
Incremental Constrained Clustering:

A Decision Theoretic Approach

Swapna Raj Prabakara Raj and Balaraman Ravindran

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai, 600 036, India
{pswapna,ravi}@cse.iitm.ac.in

Abstract. Typical constrained clustering algorithms incorporate a set
of must-link and cannot-link constraints into the clustering process. These
instance level constraints specify relationships between pairs of data
items and are generally derived by a domain expert. Generating these
constraints is considered as a cumbersome and expensive task.

In this paper we describe an incremental constrained clustering frame-
work to discover clusters using a decision theoretic approach. Our frame-
work is novel since we provide an overall evaluation of the clustering in
terms of quality in decision making and use this evaluation to “generate”
instance level constraints. We do not assume any domain knowledge to
start with. We show empirical validation of this approach on several test
domains and show that we achieve better performance than a feature
selection based approach.

Keywords: Clustering, Constraints, Utility function, Decision theory.

1 Introduction

Cluster analysis is a useful tool for analyzing and understanding data. While
typically the analysis is carried out in an unsupervised manner, in many occa-
sions we have some background knowledge about the desired nature of the clus-
ters. Constrained clustering methods typically consider background information
or side information in the form of pairwise instance level constraints. Pairwise
constraints specify the relationship between a pair of instances as must-link con-
straints that define pairs of data points which should belong to the same cluster,
and cannot-link constraints that define pairs which should not be assigned to the
same cluster [1], [2]. Constrained clustering algorithms attempt to find clusters
such that these constraints are minimally violated.

While experts may have some knowledge about the intrinsic characteristics
of the data it is difficult to predict the constraints that are relevant to the final
use of the mined clusters. Consider the problem of grouping a set of commuters
to a college. If the final goal is to allocate parking lots effectively, then it makes
more sense to constrain people in the same department together. If the goal is
to assign car pool partners, then putting people from the same locality in the

J. Li et al. (Eds.): PAKDD 2013 Workshops, LNAI 7867, pp. 475–486, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



476 P.R. Swapna Raj and B. Ravindran

same cluster is more appropriate. But if two people are from the same family,
it makes sense to group them even in the first case. While such information
might be recoverable from repeated querying for expert input, automating the
process of generating constraints to minimize the expert’s involvement would be
immensely beneficial.

Initial work on constrained clustering assumed that the constraints are spec-
ified in a batch style. However, in general not all the constraints are available
apriori. We therefore use Incremental constrained clustering approach where,
the constraints are added or removed incrementally so as to refine the clustering
that are produced with existing set of constraints. The main approaches that in-
crementally add constraints are active learning, where experts are incrementally
queried for more constraints [3]; similarity based approaches, where a small seed
set of instances are used to generate further constraints [5]; and topology based
approaches, which look at spatial distribution of points in order to generate
constraints [4].

In our work we propose an architecture that incrementally generates con-
straints based on individuals preferences to be associated with a certain grouping.
Each derived cluster is associated with a particular decision, say a parking lot or
a car pool group 1. Each individual comes with a preference to be associated with
each decision. Once the clusters are decided the decisions are arrived at using
an optimization procedure that depends on the elements clustered together. We
model this process using a decision theoretic setting where the preferences are
specified in terms of a utility function. A utility function assigns numerical values
to decisions taken corresponding to given scenario. This numerical value repre-
sents payoff (either negative (expense/ cost) or positive (net revenue/ profit)).
Different combinations of decisions and scenarios generate different payoffs and
is represented in the form of table, which is also known as utility matrix.

We use the utility score of the derived decision on each element of the cluster
to generate constraints for the clustering process. We attempt to identify pairs
of data points which when constrained will result in a large improvement in the
overall utility of the clustering. We empirically demonstrate that our approach
finds clusters that yield higher utility decisions. Our approach is independent
of the exact decision making process and only depends on having available the
satisfaction (or utilities) of individuals with the decisions made. In this work
we assume that the information is available for each data point, but our over-
all approach works even when only a subset of the data points express their
preference in any given trial. The paper is organized as follows. In Section 2 we
give a brief overview of existing work on constrained clustering. In Section 3
we present our incremental decision theoretic constrained clustering framework
with an example and in Section 4 we present some empirical results.

