matrix oracle” for the corrected
graph) into an “adjacency list oracle”. This allows us to recursively use
our local reconstructor for (k − 1)-connectivity to obtain a local recon-
structor for k-connectivity.

We also extend this notion of local reconstruction to parametrized
graph properties (for instance, having diameter at most D for some pa-
rameter D) and require that the corrected graph has the property with
parameter close to the original. We obtain a local reconstructor for the
low diameter property, where if the original graph is close to having
diameter D, then the corrected graph has diameter roughly 2D.

We also exploit a connection between local property reconstruction
and property testing, observed by Brakerski, to obtain new tolerant prop-
erty testers for all of the aforementioned properties. Except for the one
for connectivity, these are the first tolerant property testers for these
properties.

1 Introduction

Suppose we are given a very large graph G that is promised to be close to having
a property Ps. For example, PD might denote the property of having diameter
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at most D. Local reconstruction algorithms provide very fast query access to
a “corrected” version of G. That is, the local reconstruction algorithm should
have in mind some G̃ which has the property Ps and is also close to the original
graph G. The goal of the local reconstruction algorithm is to provide very fast
query access to the edges of G̃ — that is, given a pair of vertices u, v in G, the
algorithm should in sublinear time determine whether the edge (u, v) is in G̃. We
call such an algorithm a local reconstructor for Ps. It can be useful to relax the
condition that G̃ has property Ps and only require that G̃ has property Pφ(s)
which contains Ps but is possibly larger. For instance, if PD is the property of
having diameter at most D, we might only require G̃ to have property P4D, i.e.
having diameter at most 4D.

In this paper we study local reconstruction algorithms for some of the most
basic problems in graph theory, namely connectivity in undirected graphs, strong
connectivity in directed graphs, k-connectivity in undirected graphs, and small
diameter in undirected graphs. Such algorithms might be used to efficiently
repair connectivity or small diameter in graphs. These are common issues that
have been considered in various models in wireless networks and robotics (see
for example [9], [25]).

Techniques for designing local reconstructors are often borrowed from prop-
erty testing, and as noted by Brakerski [5] (as well as in this paper), reconstruc-
tors can be used to design property testers. Property testers have been studied
extensively in the literature (see, for instance, [22], [10], [11] for some early
works on the subject). A property tester for a property P takes as input a graph
G and parameter ε, and accepts with high probability if G has P and rejects
with high probability if G is ε-far from having P . Similarly, a tolerant tester gets
a graph G and parameters ε1 ≤ ε2, and accepts with high probability if G is
ε1-close to having P and rejects with high probability if G is ε2-far from having
P .

Our results. Our specific results are the following.

– Local reconstructors for the following properties: connectivity, strong con-
nectivity, k-connectivity, having diameter at most D.

– A method of transforming our local reconstructor for k-connectivity (which
provides query access to the adjacency matrix of the corrected graph) into
an algorithm which provides query access to the adjacency list of the cor-
rected graph (see Section 6 for the case k = 1). This is not a black-box
transformation.

– We exploit a connection between local property reconstruction and property
testing, observed by Brakerski [5] to obtain tolerant property testers for all of
the above graph properties (property testing notions will be defined shortly).

Our approach. Our techniques are simple, yet seem to be quite powerful given
their simplicity. For each of the above properties, the strategy for constructing
a local reconstructor is the same. First, we designate a “super-node”; then elect
“leader nodes” from which we add edges to the super-node. The main technique
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we use to elect leaders is to initially independently assign a random rank to
every node, and to declare a node a leader if it has the lowest rank among all
nodes within a small neighborhood. This is more useful than simply choosing
leaders at random, since sometimes we would like to guarantee we have a leader;
for instance, for connectivity, we need at least one leader in each connected
component if we want to guarantee that the corrected graph is connected.

Brakerski [5] gave a way to construct a tolerant tester from a local reconstruc-
tor and property tester. Since previous works ([11], [3], [15], [20]) give property
testers for these properties we study, we obtain, as corollaries, that these prop-
erties have tolerant testers.

Related work. The notion of locally reconstructing a data set was introduced
under the name local filter in [1] and further refined in [24]. In both works,
the property of monotonicity of sequences was considered. A closely related
work is [5], which introduces the concept of local reconstruction under the name
local restoring and also shows a special case of our relationship between local
reconstructors, property testers, and tolerant testers. Several other properties of
graphs (expansion [13], bipartiteness [5], ρ-clique [5]), functions (Lipschitz [12],
monotonicity [1,24,5]), geometric objects (convexity [8]) have been studied in
the context of local reconstruction. The problem of testing the properties for
which we give local reconstructors has been studied in multiple works—[11] for
connectivity, [3] for strong connectivity, [11] and [15] for k-connectivity, and [20]
for diameter. A tolerant tester for connectivity is also implied by the algorithm
of [7] for approximating the number of connected components.

Organization. In Section 2, we formally define our model and the notions of
local reconstructors, property testers, and tolerant testers, and in Section 3 we
formally state our main results. In Section 4 and 5, we present our results for
connectivity and strong connectivity. Section 6 serves as a brief interlude where
we show how our local reconstructor for connectivity can be modified to give a
neighbor oracle for the corrected graph G′. This procedure will then be used in
Sections 7 and 8, in which we present our results for k-connectivity and small
diameter respectively. Proofs for every claim can be found in the full version of
this paper [6].

2 Preliminaries

We adopt the general sparse model of graphs as presented in [20], i.e. the graph
is given as an adjacency list, and a query for a vertex v is either its degree,
or an index i on which the i-th neighbor of v is returned (with respect to the
representation of the neighbors as an ordered list). We assume there is some
upper boundm on the number of edges of the graphs we work with, and distances
are measured according to this, i.e. if k is the minimum number of edge deletions
and insertions necessary to change one graph to the other, then their distance
is k/m. We assume m = Ω(n) where n is the number of vertices in the graph.
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Definition 1 ([20]). The distance between two graphs G1, G2, denoted
dist(G1, G2), is equal to the number of unordered pairs (u, v) such that (u, v)
is an edge in one graph but not in the other, divided by m. A property is a sub-
set of graphs. Throughout this paper we say that a graph has property P if it is
contained in the subset P. The distance between a graphG and a property P, de-
noted dist(G,P), is equal to dist(G,P) = minG′∈P dist(G,G′). If dist(G,P) ≤ ε,
then G is ε-close to P, otherwise G is ε-far from P.
Parametrized properties. Our result relating local reconstructors to tolerant
testers (Theorem 1) extends a result of Brakerski ([5]) to parametrized prop-
erties. A parametrized property Ps is a property belonging to a family {Ps}s of
properties parametrized by some parameter s. For example, the property PD of
having diameter at most D is a parametrized property, with the diameter D as
the parameter.

2.1 Local Reconstructors

Definition 2. For an undirected graph G = (V,E), the neighbor set of v ∈ V
is the set NG(v) = {u ∈ V | (u, v) ∈ E}. For a directed graph G = (V,E), the
in-neighbor set and out-neighbor set of v ∈ V are respectively N in

G (v) = {u ∈ V |
(u, v) ∈ E} and Nout

G (v) = {u ∈ V | (v, u) ∈ E}
Definition 3 (Neighbor and edge oracles). A neighbor oracle for a graph
G is an algorithm which, given query v ∈ V and either query deg or i, returns
deg(v) or the i-th neighbor of v (with respect to some fixed ordering of the neigh-
bor set) in O(1) time. An edge oracle for G is an algorithm EG which returns
in O(1) time EG(u, v) = 1 if (u, v) ∈ E and EG(u, v) = 0 otherwise.

Definition 4 (Local reconstructor). Let ε1, ε2, δ > 0 and let φ : N → N. An
(ε1, ε2, δ, φ(·))-local reconstructor (LR) R for a parametrized graph property Ps
is a randomized algorithm with access to a neighbor oracle of a graph G that is
ε1-close to Ps, which satisfies the following:

– R makes o(m) queries to the neighbor oracle for G per query to R
– There exists G̃ ∈ Pφ(s) with dist(G, G̃) ≤ ε2 such that R is an edge oracle

for G̃, with probability at least 1− δ (over the coin tosses of R)
An (ε1, ε2, δ)-local reconstructor for a non-parametrized graph property P is sim-
ply a (ε1, ε2, δ, φ(·))-local reconstructor where P is viewed as the only property in
its parametrized family and φ is the identity function. The query complexity of
the local reconstructor is the number of queries R makes to the neighbor oracle
for G on any query (u, v). We note that this definition differs from that of [12]

because even if G ∈ P, the reconstructed graph G̃ may not equal G in general.

2.2 Tolerant Testers

Tolerant testers (see [21]) are a generalization of property testers where the
tester may accept if the input is close enough to having the property, where for
property testers “close enough” means “distance zero”.
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Definition 5 (Tolerant tester). Let ε1, ε2 > 0 and let φ : N → N. An
(ε1, ε2, φ(·))-tolerant tester T for a parametrized graph property Ps is a ran-
domized algorithm with query access to a neighbor oracle of an input graph G
that satisfies the following:

– T makes o(m) queries to the neighbor oracle for G
– If G is ε1-close to Ps, then Pr[T accepts ] ≥ 2

3
– If G is ε2-far from Pφ(s), then Pr[T accepts ] ≤ 1

3

For a non-parametrized graph property P, an (ε1, ε2)-tolerant tester is defined
similarly by viewing P as the single member of its parametrized family and taking
φ to be the identity function.

For a parametrized graph property, an (ε, φ(·))-property tester is simply a
(0, ε, φ(·))-tolerant tester, and for anon-parametrized graphproperty, an ε-property
tester is defined analogously.

3 Local Reconstructors and Tolerant Testers

We now show that our notion of local reconstructors can be used alongside
property testers to construct tolerant testers for properties of sparse graphs.
This idea is not new and can be found as [5, Theorem 3.1], but we extend the
result for parametrized properties.

Theorem 1. Let Ps be a parametrized property with an (ε1, ε2, δ, φ(·))-local re-
constructor R with query complexity qR and suppose Pφ(s) has a (ε′, ψ(·))-
property tester T with query complexity qT . Then for all β > 0, Ps has an
(ε1, ε2+ε

′+β, (ψ◦φ)(·))-tolerant tester with query complexity O
(
(1/β2 + qT )qR

)
.

In this work, we give local reconstructors for several graph properties: con-
nectivity in undirected graphs, strong connectivity in directed graphs, and small
diameter in undirected graphs. To be precise, we prove the following in Sec-
tions 4, 5, 7 and 8 respectively.

Theorem 2. There is an (ε, (1 + α)ε, δ)-LR for connectivity with query com-
plexity O

(
1
δαε

)
.

Theorem 3. There is an (ε, (4 + α)ε, δ)-LR for strong connectivity with query
complexity O

(
1
δαε

)
.

Theorem 4. There is an (ε, (2 + α)ε + ck
2 , k(δ + γ))-LR for k-connectivity

with query complexity O
(((

1
c + 1

)
kt3(t+ k) log(t+ k) log(Cn)

)k
)
, with C =

1
ln(1/(1−γ)) and t = ln(Cn)

δαε .

Theorem 5. There is an (ε, (3+α)ε+ 1
m+c, δ+ 1

n , φ(s) = 2s+2)-LR for diameter

at most D with query complexity O( 1
cδαεΔ

O(Δ logΔ) logn) where Δ = (d/ε)O(1/ε)

and d = 2m/n is the bound on average degree.
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In light of Theorem 1, we have the following.

Corollary 1. For all α, β, ε > 0, there is an (ε, (1 + α)ε+ β)-tolerant tester for
connectivity.

Corollary 2. For all α, β, ε > 0, there is an (ε, (4 + α)ε+ β)-tolerant tester for
strong connectivity.

Corollary 3. For all α, β, c, ε > 0, there is an (ε, (2k+α)ε+ ck/2+ β)-tolerant
tester for k-connectivity.

Corollary 4. For all D,α, β, ε > 0 and constant c < 1, there is an (ε, (3+α)ε+
1
m + c+ β, 4D + 6)-tolerant tester for diameter at most D, for n ≥ k

c .

4 Local Reconstruction of Connectivity

High level description. The basic idea behind the algorithm is as follows. We
designate a “super-node” v0 and add edges from a few special vertices to v0 so
that the resulting graph is connected. Ideally, we have exactly one special vertex
in each connected component, since this number of edges is both necessary and
sufficient to make the graph connected. Therefore, we reduce the problem to
defining a notion of “special” that can be determined quickly, that ensures that
at least one node per component is special and that likely not too many extra
nodes per component are special. How does a given vertex know whether it is
special? Our algorithm tosses coins to randomly assign a rank r(v) ∈ (0, 1] to
each v ∈ V (G). Then v can explore its connected component by performing a
breadth-first search (BFS) and if v happens to have the lowest rank among all
vertices encountered, then v is special. The only problem with this approach
is that if v lies in a large connected component, then the algorithm makes too
many queries to G to determine whether v is special. We fix this by limiting the
BFS to K vertices, where K is a constant depending only on a few parameters,
such as success probability and closeness. Components larger than size K do not
contribute many more special vertices.

ChooseK to be m
δαεm−1 = O

(
1
δαε

)
. The query complexity is O(K) = O

(
1
δαε

)
.

G̃ is connected because, since the rank function attains a minimum on some ver-
tex in each connected component, that vertex must get an edge to v0. That G̃ is
close to G follows from the Markov’s inequality and the fact that every compo-
nent of size at most K contributes at most one edge and every remaining vertex
contributes 1/K edges on average, and the fact that the number of components
is bounded by εm+ 1.

5 Local Reconstruction of Strong Connectivity

Query model. In our model, we assume our neighbor oracle has access to both
the in-neighbor set and the out-neighbor set. This allows us to perform both
backward and forward depth-first search (DFS), as well as undirected BFS, which
is a BFS ignoring directions of edges.
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High level description. The basic idea behind the algorithm is as follows. As in
the undirected connectivity case, we designate a “super-node” v0, but now we
add arcs from a few special “transmitting” vertices to v0 and also add arcs from
v0 to a few special “receiving” vertices. In order to make G strongly connected,
we need to add at least one arc from the super-node to each source component
and from each sink component to the super-node without adding too many extra
arcs. A näıve approach is to emulate the strategy for connectivity: to decide if v
is a transmitter, do a forward DFS from v and check if v has minimal rank (and
analogously for receivers and backward DFS). Again, we can limit the search
so that large components may have some extra special vertices. The problem
with this approach is that a sink component could be extremely small (e.g. one
vertex) with many vertices whose only outgoing arcs lead to the sink. In this
case, all of these vertices would be special and receive an edge to v0. Therefore
we tweak our algorithm so that if v does a forward DFS and sees few vertices,
then it checks if it is actually in a sink component. If so, then it is a transmitter;
if not, then we do a limited undirected BFS from v and check minimality of
rank. The procedure uses subroutines which respectively check if a vertex v is
in a sink or a source of size less than K. We implement these subroutines using
Tarjan’s algorithm for finding strongly connected components, except stopping
after only exploring all nodes reachable from v. We then show that if a directed
graph is almost strongly connected, then it cannot have too many source, sink,
or connected components, and therefore our algorithm likely does not add too
many arcs.

6 Implementing a Neighbor Oracle with Connectivity
Reconstructor

Our local reconstructors for k-connectivity and small diameter rely on the given
graph G being connected. Even if G is not connected, it is close to being con-
nected, and so one may hope to first make G into an intermediate connected
graph G′ using a local reconstructor for connectivity, and then run the local re-
constructor for the desired property on G′ to obtain G̃. We would therefore like
a neighbor oracle for G′, but the local reconstructor only gives us an edge oracle
for G′. We show how to modify the local reconstructor for connectivity to obtain
a neighbor oracle for G′, with only a slight loss in the parameters achieved.

As is, our connectivity reconstructor Connected from Section 4 is almost a
neighbor oracle. Recall that the reconstructor works by selecting an arbitrary
v0 ∈ G and adding edges from a few special vertices to v0—no other edges are
added. For a vertex v �= v0, NG(v) ⊆ NG′(v) ⊆ NG(v) ∪ {v0}, thus NG′(v) can
be computed in constant time. However, the problem arises when one queries
NG′(v0). Potentially Θ(n) edges are added to v0 by the reconstructor, so com-
puting NG′(v) queries Connected O(n) times. We thus modify Connected
to obtain the following.

Theorem 6. Fix a positive constant c < 1. There is a randomized algorithm N ,
given access to the neighbor oracle NG for G that is ε-close to being connected
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such that, with probability at least 1− δ, there exists a connected graph G′ that is
((1+α)ε+c)-close to G and N is a neighbor oracle for G′, with query complexity
O
(

1
cδαε

)
.

Proof. We modify Connected as follows. Instead of designating one super-node
v0, we designate c · n super-nodes. Partition V into sets of size 1/c and assign
each set in the partition to a distinct super-node. This can be implemented,
for instance, by identifying V = {1, . . . , n}, designating the super-nodes to be
{1, . . . , cn}, and for a given vertex v ∈ V , assign v to the super-node h(v) =

v/c�. For any v that would be connected to v0, we instead connect it to h(v).
Additionally, we add the edges (i, i + 1) for all i ∈ {1, . . . , cn − 1} to ensure
connectivity. This adds a total of cn − 1 edges, which constitute at most c-
fraction of the edges. Call this modified local reconstructorMod-Connected. It
is straightforward to see that Mod-Connected has the same query complexity
as Connected. We now implement an algorithm to compute NG′ as follows.
Given a non-super-node v, its neighbor set could have grown by at most adding
h(v), so NG′(v) can be computed with O(1) calls to Mod-Connected. For a
super node w, its neighbor set could have grown by at most 1/c + 2, since at
most 1/c non-super-nodes could have been connected to w, and w is further
connected to at most two super-nodes. Therefore NG′(w) can be computed with
O(1/c) calls to Mod-Connected.

7 Local Reconstruction of k-Connectivity

7.1 Preliminaries

For a subset U � V of the vertices in a graph G = (V,E), the degree of U ,
denoted deg(U), is equal to deg(U) = |{(u, v) ∈ E | u ∈ U, v ∈ V \ U}|.
Definition 6 (k-connectivity).An undirected graphG = (V,E) is k-connected
if for every U � V , deg(U) ≥ k.
An equivalent definition of k-connectivity, a result of Menger’s theorem (see [16]),
is that every pair of vertices has at least k edge-disjoint paths connecting them.
An important notion of k-connectivity is that of an extreme set. Extreme sets
are a generalization of connected components to the k-connectivity setting. Con-
nected components are 0-extreme sets.

Definition 7. A set U ⊆ V is -extreme if deg(U) =  and deg(W ) >  for
every W � U .

It is straightforward from the definition that if a graph is (k− 1)-connected and
has no (k − 1)-extreme sets, then it is in fact k-connected. Extreme sets satisfy
some nice properties, which are used by [15] as well for property testing and
distance approximation for k-connectivity. Two extreme sets are either disjoint
or one is contained in the other (see [18]). IfW � U andW is W -extreme and U
is U -extreme, then W > U . Consequently, distinct -extreme sets are disjoint.
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A graph G that is (k − 1)-connected cannot have any -extreme sets for  <
k−1. Moreover, the number of additional edges required to make G k-connected
is at least half the number of (k − 1)-extreme sets in G. This is simply because
each (k − 1)-extreme set requires at least one additional edge, and adding an
edge to G meets the demand of at most two such sets.

7.2 High Level Description

The idea behind the algorithm is to simply iterativelymake the graph j-connected,
for j = 1, 2, . . . , k. Let Gj be the corrected j-connected graph obtained fromG. It
suffices to use a neighbor oracle for Gk−1 to implement a neighbor oracle for Gk.
The base case k = 1 is addressed by Section 6.

Now suppose we have a neighbor oracle for (k − 1)-connectivity and we wish
to implement a neighbor oracle for k-connectivity. Again, we use a similar idea
as in Sections 4 and 6. Specifically, we fix a positive constant k/n ≤ c < 1 and
designate a set V0 ⊂ V of c ·n ≥ k super-nodes, connecting them in a certain way
to make the subgraph induced by V0 k-connected (details in the next subsection).
The idea is then to ensure at least one vertex from each extreme set contributes
a new edge to a super-node. Again, we implement this by assigning all vertices a
random rank independently and uniformly in [0, 1) and searching a neighborhood
of v up to t vertices, where t is appropriately chosen, and checking if it has
minimal rank. Instead of doing this search via BFS, we use the extreme set
search algorithm of [11]. The basic procedure satisfies the following: if v lies in a t-
bounded extreme set, it finds this set with probability Θ(t−2), otherwise it never
succeeds. We iterate the basic procedure a polylogarithmic number of times. If
every iteration fails (which happens if v does not lie in a t-bounded extreme

set) then we tell v to connect to a super-node with probability Θ
(

log(n/t)
t

)
. We

then show that with high probability the resulting graph Gk is k-connected and
that we do not add too many edges. This completes the edge oracle. We will
also show how to implement these ideas carefully so that the edge oracle can be
transformed into a neighbor oracle in order to make the recursion work.

7.3 Algorithm

Given our previous discussion, all that remains to implement the algorithm is to
implement the following tasks:

– Search: Given v ∈ V which lies in an extreme set S, find a neighborhood
U ⊆ S containing v such that |U | ≤ t.

– Decision: Given v ∈ V , determine whether v should contribute an edge to
V0, and if so, to which v′ ∈ V0.

Implementing the Search Task. The goal of the search task is to detect that
v lies in an extreme set of size at most t. We are now assuming the input graph
is (k−1)-connected, so all extreme sets are (k−1)-extreme. The search task can
be implemented by a method of [11] and [15] which runs in time O(t3d log(td))
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where d is a degree bound on the graph. Roughly, the procedure works by growing
a set U ′ starting with {v} and iteratively choosing a cut edge and adding the
vertex on the other end of the edge into U ′. The cut edge is chosen by assigning
random weights to the edges, and choosing the edge with minimal weight. The
procedure stops when the cut size is less than k or when |U ′| = t.

Its running time is O(td log(td)) but its success probability is only Ω(t−2)
(that is, the probability that U ′ = S when the procedure terminates), so the
basic procedure is repeated Θ(t2) times or until success. We can check if each
run is successful by checking that the final set U ′ is a (k − 1)-extreme set. This
procedure is adapted in [20] to the general sparse model by noticing that no
vertex of degree at least t+k would ever be added to S, and hence the procedure
has a running time of O(t3(t + k) log(t+ k)). We actually want the probability
that all vertices have a successful search to be at least 1 − γ/2, so we repeat
the basic procedure O(t2 log(Cn)) times for C = 1

ln(1/(1−γ/2)) , yielding a time

complexity of O(t3(t+ k) log(t+ k) log(Cn)).

Implementing the Decision Task. For the decision task, it is helpful to first
think about how to do it globally. First, we must hash each v ∈ V to a set h(v) of
k super-nodes in V0. This can be implemented as follows. Label V = {1, . . . , n}
and V0 = {1, . . . , cn}, and define h(v) = {
v/c�, 
v/c�+ 1, . . . , 
v/c�+ (k − 1)}
where the entries are taken modulo cn. The specific way we do this hashing is not
important—it suffices to guarantee the following properties: (1) for every v ∈ V ,
|h(v)| ≥ k and (2) for every super-node v′ ∈ V0, there are at most a constant
number, independent of n, of v such that v′ ∈ h(v), and that these v are easily
computable given v′; our method guarantees the constant k

c , which is the best
one can hope for given Property 1. Property 1 will be used later to ensure that
the resulting graph is k-connected (Lemma 2). Property 2 ensures, by the same
reasoning as in Section 6, that computing NGk

makes at most O
(
k
c + k

)
calls

to EGk
.

Now, to decide whether v should be connected to a super-node, do an extreme
set search to find a neighborhood U , of size at most t, containing v, and check
if v has minimal rank in U , where the rank is the randomly assigned rank given
in the high level description. If so, then mark v as successful. If the extreme
set search fails, i.e. all Θ(t2 logn) iterations fail, then mark v as successful with

probability ln(Cn/t)
t where C = 1

ln(1/(1−γ/2)) again, which can be implemented

by checking if the rank of v is less than ln(Cn/t)
t . If v is successful, then find

the lexicographically smallest super-node v′ ∈ h(v) to which v is not already
connected. If none exist, then do nothing; otherwise, connect v to v′.

We also want the subgraph induced by V0 to be k-connected to help ensure
that Gk is k-connected (Lemma 2). Globally, from each i ∈ V0 we add an edge to
i+1, i+2, . . . , i+
k/2�, taken modulo cn. This ensures that the subgraph induced
by V0 is k-connected (Lemma 1). Locally, this is implemented as follows. If
(i, j) ∈ [cn]2 is queried, if the edge is already inGk−1, then the local reconstructor
returns 1, otherwise it returns 1 if and only if j ∈ {i + 1, i + 2, . . . , i + 
k/2�
(mod cn)} or i ∈ {j + 1, j + 2, . . . , j + 
k/2� (mod cn)}.
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Lemma 1. V0 is k-connected.

Lemma 2. With probability at least 1− γ, Gk is k-connected.

Lemma 3. With probability at least 1− δ, the number of edges added is at most

2εm+ ckn/2 +
n ln(Cn/t)

δt
.

Proof (Proof of Theorem 4). Set C = 1
ln(1/(1−γ)) and t =

ln(Cn)
δαε . By Lemma 2 our

resulting graph is k-connected with probability at least 1− γ and by Lemma 3,
dist(Gk−1, Gk) ≤ (2+α)ε+ck/2 with probability 1−δ and therefore by induction
dist(G,Gk) ≤ (2 + α)kε + ck2/2. This can be improved to (2 + α)kε + ck/2 by
noting that the same super-nodes and the same edges between them can be used
for all intermediate graphs G1, . . . , Gk−1. The success probability is at least
(1 − δ)k(1 − γ)k ≥ 1 − k(δ + γ). The query complexity for correcting Gk−1 to
Gk is O(t3(t + k) log(t + k) log(Cn)) queries to NGk−1

. But each call to NGk−1

takes O
((

1
c + 1

)
k
)
calls to EGk−1

. By induction, the query complexity of EGk

is O
(((

1
c + 1

)
k
)k · t3k(t+ k)k logk(t+ k) logk(Cn)

)
.

8 Local Reconstruction of Small Diameter

8.1 Preliminaries

Definition 8. Let G be a graph with adjacency matrix A. For an integer k, let
Gk be the graph on the same vertex set as G, with adjacency matrix Ak (boolean
arithmetic).

Proposition 1. Let G be a graph and let D > 0 be an integer. Then diamG ≤ D
if and only if GD is a complete graph.

8.2 High Level Description

The basic idea behind the algorithm is as follows. Again, we designate a “super-
node” v0 and add edges between v0 and a few special vertices. If the input graph
is close to having diameter at most D, then we aim for our reconstructed graph
to have diameter at most 2D+2. We show that if G is close to having diameter
at most D, then we have an upper bound on the size of any independent set in
GD (Lemma 4 and Corollary 5).

Ideally, then, we want our special vertices (those that get an edge to v0) to be a
dominating set in GD that is not too large. If we add edges from the dominating
set in GD to v0, then our resulting graph G̃ has diameter at most 2D+ 2, since
any vertex can reach some vertex in the dominating set within D steps, and
hence v0 within D + 1 steps. If this dominating set is a maximal independent
set, then our upper bound on the size of independent sets in GD also upper
bounds the number of edges we add. However, all known algorithms for locally
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computing a maximal independent set have query complexity bounded in terms
of the maximum degree of the graph. A variant of the algorithm found in [17] has
been analyzed by [26] and [19] to run in expected time bounded in terms of the
average degree of the graph, but this average is taken over not only coin tosses
of the algorithm but also all possible queries. This is undesirable for us since we
want a uniform bound on the query complexity for any potential query vertex,
given a “good” set of coin tosses. We want an algorithm such that, for most sets
of coin tosses, we get the correct answer everywhere, whereas the algorithm of [17]
leaves open the possibility of failure for some queries, regardless of the coin tosses.
If some queries give the wrong answer, then the fact that our reconstructed graph
retains the property is compromised. Instead, we do something less optimal but
good enough. Note that adding edges does not increase diameter. Instead of
using a maximal independent set, we settle for a dominating set in GD as long
as we can still control its size.

8.3 Properties of Graphs Close to Having Small Diameter

The following lemma and subsequent corollary state that if a graph G is close to
having diameter at most D, then no independent set in GD can be very large.

Lemma 4. Let v1, . . . , vk be an independent set in GD and let H be the sub-
graph of GD induced by this set. Let (s, t) be an edge not in E(G) and let
G′ = (V (G), E(G) ∪ {(s, t)}) be the graph obtained by adding (s, t) to G. Let H ′

be the subgraph of (G′)D induced by v1, . . . , vk. Then, for some i ∈ {1, . . . , k}, all
edges in H ′ (if any) are incident to vi. In particular, if GD has an independent
set of size k, then (G′)D has an independent set of size k − 1.

Corollary 5. Suppose G is ε-close to having diameter ≤ D. Then any indepen-
dent set in GD has size at most εm+ 1.

Finally, we will use a result from [2], [20] which we will restate in our own terms
below (the theorem number we reference is from [2]):

Theorem 7 ([2, Theorem 3.1]). Any connected graph G is ( 2n
Dm)-close to

having diameter ≤ D.

8.4 Algorithm

We start by fixing a super-node v0 ∈ G. Given our discussion in the high level
description, it remains to implement the selection of a small dominating set. To
this end, we create a dominating set S by first adding the set H of high-degree
vertices into S and then using the local maximal independent set algorithm
found in [23], which is based on Luby’s algorithm ([14]), on GD with H and its
vertices’ neighbors (in GD) removed to create an independent set M . Then let
S = H ∪M .

By high-degree vertex we mean a vertex with degree greater than d/ε, of
which there are at most εn, where d = 2m

n is a bound on the average degree.
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We will also consider the super-node v0 a high-degree vertex for our purposes. To
implement locally choosing a maximal independent set, we define a subroutine
MISD(v) as follows. On input v, simulate the local maximal independent set
described in [23], except explore all neighbors within D steps from v rather than
just immediate neighbors, and automatically reject (leave out of the MIS) if
the algorithm encounters any vertex with degree exceeding d/ε. Note that the
running time of the local MIS algorithm given in [23] is bounded in terms of the
maximum degree of the graph. This is not problematic since our variant of the
algorithm ignores any vertex with degree greater than d/ε, hence the effective
maximum degree of our graph G for the purposes of the algorithm is d/ε, so the
effective maximum degree of GD is (d/ε)D.

One final challenge is that if D is large, say Θ(log n), then our query complex-
ity bound in terms of our effective degree is no longer sublinear. We work around
this by using Theorem 7, which states that every connected graph is ε-close to
having diameter at most 2n

εm = O(1/ε). Therefore, we can aim for achieving di-

ameter K = min{D, 2n
εm} so that our effective degree is (d/ε)K = (d/ε)O(1/ε). Of

course, this only works if our graph is connected to begin with. Therefore, we
use the neighbor oracle for the connected correction G′ of G, given in Section 6.
The idea is then to first make G into a connected graph G′, and then reconstruct
a small diameter graph G̃ out of G′.
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Abstract. For positive integers n, d, consider the hypergrid [n]d with
the coordinate-wise product partial ordering denoted by ≺. A function
f : [n]d → N is monotone if ∀x ≺ y, f(x) ≤ f(y). A function f is ε-
far from monotone if at least an ε-fraction of values must be changed
to make f monotone. Given a parameter ε, a monotonicity tester must
distinguish with high probability a monotone function from one that is
ε-far.

We prove that any (adaptive, two-sided) monotonicity tester for func-
tions f : [n]d → N must make Ω(ε−1d log n−ε−1 log ε−1) queries. Recent
upper bounds show the existence of O(ε−1d log n) query monotonicity
testers for hypergrids. This closes the question of monotonicity testing
for hypergrids over arbitrary ranges. The previous best lower bound for
general hypergrids was a non-adaptive bound of Ω(d log n).

Keywords: Monotonicity testing, sublinear algorithms, lower bounds.

1 Introduction

Given query access to a function f : D → R, the field of property testing [1,2]
deals with the problem of determining properties of f without reading all of
it. Monotonicity testing [3] is a classic problem in property testing. Consider a
function f : D → R, where D is some partial order given by “≺”, and R is a
total order. The function f is monotone if for all x ≺ y (in D), f(x) ≤ f(y).
The distance to monotonicity of f is the minimum fraction of values that need
to be modified to make f monotone. More precisely, define the distance between
functions d(f, g) as |{x : f(x) �= g(x)}|/|D|. LetM be the set of all monotone
functions. Then the distance to monotonicity of f is ming∈M d(f, g).

A function is called ε-far from monotone if the distance to monotonicity is at
least ε. A property tester for monotonicity is a, possibly randomized, algorithm
that takes as input a distance parameter ε ∈ (0, 1), error parameter δ ∈ [0, 1],
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and query access to an arbitrary f . If f is monotone, then the tester must accept
with probability > 1−δ. If it is ε-far from monotone, then the tester rejects with
probability > 1 − δ. (If neither, then the tester is allowed to do anything.) The
aim is to design a property tester using as few queries as possible. A tester is
called one-sided if it always accepts a monotone function. A tester is called non-
adaptive if the queries made do not depend on the function values. The most
general tester is an adaptive two-sided tester.

Monotonicity testing has a rich history and the hypergrid domain, [n]d,
has received special attention. The boolean hypercube (n = 2) and the to-
tal order (d = 1) are special instances of hypergrids. Following a long line of
work [4,3,5,6,7,8,9,10,11,12,13,14], previous work of the authors [15] shows the
existence of O(ε−1d logn)-query monotonicity testers. Our result is a matching
adaptive lower bound that is optimal in all parameters (for unbounded range
functions). This closes the question of monotonicity testing for unbounded ranges
on hypergrids. This is also the first adaptive bound for monotonicity testing on
general hypergrids.

Theorem 1. Any (adaptive, two-sided) monotonicity tester for functions f :
[n]d → N requires Ω(ε−1d logn− ε−1 log ε−1) queries.

1.1 Previous Work

The problem of monotonicity testing was introduced by Goldreich et al. [3], with
an O(n/ε) tester for functions f : {0, 1}n → {0, 1}. The first tester for general
hypergrids was given by Dodis et al. [5]. The upper bound of O(ε−1d logn) for
monotonicity testing was recently proven in [15]. We refer the interested reader
to the introduction of [15] for a more detailed history of previous upper bounds.

There have been numerous lower bounds for monotonicity testing. We be-
gin by summarizing the state of the art. The known adaptive lower bounds are
Ω(log n) for the total order [n] by Fischer [9], and Ω(d/ε) for the boolean hyper-
cube {0, 1}d by Brody [16]. For general hypergrids, Blais, Raskhodnikova, and
Yaroslavtsev [17] recently proved the first result, a non-adaptive lower bound of
Ω(d log n). Theorem 1 is the first adaptive bound for monotonicity testing on
hypergrids and is optimal (for arbitrary ranges) in all parameters.

Now for the chronological documentation. The first lower bound was the non-
adaptive bound of Ω(logn) for the total order [n] by Ergun et al. [4]. This
was extended by Fischer [9] to an (optimal) adaptive bound. For the hypercube
domain {0, 1}d, Fischer et al. [7] proved the first non-adaptive lower bound of
Ω(
√
d). (This was proven even for the range {0, 1}.) This was improved to Ω(d/ε)

by Br̈ıet et al. [18]. Blais, Brody, and Matulef [14] gave an ingenious reduction
from communication complexity to prove an adaptive, two-sided bound of Ω(d).
(Honing this reduction, Brody [16] improved this bound to Ω(d/ε).) The non-
adaptive lower bounds of Blais, Raskhodnikova, and Yaroslavtsev [17] were also
achieved through communication complexity reductions.

We note that our theorem only holds when the range is N, while some previous
results hold for restricted ranges. The results of [14,16] provide lower bounds for
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range [
√
d]. The non-adaptive bound of [17] holds even when the range is [nd].

In that sense, the communication complexity reductions provide stronger lower
bounds than our result.

1.2 Main Ideas

The starting point of this work is the result of Fischer [9], an adaptive lower
bound for monotonicity testing for functions f : [n] → N. He shows that adap-
tive testers can be converted to comparison-based testers, using Ramsey the-
ory arguments. A comparison-based tester for [n] can be easily converted to a
non-adaptive tester, for which an Ω(log n) bound was previously known. We
make a fairly simple observation. The main part of Fischer’s proof actually goes
through for functions over any partial order, so it suffices to prove lower bounds
for comparison-based testers. (The reduction to non-adaptive testers only holds
for [n].)

We then prove a comparison-based lower bound of Ω(ε−1d logn−ε−1 log ε−1)
for the domain [n]d. As usual, Yao’s minimax lemma allows us to focus on de-
terminstic lower bounds over some distribution of functions. The major chal-
lenge in proving (even non-adaptive) lower bounds for monotonicity is that the
tester might make decisions based on the actual values that it sees. Great care
is required to construct a distribution over functions whose monotonicity sta-
tus cannot be decided by simply looking at the values. But a comparison-based
tester has no such power, and optimal lower bounds over all parameters can be
obtained with a fairly clean distribution.

2 The Reduction to Comparison Based Testers

Consider the family of functions f : D→ R, where D is some partial order, and
R ⊆ N. We will assume that f always takes distinct values, so ∀x, y, f(x) �= f(y).
Since we are proving lower bounds, this is no loss of generality.

Definition 1. An algorithm A is a (t, ε, δ)-monotonicity tester if A has the
following properties. For any f : D → R, the algorithm A makes t (possibly
randomized) queries to f and then outputs either “accept” or “reject”. If f is
monotone, then A accepts with probability > 1− δ. If f is ε-far from monotone,
then A rejects with probability > 1− δ.
Given a positive integer s, let Ds denote the collection of ordered, s-tupled
vectors with each entry in D. We define two symbols acc and rej, and denote
D′ = D ∪ {acc, rej}. Any (t, ε, δ)-tester can be completely specified by the
following family of functions. For all s ≤ t, x ∈ Ds, y ∈ D′, we consider a
function pyx : Rs → [0, 1], with the semantic that for any a ∈ Rs, pyx(a) denotes
the probability the tester queries y as the (s + 1)th query, given that the first
s queries are x1, . . . ,xs and f(xi) = ai for 1 ≤ i ≤ s. By querying acc, rej we
imply returning accept or reject. These functions satisfy the following properties.
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∀s ≤ t, ∀x ∈ Ds, ∀a ∈ Rs,
∑

y∈D′
pyx(a) = 1 (1)

∀x ∈ Dt, ∀y ∈ D, ∀a ∈ Rt, pyx(a) = 0 (2)

Eq. (1) ensures the decisions of the tester at step (s+1) must form a probability
distribution. Eq. (2) implies that the tester makes at most t queries.

For any positive integer s, let R(s) denote the set of unordered subets of R of
cardinality s. For reasons that will soon become clear, we introduce new functions
as follows. For each s, x ∈ Ds, y ∈ D′, and each permutation σ : [s] → [s], we
associate functions qyx,σ : R(s) → [0, 1], with the semantic

For any set S = (a1 < a2 < · · · < as) ∈ R(s), qyx,σ(S) := pyx(aσ(1), . . . , aσ(s))

That is, qyx,σs
(S) sorts the answers in S in increasing order, permutes them

according to σ, and passes the permuted ordered tuple to pyx. Any adaptive tester
can be specified by these functions. The important point to note is that they
are finitely many such functions; their number is upper bounded by (t|D|)t+1.
These q-functions allow us to define comparison based testers.

Definition 2. A monotonicity tester A is comparison-based if for all s,x ∈
Ds, y ∈ D′, and permutations σ : [s] → [s], the function qyx,σ is a constant

function on R(s). In other words, the (s+ 1)th decision of the tester given that
the first s questions is x, depends only on the ordering of the answers received,
and not on the values of the answers.

The following theorem is implicit in the work of Fischer [9].

Theorem 2. Suppose there exists a (t, ε, δ)-monotonicity tester for functions
f : D → N. Then there exists a comparison-based (t, ε, 2δ)-monotonicity tester
for functions f : D→ N.

This implies that a comparison-based lower bound suffices for proving a general
lower bound on monotonicity testing. We provide a proof of the above theorem
in the next section for completeness.

2.1 Performing the Reduction

We basically present Fischer’s argument, observing that D can be any partial
order. A monotonicity tester is called discrete if the corresponding functions pyx
can only take values in {i/K : 0 ≤ i ≤ K} for some finite K. Note that this
implies the functions qyx,σ also take discrete values.

Lemma 1. Suppose there exists a (t, ε, δ)-monotonicity tester A for functions
f : D → N. Then there exists a discrete (t, ε, 2δ)-monotonicity tester for these
functions.
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Proof. We do a rounding on the p-functions. Let K = 100t|D|t/δ2. Start with
the p-functions of the (t, ε, δ)-tester A. For y ∈ D ∪ acc, x ∈ Ds, a ∈ Rs, let
p̂yx(a) be the largest value in {i/K | 0 ≤ i ≤ K} at most pyx(a). Set p̂

rej
x (a) so

that Eq. (1) is maintained.
Note that for y ∈ D ∪ acc, if pyx(a) > 10t/(δK), then

(

1− δ

10t

)

pyx(a) ≤ p̂yx(a) ≤ pyx(a).

Furthermore, p̂
rej
x (a) ≥ prejx (a).

The p̂-functions describe a new discrete tester A′ that makes at most t queries.
We argue that A′ is a (t, ε, 2δ)-tester. Given a function f that is either monotone
or ε-far from monotone, consider a sequence of queries x1, . . . , xs after which A
returns a correct decision ℵ. Call such a sequence good, and let α denote the
probability this occurs. We know that the sum of probabilities over all good
query sequences is at least (1− δ). Now,
α := px1 · px2

x1
(f(x1)) · px3

(x1,x2)
(f(x1), f(x2)) · · · · pℵ(x1,...,xs)

(f(x1), . . . , f(xs))

Two cases arise. Suppose all of the probabilities in the RHS are ≥ 10t/δK. Then,
the probability of this good sequence arising inA′ is at least (1−δ/10t)tα ≥ α(1−
δ/2). Otherwise, suppose some probability in the RHS is < 10t/δK. Then the
total probability mass on such good sequences inA is at most 10t/δK ·|D|t ≤ δ/2.
Therefore, the probability of good sequences inA′ is at least (1−3δ/2)(1−δ/2) ≥
1− 2δ. That is, A′ is a (t, ε, 2δ) tester.

We introduce some Ramsey theory terminology. For any positive integer i, a
finite coloring of N

(i) is a function coli : N
(i) → {1, . . . , C} for some finite

number C. An infinite set X ⊆ N is called monochromatic w.r.t coli if for all
sets A,B ∈ X(i), coli(A) = coli(B). A k-wise finite coloring of N is a collection
of k colorings col1, . . . , colk. (Note that each coloring is over different sized
tuples.) An infinite set X ⊆ N is k-wise monochromatic if X is monochromatic
w.r.t. all the colis.

The following is a simple variant of Ramsey’s original theorem. (We closely
follow the proof of Ramsey’s theorem as given in Chap VI, Theorem 4 of [19].)

Theorem 3. For any k-wise finite coloring of N, there is an infinite k-wise
monochromatic set X ⊆ N.

Proof. We proceed by induction on k. If k = 1, then this is trivially true; let X
be the maximum color class. Since the coloring is finite, X is infinite. We will
now iteratively construct an infinite set of N via induction.

Start with a0 being the minimum element in N. Consider a (k−1)-wise coloring
of (N\{a0}) col′1, . . . , col′k−1, where col′i(S) := coli+1(S∪a0). By the induction
hypothesis, there exists an infinite (k−1)-wise monochromatic set A0 ⊆ N\{a0}
with respect to coloring col′is. That is, for 1 ≤ i ≤ k, and any set S, T ⊆ A0

with |S| = |T | = i− 1, we have coli(a0 ∪ S) = coli(a0 ∪ T ) = C0
i , say. Denote

the collection of these colors as a vector C0 = (C0
1 , C

0
2 , . . . , C

0
k).
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Subsequently, let a1 be the minimum element in A0, and consider the (k− 1)-
wise coloring col′ of (A0 \ {a1}) where col′i(S) = coli+1(S ∪{a1}) for S ⊆ A0 \
{a1}. Again, the induction hypothesis yields an infinite (k − 1)-wise monochro-
matic set A1 as before, and similarly the vector C1. Continuing this procedure,
we get an infinite sequence a0, a1, a2, . . . of natural numbers, an infinite sequence
of vectors of k colors C0,C1, . . ., and an infinite nested sequence of infinite sets
A0 ⊃ A1 ⊃ A2 . . .. Every Ar contains as, ∀s > r and by construction, any set
({ar} ∪ S), S ⊆ Ar, |S| = i − 1, has color Cir. Since there are only finitely
many colors, some vector of colors occurs infinitely often as Cr1 ,Cr2 , . . .. The
corresponding infinite sequence of elements ar1 , ar2 , . . . is k-wise monochromatic.

Proof. (of Theorem 2) Suppose there exists a (t, ε, δ)-tester for functions f :
D → N. We need to show there is a comparison-based (t, ε, 2δ)-tester for such
functions.

By Lemma 1, there is a discrete (t, ε, 2δ)-tester A. Equivalently, we have the
functions qyx,σ as described in the previous section. We now describe a t-wise

finite coloring of N. Consider s ∈ [t]. Given a set A ⊆ N
(s), cols(A) is a vector

indexed by (y,x, σ), where y ∈ D′, x ∈ Ds, and σ is a s-permutation, whose
entry is qyx,σ(A). The domain is finite, so the number of dimensions is finite. Since
the tester is discrete, the number of possible colors entries is finite. Applying
Theorem 3, we know the existence of a t-wise monochromatic infinite set R ⊆ N.
We have the property that for any y,x, σ, and any two sets A,B ∈ R(s), we have
qyx,σ(A) = qyx,σ(B). That is, the algorithm A is a comparison based tester for
functions with range R.

Consider the strictly monotone map φ : N→ R, where φ(b) is the bth element
of R in sorted order. Now given any function f : D→ N, consider the function
φ ◦ f : D → R. Consider an algorithm A′ which on input f runs A on φ ◦ f .
More precisely, whenever A queries a point x, it gets answer φ ◦ f(x). Observe
that if f is monotone (or ε-far from monotone), then so is φ ◦ f , and therefore,
the algorithm A′ is a (t, ε, 2δ)-tester of φ ◦ f . Since the range of φ ◦ f is R, A′
is comparison-based.

3 Lower Bounds

We assume that n is a power of 2, set � := log2 n, and think of [n] as {0, 1, . . . , n−
1}. For any number 0 ≤ z < n, we think of the binary representation of z as an
�-bit vector (z1, z2, . . . , z�), where z1 is the least significant bit.

Consider the following canonical, one-to-one mapping φ : [n]d → {0, 1}d�. For
any y = (y1, y2, . . . , yd) ∈ [n]d, we concatenate binary representations of the
yis in order to get a d�-bit vector φ(y). Hence, we can transform a function

f : {0, 1}d�→ N into a function f̃ : [n]d → N by defining f̃(y) := f(φ(y)).
We will now describe a distribution of functions over the boolean hyper-

cube with equal mass on monotone and ε-far from monotone functions. The
key property is that for a function drawn from this distribution, any determinis-
tic comparison based algorithm errs in classifying it with non-trivial probability.
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This property will be used in conjunction with the above mapping to get our
final lower bound.

3.1 The Hard Distribution

We focus on functions f : {0, 1}m → N. (Eventually, we set m = d�.) Given any
x ∈ {0, 1}m, we let val(x) := ∑m

i=1 2
i−1xi denote the number for which x is the

binary representation. Here, x1 denotes the least significant bit of x.
For convenience, we let ε be a power of 1/2. For k ∈ {1, . . . , 1

2ε}, we let

Sk := {x : val(x) ∈ [2(k − 1)ε2m, 2kε2m − 1) }.

Note that Sks partition the hypercube, with each |Sk| = ε2m+1. In fact, each
Sk is a subhypercube of dimension m′ := m + 1 − log(1/ε), with the minimal
element having all zeros in them′ least significant bits, and the maximal element
having all ones in those.

We describe a distribution Fm,ε on functions. The support of Fm,ε consists

of f(x) = 2val(x) and m′
2ε functions indexed as gj,k with j ∈ [m′] and k ∈ [ 1

2ε ],
defined as follows.

gj,k(x) =

{
2val(x) − 2j − 1 if xj = 1 and x ∈ Sk
2val(x) otherwise

The distribution Fm,ε puts probability mass 1/2 on the function f = 2val and
ε
m′ on each of the gj,ks. All these functions take distinct values on their domain.
Note that 2val induces a total order on {0, 1}m.
The Distinguishing Problem: Given query access to a random function f
from Fm,ε, we want a deterministic comparison-based algorithm that declares
that f = 2val or f �= 2val. We refer to any such algorithm as a distinguisher.
Naturally, we say that the distinguisher errs on f if its declaration is wrong. Our
main lemma is the following.

Lemma 2. Any deterministic comparison-based distinguisher that makes less
than m′

8ε queries errs with probability at least 1/8.

The following proposition allows us to focus on non-adaptive comparison based
testers.

Proposition 1. Given any deterministic comparison-based distinguisher A for
Fm,ε that makes at most t queries, there exists a deterministic non-adaptive
comparison-based distinguisher A′ making at most t queries whose probability of
error on Fm,ε is at most that of A.
Proof. We represent A as a comparison tree. For any path in A, the total num-
ber of distinct domain points involved in comparisons is at most t. Note that
2val(x) is a total order, since for any x, y either val(x) < val(y) or vice versa.
For any comparison in A, there is an outcome inconsistent with this ordering.
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(An outcome “f(x) < f(y)” where val(x) > val(y) is inconsistent with the
total order.) We construct a comparison tree A′ where we simply reject when-
ever a comparison is inconsistent with the total order, and otherwise mimics A.
The comparison tree of A′ has an error probability at most that of A (since it
may reject a few f �= 2val), and is just a path. Hence, it can be modeled as a
non-adaptive distinguisher. We query upfront all the points involving points on
this path, and make the relevant comparisons for the output.

Combined with Proposition 1, the following lemma completes the proof of
Lemma 2.

Lemma 3. Any deterministic, non-adaptive, comparison-based distinguisher A
making fewer than t ≤ m′

8ε queries, errs with probability at least 1/8.

Proof. Let X be the set of points queried by the distinguisher. Set Xk =: X∩Sk;
these form a partition of X . We say that a pair of points (x, y) captures the
(unique) coordinate j, if j is the largest coordinate where xj �= yj . (By largest
coordinate, we refer to most significant bit.) For a set Y of points, we say Y
captures coordinate j if there is a pair in Y that captures j.

Claim. For any j, k, if the algorithm distinguishes between val and gj,k, then
Xk captures j.

Proof. If the algorithm distinguishes between val and gj,k, there must exist
(x, y) ∈ X such that val(x) < val(y) and gj,k(x) > gj,k(y). We claim that x
and y capture j; this will also imply they lie in the same Sk′ since the m − j
most significant bit of x and y are the same.

Firstly, observe that we must have yj = 1 and xj = 0; otherwise, gj,k(y) −
gj,k(x) ≥ 2(val(y) − val(x)) > 0 contradicting the supposition. Now suppose
(x, y) don’t capture j implying there exists i > j which is the largest coordinate
at which they differ. Since val(y) > val(x) we have yi = 1 and xj = 0. Therefore,
we have

gj,k(y)−gj,k(x) ≥ 2(val(y)−val(x))−2j−1 ≥ (2i+2j)−
∑

1≤r<i
2r−2j−1 > 0.

So, x, y capture j and lie in the same Sk′ . If k
′ �= k, then again gj,k(y)−gj,k(x) =

2(val(y)− val(x)) > 0. Therefore, Xk captures j.

The following claim allows us to complete the proof of the lemma.

Claim. A set Y captures at most |Y | − 1 coordinates.

Proof. We prove this by induction on |Y |. When |Y | = 2, this is trivially true.
Otherwise, pick the largest coordinate j captured by Y and let Y0 = {y : yj = 0}
and Y1 = {y : yj = 1}. By induction, Y0 captures at most |Y0| − 1 coordinates,
and Y1 captures at most |Y1|− 1 coordinates. Pairs (x, y) ∈ Y0×Y1 only capture
coordinate j. Therefore, the total number of captured coordinates is at most
|Y0| − 1 + |Y1| − 1 + 1 = |Y | − 1.
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If |X | ≤ m′/8ε, then there exist at least 1/4ε values of k such that |Xk| ≤
m′/2. By the previous claim, each such Xk captures at most m′/2 coordinates.

Therefore, there exist at least 1
4ε · m

′
2 = m′

8ε functions gj,k that are indistinguish-
able from the monotone function 2val to a comparison-based procedure that
queries X . This implies the distinguisher must err (make a mistake on either

these gj,ks or 2val) with probability at least min( ε
m′ · m′

8ε , 1/2) = 1/8.

3.2 The Final Bound

Recall, given function f : {0, 1}d� → N, we have the function f̃ : [n]d → N by

defining f̃(y) := f(φ(y)). We start with the following observation.

Proposition 2. The function 2̃val is monotone and every g̃j,k is ε/2-far from
being monotone.

Proof. Let u and v be elements in [n]d such that u ≺ v. We have val(φ(u)) <

val(φ(v)), so 2̃val is monotone. For the latter, it suffices to exhibit a matching
of violated pairs of cardinality ε2d� for g̃j,k. This is given by pairs (u,v) where
φ(u) and φ(v) only differ in their jth coordinate, and are both contained in Sk.
Note that these pairs are comparable in [n]d and are violations.

Theorem 4. Any (t, ε/2, 1/16)-monotonicity tester for f : [n]d → N, must have

t ≥ d log n−log(1/ε)
8ε .

Proof. By Theorem 2, it suffices to show this for comparison-based (t, ε/2, 1/8)
testers. By Yao’s minimax lemma, it suffices to produce a distribution D over
functions f : [n]d → N such that any deterministic comparison-based (t, ε/2, 1/8)-

monotonicity tester for D must have t ≥ s, where s := d logn−log(1/ε)
8ε .

Consider the distribution D where we generate f from Fm,ε and output f̃ .
Suppose t < s. By Proposition 2, the deterministic comparison based mono-
tonicity tester acts as a determinisitic comparison-based distinguisher for Fm,ε
making fewer than s queries, contradicting Lemma 3.

4 Conclusion

In this paper, we exhibit a lower bound of Ω(ε−1d logn − ε−1 log ε−1) queries
on adaptive, two-sided monotonicity testers for functions f : [n]d → N, match-
ing the upper bound of O(ε−1d log n) queries of [15]. Our proof hinged on two
things: that for monotonicity on any partial order one can focus on comparison-
based testers, and a lower bound on comparison-based testers for the hyper-
cube domain. Some natural questions are left open. Can one focus on some
restricted class of testers for the Lipschitz property, and more generally, can
one prove adaptive, two-sided lower bounds for the Lipschitz property testing
on the hypergrid/cube? Currently, a Ω(d logn)-query non-adaptive lower bound
is known for the problem [17]. Can one prove comparison-based lower bounds
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for monotonicity testing on a general N -vertex poset? For the latter problem,

there is a O(
√
N/ε)-query non-adaptive tester, and a Ω(N

1
log log N )-query non-

adaptive, two-sided error lower bound [7]. Our methods do not yield any results
for bounded ranges, but there are significant gaps in our understanding for that
regime. For monotonicity testing of boolean functions f : {0, 1}n → {0, 1}, the
best adaptive lower bound of Ω(log n), while the best non-adaptive bound is
Ω(
√
n) [7].
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Abstract. In analogy with ε-biased sets over Zn
2 , we construct explicit

ε-biased sets over nonabelian finite groups G. That is, we find sets S ⊂ G
such that ‖Ex∈S ρ(x)‖ ≤ ε for any nontrivial irreducible representation
ρ. Equivalently, such sets make G’s Cayley graph an expander with eigen-
value |λ| ≤ ε. The Alon-Roichman theorem shows that random sets of
size O(log |G|/ε2) suffice. For groups of the form G = G1× · · ·×Gn, our
construction has size poly(maxi |Gi|, n, ε−1), and we show that a specific
set S ⊂ Gn considered by Meka and Zuckerman that fools read-once
branching programs over G is also ε-biased in this sense. For solvable
groups whose abelian quotients have constant exponent, we obtain ε-
biased sets of size (log |G|)1+o(1) poly(ε−1). Our techniques include de-
randomized squaring (in both the matrix product and tensor product
senses) and a Chernoff-like bound on the expected norm of the product
of independently random operators that may be of independent interest.

1 Introduction

Small-bias sets are useful combinatorial objects for derandomization, and are
particularly well-studied over the Boolean hypercube {0, 1}n. Specifically, if we
identify the hypercube with the group Z

n
2 , then a character χ is a homomorphism

from Z
n
2 to C. We say that a set S ⊆ F

n
2 is ε-biased if, for all characters χ,

|Ex∈S χ(x)| ≤ ε, except for the trivial character 1, which is identically equal to
1. Since any character of Fn2 can be written χ(x) = (−1)k·x where k ∈ Z

n
2 is the

“frequency vector,” this is equivalent to the familiar definition which demands
that on any nonempty set of bits, x’s parity should be odd or even with roughly
equal probability, (1± ε)/2.

It is easy to see that ε-biased sets of size O(n/ε2) exist: random sets suffice.
Moreover, several efficient deterministic constructions are known [13, 2, 3, 4] of
size polynomial in n and 1/ε. These constructions have been used to derandomize
a wide variety of randomized algorithms, replacing random sampling over all of
{0, 1}n with deterministic sampling on S (see, e.g., [5]). In particular, sampling a
function on an ε-biased set yields a good estimate of its expectation if its Fourier
spectrum has bounded �1 norm.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 436–451, 2013.
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The question of whether similar constructions exist for nonabelian groups
has been a topic of intense interest. Given a group G, a representation is a
homomorphism ρ from G into the group U(d) of d× d unitary matrices for some

d = dρ. If G is finite, then up to isomorphism there is a finite set Ĝ of irreducible
representations, or irreps for short, such that any representation σ can be written
as a direct sum of irreps. These irreps form the basis for harmonic analysis over
G, analogous to classic discrete Fourier analysis on abelian groups such as Zp

or Zn2 .
Generalizing the standard notion from characters to matrix-valued represen-

tations, we say that a set S ⊆ G is ε-biased if, for all nontrivial irreps ρ ∈ Ĝ,∥
∥Ex∈S ρ(x)

∥
∥ ≤ ε, where ‖ · ‖ denotes the operator norm. There is a natural

connection with expander graphs. If we define a Cayley graph on G using S as
a set of generators, then G becomes an expander if and only if S is ε-biased.
Specifically, if M is the stochastic matrix equal to 1/|S| times the adjacency
matrix, corresponding to the random walk where we multiply by a random ele-
ment of S at each step, then M ’s second eigenvalue has absolute value ε. Thus
ε-biased sets S are precisely sets of generators that turn G into an expander of
degree |S|.

The Alon-Roichman theorem [1] asserts that a uniformly random set of
O((log |G|)/ε2) group elements is ε-biased with high probability. Thus, our goal
is to derandomize the Alon-Roichman theorem—finding explicit constructions
of ε-biased sets of size polynomial in log |G| and 1/ε. (For another notion of
derandomizing the Alon-Roichman theorem, in time poly(|G|), see Wigderson
and Xiao [16].)

Throughout, we apply the technique of “derandomized squaring”—analogous
to the principal construction in Rozenman and Vadhan’s alternate proof of Rein-
gold’s theorem [15] that Undirected Reachability is in LOGSPACE. In particular,
we observe that derandomized squaring provides a generic amplification tool in
our setting; specifically, given a constant-bias set S, we can obtain an ε-biased set
of size O(|S|ε−11). We also use a tensor product version of derandomized squar-
ing to build ε-biased sets for G recursively, from ε-biased sets for its subgroups
or quotients.

Homogeneous direct products and branching programs. Groups of the form Gn

where G is fixed have been actively studied by the pseudorandomness com-
munity as a specialization of the class of constant-width branching programs.
The problem of fooling “read-once” group programs induces an alternate no-
tion of ε-biased sets over groups of the form Gn defined by Meka and Zucker-
man [10]. Specifically, a read-once branching program on G consists of a tuple
g = (g1, . . . , gn) ∈ Gn and takes a vector of n Boolean variables b = (b1, . . . , bn)
as input. At each step, it applies gbii , i.e., gi if bi = 1 and 1 if bi = 0. They say a
set S ⊂ Gn is ε-biased if, for all b �= 0, the distribution of gb is close to uniform,
i.e.,

∀h ∈ G :

∣
∣
∣
∣ Prg∈S

[
gb = h

]− 1

|G|
∣
∣
∣
∣ ≤ ε where gb =

n∏

i=1

gbii . (1)
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As they comment, there is no obvious relationship between this definition and
the one we consider. However, we show in Section 2 that a particular set shown
to have property (1) in [10] is also ε-biased in our sense; the proof is completely
different. This yields ε-biased sets of size O(n · poly(ε−1)).
Inhomogeneous direct products. For the more general case of groups of the form
G = G1 × · · · ×Gn, we show that a tensor product adaptation of derandomized
squaring yields a recursive construction of ε-biased sets of size polynomial in
maxi |Gi|, n, and 1/ε.

Normal extensions and “smoothly solvable” groups. Finally, we show that if G
is solvable and has abelian quotients of bounded exponent, we can construct
ε-biased sets of size (log |G|)1+o(1) poly(ε−1). Here we use the representation
theory of solvable groups to build an ε-biased set for G recursively from those
for a normal subgroup H and the quotient G/H .

2 An Explicit Set for Gn with Constant ε

Meka and Zuckerman [10] considered the following construction for fooling read-
once group branching programs:

Definition 1. Let G be a group and n ∈ N. Then, given an ε-biased set S over
Z
n
|G|, define TS � {(gs1 , . . . , gsn) | g ∈ G, (s1, . . . , sn) ∈ S}.

We prove the following theorem, showing that this construction yields sets of
small bias in our sense (and, hence, expander Cayley graphs over Gn).

Theorem 1. If S is ε-biased over Z
n
|G| then TS is (1 − Ω(1/ log log |G|)2 + ε)-

biased over Gn.

Anticipating the proof, we set down the following definition.

Definition 2. Let G be a finite group and Ĝ be the set of equivalence classes
of irreducible unitary representations of G. For a representation ρ ∈ Ĝ and a
subgroup H, define

Πρ
H � E

h∈H
ρ(h)

to be the projection operator induced by the subgroup H in ρ. In the case where
H = 〈g〉 is the cyclic group generated by g, we use the following shorthand:

Πρ
g = Πρ

〈g〉 .

Finally, for groups of the form Gn we use the following convention. Recall that
any irreducible representation ρ̄ ∈ Ĝn is a tensor product, ρ̄ =

⊗n
i=1 ρi where

ρi ∈ Ĝ for each i. That is, if ḡ = (g1, . . . , gn), then ρ̄(ḡ) =
⊗n

i=1 ρi(gi). Then
for an element g ∈ G, we write

Π ρ̄
g � Π ρ̄

〈g〉n =

n⊗

i=1

Πρi
g (2)

for the projection operator determined by the abelian subgroup 〈g〉n.
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Lemma 1. Let G be a finite group and ρ a nontrivial irreducible representation
of G. Then

∥
∥Eg∈GΠρ

g

∥
∥ ≤ 1 − φ(|G|)/|G| ≤ 1 − Ω (1/log log |G|), where φ(·)

denotes the Euler totient function.

Proof. Expanding the definition of Πρ
〈g〉, we have

∥
∥
∥ E
g∈G

Πρ
g

∥
∥
∥ =

∥
∥
∥ E
g∈G

E
t∈Z|G|

ρ(gt)
∥
∥
∥ ≤ E

t∈Z|G|

∥
∥
∥E
g
ρ(gt)

∥
∥
∥ .

Recall that the function x �→ xk is a bijection in any group G for which
gcd(|G|, k) = 1. Moreover, for such k, Eg ρ(g

k) = Eg ρ(g) = 0 as ρ �= 1. As-
suming pessimistically that ‖Eg ρ(gk)‖ = 1 for all other k yields the bound
‖Eg∈GΠρ

〈g〉‖ ≤ 1 − φ(|G|)/|G| promised in the statement of the lemma. The

function φ(n) has the property that φ(n) > n/(eγ log logn+ 3/log logn) for
n > 3, where γ ≈ .5772 . . . is the Euler constant [14]; this yields the second
estimate in the statement of the lemma.

Our proof will rely on the following tail bound for products of operator-valued
random variables, proved in Appendix B.

Theorem 2. Let P(H) denote the cone of positive operators on the Hilbert space
H and let P1, . . . , Pk be independent random variables taking values in P(H) for
which ‖Pi‖ ≤ 1 and

∥
∥E[Pi]

∥
∥ ≤ 1− δ. Then for any Δ ≥ 0,

Pr

[
∥
∥Pk · · ·P1

∥
∥ ≥
√
dimH exp

(

−kδ
2

+Δ

)]

≤ dimH · exp
(

− Δ2

2k ln 2

)

.

In particular, choosing Δ = kδ/3, we conclude that

Pr

[
∥
∥Pk · · ·P1

∥
∥ ≥
√
dimH exp

(

−kδ
6

)]

≤ dimH · exp
(

−kδ
2

13

)

.

We return to the proof of Theorem 1.

Proof (of Theorem 1). For a non-trivial irrep ρ̄ = ρ1 ⊗ · · · ⊗ ρn ∈ Ĝn, we write

E
t̄∈TS

ρ̄(t̄) = E
g∈G

E
s̄∈S

ρ̄(gs̄) = E
g∈G

E
s̄∈S

(
Res〈g〉n ρ̄

)
(gs̄) ,

where s̄ = (s1, . . . , sn), g
s̄ = (gs1 , . . . , gsn), and ResH ρ̄ denotes the restriction

of ρ̄ to the subgroup H ⊆ Gn. For a particular g ∈ G, we decompose the
restricted representation Res〈g〉n ρ̄ into a direct sum of irreps of the abelian
group 〈g〉n ∼= Z

n
|〈g〉|. This yields Res〈g〉n ρ̄ =

⊕
χ∈〈̂g〉n χ

⊕aχ , where each χ is

a one-dimensional representation of the cyclic group 〈g〉n and aχ denotes the
multiplicity with which χ appears in the decomposition.

Now, as S is an ε-biased set over Z
n
|G|, its quotient modulo any divisor d

of |G| is ε-biased over Z
n
d . It follows that |Es̄∈S χ(s̄)| ≤ ε for any nontrivial χ;

when χ is trivial, the expectation is 1. Thus for any fixed g ∈ G we may write
Es̄∈S

(
Res〈g〉n ρ̄

)
(gs̄) = Π ρ̄

g + Eρ̄g . Recall that Π
ρ̄
g is the projection operator
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onto the space associated with the copies of the trivial representation of 〈g〉n in
Res〈g〉n ρ̄, i.e., the expectation we would obtain if s̄ ranged over all of 〈g〉n instead
over just S. The “error operator” Eρ̄g arises from the nontrivial representations
of 〈g〉n appearing in Res〈g〉n ρ̄, and has operator norm bounded by ε. It follows
that

∥
∥
∥ E
t̄∈T

ρ̄(t̄)
∥
∥
∥ =

∥
∥
∥ E
g∈G

(

E
s̄∈S

ρ̄(gs̄)

)∥
∥
∥ =

∥
∥
∥ E
g∈G

(
Π ρ̄
g + Eρ̄g

)∥∥
∥

≤
∥
∥
∥ E
g∈G

Π ρ̄
g

∥
∥
∥+

∥
∥
∥ E
g∈G

Eρ̄g

∥
∥
∥ ≤

∥
∥
∥ E
g∈G

Π ρ̄
g

∥
∥
∥+ ε ,

and it remains to bound ‖Eg∈GΠ ρ̄
g ‖.

As orthogonal projections are Hermitian, Eg∈GΠ ρ̄
g is Hermitian, and for any

positive k we have

∥
∥
∥ E
g∈G

Π ρ̄
g

∥
∥
∥ = k

√
√
√
√

∥
∥
∥
∥
∥

(

E
g∈G

Π ρ̄
g

)k
∥
∥
∥
∥
∥
, (3)

so we focus on the operator
(
Eg∈GΠ ρ̄

g

)k
. Expanding Π ρ̄

g =
⊗

iΠ
ρi
g , we may

write
(

E
g∈G

Π ρ̄
g

)k
= E
g1,...,gk

[
Π ρ̄
g1 · · ·Π ρ̄

gk

]
= E
g1,...,gk

[
n⊗

i=1

Πρi
g1 · · ·Πρi

gk

]

. (4)

As ρ̄ is nontrivial, there is some coordinate j for which ρj is nontrivial. Combin-
ing (4) with the fact that ‖A⊗B‖ = ‖A‖‖B‖, we conclude that

∥
∥
∥
∥
∥

(

E
g∈G

Π ρ̄
g

)k
∥
∥
∥
∥
∥
≤ E

g1,...,gk

∥
∥
∥
∥
∥

n⊗

i=1

Πρi
g1 · · ·Πρi

gk

∥
∥
∥
∥
∥
≤ E

g1,...,gk

∥
∥Πρj

g1 · · ·Πρj
gk

∥
∥ . (5)

Lemma 1 asserts that ‖EgΠρj
g ‖ ≤ 1−δG, where δG = Ω(1/ log log |G|). It follows

then from Theorem 2 that

Pr
g1,...,gk

[
∥
∥
∥Πρj

g1 · · ·Πρj
gk

∥
∥
∥ ≥

√
dj exp(−kδG/6)

︸ ︷︷ ︸
(‡)

]

≤ dj · exp
(−kδ2G/13

)
, (6)

where dj = dim ρj . This immediately provides a bound on ‖(EgΠ ρ̄
g )
k‖. Specifi-

cally, combining (5) with (6), let us pessimistically assume that ‖Πρj
g1 · · ·Πρj

gk ‖ =
dj exp(−kδG/6) for tuples (g1, . . . , gk) that do not enjoy property (‡), and 1 for
tuples that do. Then
∥
∥
∥
∥
∥

(

E
g∈G

Π ρ̄
g

)k
∥
∥
∥
∥
∥
≤ E

g1,...,gk

∥
∥Πρj

g1 . . . Π
ρj
gk

∥
∥

≤ dj exp
(−kδ2G/13

)
+

(
1− dj exp

(−kδ2G/13
))√

dj exp (−kδG/6)
≤ 2dj exp

(−kδ2G/13
)
,

and hence
∥
∥Eg∈GΠ ρ̄

g

∥
∥ ≤ infk

(
k
√
2dj

) · exp(−δ2G/13) = 1 − Ω (1/log log |G|)2,
where we take the limit of large k.
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3 Derandomized Squaring and Amplification

In this section we discuss how to amplify ε-biased sets in a generic way. Specifi-
cally, we use derandomized squaring to prove the following.

Theorem 3. Let G be a group and S an 1/10-biased set on G. Then for any ε >
0, there is an ε-biased set Sε on G of size O(|S|ε−11). Moreover, assuming that
multiplication can be efficiently implemented in G, the set Sε can be constructed
from S in time polynomial in |Sε|.
We have made no attempt to improve the exponent of ε in |Sε|.

Our approach is similar to [15]. Roughly, if S is an ε-biased set on G we can
place a degree-d expander graph Γ on the elements of S to induce a new set

S ×Γ S � {st | (s, t) an edge of Γ} .
If ρ : G→ U(V ) is a nontrivial representation ofG, by assumption ‖Es∈S ρ(g)‖ ≤
ε. Applying a natural operator-valued Rayleigh quotient for expander graphs (see
Lemma 2 below), we conclude that

∥
∥
∥
∥ E
(s,t)∈Γ

ρ(s)ρ(t)

∥
∥
∥
∥ =

∥
∥
∥
∥ E
(s,t)∈Γ

ρ(st)

∥
∥
∥
∥ ≤ λ(Γ ) + ε2 .

If Γ comes from a family of Ramanujan-like expanders, then λ(Γ ) = Θ(1/
√
d),

and we can guarantee that λ(Γ ) = O(ε2) by selecting d = Θ(ε−4). The size of
the set then grows by a factor of |S ×Γ S|/|S| = d = Θ(ε−4). We make this
precise in Lemma 3 below, which regrettably loses an additional factor of ε−1.

Preparing for the proof of Theorem 3, we record some related material on
expander graphs.

Expanders and derandomized products. For a d-regular graph G = (V,E), let A
denote its normalized adjacency matrix: Auv = 1/d if (u, v) ∈ E and 0 otherwise.
Then A is stochastic, normal, and has operator norm ‖A‖ = 1; the uniform
eigenvector y+ given by y+s = 1 for all s ∈ V has eigenvalue 1. When G is
connected, the eigenspace associated with 1 is spanned by this eigenvector, and
all other eigenvalues lie in [−1, 1).

Bipartite graphs will play a special role in our analysis. We write a bipartite
graph G on the bipartition U, V as the tuple G = (U, V ;E). In a regular bipartite
graph, we have |U | = |V | and −1 is an eigenvalue of A associated with the
eigenvector y− which is +1 for s ∈ U and −1 for s ∈ V . When G is connected,
the eigenspace associated with −1 is one-dimensional, and all other eigenvalues
lie in (−1, 1): we let λ(G) < 1 be the leading nontrivial eigenvalue: λ(G) =
supy ⊥ y± ‖My‖/‖y‖. When y ⊥ y±, observe that |〈y,My〉| ≤ ‖y‖ · ‖My‖ ≤
λ‖y‖2 by Cauchy-Schwarz.

We say that a d-regular, connected, bipartite graph G = (U, V ;E) for which
|U | = |V | = n and λ(G) ≤ Λ is a bipartite (n, d, Λ)-expander. A well-known
consequence of expansion is that the “Rayleigh quotient” determined by the
expander is bounded: for any function f : U ∪V → R defined on the vertices of a
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(n, d, λ) expander for which
∑
u∈U f(u) =

∑
v∈V f(v) = 0, E(u,v)∈E f(u)f(v) ≤

λ‖f‖22. We will apply a version of this property pertaining to operator-valued
functions.

Lemma 2. Let G = (U, V ;E) be a bipartite (n, d, λ)-expander. Associate with
each vertex s ∈ U ∪ V a linear operator Xs on the vector space C

d such that
‖Xs‖ ≤ 1,

∥
∥Eu∈U Xu

∥
∥ ≤ εU , and

∥
∥Ev∈V Xv

∥
∥ ≤ εV . Then

∥
∥
∥ E
(u,v)∈E

XuXv

∥
∥
∥ ≤ λ+ (1− λ)εUεV .

We will sometimes apply Lemma 2 to the tensor product of operators. That is,
given the same assumptions, we have

∥
∥E(u,v)∈E Xu ⊗ Xv

∥
∥ ≤ λ + (1 − λ)εUεV .

To see this, simply apply the lemma to the operators Xu ⊗ 1 and 1⊗Xv.
Critical in our setting is the fact that this conclusion is independent of the

dimension d. A proof of this folklore lemma appears in Appendix A; see also [6]
for a related application to branching programs over groups.

Amplification. We return now to the problem of amplifying ε-biased sets over
general groups.

Lemma 3. Let S be an ε-biased set on the group G. Then there is an ε′-biased
set S′ on G for which ε′ ≤ 5ε2 and |S′| ≤ C|S|ε−5, where C is a universal
constant. Moreover, assuming that multiplication can be efficiently implemented
in G, the set S′ can be constructed from S in time polynomial in |S′|.
Proof. We proceed as suggested above. The only wrinkle is that we need to
introduce an expander graph on the elements of S that achieves second eigenvalue
Θ(ε2).

We apply the explicit family of Ramanujan graphs due to Lubotzky, Phillips,
and Sarnak [9]. For each pair of primes p and q congruent to 1 modulo 4, they ob-
tain a graph Γp,q with p(p

2−1) vertices, degree q+1, and λ(Γp,q) = 2
√
q/(q+1) <

2/
√
q. We treat Γp,q as a bipartite graph by taking the double cover: this intro-

duces a pair of vertices, vA and vB, for each vertex v of Γp,q and introduces an
edge (uA, vB) for each edge (u, v). This graph has eigenvalues ±λ for each eigen-
value λ of Γp,q, so except for the ±1 eigenspace the spectral radius is unchanged.

As we do not have precise control over the number of vertices in this expander
family, we will use a larger graph and approximately tile each side with copies
of S. Specifically, we select the smallest primes p, q ≡ 1 (mod 4) for which

p(p2 − 1) > |S| · �ε−1� and 2/
√
q ≤ ε2 . (7)

We now associate elements of S with the vertices (of each side) of Γ = Γp,q =
(U, V ;E) as uniformly as possible; specifically, we partition the vertices of U and
V into a family of blocks, each of size |S|; this leaves a set of less than |S| elements
uncovered on each side. Then elements in the blocks are directly associated with
elements of S; the “uncovered” elements may in fact be assigned arbitrarily. As
|U | = |V | ≥ |S|�ε−1�, the uncovered elements above comprise less than an ε-
fraction of the vertices. As above, we define the set S ×Γ S � {uv | (u, v) ∈ E}
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(where we blur the distinction between a vertex and the element of S to which
it has been associated).

Consider, finally, a nontrivial representation ρ of G. As the average over any
block of U or V has operator norm no more than ε, and we have an ε-fraction
of uncovered elements, the average of ρ over each of U and V is no more than
(1 − ε)ε + ε ≤ 2ε. Applying Lemma 2, we conclude that ‖Es∈S×ΓS ρ(s)‖ ≤
(2ε)2 + λ(Γ ) ≤ 5ε2 by our choice of q (the degree less one).

By Dirichlet’s theorem on the density of primes in arithmetic progressions, p
and q need be no more than (say) a constant factor larger than the lower bounds
p(p2− 1) > |S|ε−1 and q ≥ 4ε−4 implied by (7). Thus there is a constant C such
that |S′| = p(p2 − 1)(q + 1) ≤ C|S| · ε−5.

Remarks. The construction above is saddled with the tasks of identifying ap-
propriate primes p and q, and constructing the generators for the associated
expander of [9]. While these can clearly be carried out in time polynomial in
|S′|, alternate explicit constructions of expander graphs [12] can significantly
reduce this overhead. However, no known explicit family of Ramanujan graphs
appears to provide enough density to avoid the tiling construction above. On the
other hand, expander graphs with significantly weaker properties would suffice
for the construction: any uniform bound of the form λ ≤ c

√
degree would be

enough.

Proof (of Theorem 3). We apply Lemma 3 iteratively. Set ε0 = 1/10. After t ap-

plications, we have an εt-biased set where εt = 2−2
t

/5. After t = �log2 log2(1/5ε)�
steps, we have 5ε2 ≤ εt ≤ ε. The total increase in size is

|Sε|
|S| = Ct

(
t−1∏

i=0

εi

)−5

= Ct
(

2εt
5t−1

)−5
≤ (C/5)t(50ε2)−5

= O
(
ε−10(log ε−1)O(1)

)
= O(ε−11) .

Combining Theorem 3 with the ε-biased sets constructed in Section 2 we estab-
lish a family of ε-biased set over Gn for smaller ε:

Theorem 4. Fix a group G. There is an ε-biased set in Gn of size O(nε−11)
that can be constructed in time polynomial in n and ε−1.

Proof. Alon et al. [2] construct a families of explicit codes over finite fields which,
in particular, offer δ-biased sets over Znp of size O(n) for any constant δ. As G
is fixed, applying Theorem 1 to these sets over Z|G| with sufficiently small δ ≈
(1/ log log |G|)2 yields an ε0-biased set S0 over Gn, where ε0 is a constant close
to one (depending on the size of G and the constant δ). We cannot directly apply
Theorem 3 to S0, as the bias may exceed 1/10. To bridge this constant gap (from
ε0 to 1/10), we apply the construction of the proof of Theorem 3 with a slight
adaptation. Selecting a small constant α, we may enlarge the expander graph to
ensure that it has size at least |S0|(1/α); then the resulting error guarantee on
each side of the graph bipartition is no more than α+ (1− α)ε and the product
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set has bias no more than (α + ε)2 + λ(Γ ). This can be brought as close as
desired to ε2 with appropriate selection of the constants α and λ(G). As λ(G) is
constant, this transformation likewise increases the size of the set by a constant,
and this method can reduce the error to 1/10, say, with a constant-factor penalty
in the size of S0. At this point, Theorem 3 applies, and establishes the bound of
the theorem.

4 Inhomogeneous Direct Products

Groups of the form G = G1 × · · · ×Gn appear to frustrate natural attempts to
borrow ε-biased sets directly from abelian groups as we did for Gn in Section 2.
In this section, we build an ε-biased set for groups of this form by iterating a
construction that takes ε-biased sets on two groups G1 and G2 and stitches them
together, again with an expander graph, to produce an ε′-biased set on G1×G2.
In essence, we again use derandomized squaring, but now for the tensor product
of two operators rather than their matrix product.

Construction 1. Let G1 and G2 be two groups; for each i = 1, 2, let Si be an
εi-biased set on Gi. We assume that |S1| ≤ |S2|. Let Γ = (U, V ;E) be a bipartite
(|S2|, d, λ)-expander. Associate elements of V with elements of S2 and, as in the
proof of Lemma 3, associate elements of S1 with U as uniformly as possible.
As above, we order the elements of U and tile them with copies of S1, leaving
a collection of no more than S1 vertices “uncovered”; these vertices are then
assigned to an initial subset of S1 of appropriate size. Define S1⊗Γ S2 ⊂ G1×G2

to be the set of edges of Γ (realized as group elements according to the association
above).

Recall that an irreducible representation ρ of G1×G2 is a tensor product ρ1⊗ρ2,
where each ρi is an irrep of Gi and ρ(g1, g2) = ρ1(g1)⊗ ρ2(g2). If ρ is nontrivial,
then one or both of ρ1 and ρ2 is nontrivial, and the bias we achieve on ρ will
depend on which of these is the case.

Claim. Assuming that |S1| ≤ |S2|, the set S1 ⊗Γ S2 of Construction 1 has size
d|S2| and bias no more than

max

(

ε2, ε1 +
|S1|
|S2| , λ+ ε2

(

ε1 +
|S1|
|S2|

))

.

Proof. The size bound is immediate. As for the bias, let ρ = ρ1⊗ρ2 be nontrivial.
If ρ1 = 1, ∥

∥
∥ E
s∈S1⊗ΓS2

(ρ1 ⊗ ρ2)(s)
∥
∥
∥ =

∥
∥
∥ E
v∈V

ρ2(v)
∥
∥
∥ ≤ ε2 , (8)

as S2 is in one-to-one correspondence with V . In contrast, if ρ2 = 1, the best we
can say is that

∥
∥
∥ E
s∈S1⊗ΓS2

(ρ1 ⊗ ρ2)(s)
∥
∥
∥ =

∥
∥
∥ E
u∈U

ρ1(u)
∥
∥
∥ ≤

(

1− |S1|
|S2|

)

ε1 +
|S1|
|S2| ≤ ε1 +

|S1|
|S2| (9)
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as in the proof of Lemma 3. When both ρi are nontrivial, applying Lemma 2
to (8) and (9) implies that

∥
∥
∥ E
s∈S1⊗ΓS2

(ρ1 ⊗ ρ2)(s)
∥
∥
∥ ≤ λ+ ε2

(

ε1 +
|S1|
|S2|

)

, (10)

as desired.

Finally, we apply Construction 1 to groups of the form G1 × · · · ×Gn.
Theorem 5. Let G = G1 × · · · ×Gn. Then, for any ε, there is an ε-biased set
in G of size poly(maxi |Gi|, n, ε−1). Furthermore, the set can be constructed in
time polynomial in its size.

Proof. Given the amplification results of Section 3, we may focus on constructing
sets of constant bias. We start by adopting the entire group Gi as a 0-biased
set for each Gi, and then recursively apply Construction 1. This process will
only involve expander graphs of constant degree, which simplifies the task of
finding the expander required for Construction 1. In this case, one can construct
a constant degree expander graph of desired constant spectral gap on a set X
by covering the vertices of X with a family of overlapping expander graphs,
uniformizing the degree arbitrarily, and forming a small power of the result. So
long as the pairwise intersections of the covering expanders are not too small, the
resulting spectral gap can be controlled uniformly. (This luxury was not available
to us in the proof of Lemma 3, since in that setting we required λ tending to
zero, and insisted on a Ramanujan-like relationship between λ and the degree.)

The recursive construction proceeds by dividing G into two factors: A =
G1× · · ·×Gn′ and B = Gn′+1× · · ·×Gn, where n′ = �n/2�. Given small-biased
sets SA and SB, we combine them using Construction 1. Examining Claim 4, we
wish to ensure that |SA|/|SB| is a small enough constant. To arrange for this, we
assume without loss of generality that |SB| ≥ |SA| and duplicate SB five times,
resulting in a (multi-)set S′B such that |SA|/|S′B| ≤ 1/5.

Assume that each of the recursively constructed sets SA, SB has bias at most
1/4. We apply Construction 1 to SA and S′B with an expander Γ of degree d for
which λ ≤ 1/8, producing the set S = SA⊗Γ S′B. Ideally, we would like S to also
be 1/4-biased, in which case a set of constant bias and size poly(maxi |Gi|, n)
would follow by induction.

Let ρ = ρA ⊗ ρB be nontrivial, where ρA ∈ Â and ρB ∈ B̂. If ρA = 1 then, as
in (8),

∥
∥Es∈S ρ(s)

∥
∥ ≤ 1/4. Likewise, if both ρA and ρB are nontrivial, (10) gives∥

∥Es∈S ρ(s)
∥
∥ ≤ 1/8 + 1/4(1/4 + 1/5) ≤ 1/4. At first inspection, the case where

ρB = 1 appears problematic, as (9) only provides the discouraging estimate∥
∥Es∈S ρ(s)

∥
∥ ≤ 1/4+1/5. Thus it seems possible that iterative application of Con-

struction 1 could lose control of the error. However, as long as the tiling of U , the
left side of the expander in Construction 1, is carried out in a way that ensures
that the uncovered elements of U are tiled with respect to previous stages of the
recursive construction, it is easy to check that subsequent recursive appearances
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of this case can contribute no more than the geometric series 1/5+(1/5)2+ · · · =
1/4 to the bias. Any following recursive application of the construction in which
the representation is nontrivial in both blocks will then drive the error back to
1/4, as 1/8 + 1/4(1/4 + 1/4) = 1/4. (If this case occurs at the last stage of
recursion, then S still has bias at most 1/4 + 1/5 ≤ 1/2.)

Recall that for the base case of the induction, we treat each Gi as a 0-biased
set for itself. Since there are log2 n layers of recursion, and each layer multiplies
the size of the set by the constant factor 5d, we end with a 1/2-biased set S of size
at most (5d)log2 nmaxi |Gi| = poly(maxi |Gi|, n). Finally, applying the amplifi-
cation of Theorem 3, after first driving the bias down to 1/10 as in Theorem 4,
completes the proof.

We note that if the Gi are of polynomial size, then we can use the results of
Wigderson and Xiao [16] to find ε-biased sets of sizeO(log |Gi|) in time poly(|Gi|).
Using these sets in the base case of our recursion then gives a ε-biased set for G
of size poly(maxi log |Gi|, n, ε−1).

5 Normal Extensions and Smoothly Solvable Groups

While applying these techniques to arbitrary groups (even in the case when they
have plentiful subgroups) seems difficult, for solvable groups one can again use
a form of derandomized squaring. First, recall the derived series: if G is solvable,
then setting G(0) = G and taking commutator subgroups G(i+1) = [G(i), G(i)]
gives a series of normal subgroups, 1 = G(�)� · · ·�G(1)�G(0) = G. We say that
� is the derived length of G. Each factor G(i)/G(i+1) = Ai is abelian, and G

(i) is
normal in G for all i. Since |Ai| ≥ 2, it is obvious that � = O(log |G|). However,
more is true. The composition series is a refinement of the derived series where
each quotient is a cyclic group of prime order, and the length c of this refined
series is the composition length. Clearly c ≤ log2 |G|. Glasby [8] showed that
� ≤ 3 log2 c+ 9 = O(log c), so � = O(log log |G|).

We focus on groups that are smoothly solvable [7], in the sense that the abelian
factors have constant exponent. (Their definition of smooth solvability allows the
factors to be somewhat more general, but we avoid that here for simplicity.) We
then have the following:

Theorem 6. Let G be a solvable group, and let its abelian factors be of the
form Ai = Z

t
pi (or factors of such groups) where pi = O(1). Then G possesses

an ε-biased set Sε of size (log |G|)1+o(1) poly(ε−1).
We deliberately gloss over the issue of explicitness. However, we claim that if G
is polynomially uniform in the sense of [11], so that we can efficiently express
group elements and products as a string of coset representatives in the derived
series, then Sε can be computed in time polynomial in its size.

Proof. Solvable groups can be approached via Clifford theory, which controls the
structure of representations of a group G when restricted to a normal subgroup.
In fact, we require only a simple fact about this setting. Namely, if H�G and ρ is
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an irrep of G, then either ResH ρ contains only copies of the trivial representation
so that ρ(h) = 1ρd for all h ∈ H , or ResH ρ contains no copies of the trivial
representation.

It is easy to see that the irreps ρ of G for which ResH ρ is trivial are in
one-to-one correspondence with irreps of the group G/H , and we will blur this
distinction. With this perspective, it is natural to attempt to assemble an ε-
biased set for G from SH , an εH -biased set for H , and SG/H , an εG/H -biased
set for G/H . While SH ⊂ H ⊂ G, there is—in general—no subgroup of G
isomorphic to G/H , so it is not clear how to appropriately embed SG/H into
G. Happily, we will see that reasonable bounds can be obtained even with an
arbitrary embedding. In particular, we treat SG/H as a subset of G by lifting
each element x ∈ SG/H to an arbitrary element x̂ ∈ G lying in the H-coset
associated with x.

If SH and SG/H were the same size, and we could directly introduce an ex-
pander graph Γ on SH × SG/H , then Lemma 2 could still be used to control

the bias of S = {st̂ | (s, t) ∈ Γ}. Specifically, consider a nontrivial representa-
tion ρ of G. If ResH ρ is trivial, then analogous to (8) we have

∥
∥Es∈S ρ(s)

∥
∥ =∥

∥Es∈SG/H
ρ(s)

∥
∥ ≤ εG/H . On the other hand, if ResH ρ restricts to H with-

out any appearances of the trivial representation, then
∥
∥Eh∈SH ρ(h)

∥
∥ ≤ εH .

