
A Semantic-Based Dual Caching System

for Nomadic Web Service

Panpan Han, Liang Chen, and Jian Wu

Zhejiang University, Hangzhou, Zhejiang, China
ronson@zju.edu.cn

Abstract. As mobile devices become more widely used, they will emerge
as a standard platform for hosting Web Service clients. Since mobile de-
vices tend to be connected via a wireless network, they have to work
with significantly less and fluctuating bandwidth as well as sudden and
unexpected loss of connectivity. Moreover, mobile devices have other con-
straints, such as limited CPU, memory, or energy resources. To handle
the above problems, we proposed a dual caching architecture and de-
velopment method of web services for mobile devices. With the caching
system between the client and server, we can cache the computing result
and data downloaded from the server, which can reduce the latency and
network load for workloads of web service. Meanwhile, the client side
caching system can store the upload and download data.

Keywords: web service, caching, mobile devices.

1 Introduction

Currently, the Web services are spreading widely throughout the world. Web Ser-
vices are an enabling technology for interoperability within a distributed, loosely
coupled, and heterogeneous computing environment. The W3C defines a ”Web
Service” as ”a software system designed to support interoperable machine-to-
machine interaction over a network”. It has an interface described in a machine-
processable format (specifically Web Services Description Language, known by
the acronym WSDL). Other systems interact with the Web service in a man-
ner prescribed by its description using SOAP messages, typically conveyed us-
ing HTTP with an XML serialization in conjunction with other Web-related
standards.

The “standard” Web Services scenario assumes service providers and con-
sumers as static and connected entities. But as mobile devices become more
resource-rich and pervasive this is bound to change. As mobile devices become
widely used, they are emerging as a means for hosting applications that con-
sume Web Services(shown in Fig.1). However, since mobile devices tend to be
connected to the Internet via very different kinds of networks, such as wireless
LAN(802.11b), cellphone network(WAP), broadband network(cable modem), or

J. Li et al. (Eds.): PAKDD 2013 Workshops, LNAI 7867, pp. 511–521, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

512 P. Han, L. Chen, and J. Wu

local area network(Ethernet), they have to work with significantly less and fluc-
tuating bandwidth as well as sudden and unexpected loss of connectivity. While
fluctuations in the available bandwidth impact only the transmission speed of
SOAP messages, the total loss of connectivity is more serious since it interrupts
all SOAP traffic. Consequently, the use of mobile devices will introduce the novel
notion of a nomadic Web Services participant that can suddenly disappear from
the network and reappear at a later point in time.

The growth in the number of Web services has been phenomenal, hence, ap-
plying changes to existing Web services is impractical. For the same reason, the
solution should be scalable and general enough to apply to all Web services. A
good solution to improve availability of Web services should be transparently
deployable and generally applicable[1]. Transparent deployment means that the
solution must not require changes to the implementation of the Web services,
either to the server and client side modules or to the communication protocol
between them. Caching satisfies both the required characteristics of transparent
deployment and general applicability. Caches are transparent to both the client
and server components of the Web services.

This paper focuses on how to support nomadic Web Services clients by the
use of dual caching system. With the combination of service characteristics and
requirement of service, we can get cache semantic description(CSD). CSD is
a XML which can show the type of the service operation(read or write), the
service response characteristics and so on. Then the cache system can choose
the corresponding caching strategy. The paper is structured as follows. Section
three focuses on the novel dual SOAP caching system. An empirical evaluation
of the dual caching system is presented in section four. A discussion of the results
and a summary and future work section conclude the paper.

Tablet PC

PDA

Notebook

Smartphone

Web Service

LAN
Wireless Link

Fig. 1. Examples of mobile devices

A Semantic-Based Dual Caching System for Nomadic Web Service 513

2 Related Work

The concept of a cache [2] was first introduced for processor-memory commu-
nication; the concept then spread to file systems, computer networks, database
systems and distributed object systems. Caches have been used to overcome dis-
connectivity, to decrease the latency of responses, and to increase throughput. A
cache requires the identification of two cache semantics. These are cacheability
and consistency maintenance.

There is much research on software caches in client-server architectures, with
many objectives ranging from providing transactional guarantees, through pro-
viding consistency based on relaxed consistency models, to providing availability
(e.g., [3], [4], [5] - just to name a few). It should be noted that although the hard-
ware for mobile devices is improving at a tremendous rate, mobile devices still
have limitations in terms of memory, processing power, communication band-
width, and, in particular, power consumption. Consequently, caches targeted
to mobile devices, in general, are smaller and simpler than caches targeted to
servers or desktops.