1 The motivation for our architecture comes from seminal work by George A. Miller, a
cognitive psychologist. He argues that categorization is an important aspect of cog-
nitive behavior and humans first categorize the inputs in order to simplify decision-
making [6].



Incremental Constrained Clustering: A Decision Theoretic Approach 477

2 Related Work

In constraint clustering based approaches, the clustering algorithm itself is mod-
ified to respect the available constraints in order to obtain an appropriate clus-
tering of the data. We observe from earlier work on constrained clustering that
initial pairwise constraints are either initially assumed to exist and based on
that either constraints can be incrementally added by querying from the user or
can be propagated using neighborhood concept.

Cohn et al. [10] proposed a semi-supervised constrained clustering approach
where unsupervised clustering method is used to obtain initial clustering of the
data followed by presenting the data to the user so that they may critique it. User
feedback is a set of constraints that the system tries to satisfy while generating
new clustering. The clustering is refined repeatedly using the user feedback until
the user is satisfied with the clusters. However, this process is time consuming
when a large dataset is used as the clustering algorithm has to be re-run after
each set of constraints is added.

Ian Davidson et al. proposed an efficient incremental constrained clustering
[3], where the user is allowed to critique a clustering solution by providing pos-
itive and negative feedback via constraints. They address the problem of effi-
ciently updating a clustering to satisfy the new and old constraints rather than
re-clustering the entire data set.

Active learning scheme for selecting pairwise constraints has also been looked
at in order to improve clustering in a semi supervised setting [4]. They acquire con-
straints or labels from domain experts apriori but use only informative pairwise
constraints that are actively selected to improve the performance of clustering.

Eric Robert Eaton [5] focused on constraint propagation which assumes that
the specified constraints are representative of their neighborhood. Essentially
they perform adaptive constraint propagation based on data point similarity.
They propose a method for propagating user-specified constraints to nearby
instances using a Gaussian function, and provide an algorithm, GPK-Means,
that uses these propagated constraints in clustering. The constraint clustering
algorithms focus on finding clusters that merely follow either domain expert
given constraints or random constraints.

3 Incremental Constrained Clustering Framework

We introduce an incremental constrained clustering approach where the con-
straints are generated using a decision theoretic approach. We then use the gen-
erated constraints to aid clustering. Our work on constrained clustering neither
relies on batch style constraints as given by a domain expert nor randomly gen-
erated constraints. Our framework provides a mechanism to find better clusters
by using the decision making process after the clustering algorithm. The details
of the decision making process is not known to the clustering algorithm except
the assumption that the same decision is applied to all data points in a cluster.
Thus, the goal is to generate clustering such that the same decision when applied
to the cluster is optimal for as many data points as possible.



478 P.R. Swapna Raj and B. Ravindran

In order to generate initial set of constraints, we partition the data using
a traditional clustering process without considering any constraint information.
Once we obtain the clustering an appropriate decision must be taken with respect
to it and utility values must be associated with every data point in the cluster
based on the utility function. The distribution of utility values are then used
for generating a set of must-link and cannot-link constraints. We then perform
clustering again based on these constraints until the stopping criterion is reached.

3.1 Decision Making

The usefulness of a pattern depends on the utility of the best decision that
is supported by the pattern. Utility function quantifies the reward/penalty for
taking different decisions in various contexts. Our focus is to use this utility in
mining more useful patterns. The basic settings are as follows:

– We assume that there are fixed set of decisions.
– Decision making is at the level of the clusters i.e., we assign a single decision

to each group.
– Same decision applies to all the points belonging to a cluster.
– We assume that the same decision can be applied to more than one cluster
– Goal : To find clustering such that the decisions taken with respect to clusters

maximizes the overall utility of the clustering.

The generic form of the decision rule is as follows,

d(Ci) = maxj

∑

k,s.t.,ak∈Ci

vkj (1)

where, vkj = Utility of applying decision j on data point ak and d(Ci) is the
decision applied to cluster Ci. Specifying a vkj for each decision and each data
point is cumbersome.