In this case, the action of the elements of SG/H on ρ may be quite pathologi-
cal, permuting and “twiddling” the H-irreps appearing in ResH ρ. However, as
‖ρ(s)‖ = 1 (by unitarity) for all s ∈ SG/H , we can conclude from Lemma 2 that∥
∥Es∈S ρ(s)

∥
∥ ≤ λ(Γ ) + εH .

We recursively apply the construction outlined above, accounting for the
“tiling error” of finding an appropriate expander. Specifically, let us inductively
assume we have ε-biased sets S+ on G+ = G/G(k) and S− on G− = G(k) for
k = ��/2�, where � is the derived length of G. Selecting an expander graph Γ of
size at least α−1 max(|S−|, |S+|) and λ(Γ ) ≤ α, for an α to be determined, we
tile each side of the graph with elements from S− and S+, completing them arbi-
trarily on the “uncovered elements.” Since at most a fraction α of the elements on
either side are uncovered, the average of a nontrivial representation over either
side of the expander has operator norm no more than ε+α. Lemma 2 then implies
that the bias of the set S = {st | (s, t) ∈ Γ} is at most λ(Γ ) + (ε+ α) ≤ ε + 2α.
If we use the Ramanujan graphs of [9] described above, we can achieve degree
O(α−2) and size O(αmax(|S−|, |S+|)). Thus, each recursive step of this process
scales the sizes of the sets by a factor O(α−3) and introduces additive error 2α.
The number of levels of recursion is �log2 ��, so if we choose α < 1/(4�log ��)
then the total accumulated error is less than 1/2.

Assuming that we have α-biased sets for each abelian factor Ai of size no more
than s, this yields a 1/2-biased set S for G of size sα−3 log2 � = s(log �)O(log �).
For constant p, there are α-biased sets for Z

n
p [2] of size s = O(n/α3) =

(log |G|)(log �)O(1). Using the fact [8] that � = O(log log |G|), the total size of S is
(log |G|)(log �)O(log �) = (log |G|)(log log log |G|)O(log log log |G|) = (log |G|)1+o(1).
Finally, we amplify S to an ε-biased set Sε for whatever ε we desire with Theo-
rem 3, introducing a factor O(ε−11).
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A Quadratic Forms Associated with Expander Graphs

Our goal is to establish the two generalized Rayleigh quotient bounds described
in Lemmas 5 and 2. We begin with the following preparatory lemma.

Lemma 4. Let G = (U, V ;E) be a (n, d, λ)-expander. Associate with each vertex
s ∈ U ∪ V a vector xs in C

d such that Eu∈U xu = 0 and Ev∈V xv = 0. Then∣
∣E(u,v)∈E〈xu,xv〉∣∣ ≤ λEs ‖xs‖2.
Proof. Let X denote the 2n × d matrix whose entries are Xsk = xsk. Then
the rows of X are the vectors x; for an column index k ∈ {1, . . . , d}, we let
yk ∈ C

2n denote the vector associated with this column: ykv = xvk. Considering
that

∑
u x

u =
∑
v x

v = 0, each yk is orthogonal to both y+ and y−.
The expectation over a random edge (u, v) of 〈xu,xv〉 can be written

∣
∣
∣
∣ E
(u,v)∈E

〈xu,xv〉
∣
∣
∣
∣ =

∣
∣
∣
∣
∣

E
(u,v)∈E

∑

k

XukXvk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

k

E
(u,v)∈E

XukXvk

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

k

1

nd

∑

(u,v)∈E
xukx

v
k

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1

n

∑

k

1

d

∑

(u,v)∈E
ykuy

k
v

∣
∣
∣
∣
∣
∣

=
1

2n

∣
∣
∣
∣
∣

∑

k

〈
yk, Ayk

〉
∣
∣
∣
∣
∣
≤ 1

2n

∑

k

∣
∣
〈
yk, Ayk

〉∣
∣

≤ λ

2n

∑

k

‖yk‖2 = λ

2n

∑

s

‖xs‖2 = λE
s
‖xs‖2 .

Lemma 5. Let G = (U, V ;E) be a (n, d, λ)-expander. Associate with each vertex
s ∈ U ∪ V a vector xs in C

d such that ‖Eu∈U xu‖ = εU and ‖Ev∈V xv‖ = εV .
Then

∣
∣E(u,v)∈E〈xu,xv〉∣∣ ≤ λ (Es ‖xs‖2 − ε2U/2− ε2V /2

)
+ εUεV .

Proof. Let xU = Eu∈U xu and xV = Ev∈V xv. We have
∣
∣
∣
∣ E
(u,v)∈E

〈xu,xv〉
∣
∣
∣
∣ =

∣
∣
∣
∣ E
(u,v)∈E

〈(xu − xU) + xU, (xv − xV) + xV〉
∣
∣
∣
∣ .

Expanding these inner products by linearity, and using the fact that the terms
E(u,v)∈E〈xU, (xv−xV)〉 and E(u,v)∈E〈(xu−xU),xV〉 are zero, we conclude that

∣
∣
∣
∣ E
(u,v)∈E

〈xu,xv〉
∣
∣
∣
∣ ≤

∣
∣
∣
∣ E
(u,v)∈E

〈(xu − xU), (xv − xV)〉
∣
∣
∣
∣+

∣
∣〈xU,xV〉∣∣ .

Applying Lemma 4 to the the vectors xu − xU and xv − xV, we conclude that∣
∣E(u,v)∈E〈(xu − xU), (xv−xV)〉∣∣ ≤ (λ/2n)

(∑
u ‖xu − xU‖2 +∑

v ‖xv − xV‖2).
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The summation
∑

u ‖xu − xU‖2 can be expanded

∑

u

〈
xu − xU,xu − xU

〉
=

∑

u

‖xu‖2 − n‖xU‖2 =
∑

u

‖xu‖2 − nε2U

since
∑

u

〈
xu,xU

〉
= n‖xU‖2. Therefore,

∣
∣
∣
∣ E
(u,v)∈E

〈(xu − xU), (xv − xV)〉
∣
∣
∣
∣ ≤

λ

2n

(
∑

u

‖xu‖2 − nε2U +
∑

v

‖xv‖2 − nε2V
)

≤ λ
(

E
s
‖xs‖2 − ε2U

2
− ε2V

2

)

.

By Cauchy-Schwarz, we have |〈xU,xV〉| ≤ εUεV . In total, then,

∣
∣
∣
∣ E
(u,v)∈E

〈xu,xv〉
∣
∣
∣
∣ ≤ λ

(

E
s
‖xs‖2 − ε2U

2
− ε2V

2

)

+ εUεV ,

as desired.

We now return to the proof of Lemma 2.

Proof (of Lemma 2). Let X denote the linear operator E(u,v)∈EXuXv.
Writing ‖X‖ = max‖x‖=‖y‖=1 |〈x, Xy〉|. we observe that 〈x, Xy〉 =〈
x,E(u,v)∈E XuXvy

〉
= E(u,v)∈E〈X†ux, Xvy〉. Considering the bounds on EuXu

and Ev Xv, it follows that ‖EuX†ux‖ ≤ εU and ‖EvXvy‖ ≤ εV ; applying
Lemma 5 with the vector family xu = X†ux and xv = Xvy we conclude that

|〈x, Xy〉| ≤ max
δU≤εU
δV ≤εV

λ

(

E
s
‖xs‖2 − δ2U

2
− δ2V

2

)

+ δUδV ≤ λ+ (1− λ)εUεV

as δ2U + δ2V ≥ 2δUδV .

B A Tail Bound for Products of Operator-Valued
Random Variables

Recall Azuma’s inequality for supermartingales:

Theorem 7 (Azuma’s inequality). Let X0, . . . , XT be a family of real-valued
random variables for which |Xi −Xi−1| ≤ αi and E[Xi | X1, . . . , Xi−1] ≤ Xi−1.
Then Pr[XT −X0 ≥ λ] ≤ exp

(−λ2/(2α)), where α =
∑
i αi.

Corollary 1. Let X0, . . . , XT be a family of real-valued random variables for
which Xi−1 − αi ≤ Xi ≤ Xi−1 and E[Xi | X1, . . . , Xi−1] ≤ Xi−1 − εi for some
εi ≤ αi. Then Pr[XT −X0 ≥ −

∑
i εi + λ] ≤ exp

(−λ2/(2α)), where α =
∑

i αi.
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Proof. Apply Azuma’s inequality to the random variables X̃t = Xt +
∑t

i εi.

With these in place, we return to the proof of Theorem 2.

Proof (of Theorem 2). We begin by considering the behavior of the operator
Pk · · ·P1 on a particular vector v. To complete the proof we will select an or-
thonormal basis B of H . The operator norm is bounded above by the Frobenius
norm,

‖Pk · · ·P1‖ ≤ ‖Pk · · ·P1‖F =

√∑

b∈B
‖Pk . . . P1b‖2 ≤

√
dimH ·max

b∈B
‖Pk . . . P1b‖ .

(11)
Now fix a unit-length vector v ∈ H and consider the random variables v0 = v,
v1 = P1v, v2 = P2P1v, . . . , and

�i =

{
‖vi‖/‖vi−1‖ if vi−1 �= 0,

0 otherwise.

Our goal is to establish strong tail bounds on the random variable ‖vk‖ =
�k�k−1 . . . �1. Recalling that ‖E[Pi]‖ ≤ 1− ε and that the Pi are independent we
have

E [�i | P1, . . . , Pi−1] ≤ 1− ε , (12)

and we proceed to apply a martingale tail bound.
It will be more convenient to work with log-bounded random variables, so we

definemi = max(�i, 1/2) and observe that ‖vk‖ ≤ mkmk−1 . . .m1 and ln ‖vk‖ ≤∑
i lnmi. Considering that max(x, 1/2) ≤ (1 + x)/2 for x ∈ [0, 1] we conclude

from equation (12) above that E [mi | P1, . . . , Pi−1] ≤ 1−ε/2. Since 1/2 ≤ mi ≤ 1
and lnm ≤ m− 1 for m > 0, we have E [lnmi | P1, . . . , Pi−1] ≤ −ε/2.

Applying Azuma’s inequality (specifically, Corollary 1 above) to the random
variables Mt =

∑t
i=1 lnmi, we conclude that

Pr

[

Mk ≥ −kε
2

+Δ

]

= Pr

[
∑

i

lnmi ≥ −kε
2

+Δ

]

≤ exp

(

− Δ2

2k ln 2

)

and hence Pr
[‖Pk · · ·P1v‖ ≥ exp

(−kε2 +Δ
)] ≤ exp

(−Δ2/(2k ln 2)
)
. Applying

the above inequality to an orthonormal basis b1, . . . ,bn of H , we find that

Pr

[

∃i : ∥∥Pk · · ·P1bi

∥
∥
2
≥ exp

(

−kε
2

+Δ

)]

≤ dimH · exp
(

− Δ2

2k ln 2

)

by the union bound. Applying (11) then gives

Pr

[
∥
∥Pk · · ·P1

∥
∥ ≥
√
dimH exp

(

−kε
2

+Δ

)]

≤ dimH · exp
(

− Δ2

2k ln 2

)

.
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Abstract. Sample coordination, where similar instances have similar samples,
was proposed by statisticians four decades ago as a way to maximize overlap
in repeated surveys. Coordinated sampling had been since used for summarizing
massive data sets.

The usefulness of a sampling scheme hinges on the scope and accuracy within
which queries posed over the original data can be answered from the sample.
We aim here to gain a fundamental understanding of the limits and potential of
coordination. Our main result is a precise characterization, in terms of simple
properties of the estimated function, of queries for which estimators with desir-
able properties exist. We consider unbiasedness, nonnegativity, finite variance,
and bounded estimates.

Since generally a single estimator can not be optimal (minimize variance si-
multaneously) for all data, we propose variance competitiveness, which means
that the expectation of the square on any data is not too far from the minimum
one possible for the data. Surprisingly perhaps, we show how to construct, for
any function for which an unbiased nonnegative estimator exists, a variance com-
petitive estimator.

1 Introduction

Many data sources, including IP or Web traffic logs from different time periods or lo-
cations, measurement data, snapshots of data depositories that evolve over time, and
document/feature and market-basket data, can be viewed as a collection of instances,
where each instance is an assignment of numeric values from some set V to a set of
items (the set of items is the same for different instances but the value of each item
changes).

When the data is too massive to manipulate or even store in full, it is useful to obtain
and work with a random sample of each instance. Two common sampling schemes are
Poisson sampling (each item is sampled independently with probability that depends
only on its value) and bottom-k (order) sampling. The samples are efficient to compute,
also when instances are presented as streams or are distributed across multiple servers.
It is convenient to specify these sampling schemes through a rank function, r : [0, 1]×
V → R, which maps seed-value pairs to a number r(u, v) that is non-increasing with u
and non-decreasing with v. For each item h we draw a seed u(h) ∼ U [0, 1] uniformly
at random and compute the rank value r(u(h), v(h)), where v(h) is the value of h.
With Poisson sampling, item h is sampled ⇐⇒ r(u(h), v(h)) ≥ T (h), where T (h)

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 452–467, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are fixed thresholds, whereas a bottom-k sample includes the k keys with highest ranks.
Poisson PPS samples (Probability Proportional to Size [23], where each item is included
with probability proportion to its value) are obtained using the rank function r(u, v) =
v/u and a fixed T (h) across items. Priority (sequential Poisson) samples [29,17,34]
are bottom-k samples utilizing the PPS ranks r(u, v) = v/u and successive weighted
sampling without replacement [31,18,8] corresponds to bottom-k samples with the
rank function r(u, v) = −v/ ln(u).

Samples of different instances are coordinated when the set of random seeds u(h)
is shared across instances. Scalable sharing of seeds when instances are dispersed in
time or location is facilitated through random hash functions u(h)← H(h), where the
only requirement for our purposes is uniformity and pairwise independence. Figure 1
contains an example data set of two instances and the PPS sampling probabilities of
each item in each instance, and illustrates how to coordinate the samples. Note that the
sample of one instance does not depend on values assumed in other instances, which is
important for scalable deployment.

Why coordinate samples? Sample coordination was proposed in 1972 by Brewer,
Early, and Joice [2], as a method to maximize overlap and therefore minimize over-
head in repeated surveys [33,30,32]: The values of items change, and therefore there
is a new set of PPS sampling probabilities. With coordination, the sample of the new
instance is as similar as possible to the previous sample, and therefore the number of
items that need to be surveyed again is minimized. Coordination was subsequently
used to facilitate efficient processing of large data sets. Coordinated samples of in-
stances are used as synopses which facilitate efficient estimation of multi-instance func-
tions such as distinct counts (cardinality of set unions), sum of maxima, and similarity
[4,3,6,15,28,19,20,5,16,9,1,22,10,14]. Estimates obtained over coordinated samples are
much more accurate than possible with independent samples. Used this way, coordi-
nated sampling can be casted as a form of Locality Sensitive Hashing (LSH) [26,21,25].
Lastly, coordinated samples can sometimes be obtained much more efficiently than in-
dependent samples. One example is computing samples of the d-neighborhoods of all
nodes in a graph [6,7,28,8,9]. Similarity queries between neighborhoods are useful in
the analysis of massive graph datasets such as social networks or Web graphs.

Our aim here is to study the potential and limitations of estimating multi-instance
functions from coordinated samples of instances. The same set of samples can be used
to estimate multiple queries. We therefore do not aim for a sampling scheme optimized
for a particular query (although some of our results can be applied this way), but rather,
to optimize the estimator given the sampling scheme and query.

Sum Aggregates: Most queries in the above examples can be casted as sum aggregates
over selected items h of a basic function f(v) applied to the item weight tuple in dif-
ferent instances v(h) = (v1(h), v2(h), · · · ). In particular, distinct count (set union) is
a sum aggregate of OR(v), max-sum aggregates max(v) = maxi vi, min-sum aggre-
gates min(v) = mini vi, and Lpp (pth power of Lp-difference) is the sum aggregate of
the exponentiated range function RGp(v) = |max(v) − min(v)|p. In our example of
Figure 1,L2

2 of items [4] is (1−3)2+(2−0)2+(4−1)2+(1−0)2 = 18, and is computed
by summing the basic function RG2(v1, v2) = (v1 − v2)2 over these items. The L1 of
items {1, 3} is |1 − 3|+ |4− 1| = 5, using the basic function RG(v1, v2) = |v1 − v2|,
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items: 1 2 3 4 5 6 7 8
Instance1: 1 0 4 1 0 2 3 1
Instance2: 3 2 1 0 2 3 1 0
PPS sampling probabilities for T=4 (sample of expected size 3):
Instance1: 0.25 0.00 1.00 0.25 0.00 0.50 0.75 0.25
Instance2: 0.75 0.50 0.25 0.00 0.50 0.75 0.25 0.00

Fig. 1. Two instances with 8 items and respective PPS sampling probabilities for threshold value
4, so item with value v is sampled with probability min{1, v/4}. To obtain two coordinated PPS
samples of the instances, we associate an independent u(i) ∼ U [0, 1] with each item i ∈ [8]. We
then sample i ∈ [8] in instance h ∈ [2] if and only if u(i) ≤ vh(i)/4, where vh(i) is the value
of i in instance h. When coordinating the samples this way, we make them as similar as possible.
In the example, item 1 will always (for any drawing of seeds) be sampled in instance 2 if it is
sampled in instance 1 and vice versa for item 7.

and the max-sum of items {6, 7, 8} is max{2, 3}+max{3, 1}+max{1, 0} = 7, which
uses the basic function max{v1, v2}. Moreover, other queries including Jaccard sim-
ilarity and Lp difference which are not sum aggregates can be approximated well by
sum aggregates.

Sum Estimators – One Tuple at a Time: To estimate a sum aggregate, we can use a
linear estimator which is the sum of single-tuple estimators, estimating the basic func-
tion f(v(h)) for each selected item h. We refer to such an estimator as a sum estimator.
When the single-tuple estimators are unbiased, from linearity of expectation, so is the
sum estimate. When the single-tuple estimators are unbiased and sampling of different
tuples is pairwise independent (respectively, negatively correlated, as with bottom-k
sampling), the variance of the sum is (resp., at most) the sum of variances of the single-
tuple estimators. Therefore, the relative error of the sum estimator decreases with the
number of selected items we aggregate over. We emphasize that unbiasedness of the
single-tuple estimators (together with pairwise independence or negative correlations
between tuples) is critical for good estimates of the sum aggregate since a variance
component that is due to bias “adds up” with aggregation whereas otherwise the rela-
tive error “cancels out” with aggregation. The Horvitz-Thompson (HT) estimator [24]
is a classic sum estimator which is unbiased and nonnegative. To estimate f(v), the
HT estimator outputs 0 when the value is not sampled and the inverse-probability esti-
mate f(v)/p when the value is sampled, where p is the sampling probability. The HT
estimator is applicable to some multi-instance functions [14].

From here on, we restrict our attention to estimating single-tuple functions f(v) ≥
0 where each entry of v is Poisson sampled and focus on unbiased and nonnegative
estimators for f(v). Our model is provided in detail in Section 2.

The Challenge We Address: Throughout the 40 year period in which coordination
was used, estimators were developed in an ad-hoc manner, lacking a fundamental un-
derstanding of the potential and limits of the approach. Prior work was mostly based on
adaptations of the HT estimator for multiple instances. The HT estimator is applicable
provided that for any v where f(v) > 0, there is a positive probability for an outcome
that both reveals f(v) and allows us to determine a probability p for such an outcome.
These conditions are satisfied by some basic functions including max(v) and min(v).
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There are functions, however, for which the HT estimator is not applicable, but nonethe-
less, for which nonnegative and unbiased estimators exist. Moreover, the HT estimator
may not be optimal even when it is applicable.

As a particular example, the only Lp difference for which a “satisfactory” estimator
was known was the L1 difference [14]. Stated in terms of single-tuple estimators, prior
to our work, there was no unbiased and nonnegative estimator known for RGp(v) =
|max(v)−min(v)|p for any p �= 1. For p = 1, the known estimator used the relation
RG(v) = max(v) − min(v), separately estimating the maximum and the minimum
and showing that when samples are coordinated then the estimate for the maximum is
always at least as large as the one for the minimum and therefore the difference of the es-
timates is never negative. But even for this RG(v) estimator, there was no understanding
whether it is “optimal” and more so, what optimality even means in this context. More-
over, the ad hoc construction of this estimator does not extend even to slight variations,
like max{v1 − v2, 0}, which sum-aggregates to the natural “one sided” L1 difference.

Contributions Highlights

Characterization: We provide a complete characterization, in terms of simple proper-
ties of the function f and the sampling scheme parameters, of when estimators with the
following combinations of properties exist for f :

• unbiasedness and nonnegativity.
• unbiasedness, nonnegativity, and finite variances, which means that for all v, the
variance given data v is finite.
• unbiasedness, nonnegativity, and bounded estimates, which means that for each v,
there is an upper bound on all estimates that can be obtained when the data is v.
Bounded estimates implies finite variances, but not vice versa.

The J Estimator: Our characterization utilizes a construction of an estimator, which
we call the J estimator, which we show has the following properties: The J estimator is
unbiased and nonnegative if and only if an unbiased nonnegative estimator exists for f .
The J estimator has a finite variance for data v or is bounded for data v if and only if an
(nonnegative unbiased) estimator with the respective property for v exists.

Variance Competitiveness: Generally, there may not be a single (unbiased, nonnega-
tive, linear) estimator with minimum variance on all data vectors [27]. We are therefore
aiming for a notion of variance competitiveness, which means that for any data vec-
tor, the variance of our estimator is not “too far” from the minimum variance possible
for that vector by a nonnegative unbiased estimator. More precisely, an estimator is c-
competitive if for all data v, the expectation of its square is within a factor of c from the
minimum possible for v by an estimator that is unbiased and nonnegative on all data.

v-Optimality: To study competitiveness, we need to compare the variance on each data
vector to the minimum possible, and to do so, we need to be able to express the “best
possible” estimates. We say that an estimator is v-optimal if amongst all estimators
that are unbiased and nonnegative on all data, it minimizes variance for the data v. We
express the v-optimal estimates, which are the values a v-optimal estimator assumes
on outcomes that are consistent with data v, and the respective v-optimal variance.
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We show that the v-optimal estimates are uniquely defined (almost everywhere). The
v-optimal estimates, however, are inconsistent for different data since as we mentioned
earlier, it is not generally possible to obtain a single unbiased nonnegative estimator
that minimizes variance for all data vectors. They do allow us, however, to analyse the
competitiveness of estimators, and in particular, that of the J estimator.

Competitiveness of the J Estimator: We show that the J estimator is competitive. In
particular, this shows the powerful and perhaps surprising result that whenever for any
particular data vector v there exists an estimator with finite variance that is nonnegative
and unbiased on all data, then there is a single estimator, that for all data, has expectation
of the square that is O(1) of the minimum possible.

Practical Implications: We demonstrate some of the practical significance of our work
in [12,13], where we derive and apply Lp difference estimators for the exponentiated
range functions RGp (p > 0), and experimentally study the performance of the L1 and
L2 estimators over PPS (and priority) samples of various data sets.

The study demonstrates accurate estimates even when a small fraction of the data
set is sampled. To the best of our knowledge, prior to our work, there was no good
estimator for Lp differences over coordinated samples for any p �= 1 and only a weaker
estimator was known for p = 1 [14]. The competitive ratios of the estimators studied
in [13] are 2 for the L1 estimator and 2.5 for the L2 estimator.

2 Coordinated Sampling Model

The data is a vector v = (v1, v2, . . . , vr) ∈ V = V r, where V ⊆ R
r
≥0. Using the

terminology in the introduction, we are now looking at a single item (single-tuple v)
and the value vi of the ith entry is the value of the item in instance i. The data is
sampled through a sampling scheme specified by non-decreasing continuous functions
τ = (τ1, . . . , τr) on [0, 1] with range containing (min V,maxV ). The outcome S ≡
S(u,v) is the output of the sampling scheme and is a function of a random seed u ∈
U [0, 1] and the data v. We treat the outcome as a set where the ith entry is included in
S if and only if vi is at least τi(u):

i ∈ S ⇐⇒ vi ≥ τi(u) .

Sampling is PPS if τi(u) are linear functions: there is a fixed vector τ∗ such that τi(u) ≡
uτ∗i , in which case entry i is included with probability min{1, vi/τ∗i }. Our use of the
term PPS refers to sampling of each instance i using threshold τ∗i , and the “projected”
sampling scheme on the ith entry of our tuple.

Observe that our model assumes weighted sampling, where the probability that an en-
try is sampled depends (and is non-decreasing) with its value. Transiting briefly back to
sampling of instances, weighted sampling results in more accurate estimation of quanti-
ties (such as averages of sums) where larger values contribute more. It is also important
for boolean domains (V = {0, 1}) when most items have 0 values and in this case,
enables us to sample only “active” items.

We assume that the seed u and the functions τ are available to the estimator, and
in particular, treat the seed as provided with the outcome. When an entry is sampled,
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we know its value and also can compute the probability that it is sampled. When an
entry is not sampled, we know that its value is at most τi(u) and we can compute this
upper bound from the seed u and the function τi. Putting this information together, for
each outcome S(u,v), we can define the set V ∗(S) of all data vectors consistent with
the outcome. This set captures all the information we can glean from the sample on the
data.

V ∗(S) ≡ V ∗(u,v) = {z | ∀i ∈ [r], (i ∈ S ∧ zi = vi) ∨ (i 	∈ S ∧ zi < τi(u))} .

Structure of the Set of Outcomes. From the outcome, which is the set of sampled
entries and the seed ρ, we can determine V ∗(u,v) also for all u ≥ ρ. We also have that
for all u ≥ ρ and z ∈ V ∗(ρ, v), V ∗(u, z) = V ∗(u,v). Fixing v, the sets V ∗(u,v) are
non-decreasing with u and the set S of sampled entries is non-increasing, meaning that
V ∗(u,v) ⊂ V ∗(ρ,v) and S(u,v) ⊃ S(ρ,v) when u < ρ.

The containment order of the sets V ∗(S) is a tree-like partial order on outcomes.
For two outcomes, the sets V ∗(S) are either disjoint, and unrelated in the containment
order, or one is fully contained in another, and succeeds it in the containment order. The
outcome S(u,v) precedes S(ρ,v) in the containment order if and only if u > ρ. When
V is finite, the containment order is a tree order, as shown in Figure 2.
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Fig. 2. Illustration of the containment order on all possible outcomes V ∗(S). Example has data
vectors V = {0, 1, 2} × {0, 1, 2} and seed mappings τ1 = τ2 ≡ τ . The root of the tree corre-
sponds to outcomes with u ∈ (τ−1(2), 1]. In this case, the outcome reveals no information on the
data and V ∗(S) contains all vectors in V . When u ∈ (τ−1(1), τ−1(2)] the outcome identifies
entries in the data that are equal to “2”. When u ∈ (0, τ−1(1)], the outcome reveals the data
vector.

When V is an interval of the nonnegative reals, then for z and v, the set of all u such
that z ∈ S(u,v), if not empty, is a suffix of (0, 1] that is open to the left.

Lemma 1

∀ρ ∈ (0, 1] ∀v
z ∈ V ∗(ρ,v) =⇒ ∃ε > 0, ∀x ∈ (ρ− ε, 1], z ∈ V ∗(x,v)

Proof. Correctness for all x ∈ [ρ, 1] follows from the structure of the set of outcomes:
Since V ∗(x,v) ⊃ V ∗(ρ,v) for all x ≥ ρ then z ∈ V ∗(ρ,v) =⇒ z ∈ V ∗(x,v).

Consider now the set S of entries that satisfy vi ≥ τi(ρ). Since z ∈ V ∗(ρ,v), we
have ∀i ∈ S, zi = vi and ∀i �∈ S, max{zi, vi} < τi(ρ). Since τi is continuous and
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monotone, for all i �∈ S, there must be an εi > 0 such that τi(ρ − εi) > max{zi, vi}.
We now take ε = mini�∈S εi to conclude the proof. ��

3 Estimators and Properties

Let f : V be a function mapping V to the nonnegative reals. An estimator f̂ of f is a
numeric function applied to the outcome. We use the notation f̂(u,v) ≡ f̂(S(u,v)).
On continuous domains, an estimator must be (Lebesgue) integrable. An estimator is
fully specified for v if specified on a set of outcomes that have probability 1 given data
v. Two estimators f̂1 and f̂2 are equivalent if for all data v, f̂1(u,v) = f̂2(u,v) with
probability 1.

An estimator f̂ is nonnegative if ∀S, f̂(S) ≥ 0 and is unbiased if ∀v, E[f̂ |v] =
f(v). An estimator has finite variance on v if

∫ 1

0 f̂(u,v)
2du < ∞ (the expectation of

the square is finite) and is bounded on v if supu∈(0,1] f̂(u,v) < ∞. If a nonnegative
estimator is bounded on v, it also has finite variance for v. We say that an estimator is
bounded or has finite variances if the respective property holds for all v ∈ V.

v-Optimality. We say that an unbiased and nonnegative estimator is v-optimal, that is,
optimal with respect to a data vector v, if it has minimum variance for v. We refer to
the estimates that a v-optimal estimator assumes on outcomes consistent on data v as
the v-optimal estimates and to the minimum variance attainable for v as the v-optimal
variance.

Variance Competitiveness. An estimator f̂ is c-competitive if

∀v,
∫ 1

0

(

f̂(u,v)

)2

du ≤ c inf
f̂ ′

∫ 1

0

(

f̂ ′(u,v)
)2

du,

where the infimum is over all unbiased nonnegative estimators f̂ ′ of f . For any unbiased
estimator, the expectation of the square is closely related to the variance:

VAR[f̂ |v] =
∫ 1

0

(f̂(u,v)− f(v))2du =

∫ 1

0

f̂(u,v)2du− f(v)2 (1)

When minimizing the expectation of the square, we also minimize the variance. More-
over, c-competitiveness means that

∀v, VAR[f̂ |v] ≤ c inf
f̂ ′

VAR[f̂ ′|v] + (c− 1)f(v)2 (2)

for all data vectors v for which a nonnegative unbiased estimator with finite variance
on v exists, the variance of the estimator is at most c times the v-optimal variance plus
an additive term of (c− 1) times f(v)2.

An important remark is due here. In the typical scenario, discussed in the introduc-
tion, the sample is likely to provide little or no information on f(v), the variance is
Ω(f(v)2), and hence competitiveness as we defined it in terms of the expectation of
the square translates to competitiveness of the variance. Otherwise, when for some data
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in the domain the sample is likely to reveal the value, it is not possible to obtain a uni-
versal competitiveness result in terms of variance. (One such example is RG on PPS
samples, looking at data tuples where the maximum has sampling probability 1.) Inter-
estingly, for RG2 it is possible to get a bounded ratio in terms of variance. More details
are in the companion experimental paper [13].

4 The Lower Bound Function and Its Lower Hull

For a function f , we define the respective lower bound function f and the lower hull
function Hf . We then characterize, in terms of properties of f and Hf when nonnega-
tive unbiased estimators exists for f and when such estimators exist that also have finite
variances or are bounded.
The lower bound function f(S): For Z ⊂ V, we define f(Z) = inf{f(v) | v ∈ Z}
to be the tightest lower bound on the values of f on Z . We use the notation f(S) ≡
f(V ∗(S)), f(ρ,v) ≡ f(V ∗(ρ,v)). When v is fixed, we use f (v)(u) ≡ f(u,v).

From Lemma 1, we obtain that ∀v, f (v)(u) is left-continuous, that is:

Corollary 1. ∀v∀ρ ∈ (0, 1], limη→ρ− f
(v)(η) = f (v)(ρ).

Lemma 2. A nonnegative unbiased estimator f̂ must satisfy

∀v, ∀ρ,
∫ 1

ρ

f̂(u,v)du ≤ f (v)(ρ) (3)

Proof. Unbiased and nonnegative f̂ must satisfy

∀v, ∀ρ ∈ (0, 1].

∫ 1

ρ

f̂(u,v)du ≤
∫ 1

0

f̂(u,v)du = f(v) . (4)

From definition of f , for all ε > 0 and ρ, there is a vector z(ε) ∈ S(ρ,v) such that
f(z(ε)) ≤ f(ρ,v) + ε. Recall that for all u ≥ ρ, S(u,v) = S(u, z(ε)), hence, using,
(4), ∫ 1

ρ

f̂(u,v)du =

∫ 1

ρ

f̂(u, z(ε))du ≤ f(z(ε)) ≤ f(ρ,v) + ε .

Taking the limit as ε→ 0 we obtain
∫ 1

ρ
f̂(u,v)du ≤ f(ρ,v) . ��

The lower hull of the lower bound function and v-optimality: We denote the func-

tion corresponding to the lower boundary of the convex hull (lower hull) of f (v) by

H
(v)
f . Our interest in the lower hull is due to the following relation The proof is post-

poned to the full version http://arxiv.org/abs/1206.5637:

Theorem 1. An estimator f̂ is v-optimal if and only if for u ∈ [0, 1] almost everywhere

f̂(u,v) = −dH
(v)
f (u)

du
.

Moreover, when an unbiased and nonnegative estimator exists for f , there also exists,
for any data v, a nonnegative and unbiased v-optimal estimator.
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We use the notation f̂ (v)(u) = − dH
(v)
f (u)

du for the v-optimal estimates on outcomes con-

sistent with v. Since the lower bound function is monotone non-increasing, so is H(v)
f ,

and therefore H(v)
f is differentiable almost everywhere and f̂ (v) is defined almost ev-

erywhere. Figure 3 illustrates an example lower bound function and the corresponding
lower hull.

0 1

estimate (cummulative >u)
lower bound function

Fig. 3. Lower bound function f (v)(u) for u ∈ (0, 1] and corresponding lower hull H(v)
f (u),

which is also the integral of the nonnegative estimator with minimum variance on v:∫ 1

u
f̂ (v)(x)dx. The figure visualizes the lower bound function which is always left-continuous

and monotone non increasing. The lower hull is continuous and also monotone non-increasing.

5 Characterization

Theorem 2. f ≥ 0 has an estimator that is

• unbiased and nonnegative ⇐⇒
∀v ∈ V, lim

u→0+
f (v)(u) = f(v) . (5)

• unbiased, nonnegative, and finite variances ⇐⇒

∀v ∈ V,

∫ 1

0

(
dH

(v)
f (u)

du

)2

du <∞ . (6)

• unbiased, nonnegative, and bounded ⇐⇒

∀v ∈ V, lim
u→0+

f(v)− f (v)(u)
u

<∞ . (7)

We establish sufficiency in Theorem 2 by constructing an estimator f̂ (J) (the J estima-
tor) that is unbiased and nonnegative when (5) holds, bounded when (7) holds, and has
finite variances if (6) holds. The proof of the theorem is provided in Section 7, following
the presentation of the J estimator in the next section.
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6 The J Estimator

Fixing v, we define an estimator f̂ (J)(u,v) incrementally, starting with u = 1 and
such that the value at u depends on values at u′ > u. We first define f̂ (J)(u,v) for
all u ∈ (12 , 1] by f̂ (J)(u,v) = 2f(1,v). At each step we consider intervals of the
form (2−j−1, 2−j], setting the estimate to the same value for all outcomes S(u,v) for
u ∈ (2−j−1, 2−j ]. Assuming the estimator is defined for u ≥ 2−j , we extend the
definition to the interval u ∈ (2−j−1, 2−j ] as follows.

f̂ (J)(u,v) = 0 , if f(2−j ,v) =
∫ 1

2−j

f̂ (J)(u,v)du

f̂ (J)(u,v) = 2j+1

(

f(2−j ,v)−
∫ 1

2−j

f̂ (J)(u,v)du

)

, otherwise

Cummulative J estimates

1/21/41/8

1/64 1/32 1/16

Lower bound function

Fig. 4. Lower bound function f (v)(u) for u ∈ (0, 1] and cummulative J estimates on outcomes

consistent with v
∫ 1

u
f̂ (J)(x,v)dx. The J estimate f̂ (J)(u,v) is the negated slope.

Lemma 3. The J estimator is well defined, is unbiased and nonnegative when (5) holds,
and satisfies

∀ρ∀v,
∫ 1

ρ

f̂ (J)(u,v)du ≤ f(ρ,v) (8)

∀ρ∀v,
∫ 1

ρ

f̂ (J)(u,v)du ≥ f(4ρ,v) . (9)

Proof. We first argue that the constructions, which are presented relative to a particular
choices of the data v, produce a consistent estimator. For that, we have to show that
for every outcome S(ρ,v), the assigned value is the same for all vectors z ∈ V ∗(ρ,v).
Since f(ρ,v) = f(ρ, z) for all z ∈ V ∗(ρ,v), in particular this holds for ρ = 2−j ,
so the setting of the estimator for u ∈ (2−j−1, 2−j] is the same for all S(u, z) where
z ∈ V ∗(2−j,v) (also when z �∈ V ∗(2−j−1,v)). Therefore, the resulting estimator is
consistently defined.
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We show that the construction maintains the following invariant for j ≥ 1:

f(2−j+1,v) =

∫ 1

2−j

f̂ (J)(u,v)du . (10)

From the first step of the construction,

∫ 1

1/2

f̂ (J)(u,v)du =

∫ 1

1/2

2f(1,v)du = f(1,v) .

So (10) holds for j = 1. Now we assume by induction that (10) holds for j and establish
that it holds for j + 1. If f(2−j,v) = f(2−j+1,v), then by the definition of the J

estimator
∫ 2−j

2−j−1 f̂
(J)(u,v)du = 0 and we get

∫ 1

2−j−1

f̂ (J)(u,v)du =

∫ 1

2−j

f̂ (J)(u,v)du = f(2−j+1,v) = f(2−j ,v) .

Otherwise, by definition,
∫ 2−j

2−j−1 f̂
(J)(u,v)du = f(2−j ,v) − f(2−j+1,v) and hence

∫ 1

2−j−1 f̂
(J)(u,v)du = f(2−j ,v) and (10) holds for j + 1.

From monotonicity, f(2−j+1,v) ≤ f(2−j ,v) and when substituting (10) in the
definition of the estimator we obtain that the estimates are always nonnegative.

To establish (8) we use (10), the relation 2�log2 ρ	 ≤ ρ < 21+�log2 ρ	, and monotonic-
ity of f(u,v), to obtain

∫ 1

ρ

f̂ (J)(u,v)du ≤
∫ 1

2�log2 ρ�
f̂ (J)(u,v)du = f(21+�log2 ρ	,v) ≤ f(ρ,v) .

Similarly, we establish (9) using (10), and the relation 2−1+
log2 ρ� ≤ ρ ≤ 2
log2 ρ�:

∫ 1

ρ

f̂ (J)(u,v)du ≥
∫ 1

2�log2 ρ�
f̂ (J)(u,v)du = f(21+
log2 ρ�,v) ≥ f(4ρ,v)

Lastly, unbiasedness follows from (5) and combining (8) and (9):

f(ρ,v) ≥
∫ 1

ρ

f̂ (J)(u,v)du ≥ f(4ρ,v) .

when we take the limit as ρ→ 0. ��
Computing the J estimate from an outcome S: From the outcome we know the seed
value ρ and the lower bound function f (v)(u) for all u ≥ ρ (recall that the lower bound
on this range is the same for all data v ∈ V ∗(S), so we do not need to know the data v).
We compute i ← �− log2 ρ� and use the invariant (10) in the definition of J, obtaining
the J estimate 2i+1(f(2−i,v)− f(2−i+1,v)).
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Example: We demonstrate the application of the J estimator through a simple example.
The data domain in our example includes pairs (v1, v2) of nonnegative reals. We are
interested in f(v1, v2) = (max{v1 − v2, 0})2, which sum aggregates to (the square of)
the “one sided” Euclidean distance. The data is PPS sampled with threshold τ = 1 for
both entries, therefore, the sampling probability of entry i is min{1, vi}. Sampling is
coordinated, which means that for a seed ρ ∈ U [0, 1], entry i is sampled if and only if
vi ≥ ρ. The outcome S includes the values of the sampled entries and the seed value ρ.
If no entry is sampled, or only the second entry is sampled, the lower bound function
for x ≥ ρ is 0 and the J estimate is 0. If only the first entry is sampled, the lower bound
function, for x ≥ ρ, and accordingly, the J estimate are

f (v)(x) = max{0, v1 − x}2

f̂ (J)(S) = 2�− log2 ρ�+1

(

max{0, v1 − 2−�− log2 ρ�}2 −max{0, v1 − 21−�− log2 ρ�}2
)

.

If both entries are sampled, the lower bound function for x ≥ ρ and the J estimate are

f
(v)

(x) = max{0, v1 − max{v2, x}}2

f̂
(J)

(S) = 2
�− log2 ρ�+1

(

max{0, v1 − max{v2, 2
−�− log2 ρ�}}2 − max{0, v1 − max{v2, 2

1−�− log2 ρ�}}2
)

.

6.1 Competitiveness of the J Estimator

Theorem 3. The estimator f̂ (J) is O(1)-competitive.

Proof. We will show that

∀v,
∫ 1

0

(

f̂ (J)(u,v)

)2

du ≤ 84

∫ 1

0

(

f̂ (v)(u)

)2

du.

Let ρ = 2−j for some integer j ≥ 0. Recall the construction of f̂ (J) on an interval
(ρ/2, ρ]. The value is fixed in the interval and is either 0, if

∫ 1

ρ
f̂ (J)(u,v)du = f (v)(ρ)

or is 2
f(v)(ρ)−∫ 1

ρ
f̂(J)(u,v)du

ρ . Using (9) in Lemma 3, we obtain that for u ∈ (ρ/2, ρ],

f̂ (J)(u,v) ≤ 2
f (v)(ρ)− ∫ 1

ρ
f̂ (J)(u,v)du

ρ
≤ 2

f (v)(ρ)− f (v)(4ρ)
ρ

Thus,

∫ ρ

ρ/2

(

f̂ (J)(u,v)

)2

du ≤ ρ

2

4

ρ2

(

f (v)(ρ)− f (v)(4ρ)

)2

=
2

ρ

(

f (v)(ρ)− f (v)(4ρ)
)2

(11)
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We now bound the expectation of f̂ (v) on u ∈ (ρ/2, 4ρ) from below.

∫ 4ρ

ρ/2

f̂ (v)(u)du =

∫ 4ρ

ρ

f̂ (v)(u)du+

∫ ρ

ρ/2

f̂ (v)(u)du

≥
∫ 4ρ

ρ

f̂ (v)(u)du+
ρ

2
f̂ (v)(ρ) (12)

≥
∫ 4ρ

ρ

f̂ (v)(u)du+
ρ

2

f (v)(ρ)− ∫ 1

ρ
f̂ (v)(u)du

ρ
(13)

=

∫ 4ρ

ρ

f̂ (v)(u)du++
1

2

(

f (v)(ρ)−
∫ 4ρ

ρ

f̂ (v)(u)du−
∫ 1

4ρ

f̂ (v)(u)du

)

=
1

2

∫ 4ρ

ρ

f̂ (v)(u)du+
1

2

(

f (v)(ρ)−
∫ 1

4ρ

f̂ (v)(u)du

)

≥ 1

2

(

f (v)(ρ)− f (v)(4ρ)

)

(14)

Inequality (12) follows from monotonicity of the function f̂ (v). Inequality (13) from
the definition of f̂ (v) as the negated derivative of the lower hull of f (v) f̂ (v)(ρ) ≥
f(v)(ρ)−∫ 1

ρ
f̂(v)(u)du

ρ (More precisely, we can use the explicit definition of the v-optimal

estimates provided in the full version, f̂ (v)(ρ) = inf0≤η<ρ
f(v)(η)−∫ 1

ρ
f̂(u,v)du

ρ−η ≥
inf0≤η<ρ

f(v)(ρ)−∫ 1
ρ
f̂(u,v)du

ρ−η =
f(v)(ρ)−∫ 1

ρ
f̂(u,v)du

ρ ). Lastly, inequality (14) uses
∫ 1

4ρ f̂
(v)(u)du ≤ f (v)(4ρ), which follows from nonnegativity of f̂ (v) and Lemma 2.

Dividing both side by 3.5ρ we obtain a lower bound on the average value of f̂ (v)(u)
in the interval [ρ/2, 4ρ].

1

3.5ρ

∫ 4ρ

ρ/2

f̂ (v)(u)du ≥ 1

7ρ

(

f (v)(ρ,v)− f (v)(4ρ)
)

(15)

We next show that the value f̂ (J)(u,v) on u ∈ (ρ/2, ρ] is at most some constant times
the expected value of the square of f̂ (v) on u ∈ (ρ/2, 4ρ).

∫ 4ρ

ρ/2

f̂ (v)(u)2du ≥
∫ 4ρ

ρ/2

(
1

3.5ρ

∫ 4ρ

ρ/2

f̂ (v)(u)du

)2

du ≥ (16)

∫ 4ρ

ρ/2

(
1

7ρ

(

f (v)(ρ)− f (v)(4ρ)

))2

du ≥ (17)

3.5ρ

(
1

7ρ

)2(

f (v)(ρ)− f (v)(4ρ)

)2

≥ (18)

1

28

∫ ρ

ρ/2

f̂ (J)(u, v)2du

Inequality (16) uses the fact that for any random variableX , (E[X ])2 ≤ E[X2] applied
to f̂ (v) for u ∈ (ρ/2, 4ρ]. Inequality (17) follows from (15). Lastly, Inequality (18)
follows from (11). We obtain
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∫ 1

0

f̂ (J)(u)2du =

∞∑

i=0

∫ 2−i

2−i−1

f̂ (J)(u)2du

≤ 28
∞∑

i=0

∫ min{1,2−i+2}

2−i−1

f̂ (v)(u)2du ≤ 28 · 3
∫ 1

0

f̂ (v)(u)2du

��

7 Proof of Theorem 2

Proof. • “⇒” (5): From Lemma 2, an unbiased and nonnegative estimator f̂ must
satisfy (3). Fixing v in (3) and taking the limit as ρ → 0 we obtain that E[f̂ |v] =
∫ 1

0 f̂(u,v)du ≤ limu→0 f
(v)(u,v). Combining with unbiasedness: E[f̂ |v] = f(v) we

obtain (5).

• “⇐” (5): Follows immediately from Lemma 3.

• “⇒” (7): We bound from below the contribution to the expectation of unbiased and
nonnegative f̂ of outcomes S(u,v) for u ≤ ρ:

∫ ρ
0 f̂(u,v) =

∫ 1

0 f̂(u,v)−
∫ 1

ρ f̂(u,v) ≥
f(v) − f (v)(u). The last inequality follows from unbiasedness and nonnegativity (3).

Hence, the average value f̂(u,v) when u < ρ must be at least
f(v)−f(v)(ρ)

ρ , and thus,

considering all possible values of ρ > 0, we obtain that f̂ can be bounded only if it
satisfies (7).

• “⇐” (7): Note that (7) =⇒ (5), and therefore the conditions of Lemma 3 are satisfied
and the J estimator is well defined, nonnegative, and unbiased. It remains to show that
given (7), or the equivalent statement

∀v ∃c <∞∀u, f(v)− f (v)(u) ≤ cu , (19)

the J estimator is bounded. Fix v and let c be as in (19).

f̂ (J)(ρ,v) ≤ 2
f (v)(ρ/2)− ∫ 1

2ρ f̂
(J)(u,v)du

ρ
(20)

≤ 2
f(v)− f (v)(8ρ)

ρ
(21)

= 16
f(v)− f (v)(8ρ)

8ρ
≤ 16c (22)

Inequality (20) is from the definition of the J estimator. Inequality (21) uses definition
of the lower bound function and (9). Lastly, (22) follows from our assumption (19).

• “ ⇐⇒ ” (6): From Theorem 1, for all v, (6), which is square-integrability of
f̂ (v)(u), is necessary for existence of a nonnegative unbiased estimator with finite vari-
ance for v. Sufficiency follows from the proof of Theorem 3, which shows that for all v,
the expectation of the square of the J estimator is at most a constant times the minimum
possible, and (2), which states that the variance is bounded if and only if the expectation
of the square is bounded. ��
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Conclusion

We developed a precise understanding of the queries we can estimate accurately over
coordinated samples, defined variance competitiveness, and showed that it is generally
attainable. Our work uses a fresh, CS-inspired, and unified approach to the study of
estimators that is particularly suitable for data analysis from samples.

In a follow up work [12], we study the interaction of competitiveness and variance
optimality (an estimator is variance optimal of it can not be strictly improved), tighter
competitiveness bounds, and propose natural estimators. We also plan to extend our
initial treatment of independent sampling [11].

On the applied front, our work is motivated by the prevalent use of sampling as
synopsis of large data sets. We demonstrate its potential for difference queries in a
companion experimental paper [13]. We also plan to apply it for analysis of massive
graphs. In the long run, we envision automated tools that provide estimates according
to specifications of the sampling scheme, query, competitive ratio, and prioritization of
patterns in the data.
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Abstract. A recent sequence of works, initially motivated by the study
of the nonlocal properties of entanglement, demonstrate that a source of
information-theoretically certified randomness can be constructed based
only on two simple assumptions: the prior existence of a short random
seed and the ability to ensure that two black-box devices do not commu-
nicate (i.e. are non-signaling). We call protocols achieving such certified
amplification of a short random seed randomness amplifiers. We intro-
duce a simple framework in which we initiate the systematic study of the
possibilities and limitations of randomness amplifiers. Our main results
include a new, improved analysis of a robust randomness amplifier with
exponential expansion, as well as the first upper bounds on the maxi-
mum expansion achievable by a broad class of randomness amplifiers.
In particular, we show that non-adaptive randomness amplifiers that are
robust to noise cannot achieve more than doubly exponential expansion.
Finally, we show that a wide class of protocols based on the use of the
chsh game can only lead to (singly) exponential expansion if adversarial
devices are allowed the full power of non-signaling strategies. Our up-
per bound results apply to all known non-adaptive randomness amplifier
constructions to date.

1 Introduction

Consider the following simple game, called the chsh game: a referee sends each
of a pair of isolated, cooperating but non-communicating players Alice and Bob
a bit x, y ∈ {0, 1} respectively, chosen uniformly at random. Alice and Bob reply
with bits a, b ∈ {0, 1}, and they win the game iff a⊕ b = x∧ y. If Alice and Bob
employ classical strategies, the probability that they win the game is at most
75%. As a consequence, one readily sees that any non-signaling strategy (i.e.
a strategy in which each player’s marginal output distribution is independent
of the other player’s input) that wins the chsh game with probability strictly
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larger than 75% must generate randomness. Remarkably, there actually exists
such a strategy, allowing them to win with probability cos2(π/8) ≈ 85%. Fur-
thermore, the strategy can be physically implemented using simple “everyday”
quantum mechanical devices that utilize shared entanglement [2]. In his Ph.D.
thesis, Colbeck [6] was the first to explicitly observe that the chsh game could
be interpreted as a simple statistical test for the presence of randomness: the
test repeatedly “plays” the CHSH game with a given pair of black-box devices.
Provided that non-signaling is enforced between the devices (via space-time sep-
aration or other means), the observation of a sufficiently high success probability
can be used to certify the generation of “fresh” randomness. In particular, the
soundness of the test does not require one to assume that quantum mechanics is
correct. (Of course, as far as we know, the easiest way to actually pass the test
is to perform certain specific quantum mechanical measurements on two halves
of an EPR pair!)

It is easy to see that without any assumptions, black-box randomness testing is
impossible: if a (randomized) test T accepts a random source X with some prob-
ability p, by linearity of expectation there automatically exists a deterministic
source Y (i.e. a fixed string) that is accepted with probability at least p. Thus it
is quite surprising that a very simple physical assumption – that it is possible to
enforce non-signaling between two devices – allows for an information-theoretic
method to test for randomness in the devices’ outputs. As we shall see, the test
provides guarantees on the min-entropy of the outputs, which enables the tester
to later apply a classical procedure such as a randomness extractor to gener-
ate bits that are nearly independent and uniformly distributed, making them
useful in algorithmic or cryptographic applications (for a survey on randomness
extractors we refer to [18]).

Starting with work of Pironio et al. [14], a series of papers [7,11,19,15] have
demonstrated that not only can randomness be certified, but it can be expanded
as well. In [14], a protocol was given in which the testing requires m bits of seed
randomness, but the output of the devices is certified to have Ω(m2) bits of
min-entropy. Vazirani and Vidick [19] show that there exists a protocol that can
produce 2Ω(m) bits of certifiable randomness starting from m bits of seed ran-
domness. In their protocol, the referee uses the seed to generate pseudorandom
inputs for the two devices; the devices play 2O(m log2m) iterations of (a variant
of) the chsh game on those inputs. The referee then tests that the wins and
losses of the devices obey a simple statistical condition. Whenever the devices
are designed in a way that they pass the test with non-negligible probability,
their output distribution (conditioned on passing) must have high min-entropy.
The test, however, is not robust in the sense that even a very slight deviation by
the devices from the intended behavior will result in rejection. Robust protocols
for exponential randomness expansion were devised in [11,15] but they use two
pairs of devices, and furthermore rely on the strong assumption that there is no
entanglement between the pairs.

These prior works immediately raise a wealth of questions, for which there has
been no systematic investigation so far: What is the maximal expansion
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achievable? Could doubly exponential expansion, or even an unbounded, expan-
sion of randomness be possible? Can exponential expansion be achieved using a
more natural protocol that is robust to noise? What are the minimal assumptions
required on the seed quality? While many specific protocols have been considered
in the quantum information literature [7,11,8], to our knowledge no general model
of randomness certification and amplification had yet been formulated.

In this paper we introduce a simple and natural framework for randomness
amplification which captures nearly all previously considered protocols. We ini-
tiate the systematic investigation of the possibilities and limitations of such pro-
tocols, which we call randomness amplifiers.1 In particular, we present both the
first upper bounds on the achievable randomness expansion of natural protocols,
as well as the first robust exponential lower bounds. (Note that here, contrary
to common usage in theoretical computer science, upper bounds on randomness
expansion are impossibility results, whereas lower bounds are possibility results.)

Robust Protocols. An appealing aspect of randomness amplifiers is that they
only rely on two basic physical assumptions: the ability to enforce the non-
signaling condition between devices, and the a priori existence of a some small
amount of randomness to use as seed. As such, these protocols lend themselves
quite naturally to experimental implementations. In fact, [14] report an imple-
mentation of their quadratic randomness amplifier in which 42 bits of certified
randomness were generated (over the course of a month of experiments!). How-
ever, noise as well as errors due to imperfections in laboratory equipment are
unavoidable in such experiments. Given the recent interest in realizing efficient
implementations of randomness expansion protocols2, it is important to under-
stand the power and limitations of protocols that behave robustly in the presence
of noise and imperfect devices. Some randomness amplifiers, such as the one in
[19], are not robust to noise. Is this an artifact or an intrinsic limitation of
protocols that achieve exponential randomness expansion?

Our Results

The Model. Our first contribution is the introduction of a natural model for
randomness amplifiers. Abstractly, we think of a randomness amplifier as a fam-
ily of protocols describing an interaction between a trusted entity (called the
referee) and a pair of black-box devices. The referee selects inputs to the de-
vices, collects outputs, and based on these decides to either accept or reject the
devices’ outputs. The protocols are parametrized by a seed length m, which is
the amount of initial randomness required to execute the protocol. The output of
the protocol is defined as the output of the black-box devices over the course of
the interaction (provided the referee accepted). The procedure has completeness

1 These protocols have been called “randomness expanders” or “randomness expansion
protocols” in prior works, but we adopt the term randomness amplifiers to avoid
confusion with the traditional concept of expanders.

2 Such protocols have recently been suggested as a benchmark for the closure of the
so-called detection loophole. We refer to the recent survey [3] for more details.
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c, soundness s, and expansion g = g(m) if (i) there exists a pair of non-signaling
devices, called the ideal devices, such that the referee’s interaction with them will
result in a “pass” with probability at least c, and (ii) for any pair of non-signaling
devices (either bound by the laws of quantum mechanics or not, depending on
context) such that they pass the protocol with probability at least s, the out-
put distribution of the devices has min-entropy at least g(m) — where, ideally,
g(m)� m.

The interaction between the referee and the devices could a priori be arbi-
trary. In this paper we restrict our attention to non-adaptive protocols. In such
protocols the referee uses his random seed to select a pair of input strings to be
given to each device. He then provides the inputs one symbol at a time, collect-
ing outputs from the devices. At the end of the interaction, the referee applies
a test to the inputs and outputs he has collected. Such protocols are called
non-adaptive because the inputs to the devices do not depend on the devices’
outputs in previous rounds. Nearly all protocols considered in the literature are
non-adaptive.

In addition, we formalize the notion of “robust” randomness amplifiers: in-
formally, an amplifier is robust if small deviation from the behavior of the ideal
devices still results in acceptance with high probability. Naturally, allowing noisy
devices makes the analysis harder, e.g. to prove lower bounds on robust protocols
we have to account for the fact that devices may use the freedom to deviate to
cheat the protocol. However, we will also show that in certain cases, non-robust
protocols can be cheated by malicious devices that exploit the possibility for
noise-free operation!

A Robust Lower Bound. Our first result is a lower bound: we extend and
generalize the result of [19] by devising a randomness amplifier that attains
exponential expansion and is robust to noisy devices. The underlying protocol is
simple and can be based on any non-local game (and not only the chsh game as
in [19]) that is randomness generating. Informally, randomness generating games
are such that any strategy achieving a success probability strictly higher than
the classical value must produce randomized answers, on a certain fixed pair of
inputs (x0, y0) that depend only on the game, not the strategy. Many examples
of games are known to be randomness generating, including the chsh game and
the so-called Magic Square game [1].

Fix a two-player game G. Let η denote the “noise tolerance” parameter, ε
a target “security” parameter and R a number of rounds. The robust protocol
PG is as follows: in each round, with some small probability pc the two devices
are presented with inputs as prescribed in the game G. Such rounds are called
game rounds. Otherwise, they are presented with some default inputs x0, y0
respectively. The referee collects the outputs of the two devices for the R rounds,
and checks that on average over the game rounds the devices’ inputs and outputs
satisfy the game condition a fraction of times that is at least the maximum
success probability achievable in G using quantum mechanics, minus η.

Theorem 1 (Informal). Letm be a positive integer. LetG be a randomness gen-
erating game, η, ε > 0 and PG the protocol described above, for some
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R = R(m) ≤ exp(m/ log(1/ε)) and pc = Θ(log(1/ε)/R). Then PG uses m bits
of seed, has completeness 1 − exp(−η2R), soundness ε and expansion g(m) =
Ω(R(m)).

Upper Bounds.We present the first upper bounds on non-adaptive randomness
amplifiers. Our first upper bound applies to protocols based on perfect games,
which are games G such that there exists a quantum strategy that wins G with
probability 1 (an example is the Magic Square game [1]). We consider simple
protocols in which the referee’s test is to verify that the devices win every single
round. We give a simple argument, based on the construction of a “cheating
strategy” for the devices, showing that any such protocol can achieve at most
doubly exponential expansion.

While this simple class of protocols already encompasses some protocols in-
troduced in the literature, such as one described in [6], many protocols do not
use perfect games and such a stringent testing condition from the referee. We
thus extend this initial upper bound and show that it also applies to arbitrary
non-adaptive randomness amplifiers, provided that they are noise-robust and
the ideal devices play each round independently.

Theorem 2 (Informal). Let the family of protocols P = (Pm) be a non-
adaptive randomness amplifier. Suppose that for all m ∈ N, Pm is noise-robust
and the ideal devices for Pm play each round independently. Then, for all m ∈ N

there exists two quantum devices that are accepted by the protocol Pm with high
probability, but whose output min-entropy is at most 2O(2m).

We refer to Theorem 5 for a precise statement. The basic idea for the cheating
strategy is to show that, provided the referee’s seed is short enough, the devices
can often deterministically re-use some of their outputs in previous rounds. That
the referee’s test can be arbitrary complicates the argument somewhat, a priori
preventing a systematic re-use by the devices of their past outputs: the test could
check for obvious patterns that could arise in any obvious re-use strategies. To
get around this we use the probabilistic method to show that for any noise-robust
test there exists a randomness-efficient re-use strategy that will fool it.

Our last upper bound is a stronger, exponential upper bound on randomness
amplifiers that are based on the chsh game and in which the referee’s test only
depends on the pattern of wins and losses in the game that is observed in the
protocol. However, our “cheating strategy” for such protocols requires the use
of perfect non-signaling devices (which are able to win the chsh game with
probability 1). As such, the significance of the theorem is in the proof rather
than in the statement: it demonstrates the possibility for elaborate cheating
strategies that exploit the structure of the protocol in order to be accepted in a
highly randomness-efficient way. Overcoming this kind of behavior of the devices
is a major hurdle in designing protocols that achieve more than exponential
expansion of randomness, a tantalizing open problem that we leave open for
further work.

Related Work. As mentioned earlier, [14], building on [6], were the first to
obtain a quantitative lower bound on randomness expansion. They showed that



Robust Randomness Amplifiers: Upper and Lower Bounds 473

quantum or non-signaling devices that demonstrate any Bell inequality viola-
tion can be used to certify randomness. Fehr et al. [11] extended this result
to demonstrate exponential expansion, although their protocol requires the use
of two unentangled pairs of devices. Vazirani and Vidick [19] describe a proto-
col with exponential expansion that only requires two devices. Their protocol,
however, is not robust to noise and is tailored to the specifics of the chsh game.

When considering the use of the bits generated by a randomness amplifier
in a cryptographic task it may be necessary to obtain stronger guarantees than
simply a lower bound on their min-entropy: indeed, in some cases it is essential
that the bits not only appear random by themselves, but are also uncorrelated
with any potential adversary (say, the maker of the devices). The protocol of [11]
is proven secure against classical adversaries; [19] also obtain security against
quantum adversaries. In this work we do not consider such extended guarantees
of security.

Outline of the Paper. We start with some preliminaries in Section 2. Our
model is introduced in Section 3. In Section 4 we establish our exponential lower
bound, while Section 5 contains our doubly exponential and exponential upper
bounds. We refer the reader to the full version of the paper [9], which contains
the proofs that were omitted here due to space constraints.

2 Preliminaries

Notation. Given an integer n we write [n] = {1, . . . , n}. Given a string x ∈ Xn,
where X is a finite alphabet, we let x≤i = (x1, . . . , xi), x>i = (xi+1, . . . , xn),
etc. If X ,Y are alphabets and π a probability distribution over X × Y, for
all R ∈ N we let π⊗R denote the product distribution defined over XR ×
YR by π⊗R(x1, . . . , xR, y1, . . . , yR) =

∏
i∈[R] π(xi, yi). We use capital letters

X,Y, . . . to denote random variables. Let X be a random variable that takes
values in some discrete domain D. Its min-entropy is defined as H∞(X) =
− logmaxx∈D Pr(X = x). The Shannon entropy of a random variable X is
denoted H(X) as usual. We also define the max-entropy of a random vari-
able X as H0(X) = log(|supp(X)|), where supp(X) denotes the support of

X . The conditional min-entropy is defined as H∞(X |Y ) = − log
(∑

y Pr(Y =

y)2−H∞(X|Y=y)
)
. For two discrete random variablesX,Y with the same domain,

their statistical distance is ‖X − Y ‖1 = 1
2

∑
x∈D |Pr(X = x) − Pr(Y = x)|.

For ε > 0, the smoothed min-entropy of a discrete random variable X is de-
fined as Hε∞(X) = supX̃,‖X̃−X‖1≤εH∞(X̃), where the supremum is taken over

all X̃ defined on D. The smoothed conditional min-entropy is Hε
∞(X |Y ) =

sup(X̃,Ỹ ),‖(X̃,Ỹ )−(X,Y )‖1≤εH∞(X̃|Ỹ ). We also define the smooth entropy of a
random variable X , conditioned on an event T , as the smooth entropy of a
random variable having the distribution of X conditioned on T .

Two-Player Games. A two-player game G is specified by input alphabets X
and Y, output alphabets A and B, an input distribution π on X ×Y, and a game
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predicate G : X × Y × A × B → {0, 1}. The game is played between a referee
and two non-communicating players, who we typically call Alice and Bob. The
referee generates inputs x ∈ X and y ∈ Y according to π, and sends them to
Alice and Bob respectively. Alice answers with a ∈ A and Bob answers with
b ∈ B. The referee accepts iff G(a, b, x, y) = 1, in which case we say that the
players win (or pass) the game.

Strategies. Given a game G, we define its value as the maximum winning
probability of two players in the game, where the probability is taken over
the referee’s choice of inputs and randomness that may be part of the players’
strategy. In full generality, a strategy S is specified by a family of distributions
{pS(·, ·|x, y) : A × B → [0, 1]}(x,y)∈X×Y, parametrized by input pairs (x, y) and
defined over the output alphabet A × B. The value of G clearly depends on
restrictions that we may place on the allowed families of distributions, and we
(as is customary in the study of two-player games in the quantum literature)
consider three distinct restrictions:

First, if the players are restricted to classical deterministic strategies, specified
by functions fA : X → A for Alice and fB : Y → B for Bob, we obtain the classical
value, which is defined as ωc(G) = maxfA,fB

∑
x,y π(x, y)G(fA(x), fB(y), x, y).

It is not hard to see that the use of private or even shared randomness by the play-
ers will not increase the classical value. Second, by allowing all strategies that may
be implemented locally using quantum mechanics, including the use of entangle-
ment, one obtains the quantum value of G, ωq(G). In this paper we will not need
to use the formalism of quantum strategies, and we refer to e.g. [5] for a good in-
troduction. Finally, we may allow any strategy which respects the non-signaling
principle: the only restriction on the players’ family of distributions is that it sat-
isfies ∀x ∈ X , y, y′ ∈ Y, a ∈ A, pS(a|x, y) =

∑
b pS(a, b | x, y) =

∑
b pS(a, b |

x, y′) = pS(a|x, y′), and a symmetric condition holds when marginalizing over
the first players’ output. The corresponding value is called the non-signaling value
ωns(G). It is clear that, for any game G, ωc(G) ≤ ωq(G) ≤ ωns(G). Examples of
games are known for which all three inequalities are strict (the chsh game, see be-
low). There are also games for which the first inequality is strict, and the second
is an equality (e.g. the so-called Magic Square game [1]), and for which the first
inequality is an equality and the second is strict (see e.g. [12]).

The CHSH Game. The chsh game is a two-player game with two non-
communicating players, Alice and Bob, who are given independent random in-
puts x, y ∈ {0, 1} respectively. Their task is to produce outputs a, b ∈ {0, 1}
such that a⊕ b = x∧ y. The classical value of chsh is ωc(chsh) = 3/4. There is
a simple quantum strategy based on the use of a single EPR pair that demon-
strates ωq(chsh) ≥ cos2(π/8) ≈ 85%, and in fact it is an optimal quantum
strategy [4,13]. Furthermore, ωns(G) = 1 (see [9] for a proof).

(Non-Adaptive) Protocols. Informally, a protocol prescribes the interac-
tion between a trusted referee and a pair of devices, which we usually de-
note by DA and DB. A protocol can be thought of as a multi-round game in
which the rounds are played sequentially; we use the word “devices” rather than
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“players” to refer to the fact that the interaction may go on for many rounds, but
there is no essential difference. In this paper, we restrict our attention to non-
adaptive protocols, where the referee’s messages to the devices are independent
of the devices’ outputs. Formally, a non-adaptive protocol P is specified by a
tuple 〈X ,Y,A,B, R, π, T 〉, where: X ,Y are finite input alphabets, A,B are finite
output alphabets, R ∈ N is the number of rounds of interaction, π is the input
probability distribution over XR × YR, and T : XR × YR ×AR × BR → {0, 1}
is the referee’s test.

Given such a protocol P , the interaction between the referee and a pair of de-
vices (DA, DB) proceeds as follows: using private randomness, the referee sam-
ples the input sequence (x, y) ∈ XR ×YR from π. Then, for each round i ∈ [R],
the referee distributes xi ∈ X and yi ∈ Y to DA and DB, respectively. Devices
DA and DB are required to produce outputs ai ∈ A and bi ∈ B, respectively.
Let a = (ai) and b = (bi). After R rounds of interaction, the referee accepts if
T (x, y, a, b) = 1. Otherwise, the referee rejects.

Given a protocol P and a pair of devices (DA, DB), a strategy for the devices
is a description of their behavior in the protocol: for each round index i, a family
of distributions {p(ai, bi|xi, yi, histi)} on Ai × Bi, where histi is the history of
the protocol prior to round i, i.e. the list of inputs and outputs generated by the
devices in previous rounds. We call a strategy quantum (resp. non-signaling) if
it can be implemented using isolated quantum (resp. non-signaling) devices.

3 Randomness Amplifiers

In this section we define the notion of randomness amplifiers that we use through-
out the paper. A randomness amplifier is given by a family (Pm)m∈N of
non-adaptive protocols. The following definition summarizes the important pa-
rameters associated with a non-adaptive randomness amplifier.

Definition 1. A family of protocols P = (Pm) = 〈X ,Y,A,B, Rm, πm, Tm〉 is a
randomness amplifier with seed length m, completeness c = c(m), sound-
ness s = s(m) < c against quantum (resp. non-signaling) strategies, smooth-
ness ε = ε(m), expansion g = g(m) and ideal strategy Sideal = Sideal(m) if
the following hold for every m ∈ N:

– (Seed length) A sequence of inputs (x, y) ∈ XRm × YRm to the devices can
be sampled according to πm using at most m uniformly random bits,

– (Completeness) If the devices behave as prescribed in the ideal strategy Sideal,
3

then
Pr(Tm(X,Y,A,B) = 1) ≥ c(m), (1)

where A, B are random variables corresponding to each device’s outputs,
and the probability is over (X,Y ) ∼ πm and the randomness inherent in the
strategy.

3 We refer to devices implementing the ideal strategy as ideal devices.
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– (Soundness) For all quantum (resp. non-signaling) strategies S for the de-
vices in Pm, if playing according to S guarantees Pr(Tm(X,Y,A,B) = 1) ≥
s(m), then

Hε
∞(A,B | Tm(X,Y,A,B) = 1) ≥ g(m).

We further elaborate on the completeness and soundness conditions. We say
that the completeness of a randomness amplifier P holds with quantum (resp.
non-signaling) devices whenever the ideal strategy can be implemented using
quantum (resp. non-signaling) devices. Similarly, we say that the soundness of
P holds against quantum (resp. non-signaling) devices if the universal quantifier
in the soundness condition is over all quantum (resp. non-signaling) strategies.
Generally, a stronger condition on the soundness (i.e. soundness against non-
signaling devices) will imply weaker parameters, such as smaller expansion.

We note that the amount of randomness produced is measured according to its
(ε-smooth) min-entropy. Motivation for this particular measure comes from the
fact that it tightly characterizes the number of (ε-close to) uniform bits that can
be extracted from the devices’ outputs using a procedure known as an extractor
(we refer to [17] for more details on using extractors for privacy amplification,
including in the quantum setting). This procedure requires the use of an addi-
tional short seed of uniformly random bits, which we do not take into account
here: our goal is simply to produce entropy, and one could in principle replace
the min-entropy by, say, the Shannon entropy in the definition. It is known that
randomness extraction for min-entropy sources requires an independent seed of
logarithmic length [16], thus trivially limiting many protocols to exponential
expansion! Since our interest is in exploring the limits and possibilities of ran-
domness expansion – including the possibility of super-exponential expansion –
we make the choice of measuring the output randomness by its min-entropy.

It may be useful to keep typical ranges for the different parameters in mind.
The “asymptotic” quantity is the seed length m. Completeness will often be ex-
ponentially close to 1 in the number of rounds R, itself a function of m that can
range from linear to doubly exponential (or more). The soundness and smooth-
ness will be exponentially small in m.

We now define restricted classes of protocols which capture most of the pro-
tocols so far introduced in the literature. The definitions are extended to ran-
domness amplifiers in the natural way.

Natural Protocols. We will say that a protocol P is natural if there is a two-
player game G such that the ideal strategy for P is the strategy S⊗RG consisting
of playing each of the R rounds of P according to an optimal (quantum or non-
signaling depending on the context) strategy SG for the game G. We say that
G is the game that underlies P . All randomness amplifiers to date are natural
according to this definition. In this paper we only consider natural protocols.

Definition 2. Let G be a two-player game. A test function T : XR ×YR ×AR ×
BR → {0, 1} is a product test with respect to G iff there exists a function g :
{0, 1}R →{0, 1} such thatT (x, y, a, b)=g (G(x1, y1, a1, b1),. . . , G(xR, yR, aR, bR)).
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Product Protocols. We will say that a protocol P is a product protocol if
the referee’s test T is a product test with respect to some two-player game G.
Intuitively, the protocol P consists of R independent instances of the game G,
played in sequence (though the input distribution may not necessarily be the
product distribution π⊗RG ). The referee’s test is to apply a function g on the
sequence of wins and losses of the devices. Natural examples of functions g for
this purpose include the AND function and threshold functions, e.g. g(w) = 1 iff
the Hamming weight of w ∈ {0, 1}R is greater than (ωq(G)−η)R. An example of
a non-product test would be one where, say, the referee checks that the devices
output (0, 0) (for a given input pair) in 1

2 ± ε fraction of the rounds.

Robust Protocols. Informally, a protocol is robust if small deviations from an
ideal strategy are still accepted with high probability by the referee. We now
provide a formal definition for such protocols. First, we introduce the notion
of closeness of strategies. Let P be an R-round protocol. Let X,Y be random
variables on XR, YR respectively distributed according to the protocol’s input
distribution πP . For any strategy S, let Si(X≤i, Y≤i) denote the random variable
distributed as the devices’ outputs in round i, conditioned on having played
according to S on the input sequence (X≤i, Y≤i). Then we say that two strategies

S and Ŝ are η-close if for all rounds i ∈ [R],
∥
∥Si(X≤i, Y≤i)− Ŝi(X≤i, Y≤i)

∥
∥
1
≤ η.

Let P be a protocol with some specified ideal strategy Sideal that is accepted
with probability at least c in the protocol (as is when P is a member of a
randomness amplifier, for example). Let T be the referee’s test in the protocol.
We say that P is η-robust if whenever the devices’ strategy S for the protocol P
is η-close to Sideal, it holds that Pr(T (X,Y,A,B) = 1) ≥ c (under strategy S).
We note that this definition captures the concept of robustness against not only,
say, i.i.d. noise, but also against physically plausible sources of imperfection such
as misaligned mirrors, imperfect detectors, etc.

4 Lower Bounds

Let G be a two-player game in which inputs to Alice (resp. Bob) are chosen from
sets X (resp. Y), and answers expected in sets A (resp. B). Let π be the referee’s
distribution on input pairs in G.

Definition 3. We say that a two-player game G is (p0, η, 1 − ξ)-randomness
generating against quantum (resp. non-signaling) players if there exists an input
x0 ∈ X such that the marginal probability π(x0) ≥ p0 and any quantum (resp.
non-signaling) strategy for the players that has success at least ωq(G)− η (resp.
ωns(G)− η) satisfies maxa∈A p

(
A = a | X = x0

) ≤ 1− ξ.
We note that for any given game G, x0 and η > 0 the problem of approximat-
ing the smallest possible ξ such that G is (π(x0), η, ξ)-randomness generating
against quantum (resp. non-signaling) devices is an optimization problem for
which upper bounds can be obtained through a hierarchy of semidefinite pro-
grams [10,14] (resp. a linear program). If G is an XOR game, the hierarchy con-
verges at the first level: there is an exact semidefinite program of size polynomial
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in |X ||Y|. For the special case of the chsh game, choosing x0 = 0 it is known that
chsh is (1/2, η, 1/2 +

√
3η)-randomness generating (please see the full version

of the paper for details). Clearly, the condition that η < ωq(G) − ωc(G) (resp.
η < ωns(G) − ωc(G)) is necessary for the game G to be randomness generating
for any ξ > 0.

4.1 Unbounded Randomness Expansion

For any game G with input distribution π, ε > 0 and function R : N → N, we
introduce a simple randomness amplifier that achieves unbounded expansion,
with the strong limitation that soundness only holds against devices that are
restricted to play each round of the protocol in a completely isolated, though
not necessarily identical, manner (in particular, the devices are memory-less but
may be aware of the round number). Fix an optimal strategy S for G. Our
randomness amplifier is given by the family of protocols (Pm), where protocol
Pm is defined as follows.
Pm has R = R(m) rounds. The rounds are divided into (1/ε) blocks Bj of

εR rounds each. For each block, the referee chooses a random pair of inputs
(x, y) ∼ π that is used in every round of the block. The referee then checks that
in every block at least a ωq(G|S, x, y)− η fraction of the rounds have been won,
where here ωq(G|S, x, y) is defined as the probability that the players satisfy the
game condition, conditioned on their inputs being (x, y), in the fixed strategy S
(so that

∑
x,y π(x, y)ωq(G|S, x, y) = ωq(G)). (In the non-signaling case, replace

ωq by ωns.) The referee accepts the devices if and only if this condition holds
in every block. Note that P is a non-adaptive protocol with ideal strategy S⊗R,
completeness that goes exponentially fast to 1 with R, and seed length O(ε−1)
(where we treat the size of G as a constant).

The following lemma shows that the randomness amplifier (Pm) has good
soundness and expansion that’s linear in the number of rounds. Since the seed
length remains a constant as R(m) grows, the protocol can be used to achieve
unbounded expansion. A proof can be found in the full version of the paper [9].

Lemma 1. Let η, ξ > 0 and G a (p0, 4η, 1 − ξ)-randomness generating game
against quantum (resp. non-signaling) players. Then, for all ε > 0 and functions
R : N → N the above-described randomness amplifier (Pm) has: (1) Seed length
O(ε−1), (2) Completeness 1−e−Ω(εR(m)) with quantum (resp. non-signaling) de-
vices, (3) Soundness e−Ω(1/ε) against independent quantum (resp. non-signaling)
devices, (4) Smoothness e−Ω(1/ε), and (5) Expansion g(m) = αR(m), where α
is a positive constant depending only on ξ and η. Furthermore, P is η-robust.

4.2 Exponential Randomness Expansion

It is much more realistic to assume that the devices do have memory, and we ana-
lyze this case for the remainder of the section. For any gameG that is randomness
generating we show that there exists a corresponding randomness amplifier with
exponential expansion. For simplicity we only consider quantum strategies; the
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non-signaling setting is completely analogous. We introduce a randomness am-
plifier (Pm) which is parametrized by a randomness generating game G, a fixed
set of inputs (x0, y0) ∈ X × Y, an error tolerance η > 0, a precision ε = ε(m), a
“checking probability” pc = pc(m) and a number of rounds R = R(m).

Fix an m ∈ N. The protocol Pm proceeds as follows. The referee first samples
a string u ∈ {0, 1}R from a distribution q̂ that is within statistical distance
O(ε2) from the distribution q on {0, 1}R with density q(x) =

∏
i∈[R] p

xi
c (1 −

pc)
1−xi . In particular, q̂ is chosen so that the referee can sample from q̂ using

only O(pcR log(R)) uniformly random bits (we refer to the full version [9] for
details). He then selects inputs for the devices in the R rounds. If ui = 1 inputs
are selected as prescribed in G; such rounds are called “game rounds”. If ui = 0
they are set to the default value (x0, y0). Once inputs to the R rounds have been
computed, the referee sequentially provides them to the devices, who produce
a corresponding sequence of outputs. The referee computes the average number
of rounds in which the input/output pairs satisfy the game condition G, and
accepts if and only if it is at least ωq(G) − η. We note that Pm is a natural,
product protocol for which we define the ideal strategy to consist of playing each
round independently according to an optimal quantum strategy for the game G.
With that ideal strategy, the protocol is also η-robust.

The following theorem shows that for any game G that is (p0, η, 1 − ξ)-
randomness generating against quantum adversaries,4 for some ξ > 0, the pro-
tocols (Pm) form a randomness amplifier with expansion that’s linear in the
number of rounds.

Theorem 3. Let G be (p0, 4η/p0, 1−ξ)-randomness generating against quantum
players, with input distribution π. Let mπ be the number of uniform random bits
required to sample a pair of inputs (x, y) ∼ π. Let pc, R, ε, s : N → N be non-
negative functions such that pc(m)R(m)(logR(m) +mπ) ≤ m/C, ε(m) ≤ s(m),

and s(m)ε(m) > e−Cmin(η2,p0ξ
2)pc(m)R(m) for all m, where C is a universal

constant. Then the family of protocols (Pm) (as defined above), based on game
G, inputs (x0, y0), error tolerance (p0η/4), precision ε, checking probability pc
and number of rounds R is a randomness amplifier with (1) Seed length m,

(2) Completeness c ≥ 1 − e−η
2R(m) with quantum devices, (3) Soundness s

against quantum devices, (4) Smoothness ε, and (5) Expansion g(m) ≥ ξR(m)/5.
Furthermore, (Pm) is δ-robust for any δ < p0η/4.

For any small constant η > 0, integer m and desired soundness and smoothness
ε = s, setting R(m) = C′m/ log(1/ε) and pc = C′′ log(1/ε)/R for small enough
C′ and large enough C′′ (depending on η, p0 and ξ) will lead to parameters that
satisfy the theorems’ assumptions, thus guaranteeing an amount of min-entropy
generated that is exponential in m for constant ε. A full proof of Theorem 3 can
be found in [9].

4 For simplicity we focus here on establishing completeness and soundness for quantum
devices, but our arguments can easily be extended to the non-signaling case.
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5 Upper Bounds

In this section we prove upper bounds on the expansion attainable by a wide class
of randomness amplifiers. The upper bounds are proved by exhibiting “cheating
strategies” for the two devices DA and DB that fool a referee into accepting,
while producing an amount of entropy that is at most doubly exponential in the
referee’s seed length. In particular, our bounds on output entropy are indepen-
dent of the number of rounds.

The main idea behind the cheating strategies we exhibit is that, after a suf-
ficiently large number of rounds, there are inevitable correlations between the
referee’s inputs to the devices that hold irrespective of the referee’s choice of ran-
dom seed. These correlations can be inferred from the given input distribution
π of the protocol, before it begins. In Theorems 4 and 5 we use the observation
that after a number of rounds that is doubly exponential in the referee’s seed
length, the inputs to DA andDB in the current round i must be identical to their
inputs in some previous round j < i. If the referee’s test is particularly simple
(as it is assumed to be in Theorem 4), then the devices can pass the protocol
by simply copying their answers from round j. More generally, we show that for
robust protocols there will be a set of rounds J ⊆ [R] such that |J | = 2O(2m)

(wherem is the referee’s seed length), and a strategy for the devices to determin-
istically recombine their respective answers from the rounds in J into answers
for the rounds in [R]\J . It follows that the devices’ output entropy is at most
O(|J |) = 2O(2m).

An important element of the cheating strategies we present is the input
matrix, which is defined for any nonadaptive protocol as follows.

Definition 4 (Input matrix). Let P be an R-round, non-adaptive protocol
with seed length m. The input matrix MP is the R × 2m matrix whose (i, σ)-
entry is MP (i, σ) = (X(σ)i, Y (σ)i), where here X(σ) (resp. Y (σ)) are the input
sequences for device DA (resp. DB) chosen by the referee on seed σ ∈ {0, 1}m.
Let M = MP denote the input matrix for some protocol P . We let Mi ∈ (X ×
Y)2m denote the ith row of an input matrixM =MP . We define the set F (M) ⊆
[R] as the set of round indices i such that i ∈ F (M) iff Mi �= Mj for all
j < i. A simple, but crucial observation we use in our upper bounds is the
following: Let P be a protocol with seed length m and input alphabets X ,Y.
Then |F (M)| ≤ |X × Y|2m .

5.1 A Simple Doubly Exponential Bound

We first demonstrate a doubly exponential upper bound on randomness ampli-
fiers that are based on perfect games, which are games G such that ωq(G) = 1
(or ωns(G) = 1, if we’re allowing devices with full non-signaling power). In these
protocols, the referee checks that the devices win every single round.

Theorem 4. Let G be such that ωq(G) = 1 (resp. ωns(G) = 1). Let P = (Pm)
be a randomness amplifier with input (resp. output) alphabets X ,Y (resp. A,B)
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and in which the referee’s test consists in verifying that the devices win G in
every round. Suppose completeness and soundness of P both hold with quantum
(resp. non-signaling) devices. Then the expansion of P satisfies g(m) ≤ |X ×
Y|2m log |A × B| − log(1− ε(m)), where ε(m) is the smoothness of P .

We only sketch the proof here; we give a more general argument in the next
section. The idea of the proof is as follows: in each round i, the devices check
whether i ∈ F (M) or not, whereM =MPm is the input matrix corresponding to
protocol Pm. If it is, then the devices play according to the ideal, honest strategy
that wins G with probability 1. If not, then there must exist a j ∈ F (M),
j < i, such that Mi = Mj. Thus, regardless of the referee’s seed, it must be
that (xi, yi) = (xj , yj) always. In that case, the devices will simply replay their
outputs (aj , bj) from that round, independently setting ai := aj and bi := bj .
Since we can assume that round j was won with probability 1, round i must be
won with probability 1 as well. It is easy to see that the only entropy-generating
rounds are those in F (M), and the theorem follows from bound on |F (M)|
described above.

5.2 A Doubly Exponential Bound for Robust Protocols

In this section we generalize the bound from the previous section to show a
doubly exponential upper bound on the expansion achievable by any randomness
amplifier based on a protocol that is non-adaptive and robust. In particular, the
underlying game G may not be perfectly winnable, and the referee’s test T may
not necessarily check that the devices win G in every single round. The fact that
we allow an arbitrary test T in the protocol complicates the proof, as the referee
may now for example check for obvious answer repetitions in the players’ answers
to identical question pairs, and thereby easily detect cheating strategies of the
form described in Section 5.1. Nevertheless, we will design a somewhat more
elaborate cheating strategy for the devices in any such protocol, that prevents
it from achieving unbounded expansion.

Theorem 5. Let P = (Pm) be a natural, η-robust randomness amplifier such
that completeness and soundness both hold with respect to quantum (resp. non-

signaling) devices. Let Km = Ω
(

1
η2 log

|A×B|·|F (MPm )|
η

)
. Then the expansion of

P satisfies g(m) ≤ Km · |F (MPm)| · log |A ×B|− log(1− ε(m)), where A,B are
the output alphabets of P , and ε(m) is the smoothness of P .

Combined with the bound on |F (M)|, the theorem implies that any η-robust
randomness amplifier P must have a expansion g(m) = 2O(2m) (where the
constant in the O(·) depends only on η, the smoothness ε, and the alphabets
X ,Y,A,B). This in particular demonstrates that unbounded randomness ex-
pansion as demonstrated in Lemma 1 is impossible as soon as the devices are
allowed to have (classical) memory.

For space considerations we omit the proof; we sketch the idea here (we refer
to the full version of the paper [9] for details). Instead of directly reusing out-
puts corresponding to identical pairs of inputs, as described in Section 5.1, the



482 M. Coudron, T. Vidick, and H. Yuen

devices first repeatedly apply the protocol’s ideal quantum (resp. non-signaling)
strategy for game G in order to locally generate a discrete approximation to the
corresponding distribution on outputs. Whenever they receive a pair of ques-
tions for which they already computed such an approximation, they use shared
randomness to jointly sample a pair of answers from the approximating distri-
bution. To conclude we use the probabilistic method to derandomize the shared
sampling step (which would otherwise still lead to the generation of a constant
amount of entropy per round).

5.3 An Exponential Upper Bound for Protocols with Non-signaling
Devices

In this section we demonstrate exponential upper bounds on the attainable ex-
pansion of a class of non-adaptive randomness amplifiers for which completeness
holds with respect to non-signaling devices. We address protocols using the chsh
game, which have been widely studied in the literature [14,19].

Theorem 6. Let P = (Pm) be a randomness amplifier in which completeness
and soundness both hold with non-signaling devices, and for each m the referee’s
test Tm is a product test with respect to the chsh game. Then g(m) ≤ 22m+2 −
log(1− ε(m)), where ε(m) is the smoothness parameter of P .

For space considerations, we omit the proof; we refer to the full version of the
paper [9] for details.

Theorem 6 exhibits a scenario in which the specific structure of the underlying
game G and the protocol can be used to give an exponential improvement over
Theorem 4. For simplicity we have constrained the theorem statement to pro-
tocols involving the chsh game, but the proof can be extended to establish the
same result when G is a balanced 2-player XOR game, as well as the (3-player)
GHZ game, which has played an important role in early randomness expansion
results [7]. We refer to the full version of the paper for additional details.

We remark that Theorem 6 implies a “meta-theorem” that says that the type
of analysis performed in [19] cannot be improved to have more than exponential
expansion. Any randomness amplifier based on the chsh game in which the
referee only checks that the devices won more than a certain fraction of the
rounds, and where the analysis of soundness only uses the fact that the devices
are non-signaling, by Theorem 6, must be limited to exponential expansion.
The randomness amplifier in [19] is of this form, and hence modifying it to
obtain super-exponential expansion would require either a non-product test, or
an analysis that uses the fact that the devices can “only” be quantum!
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Abstract. We consider Achlioptas processes for k-SAT formulas. That
is, we consider semi-random formulas with n variables and m = αn
clauses, where each clause is a choice, made on-line, between two or
more independent and uniformly random clauses. Our goal is to move
the sat/unsat transition, making the density α = m/n at which these
formulas become unsatisfiable larger or smaller than the satisfiability
threshold αk for uniformly random k-SAT formulas. We show that three
choices suffice to raise the threshold for any k ≥ 3, and that two choices
suffice for 3 ≤ k ≤ 50. We also show that (assuming the threshold con-
jecture is true) two choices suffice to lower the threshold for all k ≥ 3,
and that (unconditionally) a constant number of choices suffice.

1 Introduction

The Erdős-Rényi model of random graphs undergoes a celebrated phase tran-
sition. Specifically, suppose we form a random graph G(n,m) with n vertices
and m edges by choosing m times uniformly from the

(
n
2

)
possible edges. The

average degree of this graph is d = 2m/n. If d < 1, then with high probability
in the limit n → ∞, G(n,m) consists almost entirely of trees, and the largest
component has size O(log n). But if d > 1, then with high probability G(n,m)
has a giant connected component containing Θ(n) vertices.

In 2001, Dimitris Achlioptas posed the following question. Suppose at each
step we are presented with two uniformly random edges. We are allowed to
choose between them, adding one of them to the graph and throwing away the
other. We play this game on-line; that is, our choice can depend on the graph
up to this point, but not on future pairs of edges. Can we delay the appearance
of the giant component, ensuring that the largest component has size o(n) after
m = cn edges for some c > 1/2?