A variety of systems have employed caching on mobile devices in support
of disconnected access to files, databases, objects, and Web pages[6]. With the
popularity of web service, several researches have been done on the caching
of web services. [7] proposed a ”HTTP-like” caching system. Upon receiving a
response with a particular code in its content (for example, 304, as in HTTP),
clients would know that their cached data were still up-to-date. This method
reduces the wirelessly transmitted data to some extent. However, it would not
eliminate the need of establishing a connection each time we need data.

To reduce the latency perceived by the user, [8] present a caching architecture
for web services and an adaptive prefetching algorithm. The key characteristics
of their approach are the compatibility with major mobile browsers and the
independence of the caching proxy from the front-end application and the back-
end services.

[9] introduces a dual caching approach to overcome problems arising from
temporarily loss of connectivity and fluctuations in bandwidth. [10] present Dif-
ferential Caches, with the accompanying Differential Updates method and the
Mobile SOAP (MoSOAP) protocol, to avoid transfer of repeated data, sent by a
web service to an application. The protocol is flexible in that other optimization
techniques, such as encoding, can also be applied.

3 Dual Caching System

3.1 System Architecture

Fig.2 shows the architecture of the implemented semantic-based dual caching
system. As mentioned in the previous sections, two transparent caches, one on
the client side and one on the proxy side are required to overcome the loss of

514 P. Han, L. Chen, and J. Wu

connectivity during SOAP traffic and to reduce the runtime overhead of mobile
devices. The pair of caches is used to store the data sent by the web service to
the invoking application and are managed by the respective client and server
Cache Managers.

The Cache Managers controls all cache operations. The Cache Manager inter-
faces with the CSD preliminary to making cache decisions (e.g. read from cache,
read from server side). The detailed description of caching strategy is described
in the next chapter.

The proxy side cache(PSC) resides on a proxy server which has a reliable con-
nection to the service provider. The proxy can alter the network traffic and can
be a load balancing gateway, or a buffer to an intermittently available resource
(e.g. WS).

The incoming requests from the client side cache(CSC) are sent directly to
the proxy server. Responses from the service provider are first cached in the PSC
and then sent to the CSC. In case the CSC can’t be reached the PSC will wait
for the CSC to issue a reconnect message upon which the PSC will resubmit all
queued responses. To the client, the client side cache(CSC) appears as a local
proxy residing on the mobile device.

When connected to network, the request sent by client side is intercepted
by cache manager. Depends on the cache requirement and service semantic, we
determine to return the client side cache data or to fetch response from server
side. And when disconnected, for read operation, we also use CSD to determine
whether to read data from cache or from server side. For write operation, we store
the request data in the writer queue. If the client detect the network connected,
we replay the request queue.

������

��	
����

	�
���	

���������

������
������	

���

������
������	

���

�����������

Fig. 2. The dual caching architecture

A Semantic-Based Dual Caching System for Nomadic Web Service 515

3.2 Caching Strategy

Cacheability of a request is the property stating that responses can be cached
without the creation of an undesired program state [11]. Cacheability is always
true for a request that is state-reading and non state-altering. The cached re-
sponse, however, remains in cache until it is determined as invalid, or until the
cache size is too large and the response was not recently used. A response is
invalid if it has expired by an age value (e.g. HTTP time-to-live). An invalid
response must be requested again from the live resource.

A cache is supported by strategies for maintaining equality between local re-
sponses and live responses. Consistency maintenance is the term used to describe
these strategies. Hence, cached responses should closely resemble the responses
of the live resource (e.g. WS). A strategy (e.g. implicit invalidation) removes or
refreshes a cached response when a condition is true (e.g. response age is more
than maximum age).

Requests which read the state of a resource are called READ requests (or
READs). A READ request is synonymous with the terms query, state-reading,
and state-dependent. Requests which alter (a.k.a. modify) the state of a resource
are called WRITE requests. A WRITE request is synonymous with the terms
update, and state-altering. A client receiving a local reply to a READ has per-
formed a read-local operation. However, a client receiving a remote response to
a READ has performed a read-through operation. A delayed state-alteration
is known as a write back. However, an immediate state-alteration on the live
resource is the result of a write-through operation.

Table 1 shows the attributes and corresponding values of CSD, and Fig 3
shows the key structure of CSD. In which the ”type” attribute can be read,
write and query, ”response” attribute can be permanent, stable, predictable and
random, ”writeRequest” can be last-write-wins, context-free and other.

Server Side Caching Strategy. The server side caching strategy depends on
the CSD, which is shown in table 2. And the write strategy for server side is
No-Cache. No-Cache means all requests sent to proxy side, do not use cache.