It is more natural to specify the utility based on some intrinsic properties of
data. In our work, we consider utility conditioned on class labels or category of
data. The knowledge of the class labels is not essential for training purposes. We
use class labels in order to define utility function for the purposes of simulation
experiments alone. However, utility need not always be limited to class label, but
can be conditioned on some other attribute of data. Now we can write the utility
as: vkj = akl.ulj where, akl = Label of ak, ulj = Utility of applying decision j
to class l. We can now rewrite the generic form of the decision rule as,

d(Ci) = maxj

∑

l

nil.ulj (2)

where, nil = Number of class l points in cluster Ci and ulj = Utility of applying
decision j to class l.

3.2 Generation of Constraints

Once a decision is taken with respect to the cluster, the best we can do is to try to
separate the data points that have very different utilities. We generate cannot-
link constraint between these data points since their utilities are an indicator



Incremental Constrained Clustering: A Decision Theoretic Approach 479

that the same decision is not suitable for both the points as they reduce the
overall utility of the cluster if they are assigned to same cluster. We present the
algorithm to generate cannot-link in Algorithm 1.

Algorithm 1. Cannot-link constraint generation

foreach Ci in clustering do1

An optimal decision j is taken in order to obtain a vector of utility2

values UCi = {v1j , v2j , v3j , · · · vkj} ∀ data points ak ∈ Ci;
Sort the utility vector UCi;3

Compute the mean μ and standard deviation σ of UCi and4

consider data points mσ above and below μ, where m is some
positive constant;
Let N1 and N2 be the set of data points that fall above and below5

μ+mσ and μ−mσ of the utility distribution respectively.
Consider the pairs from N1×N2 and form cannot-link constraints
between them. These are instances which have larger standard
deviation and hence should not belong to the same cluster;

Our intention is also to keep the data points close that have higher utilities.
We generate must-link constraint between these data points since their utilities
are an indicator that the same decision is suitable for both the points as they
improve the overall utility of the cluster if they are assigned to same cluster. We
present the algorithm to generate must-link in Algorithm 2.

Algorithm 2. Must-link constraint generation

foreach Ci in clustering with utility UCi ≥ median(U), where U is the1

vector of all the cluster utilities in clustering do
An optimal decision j is taken in order to obtain a vector of utility2

values UCi = {v1j , v2j , v3j , · · · vkj} ∀ data points ak ∈ Ci;
Sort the utility vector UCi;3

Compute the mean μ and standard deviation σ of UCi and consider4

data points mσ above μ, where m is some positive constant;
Consider all data points that fall above μ+mσ of the utility5

distribution and form must-link constraints between every pair of
them;

Essentially all the instances that fall after μ + mσ correspond to instances
with higher utility and we want such instances to fall in the same cluster, hence
must-link relation must exist between all pairs of those instances. Now that we
have a newly generated set of constraints, these are now used in the clustering
process to yield better partitioning of the data by avoiding the violation of
constraints. These sets of constraints acts as an aid for which a constrained
clustering algorithm will attempt to find clusters in a data set which satisfy
the specified must-link and cannot-link constraints. There exists constrained
clustering algorithms that will abort if no such clustering exists which satisfies
the specified constraints [1]. However, our approach will try to minimize the



480 P.R. Swapna Raj and B. Ravindran

amount of constraint violation should it be impossible to find a clustering which
satisfies the constraints by associating a weight to each constraint.

3.3 Handling Inconsistent Constraints

Constrained clustering algorithm returns a partition of the instances that satis-
fies all specified constraints. If a legal cluster cannot be found for the instance, an
empty partition is usually returned [1]. This scenario of inconsistent constraint
must be handled differently in our work since we must take a decision with
respect to every data point. We handle this by assigning weights to the cannot-
link constraints alone since the number of must-link constraints generated in our
procedure is minimal.

The weight associated with a cannot-link constraint is computed as the dif-
ference in the utility values corresponding to the instances that must not belong
to the same cluster i.e.,

weight(a1, a2) = v1j − v2j (3)

where, a1, a2 are a pair of data points with a cannot-link relation and v1j , v2j are
utilities corresponding to data points a1, a2 when optimal decision j was taken
with respect to them.