A positive answer was given by Bohman and Frieze [5], who showed that two
choices suffice to delay the giant up to c = 0.535. Achlioptas, D’Souza, and
Spencer [1] studied a particular rule where we choose the edge that minimizes
the product of the component sizes of its endpoints; this exhibits a phenomenon
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they call explosive percolation (although Riordan and Warnke [28] showed that
the transition is continuous). It is also possible to speed up the appearance of
the giant component [14,6]; Spencer and Wormald [30] showed that it can be
brought into existence at c = 0.334.

In analogy with G(n,m), we can consider random k-SAT formulas Fk(n,m).
Specifically, given n variables x1, . . . , xn, we create a k-SAT formula by choosing
m clauses independently and uniformly from the 2k

(
n
k

)
possibilities. The satis-

fiability threshold conjecture states that there is a critical density αk = m/n at
which Fk(n,m) undergoes a phase transition from satisfiable to unsatisfiable:

Conjecture 1 For each k ≥ 2, there is a constant αk such that

lim
n→∞Pr[Fk(n, αn) is satisfiable] =

{
1 α < αk

0 α > αk .

This conjecture has been proved only for k = 2 [9,16,13], where α2 = 1. For
the NP-complete case k ≥ 3, Friedgut [15] showed the existence of nonuniform
thresholds αk(n) but it is not known whether these converge to a constant as n
goes to infinity. Nevertheless, there are strong arguments from statistical physics
that the conjecture is true, and very precise estimates for the value of αk from
calculations using the cavity method (see [22,23] for reviews).

There are rigorous upper and lower bounds on αk assuming it exists. That
is, there are known values αlow

k , αhigh
k such that w.h.p. Fk(n, αn) is satisfiable if

α < αlow
k and unsatisfiable if α > αhigh

k . In that case, we write αlow
k ≤ αk ≤ αhigh

k .
Specifically, for k = 3 we have [11,17,19]

3.52 ≤ α3 ≤ 4.4898 , (1)

while the cavity method gives α3 = 4.267. For large k, the best known rigorous
bounds on the threshold [10,20] behave as

2k ln 2− 3 ln 2

2
− o(1) ≤ αk < 2k ln 2− 1 + ln 2

2
, (2)

where o(1) tends to zero as k tends to infinity. The cavity method of statistical
physics [21] gives

αk = 2k ln 2− 1 + ln 2

2
+O(2−k) .

Sinclair and Vilenchik [29] asked whether Achlioptas processes can delay the
satisfiability/unsatisfiability transition for k-SAT. In other words, suppose at
each step we are given a choice of two independent and uniformly random clauses.
We choose one of them and add it to the formula, and our goal is keeping the
formula satisfiable up tom = αn clauses for some α > αk. They showed that two
choices are enough to delay the 2-SAT transition up to α = 1.0002, and also that
two choices can delay the k-SAT transition for k = ω(logn). Perkins [27] shows
that, for each k ≥ 3, there exists a finite τ such that τ choices can delay the
k-SAT transition, and that 5 choices suffice for k = 3. Furthermore, it follows
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from his Lemma 1 and known upper bounds on the k-SAT threshold that 7
choices suffice for all k, and that 3 choices suffice for all sufficiently large k.

We improve these results in the following ways. First, we give a simple, non-
adaptive strategy that, given a choice between three clauses, increases the k-SAT
threshold for all k ≥ 2. Secondly, we give a two-choice strategy that increases the
threshold for all 3 ≤ k ≤ 50, and we conjecture that it works for all large k as
well. Finally, we give a simple strategy that, assuming the threshold conjecture,
lowers the k-SAT threshold for all k using two choices. Without this assump-
tion, the same method still works for two choices for sufficiently large k, but may
require a larger number of choices to lower the threshold for small values of k.

2 Three Choices Suffice to Raise the Threshold for All k

In this section and the next, we show that a constant number of choices suffice to
raise the satisfiability threshold. Our strategy is simple and nonadaptive. Indeed,
it is oblivious to the “topology” of the formula—which variables appear together
in clauses—and is sensitive only to the signs of the literals. Given a choice of τ
clauses, we choose the one with the largest number of positive literals.

To show that the resulting k-SAT formula is satisfiable, we convert it into
an �-SAT formula in the following way: for each k-SAT clause c, we form an
�-SAT clause by taking � of the most positive literals in c. If the resulting �-SAT
formula is satisfiable, then so is the original k-SAT formula. In Theorem 1, we
use � = 2; in Theorems 2–4, we use � = 3.

We note that Perkins [27] used a similar strategy, with � = 2, to show that
a constant number of choices suffice for any k. Specifically, given τ choices, if
any of the first τ − 1 clauses have two or more positive literals, we choose one
of them; otherwise, we choose the τth clause. Our rule is slightly more selective,
since even if none of the clauses have two positive literals, it chooses a clause
with one positive literal if one exists.

Theorem 1. Three choices suffice to increase the k-SAT threshold for k ≥ 2.

Proof. As described above, we simply take the clause c with the most positive
literals. We then generate a 2-SAT formula by taking two of the most positive
literals from each clause. Specifically, if c has two or more positive literals, we
form a 2-SAT clause by choosing uniformly from all such pairs; if c has exactly
one positive literal, we take it and choose uniformly from the k − 1 others; and
if all of c’s literals are negative, we choose uniformly from all

(
k
2

)
pairs.

If c is the most-positive of τ uniformly random clauses, then the probabilities
that the resulting 2-SAT clause has 0, 1, or 2 positive literals are

p0 = 2−kτ

p1 =
(
2−k(k + 1)

)τ − p0
p2 = 1− p0 − p1 . (3)
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If there are m = αn clauses, this gives a biased random 2-SAT formula with, in
expectation, αp0n, αp1n, and αp2n clauses of these three types. Note that the
variables appearing in each clause are independent and uniformly random.

Recall that a 2-SAT formula on n variables is equivalent to a directed graph
on 2n vertices, corresponding to the literals xi and xi for each 1 ≤ i ≤ n. Each
clause (xi ∨xj) is equivalent to a pair of edges, namely the implications xi → xj
and xj → xi. The formula is satisfiable if and only if no contradictory cycle
exists, leading from xi to xi and back to xi for some i.

Unit clause propagation is the process of satisfying a unit clause, i.e. a clause
consisting of a single literal, and generating the unit clauses implied by it and
whatever 2-clauses that variable appears in. For instance, if (xi ∨ xj) is one of
the 2-clauses in the formula, satisfying the unit clause (xi) will generate the unit
clause (xj). Consider the positive unit clause (xi). Satisfying it will create new
unit clauses from each of the 2-clauses that contain the literal xi. In expectation,
there are 2αp0 of these of the type (xi∨xj) and αp1 of type (xi∨xj). The former
give rise to negative unit clauses (xj), while the former give rise to positive unit
clauses (xj). Similarly, a negative unit clause (xi) will give rise to on average
αp1 negative unit clauses and 2αp2 positive unit clauses, from the 2-clauses
containing the literal xi. Unit clause propagation is thus described by a two-
type branching process, with a matrix αM where

M =

(
p1 2p2
2p0 p1

)

, (4)

where we treat the number of negative and positive unit clauses in the current
generation as a column vector and multiply by M on the left.

Given an initial vector u of unit clauses, the expected population generated
by the entire process is

(
1+ αM + (αM)2 + · · · ) · u .

If the largest eigenvalue λ of M obeys αλ < 1, this converges to (1−αM)−1 ·u,
and in expectation just O(1) unit clauses are implied by the initial one. In-
tuitively, this makes it very unlikely that a contradictory loop of implications
exists, and suggests that the 2-SAT formula is satisfiable with high probability.

Indeed, this was proved by Mossel and Sen [26]. They showed that the critical
threshold for random 2-SAT formulas of this kind is exactly

α∗ =
1

λ
=

1

p1 + 2
√
p0p2

.

For the unbiased case p1 = 1/2 and p0 = p2 = 1/4, this reproduces the 2-SAT
threshold α2 = 1. Putting in our expressions (3) for p0, p1, and p2 gives

α∗ =
2kτ/2

2−kτ/2((k + 1)τ − 1) + 2
√
1− (2−k(k + 1))τ

For large k, α∗ grows as 2kτ/2/2. If we set τ = 3, then α∗ exceeds the k-SAT
threshold for all k ≥ 3. In particular, for k = 3 we have α∗ > 4.86, which exceeds
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the best known upper bound on α3 of 4.4898 [11]. For k ≥ 4, α∗ exceeds the
first moment upper bound 2k ln 2. �	

Note that we have shown not just that three choices are enough to generate
satisfiable formulas above the satisfiability threshold, but that these formulas
can be satisfied in polynomial time: just use the polynomial-time algorithm for
2-SAT to find a satisfying assignment. For the case k = 2 and τ = 2, we have
also shown that two choices raise the 2-SAT threshold to 1.203, which improves
the results of [29,27].

Note also that setting τ = 1 in the proof of Theorem 1 shows that the threshold
for random k-SAT without any choices grows as αk = Ω(2k/2). This is far below
the second moment lower bound Ω(2k) [2,4,10], but the proof is much simpler.

3 Two Choices Suffice to Raise the Threshold for
3 ≤ k ≤ 50

In this section we show that two choices suffice for k up to 50. We do this by
analyzing simple linear-time algorithms with differential equations. Regrettably,
these equations seem too complicated to solve analytically; thus we are not able
to prove that these results hold for all k ≥ 3, though we conjecture that they do.

We start by showing that a particularly simple algorithmworks for 5 ≤ k ≤ 50.
We then use slightly more sophisticated algorithms to raise the threshold for
k = 3 and k = 4.

Theorem 2. Two choices suffice to increase the k-SAT threshold if 5 ≤ k ≤ 50.

Proof. Our strategy is the same as before: given a choice of τ clauses, take the
one with the most positive literals. We then form a 3-SAT clause by choosing
uniformly from among the most-positive triplets of literals. Analogous to (3),
the probability that the resulting clause has 0, 1, 2, or 3 positive literals is

p0 = 2−kτ

p1 =
(
2−k(k + 1)

)τ − p0
p2 =

(

2−k
((

k

2

)

+ k + 1

))τ
− p1 − p0

p3 = 1− p0 − p1 − p2 . (5)

Now consider the following algorithm, which we call BUC for Biased Unit Clause.
At each step it sets some variable x permanently, removing clauses satisfied by
that setting, and shortening clauses that disagree with it.

1. (Forced step) If there exist unit clauses, choose one uniformly and satisfy it.
2. (Free step) Else, choose x uniformly from all unset variables, and set x true.

This is identical to the UC algorithm for random k-SAT studied by Chao and
Franco [7,8] except that, on a free step, UC flips a coin to determine the truth
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value of x. If at any point we have two contradictory unit clauses, we simply give
up rather than backtracking. Our goal is to use differential equations to show
that BUC succeeds with positive probability. The existence of a nonuniform
threshold [15], which we claim applies to these biased 3-SAT formulas as well,
then implies that they are satisfiable with high probability.

After T of the variables have been set, let Sij(T ) denote the number of i-
clauses with j positive literals, for i = 2, 3 and 0 ≤ j ≤ i. Initially we have
w.h.p. S3,j(0) = αpjn + o(n) and S2,j(0) = 0. Let q0(T ) and q1(T ) denote the
probability that the variable on the T th step is set false or true respectively.
Then the expected change in Sij at each step is

for all 0 ≤ j ≤ 3 , E [ΔS3,j ] = − 3S3,j

n− T + o(1)

for all 0 ≤ j ≤ 2 , E [ΔS2,j ] =
(3− j)q1S3,j + (j + 1)q0S3,j+1 − 2S2,j

n− T + o(1) .

The key fact behind these equations is that, at all times throughout the algo-
rithm’s progress, the formula consisting of the remaining clauses is uniformly
random once we condition on the number of clauses of each type. In particular,
the variables appearing in each clause are uniformly random among the n − T
unset variables, as is the variable x set on a given step. Thus each 3-clause is
either satisfied or shortened with probability 3/(n−T ); if it has j positive literals
and we set x false, then with probability j/(n − T ) it becomes a 2-clause with
j − 1 positive literals; and so on.

Rescaling to real-valued variables t = T/n and sij(t) = Sij(tn)/n in the usual
way gives the differential equations

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

= − 3s3,j
1− t (6)

for all 0 ≤ j ≤ 2 ,
ds2,j
dt

=
(k − j)q1s3,j + (j + 1)q0s3,j+1 − 2s2,j

1− t , (7)

with the initial conditions s3,j(0) = αpj and s2,j(0) = 0. Then classic results [32]
show that, with high probability, Sij(T ) = sij(T/n)n+o(n) for all T , where sij(t)
is the unique solution to this system of differential equations.

The caveat to this, of course, is that a contradictory pair of unit clauses does
not appear. Standard arguments show that as long as the branching process
of unit clauses stays subcritical throughout the algorithm, then the probability
that no contradiction occurs, and that the algorithm succeeds in satisfying all
the clauses, is Θ(1).

Analogous to (4), the unit clauses obey a two-type branching process between
negative and positive unit clauses, where the expected number of children of
each type is within o(1) of the matrix

M =
1

1− t
(
s2,1 2s2,0
2s2,2 s2,1

)

. (8)

We can group steps together into rounds, where each round consists of a free
step followed by a cascade of forced steps. Let λ denote the largest eigenvalue of
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M . As long as λ < 1, the branching process is subcritical, and the total expected
number b0, b1 of variables set false or true respectively in a round is

(
b0
b1

)

=
(
1+M +M2 + · · · ) ·

(
0
1

)

= (1−M)−1 ·
(
0
1

)

,

where we use the fact that the initial free step in each round sets a variable true.
Averaging over many steps, but not so many that M changes appreciably, the
probability that a variable is set false or true is

q0 =
b0

b0 + b1
, q1 =

b1
b0 + b1

.

Similar analyses of multi-type branching processes appear in [3,18].

Table 1. The lower bound α∗
BUC achieved by choosing the clause with the most positive

literals, and running Biased Unit Clause on the 3-SAT formula consisting of one of the
the most-positive triplets of each clause. For 5 ≤ k ≤ 50, α∗

BUC exceeds the first-
moment upper bound on αk, showing that two choices suffice to raise the threshold.
See Figure 1.

k 3 4 5 6 7 8 9 10

α∗
BUC 4.232 9.491 24.306 66.811 190.806 554.106 1610.88 4637.05

2k ln 2 22.18 44.36 88.72 177.45 354.89 709.78

The differential equation (6) for s3,j is easy to solve: namely,

s3,j = αpj(1− t)3 .

We integrate (7) numerically, with guaranteed bounds on the error, and use
binary search to find the largest α, up to some precision, such that maxt λ(t) < 1.
In Table 1 and Figure 1, we show the resulting lower bound α∗BUC for the first
few values of k. For k = 3 and k = 4, α∗BUC is below the conjectured values of
the threshold [21], namely 4.267 and 9.931. But for 5 ≤ k ≤ 50, α∗BUC exceeds
the first moment upper bound 2k ln 2. �	

Asymptotically, α∗BUC seems to grow roughly as βk, where β ≈ 2.52. It is tempt-
ing to think that we can prove a lower bound on α∗BUC sufficient to show that
two choices suffice for all k > 50 as well, but we have not been able to do that.

The next two theorems use slight improvements to Theorem 2 to raise the
threshold for k = 3 and k = 4.
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Fig. 1. Log plot of α∗
BUC and 2k ln 2 for 3 ≤ k ≤ 50

Theorem 3. Two choices suffice to increase the 4-SAT threshold.

Proof. Given two clauses, we again take the one with more positive clauses, but
now we apply the BUC algorithm directly to the resulting 4-SAT formula. Most
of the analysis of Theorem 2 goes through unchanged, except that the probability
that a clause has a given number of positive literals is now

p0 =
1

256
, p1 =

3

32
, p2 =

3

8
, p3 =

13

32
, p4 =

31

256
.

The differential equations (7) for the density of 2-clauses and the matrix M
for the branching process of unit clauses (8) are unchanged. The differential
equations for 4- and 3-clauses are now

for all 0 ≤ j ≤ 4 ,
ds4,j
dt

= − 4s4,j
1− t

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

=
(4− j)q1s4,j + (j + 1)q0s4,j+1 − 3s3,j

1− t , (9)

and the initial conditions are s4,j(0) = αpj and s3,j(0) = s2,j(0) = 0.
Integrating this system numerically, we find that M ’s largest eigenvalue λ is

less than 1 up to α = 10.709. This is less than the naive first moment upper
bound on α4, but it exceeds an improved upper bound of 10.217 based on count-
ing locally maximal assignments [12]. �	
Finally, we use a biased version of the Short Clause (SC) algorithm, which
Chvatal and Reed used to prove a lower bound on the 3-SAT threshold [9],
to show that two choices can delay the satisfiability transition in 3-SAT.
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Theorem 4. Two choices suffice to increase the 3-SAT threshold.

Proof. Once again our strategy is to take the more positive of the two clauses.
The probability that a clause has a given number of positive literals is

p0 =
1

64
, p1 =

15

64
, p2 =

33

64
, p3 =

15

64
.

We now analyze the following algorithm, which we call Biased Short Clause
(BSC).

1. (Forced step) If there exist unit clauses, choose one uniformly and satisfy it.
2. (Free step) Otherwise, if there are any 2-clauses, choose one uniformly. If

it has any positive literals, choose one uniformly and satisfy it. If both its
literals are negative, choose one uniformly and satisfy it.

3. (Really free step) If there are no unit clauses or 2-clauses, choose x uniformly
from the unset variables and choose x’s truth value uniformly.

This is identical to Short Clause [9] except that, whenever possible, we satisfy
the chosen 2-clause by setting a variable true.

During the critical phase of the algorithm, there are Θ(n) 2-clauses, so we
can effectively ignore the possibility of a really free step. Let pfree denote the
probability that a given step is free. The differential equations for 3- and 2-
clauses are then

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

= − 3s3,j
1− t (10)

for all 0 ≤ j ≤ 2 ,
ds2,j
dt

=
(k − j)q1s3,j + (j + 1)q0s3,j+1 − 2s2,j

1− t
− pfree s2,j

s2,0 + s2,1 + s2,2
, (11)

where the additional term is due to the fact that we choose and satisfy a random
2-clause on every free step.

As before, consider a round consisting of a free step followed by a cascade of
forced steps, and let b0 and b1 denote the total expected number of variables set
false or true during a round. The probability that a given step is free is 1 divided
by the expected length of the round,

pfree =
1

b0 + b1
,

and the probability that a given step sets a variable false or true is q0 = b0/(b0+
b1) and q1 = b1/(b0 + b1) respectively. The matrix M describing the branching
process of unit clauses is the same as in BUC. However, the initial population of
unit clauses in each round is different. Rather than always setting a variable true,
a free step sets a variable true if the chosen 2-clause has at least one positive
literal, and otherwise it sets a variable false. Thus

(
b0
b1

)

=
1

s2,0 + s2,1 + s2,2
(1−M)−1 ·

(
s2,0

s2,1 + s2,2

)

.
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Integrating this system numerically, we find that M ’s largest eigenvalue λ
stays below 1 for all t as long as α < 4.581. This exceeds the best known upper
bound α3 < 4.4898, completing the proof. �	

All these results show that two choices are enough to create a formula at a
density above αk that can be satisfied, with probability Θ(1), in linear time.

4 Two Choices Suffice to Lower the Threshold, If There
Is One

We now show that two choices are enough to lower the satisfiability threshold
if the threshold exists. If there is no threshold, we can still lower it; we explain
below what we mean by this tongue-in-cheek statement.

Theorem 5. Two choices suffice to lower the threshold for k-SAT for any k,
assuming that the threshold conjecture holds.

Proof. Our strategy depends on the topology of the formula, but in a very simple
way. Let 0 < a < 1 be a constant to be determined. We simply prefer clauses
whose variables are all in the set U = {x1, x2, . . . , xan} to those with one or
more variables outside U .

If we have τ choices, the probability that the chosen clause has all its variables
in U is

q = 1− (1 − ak)τ ,
If the subformula consisting of these clauses is unsatisfiable, then so is the entire
formula. But this subformula is uniformly random in Fk(n

′,m′) where n′ = an
and E [m′] = qm. By the Chernoff bound, its density is arbitrarily close to

α′ =
m′

n′
= αγ where γ =

1− (1− ak)t
a

. (12)

Thus the chosen formula is unsatisfiable w.h.p. if α > αk/γ, lowering the thresh-
old by a factor of γ.

To confirm that there is an a such that γ > 1, we maximize γ as a function
of a. Specifically, if τ = 2 then γ is maximized at

a =

(
2k − 2

2k − 1

)1/k

,

where

γ =
4k(k − 1)

(2k − 1)2

(
2k − 1

2k − 2

)1/k

≥ 1 +
1

4k2
. (13)

This completes the proof. �	

We remark that a similar strategy shows that two choices are enough to create
a giant component with m = cn edges where c = (3/8)

√
3/2 = 0.459.
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What if we don’t take the threshold conjecture for granted? Theorems 1–4
still “raise the threshold” unconditionally, in the sense that two or three choices
give formulas that are w.h.p. satisfiable at densities where random k-SAT for-
mulas are w.h.p. unsatisfiable. We can give an analogous result for lowering the
threshold:

Theorem 6. For any k, there is a constant τ such that τ choices suffice to
generate formulas that are w.h.p. unsatisfiable at densities where random k-SAT
formulas are w.h.p. satisfiable. For sufficiently large k, two choices suffice.

Proof. Following the proof of Theorem 5, we just have to ensure that γ > γk
where γk = αhigh

k /αlow
k is the ratio between the best known upper and lower

bounds on the threshold, i.e. the lowest and highest densities where random
k-SAT formulas are known to be unsatisfiable or satisfiable respectively.

Examining (12), we see that for any k and any γk there are constants a, τ
such that γ > γk. For instance, let a = 1/(2γk) and let τ be large enough so
that (1− ak)τ < 1/2.

For large k, from (2) we have γk = 1+O(2−k), where O represents a constant
independent of k. Since from (13) we can achieve γ = 1 + Θ(1/k2) with two
choices, there is some k0 such that two choices suffice for all k ≥ k0. �	

For 3-SAT in particular, where the current value of γk is 4.898/3.52 = 1.275,
maximizing γ as a function of a shows that 6 choices suffice to lower the threshold
unconditionally.

5 Conclusion

We have shown that three choices are enough to raise the satisfiability threshold
in random k-SAT, and that two are enough to lower it, for any k. We have also
shown that two are enough to raise it for k ≤ 50. We are left with several open
questions.

1. Are two choices enough to raise the threshold for any k? This seems incon-
trovertible, but we not see how to extend our analysis of Biased Unit Clause
to arbitrary k.

2. Sinclair and Vilenchik [29] point out that if we are allowed to choose off-line,
i.e. if we are given all pairs of clauses in advance, then with two choices can
raise the k-SAT threshold exactly to the 2k-SAT threshold, since a choice of
two k-SAT clauses is equivalent to a 2k-SAT clause. Can we do nearly this
well in the on-line version? Or is there a stricter upper bound on how high
we can raise the k-SAT threshold with two on-line choices, say O(2ck) for
some c < 2?

3. Our two-choice strategy for lowering the threshold does so by a factor of
1 + O(1/k2). Is there a strategy with two choices, or a constant number of
choices, that lowers the threshold by a constant factor for all k?
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Abstract. We consider graphs obtained by placing n points at random
on a unit sphere in R

d, and connecting two points by an edge if they are
close to each other (e.g., the angle at the origin that their corresponding
unit vectors make is at most π/3). We refer to these graphs as geometric
graphs. We also consider a complement family of graphs in which two
points are connected by an edge if they are far away from each other (e.g.,
the angle is at least 2π/3). We refer to these graphs as anti-geometric
graphs. The families of graphs that we consider come up naturally in the
context of semidefinite relaxations of graph optimization problems such
as graph coloring.

For both distributions, we show that the largest dimension for which
a random graph is likely to be connected is the same (up to an additive
constant) as the largest dimension for which a random graph is likely not
to have isolated vertices. The phenomenon that connectivity of random
graphs is tightly related to nonexistence of isolated vertices is not new,
and appeared in earlier work both on nongeometric models and on other
geometric models. The fact that in our model the dimension d is allowed
to grow as a function of n distinguishes our results from earlier results
on connectivity of random geometric graphs.

1 Introduction

For natural numbers n and d and an angle 0 < θ < 2π, an (n, θ, d)-graph is
a collection of n points on the unit sphere in R

d (equivalently, n unit vectors),
with two points (vertices) connected by an edge iff the angle between their
corresponding unit vectors is at most θ. For example, when d = 2, we have
points placed on a circle of radius 1, and two points are neighbors if the angular
distance between them is at most θ. Equivalently, each point can be viewed
as representing an interval of angular length θ centered at the point, and two
intervals are neighbors if they intersect. When d ≥ 3 the points can be thought
of as equal size discs placed on the unit sphere, and two points are neighbors
if their discs intersect. In this work we shall be interested in the case when
the dimension d is relatively large and scales roughly like logn. We call such
graphs high dimensional geometric graphs. Our interest in high dimensional
geometric graphs (and their complements that we call anti-geometric graphs,

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 497–512, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with an edge iff the angle is at least θ) stems from the fact that they come
up naturally as solutions for various semidefinite relaxations of combinatorial
optimization problems (see [13,10], for example). The question that we address in
the current work is that of connectivity of these graphs. Specifically, we consider
the distribution Gn,d,θ in which the locations on the sphere of the n vertices of
the (n, θ, d)-graph are chosen uniformly independently at random, and ask for
which range of parameters of (n, θ, d) is the graph likely to be connected. This
question comes up naturally in the study of algorithms for coloring of random
high dimensional anti-geometric graphs [4], and turns out to be more subtle than
one might first imagine.

1.1 Definitions and Notation

We use S
d to denote the unit sphere centered at the origin in R

d, namely, the
set of vectors in R

d of Euclidean norm 1. (Note that in other literature this
is sometimes denoted by S

d−1, due to the fact that it is a (d − 1)-dimensional
object.) We measure the distance between two points in S

d by the angle at the
origin between the unit vectors that represent these points. Namely, for unit
vectors u and v, their angular distance is arccos(vu), where uv denotes their
inner product. An (n, θ, d)-graph G(V,E) has as its vertex set V a collection of n
points in S

d, and for u, v ∈ V there is an edge (u, v) ∈ E iff their angular distance
is at most θ, namely, arccos(vu) ≤ θ. We refer to these graphs as geometric
graphs, and to θ as the neighborhood radius. Observe that as we measure angular
distance, a geometric graph remains unchanged if we scale the radius of Sd to be
different than 1. We shall also be interested in complements of (n, θ, d)-graphs,
in which (u, v) ∈ E iff arccos(vu) ≥ θ. We refer to these graphs as anti-geometric
graphs, and to π − θ as the neighborhood radius. (We note that once we fix θ,
in our graphs it will not happen that arccos(vu) = θ, and hence geometric and
anti-geometric graphs are indeed complements of each other.)

Related work studied other families of geometric graphs in R
d (not necessarily

on S
d), with geometric distances induced either by the Euclidean norm or by

other norms. We shall use the term neighborhood radius, typically denoted by
r, to denote the geometric distance up to which two points are declared to be
neighbors in these models as well.

For given (n, θ, d), we shall be interested in the distributionGn,θ,d over (n, θ, d)-
graphs, in which the n vertices are placed independently uniformly at random
in S

d. Likewise, Ḡn,θ,d denotes the distribution over anti-geometric graphs (the
complements of (n, θ, d)-graphs) when the n vertices are placed independently
uniformly at random in S

d.
Given a graph G(V,E) and two (not necessarily disjoint) sets A and B of

vertices, EG(A,B) denotes the set of edges with one endpoint in A and the
other endpoint in B, and eG(A,B) = |EG(A,B)| denotes the number of such
edges.

Definition 1. A graph G(V,E) is called an (n, h)-expander if |V | = n and for
every set of vertices S ⊂ V with |S| ≤ n/2 it holds that e(S, V \ S) ≥ h|S|.
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1.2 Our Results

We shall assume that θ is a fixed constant (specifically, θ = π/3), and consider
increasing values of d.

Given d, scale the sphere Sd so that its total surface area is 1. Let μ(θ, d) denote
the area of a spherical cap of angular radius θ. Given a vertex in S

d, its expected
number of neighbors in Gn,θ,d is precisely (n− 1)μ(θ, d). Hence if n < 1/μ(θ, d)
we expect a constant fraction of the vertices to be isolated (implying that the
graph is not connected). It is not difficult to show (see Section 5) that a value
of nIV � 1

μ(θ,d) ln(1/μ(θ, d)) serves as a threshold value for isolated vertices: for

every ε > 0, if n ≥ (1 + ε)nIV there are unlikely to be isolated vertices, whereas
if n ≤ (1 − ε)nIV there are likely to be isolated vertices. The same applies to
Ḡn,θ,d by setting nIV � 1

μ(π−θ,d) ln(1/μ(π − θ, d)).
Theorem 1. Let θ < π/2 be a fixed constant (e.g., θ = π/3) and let d be
sufficiently large. There is some universal constant c ≥ 1 such that if n ≥ cnIV
then both Gn,θ,d and Ḡn,π−θ,d are connected with probability 1− o(1) (where the
o(1) term tends to 0 as d grows).

Our proof of Theorem 1 shows that a value of c � π/θ suffices. One may conjec-
ture that Theorem 1 is true also for some absolute constant c independent of θ,
and moreover, that this constant is not much larger than 1.

We are mostly interested in the case that θ is constant, d is a parameter that
may grow, and n is exponential in d. Given θ and d, Theorem 1 determines up
to a constant multiplicative factor the smallest value of n for which the graph is
likely to be connected. Had we fixed θ and n, the same proof would determine up
to a constant additive term the largest value of d for which the graph is likely to
be connected. For example, if θ = π/3 and one is given a value of n, our results
establish that there is a constant c1 � 6.95212 (see Section 5) and a constant
c2 > 0 such that if d ≤ c1 logn the graph is connected with probability 1− o(1),
and if d ≥ c1 logn + c2 the graph is connected with probability at most o(1).
Finally, had we fixed d and n (exponential in d), the proof of Theorem 1 would
determine up to an additive term of order O(1/d) the smallest value of θ for
which the graph is likely to be connected.

Our proof of Theorem 1 involves two aspects. One is that of establishing
various expansion properties of a random (N, θ, d) graph G′ when θ is a fixed
constant (e.g., θ = π/3), d is a parameter that can grow, and N tends to infin-
ity. Establishing these properties involves symmetrization arguments of the type
used in [6,7]. Thereafter, we view the random (n, θ, d) graph G as a random sub-
graph of G′ induced on n random vertices. We wish to show that the expansion
properties of G′ imply that G is likely to be connected. This is done using the
following theorem which is applied in a situation in which the expansion h is of
the order of the maximum degree in G, and this maximum degree is so large
(e.g., it might be N

logN ) so that log(N/h) is much smaller than logN .

Theorem 2. Let G(V,E) be an (N, h)-expander of maximum degree Δ. Con-
sider a vertex induced subgraph H that contains qN vertices chosen randomly
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and independently. If q > 1+o(1)
h ln(Nh ) + O

(
1
h log(

Δ
h )

)
then the probability that

H is connected is at least 1 − o(1), where the o(1) term tends to 0 as N
h tends

to infinity.

1.3 Related Work

Connectivity in uniform random graphs (non-geometric) is well understood.
Given n vertices which initially have no edges, if one inserts random and inde-
pendent edges to the graph, with high probability the graph becomes connected
exactly at the point where every vertex has degree at least one [5]. Theorem 1 is
an approximate version of this tight connection between connectivity and having
no isolated vertices. Theorem 1 has several precursors in work on connectivity
of various models of geometric graphs [16]. In the most general setting, a ”nice”
(in particular, connected) domain D ∈ R

d is given together with a measure on
the domain and a norm. (In our setting the domain is the unit sphere S

d, the
measure is uniform, and the norm can be taken to be Euclidean.) One places
n points at random in D, and two points are neighbors if the distance between
them (according to the given norm) is at most r. The question typically asked is
what is the minimum value of r (as a function of n) for which the graph is likely
to be connected. We denote the expectation of this value by RC(n). Equivalently,
given the n points one considers a minimum spanning tree (with edge lengths
being the distance between the points according to the given norm), and asks
what is the length of the longest edge in this spanning tree. It is not hard to see
that this is exactly the value RC(n) that would ensure connectivity. A different
question is what is the minimum value of r for which there are not likely to
be any isolated vertices. We call the expectation of this value RIV (n). Clearly,
RC(n) ≥ RIV (n) for every n. A very general result of Penrose [19] shows that

as n tends to infinity, the ratio RC(n)
RIV (n) tends to 1. There were previous results

of this nature in special cases. See [8,2,12,18], for example.
It might appear that the result of Penrose (or other related previous work)

implies our Theorem 1 as a special case. However, this overlooks the issue that
in previous results that we are aware of, one first fixes the dimension d and then
lets n tend to infinity (we refer to this as asymptotic n), whereas in our results
n is fixed as a function of d (we refer to this as bounded n). As a consequence,
the statement of previous results only implies that if θ is sufficiently small as a
function of d, a theorem such as Theorem 1 holds. In contrast, we prove Theo-
rem 1 when θ is a fixed constant. Once θ is sufficiently small the corresponding
graphs acquire geometric properties that are different than those involved in the
case when θ is large (when θ is small graph distances approximate well geomet-
ric distances on the sphere, whereas when θ is large this is no longer true), and
hence proofs of connectivity that apply in one setting might not apply in the
other. This aspect is discussed further in the full version of our paper.

Another line of work related to the questions studied in this work is that of
percolation (see [11] or [17], for example), and specifically, the process referred
to as continuum percolation. Typically, in the continuum percolation process
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one is given a domain D such as a box in R
d that is symmetric around the

origin. One places a point in the origin and additional points at random in the
domain, and two points are connected if their distance from each is at most r.
The question asked is not that of complete connectivity of the graph, but rather
questions such as whether there is a path from the origin to the boundary of
the domain, or what is the size of the connected component that contains the
origin. A typical situation is that for large enough n there is a given threshold
distance Rp such that if r > Rp the origin is likely to be connected to the
boundary, whereas if r < Rp the origin is likely to be in a very small component,
or even isolated. Obviously, the connectivity threshold is at least as large as
the percolation threshold, namely RC ≥ Rp. Some of the work on connectivity
builds on results from percolation (e.g.,[12] explicitly refers to results in [15],
and [19] makes use of proof techniques, a Peierls argument, that is commonly
used in percolation). We remark that in percolation theory one typically deals
with the regime of asymptotic n rather than bounded n.

The results of [9] may serve to illustrate a difference between our setting
of fixed n and the setting that n tends to infinity. Their result is that every
monotone graph property (any property that is preserved by adding edges, con-
nectivity being one such example) in random geometric graphs (in their case,
the domain is [0, 1]d and the measure is uniform) has a sharp threshold. More
specifically, for every n and for every monotone graph property, there is a cor-
responding threshold distance R (that depends on n and on the property), such
that if r > R+ ε the property holds almost surely, and if r < R− ε, the property
almost surely does not hold. Moreover, the value of ε tends to 0 as n grows,
specifically at a rate ε ≤ O(( log nn )1/d). In our case of constant θ, the values of
n that we consider are only exponential in d, and consequently the results only
imply that ε ≤ O(1). Moreover, if one inspects the proof technique of [9], it nec-
essarily results in ε = Ω(1) when θ is constant. As we consider the unit sphere
rather than unit cube, this value of ε is of the same order of magnitude as the
diameter of the whole domain, and hence completely useless. (We do not claim
that monotone graph properties do not have sharp thresholds when n ≤ 2O(d).
We just point out that if they do, establishing this will require proofs that are
different than those that apply when n tends to infinity.)

Theorem 2 considers connectivity of random vertex induced subgraphs of
expanders. There have been previous studies of connectivity properties of random
subgraphs of expanders. However, all previous work that we are aware of either
addressed edge induced subgraphs (see for example [1]), or addressed vertex
induced subgraphs at a range of parameters that is very different from that of
Theorem 2 (see for example [3]).

Low dimensional geometric graphs are sometimes used as models for wireless
communication networks (e.g., in [12]), or for physical medium (see for example
Chapter 1 in [11]). Random high dimensional geometric graphs such as the ones
studied in this paper are not commonly used as a model for physical reality. How-
ever, high dimensional geometric graphs come up naturally as solutions to semidef-
inite programming relaxation to various optimization problems. In particular, the
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solution to semidefinite relaxations of graph coloring problems are high dimen-
sional anti-geometric graphs (see [13], though note that the terminology anti-
geometric graphs is not used there). Random anti-geometric graphs are used in
order to construct negative examples showing a large (tight, in some cases) in-
tegrality gap for these semidefinite relaxations [6,7]. The issue of connectivity of
these graphs did not come up in these earlier works, but did come up and was left
open in more recent study of these negative examples [4].

2 On the Expansion of the Infinite Graph

In this section we define an infinite graphGθ,d, with the property that an induced
graph on a random sample of n vertices from Gθ,d is distributed as G ∈R Gn,θ,d.
We will show (under a natural definition of expansion of infinite graphs) that
Gθ,d is an expander.

Given v ∈ S
d the set

{
u ∈ S

d| arccos(vu) ≤ θ} is a sphere cap and it is de-
noted by Ccos(θ) (v). For example, a cap of angular radius π/3 centered at v is
denoted by C 1

2
(v) and a cap of radius π/2 (a half sphere) is denoted by C0 (v).

We omit v from the above notation if the location of the center of the cap is
not needed. (The subscript denotes cos θ rather than simply θ for compatibility
with notation in previous work.)

Definition 2. (The infinite graph Gθ,d). The vertices of Gθ,d are all the points
in S

d and the edge set of Gθ,d is all the pairs u,v ∈ S
d s.t. u ∈ Ccos θ (v).

Every vertex in Gθ,d has an infinite number of neighbors, therefore the notion of
the “degree” of a vertex is represented by the measure of the set of its neighbors.
We normalize the uniform measure on the sphere so that the total measure of
the (surface area of the) sphere is 1. Given a measurable set S, its measure (the
ratio between the surface area of S to the surface area of Sd) is denoted by |S|.
This measure corresponds to the number of vertices in S. The edge boundary
of S (the set of edges with exactly one endpoint in S) is denoted by ∂(S) and
its measure is denoted by |∂(S)|. This measure corresponds to the number of
edges leaving S. (The measure of ∂(S) is the integral over all points in S of the
measures of the sets of their neighbors outside S.)

The following definition for edge expansion is given, for simplicity, specificity
for Gθ,d. An equivalent definition to a general infinite graph can be stated in a
straightforward manner.

Definition 3. (Edge expansion for the infinite graph). The edge expansion
h(Gθ,d) of a graph Gθ,d is defined as

h(G) = inf
0<|S|≤ 1

2

|∂(S)|
|S|

where the minimum is over all measurable sets S ⊂ S
d with nonzero measure.

For a given set S we call the quantity h (G,S) := |∂(S)|
|S| the edge expansion of S.
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An expander graph is a graph with high edge expansion. To lower bound h (Gθ,d)
it suffices to show that the sets with the lowest edge expansion are sphere caps
(Lemma 1) and to analyze the expansion of spherical caps (Lemma 2).

Lemma 1. For all S ⊂ S
d s.t. |S| = m (0 ≤ m ≤ 1

2) it holds that |∂(S)| ≥
|∂(Ca)| for the unique a satisfying |Ca| = m.

Proof. The proof is a direct consequence of Theorem 5 in [7]. The theorem shows
that the complement of the graph Gθ,d (u,v are neighbors in the complement
graph iff they are not neighbors in the original graph) has the following property:
for all S ⊂ S

d s.t. |S| = m (0 ≤ m ≤ 1
2 ) it holds that |∂(S)| ≤ |∂(Ca)| for the

unique a satisfying |Ca| = m (here ∂(S) is the edge boundary of the complement
graph of Gθ,d). ��
In the rest of this section we deal with θ = π/3 for geometric graphs and θ = 2π/3
for anti-geometric graphs, though the results generalize for any θ.

Lemma 2. h
(
Gπ/3,d

) ≥ (1/3− ε)
∣
∣
∣C 1

2

∣
∣
∣ for ε that tends to 0 as d grows.

Proof. By Lemma 1, the minimum expansion ofGπ/3,d is attained at a sphere cap.
It is not difficult to see that the expansion of sphere caps decreases as their radius
increases. Hence among sets of measure at most 1/2, the minimum expansion is
attained for the half sphere C0. Hence h

(
Gπ/3,d

)
= h

(
Gπ/3,d, C0

)
. Estimating

h
(
Gπ/3,d, C0

)
is fairly simple once d is sufficiently large, as we show below.

Fix ε′ > 0 to be a small constant. For every vertex v of Gπ/3,d remove those
edges to neighbors of v with angle smaller than π/3 − ε′, thus obtaining a new

graph G
′
π/3,d. The ratio

Ccos(π/3−ε′)
Ccos(π/3)

tends to zero as d grows. (See Theorem 6.)

This implies that we have removed only a small fraction (that tends to zero) of
the graph edges.

Consider y drawn uniformly from S
d. Any edge e of G′π/3,d has probability

π/3−ε′
π = 1/3 − ε′/π to be in ∂ (C0 (y)) (the analysis is similar to that of the

random hyperplane rounding technique of [10]). Hence roughly one third of the
edges of the graph are in the edge boundary of C0. As for the remaining edges, by
symmetry half of them are in the half sphere C0 and half are in its complement.
Hence there are essentially as many edges in the edge boundary of C0 as there
are inside C0, implying that the expansion of C0 is nearly one third of (the
measure of) the degree of its vertices, establishing that that h

(
Gπ/3,d, C0

)
=

(1/3− ε)
∣
∣
∣C 1

2

∣
∣
∣, as desired.

��

2.1 The Expansion of the Infinite Anti-geometric Graph

The infinite anti-geometric graph Ḡπ/3,d is defined as follows: its vertices are all

the points in S
d and the edge set of Ḡπ/3,d is all the pairs u,v ∈ S

d s.t. u ∈
C 1

2
(−v), (as opposed to u ∈ C 1

2
(v) in the case of Gπ/3,d). The graph induced

on a random sample of n vertices from Ḡπ/3,d is distributed as G ∈R Ḡn,π/3,d.

The edge expansion of Ḡπ/3,d, h
(
Ḡπ/3,d

)
, is defined similarly as in Definition 3.
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Lemma 3. h
(
Ḡπ/3,d

) ≥ h (Gπ/3,d
)

Proof. In this proof we shall switch between several graphs. Given a graph H
and sets A,B of vertices, the set edges of H with one endpoint in A and the
other in B will be denoted by E (H,A,B). Given A ⊂ S

d let Ā := S
d \A, i.e the

complement set, and let A−1 :=
{
x ∈ S

d| − x ∈ A}.
To prove the lemma we need to show that

min
|A|=a

∣
∣E

(
Ḡπ/3,d, A, Ā

)∣
∣ ≥ min

|A|=a

∣
∣E

(
Gπ/3,d, A, Ā

)∣
∣

for every 0 < a ≤ 1
2 . Consider an arbitrary 0 < a ≤ 1

2 .

min
|A|=a

∣
∣E

(
Ḡπ/3,d, A, Ā

)∣
∣ ≥ min

|A| = a
|B| = 1− a

∣
∣E

(
Ḡπ/3,d, A,B

)∣
∣

= min
|A| = a
|B| = 1− a

∣
∣E

(
Gπ/3,d, A,B

−1)∣∣ = min
|A| = a
|B| = 1− a

∣
∣E

(
Gπ/3,d, A,B

)∣
∣

To finish the proof it suffices to show that:

min
|A| = a
|B| = 1− a

∣
∣E

(
Gπ/3,d, A,B

)∣
∣ = min

|A|=a

∣
∣E

(
Gπ/3,d, A, Ā

)∣
∣

We claim that this last equality is a consequence of Theorem 3.5 in [6], which
shows the following:

Consider the infinite anti-geometric graph defined on S
d with parameter θ (in

our case we shall take θ = π− π/3). Let 0 < a ≤ 1 and let A and B be two (not
necessarily disjoint) measurable sets in S

d of measure a. Let x be an arbitrary
vertex of Sd. The minimum of |E(A,B)| is obtained when A = B = Cb (x) where
Cb is a cap of measure |Cb| = a.

By the above theorem A = B = Cb (x) minimizes

min
|A| = a
|B| = a

∣
∣E

(
Ḡπ−π/3,d, A,B

)∣
∣ .

Since Gπ/3,d and Ḡπ−π/3,d are complement graphs of each other, A = B = Cb (x)
maximizes

max
|A| = a
|B| = a

∣
∣E

(
Gπ/3,d, A,B

)∣
∣

Equivalently, A = Cb (x) and B = Ā maximize
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max
|A| = a
|B| = 1− a

∣
∣E

(
Gπ/3,d, A, B̄

)∣
∣ .

By regularity of the graphGπ/3,d, it follows that A = Cb (x) and B = Āminimize

min
|A| = a
|B| = 1− a

∣
∣E

(
Gπ/3,d, A,B

)∣
∣

proving the claim. ��

3 Connectivity of Random Geometric and Anti-geometric
Graphs

Having established expansion properties for the infinite graph, we present two
proofs of Theorem 1. One proof first “discretizes” the infinite graph, thus obtain-
ing a nearly regular very dense finite graph with expansion properties similar
to that of the infinite graph (expansion roughly one third of the degree, for our
choice of θ = π/3). This dense graph can be thought of as being obtained by
taking a finite though extremely large number N of sample points from Gπ/3,d.
The formal details of such a discretization are similar to those in [7,6], and are
omitted here. Thereafter, noting the relation h ≥ 0.3Δ between the expansion
and maximum degree, one can use Theorem 2, whose proof appears in Section 4.

The other way to prove the main theorem is via a direct proof of sampling
from the infinite graph, without performing the discretization first. This may
appear in the full version of the paper.

We note that there are alternative approaches that can be used in order
to try to prove connectivity of geometric graphs. Specifically, one may try to
establish that the graph enjoys a property called geometric routing. Essentially,
this property means that between every two vertices u and v of the graph there
is a path that respects the geometry of the sphere – advancing from u to v along
this path decreases the geometric distance to v in every step. However, for our
graphs, geometric routing will not work. In fact, the number n of vertices that
are required in order to have geometric routing in G ∈R Gn,π/3,d is such that
the average degree of the graph is as high as roughly n0.29, rather than only
O(log n) which (as Theorem 1 shows) suffices for connectivity. See more details
in the full version of this paper.

4 Connectivity of Subgraphs of Expanders

In this section we prove Theorem 2. We were tempted to try some simpler proof
techniques than the ones used in this section, but encountered difficulties in
employing them. This issue is discussed further in the full version of this paper.
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We shall be concerned with a graph G that is an (n, h)-expander of maximum
degree Δ, and a random vertex induced subgraph of G that we denote by H .
We use the notation V,E, n,N (S) for set of vertices, set of edges, number of
vertices, set of neighbors of S not including S, respectively, all in relation to the
graph G.

Our proof of Theorem 2 involves two steps.

1. The first step is similar in nature to percolation. We pick an arbitrarily sam-
pled vertex v ∈ VH and then show that with high probability it belongs to
a fairly large connected component CCv in H . The size of the connected
component is not measured in terms of the number of vertices that it con-
tains, but rather in terms of the fraction of vertices of the original expander
graph G that are neighbors of this connected component. We show that this
fraction to be at least half. Namely, |NG(CCv)

⋃
CCv| ≥ nG/2.

2. The second step shows that with high probability every vertex u ∈ VH has
a path consisting only of vertices from H that connects it to CCv. This step
uses the fact that NG(CCv) is large, and hence is easy to reach.

In our analysis of Step 1 we shall use the following lemma.

Lemma 4. For arbitrary 0 < μ ≤ Δ ≤ M , let xi, x2, . . . be a sequence of
nonnegative random variables satisfying xi ≤ Δ for all i, E[x1] ≥ μ, and
E[xi|x1, . . . , xi−1] ≥ μ for i ≥ 2. Let t be a stopping time, giving the small-
est index such that

∑t
i=1 xi ≥M . Then the following hold:

1. E[t] ≤ M+Δ
μ .

2. Pr[t > 2Mμ ] ≤ 2Δ
M .

Proof. Change every random variable xi to a nonnegative random variable x′i
of expectation exactly μ by reducing its value, if needed. Consider the sequence
y1, y2, . . . of random variables in which yi = x′i − μ for all i. The sequence

Yi =
∑i
j=1 yj is a Martingale. Let t be a stopping time for the Martingale

sequence, giving the smallest index such that Yt ≥M − tμ. The random variable
t has bounded moments, and hence by the optional stopping time theorem for
martingales, E[Yt] = 0. Moreover, by the fact that yi ≤ Δ−μ and the minimality
of t, we have Yt ≤ Yt−1 +(Δ−μ) < M − (t− 1)μ+Δ−μ =M +Δ− tμ. Hence
E[M +Δ− tμ] > 0 implying E[t] ≤ M+Δ

μ , proving item 1 of the lemma.

Let σ2
i be the variance of yi (conditioned on y1, . . . , yi−1). Observe that σ2

i ≤
μ
Δ(Δ − μ)2 + Δ−μ

Δ μ2 ≤ μΔ. Using the fact that E[yi|yj ] = 0 for i > j we
obtain that var(Yt) ≤ μΔt, implying by Chebychev’s inequality that Pr[Yt <
−μt/2] ≤ 4Δ

μt . For t = 2Mμ this gives Pr[Yt < −M ] ≤ 2Δ
M . Observe that X2M/μ ≥

Y2M/μ + 2M , implying item 2 of the lemma. ��
The bounds we shall use for Step 1 will be presented in Theorem 4. We first
prove Theorem 3 which presents bounds that are incomparable to those of The-
orem 4, and whose proof can serve as an introduction to the proof technique of
Theorem 4.
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Theorem 3. Let G(V,E) be an n-vertex Δ-regular graph with edge expansion
at least h, and let r ∈ V be an arbitrary vertex. Then with probability at least
1/2, a random sample U of 4n

h ln n
Δ vertices contains a subset S ⊂ U ∪ {r} with

|N(S) ∪ S| ≥ n/2 such that the subgraph induced on S is connected.

Proof. We expose vertices of U one by one. For 1 ≤ i ≤ |U |, let ui be the ith
vertex exposed and let Ui = {u1, . . . ui}. At every step i of the process we shall
maintain a subset Si ⊂ Ui ∪ {r} with r ∈ Si such that the subgraph induced on
Si is connected. Specifically, S0 = {r}, and ui ∈ Si iff ui ∈ N(Si−1).

Let us track the growth of |Si ∪N(Si)|. Initially, |S0 ∪ N(S0)| = 1 +Δ. For
i ≥ 1 we have that |Si ∪ N(Si)| ≤ |Si−1 ∪ N(Si−1)| + Δ. By the expansion
properties of G and averaging arguments, the expected growth in step i satisfies

E[|(Si∪N(Si))\(Si−1∪N(Si−1))|] ≥ |Si−1∪N(Si−1)|
n h, as long as |S∪N(S)| ≤ n/2.

Partition the growth of Si into phases, where phase 	 ends at the smallest
value of i for which |Si∪N(Si)| ≥ 	Δ. Then by item 1 of Lemma 4 the expected
number of steps that phase 	+ 1 takes is at most 2Δn

h�Δ = 2n
h� . It takes

n
2Δ phases

to reach |S ∪ N(S)| ≥ n/2. Hence the expected number of steps required is at

most
∑ n

2Δ

�=2
2n
h� <

2n
h ln n

Δ . The Theorem follows from Markov’s inequality. ��
In the statement of Theorem 4 and in its proof, c denotes some sufficiently large
constant independent of n,Δ, h.

Theorem 4. Let G(V,E) be an n-vertex Δ-regular graph with edge expansion
at least h, and let r ∈ V be an arbitrary vertex. Then with probability at least
1/2, a random sample U of cnh log Δ

h vertices contains a subset S ⊂ U ∪{r} with
|N(S) ∪ S| ≥ n/2 such that the subgraph induced on S is connected.

Proof. Partition U into two parts U ′ and U” of equal size (namely, |U ′| = |U”| =
|U |/2). A proof similar to that of Theorem 3 (details omitted) implies that with
overwhelming probability, U ′ suffices in order to grow S from its initial size of
|S0 ∪N(S0)| = 1+Δ by a factor of 8, reaching size |S ∪N(S)| = 8Δ. It remains
to show that U” can be used in order to grow S further, eventually reaching
|S ∪N(S)| = n/2.

We expose information about vertices of U” only when needed. The exposure
algorithm will proceed in phases. Let k = log(4Δ/h). Initially U” is partitioned
into k+1 sets, U0

0 , U
1
0 , . . . U

k
0 . Renaming S0 to be the outcome of the first part, we

have |S0∪N(S0)| ≥ 8Δ. We shall have |U0
0 | = 2n

h , |U1
j | = 8n

h for every 1 ≤ j ≤ k.
Each phase i is composed of k subphases, where in the jth subphase one scans
U ji−1. In such a scan some vertices are moved to Si−1 thus eventually obtaining

Si. The vertices moved to S are replaced in the respective U ji−1 by fresh vertices
from U0

i−1. Hence the cardinalities of U
j for 1 ≤ j ≤ k remain unchanged during

the exposure algorithm, and |U0| decreases exactly at the same rate by which
|S| increases.

A subphase is considered successful if the size of S ∪ N(S) increases by a
multiplicative factor of at least 2 during the subphase.

Given the current S, a vertex u that is scanned is good if u ∈ N(S) and
moreover, |N(S ∪ {u})| ≥ |N(S)| + h

4 + 1. Only good vertices are added to
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S. Observe that the total number of good vertices cannot exceed n/2
h/4 (while

maintaining |S ∪ N(S)| ≤ n/2), and hence U0 can indeed compensate for all
good vertices.

We now compute the expected contribution of a scanned vertex u, conditioned
on all previous subphases being successful. Let S′ be the set S at the time u was
scanned in the previous phase. Unless u is a fresh vertex from U0, we need to
condition on u 
∈ S′∪N(S′). Because the previous k−1 subphases were successful
we have |N(S) ∪ S| ≥ 2Δ

h |N(S′) ∪ S′|. By the expansion properties of G, the

number of edges exiting N(S)∪S is at least h(N(S)∪S). At least 3h
4 (N(S)∪S)

of these edges originate from vertices of N(S) that have at least h/4 exiting
edges. At most Δ h

2Δ(N(S) ∪ S) = h
2 (N(S) ∪ S) of these edges originate from

vertices of S′ ∪N(S′). This leaves at least h
4 (N(S)∪S) edges available for good

vertices, implying that the expected contribution of a scanned vertex u is at
least h

4n (N(S) ∪ S). Hence in expectation not more than 4n
h vertices are needed

until N(S) ∪ S doubles its size. As a subphase contains 8n
h vertices, item 2 of

Lemma 4 implies that the probability that there is an unsuccessful phase is at
most

∑
�≥1

2Δ
4Δ2�

≤ 1/2.
��

Our proof for Theorem 4 did not attempt to optimize the value of the leading
constant c.

Each of the bounds in Theorems 3 and 4 may be better than the other,
depending on the relative values of n,Δ, h. In our intended applications Δ

h is
much smaller than n

Δ , and hence we shall use Theorem 4.
The requirement that G is regular in Theorems 3 and 4 was made because it

simplifies the proofs. This requirement can be removed by slightly adjusting the
statement of the theorem.

Theorem 5. Let G(V,E) be an n-vertex graph with edge expansion at least h,
and let Δ denote the degree of the vertex of h4 th highest degree (breaking ties arbi-
trarily). Then with probability at least 1/2, a random sample U of
cn
h min[log n

Δ , log
Δ
h ] vertices contains a subset S ⊂ U with |N(S) ∪ S| ≥ n/2

whose induced subgraph is connected.

Proof. Let H ⊂ V be the set of h/4 highest degree vertices in G. We make a
preliminary pass over all vertices of U . This pass is successful if 1 ≤ |U ∩H | ≤
5cmin[log n

Δ , log
Δ
h ]. This fails with probability 2−Ω(c).

If the preliminary pass achieved its goal, we keep in S only one vertex r
chosen arbitrarily from H ∩ S, and remove from U all other vertices of H ∩ U .
The remaining size of U is at least (cn/h− 5c)min[log n

Δ , log
Δ
h ]. This remaining

size is still roughly cn
h min[log n

Δ , log
Δ
h ]. (This would fail to hold only if h is

Ω(n). However, in that case the proofs of Theorems 3 and 4 apply, requiring
only an adjustment of the constants hidden in the c notation.) Observe that
for every set T ⊂ (V \ H) of size at most n/2 − 1, the set {r} ∪ T has edge
expansion at least 3h/4 into V \H . Replace G by the subgraph G′ induced on
V ′ = (V \H) ∪ r. Observe that in this subgraph the degree of r is at least its
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original degree (which was necessarily at least Δ) minus h/4. Hence the degree
of r in this subgraph is at least Δ/2 (it is not hard to show that h/4 ≤ Δ/2),
and moreover, no vertex in V ′ has degree larger than Δ.

It can readily seen that the proofs of Theorems 3 and 4 did not use regularity
of G, but rather the following two aspects of Δ: that r has degree at least Δ,
and no vertex has degree larger than Δ. For G′ the only difference is that the
degree of r is at least Δ/2 rather than Δ (and the expansion is also smaller
by a constant factor). The proofs of Theorems 3 and 4 apply, requiring only an
adjustment of the constants hidden in the c notation. ��
We now prove Theorem 2.

Proof. (Theorem 2). Recall that H has (1+o(1))n
h ln(nh ) + O

(
n
h log(Δh )

)
random

vertices. Of them, we use up O
(
n
h log(Δh )

)
random vertices in the proof of The-

orem 5, and as a consequence we conclude (with probability that can be made
arbitrarily close to 1, by changing the constant in the O notation) that H has a
connected component CCv satisfying |N(CCv)

⋃
CCv| ≥ n/2. This was referred

to as Step 1 above. Now we analyze Step 2, which is based on considering the

remaining random vertices of H , whose number is at least (1+o(1))n
h ln(nh ).

Let us define a linear order on all vertices of G. The property of this linear
order is that for every vertex u ∈ V , either it precedes at least h of its neighbors
in this linear order, or u ∈ N(CCv)

⋃
CCv. Such a linear order exists by the

expansion properties of G. The vertices of N(CCv)
⋃
CCv can be placed last in

this linear order. As for the set R of remaining vertices, the cardinality of R is
at most n/2, and hence eG(R, VG \ R) ≥ h|R|. Hence at least one vertex in R
has h neighbors already placed later than R in the linear order, and this vertex
can be placed last among R. This argument can be continued by induction to
complete the desired linear order.

Consider now the placement of all vertices of H in this linear order. If for
every vertex u ∈ H , either u ∈ N(CCv)

⋃
CCv, or there is a vertex w ∈ N(u)

that is also in H and moreover w appears later than u in the linear order, then H
is connected (because every vertex has a path to v). In our intended applications
(1+o(1))n

h ln(nh ) ≥ Ω
(
n
h log(Δh )

)
, implying that |H | = O

(
n
h ln(nh )

)
. In this case,

taking (1+o(1))n
h ln(nh ) random vertices ofG in Step 2, a union bound implies that

the probability that connectivity fails is at most |H |e−(1+o(1)) ln(n/h) ≤ o(1).

Note also that even if the condition (1+o(1))n
h ln(nh ) ≥ Ω

(
n
h log(Δh )

)
does not

hold, then in Step 2 we may take Ω
(
n
h log(Δh )

)
random vertices, and the union

bound works as well. ��

5 A Note on the Dimension Range

Recall the definition of sphere casps, see Section 2. In this section we use the
same bounds as in [7]:

Theorem 6. (Bounds on the sphere Cap measure). c√
d
(1 − a2) d−1

2 ≤ |Ca| ≤
1
2 (1− a2)

d−1
2 , where c is some constant independent of d.
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Assume that the dimension d of our graphs Gn,π/3,d is c ln (n). It follows that
when c gets larger each vertex has fewer neighbors. We would like to determine
the values of c for which G ∈R Gn,π/3,d has isolated vertices with high probabil-

ity. Let v be a vertex in G it holds that E [|N (v)|] = (n− 1)
∣
∣
∣C 1

2

∣
∣
∣. Theorem 6

implies
∣
∣
∣C 1

2

∣
∣
∣ can be upper bounded by 1

2

(
1− 1

2

2
) d−1

2

. Therefore the expected

number of neighbors of each vertex can be upper bounded:

(n− 1)
∣
∣
∣C 1

2

∣
∣
∣ ≤ 1

2
n

(

1−
(
1

2

)2
) d−1

2

=
1

2
neln(

3
4 )

d−1
2

= O (1)neln(
3
4 )

d
2 = O (1)n1+ln( 3

4 )
c
2

Therefore if 1 + ln
(
3
4

)
c
2 < 0 ⇒ c > 2

ln( 4
3 )

= 6.95212 then (by applying the

Markov’s inequality ) the probability that v is isolated tends to one.
Now we determine the values of c for which G ∈R Gn,π/3,d has no isolated

vertices with high probability. Note that by Fact 6
∣
∣
∣C 1

2

∣
∣
∣ can be lower bounded

by O(1)√
d

(
1− 1

2

2
) d−1

2

. Therefore the expected number of neighbors of each vertex

can be lower bounded:

(n− 1)
∣
∣
∣C 1

2

∣
∣
∣ ≥ O (1)√

d
n

(

1−
(
1

2

)2
) d−1

2

=
O (1)√
d
n1+ln( 3

4 )
c
2

Choose c so that the right hand side is somewhat larger than lnn. This requires
1+ ln

(
3
4

)
c
2 to be slightly larger than 0, which happens for c � 2

ln( 4
3 )

= 6.95212.

Then standard large deviation bounds imply each vertex has probability o( 1n )
of having no neighbors, and then by applying the union bound the probability
that there is an isolated vertex is o(1).

6 More on Vertex Percolation in Expander Graphs

We say that a graphG has amajority component if G has a connected component
containing at least half its vertices. The following corollary is not needed in order
to prove Theorem 1, but might be of independent interest.

Corollary 1. Let G(V,E) be an n-vertex Δ-regular graph with edge expansion
at least h. Consider G[U ], a subgraph of G induced on a random sample U of
cn
h log Δ

h vertices. Then with probability at least 1/2 over the choice of U , the
subgraph G[U ] contains a majority component.

Proof. Set the value of c to be large enough so that a simple adaptation of the
proof of Theorem 4 implies that every vertex u ∈ U has probability at least
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9/10 of being in a component Su with |Su ∪N(Su)| > (n+h)/2. Observe that if
|Su∪N(Su)| > (n+h)/2 and |Sv∪N(Sv)| > (n+h)/2 then |(Su∪N(Su))∩(Sv∪
N(Sv))| ≥ h. Moreover, any vertex of U that lies in (Su∪N(Su))∩ (Sv ∪N(Sv))
connects Su and Sv.

Fix one arbitrary vertex u ∈ U and analyse |Su|. With probability at least
9/10 we have |Su ∪ N(Su)| > (n + h)/2. For every v 
= u, v ∈ U , we also
have probability at least 9/10 to have |Sv ∪N(Sv)| > (n+ h)/2. If both events
hold, then with overwhelming probability v is in the same component as u (one
can reserve a small fraction of the vertices of U specifically for the purpose of
checking whether they land in (Su ∪N(Su)) ∩ (Sv ∪N(Sv))). Hence given that
|Su ∪N(Su)| > (n+ h)/2, the expected number of vertices not in Su is at most
roughly |U |/10, implying that with probability at most roughly 1/5 it exceeds
|U |/2. Hence the probability that |Su| < |U |/2 is at most 1

5 +
1
10 + ε < 1

2 , where
the ε term accounts for low probability events ignored n the computation. ��
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Abstract. We prove new upper bounds on the size of families of vectors
in Z

n
m with restricted modular inner products, when m is a large integer.

More formally, if u1, . . . ,ut ∈ Z
n
m and v1, . . . ,vt ∈ Z

n
m satisfy 〈ui,vi〉 ≡

0 (mod m) and 〈ui,vj〉 �≡ 0 (mod m) for all i �= j ∈ [t], we prove that
t ≤ O(mn/2+8.47). This improves a recent bound of t ≤ mn/2+O(log(m))

by [BDL13] and is the best possible up to the constant 8.47 when m is
sufficiently larger than n.

The maximal size of such families, called ‘Matching-Vector families’,
shows up in recent constructions of locally decodable error correcting
codes (LDCs) and determines the rate of the code. Using our result we
are able to show that these codes, called Matching-Vector codes, must
have encoding length at least K19/18 for K-bit messages, regardless of
their query complexity. This improves a known super linear bound of
K2Ω(

√
logK) proved in [DGY11].

1 Introduction

A Matching-Vector family (MV family) in Z
n
m is defined as a pair of ordered

lists U = (u1, . . . ,ut) and V = (v1, . . . ,vt) with ui,vj ∈ Z
n
m, satisfying the fol-

lowing property: for all i ∈ [t], 〈ui,vi〉 ≡ 0 (mod m) whereas for all i �= j ∈ [t],
〈ui,vj〉 �≡ 0 (mod m). Here 〈·, ·〉 denotes the standard inner product. If one
restricts the entries of the vectors in the family to be in the set {0, 1} the in-
ner products corresponds to the sizes of the intersections (modulo m) and, in
this case, MV families are more commonly referred to as families of sets with
restricted modular intersections. MV families were studied previously in the con-
text of Ramsey graphs [Gro00], circuit complexity [BBR94] and, more recently,
were used to construct Locally Decodable Codes (LDCs) [Yek08, Efr09, DGY11],
which are error correcting codes with super-efficient decoding properties. We will
elaborate more on the connection to LDCs after we state our results.

We denote by MV(m,n) the size of the largest MV family in Z
n
m (the size of the

family is t in the above notation). It is an interesting (and mostly open) question
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to determine the value (or even order of magnitude) of MV(m,n) for arbitrary
m and n. Upper and lower bounds on MV(m,n) can be roughly divided into
two kinds, corresponding to the relative size of the two parameters. One typical
regime is when m is small and n tends to infinity and the other is when m >> n
(of course there are intermediate scenarios as well).

Although our work focuses on the regime when m is much larger than n, we
first describe the known results for the other regime, namely when m is a fixed
constant and n tends to infinity. These regime is further divided into the case
whenm is prime and whenm is composite. When m is a small prime and n tends
to infinity, the value of MV(m,n) is known to be of the order of nm−1 [BF98].
When m is a small composite, the picture is very different and there are expo-
nential gaps between known lower and upper bounds on MV(m,n). A surprising

construction by Grolmuzs [Gro00] shows that MV(m,n) ≥ exp
(
c · (log n)r

(log log n)r−1

)

when m has r distinct prime factors (here c is an absolute constant). That is,
MV(m,n) can be super-polynomial in n (that is nω(1)) for m as small as 6 (com-
pared with the polynomial upper bound nm−1 for prime m). A trivial upper
bound on MV(m,n) is mn since an MV family cannot contain the same vector
twice. The best upper bound on MV(m,n) for small composite m was proved in
[BDL13] and is mn/2+O(logm). Assuming the Polynomial-Freiman-Ruzsa (PFR)

conjecture [TV07] this can be improved to MV(m,n) ≤ C
n/ logn
m with Cm a

constant depending only on m.

Table 1. List of upper bounds on MV(m,n)

m upper bound for MV(m,n)

general prime O(mn/2) [DGY11]

small, fixed prime O(nm−1) [BF98]

general composite mn/2+O(logm) [BDL13]

small, fixed composite 2Om(n/ log n) [BDL13] (assuming PFR)

general composite O(mn/2+8.47) (Theorem 1.1)

Our work focuses on the regime when m is larger than n. In this setting, a

construction of [YGK12] gives MV families of size
(
m+1
n−2

)n/2−1
[YGK12]. For

a large prime m, this construction almost matches an upper bound of O(mn/2)
proved in [DGY11]. For composite m, the best upper bound on MV(m,n) for
large m prior to this work was the same mn/2+O(logm) bound from [BDL13].
Notice that, when m > 2n, this bound is meaningless since it exceeds the trivial
bound of mn. In this work we extend the proof method developed in [BDL13]
to give the following bound:

Theorem 1.1. For all integers m > 1 and n > 0, we have MV(m,n) ≤
100mn/2+8.47. When m is a product of distinct primes the constant 8.47 can
be replaced with 4 + o(1).
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For small n, this bound is tight up to the constant 8.47 as the [YGK12] con-
struction shows. When m is small, this still gives some improvement over the
mn/2+O(logm) bound of [BDL13] but not as dramatic (and probably far from
being tight).

The main tool in our proof is Fourier analysis in the spirit of [BDL13], with
which we repeatedly reduce m to one of its factor (eventually reaching the case
of m = 1). The distribution of 〈vi,uj〉 over random i, j ∈ [t] is far from the
uniform distribution (since the probability of obtaining zero is small). This fact
is used to find a large coefficient in its Fourier spectrum. This coefficient is then
used to carve out a large sub family which is again an MV family, but over some
proper factor of m. The proof ends when we reach the case of prime m. The
difference between our proof and the one in [BDL13] is in the choice of the large
coefficient (or character). We are able to show that a large character appears
that has nicer number theoretic properties and so are able to analyze the loss in
each step in a better way – getting rid of the O(logm) factor in the exponent.

1.1 MV Families and Locally Decodable Codes

A (q, δ, ε)-Locally Decodable Code, or LDC, encodes aK-symbol message x to an
N -symbol codeword C(x), such that every symbol xi (i ∈ [K]) can be recovered
with probability at least 1− ε by a randomized decoding procedure that makes
only q queries to C(x), even if δN locations of the codeword C(x) have been cor-
rupted. Understanding the minimum length N = N(k) of an LDC with constant
q is a central research question that is still far from being solved. For q = 1, 2, this
question is completely answered. There are no LDCs for q = 1 [KT00] and the
best LDCs for q = 2 have exponential length [GKST02, KdW04]. However, for
q > 2 there are huge gaps between lower bound and LDC constructions. The best
known lower bound is N = Ω̃(K1+1/(�r/2�−1)) for k ≥ 4 [KdW04, Woo07] and
N = Ω(K2) for k = 3 [Woo10], while the best construction has super-polynomial
length. Constructions of LDCs have been studied extensively for more than a
decade. Until recently, all constructions of LDC with constant q had exponential
encoding length. In a breakthrough work of Yekhanin [Yek08] and following im-
provements [Efr09, Rag07, KY09, IS10, CFL+10, DGY11, BET10], a new family
of LDCs based on Matching Vector families was introduced. These codes, called
Matching-Vector codes, rely on constructions of MV families and can have sub-
exponential length for q as small as 3 [Efr09]. Using Grolmuzs construction as a
building block, one obtains an encoding length of roughly

N ∼ exp exp
(
(logK)O(log log q/ log q)(log logK)

)
.

The size of the MV family used in the code construction is critical. In its simplest
form, an MV code using an MV family of size t in Z

n
m will send K = t bits of

message into N = mn bits of encoding and will require q = m queries to decode.
Several improvements are possible for reducing the number of queries below m
but these are case-based and hard to generalize for arbitrary m.



516 Z. Dvir and G. Hu

Our improved bound on the size of MV families allows us to prove an un-
conditional lower bound on the encoding length of MV codes, regardless of the
query complexity.

Theorem 1.2. For any MV -code with message length K and codeword length
N we have N > K

19
18 . This bound is regardless of the number of queries.

This theorem improves on a bound of N > K2Ω(
√
logK) proved in [DGY11].

1.2 Organization

We begin in Section 2 with a number of preliminary lemmas and notations that
will be used throughout the proof. In Section 3 we prove our main technical
lemma which is the heart of our proof. The lemma is used iteratively in the
proof of our main theorem which is given in Section 4. The proof of the stronger
bound for the case when m is a product of distinct primes is given in Section 5.

2 Preliminaries

2.1 Fourier Lemma

We consider a probability distribution μ over Zm. Let ωm = e
2π
m i be an order

m primitive root of unity. It is not difficult to see Ex∼μ[ωjxm ] = 0 for all j ∈
{1, 2, . . . ,m − 1} if μ is the uniform distribution. We will show that Ex∼μ[ωjxm ]
is bounded away from zero for some j ∈ {1, 2, . . . ,m− 1} if μ is far from being
uniform.

In [BDL13], it was shown that

max
1≤j≤m−1

∣
∣
∣
∣ Ex∼μ[ω

jx
m ]

∣
∣
∣
∣ = Ω(

1

m1.5
)

if the statistical distance between μ and the uniform distribution is big, i.e.
1
2

∑
x∈Zm

|μ(x) − 1
m | = Ω( 1

m ). In the following lemma, we prove a better lower

bound that depends only on s = order(ωjm) under a stronger condition |μ(0) −
1
m | = Ω( 1

m ).
Consider μ as a function from Zm to C. For 0 ≤ j ≤ m − 1, the Fourier

coefficient μ̂(j) is

μ̂(j) =
1

m

∑

x∈Zm

μ(x)ω−jxm =
1

m
E
x∼μ[ω

−jx
m ].

One can see that μ̂(0) = 1
m . The set of functions {ωjxm | 0 ≤ j ≤ m − 1} is an

orthogonal basis for all functions from Zm to C, and the function μ(x) can be
written as

μ(x) =

m−1∑

j=0

μ̂(j)ωjxm . (1)



Matching-Vector Families and LDCs over Large Modulo 517

Lemma 2.1. Let μ : Zm 
→ [0, 1] be a probability distribution over Zm (i.e.∑
x∈Zm

μ(x) = 1). If μ(0) ≤ 1
100m , there must exist j ∈ {1, 2, . . . ,m − 1} such

that
∣
∣Ex∼μ[ωjxm ]

∣
∣ ≥ 1

sf(s) , where s = m
gcd(j,m) is the order of ωjm for ωm = e

2π
m i,

and f : [2,∞) 
→ R
+ is any function satisfying

∑∞
s=2

1
f(s) ≤ 0.99.

Proof. By setting x = 0 in (1), we have

μ(0) =
m−1∑

j=0

μ̂(j)ωj·0m =
m−1∑

j=0

μ̂(j) =
1

m
+

1

m

m−1∑

j=1

E
x∼μ[ω

−jx
m ].

Therefore

m−1∑

j=1

∣
∣
∣
∣ Ex∼μ[ω

jx
m ]

∣
∣
∣
∣ ≥

∣
∣
∣
∣
∣
∣

m−1∑

j=1

E
x∼μ[ω

jx
m ]

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

m−1∑

j=1

E
x∼μ[ω

−jx
m ]

∣
∣
∣
∣
∣
∣

= m ·
∣
∣
∣
∣μ(0)−

1

m

∣
∣
∣
∣ ≥ 0.99. (2)

The first equality is because ωjm = ω
m−(m−j)
m = ω

−(m−j)
m and when j takes

values {1, 2, . . . ,m− 1}, m− j also takes each of these values.
For every d | m (1 ≤ d ≤ m − 1), define Td = {j | gcd(j,m) = d, 1 ≤ j ≤

m − 1}. For all j ∈ Td, the order of ωjm is sd = m
d (2 ≤ sd ≤ m). We also see

Td = {k · d | 1 ≤ k < sd, gcd(k, sd) = 1}, hence |Td| = ϕ(sd) < sd.
If the lemma was not true, we have

m−1∑

j=1

∣
∣
∣
∣ Ex∼μ[ω

jx
m ]

∣
∣
∣
∣ =

∑

d|m
d<m

⎛

⎝
∑

j∈Td

∣
∣
∣
∣ Ex∼μ[ω

jx
m ]

∣
∣
∣
∣

⎞

⎠

<
∑

d|m
d<m

(

sd · 1

sdf(sd)

)

<

∞∑

s=2

1

f(s)
≤ 0.99.

This violates inequality (2). Thus the lemma is proved. �

2.2 Notations and Facts about MV Families

We use 〈·, ·〉 to denote the inner product over Z between two vectors. In all
calculations, we identify Zm as {0, 1, . . . ,m− 1} and treat the numbers as on Z.
Conventionally, we consider a mod 1 to be 0 for any integer a.

Notation 2.2. Let r be a positive integer. For an integer v, define v(r) ∈
{0, 1, . . . , r − 1} to be v modulo r. For a vector v = (v1, v2, . . . , vn), define

v(r) = (v
(r)
1 , v

(r)
2 , . . . , v

(r)
n ). For a list of vectors V = (v1,v2, . . . ,vt), define

V (r) = (v
(r)
1 ,v

(r)
2 , . . . ,v

(r)
t ).
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Notation 2.3. Let r be a positive integer. For an integer v, define v[r] ∈ Z to

be (v−v(r))/r. For a vector v = (v1, v2, . . . , vn), define v[r] = (v
[r]
1 , v

[r]
2 , . . . , v

[r]
n ).

Thus v = rv[r]+v(r) for any vector v. For a list of vectors V = (v1,v2, . . . ,vt),

define V [r] = (v
[r]
1 ,v

[r]
2 , . . . ,v

[r]
t ).

Definition 2.4. Let U = (u1,u2, . . . ,ut) and V = (v1,v2, . . . ,vt) be two lists
of vectors in Z

n
m. (U, V ) is a matching vector family if 〈ui,vi〉 ≡ 0 (mod m) for

all i ∈ [t] and 〈ui,vj〉 �≡ 0 (mod m) for all i �= j ∈ [t]. The number t is the size
of the MV family and is denoted by |(U, V )|.
Claim 2.5. For an MV family (U, V ) where U = (u1,u2, . . . ,ut), V = (v1,v2,
. . . ,vt) and i �= j ∈ [t], we have ui �= uj and vi �= vj.

Proof. Assume ui = uj for i �= j, we have 〈ui,vj〉 = 〈ui,vi〉 ≡ 0 (mod m).
This violates the definition of MV family. �

Notation 2.6. Let U, V, U ′, V ′ be 4 lists of vectors in Z
n
m, and say U = (u1,u2,

. . . ,ut), V = (v1,v2, . . . ,vt). We write (U ′, V ′) ⊆ (U, V ) if there exists a set
T ⊆ [t] such that U ′ = (ui : i ∈ T ) and V ′ = (vi : i ∈ T ). Observe that if (U, V )
is an MV family, so is (U ′, V ′).

Definition 2.7. (r1, r2, r3) is a partition of m if r1, r2, r3 ∈ Z
+ and r1r2r3 = m.

(r1, r2, r3 are not assumed to be coprime.)

Definition 2.8. For an MV family (U, V ) where U = (u1,u2, . . . ,ut), V =
(v1,v2, . . . ,vt), we say (U, V ) respects (r1, r2, r3), where (r1, r2, r3) is a partition
of m, if the following conditions are satisfied:

1. ∃u0 ∈ Z
n
r1 such that u

(r1)
i = u0 for all i ∈ [t],

2. ∃v0 ∈ Z
n
r2 such that v

(r2)
i = v0 for all i ∈ [t],

3. 〈u[r1]
i ,v0〉 modulo r2 is the same for all i ∈ [t],

4. 〈u0,v
[r2]
i 〉 modulo r1 is the same for all i ∈ [t].

Claim 2.9. If an MV family (U, V ) respects (r1, r2, r3), then 〈ui,vj〉 ≡ 0
(mod r1r2) for all ui ∈ U,vj ∈ V .

Proof. Let u0 = u
(r1)
i and v0 = v

(r2)
j . They are fixed for all ui ∈ U and vj ∈ V .

We have

〈ui,vj〉 = 〈r1u[r1]
i + u0, r2v

[r2]
j + v0〉

= r1r2〈u[r1]
i ,v

[r2]
j 〉+ r1〈u[r1]

i ,v0〉+ r2〈u0,v
[r2]
j 〉+ 〈u0,v0〉.

The first term is 0 modulo r1r2. The second term is fixed modulo r1r2 because
〈u[r1]

i ,v0〉 is fixed modulo r2. Similarly, the third term is also a constant modulo
r1r2. Therefore 〈ui,vj〉 modulo r1r2 is the same for all ui ∈ U and vj ∈ V .
Note that when i = j, 〈ui,vj〉 ≡ 0 (mod r1r2) since (U, V ) is an MV family.
Therefore 〈ui,vj〉 ≡ 0 (mod r1r2) for all ui ∈ U,vj ∈ V . �



Matching-Vector Families and LDCs over Large Modulo 519

Claim 2.10. Every MV family (U, V ) respects (1, 1,m).

Proof. Let u0 and v0 be the zero vector. All the conditions are satisfied. �

Claim 2.11. If an MV family (U, V ) respects (r1, r2, 1), then it must has size
1.

Proof. Since r1r2 = m, by Claim 2.9 we have 〈ui,vj〉 ≡ 0 (mod m) for all
ui ∈ U,vj ∈ V . By the definition of MV family, the size of (U, V ) must be 1. �

3 Proof of the Main Lemma

Consider an MV family (U, V ), where U = (u1,u2, . . . ,ut) and V = (v1,v2,
. . . ,vt). We pick u ∈ U and v ∈ V uniformly at random and consider the
distribution of 〈u,v〉(m). The inner product is 0 with probability 1/t. Thus the
distribution is far from uniform when t >> m. We will take advantage of this
fact and prove our key lemma. For an MV family (U, V ) respecting (r1, r2, r3),
we can find a large subfamily and reduce r3 to some smaller number.

Let f : [2,∞) 
→ R
+ be a function satisfying

∑∞
s=2

1
f(s) ≤ 0.99. We will specify

f(s) in later proofs.

Lemma 3.1. If an MV family (U, V ) respects (r1, r2, r3) for some r3 ≥ 2 and
|(U, V )| = t ≥ 100m, then there exists s | r3 with s ≥ 2 and an MV family
(U ′, V ′) ⊆ (U, V ) with |(U ′, V ′)| ≥ t/(sn/2+4f(s)2) that respects either
(r1s, r2, r3/s) or (r1, r2s, r3/s).

Proof. We prove the lemma in 4 steps.

Step 1: Finding a character with a large bias. By Claim 2.9, 〈u,v〉r1r2
is an

integer for all u ∈ U,v ∈ V . We can also see 〈u,v〉r1r2
≡ 0 (mod r3) iff 〈u,v〉 ≡ 0

(mod m). Consider the distribution of
(
〈u,v〉
r1r2

)(r3) ∈ Zr3 , where u and v are

uniformly drawn from U and V respectively. We have

Pr

[( 〈u,v〉
r1r2

)(r3)

= 0

]

= Pr
[
〈u,v〉 ≡ 0 (mod m)

]

=
1

t
≤ 1

100m
≤ 1

100r3
.

Applying Lemma 2.1 on Zr3 , there exists a j ∈ {1, 2, . . . , r3 − 1} such that

∣
∣
∣
∣
∣
E

u∼U
v∼V

[

ω
j 〈u,v〉

r1r2
r3

]∣∣
∣
∣
∣
≥ 1

sf(s)
, (3)
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where ωr3 = e
2πi
r3 and s = r3

gcd(j,r3)
is the order of ωjr3 . Note that we have dropped

the modulo r3 operation because (ωjr3)
r3 = 1. It follows that

E
u,ũ∼U
v∼V

[

ω
j 〈u−ũ,v〉

r1r2
r3

]

= E
v∼V

∣
∣
∣
∣ E
u∼U

[

ω
j 〈u,v〉

r1r2
r3

]∣
∣
∣
∣

2

≥
∣
∣
∣
∣
∣
E

u∼U
v∼V

[

ω
j 〈u,v〉

r1r2
r3

]∣∣
∣
∣
∣

2

≥ 1

s2f(s)2
.

Therefore there exists a fixed ũ ∈ U such that
∣
∣
∣
∣
∣
E

u∼U
v∼V

[

ω
j 〈u−ũ,v〉

r1r2
r3

]∣∣
∣
∣
∣
=

∣
∣
∣
∣
∣
E

u∼U
v∼V

[

ω
j〈u−ũ

r1
,v〉/r2

r3

]∣∣
∣
∣
∣
≥ 1

s2f(s)2
.

Since u(r1) = ũ(r1), we have u− ũ = r1(u
[r1] − ũ[r1]). The above inequality can

be written as ∣
∣
∣
∣
∣
E

u∼U
v∼V

[
ωj〈u

[r1]−ũ[r1],v〉/r2
r3

]
∣
∣
∣
∣
∣
≥ 1

s2f(s)2
. (4)

Step 2: Partitioning into buckets. We partition the set U into buckets

according to u[r1] − ũ[r1] modulo s: U =
⋃

w∈Zn
s

B(w, U), where

B̃(w, U) =

{

u ∈ U
∣
∣
∣
(
u[r1] − ũ[r1]

)(s)
= w

}

.

We also partition V into buckets B(w, V ) = {v ∈ V | (v[r2])(s) = w} for all w ∈
Z
n
s . Define pw = |B̃(w, U)|/t to be the density of B̃(w, U) and qw = |B(w, V )|/t

be the density of B(w, V ).
Picking u uniformly from U can be equivalently considered as two steps:

1. For each bucket B̃(w, U), pick a representative uw ∈ B̃(w, U) uniformly;
2. Pick one bucket according to the probability distribution pw, and output the
representative. For inequality (4), we split the procedure of picking u ∼ U into
these two steps.

1

s2f(s)2
≤
∣
∣
∣
∣
∣
E

u∼U
v∼V

[
ωj〈u

[r1]−ũ[r1],v〉/r2
r3

]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

E
for each w,

uw∼B̃(w,U)

E
w∼pw

E
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]
∣
∣
∣
∣
∣
∣

≤ E
for each w,

uw∼B̃(w,U)

∣
∣
∣
∣ E
w∼pw

E
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]∣∣
∣
∣ .

There exists a fixed list of representatives from each bucket (uw ∈ B(w, U) :
w ∈ Z

n
s ) such that

1

s2f(s)2
≤
∣
∣
∣
∣ E
w∼pw
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]∣∣
∣
∣ . (5)
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For every w ∈ Z
n
s and u ∈ B(w, U), we use u′ to denote the vector (u[r1] −

ũ[r1])[s]. Thus

u[r1]
w − ũ[r1] = su′w + (u[r1]

w − ũ[r1])(s) = su′w +w.

Hence inequality (5) can be written as

1

s2f(s)2
≤
∣
∣
∣
∣ E
w∼pw
v∼V

[
ω
j〈su′

w+w,v〉/r2
r3

]∣∣
∣
∣ . (6)

Step 3: Finding a large bucket. By inequality (6),

(
1

s2f(s)2

)2

≤
∣
∣
∣
∣
∣
∣

∑

w∈Zn
s

∑

v∈V
pw · 1

t
· ωj〈su′

w+w,v〉/r2
r3

∣
∣
∣
∣
∣
∣

2

≤
⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

w∈Zn
s

∣
∣
∣
∣
∣

∑

v∈V

1

t
· ωj〈su′

w+w,v〉/r2
r3

∣
∣
∣
∣
∣

2
⎞

⎠

=

⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

w∈Zn
s

∑

v,ṽ∈V

1

t2
· ωj〈su′

w+w,v−ṽ〉/r2
r3

⎞

⎠

=

⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

v,ṽ∈V

1

t2
·
∑

w∈Zn
s

ω
j〈su′

w+w,v[r2]−ṽ[r2]〉
r3

⎞

⎠

=

⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

v,ṽ∈V

1

t2
·
∑

w∈Zn
s

ωj〈w,v
[r2]−ṽ[r2]〉

r3

⎞

⎠

=

⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

v,ṽ∈V

1

t2
· sn · 1v[r2] =ṽ[r2]

⎞

⎠

=

⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

w∈Zn
s

q2w

⎞

⎠ · sn. (7)

In the last step we used the fact v[r2] �= ṽ[r2] for two v, ṽ ∈ V . This can be

seen by contrapositive. If v[r2] = ṽ[r2], we have v = ṽ since v(r2) = ṽ(r2). This
contradicts Claim 2.5.

By (7), we can see that either
∑
p2w ≥ 1/(sn/2+2f(s)2) or∑

q2w ≥ 1/(sn/2+2f(s)2) holds. Without loss of generality, we assume
∑
p2w ≥

1/(sn/2+2f(s)2). By

max{pw} = max{pw} ·
∑

pw ≥
∑

p2w,

there exists a bucket B̃(w0, U) with size at least t/(sn/2+2f(s)2). Let Ũ be that

bucket, and Ṽ be the subset of V with the same indices. Then (Ũ , Ṽ ) ⊆ (U, V )



522 Z. Dvir and G. Hu

is an MV family of size at least t/(sn/2+2f(s)2). Next, we will find a subfamily

(U ′, V ′) ⊆ (Ũ , Ṽ ) that respects (r1s, r2, r3/s).

Step 4: Analyzing the elements in the large bucket. Let u0 and v0

denote u(r1) and v(r2) respectively for u ∈ U,v ∈ V . For every u ∈ Ũ , we

know (u[r1]− ũ[r1])(s) equals the same vector w0 by the definition of the bucket.

Therefore u[r1] − ũ[r1] = su′ +w0 and

u = r1u
[r1] + u0 = r1(ũ

[r1] + su′ +w0) + u0

= r1su
′ +
(
r1ũ

[r1] + r1w0 + u0

)
. (8)

We can see u(r1s) = r1ũ
[r1]+r1w0+u0 is the same for all u ∈ Ũ . Also v(r2) = v0

is the same for all v ∈ Ṽ . These two conditions are still satisfied for any subfamily
of (Ũ , Ṽ ). It suffices to find (U ′, V ′) ⊆ (Ũ , Ṽ ) such that

– 〈u[r1s],v0〉 modulo r2 is the same for all u ∈ U ′. By (8) we have u[r1s] = u′,
so we need 〈u′,v0〉 modulo r2 to be the same for all u ∈ U ′.

– 〈r1ũ[r1] + r1w + u0,v
[r2]〉 modulo r1s is the same for all v ∈ V ′.

Since 〈u[r1],v0〉 = 〈su′ + ũ[r1] + w,v0〉 modulo r2 is the same for all u ∈ U
by (U, V ) respecting (r1, r2, r3), we can see that s〈u′,v0〉 modulo r2 is the same
for all u ∈ U . Hence there are gcd(s, r2) possible values for 〈u′,v0〉 modulo r2.
We pick the most frequent value c1 and keep only the vectors with 〈u′,v0〉 ≡ c1
(mod r2) in Ũ and the corresponding vectors in Ṽ .

Since 〈u0,v
[r2]〉 modulo r1 is the same for all v ∈ V by (U, V ) respecting

(r1, r2, r3), we can see that there are s possible values for 〈u0,v
[r2]〉 modulo sr1.