Client Side Caching Strategy. The client side caching strategy is not only
affected by service semantics but also has relation with service consistency re-
quirement, which is shown in table 3 and 4. There are three consistency require-
ments: strong consistency means we must provide the newest response for each
request, eventual consistency means after a period of time, we can return the
newest response, and unconstrained consistency means there is no need to return
the newest response for each request.

And the read strategy during connections is Automatic Update, the write
strategy during connections is Write-through.

516 P. Han, L. Chen, and J. Wu

Table 1. CSD schema

Attribute Name Attribute Value Attribute Description

Name Operation Name the name of the operation

Type Read type of the operation: read operation,
response is related to service state, op-
eration doesn’t change service state

Type Write type of the operation: write operation,
response may be related to service state,
operation changes service state

Type Query type of the operation: evaluate opera-
tion, response isn’t related to service
state but is related to parameters

Response Permanent feature of the response: permanent, re-
sponse value is always the same for the
same request value

Response Stable feature of the response: stable, response
value is the same over a period of time
for the same request value

Response Random feature of the response: random, re-
sponse value is totally random

WriteRequest last-write-wins feature of the write request: latest write
overwrites the previous ones

WriteRequest context-free feature of the write request: the order
of write request has no effect to the re-
sponse

WriteRequest other feature of the write request: different
from the previous ones

Table 2. Server side cache read strategy

Service semantics Permanent Stable Random

Server side caching strategy Cache-Only Passive Update Automatic Update

Table 3. Client side cache read strategy during disconnections

Strong consistency Eventual consistency unconstrained consistency

Permanent Cache-Only Cache-Only Cache-Only

Stable Failure Cache-Only Cache-Only

Random Failure Cache-Only Cache-Only

Table 4. Client side cache write strategy during disconnections

Strong consistency Eventual consistency unconstrained consistency

last-write-wins Failure LWW LWW

context-free Failure Failure Write-back

other Failure Failure Failure

A Semantic-Based Dual Caching System for Nomadic Web Service 517

<complexType name="operationType">
 <sequence>
 <element name="resDepend" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <attribute name="resName" type="string"></attribute>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string"></attribute>
 <attribute name="type">
 <simpleType>
 <restriction base="string">
 <enumeration value="read"></enumeration>
 <enumeration value="write"></enumeration>
 <enumeration value="query"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="responce">
 <simpleType>
 <restriction base="string">
 <enumeration value="permanent"></enumeration>
 <enumeration value="stable"></enumeration>
 <enumeration value="predictable"></enumeration>
 <enumeration value="random"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="writeRequest">
 <simpleType>
 <restriction base="string">
 <enumeration value="last-write-wins"></enumeration>
 <enumeration value="context-free"></enumeration>
 <enumeration value="other"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>

Fig. 3. Structure of CSD

4 Performance Evaluation

In order to evaluate the dual caching system, several experiments were per-
formed. In the experiments Axis 2 was used as the Web Services middleware.

4.1 Experimental Setup

Web Service. The experimental WS implements methods supporting a game
recommendation application. Users can get a list of recommended games, view
game details and score the game. The WS implements the following Three meth-
ods, in no particular order:

– Get the game list (READ)
– Get the description of a certain game (READ)
– Give a game score (WRITE)

Metrics

– Mean Latency: the total time spent between a method call and receiving the
method return

– Cache Hit ratio: the ratio of locally found responses

518 P. Han, L. Chen, and J. Wu

The client is instrumented to collect the metrics while it is subjected to a
set of scenarios (e.g. Workloads). The client executes dependently on a re-
quest/connectivity pattern, and the metrics are collected after every request.

Workloads. The experimental workloads are a set of synthetic request pat-
terns. A synthetic workload is a set of WS requests following the Zipf distri-
bution. The requests are characterized by the ratio X (READ operations) to
Y (WRITE operations), such that a workload is composed of X% READs and
(100- X)% WRITEs. For all workloads, optimistic concurrency is assumed and
an experimental run assumes no write-write conflict.

– P1; 100% READs, 0% WRITEs
– P2: 70% READs, 30% WRITEs
– P3: 40% READs, 60% WRITEs

Execution Environment. The experiments are executed within Samsung
Galaxy Note 10.1 N8010 with android 4.1 OS. The Galaxy Note are configured
to contain 2G Ram, and a Samsung Exynos 4412 Quad-core 1.4 GHz processor.

4.2 Experiment Result

To measure the impact of the dual caching system each experiment is performed
with and without cache. Firstly, we measure the mean latency as the response
message size changes from 1k to 100k with workload P1.