The weights suggests how far away are the utilities (farther away, stronger
should the data points repel). The aim is now to generate clusterings with least
weight on violated constraints. Obviously when a perfect clustering is possible,
then no constraints are violated. The resulting clustering is then used to form
a new set of constraints yet again as discussed above. Note that we do not
delete constraints from the constraint list. This whole procedure of incrementally
generating new constraints is repeated until stopping criterion is satisfied.

3.4 Stopping Criterion

Let the new number of constraints generated be A and the small percentage of
total number of possible constraints be B. When A is greater than B we use the
newly generated constraints as background information to perform clustering.
The whole procedure is then repeated from clustering. If A lesser than equal to
B we terminate. Since there are only a finite number of constraints that we can
add our process will surely stop. In practice we observe that our process stops
before the limit B is reached.

3.5 Example

Consider a scenario from the Vacation travel domain, where a travel agent wishes
to segment his customer base so as to promote various vacation packages. Recent
research on vacation traveling customers has identified three segments: Deman-
ders, Escapists and Educationalists. Demander’s are users who expect luxury
service while escapists are users whose intention is to go on a vacation to re-
lax and do not require costly service. Educationalists are users who want to



Incremental Constrained Clustering: A Decision Theoretic Approach 481

gain more knowledge while traveling such as going out on safari trip, or visit
culturally rich places.

Imagine that a travels agent designs two promotion packages say P1 and
P2 for users. The package P1 provides facilities such as local tours at very
cheap rates and hotel rates are quite moderate while package P2 offers great
holiday experiences and corporate tours across international destinations. Trying
to sell a package designed for a demander to an escapists would probably not
succeed. Traditional clustering of the customers would yield compact clusters.
But in this case trading compactness of the clusters for more homogeneity in the
demographic of the users clustered together is a better approach.

Table 1. Utility function for vacation travel plan

Demander Escapist Educationalist
P1 -2 -5 10
P2 8 -3 -8

Consider an example of utility function in Table 1 where, the decisions are the
promotion packagesP1 andP2. The preference of demander is assigned as a utility
weight say 8 for package P2 since he is satisfied with the package and a weight
of -2 for package P1 reflecting that he is least interested in it. Initially the data
is partitioned using a traditional clustering process such as k-means clustering
without considering any constraint information. Once we obtain the clustering as
shown in Fig 1 an appropriate decision must be taken with respect to it.

According to our decision model we chose the decision among a set of finite
decisions that provides maximum utility per cluster. In Fig 1 we also show the
decisions taken with respect to each cluster. Consider cluster A, when decision
P1 is applied to all data points in the cluster it results in utility of 12 (4 × −2
+ 2 × −5 + 3 × 10 = 12). Likewise when decision P2 is applied to cluster A it
results in utility of 2. Hence P1 is the optimal decision that is taken with respect

Demander
Escapist

Educationalist

-2

-2

10
-2

-2

-5 10

-5

10

-3

-3
-3

8

8

8

8 -8

-8

A

P1 → A

B

P2 → B

Expense

T ravel duration

Fig. 1. Utility values assigned to Clus-
tering

Demander
Escapist

Educationalist

-2

-2

10
-2

-2

-5 10

-5

10

-3

-3
-3

8

8

8

8 -8

-8

A

P1 → A

B

P2 → B

Expense

T ravel duration

CNL

ML

CNLML

Fig. 2. Constraints generated on Trav-
els Data



482 P.R. Swapna Raj and B. Ravindran

to cluster A. In the case of cluster B, the optimal decision would be P2 as it
yields a utility of 7 (4 × 8 + 3 × −3 +2 × −8 = 7) while P1 would result in
utility of -3.

We then generate the constraints once we have assigned utility values per in-
stance in the cluster. We form must-link constraints between pairs of instances
that have highest utility and create cannot-link between instances which have
extreme utilities i.e., high and low utility as shown in Fig 2. We then incorporate
these generated constraints into our clustering algorithm to produce new clus-
tering configuration and the whole process is repeated i.e., decision making and
generation of constraints with the new clustering till the maximum total utility
for the clustering is obtained while respecting the constraints.