We pick the most frequent value c2 and keep only the vectors with 〈u0,v
[r2]〉 ≡ c2

(mod sr1) in Ũ and the corresponding vectors in Ṽ .
After the above two steps, the MV family has size at least

|(Ũ , Ṽ )|
gcd(s, r2) · s ≥

|(Ũ , Ṽ )|
s2

≥ t

sn/2+4f(s)2
. (9)

And this is the required (U ′, V ′). �

4 Proof of Theorems 1.1 and 1.2

We now prove Theorem 1.1 by repeatedly applying Lemma 3.1.

Proof (Proof of Theorem 1.1). By Claim 2.10, (U, V ) is good with respect to
(1, 1,m). Initially we set r1 = 1, r2 = 1 and r3 = m. By Lemma 3.1, we there
is a subfamily that respects (r′1, r′2, r′3), where r′1r′2r′3 = m and r′3 < m. We
repeatedly apply Lemma 3.1. Each round r3 is reduced by some factor. We can
continue this procedure until either r3 = 1 or the size of the MV family becomes
less than 100m. For the case r3 = 1, the size of the MV family is also less
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than 100m by Claim 2.11. Say there are k rounds, and in each round we divide
r3 by s1, s2, . . . , sk respectively. We have s1s2 · · · sk ≤ m and in the ith round

(i ∈ [k]), the size of the MV family is decreased by a factor at most s
n/2+4
i f(si)

2.
Therefore the original size is upper bounded by

|(U, V )| ≤ 100m ·
k∏

i=1

s
n/2+4
i f(si)

2 ≤ 100m ·mn/2+4 ·
k∏

i=1

f(si)
2

= 100mn/2+5
k∏

i=1

f(si)
2.

Pick f(s) = s1.735, we can verify that
∑∞

s=2
1

f(s) ≤ 0.99. Therefore |(U, V )| ≤
100mn/2+5(m1.735)2 = 100mn/2+8.47. �

Combining with the lower bound mn−1+om(1) proved in [DGY11], we can give
a universal lower bound for the length of the MV code in [DGY11]. This is a
restatement of Theorem 1.2 stated in the introduction.

Corollary 4.1. Any MV code (as constructed in [DGY11]) has encoding length

at least N > K
19
18 , where K is the message length regardless of the query com-

plexity.

Proof. Given an MV family in Z
n
m with size t, we can encode a message of length

K = t into a codeword of length N = mn.
If n ≥ 19, by Theorem 1.1 we have K ≤ mn/2+8.47. Hence

K ≤ m(1/2+8.47/19)n < m
18
19n = N

18
19 and N > K

19
18 .

If n ≤ 18, it was shown in [DGY11] that K ≤ mn−1+om(1). Hence K <

mn− 18
19 ≤ mn− n

19 = m
18
19n = N

18
19 and N > K

19
18 . Note that here we assumed

m is sufficient large. This is reasonable because we are considering encoding an
arbitrarily long message and K is sufficiently large. �

5 The Case of Distinct Prime Factors

Ifm is a product of distinct primes, the bound can be improved tomn/2+4+om(1).
The proof follows the same outline as general composite m.

Theorem 5.1. Let m be a product of distinct primes. For every MV family
(U, V ) in Z

n
m, |(U, V )| ≤ 100mn/2+4+om(1), where om(1) goes to 0 as m grows.

Proof. The proof is similar to Theorem 1.1. We only sketch the changes here.
First, we improve the size of the (U ′, V ′) found in Lemma 3.1 to t/(sn/2+2f(s)2).

Since m is a product of distinct primes, r1 and r2 must be coprime to s, where s
is the number in inequality (3). Let τ1 and τ2 be integers that τ1r1 ≡ 1 (mod s)
and τ2r2 ≡ 1 (mod s), we have

ω
j 〈u,v〉

r1r2
r3 = ωj〈u,v〉τ1τ2r3 .
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We partition U and V into buckets according to u modulo s and v modulo s:
U =

⋃

w∈Zn
s

B(w, U) and V =
⋃

w∈Zn
s

B(w, V ), where

B(w, U) = {u ∈ U | u(s) = w}

and

B(w, V ) = {v ∈ V | v(s) = w}.
We still use pw to denote |B(w, U)|/t and qw to denote |B(w, V )|/t. By
inequality (3),

(
1

sf(s)

)2

≤
∣
∣
∣
∣
∣
E

u∼U
v∼V

[
ωj〈u,v〉τ1τ2r3

]
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

∑

w∈Zn
s

∑

v∈V
pw · 1

t
· ωj〈w,v〉τ1τ2r3

∣
∣
∣
∣
∣
∣

2

≤
⎛

⎝
∑

w∈Zn
s

p2w

⎞

⎠ ·
⎛

⎝
∑

w∈Zn
s

∣
∣
∣
∣
∣

∑

v∈V

1

t
· ωj〈w,v〉τ1τ2r3

∣
∣
∣
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We can see either
∑
p2w ≥ 1/(sn/2+1f(s)) or

∑
q2w ≥ 1/(sn/2+1f(s)). Without

loss of generality, assume
∑
p2w ≥ 1/(sn/2+1f(s)). By

max{pw} = max{pw} ·
∑

pw ≥
∑

p2w,

there exists a bucket with size |B(w, U)| ≥ t/(sn/2+1f(s)). Let Ũ be that bucket,

and Ṽ be the subset of V with the same indices. Then (Ũ , Ṽ ) ⊆ (U, V ) is an MV
family of size at least t/(sn/2+1f(s)).

Then we can find (U ′, V ′) ⊆ (Ũ , Ṽ ) using the same method as in Lemma 3.1.
By inequality (9),

|(U ′, V ′)| ≥ |(Ũ , Ṽ )|
gcd(s, r2) · s =

|(Ũ , Ṽ )|
s

≥ t

sn/2+2f(s)
.

At last, we use the proof of Theorem 1.1 except f(s) = 3s ln2 s. One can verify∑∞
s=2

1
f(s) < 0.99. Let s1, s2, . . . , sk be the numbers divided from r3 in each

round, by the proof of Theorem 1.1,
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|(U, V )| ≤ 100m

k∏

i=1

s
n/2+2
i f(si) ≤ 100mn/2+3

k∏

i=1

(3si ln
2 si)

≤ 100mn/2+4
k∏

i=1

(3 ln2 si).

For a sufficiently large integer s, we have 3 ln2 s < sε, where ε is an arbitrary
fixed small number. When m → ∞, all s1, s2, . . . , sk except a constant number
of them must be that large. Take ε→ 0, we have |(U, V )| ≤ mn/2+4+om(1). �
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Abstract. Mulmuley [Mul12a] recently gave an explicit version of
Noether’s Normalization Lemma for ring of invariants of matrices un-
der simultaneous conjugation, under the conjecture that there are deter-
ministic black-box algorithms for polynomial identity testing (PIT). He
argued that this gives evidence that constructing such algorithms for PIT
is beyond current techniques. In this work, we show this is not the case.
That is, we improve Mulmuley’s reduction and correspondingly weaken
the conjecture regarding PIT needed to give explicit Noether Normal-
ization. We then observe that the weaker conjecture has recently been
nearly settled by the authors ([FS12]), who gave quasipolynomial size
hitting sets for the class of read-once oblivious algebraic branching pro-
grams (ROABPs). This gives the desired explicit Noether Normalization
unconditionally, up to quasipolynomial factors.

As a consequence of our proof we give a deterministic parallel
polynomial-time algorithm for deciding if two matrix tuples have in-
tersecting orbit closures, under simultaneous conjugation.

Finally, we consider the depth-3 diagonal circuit model as defined by
Saxena [Sax08], as PIT algorithms for this model also have implications
in Mulmuley’s work. Previous works (such as [ASS13] and [FS12]) have
given quasipolynomial size hitting sets for this model. In this work, we
give a much simpler construction of such hitting sets, using techniques
of Shpilka and Volkovich [SV09].

1 Introduction

Many results in mathematics are non-constructive, in the sense that they es-
tablish that certain mathematical objects exist, but do not give an efficient or
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explicit construction of such objects, and often further work is needed to find
constructive arguments. Motivated by the recent results of Mulmuley [Mul12a]
(henceforth “Mulmuley”, but theorem and page numbering will refer to the full
version [Mul12b]), this paper studies constructive versions of the Noether Nor-
malization Lemma from commutative algebra. The lemma, as used in this paper,
can be viewed as taking a commutative ring R, and finding a smaller subring
S ⊆ R such that S captures many of the interesting properties of R (see Sec-
tion 1.2 for a formal discussion). Like many arguments in commutative algebra,
the usual proof of this lemma does not focus on the computational considerations
of how to find (a concise representation of) the desired subring S. However, the
area of computational commutative algebra (eg, [DK02, CLO07]) offers methods
showing how many classic results can be made constructive, and in certain cases,
the algorithms are even efficient.

While constructive methods for Noether Normalization are known using
Gröbner bases (cf. [CLO07]), the Gröbner basis algorithms are not efficient in
the worst-case (as show by Mayr and Meyer [MM82]), and are not known to
be more efficient for the problems we consider. Diverging from the Gröbner
basis idea, Mulmuley recently observed that a constructive version of Noether
Normalization is really a problem in derandomization. That is, given the ring
R, if we take a sufficiently large set of “random” elements from R, then these
elements will generate the desired subring S of R. Indeed, the usual proof of
Noether Normalization makes this precise, with the appropriate algebraic mean-
ing of “random”. This view suggests that random sampling from R is sufficient
to construct S, and this sampling will be efficient if R itself is explicitly given.
While this process uses lots of randomness, the results of the derandomization
literature in theoretical computer science (eg, [IW97, IKW02, KI04]) give strong
conjectural evidence that randomness in efficient algorithms is not necessary.
Applied to the problems here, there is thus strong conjectural evidence that the
generators for the subring S can be constructed efficiently, implying that the
Noether Normalization Lemma can be made constructive.

Motivated by this connection, Mulmuley explored what are the minimal de-
randomization conjectures necessary to imply an explicit form of Noether Nor-
malization. The existing conjectures come in two flavors. Most derandomization
hypotheses concern boolean computation, and as such are not well-suited for al-
gebraic problems (for example, a single real number can encode infinitely many
bits), but Mulmuley does give some connections in this regime. Other derandom-
ization hypotheses directly concern algebraic computation, and using them Mul-
muley gives an explicit Noether Normalization Lemma, for some explicit rings of
particular interest. In particular, Mulmuley proves that it would suffice to de-
randomize the polynomial identity testing (PIT) problem in certain models, in
order to obtain a derandomization of the Noether Normalization Lemma. Mul-
muley actually views this connection as an evidence that derandomizing PIT for
these models is a difficult computational task (Mulmuley, p. 3) and calls this the
GCT chasm. Although Mulmuley conjectures that it could be crossed he strongly
argues that this cannot be achieved with current techniques (Mulmuley, p. 3):
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“On the negative side, the results in this article say that black-box derandom-
ization of PIT in characteristic zero would necessarily require proving, either
directly or by implication, results in algebraic geometry that seem impossible to
prove on the basis of the current knowledge.”

Mulmuley supports this intuition with his Theorem 1.6, which gives an equiv-
alence between the general PIT problem (considered difficult in complexity the-
ory) and explicit Noether Normalization for explicit varieties (considered difficult
in algebraic geometry). However, he also focuses on Noether Normalization of
specific varieties, such as the ring of invariants of matrices under simultaneous
conjugation. The conditional derandomization of Noether Normalization for this
ring is the content of his Theorems 1.1 and 1.2. Explicit Noether Normalization
for this ring is simpler as there are explicitly known generators for the ring of
invariants (as given in previous work, cited in Theorem 1.3), and these gener-
ators are computationally very simple. For general explicit varieties, obtaining
such explicit generators is an open problem, and even if found, the generators
would not likely be as computational simple as the generators of Theorem 1.3.

However, Mulmuley has suggested that even the results in his Theorems 1.1
and 1.2 are beyond current techniques, because of their superficial similarity
to the “wild” classification problem of matrix tuples under simultaneous conju-
gation (see Mulmuley, p. 5, and the public presentation [Mul12c]). Indeed, the
general Noether Normalization problem for explicit varieties was not discussed
in the public presentation, as the specific case of simultaneous conjugation was
itself implied to contain the “seemingly impossible” problems mentioned above.

In this work, we obtain (via existing techniques) an unconditional deran-
domization of Noether’s Normalization Lemma for simultaneous conjugation, as
conditionally established in Mulmuley’s Theorems 1.1 and 1.2. While we have
no results for explicit Noether Normalization of general explicit varieties, we
believe that our work suggests that problems cannot be assumed to be difficult
just because they originated in algebraic-geometric setting, and that one has to
consider the finer structure of the problem. In particular, our work suggests that
the similarity of the problem we consider to the above wild problem is indeed
superficial. We start by briefly describing the PIT problem. For more details,
see the survey by Shpilka and Yehudayoff [SY10].

1.1 Polynomial Identity Testing

The PIT problem asks to decide whether a polynomial, given by an algebraic
circuit, is the zero polynomial. An algebraic circuit is a directed acyclic graph
with a single sink (or root) node, called the output. Internal nodes are labeled
with either a ×- or +-gate, which denote multiplication and addition respectively.
The source (or leaf) nodes, are labeled with either variables xi, or elements
from a given field F. An algebraic circuit computes a polynomial in the ring
F[x1, . . . , xn] in the natural way (as there are no cycles): each internal node in
the graph computes a function of its children (either × or +), and the circuit
itself outputs the polynomial computed by the output node. Algebraic circuits
give the most natural and succinct way to represent a polynomial.
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Given an algebraic circuit C, the PIT problem is to test if the polynomial f it
computes is identically zero, as a polynomial in F[x1, . . . , xn]. Schwartz [Sch80]
and Zippel [Zip79] (along with the weaker result by DeMillo and Lipton [DL78])
showed that if f �≡ 0 is a polynomial of degree ≤ d, and α1, . . . , αn ∈ S ⊆ F are
chosen uniformly at random, then f(α1, . . . , αn) = 0 with probability ≤ d/|S|.
It follows then that we can solve PIT efficiently using randomness, as evaluating
an algebraic circuit can be done efficiently. The main question concerning the
PIT problem is whether it admits an efficient deterministic algorithm, in the
sense that it runs in polynomial time in the size of the circuit C. Heuristically,
this problem can be viewed as replacing any usage of the Schwartz-Zippel result
with a deterministic set of evaluations.

One important feature of the above randomized PIT algorithm is that it only
uses the circuit C by evaluating it on given inputs. Such algorithms are called
black-box algorithms, as they treat the circuit as merely a black-box that com-
putes some low-degree polynomial (that admits some small circuit computing
it). This is in contrast to white-box algorithms, that probe the structure of C
in some way. White-box algorithms are thus less restricted, whence deriving a
black-box algorithm is a stronger result. For the purposes of this paper, instead
of referring to deterministic black-box PIT algorithms, we will use the equiva-
lent notion of a hitting set, which is a small set H ⊆ F

n of evaluation points
such that for any non-zero polynomial f computed by a small algebraic circuit,
f must evaluate to non-zero on some point in H. A standard argument (see
[SY10]) shows that small hitting sets exist, the main question is whether small
explicit hitting sets, which we now define, exist. As usual, the notion of explicit
must be defined with respect to an infinite family of objects, one object for each
value of n. For clarity, we abuse notation and do not discuss families, with the
understanding that any objects we design will belong to an unspecified family,
and that there is a single (uniform) algorithm to construct these objects that
takes as input the relevant parameters.

Definition 1.1. Let C ⊆ F[x1, . . . , xn] be a class of polynomials. A set H ⊆ F
n

is a hitting set for C if for all f ∈ C, f ≡ 0 iff f |H ≡ 0. The hitting set H
is t(n)-explicit if there is an algorithm such that given an index into H, the
corresponding element of H can be computed in t(n)-time, assuming unit cost
arithmetic in F.

That is, we mean that the algorithm can perform field operations (add, subtract,
multiply, divide, zero test) in F in unit time, and can start with the constants 0
and 1. We will also assume the algorithm has access to an arbitrary enumeration
of F. In particular, when F has characteristic 0, without loss of generality the
algorithm will only produce rational numbers.

1.2 Noether Normalization for Simultaneous Conjugation

Mulmuley showed that when R is a particular ring, then the problem of finding
the subring S given by Noether Normalization can be reduced to the black-
box PIT problem, so that explicit hitting sets (of small size) would imply a
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constructive version of Noether Normalization for this ring. The ring considered
here and in Mulmuley’s Theorems 1.1 and 1.2 is the ring of invariants of matrices,
under the action of simultaneous conjugation1.

Definition 1.2. Let �M denote a vector of r matrices, each2 �n� × �n�, whose
entries are distinct variables. Consider the action of GLn(F) by simultaneous
conjugation on �M , that is, M1, . . . , Mr) �→ (P M1P −1, . . . , P MrP −1). Define
F[ �M ]GLn(F) to be the subring of F[ �M ] consisting of polynomials in the entries
of �M that are invariant under the action of GLn(F). That is, F[ �M ]GLn(F) :=
{f |f( �M) = f(P �MP −1), ∀P ∈ GLn(F)}.

Note that F[ �M ]GLn(F) is in fact a ring. When F has characteristic zero, the
following result gives an explicit set of generators for the ring of invariants.
When F has positive characteristic, the result is known not to hold (see [KP00,
§2.5]) so we will only discuss characteristic zero fields.

Theorem 1.3 ([Pro76, Raz74, For86]). Let F be a field of characteristic zero.
Let �M denote a vector of r matrices, each �n� × �n�, whose entries are distinct
variables. The ring F[ �M ]GLn(F) of invariants is generated by the invariants T :=
{trace(Mi1 · · · Mi�

)|�i ∈ �r�
�
, � ∈ [n2]}.

Further, the ring F[ �M ]GLn(F) is not generated by the invariants
{trace(Mi1 · · · Mi�

)|�i ∈ �r�
�
, � ∈ [
n2/8�]}.

That is, every invariant can be represented as a (multivariate) polynomial, with
coefficients in F, in the above generating set. Note that the above generating
set is indeed a set of invariants, because the trace is cyclic, so the action of
simultaneous conjugation by P cancels out.

The above result is explicit in two senses. The first sense is that all involved
field constants can be efficiently constructed. The second is that for any f ∈ T
and �A, f( �A) can be computed quickly. In particular, any f ∈ T can be computed
by a poly(n, r)-sized algebraic circuit, as matrix multiplication and trace can be
computed efficiently by circuits. We encapsulate these notions in the following
definition.

Definition 1.4. A set P ⊆ F[x1, . . . , xn] of polynomials has t(n)-explicit C-
circuits, if there is an algorithm such that given an index into P, a circuit
C ∈ C can be computed in t(n)-time, assuming unit cost arithmetic in F, such
that C computes the indexed f ∈ P.

In particular, the above definition implies that the resulting circuits C have size
at most t(n). The class of circuits C can be the class of all algebraic circuits, or
1 Mulmuley considers conjugation by matrices with determinant 1, that is, by SLn.

Over algebraically closed fields, which are the main fields of interest in this paper,
this is equivalent to conjugation over GLn.

2 In this work we will most often index vectors and matrices starting at zero, and will
indicate this by the use of �n�, which denotes the set {0, . . . , n − 1}. Also, [n] will
be used to denote the set {1, . . . , n}.
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some restricted notion, such as algebraic branching programs, which are defined
later in this paper. Thus, in the language of the above definition, the set of
generators T has poly(n, r)-explicit algebraic circuits.

However, the above result is unsatisfactory in that the set of generators T
has size exp(poly(n, r)), which is unwieldy from a computational perspective.
One could hope to find a smaller subset of generators, but the lower bound
in the above theorem rules out one approach that direction. The number of
generators is relevant here, as we will consider three computational problems
where these generators are useful, but because of their number the resulting
algorithms will be exponential-time, where one could hope for something faster.
To define these problems, we first give the following standard definition from
commutative algebra.

Definition 1.5. Let R be a commutative ring, and S a subring. Then R is
integral over S if every element in R satisfies some monic polynomial with
coefficients in S.

As an example, the algebraic closure of Q (the algebraic numbers) is integral
over Q. In this work the rings R and S will be rings of polynomials, and it is not
hard to see that all polynomials in R vanish at a point iff all polynomials in S
vanish at that point. This can be quite useful, especially if S has a small list of
generators. The statement of Noether Normalization is exactly that of providing
such an S with a small list of generators. The question we consider here is how to
find an explicit such S for the ring of invariants under simultaneous conjugation,
where S should be given by its generators.

Question 1.6 (Constructive Noether Normalization). Let F be an algebraically
closed field of characteristic zero. Is there a small set of polynomials T ′ ⊆
F[ �M ]GLn(F) with explicit algebraic circuits, such that F[ �M ]GLn(F) is integral over
the subring S generated by T ′?

We will in fact mostly concern ourselves with the next problem, which has im-
plications for the first, when F is algebraically closed. We first give the following
definition, following Derksen and Kemper [DK02].

Definition 1.7. A subset T ′ ⊆ F[ �M ]GLn(F) is a set of separating invariants
if for all �A, �B ∈ (F�n�×�n�)�r� there exists an f ∈ F[ �M ]GLn(F) such that f( �A) �=
f( �B) iff there exists an f ′ ∈ T ′ such that f ′( �A) �= f ′( �B).

In words, whenever there is an f ∈ F[ �M ]GLn(F) separating �A and �B (i.e. f( �A) �=
f( �B)), there is also an f ′ ∈ T ′ separating them. As before, we will ask whether
we can find an explicit construction.

Question 1.8. Let F have characteristic zero. Is there a small set of separating
invariants T ′ ⊆ F[ �M ]GLn(F) with explicit algebraic circuits?

Mulmuley used the tools of geometric invariant theory [MFK94], as done in
Derksen and Kemper [DK02], to note that, over algebraically closed fields, any
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set T ′ of separating invariants will also generate a subring that (F�n�×�n�)�r�

is integral over. Thus, any positive answer to Question 1.8 will give a positive
answer to Question 1.6. Hence, we will focus on constructing explicit separating
invariants (over any field of characteristic zero).

Note that relaxations of Question 1.8 can be answered positively. If we only
insist on explicit separating invariants (relaxing the insistence on having few in-
variants), then the exponentially-large set of generators T given in Theorem 1.3
suffices as these polynomials have small circuits and as they generate the ring
of invariants, they have the required separation property. In contrast, if we only
insist of a small set of separating invariants (relaxing the explicitness), then
Noether Normalization essentially shows that a non-explicit set of separating
invariants T ′ of size poly(n, r) exists, basically by taking a random T ′. More
constructively, Mulmuley observed that Gröbner basis techniques can construct
a small set of separating invariants T ′, but this set is still not explicit as such al-
gorithms take exponential-space, so are far from efficient. In the particular case
of F[ �M ]GLn(F), Mulmuley showed that the construction can occur in PSPACE
unconditionally, or even PH, assuming the Generalized Riemann Hypothesis.
Thus, while there are explicit sets of separating invariants, and there are small
sets of separating invariants, existing results do not achieve these two properties
simultaneously.

The third problem is more geometric, as opposed to algebraic. Given a tuple
of matrices �A, we can consider the orbit of �A under simultaneous conjugation as
a subset of (F�n�×�n�)�r�. A natural computational question is to decide whether
the orbits of �A and �B intersect. However, from the perspective of algebraic
geometry it is more natural to ask of the orbit closures intersect. That is, we
now consider �A and �B as lying in (F�n�×�n�)�r�, where F is the algebraic closure
of F. Then, we consider the orbit closures of �A and �B in this larger space, where
this refers to taking the orbits in (F�n�×�n�)�r� and closing them with respect to
the Zariski topology.

Question 1.9. Let F be a field of characteristic zero. Is there an efficient de-
terministic algorithm (in the unit cost arithmetic model) that, given �A, �B ∈
(F�n�×�n�)�r�, decides whether the orbit closures of �A and �B under simultaneous
conjugation have an empty intersection?

Mulmuley observed that by the dictionary of geometric invariant the-
ory [MFK94], �A and �B have a non-empty intersection of their orbit closures
iff they are not distinguishable by any set of separating invariants. Thus, any
explicit set T ′ of separating invariants, would answer this question, as one could
test if f agrees on �A and �B (as f is easy to compute, as it has a small circuit), for
all f ∈ T ′. Thus, as before, Question 1.9 can be solved positively by a positive
answer to Question 1.8. The main results of this paper provide positive answers
to Questions 1.6, 1.8 and 1.9.
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1.3 Our Results

We study further the connection raised by Mulmuley regarding the construction
of separating invariants and the black-box PIT problem. In particular, we more
carefully study the classes of algebraic circuits arising in the reduction from
Noether Normalization to PIT. Two models are particularly important, and we
define them now.

Definition 1.10 (Nisan [Nis91]). A algebraic branching program with
unrestricted weights of depth d and width ≤ w, on the variables x1, . . . , xn,
is a directed acyclic graph such that 1. The vertices are partitioned in d + 1
layers V0, . . . , Vd, so that V0 = {s} (s is the source node), and Vd = {t} (t is
the sink node). Further, each edge goes from Vi−1 to Vi for some 0 < i ≤ d.
2. max |Vi| ≤ w. 3. Each edge e is weighted with a polynomial fe ∈ F[�x].

Each s-t path is said to compute the polynomial which is the product of the
labels of its edges, and the algebraic branching program itself computes the sum
over all s-t paths of such polynomials.

1. In an algebraic branching program (ABP), for each edge e the weight
fe(�x) is an affine function. The size is nwd. 2. In a read-once oblivious ABP
(ROABP) of (individual) degree < r, we have n := d, and for each edge e from
Vi−1 to Vi, the weight is a univariate polynomial fe(xi) ∈ F[xi] of degree < r.
The size is dwr.

In the definition of ROABPs we will exclusively focus on individual degree, and
thus will use the term “degree”. The ROABP model is called oblivious because
the variable order x1 < · · · < xd is fixed. The model is called read-once because
the variables are only accessed on one layer in the graph.

The ABP model is a standard algebraic model that is at least as powerful as
algebraic formulas, as shown by Valiant [Val79], and can be simulated by alge-
braic circuits. As shown by Berkowitz [Ber84], the determinant can be computed
by a small ABP over any field. See Shpilka and Yehuydayoff [SY10] for more.

The ROABP model arose in prior work of the authors ([FS12]) as a natural
model of algebraic computation capturing several other existing models. This
model can also be seen as an algebraic analogue of the boolean model of com-
putation known as the read-once oblivious branching program model, which is a
non-uniform analogue of the complexity class RL. See Forbes and Shpilka [FS12]
for more of a discussion on the motivation of this class.

A polynomial computed by an ROABP of size s can be computed by an
ABP of size poly(s). The converse is false, as Nisan [Nis91] gave exponential
lower bounds for the size of non-commutative ABPs computing the determinant,
and non-commutative ABPs encompass ROABPs, while as mentioned above
Berkowitz [Ber84] showed the determinant can be computed by small ABPs.
Thus the ROABPs are strictly weaker in computational power than ABPs.

While there are no efficient (white-box or black-box) PIT algorithms for ABPs,
we established in prior work ([FS12]) a quasi-polynomial sized hitting set for
ROABPs. This hitting set will be at the heart of our main result.
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Theorem 1.11 ([FS12]). Let C be the set of d-variate polynomials computable
by depth d, width ≤ w, degree < r ROABPs. If |F| ≥ poly(d, w, r), then C has a
poly(d, w, r)-explicit hitting set H ⊆ F

d, of size ≤ poly(d, w, r)O(lg d). Further, if
F has characteristic zero then H ⊆ Q

d.

Our main contribution concerns the derandomization of Noether Normalization
Lemma for the ring of matrix invariants.

Derandomizing Noether Normalization via an improved reduction to PIT: This
section contains the main results of our paper. Given the above result, and the
lack of progress on derandomizing PIT in such general models such as ABPs, it
might seem that derandomizing Noether Normalization for simultaneous conju-
gation is challenging. However, we show this is not true, by showing that deran-
domization of black-box PIT for ROABPs suffices for derandomizing Noether
Normalization for simultaneous conjugation. By then invoking our prior work
on hitting sets for ROABPs cited as Theorem 1.11, we establish the following
theorems, giving quasi-affirmative answers to Questions 1.6, 1.8 and 1.9. Fur-
thermore, our results are proved unconditionally and are at least as strong as
the conditional results Mulmuley obtains by assuming strong conjectures such
as the Generalized Riemann Hypothesis or strong lower bound results.

Specifically, we prove the following theorem which gives an explicit set of
separating invariants (see Question 1.8).

Theorem 1.12. Let F be a field of characteristic zero. There is a
poly(n, r)O(log(n))-sized set TH of separating invariants, with poly(n, r)-explicit
ABPs. That is, TH ⊆ F[ �M ]GLn(F), and for any �A, �B ∈ (F�n�×�n�)�r�, f( �A) �=
f( �B) for some f ∈ F[ �M ]GLn(F) iff f ′( �A) �= f ′( �B) for some f ′ ∈ TH.

As a consequence of Theorem 1.12 and the discussion in Subsection 1.2 we obtain
the following corollary that gives a positive answer to Question 1.6. In particular,
it provides a derandomization of Noether Normalization Lemma for the ring of
invariants of simultaneous conjugation.

Corollary 1.13. Let F be an algebraically closed field of characteristic zero. Let
TH be the set guaranteed by Theorem 1.12. Then, F[ �M ]GLn(F) is integral over the
subring generated by TH.

For deciding intersection of orbit closures, Question 1.9, the natural extension
of Theorem 1.12, as argued in Subsection 1.2, would yield a quasi-polynomial-
time algorithm for deciding orbit closure intersection. However, by replacing
the black-box PIT results for ROABPs of Forbes and Shpilka [FS12] by the
white-box PIT results by Raz and Shpilka [RS05] (as as well as follow-up work
by Arvind, Joglekar and Srinivasan [AJS09]), we can obtain the following better
algorithm for deciding orbit closure intersection, proving a strong positive answer
to Question 1.9.

Theorem 1.14. Let F be a field of characteristic zero. There is an algorithm,
running in deterministic polylog(n, r)-time using poly(n, r)-processors (NC), in
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the unit cost arithmetic model, such that given �A, �B ∈ (F�n�×�n�)�r�, one can
decide whether the orbit closures of �A and �B under simultaneous conjugation
have an empty intersection.

PIT for Depth-3 Diagonal Circuits: Mulmuley’s Theorem 1.4 showed that
Noether Normalization for representations of SLm(F) can be reduced, when m
is constant, to black-box PIT of a subclass of circuits known as depth-3 diagonal
circuits. This class of circuits (along with a depth-4 version) was introduced in
Saxena [Sax08], who gave a polynomial-time white-box PIT algorithm, via a
reduction to the white-box PIT algorithm for non-commutative ABPs of Raz
and Shpilka [RS05]. Saha, Saptharishi and Saxena [SSS11] (among other things)
generalized these results to the depth-4 semi-diagonal model. Agrawal, Saha and
Saxena [ASS13] gave (among other things) a quasipolynomial size hitting set for
this model, by showing that any such circuit can be shifted so that there is a
small-support monomial, which can be found via brute-force. In independent
work, the present authors (in [FS12]) also established (among other things) a
quasipolynomial size hitting set for this model. This was done by showing that
the depth-4 semi-diagonal model is efficiently simulated by the ROABP model.
Further, this was done in two ways: the first was an explicit reduction by using
the duality ideas of Saxena [Sax08], and the second was to show that the diagonal
model has a small space of derivatives in a certain sense, and that ROABPs can
efficiently compute any polynomial with that sort of small space of derivatives.
Some aspects of this model are also present in the work of Gupta-Kamath-Kayal-
Saptharishi [GKKS13] showing that (arbitrary) depth-3 formulas capture, in a
sense, the entire complexity of arbitrary algebraic circuits.

Here, we give a simpler proof that the depth-3 diagonal circuit model has a
quasipolynomial size hitting set. This is done using the techniques of [SV09], and
has some similarities with the work of Agrawal, Saha and Saxena [ASS13]. In
particular, we show the entire space of derivatives is small, for depth-3 model (but
not the depth-4 model). We then show that this implies such polynomials must
contain a monomial of logarithmic support, which can be found via brute-force
in quasipolynomial time. Unlike the work of Agrawal, Saha and Saxena [ASS13],
no shifts are required for this small monomial to exist. Thus, we get the following
theorem.

Theorem 1.15. Let F be a field with size ≥ d + 1. Then there is a
poly(n, d, log(s))-explicit hitting set of size poly(n, d)O(log s) for the class of n-
variate, degree ≤ d, depth-3 diagonal circuits of size ≤ s.

Deciding (non-closed) orbit membership via PIT: Finally, we observe that de-
ciding non-closed orbit membership easily reduces to PIT. Due to lack of space
we omit this, but include it in the full version [FS13].

1.4 Notation

Given a vector of polynomials �f ∈ F[�x]n and an exponent vector �i ∈ N
n, we

write �f
�i for f i1

1 · · · f in
n .
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Given a polynomial f ∈ F[�x], we write C�x�i(f) to denote the coefficient of �x
�i in

f . For a matrix M ∈ F[�x]�r�×�r�, we write C�x�i(M) to denote the r × r F-matrix,
with the C�x�i operator applied to each entry. When we write “f ∈ F[�x][�y]”, we will
treat f as a polynomial in the variables �y, whose coefficients are polynomials in
the variables �x, and correspondingly will write C�y�j (f) to extract the polynomial
in �x that is the coefficient of the monomial �y

�j in f .

1.5 Organization

In Section 2 we give the necessary background on ROABPs. We prove our main
results about explicit Noether Normalization in Section 3. Omitted proofs can
be found in the full version [FS13] of the paper.

The rest of our results appear are deferred to the full version [FS13]. These
include the hitting set for depth-3 diagonal circuits and the reduction from the
orbit membership problem to PIT.

2 Properties of Algebraic Branching Programs

ABPs, as well as the subclass of ROABPs, have a tight connection with matrix
products. In the full version [FS13] we derive some basic properties of this con-
nection, as they are useful for proofs of the below results. For lack of space, we
omit the statements of these straightforward results.

However, we will note here a result, first proved by Malod and Portier [MP08],
that shows the equivalence of traces of matrix powers (see the full version [FS13]
for a definition) and algebraic branching programs.

Theorem 2.1 ([MP08]). Let F be a field. If a polynomial f is computable by
a width w, depth d ABP, then for any d′ ≥ d such that char(F) � d′, f can
be computed by a width wd′, depth d′ trace of a matrix power. In particular,
d′ ∈ {d, d + 1} suffices.

Conversely, if a polynomial f is computable by a width w, depth d trace of
matrix power, then f can also be computed by a width w2, depth d ABP.

The trace of matrix power model was model studied by Mulmuley, and he used
derandomization of PIT for this class as the basis of explicit Noether Normal-
ization. The above shows this model is equivalent to the general model of ABP.
In contrast, we show a reduction to the more restricted model of ROABP which
allows us to apply the results of [FS12].

3 Reducing Noether Normalization to Read-once
Oblivious Algebraic Branching Programs

In this section we construct a small set of explicit separating invariants for si-
multaneous conjugation. We do so by constructing a single ROABP that encodes
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the entire generating set T for F[ �M ]GLn(F), as given by Theorem 1.3. We then
use hitting sets for ROABPs to efficiently extract the separating invariants from
this ROABP. We begin with the construction3 of the ROABP.

Construction 3.1. Let n, r, � ≥ 1. Let �M denote a vector of r matrices, each
�n�×�n�, whose entries are distinct variables. Define M(x) :=

∑
i∈�r� Mix

i and,
for the � variables �x, define f�( �M, �x) := trace(M(x1) · · · M(x�)).

The following lemma shows that these polynomials f�( �M, �x) can be computed
by small ROABPs, when �x is variable and �M is constant.

Lemma 3.2. Assume the setup of Construction 3.1. Let �A, �B ∈ (F�n�×�n�)�r�.
Then f�( �A, �x) − f�( �B, �x) can be computed by a width 2n2, depth �, degree < r
ROABP.

Alternatively, when �x is constant, and the matrices �M are variable, then f�( �M, �x)
can be computed by a small ABP.

Lemma 3.3. Assume the setup of Construction 3.1. Let �α ∈ F
�. Then f�( �M, �α)

can be computed by a width n2, depth � ABP, and this ABP is constructable in
poly(n, r, �) steps.

Our next two lemmas highlight the connection between the polynomials in
Construction 3.1 and the generators of the ring of invariants provided by
Theorem 1.3. Namely, they show that the generators in the set T of Theorem 1.3
are faithfully encoded as coefficients of the polynomial f�( �M, �x), when viewing
this polynomial as lying in the ring F[ �M ][�x]. Note here that we use the C�x�i

notation as defined in Subsection 1.4.
Given these two lemmas the proof of the reduction is similar to the one done in

Mulmuley’s paper. Nevertheless, for completeness we give the entire reduction.

Lemma 3.4. Assume the setup of Construction 3.1. Then for �i ∈ N
�, taking

coefficients in F[ �M ][�x], C�x�i(f�( �M, �x)) = trace(Mi1 · · · Mi�
) if �i ∈ �r�

� and 0
otherwise.

As the above lemma shows that f�( �M, �x) encodes all of the generators T , it
follows that �A and �B agree on the generators T iff they agree on f�( �M, �x).

Lemma 3.5. Assume the setup of Construction 3.1. Let �A, �B ∈ (F�n�×�n�)�r�

and � ≥ 1. Then trace(Ai1 · · · Ai�
) = trace(Bi1 · · · Bi�

) for all �i ∈ �r�
� iff

f�( �A, �x) = f�( �B, �x), where this second equality is as polynomials in the ring
F[�x].
3 There are some slightly better versions of this construction, as well as a way to more

efficiently use the hitting sets of Theorem 1.11. However, these modifications make
the presentation slightly less modular, and do not improve the results by more than
a polynomial factor, so we do not pursue these details.
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Hence, the polynomials f�( �M, �x) capture the generators T of F[ �M ]GLn(F) thus
in a sense capturing the entire ring F[ �M ]GLn(F) also, by Theorem 1.3.

Corollary 3.6. Assume the setup of Construction 3.1. Let F be a field of charac-
teristic zero. Let �A, �B ∈ (F�n�×�n�)�r�. Then f( �A) = f( �B) for all f ∈ F[ �M ]GLn(F)

iff f�( �A, �x) = f�( �B, �x) for all � ∈ [n2], where the second equality is as polynomials
in the ring F[�x].

Thus having reduced the question of whether F[ �M ]GLn(F) separates �A and �B,
to the question of whether some f�( �M, �x) separates �A and �B, we now seek to
remove the need for the indeterminates �x. Specifically, we will replace them by
the evaluation points of a hitting set, as shown in the next construction.

Construction 3.7. Assume the setup of Construction 3.1. Let H ⊆ F
n2 be a

t(n, r)-explicit hitting set for width ≤ 2n2, depth n2, degree < r ROABPs. Define
TH := {f�( �M, �α)|�α ∈ H, � ∈ [n2]}, where if � < n2 we use the first � variables of
α for the values of �x in the substitution.

We now prove the main theorems, showing how to construct small sets of explicit
separating invariants. We first do this for an arbitrary hitting set, then plug in
the hitting set given in our previous work as stated in Theorem 1.11.

Theorem 3.8. Assume the setup of Construction 3.7. Let F be a field of charac-
teristic zero. Then TH is a set of size n2|H| of homogeneous separating invariants
with poly(t(n, r), n, r)-explicit ABPs. That is, TH ⊆ F[ �M ]GLn(F), and for any
�A, �B ∈ (F�n�×�n�)�r�, f( �A) �= f( �B) for some f ∈ F[ �M ]GLn(F) iff f ′( �A) �= f ′( �B)
for some f ′ ∈ TH, and each such f ′ is computed by an explicit ABP.

As done in Mulmuley’s Theorem 3.6, we can conclude that the ring of invariants
is integral over the subring generated by the separating invariants. This uses the
following theorem of Derksen and Kemper [DK02] (using the ideas of geometric
invariant theory [MFK94]), which we only state in our specific case, but does
hold more generally.

Theorem 3.9 (Theorem 2.3.12, Derksen and Kemper [DK02], stated
by Mulmuley in Theorem 2.11). Let F be an algebraically closed field of
characteristic zero. Let T ′ ⊆ F[ �M ]GLn(F) be a finite set of homogeneous sepa-
rating invariants. Then F[ �M ]GLn(F) is integral over the subring S generated by
T ′.

Combining Theorem 3.8 and Theorem 3.9 yields the following corollary.

Corollary 3.10. Assume the setup of Construction 3.7. Let F be an algebraically
closed field of characteristic zero. Then F[ �M ]GLn(F) is integral over the subring
generated by TH, a set of n2|H| invariants with poly(t(n, r), n, r)-explicit ABPs.

Continuing with the dictionary of geometric invariant theory [MFK94], we can
obtain the following deterministic black-box algorithm for testing of two orbit
closures intersect.
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Corollary 3.11. Assume the setup of Construction 3.7. Let F be a field
of characteristic zero. There is an algorithm, running in deterministic
poly(n, r, t(n, r), |H|)-time, in the unit cost arithmetic model, such that given
�A, �B ∈ (F�n�×�n�)�r�, one can decide whether the orbit closures of �A and �B un-
der simultaneous conjugation have an empty intersection. Further, this algorithm
is “black-box”, as it simply compares f( �A) and f( �B) for various polynomials f .

Thus, the above results, Theorem 3.8, Corollary 3.10, and Corollary 3.11 give
positive results to Questions 1.8, 1.6, and 1.9 respectively, assuming small ex-
plicit hitting sets for ROABPs. Plugging in the hitting sets results of Forbes
and Shpilka [FS12] as cited in Theorem 1.11, we obtain Theorem 1.12 and
Corollary 1.13.

However, using the hitting set of Theorem 1.11 does not allow us to deduce
the efficient algorithm for orbit closure intersection claimed in Theorem 1.14 as
the hitting set is too large. To get that result, we observe that deciding the orbit
closure intersection problem does not require black-box PIT, and that white-box
PIT suffices. Thus, invoking the white-box results of Raz and Shpilka [RS05],
and the follow-up work by Arvind, Joglekar and Srinivasan [AJS09], we can get
the desired result, as proven in the full version [FS13] of the paper.
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Abstract. Alon et al. (SICOMP 2001) showed that all regular languages are
testable with a constant number of queries. On the other hand, they also showed
that some context free languages require Ω(

√
n) queries to test. Following this,

Alon et al. suggested the problem of classifying the context free languages that
are testable with a constant number of queries.

We make progress towards the solution of this problem. Our main result is
that languages accepted by weak counter automata are testable with a constant
number of queries. A counter automaton is a pushdown automaton with a single
stack symbol, effectively a non-negative counter that the automaton may compare
to zero. It is weak if the set of possible transitions with a zero counter is a subset
of the possible transitions with a positive counter. Note that this restriction is es-
sential, since Lachish et. al. (CC 2008) proved that there exist counter automaton
languages requiring Ω(polylog(n)) queries to test.

1 Introduction

Property testing is a relaxation of the standard decision problem. Instead of requiring
the algorithm to distinguish inputs possessing some property from those who don’t,
a property testing algorithm is only required to distinguish inputs that have a certain
property from those that are far from having the property. More formally, a property
testing algorithm for a property P is given query access to some input object x and a
distance parameter ε > 0. The algorithm must accept with high probability if x has the
property P , and reject with high probability if x is ε-far from any object that has the
propertyP . In this context ε-far refers to some fixed distance function, usually implying
that more than an ε-fraction of x must be changed so that it will have the property P .

The main complexity measure in property testing is the query complexity of the algo-
rithm, namely, the number of queries it performs. Ideally, we want the query complexity
to depend only on ε, and not on the size of the input. Properties admitting algorithms
with query complexity that depends only on ε are called testable (sometimes empha-
sizing “with a constant number of queries”). An important distinction is made between
1-sided testers which must accepts inputs in P , and 2-sided testers, which don’t have
this further restriction.
� The research leading to these results has received funding from the European Union’s - Seventh

Framework Programme [FP7/2007-2013] under grant agreement no. 202405 (PROPERTY
TESTING).
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The notion of property testing was first defined by Rubinfeld and Sudan [16,17] in an
algebraic setting, and later in a combinatorial setting by Goldreich, Goldwasser and Ron
[7]. Since then much research was done both on finding the optimal query complexity
for specific properties, and on the major problem of characterizing those properties that
have a property tester of constant query complexity (or at least finding large families of
such properties). For more information, see the surveys [3,15,14].

Property testing of low complexity languages An important challenge in this respect is
to study the relationship between property testing and other notions of complexity. Are
“low complexity” objects also testable? The first work to tackle this problem was by
Alon et. al. [1], showing that all regular languages are 1-sided testable with a constant
number of queries. Alon et. al. further showed that such a strong result does not hold for
context free languages in general. In particular, Alon et. al. considered Dyck languages,
the languages of properly balanced parentheses of one or more types1. They showed that
the Dyck language for one type is testable, yet the Dyck language for two types requires
Ω(log n) queries2. Alon et. al. also showed that the concatenated palindrome language,
defined by the set {uurvvr : u, v ∈ Σ∗}, requires Ω(

√
n/ε) queries to test, even for

2-sided testers. Parnas et. al. [13] showed that while these languages are not testable
with a constant number of queries, they do admit property testers of sublinear query
complexity, proving an upper bound of Õ(n2/3/ε3) for testing all Dyck languages, and
an upper bound of Õ(

√
n/ε) for testing the concatenated palindrome language.

In their paper, Alon et. al. pose the problem of finding sufficient conditions for a
context free languages to be testable [1, Section 5]. A negative result in this regard was
proved by Lachish et. al. [11], showing that even if we restrict our attention to counter
automata, which are pushdown automata with only one stack symbol, we still encounter
untestable languages. Specifically, they give a language accepted by a counter automa-
ton yet requiring Ω(polylog(n)) to test, even for 2-sided testers. This leads us to fur-
ther restrict the computational model. In the language given by Lachish et. al. some of
the transitions are available only when the counter equals zero. This leads to the lower
bound because of the difficulty that any testing algorithm will have with determining
when the counter should equal zero (had we been following an accepting computation
for the input word). We alleviate this problem by including another restriction — the set
of possible transitions with a zero counter must be a subset of the possible transitions
with a positive counter (see Definition 2). We call such an automaton a weak counter au-
tomaton, and the focal point of this work is proving that all languages accepted by such
automata are testable with a constant number of queries. Obviously, regular languages
are accepted by such automata, furthermore, in the full version of the paper we show
that there is a rich family of non-regular languages accepted by weak counter automata.

It is also important to note that there has been a considerable body of work attempting
to prove testability (or hardness of it) for nonuniform models of computation, such as
bounded width branching programs [12,6] and formula [8,4,2,5].

1 The Dyck language for m types of parentheses is defined by setting m pairs of parentheses
symbols, and defining the languages to be the set of all property balanced strings over these
parentheses symbols.

2 Note that while untestable, the Dyck language for any number of types can be accepted by a
pushdown automaton with a single state.
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Organization of the paper. In the following section we provide background regarding
property testing and counter automata. In Section 3 we state our main result. Then, in
Section 4 we give an overview of the central concepts underlying our testing algorithm
and explain basic ideas behind this work. In particular, in Section 4.3 we give a sim-
plified overview of the testing algorithm, present some technical obstacles we meet in
this paper and describe the suggested solutions. We present our testing algorithm in
Section 6.

The proofs of the main result and the corresponding lemmas and claims are deferred
to the full version of the paper.

2 Preliminaries

We set N to be the non-negative integers and N
+ the the strictly positive integers. Let

[n] be the set {1, . . . , n}. For n1, n2 ∈ N we write n1|n2 if n2 divisible by n1. For
w ∈ {0, 1}n we let supp(w) = {i ∈ [n] | wi �= 0} and |w| = | supp(w)|. For any set
A, let P(A) = {A′ | A′ ⊆ A} be its power set. We define the distance between two
words x, y ∈ {0, 1}n to be Δ(x, y) = |{i | xi �= yi}| and the relative distance to be
δ(x, y) = Δ(x,y)

n .
For w ∈ {0, 1}n and L ⊆ {0, 1}∗, let δ(w,L) = min

p∈L∩{0,1}n
{δ(w, p)} denote

the relative distance of w from L. If δ(x,L) ≥ ε, we say that w is ε-far from L and
otherwise w is ε-close to L.

2.1 Property Testers

In this paper, oracle access to a word w ∈ {0, 1}n is a function mapping i �→ wi for
every i ∈ [n].

Definition 1. [ε-tester] Let L ⊆ {0, 1}∗. An ε-tester T is a randomized algorithm that
given ε > 0, an integer n and oracle access to a wordw ∈ {0, 1}n performs q = q(ε, n)
queries to w. If w ∈ L, then T accepts with probability at least 2/3. If δ(w,L) > ε,
then T rejects with probability at least 2/3.

The parameter ε is called the distance parameter and the function q is the query
complexity of the ε-tester. L is said to be testable if q is independent of the word length
n. We say that T has one-sided error if it always accepts inputs w ∈ L, and otherwise
it has two-sided error. If the choice of the queries used by T is independent of the their
values we say T is non-adaptive and otherwise we say it is adaptive.

If such an algorithm exists for a propety P with query complexity that only depends on
ε, we say that P is testable.

2.2 Weak Counter Automata

We only introduce facts regarding automata as needed for our purposes. For the basic
facts regarding automata and regular languages, please refer to any standard textbook on
formal language theory, such as [9]. For more information regarding counter automata
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see [18]. Note that in the following definition, we allow a nondeterministic transition
function.

Let IsZero : N −→ {ZERO,NZERO} be such that IsZero(i) = ZERO if
i = 0 and NZERO otherwise.

Definition 2. [Counter Automaton, Weak Counter Automaton] A counter automa-
ton M over {0, 1} is defined by a tuple M = (V, q1, F, δ), where V = {q1, . . . , qm}
is a set of states, q1 ∈ V is the initial state, F ⊆ V is a set of accepting states and
δ : V ×{0, 1}× {ZERO,NZERO} −→ P(V ×{−1, 0,+1}) is the transition func-
tion. The transition function maps a state, current tape symbol and counter status to a
set of pairs of the form (state, change in counter value). If additionally for every q ∈ V
and σ ∈ {0, 1} we have that δ(q, σ, ZERO) ⊆ δ(q, σ,NZERO), we say that the
counter automaton is weak.

For a weak counter automaton M and word w ∈ {0, 1}∗ define the relation →M
w on

pairs from V × N by induction on the word structure. Let γ denote the empty word.
First, for any num ∈ N and q ∈ V , (q, num)→M

γ (q, num).
Next, assume that (q, num) →M

u (p, num′) for some u ∈ {0, 1}∗, p, q ∈ V and
num, num′ ∈ N. If b ∈ {0, 1}, p′ ∈ V and c ∈ {−1, 0,+1} are such that (p′, c) ∈
δ(p, b, IsZero(num′)) and num′ + c ≥ 0 then (q, num)→M

ub (p′, num′ + c).
Let w ∈ {0, 1}∗ be a word and recall that q1 ∈ V is the initial state. We say that w

is accepted by M if there exist p ∈ F and num ∈ N such that (q1, 0) →M
w (p, num).

Given the automaton M we denote by L(M) the language accepted by the automaton
M , i.e.,

L(M) =
{
w ∈ {0, 1}∗|M accepts the word w

}
.

When the automaton M is clear from context, we may omit it and write (q, l1) →w

(p, l2) and say that (p, l2) is reachable from (q, l1). When we use a pair of the form
(q, ·), it is to be understood as “there exists l ∈ N such that when substituting l for
· the relation holds”. For example, (q, ·) →w (p, ·) if there exist l1, l2 ∈ N such that
(q, l1)→w (p, l2).

3 Main Result

In the following theorem we state the main result of this paper.

Theorem 1 (Main Theorem). Let M = (V, q1, F, δ) be a weak counter automaton.
Then for every n ∈ N, the property L(M) ∩ {0, 1}n is testable by a two-sided ε-tester.

The full proof of Theorem 1 is omitted from this extended abstract.
Theorem 1 expands on the main result of [1] since every regular language can be

accepted by a weak-counter automaton. On the other hand, weak counter automata
can also accept interesting non-regular languages, such as the language of prefixes of
balanced parenthesis strings.

Remark 1. Theorem 1 is not a direct generalization of the regular languages tester of
[1], since the weak counter automaton languages tester is 2-sided, while the regular
languages tester is 1-sided.



Testing Membership in Counter Automaton Languages 547

This is the best that can be expected, since some languages acceptable by weak
counter automata do not admit a 1-sided tester:

Denote by pref(x) the set of prefixes for a string x, and denote by 	0(x) and 	1(x)
the number of 0s and 1s in x respectively.

Now consider the languageL = {x ∈ {0, 1}n|∀w ∈ pref(x), 	0(w) ≥ sharp1(w)},
which can be accepted by a weak counter automaton. That is, the language of strings
where all prefixes have more 0s than 1s. The string 0n/413n/4 is 1

4 -far from L, but
any witness of size smaller than n/4 can be completed to a string in L. Therefore any
1-sided tester for L must use at least n/4 queries.

4 Overview

In this section we introduce the central concepts underlying the algorithm and its proof,
and survey the general method it employs.

4.1 Automata and Graphs

Every counter automaton defines a nondeterministic finite automaton by “ignoring” the
counter. Formally, ifM = (V, q1, F, δ) is a counter automaton then it corresponds to the
nondeterministic finite automaton MR = (V, q1, F, δ

R) where if (q, c2) ∈ δ(p, a, c1)
then q ∈ δR(p, a).

Next, every finite automaton M = (V, q1, F, δ) defines a directed graph G(M)
over the set of vertices V (G(M)) = V with the set of edges being E(G(M)) =
{(qi, qj) | ∃b ∈ {0, 1} : qj ∈ δ(qi, b)}. Note that we allow self loops in this graph.

Every word w ∈ {0, 1}n defines several paths in the graph, each corresponding to
one of the possible computation paths for w in the automaton.

For a given automaton M = (V, q1, F, δ) with a graph G = G(M), we denote by
C(G) the graph of strongly connected components of G. Recall that a strongly con-
nected component of a directed graph G = (V,E) is a maximal (by inclusion) subset
U ⊆ V such that for every u, v ∈ V there is a path from u to v and from v to u.
The graph of strongly connected components of G is defined with the vertex set being
all strongly connected components of G, and an edge leads from a component Ci to a
component Cj whenever there exist u ∈ Ci, v ∈ Cj such that (u, v) is an edge in G.
Note that some of the vertices of C(G) may represent a single vertex of G with no self
loops. All other components have non empty paths inside them and will be called truly
connected. From now on we reserve k for the number of vertices of C(G), note that we
can always bound k ≤ |V |.

We may assume that all vertices ofG are reachable from the initial state q1. Therefore
in C(G) there is a directed path from the component C1, which contains q1, to every
other component. Recall that C(G) is always an acyclic graph.

4.2 Runs in Words

In this section, let w ∈ {0, 1}n and M = (V, q1, F, δ) be the counter automaton. For
i ≤ j ∈ [n], we denote by w[i, j] the consecutive substring of w starting at index i and
ending at index j.
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Note that the definitions in the section also depend on n, the length of the input word.
Since n is fixed throughout the discussion, as a property is a subset of {0, 1}n, we keep
this dependence implicit.

Definition 3. [Feasible and infeasible runs] A sub-word (run) w[i, j] for i ≤ j ∈ [n]
is called feasible for M , if there exist states q, q′ ∈ V , an accepting state p ∈ F ,
x1 ∈ {0, 1}i−1 and x2 ∈ {0, 1}n−j such that the following all hold:

– (q1, ·)→x1 (q, ·)
– (q, ·)→w[i,j] (q

′, ·)
– (q′, ·)→x2 (p, ·)

Otherwise, w[i, j] is called infeasible.

One of the possible witnesses that a wordw /∈ L(M) is an infeasible run. Unfortunately,
the absence of such witnesses is not enough to imply a word w ∈ L(M), since it does
not take into account the counter values. This leads to the next definition.

Definition 4. [Value of a run] Let w ∈ {0, 1}n and i ≤ j ∈ [n] such that w[i, j] is
a feasible run. We say that valM(w[i, j]) = v if v ∈ Z is the maximal value such that
there exists w′ ∈ L(M) ∩ {0, 1}n, c ∈ N, q, q′ ∈ V and p ∈ F satisfying:

– w′[i, j] = w[i, j],
– (q1, ·)→w′[1,i−1] (q, c),
– (q, c)→w′[i,j] (q

′, c+ v),
– (q′, c+ v)→w′[j+1,n] (p, ·).

Note that in particular, we defined valM(w). If w[i, j] is infeasible, we set
valM(w[i, j]) = 03.

Note that −(j − i+ 1) ≤ valM(w[i, j]) ≤ (j − i + 1).
Informally, the value of a feasible run w[i, j] is the most positive change to the

counter that could happen while the automaton is reading w[i, j] in a computation that
can conclude in an accepting state, assuming a high enough initial counter value.

Another important concept is that of the word prefix which necessitates the most
negative counter change in a computation path on a word.

Definition 5. [Minimal prefix] We define minPrefM(w) = minj∈[n] {valM(w[1, j])}.
For a sequence of runs
w[0, h−1], w[h, 2h−1], . . .w[n−h, n], we define the related quantityminPrefM(w, h)

= mini∈[t]
{∑

j≤i valM(w[(j− 1)h, jh− 1])
}

.

4.3 Algorithm Overview

In this subsection we provide a coarse and simplified overview of the testing algorithm.
Our main testing algorithm (Algorithm 1) receives as input a weak counter automaton

3 While it does not seem natural to assign a value to an infeasible run, it’s technically convenient
in the proof.
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M , a word w and a distance parameter ε > 0. Algorithm 1 queries a constant number
bits from w. If w ∈ L(M) it accepts with high probability, if w is ε-far from L(M) it
rejects with high probability. This algorithm invokes an auxiliary Approximator as a
subroutine.

Assume M = (V, q1, F, δ) is a weak counter automaton and w ∈ {0, 1}n is an
input word. We shall test whether w ∈ L(M). If indeed w ∈ L(M), there is some
computation path inM certifying that, starting at q1 and ending in some state in F . This
path can be decomposed according to the strongly connected components of G(M),
where we will also specify the first and last state visited in every component, and the
indices in [n] during which the computation visited each component. Note that since
C(G(M)) is acyclic, every component can be visited at most once.

This decomposition allows us to reduce the testing of w ∈ L(M) to that of testing
membership of subwords of w in “sub-automata” of M , where these “sub-automata”
define strongly connected graphs (see Section 5.2). To execute this task, Algorithm
1 invokes Approximator on the corresponding “sub-automata” of M and subwords
of w. That is, the input to Approximator is a corresponding subword, a distance pa-
rameter and a sub-automaton. Given automata that define strongly connected graphs,
Approximator samples a few short consecutive subwords (runs) in w in order to find
infeasible runs and approximate the value (as in Definition 4) and minimal prefix (Def-
inition 5) of the input subword.

The output ofApproximator is true/false (i.e., whether a given subword corresponds
to a possible computation path in the given sub-automaton), estimated minimal prefix
and the value of the input subword. Assuming that Approximator outputs true and that
these approximations are good enough, they can be added together to determine whether
this is truly an accepting computation path for w ∈ L(M). Note that these approxima-
tions do not necessarily correspond to the original computation path considered, but
rather to a path which follows a similar decomposition.

Unfortunately, we cannot expect to be supplied with such a decomposition. We
would like to iterate over all possible decompositions, but their number depends on
n. Since we are looking for an algorithm with query complexity independent of n, we
prove that there is a set of decompositions which “approximate” all other decompo-
sitions, and that this set is of size independent of n. Thus our main testing algorithm
(Algorithm 1) iterates over this small set of decompositions. If at least one such decom-
position passes all tests then Algorithm 1 accepts w, otherwise it rejects.

Now we proceed to explain some technical obstacles and suggested solutions.

High precision of the counter approximations. We need to prove that whenever w ∈
{0, 1}n is ε-far from L(M), Algorithm 1 rejects with probability at least 2/3. Equiv-
alently, if Algorithm 1 rejects with probability less than 2/3, then at most εn bits in
w can be modified to obtain a word in L(M). Since ε > 0 can be arbitrary small, the
precision of the counter approximations made by Approximator should be arbitrary
high (depending on ε). Therefore, the number of runs we select depends on ε to make
the approximations sufficiently precise. Moreover, since parts of different runs might
require a modification (to “glue” a sequence of runs together), the length of the queried
runs depends on ε as well.
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Reduction to sub-automata and subwords. Assume we are given a decomposition to
“sub-automata” ofM and subwords ofw. We need to verify whether this decomposition
describes an accepting run of w in M . If M were a finite automaton, this task would
be reduced to just picking a sufficiently large number of runs with respect to every sub-
automata and checking whether at least one of them is infeasible (as in [1]). Indeed,
in Approximator we take this approach. However, M is a weak counter automaton,
which means that even if all runs of w are feasible, it might be that w is very far from
being in L(M). For example, consider the case when the entire word w is feasible for
M , but almost all transitions in the proposed computation path for w inM decrease the
counter. Notice that whenever a counter reaches the value 0 and all possible transitions
will decrease the counter, the execution of M on w halts and w is rejected.

Therefore, for every corresponding subword of w we need to estimate the counter
update caused by reading this subword by the corresponding sub-automaton of M . To
explain this, assume that a counter has (a sufficiently large) value v when the computa-
tion enters the corresponding sub-automaton, and it has a value v′ when the computa-
tion exits this sub-automaton. In this case, the update is v′ − v. In particular, the update
of the counter can be positive or negative. These updates can be summed up to verify
whether there exists a witness that a current decomposition cannot describe an accept-
ing computation path of w on M . For example, suppose we have 3 sub-automata in
the decomposition. Initially the counter is 0. The first sub-automata implies an update
of + n

10 , the second sub-automata implies an update of −n5 and the third sub-automata
implies an update of +n

5 . In this case, our prediction (that is made by Approximator)
says that after exiting the second sub-automata, the counter’s value should be nega-
tive ( n10 − n

5 ), which is impossible. Hence, the given decomposition cannot describe an
accepting computation path of w on M .

Similar problems may arise inside a single sub-automaton. Suppose a first sub-
automaton in the decomposition makes a positive update on the counter’s value, how-
ever, some prefix of the suggested traversal path inside this sub-automaton has negative
value. For example, first 10 steps of the suggested traversal path increase the counter’s
value by 10, but the following 20 steps decrease the counter’s value by 20 (i.e., in the
middle of this path counter’s value becomes−10). In this case, even if the counter’s up-
date of the entire computation path is positive, this computation path is impossible since
a counter’s value cannot be negative. This is why we also need to approximate the min-
imal prefix (Definition 5) of a subword with respect to the corresponding sub-automata.

Complications near zero. As we mentioned, Approximator queries only a constant
number of bits from a given subword. Therefore, it is plausible that the values esti-
mated by this algorithm are only close to being correct, but not completely correct. In
particular, if Approximator says that a counter’s value is near 0 at some point, it can
be a “good” case, where a suggested computation path results in a nonnegative value in
the counter, but it can be also a “bad” case, where a suggested computation path results
in a negative value in the counter. In the first case we should accept, but in the second
case it seems that we must reject. The problem is that we cannot distinguish between
two cases using constant query complexity.

Our solution is to accept situations, where Approximator shows that the counter’s
value is near 0. However, if a suggested computation implies a “slightly” negative
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counter’s value, our main testing algorithm (Algorithm 1) accepts with high probability
and thus we are required to prove that w is close to L(M). That is, we need to show
how to modify a small number of bits in w to fit some accepting computation path in
the sub-automaton.

This is where the weakness of the counter automaton comes into play. Informally, a
counter automaton being weak means that if we were to suddenly increase the counter
value mid-computation, an accepting computation path will still be able to accept. This
is simply because a non-rejecting transition may not depend on the counter being zero.
Therefore, what we’d like to do is simulate this increase in counter value with a small
change to the input word. The tool we wish to employ here is reachable positive cycles
in the automaton (see Definition 7). If we have such a cycle, we can hope to “ramp
up” the counter using it, and thus do away with small errors in the Approximator’s
approximation. But what if we have no such cycles? As it turns out, if no sub-automata
has a reachable positive cycle, then the counter value is bounded by a function of the
automaton’s size, and the computation (and testing) can be reduced to that of a finite
automaton (see the full version of the paper).

Now we are left to contend with the subtlety of using the reachable positive cycles.
Ideally, we’d like to replace some of the sub-word in the sub-automaton where this
reachable cycle appears with a repeated iteration over the positive cycle. Unfortunately,
it might be that this sub-word is not long enough for us to increase the counter to our
desired value. A simple fix for that is changing the transitions between sub-automata
slightly and “borrow” computation time from a later sub-automata for increasing the
counter value. This simple fix can be problematic though, since we must make sure that
we leave enough computation time in the later sub-automata we borrowed from so that
we could find a word to get though it.

Handling all of these issues requires a very careful analysis, which appears in the full
version of the paper, where we develop a systematic way of “ramping up” the counter
in a way that results in an accepting computation.

We follow with a subsection formalizing the decomposition of a computation path.
The algorithms and their proofs are fully developed in the Appendix.

4.4 Formalizing the Details

We now formally define this notion of decomposition.

Admissible Path and 4-Tuple

A computation path for a word naturally defines a sequence of triplets we denote
(C1, q1, l1), (C2, q2, l2), . . . , (Cf , qf , lf ), where for every j ∈ [f ] we have that Cj is
a strongly connected component, qj is the first state in Cj that was reached in this path
and lj is the value stored in the counter when this path reached qj for the first time.
Triplets will be categorized according to whether they have a positive cycle that can be
used by the computation. We define this formally:

Definition 6. [Reachable states and cycles] Let (v1, . . . , vd, v1) be a cycle in G =
G(M). We say that the cycle is reachable including the walk from (q, l), if there exist
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w ∈ {0, 1}∗, l1, l2, . . . , ld, ld+1 ∈ N and a1, a2, . . . , ad ∈ {0, 1} such that

(q, l)→w (v1, l1)→a1 (v2, l2)→a2 (v3, l3)→a3 . . . (vd, ld)→ad (v1, ld+1)

Finally, we say that for q, q′ ∈ V (G) and l, l′ ∈ N it holds that (q′, l′) is h-reachable
from (q, l) on w ∈ {0, 1}∗ if 0 ≤ l, l′ ≤ h and there exist a1, a2, . . . , ad−1 ∈ {0, 1},
0 ≤ l1, l2, . . . , ld ≤ h and v1, v2, . . . , vd ∈ V such that l1 = l, ld = l′, v1 = q, vd = q′

and
(v1, l1)→a1 (v2, l2)→a2 (v3, l3) . . .→ad−1

(vd, ld),

i.e., during this travel a counter value is always between 0 and h. We say that (q′, l′) is
h-reachable from (q, l) if there exists w ∈ {0, 1}∗ such that (q′, l′) is h-reachable from
(q, l) on w.

Note that a cycle being reachable including the walk implies not only that the compu-
tation may arrive at the cycle, but that it also may traverse it fully. It might be the case
that a cycle is reachable, but the counter is too low to complete a computation over the
cycle.

Definition 7. [Cycles and degenerate components] Let (v1, . . . , vk, v1) be a directed
cycle inside the strongly connected component C in the graph G(M). If there exist
a1, . . . , ak ∈ {0, 1} and c1, . . . , ck, ck+1 ∈ N such that (v1, c1) →a1 (v2, c2) →a2

. . . (vk, ck) →ak (v1, ck+1) and additionally ck+1 > c1 we say that this cycle is posi-
tive.

Let C be some strongly connected component and let p ∈ C. The triplet (C, p, l)
is degenerate if no positive cycle in C is reachable including the walk from (p, l) (i.e.,
either there are no positive cycles in C at all or they are not reachable including the
walk from (p, l)). Otherwise, this triplet is non-degenerate.

Recall that a computation path for w on M defines a sequence of triplets

(C1, q1, l1), (C2, q2, l2), . . . , (Cf , qf , lf).

We will be interested in the first non-degenerate triplet in this sequence. We will later
prove that the computation preceding the first non-degenerate triplet can be reduced to
that of a regular language (see the full version of the paper), this will allow us to reduce
the problem of testing that subword to that of testing membership in a regular language
as well.

4-tuple. We consider 4-tuples (A,P,Π, l), where A = (Ci1 , . . . , Cit) is a path of
strongly connected components in C(G), P = (p1j , p

2
j)
t
j=1 is an ordered list of vertex

pairs such that p1j , p
2
j ∈ Cij , Π = (nj)

t+1
j=1 is a list of natural numbers and l ∈ N.

Admissible 4-tuple. Fix any 4-tuple (A,P,Π, l). We will be interested in 4-tuples that
may arise from a computation path in M . We call a path A in C(G) admissible, if
it starts at some strongly connected component Ci1 and ends at a component with an
accepting state. Given an admissible path A = (Ci1 , . . . , Cit) in C(G), a sequence
P = (p1j , p

2
j)
t
j=1 of pairs of vertices of G (states of M ) is an admissible sequence of

portals if it satisfies the following restrictions:
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1. (p11, l) is (|V | − 1)-reachable from (q1, 0);
2. p1j , p

2
j ∈ Cij for every 1 ≤ j ≤ t;

3. p2t ∈ F (i.e., p2t is an accepting state of M );
4. For every 2 ≤ j ≤ t one has (p2j−1, p

1
j) ∈ E(G).

The idea behind the above definition of admissible portals is simple: Given an admissi-
ble path A, an admissible sequence P of portals describes how a computation path for
a word w ∈ L(M) moves between the strongly connected components:

– First, it starts from the initial state q1 with counter 0 and reaches the state p11 with
counter l such that (Ci1 , p

1
1, l) is non-degenerate (It might be that A = ∅ in which

case all triples are degenerate).
– Then, it moves from one strongly connected component ofA to the next one, where

every component Cij is entered at state p1j and exited at state p2j , ending in an
accepting state p2t ∈ Cit .

Now, given an admissible pathA and a corresponding admissible sequenceP of portals,
an increasing sequence of integers Π = (nj)

t+1
j=1 forms an admissible partition with

respect to (A,P ) if the following holds:

1. n1 ≥ 0;
2. for every j ∈ [t], there exists a path from p1j to p2j in Cij of length nj+1 − nj − 1;
3. nt+1 = n+ 1.

This partition defines the decomposition of the input word into subwords corresponding
to strongly connected components.

We say that l is an admissible counter value if (Ci1 , p
1
1, l) is non-degenerate and

0 ≤ l ≤ |V (G)| − 1. In the full paper we show that if (Ci1 , p
1
1, l) was the first non-

degenerate triplet in a computation path of w on M then 0 ≤ l ≤ |V (G)| − 1.
A 4-tuple (A,P,Π, l) is admissible, if A is an admissible path, P is a corresponding

admissible sequence of portals, Π is a corresponding admissible partition and l is an
admissible counter value.

Definition 8. [The 4-tuple defined by a computation path] An accepting computation
path for w ∈ L(M) ∩ {0, 1}n in M defines a 4-tuple (A,P,Π, l), where the sequence
A = (Ci1 , . . . , Cit) is such that Ci1 , . . . , Cit are strongly connected components in the
computation path discarding all strongly connected components before the first non-
degenerate triplet was encountered, P = (p1j , p

2
j)
t
j=1 such that p1j (resp. p2j ) is the first

(resp. the last) state of Cij visited by the computation path, Π = (nj)
t+1
j=1 such that

n1 ≥ 0, nt+1 = n + 1, and for 1 ≤ j ≤ t, nj is set to be the first index in which w
enters Cij in the computation path, and l is such that (Ci1 , p

1
1, l) is a non-degenerate

triplet.

Note that any wordw ∈ L(M)∩{0, 1}n has a computation path, and by a claim proved
in the full version, a value for l, for which it defines an admissible 4-tuple. On the other
hand, an admissible 4-tuple is enough to convince us that w ∈ L(M) ∩ {0, 1}n. We
stress again that the 4-tuple defined by a computation path can be empty. This occurs
when all triplets defined by the computation path are degenerate.
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Therefore, in order to be convinced thatw /∈ L(M), it is enough to check thatw does
not fit any admissible 4-tuple. Since the number of all admissible 4-tuples is large, we
restrict our attention only to the limited number of admissible 4-tuples. These restricted
4-tuples, as well as the notion of a sub-automaton, are introduced in Section 5

5 Restricted 4-Tuples and Sub-automata

5.1 Restricted 4-Tuples

Our intention is to let the testing algorithms try and fit the input word w to one of the
admissible 4-tuples. Since there are too many of those, we will construct a restricted
subset of them. This restricted subset will serve as an ε-net of sorts, for computations
over the automaton. The construction is similar to the one in [10] and is based on placing
NumTrIn intervals in [n], each of length LenTrIn. Essentially, the restriction will be
that transitions between strongly connected components are only allowed inside these
intervals.

Let NumTrIn = 200 · 10|V|/ε10 ·φG(M) · 1
ε4 , where φG(M) is a constant we set later,

and depends only on the structure of G(M). We place NumTrIn transition intervals
{Ts = [as, bs]}NumTrIn

s=1 evenly in [n], where the length of each transition interval Ts is
LenTrIn = 10 · (k− 1)(ψG(M) + φG(M)).

A 4-tuple (A,P,Π, l), where Π = (nj)
t+1
j=1, is called restricted if it is admissible

and for every j ∈ [t] we have nj ∈ Ts for some s ∈ [NumTrIn]. In particular, an empty
4-tuple is restricted.

For the rest of the proof, we will need to “glue together” subwords from differ-
ent strongly connected components. Towards this we set the value gap = n

NumTrIn +
LenTrIn. Intuitively, this value is the “slack” left untested in every strongly connected
component so they may be “glued” together later.

We now prove that the number of restricted 4-tuples is independent of n.

Claim 2. The number of restricted 4-tuples with respect to the weak counter automaton
M = (V, q1, F, δ) is at most

2|V ||V |2|V |+1(NumTrIn · LenTrIn)|V|.
Proof. Recall that a restricted 4-tuple is denoted by (A,P,Π, l), where we have A =
(Ci1 , . . . , Cit), P = (p1j , p

2
j)
t
j=1, Π = (nj)

t+1
j=1 and 0 ≤ l ≤ |V | − 1 such that Cij -s

are strongly connected components in G(M), for all j ∈ [t] we have p1j , p
2
j ∈ V and

nj ∈ Ts for some s ∈ [NumTrIn].
Note that the number of strongly connected components is at most |V | and thus

t ≤ |V |. The number of possible choices for A (choose an admissible path in C(G)) is
at most 2|V | as any subset of vertices of C(G) defines at most one path spanning it.

The total number of chosen portals (in P ) is at most 2|V |, therefore there are at
most |V |2|V | possible choices for portals. Then for a fixed pair (A,P ) there are at most
NumTrIn · LenTrIn choices for each nj , where 1 ≤ j ≤ t and t ≤ |V |.

Finally, there are |V | possible choices for the value l. Hence the number of restricted
4-tuples is upper-bounded by

2|V ||V |2|V | · (NumTrIn · LenTrIn)|V| · |V|.
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5.2 Sub-automata

With an admissible 4-tuple in hand (A,P,Π, l), we will restrict M to sub-automata
corresponding to the 4-tuple. A formal definition follows.

Definition 9. [Strongly connected automaton] The automaton M ′ = (V, q1, F, δ) is
strongly connected if M ′ has a unique accepting state qacc and G(M ′) is a strongly
connected graph.

For every strongly connected component Cij in A we construct the corresponding
strongly connected automaton Mj as follows.

Constructing a sub-automaton. Let (A,P,Π, l) be an admissible 4-tuple such thatA =
(Ci1 , . . . , Cit), P = (p1j , p

2
j)
t
j=1,Π = (nj)

t+1
j=1 and 0 ≤ l ≤ |V (G)|−1. For all j ∈ [t],

we define a corresponding automatonMj corresponding toCij : The set of states forMj

is Cij . The initial state of Mj and its unique accepting state are p1j and p2j , respectively.
For each q ∈ Cij , α ∈ {0, 1} and l′ ∈ N, if (q, l′) →M

α (q′, l′′) for some q′ ∈ Cij , we

set (q, l′) →Mj
α (q′, l′′). Other transitions are not reflected in the automaton Mj . Note

that by its definition, Mj is a strongly connected automaton as in Definition 9.

6 Algorithms

In this section we define our testing algorithm. We will use M = (V, q1, F, δ) to denote
the weak counter automaton. We start by introducing the Approximator algorithm,
which allows us to approximate the behavior of a word inside a strongly connected au-
tomaton. Next, we introduce the main testing algorithm which uses the Approximator
and TestRegularLang (which is defined in the full version of the paper and is essen-
tially a test for membership in a regular language) to test all possible restricted 4-tuples.

We defer the statement of Algorithm Approximator and its proof of correctness to
the full version, and only state the claims regarding its correctness.

The input to Approximator algorithm is given byw ∈ {0, 1}n′
, ε > 0 and a strongly

connected automaton M ′ = (V ′, q′1, F ′ = {qf}, δ′). The algorithm outputs a triplet,
where the first entry is “true” or “false”, and the other two are numerical values. If
the algorithm found no evidence that w is infeasible then the first entry in the triplet
is “true”, and the next two entries should approximate the minimal prefix and value of
w in M ′. Else, the first entry in the triplet is “false”, and the other two are irrelevant.
Lemma 1 states that if w is feasible (up to changes in the gap first and last bits) then
Approximator outputs “true” together with a good estimation of the minimal prefix
and value with high probability.

Lemma 1. [Completeness] Assume that w ∈ {0, 1}n′
, ε > 0 and the automatonM ′ =

(V ′, q′1, F ′ = {qf}, δ′) are the input to Approximator. Assume that w[gap, n′ − gap]
is feasible with respect to M ′. Then, with probability at least 1 − 1

100|V | we have that
Approximator outputs

(true,minPref, value)

such that
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– value− valM′(w[gap, n′ − gap]) ≥ −εn′, and
– minPref −minPrefM′(w[gap, n′ − gap]) ≥ −εn′.

Lemma 2 states that either Approximator returns “false” with high probability, or there
is a word w′ close to w which is feasible and its minimal prefix and value are close to
those estimated by the algorithm with high probability.

Lemma 2. [Soundness and robustness] Assume that w ∈ {0, 1}n′
, ε > 0 and the

automaton M ′ = (V ′, q′1, F
′ = {qf}, δ′) are the input to Approximator. If w is

ε-far from L(M ′), Approximator outputs (false, ·, ·) with probability at least 1 −
ε

10NumTuples . If w ∈ L(M ′) then with probability at least 1 − 1
10|V |NumTuples , the

Approximator algorithm outputs (true,minPref, value) such that there exists w′ ∈
{0, 1}n′

such that

– |value− valM′(w′)| ≤ εn′ + 2gap,
– |minPref −minPrefM′(w′)| ≤ εn′ + 2gap,
– (q′1,−minPref + εn′ + 2gap)→w′ (qf , ·), and
– Δ(w,w′) ≤ εn′ + 2gap.

Claim 3. The number of queries used by Approximator is at most

(p · |Start| · size) · (1000|V|) = Oε,|V|(1).

Moreover, Approximator is non-adaptive.

6.1 Testing Algorithm — Algorithm 1

Given a restricted 4-tuple (A,P,Π, l) with A = (Ci1 , . . . , Cit), P = (p1j , p
2
j)
t
j=1 and

Π = (nj)
t+1
j=1 we denote by Aj(M) the strongly connected counter automaton (Defini-

tion 9) associated with the j-th strongly connected component Cij in A. We denote by
Π(j) the j-th element in Π , and by P (p11) the first state in the first pair in P .

First the testing algorithm checks the empty 4-tuple using TestRegularLang (de-
fined in the full version of the paper). Then the testing algorithm proceeds to iterate
over all non-empty restricted 4-tuples. The testing of each non-empty 4-tuple contains
two steps. First, we test whether the (P (p11), l) is (|V |−1)-reachable from (q1, 0) on the
wordw[1, Π(1)] (see the full version for details). If this test fails the 4-tuple is rejected.
Otherwise we proceed to the next step.

For the next step we partition the input word w into t subwords w1, . . . , wt by set-
ting wj = w[Π(j) + 1, Π(j + 1)]. We estimate the counter change caused by the
computation path of w[Π(j) + 1, Π(j + 1)] in Aj(M) using the Approximator (fur-
ther described in the full version of the paper). If at least one strongly connected com-
ponent is rejected by the Approximator then this 4-tuple is rejected. If all strongly
connected components are not rejected, we then use the approximations it obtains to
decide whether the 4-tuple can be accepted.

The correctness of Algorithm 1 is proved in the full version of the paper, implying
Theorem 1.
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Algorithm 1. Tester for Weak Counter Automata

Input: M = (V, q1, F, δ), w ∈ {0, 1}n and ε > 0.
Initialize: ε′ = ε

100 , ε′′ = ε10

3·105|V |5
if TestRegularLang(M,w[1, n],F× {0, 1, . . . , |V| − 1}, ε′) then

Output accept.
for every non-empty restricted 4-tuple (A,P,Π, l) do

if TestRegularLang(M,w[1,Π(1)],
{
(P(p11), l)

}
, ε′) then {Defined in the full

version of the paper}
value := 0,minPref := 0, valTmp := 0
j := 1
success := true
while (j ≤ |A|) & success do
(success,minPref, valTmp) := Approximator(Aj(M),w[Π(j) +

1,Π(j + 1)], ε′′
2|V| )

if value+minPref < −ε′′n then
success := false

value := value+ valTmp
j := j + 1

if success then
Output accept.

Output reject.
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Abstract. We study lower bounds for testing membership in families of
linear/affine-invariant Boolean functions over the hypercube. Motivated
by the recent resurgence of attention to the permutation isomorphism
problem, we first focus on families that are linearly/affinely isomorphic
to some fixed function.

Our main result is a tight adaptive, two-sided Ω(n2) lower bound
for testing linear isomorphism to the inner-product function. This is the
first lower bound for testing linear isomorphism to a specific function
that matches the trivial upper bound. Our proof exploits the elegant
connection between testing and communication complexity discovered
by Blais et al. (Computational Complexity, 2012.)

Our second result shows an Ω(2n/4) query lower bound for any adap-
tive, two-sided tester for membership in the Maiorana-McFarland class of
bent functions. This class of Boolean functions is also affine-invariant and
its rich structure and pseudorandom properties have been well-studied
in mathematics, coding theory and cryptography.

1 Introduction

A property P is a set of objects that share some common features. A local test for
a property P is a randomized algorithm which can distinguish inputs that belong
to P from inputs that are very different from every element in P , by making only
a few queries to the input. In this work we focus on families of boolean functions
P ⊆ {Fn2 → F2}, where F2 = {0, 1} is the field on two elements. Formally, a
(δ, k)-tester for P is a randomized algorithm that has oracle access to a function
f : Fn2 → F2, makes k queries, and accepts w.p. at least 2/3 if f ∈ P , while
rejecting w.p. at least 2/3 if f is δ-far from P . The notion of distance to a
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property is given by the relative Hamming distance, namely for f, g : Fn2 → F2,

dist(f, g) =
1

2n
|{x : f(x) �= g(x)}| and dist(f,P) = ming∈P dist(f, g). If a test

always accepts function f ∈ P it is called one-sided, otherwise it is two-sided. If
the test must send the queries all at once it is called non-adaptive, otherwise,
namely when the queries could depend on answers to previous queries, the test
is adaptive.

The field of property testing was pioneered by Blum, Luby, and Rubinfeld [1],
Rubinfeld and Sudan [2] and Goldreich, Goldwasser and Ron [3] who introduced
two major directions in property testing: testing algebraic properties and testing
combinatorial (e.g. graph) properties. To a large extent, the focus of property
testing so far has been to characterize what properties admit testers that make
only a constant number of queries (these properties are called strongly testable).
Alon et al. [4] and Borgs et al. [5] already showed a complete characterization of
strongly testable properties of dense graphs. Very recently, Bhattacharyya et al.
[6] announced a characterization of one-sided strongly testable boolean families
that are invariant under “affine” transformations of the domain.

A systematic study of strongly testable properties that are invariant under
natural transformations of the domain was first proposed by Kaufman and Sudan
[7]. The most studied and at the same time most natural group of invariances for
properties defined over structured, discrete objects such as fields or vector spaces
are linear and affine transformations of the domain. A linear transformation LC :
F
n
2 → F

n
2 is a mapping LC(x) = Cx, where C ∈ F

n×n
2 . An affine transformation

LC,b : F
n
2 → F

n
2 is a mapping LC,b(x) = Cx+ b, where C ∈ F

n×n
2 and b ∈ F

n
2 . A

property P ⊂ {Fn2 → F2} is linear-invariant if f ∈ P if and only if f ◦ LC ∈ P ,
for any linear transformation LC , where f ◦ LC(x) = f(LC(x)). Similarly, P
is affine-invariant if f ∈ P if and only if the function f ◦ LC,b ∈ P , for any
affine LC,b, where f ◦ LC,b(x) = f(LC,b(x)). Following [7] linear/affine invariant
families have been intensely studied on two fronts: properties that arise in the
setting of linear codes [7,8,9,10,11,12,13,14,15], and properties that arise more
often in the study of boolean functions [16,17,18,19,6]. All these works study
properties that are testable with a constant number of queries.

Here we work in a somewhat complementary direction: we study linear/affine-
invariant properties that are hard to test. Partly motivated by the recent resur-
gence of interest in the permutation isomorphism problem [20,21,22,23,24,25], we
focus on testing linear/affine isomorphism to a single function. This study, in a
certain sense, combines the directions of testing linear/affine-invariance and test-
ing permutation isomorphism. As isomorphism defines an equivalence relation
among functions in the family, we restrict our attention to non-singular lin-
ear/affine transformations in this paper1 (non-singular transformations lead to
permutations of a function while singular transformations do not). More specif-
ically, the orbit of a function f under the set of non-singular linear transforma-
tions of Fn2 is given by L(f) = {f◦LC|C ∈ F

n×n
2 , det(C) = 1}; a function g is said

to be linearly isomorphic to f if g ∈ L(f). Similarly, the orbit of f under affine

1 The reason of such a choice is explained later in Remark 1.
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transformations is the family A(f) = {f ◦LC,b|C ∈ F
n×n
2 , detC = 1, b ∈ F

n
2} and

g is affinely isomorphic to f if g ∈ A(f). For instance, when f = x1 is a dictator
function, L(f) is just the set of non-constant, linear functions, and A(f) is the
set of non-constant, affine functions.

We exhibit a large family of functions for which testing linear/affine isomor-
phism to every function in the family requires Θ(n2) many queries. Our explicit
functions arise from families of Boolean bent functions. Bent functions are the
functions that are the most ‘uncorrelated’ with linear functions (see Section 2 for
the precise definition that we use). A most common example of bent functions,
which is also an object of interest in this work, is the inner-product function

IPn : Fn2 → F2 defined by IPn(x1, x2, . . . , xn) =
∑n/2
i=1 x2i−1x2i (here and in

what follows we will assume that n is a multiple of 4).
Bent functions have been well-investigated in mathematics, coding theory and

combinatorial design [26,27,28,29,30] for their rich structure, and in differential
cryptography [31,32] for their pseudorandom and non-linearity properties that
make them applicable to building hash-functions; see e.g. [33] for a compre-
hensive survey. In property testing they were used before in [34] to show lower
bounds for testing triangle freeness.

In this work we also show exponential lower bounds for testing membership
in the class of bent functions, which is invariant under non-singular affine trans-
formations of the domain. Hence, our results reveal yet some novel uses of bent
functions in property testing, suggesting that they have some inherent feature
that make them hard for local testing algorithms.

1.1 Our Results

Lower bounds for testing linear/affine isomorphisms. We start with the family

P = L(IPn) that has size |P| = 2O(n2). We show that the query complexity
of the trivial algorithm (which simply picks O(n2) random inputs and checks
if there is a function in P that agrees with the answers to the queries) is in
fact asymptotically optimal, even for adaptive, 2-sided tests. Since the query
complexity of the single-sided, non-adaptive tester is no less than that of the
2-sided, adaptive tester, this result shows that L(IP) is an example of a family
that is the hardest to test for linear isomorphism.

Theorem 1. Any 2-sided, adaptive (1/4, k)-test for L(IPn) and A(IPn) re-
quires k = Ω(n2) queries.

We remark that a lower bound of Ω(n) follows from the results of Chakraborty
et al. [22], since the functions in these families have Fourier dimension n, and
can be shown to be far from having (Fourier) dimension n− 1.

Remark 1. Note that since P = L(IPn) is a collection of polynomials of de-
gree 2, it is a subset of Reed-Muller codes of order 2, RM(2). However, using
Dickson’s theorem, one can show that, if L is not restricted to non-singular
linear transformations, then the set of functions L(IPn) is identical to RM(2).
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The latter is well-known to be testable with 8 queries by a single-sided non-
adaptive tester. What we show here is that testing a subset of RM(2), L(IPn),
is much harder.

We generalize this result to a broader class of bent functions commonly known
as Maiorana-McFarland bent functions, denotedMMn. Formally, a function in

this family is f : Fn2 → F2 defined by f(x, y) = 〈x, y〉 + g(y), where x, y ∈ F
n/2
2

and g : F
n/2
2 → F2 is arbitrary, and 〈x, y〉 denotes the inner product (standard

dot product) of x and y.
Notice that these functions are no longer low-degree polynomials, and in fact,

since g is arbitrary they could be polynomials of degrees as high as n/2. For
these families too, we show that testing isomorphism is hard.

Theorem 2. Any 2-sided, adaptive (1/4, k)-test for L(f) and A(f) where f is
a Maiorana-McFarland bent function in n variables requires k = Ω(n2) queries.

We remark that the arguments of Alon and Blais from [21] for testing isomor-
phism under the symmetric group can be easily adapted to testing isomorphism
under the group of non-singular transformations to show that testing linear iso-
morphism to almost all functions requires Ω(n) queries.

To the best of our knowledge, no superlinear (in n) 2-sided error lower bounds
have been previously established for testing any explicitly given function under
some class of isomorphisms. More generally, let f : D → F2 be a function, and
G be a group acting on D, where D is some finite domain; (informally, the
elements of the group can be identified with bijections from D to itself). The
original question of (permutation) isomorphism considers D = F

n
2 and G = Sn,

the symmetric group, acting on D in the natural way. Linear isomorphism, which
is the focus of this paper, hasD = F

n
2 and G = GL(n,F2), the group of invertible

matrices over F2, acting on D in the natural way. The easy upper bound for a
testing isomorphism algorithm is log |G|, but for technical reasons, many recent
lower bounds and their analyses get bottlenecked by log |D|. For permutation
isomorphism, this gap is still open. For linear isomorphism, we close this gap in
this paper.