Fig.4 shows that the mean latency as the response message size changes from
1k to 100k. This figure shows a linear increase of mean latency as a function
of the request message size. And it’s obvious that with dual caching system the

Fig. 4. Mean latency for workload P1 with cache and without cache

A Semantic-Based Dual Caching System for Nomadic Web Service 519

Fig. 5. Mean latency for different workloads

Fig. 6. Effect of Workload on Cache Hits

mean latency decreases notably. This is because the locally answered READ
requests reduces the execution and network costs for the mobile device.

After evaluating the dual cache system with very basic workloads, we observe
the effect of varying workloads on the latency of requests [Fig.5].

In the workloads P1-P3, the number of READ operations starts at 100% (in
P1) and decreases by 30% for each workload (e.g. 40% in P3). The reduction in
the number of READ operations is combined with a proportional increase of the
number of WRITE operations. As a result, the mean latency decreases linearly
with the decrease in number of READ operations in a workload.

This can be explained that many READ records are invalidated by WRITE
operation. For example, before we score a game, the score is 87, which is cached

520 P. Han, L. Chen, and J. Wu

in client hash table. After we score it by 70, the score will change and the cache
is invalidated. So the system will fetch the score from the server side, which leads
to the increase in mean latency.

Then we evaluate the cache hit ratio for different workloads. From P1 to P3,
the number of READ operations decreases and the number of WRITE operations
increases. From Fig.6 we can see the number of cache hits decreases linearly with
the decrease in number of READ operations in a workload.

This can be explained by the same reason as the previous experiment, the
WRITE operations caused many cache invalidation. So the the increase of the
number of WRITE operations will lead to more cache miss and less cache hits.

5 Conclusions

This paper focuses on the challenges of enabling PDAs to host Web Services
consumers and introduces a dual caching approach to overcome problems arising
from temporarily loss of connectivity and fluctuations in bandwidth. Using a dual
caching it becomes possible to handle loss of connectivity during the transmission
of requests and the transmission of responses. An additional advantage of the
dual caching is the reduction of latency and network load for workloads that
contain significantly more read than writes.

Acknowledgement. This research was partially supported by the National
Technology Support Program under grant of 2011BAH15B05, the National
Natural Science Foundation of China under grant of 61173176, Science and
Tech- nology Program of Zhejiang Province under grant of 2008C03007, Na-
tional High- Tech Research and Development Plan of China under Grant No.
2009AA110302, National Key Science and Technology Research Program of
China (2009ZX01043- 003-003).

References

1. Elbashir, K., Deters, R.: Transparent Caching for Nomadic WS Clients. Arch. Rat.
Mech. Anal. 78, 315–333 (1982)

2. Barbara, D., Imielinski, T.: Sleepers and Workaholics: Caching Strategies in Mobile
Environments (Extended Version). VLDB Journal 4(4), 567–602 (1994)

3. Garrod, C., et al.: Scalable query result caching for web applications. VLDB 1(1),
550–561 (2008)

4. Haas, L., Kossmann, D., Ursu, I.: Loading a cache with query results. In: VLDB
1999, pp. 351–362 (1999)

5. Oh, S., Fox, G.C.: HHFR: A new architecture for Mobile Web Services Principles
and Implementations. Community Grids Technical Paper (2005)

6. Ramasubramanian, V., Terry, D.B.: Caching of XML Web Services for Discon-
nected Operation,www.cs.cornell.edu/People/ramasv/WebServiceCache/
WebServiceCache(techfest).pdf

A Semantic-Based Dual Caching System for Nomadic Web Service 521

7. Papageorgiou, A., Schatke, M., Schulte, S., Steinmetz, R.: Enhancing the Caching
of Web Service Responses on Wireless Clients. In: ICWS 2011, July 4-9, pp. 9–16
(2011)

8. Schreiber, D., Aitenbichler, E., Göb, A., Mühlhäuser, M.: Reducing User Perceived
Latency in Mobile Processes. In: ICWS 2010, pp. 235–242 (2010)

9. Liu, X., Deters, R.: An efficient dual caching strategy for web service-enabled
PDAs. In: ACM Symposium on Applied Computing 2007, pp. 788–794 (2007)

10. Qaiser, M.S., Bodorik, P., Jutla, D.N.: Differential Caches for Web Services in
Mobile Environments. In: ICWS 2011, July 4-9, pp. 644–651 (2011)

11. Friedman, R.: Caching Web Services in Mobile Ad-Hoc Networks: Opportunities
and Challenges. In: Proceedings of the Second ACM International Workshop on
Principles of Mobile Computing, pp. 90–96 (2002)

	A Semantic-Based Dual Caching System
for Nomadic Web Service
	1 Introduction
	2 Related Work
	3 Dual Caching System
	3.1 System Architecture
	3.2 Caching Strategy

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Experiment Result

	5 Conclusions
	References