4 Experimental Results

In all the experiments we employ a slight variant of constrained k-means clus-
tering algorithm - COP k-means [1] wherein we handle inconsistent data. Recall
that the goal of clustering is to find groups such that we can assign a single
decision to the clustering. We have to ensure that the value of the decision is
optimized. For the purposes of validating our incremental constrained clustering
(CC) approach we compared its performance to a feature selection (FS) ap-
proach proposed in [8] for utility based clustering. Feature selection chooses a
subset of features by eliminating features with little or no predictive information.
We compare CC and FS since both methods set up a mechanism for discovering
clusters that support relevant decision making. Both CC and FS consider solving
the problem as a two stage process with clustering stage followed by a decision
making stage.

The data sets we have used in the experiments are the Steel plates faults data
set and Cardiotocography data set adopted from UCI repository. The Steel plates
faults data set consists of seven classes (158 Pastry, 190 Z-Scratch, 391 K-Scratch,
72 Stains, 55 Dirtiness, 402 Bumps, 673 Other faults) with 1941 instances and 27
attributes. The decisions that we consider are Ignore, Rectify and Recycle. We
study the effect of different base utility functions on our architecture, by using
two different utility functions corresponding to two different scenarios: Utility
1 corresponds to a scenario where for e.g., when we detect dirt as the fault
the ignore action is better than rectifying the fault. Utility 2 reflects a different
scenario altogether, where rectify action is suitable for fault such as dirt. The
utility functions for steel plates faults is shown in Table 2 and Table 3.

The cardiotocography data set consists of three fetal state class codes (1655
Normal; 295 Suspect; 176 Pathologic) with 2126 instances and 23 attributes.
The actions that we consider are treatments A, B, C and D. We used two differ-
ent utility functions corresponding to two different scenarios. For e.g., Utility 1
corresponds to a scenario where right treatment should be given to appropriate
fetal state code, i.e., we assume treatment A should be given to normal while
treatment B should be given to suspect case, C to pathologic and D to either
normal or pathologic. The utility functions are shown in Table 4.



Incremental Constrained Clustering: A Decision Theoretic Approach 483

Table 2. Utility function 1 - Steel Plates Fault dataset

Utility 1
Pastry Z scratch K scratch Stain Dirtiness Bumps Other faults

Ignore 5 -8 -3 -6 10 -6 -2
Rectify 6 -5 -2 10 -9 -5 -3
Recycle -9 -1 4 -7 -5 10 4

Table 3. Utility function 2 - Steel Plates Fault dataset

Utility 2
Pastry Z scratch K scratch Stain Dirtiness Bumps Other faults

Ignore -7 8 2 -3 -15 -10 15
Rectify 4 4 6 -7 10 6 -4
Recycle 7 -5 -5 10 -6 15 -10

Table 4. Utility function - Cardiotocography dataset

Utility 1 Utility 2
Normal Suspect Pathologic Normal Suspect Pathologic

Treatment A 10 -5 2 -2 -2 4
Treatment B -3 8 -1 5 -2 -10
Treatment C -2 -4 10 -2 5 -1
Treatment D 5 -4 5 -5 -5 10

Both CC and FS use the same decision making model where only that decision
is selected among a set of decisions which maximizes the cluster utility. We ran
both algorithms on these two data sets with different values of k : 5, 8 and 10.
For the constrained clustering experiments, we used values of m = 1 and m =
2. The bound on the number of new constraints generated was set to 11000 for
Steel faults dataset and 5000 for Cardiotocography dataset.

Table 5 tabulates the total number of constraints created and number of
constraints violated when σ and 2σ were used in the experiments on Steel faults
data set, utility 2, k = 8. We observe that with 2σ only few constraints are
generated as compared to σ resulting in comparatively less constraint violation.
Also the performance of the algorithm is much better with 2σ as can be seen
from Table 5. Hence for further experiments we set m = 2. Table 6 shows the
results for FS and CC that we conducted on steel plates data faults with different
utility functions as specified in Tables 2 and 3. Likewise Table 7 tabulates the
results for FS and CC experiments that we conducted on cardiotocography data
set with utility functions specified in Table 4.