In the case that D = G and the group action is simply the group operation,
we remark that the proof of [21] can be easily modified to yield the following:

Theorem 3. Let G be a finite group, and choose a random function f : G →
{0, 1}. Testing isomorphism to f under the group action of multiplying by an
element of G requires Ω(log |G|) queries with high probability.

We omit the details of this proof. In this case, almost every function requires as
many queries for testing isomorphism as the most simple algorithm.

Lower bounds for testing bentness and Maiorana-McFarland families. We then
turn to analyzing bent functions in general. The number of boolean bent func-

tions is known to be at least 22
n/2+Ω(log n)

and the current upper bound is larger
than 22

n−1

[35]. We show a lower bound of Ω(2n/4) queries for testing bentness.
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A lower bound of significantly more than 2n/2+Ω(logn) queries for the testing
problem would improve the current status regarding the number of boolean
bent functions, a long standing open problem in mathematics. We note that no
non-trivial test (that makes substantially fewer than 2n queries) for bentness is
currently known.

Theorem 4. Any 2-sided, adaptive (1/4, k)-test for the class of boolean bent
functions in n variables requires k = Ω(2n/4) queries.

Theorem 4 is in fact an immediate consequence of a same lower bound for testing
the Maiorana-McFarland family. Let L(MMn) be the linear closure of the family
MMn, i.e. L(MMn) =

⋃
f∈MMn

L(f).
Theorem 5. Any 2-sided, adaptive (1/4, k)-test for testing membership in
L(MMn) requires k = Ω(2n/4) queries.

We remark that exponential lower bounds for testing affine-invariant properties
were known before. For example, testing the Reed-Muller code of degree n/2
requires at least 2n/2 − 1 queries, as 2n/2 is the minimum distance of its dual
code.2 Hence this lower bound is interesting mainly in the context of testing bent
functions and their generalization Maiorana-McFarland families. There results
appear in section 4.

Finally, we remark that all our results generalize to non-boolean functions
over prime fields Fp, but we defer the proofs to the full version of this paper.

1.2 Previous Related Work

Recently there has been intense interest in testing isomorphism of functions
(with respect to the symmetric group). Some initial results of this type can
be attributed to [36] who showed the strong testability of dictators and mono-
mials. The problem of testing isomorphism was first explicitly introduced by
[37]. In recent years the interest in testing function isomorphism has revived
[20,21,22,23,24,25] prompted by the works of Blais and O’Donnell [20] and Alon
and Blais [21]. The main motivation of many of these works (including the orig-
inal motivation of [37]) involves testing isomorphism to functions with few rele-
vant variables.

Testing linear isomorphism has been less studied. It has been considered by
Chakraborty et al. [22] who show a lower bound of Ω(k) for testing L(f) for a
function f that is far from having (Fourier) dimension k− 1. In line with testing
juntas, a previous result of [38] implicitly proves an upper bound of O(k2k)
for linear isomorphism to functions that are very close to having dimension
k; the “very” here is exponentially small in k. Wimmer and Yoshida [39] give
an constant-query algorithm for linear isomorphism to any function close to
having dimension k by giving a tolerant tester for functions of dimension k. The
technique is an extension of the work of [38], and it applies to functions close

2 We thank an anonymous referee for pointing this out.
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to having low spectral norm. They also show lower bounds for testing linear
isomorphism, but these lower bounds are no better than Ω(n) for any fixed
function.

1.3 Our Techniques

Testing linear/affine isomorphisms to IP. Our lower bounds for testing linear/
affine isomorphism are proved using reductions from communication complexity
protocols, a powerful technique introduced by Blais et al. [40]. In the communica-
tion complexity model there are two parties holding inputs x and y, respectively,
who are trying to compute a function f(x, y) with as little communication between
them as possible. In [40], the authors show an ingenious generic technique to prove
lower bounds for property testing, by exploiting the strength of the lower bounds
obtained in communication complexity.

The crux of our argument is the observation that one can reduce testing
linear isomorphism to IP (and more generally, to any Maiorana-McFarland bent
function) from the following natural randomized communication protocol: Alice
holds the top half of a matrix C, Bob holds the remaining half of C, and their goal
is to determine if C is singular. The main feature of bent functions that we make
use of here is the fact that when composed with singular linear transformations
they not only become functions that are not bent, but they become functions
that are far from bent (See Proposition 1). To complete the proof we resort to
the recent results of Sun and Wang [41] who show a lower bound of Ω(n2) for
the randomized communication complexity for this problem.

Testing bentness. To show the lower bound for testing bentness we use Yao’s
principle, where the Yes distribution is the (linear closure of) Maiorana-
McFarland family of functions and the No distribution is supported on ran-
dom n/2 dimensional functions. Our argument that these two distributions are
indistinguishable resembles the work of [38]. We show that, for any fixed set Q of
Ω(2n/4) queries and for most (n/2)-dimensional subspaces H , every vector in Q
is in a distinct coset of H . This fact is the statement one would expect given the
famous “birthday paradox”. Our results shows there are at least Ω(2n/4) “de-
grees of freedom” in selecting a linear transformation of a Maiorana-McFarland
function. This lower bound translates upward to the class of all bent functions,
since every bent function is far from the class of (n/2)-dimensional functions.

2 Preliminaries

Let n ≥ 1 be a natural number. We use [n] to denote the set {1, . . . , n}.
F2 = {0, 1} is the field with 2 elements, where addition and multiplication are
performed mod 2. We view elements in F

n
2 as n-bit binary strings – that is ele-

ments of {0, 1}n – alternatively. If x and y are two n-bit strings, then x+ y (or
x − y) denotes bitwise addition (i.e. XOR) of x and y. We view F

n
2 as a vector

space equipped with an inner product 〈x, y〉, which we take to be the standard
dot product: 〈x, y〉 =∑n

i=1 xiyi, where all operations are performed in F2.
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We start by recalling a basic fact that we have referred to earlier.

Theorem 6 (folklore). Let P ⊆ {f : D → R} (for some finite domain D
and range R) be a property of size |P|. Then there is a one-sided error testing
algorithm which tests P with distance parameter ε using O(1ε log |P|) queries.

Linear/affine isomorphism. We say that two functions f, g : Fn2 → F2 are linearly
isomorphic (or linear isomorphic) if there exists a non-singular linear transfor-
mation C : Fn2 → F

n
2 such that g(x) = f(Cx) for all x ∈ F

n
2 . Equivalently, g is

linearly isomorphic to f if and only if there exist n linearly independent linear
functions �i(x) : Fn2 → F2 such that g(x) = f(�1(x), �2(x), . . . , �n(x)) (a linear
function, is a function of the form �(x) =

∑
j∈[n] ljxj , where lj ∈ F2). Similarly,

two functions f, g : Fn2 → F2 are affinely isomorphic (or affine isomorphic) if
there exists a non-singular linear transformation C : F

n
2 → F

n
2 and a vector

b ∈ F
n
2 such that g(x) = f(Cx + b) for all x ∈ F

n
2 . We define L(f) to be the set

of functions linearly isomorphic to f : L(f) = {f ◦ LC |C ∈ F
n×n
2 , det(C) = 1}.

Similarly, we define A to be the set of functions affinely isomorphic to f : A(f) =
{f ◦ LC,b|C ∈ F

n×n
2 , detC = 1 and b ∈ F

n
2}.

Bent functions. There are many equivalent definitions of bent functions, for
example as functions farthest away from any affine functions, or functions whose
Fourier coefficients have the same magnitude. Here we will use another standard
definition, due to Rothaus [27].

Definition 1. A Boolean function f : F
n
2 → F2 is bent if for every nonzero

vector h ∈ F
n
2 , we have Prx[f(x) = f(x+ h)] = 1/2.

Given a Boolean function f : Fn2 → F2, we define Inv(f) := {h : f(x) = f(x +
h) for all x}. The set Inv(f) forms a subspace of Fn2 , and we define the dimension
of f to be the codimension of Inv(f). We use dim(f) to denote the dimension of
f . If dim(f) ≤ k, we say that f is k-dimensional. This notion of dimensionality is
equivalent to the notion of Fourier dimension used in [38]. From their definition
it immediately follows that the dimension of any bent function f : Fn2 → F2 is n.

The following proposition will be of great importance to us.

Proposition 1. Suppose f : Fn2 → F2 is a bent function and dim(g) < n. Then
Prx[f(x) �= g(x)] ≥ 1/4.

Proof. Since dim(g) < n, we have Inv(g) �= {0}, so there exists a nonzero vector
h ∈ F

n
2 such that g(x) = g(x + h) for all x ∈ F

n
2 . From Proposition 1, we know

that Prx[f(x) �= f(x+ h)] = 1/2. We have

Pr
x
[f(x) �= g(x)] =

1

2
(Pr
x
[f(x) �= g(x)] + Pr

x
[f(x+ h) �= g(x+ h)])

=
1

2
(Pr
x
[f(x) �= g(x)] + Pr

x
[f(x+ h) �= g(x)])

≥ 1

2
(Pr
x
[f(x) �= f(x+ h)] = 1/4.
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One well-known class of bent functions are the Maiorana-McFarland functions
defined as follows. Let x ∈ F

n/2
2 , y ∈ F

n/2
2 , and let g : F

n/2
2 → F2 be any

Boolean function on n/2 variables. Then MMg
n : Fn2 → F2 given byMMg

n(x, y) =
〈x, y〉+ g(y) is called a Maiorana-McFarland function.

As mentioned before, a formula for the number of bent functions on n variables

is unknown. It is worth noting that there are 22
n/2

distinct bent Maiorana-
McFarland functions, so this class accounts for a significant portion of the bent
functions known.

We next list a few basic facts about bent functions that will be useful to
us later. Due to space constraints, we leave the proof of these facts to the full
version of this paper.

Lemma 1

1. The inner product function IPn is bent.
2. Any Maiorana-McFarland function MMg

n is bent.
3. If f : Fn2 → F2 is bent, C ∈ F

n×n
2 is non-singular and b ∈ F

n
2 , then f ◦ LC

and f ◦ LC,b are bent.
4. If f : Fn2 → F2 is bent, C ∈ F

n×n
2 is singular and b ∈ F

n
2 , then f ◦ LC and

f ◦ LC,b are 1/4-far from bent.

Basic communication complexity facts. In communication complexity Alice holds
an input x and Bob holds an input y and they want to compute a function
f(x, y) by exchanging a small number of bit messages. A randomized protocol
with ε error for computing f is an algorithm whose random bits are known to
both the players, and which outputs f(x, y) for any x, y w.p. at least 1− ε over
the choice of random bits. In this paper we will fix ε = 1/3. The complexity
of the protocol is the maximum over all x, y of the number of bits exchanged
by Alice and Bob. The number of random bits used in the protocol does not
affect the complexity measure of the protocol. For a comprehensive survey on
communication complexity, see [42].

3 Lower Bounds for Testing Isomorphism to
Inner-Product and Related Functions

We prove Theorem 1 and Theorem 2 in this section.
As previously mentioned, the main idea of our proofs is an adaption of a

technique of proving property testing query lower bounds via communication
lower bounds (See Lemma 2.4 of [40]) to the setting of testing linear isomor-
phisms. Specifically, Alice and Bob are each given half of a linear transformation
matrix C, and their goal is to determine if C is singular or not. They can ap-
ply their halves, A and B respectively, of matrix C to an arbitrary input x to
the inner product function IPn(x). Using the fact that IPn(x1, x2, . . . , xn) =
IPn/2(x1, . . . , xn/2) + IPn/2(xn/2+1, . . . , xn), Alice computes IPn/2(Ax), Bob
computes IPn/2(Bx), and both exchange their bits. Now Alice and Bob both
know IPn(Cx) = IPn(Ax,Bx) = IPn/2(Ax) + IPn/2(Bx).



Tight Lower Bounds for Testing Linear Isomorphism 567

Clearly, if the matrix C has full rank, then IPn(Cx) ∈ L(IPn); on the other
hand, one can show that if C does not have full rank, then IPn(Cx) is far
from L(IPn). Therefore, if there is a tester for linear isomorphism of IPn with
q queries, then one can turn such a tester into a communication protocol for
Alice and Bob to determine if C has full rank or not, using at most 2q bits of
communication. The lower bound of Sun and Wang [41] implies that 2q = Ω(n2),
finishing the proof. We formally state their lower bound here.

Theorem 7 (Theorem 3, [41]). The randomized communication complexity
of computing det(A+B), where Alice holds the matrix A ∈ F

n×n
2 and Bob holds

the matrix B ∈ F
n×n
2 is Ω(n2).

We will use two corollaries of this result, the first of which is implicit in [41].

Corollary 1. Let A and B be matrices in F
n/2×n
2 such that the last n/2 columns

form a basis for F
n/2
2 . Let C be the matrix

[
A
B

]

. The randomized communication

complexity of computing det(C) where A is held by Alice and B is held by Bob
is Ω(n2).

Proof. By assumption, both Alice and Bob can reduce A and B to A′ =
[A′′, In/2×n/2] and B′ = [B′′, In/2×n/2], where In/2×n/2 is the identity matrix.
Then it can be checked that

det(C) = det

([
A
B

])

= det

([
A′

B′

])

= det (A′′ +B′′) ,

which needs Ω(n2) bits of communication by Theorem 7.

Corollary 2. Let C ∈ F
n×n
2 be that C =

⎡

⎣
An/4×n/2 0n/4×n/2
Bn/4×n/2 0n/4×n/2
0n/2×n/2 In/2×n/2.

⎤

⎦, where Alice

holds A, Bob holds B and matrices A and B are under the same assumptions
as in Corollary 1. Then the randomized communication complexity of computing
det(C) is Ω(n2).

Proof. The statement follows from Corollary 1 by noticing that det(C) =

det

([
A
B

])

.

As mentioned before, it will be convenient to think of the rows of a linear trans-
formation C ∈ F

n×n
2 as a sequence of linear maps �1, �2, . . . , �n : F

n
2 → F2,

where �i(x) =
∑n

j=1 aijxj , and so IPn(Cx) =
∑n/2

i=1 �2i−1(x)�2i(x). Similarly,
an affine transformation (C, b) of IPn can be represented by IPn(Cx + b) =
∑n/2

i=1(�2i−1(x) + b2i−1)(�2i(x) + b2i).
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3.1 Proof of Theorem 1

We are now ready to complete the proof of Theorem 1 by formalizing the reduc-
tion to testing L(IPn) (A(IPn), respectively) from computing det(A+B) as in
Theorem 7.

Lemma 2. Suppose there exists a 2-sided, adaptive (1/4, k)-test for L(IPn) (or
A(IPn), respectively), then there exists a randomized communication protocol
with public coins, error 1/3, and communication complexity O(k) for computing

det(C), where Alice holds the top half A ∈ F
n/2×n
2 of C and Bob holds the bottom

half B ∈ F
n/2×n
2 of C.

Proof. We will show the reduction to L(IPn) only, as the reduction to A(IPn)
follows from a very similar argument. Let C =

[
A
B

]

and let T be a (1/4, k)-tester

for L(IPn). We will use it to construct a communication protocol for det(C).
Let �1, . . . , �n/2 be the linear forms representing the rows of A and �n/2+1, . . . , �n
be the linear forms corresponding to the rows of B. Let f(x) = IPn(Cx) =
∑n/2

i=1 �2i−1(x)�2i(x).

Claim. If det(C) = 0 then f(x) = IPn(Cx) is 1/4-far from L(IPn).
Proof. By Items 1 and 3 of Lemma 1, every function in L(IPn) is bent. By
Item 4 of Lemma 1 f(x) = IPn(Cx) is 1/4-far from L(IPn).
In other words, if det(C) = 1 then f ∈ L(IPn); and if det(C) = 0 then f is
1/4-far from L(IPn).

Let q1, q2, . . . , qk be the set of (possibly adaptive) queries performed by the
tester T on input f . The protocol for Alice and Bob is to communicate in k
rounds. Since Alice and Bob have access to unlimited shared randomness and
they exchange bits after generating each query qi, we can assume that both of
them know qi+1 given q1, q2, . . . , qi and f(q1), f(q2), . . . , f(qi). (Initially, Alice
and Bob both know q1.)

We claim that the following protocol computes det(C) with probability at
least 2/3. Alice computes Aq1, namely �1(q1), . . . , �n/2(q1) and sends to Bob
∑n/4

i=1 �2i−1(q1)�2i(q1). Bob computes Bq1 and also
∑n/2

i=n/4+1 �2i−1(q1)�2i(q1).
Using Alice’s bit he can now simulate the query f(q1) by now computing

IPn(Cq1) =
∑n/2
i=1 �2i−1(q1)�2i(q1), and Bob can send f(q1) to Alice. By re-

peating this protocol for the remaining queries q2, . . . , qk, Bob can finally output
the answer that the tester T would output on f . Since T succeeds w.p. at least
2/3 on f , it follows that the protocol correctly computes det(C) w.p. at least
2/3. Notice that the total number of bits exchanged is O(k).

Proof (Proof of Theorem 1). Suppose T is a 2-sided, adaptive (1/4, k)-test for
L(IPn) (or A(IPn) respectively). Then, in particular, it should distinguish func-

tions f = IPn(Cx) (here C is a matrix C =

[
A
B

]

with A,B ∈ F
n/2×n
2 such that
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their last n/2 columns form a basis for F
n/2
2 ) from functions that are 1/4-far

from L(IPn). By Lemma 2, there exists a communication protocol computing
det(C) of complexity O(k). Finally, by Corollary 1 it must be that k = Ω(n2).

3.2 Proof of Theorem 2

The reduction from Lemma 2 can be tweaked to work for the much more gen-
eral class of Maiorana-McFarland bent functions. Recall that every function in
the Maiorana-McFarland MMn family of bent functions can be expressed as

MMg
n(x) =

∑n/2
i=1 xixi+n/2 + g(xn/2+1, . . . , xn) for some g : F

n/2
2 → F2, and so

L(MMg
n) = {MMg

n(Ax)| A ∈ F
n×n, det(A) = 1}.

Our reduction in the previous section can not be directly used, since Alice
would have half of the (linear functions acting as) inputs to g and Bob would
have the other half. Thus, answering queries might require more than constant
communication, degrading the lower bound. In this case, we reduce from a sce-
nario where Alice and Bob will both always know the inputs to g; this preserves
the lower bound of Ω(n2). The reduction now uses matrices of the special form
described in Corollary 2.

We note that MM0
n = IPn, where 0 is the constant 0 function, but our

previous reduction to inner product is not equivalent to the following reduction
setting g = 0.

Lemma 3. Suppose there exists a 2-sided, adaptive (1/4, k)-test for L(f) (or
A(f), respectively), where f ∈ MMn. Then there exists a randomized com-
munication protocol with public coins, error at most 1/3 and communication

complexity O(k) for computing det

⎛

⎝

⎡

⎣
An/4×n/2 0n/4×n/2
Bn/4×n/2 0n/4×n/2
0n/2×n/2 In/2×n/2.

⎤

⎦

⎞

⎠, where Alice holds

A and Bob holds B.

Proof. Once again, we will only show the proof assuming the existence of a tester
for L, since the remaining part of the proof follows by similar arguments.

Let T be a (1/4, k)-tester for L(MMg
n), where MMg

n ∈ M. Let f be the
function defined by f(x) = MMg

n(Cx). Alice and Bob can simulate queries to
the function f as before. Let q1, . . . , qk be a set of (possibly adaptive) queries
that T would make on f . As before, the protocol runs in k rounds, Alice and
Bob have unlimited shared randomness, and we may assume that both of them
know qi+1 given q1, . . . , qi and f(q1), f(q2), . . . , f(qi).

As before, we view the rows of C as linear transformations �1, �2, . . . , �n.
The last n/2 rows of C are known to both Alice and Bob, so each of them
know �n/2+1, . . . , �n. Each of these transformation is a projection on to a single
coordinate.

Alice computes [A 0]q1, namely �1(q1), . . . , �n/4(q1) and then she sends to Bob
∑n/4

i=1 �i(q1)�i+n/2(q1). Bob computes [B 0]q1, namely �n/4+1(q1) . . . , �n/2(q1),

and uses the result to compute
∑n/2
i=n/4+1 �i(q1)�i+n/2(q1). Now Bob can simulate

the query f(q1) by computing
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MMg
n(Cq1) =

n/2∑

i=1

�i(q1)�i+n/2(q1) + g(�n/2+1(q1), �n/2+2(q1), . . . , �n−1(q1), �n(q1)).

He can then send this bit back to Alice. After simulating all the queries Bob
can output the output of T on f when the test performed these queries. If
det(C) = 1 then f ∈ L(MMg

n) and the test accepts w.p. at least 2/3, and
otherwise, by Lemma 1 f is 1/4-far from L(MMg

n) and the test rejects w.p. at
least 2/3. Therefore, the communication protocol succeeds w.p. at least 2/3.

The proof of Theorem 2 follows by a similar argument as in the proof of Theorem
1 but where now we use Lemma 3 and Corollary 2 instead.

4 Testing Linear Isomorphism to the Class of
Maiorana-McFarland Bent Functions

Our lower bounds will be established via Yao’s minimax principle. We denote the
total variation distance between two distributionsD1 and D2 as ‖D1−D2‖TV :=
1
2

∑

x

|D1(x) −D2(x)|, and our goal is to show that the query responses over a

“yes” distribution and a “no” distribution are close in total variation distance.
We define DYES to be the uniform distribution over L(MMn), and DNO

to be the uniform distribution over (n/2)-dimensional functions. We remind
the reader that every function in the support of DYES is (1/4)-far from every
function in DNO. In fact, since by Proposition 1 every bent function is (1/4)-far
from every function in DNO, this same argument establishes a lower bound for
testing bentness3, and thus prove Theorem 4.

We can simulate random draws from DYES and DNO in the following way. In
both experiments, we pick a random function g : Fn2 → F2 and a random full rank
n/2× n matrix Ab. A draw f ∼ DNO is the function defined by f(x) = g(Abx),

where a draw f ∼ DYES is the function defined by f(x) = IPn(

[
At
Ab

]

x) +

g(Abx), where At is a random full rank n/2 × n matrix such that

[
At
Ab

]

is

nonsingular (chosen dependently on Ab, the distribution on At given Ab will not
matter as long as the nonsingularity condition is satisfied). Our approach here
is very reminiscent of the approach in [38] for showing a lower bound for testing
functions of Fourier dimension k.

In the following, when we refer to a random matrix in F
n/2×n
2 , we mean a

matrix whose entries are chosen to be 0 or 1 independently and uniformly at
random.

Lemma 4. Let Ab be a random matrix in F
n/2×n
2 . Then Ab is full rank (in the

F2 sense) except with probability at most (n/2)2−n/2.

3 The 1/4 can be replaced by any positive constant less than 1/2; we omit the details.



Tight Lower Bounds for Testing Linear Isomorphism 571

Proof. The probability that Ab is full rank is

n/2∏

i=1

(1 − 2i−n) ≤ (1 − 2−n/2)n/2 ≤

1− (n/2)2−n/2.

Because this probability is subconstant, for the sake of conciseness we will treat
this event as always occurring. From now on, we will assume Ab has rank n/2
with certainty.

Lemma 5. Let q1 and q2 be two distinct vectors in F
n
2 , and Ab be a random

matrix in F
n/2×n
2 . Then PrAb

[Abq1 = Abq2] = 2−n/2.

Proof. The event is equivalent to Ab(q1 − q2) = 0, where q1 − q2 is a fixed
nonzero vector. Since q1 − q2 is nonzero and the rows of Ab are chosen inde-
pendently and uniformly from F

n
2 , the distribution over Ab(q1 − q2) is uniform.

Thus, PrAb
[Ab(q1 − q2) = 0] = PrAb

[Abq1 = Abq2] = 2−n/2.

Lemma 6. Let Q be a set of k = 2n/4/10 vectors in F
n
2 . Let Ab be a random

{0, 1} matrix of dimensions n/2 × n. Then PrAb
[∃q1, q2 ∈ Q such that Abq1 =

Abq2] ≤ 1/100.

Proof. We use the previous lemma and the union bound. There are at most(
k
2

) ≤ k2 = 2n/2/100 pairs of vectors, and

Pr
Ab

[∃q1, q2 ∈ Q such that Abq1 = Abq2] ≤
∑

q1,q2∈Q

Pr
Ab

[Abq1 = Abq2] ≤ k22−n/2 = 1/100.

Lemma 7. Let f be a random draw from DYES. Let Q = {q1, q2, . . . , qk} be a
set of k = 2n/4/10 queries. Now, if the conditions in Lemmas 4 and 6 hold, then
the vector [f(q1), f(q2), . . . , f(qk)] is uniformly distributed.

Proof. We choose a random matrix Ab ∈ F
n/2×n
2 , and we extend to a full rank

matrix A uniformly over all possible choices. Assuming the event from Lemma 6
holds, the vectors Abqi are all distinct. Since g is a uniformly random function,
the values of g(Abqi) are all independent and uniformly distributed, and it follows
that the values of f(qi) are all independent and uniformly distributed as well.

Lemma 8. Let f be a random draw from DNO. Let Q be a set of 2n/4/10 queries.
If the condition in Lemma 6 holds, the answers to the queries are uniformly
distributed.

Proof. Essentially the same as the latter portion of Lemma 7.

In order to prove a lower bound for adaptive testers, we can’t assume that Q is a
fixed query set, since for example q2 depends on f(q1). A deterministic adaptive
k-query algorithm is equivalent to a decision tree T of depth at most k. The
internal nodes of T are labeled by query strings, and the leaves are labeled by
“accept” and “reject”. However, the best labeling of the leaves is easy to discuss.
Given a decision tree T with unlabeled leaves, the best distinguisher one can get
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by labeling the leaves is exactly ‖LYES − LNO‖TV ; this is the result of labeling
every leaf v with “accept” if LYES(v) > LNO(v) and “reject” otherwise. As
in [38], we define LYES and LNO to be distribution on leaves of T induced by a
draw from DYES and DNO, respectively.

We fix a deterministic adaptive tester making at most k queries; equivalently,
we fix a decision tree T of depth k ≤ 2n/4/10. Without loss of generality, we can
assume that no string appears twice on any root-to-leaf path and the depth of
every path is exactly k. It suffices to prove ‖LYES − LNO‖TV ≤ 1/3.

Define LUNIF to be the uniform distribution over the leaves of T . Consider a
draw f ∼ DYES. Drawing Ab is the same as drawing a random (n/2)-dimensional
subspace of Fn2 . Consider the strings on nodes of a root-to-leaf path in T ending
at the leaf v. By Lemma 7, all the strings on this path lie in different buckets,
except with probability at most 1/100 over the choice of Ab. Conditioned on this
happening, the probability that f is consistent with the root-to-leaf path to v
is exactly 2−k, since g is a drawn uniformly at random. Thus, for each leaf v,
we have PrLYES [v is reached] ≥ (1 − 1/100)2−k. A similar argument shows that
PrLNO [v is reached] ≥ (1− 1/100)2−k as well.

The following lemma essentially appears in [38]:

Lemma 9. Let D be a distribution over F
m
2 that becomes the uniform distri-

bution U conditioned on an event that happens with probability at least 99/100.
Then ‖D − U‖TV ≤ 1/100, where U is the uniform distribution over F

m
2 .

Proof. Due to the conditioning, each element of Fm2 has probability mass at least
(99/100)2−m, so the elements with probability mass less than 2−m contribute at
most 1/2(1/100) = 1/200 in total to the total variationdistance.This lower bound-
ing already takes up 99/100 of the probability mass, so the elements with proba-
bility mass at least 2−m contribute at most the remaining 1/2(1/100) = 1/200 to
the total variation distance. Thus ‖D − U‖TV ≤ (1/2)(1/100 + 1/100) = 1/100.

Theorem 8. Any (1/4, k)-tester for testing membership in L(MMn) requires
2n/4/10 queries; that is, k ≥ 2n/4/10. This lower bounds holds for two-sided
adaptive testers.

Proof. The proof is via Yao’s minimax principle. Let T be a decision tree of depth
2n/4/10 representing an adaptive deterministic tester, and let LYES and LNO be
the distributions of leaves obtained by taking random draws fromDYES andDNO

respectively. The distributions LYES and LNO satisfy the conditions of Lemma 9
(by Lemmas 7 and 8), so ‖LYES−LUNIF‖TV ≤ 1/100 and ‖LNO−LUNIF‖TV ≤
1/100. By the triangle inequality, ‖LYES − LNO‖TV ≤ 2/100 < 1/3. It follows
that the two distributions can not be distinguished using the adaptive tester
characterized by decision tree T .

We can now prove Theorem 5:

Proof (Proof of Theorem 5). By Lemma 1, every function in L(MMn) is bent.
By Proposition 1, every bent function is (1/4)-far from every n/2-dimensional
function. Thus, we can use Yao’s minimax principle and the same distributions
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DYES and DNO as before to establish the theorem. The result now follows from
mimicking the proof of Theorem 8.
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Abstract. Curve samplers are sampling algorithms that proceed by
viewing the domain as a vector space over a finite field, and randomly
picking a low-degree curve in it as the sample. Curve samplers exhibit a
nice property besides the sampling property: the restriction of low-degree
polynomials over the domain to the sampled curve is still low-degree.
This property is often used in combination with the sampling property
and has found many applications, including PCP constructions, local
decoding of codes, and algebraic PRG constructions.

The randomness complexity of curve samplers is a crucial parameter
for its applications. It is known that (non-explicit) curve samplers using
O(logN+log(1/δ)) random bits exist, whereN is the domain size and δ is
the confidence error. The question of explicitly constructing randomness-
efficient curve samplers was first raised in [TSU06] where they obtained
curve samplers with near-optimal randomness complexity.

We present an explicit construction of low-degree curve samplers with
optimal randomness complexity (up to a constant factor), sampling curves

of degree
(
m logq(1/δ)

)O(1)
in F

m
q . Our construction is a delicate combi-

nation of several components, including extractor machinery, limited in-
dependence, iterated sampling, and list-recoverable codes.

1 Introduction

Randomness has numerous uses in computer science, and sampling is one of its
most classical applications: Suppose we are interested in the size of a particular
subset A lying in a large domain D. Instead of counting the size of A directly by
enumeration, one can randomly draw a small sample from D and calculate the
density of A in the sample. The approximated density is guaranteed to be close
to the true density with probability 1 − δ where δ is very small, known as the
confidence error. This sampling technique is extremely useful both in practice
and in theory.

One class of sampling algorithms, known as curve samplers, proceed by view-
ing the domain as a vector space over a finite field, and picking a random low-
degree curve in it. Curve samplers exhibit the following nice property besides the
sampling property: the restriction of low-degree polynomials over the domain to
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the sampled curve is still low-degree. This special property, combined with the
sampling property, turns out to be useful in many settings, e.g local decoding
of Reed-Muller codes and hardness amplification [STV01], PCP constructions
[AS98, ALM+98, MR08], algebraic constructions of pseudorandom-generators
[SU05, Uma03], extractor constructions [SU05, TSU06], and some pure com-
plexity results (e.g. [SU06]).

The problem of explicitly constructing low-degree curve samplers was raised in
[TSU06]. Typically, we are looking for low-degree curve samplers with small sam-
ple complexity (polylogrithmic in the domain size) and confidence error (poly-
nomially small in the domain size), and we focus on minimizing the randomness
complexity. The simplest way is picking a completely random low-degree curve
whose sampling properties are guaranteed by tail bounds for limited indepen-
dence. The randomness complexity of this method, however, is far from being
optimal. The probabilistic method guarantees the existence of (non-explicit)
low-degree curve samplers using O(logN + log(1/δ)) random bits where N is
the domain size and δ is the confidence error. The real difficulty, however, is to
find an explicit construction matching this bound.

1.1 Previous Work

Randomness-efficient samplers (without the requirement that the sample points
form a curve) are constructed in [CG89, Gil98, BR94, Zuc97]. In particular,
[Zuc97] obtains explicit samplers with optimal randomness complexity (up to a
1 + γ factor for arbitrary small γ > 0) using the connection between samplers
and extractors. See [Gol11] for a survey of samplers.

Degree-1 curve samplers are also called line samplers. Explicit randomness-
efficient line samplers are constructed in the PCP literature [BSSVW03, MR08],
motivated by the goal of constructing almost linear sized PCPs. In [BSSVW03]
line samplers are derandomized by picking a random point and a direction sam-
pled from an ε-biased set, instead of two random points. An alternative way is
suggested in [MR08] where directions are picked from a subfield. It is not clear,
however, how to apply these techniques to higher degree curves.

In [TSU06] it was shown how to explicitly construct derandomized curve
samplers with near-optimal parameters. Formally they obtained

– curve samplers picking curves of degree (log logN + log(1/δ))
O(log logN)

us-
ing randomness O(logN + log(1/δ) log logN), and

– curve samplers picking curves of degree (log(1/δ))
O(1)

using randomness
O(logN + log(1/δ)(log logN)1+γ) for any constant γ > 0

for domain size N , field size q ≥ (logN)Θ(1) and confidence error δ = N−Θ(1).
Their work left the problem of explicitly constructing low-degree curve samplers
(ideally picking curves of degreeO(logq(1/δ))) with essentially optimalO(logN+
log(1/δ)) random bits as a prominent open problem.
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1.2 Main Results

We present an explicit construction of low-degree curve samplers with optimal
randomness complexity (up to a constant factor). In particular, we show how to

sample degree-
(
m logq(1/δ)

)O(1)
curves in F

m
q using O(logN+log(1/δ)) random

bits for domain size N = |Fmq | and confidence error δ = N−Θ(1). Before stating
our main theorem, we first present the formal definition of samplers and curve
samplers.

Samplers. Given a finite set M as the domain, the density of a subset A ⊆ M
is μ(A)

def
= |A|
|M| . For a collection of elements T = {ti : i ∈ I} ∈ MI indexed by

set I, the density of A in T is μT (A)
def
= |A∩T |

|T | = Pri∈I [ti ∈ A].

Definition 1 (sampler). A sampler is a function S : N ×D →M where |D|
is its sample complexity and M is its domain. We say S samples A ⊆M with
accuracy error ε and confidence error δ if Prx∈N [|μS(x)(A) − μ(A)| > ε] ≤ δ

where S(x)
def
= {S(x, y) : y ∈ D}. We say S is an (ε, δ) sampler if it samples all

subsets A ⊆ M with accuracy error ε and confidence error δ. The randomness
complexity of S is log(|N |).
Definition 2 (curve/line sampler). LetM = F

D
q and D = Fq. The sampler

S : N × D → M is a degree-t curve sampler if for all x ∈ N , the function
S(x, ·) : D →M is a curve (see Definition 3) of degree at most t over Fq. When
t = 1, S is also called a line sampler.

Theorem 1 (main). For any ε, δ > 0, integer m ≥ 1, and sufficiently large

prime power q ≥
(
m log(1/δ)

ε

)Θ(1)

, there exists an explicit degree-t curve sampler

for the domain F
m
q with t =

(
m logq(1/δ)

)O(1)
, accuracy error ε, confidence error

δ, sample complexity q, and randomness complexity O (m log q + log(1/δ)) =
O(logN + log(1/δ)) where N = qm is the domain size. Moreover, the curve

sampler itself has degree
(
m logq(1/δ)

)O(1)
as a polynomial map.

Theorem 1 has better degree bound and randomness complexity compared with
the constructions in [TSU06]. We remark that the degree bound, being
(
m logq(1/δ)

)O(1)
, is still sub-optimal compared with the lower bound logq(1/δ)

(see Appendix A for the proof of this lower bound). However in many cases it is
satisfying to achieve such a degree bound.

As an example, consider the following setting of parameters: domain size

N = qm, field size q = (logN)Θ(1), confidence error δ = N−Θ(1), and accu-

racy error ε = (logN)
−Θ(1)

. Note that this is the typical setting in PCP and
other literature [ALM+98, AS98, STV01, SU05]. In this setting, we have the
following corollary in which the randomness complexity is logarithmic and the
degree is polylogarithmic.
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Corollary 1. Given domain size N = |Fmq |, accuracy error ε = (logN)
−Θ(1)

,

confidence error δ = N−Θ(1), and large enough field size q = (logN)
Θ(1)

, there
exists an explicit degree-t curve sampler for the domain F

m
q with accuracy error

ε, confidence error δ, randomness complexity O(logN), sample complexity q, and
t ≤ (logN)

c
for some constant c > 0 independent of the field size q.

It remains an open problem to explicitly construct curve samplers that have op-
timal randomness complexity O(logN +log(1/δ)) (up to a constant factor), and
sample curves with optimal degree bound O(logq(1/δ)). It is also an interesting
problem to achieve the optimal randomness complexity up to a 1 + γ factor for
any constant γ > 0 (rather than just an O(1) factor), as achieved by [Zuc97] for
general samplers. The standard techniques as in [Zuc97] are not directly appli-
cable as they increase the dimension of samples and only yield O(1)-dimensional
manifold samplers.

1.3 Techniques

Extractor machinery. It was shown in [Zuc97] that samplers are equivalent to
extractors, objects that convert weakly random distributions into almost uniform
distributions. Therefore the techniques of constructing extractors are extremely
useful in constructing curve samplers. Our construction employs the technique
of block source extraction [NZ96, Zuc97, SZ99]. In addition, we also use the
techniques appeared in [GUV09], especially their constructions of condensers.

Limited independence. It is well known that points on a random degree-(t− 1)
curve are t-wise independent. So we may simply pick a random curve and use tail
inequalities to bound the confidence error. However, the sample complexity is
too high, and hence we need to use the technique of iterated sampling to reduce
the number of sample points.

Iterated sampling. Iterated sampling is a useful technique for explicitly con-
structing randomness-efficient samplers [BR94, TSU06]. The idea is first picking
a large sample from the domain and then draw a sub-sample from the previous
sample. The drawback of iterated sampling, however, is that it invests random-
ness twice while the confidence error does not shrink correspondingly. To remedy
this problem, we add another ingredient into our construction, namely the tech-
nique of error reduction.

Error reduction via list-recoverable codes. We will use explicit list-recoverable
codes (a strengthening of list-decodable codes [GI01]). More specifically, we
will employ the list-recoverability from (folded) Reed-Solomon codes [GR08,
GUV09]. List-recoverable codes provide a way of obtaining samplers with very
small confidence error from those with mildly small confidence error. We refer to
this transformation as error reduction, which plays a key role in our construction.
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1.4 Sketch of the Construction

Our curve sampler is the composition of two samplers which we call the outer
sampler and the inner sampler respectively. The outer sampler picks manifolds
(see Definition 3) of dimension O(logm) from the domainM = F

m
q . The outer

sampler has near-optimal randomness complexity but the sample complexity is
large. To fix this problem, we employ the idea of iterated sampling. Namely we
regard the manifold picked by the outer sampler as the new domain M′, and
then construct an inner sampler picking a curve from M′ with small sample
complexity.

The outer sampler is obtained by constructing an extractor and then using the
extractor-sampler connection [Zuc97]. We follow the approach in [NZ96, Zuc97,
SZ99]: Given an arbitrary random source with enough min-entropy, we will first
use a block source converter to convert it into a block source, and then feed it
to a block source extractor. In addition, we need to construct these components
carefully so as to maintain the low-degree-ness. The way we construct the block
source converter is different from those in [NZ96, Zuc97, SZ99] (as they are not
in the form of low-degree polynomial maps), and is based on the Reed-Solomon
condenser proposed in [GUV09]: To obtain one block, we simply feed the random
source and a fresh new seed into the condenser, and let the output be the block.
We show that this indeed gives a block source.

The inner sampler is constructed using techniques of iterated sampling and
error reduction. We start with the basic curve samplers picking totally ran-
dom curves, and then apply the error reduction as well as iterated sampling
techniques repeatedly to obtain the desired inner sampler. Either of the two
operations improves one parameter while worsening some other one: Iterated
sampling reduces sample complexity but increases the randomness complexity,
whereas error reduction reduces the confidence error but increases the sample
complexity. Our construction applies the two techniques alternately such that
(1) we keep the invariant that the confidence error is always exponentially small
in the randomness complexity, and (2) the sample complexity is finally brought
down to q.

Outline. The next section contains relevant definitions and some basic facts. Sec-
tion 3 gives the construction of the outer sampler using block source extraction.
Section 4 introduces the techniques of error reduction and iterated sampling, and
then uses them to construct the inner sampler. These components are finally put
together in Section 5 and yield the curve sampler construction.

2 Preliminaries

We denote the set of numbers {1, 2, . . . , n} by [n]. Given a prime power q, write
Fq for the finite field of size q. Write Un,q for the uniform distribution over Fnq .
Logarithms are taken with base 2 unless the base is explicitly specified.

Random variables and distributions are represented by upper-case letters
whereas their specific values are represented by lower-case letters. Write x← X



580 Z. Guo

if x is sampled according to distribution X . The support of a distribution X

over set S is supp(X)
def
= {x ∈ S : Pr[X = x] > 0}. The statistical distance

between distributions X,Y over set S is defined as Δ(X,Y ) = maxT⊆S |Pr[X ∈
T ]− Pr[Y ∈ T ]|. We say X is ε-close to Y if Δ(X,Y ) ≤ ε.

For an event A, let I[A] be the indicator variable that evaluates to 1 if A
occurs and 0 otherwise. For a random variable X and an event A that occurs
with nonzero probability, define the conditional distribution X |A by Pr[X |A =

x] = Pr[(X=x)∧A]
Pr[A] .

Manifolds and curves. Let f : Fdq → F
D
q be a polynomial map. We may view f as

D individual polynomials fi : F
d
q → Fq describing its operation on each output

coordinate, i.e., f(x) = (f1(x), . . . , fD(x)) for all x ∈ F
d
q . Such maps are called

curves or manifolds, depending on the dimension d.

Definition 3 (manifold). A manifold in F
D
q is a polynomial mapM : Fdq → F

D
q

where M1, . . . ,MD are d-variate polynomials over Fq. We call d the dimension
of M . An 1-dimensional manifold is also called a curve. A curve of degree 1 is

also called a line. The degree of M is deg(M)
def
= max{deg(M1), . . . , deg(MD))}.

We need the following lemma, generalizing the one in [TSU06]. The proof is the
same as in [TSU06] and we omit it.

Lemma 1. A manifold f :
(
FqD

)n → (
FqD

)m
of degree t, when viewed as a

manifold f :
(
F
D
q

)n → (
F
D
q

)m
, also has degree at most t.

Basic line/curve samplers The simplest line (resp. curve) samplers are those
picking completely random lines (resp. curves), as defined below. We call them
basic line (resp. curve) samplers.

Definition 4 (basic line sampler). Given m ≥ 1 and prime power q, let
Linem,q : F

2m
q ×Fq → F

m
q be the line sampler that picks a completely random line

in F
m
q . Formally,

Linem,q((a, b), y)
def
= (a1y + b1, . . . , amy + bm)

for a = (a1, . . . , am), b = (b1, . . . , bm) ∈ F
m
q and y ∈ Fq.

Definition 5 (basic curve sampler). Given m ≥ 1, t ≥ 4 and prime power
q, let Curvem,t,q : Ftmq × Fq → F

m
q be the curve sampler that picks a completely

random curve of degree t− 1 in F
m
q . Formally,

Curvem,t,q((c0, . . . , ct−1), y)
def
=

(
t−1∑

i=0

ci,1y
i, . . . ,

t−1∑

i=0

ci,my
i

)

for each c0 = (c0,1, . . . , c0,m), . . . , ct−1 = (ct−1,1, . . . , ct−1,m) ∈ F
m
q and y ∈ Fq.

Remark 1. Note that Linem,q has degree 2 and Curvem,t,q has degree t as poly-
nomial maps.
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Lemma 2. For ε > 0, m ≥ 1 and prime power q, Linem,q is an
(
ε, 1
ε2q

)
line

sampler.

Lemma 3. For ε > 0, m ≥ 1, t ≥ 4 and sufficiently large prime power q =
(t/ε)O(1), Curvem,t,q is an

(
ε, q−t/4

)
sampler.

Lemma 2 follows from Chebyshev’s inequality and pairwise independence of
points on a random line. Similarly, Lemma 3 follows from the tail inequalities
for t-wise independence. See [TSU06, Lemma 2] for more details.

Extractors and condensers. A (seeded) extractor is an object that takes an imper-
fect random variable called the (weakly) random source, invests a small amount
of randomness called the seed, and produces an output whose distribution is very
close to the uniform distribution.

Definition 6 (q-ary min-entropy). We say X has q-ary min-entropy k if for
any x ∈ S, it holds that Pr[X = x] ≤ q−k (or equivalently, X has min-entropy
k log q).

Definition 7 (condenser/extractor). Given a function f : Fnq × F
d
q → F

m
q ,

we say f is an k1 →ε,q k2 condenser if for every distribution X with q-ary min-
entropy k1, f(X,Ud,q) is ε-close to a distribution with q-ary min-entropy k2. We
say f is a (k, ε, q) extractor if it is a k →ε,q m condenser.

Remark 2. We are interested in extractors and samplers that are polynomial
maps. For such an object f , we denote by deg(f) its degree as a polynomial
map.

The following connection between extractors and samplers was observed
in [Zuc97].

Theorem 2 ([Zuc97], restated). Given a map f : Fnq × F
d
q → F

m
q , we have

the following:

1. If f is a (k, ε, q) extractor, then it is also an (ε, δ) sampler where δ = 2qk−n.
2. If f is an (ε/2, δ) sampler where δ = εqk−n, then it is also a (k, ε, q) extractor.

3 Outer Sampler

In this section we construct a sampler whose randomness complexity is optimal
up to a constant factor. We refer to it as the “outer sampler”.

We need the machinery of block source extraction.

Definition 8 (block source [CG88]). A random source X = (X1, . . . , Xs)
over F

n1
q × · · · × F

ns
q is a (k1, . . . , ks) q-ary block source if for any i ∈ [s] and

(x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1), the distribution Xi|X1=x1,...,Xi−1=xi−1 has
q-ary min-entropy ki. Each Xi is called a block.
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Definition 9 (block source extractor). A function E : (Fn1
q × · · · × F

ns
q ) ×

F
d
q → F

m
q is a ((k1, . . . , ks), ε, q) block source extractor if for any (k1, . . . , ks)

q-ary block source (X1, . . . , Xs) over F
n1
q × · · · × F

ns
q , E((X1, . . . , Xs), Ud,q) is

ε-close to Um,q.

The special structure of block sources allows us to compose several extractors
and get a block source extractor, with a small amount of randomness invested.

Definition 10 (block source extraction via composition). Let s ≥ 1 be
an integer and Ei : F

ni
q × F

di
q → F

mi
q be a map for each i ∈ [s]. Suppose that

mi ≥ di−1 for all i ∈ [s], where we set d0 = 0. Define E = BlkExt(E1, . . . , Es)
as follows:

E : (Fn1
q × · · · × F

ns
q )× F

ds
q → (Fm1−d0

q × · · · × F
ms−ds−1
q )

((x1, . . . , xs), ys) �→ (z1, . . . , zs)

where for i = s, . . . , 1, we iteratively define (yi−1, zi) to be a partition of Ei(xi, yi)

into the prefix yi−1 ∈ F
di−1
q and the suffix zi ∈ F

mi−di−1
q .

The idea behind Definition 10 is to composes a chain of extractors Ei with
decreasing output length and seed length. Then we use each Ei’s output as
the seed of the previous extractor Ei−1, so that the only seed the whole object
actually needs is the (typically very short) one of Es.

Lemma 4. Let s ≥ 1 be an integer and for each i ∈ [s], let Ei : F
ni
q × F

di
q →

F
mi
q be a (ki, εi, q) extractor of degree ti ≥ 1. Then BlkExt(E1, . . . , Es) is a

((k1, . . . , ks), ε, q) block source extractor of degree t where ε =
∑s

i=1 εi and t =∏s
i=1 ti.

The proof is standard and we defer it to the full version of this paper.

3.1 Block Source Conversion

Definition 11 (block source converter [NZ96]). A function C : Fnq ×F
d
q →

F
m1
q ×· · ·×Fms

q is a (k, (k1, . . . , ks), ε, q) block source converter if for any random
source X over F

n
q with q-ary min-entropy k, the output C(X,Ud,q) is ε-close to

a (k1, . . . , ks) q-ary block source.

It was shown in [NZ96] that one can obtain a block by choosing a pseudorandom
subset of bits of the random source. Yet the analysis is pretty delicate and
cumbersome. Furthermore the resulting extractor does not have a nice algebraic
structure. We observe that the following condenser from Reed-Solomon codes in
[GUV09] can be used to obtain blocks and is a low-degree manifold.

Definition 12 (condenser from Reed-Solomon codes [GUV09]). Let ζ ∈
Fq be a generator of the multiplicative group F

×
q . Define RSConn,m,q : F

n
q ×Fq →

F
m
q for n,m ≥ 1 and prime power q:

RSConn,m,q(x, y) =
(
y, fx(y), fx(ζy), . . . , fx(ζ

m−2y)
)

where fx(Y ) =
∑n−1
i=0 xiY

i for x = (x0, x1, . . . , xn−1) ∈ F
n
q .
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Theorem 3 ([GUV09]). RSConn,m,q is a m →ε,q 0.99m condenser for large
enough q ≥ (n/ε)O(1).

Remark 3. The condenser RSConn,m,q(x, y) is a degree-n manifold, since each
monomial in any of its coordinate is of the form y or xi(ζ

jy)i for some 0 ≤ i ≤
n− 1.

We apply the above condenser to the source with independent seeds to obtain a
block source.

Definition 13 (block source converter via condensing). Given integers
n,m1, . . . ,ms ≥ 1 and prime power q, define the function BlkCnvtn,(m1,...,ms),q :
F
n
q × F

s
q → F

m1+···+ms
q by

BlkCnvtn,(m1,...,ms),q(x, y) = (RSConn,m1,q(x, y1), . . . ,RSConn,ms,q(x, ys))

for x ∈ F
n
q and y = (y1, . . . , ys) ∈ F

s
q.

The function BlkCnvtn,(m1,...,ms),q is indeed a block source converter. The in-
tuition is that conditioning on the values of the previous blocks, the random
source X still has enough min-entropy, and hence we may apply the condenser
to get the next block. Formally, we have the following statement whose proof is
deferred to the full version of this paper.

Theorem 4. For ε > 0, integers s, n,m1, . . . ,ms ≥ 1 and sufficiently large
prime power q = (n/ε)O(1), BlkCnvtn,(m1,...,ms),q is a (k, (k1, . . . , ks), 3sε, q) block
source converter of degree n where k =

∑s
i=1mi + logq(1/ε) and each ki =

0.99mi.

3.2 Construction of the Outer Sampler

By Lemma 2 and Theorem 2, the basic line samplers are also extractors.

Lemma 5. For ε > 0, m ≥ 1 and prime power q, Linem,q is a (k, ε, q) extractor
of degree 2 where k = 2m− 1 + 3 logq(1/ε).

We employ Lemma 4 and compose the basic line samplers to get a block source
extractor. It is then applied to a block source obtained from the block source
converter.

Definition 14 (Outer Sampler). For δ > 0, m = 2s and prime power q,
let n = 4m +

⌈
logq(2/δ)

⌉
, d = s + 1, and di = 2s−i for i ∈ [s]. For i ∈ [s],

view Line2,qdi : F
4
qdi
× Fqdi → F

2
qdi

as a manifold over Fq: Line2,qdi : F4di
q ×

F
di
q → F

2di
q . Composing these line samplers Line2,qdi for i ∈ [s] gives the function

BlkExt(Line2,qd1 , . . . , Line2,qds ) : F
4d1+···+4ds
q ×Fq → F

m
q . Finally, define function

OuterSampm,δ,q : Fnq × F
d
q → F

m
q such that for x ∈ F

n
q , y ∈ F

s
q and y′ ∈ Fq,

OuterSampm,δ,q(x, (y, y
′)) equals

BlkExt(Line2,qd1 , . . . , Line2,qds )
(
BlkCnvtn,(4d1,...,4ds),q(x, y), y

′).



584 Z. Guo

Theorem 5. For any ε, δ > 0, integer m ≥ 1, and sufficiently large prime
power q ≥ (n/ε)O(1), OuterSampm,δ,q is an (ε, δ) sampler of degree t where d =

O(logm), n = O
(
m+ logq(1/δ)

)
and t = O

(
m2 +m logq(1/δ)

)
.

Proof. We first show that OuterSampm,δ,q is a (4m, ε, q) extractor. Consider any
random source X over Fnq with q-ary min-entropy 4m. Let s, di be as in Defini-
tion 14. Let ki = 4 · 0.99 · di for i ∈ [s]. Let ε0 = ε

4s .

We have (
∑s

i=1 4di) + logq(1/ε0) ≤ 4m for sufficiently large q ≥ (n/ε)O(1). So
by Theorem 4, BlkCnvtn,(4d1,...,4ds),q is a (4m, (k1, . . . , ks), 3sε0, q) block source
converter. Therefore the distribution BlkCnvtn,(4d1,...,4ds),q(X,Us,q) is 3sε0-close
to a (k1, . . . , ks) q-ary block source X ′. Then OuterSampm,δ,q(X,Ud,q) is 3sε0-
close to BlkExt(Line2,qd1 , . . . , Line2,qds )(X

′, U1,q).

By Lemma 5, Line2,qdi is a
(
ki/di, ε0, q

di
)
extractor for i ∈ [s] since 3 +

3 logqdi (1/ε0) ≤ 4 · 0.99 = ki/di. Equivalently it is a (ki, ε0, q) extractor. By
Lemma 4, BlkExt(Line2,qd1 , . . . , Line2,qds ) is a ((k1, . . . , ks), sε0, q) block source
extractor. Therefore BlkExt(Line2,qd1 , . . . , Line2,qds )(X

′, U1,q) is sε0-close to Um,q,
which by the previous paragraph, implies that OuterSampm,δ,q(X,Ud,q) is 4sε0-
close to Um,q. By definition, OuterSampm,δ,q is a (4m, ε, q) extractor. By Theo-
rem 2, it is also an (ε, δ) sampler.

Finally, we have d = s + 1 = O(logm) and n = O
(
m+ logq(1/δ)

)
. By

Lemma 1, each Line2,qdi has degree 2 as a manifold over Fq. Therefore by
Lemma 4, the map BlkExt(Line2,qd1 , . . . , Line2,qds ) has degree 2

s. By Theorem 4,
BlkCnvtn,(4d1,...,4ds),q has degree n. Therefore OuterSampm,δ,q has degree n2s =

O
(
m2 +m logq(1/δ)

)
. 	


Remark 4. We assume m is a power of 2 above. For general m, simply pick
m′ = 2�logm	 and let OuterSampm,δ,q be the composition of OuterSampm′,δ,q

with the projection π : Fm
′

q → F
m
q onto the first m coordinates. It yields an (ε, δ)

sampler of degree t for Fmq since π is linear, and approximating the density of a

subset A in F
m
q is equivalent to approximating the density of π−1(A) in F

m′
q .

4 Inner Sampler

The sampler OuterSampm,δ,q has randomness complexity O (m log q + log(1/δ))
which is optimal up to a constant factor. Yet the sample complexity is large,
being qO(logm). We remedy this problem by composing it with an “inner sampler”
with small sample complexity. Its construction is based on two techniques called
error reduction and iterated sampling.

4.1 Error Reduction

Given f : Fnq × F
d
q → F

m
q , define LISTf (T, ε)

def
=

{
x ∈ F

n
q : Pry[f(x, y) ∈ T ] > ε

}

for any T ⊆ F
m
q and ε > 0. We are interesting in functions f exhibiting a “list-

recoverability” property that the size of LISTf (T, ε) is kept small when T is not
too large.
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Definition 15. A function f : F
n
q × Fq → F

m
q is (ε, L,H) list-recoverable if

|LISTf (T, ε)| ≤ H for all T ⊆ F
m
q of size at most L.

We then define an operation � as follows.

Definition 16. For functions f : Fnq ×F
d
q → F

m
q and S : Fmq ×F

d′
q → F

m′
q , define

S � f : Fnq × (Fdq × F
d′
q )→ F

m′
q such that (S � f)(x, (y, y′)) def

= S(f(x, y), y′).

See Figure 1 for an illustration. The following lemma states that a sampler with
mildly small confidence error, when composed with a list-recoverable function
via the � operation, gives a sampler with very small confidence error.

Lemma 6. Suppose f : Fnq × F
d
q → F

m
q is (ε1, L,H) list-recoverable, and S :

F
m
q × F

d′
q → F

m′
q is an (ε2, L/q

m) sampler. Then S � f is an (ε1 + ε2, H/q
n)

sampler.

Proof. Let A be an arbitrary subset of Fm
′

q . Let B = {y ∈ F
m
q : |μS(y)−μ(A)| >

ε2}. By the sampling property of S, we have |B| ≤ (L/qm) · qm = L and
hence |LISTf (B, ε1)| ≤ H . Therefore it suffices to show that for any x ∈
F
n
q \ LISTf (B, ε1), it holds that |μ(S�f)(x)(A)− μ(A)| ≤ ε1 + ε2.
Fix x ∈ F

n
q \ LISTf (B, ε1). We have

μ(S�f)(x)(A) = Pr
y,y′

[(S � f)(x, (y, y′)) ∈ A] = Pr
y,y′

[S(f(x, y), y′) ∈ A]
= Ey

[
μS(f(x,y))(A)

]
.

Therefore

|μ(S�f)(x)(A)− μ(A)| =
∣
∣Ey

[
μS(f(x,y))(A)

] − μ(A)∣∣ ≤ Ey |μS(f(x,y))(A)− μ(A)|
≤ Pr

y
[f(x, y) ∈ B] + ε2 Pr

y
[f(x, y) �∈ B] ≤ ε1 + ε2.

To see the last two steps, note that |μS(y)(A)−μ(A)| ≤ ε2 for y �∈ B by definition,
and Pry[f(x, y) ∈ B] ≤ ε1 since x �∈ LISTf (B, ε1). 	


It was shown in [GUV09] that the condenser RSConn,m,q (see Definition 12)
enjoys the following list-recoverability property:

Theorem 6 ([GUV09]). For sufficiently large q ≥ (n/ε)O(1), the function
RSConn,m,q is

(
ε, q0.99m, qm

)
list-recoverable.

Corollary 2. For any n ≥ m ≥ 1, ε, ε′ > 0 and sufficiently large prime power
q = (n/ε)O(1), suppose S : Fmq × F

d
q → F

m′
q is an (ε′, q−0.01m) sampler of degree

t, then S � RSConn,m,q is an (ε+ ε′, qm−n) sampler of degree nt.

Proof. Apply Lemma 6 and Theorem 6. Note that RSConn,m,q has degree n.
Therefore (S � RSConn,m,q) (X, (Y, Y

′)) = S(RSConn,m,q(X,Y ), Y ′) has degree
nt in its variables X,Y, Y ′. 	
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4.2 Iterated Sampling

We introduce the operation ◦ denoting the composition of two samplers.

Definition 17. (composed sampler). Given functions S1 : Fn1
q ×F

d1
q → F

d0
q and

S2 : F
n2
q × F

d2
q → F

d1
q , define S1 ◦ S2 : (Fn1

q × F
n2
q ) × F

d2
q → F

d0
q such that

(S1 ◦ S2)((x1, x2), y)
def
= S1(x1, S2(x2, y)).

f

S

X

Y

Y ′

Z

Fig. 1. The operation S � f

S2 S1
Y

X2 X1

Z

Y ′

Fig. 2. The operation S1 ◦ S2

See Figure 2 for an illustration. The composed sampler S1 ◦ S2 first uses its
randomness x1 to get the sample S1(x1) = {S1(x1, y) : y ∈ Fq}, and then uses
its randomness x2 to get the subsample {S1(x1, S2(x2, y)) : y ∈ Fq} ⊆ S1(x1).
Intuitively, if S1 and S2 are good samplers then so is S1 ◦ S2. This is indeed
shown by [BR94, TSU06] and we formalize it as follows:

Lemma 7 ([BR94, TSU06]). Let S1 : Fn1
q ×F

d1
q → F

d0
q be an (ε1, δ1) sampler

of degree t1 and S2 : Fn2
q × F

d2
q → F

d1
q be an (ε2, δ2) sampler of degree t2. Then

S1 ◦ S2 : (Fn1
q × F

n2
q )× F

d2
q → F

d0
q is an (ε1 + ε2, δ1 + δ2) sampler of degree t1t2.

Proof. Fix an arbitrary subset A ⊆ F
d0
q . Define B(x) =

{
z ∈ F

d2
q : S1(x, z) ∈ A

}

for x ∈ F
n1
q . Pick x1 ← Un1,q and x2 ← Un2,q. If

∣
∣μS1◦S2((x1,x2))(A)− μ(A)

∣
∣ >

ε1 + ε2 occurs, then either |μS1(x1)(A) − μ(A)| > ε1, or |μS1◦S2((x1,x2))(A) −
μS1(x1)(A)| > ε2 occurs. Call the two events E1 and E2 respectively.

Note that E1 occurs with probability at most δ1 by the sampling property of
S1. Also note that

μS1◦S2((x1,x2))(A) = Pr
y
[S1(x1, S2(x2, y)) ∈ A] = Pr

y
[S2(x2, y) ∈ B(x1)]

= μS2(x2)(B(x1))

whereas

μS1(x1)(A) = Pr
y
[S1(x1, y) ∈ A] = Pr

y
[y ∈ B(x1)] = μ(B(x1)).
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So the probability that E2 occurs is Prx1,x2 [|μS2(x2)(B(x1)) − μ(B(x1))| > ε2]
which is bounded by δ2 by the sampling property of S2. By the union bound,
the event

∣
∣μS1◦S2((x1,x2))(A)− μ(A)

∣
∣ > ε1 + ε2 occurs with probability at most

δ1 + δ2, as desired.
Finally, we have S1 ◦ S2((X1, X2), Y )) = S1(X1, S2(X2, Y )) which has

degree t1t2 in its variables X1, X2, Y since S1 and S2 have degree t1 and t2
respectively. 	


4.3 Construction of the Inner Sampler

We use the basic curve samplers as the building blocks and apply the error
reduction as well as iterated sampling repeatedly to obtain the inner sampler.
The formal construction is as follows.

Definition 18 (inner sampler). For m ≥ 1, δ > 0 and prime power q, pick
s = logm� and let di = 2s−i for 0 ≤ i ≤ s. Let ni = 16i for 0 ≤ i ≤ s− 1 and
ns = 16s+20

⌈
logq(1/δ)

⌉
. Define Si : F

nidi
q ×F

di
q → F

m
q for 0 ≤ i ≤ s as follows:

– S0 : Fq × F
d0
q → F

m
q projects (x, y) onto the first m coordinates of y.

– Si
def
=

(
Si−1 � RSConni

4 ,2ni−1,qdi

)
◦ Curve3,ni

4 ,q
di for i = 1, . . . , s.

Finally, let InnerSampm,δ,q
def
= Ss.

Theorem 7. For any ε, δ > 0, integer m ≥ 1 and large enough prime power

q ≥
(
m log(1/δ)

ε

)O(1)

, InnerSampm,δ,q : Fnq × Fq → F
m
q is an (ε, δ) sampler of

degree t where n = O
(
mO(1) + logq(1/δ)

)
and t = O

(
mO(logm) log2q(1/δ)

)
.

Proof. Let ε′ = ε
2s and di, ni, Si be as in Definition 18 for 0 ≤ i ≤ s. We will prove

that each Si is an (εi, δi) sampler of degree ti where εi = 2iε′, δi = q−nidi/20,

and ti =
∏i
j=1

(nj

4

)2
. The theorem follows by noting that InnerSampm,δ,q = Ss,

ε = εs, δ ≥ δs, and t = ts.
Induct on i. The case i = 0 is trivial. Consider the case i > 0 and assume the

claim holds for all i′ < i. By the induction hypothesis, Si−1 is an (εi−1, δi−1)
sampler of degree ti−1.

Note that δi−1 = q−ni−1di−1/20 ≤ q−0.01ni−1di−1 . By Corollary 2, Si−1 �
RSConni

4 ,2ni−1,qdi is an
(
εi−1 + ε′, qni−1di−1−(ni/4)di

)
sampler of degree ni

4 · ti−1.
By Lemma 3, Curve3,ni

4 ,q
di is an

(
ε′, q−nidi/16

)
sampler of degree ni

4 . Finally by
Lemma 7, the function

Si =
(
Si−1 � RSConni

4 ,2ni−1,qdi

)
◦ Curve3,ni

4 ,q
di

is an
(
εi−1 + 2ε′, qni−1di−1−(ni/4)di + q−nidi/16

)
sampler of degree

(
ni

4

)2 · ti−1. It
remains to check that

εi = εi−1 + 2ε′, δi ≥ qni−1di−1−(ni/4)di + q−nidi/16 and ti =
(ni
4

)2

· ti−1.
which hold by the choices of parameters. 	
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5 Putting It Together

We compose the outer sampler and the inner sampler to get the desired curve
sampler.

Definition 19. For m ≥ 1, δ > 0 and prime power q, define

Sampm,δ,q
def
= OuterSampm,δ/2,q ◦ InnerSampd,δ/2,q.

Theorem 8 (Theorem 1 restated). For any ε, δ > 0, integer m ≥ 1 and

sufficiently large prime power q ≥
(
m log(1/δ)

ε

)O(1)

, the function Sampm,δ,q :

F
n
q × Fq → F

m
q is an (ε, δ) sampler of degree t where n = O

(
m+ logq(1/δ)

)

and t =
(
m logq(1/δ)

)O(1)
. In particular, Sampm,δ,q is an (ε, δ) degree-t curve

sampler.

Proof. By Theorem 5, OuterSampm,δ/2,q : F
n1
q × F

d
q → F

m
q is an (ε/2, δ/2)

sampler of degree t1 where d = O(logm), n1 = O
(
m+ logq(1/δ)

)
and t1 =

O
(
m2 +m logq(1/δ)

)
.

By Theorem 7, InnerSampd,δ/2,q : F
n2
q ×Fq → F

d
q is an (ε/2, δ/2) sampler of de-

gree t2 with parameters n2 = O
(
(logm)

O(1)
+ logq(1/δ)

)
and

t2 = O
(
(logm)

O(log logm)
log2q(1/δ)

)
.

Finally, Lemma 7 implies that Sampm,δ,q is an (ε, δ) sampler of degree t with

n = n1 + n2 = O
(
m+ logq(1/δ)

)
and t = t1t2 =

(
m logq(1/δ)

)O(1)
. A fortiori,

it is a degree-t curve sampler since the degree of Sampm,δ,q(x, ·) is bounded by
the degree of Sampm,δ,q for all x ∈ F

n
q . 	
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A Lower Bounds on the Degree of Sampled Curves

We present the following lower bound on the degree of curves sampled by a curve
sampler:

Theorem 9. Let S : N × Fq → F
m
q be an (ε, δ) degree-t curve sampler where

m ≥ 2, ε < 1/2 and δ < 1. Then t = Ω
(
logq(1/δ) + 1

)
.

Proof. Clearly t ≥ 1. Suppose S = (S1, . . . , Sm) and define S′ = (S1, S2). Let
C be the set of curves of degree at most t in F

2
q. Then |C| = q2(t+1). Consider

the map τ : N → C that sends x to S′(x, ·). We can pick k = �q/2� curves
C1, . . . , Ck ∈ C such that the union of their preimages

B
def
=

k⋃

i=1

τ−1(Ci) =
k⋃

i=1

{x : S′(x, ·) = Ci}

has size at least k|N |
|C| = k|N |

q2(t+1) .

Define A ⊆ F
m
q by

A
def
= {Ci(y) : i ∈ [k], y ∈ Fq} × F

m−2
q ,

i.e., let A be the set of points in F
m
q whose first two coordinates are on at least

one curve Ci. We have |A| ≤ kqm−1 and hence μ(A) ≤ k/q ≤ 1/2 < 1 − ε. On
the other hand, it follows from the definition of A that we have S(x, y) ∈ A for
all x ∈ B and y ∈ Fq. So μS(x)(A) = 1 for all x ∈ B. Then

δ ≥ Pr
[|μS(x)(A)− μ(A)| > ε

] ≥ |B||N | ≥
k

q2(t+1)

and hence t ≥ max
{
1, 12 logq(k/δ)− 1

}
= Ω

(
logq(1/δ) + 1

)
. 	


We remark that the condition m ≥ 2 is necessary in Theorem 9 since when
m = 1, the sampler S with S(x, y) = y for all x ∈ N and y ∈ Fq is a (0, 0)
degree-1 curve sampler.
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√
γ) codewords

with low “average radius.” The standard notion of list-decoding
corresponds to working with the maximum distance of a col-
lection of codewords from a center instead of average distance.
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the classical Johnson bound in fact implies average-radius list-
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of constant-weight codes. On a positive note, our Ωp(1/

√
γ) lower

bound for average-radius list-decoding circumvents this barrier.
– We exhibit a “reverse connection” between the existence of constant-

weight and general codes for list-decoding, showing that the best
possible list-size, as a function of the gap γ of the rate to the capacity
limit, is the same up to constant factors for both constant-weight
codes (whose weight is bounded away from p) and general codes.

– We give simple second moment based proofs that w.h.p. a list-size
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1 Introduction

The list-decoding problem for an error-correcting code C ⊆ Σn consists of finding
the set of all codewords of C with Hamming distance at most pn from an input
string y ∈ Σn. Though it was originally introduced in early work of Elias and
Wozencraft [6,15] in the context of estimating the decoding error probability
for random error models, recently the main interest in list-decoding has been for
adversarial error models. List decoding enables correcting up to a factor two more
worst-case errors compared to algorithms that are always restricted to output a
unique answer, and this potential has even been realized algorithmically [10,8].

In this work, we are interested in some fundamental combinatorial questions
concerning list-decoding, which highlight the important tradeoffs in this model.
Fix p ∈ (0, 12 ) and a positive integer L. We say that a binary code C ⊆ {0, 1}n
is (p, L) list-decodable if every Hamming ball of radius pn has less than L code-
words. Here, p corresponds to the error-fraction and L to the list-size needed
by the error-correction algorithm. Note that (p, L) list-decodability imposes a
sparsity requirement on the distribution of codewords in the Hamming space. A
natural combinatorial question that arises in this context is to place bounds on
the largest size of a code meeting this requirement. In particular, an outstanding
open question is to characterize the maximum rate (defined to be the limiting
ratio 1

n log |C| as n→∞) of a (p, L) list-decodable code.
By a simple volume packing argument, it can be shown that a (p, L) list-

decodable code has rate at most 1− h(p) + o(1). (Throughout, for z ∈ [0, 12 ], we
use h(z) to denote the binary entropy function at z.) Indeed, picking a random
center x, the Hamming ball B(x, pn) contains at least |C| · ( npn

)
2−n codewords

in expectation. Bounding this by (L − 1), we get the claim. On the positive
side, in the limit of large L, the rate of a (p, L) list-decodable code approaches
the optimal 1 − h(p). More precisely, for any γ > 0, there exists a (p, 1/γ)
list-decodable code of rate at least 1 − h(p) − γ. In fact, a random code of
rate 1 − h(p) − γ is (p, 1/γ) list-decodable w.h.p. [16,7], and a similar result
holds for random linear codes (with list-size Op(1/γ)) [9]. In other words, a
dense random packing of 2(1−h(p)−γ)n Hamming balls of radius pn (and therefore
volume ≈ 2h(p)n each) is “near-perfect” w.h.p. in the sense that no point is
covered by more than Op(1/γ) balls.

The determination of the best asymptotic code rate of binary (p, L) list-
decodable codes as p, L are held fixed and the block length grows is wide open
for every choice of p ∈ (0, 12 ) and integer L � 1. However, we do know that
for each fixed p ∈ (0, 12 ), this rate approaches 1 − h(p) in the limit as L → ∞.
To understand this rate of convergence as a function of list-size L, following
[9], let us define Lp,γ to be the minimum integer L such that there exist (p, L)
list-decodable codes of rate 1− h(p)− γ for infinitely many block lengths n (the
quantity γ is the “gap” to “list-decoding capacity”). In [1], Blinovsky showed that
a (p, L) list-decodable code has rate at most 1−h(p)−2−Θp(L). In particular, this
implies that for any finite L, a (p, L) list-decodable code has rate strictly below
the optimal 1 − h(p). Stated in terms of Lp,γ , his result implies the corollary
Lp,γ � Ωp(log(1/γ)) for rates γ-close to capacity. We provide a short and simple
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proof of this corollary in Section 4. Our proof works almost as easily over non-
binary alphabets. (Blinovsky’s subsequent proof for the non-binary case in [3,4]
involved substantial technical effort. However, his results also give non-trivial
bounds for every finite L, as opposed to just the growth rate of Lp,γ .)

Observe the exponential gap (in terms of the dependence on γ) between the
O(1/γ) upper bound andΩp(log(1/γ)) lower bounds on the quantityLp,γ . Despite
being a basic and fundamental question about sphere packings in the Hamming
space and its direct relevance to list-decoding, there has been no progress on nar-
rowing this asymptotic gap in the 25 years since the works of Zyablov-Pinsker [16]
and Blinovsky [1]. This is the motivating challenge driving this work.

1.1 Prior Work on List-Size Lower Bounds

We now discuss some lower bounds (besides Blinovsky’s general lower bound)
on list-size that have been obtained in restricted cases.

Rudra shows that the Op(1/γ) bound obtained via the probabilistic method
for random codes is, in fact, tight up to constant factors [14]. Formally, there
exists L = Ωp(1/γ) such that a random code of rate 1 − h(p) − γ is not (p, L)
list-decodable w.h.p. His proof uses near-capacity-achieving codes for the binary
symmetric channel, the existence of which is promised by Shannon’s theorem,
followed by a second moment argument. We give a simpler proof of this result
via a more direct use of the second moment method. This has the advantage
that it works uniformly for random general as well as random linear codes, and
for channels that introduce errors as well as erasures.

Guruswami and Vadhan [12] consider the problem of establishing list-size
bounds when the channel may corrupt close to half the bits, that is, when p = 1

2−ε,
and more generally p = 1 − 1/q − ε for codes over an alphabet of size q. (Note
that decoding is impossible if the channel could corrupt up to a half fraction of
bits.) They show that there exists c > 0 such that for all ε > 0 and all block
lengths n, any (12 − ε, c/ε2) list-decodable code contains Oε(1) codewords. For p
bounded away from 1

2 (or 1−1/q in the q-ary case), their methods do not yield any
nontrivial list-size lower bound as a function of gap γ to list-decoding capacity.

1.2 Our Main Results

We have already mentioned our new proof of the Ω(log(1/γ)) list-size lower
bound for list-decoding general codes, and the asymptotically optimal list-size
lower bound for random (and random linear) codes.

Our main result concerns an average-radius variant of list-decoding. This vari-
ant was implicitly used in [1,12] en route their list-size lower bounds for standard
list-decoding. In this work, we formally abstract this notion of average-radius
list-decodability: a code is (p, L) average-radius list-decodable if for every L code-
words, the average distance of their centroid from the L codewords exceeds pn.
Note that this is a stronger requirement than (p, L) list-decodability where only
the maximum distance from any center point to the L codewords must exceed
pn.
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We are able to prove nearly tight bounds on the achievable rate of a (p, L)
average-radius list-decodable code. To state our result formally, denote by Lavg

p,γ

the minimum L such that there exists a (p, L) average-radius list-decodable
code family of rate 1−h(p)−γ. A simple random coding argument shows that a
random code of 1− h(p)− γ is (p, 1/γ) average-radius list-decodable (matching
the list-decodability of random codes). That is, Lavg

p,γ � 1/γ. Our main technical
result is a lower bound on the list-size that is polynomially related to the upper
bound, namely Lavg

p,γ � Ωp(γ
−1/2).

We remark that the classical Johnson bound in coding theory in fact proves
the average-radius list-decodability of codes with good minimum distance —
namely, a binary code of relative distance δ is (J(δ − δ/L), L) average-radius
list-decodable, where J(z) = (1 − √1− 2z)/2 for z ∈ [0, 12 ]. (This follows from
a direct inspection of the proof of the Johnson bound [11].) Also, one can show
that if a binary code is (12 −2iε,O(1/(22iε2)) list-decodable for all i = 0, 1, 2, . . .,
then it is also (12−2ε,O(1/ε2)) average-radius list-decodable [5]. This shows that
at least in the high noise regime, there is some reduction between these notions.
Further, a suitable soft version of average-radius list-decodability can be used
to construct matrices with a certain restricted isometry property [5]. For these
reasons, we feel that average-radius list-decodability is a natural notion to study,
even beyond treating it as a vehicle to understand (standard) list-decoding.

1.3 Our other Results

We also prove several other results that clarify the landscape of combinato-
rial limitations of list-decodable codes. Many results showing rate limitations in
coding theory proceed via a typical approach in which they pass to a constant
weight λ ∈ (p, 12 ]; i.e., they restrict the codewords to be of weight exactly λn.
They show that under this restriction, a code with the stated properties must
have a constant number of codewords (that is, asymptotically zero rate). Map-
ping this bound back to the unrestricted setting one gets a rate upper bound of
1−h(λ)+o(1) for the original problem. For instance, the Elias-Bassalygo bound
for rate R vs. relative distance δ is of this nature (here λ is picked to be the
Johnson radius for list-decoding for codes of relative distance δ).

The above is also the approach taken in Blinovsky’s work [1] as well as that
of [12]. We show that such an approach does not and cannot give any bound
better than Blinovsky’s Ωp(log(1/γ)) bound for Lp,γ . More precisely, for any
λ � p+2−bpL for some bp > 0, we show that there exists a (p, L) (average-radius)
list-decodable code of rate Ωp,L(1). Thus in order to improve the lower bound,
we must be able to handle codes of strictly positive rate, and cannot deduce
the bound by pinning down the zero-rate regime of constant-weight codes. This
perhaps points to why improvements to Blinovsky’s bounds have been difficult.
On a positive note, we remark that we are able to effect such a proof for average-
radius list-decoding (some details follow next).

To describe the method underlying our list-size lower bound for average-radius
list-decoding, it is convenient to express the statement as an upper bound on
rate in terms of list-size L. Note that a list-size lower bound of L � Ωp(1/

√
γ)
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for (p, L) average-radius list-decodable codes of rate 1 − h(p) − γ amounts to
proving an upper bound of 1 − h(p) − Ωp(1/L2) on the rate of (p, L) average-
radius list-decodable codes. Our proof of such an upper bound proceeds by first
showing a rate upper bound of h(λ) − h(p) − ap/L2 for such codes when the
codewords are all restricted to have weight λn, for a suitable choice of λ, namely
λ = p+a′p/L. To map this back to the original setting (with no weight restrictions
on codewords), one simply notes that every (p, L) average-radius list-decodable
code of rate R contains as a subcode, a translate of a constant λn-weight subcode
of rate R− (1 − h(λ)). (The second step uses a well-known argument.)

Generally speaking, by passing to a constant-weight subcode, one can translate
combinatorial results on limitations of constant-weight codes to results showing
limitations for the case of general codes. But this leaves open the possibility that
the problem of showing limitations of constant-weight codes may be harder than
the corresponding problem for general codes, or worse still, have a different answer
making it impossible to solve the problem for general codes via the methodology
of passing to constant-weight codes. We show that for the problem of list-decoding
this is fortunately not the case, and there is, in fact, a “reverse connection” of the
following form: A rate upper bound of 1− h(p)− γ for (p, L) list-decodable codes
implies a rate upper bound of h(λ)−h(p)−

(
λ−p
1
2−p

)
γ for (p, L) list-decodable codes

whose codewords must all have Hamming weight λn. A similar claim holds also for
average-radius list-decodability, though we don’t state it formally.

1.4 Our Proof Techniques

Our proofs in this paper employ variants of the standard probabilistic method.
We show an extremely simple probabilistic argument that yields a Ωp(log(1/γ))
bound on the list-size of a standard list-decodable code; we emphasize that this
is qualitatively the tightest known bound in this regime.

For the “average-radius list-decoding” problem that we introduce, we are able
to improve this list-size bound to Ωp(1/

√
γ). The proof is based on the idea that

instead of picking the “bad list-decoding center” x uniformly at random, one can
try to pick it randomly very close to a special codeword c∗, and this still gives
similar guarantees on the number of near-by codewords. Now since the quantity
of interest is the average radius, including this close-by codeword in the list
gives enough savings for us. In order to estimate the probability that a typical
codeword c belongs to the list around x, we write this probability explicitly as a
function of the Hamming distance between c∗ and c, which is then lower bounded
using properties of hypergeometric distributions and Taylor approximations for
the binary entropy function.

For limitations of list-decoding random codes, we define a random variable
W that counts the number of “violations” of the list-decoding property of the
code. We then show that W has a exponentially large mean, around which it
is concentrated w.h.p. This yields that the code cannot be list-decodable with
high probability, for suitable values of rate and list-size parameters. We skip the
formal statement of these results and their proofs in this version (due to space
restrictions); these can be found in the full version.
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1.5 Organization

We define some useful notation and the formal notion of average-radius list-
decodability in Section 2. Our main list-size lower bound for average-radius list-
decoding appears in Section 3. We give our short proof of Blinovsky’s lower
bounds for binary and general alphabets in Section 4. Our results about the
zero-error rate regime for constant-weight codes and the connection between
list-decoding bounds for general codes and constant-weight codes appear in Sec-
tion 5. For reasons of space, many of the proofs, and all results on list-size lower
bounds for random codes, are skipped and can be found in the full version.

2 Notation and Preliminaries

2.1 List Decoding

We recall some standard terminology regarding error-correcting codes. Let [n]
denote the index set {1, 2, . . . , n}. For q � 2, let [q] denote the set {0, 1, . . . , q−1}.
A q-ary code refers to any subset C ⊆ [q]n, where n is the blocklength of C. We
will mainly focus on the special case of binary codes corresponding to q = 2. The
rate R = R(C) is defined to be log |C|

n log q . For x ∈ [q]n and S ⊆ [n], the restriction
of x to the coordinates in S is denoted x|S . Let Supp(x) := {i ∈ [n] : xi �= 0}.
A subcode of C is a subset C′ of C. We say that C is a constant-weight code with
weight w ∈ [0, n], if all its codewords have weight exactly w. (Such codes are
studied in Section 5.)

For x, y ∈ [q]n, define the Hamming distance between x and y, denoted d(x, y),
to be the number of coordinates in which x and y differ. The (Hamming) weight
of x, denoted wt(x), is d(0, x), where 0 is the vector in [q]n with zeroes in all
coordinates. The (Hamming) ball of radius r centered at x, denoted B(x, r), is the
set {y ∈ [q]n : d(x, y) � r}. In this paper, we need the following nonstandard
measure of distance of a (small) “list” L of vectors from a “center” x: For a
nonempty L ⊆ [q]n, define

Dmax(x,L) := max{d(x, y) : y ∈ L},

and
Davg(x,L) := Ey∈L

[
d(x, y)

]
=

1

|L|
∑

y∈L
d(x, y).

We formalize the error recovery capability of the code using list-decoding.

Definition 1. Fix 0 < p < 1
2 and a positive integer L. Let C be a q-ary code

with blocklength n.

1. C is said to be (p, L) list-decodable if for all x ∈ [q]n, B(x, pn) contains at
most L − 1 codewords from C. Equivalently, for any x and any list L ⊆ C
of size at least L, we have Dmax(x,L) > pn.

2. C is said to be (p, L) average-radius list-decodable if for any x and L as in
Item 1, we have Davg(x,L) > pn.
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For constant-weight codes, it is convenient to augment the notation with the
weight parameter:

Definition 2. Let p, L, q, n, C be as in Definition 1, and let 0 < λ � 1
2 . C is

said to be (λ; p, L) (average-radius) list-decodable if C is (p, L) (average-radius)
list-decodable, and every codeword in C has weight exactly λn.

We remark that the list-decodability property is standard in literature. Moreover,
while the notion of (p, L) average-radius list-decodability is formally introduced
by this paper, it is already implicit in [1,2,12].

Since the max-distance of a list from a center always dominates its average dis-
tance, every (p, L) average-radius list-decodable code is also (p, L) list-decodable.
That is, average-radius list-decodability is a syntactically stronger property than
its standard counterpart, and hence any limitation we establish for the standard
list-decodable codes also carries over for average-radius list-decodability.

Following (and extending) the notation in [9], we make the following defini-
tions to quantify the tradeoffs in the different parameters of a code: the rate R,
the error-correction radius p, list-size L, and the weight λ of the codewords (for
constant-weight codes). Further, for general codes (without the constant-weight
restriction), it is usually more convenient to replace the rate R by the parameter
γ := 1−h(p)−R; this measures the “gap” to the “limiting rate” or the “capacity”
of 1− h(p) for (p,O(1)) list-decodable codes.

Fix p, λ ∈ (0, 12 ] such that p < λ, R ∈ (0, 1), and a positive integer L.

Definition 3. 1. Say that the triple (p, L;R) is achievable for list-decodable
codes if there exist (p, L) list-decodable codes of rate R for infinitely many
lengths n.
Define Rp,L to be the supremum over R such that (p, L;R) is achievable for
list-decodable codes, and γp,L := 1 − h(p)− Rp,L. Also define Lp,γ to be the
least integer L such that (p, L; 1− h(p)− γ) is achievable.

2. (For constant weight codes.) Say that the 4-tuple (λ; p, L;R) is achievable
if there exists (λ; p, L) list-decodable codes of rate R. Define Rp,L(λ) to be
the supremum rate R for which the 4-tuple (λ; p, L;R) is achievable.

We can also define analogous quantities for average-radius list-decoding (denoted
by a superscript avg), but to prevent notational clutter, we will not explicitly do
so. Throughout this paper, p is treated as a fixed constant in (0, 12 ), and we will
not attempt to optimize the dependence of our bounds on p.

2.2 Standard Distributions and Functions

In this paper, we use ‘log’ for logarithms to base 2 and ‘ln’ for natural logarithms.
Also, to avoid cumbersome notation, we often denote bz by expb(z). Standard
asymptotic notation (big O, little o, and big Omega) is employed liberally in
this paper; when subscripted by a parameter (typically p), the notation hides a
constant depending arbitrarily on the parameter.

Our proofs also make repeated use of hypergeometric distributions, which we
review here for the sake of completeness, as well as to set the notation. Suppose
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a set contains n objects, exactly m < n of which are marked, and suppose we
sample s < n objects uniformly at random from the set without replacement.
Then the random variable T counting the number of marked objects in the sam-
ple follows the hypergeometric distribution with parameters (n,m, s). A simple
counting argument shows that, for t � min{m, s},

Pr[T = t] =

(
m
t

)(
n−m
s−t

)

(
n
s

) .

We will denote the above expression by f(n,m, s, t). By convention, f(n,m, s, t)
is set to 0 if n < max{m, s} or t > min{m, s}. Hypergeometric distributions
satisfy a useful symmetry property:

Lemma 1. For all integers n,m, s with n � max{m, s}, the hypergeometric dis-
tribution with parameters (n,m, s) is identical to that with parameters (n, s,m).
That is, for all t, we have f(n,m, s, t) = f(n, s,m, t).

Throughout this paper, we are especially concerned with the asymptotic be-
haviour of binomial coefficients, which is characterized in terms of the binary
entropy function, defined as h(z) := −z log z− (1− z) log(1− z). We will use the
following standard estimate without proof: For z ∈ (0, 1) and n → ∞, if zn is
an integer, then

exp2(h(z)n− o(n)) �
(
n

zn

)

�
zn∑

i=0

(
n

i

)

� exp2(h(z)n).

3 Bounds for Average-Radius List-Decodability

In this section, we bound the rate of a (p, L) average-radius list-decodable code
as:

1− h(p)− 1

L
− o(1) � R � 1− h(p)− ap

L2
+ o(1),

where ap is a constant depending only on p. (Here p is a fixed constant bounded
away from 0 and 1

2 .) Note that, ignoring the dependence on p, the corresponding
upper and lower bounds on γ := 1− h(p)−R are polynomially related.

We first state the rate lower bound.

Theorem 1. Fix p ∈ (0, 12 ) and a positive integer L. Then, for all ε > 0 and
all sufficiently large lengths n, there exists a (p, L) average-radius list-decodable
code of rate at least 1− h(p)− 1/L− ε.
In fact, a random code of the above rate has the desired property w.h.p. This
calculation is routine and omitted here, and can be found in the full version.

We now show an upper bound of 1 − h(p) − ap/L
2 on the rate of a (p, L)

average-radius list-decodable code. As stated in the Introduction, the main idea
behind the construction is that instead of picking the “bad list decoding center”
x uniformly at random, we pick it randomly very close to a designated codeword
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c∗ (which itself is a uniformly random element from C). Now as long as we are
guaranteed to find a list of L − 1 other codewords near x, we can include c∗ in
our list to lower the average radius of the list.

However formalizing the above intuition into a proof is nontrivial, since our re-
striction of the center x to be very close to c∗ introduces statistical dependencies
while analyzing the number of codewords near x. We are able to control these
dependencies, but this requires some heavy calculations involving the entropy
function and hypergeometric distribution.

We are now ready to state our main result establishing a rate upper bound
for (p, L) average-radius list-decodable codes. In fact, the bulk of the work is to
show an analogous upper bound for the special case of a constant-weight code C,
i.e., all codewords have weight exactly λn, for some λ ∈ (p, 12 ]. We can then map
this bound for general codes using a standard argument (given in Lemma 2).

Theorem 2 (Main theorem). Fix p ∈ (0, 12 ), and let L be a sufficiently large
positive integer. Then there exist ap, a′p > 0 (depending only on p) such that the
following holds (for sufficiently large lengths n):
1. If C is a (p, L) average-radius list-decodable code, then C has rate at most

1− h(p)− ap/L2 + o(1).
2. For λ := p+ a′p/L, if C is a (λ; p, L) average-radius list-decodable code, then

C has rate at most h(λ) − h(p)− ap/L2 + o(1).

As already mentioned in Section 1.3, the second claim readily implies the first
via the following well-known argument (a partial converse to this statement for
list-decoding will be given in Section 5):

Lemma 2. Let λ ∈ (p, 12 ] be such that λn is an integer. If C is a (p, L) average-
radius list-decodable code of rate R = 1 − h(p) − γ, then there exists a (λ; p, L)
average-radius list-decodable code C′ of rate at least R′ − o(1), where R′ :=
h(λ)− h(p)− γ.
Proof: For a random center x, let C′(x) be the subcode of C containing the
codewords c with d(x, c) = λn. The expected size of C′(x) at least |C| · ( nλn

)
2−n,

which, for the assumed value of R, is exp2(R
′n − o(n)); thus for some x, C′(x)

has rate at least R′ − o(1). The claim follows by translating C′(x) by −x. �

Before we proceed to the proof of (the first part of) Theorem 2, we will establish
the following folklore result, whose proof illustrates our idea in a simple case.

Lemma 3 (A warm-up lemma). Fix p, λ so that p < λ � 1
2 . Then, if C is a

(λ; p, L) list-decodable code, then C has rate at most h(λ)− h(p) + o(1).

Proof: The main idea behind the proof is that a random center of a particular
weight (carefully chosen) is close to a large number of codewords in expectation.
Pick a random subset S ⊆ [n] of coordinates of size αn, with α := (λ−p)/(1−2p),
and let S = [n]� S. (The motivation for this choice of α will be clear shortly.)
Define the center x be the indicator vector of S, so that Supp(x) = S.

Consider the set L of codewords c ∈ C such that wt(c|S) � (1− p)αn; this is
our candidate bad list of codewords. Then each c ∈ L is close to c:

d(x, c) = (αn− wt(c|S)) + wt(c|S) � αpn+ (λ− α(1− p))n = (λ− α(1− 2p))n,
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which equals pn for the given choice of α. Hence the size of L is a lower bound
on the list-size of the code.

We complete the proof by computing E |L|. For any fixed c ∈ C, the ran-
dom variable wt(c|S) follows the hypergeometric distribution with parameters
(n, λn, αn), , which is identical to the hypergeometric distribution with param-
eters (n, αn, λn) (see Lemma 1). Hence the probability that c is included in the
list L is at least

f(n, αn, λn, α(1− p)n) :=
(

αn
(1−p)αn

)(
(1−α)n

(λ−α(1−p))n
)

(
n
λn

) =

(
αn
pαn

)(
(1−α)n
p(1−α)n

)

(
n
λn

) ,

where the second step holds because of the identity λ − (1 − p)α = p(1 − α),
which holds for our particular choice of α. As n→∞, this is equal to

exp2 (αnh(p) + (1− α)nh(p)− h(λ)n− o(n)) = exp2((h(p) − h(λ)− o(1))n).
Thus, by linearity of expectations, the expected size ofL is at least |C|·exp2((h(p)−
h(λ)−o(1))n). On the other hand, the (p, L) list-decodability ofC says that |L| �
L (with probability 1). Comparing these lower and upper bounds on E |L| yields
the claim. �

Proof of Theorem 2 (part 2): At a high level, we proceed as in the proof
of Lemma 3, but in addition to the bad list L of codewords, we will a special
codeword c∗ ∈ C such that d(x, c∗) is much smaller than the codewords in L.
Then defining L∗ to consist of c∗ and (L − 1) other codewords from L, we see
that the average distance of L∗ is much smaller than before, thus enabling us to
obtain an improved rate bound.

We now provide the details. Pick a uniformly random codeword c∗ ∈ C. Let
S ⊆ [n] be a random subset of Supp(c∗) of size βn, where the parameter β is
chosen appropriately later1 (this plays the role of α in Lemma 3). Also, let x be
the indicator vector of S.

As before, consider the set L of codewords c ∈ C such that wt(c|S) � (1 −
p)|S|. For a fixed c ∈ C, the random variable wt(c|S) follows the hypergeometric
distribution with parameters (λn, (λ− δ)n, βn), where δ = δ(c∗, c) is defined by
d(c∗, c) := 2δn. (Observe that the normalization ensures that 0 � δ � λ for
all pairs c∗, c ∈ C.) To see this, notice that we are sampling βn coordinates
from Supp(c∗) without replacement, and that wt(c|S) simply counts the number
of coordinates picked from Supp(c∗) ∩ Supp(c) (the size of this intersection is
exactly (λ− δ)n). Thus, conditioned on c∗, the probability that a fixed c ∈ C is
included in L is

Q(δ) :=

βn∑

w=(1−p)βn
f(λn, (λ− δ)n, βn,w). (1)

By linearity of expectations, and taking expectations over c∗, the expected size
of L can be written as Ec∗∈C

[∑
c∈C Q(δ(c∗, c))

]
= |C| · E Q(δ(c∗, c)), where

1 The reader might find it helpful to think of β as O(1/L); roughly speaking, this
translates to a rate upper bound of h(λ)− h(p)−Ω(β/L).
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both c∗ and c are picked uniformly at random from C. The bulk of the work lies
in obtaining a lower bound on this expectation, which we state below.

Claim. For A1 := (1 − p) log ( 1−p
λ

)
+ p log

(
p

1−λ
)

and A2 = 5
p2 , we have

E Q(δ(c∗, c)) � exp2
(−(A1β +A2β

2 + o(1))n
)
.

Proof Sketch: A standard application of the Cauchy-Schwarz inequality shows
that E δ � λ(1 − λ), and hence Markov’s inequality implies that

δ � λ(1 − λ) + 1

n
= λ(1 − λ) + o(1)

with probability at least 1/n. Moreover, since Q(δ) is a monotone decreasing
function of δ, we have

E Q(δ) � 1

n
·Q(λ(1− λ) + o(1)).

The rest of the proof is technical and involves lower bounding the right hand
side using properties of binomial coefficients and Taylor approximations for the
binary entropy function. Due to lack of space, we skip the detailed calculations,
which can be found in the full version. �

Therefore, as before, if the code C has rate A1β + A2β
2 + o(1) (for a suitable

o(1) term), the list L has size at least L in expectation. Fix some choice of c∗
and S such that |L| � L. Let L∗ be any list containing c∗ and L − 1 other
codewords from L; we are interested in Davg(x,L∗). Clearly, d(x, c∗) = (λ−β)n.
On the other hand, for c ∈ L∗ � {c∗}, we can bound its distance from x as:
d(x, c) � βpn + (λ − β(1 − p))n = (λ − β(1 − 2p))n, where the two terms are
respectively the contribution by S and [n]� S. Averaging these L distances, we
get that

Davg(x,L∗) � (λ− β(1 − 2p+ 2p/L))n.

Now, we pick β so that this expression is at most pn; i.e., set

β :=
λ− p

1− 2p+ 2p/L
. (2)

(Compare with the choice of α in Lemma 3.) For this choice of β, the list L∗
violates the average-radius list-decodability property of C.

Thus the rate of a (p, L) average-radius list-decodable code is upper bounded
by R � A1β +A2β

2 + o(1), where β is given by (2). Further technical manipu-
lations brings this to the following more convenient form: If L > 2p

1−2p , then

R � (h(λ)− h(p))− B1(λ− p)
L

+B2(λ− p)2 + o(1).

for some constants B1 and B2 depending only on p. (See the full version for a
detailed calculation.) Setting λ := p+B1/(2B2L), the rate is upper bounded by
R � h(λ) − h(p)−B2

1/(4B2L
2) + o(1). �
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4 Bounds for (Standard) List-Decodability

In this section, we consider the rate vs. list-size tradeoff for the traditional list-
decodability notion. For the special case when the fraction of errors is close to 1

2 ,
[12] showed that any code family of growing size correcting up to 1

2 − ε fraction
of errors must have a list-size Ω(1/ε2), which is optimal up to constant factors.
When p is bounded away from 1/2, Blinovsky [1,3] gives the best known bounds
on the rate of a (p, L) list-decodable code. His results imply (see [14] for the
calculations) that any (p, L) list-decodable code of rate 1− h(p)− γ has list-size
L at least Ωp(log(1/γ)). We give a short and simple proof of this latter claim in
this section.

Theorem 3 ([1,3]).

1. Suppose C is (λ; p, L) list-decodable code with λ = p + 1
2p
L. Then |C| �

2L2/p, independent of its blocklength n. (In particular, the rate approaches
0 as n→∞.)

2. Any (p, L) list-decodable code has rate at most 1− h(p)− Ωp(pL).
Proof: For the first part, assume for the sake of contradiction that |C| > 2L2/p.
Pick a random L-tuple of codewords (without replacement) L = {c1, c2, . . . , cL},
and let S be the set of indices i ∈ [n] such that each cj ∈ L has 1 in the
ith coordinate. Define x to be the indicator vector of S. Note that d(x, cj) =
λn − wt(x) = λn − |S|, so that E Dmax(x,L) = λn − E |S|. Thus to obtain a
contradiction, it suffices to show that E |S| � λ− p = 1

2p
L.

Let M := |C| be the total number of codewords in C, and let Mi be the
number of codewords of C with 1 in the ith position. Then the probability that
i ∈ S is equal to g(Mi)/

(
M
L

)
, where the function g : R�0 → R

�0 is defined by
g(z) :=

(
max{z,L−1}

L

)
. By standard closure properties of convex functions, g is

convex on R. (Specifically, z 
→ max{z, L − 1} is convex over R, and restricted
to its image (i.e., the interval [L− 1,∞)), the function z 
→ (

z
L

)
is convex. Hence

their composition, namely g, is convex as well.)
We are now ready to bound E |S|:
1

n
E |S| (a)= 1

(
M
L

) · 1
n

n∑

i=1

g(Mi)
(b)

� 1
(
M
L

) · g
(
1

n

n∑

i=1

Mi

)

=
g(λM)
(
M
L

)
(c)
=

(
λM
L

)

(
M
L

) .

Here we have used (a) the linearity of expectations, (b) Jensen’s inequality,
and (c) the fact that λM � 2L2 � L − 1. We complete the proof using a
straightforward approximation of the binomial coefficients.

E |S| � (λM − L)L
ML

= λL
(

1− L

λM

)L
� λL

(

1− L2

λM

)

� 1

2
λL � 1

2
pL.

For the second part, by Lemma 2, the rate of a general (p, L) list-decodable code
is upper bounded by 1− h (p+ 1

2p
L
)
+ o(1), which can be shown to be at most

1− h(p)− 1
4 (1− 2p) · pL + o(1). �

The above method can be adapted for q-ary codes with an additional trick:
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Theorem 4. 1. Suppose C is a q-ary (λ; p, L) list-decodable code with λ =
p+ 1

2Lp
L. Then |C| � 2L2/λ.

2. Suppose C is a q-ary (p, L) list-decodable code. Then there exists a constant
b = bq,p > 0 such that the rate of C is at most 1− hq(p)− 2−bL.

Before we provide a proof of this theorem, we will state a convenient lemma
due to Erdös. (See Section 2.1 of [13] for reference.) This result was implicitly
established in our proof of Theorem 3, so we will omit a formal proof.

Lemma 4 (Erdös 1964). Suppose A is a set system over the ground set [n],
such that each A ∈ A has size at least λn. Then if |A| � 2L2/λ, then there exist
distinct A1, A2, . . . , AL in A such that

⋂L
i=1 Ai has size at least 1

2nλ
L.

Proof of Theorem 4: As in Theorem 3, the second part follows from the
first. To prove the first claim, assume towards a contradiction that |C| > 2L2/λ.
Consider the family of setsA := {Supp(c) : c ∈ C}. By Lemma 4, there exists an
L-tuple {c1, c2, . . . , cL} of codewords such that the intersection of their support,
say S, has size at least 1

2nλ
L � 1

2np
L. Arbitrarily partition the coordinates in S

into L parts, say S1, . . . , SL, of almost equal size 1
2Lp

L · n.
Now consider the center x such that x agrees with cj on all coordinates i ∈ Sj .

For i /∈ S, set xi to be zero. Then, clearly, d(x, cj) � λn− 1
2Lp

L · n = pn. Thus
the list {c1, . . . , cL} contradicts the (p, L) list-decodability of C. �

5 Constant-Weight vs. General Codes

In this section, we will understand the rate vs. list-size trade-offs for constant-
weight codes, that is, codes with every codeword having weight λn, where λ ∈
(p, 12 ] is a parameter. (Setting λ = 1

2 roughly corresponds to arbitrary codes
having no weight restrictions.) As observed earlier, a typical approach in coding
theory to establish rate upper bounds is to study the problem under the above
constant-weight restriction. One then proceeds to show a strong negative result
of the flavor that a code with the stated properties must have a constant size
(and in particular zero rate). For instance, the first part of Theorem 3 above is
of this form. Finally, mapping this bound to arbitrary codes, one obtains a rate
upper bound of 1− h(λ) for the original problem. (Note that Lemma 2 provides
a particular formal example of the last step.)

In particular, Blinovsky’s rate upper bound (Theorem 3) of 1−h(p)− 2−O(L)

for (p, L) list-decodable codes follows this approach. (For notational ease, we
suppress the dependence on p in the O and Ω notations in this informal discus-
sion.) More precisely, he proves that, under the weight-λ restriction, such code
must have zero rate for all λ � p+2−bpL for some bp <∞. One may then imag-
ine improving the rate upper bound to 1− h(p)−L−O(1) simply by establishing
the latter result for correspondingly higher values of λ (i.e., up to p+ L−O(1)).
We show that this approach cannot work by establishing that (average-radius)
list-decodable codes of positive (though possibly small) rates exist as long as
λ − p � 2−O(L). Thus Blinovsky’s result identifies the correct zero-rate regime
for the list-decoding problem; in particular, his bound is also the best possible
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if we restrict ourselves to this approach. In this context, it is also worth noting
that for average-radius list-decodable codes, Theorem 2 already provides a better
rate upper bound than what the zero-rate regime suggests, thus indicating that
the ‘zero-rate regime barrier’ is not an inherent obstacle, but more a limitation
of the current proof techniques.

In the opposite direction, we show that the task of establishing rate upper
bounds for constant weight codes is not significantly harder than the general prob-
lem. Formally, we state that that if the “gap to list-decoding capacity” for general
codes is γ, then the gap to capacity for weight-λn codes is at least

(
λ−p
1
2−p

)
γ. Stated

differently, if our goal is to establish a L−O(1) lower bound on the gap γ, then we
do not lose by first passing to a suitable λ (that is not too close to p).

5.1 Zero-Rate Regime

Theorem 5. Fix p ∈ (0, 12 ), and set b = bp := 1
2

(
1
2 − p

)2. Then for all suffi-
ciently large L, there exists a (λ; p, L) average-radius list-decodable code of rate
at least R − o(1), with p � λ � p + 5e−bL and R := min{e−2bL, e−bL/(6L)} =
Ωp,L(1).

Proof Sketch: We only provide a sketch of the proof here; see the full version
for the complete proof. We obtain this result by random coding followed by
expurgation. Set ε := e−bL and λ′ := p + 4ε. Consider a random code C of
size 2Rn such that each coordinate of each codeword in C is independently set
to 1 with probability λ′ and to 0 with probability 1 − λ′. For our choice of
parameters, we can show that w.h.p., C satisfies the following properties: (a) C
is (p, L) average-radius list-decodable; and (b) every codeword in C has weight
in the range (λ′± ε)n. In particular, the maximum weight of any codeword is at
most (p+ 5ε)n.

Now, pick any C satisfying these two properties, and let Cw denote the sub-
code of C consisting of the weight-w codewords. Then, if we define w0 = λn to
be the “most popular” weight, then the code Cw0 satisfies all our requirements.
Note that the final step incurs only a o(1) loss in the rate, since by the pigeonhole
principle, the resulting code has size at least 2Rn/(n+1) = exp2 (Rn− o(n)). �

5.2 A Reverse Connection between Constant-Weight and Arbitrary
Codes

Lemma 5. Fix p, λ such that 0 < p < λ < 1
2 . Then in the notation of Defini-

tion 3, if γ := 1− h(p)−Rp,L, then

h(λ)− h(p)− γ � Rp,L(λ) � h(λ)− h(p)−
(
λ− p
1
2 − p

)

γ.

Proof: The left inequality is essentially the content of Lemma 2; we show the
second inequality here. The manipulations in this proof are of a similar flavor to
those in Lemma 3, but the exact details are different.
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Suppose C is a (λ; p, L) list-decodable code of blocklength n and rate R, such
that each codeword in C has weight exactly λn. Pick a random subset S ⊆ [n]
of coordinates of size α2n, with α2 := (λ − p)/(12 − p), and let S := [n] � S.
(Interestingly, our setting of α2 differs from the parameter α employed in the
proof of Lemma 3 only by a factor of 2. The motivation for this choice of α2 will
become clear shortly.) Consider the subcode C′ consisting of codewords c ∈ C
such that wt(c|S) � α2n/2. For our choice of α2, one can verify that if c ∈ C′,
then c has weight at most p(1− α2)n = p|S| when restricted to S.

Our key insight now is that the code C′|S := {c|S : c ∈ C′} (of blocklength
α2n) is (p, L) list-decodable. Suppose not. Then there exists a center x′ ∈ {0, 1}S
and a size-L list L ⊆ C such that d(x′, c|S) � pα2n for all c ∈ L. Now, extend x′
to x ∈ {0, 1}n such that x agrees with x′ on (the coordinates in) S and is zero
on the remaining coordinates. Then L violates the (p, L) list-decodability of C,
since for every c ∈ L,

d(x, c) = d(x′, c|S) + wt(c|S) � pα2n+ p(1− α2)n = pn.

Hence C′|S must be (p, L) list-decodable as well. For a fixed c ∈ C, the ran-
dom variable wt(c|S) follows the hypergeometric distribution with parameters
(n, λn, α2n), which is identical to the hypergeometric distribution with param-
eters (n, α2n, λn). Hence, the probability that c is included in C′ is at least

f(n, α2n, λn, α2n/2) =

(
α2n
α2n/2

)( (1−α2)n
(λ−α2/2)n

)

(
n
λn

)

(∗)
=

(
α2n
α2n/2

)( (1−α2)n
p(1−α2)n

)

(
n
λn

)

� exp2 (α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .
In the step marked (∗), we have used the the identity λ − α2/2 = p(1 − α2),
which holds for our particular choice of α2. Thus, summing this over all c ∈ C,
the expected size of C′|S is at least

exp2 (Rn+ α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .
On the other hand, since C′|S is (p, L) list-decodable, the hypothesis of the
lemma implies that its size is at most exp2((1− h(p)− γ)α2n) with probability
1. (It is crucial for our purposes that the blocklength of C′ is α2n, which is
significantly smaller than n.) Comparing the upper and lower bound on the
expected size of C′|S , we get R+ α2 + (1− α2)h(p)− h(λ) � (1 − h(p)− γ)α2,
which can be rearranged to give the desired bound R � h(λ) − h(p)− α2γ. �

References

1. Blinovsky, V.M.: Bounds for codes in the case of list decoding of finite volume.
Problems of Information Transmission 22(1), 7–19 (1986)

2. Blinovsky, V.M.: Asymptotic Combinatorial Coding Theory. Kluwer Academic
Publishers, Boston (1997)



606 V. Guruswami and S. Narayanan

3. Blinovsky, V.M.: Code bounds for multiple packings over a nonbinary finite alpha-
bet. Problems of Information Transmission 41(1), 23–32 (2005)

4. Blinovsky, V.M.: On the convexity of one coding-theory function. Problems of
Information Transmission 44(1), 34–39 (2008)

5. Cheraghchi, M., Guruswami, V.: Restricted isometry via list decoding. Work in
progress (2012)

6. Elias, P.: List decoding for noisy channels. Technical Report 335, Research Labo-
ratory of Electronics, MIT (1957)

7. Elias, P.: Error-correcting codes for list decoding. IEEE Transactions on Informa-
tion Theory 37, 5–12 (1991)

8. Guruswami, V.: Linear-algebraic list decoding of folded Reed-Solomon codes. In:
Proceedings of the 26th IEEE Conference on Computational Complexity, pp. 77–85
(June 2011)

9. Guruswami, V., Håstad, J., Kopparty, S.: On the list-decodability of random linear
codes. IEEE Transactions on Information Theory 57(2), 718–725 (2011)

10. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-
correction up to the Singleton bound. IEEE Transactions on Information The-
ory 54(1), 135–150 (2008)

11. Guruswami, V., Sudan, M.: Extensions to the Johnson bound (2001) (unpublished
manuscript),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.9405

12. Guruswami, V., Vadhan, S.P.: A lower bound on list size for list decoding. IEEE
Transactions on Information Theory 56(11), 5681–5688 (2010)

13. Jukna, S.: Extremal Combinatorics: with applications in Computer Science.
Springer (2001)

14. Rudra, A.: Limits to list decoding of random codes. IEEE Transactions on Infor-
mation Theory 57(3), 1398–1408 (2011)

15. Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Research Laboratory
of Electronics, MIT, vol. 48, pp. 90–95 (1958)

16. Zyablov, V.V., Pinsker, M.S.: List cascade decoding. Problems of Information
Transmission 17(4), 29–34 (1981) (in Russian); 236–240 (1982) (in English)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.9405


Zero Knowledge LTCs and Their Applications

Yuval Ishai1, Amit Sahai2, Michael Viderman1, and Mor Weiss1

1 Department of Computer Science, Technion, Haifa
{yuvali,viderman,morw}@cs.technion.ac.il
2 Computer Science Department, UCLA, USA

sahai@cs.ucla.edu

Abstract. Locally testable codes (LTCs) are error-correcting codes for
which membership in the code can be tested by probing few symbols of
a purported codeword. Motivated by applications in cryptography, we
initiate the study of zero knowledge locally testable codes (ZK-LTCs).
ZK-LTCs are LTCs which admit a randomized encoding function, such
that even a malicious tester which reads a large number of codeword
symbols learns essentially nothing about the encoded message.

We obtain ZK-LTCs with good parameters by applying general trans-
formations to standard LTCs. We also obtain LTCs and ZK-LTCs which
are stable in the sense that they limit the influence of adaptively cor-
rupted symbols on the output of the testing procedure.

Finally, we apply stable ZK-LTCs for obtaining protocols for verifiable
secret sharing (VSS) in which the communication complexity required
for verifying a shared secret is sublinear in the secrecy threshold. We
also obtain the first statistically secure VSS protocols and distributed
coin-flipping protocols which use n servers, tolerate a constant fraction of
corrupted servers, and have error that vanishes almost exponentially with
n using only O(n) bits of communication. These improve over previous
VSS and coin-flipping protocols from the literature, which require nearly
quadratic communication to achieve similar guarantees.

1 Introduction

In this work we initiate the study of locally testable codes (LTCs) with a zero
knowledge property and apply such codes towards the design of efficient cryp-
tographic protocols. Before describing the questions we consider and our main
results, we first give a short overview of LTCs.

Locally Testable Codes. An LTC is a code with a tester, a randomized al-
gorithm with oracle access to a received word w. The tester reads few symbols
of w, and based on this “local view” decides whether w is in the code. The
tester should have perfect completeness, i.e., it should accept codewords with
probability one, and a small soundness error, namely it should reject with high
probability words that are far from the code.1 Implicit already in [2] (cf. [21,

1 There are two kinds of LTCs: weak and strong. In a weak LTC the tester is only
guaranteed to distinguish between a valid codeword and w which is far from the
code, whereas in a strong LTC the tester’s rejection probability is proportional to
the distance from the code. We refer the reader to Section 2 for formal definitions.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 607–622, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Sec. 2.4]), LTCs were first explicitly studied by Goldreich and Sudan [23]. LTCs
are of interest in computer science due to their connections to probabilistically
checkable proofs (PCPs) and property testing (see surveys [32,21] for details).

Our work is motivated by the possibility of applying the efficient verification
feature of LTCs in the contexts of distributed storage and cryptographic pro-
tocols. Suppose that a user wishes to reliably store her data by distributing it
among a large number of potentially unreliable, or even malicious, servers. To
ensure the integrity of the data, the user can apply a good error correcting code
before distributing the data. However, traditional codes lack two useful prop-
erties. First, they do not admit an efficient procedure for checking whether the
stored data has been tampered with to an extent which may compromise its in-
tegrity. Second, malicious servers may gather a significant amount of information
about the data, which is problematic when the data is sensitive.

The above scenario naturally gives rise to the notion of zero knowledge LTCs.
A zero knowledge LTC is an LTC equipped with a randomized encoding function
which ensures that the encoded data remain hidden, even in the presence of a
coalition of malicious servers which may observe a bounded number of symbols
in the encoding. Note, however, that in the above scenario the standard notion
of testing may be insufficient, since malicious servers may adaptively determine
their answers after seeing the queries of the user. This calls for a notion of
stability - a stronger form of testability which we introduce and study. A more
detailed discussion of the stability and zero knowledge properties of LTCs follows.

Stable LTCs. As noted above, the standard notion of LTCs does not consider
the case in which an adversary can adaptively control some symbols in a pur-
ported codeword, based on the locations of the symbols that the tester queries.
We will be interested in stable LTCs which tolerate such adversaries. More con-
cretely, stability concerns the situation in which a tester D for the code C ⊆ F

n

tests whether w ∈ F
n is in C. The testing is performed in the presence of an

adversaryA, who selects in advance a subset T ⊆ [n] of size t and can adaptively
modify the symbols indexed by T after seeing the queries of D. (In particular,
the answers to the queries of D are according to w and the symbols that A chose
to alter.) The goal of A is to cause D to reject when w ∈ C, or alternatively
to accept when w is far from C. Informally, a code C is a (t, ε, δ)-stable LTC
with respect to the tester D, if D can distinguish (except with at most ε error)
between codewords in C and words that are at least δ-far from C, even in the
presence of an adversary A as above.

ZK-LTCs. In this paper we initiate the study of zero knowledge LTCs (ZK-
LTCs). We begin by describing a more general notion of ZK-codes.2 Informally,
we say that a code C with a randomized encoding function EC is t-ZK if an
adversary who reads at most t symbols of a codeword c = EC (x) learns no in-
formation about the message x. We say that EC it is (t, ε)-ZK if the advantage
of such an adversary in distinguishing between two messages is bounded by ε.

2 Such codes were studied by Feldman et al. [17] under the name “secure coding
schemes”.
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A ZK-LTC is an LTC with a ZK encoding function. We note that for crypto-
graphic applications of ZK-LTCs, we will typically be interested in codes with
t = Ω (n) where the honest tester needs to probe only a sublinear number of
symbols. Such ZK-LTCs will be used to obtain efficient cryptographic protocols
tolerating a constant fraction of corrupted parties.

1.1 Our Results

Our contributions are three-fold. First, we construct efficient ZK-LTCs by ap-
plying and extending previous general transformations from codes to ZK-codes.
More specifically, using a probabilistic transformation of linear codes into ZK-
codes due to Feldman et al. [17], we obtain (Corollary 1) constant rate ZK-LTCs
with sublinear query complexity and a constant fractional ZK parameter. We
also give a fully explicit general transformation from linear codes to ZK-codes
(Theorem 2) as well as a non-explicit transformation of arbitrary codes to ZK-
codes (Theorem 3). Second, we construct good LTCs and ZK-LTCs with the ad-
ditional stability guarantee (Theorem 4). Finally, we demonstrate the usefulness
of stable ZK-LTCs by applying them towards the design of efficient protocols
for verifiable secret sharing (Theorems 6 and 5) and distributed coin-flipping
(Theorem 7). We now give a more detailed account of our results.

Constructing ZK-LTCs. Feldman at al. [17, Section 3.3] gave a probabilistic
construction of ZK-codes with good parameters from linear codes. In Theorem 1
we slightly generalize their result, and formulate a common requirement which is
valid for both large and small fields. Then, in Corollary 1 we state the parameters
of ZK-LTCs that can be obtained by applying Theorem 1 to LTCs from the
literature.

Theorem 1 (Linear codes to ZK-codes, probabilistically). Let C ⊆ F
n

be a linear code of dimension k and let k′ < k be a positive integer. Assume that
for some 0 < t ≤ n

2 we have

log (|F|) · (k − k′ − t) > t · log
(n

t

)
+ 4t.

Then there exists a generator matrix G′ for C such that C, under the randomized
encoding defined by EC(x; r) = G′ · (x; r), is a t-ZK code for messages x in
F
k′ . Furthermore, such a G′ can be constructed in probabilistic polynomial time

(except with negligible failure probability) given k′, t, and any generator matrix
for C.

The following corollary states the existence of asymptotically good strong LTCs
with a constant fractional ZK parameter t. We use rate(EC) to denote the rate
of the randomized encoding function EC , i.e., the ratio between the length of
the original message and the length of the encoded message. See Section 2 for
the definition of strong LTCs.
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Corollary 1 (Probabilistic construction of ZK-LTCs). For every 0 < γ <
1/2 there is a finite field F of constant size (depending only on γ) such that for
every λ > 0 the following holds. For every positive integer k′, there is a linear
code C ⊆ F

n of dimension k and a generator matrix G′ for C, such that:

– C is an (nλ, 12 )-strong LTC with relative distance δ(C) = Ωλ(1).

– The randomized encoding EC(x; r) = G′ ·(x; r), where x ∈ F
k′ and r ∈ F

k−k′ ,
satisfies rate(EC) = k′/n = Ωλ(1) and is t-ZK for t = �γn�.

Furthermore, given k′, such a G′ can be constructed in probabilistic poly(k′) time
(except with negligible failure probability).

Due to space limitations, we defer the proofs of Theorem 1 and Corollary 1, as
well as some extensions, to the full version.

The main drawback of the result of [17] is that the ZK-encoding is constructed
probabilistically. This means that applications which use such an encoding may
need to rely on a trusted setup in which the generator matrix G′ describing the
encoding EC is picked at random. To avoid such a setup, we present a fully
explicit transformation of linear codes to ZK-codes. The main price we pay is
that the zero knowledge property of the encoding becomes statistical rather than
perfect. The idea is to first encode the message by a randomized encoding which
has the property that any linear function L : Fk → F has only a small statistical
advantage in distinguishing between encodings of two different messages, and
then apply the given linear encoding to the result. This approach yields the
following theorem (see Section 3).

Theorem 2 (Linear codes to ZK-codes, explicitly). Let F = F2 be the
binary field. For any linear code C ⊆ F

n of dimension k, there exists a random-
ized encoding function EC : Fk

′ → F
n, whose image is contained in C, such that

k′ = Ω(k) and EC is (t, ε)-ZK for t = Ω(k) and ε = 2−Ω(k). Furthermore, a
randomized circuit for computing EC (resp., a circuit for inverting EC) can be
computed in deterministic polynomial time given any generator matrix for C.

While all of the LTCs we will rely on are linear, there could potentially be non-
linear LTCs with better or incomparable parameters (an example being the Long
Code used in efficient PCP constructions, cf. [14]). We observe that for a general
(not necessarily linear) code C, a completely random choice of an encoding
function has good ZK parameters with high probability. This is captured by
Theorem 3 below. Note that this construction is less explicit than the one given
by Theorem 1 in that the encoding function is inefficient.

Theorem 3 (General codes to ZK-codes, non-explicitly). Let F = F2 be
the binary field. For any code C ⊆ F

n with |C| = 2k, there exists a randomized
encoding function EC : Fk

′ → F
n, whose image is contained in C, such that

k′ = Ω(k) and EC is (t, ε)-ZK for t = Ω(k) and ε = 2−Ω(k).

The proof of Theorem 3 is deferred to the full version.
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Stable LTCs. In Section 4 we construct a good family of stable linear LTCs.
These are transformed into stable ZK-LTCs, which are later used in crypto-
graphic protocols. The parameters of the stable ZK-LTCs we obtain are sum-
marized by Theorem 4 below.

Our construction of stable LTCs is based on the testability of the tensor
products of codes studied in [15,9,8,7,34]. Intuitively, the codewords in such
codes are multidimensional tensors, whose restriction to every axis-parallel line
belongs to the fixed base code. Given an input word, a tester picks a random 2-
dimensional hyperplane and reads all symbols of the input word indexed by this
hyperplane coordinates. Based on this “local view”, the tester decides whether
to accept or reject the input word. It was shown [7,34] that such codes are linear
strong LTCs.

Our contribution here is in showing that tensor products of codes can yield
stable LTCs. Concretely, we show that if a base code is an efficiently decodable
linear code, then its tensor products are stable LTCs with respect to a new tester.
The proof of Theorem 4 is based on the robust testability of tensor products [34]
and the efficiently decodable linear codes from [31].

Theorem 4 (Stable ZK-LTCs). There exists a constant α > 0 such that for
any constants λ > 0 and δ ∈ (0, α), there is a family of binary linear codes
C ⊆ F

n
2 with a linear randomized encoding function EC , such that:

– C is efficiently decodable from αn errors.
– C is a (t, 14 , δ)-stable LTC with respect to a poly(n)-time tester making nλ

queries and using O(log(n)) random bits.
– EC is t-ZK for t = Ωλ(n).
– rate(EC) = Ωλ(1).

1.2 Cryptographic Applications

We use stable ZK-LTCs to design efficient protocols for verifiable secret sharing
and distributed coin-flipping. In both cases, we assume that the participating
parties can interact over a synchronous network of secure point-to-point chan-
nels. The parties also have access to a broadcast channel, where a message sent
over this channel is received by all other parties. When measuring communication
complexity, we count a message sent over a broadcast channel only once towards
the total communication. Alternatively, our protocols can be implemented with
similar communication complexity using a public bulletin board, where every
time a message is written to or read from the board is counted towards the
communication complexity.

The security of protocols is defined by considering their execution in the pres-
ence of an active adversary who may corrupt and control a subset of the parties.
We assume adversaries to be static, in the sense that they choose the set of
corrupted parties at the onset of the protocol, but they are capable of rushing,
namely sending their messages only after receiving all messages sent by honest
parties in the same round.
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Verifiable Secret Sharing. Verifiable secrete sharing (VSS) [11,18,3,10,4] is a
standard building block for cryptographic multi-party protocols. In a nutshell,
a VSS protocol allows a dealer D to distribute a secret s among n servers in a
way that prevents a coalition of up to t servers from learning or modifying the
secret, while on the other hand guaranteeing unique reconstruction even if D
and up to t servers can collude.

We consider the following designated receiver variant of VSS which involves,
in addition to D and the n servers, a designated receiver R who may assist in
the verification. Such a VSS protocol consists of three phases. In the sharing
phase, the dealer D randomly distributes s between the servers by privately
sending a share si to each server. In the verification phase, the receiver R can
freely interact with the servers, possibly using a broadcast channel. Finally, in the
reconstruction phase, each server sends a single message to R, and R reconstructs
the secret.

A protocol as above is said to be (t, ε)-secure if it satisfies the following
requirements:

– Correctness. If the adversary corrupts t servers, the receiver reconstructs the
correct secret s except with at most ε probability.

– Secrecy. Any adversary who corrupts R and t servers gets at most an ε-
advantage in distinguishing between two secrets.

– Binding. For any adversary who corruptsD and t servers, the following holds
except with at most ε failure probability over the randomness of the sharing
and verification phases. In the end of the verification phase there is a unique
secret s∗ (determined by the messages exchanged up to this point), such that
R will output s∗ regardless of the messages sent by the adversary during the
reconstruction phase.

It is instructive to note that if the binding requirement is relaxed so that R is
only guaranteed to either output s∗ or reject (in a way that may depend on the
adversary’s messages during reconstruction) then the problem becomes much
easier to solve [4,19]. This weaker variant, sometimes referred to as weak VSS or
distributed commitment, does not suffice for several applications of VSS including
the coin-flipping protocols we present next. On the other hand, traditional VSS is
stronger than our designated receiver variant in that the verification phase does
not involve the receiver R. Thus, when there are multiple receivers, traditional
VSS can guarantee that the same secret s∗ be reconstructed by all receivers,
whereas applying our VSS verification with each receiver separately does not.
Still, designated receiver VSS is as good as traditional VSS in situations where
agreement between different receivers is not required, as in the coin-flipping
application we describe next. We are not aware of any simpler or better solutions
to the problem of designated receiver VSS using previous VSS techniques from
the literature.

From ZK-LTC to VSS. The application of ZK-LTCs to VSS is conceptually
simple. The protocol uses a stable ZK-LTC C with encoding function EC and
tester D. (For the protocol to be computationally efficient, we need EC to be
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efficiently encodable and decodable.) In the sharing phase, the dealerD randomly
encodes the secret s into a codeword c = EC (s) ∈ C, and partitions the symbols
of c between the servers. In the verification phase, the receiver R verifies that
the messages received by the servers are close to a valid codeword by executing
a random test of D, where R broadcasts the queries of D and the servers answer.
(The use of broadcast prevents R from contacting too many servers, which would
violate the secrecy requirement.) If the test fails, R outputs s∗ = 0 (or some other
default value) and ignores further messages. For reconstruction, the servers send
their shares to R, who decodes the secret s. The zero knowledge property of
EC implies the secrecy property. The stability of D is useful for both binding
and correctness. First, it ensures that if a corrupted D distributes c∗ which is
far from C then R notices this with high probability, even if D and up to t
servers collude. Second, if D is honest and c ∈ C, the tester D will accept and
the decoder of EC will output s∗ = s in the end of the reconstruction phase
(except with small probability) even if there are t malicious servers. Finally, if a
corrupted D distributes c∗ which is not a codeword but is not far from C, then
regardless of whether D accepts or rejects a unique secret s∗ is determined in
the end of the verification phase.

Sublinear verification. Note that by using good stable ZK-LTCs, the com-
munication complexity in the verification phase of the above protocol becomes
sublinear in the secrecy threshold t. Sublinear verification can be motivated by
situations in which verification forms an efficiency bottleneck. Consider, for ex-
ample, a situation in which the secret is reconstructed long after the shares are
distributed. As more and more servers may become corrupted over time, the
receiver might want to run the verification procedure periodically, whereas the
shares are distributed (and the secret is reconstructed) only once. The efficient
verification feature is captured by the following theorem.

Theorem 5. For every constant λ > 0 there exists a constant-round, n-server,
designated receiver VSS protocol for secrets of length Ω (n) with verification
phase which uses O(nλ) bits of communication. The protocol is (t, ε)-secure for
t = Ω (n) and ε = n−ω(1).

Linear total communication. Another feature of the designated receiver
VSS protocols we obtain via stable ZK-LTCs is that they can be imple-
mented with only O(n) bits of communication, t = Ω(n) and statistical error ε
that vanishes almost exponentially with n. Previous VSS protocols (e.g., those
from [3,10,4,16,20,13,19,29,27,30,1]) require nearly quadratic communication (or
more) to achieve similar guarantees even when the secret is just a single bit,
though they can offer a higher fractional resilience and are not restricted to a
designated receiver. The linear communication feature is captured by the follow-
ing theorem.

Theorem 6. For every constant λ > 0 there exists a constant-round, n-server,
designated receiver VSS protocol for secrets of length Ω (n) with total communica-

tion complexity O (n). The protocol is (t, ε)-secure for t = Ω (n) and ε = 2−n
1−λ

.
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Distributed Coin-Flipping. We consider a distributed model for coin-flipping
in which two clients want to agree on a common random bit with the help of n
servers. The clients can interact with the servers via synchronous, secure point-
to-point channels and a broadcast channel, where at the end of the interaction
each client outputs a single bit. The protocol is said to be (t, ε)-secure if the
following requirements are met.

– Correctness. If an adversary can corrupt t servers at the onset of the protocol,
the joint outputs of the two clients will be ε-close (in statistical distance) to
a pair of identical random bits.

– Agreement. An adversary who corrupts one client and t servers at the onset
of the protocol can bias the output of the other client by at most ε.

The above distributed model for coin-flipping is motivated by the impossibility of
achieving a similar fairness guarantee via direct interaction between the clients.
This impossibility holds even if one settles for security against computationally
bounded clients [12].

Our coin-flipping protocols are obtained from designated-receiver VSS in the
natural way: each client picks a random s ∈ {0, 1} and distributes s between the
servers using the VSS protocol, where the other client acts as the receiver. The
two secret bits are then reconstructed, and the common coin is defined as their
exclusive-or. The communication complexity of the protocols obtained via this
approach is captured by the following theorem.

Theorem 7. For every constant λ > 0 there exists a constant-round n-server

(t, ε)-secure distributed coin-flipping protocol, where t = Ω (n) and ε = 2−n
1−λ

,
with total communication complexity O (n).

As before, coin-flipping protocols which are based on VSS protocols from the
literature require nearly quadratic communication to achieve a similar security
guarantee.

Related Work. The notion of zero-knowledge PCPs, a PCP analogue of ZK-
LTCs, was studied in [26,25]. Zero-knowledge PCPs do not seem to imply good
ZK-LTCs or any of the applications presented in this work, and their construction
is considerably more involved.

2 Preliminaries

An error correcting code over the alphabet Σ is a subset C ⊆ Σn. The code
can also be associated with an injective encoding function EC that maps a set
of messages Σk to a set of codewords, i.e., C =

{
EC(x) | x ∈ Σk

}
. We will also

consider randomized encoding functions EC , which map messages from Σk′ for
some k′ < k into codewords of C. We assume that such a randomized encoding is
injective, in that the codeword distributions associated with different messages
have disjoint support sets.
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Most of the well-studied and practically used codes are linear codes. A linear
code C ⊆ F

n is a linear subspace over the field F, where n is called the blocklength
of C and dim(C) denotes the dimension of the code. The rate of the code is

defined by rate(C) = dim(C)
n . If C is linear then, letting k = dim(C), an encoding

function for C can be associated with a generator matrix G ∈ F
n×k, namely

the encoding is done by multiplying G on the message vector such that C ={
G · x | x ∈ F

k
}
.

We define the distance between two words x, y ∈ F
n to be Δ(x, y) = |{i | xi �=

yi}|, and the relative distance to be δ(x, y) = Δ(x,y)
n . The distance of the code

C is defined as Δ(C) = min
x �=y∈C

Δ(x, y) and its relative distance is denoted

δ(C) = Δ(C)
n . Typically, one is interested in codes whose distance is linear in the

blocklength.
For w ∈ F

n, let supp(w) = {i ∈ [n] | wi �= 0}. For a word x ∈ F
n and a

code C ⊆ F
n we let δ(x,C) = min {δ(x, c) | c ∈ C}. Given δ ∈ [0, 1], we say that

x ∈ F
n is δ-far from C ⊆ F

n if δ(x,C) ≥ δ, otherwise x is δ-close to C.

2.1 Efficiently Encodable and Decodable Codes

When considering an infinite family of codes C ⊆ F
n with varying block length

together with associated encoding functions EC : F
k → F

n, we say that C
is efficiently encodable if given a message x ∈ F

k, the codeword EC(x) can
be computed in polynomial time. Notice that if C is linear then it is always
encodable in time O(k · n) = O(n2) given its generator matrix.

We say that C ⊆ F
n is efficiently decodable from l < Δ(C)/2 errors, if there

exists a poly(n)-time decoding algorithm Dec that on any input w ∈ F
n such

that Δ(w,C) ≤ l, outputs a codeword c ∈ C such that Δ(w, c) ≤ l. (Namely,
the decoding algorithm outputs the closest codeword.)

Sometimes, instead of finding the closest codeword, we will need to obtain
the original message, i.e., a message m ∈ F

k such that Δ(w,EC(m)) ≤ l. We
note that when C is linear, this task is equivalent to “standard” decoding, since
after obtaining the closest codeword c ∈ C, matrix multiplication can be used
to easily find an m ∈ F

k such that EC(m) = c. Thus, if a linear code C is
efficiently decodable from l errors, then the the encoded message can also be
found efficiently, even if l errors occurred.

2.2 Locally Testable Codes

Let [n] denote the set {1, . . . , n}. For w ∈ F
n and S ⊆ [n], let w|S be the

restriction of w to the subset S. Similarly, let C|S = {c|S | c ∈ C} denote the
projection of the code C onto S.

A standard q-query tester for a linear code C ⊆ F
n is a randomized algorithm

that on the input word w ∈ F
n picks non-adaptively a subset I ⊆ [n] such that

|I| ≤ q. Then the tester reads all symbols of w|I , accepts if w|I ∈ C|I , and rejects
otherwise (see [6, Theorem 2]). Hence a q-query tester can be associated with a
distribution D over subsets I ⊆ [n] such that |I| ≤ q.
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Definition 1 (Testers and LTCs). A q-query tester for a linear code C ⊆ F
n

is a distribution D over subsets I ⊆ [n] such that |I| ≤ q.
– A q-query tester D is a (q, ε, ρ)-tester if for all w ∈ F

n such that δ(w,C) ≥ ρ,
Pr
I∼D

[w|I /∈ C|I ] ≥ ε.
– A q-query tester D is a (q, ε)-strong tester if for all w ∈ F

n, Pr
I∼D

[w|I /∈ C|I ] ≥
ε · δ(w,C).

A code C ⊆ F
n is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-tester, and it is a

(q, ε)-strong LTC if it has a (q, ε)-strong tester.

Although the tester in Definition 1 does not output accept or reject as a standard
tester does, it can be converted to output accept, reject based on its local view
w|I .

Stable LTCs. As noted above, standard correctness and soundness are insuf-
ficient for cryptographic applications of LTCs, since standard testing is defined
only in relation to a pre-determined purported codeword. In our setting, on the
other hand, a t-adversary (namely, an adversary that can alter at most t symbols
of the word) can adaptively change few coordinates of the word after seeing the
queries of the tester. More specifically, we consider two possible scenarios; first,
that the adversary tries to cause the tester to reject codewords, and second that
he tries to cause the tester to accept words that are far from the code.

The main difference from standard testing is as follows. First of all, the t-
adversary A selects a subset T ⊆ [n], |T | = t. Next, the tester D picks (non-
adaptively) a subset of coordinates I ⊆ [n] to query. Then, A is given I, and
can modify any symbol of w indexed by T , obtaining a w′ ∈ F

n such that
supp(w′ − w) ⊆ T . Finally, the tester receives w′|I (i.e., the queried symbols
after the above modifications), and either accepts or rejects.

Definition 2 (Stable LTCs). Let C ⊆ F
n be a code with tester D.

– (Stable completeness) D has (t, ε)-completeness, if for every t-adversary A
and every codeword c ∈ C, the tester D rejects c with probability at most ε.

– (Stable soundness) D has (t, ε, δ)-soundness, if for every t-adversary A and
every word w ∈ F

n such that δ(w,C) ≥ δ, the tester D accepts w with
probability at most ε.

We say that C is a (t, ε, δ)-stable LTC if it has (t, ε)-completeness and (t, ε, δ)-
soundness.

Zero Knowledge Codes. We consider both perfect and statistical zero knowl-
edge. Informally, a randomized encoding function EC is t-ZK, if any adversary
reading t symbols from an encoded message learns nothing about the message.
A standard (deterministic) encoding cannot even be 1-ZK, since there must be
a symbol of the output which depends on the message. In the case of a linear
code C ⊆ F

n of dimension k, any generator matrix G′ for C together with a



Zero Knowledge LTCs and Their Applications 617

message length parameter k′ < k define a randomized encoding EC mapping
x ∈ F

k′ to EC(x; r) = G′(x; r), where r ∈ F
k−k′ . We define the rate of EC as

rate(EC) = k′
n . More generally, EC can be an arbitrary injective randomized

mapping from F
k′ to C. We now define the zero knowledge property of EC . We

let SD(X,Y ) denote the statistical distance between the distributions X and Y .

Definition 3 (ZK-codes). Let n, k′ be positive integers. Let C ⊆ F
n be a code

and let EC : Fk
′ → F

n be an associated randomized encoding function. We say
that EC is (t, ε)-ZK, if for every set I ⊆ [n] of size t and every message pair
x, x′ ∈ F

k′ ,
SD (EC(x)|I , EC(x′)|I) ≤ ε.

We say that EC is t-ZK if it is (t, 0)-ZK.

3 Explicit ZK-Codes

In this section we prove the explicit transformation of linear codes into ZK-
codes stated in Theorem 2. We rely on the following lemma, which generalizes
Vazirani’s XOR Lemma [33,22] and can be proved similarly.

Lemma 1 (XOR lemma). Let X and Y be distributions over F
k
2 such that

SD(X,Y ) = ε. Then there exists an α ∈ F
k
2 such that

SD(αTX , αTY ) ≥ ε/2k/2.
We will use randomized encoding functions that fool linear distinguishers. This
is captured by the following definition.

Definition 4 (Linear-secure encoding). Let F be a finite field. A randomized
encoding Enc : Fk

′ → F
k is ε-secure against linear distinguishers if for every

x, x′ ∈ F
k′ and for every linear function L : Fk → F we have

SD (L(Enc(x)) , L(Enc(x′))) ≤ ε.
The following is implicit in [24].

Lemma 2 (Constant-rate linear-secure encoding). Let F = F2 be the bi-
nary field. There exists a probabilistic polynomial-time algorithm computing a

randomized encoding Enc : Fk
′ → F

k(k′) such that k (k′) = O(k′) and Enc is
ε-secure against linear distinguishers for ε(k′) = 2−Ω(k′). Furthermore, there ex-
ists a polynomial-time algorithm Dec such that Pr[Dec(Enc(x)) = x] = 1 for all
x.

Applying a linear encoding function on top of a linear-secure encoding with
sufficiently small ε yields a good (t, ε)-ZK code.

Lemma 3. Let F be a finite field. Let C ⊆ F
n be a linear code with dim (C) = k

and let G be a generator matrix for C. Let Enc : Fk
′ → F

k be a randomized en-
coding such that Enc is ε-secure against linear functions. Then, for every positive
integer t, the randomized encoding EC : Fk

′ → F
n defined by EC(x) = G ·Enc(x)

is
(
t, 2t/2 · ε)-ZK.
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Proof. Suppose towards contradiction that there are x, x′ ∈ F
k′ and a set I ⊆ [n]

of size t such that SD(EC(x)|I , EC(x′)|I) > 2t/2 · ε. By Lemma 1 there exists
α ∈ F

t such that SD(αT · EC(x)|I , αT · EC(x′)|I) > ε. It follows that there is
β ∈ F

n such that SD(βTG · Enc(x), βTG · Enc(x′)) > ε, contradicting the ε-
security of Enc. 
�
Theorem 2 follows by applying Lemma 3 to the efficient linear-secure encoding
guaranteed by Lemma 2.

4 Stable LTCs via Tensor Product Codes

In this section we prove Theorem 4, thus showing the existence of stable LTCs
with sufficiently nice parameters. We define tensor products in Section 4.1 and
prove Theorem 4 in Section 4.2.

4.1 Tensor Product of Codes

The definitions presented here are standard in the literature on tensor-based
LTCs (e.g., [15,7,28,9]).

Let I and J be sets of coordinates. For x ∈ F
J and y ∈ F

I we let x⊗ y denote
the tensor product of x and y (i.e., the matrix M with entries M(i,j) = xj · yi
where (i, j) ∈ I × J). Let R ⊆ F

J and C ⊆ F
I be linear codes. We define the

tensor product code R⊗C to be the linear space spanned by words r⊗ c ∈ F
I×J

for r ∈ R and c ∈ C.
We let C1 = C and Ct = Ct−1 ⊗ C for t > 1. Note that for this definition,

C20 = C and C2t = C2t−1 ⊗ C2t−1

for t > 0. We also note that for a code
C ⊆ F

n and m ≥ 1 it holds that rate(Cm) = (rate(C))m, δ(Cm) = (δ(C))m and
the blocklength of Cm is nm.

Testers for Cm. Let us present the testers for these codes. A point in an
m-dimensional cube can be associated with an m-tuple (i1, i2, ..., im) such that
ij ∈ [n]. We say that τ is an (m− 1)-dimensional (b, i)-hyperplane (or simply a
hyperplane, in short) if

τ = {(i1, i2, ..., im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [n]}.
Definition 5 (Hyperplane Tester). Let m ≥ 3. Let M ∈ F

nm

be an input
word and think of testing whether M ∈ Cm. The (m−1)-dimensional hyperplane
tester D picks (non-adaptively) a random b ∈ [m] and a random i ∈ [n], and
returns the (b, i)-hyperplane (the corresponding local view is M |(b,i)). It is not
hard to prove that if M ∈ Cm then M |(b,i) ∈ Cm−1.
Such testers can be composed to yield the following tester. Given a candidate
wordM ∈ F

nm

2 , the tester picks a random (m−1)-dimensional hyperplane τ , and
considers M ′ = M |τ which is a candidate to be in Cm−1. Next, the tester can
pick a random (m−2)-dimensional hyperplane τ1 and considersM ′′ =M ′|τ1 , etc.
We define a tester with query complexity n2 by picking a random 2-dimensional
hyperplane when the blocklength of the code Cm is nm.
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Definition 6 (2-dimensional hyperplane tester). Let m ≥ 3. Let M ∈ F
nm

be an input word and think of testing whether M ∈ Cm. The 2-dimensional
hyperplane tester D picks random b1, b2, . . . , bm−2 ∈ [m] such that bi1 �= bi2
for i1 �= i2 and random jb1 , jb2 , . . . , jbm−2 ∈ [n], and outputs M |τ , where B =
{b1, b2, . . . , bm−2} and τ = {(i1, i2, . . . , im) ∈ [n]m | ∀g ∈ B : ig = jg}. Note that
for any such choice we have Cm|τ = C2.

Remark 1. We notice that a 2-dimensional hyperplane tester for the code Cm

uses at most log
((
m
2

) · n(m−2)) ≤ 2m log(n) random bits.

Robust Testing. We now define the notion of robustness (Definition 7) as was
introduced in [7]. Informally, we say that a tester is robust if for every word that
is far from the code, the tester’s view is far on average from any consistent view.
(This notion was defined for LTCs following an analogous definition for PCPs
[5,14].) Formally,

Definition 7 (Robustness). Let C ⊆ F
n be a code. Note that Δ(w|I , C|I) =

min
c∈C
{Δ(w|I , c|I)} and δ(w|I , C|I) = min

c∈C
{δ(w|I , c|I)}. Given a tester (i.e., a

distribution) D for the code C ⊆ F
n, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)] be the expected relative local distance of input w.

We say that the tester D has robustness ρD(C) on the code C if for every w ∈ F
n

it holds that ρD(w) ≥ ρD(C) · δ(w,C).
Let {Cn}n be a family of codes where Cn has blocklength n and Dn is a tester

for Cn. A family of codes {Cn}n is robustly testable with respect to testers {Dn}n
if there exists a constant α > 0 such that for all n we have ρDn(Cn) ≥ α.
We say that a code C ⊆ F

n is smooth with respect to its tester D if every
coordinate of [n] is queried by D with the same probability, i.e., for all i, j ∈ [n]
it holds that PrI∼D[i ∈ I] = PrI∼D[j ∈ I].

4.2 Our Corollary - Stable LTCs

In this section we construct stable LTCs, thus proving Theorem 4. In what fol-
lows, we shorten notations by omitting the prefix “2-dimensional” before “hyper-
plane” and “hyperplane tester”. For example, when we say “hyperplane tester”
we mean 2-dimensional hyperplane tester. We will need the following results of
[31] and [34].

Theorem 8 ([31]). There exists an explicit construction of linear codes C ⊆ F
n
2

such that rate(C) = Ω(1), δ(C) = Ω(1), and C is encodable in linear time and
decodable in linear time from αn errors for some constant α > 0.

Theorem 9 ([34]). Let m ≥ 3 be a constant integer and C ⊆ F
n be a linear

code. Let D be the 2-dimensional hyperplane tester for Cm. Then,

ρD(Cm) ≥ (δ(C))3m

18log1.5m
.
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Moreover, the query complexity of D is n2 and Cm is smooth with respect to D,
i.e., every coordinate is queried with the same probability. Note that the block-
length of Cm is nm.

Our construction will use a repetitive tester, formulated next.

Definition 8 (Repetitive tester). Assume that C ⊆ F
n is efficiently decod-

able from αn errors and hence by a result of [34] C2 is efficiently decodable from
α2n2 errors. Let D be a 2-dimensional hyperplane tester for Cm. Let N, ε′, ρ′ > 0
such that ε′ ≤ α2. An (h, ε′, ρ′)-repetitive tester Drep is a tester that on an input
word M ∈ F

nm

:

– Invokes D h times and obtains h hyperplanes τ1, τ2, . . . , τh.
– For every i ∈ [h], uses a decoder for C2 to determine (in polynomial time)
δ(M |τi , C2), where if the decoding fails (i.e., δ(M |τi , C2) > α2) then the
corresponding estimate is defined as 1.

– If the fraction of hyperplanes (among τ1, τ2, . . . , τh) that are ε′-far from C2

is at least ρ′, then Drep rejects. Otherwise, he accept.

Remark 2. We note that a repetitive tester uses at most h · 2m log(n) random
bits, since it invokes h times a 2-dimensional hyperplane tester that uses at most
2m log(n) random bits (see Remark 1).

We now state Theorem 10, which implies Theorem 4 as a corollary.

Theorem 10. Let m ≥ 3 be a constant integer and C ⊆ F
n
2 be the code from

[31] such that rate(C) = Ω(1), δ(C) = Ω(1), and C is efficiently decodable from

αn errors, where α < δ(C)/2 is a positive constant. Let γ = (δ(C))3m

18log1.5 m . Let δ′ and
t be any positive numbers satisfying

– δ′ ≤ α2, and
– t ≤ min

{
rate(Cm) · 0.0001, 1

40 · γ · δ′
} · nm = Ω(nm).

Then, letting Drep be a (h, ε′, ρ′)-repetitive tester for Cm, where h = 102202 and
ε′ = 1

4γδ
′ and ρ′ = 1

5 , we have:

– rate(Cm) = (rate(C))m = Ωm(1), δ(Cm) = (δ(C))m = Ωm(1), and the

query complexity of Drep is O(n2) = O((blocklength(Cm))
2
m ),

– Cm has a t-ZK encoding function EC , such that rate (EC) = Ωm (1), and
– Cm is (t, 14 , δ

′)-stable with respect to Drep.
The proof of Theorem 10 is deferred to the full version.
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Abstract. We show an Ω((n1−2/p logM)/ε2) bits of space lower bound
for (1 + ε)-approximating the p-th frequency moment Fp = ‖x‖pp =∑n

i=1 |xi|p of a vector x ∈ {−M,−M + 1, . . . ,M}n with constant prob-
ability in the turnstile model for data streams, for any p > 2 and
ε ≥ 1/n1/p (we require ε ≥ 1/n1/p since there is a trivial O(n logM)
upper bound). This lower bound matches the space complexity of an
upper bound of Ganguly for any ε < 1/ logO(1) n, and is the first of any
bound in the long sequence of work on estimating Fp to be shown to be
optimal up to a constant factor for any setting of parameters. Moreover,
our technique improves the dependence on ε in known lower bounds for
cascaded moments, also known as mixed norms. We also continue the
study of tight bounds on the dimension of linear sketches (drawn from
some distribution) required for estimating Fp over the reals. We show a
dimension lower bound of Ω(n1−2/p/ε2) for sketches providing a (1+ ε)-
approximation to ‖x‖pp with constant probability, for any p > 2 and

ε ≥ 1/n1/p. This is again optimal for ε < 1/ logO(1) n.

1 Introduction

In the standard turnstile model of data streams [1, 2], there is an underlying
n-dimensional vector x, which we sometimes refer to as the frequency vector,
which is initialized to the zero vector and which evolves through a sequence
of additive updates to its coordinates. These updates are fed into a streaming
algorithm, and have the form xi ← xi + δ, changing the i-th coordinate by the
value δ. Here δ is an arbitrary positive or negative integer, and x is guaranteed to
satisfy the promise that at all times x ∈ {−M,−M+1, . . . ,M}n. The goal of the
streaming algorithm is to make a small number of passes over the data and to use
limited memory to compute statistics of x, such as the frequency moments [3], the
number of distinct elements [4], the empirical entropy [5], and the heavy hitters
[6, 7]. Since computing these statistics exactly or deterministically requires a
prohibitive Ω(n) bits of space [3], these algorithms are both randomized and
approximate. For most of these problems in the turnstile model, they are quite
often studied in the model in which the data stream algorithm can only make
a single pass over the data. This is critical in many online applications, such as

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 623–638, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Results are in terms of bits and for constant p > 2. Here, g(p, n) =
minc constant gc(n), where g1(n) = log n, gc(n) = log(gc−1(n))/(1−2/p). For brevity, we
only list those results which work in the general turnstile model, and for which bounds
for general ε have been derived. For other recent interesting work, we refer the reader
to [20], which requires the insertion-only model and does not have bounds for general
ε > 0. We also start the upper bound timeline with [8], since that is the first work
which achieved an exponent of 1 − 2/p for n. For earlier works which achieved worse
exponents for n, see [3, 21–23]. We note that [3] initiated the problem and obtained
an O(n1−1/pε−2 log(M)) bound in the insertion-only model. We also omit from the
table previous lower bounds which hold for linear sketches rather than for the turnstile
model [24, 25], though these are discussed in the Introduction.

Fp Algorithm Space Complexity

[8] O(n1−2/pε−O(1) logO(1) n log(M))

[9] O(n1−2/pε−2−4/p log n log2(M))

[10] O(n1−2/pε−O(1) logO(1) n log(M))

[11] O(n1−2/pε−2−6/p log n log(M))

[12] O(n1−2/pε−2−4/p log n · g(p, n) log(M))

[13] O(n1−2/p log n log(M)ε−O(1))

[14], Best upper bound O(n1−2/pε−2 log n · log(M)/min(log n, ε4/p−2)))

[3] Ω(n1−5/p)
[15] Ω(ε−2)

[16] Ω(n1−2/p−γε−2/p), any constant γ > 0

[17] Ω(n1−2/pε−2/p)

[18] Ω(n1−2/pε−4/p/ logO(1) n)

[19] Ω(n1−2/pε−2/ log n)

This paper Ω(n1−2/pε−2 log(M))

network traffic monitoring, and when most of the data resides on an external
disk, for which multiple passes over it is too costly. In this paper we focus on
one-pass streaming algorithms.

We show new lower bounds for approximating the p-th frequency moment Fp,
p > 2, in a data stream. In this problem the goal is to estimate

∑n
i=1 |xi|p up to

a factor of 1 + ε with constant probability, where x ∈ {−M,−M + 1, . . . ,M}n
and we make the standard assumption that log(Mn) = Θ(logM) and p > 2 is
a constant. We summarize the sequence of work on this problem in Table 1.

The previous best upper bound isO(n1−2/pε−2 logn logM/min(logn, ε4/p−2)),
due to Ganguly [14]. Notice that for ε < 1/ logO(1) n, this bound simplifies
to O(n1−2/pε−2 logM). The previous best lower bound is due to [17, 19], and
is Ω(n1−2/pε−2/ logn + n1−2/pε−2/p). We improve the space complexity lower
bound, in bits, to Ω(n1−2/pε−2 logM) for any ε > 1/n1/p (we require ε > 1/n1/p

since there is a trivial O(n logM) upper bound). In light of the upper bound

given above, our lower bound is optimal for any ε < 1/ logO(1) n and constant
p > 2. This is an important range of parameters; even in applications with 1%
error, i.e., ε = .01, we have that for, e.g., n = 232, ε < 1/ logn. Understanding
the limitations of streaming algorithms in terms of ε is also the focus of a body of
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work in the streaming literature, see, for example, [15, 26–34]. Our lower bound
gives the first asymptotically optimal bound for any setting of parameters in the
long line of work on estimating Fp in a data stream.

A few recent works [24, 25] also study the “sketching model” of Fp-estimation
in which the underlying vector x is in R

n, rather than in the discrete set
{−M,−M+1, . . . ,M}n. One seeks a distribution over linear maps A : Rn → R

s,
for some s� n, so that for any fixed vector x ∈ R

n, one can (1+ ε)-approximate
‖x‖pp with constant probability by applying an estimation procedure E : Rs → R

to Ax. One seeks the smallest possible s for a given ε and n. Lower bounds in
the turnstile model do not imply lower bounds in the sketching model. Indeed, if
the input vector x ∈ {−M,−M + 1, . . . ,M}n, then the inner product of x with
the single vector (1, 1/(M + 1), 1/(M + 1)2, . . . , 1/(M + 1)n−1) is enough to re-
cover x, so a sketching dimension of s = 1 suffices. Previously, it was known that
s = Ω(n1−2/p) [25], which for constant p > 2 and constant ε > 0 was recently
improved to s = Ω(n1−2/p logn) [24]. We note that the upper bound of [14] is

a linear sketch with s = O(n1−2/pε−2) dimensions for any ε < 1/ logO(1) n. We
improve the lower bound on s for general ε, obtaining an s = Ω(n1−2/pε−2) lower
bound. Our lower bound matches the upper bound of [14] for ε < 1/ logO(1) n

up to a constant factor, and improves the lower bound of [24] for ε < 1/ logO(1) n.

Our Approach: To prove our lower bound in the turnstile model, we define a
variant of the �k∞ communication problem [16]. In this problem there are two
parties, Alice and Bob, holding vectors x, y ∈ {−M,−M + 1, . . . ,M}n respec-
tively, and their goal is to decide if ‖x− y‖∞ = maxi∈[n] |(x− y)i| ≤ 1 or there
exists a unique i ∈ [n] for which |(x−y)i| ≥ k and for all j 	= i, |(x−y)j | ≤ 1. The
standard reduction to frequency moments is to set k = ε1/pn1/p, from which one
can show that any streaming algorithm for outputting a (1 + ε)-approximation
to Fp can be used to build a communication protocol for solving �k∞ with com-
munication proportional to the algorithm’s space complexity. Using the com-
munication lower bound of Ω(n/k2) for the �k∞ problem, this gives the bound
Ω(n1−2/pε−2/p).

Our first modification is to instead set k = εn1/p, which gives a communication
lower bound of Ω(n1−2/pε−2). However, the reduction from approximating Fp no
longer works. To remedy this, we introduce a third player Charlie whose input
is z ∈ {0n, n1/pe1, . . . , n

1/pen}, where ei denotes the i-th standard unit vector,
and we seek a (1 + ε)-approximation to ‖x − y + z‖∞. The main point is that
if |xi − yi| = εn1/p, then ‖x− y + z‖∞ differs by a factor of 1 + ε depending on
whether or not Charlie’s input is n1/pei, 0

n, or n1/pej for some j 	= i. Note that
Charlie has no information as to whether |xi − yi| = k or |xi − yi| ≤ 1, which
is determined by Alice and Bob’s inputs. One can think of this as an extension
to the classical indexing problem, which involves two players, in which the first
player has a string x ∈ {0, 1}n, the second player an index i ∈ [n], and the
second player needs to output xi. Now, we have Alice and Bob solving multiple
single-coordinate problems and Charlie is indexing into one of these problems.
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This modification allows us to strengthen the problem for use in applica-
tions. We choose the legal inputs x, y, z to the three-player problem to have
the following promise: (1) ‖x − y + z‖∞ ≤ 1, (2) there is a unique i for which
|(x− y+ z)i| = εn1/p and all other j 	= i satisfy |(x− y+ z)j| ≤ 1, or (3) there is
a unique i for which |(x−y+z)i| is either (1+ ε)n1/p or (1− ε)n1/p and all other
j 	= i satisfy |(x − y + z)j | ≤ 1. Using the 1-way property of a communication
protocol, we can adapt the argument in [16] for the �k∞ problem to show an
Ω(n1−2/pε−2) lower bound for this 3-player problem. Here we use the intuitive
fact that Alice and Bob need to solve the �k∞ problem with k = εn1/p because if
Charlie has the input z = n1/pei, then ‖x− y+ z‖∞ differs by a factor of (1+ ε)
depending on whether |(x − y)i| = εn1/p or |(x − y)i| ≤ 1. Moreover, Alice and
Bob have no information about z since the protocol is 1-way.

We show that a streaming algorithm providing a (1+ ε)-approximation to Fp
can decide which of the three cases the input is in by invoking it twice in the
reduction to the communication problem. Here, Alice, Bob, and Charlie create
local streams σA, σB , and σC , Alice sends the state of the algorithm on σA to
Bob, who computes the state of the algorithm on σA◦σB who sends it to Charlie.
Charlie then queries a (1 + ε)-approximate Fp value of σA ◦ σB , together with a
(1+ε)-approximate Fp value of σA ◦σB ◦σC . Assuming both query responses are
correct, we can solve this new communication problem, yielding an Ω(n1−2/pε−2)
bits of space lower bound.

To improve the space further, we define an augmented version of this 3-player
problem, in which Alice, Bob, and Charlie have r = Θ(logM) independent
instances of this problem, denoted xi, yi, zi, for i ∈ [r]. Charlie additionally
has an index I ∈ [r] together with (xi, yi) for all i > I. His goal is to solve
the I-th instance of the communication problem. This problem can be seen as
an extension to the classical augmented indexing problem, which involves two
players, in which the first player has a string x ∈ {0, 1}n, the second player an
index i ∈ [n] together with xi+1, . . . , xn, and the second player needs to output
xi. We now have a “functional” version of augmented indexing, in which Alice
and Bob solve multiple instances of a problem, and Charlie’s input indexes one
of these problems. Via a direct sum argument [16, 35], we show our problem has
randomized communication complexity Ω(n1−2/pε−2 logM). Finally, we show
how a streaming algorithm for (1 + ε)-approximating Fp can be used to solve
this augmented problem.

We believe our technique will improve the dependence on ε in space lower
bounds for other problems in the data stream literature. For example, we can
improve the dependence on ε in known lower bounds for estimating cascaded
moments, also known as mixed norms [11, 36, 37]. Here there is an underly-
ing n × d matrix A, and the goal is to estimate �p(�q)(A) = (

∑n
i=1 ‖Ai‖pq)1/p,

where Ai is the i-th row of A. In [37] (beginning of Section 2) a lower bound
of Ω(n1−2/pd1−2/q) is shown for constant ε and p, q ≥ 2 via a reduction to
the so-called t-player set disjointness problem for t = 2n1/pd1/q. Straightfor-
wardly setting t = Θ(ε1/kn1/pd1/q), their proof establishes a lower bound of
Ω(n1−2/pd1−2/qε−2/p) for general ε. Our technique also applies to the t-player
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set disjointness problem, by introducing a (t + 1)-st player Charlie with an in-
put z ∈ {0nd, n1/pd1/qeie

T
j for i ∈ [n], j ∈ [d]}, and applying analogous ideas to

those given above. This results in a new lower bound of Ω(n1−2/pd1−2/qε−2).
The same ideas apply to improving the Ω(n1/2) lower bound for �2(�0)(A) given
in [37] (here ‖Ai‖0 denotes the number of non-zero entries of Ai). A straight-
forward adaptation of the arguments in [37] for general ε gives a lower bound
of Ω(n1/2ε−1/2), while our technique strengthens this to Ω(n1/2ε−1). We sketch
these improvements in the full version of this paper.

Our lower bound in the sketching model is simpler and perhaps surprising. We
consider two cases: the input x ∈ R

n is equal to g+n1/pei for a vector g of i.i.d.
standard normal random variables and a random standard unit vector ei, or the
input x is equal to g′ + n1/p(1 + ε)ei for a vector g′ of i.i.d. standard normal
random variables. By Yao’s minimax principle, there exists a fixed s×n sketching
matrixA for which the variation distance between distributionsA(g+n1/pei) and
A(g′ + n1/p(1 + ε)ei) is large. Since we can, without loss of generality, assume
the rows of A are orthonormal (given Ax, one can always compute LAx for
any change of basis matrix L for the rowspace of A), this implies the variation
distance between h + n1/pAi and h′ + n1/p(1 + ε)Ai is large, where h, h′ are
s-dimensional vectors of i.i.d. standard normal random variables and Ai is the
i-th column of A. However, for a random i, since the rows of A are orthonormal,
‖Ai‖2 is only about O(

√
s/n). For such i, this contradicts a standard variation

distance upper bound between two shifted s-dimensional Gaussian vectors unless
s = Ω(n1−2/p/ε2).

2 Preliminaries

Notations. We denote the canonical basis of Rn by {e1, . . . , en}. Let [n] denote
the set {1, . . . , n}. For a vector v ∈ R

n and an index set K ⊂ [n], define a vector
in R

n, denoted by v|K , such that (v|K)i = vi for all i ∈ K and (v|K)i = 0 for all
i 	∈ K.

Probability. For a random variable X and a probability distribution D, we write
X ∼ D for X being subject to the distribution D. We denote the multivariate
Gaussian with mean μ and covariance matrix Σ by N(μ,Σ). Let In denote the
identity matrix of size n× n.

We shall need the following lemma regarding concentration of Gaussian mea-
sure, see Chapter 1 of [38].

Lemma 1. Suppose that X ∼ N(0, In) and the function f : R
n → R is 1-

Lipschitz, i.e., |f(x)− f(y)| ≤ ‖x− y‖2 for all x, y ∈ R
n. Then for any t > 0 it

holds that Prx{|f(x)− Ef(x)| > t} ≤ 2e−t
2/2.

Definition 1. Suppose μ and ν are two probability measures over some Borel
algebra B on R

n. Then the total variation distance between μ and ν is defined
as

dTV (μ, ν) = sup
B∈B
|μ(B)− ν(B)|

(

=
1

2

∫

x

|f(x)− g(x)|dx
)

,
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where the second equality holds when μ and ν have probability density functions
f(x) and g(x) respectively.

The following is a result ([39]) that bounds the total variation distance between
two multivariate Gaussian distributions.

Proposition 1. dTV (N(μ1, In), N(μ2, In)) ≤ ‖μ1 − μ2‖2/
√
2.

Communication Model. We briefly summarize the notions from communication
complexity that we will need. For more background on communication com-
plexity, we refer the reader to [40]. In this paper we consider a one-way com-
munication model. There are three players Alice, Bob and Charlie with private
random coins. Alice is given an input x, Bob y and Charlie z, and their goal is
to compute a function f(x, y, z). Alice sends exactly one message to Bob and
Bob sends exactly one message to Charlie, according to a protocol Π , and then
Charlie outputs an answer. We say the protocol Π is δ-error if for every legal
triple (x, y, z) of inputs, the answer equals f(x, y, z) with probability at least
1− δ, where the probability is taken over the random coins of the players. The
concatenation of the message sent from Alice to Bob with the message from
Bob to Charlie, as well as Charlie’s output, is called the transcript of Π . The
maximum length of the transcript (in bits) is called the communication cost of
Π . The communication complexity of f is the minimal communication cost of a
δ-error protocol for f , and is denoted Rδ(f).

Mutual Information. Let (X,Y ) be a pair of discrete random variables with joint
distribution p(x, y). The mutual information I(X ;Y ) is defined as I(X ;Y ) =
∑

x,y p(x, y) log
p(x,y)
p(x)p(y) , where p(x) and p(y) are marginal distributions. The

following are basic properties regarding mutual information.

Proposition 2. LetX,Y, Z be discrete random variables defined onΩX , ΩY , ΩZ ,
respectively, and let f be a function defined on Ω. Then

1. I(X ;Y ) ≥ 0 and the equality is attained iff X and Y are independent;

2. Chain rule for mutual information: I(X,Y ;Z) = I(X ;Z) + I(X ;Y |Z);
3. Data processing inequality: I(f(X);Y ) ≤ I(X ;Y ).

2.1 Direct-sum Technique

The following definitions and results are from [16]. See also Section 6 of [41].

Definition 2. Let Π be a randomized protocol with inputs belonging to a set
K. We shall abuse notation and also use Π(X,Y, Z) to denote the transcript
of protocol Π, which is a random variable which also depends on the private
coins of the players. When X,Y, Z are understood from context, we sometimes
further abbreviate Π(X,Y, Z) as Π. Let μ be a distribution on K and suppose
that (X,Y, Z) ∼ μ. The information cost of Π with respect to μ is defined to be
I(X,Y, Z;Π(X,Y, Z)).
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Definition 3. The δ-error information complexity of f with respect to a distri-
bution μ, denoted by ICμ,δ(f), is defined to be the minimum information cost of
a δ-error protocol for f with respect to μ.

Using this definition, it follows immediately that (see [16]):

Proposition 3. Rδ(f) ≥ ICμ,δ(f) for any distribution μ and δ > 0.

Definition 4 (Conditional information cost). Let Π be a randomized pro-
tocol whose inputs belong to some set K of valid inputs and that ζ is a mixture of
product distributions on K×W. Suppose that ((X,Y, Z),W ) ∼ ζ. The conditional
information cost of Π with respect to ζ is defined as I(X,Y, Z;Π(X,Y, Z)|W ).

Definition 5 (Conditional information complexity). The δ-error condi-
tional information complexity of f with respect to ζ, denoted CICζ,δ(f), is de-
fined to be the minimum conditional information cost of a δ-error protocol for f
with respect to ζ.

Definition 6 (Decomposable functions). Suppose that f is a function de-
fined on Ln. We say that f is g-decomposable with primitive h if it can be written
as f(x,y, z) = g(h(x1,y1, z1), . . . , h(xn,yn, zn)) for some function h defined on
L → Q and g on Qn. Sometimes we simply say that f is decomposable with
primitive h.

Definition 7 (Embedding). For a vector w ∈ Ln, j ∈ [n] and u ∈ L, we
define embed(w, j, u) to be the n-dimensional vector over L whose i-th component
is defined as follows: embed(w, j, u)i = wi if i 	= j; and embed(w, j, u)i = u if
i = j.

Definition 8 (Collapsing distribution). Suppose f is g-decomposable with
primitive h. We call (x, y, z) ∈ Ln a collapsing input for f , if for every j and
(u, v, w) ∈ L, it holds that

f(embed(x, j, u), embed(y, j, v), embed(z, j, w)) = h(u, v, w).

We call a distribution μ on Ln collapsing for f if every (x, y, z) in the support
of μ is a collapsing input.

Lemma 2 (Information cost decomposition). Let Π be a protocol whose
inputs belong to Ln for some set L. Let ζ be a mixture of product distributions on
L × D and suppose that ((X,Y, Z), D) ∼ ζn. Then, I(X,Y, Z;Π(X,Y, Z)|D) ≥∑

i I(Xi, Yi, Zi;Π(X,Y, Z)|D).

Lemma 3 (Reduction lemma). Let Π be a δ-error protocol for a decompos-
able function f defined on Ln with primitive h. Let ζ be a mixture of product
distributions on L × D, let η = ζn, and suppose that ((X,Y, Z), D) ∼ η. If the
distribution of (X,Y, Z) is a collapsing distribution for f , then for all j ∈ [n], it
holds that I((Xj , Yj , Zj);Π(X,Y, Z)|D) ≥ CICζ,δ(h).
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2.2 Hellinger Distance

Definition 9. The Hellinger distance h(P,Q) between probability distributions
P and Q on a domain Ω is defined by

h2(P,Q) = 1−
∑

ω∈Ω

√
P (ω)Q(ω) =

1

2

∑

ω∈Ω
(
√
P (ω)−

√
Q(ω))2.

One can verify that the Hellinger distance is a metric satisfying the triangle in-
equality, see, e.g., [16]. The following proposition connects the Hellinger distance
and the total variation distance.

Proposition 4. (see, e.g., [41]) h2(P,Q) ≤ dTV (P,Q) ≤ √2h(P,Q).

In connection with mutual information, we have that

Lemma 4 ([16]). Let Fz1 and Fz2 be two random variables. Let Z denote a ran-
dom variable with uniform distribution in {z1, z2} Suppose F (z) is independent
of Z for each z ∈ {z1, z2}. Then, I(Z;F (Z)) ≥ h2(Fz1 , Fz2).
In [41], it is shown that a randomized private-coin three-party protocol exhibits
the rectangle property in the following sense: there exist functions q1, q2, q3 such
that for all legal inputs (x, y, z) and transcripts τ , it holds that

Πx,y,z(τ) = q1(x, τ)q2(y, τ)q3(z, τ).

The following is a variant of the inverse triangle inequality in [16] that we need
to accommodate our setting of three players. The proof is similar to that for two
players and thus we omit it because of space limitations.

Lemma 5 (Inverse triangle inequality). For any randomized protocol Π
and for any inputs x, y, z and x′, y′, z it holds that

h2(Πx,y,z, Πx′,y,z) + h2(Πx,y′,z, Πx′,y′,z) ≤ 2h2(Πx,y,z, Πx′,y′,z).

3 Augmented L∞ Promise Problem

In this section we define the Augmented L∞ Promise Problem. First, though,
we consider a slightly different gap problem than that considered in [16] for a
problem which we refer to as the L∞ Promise problem.

Definition 10 (L∞(k, ε)). Assume that εk ≥ 1. There are three players Alice,
Bob and Charlie in the one-way communication model with private coins. Alice
receives a vector a ∈ {0, . . . , εk}n, Bob a vector b ∈ {0, . . . , εk}n and Charlie
both an index j ∈ [n] and a bit c ∈ {0, 1}. The input is guaranteed to satisfy
|ai−bi| ≤ 1 for all j 	= i. Charlie is asked to decide which three of the following
cases happen, provided we are promised that the input is indeed in one of these
three cases: (1) (a−b)j+ck ≤ 1; (2) (a−b)j+ck = (1−ε)k; (3) (a−b)j+ck ≥ k.
Charlie’s output must be correct with probability ≥ 9/10.
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In the definition above, the index j is referred to as the spike position.
We consider the following distribution μ on the input. Let c = 0. Define

the random variable ((X,Y ), D) as follows. The random variable is uniform on
{0, . . . , k}×{0, 1}\{(0, 1), (k, 0)}. If D = (d, 0) then X = d and Y is uniform on
{d, d+1}; if D = (d, 1) then Y = d and X is uniformly distributed on {d−1, d}.
Theorem 1. R(L∞(k, ε)) = Ω(n/(k2ε2)).

Proof. Making c = 0 in Charlie’s input, we see that μn is a collapsing distribution
for L∞(k, ε) so we can apply the direct sum technique. Letting xi = (ai,bi), it
follows that

R(L∞(k, ε)) ≥
n∑

i=1

I(x1, . . . ,xn;Π(x1, . . . ,xn)|D1, . . . , Dn) ≥ nCICμ(L1
∞(k, ε)),

where L1
∞(k, ε) is the single coordinate problem of L∞(k, ε), that is, the L∞(k, ε)

problem with n = 1. Therefore, it suffices to show that

CICμ(L
1
∞(k, ε)) = Ω

(
1/(k2ε2)

)
. (1)

This is a single-coordinate problem, and we shall drop the index i henceforth
in the proof. Let Ud denote a random variable with uniform distribution on
{d, d+ 1}.

CICμ(L
1
∞(k, ε))

= I(x;Π(x)|D)

=
1

2εk

(
εk−1∑

d=0

I(Ud;Π(d, Ud)) +
εk∑

d=1

I(Ud−1;Π(Ud−1, d))

)

≥ 1

2εk

(
εk−1∑

d=0

h2(Πd,d,0, Πd,d+1,0) +

εk−1∑

d=0

h2(Πd−1,d,0, Πd,d,0)

)

(2)

≥ 1

4ε2k2

(
εk−1∑

d=0

h(Πd,d,0, Πd,d+1,0) +

εk−1∑

d=0

h(Πd−1,d,0, Πd,d,0)

)2

(3)

≥ 1

4ε2k2
h2(Π0,0,0, Πεk,εk,0) (4)

where we used Lemma 4 for (2), the Cauchy-Schwarz inequality for (3) and the
triangle inequality for (4), By the three-player version of the inverse triangle
inequality (Lemma 5),

h2(Π0,0,0, Πεk,εk,0) ≥ 1

2
(h2(Π0,0,0, Πεk,0,0) + h2(Π0,εk,0, Πεk,εk,0))

≥ 1

2
h2(Π0,εk,0, Πεk,εk,0) ≥ 1

4
d2TV (Π0,εk,0, Πεk,εk,0), (5)

where we used Proposition 4 for the last inequality. We now claim that

dTV (Π0,εk,0, Πεk,εk,0) = Ω(1). (6)



632 Y. Li and D.P. Woodruff

Consider the message sent from Alice to Bob, together with the message sent
from Bob to Charlie. Let us denote the concatenation of these two messages by
T = T (x, y). Notice that the messages do not depend on Charlie’s input. We in
fact claim a stronger statement than (6), namely that dTV (T (0, εk), T (εk, εk)) =
Ω(1).

To see this, suppose that Charlie’s input bit equals 1. Then he needs to decide
if the players inputs are in case (2) or in case (3). Let T be the set of messages
from Alice and Bob and from Bob to Charlie that make Charlie output “case
(2)” with probability ≥ 3/4, over his private coins. Then by the correctness of the
protocol, Pr{T (0, εk) ∈ T } ≥ 3

5 and Pr{T (εk, εk) ∈ T } ≤ 2
15 . Indeed, otherwise

if Pr{T (0, εk) ∈ T } < 3/5 then Charlie outputs “case (2)” with probability
< 3/5 + 3/4 · 2/5 = 9/10, contradicting the correctness of the protocol, while if
Pr{T (εk, εk) ∈ T } > 2/15 then Charlie outputs “case (2)” with probability >
2/15 · 3/4 = 1/10, again contradicting the correctness of the protocol. Therefore

dTV (T (0, εk), T (εk, εk)) ≥ |Pr(T (0, εk) ∈ T )− Pr(T (εk, εk) ∈ T )|
≥ 3/5− 2/15 = Ω(1),

whence (6) follows since dTV (Π0,εk,0, Πεk,εk,0) ≥ dTV (T (0, εk), T (εk, εk)).
Plugging (6) into (5) and then (5) into (4), we have that (1) follows

immediately. ��
Now we define a stronger problem called the Augmented L∞ Promise problem,
and denoted by Aug-L∞(r, k, ε). We further abbreviate this by Aug-L∞(r, k)
when ε is clear from the context.

Definition 11 (Aug-L∞(r, k, ε)). Consider r instances of L∞(k, ε), denoted
(a1,b1, j1, c1), . . . , (ar,br, jr, cr). In addition to these inputs, Charlie has an
index I ∈ [r], together with aj and bj for all j > I. The goal is to decide for
the I-th L∞(k) instance, which of the three cases the input is in, with probability
≥ 5/8. The input is guaranteed to satisfy ci = 0 for all i 	= I.

Now we define a distribution ν on the inputs to the Aug-L∞(r, k) problem:
the r instances of L∞(k) are independent hard instances (i.e., drawn from μ) of
L∞(k). The index I is uniformly random on the set [r].

Theorem 2. R(L∞(r, k, ε)) = Ω(nr/(k2ε2)).

Proof. Write xi = (ai,bi). It suffices to show that I(x1, . . . ,xr;Π |Z1, . . . ,Zr) =
Ω
(
nr/(k2ε2)

)
, where Zi = (Di, ji, 0) (letting ci = 0 for all i). We claim that

I(xt;Π |Zt,Z−t,x>t) ≥ CICμn(L∞(k, ε)). Indeed, the players can hardwire x>t
into the protocol, and Charlie can set I = t. Conditioned on Z−t, the inputs to
the instances x<t are independent, and so the players can generate these inputs
using their private randomness. Then, for the input of L∞(k, ε), the players can
embed it as the t-th input to the protocol for the Aug-L∞(k) problem. It follows
that the output of Aug-L∞(k) agrees with the output of L∞(k). Moreover, since
the distribution on the t-th input instance is μ, we have that

I(xt;Π |Zt,Z−t,x>t) ≥ CICμn(L∞(k, ε)) = Ω
(
n/(ε2k2)

)
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by Theorem 1. It follows that

I(x1, . . . ,xr;Π |Z1, . . . ,Zr)

=
∑

t

I(xt;Π |Z1, . . . ,Zr,xi+1, . . . ,xr)

=
∑

t

∑

z,x

I(xt;Π |Zt,Z−t = z,x>t = x) Pr{Z−t = z,x>t = x}

≥
∑

t

∑

z,x

Ω
( n

ε2k2

)
Pr{Z−t = z,x>t = x}

= Ω
( nr

ε2k2

)

as desired. ��

4 Frequency Moments

Suppose that x ∈ R
n. We say that a data stream algorithm solves the (ε, p)-

Norm problem if its output X satisfies (1 − ε)‖x‖pp ≤ X ≤ (1 + ε)‖x‖pp with
probability ≥ 1− δ. Our main result is the following.

Theorem 3. For any p > 2, there exist absolute constants c > 0, α > 1 and a
constant ε0 = ε0(p) which depends only on p such that for any ε ∈ [c/n1/p, ε0],
any randomized streaming algorithm that solves the (ε, p)-Norm problem for
x ∈ {−M,−M + 1, . . . ,M}n with probability ≥ 19/20, where M = Ω(nα/p),
requires Ω(n1−2/p(logM)/ε2) bits of space.

Proof. Suppose that a randomized streaming algorithmA solves the (ε, p)-Norm
problem with probability ≥ 19/20. Let k = Θ(n1/p) and r = (1 − 1/α) log10M .
We shall reduce the (ε, p)-Norm problem to Aug-L∞(r, k, ε). Note that with
our choice of parameters, εk = Ω(1).

Alice generates a stream σ1 with underlying frequency vector −∑
j 10

j−1Aj

and sends the state of A on σ1 to Bob. Then Bob generates a stream σ2 with
underlying frequency vector

∑
j 10

j−1Bj and continues runningA on σ2, starting
from the state sent by Alice. The streaming algorithm then reaches a state
corresponding to an underlying frequency vector

∑
j 10

j−1(Bj −Aj). Bob sends

this state to Charlie. Charlie, given I and (Aj , Bj) for all j > I, generates a
stream σ3 with underlying frequency vector

∑
j>I 10

j−1(Aj−Bj) and continues
running A on σ3 to obtain an output V for the execution of A on a stream with
underlying frequency vector v =

∑I
j=1 10

j−1(Bj−Aj). Finally, Charlie generates
a stream σ4 with underlying frequency vector 10I−1cIkejI , where jI ∈ [n] and
cI ∈ {0, 1} are the inputs to Charlie in the I-th instance of the L∞(k) Promise
problem, and continues running A on σ4 to obtain an output W for a stream
with underlying frequency vector equal to w = v + 10I−1cIkejI .

For notational convenience, let Xj = Bj − Aj . We have that ‖Xj‖∞ ≤ 1 at
non-spike positions by the promise of the input to the L∞ Promise problem.
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Notice that ‖v‖∞ ≤
∑I

j=1 10
j−1 ≤ 10I/9 ≤ 10r/9 ≤M1−1/α ≤M and ‖w‖∞ ≤

‖v‖∞+k10I−1 ≤ (k+1)10r/9 ≤M by our assumption ofM and choice of k and
r. This implies that A outputs a correct approximation to ‖w‖∞ with probability
≥ 19/20 and a correct approximation to ‖v‖∞ with probability ≥ 19/20. Define
the event

E1 =
{∣
∣W − ‖w‖pp

∣
∣ ≤ ε‖w‖pp and

∣
∣V − ‖v‖pp

∣
∣ ≤ ε‖v‖pp

}
.

By a union bound, Pr{E1} ≥ 9/10. We show next how to use V and W to solve

Aug-L∞(k, r, ε), conditioned on the event E1. Let L =
(∑I

j=1 10
j−1

)p
, then

L =
(
(10I − 1)/9

)p ≤ (10/9)
p
10(I−1)p.