All the numbers are averages over ten learning trials. We compute the best
utilities achieved before and after applying the two frameworks. The best before
performance quantifies the best among ten random hyper-parameter settings
in the case of FS and the best among the ten k-means performances without



484 P.R. Swapna Raj and B. Ravindran

Table 5. Experiment 2 with different values of m : k = 8, Steel faults dataset

Percentage Improvement σ 2σ

Utility 35% 110%
Purity 8% 14%
Divergence 25% 30%

Total constraints 235687 44541
Violated constraints 8012 228

Table 6. Steel plates faults

Utility 1 Utility 2

k = 5 k = 8 k = 10 k = 5 k = 8 k = 10

FS CC FS CC FS CC FS CC FS CC FS CC

Best Before 1210 1209 1209 1209 1212 1211 3224 3449 3551 3495 3683 3665
Best After 2525 3029 1406 3399 1283 3033 3900 6251 3578 6487 4642 6126

% imp. 58% 97% 16% 110% 6% 120% 5% 51% 2% 63% 13% 56%

Table 7. Cardiotocography dataset

Utility 1 Utility 2

k = 5 k = 8 k = 10 k = 5 k = 8 k = 10

FS CC FS CC FS CC FS CC FS CC FS CC

Best Before 6162 5596 6425 5911 6692 6581 1379 1493 1210 1169 1414 1390
Best After 6822 6816 7106 6425 7071 7154 1532 1965 1801 2326 2070 2217

% imp. 6% 10% 5% 15% 4% 9% 23% 41% 79% 101% 30% 48%

constraint information in the case of CC. The best after quantifies the best ob-
tained with the respective architectures, i.e., performance with respect to hyper-
parameters that are obtained during the local search in FS; performance with
respect to new constraints that are generated in CC. We report the average
performance improvement observed in the results as well.

We observe that the steel plates faults data set which has seven class labels
performs well with k = 8 and 10. Also, the cardiotocography data set performs
well with k = 8. The decision theoretic constrained clustering approach outper-
forms feature selection approach in all the cases since we are directly tuning
the data instances in the case of constrained clustering. However, the feature
selection method tries to tune the features and often there is no simple relation
between the features and clustering. The quality of clusters are also evaluated
using couple of intrinsic measures such as : Cluster purity and Cluster diver-
gence (mean standard deviation). The Tables 8 and 9 shows the divergence and
cluster purity values with constrained clustering approach on different data sets
with various k values. Table 8 indicates that with k = 5 the average percentage
increase in cluster divergence is high with 36 percent improvement with utility
1. Table 8 shows that divergence in most of the cases increases. On the other
hand, there is not much change in purity values. This means that if we go just
by divergence or purity, we may not get higher utility clusters.



Incremental Constrained Clustering: A Decision Theoretic Approach 485

Table 8. Constrained clustering, Steel plates fault

Utility 1 Utility 2

k = 5 k = 8 k = 10 k = 5 k = 8 k = 10

Divergence Before 1162 850 905 1137 904 898
Divergence After 1586 1105 1054 1471 1114 1086

Purity Before 0.29 0.32 0.34 0.29 0.33 0.34
Purity After 0.36 0.41 0.39 0.36 0.40 0.40

Table 9. Constrained clustering, Cardiotocography dataset

Utility 1 Utility 2

k = 5 k = 8 k = 10 k = 5 k = 8 k = 10

Divergence Before 11 10 10 11 10 9
Divergence After 17 13 12 13 12 13

Purity Before 0.70 0.71 0.72 0.69 0.70 0.73
Purity After 0.50 0.71 0.73 0.68 0.71 0.72

We initially compared the performance of CC to simple active learning based
incremental constrained clustering baselines. The baseline queried a powerful
oracle about constraints between selected pairs of data points. The oracle uses
the true best-preference information of the data points, and returns a must-link
constraint if the preferences are same and a cannot link constraint if they are
different. At each round of the clustering, the baselines were allowed as many
queries as the no. of constraints added by our method. The two variants that
we used were to pick pairs at random from within a cluster; and to pick pairs
that consisted of the centroids and the farthest points from them. To our dismay
performing incremental clustering in this fashion caused a decrease in the overall
utility score, as seen in Table 10. These experiments were conducted on the steel
plates data sets with a utility function from Table 2. Therefore we decided to
adopt baselines that looked at the utility information as well.