Case 1. cI = 0 so wjI = vjI . In this case, W − V ≤ 2ε‖v‖pp ≤ 2εnL =: UB1,

Case 2. cI = 1 and wjI = 10I−1(1− ε)k. In this case, vjI = −10I−1εk, so
W − V ≤ (1 + ε)‖w‖pp − (1− ε)‖v‖pp

= (1 + ε)(‖v|[n]\{jI}‖pp + ‖wjI‖pp)− (1− ε)‖v‖pp
= 2ε‖v|[n]\{jI}‖pp + (1 + ε)‖w|jI‖pp − (1− ε)‖v|jI‖pp
≤ 2ε(n− 1)L+ (1 + ε)10(I−1)p(1− ε)pkp − (1− ε)εpkp10(I−1)p =: UB2

and

W − V ≥ (1− ε)‖w‖pp − (1 + ε)‖v‖pp
= (1− ε)(‖v|[n]\{jI}‖pp + ‖w|jI‖pp)− (1 + ε)‖v‖pp
≥ (1− ε)10(I−1)p(1− ε)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp := LB2

Case 3. cI = 1 and wjI ≥ 10I−1k. In this case, 0 ≤ vjI ≤ 10I−1εk, so

W − V ≥ (1 − ε)10(I−1)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp := LB3

Therefore, Charlie can solve Aug-L∞(r, k, ε) provided that LB2 > UB1 and
LB3 > UB2. It suffices to have

(1 − ε)p+1 − (1 + ε)εp > 4ε
n

kp

(
10

9

)p
,

ε

(
p− 2

2
− 2εp−1

)

> 4ε
n

kp

(
10

9

)p
,

which are satisfied when ε is small enough, k = Cn1/p for a large enough constant
C, and p > 2 is a constant. Hence, Charlie can solve the Aug-L∞(r, k, ε) problem
with probability ≥ 9/10. The lower bound for the (ε, p)-Norm problem follows
from Theorem 2. ��

5 Lower Bound for Linear Sketches

Given η ≥ 0, define a distribution Dk,η on R
n as follows. Consider x ∼ N(0, In).

Let j be uniformly random in {1, . . . , n}. The distribution Dk,η is defined to be
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L(x+(1+η)kej). Suppose that A is an m×n matrix of orthonormal rows. When
operated on vectors x ∼ Dk,η, the product Ax induces a distribution, denoted
by FA,k,η.
Lemma 6. Let ε > 0. It holds that dTV (FA,k,0,FA,k,ε) ≤ εk

√
m/n.

Proof. Let y1 ∼ FA,k,0 and y2 ∼ FA,k,ε. By rotational invariance of the Gaussian
distribution and the fact that A has orthonormal rows, y1 is distributed as x+kAj
and y2 as x+ (1 + ε)kAj , where x ∼ N(0, Im), Aj is the j-th column of A, and
j is uniform on {1, . . . , n}.

Suppose the density functions of y1 and y2 are p1(x) and p2(x) respectively,
then

p1(x) =
1

n

∑

i

p(x− kAi), p2(x) =
1

n

∑

i

p(x− (1 + ε)kAi),

where p(x) is the density function of N(0, Im). It follows that

dTV (FA,k,0,FA,k,ε) = 1

2

∫

x∈Rm

|p1(x)− p2(x)|dx

=
1

2

∫

x∈Rm

∣
∣
∣
∣
∣

1

n

∑

i

p(x− kAi)− 1

n

∑

i

p(x− (1 + ε)kAi)

∣
∣
∣
∣
∣
dx

≤ 1

2

∫

x∈Rm

(
1

n

∑

i

|p(x− kAi)− p(x− (1 + ε)kAi|
)

dx

=
1

n

∑

i

1

2

∫

x∈Rm

|p(x− kAi)− p(x− (1 + ε)kAi)|dx

=
1

n

∑

i

dTV (N(kAi, In)−N((1 + ε)kAi, In))

≤ 1

n

∑

i

‖kAi − (1 + ε)kAi‖2 (by Proposition 1)

=
εk

n

∑

i

‖Ai‖2 = εkEj‖Aj‖2,

Since
∑

j ‖Aj‖22 = m, Ej‖Aj‖22 = m/n and thus E‖Aj‖2 ≤ (E‖Aj‖22)1/2 =
√
m/n. It follows that dTV (FA,k,0,FA,k,η) ≤ εk

√
m/n. ��

Theorem 4. Let p > 2 be a constant. Consider a distribution over m×n matri-
ces A for which for every x ∈ R

n, from Ax one can solve the (ε, p)-Norm prob-
lem, on input x with probability ≥ 3/4 over the choice of A, where ε = Ω(1/n1/p)
is small enough. Then m = Ω(n1−2/p/ε−2).

Proof. Without loss of generality, we assume that A has orthonormal rows, since
we can apply a change of basis to the row space of A in post-processing. Let

k = C
1/p
p n1/p, where Cp is the constant in

E‖z‖pp = Cpn, z ∼ N(0, In).
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Consider the input x drawn from D0 := Dk,0 and D1 := Dk,2ε. Let b ∈ {0, 1}
indicate that x ∼ Db. We have that Ax ∼ FA,k,0 when b = 0 and Ax ∼ FA,k,2ε
when b = 1. Suppose the algorithm outputs W .

Now we compute ‖x‖pp in each case. When b = 0, ‖x‖pp = ‖x′‖pp+|g+k|p, where
x′ ∼ N(0, In−1) and g ∼ N(0, 1) are independent. Since ‖x‖p is a 1-Lipschitz
function, by concentration of measure (Lemma 1),

Pr{|‖x′‖p − E‖x′‖p| ≥ 5} ≤ 0.001.

Also, |g| ≤ 5 with probability ≥ 1 − 0.001. Note that E‖x′‖pp = Cp(n − 1). It
follows that with probability ≥ 1− 0.002, we have

‖x‖pp ≤ 2(1 + o(1))Cpn. (7)

Similarly, when b = 1, with probability ≥ 1− 0.002, it holds that

‖x‖pp ≥ ((1 + 2ε)p + 1)(1− o(1))Cpn. (8)

The o(1) in (7) and (8) are of the form cp/n
1/p for some (small) constant cp > 0

that depends only on p. We condition on the event that (7) and (8) hold. With
probability ≥ 3/4, we have

W ≤ (1 + ε)‖x‖pp, b = 0

W ≥ (1− ε)‖x‖pp, b = 1

and thus

W ≤ 2(1 + ε)(1 + o(1))Cpn, b = 0

W ≥ (1− ε)((1 + 2ε)p + 1)(1− o(1))Cpn, b = 1

So we can recover b from W with probability ≥ 3/4− 0.002 provided that

2(1 + ε)(1 + o(1)) < (1− ε)((1 + 2ε)p + 1)(1− o(1))

⇐=
(

2 +
p+ 2

4

)
cp
n1/p

<
p− 2

2
ε (recall that o(1) is actually cp/n

1/p)

which holds for ε small enough while satisfying that ε = Ω(1/n1/p). Consider
the event E that the algorithm’s output indicates b = 1. Then Pr(E|x ∼ D0) ≤
1/4 + 0.002 while Pr(E|x ∼ D1) ≥ 3/4 − 0.002. By definition of total variation
distance,

dTV (FA,k,0,FA,k,2ε) ≥ |Pr(E|x ∼ D1)− Pr(E|x ∼ D0)| ≥ 1/2 + 0.004.

On the other hand, by the preceding lemma, dTV (FA,k,0,FA,k,2ε) ≤ 2εk
√
m/n.

Therefore it must hold that m = Ω
(
n/(k2ε2)

)
= Ω

(
n1−2/p/ε2

)
. ��
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Abstract. We design deterministic fully polynomial-time approxima-
tion scheme (FPTAS) for computing the partition function for a class
of multi-spin systems, extending the known approximable regime by an
exponential scale. As a consequence, we have an FPTAS for the Potts
models with inverse temperature β up to a critical threshold |β| = O( 1

Δ
)

where Δ is the maximum degree, confirming a conjecture in [10]. We also
give an improved FPTAS for a generalization of counting q-colorings,
namely the counting list-colorings. As a consequence we have an FP-
TAS for counting q-colorings in graphs with maximum degree Δ when
q ≥ αΔ + 1 for α greater than α∗ ≈ 2.58071. This is so far the best
bound achieved by deterministic approximation algorithms for counting
q-colorings. All these improvements are obtained by applying a poten-
tial analysis to the correlation decay on computation trees for multi-spin
systems.

1 Introduction

Spin systems in Statistical Physics are the stochastic models defined by local
interactions. In Computer Science, spin systems are used as a theoretical frame-
work for counting or inference problems arising from constraint satisfaction prob-
lems, e.g. counting independent sets or q-colorings in graphs, and probability
inference in graphical models.

A central problem in this framework is the computation of the partition
function, which may solve both counting and inference. The problem is #P-
hard for almost all nontrivial spin systems [3, 4]. A classic approach for ap-
proximation of partition function is the Markov Chain Monte Carlo (MCMC)
method which relies on the rapid mixing of random walks in the configuration
space [5–7,13–18,21,27]. A more contemporary approach is the correlation decay
technique introduced by Bandyopadhyay and Gamarnik [1] andWeitz [28], which
leads to deterministic fully polynomial-time approximation scheme (FPTAS) for
#P-hard counting problems [2, 10, 19, 20, 22, 23, 29].

In these algorithms, the computation of a marginal probability (which is equiv-
alent to the computation of partition function by self-reduction) is reduced to
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evaluating an exponential-size tree-structured dynamical system. The correla-
tion decay property guarantees that the far-away variables can be disregarded
without substantially affecting the marginal probability of interest, thus the true
values can be efficiently approximated by evaluating truncated dynamical sys-
tems. Two such dynamical systems were proposed: (1) the self-avoiding-walk
(SAW) tree [28] for two-state spin systems and (2) the computation tree [10] for
all spin systems. For two-state spin systems, FPTAS based on SAW-trees may
approach the approximability boundaries, such as [19,20,23,28]. This is because
a SAW-tree is a faithful construction of the original spin system on a tree, hence
long-range correlations can be used as gadgets in the reduction for the inap-
proximability [8, 25, 26]. Very recently, the similar long-range correlations were
used to prove inapproximability for multi-spin systems [9]. On the algorithmic
side, due to a barrier result of Sly in [24], the original spin systems on trees are
no longer capable of simulating all marginal probabilities. The computation tree
introduced by Gamarnik and Katz in [10] overcomes this fundamental issue by
creating a dynamical system consisting of different instances of spin systems.

1.1 Our Results

We design efficient computation trees for multi-spin systems: For a vertex of de-
gree d, our computation tree expends to d branches while the previous one in [10]
has exp(Ω(d)) many branches. We apply a potential analysis to the decay of cor-
relation between variables in computation trees. The potential analysis has been
used in [19,20,22,23] for analyzing the correlation decay on the self-avoiding walk
trees for two-state spin systems. We show for the first time that this powerful
technique can be applied to computation trees for multi-spin systems. Our new
construction of efficient computation trees and potential analysis greatly extend
the regimes of correlation decay and deterministic FPTAS for these systems.

One of the most well-studied multi-spin systems is the Potts model.

Theorem 1. For any constant q ≥ 2, there exists an FPTAS for computing
the partition function for q-state Potts models with inverse temperature β and
maximum degree Δ satisfying 3Δ(e|β| − 1) ≤ 1.

For large Δ, the condition 3Δ(e|β| − 1) ≤ 1 is translated to that |β| = O( 1
Δ),

which greatly improves the best previous bound β = O
(

1
ΔqΔ

)
due to Gamarnik

and Katz [10] and also confirms a conjecture in [10]. For the anti-ferromagnetic
case (β < 0), our condition is asymptotically tight due to a very recent inap-
proximability result of Galanis, Štefankovič, and Vigoda [9].

Theorem 1 is a special case of a much more general theorem for the q-state
spin systems, also called the Markov random fields. As suggested by [10], the
regime of correlation decay for these models is described in terms of cA, the
maximum ratio between edge parameters. We show that there exists an FPTAS
for a family of Markov random fields if 3Δ(cA − 1) ≤ 1. This exponentially
improves the previous best known condition (cΔA− c−ΔA )ΔqΔ < 1 proved in [10].
This general result is formally stated as Theorem 3 in Section 2.
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We next study the problem of counting proper q-colorings in an undirected
graph. For this problem, the mixing or the tractability condition is usually given
in form of q ≥ αΔ + β for some constant α and β where Δ is the maximum
degree of the graph. The previous best bound for deterministic FPTAS was
achieved in [10] for an α ≈ 2.8432 and some sufficiently large β on triangle-free
graphs. Better bounds (with α < 2) were known for randomized approximation
algorithms [6, 15, 27] or correlation decay only [11, 12]. We prove the following
theorem for a constant α∗ ≈ 2.58071 which is formally defined by (2) in Section 2.

Theorem 2. There exists an FPTAS for counting q-colorings on graphs with
maximum degree Δ if q and Δ are constants and q ≥ αΔ+ 1 for α > α∗.

This is a new record for the deterministic FPTAS for counting q-colorings on gen-
eral graphs, and we remove the triangle-free requirement in previous correlation-
decay based results such as [10, 12]. Theorem 2 is proved as a special case of a
theorem for a generalization of q-colorings, called the list-colorings, which is
formally stated as Theorem 4 in Section 2.

All the above FPTAS require the degree of the graph and the number of states
(colors) to be constant. If we remove this restriction, the algorithms compute
a (1 ± ε)-approximation of the true value for any fixed 0 < ε < 1 in time
nO(logn). This complexity bound was only known previously for simple models
like list-colorings but was not known for general multi-spin systems since for such
systems the previous computation tree proposed in [10] tries to enumerate all
configurations of the local neighborhood at each step. We give a more efficient
computation tree which uses exponentially less branches.

2 Definitions and Statements of Results

An instance of a q-state spin system or a pair-wise Markov random field (MRF)
is a tuple Ω = (G,X ,A,F ), where

– G = (V,E) is an undirected graph called the underlying graph;
– X = [q] = {1, 2, . . . , q} is a domain of spin states ;
– A = (Ae, e ∈ E) is a tuple where each Ae : X × X → R≥0 is a symmetric

function specifying the activity of edge e;
– F = (Fv, v ∈ V ) is a tuple where each Fv : X → R≥0 specifies the external

field at vertex v.

The size of an MRF instance is defined as |Ω| = max{|V |, |X |}. We consider
only those MRF instances such that the number of bits used to encode A and
F is in polynomial of n = |V | and q = |X |. This does not affect the generality
of the problem since we are interested in the approximation algorithms.

The partition function of an MRF instance Ω = (G,X ,A,F ) is defined as

Z(Ω) �
∑

x∈XV

∏

e=uv∈E
Ae(xu, xv)

∏

v∈V
Fv(xv).
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This gives rise to a probability distribution PΩ, called the Gibbs measure, over
all configurations x ∈ X V , such that

PΩ(X = x) =

∏
e=uv∈E Ae(xu, xv)

∏
v∈V Fv(xv)

Z(Ω)
.

Given an MRF instance Ω = (G,X ,A,F ) with underlying graph G = (V,E),
we denote by ΔG the maximum degree of G and let

cA � max
e∈E

w,x,y,z∈X

Ae(x, y)

Ae(w, z)
.

Theorem 3. Let M be a family of MRF instances with bounded degree and
bounded size of domain. There exists an FPTAS for computing the partition
function of MRFs in M if it holds that

∀Ω = (G,X ,A,F ) ∈ M, 3ΔG(cA − 1) ≤ 1. (1)

For any family M of MRFs satisfying (1) without any restriction on the degree
or the size of domain, the algorithm computes a (1± ε)-approximation of Z(Ω)
for any fixed 0 < ε < 1 in time nO(log n) where n = |Ω|.
The q-state Potts model is a special class of MRFs Ω = (G,X ,A,F ) with
for every e ∈ E, Ae = A such that A(x, y) = eβ if x = y and A(x, y) = 1
otherwise. The parameter β is called the inverse temperature. It is easy to see
that Theorem 1 is a special case of Theorem 3 on Potts models.

Next we consider the proper q-colorings in an undirected graph, which can
be easily seen as a special case of MRF. The problem of counting q-colorings
is solved by solving its generalization called the list-colorings. A list-coloring
instance is a tuple Ω = (G,X ,L) with that

– G = (V,E) is an undirected graph;
– X = [q] is a domain of q colors;
– L = (Lv, v ∈ V ) such that each Lv ⊆ X is a list of colors for vertex v.

A proper coloring in a list-coloring instance is a proper q-coloring x ∈ X V of
vertices such that xv ∈ Lv for every v ∈ V . The list-coloring is a special case of
MRFs (G,X ,A,F ) with that for every e ∈ E, Ae = A such that A(x, y) = 0
if x = y and A(x, y) = 1 if otherwise, and for every v ∈ V , the external field
Fv is a Boolean function indicating the color list Lv. For the list-colorings we
have cA =∞, thus Theorem 3 does not apply, so we use different algorithm and
analysis to prove the following theorem. Let α∗ ≈ 2.58071 be the solution to the
equation1

√
2 +

√
2α− 1−√4α− 3

√
2α(α− 1)

exp

(
3− 2α+

√
4α− 3

4(α− 1)

)

= 1. (2)

1 The LHS of (2) is in fact monotonously decreasing from +∞ to 0 for α > 1, so there
is a unique solution α∗.
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Theorem 4. There exists a deterministic FPTAS for counting proper colorings
in list-coloring instances Ω = (G,X ,L) with bounded degree ΔG and bounded
number of colors q = |X | satisfying that there is an α > α∗ such that

∀v ∈ V, |Lv| ≥ αΔG + 1. (3)

Obviously Theorem 2 is a special case of Theorem 4 as colorings are just list-
clorings with Lv = X for every v ∈ V .

3 Markov Random Fields

Given an MRF instance defined on the underlying graph G = (V,E), we suppose
that for each vertex v ∈ V , the neighbors of v are enumerated as v1, v2, . . . , vdeg(v)
where deg(v) is the degree of v. We define operations called pinning and partial
pinning on MRF instances as follows.

Definition 1. Given an MRF instance Ω = (G,X ,A,F ), a vertex v ∈ V and
its neighbors v1, v2, . . . , vd in G, where d = deg(v), for each spin state x ∈ X
and each 1 ≤ i ≤ d + 1, the partial pinning of Ω, denoted as Ωiv,x, is a new

MRF instance augmented from Ω as Ωiv,x = (Gv,X , Ã, F̃ ), where Gv = G \ {v}
is the subgraph of G induced by V \ {v}, Ã = (Ae, e ∈ E \ {vv1, vv2, . . . , vvd}) is
the restriction of A on the set of edges in Gv, and F̃ = (F̃u, u ∈ V \ {v}) where

∀y ∈ X , F̃u(y) =

{
Auv(x, y)Fu(y) if u ∈ {v1, . . . , vi−1},
Fu(y) otherwise.

The pinning of Ω is a partial pinning by choosing i = d+1, which is denoted as
Ωv,x = Pinv,x(Ω) = Ωd+1

v,x .

The following identity can be seen as a generalization of the recursion for list-
colorings derived in [10]. Compared to the recursion for MRFs in [10], it uses
substantially less variables.

Proposition 1. Let Ω = (G,X ,A,F ) be an MRF instance. For every vertex
v ∈ VG and its neighbors v1, v2, . . . , vd where d = deg(v), and every spin state
x ∈ X , it holds that

PΩ(Xv = x) =
Fv(x)

∏d
i=1

(

Avvi
(x,x)−∑z �=x(Avvi

(x,x)−Avvi
(x,z))PΩi

v,x
(Xvi

=z)

)

∑
y∈X Fv(y)

∏
d
i=1

(

Avvi
(y,y)−∑z �=y(Avvi

(y,y)−Avvi
(y,z))PΩi

v,y
(Xvi

=z)

) .

Proof. We define that

ZΩ(Xv = x) �
∑

x∈XV

xv=x

∏

uw∈E
Auw(xu, xw)

∏

u∈V
Fu(xu).



644 P. Lu and Y. Yin

It can be verified that ZΩ(Xv = x) = Fv(x)Z(Ωv,x) where Ωv,x = Pinv,x(Ω) is
the pinning of Ω. Then

PΩ(Xv = x) =
ZΩ(Xv = x)

∑
y∈X ZΩ(Xv = y)

=
Fv(x)Z(Ωv,x)∑
y∈X Fv(y)Z(Ωv,y)

. (4)

By the Definition 1, it holds that Ωv,x = Ωd+1
v,x , and Ω1

v,x is simply the MRF
instance deleting vertex v, which is independent of the choice of x. Therefore,

(4) =
Fv(x)Z(Ω

d+1
v,x )/Z(Ω1

v,x)
∑

y∈X Fv(y)Z(Ω
d+1
v,y )/Z(Ω1

v,y)
=

Fv(x)
∏d
i=1

Z(Ωi+1
v,x )

Z(Ωi
v,x)

∑
y∈X Fv(y)

∏d
i=1

Z(Ωi+1
v,y )

Z(Ωi
v,y)

. (5)

The partition function of a partial pinning of Ω expands as:

Z(Ωiv,x) =
∑

x∈XV \{v}

∏

uw∈E
u�=v
w �=v

Auw(xu, xw)
∏

u∈V \{v}
Fu(xu)

i−1∏

j=1

Avvj (x, xvj ).

It can be verified that Z(Ωi+1
v,x ) =

∑
z∈X Avvi(x, z) · ZΩi

v,x
(Xvi = z). Therefore,

(5) =
Fv(x)

∏d
i=1

∑
z∈X Avvi (x, z) ·

ZΩi
v,x

(Xvi
=z)

Z(Ωi
v,x)

∑
y∈X Fv(y)

∏d
i=1

∑
z∈X Avvi(y, z) ·

ZΩi
v,y

(Xvi
=z)

Z(Ωi
v,y)

=
Fv(x)

∏d
i=1

∑
z∈X Avvi (x, z) · PΩi

v,x
(Xvi = z)

∑
y∈X Fv(y)

∏d
i=1

∑
z∈X Avvi(y, z) · PΩi

v,y
(Xvi = z)

=
Fv(x)

∏d
i=1

(

Avvi
(x,x)−∑z �=x(Avvi

(x,x)−Avvi
(x,z))PΩi

v,x
(Xvi

=z)

)

∑
y∈X Fv(y)

∏d
i=1

(

Avvi
(y,y)−∑z �=y(Avvi

(y,y)−Avvi
(y,z))PΩi

v,y
(Xvi

=z)

) ,

where the last equation uses the fact that
∑

z∈X PΩi
v,y

(Xvi = z) = 1.

3.1 Algorithms Based on the Computation Tree Recursion

Given an MRF instance Ω = (G,X ,A,F ) on underlying graph G = (V,E), a
vertex v ∈ V with d neighbors v1, v2, . . . , vd in G and a spin state x ∈ X , we
define the following function:

fΩ,v,x(p) �
Fv(x)

∏d
i=1(Avvi

(x,x)−∑z �=x(Avvi
(x,x)−Avvi

(x,z))pi,x,z)
∑

y∈X Fv(y)
∏

d
i=1(Avvi

(y,y)−∑z �=y(Avvi
(y,y)−Avvi

(y,z))pi,y,z)
(6)

over the domain of vectors p = (pi,y,z, 1 ≤ i ≤ d; y, z ∈ X ; y �= z) ∈ [0, 1]dq(q−1)

satisfying that
∑

z �=y pi,y,z ≤ 1 for every 1 ≤ i ≤ d and y ∈ X . Due to Proposi-
tion 1 we have PΩ(Xv = x) = fΩ,v,x(p) where pi,y,z = PΩi

v,y
(Xvi = z) for each

1 ≤ i ≤ d and y, z ∈ X that y �= z. This already gives us a procedure, called
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the computation tree recursion, for computing the exact value of a marginal
probability PΩ(Xv = x). Note that it terminates since each partial pinning Ωiv,y
deletes a vertex v from the current underlying graph.

It is easy to verify the following closure property of the computation tree
recursion: If each pi,y,z is replaced by an estimation P̂Ωi

v,y
(Xvi = z) of marginal

PΩi
v,y

(Xvi = z) such that P̂Ωi
v,y

(Xvi = z) ∈ [0, 1] and
∑

z �=y P̂Ωi
v,y

(Xvi = z) ≤ 1

then the outcome of the recursion P̂Ω(Xv = x) = fΩ,v,x(p) as an estimation of

PΩ(Xv = x) still satisfies that P̂Ω(Xv = x) ∈ [0, 1] and
∑

x∈X P̂Ω(Xv = x) = 1.
The size of the computation tree can be easily of exponential in the size of

the underlying graph. We can run the computation tree recursion up to t levels
and use a naive estimation of marginals for the base cases. Formally, for t ≥ 0,

the quantity P̂
(t)
Ω (Xv = x) is recursively defined as follows:

– If t = 0, let P̂
(0)
Ω (Xv = x) = Fv(x)∑

y∈X Fv(y)
.

– If t > 0, let P̂
(t)
Ω (Xv = x) = fΩ,v,x(p̂) where p̂i,y,z = P̂

(t−1)
Ωi

v,y
(Xvi = z) for each

1 ≤ i ≤ d and y, z ∈ X that y �= z.

The value of the base case P̂
(0)
Ω (Xv = x) is not important due to a correlation

decay property we prove later. As shown in [10], on graphs of constant maximum

degrees, the quantity P̂
(t)
Ω (Xv = x) can be efficiently computed by dynamic

programming when t = O(log n).
The partition function can be approximated from estimations of marginals by

the following standard procedure. Enumerate the vertices in V as v1, v2, . . . , vn.

1. Let Ω1 = Ω. For k = 1, 2, . . . , n, assuming that the Ωk is well-defined, use

the computation tree recursion to compute P̂
(t)
Ωk

(Xvk = x) for all x ∈ X ,
choose xk to be the x which maximizes the P̂

(t)
Ωk

(Xvk = x) and construct
Ωk+1 = Pinvk,xk

(Ωk) as a pinning of Ωk.

2. Compute that Ẑ(Ω) =
∏

e=uv∈E Ae(xu,xv)
∏

v∈V Fv(xv)
∏n

k=1 P̂
(t)
Ωk

(Xvk
=xvk

)
and return Ẑ(Ω).

This algorithm is the same as the one proposed in [10], except for using a sim-
plified computation tree recursion, thus by the same analysis as in [10], we have
the following proposition.

Proposition 2. Let Ω = (G,X ,A,F ) be an MRF instance such that G has

maximum degree Δ and q = |X |. The value of Ẑ(Ω) can be computed in time
poly(|Ω|) · (qΔ)O(t).

3.2 Correlation Decay on the Computation Tree

The above algorithm approximates the marginal probabilities by simulating a
tree-structured dynamical system for a limited number of iterations. The accu-
racy of this approximation relies on the following property of correlation decay.
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Definition 2 (Correlation Decay). Let M be a family of MRFs. We say that
the computation tree recursion exhibits exponential correlation decay over M if
there exists a constant C > 0 such that given any MRF instance Ω ∈M, for all
t ≥ 1, it holds that

max
v∈VΩ
x∈X

∣
∣
∣PΩ(Xv = x) − P̂

(t)
Ω (Xv = x)

∣
∣
∣ ≤ poly(|Ω|) · exp(−C · t).

A sufficient condition for the exponential correlation decay is that the error of
estimation decays by a constant factor in every iteration. However, in general,
the systems exhibiting correlation decay may not necessarily decay in every step.
This issue has been addressed by a potential-based analysis in [19, 20, 22, 23]
for self-avoiding walk trees for 2-spin systems, which is now formalized as the
following condition for computation trees for multi-spin systems.

Definition 3 (The Amortized Decay Condition). Let M be a family of q-
state MRFs. We say that M satisfies the Amortized Decay Condition if there
exists a strictly increasing differentiable function ϕ : [0, 1] → R satisfying the
following conditions:

1. Let Φ(x) = dϕ(x)
d x denote the derivative of function ϕ. We call Φ(·) the

potential function. The values of Φ(·) and 1
Φ(·) are bounded by poly(q) over

domain [0, 1].
2. Given an MRF instance Ω ∈M, a vertex v ∈ VΩ with d = deg(v) and a spin

state x ∈ X , let f = fΩ,v,x be the computation tree recursion defined by (6),
and define the amortized decay rate as

κ(p) �
∑

1≤i≤d
y �=z

∣
∣
∣
∣
∂f(p)

∂pi,y,z

∣
∣
∣
∣
Φ(f(p))

Φ(pi,y,z)
. (7)

There exists a constant 0 < κ < 1, such that for every MRF instance Ω ∈
M, vertex v ∈ VΩ and spin state x ∈ X , it holds that κ(p) ≤ κ for all
p = (pi,y,z, 1 ≤ i ≤ d ∧ y, z ∈ X ∧ y �= z) ∈ [0, 1]dq(q−1) satisfying that∑

z �=y pi,y,z ≤ 1 for all i and y.

We may replace the first condition by a more sophisticated bound on the values
of |Φ(·)| and 1

|Φ(·)| , which will give us more freedom to choose potential functions,

although the current simple bound is sufficient for our analysis.
We say a family M of MRF instances is closed under partial pinning if for

every Ω = (G,X ,A,F ) ∈ M, every vertex v ∈ VG with d = deg(v), spin state
x ∈ X and 1 ≤ i ≤ d, it holds for the partial pinning Ωiv,x of Ω that Ωiv,x ∈ M.

Lemma 1. Let M be a family of MRFs which is closed under partial pinning.
If M satisfies the amortized decay condition then the computation tree recursion
exhibits exponential correlation decay over M.

Proof. Pick an MRF instance Ω ∈ M, a vertex v ∈ VΩ with d neighbors
v1, v2, . . . , vd and a spin state x ∈ X . Let ϕ : [0, 1] → R be the monotone
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differentiable function and Φ(·) be its derivative, as required by the amortized
decay condition. Consider the corresponding recursion f = fΩ,v,x.

We define the following notations: Let p = PΩ(Xv = x), p̂ = P̂
(t)
Ω (Xv = x),

and for every 1 ≤ i ≤ d and y, z ∈ X that y �= z, let pi,y,z = PΩi
v,y

(Xvi = z) and

p̂i,y,z = P̂
(t−1)
Ωi

v,y
(Xvi = z). Obviously, we have p = f(p) and p̂ = f(p̂). We also

denote that ξ = ϕ(p), ξ̂ = ϕ(p̂), ξi,y,z = ϕ(pi,y,z) and ξ̂i,y,z = ϕ(p̂i,y,z), respec-
tively. Let ε = |p− p̂| = |f(p)− f(p̂)|, δ = |ϕ(p) − ϕ(p̂)| = |ϕ(f(p))− ϕ(f(p̂))|,
εi,y,z = |pi,y,z− p̂i,y,z|, and δi,y,z = |ϕ(pi,y,z)−ϕ(p̂i,y,z)| be the respective errors.
We have

δ =
∣
∣
∣ξ − ξ̂

∣
∣
∣ = |ϕ(f(p))− ϕ(f(p̂))| =

∣
∣ϕ

(
f
(
ϕ−1 (q)

))− ϕ (
f
(
ϕ−1 (q̂)

))∣
∣ .

Due to the Mean Value Theorem, there exist ξ̃i,y,z ∈ [0, 1] and accordingly

p̃i,y,z = ϕ−1(ξ̃i,y,z), 1 ≤ i ≤ d, y, z ∈ X , y �= z, such that

δ =
∑

1≤i≤d
y �=z

∣
∣
∣
∣
∂f(p̃)

∂p̃i,y,z

∣
∣
∣
∣
Φ(f(p̃))

Φ(p̃i,y,z)
· δi,y,z ≤ κ(p̃) · max

1≤i≤d
y �=z

δi,y,z,

where κ(p) is defined by (7). Since M satisfies the amortized decay condition,
there exists a universal constant κ < 1 such that κ(p̃) ≤ κ. And since M is closed
under partial pinning, every Ωiv,y still belongs to M. Therefore, by induction we
have that δ ≤ κtδ0, where δ0 = |ϕ(p0)−ϕ(p̂0)| such that p0 = PΩ′(Xu = w) and

p̂0 = P̂
(0)
Ω′ (Xu = w) for some Ω′ ∈ M, u ∈ VΩ′ and x ∈ X , where Ω′ is an MRF

instance resulting from applying t partial pinnings on the original Ω.
By the Mean Value Theorem, there exists a p̃0 ∈ [0, 1] such that δ0 = |ϕ(p0)−

ϕ(p̂0)| ≤ |Φ(p̃0)|, which is upper bounded by qc for some constant c due to the
requirement of amortized decay condition, thus δ ≤ κtδ0 ≤ qcκt. Recall that
δ = |ϕ(p) − ϕ(p̂)|. Also by the Mean Value Theorem there exists p̃ ∈ [0, 1] such
that δ = |ϕ(p)−ϕ(p̂)| = |Φ(p̃)||p− p̂| = |Φ(p̃)|ε, thus ε = δ

|Φ(p̃)| ≤ qcδ. Altogether
we have that

∣
∣
∣PΩ(Xv = x)− P̂

(t)
Ω (Xv = x)

∣
∣
∣ = ε ≤ qcδ ≤ qcκtδ0 ≤ q2cκt.

And this holds for every Ω ∈ M, v ∈ VΩ, x ∈ X and t ≥ 1, with the univer-
sal constants c and κ < 1, which implies the exponential correlation decay of
computation tree recursion over M.

The following lemma is proved by verifying the amortized decay condition.

Lemma 2. Let M be a family of MRFs satisfying (1). The computation tree
recursion exhibits exponential correlation decay over M.

Proof. Let M
∗ be the closure of M under partial pinning, thus every instance

fromM
∗ is either an instance Ω ∈M or an outcome of successive partial pinnings

of it, and the familyM
∗ is closed under partial pinning. We show thatM∗ satisfies



648 P. Lu and Y. Yin

the amortized decay condition. We choose a monotone function ϕ : [0, 1] → R

so that its derivative Φ satisfies that Φ(p) =
(
p+ 1

100q

)−1
. Thus both Φ(·) and

1
Φ(·) are bounded by polynomial of q over [0, 1].

Let Ω = (G,X ,A,F ) ∈ M
∗ be an MRF instance on an underlying graph G

with maximum degree Δ, v ∈ VG a vertex with d = deg(v), and x ∈ X a spin
state. Let f = fΩ,v,x be the recursion defined by (6).

We define some shorthand notations. For each 1 ≤ i ≤ d and y, z ∈ X that

y �= z, let ai,y,z = 1− Avvi
(y,z)

Avvi
(y,y) and by = Fv(y)

∏d
i=1Avvi(y, y), and denote that

si,y = 1−∑
z �=y ai,y,z ·pi,y,z, sy = by

∏d
i=1 si,y, and s =

∑
y∈X sy. Then we have

f(p) =
bx

∏d
i=1

(
1−∑

z �=x ai,x,z · pi,x,z
)

∑
y∈X by

∏d
i=1

(
1−∑

z �=y ai,y,z · pi,y,z
) =

sx
s
.

For p = (pi,y,z, 1 ≤ i ≤ d; y, z ∈ X ; y �= z) ∈ [0, 1]dq(q−1) such that
∑

z �=y pi,y,z ≤
1 for all i and y, it holds that si,y ≥ 0 for any i and y, and f(p) ∈ [0, 1]. The
partial derivatives satisfy:

∣
∣
∣
∣
∂f(p)

∂pi,x,z

∣
∣
∣
∣ =

∣
∣
∣
∣
ai,x,zsx (s− sx)

s2 · si,x

∣
∣
∣
∣ = f(p)(1 − f(p)) |ai,x,z |

si,x
,

∑

y �=x

∣
∣
∣
∣
∂f(p)

∂pi,y,z

∣
∣
∣
∣ =

∑

y �=x

∣
∣
∣
∣
ai,y,zsxsy
s2 · si,y

∣
∣
∣
∣ = f(p)

∑

y �=x

sy
s

d∑

i=1

|ai,y,z|
si,y

.

The amortized decay rate defined by (7) is then bounded as

κ(p) =
∑

1≤i≤d
y �=z

∣
∣
∣
∣
∂f(p)

∂pi,y,z

∣
∣
∣
∣
Φ(f(p))

Φ(pi,y,z)

= f(p)(1− f(p))Φ(f(p))
d∑

i=1

1

si,x

∑

z �=x

|ai,x,z|
Φ(pi,x,z)

+ f(p)Φ(f(p))
∑

y �=x

sy
s

d∑

i=1

1

si,y

∑

z �=y

|ai,y,z|
Φ(pi,y,z)

≤
∑

1≤i≤d
z �=x

|ai,x,z|
si,x

·
(

pi,y,z +
1

100q

)

+max
y �=x

∑

1≤i≤d
z �=y

|ai,y,z|
si,y

·
(

pi,y,z +
1

100q

)

≤ 101

50
Δ · max

1≤i≤d
z �=y

|ai,y,z|
si,y

.

For every 1 ≤ i ≤ d and y, z ∈ X that y �= z, it can be verified that si,y =

pi,y,y +
∑
z �=y

Avvi
(y,z)

Avvi
(y,y) · pi,y,z ≥ 1

cA
, and

|ai,y,z| =
∣
∣
∣
∣1−

Avvi(y, z)

Avvi (y, y)

∣
∣
∣
∣ ≤ max

{
cA − 1

cA
, cA − 1

}

≤ cA − 1.
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Note that the partial pinning does not affect the edge activity A, thus for M

satisfying (1), for every Ω ∈ M
∗ the cA still satisfies that 3Δ(cA − 1) ≤ 1.

Therefore,

κ(p) ≤ 101

50
ΔcA(cA − 1) ≤ 101

150
(1 +

1

3Δ
) ≤ 404

450
< 1.

Therefore, the MRF family M
∗ satisfies the amortized decay condition. By

Lemma 1, the computation tree recursion exhibits exponential correlation decay
over M∗ thus also over its subfamily M.

Proof of Theorem 3: Let Ω = (G,X ,A,F ) ∈ M be an MRF instance
and G = (V,E). Enumerate the vertices in V as v1, v2, . . . , vn. For each 1 ≤
k ≤ n, let P

(t)
Ωk

(Xvk = xk) be computed by the algorithm in Section 3.1, where
Ω1 = Ω and Ωk+1 = Pinvk,xk

(Ωk). It is easy to verify that Ωk still satisfies
the condition (1) for every k since pinning increases neither Δ nor cA. Let

Ẑ(Ω) = w(x)
∏n

k=1 P̂
(t)
Ωk

(Xvk
=xvk

)
where w(x) =

∏
e=uv∈E Ae(xu, xv)

∏
v∈V Fv(xv). It

holds that

PΩ(X = x) =
n∏

k=1

PΩ(Xvk = xk | ∀1 ≤ i < k,Xvi = xi).

As observed in [10], the marginal probability PΩ(Xvk = xk | ∀1 ≤ i < k,Xvi =
xi) = PΩk

(Xvk = xk).
Since Ωk satisfies the condition (1), by Lemma 2, there exists constant C > 0

such that
∣
∣
∣PΩk

(Xvk = xvk)− P̂
(t)
Ωk

(Xvk = xvk)
∣
∣
∣ ≤ poly(|Ω|) · exp(−C · t).

Thus by choosing appropriate t = O
(
log 1

ε + log q + logn
)
, it holds for every k

that ∣
∣
∣PΩk

(Xvk = xvk)− P̂
(t)
Ωk

(Xvk = xvk)
∣
∣
∣ ≤ ε

4qn
,

and since in the algorithm we always choose the xvk maximizing the value of

P̂
(t)
Ωk

(Xvk = xvk), we have P̂
(t)
Ωk

(Xvk = xvk) ≥ 1
q thus PΩk

(Xvk = xvk) ≥ 1
q− ε

4qn ≥
1
2q .

By definition we have PΩ(X = x) = w(x)
Z(Ω) , thus Z(Ω) = w(x)∏

n
k=1 PΩk

(Xvk
=xvk

) .

Therefore, we have

1− ε ≤
(
1− ε

2n

)n
≤ Z(Ω)

Ẑ(Ω)
=

n∏

k=1

P̂
(t)
Ωk

(Xvk = xvk)

PΩk
(Xvk = xvk)

≤
(
1 +

ε

2n

)n
≤ 1 + ε,

which is simplified as that 1− ε ≤ Ẑ(Ω)
Z(Ω) ≤ 1 + ε.

By Proposition 2, the total running time is bounded by poly(|Ω|)(qΔ)O(t).
Since t = O

(
log 1

ε + log q + logn
)
, the algorithm is an FPTAS if q and Δ are

constants, and in general the running time is bounded by |Ω|O(log |Ω|) for any
fixed 0 < ε < 1. �
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4 List-coloring

We consider list-coloring instances Ω = (G,X ,L) satisfying the condition (3).
Let Δ = ΔG be the maximum degree of G and define that χ(Δ) = (α− 1)Δ+1.
The condition (3) implies the following weaker condition:

∀v ∈ V, |Lv| − deg(v) ≥ χ(Δ). (8)

A merit of considering this weaker condition is that it is closed under partial
pinning and pinning. The pinning and partial pinning can be defined on list-
coloring instances as they are special cases of MRFs. Given a list-coloring in-
stance Ω = (G,X ,L) with underlying graph G = (V,E) and a vertex v ∈ V
with d neighbors v1, v2, . . . , vd, for each color x ∈ Lv, the pinning of Ω is a new
list-coloring instance Ωv,x = Pinv,x(Ω) = (Gv,X , L̂), where Gv is the subgraph

of G induced by V \ {v} and L̂ = (L̂u, u ∈ V \ {v}) such that L̂u = Lu \ {x}
if u is adjacent to v and L̂u = Lu if otherwise; and for each 1 ≤ i ≤ d + 1,
the partial pinning of Ω is a new list-coloring instance Ωiv,x = (Gv,X , L̃), where

L̃ = (L̃u, u ∈ V \ {v}) such that L̃u = Lu \ {x} for u = vj with j < i and

L̃u = Lu for all other u in V \ {v}. The pinning and the partial pinning does
not violate the condition (8) since it never increases the maximum degree, and
if |Lv| decreases by 1 then also deg(v) decreases by 1.

The following identity for marginals of list-coloring is proved in [10].

Proposition 3. Let Ω = (G,X ,L) be a list-coloring instance on graph G =
(V,E), v ∈ V a vertex with d neighbors v1, v2, . . . , vd where d = deg(v), and
x ∈ Lv a color. It holds that

PΩ(Xv = x) =

∏d
i=1

(
1− PΩi

v,x
(Xvi = x)

)

∑
y∈Lv

∏d
i=1

(
1− PΩi

v,x
(Xvi = y)

) .

Some simple lower and upper bounds hold for the marginals, similar to the ones
proved in [10].

Lemma 3. Let Ω = (G,X ,L) be a list-coloring instance with the maximum
degree Δ of G, satisfying the condition (8). For any vertex v ∈ VG and any color
x ∈ Lv, it holds for the marginal probability that 1

q·e
1

α−1
≤ PΩ(Xv = x) ≤ 1

χ(Δ) .

Proof. The upper bound is easy: conditioning on any coloring of the neighbos
of v, the number of remaining colors for v is at least |Lv| − deg(v) ≥ χ(Δ),
thus marginal probability is at most 1

χ(Δ) . Applying the upper bound 1
χ(Δ) to

the marginals in the numerator of the recursion in Proposition 3 and the trivial
upper bound q to the denominator, we have the lower bound 1

q·e
1

α−1
.

4.1 The Computation Tree Recursion with Adjustment

Given a list-coloring instance Ω = (G,X ,L) on graph G = (V,E), a vertex
v ∈ V with d neighbors v1, v2, . . . , vd and a color x ∈ Lv, the computation tree
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recursion fΩ,v,x can be defined on the domain of all p = (pi,y, 1 ≤ i ≤ d ∧ y ∈
Lv) ∈ [0, 1]d|Lv|:

fΩ,v,x(p) �
∏d
i=1(1 − pi,x)

∑
y∈Lv

∏d
i=1(1− pi,y)

. (9)

For t ≥ 0, the quantity P̂
(t)
Ω (Xv = x) is recursively defined as follows:

– If t = 0, let P̂
(0)
Ω (Xv = x) = 1

|Lv| .

– If t > 0, let P̂
(t)
Ω (Xv = x) = min

{
1

|Lv|−d , fΩ,v,x(p̂)
}
, where the p̂ is taken as

that p̂i,y = P̂
(t−1)
Ωi

v,x
(Xvi = y) for each 1 ≤ i ≤ d and y ∈ Lv.

Note that the only difference from the MRF case is the truncation of the value of
f(p̂) so that PΩ(Xv = x) never goes beyond the naive upper bound 1

|Lv|−d . We

call this procedure the computation tree recursion with adjustment. It is the same
as the procedure proposed in [10] except with a more simplified value truncation.

The estimation Ẑ(Ω) of the partition function is computed from these es-

timations P̂
(t)
Ω (Xv = x) of marginal probabilities by the same algorithm as in

Section 3.1. The same complexity bound as in Proposition 2 still holds.

4.2 Correlation Decay

The correlation decay of the computation tree recursion with adjustment can be
defined in the same way as in Definition 2.

Lemma 4. The computation tree recursion with adjustment exhibits exponential
correlation decay on list-coloring instances satisfying the condition (8) with α >
α∗ where α∗ ≈ 2.58071 is defined by (2) in Section 2.

Proof. Let Ω = (G,X ,L) be a list-coloring instance on the underlying graph
G = (V,E) with the maximum degree Δ = Δ(G) satisfying the condition (8).
It can be verified that all the list-coloring instances generated by recursively
applying partial pinnings on Ω still satisfy the condition (8).

Let v ∈ V be a vertex with d neighbors v1, v2, . . . , vd, x ∈ Lv a color, and
f = fΩ,v,x the recursion defined by (9). It holds that PΩ(Xv = x) = f(p)
where p = (pi,y , 1 ≤ i ≤ d ∧ y ∈ Lv) and each pi,y = PΩi

v,x(Xvi
=y). We choose

the monotone differentiable function ϕ : [0, 1] → R so that its derivative is

Φ(p) = dϕ(p)
d p = 1

(1−p)√p . We define the amortized decay rate in the same way

as (7) by:

κ(p) �
∑

1≤i≤d
y∈Lv

∣
∣
∣
∣
∂f(p)

∂pi,y

∣
∣
∣
∣
Φ(f(p))

Φ(pi,y)
.
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By the same analysis as in Lemma 1, due to the mean value theorem, we have
∣
∣
∣ϕ (PΩ(Xv = x))− ϕ

(
P̂
(t)
Ω (Xv = x)

)∣
∣
∣

≤κ(p) · max
1≤i≤d
y∈Lv

∣
∣
∣ϕ

(
PΩi

v,x
(Xvi = y)

)
− ϕ

(
P̂
(t−1)
Ωi

v,x
(Xvi = y)

)∣
∣
∣ ,

for some p = (pi,y, 1 ≤ i ≤ d∧y ∈ Lv) such that the value of each pi,y is between

PΩi
v,x

(Xvi = y) and P̂
(t−1)
Ωi

v,x
(Xvi = y). By Lemma 3, we have PΩ(Xvi = y) ≤ 1

χ(Δ)

and due to the definition of the algorithm, P̂
(t)
Ω (Xvi = y) ≤ 1

|Lv|−d ≤ 1
χ(Δ) , thus

pi,y ≤ 1
χ(Δ) for any 1 ≤ i ≤ d and y ∈ Lv.

By our choice of Φ(·), it can be verified that

κ(p) =

d∑

i=1

∣
∣
∣
∣
∂f(p)

∂pi,x

∣
∣
∣
∣
Φ(f(p))

Φ(pi,x)
+

∑

1≤i≤d
y∈Lv\{x}

∣
∣
∣
∣
∂f(p)

∂pi,y

∣
∣
∣
∣
Φ(f(p))

Φ(pi,y)

≤
√
f(p)

(
d∑

i=1

√
pi,x +

d∑

i=1

max
y �=x
√
pi,y

)

≤
√
√
√
√
√

∏d
i=1(1− pi,x)

(d+ χ(Δ))
(
1− 1

χ(Δ)

)d

(
d∑

i=1

√
pi,x +

d
√
χ(Δ)

)

, (10)

where the last inequality is due to that pi,x ≤ 1
χ(Δ) and |Lv| ≤ d + χ(Δ).

Let p̄ = 1 −
(∏d

i=1(1 − pi,x)
) 1

d

. Then p̄ ≤ 1
χ(Δ) since all pi,x satisfy so, and

∏d
i=1(1− pi,x) = (1− p̄)d. Let �i = ln(1− pi,x), thus

∑d
i=1 �i = d ln(1− p̄). The

function g(x) =
√
1− ex is concave over x ≤ 0, thus by Jensen’s inequality,

d∑

i=1

√
pi,x =

d∑

i=1

g(�i) ≤ d · g
(
1

d

d∑

i=1

�i

)

= d
√
p̄.

Therefore, (10) can be bounded by its symmetrized form as follows:

κ(p) ≤ κ(p̄) � d
√
d+ χ(Δ)

(
1− p̄

1− 1
χ(Δ)

) d
2
(
√
p̄+

1
√
χ(Δ)

)

≤ Δ
√
Δ+ χ(Δ)

(
1− p̄

1− 1
χ(Δ)

)Δ
2
(
√
p̄+

1
√
χ(Δ)

)

.

where the last inequality is due to that p̄ ≤ 1
χ(Δ) and d ≤ Δ.

Let p̄ = ρ
χ(Δ) for ρ ∈ [0, 1]. It holds that κ(p̄) ≤ (

√
ρ+1)√

α(α−1) exp
(
− ρ−1

2(α−1)
)
,

whose maximum is achieved when ρ = 1
2 (2α− 1−√4α− 3), such that

κ(p̄) ≤ κα �
√
2 +

√
2α− 1−√4α− 3

√
2α(α− 1)

exp

(
3− 2α+

√
4α− 3

4(α− 1)

)

.
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It can be verified that κα is is monotonously decreasing from +∞ to 0 for α > 1,
so κα < 1 if α > α∗ where α∗ is the unique solution to κα = 1, as defined by (2).

Since the condition (8) is closed under partial pinning, by induction we have
∣
∣
∣ϕ (PΩ(Xv = x)) − ϕ

(
P̂
(t)
Ω (Xv = x)

)∣
∣
∣

≤κt
∣
∣
∣ϕ (PΩ′(Xu = z))− ϕ

(
P̂
(0)
Ω′ (Xu = z)

)∣
∣
∣ ,

where Ω′ = (G′,X ,L′) is a list-coloring instance resulting from recursively ap-
plying t partial pinnings on the original Ω. By the same mean value theorem

argument as in Lemma 1, we have
∣
∣
∣PΩ(Xv = x)− P̂

(t)
Ω (Xv = x)

∣
∣
∣ ≤ Φ(p̃0)

Φ(p̃) κ
t
α, for

some p̃ ∈ [0, 1] and some p̃0 between PΩ′(Xu = w) and P̂
(0)
Ω′ (Xu = w) = 1

|L′
u| .

Recall that the condition (8) is closed under partial pinning. It holds that
1
q ≤ 1

|L′
v| ≤

1
χ(Δ(G′)) , and by Lemma 3 it also holds that 1

q·e1/(α−1) ≤ PΩ′(Xu =

w) ≤ 1
χ(Δ(G′)) . Therefore, p̃0 ∈

[
1

q·e1/(α−1) ,
1

χ(Δ(G′))

]
. By our choice of Φ(p), we

have Φ(p̃0)
Φ(p̃) ≤

√
q·e

1
2(α−1)

1− 1
χ(Δ(G′))

= O(
√
q).

In conclusion, if the condition (8) is satisfied with α > α∗ ≈ 2.58071, there

exists a constant κ < 1 such that
∣
∣
∣PΩ(Xv = x)− P̂

(t)
Ω (Xv = x)

∣
∣
∣ ≤ O(√q)κt.

Proof of Theorem 4: We first prove the theorem under the weaker con-
dition (8), which is closed under pinning and partial pinning. The proof is the
same as the proof of Theorem 3. The theorem with the stronger condition (3)
follows as a consequence. �
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Abstract. We present an explicit pseudorandom generator for oblivi-
ous, read-once, permutation branching programs of constant width that
can read their input bits in any order. The seed length is O(log2 n),
where n is the length of the branching program. The previous best seed
length known for this model was n1/2+o(1), which follows as a special
case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS
2012) (which gives a seed length of s1/2+o(1) for arbitrary branching
programs of size s). Our techniques also give seed length n1/2+o(1) for

general oblivious, read-once branching programs of width 2n
o(1)

, which
is incomparable to the results of Impagliazzo et al.

Our pseudorandom generator is similar to the one used by Gopalan et
al. (FOCS 2012) for read-once CNFs, but the analysis is quite different;
ours is based on Fourier analysis of branching programs. In particular, we
show that an oblivious, read-once, regular branching program of width
w has Fourier mass at most (2w2)k at level k, independent of the length
of the program.

1 Introduction

A major open problem in the theory of pseudorandomness is to construct an
“optimal” pseudorandom generator for space-bounded computation. That is, we
want an explicit pseudorandom generator that stretches a uniformly random
seed of length O(log n) to n bits that cannot be distinguished from uniform by
any O(log n)-space algorithm (which receives the pseudorandom bits one at a
time, in a streaming fashion, and may be nonuniform).

Such a generator would imply that every randomized algorithm can be de-
randomized with only a constant-factor increase in space (RL = L), and would
also have a variety of other applications, such as in streaming algorithms [1],
deterministic dimension reduction and SDP rounding [2], hashing [3], hardness
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amplification [4], almost k-wise independent permutations [5], and cryptographic
pseudorandom generator constructions [6].

Unfortunately, for fooling general logspace algorithms, there has been essen-
tially no improvement since the classic work of Nisan [7], which provided a pseu-
dorandom generator of seed length O(log2 n). Instead, a variety of works have
improved the seed length for various restricted classes of logspace algorithms,
such as algorithms that use no(1) random bits [8, 9], combinatorial rectangles
[10–13] random walks on graphs [14, 15], branching programs of width 2 or 3
[16–18], and regular or permutation branching programs (of bounded width)
[19–23].

The vast majority of these works are based on Nisan’s generator or its variants
by Impagliazzo, Nisan, and Wigderson [24] and Nisan and Zuckerman [8], and
show how the analysis (and hence the final parameters) of these generators can
be improved for logspace algorithms that satisfy the additional restrictions. All
three of these generators are based on recursive use of the following principle: if
we consider two consecutive time intervals I1, I2 in a space s computation and
use some randomness r to generate the pseudorandom bits fed to the algorithm
during interval I1, then at the start of I2, the algorithm will ‘remember’ at most
s bits of information about r. So we can use a randomness extractor to extract
roughly |r|−s almost uniform bits from r (while investing only a small additional
amount of randomness for the extraction). This paradigm seems unlikely to yield
pseudorandom generators for general logspace computations that have a seed
length of log1.99 n (see [20]).

Thus, there is a real need for a different approach to constructing pseudo-
random generators for space-bounded computation. One new approach has been
suggested in the recent work of Gopalan et al. [25], which constructed improved
pseudorandom generators for read-once CNF formulas and combinatorial rect-
angles, and hitting set generators for width 3 branching programs. Their basic
generator (e.g. for read-once CNF formulas) works as follows: Instead of consid-
ering a fixed partition of the bits into intervals, they pseudorandomly partition
the bits into two groups, assign the bits in one group using a small-bias genera-
tor [26], and then recursively generate bits for the second group. While it would
not work to assign all the bits using a single sample from a small-bias generator,
it turns out that generating a pseudorandom partial assignment is a significantly
easier task.

An added feature of the Gopalan et al. generator is that its pseudorandom-
ness properties are independent of the order in which the output bits are read
by a potential distinguisher. In contrast, Nisan’s generator and its variants de-
pend heavily on the ordering of bits (the intervals I1 and I2 above cannot be
interleaved), and in fact it is known that a particular instantiation of Nisan’s
generator fails to be pseudorandom if the (space-bounded) distinguisher can read
the bits in a different order [27, Corollary 3.18]. Recent works [28, 29] have con-
structed nontrivial pseudorandom generators for space-bounded algorithms that
can read their bits in any order, but the seed length achieved is larger than

√
n.



Pseudorandomness for Regular Branching Programs via Fourier Analysis 657

In light of the above, a natural question is whether the approach of Gopalan
et al. can be extended to a wider class of space-bounded algorithms. We make
progress on this question by using the same approach to construct a pseudoran-
dom generator with seed length O(log2 n) for constant-width, read-once, obliv-
ious permutation branching programs that can read their bits in any order. In
analysing our generator, we develop new Fourier-analytic tools for proving pseu-
dorandomness against space-bounded algorithms.

1.1 Models of Space-Bounded Computation

A (layered) branching program B is a nonuniform model of space-bounded
computation. The program maintains a state from the set [w] = {1, . . . , w} and,
at each time step i, reads one bit of its input x ∈ {0, 1}n and updates its state
according to a transition function Bi : {0, 1} × [w] → [w]. The parameter w is
called the width of the program, and corresponds to a space bound of logw
bits. We allow the transition function Bi to be different at each time step i. We
consider several restricted forms of branching programs:

– Read-once branching programs read each input bit at most once.
– Oblivious branching programs choose which input bit to read depending

only on the time step i, and not on the current state
– Ordered branching programs (a.k.a. streaming algorithms) always read

input bit i in time step i (hence are necessarily both read-once and oblivious).

To derandomize randomized space-bounded computations (e.g. prove RL = L),
it suffices to construct pseudorandom generators that fool ordered branching
programs of polynomial width ( w = poly(n)), and hence this is the model ad-
dressed by most previous constructions (including Nisan’s generator). However,
the more general models of oblivious and read-once branching programs are also
natural to study, and, as discussed above, can spark the development of new
techniques for reasoning about pseudorandomness.

As mentioned earlier, Nisan’s pseudorandom generator [7] achieves O(log2 n)
seed length for ordered branching programs of polynomial width. It is known
how to achieve O(log n) seed length for ordered branching programs width 2 [17],
and for width 3, it is only known how to construct “hitting-set generators” (a
weaker form of pseudorandom generators) with seed length O(log n) [18, 25].
(The seed length is Õ(logn) if we want the error of the hitting set generator to
be subconstant.) For pseudorandom generators for width w ≥ 3 and hitting-set
generators for width w ≥ 4, there is no known construction with seed length
o(log2 n).

The study of pseudorandomness against non-ordered branching programs
started more recently. Tzur [27] showed that there are oblivious, read-once,
constant-width branching programs that can distinguish the output of Nisan’s
generator from uniform. Bogdanov, Papakonstantinou, and Wan [28] exhibited
a pseudorandom generator with seed length (1−Ω(1)) ·n for oblivious read-once
branching programs of width w for w = 2Ω(n). Impagliazzo, Meka, and Zucker-
man [29] gave a pseudorandom generator with seed length s1/2+o(1) for arbitrary
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branching programs of size s; note that s = O(nw) for a read-once branching
program of width w and length n.

We consider two further restrictions on branching programs:

– Regular branching programs are oblivious branching programs with the
property that, if the distribution on states in any layer is uniformly random
and the input bit read by the program at that layer is uniformly random, then
the resulting distribution on states in the next layer is uniformly random.
This is equivalent to requiring that the bipartite graph associated with each
layer of the program, where we have edges from each state u ∈ [w] in layer
i to the possible next-states u0, u1 ∈ [w] in layer i + 1 (if the input bit is b,
the state goes to ub), is a regular graph.

– Permutation branching programs are a further restriction, where we
require that for each setting of the input string, the mappings between layers
are permutations. This is equivalent to saying that (regular) bipartite graphs
corresponding to each layer are decomposed into two perfect matchings, one
corresponding to each value of the current input bit being read.

The fact that pseudorandomness for permutation branching programs might be
easier than for general branching programs was suggested by the proof that
Undirected S-T Connectivity is in Logspace [14] and its follow-ups [15, 30].
Specifically, the latter works construct “pseudorandom walk generators” for
“consistently labelled” graphs. Interpreted for permutation branching programs,
these results ensure that if an ordered permutation branching program has the
property that every layer has a nonnegligible amount of “mixing” — meaning
that the distribution on states becomes closer to uniform, on a truly random in-
put — then the overall program will also have mixing when run on the output of
the pseudorandom generator (albeit at a slower rate). The generator has a seed
length of O(log n) even for ordered permutation branching programs of width
poly(n). Reingold, Trevisan, and Vadhan [15] also show that if a generator with
similar properties could be constructed for (ordered) regular branching programs
of polynomial width, then this would suffice to prove RL = L. Thus, in the case
of polynomial width, regularity is not a significant constraint.

Recently, there has been substantial progress on constructing pseudorandom
generators for ordered regular and permutation branching programs of constant
width. Braverman, Rao, Raz, and Yehudayoff [19] and Brody and Verbin [20]
gave pseudorandom generators with seed length Õ(logn) for ordered regular
branching programs of constant width. Koucký, Nimbhorkar and Pudlák [21]
showed that the seed length could be further improved to O(log n) for ordered,
permutation branching programs of constant width; see [22, 23] for simplifica-
tions and improvements.

All of these generators for ordered regular and permutation branching pro-
grams are based on refined analyses of the pseudorandom generator construction
of Impagliazzo, Nisan, and Wigderson [24].
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1.2 Our Results and Techniques

Our main result is a pseudorandom generator for read-once, oblivious, (un-
ordered) permutation branching programs of constant width:

Theorem 1.1 (Main Result). For every constant w, there is an explicit pseu-

dorandom generator G : {0, 1}O(log2 n) → {0, 1}n fooling oblivious, read-once (but
unordered), permutation branching programs of width w and length n.

To be precise, the seed length and space complexity of the pseudorandom gen-
erator is

O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

for oblivious, read-once, permutation branching programs of length n and width
w, where ε is the error.

Previously, it was only known how to achieve a seed length of n1/2+o(1) for
this model, as follows from the aforementioned results of Impagliazzo, Meka, and
Zuckerman [29] (which actually holds for arbitrary branching programs).

Our techniques also achieve seed length n1/2+o(1) for arbitrary read-once,

oblivious branching programs of width up to 2n
o(1)

:

Theorem 1.2. There is an explicit pseudorandom generator G : {0, 1}Õ(
√
n logw)

→ {0, 1}n fooling oblivious, read-once (but unordered) branching programs of
width w and length n.

This result is incomparable to that of Impagliazzo et al. [29]. Their seed length
depends polynomially on the width w, so require width w = no(1) to achieve
seed length n1/2+o(1). On the other hand, our result is restricted to read-once,
oblivious branching programs.

Our construction of the generator in Theorem 1.1 is essentially the same
as the generator of Gopalan et al. [25] for read-once CNF formulas, but with
a new analysis (and different setting of parameters) for read-once, oblivious,
permutation branching programs. The generator works by selecting a subset
T ⊂ [n] of output coordinates in a pseudorandom way, assigning the bits in
T using another pseudorandom distribution X , and then recursively assigning
the bits outside T . We generate T using an almost O(log n)-wise independent
distribution, including each coordinate i ∈ T with a constant probability pw
depending only on the width w. We assign the bits in T using a small-bias
distribution X on {0, 1}n [26]; such a generator has the property that for every
nonempty subset S ⊂ [n], the parity ⊕i∈SXi of bits in S has bias at most ε.
Generating T requires O(log n) random bits, generating X requires O(log n) bits
(even for ε = 1/poly(n)), and we need O(log n) levels of recursion to assign all
the bits. This gives us our O(log2 n) seed length.

Let B : {0, 1}n → {0, 1} be a function computed by an oblivious, read-once,
permutation branching program of width w. Following [25], to show that our
pseudorandom generator fools B, it suffices to show that the partial assignment
generated in a single level of recursion approximately preserves the acceptance
probability of B (on average). To make this precise, we need a bit of notation.
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For a set t ⊂ [n], a string x ∈ {0, 1}n, and y ∈ {0, 1}n−|t|, define Select(t, x, y) ∈
{0, 1}n as follows:

Select(t, x, y)i =

{
xi if i ∈ t
y|{j≤i:j /∈t}| if i /∈ t

Once we choose a set t ← T and an assignment x ← X to the variables in t,
the residual acceptance probability of B is P

U
[B(Select(t, x, U)) = 1], where U

is the uniform distribution on {0, 1}n. So, the average acceptance probability
over t ← T and x ← X is P

T,X,U
[B(Select(T,X,U)) = 1]. We would like this

to be close to the acceptance probability under uniformly random bits, namely
P
U
[B(U) = 1] = P

T,U ′,U
[B(Select(T, U ′, U) = 1]. That is, we would like our small-

bias distribution X to fool the function B′(x) := E
T,U

[B(Select(T, x, U))]. The

key insight in [25] is that B′ can be a significantly easier function to fool than
B, and even than fixed restrictions of B (like B(Select(t, ·, y)) for fixed t and
y). We show that the same phenomenon holds for oblivious, read-once, regular
branching programs. (The reason that the analysis of our overall pseudorandom
generator applies only for permutation branching programs is that regularity
is not preserved under restriction (as needed for the recursion), whereas the
permutation property is.)

To show that a small-bias space fools B′(x), it suffices to show that the

Fourier mass of B′, namely
∑

s∈{0,1}n,s�=0 |B̂′[s]|, is bounded by poly(n). (Here

B̂′[s] = E
U

[
B′[U ] · (−1)s·U] is the standard Fourier transform over Zn2 . So B̂

′[s]

measures the correlation of B′ with the parity function defined by s.) We show
that this is indeed the case (for most choices of the set t← T ):

Theorem 1.3 (Main Lemma). For every constant w, there are constants
pw > 0 and dw ∈ N such that the following holds. Let B : {0, 1}n → {0, 1}
be computed by an oblivious, read-once, regular branching program of width
w and length n ≥ dw. Let T ⊂ [n] be a randomly chosen set so that every
coordinate i ∈ [n] is placed in T with probability pw and these choices are
n−dw-almost (dw logn)-wise independent. Then with high probability over t← T
B′(x) = E

U
[B(Select(t, x, U))] has Fourier mass at most ndw .

As a warm-up, we begin by analysing the Fourier mass in the case the set T
is chosen completely at random, with every coordinate included independently
with probability pw. In this case, it is more convenient to average over T and work

with B′(x) = E
T,U

[B(Select(T, x, U))]. Then it turns out that B̂′[s] = p
|s|
w · B̂[s],

where |s| denotes the Hamming weight of the vector s. Thus, it suffices to analyse
the original program B and show that for each k ∈ {1, · · · , n}, the Fourier mass
of B restricted to s of weight k is at most ckw, where cw is a constant depending
only on w (not on n). We prove that this is indeed the case for regular branching
programs:
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Theorem 1.4. Let B : {0, 1}n → {0, 1} be a function computed by an oblivious,
read-once, regular branching program of width w. Then for every k ∈ {1, . . . , n},
we have ∑

s∈{0,1}n:|s|=k
|B̂[s]| ≤ (2w2)k.

Our proof of Theorem 1.4 relies on the main lemma of Braverman et al. [19],
which intuitively says that in a bounded-width, read-once, oblivious, regular
branching program, only a constant number of bits have a significant effect on
the acceptance probability. More formally, if we sum, for every time step i and
all possible states v at time i, the absolute difference between the acceptance
probability after reading a 0 versus reading a 1 from state v, the total will be
bounded by poly(w) (independent of n). This directly implies a bound of poly(w)
on the Fourier mass of B at the first level: the correlation of B with a parity of
weight 1 is bounded by the effect of a single bit on the output of B. We then
bound the correlation of B with a parity of weight k by the correlation of a prefix
of B with a parity of weight k − 1 times the effect of the remaining bit on B.
Thus we inductively obtain the bound on the Fourier mass of B at level k.

Our proof of Theorem 1.3 for the case of a pseudorandom restriction T uses the
fact that we can decompose the high-order Fourier coefficients of an oblivious,
read-once branching programB′ into products of low-order Fourier coefficients of
“subprograms” (intervals of consecutive layers) of B′. Using an almost O(log n)-
wise independent choice of T enables us to control the Fourier mass at level
O(log n) for all subprograms of B′, which suffices to control the total Fourier
mass of B′.

2 Preliminaries

2.1 Branching Programs

We define a length-n, width-w program to be a function B : {0, 1}n×[w]→ [w],
which takes a start state u ∈ [w] and an input string x ∈ {0, 1}n and outputs a
final state B[x](u).

In our applications, the input x is randomly (or pseudorandomly) chosen, in
which case a program can be viewed as a Markov chain randomly taking initial
states to final states. For each x ∈ {0, 1}n, we let B[x] ∈ {0, 1}w×w be a matrix
defined by

B[x](u, v) = 1 ⇐⇒ B[x](u) = v.

For a random variableX on {0, 1}n, we have E
X
[B[X ]] ∈ [0, 1]w×w, where E

R
[f(R)]

is the expectation of a function f with respect to a random variable R. Then
the entry in the uth row and vth column E

X
[B[X ]] (u, v) is the probability that

B takes the initial state u to the final state v when given a random input from
the distribution X .

A branching program reads one bit of the input at a time (rather than reading
x all at once) maintaining only a state in [w] = {1, 2, · · · , w} at each step.
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We capture this restriction by demanding that the program be composed of
several smaller programs, as follows.

Let B and B′ be width-w programs of length n and n′ respectively. We define
the concatenation B ◦B′ : {0, 1}n+n′ × [w]→ [w] of B and B′ by

(B ◦B′)[x ◦ x′](u) := B′[x′](B[x](u)),

which is a width-w, length-(n+n′) program. That is, we runB and B′ on separate
inputs, but the final state of B becomes the start state of B′. Concatenation
corresponds to matrix multiplication—that is, (B ◦ B′)[x ◦ x′] = B[x] · B′[x′],
where the two programs are concatenated on the left hand side and the two
matrices are multiplied on the right hand side.

A length-n, width-w, ordered branching program is a program B that can
be written B = B1 ◦B2 ◦ · · · ◦Bn, where each Bi is a length-1 width-w program.
We refer to Bi as the ith layer of B. We denote the subprogram of B from
layer i to layer j by Bi···j := Bi ◦Bi+1 ◦ · · · ◦Bj .

General read-once, oblivious branching programs (a.k.a. unordered branching
programs) can be reduced to the ordered case by a permutation of the input
bits. Formally, a read-once, oblivious branching program B is an ordered
branching programB′ composed with a permutation π. That is, B[x] = B′[π(x)],
where the ith bit of π(x) is the π(i)th bit of x.

For a program B and an arbitrary distribution X , the matrix E
X
[B[X ]] is

stochastic—that is,
∑

v EX
[B[X ]] (u, v) = 1 for all u and E

X
[B[X ]] (u, v) ≥ 0 for

all u and v. A program B is called a regular program if the matrix E
U
[B[U ]]

is doubly stochastic—that is, both E
U
[B[U ]] and its transpose E

U
[B[U ]]

∗
are

stochastic. A program B is called a permutation program if B[x] is a permu-
tation matrix for every x or, equivalently, B[x] is doubly stochastic. Note that
a permutation program is necessarily a regular program and, if both B and B′

are regular or permutation programs, then so is their concatenation.
A regular program B has the property that the uniform distribution is a sta-

tionary distribution of the Markov chain E
U
[B[U ]], whereas, if B is a permutation

program, the uniform distribution is stationary for E
X
[B[X ]] for any X .

A regular branching program is a branching program where each layer Bi
is a regular program and likewise for a permutation branching program.

2.2 Fourier Analysis

Let B : {0, 1}n → R
w×w be a matrix-valued function (such as given by a length-

n, width-w branching program). Then we define the Fourier transform of B

as a matrix-valued function B̂ : {0, 1}n → R
w×w given by

B̂[s] := E
U
[B[U ]χs(U)] ,
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where s ∈ {0, 1}n (or, equivalently, s ⊂ [n]) and

χs(x) = (−1)
∑

i x(i)·s(i) =
∏

i∈s
(−1)x(i).

We refer to B̂[s] as the sth Fourier coefficient of B. The order of a Fourier

coefficient B̂[s] is |s|—the Hamming weight of s, which is the size of the set
s or the number of 1s in the string s. Note that this is equivalent to taking the
real-valued Fourier transform of each of the w2 entries of B separately, but we
will see below that this matrix-valued Fourier transform is nicely compatible
with matrix algebra.

For a random variable X over {0, 1}n we define its sth Fourier coefficient
as

X̂(s) := E
X
[χs(X)] ,

which, up to scaling, is the same as taking the real-valued Fourier transform of
the probability mass function of X . We have the following useful properties.

Lemma 2.1. Let A,B : {0, 1}n → R
w×w be matrix valued functions. Let X, Y ,

and U be independent random variables over {0, 1}n, where U is uniform. Let
s, t ∈ {0, 1}n. Then we have the following.

– Decomposition: If C[x ◦ y] = A[x] ·B[y] for all x, y ∈ {0, 1}n, then Ĉ[s ◦ t] =
Â[s] · B̂[t].

– Expectation: E
X
[B[X ]] =

∑
s B̂[s]X̂(s).

– Parseval’s Identity:
∑

s∈{0,1}n
∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2

Fr
= E

U

[
||B[U ]||2Fr

]
, where ||·||Fr is the

Frobenius norm.

The Decomposition property is what makes the matrix-valued Fourier transform
more convenient than separately taking the Fourier transform of the matrix
entries as done in [28]. If B is a length-n width-w branching program, then, for
all s ∈ {0, 1}n,

B̂[s] = B̂1[s1] · B̂2[s2] · · · · · B̂n[sn].

2.3 Fourier Mass

Define the Fourier mass of a matrix-valued function B to be

L2(B) :=
∑

s�=0

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2
,

where ||M ||2 := maxx ||xM ||2 / ||x||2 is the spectral norm. Also, define the
Fourier mass of B at level k as

Lk2(B) :=
∑

s∈{0,1}n:|s|=k

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2
.

Note that L2(B) =
∑
k≥1 L

k
2(B).

The Fourier mass is unaffected by order:
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Lemma 2.2. Let B,B′ : {0, 1}n → R
w×w be matrix-valued functions satisfying

B[x] = B′[π(x)], where π : [n]→ [n] is a permutation. Then, for all s ∈ {0, 1}n,
B̂[s] = B̂′[π(s)]. In particular, L2(B) = L2(B

′) and Lk2(B) = Lk2(B
′) for all k.

Lemma 2.2 implies that the Fourier mass of any read-once, oblivious branching
program is equal to the Fourier mass of the corresponding ordered branching
program.

A random variable X is called ε-biased if |X̂ [s]| ≤ ε for all s = 0n [26]. If
L2(B) is small, then B is fooled by any small-bias distribution:

Lemma 2.3. Let B be a length-n, width-w, branching program. Let X be a ε-
biased random variable on {0, 1}n. We have

∣
∣
∣
∣
∣
∣E
X
[B[X ]]− E

U
[B[U ]]

∣
∣
∣
∣
∣
∣
2
=

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

s�=0

B̂[s]X̂(s)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2

≤ L2(B)ε.

In the worst case L2(B) = 2Θ(n), even for a length-n width-3 permutation
branching program B. For example, the program Bmod 3 that computes the
Hamming weight of its input modulo 3 has exponential Fourier mass.

We show that, using ‘restrictions’, we can ensure that L2(B) is small.

3 Fourier Analysis of Regular Branching Programs

We use a result by Braverman et al. [19]. The following is a Fourier-analytic
reformulation of their result.

Lemma 3.1 ([19, Lemma 4]). Let B be a length-n, width-w, ordered, regular
branching program. Then

∑

1≤i≤n

∣
∣
∣
∣
∣
∣B̂i···n[1 ◦ 0n−i]

∣
∣
∣
∣
∣
∣
2
≤ 2w2.

Braverman et al. instead consider the sum, over all i ∈ [n] and all states u ∈ [w]
at layer i, of the difference in acceptance probabilities if we run the program
starting at v with a 0 followed by random bits versus a 1 followed by random
bits. They refer to this quantity as theweight ofB. Their result can be expressed
in Fourier-analytic terms by considering subprograms Bi···n that are the original
program with the first i− 1 layers removed:

∑

1≤i≤n

∣
∣
∣
∣
∣
∣B̂i···n[1 ◦ 0n−i]q

∣
∣
∣
∣
∣
∣
1
≤ 2(w − 1)

for any q ∈ {0, 1}w with
∑

u q(u) = 1. (The vector q can be used to specify the

accept state of B, and the vth row of B̂i···n[1 ◦ 0n−i]q is precisely the difference
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in acceptance probabilities mentioned above.) By summing over all w possible
q, we obtain ∑

i∈[n]

∑

u

∣
∣
∣
∣
∣
∣B̂i···n[1 ◦ 0n−i](·, u)

∣
∣
∣
∣
∣
∣
1
≤ 2w(w − 1).

This implies Lemma 3.1, as the spectral norm of a matrix is bounded by the
sum of the 1-norms of the columns.

Lemma 3.1 is similar (but not identical) to a bound on the first-order Fourier

coefficients of a regular branching program: The term B̂i···n[1 ◦ 0n−i] measures
the effect of the ith bit on the output of B when we start the program at layer
i, whereas the ith first-order Fourier coefficient B̂[0i−1 ◦ 1 ◦ 0n−i] measures the
effect of the ith bit when we start at the first layer and run the first i− 1 layers
with random bits. This difference allows us to use Lemma 3.1 to obtain a bound
on all low-order Fourier coefficients of a regular branching program:

Theorem 3.2. Let B be a length-n, width-w, read-once, oblivious, regular
branching program. Then

Lk2(B) :=
∑

s∈{0,1}n:|s|=k

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2
≤ (2w2)k.

The bound does not depend on n, even though we are summing
(
n
k

)
terms.

Proof. By Lemma 2.2, we may assume that B is ordered. We perform an induc-
tion on k. If k = 0, then there is only one Fourier coefficient to bound—namely,
B̂[0n] = E

U
[B[U ]], which is doubly stochastic. The base case follows from the

fact that every doubly stochastic matrix has spectral norm 1. Suppose the result
holds for k. We split the Fourier coefficients based on where the last 1 is:

∑

s∈{0,1}n:|s|=k+1

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2

=
∑

1≤i≤n

∑

s∈{0,1}i−1:|s|=k

∣
∣
∣
∣
∣
∣B̂[s ◦ 1 ◦ 0n−i]

∣
∣
∣
∣
∣
∣
2

≤
∑

1≤i≤n

∑

s∈{0,1}i−1:|s|=k

∣
∣
∣
∣
∣
∣B̂1···i−1[s]

∣
∣
∣
∣
∣
∣
2
·
∣
∣
∣
∣
∣
∣B̂i···n[1 ◦ 0n−i]

∣
∣
∣
∣
∣
∣
2

(by Lemma 2.1 (Decomposition))

≤(2w2)k · 2w2 (by the induction hypothesis and Lemma 3.1).

4 Random Restrictions

Our results involve restricting branching programs. However, our use of restric-
tions is different from elsewhere in the literature. Here, as in [25], we use (pseu-
dorandom) restrictions in the usual way, but we analyse them by averaging over
the unrestricted bits. Formally, we define a restriction as follows.
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Definition 4.1. For t ∈ {0, 1}n and a length-n branching program B, let B|t
be the restriction of B to t—that is, B|t : {0, 1}n → R

w×w is a matrix-valued
function given by B|t[x] := E

U
[B[Select(t, x, U)]], where U is uniform on {0, 1}n.

The most important aspect of restrictions is how they relate to the Fourier trans-

form: For all B, s, and t, we have B̂|t[s] = B̂[s] if s ⊂ t and B̂|t[s] = 0 otherwise.
The restriction t ‘kills’ all the Fourier coefficients that are not contained in it.
This means that a restriction significantly reduces the Fourier mass:

Lemma 4.2. Let B be a length-n, width-w program. Let T be n independent
random bits each with expectation p. Then

E
T
[L2(B|T )] =

∑

s�=0

p|s|
∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2
.

We can use Theorem 3.2 to prove a result about random restrictions of regular
branching programs:

Proposition 4.3. Let B be a length-n, width-w, read-once, oblivious, regular
branching program. Let T be n independent random bits each with expectation
p ≤ 1/4w2. Then E

T
[L2(B|T )] ≤ 1.

5 Pseudorandom Restrictions

To analyse our generator, we need a pseudorandom version of Proposition 4.3.
That is, we need to prove that, for a pseudorandom T (generated using few
random bits), L2(B|T ) is small. We will generate T using an almost O(log n)-
wise independent distribution:

Definition 5.1. A random variable X on Ωn is δ-almost k-wise indepen-
dent if, for any I = {i1, i2, · · · , ik} ⊂ [n] with |I| = k, the coordinates
(Xi1 , · · · , Xik) ∈ Ωk are δ statistically close to being independent.We say that
X is k-wise independent if it is 0-almost k-wise independent.

We can sample a random variable X on {0, 1}n that is δ-almost k-wise indepen-
dent such that each bit has expectation p = 2−d usingO(kd+log(1/δ)+d log(nd))
random bits. See the full version of this paper for more details.

Our main lemma (stated informally as Theorem 1.3) is as follows.

Theorem 5.2 (Main Lemma). Let B be a length-n, width-w, read-once, obliv-
ious, regular branching program. Let T be a random variable over {0, 1}n where
each bit has expectation p and the bits are δ-almost 2k-wise independent. Suppose
p ≤ (2w)−2 and δ ≤ (2w)−4k. Then

P
T

[
L2(B|T ) ≤ (2w2)k

] ≥ 1− n4 · 2
2k
.
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In particular, we show that, for w = O(1), k = O(log n), and δ = 1/poly(n), we
have L2(B|T ) ≤ poly(n) with probability 1− 1/poly(n).

First we show that the Fourier mass at level O(log n) is bounded by 1/n with
high probability. This also applies to all subprograms.

Lemma 5.3. Let B be a length-n, width-w, ordered, regular branching program.
Let T be a random variable over {0, 1}n where each bit has expectation p and
the bits are δ-almost k-wise independent. If p ≤ (2w)−2 and δ ≤ (2w)−2k, then,
for all β > 0,

P
T

[∀1 ≤ i ≤ j ≤ n Lk2(Bi···j |T ) ≤ β
] ≥ 1− n2 2

2kβ
.

Proof. By Theorem 3.2, for all i and j,

E
T

[
Lk2(Bi···j |T )

]
=

∑

s⊂{i···j}:|s|=k
P
T
[s ⊂ T ]

∣
∣
∣
∣
∣
∣B̂i···j [s]

∣
∣
∣
∣
∣
∣
2
≤ (2w2)k(pk + δ) ≤ 2

2k
.

The result now follows from Markov’s inequality and a union bound.

Now we use Lemma 5.3 to bound the Fourier mass at higher levels. We decompose
high-order (k′ ≥ 2k) Fourier coefficients into low-order (k ≤ k′ < 2k) ones,
similarly to the proof of Theorem 3.2:

Lemma 5.4. Let B be a length-n, ordered branching program and t ∈ {0, 1}n.
Suppose that, for all i, j, and k′ with 1 ≤ i ≤ j ≤ n and k ≤ k′ < 2k,
Lk

′
2 (Bi···j |t) ≤ 1/n. Then, for all k′′ ≥ k and all i and j, Lk

′′
2 (Bi···j |t) ≤ 1/n.

Lemmas 5.3 and 5.4 combine to give Theorem 5.2: By Lemma 5.3, a pseudoran-
dom restriction guarantees that, with high probability the Fourier mass at levels
k to 2k is small for all subprograms Bi···j . Lemma 5.4 implies that, with high
probability, the Fourier mass is small at all levels above k. The Fourier mass at
levels below k can be bounded directly using Theorem 3.2.

6 The Pseudorandom Generator

Our main result (Theorem 1.1) is stated more formally as follows.

Theorem 6.1 (Main Result). There exists a pseudorandom generator family
Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n with seed length

sn,w,ε = O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

such that, for any length-n, width-w, read-once, oblivious (but unordered), per-
mutation branching program B and ε > 0,

∣
∣
∣
∣

∣
∣
∣
∣ E
Usn,w,ε

[
B[Gn,w,ε(Usn,w,ε)]

] − E
U
[B[U ]]

∣
∣
∣
∣

∣
∣
∣
∣
2

≤ ε.

Moreover, Gn,w,ε can be computed in space O(sn,w,ε).
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Now we use the above results to construct our pseudorandom generator for a
read-once, oblivious, permutation branching program B.

Theorem 5.2 says that with high probability over T , B|T has small Fourier
mass, where T is almost k-wise independent with each bit having expectation p.
This implies that B|T is fooled by small bias X and thus

E
T,X,U

[B[Select(T,X,U)]] ≈ E
T,U,U ′

[B[Select(T, U ′, U)]] = E
U
[B[U ]] .

If we define Bt,x[y] := B[Select(t, x, y)], then E
T,X,U

[
BT,X [U ]

] ≈ E
U
[B[U ]]. So

now we need only construct a pseudorandom generator for Bt,x, which is a
length-(n− |t|) permutation branching program. Then

E
T,X,Ũ

[
BT,X [Ũ ]

]
≈ E

T,X,U

[
BT,X [U ]

] ≈ E
U
[B[U ]] ,

where Ũ is the output of the pseudorandom generator for Bt,x. We construct

Ũ ∈ {0, 1}n−|T | recursively; each time we recurse, the required output length is
reduced to n − |T | ≈ n(1 − p). Thus after O(log(n)/p) levels of recursion the
required output length is constant.

The only place where the analysis breaks down for regular branching programs
is when we recurse. If B is only a regular branching program, Bt,x may not be
regular. However, if B is a permutation branching program, then Bt,x is too.
Essentially, the only obstacle to generalising the analysis to regular branching
programs is that regular branching programs are not closed under restrictions.

The pseudorandom generator is formally defined as follows.

Algorithm for Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n.
1. Compute appropriate values of p ∈ [1/8w2, 1/4w2],
k ≥ log2

(
4
√
wn4/ε

)
, δ = ε(2w)−4k, and μ = ε(2w2)−k.1

2. If n ≤ (4 · log2(2/ε)/p)2, output n truly random bits and stop.
3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits

are δ-almost 2k-wise independent.
4. If |T | < pn/2, output 0n and stop.
5. Recursively sample Ũ ∈ {0, 1}�n(1−p/2)�. i.e. Ũ = G�n(1−p/2)�,w,ε(U).
6. Sample X ∈ {0, 1}n from a μ-biased distribution.
7. Output Select(T,X, Ũ) ∈ {0, 1}n.

The analysis of the algorithm proceeds as follows.

– Every time we recurse, n is decreased to �n(1 − p/2)�. After O(log(n)/p)
recursions, n is reduced to O(1) and the recursion terminates.

– The probability of failing because |T | < pn/2 is small by a Chernoff bound
for limited independence. This requires that n is not too small (step 2).

– The output is pseudorandom, as

1 For the purposes of the analysis we assume that p, k, δ, and μ are the same at every
level of recursion. So if Gn,w,ε is being called recursively, use the same values of p,
k, δ, and μ as at the previous level of recursion.
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E
T,X,Ũ

[
B[Select(T,X, Ũ)]

]
≈ E

T,X,U
[B[Select(T,X,U)]] ≈ E

U
[B[U ]] .

The first approximate equality holds because we inductively assume that Ũ
is pseudorandom; the second holds as a result of the main lemma.

– The total seed length is the seed length needed to sample X and T at each
level of recursion and O((log(1/ε)/p)2) truly random bits at the last level.
Sampling X requires seed length O(log(n/μ)) and sampling T requires seed
length O(k log(1/p) + log(log(n)/δ)).

For more details, see the full version of this paper.

7 General Read-Once, Oblivious Branching Programs

With a different setting of parameters, our pseudorandom generator can fool
arbitrary oblivious, read-once branching programs, rather than just permuta-
tion branching programs (Theorem 1.2). The key to proving Theorem 1.2 is the
following Fourier mass bound for arbitrary branching programs.

Lemma 7.1. Let B be a length-n, width-w, read-once, oblivious branching pro-
gram. Then, for all k ∈ [n], Lk2(B) ≤

√
wnk.

Proof. By Parseval’s Identity,

∑

s∈{0,1}n:|s|=k

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2

2
≤

∑

s∈{0,1}n

∣
∣
∣
∣
∣
∣B̂[s]

∣
∣
∣
∣
∣
∣
2

Fr
= E

U

[
||B[U ]||2Fr

]
= w.

The result follows from Cauchy-Schwartz.

For more details, see the full version of this paper.
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18. Š́ıma, J., Žák, S.: A sufficient condition for sets hitting the class of read-once

branching programs of width 3. In: Bieliková, M., Friedrich, G., Gottlob, G.,
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Abstract. In this work we present a strong analysis of the testability
of a broad, and to date the most interesting known, class of “affine-
invariant” codes. Affine-invariant codes are codes whose coordinates are
associated with a vector space and are invariant under affine transforma-
tions of the coordinate space. Affine-invariant linear codes form a natu-
ral abstraction of algebraic properties such as linearity and low-degree,
which have been of significant interest in theoretical computer science
in the past. The study of affine-invariance is motivated in part by its
relationship to property testing: Affine-invariant linear codes tend to be
locally testable under fairly minimal and almost necessary conditions.

Recent works by Ben-Sasson et al. (CCC 2011) and Guo et al. (ITCS
2013) have introduced a new class of affine-invariant linear codes based
on an operation called “lifting”. Given a base code over a t-dimensional
space, its m-dimensional lift consists of all words whose restriction to
every t-dimensional affine subspace is a codeword of the base code. Lifting
not only captures the most familiar codes, which can be expressed as lifts
of low-degree polynomials, it also yields new codes when lifting “medium-
degree” polynomials whose rate is better than that of corresponding
polynomial codes, and all other combinatorial qualities are no worse.

In this work we show that codes derived from lifting are also testable in
an “absolutely sound” way. Specifically, we consider the natural test: Pick
a random affine subspace of base dimension and verify that a given word
is a codeword of the base code when restricted to the chosen subspace. We
show that this test accepts codewords with probability one, while reject-
ing words at constant distance from the code with constant probability
(depending only on the alphabet size). This work thus extends the results
of Bhattacharyya et al. (FOCS 2010) and Haramaty et al. (FOCS 2011),
while giving concrete new codes of higher rate that have absolutely sound
testers. In particular we show that there exists codes satisfying the require-
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1 Introduction

In this work we present results on the testability of “affine-invariant linear
codes”. We start with some basic terminology before describing our work in
greater detail.

Let Fq denote the finite field of q elements and {Fnq → Fq} denote the set
of functions mapping F

n
q to Fq. In this work a code (or a family) will be a

subset of functions F ⊆ {Fnq → Fq}. We use δ(f, g) to denote the normalized
Hamming distance between f and g, i.e., the fraction of inputs x ∈ F

n
q for which

f(x) �= g(x). We use δ(F) to denote minf �=g,f,g∈F{δ(f, g)} and δF(f) to denote
ming∈F{δ(f, g)}. A code F is said to be a linear code if it is an Fq-subspace,
i.e., for every α ∈ Fq and f, g ∈ F , we have αf + g ∈ F . A function T : Fnq → F

n
q

is said to be an affine transformation if there exists a matrix B ∈ F
n×n
q and

vector c ∈ F
n
q such that T (x) = Bx + c. The code F ⊆ {Fnq → Fq} is said to

be affine-invariant if for every affine transformation T and every f ∈ F we have
f ◦ T ∈ F (where (f ◦ T )(x) = f(T (x))).

Affine-invariant linear codes form a very natural abstraction of the class of
low-degree polynomials: The set of polynomials of degree at most d is a linear
subspace and is closed under affine transformations. Furthermore, as shown by
Kaufman and Sudan [16] affine-invariant linear codes retain some of the “local-
ity” properties of multivariate polynomial codes (or Reed-Muller codes), such
as local testability and local decodability, that have found many applications in
computational complexity. This has led to a sequence of works exploring these
codes, but most of the works led to codes of smaller rate than known ones, or
gave alternate understanding of known codes [9,10,6,5,4]. A recent work by Guo
et al. [11] however changes the picture significantly. They study a “lifting” op-
erator on codes and show that it leads to codes with, in some cases dramatic,
improvement in parameters compared to Reed-Muller codes. Our work comple-
ments theirs by showing that one family of “best-known” tests manages to work
abstractly for codes developed by lifting.

We start by describing the lifting operation: Roughly a lifting of a base code
leads to a code in more variables whose codewords are words of the base code on
every affine subspace of the base dimension. We define this formally next. For
f : Fnq → Fq and S ⊆ F

n
q , let f |S denote the restriction of f to the set S. A set

A ⊆ F
n
q is said to be a t-dimensional affine subspace, if there exist α0, . . . , αt ∈ F

n
q

such that A = {α0+
∑t

i=1 αixi|x1, . . . , xt ∈ Fq}. We use some arbitrary Fq-linear
isomorphism from A to F

t
q to view f |A as a function from {Ftq → Fq}. Given

an affine-invariant linear base code B ⊆ {Ftq → Fq} and integer n ≥ t, the n-
dimensional lift of B, denoted Liftn(B), is the set {f : Fnq → Fq | f |A ∈ B for
every t-dimensional affine subspace A ⊆ F

n
q }.

The lifting operation was introduced by Ben-Sasson et al. [5] as a way to
build new affine-invariant linear codes that were not locally testable. Their codes
were also of much lower rate than known affine-invariant linear codes of similar
distance. However in more recent work, Guo et al. [11], showed that lifting could
be used positively: They used it to build codes with very good locality properties
(especially decodability) with rate much better than known affine-invariant linear
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ones, and matching qualitatively the performance of the best known codes. Our
work attempts to complement their work by showing that these codes, over
constant sized alphabets, can be “locally tested” as efficiently as polynomial
codes.

Testing and Absolutely Sound Testing. A code F ⊆ {Fnq → Fq} is said to be a
(k, ε, δ)-locally testable code (LTC), if δ(F) ≥ δ and there exists a probabilistic
oracle algorithm that, on oracle access to f : Fnq → Fq, makes at most k queries to
f and accepts f ∈ F with probability one, while rejecting f �∈ F with probability
at least εδF(f).

For an ensemble of codes {Fm ⊆ {Fnm
q → Fq}}m for infinitely many m, with

Fm being a (k(m), ε(m), δ(m))-LTC, we say that the code has an absolutely
sound tester if there exists ε > 0 such that ε(m) ≥ ε for every m.

Any tester can be converted into an absolutely sound one by repeating the
test 1/ε(m) times. However this comes with an increase in the query complexity
(the parameter k(m)) and so it makes sense to ask what is the minimum k one
can get for an absolutely sound test.

Previous works by Bhattacharyya et al. [7] and Haramaty et al. [13] raised this
question in the context of multivariate polynomial codes (Reed-Muller codes)
and showed that the “natural tester” for multivariate polynomial codes is abso-
lutely sound, without any repetitions! The natural test here is derived as follows
for prime fields:

To test if a function f is a polynomial of degree at most d, let t be the
smallest integer such that there exist functions of degree greater than d
in t variables. Pick a random t-dimensional affine subspace A and verify
that f |A is a degree d polynomial.

The natural test thus makes roughly qt = q(d+1)/(q−1) queries. This number turns
out to be optimal for prime fields in that every function looks like a degree d
polynomial if queried at at most qt−1 points. Such optimal analyses of low-degree
tests turn out to have some uses in computational complexity: In particular one
of the many ingredients in the elegant constructions of Barak et al. [3] is the
absolutely sound analysis of the polynomial codes over F2.

Returning to the natural test above, it ends being a little less natural, and
not quite optimal when dealing with non-prime fields. Turns out one needs to
use a larger value of t than the one in the definition above (specifically, t =
q(d+1)/(q−q/p) where p is the characteristic of the field Fq). While it is unclear
if sampling all the points in the larger dimensional space is really necessary for
absolutely sound testing the results so far seem to suggest working with prime
fields is a better option.

1.1 Our Work: Motivation and Results

The motivation for our work is two-fold: Our first motivation is to understand
“low-degree testing” better. Low-degree testing has played a fundamental role in
computational complexity and yet its proofs are barely understood. They tend to
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involve a mix of probabilistic, algebraic, and geometric arguments, and the only
setting where the mix of these features seems applicable seems to be the setting of
low-degree polynomials. Affine-invariant codes naturally seperate the geometry
of subspaces in high-dimensional spaces, from the algebra of polynomials of low-
degree. Thus extending a proof or analysis method from the setting of low-degree
polynomials to the setting of generic geometric arguments has the nice feature
that it has the potential to separate the geometric arguments from the algebraic
ones.

Within the theme of low-degree testing, the previous works have revealed
interesting analyses. And several of these variations in the resulting theorems
have played a role in construction of efficient PCPs or more recently in other
searches for explicit objects. In particular the literature includes tests such as
those originally given by Blum, Luby and Rubinfeld [8] for testing linearity and
followed by [20,1,15,14] for testing higher degree polynomials. The aspects of
this family of tests are well abstracted in Kaufman and Sudan [16]. But the
literature contains other very interesting theorems, such as those of Raz and
Safra [18] and Arora and Sudan [2] which tend to work in the “list-decoding”
regime. The analysis of the former in particular seems especially amenable to
a “generic proof” in the affine-invariant setting and yet such a proof is not yet
available. Our work explores a third such paradigm in the analysis of low-degree
tests, which was introduced in the above-mentioned “absolutely-sound testers”
of Bhattacharyya et al. and Haramaty et al.

Our work starts by noticing that the natural tests above are really “lifting
tests”: Namely, the test could be applied to any code that is defined as the lift of
a base code with the test checking if a given function is a codeword of the base
code when restricted to a random small dimensional affine subspace of the base
dimension. Indeed this is the natural way of interpreting almost all the previous
results in low-degree testing (with the exception of that of [19]). If so, it is natural
to ask if the analysis can be carried out to show the absolute soundness of such
tests.

The second, more concrete, motivation for our work is the work of Guo et
al. [11]. Over prime fields, it was well-known that lifts of low-degree polynomials
lead only to polynomials of the same degree (in more variables). Guo et al. show
that lifting over non-prime fields leads to better codes than over prime fields!
(Prior to their work, it seemed that working with non-prime fields was worse
than working with prime fields.) The improved rate gives motivation to study
lifted codes in general, and in particular one class of results that would have
been nice to extend was the absolutely-sound tester of [13].

In this work we show that the natural test of lifted codes is indeed absolutely
sound. The following theorem spells this statement out precisely.

Theorem 1 (Main). For every prime power q, there exists εq > 0 such that
the following holds: Let t ≤ n be positive integers and let B � {Ftq → Fq} be any
affine-invariant linear code. Then F = Liftn(B) is (qt, εq, q

−t)-locally testable.
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We stress that the importance of the above is in the absolute soundness, i.e.,
the fact that εq does not depend on t or B. If one is willing to let εq depend on
t and B then such a result follows from the main theorem of [16].

Our result also sets into proper light the previous work of Haramaty et al. [13]
who show that the “natural test” for degree d polynomials over the field Fq of
characteristic p makes q(d+1)/(q−q/p) queries and is absolutely sound. Our result
does not mention any dependence on p, the characteristic of the field. It turns
out that such a dependence comes due to the following proposition.

Let RM(n, d, q) denote the set of polynomials over Fq of degree at most d in
n variables.

Proposition 1. For positive integers d and q where q is a power of a prime p,
let t = td,q = 	 d+1

q−q/p
. Then for every n ≥ t, the Reed-Muller code RM(n, d, q)

equals the code Liftn(RM(t, d, q)).

Applying Theorem 1 to RM(n, d, q) we immediately obtain the main results of
[7] and [13]. And the somewhat cumbersome dependence on the characteristic
of q can be blamed on the proposition above, rather than any weakness of the
testing analysis. Furthermore, as is exploited by Guo et al. [11] if one interprets
the proposition above correctly, then one should use lifts of Reed-Muller codes
over non-prime fields with dimension being smaller than td,q. These will yield
codes of higher rate while our main theorem guarantees that testability does not
suffer.

One concrete consequence of our result is in the use of Reed-Muller codes in
the work of Barak et al. [3]. They show how to construct small-set expander
graphs with many large eigenvalues and one of the ingredients in their result is
a tester of Reed-Muller codes over F2 (codes obtained by lifting an appropriate
family of base codes over F2). Till this work, the binary Reed-Muller code seemed
to be the only code with performance good enough to derive their result. Our
work shows that using codes over F4 or F8 (or any constant power of two) would
serve their purpose at least as well, and even give slight (though really negligible)
improvements.We elaborate on these codes and their exact parameters in Section
3. (In particular, see Theorem 3.)

Finally, unlike the works of Bhattacharyya et al., and Haramaty et al., we can
not claim that our testers are “optimal”. This is not because of a weakness in
our analysis, rather it is due to the generality of our theorem. For some codes,
including the codes considered in the previous works, our theorem is obviously
optimal (being the same test and more or less same analysis as previously). Other
codes however may possess special properties making them testable much better.
In such cases we can not rule out better tests, though we hope our techniques
will still be of some use in analyzing tests for such codes.

Future research directions. As noted earlier, the field of low-degree testing has
seen several different themes in the analyses. Combined with the work of Kauf-
man and Sudan [17] our work points to the possibility that much of that study
can be explained in terms of the geometry of affine-invariance, and the role of al-
gebra can be encapsulated away nicely. One family of low-degree tests that would
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be very nice to include in this general view would be that of Raz and Safra [18].
Their work presents a very general proof technique that uses really little algebra;
and seems ideally amenable to extend to the affine-invariant setting. We hope
that future work will address this.

We also hope that future work improve the dependence of εq on q in Theorem 1
(which is unfortunately outrageous). Indeed it is not clear why there should be
any dependence at all and it would be nice to eliminate it if possible.

Organization. We give an overview of the proof of Theorem 1 in Section 2, where
we also introduce the main technical theorem of this paper (Theorem 2). We also
describe our technical contributions in this section, contrasting the current proof
with those of [7,13], which we modify. In Section 3 we give examples of family of
lifted codes for which our main theorem applies. Some of the details are omitted
from this version due to space considerations. A full version of this paper is
available as [12].

2 Overview of Proof

2.1 Some Natural Tests

Our proof of Theorem 1 follows the paradigm used in [7] and [13]. Both works
consider a natural family of tests (and not just the “most” natural test), and
analyze their performance by studying the behavior of functions when restricted
to “hyperplanes”. We introduce the family of tests first.

From now onwards all codes we consider will be linear and affine-invariant
unless we explicitly say otherwise. Given a base code B ⊆ {Ftq → Fq} and
n ≥ � ≥ t, we let L� = Lift�(B), with F = Ln. The �-dimensional test for
membership in F works as follows: Pick a random �-dimensional affine subspace
A in F

n
q and accept f if and only if f |A ∈ L�.

Let Rej�(f) denote the probability with which the �-dimensional test rejects.
Our main theorem aims to show that Rej�(f) = Ω(δF (f)) when � = t. As in
previous works, our analysis will first lower bound Rej�(f) for � = t+O(1) and
then relate the performance of this test to the performance of the t-dimensional
test.

2.2 Overview of Proof of Main Theorem 1

The analysis of the performance of the �-dimensional tests is by induction on the
number of variables n and based on the behaviour of functions when restricted
to “hyperplanes”. A hyperplane in F

n
q is an affine subspace of dimension n− 1.

In many future calculations it will be useful to know the number of hyperplanes
in F

n
q . We note that this number is qn + qn−1 + · · ·+ 1 = qn(1 + o(1)).

The inductive strategy to analyzing Rej�(f) is based on the observation that
Rej�(f) = EH [Rej�(f |H)] where H is a uniform hyperplane. If we know that
on most hyperplanes δLn−1(f |H) is large, then we can prove the right hand
side above is large by induction. Thus the inductive strategy relies crucially on
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showing that if f is far from F , then f |H can not be too close to Ln−1 on
too many hyperplanes. We state this technical result in the contrapositive form
below.

Theorem 2 (Main technical). For every q there exists τ < ∞ such that the
following holds: Let B ⊆ {Ftq → Fq} be an affine-invariant linear code and for
� ≥ t let L� = Lift�(B). For n > t, let f : Fnq → Fq be a function and H1, . . . , Hk

be hyperplanes in F
n
q such that δLn−1(f |Hi) ≤ δ for every i ∈ [k] for δ < 1

2q
−(t+1).

Then, if k ≥ qt+τ , we have δLn(f) ≤ 2δ + 4(q − 1)/k.

The theorem thus states that if f is sufficiently close to a lift of B on a sufficiently
large number of hyperplanes, yet a very small number (independent of n) of
hyperplanes, then f is close to a lift of B. The dependence of the number of
hyperplanes on q and t is actually important to our (and previous) analysis. The
fact that it is some fixed multiple of qt, where the multiple depends only on q
and not on t, is crucial to the resulting performance.

Going from Theorem 2 above to Theorem 1 is relatively straightforward. In
particular using Theorem 2 we can get a lower bound on Rejt+τ (f) without any
changes to the proof of [13]. However going from such an analysis to a lower
bound on Rejt(f) involves some extra work, with complications similar to (but
simpler than), those in the proof of Theorem 2 so we omit a discussion here.

The main contribution of this paper is the proof of Theorem 2. Here, the
previous proofs, both in [7] and [13] crucially relied on properties of polynomials
and in particular the first step in both proofs, when testing degree d polynomials,
is to consider the case of f being a degree d+1 (or a degree d+q) polynomial. In
our case there is no obvious candidate for the notion of a degree d+1 polynomial
and it is abstracting such properties that forms the bulk of our work. In what
follows we give an overview of some of the issues arising in such steps and how
we deal with them.

2.3 Overview of Proof of Theorem 2

To understand our proof of Theorem 2 we need to give some background, specifi-
cally to the proofs from the previous work of [13]. Recall the analogous statement
in [13] attempted to show that if f was far from being a polynomial of degree d,
then the number of hyperplanes where f turns out to be close to being a degree
d polynomial is at most O(qt) (where t ≈ d/q, the exact number will not be
important to us). [13] reasoned about this in a sequence of steps: (1) They first
showed that any function of degree greater than d, stays of degree greater than
d on at least 1/q fraction of all hyperplanes (provided n > t). (2) Next they rea-
soned about functions of degree d+ 1 and showed that such a function reduces
its degree on at most O(qt) hyperplanes. (3) In the third step they consider a
general function f that is far from being of degree d and show that the num-
ber of hyperplanes on which f becomes a degree d polynomial exactly is O(qt).
(This is the step where the big-Oh becomes a really big-Oh.) (4) Finally, they
show that for functions of the type considered in the previous step the number
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of hyperplanes where they even get close to being of degree d is at most O(qt),
thus yielding the analog of Theorem 2.

In implementing the program above (which is what we will end up doing)
in our more general/abstract setting, our first bottleneck is that, for instance in
Step (2) above, we don’t have a notion of degree d+1 or some notion of functions
that are “just outside our good set F”. Natural notions of things outside our set
do exist, but they don’t necessarily satisfy our needs. To understand this issue
better, let us see why polynomials of degree d + O(1) appear in the analysis
of a theorem such as Theorem 2. Consider a simple case where H1, . . . , Hq are
parallel hyperplanes completely covering Fnq and δ = 0 so f is known to be a good
function (member of F , or degree d) when restricted to these hyperplanes. So,
in the setting of testing polynomials of degree at most d, the hypothesis asserts
that f restricted to these hyperplanes is a polynomial of degree at most d. For
notational simplicity we assume that Hi is the hyperplane given by x1 = ηi
where Fq = {η1, . . . , ηq}. Then f |Hi = Pi(x2, . . . , xn) for some polynomial Pi of
degree d. By polynomial interpolation, it follows that f can be described as a
degree d+ q− 1 polynomial in x1, . . . , xn. The bulk of the analysis in [7,13] now
attempts to use the remaining K − q hyperplanes on which f reduces to degree
at most d, in conjunction with the fact that f is a polynomial of degree at most
d+ q − 1 to argue that f is of degree at most d.

For us, the main challenge is that in the generic setting of the lift of some
code B, we don’t have a ready notion of a degree d + q − 1 polynomial and
so we have to define one. Thus the first step in this work is to define such a
code. For our current discussion it suffices to say that there is an affine-invariant
linear code, which we denote F+, which contains all “interpolating functions”
of elements of F (so F+ contains every function f for which there exist some q
parallel hyperplanes H1, . . . , Hq such that f |Hi is a function in Ln−1 for all i).
Of course such a set is not useful if it does not have some nice structure. The
key property of our definition of F+ is that it is the lift of a non-trivial code on
at most t+q−1 dimensions. This definition of F+ and its analysis rely centrally
on some of the structural understanding of affine-invariant linear codes derived
in previous works [16,9,10,6,5,4]. Our analysis shows that F+ is almost as nice
as F , roughly analogous to the way the set of degree d + q − 1 polynomials is
almost as nice as the set of degree d polynomials.

The notion of F+ turns out to be easy enough to use to be able to carry out
the steps (3) and (4) in the program above by directly mimicking the proofs of
[13], assuming Steps (1) and (2) hold. But Steps (1) and (2) turn out to be more
tricky. So we turn to these, and in particular Step (2) next.

Our next barrier in extending the proofs of [13] is a notion of “canonical
monomials” which play a crucial role in Step (2) of [13]. For a function of degree
d+ 1, the canonical monomial is a monomial of degree d+ 1 supported on very
few variables. The fact that the number of variables in the support is small,
while the monomial remains a “forbidden one” turns out to be central to their
analysis and allows them to convert questions of the form: “Does f become a
polynomial of smaller degree on the hyperplane H?”(which are typically not
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well-understood) to questions of the form “Does g become the zero polynomial
when restricted to H?” (which is a very well-studied question).

In our case, we need to work with some function f in F+ which is not a
function of F . The fact that F+ is a lift of “few-dimensional” code, in principle
ought to help us find a monomial supported on few variables that is not in
F . But isolating the “right one” to work with for f turns out to be a subtle
issue and we work hard, and come up with a definition that is very specific to
each function f ∈ F+ \ F . (In contrast the canonical monomials of [13] were
of similar structure for every function f .) Armed with this definition and some
careful analysis we are able to simulate Step (2) in the program above. We give
a few more details into this step below. Full details may be found in the full
version of this paper.

Let t+ = t+ q − 1, and let B+ be a family on t+ variables such that F+ is a
lift of B+. Let f ∈ F+ \ F . We first show that for every such f there exists an
invertible affine transformation T and monomial M /∈ F supported on the first
t+ variables such that f ◦T is supported onM . We further assume that T is such
that the degree ofM is maximal. Without loss of generality we may assume T is
just the identity transformation and so f is supported on M . Next we partition
the space of all possible hyperplanes into qt

++1 sets (based on their coefficients
on the first t+ variables). Our goal is to show that in each set in the partition
there are at most some constant (depending on q) number of hyperplanes such
that f restricted to that hyperplane becomes a member of F . To do so we extract
from f a non-zero low-degree function g. (this function g depends on M and the
set in the partition under consideration). We show that for the correct definition
of g, it is the case that f |H ∈ F only if g|H ≡ 0. This brings us to the final task:
to bound the number of hyperplanes on which g|H can be identically zero. For
this part we show a simple lemma (see Lemma 4.8 in the full version) that shows
that a low-degree function can only be zero on a small number of hyperplanes
(bounded by a function of q and the degree, but independent of n). Putting the
above ingredients together gives us a bound (of desired quality) on the number
of hyperplanes H for which f |H ∈ F .

Finally, Step (1) is also dealt with similarly, using some of the same style of
ideas as in the proof of Step (2).

3 New Testable Codes

In this section, we give some examples of codes with “nice” parameters that are
testable with absolute soundness based on our main theorem (Theorem 1).

The need for such codes is motivated by the work of Barak et al. [3]. Their
work used appropriate Reed-Muller codes over F2. Our work gives the second
family of codes that is known to satisfy their requirements. We point out that
Guo et al. [11] also give codes motivated by the work of [3], but their codes
are not, thus far, known to be testable with absolute soundness and so fail to
meet all the requirements of [3]. Our codes fall within the class of “lifted” codes
studied by [11], but were not analyzed there. Here we use analysis similar to
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their to analyze the rate and distance of our codes, while the testing follows
from our main theorem.

The code. Our codes are defined by three parameters: a real number ε > 0 and
two integers s and n. The code F = Fε,s,n is obtained as follows: Let q = 2s,
and let � = � 1s log 1/ε�. Let B = {f : F

n−�
q → F2|

∑
x∈Fn−�

q
f(x) = 0}. Let

F = Liftn(B).

Basic parameters:

Proposition 2. For every ε, s and n the code F = Fε,s,n has block length N =
2sn, (absolute, non-normalized) distance at least 1/ε and dimension at least 2sn−((

n
�

)s
+
∑s�−1
i=0

(
ns
i

))
.

Proof. The size of the block length can be easily verified and the distance follows
from Lemmas 3.11. and 3.12. in Guo et. al. [11] analyzed the dimension of the
code Fε,s,n for the case in which s = log(1/ε) (so � = 1). More specifically, given

a degree pattern a = (a1, . . . , an) with {ai}ni=1 ⊆ Zq, let a
(j)
i denote the j-th bit

of the binary expansion of ai. Let M(a) denote the n × s matrix with entries

M(a)i,j = a
(j)
i . Guo et. al. show that in the special case in which � = 1 the code

Fε,s,n contains in its support all monomials with degree pattern a = (a1, . . . , an)
such that there exists a column in M(a) with at least two zeroes. This readily
implies a bound of 2sn − (n+ 1)� on the dimension of their code.

A similar analysis shows that our code Fε,s,n contains all monomials with
degree pattern a = (a1, . . . , an) where the matrix M(a) has at least s� + 1
zeroes, or the matrix has s� zeroes and there exists a column in M(a) with at
least �+ 1 zeros. The lower bound on the dimension follows.

Testability. The following is an immediate application of Theorem 1.

Proposition 3. For every s there exists a constant τ > 0 such that for every ε
and n the code F = Fε,s,n is testable by a test that makes εN queries, accepts
codewords with probability one, while rejecting all functions f : Fnq → F2 with
probability at least τ · δ(f,F).
We remark that the dimension of our codes, for any choice of N and ε is strictly
better than that of the codes used in [3] which have dimension 2sn−∑s�

i=0

(
sn
i

) ≈
2sn− 1√

2πs�
(en/�)s�. An important parameter for them is the “co-dimension” of

their code (block length minus the dimension, or the dimension of the dual code),
which thus turns out to be roughly 1√

2πs�
(en/�)s� from the above expression. (A

smaller codimension is better for their application.) Simplifying the dimension of
our code from Proposition 2, we see that the codimension of our code is smaller
by a multiplicative factor of roughly O(�s/2−1), making our codes noticeably bet-
ter. Unfortunately such changes do not alter the essential relationship between
N = 2sn, the parameter ε (which determines the locality of the tester) and the
codimension of the code. The following theorem summarizes the performance of
our codes.
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Theorem 3. For every positive s there exists a constant τ such that for every
sufficiently small ε and sufficiently large N there exists a code of block length

N , codimension
(
log 1

ε

)−s ·
(
e logN
log 1

ε

)log 1
ε

that is testable with a tester that makes

ε · N queries accepting codewords with probability one, while rejecting words at
distance δ with probability at least τ · δ.
To contrast, the corresponding result in [3] would assert the existence of a posi-
tive constant s for which the above held.
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Abstract. We study the relationship between the average sensitivity
and density of k-CNF formulas via the isoperimetric function ϕ : [0, 1]→
�,

ϕ(μ) = max

{
AS(F )

CNF-width(F )
: E[F (x)] = μ

}

,

where the maximum is taken over all Boolean functions F : {0, 1}∗ →
{0, 1} over a finite number of variables and AS(F ) is the average sen-
sitivity of F . Building on the work of Boppana [1] and Traxler [2], and
answering an open problem of O’Donnell, Amano [3] recently proved that
ϕ(μ) ≤ 1 for all μ ∈ [0, 1]. In this paper we determine ϕ exactly, giving
matching upper and lower bounds. The heart of our upper bound is the
Paturi-Pudlák-Zane (PPZ) algorithm for k-SAT [4], which we use in a
unified proof that sharpens the three incomparable bounds of Boppana,
Traxler, and Amano.

We extend our techniques to determine ϕ when the maximum is taken
over monotone Boolean functions F , further demonstrating the utility of
the PPZ algorithm in isoperimetric problems of this nature. As an ap-
plication we show that this yields the largest known separation between
the average and maximum sensitivity of monotone Boolean functions,
making progress on a conjecture of Servedio.

Finally, we give an elementary proof that AS(F ) ≤ log(s)(1 + o(1))
for functions F computed by an s-clause CNF, which is tight up to lower
order terms. This sharpens and simplifies Boppana’s bound of O(log s)
obtained using H̊astad’s switching lemma.

1 Introduction

The average sensitivity of a Boolean function F : {0, 1}n → {0, 1} is a funda-
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that F (x) �= F (x ⊕ ei), where x ⊕ ei denotes x with its i-th coordinate flipped.
The average sensitivity of F , denoted AS(F ), is the expected number of sensi-
tive coordinates of F at an input x drawn uniformly at random from {0, 1}n.
Viewing F as the indicator of a subset AF ⊆ {0, 1}n, the average sensitivity
of F is proportional to the number of edges going from AF to its complement,
and so AS(F ) may be equivalently viewed as a measure of the normalized edge
boundary of AF .

The average sensitivity of Boolean functions was first studied in the computer
science literature by Ben-Or and Linial [5] in the context of distributed comput-
ing. Owing in part to connections with the Fourier spectrum of F established in
the celebrated work of Kahn, Kalai, and Linial [6], this complexity measure has
seen utility throughout theoretical computer science, receiving significant atten-
tion in a number of areas spanning circuit complexity [7,8,9]1, learning theory
[11,12,13], random graphs [14,15,16], social choice theory, hardness of approxima-
tion [17], quantum query complexity [18], property testing [19], etc. We remark
that the study of average sensitivity in combinatorics predates its introduction
in computer science. For example, the well-known edge-isoperimetric inequality
for the Hamming cube [20,21,22,23] yields tight extremal bounds on the av-
erage sensitivity of Boolean functions in terms of the number of its satisfying
assignments.

The focus of this paper is on the average sensitivity of k-CNF formulas, the
AND of ORs of k or fewer variables; by Boolean duality our results apply to
k-DNF formulas as well. Upper bounds on the average sensitivity of small-depth
AC0 circuits are by now classical results, having been the subject of study in
several early papers in circuit complexity [7,24,1,25]. Despite its apparent sim-
plicity, though, gaps remain even in our understanding of the average sensitivity
of depth-2 AC0 circuits. The starting point of this research was the following
basic question:

Question 1. What is the maximum average sensitivity of a k-CNF formula F :
{0, 1}n → {0, 1} that is satisfied by a μ fraction of assignments?

An easy folkloric argument (first appearing explicitly in [1]) gives an upper bound
of 2(1−μ)k. The maximum of 2k attained by this bound is a multiplicative factor
of 2 away from the lower bound of k witnessed by the parity function over k
variables, leading O’Donnell to ask if there is indeed a matching upper bound
of k [26]. O’Donnell’s question was answered in a sequence of works by Traxler
[2] and Amano [3], with Traxler proving a bound of 2μ log2(1/μ)k (attaining a
maximum of ∼ 1.062k at μ = 1/e), followed by Amano’s bound of k independent
of μ. These three incomparable bounds are shown in Figure 1 where they are
normalized by k.

The natural question at this point is: what is the true dependence on μ? In
this work we answer this question by giving matching upper and lower bounds.
Traxler’s upper bound of 2μ log2(1/μ)k is easily seen to be tight at the points

1 Though couched in different terminology, Khrapchenko’s classical lower bound [10]
on the formula size of Boolean functions also relies implicitly on average sensitivity.



On the Average Sensitivity and Density of k-CNF Formulas 685

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.

0.25

0.5

0.75

1

1.25

Amano

Traxler

Boppana

Fig. 1. The upper bounds of Boppana, Traxler, and Amano, normalized by k

μ = 2−I for all positive integers I ∈ �, since the AND of I variables is a 1-CNF
with average sensitivity 2μ log2(1/μ), but we are not aware of any other matching
lower bounds prior to this work. Like Traxler and Amano, the main technical tool
for our upper bound is the Paturi-Pudlák-Zane (PPZ) randomized algorithm for
k-SAT. We remark that this is not the first time the PPZ algorithm has seen
utility beyond the satisfiability problem; in their original paper the authors use
the algorithm and its analysis to obtain sharp lower bounds on the size of depth-3
AC0 circuits computing the parity function.

We extend our techniques to determine ϕ when the maximum is taken over
monotone Boolean functions F , further demonstrating the utility of the PPZ
algorithm in isoperimetric problems of this nature. As an application we show
that this yields the largest known separation between the average and maximum
sensitivity of monotone functions, making progress on a conjecture of Servedio.
Finally, we give an elementary proof that AS(F ) ≤ log(s)(1+o(1)) for functions
F computed by an s-clause CNF; such a bound that is tight up to lower order
terms does not appear to have been known prior to our work.

1.1 Our Results

Our main object of study is the following isoperimetric function:

Definition 1. Let ϕ : [0, 1]→ � be the function:

ϕ(μ) = max

{
AS(F )

CNF-width(F )
: E[F (x)] = μ

}

,

where the maximum is taken over all Boolean functions F : {0, 1}∗ → {0, 1} over
a finite number of variables.

Note that E[F (x)] = a2−b for a, b ∈ �, and thus ϕ(μ) is well-defined only
at those points. However, these points are dense within the interval [0, 1] and
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thus one can continuously extend ϕ to all of [0, 1]. As depicted in Figure 1 the
upper bounds of Boppana, Traxler, and Amano imply that ϕ(μ) ≤ min{2(1 −
μ), 2μ log(1/μ), 1}. In this paper we determine ϕ exactly, giving matching upper
and lower bounds.

Theorem 1. ϕ(μ) : [0, 1] → � is the piecewise linear continuous function that
evaluates to 2μ log2(1/μ) when μ = 2−I for some I ∈ � = {0, 1, 2, . . .}, and is
linear between these points2. That is, if μ = t · 2−(I+1) + (1 − t) · 2I for some
I ∈ � and t ∈ [0, 1], then

ϕ(μ) = t · (I + 1)

2I
+ (1− t) · I

2I−1
.

We extend our techniques to also determine the variant of ϕ where the maxi-
mum is taken only over monotone Boolean functions. The reader familiar with
the PPZ algorithm will perhaps recall the importance of Jensen’s inequality in
its analysis. Jensen’s inequality is very helpful for dealing with random vari-
ables whose correlations one does not understand. It turns out that in case of
monotone CNF formulas, certain events are positively correlated and we can re-
place Jensen’s inequality by the FKG inequality [27], leading to a substantial
improvement in the analysis.

Theorem 2 (Upper bound for monotone k-CNFs). Let F be a monotone
k-CNF formula and μ = E[f(x)]. Then AS(F ) ≤ 2kμ ln(1/μ)(1 + εk) for some
εk that goes to 0 as k grows.3

Theorem 3 (Lower bound for monotone k-CNFs). Let μ ∈ [0, 1] and
k ∈ N. There exists a monotone k-CNF formula F with E[F (x)] = μ ± εk and
AS(F ) ≥ 2kμ ln(1/μ)(1− εk) for some εk that goes to 0 as k grows.

We apply Theorem 2 to obtain a separation between the average and maxi-
mum sensitivity of monotone Boolean functions, making progress on a conjec-
ture of Servedio [28]. Our result improves on the current best gap of AS(f) ≤√
2/π ·S(f)(1+ o(1)) ≈ 0.797 ·S(f)(1+ o(1)), which follows as a corollary of an

isoperimetric inequality of Blais [29].

Corollary 1. Let f be a monotone Boolean function. Then AS(F ) ≤ ln(2) ·
S(F )(1 + o(1)) ≤ 0.694 · S(f)(1 + o(1)), where o(1) is a term that goes to 0 as
S(F ) grows.

Finally, we give an elementary proof that AS(F ) ≤ log(s)(1+o(1)) for functions
F computed by an s-clause CNF, which is tight up to lower order terms by
considering the parity of log s variables. This sharpens and simplifies Boppana’s
bound of O(log s) obtained using H̊astad’s switching lemma.

Theorem 4. Let F be an s-clause CNF. Then AS(F ) ≤ log s+log log s+O(1).

2 We use the fact that 0 log2(1/0) = 0 here.
3 Note that the additive term of εk is necessary since AS(F ) = 1 when F = x1.
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1.2 Preliminaries

Throughout this paper all probabilities and expectations are with respect to the
uniform distribution, and logarithms are in base 2 unless otherwise stated. We
adopt the convention that the natural numbers � include 0. We use boldface
letters (e.g. x, π) to denote random variables.

For any Boolean function F : {0, 1}n → {0, 1}, we write μ(F ) ∈ [0, 1] to
denote the density Ex∈{0,1}n [F (x)] of F , and sat(F ) ⊆ {0, 1}n to denote the
set of satisfying assignments of F (and so |sat(F )| = μ · 2n). The CNF width of
F , which we will denote CNF-width(F ), is defined to be the smallest k ∈ [n]
such that F is computed by a k-CNF formula; similarly, DNF-width(F ) is the
smallest k such that F is computed by a k-DNF formula. Note that by Boolean
duality, we have the relation CNF-width(F ) = DNF-width(¬F ).
Definition 2. Let F : {0, 1}n → {0, 1} and x ∈ {0, 1}n. For any i ∈ [n], we
say that F is sensitive at coordinate i on x if F (x) �= F (x ⊕ ei), where x ⊕ ei
denotes x with its i-th coordinate flipped, and write S(F, x, i) as the indicator
for this event. The sensitivity of F at x, denoted S(F, x), is #{i ∈ [n] : F (x) �=
F (x ⊕ ei)} =

∑n
i=1 S(F, x, i). The average sensitivity and maximum sensitivity

of F , denoted AS(F ) and S(F ) respectively, are defined as follows:

AS(F ) = E
x∈{0,1}n

[S(F,x)], S(F ) = max
x∈{0,1}n

[S(F, x)].

We will need the following basic fact:

Fact 11. Let F : {0, 1}n → {0, 1} and μ = E[F (x)]. Then Ex∈sat(F )[S(F,x)] =
AS(F )/2μ.

Proof. This follows by noting that

AS(f) = E
x∈{0,1}n

[S(F,x)] = E
x∈{0,1}n

[2·S(F,x)·1[F (x)=1]] = 2μ E
x∈sat(F )

[S(F,x)].
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Here the second identity holds by observing that for any x ∈ sat(F ) and coordi-
nate i ∈ [n] on which F is sensitive at x, we have that x⊕ ei /∈ sat(F ) and F is
sensitive on i at x⊕ ei.
We remark that Boppana’s bound follows easily from 11 and Boolean duality.
For any k-CNF F with density E[f(x)] = μ, its negation ¬F is a k-DNF with
density (1−μ) and AS(¬F ) = AS(F ). Applying Fact 11 to ¬F and noting that
every satisfying assignment of a k-DNF has sensitivity at most k, we conclude
that AS(F ) = AS(¬F ) ≤ 2(1− μ)k.

2 The PPZ Algorithm

The main technical tool for our upper bounds in both Theorems 1 and 2 is
the PPZ algorithm (Figure 3), a remarkably simple and elegant randomized
algorithm for k-SAT discovered by and named after Paturi, Pudlák, and Zane [4].
Perhaps somewhat surprisingly, the utility of the PPZ algorithm extends beyond
its central role in the satisfiability problem. Suppose the PPZ algorithm is run
on a k-CNF F , for which it is searching for an satisfying assignment x ∈ sat(F ).
Since the algorithm is randomized and may not return a satisfying assignment,
it defines a probability distribution on sat(F ) ∪ {failure}.

The key observation underlying the analysis of PPZ is that a satisfying as-
signment x for which S(F, x) is large receives a higher probability under this
distribution than its less sensitive brethren; the exact relationship depends
on CNF-width(F ), and is made precise by the Satisfiability Coding Lemma
(Lemma 2). Since the probabilities of the assignments sum to at most 1, it fol-
lows that there cannot be too many high-sensitivity assignments. This intuition
is the crux of the sharp lower bounds of Paturi, Pudlák, and Zane on the size of
depth-3 AC0 circuits computing parity; it is also the heart of Traxler’s, Amano’s,
and our upper bounds on the average sensitivity of k-CNF formulas.

Let us add some bookkeeping to this algorithm. For every satisfying assign-
ment x ∈ sat(F ), permutation π : [n]→ [n], and coordinate i ∈ [n], we introduce
an indicator variable Ti(x, π, F ) that takes value 1 iff the assignment xi to the

The ppz algorithm takes as input a k-CNF formula F and a permutation
π : [n]→ [n].

1. for i = 1 to n:
2. if xπ(i) occurs in a unit clause in F then set xπ(i) ← 1 in F .
3. else if xπ(i) occurs in a unit clause in F then set xπ(i) ← 0 in F .
4. else toss a fair coin and set xπ(i) to 0 or 1 uniformly at random.

If F ≡ 1, the algorithm has found a satisfying assignment and returns it.
Otherwise the algorithm reports failure.

Fig. 3. The PPZ k-SAT algorithm
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i-th coordinate was decided by a coin Toss, conditioned on PPZ returning x on
inputs F and π (which we denote as ppz(F, π) = x). We also introduce the dual
indicator variable Ii(x, π, F ) = 1−Ti(x, π, F ), which takes value 1 if the the as-
signment xi was Inferred. We define T (x, π, F ) = T1(x, π, F ) + · · ·+ Tn(x, π, F )
to be the total number of coin tosses, and similarly I(x, π, F ) = I1(x, π, F ) +
. . .+ In(x, π, F ) = n−T (x, π, F ) to be the number of inference steps. Note that
if x ∈ sat(F ) and we condition on the event ppz(F, π) = x, then all coin tosses
of the algorithm are determined and T = T (x, π, F ) becomes some constant in
{0, 1, . . . , n}; likewise for I = I(x, π, F ). The next lemma follows immediately
from these definitions:

Lemma 1 (Probability of a solution under PPZ [4]). Let F be a CNF for-
mula over n variables and x ∈ sat(F ). Let π be a permutation over the variables.
Then

Pr[ppz(F, π) = x] = 2−T (x,π,F ) = 2−n+I(x,π,F ) , (1)

where T (x, π, F ) is the number of coin tosses used by the algorithm when finding
x.

For completeness, we include a proof of the simple but crucial Satisfiability
Coding Lemma:

Lemma 2 (Satisfiability Coding Lemma [4]). Let F be a k-CNF formula
and let x ∈ sat(F ). If F is sensitive at coordinate i on x then Eπ[Ii(x,π, F )] ≥
1/k, and otherwise Ii(x, π, F ) = 0 for all permutations π. Consquently, by lin-
earity of expectation Eπ[I(x,π, F )] ≥ S(F, x)/k.
Proof. Without loss of generality we assume that x = (1, . . . , 1), and since we
condition on ppz(F, π) = x, all coin tosses made by the algorithm yield a 1. If
F is sensitive to i at x, then certainly there must exist a clause C in which xi is
the only satisfied literal. That is, C = xi ∨xi2 ∨ · · · ∨xik . With probabilitiy 1/k,
variable i comes after i2, . . . , ik in the permutation π and in this case, the PPZ
algorithm has already set the variables xi2 , . . . , xik to 1 when it processes xi.
Thus, F will contain the unit clause {xi} at this point, and PPZ will not toss a
coin for xi (i.e. the value of xi is forced), which means that Ii(x, π, F ) = 1. Thus,
Eπ[Ii(x,π, F )] ≥ 1/k. On the other hand if F is not sensitive to i at x, then
every clause containing xi also contains a second satisfied literal. Thus, PPZ will
never encounter a unit clause containing only xi and therefore Ii(x, π, F ) = 0
for all permutations π.

3 Average Sensitivity of k-CNFs: Proof of Theorem 1

3.1 The Upper Bound

Let g : R→ R be any monotone increasing convex function such that g(I) ≤ 2I

for I ∈ N. Choose a uniformly random permutation π of the variables of F and



690 D. Scheder and L.-Y. Tan

run PPZ. Summing over all x ∈ sat(F ) and applying Lemma 1, we first note
that

1 ≥
∑

x∈sat(F )

Pr[ppz(F,π) = x] =
∑

x∈sat(F )

E
π

[
2−T (x,π,F )

]

= 2−n
∑

x∈sat(F )

Eπ

[
2I(x,π,F )

]

= μ E
x∈sat(F ),π

[
2I(x,π,F )

]
. (2)

Next by our assumptions on g, we have

μ E
x∈sat(F ),π

[
2I(x,π,F )

]
≥μ E

x∈sat(F ),π
[g(I(x,π, F ))]≥μ·g

(

E
x∈sat(F ),π

[I(x,π, F )]

)

,

where the first inequality holds since g satisfies g(I) ≤ 2I for all I ∈ �, and
the second follows from Jensen’s inequality and convexity of g. Combining these
inequalities and applying the Satisfiability Coding Lemma (Lemma 2), we get

1 ≥ μ ·g
(

E
x∈sat(F ),π

[I(x,π, F )]

)

≥ μ ·g
(

E
x∈sat(F )

[
S(F,x)

k

])

= μ ·g
(
AS(F )

2μk

)

.

Here we have used the assumption that g is monotone increasing in the second
inequality, and Fact 11 for the final equality. Solving for AS(F ), we obtain the
following upper bound:

AS(F ) ≤ 2μg−1(1/μ) · k. (3)

At this point we note that we can easily recover Traxler, Amano, and Boppana’s
bounds from Equation (3) simply by choosing the appropriate function g : �→
� that satisfies the necessary conditions (i.e. monotone increasing, convex, and
g(I) ≤ 2I for all I ∈ �).

– If g(I) = 2I , then (3) becomes AS(F ) ≤ 2μ log(1/μ) · k, which is Traxler’s
bound.

– If g(I) = 2I, we obtain AS(F ) ≤ k, which is Amano’s bound.

– If g(I) = 1 + I, we obtain Boppana’s bound of AS(F ) ≤ 2(1− μ) · k.4

We pick g to be the largest function that is monotone increasing, convex, and
at most 2I for all integers I. This is the convex envelope of the integer points(
I, 2I

)
:

4 This observation was communicated to us by Lee [30].
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2I

2 · I

g(I)

That is, g is the continuous function such that g(I) = 2I whenever I ∈ �, and
is linear between these integer points. Thus, the function g−1(1/μ) is piecewise
linear in 1/μ, and 2μg−1(1/μ) · k is piecewise linear in μ. Therefore we obtain
an upper bound on ϕ(μ) that is 2μ log(1/μ) if μ = 2−I for I ∈ N and piecewise
linear between these points. This proves the upper bound in Theorem 1.

3.2 The Lower Bound

We will need a small observation:

Lemma 3. Let k, � ∈ �0, and set μ = 2−�. There exists a Boolean function
F : {0, 1}n → {0, 1} with CNF-width(F ) = k and AS(F ) = 2μ log(1/μ) · k.

Proof. We introduce k · � variables x
(i)
j , 1 ≤ i ≤ �, 1 ≤ j ≤ k and let F be

(k, �)-block parity, defined as

F :=

�∧

i=1

k⊕

j=1

x
(i)
j .

Note that F has density E[F (x)] = 2−� = μ, and every satisfying assignment has
sensitivity exactly k�. Thus by Fact 11, AS(F ) = 2μEx∈sat[S(F,x)] = 2k�2−� =
2kμ log(1/μ) · k.
By Lemma 3, for every k ∈ � there is a k-CNF which is a tight example for
our upper bound whenever μ = 2−� and � ∈ �. The main idea is to interpolate
ϕ linearly between μ = 2−�−1 and 2−� for all integers �. If μ is not an integer
power of 1/2, we choose � such that μ ∈ (2−�−1, 2−�), and recall that we may
assume that μ = a2−b for some a, b ∈ � (since these points are dense within
[0, 1]). Choose k ≥ b and let F be a (k, � + 1)-block parity. We consider the
last block x�+1

1 , . . . , x�+1
k of variables, and note that F contains 2k−1 clauses

over this last block. Removing 0 ≤ t ≤ 2k−1 clauses over the last block of
variables linearly changes μ from 2−�−1 at t = 0 to 2−� at t = 2k−1. Every
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time we remove a clause from the last block, 2(k−1)� formerly unsatisfying x
become satisfying. Before removal, F at x was sensitive to the k variables in
the last block (flipping them used to make x satisfying) whereas after removal,
F at x is not sensitive to them anymore (change them and x will still satisfy
F ). However, F at x is now sensitive to the �k variables in the first � blocks:
changing any of them makes x unsatisfying. Thus, each time we remove a clasue,
the number of edges from sat(F ) to its complement in {0, 1}n changes by the
same amount. Therefore, AS(F ) moves linearly from 2(�+1)k2−�−1 at t = 0 to
2�k2−� at t = 2k−1. At every step t, the point (μ(F ),AS(F )/k) lies on the line
from

(
2−�−1, 2(�+ 1)2−�−1

)
to
(
2−�, 2�2−�

)
, i.e., exactly on our upper bound

curve. Choosing t = a2k+�−b − 2k+1 ensures F has density exactly μ = a2−b.

4 Average Sensitivity of Monotone k-CNFs

Revisiting Equation (2) in the proof of our upper bound in Section 3.1, recall
that we used Jensen’s inequality to handle the expression Eπ[2

I(x,π,F )], where
I(x, π, F ) =

∑n
i=1 Ii(x, π, F ) is the number of inference steps made by the PPZ

algorithm. The crux of our improvement for monotone k-CNFs is the observation
that when F is monotone the indicator variables I1(x, π, F ), . . . , In(x, π, F ) are
positively correlated, i.e. E

[
2I
] ≥∏n

i=1 E
[
2Ii
]
, leading to a much better bound.

Lemma 4 (Positive correlation). If F is monotone then the indicator vari-
ables Ii(x, π, F ) are positively correlated. That is, for every x ∈ sat(F ),

E
π

[
2I(x,π,F )

]
≥

n∏

i=1

E
π

[
2Ii(x,π,F )

]
. (4)

Proof of Theorem 2 assuming Lemma 4. We begin by analyzing each term in
the product in the right-hand side of Equation (4). Let x ∈ sat(F ) and i ∈ [n]. If
F is sensitive to coordinate i at x then Prπ[Ii(x,π, F ) = 1] ≥ 1/k by Lemma 2,
and so

E
π

[
2Ii(x,π,F )

]
= Pr

π
[Ii(x,π, F ) = 0] · 1 +Pr

π
[Ii(x,π, F ) = 1] · 2

= (1−Pr[Ii(x,π, F ) = 1]) +Pr[Ii(x,π, F ) = 1] · 2
= 1 +Pr[Ii(x,π, F ) = 1] ≥ 1 +

1

k
.

On the other hand if F is not sensitive to coordinate i at x, then Ii(x, π, F ) is
always 0, and so Eπ

[
2Ii(x,π,F )

]
= 1. Combining this with Lemma 4 shows that

E
π

[
2I(x,π,F )

]
≥

n∏

i=1

E
π

[
2Ii(x,π,F )

]
≥
(

1 +
1

k

)S(F,x)
. (5)
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With this identity in hand Theorem 2 follows quite easily. Starting with Equation
(2), we have

1 ≥ μ E
x∈sat(F ),π

[
2I(x,π,F )

]
(by Equation (2))

≥ μ E
x∈sat(F )

[(

1 +
1

k

)S(F,x)
]

(by (5))

≥ μ
(

1 +
1

k

)Ex∈sat(F )[S(F,x)]

(by Jensen’s inequality)

= μ

(

1 +
1

k

)AS(F )/2μ

. (by Fact 11)

Solving for AS(F ), we get

AS(F ) ≤ 2μ ln (1/μ)

ln
(
1 + 1

k

) =
2μ ln (1/μ) · k
ln
(
1 + 1

k

)k = 2kμ ln(1/μ)(1 + εk) ,

for some εk that goes to 0 as k grows. This proves Theorem 2.

4.1 Proof of Lemma 4: Positive Correlation

Fix a satisfying assignment x of F . If F is insensitive to coordinate j on x (i.e.
S(F, x, j) = 0) then Ij(x, π, F ) = 0 for all permutations π, and so we first note
that

E
π

[
2I(x,π,F )

]
= E

π

⎡

⎣
∏

i : S(F,x,i)=1

2Ii(x,π,F )

⎤

⎦ . (6)

Fix an i such that S(F, x, i) = 1. At this point, it would be convenient to adopt
the equivalent view of a random permutation π as a function π : [n] → [0, 1]
where we choose the value of each π(k) independently and uniformly at random
from [0, 1] (ordering [n] according to π defines a uniformly random permutation).
From this point of view 2Ii(x,π,F ) is a function from [0, 1]n → {1, 2}. The key
observation that we make now is that the n functions 2Ii(x,π,F ) for 1 ≤ i ≤ n
are monotonically increasing in the coordinates at which x is 1, and decreasing
in the coordinates at which x is 0.

By monotonicity, we know that Ii(x, π, F ) = 1 if only if there is a clause
C = xi ∨ xi2 ∨ . . . ∨ xik′ in F , where xi2 = . . . = xik′ = 0 (note that xi = 1 by
monotonicity) and π(i2), π(i3), . . . , π(ik′ ) < π(i). By this characterization, we
see that

– Increasing π(i) can only increase Ii(x, π, F ), and decreasing π(i) can only
decrease Ii(x, π, F ).

– Increasing π(j) for some j where xj = 0 can only decrease Ii(x, π, F ), and
decreasing π(j) can only increase Ii(x, π, F ).

– Finally, Ii(x, π, F ) is not affected by changes to π(j) when j �= i and xj = 1.
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Therefore, the functions 2Ii(x,π,F ) where S(F, x, i) = 1 are all unate with the
same orientation5 and so by the FKG correlation inequality [27], they are posi-
tively correlated. We conclude that

E
π

⎡

⎣
∏

i : S(F,x,i)=1

2Ii(x,π,F )

⎤

⎦ ≥
∏

i : S(F,x,i)=1

E
π

[
2Ii(x,π,F )

]
=

n∏

i=1

E
π

[
2Ii(x,π,F )

]
,

where in the final inequality we again use the fact that Ij(x,π, F ) = 0 for all π
if S(F, x, j) = 0. This proves Lemma 4.

4.2 Proof of Theorem 3: The Lower Bound

In this section we construct a monotone k-CNF formula with large average sen-
sitivity. We will need a combinatorial identity.

Lemma 5. Let k, � ≥ 0. Then
∑m
s=0

(
m
s

)
ks�m−ss = mk(k + �)m−1.

Proof. First, if k + � = 1, then both sides equal the expected number of heads
in m coin tosses with head probability k. Otherwise, we divide both sides by
(k + �)m and apply that argument to k

k+� and �
k+� .

Proof of Theorem 3. This function will be the tribes function F := Tribeskm over
n = km variables:

(x
(1)
1 ∨ x(1)2 · · · ∨ x(1)k ) ∧ (x

(2)
1 ∨ x(2)2 · · · ∨ x(2)k ) ∧ · · · ∧ (x

(m)
1 ∨ x(m)

2 · · · ∨ x(m)
k )

This is a k-CNF formula with E[F ] =
(
1− 2−k

)m
. We set m :=⌈

ln(μ)/ ln
(
1− 2−k

)⌉
, which yields μ

(
1− 2−k

) ≤ E[F ] ≤ μ. Let us compute

AS(F ). For a satisfying assignment x, S(F, x) is the number of clauses in Tribeskm
containing exactly one satisfied literal. The number of satisfying assignments x

of sensitivity s is exactly
(
m
s

)
ks
(
2k − k − 1

)m−s
, as there are 2k− k− 1 ways to

satisfy more than one literal in a k-clause. Thus,

AS(F ) = 2−n+1
∑

x∈sat(F )

S(F, x) = 2−mk+1
m∑

s=0

(
m

s

)

ks
(
2k − k − 1

)m−s
s

Applying Lemma 5 with � = 2k − k − 1, we get

AS(F ) = 2−mk+1mk(2k − 1)m−1 =

(
2k − 1

)m

2km
2mk

2k − 1
=

2E[F ]mk

2k − 1

Recall that m ≥ ln(μ)
ln(1−2−k)

and E[F ] ≥ (1− 2−k
)
μ. Thus,

AS(F ) =
2E[F ]mk

2k − 1
≥ 2kμ

(
1− 2−k

)
ln(μ)

(2k − 1) ln (1− 2−k)
=

2kμ ln(μ)

2k ln(1− 2−k)
= 2kμ ln

(
1

μ

)

(1− εk) ,

for some εk that quickly converges to 0 as k grows. This proves Theorem 3.

5 This means for each 1 ≤ i ≤ n, they are either all monotonically increasing in π(i)
or all decreasing in π(i).
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4.3 A Gap between Average and Maximum Sensitivity

Recall that the maximum sensitivity S(F ) of a Boolean function F is the quantity
maxx∈{0,1}n [S(F, x)]. Clearly we have that AS(F ) ≤ S(F ), and this inequality is
tight when F = PARn, the parity function over n variables. Servedio conjectured
that unlike the case for PARn, the average sensitivity of a monotone Boolean
function F is always asymptotically smaller than its maximum sensitivity [28]:

Conjecture 1 (Servedio). There exists universal constants K > 0 and δ < 1 such
that the following holds. Let F : {0, 1}n → {0, 1} be any monotone Boolean
function. Then AS(F ) ≤ K · S(F )δ.
In addition to being an interesting and natural question, Servedio’s conjecture
also has implications for Mansour’s conjecture [31] on the Fourier spectrum
of depth-2 AC0, a longstanding open problem in analysis of Boolean functions
and computational learning theory [28,32]. The conjecture can be checked to be
true for the canonical examples of monotone Boolean functions such as majority
(AS(MAJn) = Θ(

√
n) whereas S(MAJn) = �n/2�), and the Ben-Or-Linial Tribes

function (AS(Tribesk,2k) = Θ(k) whereas S(Tribesk,2k) = 2k). O’Donnell and
Servedio have shown the existence of a monotone function F with AS(F ) =
Ω(S(F )0.61) [12], and this is the best known lower bound on the value of δ in
Conjecture 1.

The current best separation between the two quantities is AS(F ) ≤ √2/π ·
S(F )(1 + o(1)) ≈ 0.797 · S(F )(1 + o(1)) where o(1) is a term that tends to 0
as S(F ) grows6, which follows as a corollary of Blais’s [29] sharpening of an
isoperimetric inequality of O’Donnell and Servedio [12]. We now show that our
upper bound in Theorem 2 yields an improved separation. We recall a basic
fact from [33] characterizing the maximum sensitivity of a monotone Boolean
function by its CNF and DNF widths:

Fact 41. Let F : {0, 1}n → {0, 1} be a monotone Boolean function. Then

S(F ) = max{DNF-width(F ),CNF-width(F )}.

Corollary 1. Let F be a monotone Boolean function. Then AS(F ) ≤ ln(2) ·
S(F )(1 + o(1)) ≤ 0.694 · S(f)(1 + o(1)), where o(1) is a term that goes to 0 as
S(F ) grows.

Proof. By Fact 41, we have CNF-width(F ) ≤ S(F ) and CNF-width(¬F ) =
DNF-width(F ) ≤ S(F ). Applying the upper bound of Theorem 2 to both F
and ¬F , we get

AS(F ) ≤ min{2μ ln(1/μ), 2(1− μ) ln(1/(1− μ))} · S(F )(1 + o(1)),

where μ = μ(F ). The proof is complete by noting that min{2μ ln(1/μ), 2(1 −
μ) ln(1/(1− μ))} ≤ ln(2) for all μ ∈ [0, 1].

6 Note that this additive o(1) term is necessary as AS(F ) = S(F ) = 1 for the mono-
tone function F (x) = x1.
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5 Average Sensitivity of s-clause CNFs

Let F be computed by an s-clause CNF. It is straightforward to check that
Pr[F (x) �= G(x)] ≤ ε and AS(F ) ≤ AS(G) + ε · n, if G is the CNF obtained
from F by removing all clauses of width greater than log(s/ε). When s = Ω(n)
we may apply Amano’s theorem to G and take ε = O(1/n) to conclude that
AS(F ) = O(log s). Building on the work of Linial, Mansour and Nisan [7],
Boppana employed H̊astad’s switching lemma to prove that in fact AS(F ) =
O(log s) continues to hold for all values of s = o(n). Here we give an elementary
proof of Theorem 4 that sharpens and simplifies Boppana’s result. A bound of
AS(F ) ≤ log(s)(1+ o(1)), which is tight up to lower order terms by considering
the parity function over log s variables, does not appear to have been known
prior to this work.7

Proof of Theorem 4. We write F = G ∧ H , where G consists of all clauses of
width at most τ and the threshold τ ∈ [s] will be chosen later. By the subaddi-
tivity of average sensitivity, we see that

AS(F ) ≤ AS(G)+AS(H) ≤ τ +
∑

C ∈ H
AS(C) = τ +

∑

C∈H

|C|
2|C|−1

≤ τ + s · τ

2τ−1
.

Here the second inequality is by Amano’s theorem applied to G and the sub-
additivity of average sensitivity applied to H , and the last inequality holds be-
cause z �→ z/2z−1 is a decreasing function. Choosing τ := log s+ log log s yields
AS(F ) ≤ log s+ log log s+ 2 + o(1) and completes the proof.
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[30] with us. We also thank Rocco Servedio and Navid Talebanfard for helpful
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Abstract. For the hard-core lattice gas model defined on independent
sets weighted by an activity λ, we study the critical activity λc(Z

2) for
the uniqueness threshold on the 2-dimensional integer lattice Z

2. The
conjectured value of the critical activity is approximately 3.796. Until
recently, the best lower bound followed from algorithmic results of Weitz
(2006). Weitz presented an FPTAS for approximating the partition func-
tion for graphs of constant maximum degree Δ when λ < λc(TΔ) where
TΔ is the infinite, regular tree of degree Δ. His result established a cer-
tain decay of correlations property called strong spatial mixing (SSM)
on Z

2 by proving that SSM holds on its self-avoiding walk tree Tsaw(Z
2),

and as a consequence he obtained that λc(Z
2) ≥ λc(T4) = 1.675. Re-

strepo et al. (2011) improved Weitz’s approach for the particular case
of Z2 and obtained that λc(Z

2) > 2.388. In this paper, we establish an
upper bound for this approach, by showing that SSM does not hold on
Tsaw(Z

2) when λ > 3.4. We also present a refinement of the approach of
Restrepo et al. which improves the lower bound to λc(Z

2) > 2.48.

Keywords: Hard-core Model, Uniqueness, Phase Transition, Strong Spa-
tial Mixing, Approximate Counting.

1 Introduction

The hard-core model is a model of a gas composed of particles of non-negligible
size and consequently configurations of the model are independent sets [4,8].
For a (finite) graph G = (V,E) and an activity λ > 0 (corresponding to the
fugacity of the gas), configurations of the model are the set Ω of independent
sets of G where σ ∈ Ω has weight w(σ) = λ|σ|. The Gibbs measure is defined as
μ(σ) = w(σ)/Z where Z =

∑
η∈Ω w(η) is the partition function.

A fundamental question for statistical physics models, such as the hard-core
model, is whether there exists a unique or there are multiple infinite-volume
Gibbs measures on Z

2. An equivalent question is whether the influence of the
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boundary on the origin decays in the limit. More formally, for a box in Z
2

of side length 2L + 1 centered around the origin, let pevenL (poddL ) denote the
marginal probability that the origin is unoccupied conditional on the even (odd,
respectively) vertices on the boundary being occupied. If

lim
L→∞

∣
∣poddL − pevenL

∣
∣ = 0

then there is a unique Gibbs measure on Z
2, and if this limit is > 0 then there

are multiple Gibbs measures. It is believed that there is a critical activity λc(Z
2)

such that for λ < λc(Z
2) uniqueness holds, and for λ > λc(Z

2) non-uniqueness
holds. For the infinite, regular tree TΔ of degree Δ it is easy to show that
λc(TΔ) = (Δ− 1)Δ−1/(Δ− 2)Δ [9].

There are long-standing heuristic results which suggest that λc(Z
2) ≈ 3.796

[8,2,10]. For the upper bound on the critical activity, a classical Peierls’ type
argument implies λc(Z

2) = O(1) [7], and Blanca et al. [5] improved this upper
bound to show λc(Z

2) < 5.3646. Our focus is on the lower bound.
Weitz [15] showed that λc(Z

2) ≥ λc(T4) = 27/16 = 1.6875. His result followed
from the algorithmic result. For all graphs with constant maximum degree Δ,
λ < λc(TΔ), Weitz [15] presented an FPTAS for approximating the partition
function. A central step in his approach is proving a certain decay of correlations
property known as strong spatial mixing (SSM) on the graph G. SSM says that
for every v ∈ V , every T ⊂ V and S ⊂ T , and pair of configurations σ, τ on
T which only differ on S (i.e., σ(T \ S) = τ(T \ S)) then the difference in the
influence of σ and τ on the marginal probability of v decays exponentially in the
distance of v from the difference set S (see Section 2 for formal definitions of
these concepts). In contrast, weak spatial mixing (WSM) only requires that the
influence decays exponentially in the distance to the set T . For the hard-core
model, since fixing a vertex to be unoccupied or occupied can be realized by
removing the vertex or the vertex and its neighbors, it then follows that SSM
on a graph G is equivalent to WSM for all (vertex induced) subgraphs of G.

Weitz constructs a version of the tree Tsaw(G, v) of self-avoiding walks from
v ∈ V , in such a way that SSM on Tsaw(G, v) for all v implies SSM on G. His
variant of the self-avoiding walk tree fixes the leaves of the tree (corresponding to
the walk completing a cycle in G) to be occupied or unoccupied based on a fixed,
arbitrary ordering of the neighbors for each vertex. He then shows that SSM
holds on the complete tree TΔ, and hence SSM holds on all trees of maximum
degree Δ when λ < λc(TΔ).

Restrepo et al. [11] improve uponWeitz’s approach for Z2 by utilizing its struc-
ture to build a better “bounding tree” than TΔ. They define a set of branching
matrices M� for � ≥ 4 corresponding to walks in Z

2 containing no cycles of
length ≤ � (see Section 3 for a more formal introduction to these notions). The
key point is that Tsaw(Z

2) is a subtree of the tree TM�
defined by M�. They

then present a decay of correlation proof by using a suitable message passing
approach for proving SSM for TM�

, and hence for Tsaw(Z
2) as well. They show

that SSM holds on TM6 for λ < 2.33, and SSM holds on TM8 for λ < 2.388.
Consequently, they establish that λc(Z

2) > 2.388.
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Our first result establishes a limit to these approaches by showing that SSM
does not hold on Tsaw(Z

2). As mentioned earlier, in the construction of Tsaw(Z
2),

the assignment for leaves depends on the ordering in Z
2 of neighbors of each

vertex. Since Z
2 is vertex-transitive, it is natural to define an ordering that is

identical for every vertex (e.g., based on an ordering of the directions N,S,E,
and W ), which we refer to as a homogenous ordering. We prove the following
result.

Theorem 1. For Tsaw(Z
2), SSM does not hold when λ > 3.4. Moreover, when

Tsaw(Z
2) is based on a homogenous ordering, then SSM does not hold when λ > 3.

The theorem follows from considering a tree T that is a subtree of Tsaw(Z
2) and

establishing the threshold for WSM on T . The tree T that we consider in the
homogenous ordering case is quite simple. When N is first in the ordering, the
tree is simply the never-go-south tree (see Section 4). For any Tsaw(Z

2) that is
based on an inhomogeneous ordering, we are able to find another general subtree
for which the WSM does not hold when λ = 3.4. Such an example gives a strong
evidence that in order to prove the SSM for Z2 when λ is close to the conjectured
threshold, the self-avoiding walk tree approach might not be appropriate. There
are subtrees of the SAW tree of Z2 that have lower WSM threshold and hence
one has to figure out an approach to exclude such trees.

We then present an improvement of the approach of Restrepo et al. [11]
for proving SSM for the trees TM�

. They consider a particular statistic of the
marginal distributions of the vertices, and prove the correlation decay property
inductively on the height. The statistics can be viewed as a message passing algo-
rithm, a variant of belief propagation. The messages they consider are a natural
generalization of the message which is used to analyze the complete tree up to
the tree threshold λc(TΔ) (which thereby reproves Weitz’s result [15]). They
establish a so-called DMS condition as a sufficient condition for these messages
to imply SSM holds on the tree under consideration. Some of the limitations of
their approach are that to find the settings for the parameters in their messages
and the DMS condition, they use a heuristic hill-climbing algorithm which might
become trapped in local optima. In addition, verifying their DMS condition is
non-trivial.

In this paper, we consider piecewise linear functions for the messages. As
a consequence, we can find these functions by solving a linear program. This
yields improved results and simpler proofs of the desired contraction property.
Consequently, we prove SSM holds for TM6 when λ ≤ 2.45 (previously, 2.33 by
the DMS condition) and SSM holds for TM8 when λ ≤ 2.48 (previously, 2.388).
This establishes the following theorem.

Theorem 2. λc(Z
2) > 2.48.

The rest of the paper is organized in the following way. We formally define WSM
and SSM in Section 2 and also present there the self-avoiding walk tree construc-
tion used by Weitz [15]. In Section 3, we will introduce branching matrices and
present the framework of Restrepo et al. [11] in a manner tailored to our work.
In Section 4 we will discuss limitations of Weitz’s approach by showing several
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counter-examples. Finally, in Section 5 we discuss our linear programming ap-
proach for proving SSM, which yields an improvement on the lower bound for
the uniqueness threshold of the hard-core model on Z

2.

2 Preliminaries

2.1 Definitions of WSM and SSM

For a graph G = (V,E) and S ⊂ V , we define the boundary condition σ on S
to be a fixed configuration on S. For a boundary condition σ, let pv(σ) be the
unoccupied probability of vertex v in the Gibbs distribution μ on G conditional
on σ. We now formally define WSM and SSM.

Definition 1 (Weak Spatial Mixing). For the hard-core model at activity λ,
for finite graph G = (V,E), WSM holds if there exists 0 < γ < 1 such that for
every v ∈ V , every S ⊂ V , and every two configurations σ1, σ2 on S,

|pv(σ1)− pv(σ2)| ≤ γdist(v,S)

where dist(v, S) is the graph distance (i.e., length of the shortest path) between
v and (the nearest point in) the subset S.

For an infinite graph G, we define the WSM threshold for G as

WSM(G) = inf{λ : WSM does not hold on G at activity λ}.

Definition 2 (Strong Spatial Mixing). For the hard-core model at activity
λ, for finite graph G = (V,E), SSM holds if there exists a 0 < γ < 1 such that
for every v ∈ V , every S ⊂ V , every S′ ⊂ S, and every two configurations σ1, σ2
on S where σ1(S \ S′) = σ2(S \ S′),

|pv(σ1)− pv(σ2)| ≤ γdist(v,S
′).

Finally, let SSM(G) denote the SSM threshold for G, defined analogously to
WSM(G) but with respect to SSM.

To contrast the definitions of WSM and SSM, note that in WSM the influence
decays exponentially in the distance to the boundary set S, whereas in SSM it
is exponentially in the distance to the subset S′ of the boundary that they differ
on. An important observation that we repeat from the Introduction to emphasize
it, is that for the hard-core model, for a tree T , SSM holds if and only if for all
subtrees of T WSM holds.

2.2 Weitz’s SAW Tree

We now detail Weitz’s self-avoiding walk tree construction [15]. Given G =
(V,E), we fix an arbitrary ordering >w on the neighbors of each vertex w in G.
For each v ∈ V , the tree Tsaw(G, v) rooted at v is constructed as follows.
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Consider the tree T of self-avoiding walks originating from v, including the
vertices closing a cycle in the walks as leaves. We assign a boundary condition
to the leaves by the following rule. Each leaf closes a cycle in G, so say the leaf
corresponds to vertex w in G and the path leading to the leaf corresponds to
the path w → v1 → . . . v� → w in G. Then if v1 >w v� we fix this leaf to be
unoccupied, and if v1 <w v� we fix this leaf to be occupied. Since we are in the
hard core model, if the leaf is fixed to be unoccupied we simply remove that
vertex from the tree. And if the leaf is fixed to be occupied, we remove that leaf
and all of its neighbors from the tree, i.e., we remove completely the subtree
rooted at the parent of that leaf.

If a boundary condition Γ is assigned to a subset S of G, then the self-avoiding
walk tree can also be constructed consistently to the boundary condition, i.e., for
a vertex w ∈ S ofG, we assign Γ (w) to every occurrence of w in Tsaw(G, v). Weitz
proves that, for any boundary condition on G and any vertex v, the marginal
distribution of v on G is the same as the marginal distribution of the root of
Tsaw(G, v) with the corresponding boundary condition. This further implies the
following.

Lemma 1 (Weitz [15]). For a specific λ, if for all v, SSM holds for Tsaw(G, v),
then SSM holds for G.

3 Message Passing Approach for Proving SSM

Let us first recall the recurrence of the marginal distributions on trees for the
hard-core model. For now, we fix our infinite tree to be T . Let v be a vertex of T ,
and let Tv denote the subtree of T rooted at v. Let N−(v) denote the children of
v in Tv. Let αv(Γ ) be the unoccupied probability of vertex v in the subtree Tv
rooted at v with boundary condition Γ . It is straightforward to establish that
αv(Γ ) satisfy the following recurrence:

αv(Γ ) =
1

1 + λ
∏
w∈N−(v) αw(Γ )

. (1)

There are two special boundary conditions: one is called the odd boundary con-
dition (denoted as Γo,L) which occupies all the vertices at level L when L is
odd (and unoccupies when L is even); the other is called the even boundary
condition (denoted as Γe,L) which occupies all the vertices at level L when L is
even (and unoccupies when L is odd). These two boundary conditions are the
extremal ones, meaning that for any other boundary condition Γ for the vertices
at distance L from the root r of T , αr(Γe,L) ≤ αr(Γ ) ≤ αr(Γo,L) when L is even
(and with the inequalities reversed when L is odd).

To see that WSM holds for the tree T , it is enough to show that for the
odd and even boundary conditions {Γo,L}L∈N and {Γe,L}L∈N, the difference of
the marginal probabilities at the root |αr(Γo,L)− αr(Γe,L)| decay exponentially
in L.
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3.1 Branching Matrices

Recall that in order to show that uniqueness holds for Z
2 for a certain λ, it is

enough to show that for the same λ, SSM holds on a certain tree which is a super-
tree of Tsaw(Z

2). Due to the regularity of Z2, in [11], deterministic multi-type
Galton-Watson trees are proposed to characterize the candidate super-trees. The
trees can be defined by matrices in the following way.

Definition 3. Given a t× t (branching) matrix M, F≤M is the family of trees
which can be generated under the following restrictions:

◦ Each vertex in tree T ∈ F≤M has its type i ∈ {1, . . . , t}.
◦ Each vertex of type i has at most Mij children of type j.

We use TM to refer to the tree that is generated by the matrixM, specifically, we
mean the largest tree in the family F≤M. The simplest M such that Tsaw(Z

2) is

in the family FM is M =

(
0 4
0 3

)

. In this case, TM is the complete, regular tree of

degree 4. As shown in [11], because of the regularity of Z2, a more sophisticated
set of branching matrices M′ we contain Tsaw(Z

2) in their family are trees TM′

corresponding to all walks of Z2 truncated when closing a cycle of length less
than or equal to a certain constant. Clearly, TM′ is a super-tree of Tsaw(Z

2),
because any path in TM′ will only avoid cycles of a certain length whereas paths
in Tsaw(Z

2) are avoiding all cycles.
When one tries to avoid a cycle of length 4, the matrix becomes

M′4 =

⎛

⎜
⎜
⎝

0 4 0 0
0 1 2 0
0 1 1 1
0 1 1 0

⎞

⎟
⎟
⎠ ,

where each type is simply representing the various stages of completing a cycle
of length 4 in a walk. It is easy to verify that Tsaw(Z

2) is in the family FM′
4
.

In M′4, we have not yet taken into consideration the effect of the assignments
to leaves as detailed in the construction of Tsaw in Section 2.2. When we do that,
we are able to construct much more sophisticated branching matrices which
yield better bounds. Therefore, for � ≥ 4, let M� denote the branching matrix
generating the tree containing all walks in Z

2 truncated when completing a cycle
of length ≤ �, where these leaf vertices are occupied or unoccupied according
to the definition in Section 2.2 based on some fixed homogeneous ordering <w
of neighbors for every vertex. By taking into account the boundary condition
we obtain a smaller tree since when a walk closes a cycle with an occupied
assignment to a vertex u, this forces the parent of u to be unoccupied, which
further trims down the size of the tree. These more sophisticated matrices yield a
“tighter” bound on Tsaw(Z

2), however the number of types increase. For example,
for � = 4, whereas M′4 has 4 types, M4 has 17 types (after some simplifications),
see [11] for details of M4. For M6 there are 132 types, and for M8 there are 922
types.
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3.2 Contraction Principle

For each t by t branching matrix M, we would like to derive a condition such
that SSM holds for the tree TM. Throughout this paper, for each type i, we treat
the row Mi of M as a multi-set and each entry Mi(j) of the row denotes the
number of elements the set Mi has of type j. We use t(w) to denote the type of
vertex w ∈Mi. The following lemma, which is re-stating Lemma 1 from [11] in
a slightly simpler form that is more convenient for our work, provides a sufficient
condition for SSM to hold for the tree TM.

Lemma 2. Let a branching matrix M be given. Assume there is 0 < γ < 1 such
that for each type i, there is a positive integrable function Ψi where

1− αi
Ψi(αi)

∑

w∈Mi

Ψt(w)(αw) < γ, (2)

for αw in the range [1/(1+λ), 1] for each child w and αi =
(
1 + λ

∏
w∈Mi

αw
)−1

defined in (1) as a function of αw’s. Then SSM holds for TM, i.e., WSM holds
for all trees T in the family F≤M with a fixed rate γ < 1.

The proof of the lemma is included in the full version of this paper [13].

4 Upper Bound on the SSM Threshold

As described in the introduction, previous approaches for lower bounding λc(Z
2)

are based on proving SSM for Tsaw(Z
2). To provide a bound on the strength of

these approaches we upper bound the SSM threshold for Tsaw(Z
2). We will show

that for λ ≥ 3.4, SSM does not hold for Tsaw(Z
2) obtained from any edge-ordering

used in the vertices. We also show the for any homogeneous ordering SSM does
not hold for Tsaw(Z

2) for λ ≥ 3. Note that this does not imply anything about
WSM/SSM on Z

2, it simply shows a limitation on the power of the current proof
approaches.

To prove that SSM does not hold on Tsaw(Z
2) we define a tree T that is a

subtree of Tsaw(Z
2) and prove that WSM does not hold on T for sufficiently

large λ.

4.1 Upper Bound for Homogenous Ordering

We define a branching matrix DH such that TDH corresponds to the never-go-
South tree, and prove that WSM does not hold on this tree when λ > 3.

Since we are assuming a homogeneous ordering, without loss of generality
assume that N is smallest in the ordering. We construct DH by considering
those walks on Z

2 that only go N, E, and W. The branching rules can be written
in the following finite state machine way:

0. O → N | E | W, 1. N → N | E | W, 2. E → N | E, 3. W → N | W,
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where O corresponds to the origin and is a transient state so can be ignored when
analyzing the recurrence. The branching matrix corresponding to the above rule
is

DH =

⎛

⎝
1 1 1
1 1 0
1 0 1

⎞

⎠ , (3)

where rows/columns 1, 2, and 3 correspond to North, East, and West
respectively.

Lemma 3. Let the order of the edges in each vertex be an homogenous order
where N is the smallest in the order. The tree TDH generated by the branching
matrix DH is a subtree of Tsaw(Z

2).

For the tree TDH we can establish its WSM threshold as stated in the following
result, which immediately implies Theorem 1.

Lemma 4
WSM(TDH ) = 3.

The proofs of Lemmas 3 and 4 are included in the full version of this paper [13].

4.2 Ordering-independent Subtree for Tsaw

In this section, we will define a branching matrix DG such that the generated
tree TDG is a subtree of Tsaw independently on the ordering of edges for each
vertex. When in particular the ordering is homogeneous, then TDG it is a subtree
of the tree TDH defined in the previous section. This new tree TDG also never
goes South (as in TDH ) but it has further structure to ensure that the leaves
in this tree are at least distance two from the leaves of the self-avoiding walk
tree Tsaw(Z

2), and therefore for any boundary condition for Tsaw(Z
2) (and hence

any ordering of the edges for each vertex) it immediately follows that TDG is a
subtree of Tsaw(Z

2). To achieve this property, we add to the never-go-South tree
the rule that if the walk goes East there must be at least two North steps before
it goes West (and similarly, for West to East).

The tree is constructed by the following rules:

0. O → N | E | W,
1. N → NN | NE | NW, 2. W →WN | WW, 3. E → EN | EE,
4. NN → NN | NE | NW, 5. NW →WN | WW, 6. NE → EN | EE,
7. WW →WN | WW, 8. EE → EN | EE, 9. WN → NW | NN,
10. EN → NE | NN.

Here the state O corresponds to the origin, while E, W and N correspond to
the first edges in the path. Then each of the states corresponds to the last two
visited edges. Notice also that states O, E, W and N are transient states. We
denote the branching matrix for this tree as DG.

Lemma 5. The tree TDG generated by the branching matrix DG is a subtree of
Tsaw(Z

2), independently of the edge ordering used for each vertex.
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We establish the following bounds on the WSM threshold for the tree TDG .

Lemma 6
3.3 <WSM(TDG) < 3.4.

The proofs of Lemmas 5 and 6 are included in the full version of this paper [13].
Theorem 1 follows from Lemmas 4 and 6.

4.3 Tree with Different Thresholds for SSM and WSM

Brightwell et al. [6] give an example of a tree for which WSM holds but SSM
does not hold for the same activity λ. Here, we present another example which
is more closely related to Tsaw(Z

2). We show a tree T ′, which is a super-tree of
TDH and subtree of Tsaw(Z

2), for which WSM holds for some λ > 3.
To construct the tree T ′ we allow some South moves in the tree in a certain

context. In particular, we only allow that a South move happens when the path
contains the following substring: NNEESEN, i.e., a South move is allowed if and
only if it is after a sequence of NNEE moves and followed by EN moves.

We will prove that the WSM threshold for T ′ = TD′ , the tree generated by
D′ is above λ = 3.01, and hence, combined with Lemma 4, we get the following
lemma. The tree family can be formalized in the following finite state machine
way:

1. E → E | N
2. W → N | W
3. N → NN | E | W
4. NN → NN | NNE | W
5. NNE → N | NNEE
6. NNEE → N | E | NNEES
7. NNEES → NNEESE
8. NNEESE → NNEESEN
9. NNEESEN → NN | E
Let the matrix describing the above rules be denoted as D′.

Lemma 7. For the tree TD′ at λ = 3.01, WSM holds but SSM does not hold.

The proof of this lemma can be found in the full version of this paper [13].

5 Linear Program for Lower Bounding SSM Threshold

Here we propose a way to use linear programming to solve the functional in-
equality (2). Notice that if Ψi is positive and bounded for all i then inequality
(2) is equivalent to

(1− αi)
∑

w∈Mi

Ψt(w)(αw) < Ψi(αi). (4)
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The idea to solve (4) is simple. We will restrict the search for Ψi to a family of
positive piecewise linear functions with a finite number of discontinuities.

First of all, it is a simple fact that each αi is in the interval I = [1/(1 + λ), 1].
We will divide I into a set of d consecutive sub-intervals of the same size. Define

Xk =
1

1 + λ
+ k

λ

d(1 + λ)
, for k = 0, . . . , d− 1.

To ease the notation define Yk = Xk+1 for k = 0, . . . , d− 1. Note that the inter-
vals [Xk, Yk] partition I. Since the only requirements of Ψi(x) are positive and
integrable, we restrict the search for Ψi(x) to functions of linear form −ai,kx+bi,k
in each interval [Xk, Yk] with ai,k, bi,k > 0.

Now, for each type i, the functional inequality can be decomposed according
to different combinations of the intervals of the variables αw which are type
i’s children. For each combination, we are able to write down a set of linear
inequalities such that it is a sufficient condition for the functional inequality to
hold within that region.

To capture for which sub-intervals should (4) hold, we say that a tuple of
indexes k = (k0, k1, k2, . . . , kΔi) is i-acceptable if the interval [Xk0 , Yk0 ] intersects

the interval

[
1

1+λ
∏Δi

j=1 Ykj

, 1

1+λ
∏Δi

j=1Xkj

]

. We have the following theorem.

Theorem 3. In order for the functional inequality (2) to hold, it is enough for
the following set of linear constraints (a’s and b’s are the variables) to be feasible:

For each i ∈ [t] and each i-acceptable tuple k,

(1−Xk0)

Δi∑

j=1

(
bt(j),kj − at(j),kjXkj

)
< (bi,k0 − ai,k0Yk0) , (5)

where {t(j) : j = 1, . . . , Δi} =Mi (as multisets).
For each i ∈ [t] and k = 0, . . . , d− 1,

bi,k − ai,kYk > 0, 0 ≤ ai,k ≤M 0 ≤ bi,k ≤M. (6)

where M is some (big) constant.

The proof of Theorem 3 is included in the full version of this paper [13].
Consider the branching matrix M� generating the family of trees avoiding

cycles of length ≤ �. Recall that the tree TM�
which is generated by M� is a

super-tree of Tsaw(Z
2). We show that the system (5)-(6) corresponding to M� is

feasible, proving SSM for TM�
and hence for Tsaw(Z

2).
To solve the feasibility problem, we add a new variable v in the right hand

side of each linear constraint ax ≤ b, changing this constraint to ax− b ≤ v. We
minimize v, which is an upper bound for the maximum violation by x among all
constraints. The original linear system is feasible if and only the linear program
has optimal solution v < 0.

The number of constraints and variables in this LP are huge (almost 10 billion
constraints and 1 million variables) when d = 200 for the matrix M8. In order
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to solve the linear program efficiently, one has significantly to reduce its size.
In Section 6, we will discuss about the methods we use to solve this LP. When
running the linear programs built for M4 we obtain λ > 2.31, and for M6 we
obtain λ > 2.45, and for M8 we obtain λ > 2.48. In this way, we are able to
prove that SSM holds for Z2 for λ ≤ 2.48. The data for these LP solutions are
available in our online appendix [16].

What we obtain from our linear program method are closer to the limit of this
approach. Computational experiments suggest the threshold for WSM for TM4

is at roughly λ ≈ 2.482, for TM6 at λ ≈ 2.653, for TM8 at λ ≈ 2.75 and finally
for TM10 at λ ≈ 2.82. These are thesholds for WSM, and the SSM threshold may
in fact be even lower, as occurred for our example in Section 4.3.

5.1 Comparison with Previous Approaches

This method has several advantages compared to the method that is proposed
in [11] in which a sufficient condition called the DMS condition, is introduced.
DMS is a nonlinear matrix inequality obtained by comparing the geometric mean
with the arithmetic mean when one analyzes the functional inequality (2) for a
specific type of Ψi functions. These functions are the optimal ones when the tree
TM is a complete regular tree. However, for multi-type branching matrices, they
are not necessarily optimal. One has to find the parameters of these functions Ψi
in order to satisfy the DMS condition. The parameters for the DMS condition
are obtained by a randomized hill-climbing program which may become trapped
in a local optima. In contrast, the linear programming method we present here
provides the optimal solution for the class of functions being considered.

For the SSM threshold of TM�
, our method includes the approximation of a

more general class of functions and hence we obtain better lower bounds (see
Figure 1 on page 710). Finally, the mathematical correctness of the linear pro-
gramming method is very straightforward to check as compared to checking the
correctness of the DMS condition. For � = 4, 6, 8, we summarize in the following
table, the experimental lower bound for the WSM threshold ofM�, the size of the
matrix M�, the lower bounds of the SSM threshold for M� obtained from DMS
condition in [11], and the lower bounds of the SSM threshold for M� obtained
from our linear program approach.

� WSM threshold Number of Types λ from DMS in [11] λ from LP

4 2.48 17 2.16 2.31
6 2.65 132 2.33 2.45
8 2.75 922 2.38 2.48

6 Reducing the Size of the LP

Initially, when we write down the linear programs (LPs) for the M8 matrix with
the size of intervals around 10−3, the number of constraints and variables is
huge, approximately 10 billion constraints and 1 million variables. Solving this
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Fig. 1. A step function of Φ found by the LPs

LP directly is not possible, as the data will not even fit in memory. Notice that
the LPs we create have high constraint-variable ratios. One standard technique to
solve such LPs is to write the dual which has a high variable-constraint ratio and
apply the column generation method [3]. From the primal point of view, we try to
guess the set of tight constraints, by picking a set of primal constraints, solving a
smaller LP and checking whether the rest of the constraints are satisfied. When
there are violated constraints, several of the most violated constraints are added
to the set and we iterate the procedure until the LP is solved.

Using column generation we obtain an LP that can be solved, but running
the method takes too long. Next we will present two of our major techniques to
reduce the size of the LPs so that we can solve them within a few days.

6.1 Nonhomogeneous Interval Size

In Theorem 3, we break the intervals into subintervals of the same size. The
algorithm was designed to start with a very coarse set of the subintervals with
a uniform length and if the LP has no solution, then the algorithm will try
to decrease the length and re-solve the new LP. Usually, the algorithm has to
make the length as small as 10−3 for the LP to have a solution. This creates
lots of constraints. Notice that, the constraints are tight only in a very small
range of the interval ( 1

1+λ , 1). Therefore, we can try to break the intervals into
subintervals of different sizes.

The goal of breaking intervals is to change the primal constraints so that the
objective function v can be achieved at a smaller value. In column generation,
shadow prices are used for this purpose. However, here deciding which intervals
to break, affects the objective in a nonlinear fashion. Thus, we use a heuristic
pricing scheme on the intervals to pick which ones to break. The following briefly
describes our heuristic approach.

For each interval, we know how many constraints are involved for that interval
and how many of them are violated (i.e., ax− b > 0). We sum up the values of
ax− b for how much each constraint is violated and then scale this by a factor of
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the size of the interval to obtain what we define as its price. The algorithm will
pick several intervals with the highest prices to break. The reason why we scale
by a factor which is a function of the size of the interval is that we do not want
to break the intervals that are already very small. In Figure 1 (see page 710) we
show a step function Φi for a type i in D8 found by the LPs. One can observe
from the figure that most of the intervals have large lengths; in fact, there are
some small intervals in the middle as these are the intervals that create tight
constraints.

6.2 Reduction of the Branching Matrices M�

Usually, when one applies various methods trying to solve the functional inequal-
ity (2), one has to face the fact that the dimension of the matrix M is huge, e.g.,
t = 922 for � = 8 in [11]. A natural way to generate M is using a DFS program
that enumerates all of the types by remembering the history of the self-avoiding
walk. However, there are many types in such a matrix that are essentially the
“same”. Here we provide a heuristic and rigorous method for finding those types
that are the same.

Let C be a partition of the types in M, i.e., C = {C1, C2, ..., Ck} such that
⊎k
i=1 Ci = [t]. We define the partition to be consistent with M, if for every

i ∈ [k], each pair of types s, t ∈ Ci, the rows Ms and Mt are the same with
respect to C, that is

∑

j∈Ci′

Msj =
∑

j∈Ci′

Mtj , for all i
′ ∈ [k].

Definition 4. Given M and a partition C of size k which is consistent, we define
the k-by-k matrix MC by,

MCii′ =
∑

j∈Ci′

Msj where s ∈ Ci.

We say M is reducible to a k-by-k matrix B if there is a consistent partition C
such that B = MC.

Lemma 8. For a partition C of size k,

F≤MC = F≤M and TMC = TM.

Proof. The argument is just a standard induction on the height of the tree. 	

Now the question is how to find a good partition C easily. For a specific value
λ < WSM(TM), let Vλ be the fixed points of the recurrences of the marginal
distributions defined by M. Our conjecture is the following.

Conjecture 1. Let the partition C(λ) be the sets of types that have the same
value of the fixed points in Vλ, i.e., for each Ci ∈ C(λ), for all c ∈ Ci, Vλ(c) are
the same. If for all λ, the partitions C(λ) are identical, then C is a partition that
is consistent of M.
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Using the intuition from Conjecture 1 we are able to find good partitions in
practice. We simply run a dynamic programming algorithm on the tree TM to
calculate an approximation of the fixed points in Vλ. Once the approximation
is good enough, we simply make the partition according to this approximation.
We then check the consistency of the partition with M, and therefore, we know
whether the resulting matrix generates the same tree as the original one or not
by Lemma 8. Applying this reduction to M6 the number of types goes down
from 132 to 34, and for M8 the number of types goes down from 922 to 162.
This significant reduction in the size of the matrices greatly reduces the number
of constraints and variables in our linear programming formulation. We use this
technique to simplify the branching matrix DG considered in Section 4.2 for
proving Theorem 1, and reduce the matrix from 7 types to 3 types.

7 Conclusions

Current techniques for proving lower bounds on λc(Z
2) analyze SSM on Tsaw(Z

2).
This paper shows that this approach will not be sufficient to reach the con-
jectured threshold of 3.79.... One problem in this approach is that boundary
conditions obtainable on Tsaw(Z

2) are not necessary realizable on Z
2. Some of

the boundary conditions are more “extremal” than the one that is on Z
2 which

yields a lower weak spatial mixing threshold. Finding a way to exclude certain
boundary conditions for Tsaw(Z

2) would be an extremely interesting direction.
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