Table 10. Comparison of Incremental CC approaches

k = 3 k = 5

CC Random Pairs CC Random Pairs

Best Before 1209 1209 1209 1209 1209 1209
Best After 3693 980 1129 3213 747 742

% imp. 185% -23% -14% 149% -53% -56%

Note that utility functions are just one form of preferences that we can use
in our framework. It is generic enough to accommodate other forms of feedback
as-well. We can use a much weaker utility information like satisfaction estimate
on a 1-10 scale. For e.g., if data points X and Y get clustered together and X
is satisfied with the decision (say 10/10) and Y is not (say 2/10), then we can
insert a cannot-link constraint between them.



486 P.R. Swapna Raj and B. Ravindran

5 Conclusion

In this paper we have presented an incremental constrained clustering approach
where we add clustering constraints, based on the utility assigned to points in
a cluster using decision theoretic framework. Clustering is then repeated to in-
corporate these constraints and improve utility of the cluster. Decision theoretic
measure is a task-oriented evaluation where the patterns performance is tied to
an application task. Our work on constrained clustering neither relies on batch
style constraints as given by a domain experts nor randomly generated con-
straints. Our approach generates constraints based on the derived utility and
not merely based on background knowledge.

We have compared our framework with a feature selection framework and
observe that our approach performs better than the feature selection method.
The proposed architecture consists of a clustering stage followed by a decision
making stage where the goal of the clustering algorithm is to find clusters that
maximize the utility. The clustering process is unaware of the details of the
decision making stage. The utility of decisions made are then used to tune cer-
tain hyper-parameters of the clustering algorithm. The hyper-parameters of the
constrained clustering we consider are the pair-wise constraints.

References

1. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Cluster-
ing with Background Knowledge. In: 18th International Conference on Machine
Learning (ICML), pp. 577–584. Morgan Kaufmann, San Francisco (2001)

2. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: 17th Inter-
national Conference on Machine Learning (ICML), pp. 1103–1110. Morgan Kauf-
mann, Stanford (2000)

3. Davidson, I., Ravi, S.S., Ester, M.: Efficient incremental constrained clustering. In:
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 240–249. ACM, San Jose (2007)

4. Basu, S., Banerjee, A., Mooney, R.J.: Active Semi-Supervision for Pairwise Con-
strained Clustering. In: SIAM International Conference on Data Mining (SDM).
SIAM, Florida (2004)

5. Eaton, E.: Clustering with Propagated Constraints. University of Maryland Balti-
more County (2005)

6. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Psychological Review 63, 81–97 (1965)

7. Kleinberg, J., Papadimitriou, C., Raghavan, P.: A Microeconomic View of Data
Mining. Data Mining Knowledge Discovery 2, 311–324 (1998)

8. Swapna Raj, P., Ravindran, B.: Utility Driven Clustering. In: 23rd International
Florida Artificial Intelligence Research Society Conference (FLAIRS). AAAI Press,
Florida (2011)

9. Tasi, C.-Y., Chiu, C.-C.: A purchase-based market segmentation methodology. Ex-
pert System Applications 27, 265–276 (2004)

10. Cohn, D., Caruana, R., Mccallum, A.: Semi-supervised clustering with user feed-
back. Technical report (2003)


	Incremental Constrained Clustering: A Decision Theoretic Approach
	1 Introduction
	2 Related Work
	3 Incremental Constrained Clustering Framework
	3.1 Decision Making
	3.2 Generation of Constraints
	3.3 Handling Inconsistent Constraints
	3.4 Stopping Criterion
	3.5 Example

	4 Experimental Results
	5 Conclusion
	References




