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Abstract. Nowadays, most streaming data sources are becoming high-
dimensional. Accordingly, subspace stream clustering, which aims at
finding evolving clusters within subgroups of dimensions, has gained a
significant importance. However, existing subspace clustering evaluation
measures are mainly designed for static data, and cannot reflect the qual-
ity of the evolving nature of data streams. On the other hand, available
stream clustering evaluation measures care only about the errors of the
full-space clustering but not the quality of subspace clustering.

In this paper we propose, to the first of our knowledge, the first sub-
space clustering measure that is designed for streaming data, called Sub-
CMM : Subspace Cluster Mapping Measure. SubCMM is an effective
evaluation measure for stream subspace clustering that is able to han-
dle errors caused by emerging, moving, or splitting subspace clusters.
Additionally, we propose a novel method for using available offline sub-
space clustering measures for data streams within the Subspace MOA
framework.

1 Introduction

Data sources are increasingly generating more and more amounts of data. Ad-
ditionally, the huge advances of data sensing systems resulted in cheap means
for satisfying the eagerness for collecting data with a high number of attributes.
The big size of the data together with its high dimensionality motivated the re-
search in the area of high dimensional data mining and exploration. Data stream
is a form of data that continuously and endlessly evolves reflecting the current
status of collected values. Clustering is a well known data mining technique that
aims at grouping similar objects in the dataset together into same clusters, and
dissimilar ones into different clusters, where the similarity is decided based on
some distance function. Thus, objects separated by far distances are dissimilar
and thus belong to different clusters.

Stream clustering algorithms search for clusters that are formed out of the
streaming objects when considering all dimensions of these objects. We call them

J. Li et al. (Eds.): PAKDD 2013 Workshops, LNAI 7867, pp. 342–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Effective Evaluation Measures for Subspace Clustering of Data Streams 343

in this context: full-space stream clustering algorithms to differentiate them from
other types of stream clustering algorithms which consider all subgroups of di-
mensions while searching for clusters.

Evaluating full-space stream clustering algorithms, can done mainly by as-
sessing: (a) the efficiency represented by the runtime, the memory usage or the
number of microclusters processed by the algorithm when mining the stream
with different speeds, and (b) the effectiveness represented by the quality of
the resulted clusters which mainly compares the found evolving clusters to the
ground truth ones. Most of these were inherited from the offline clustering world,
only one was mainly designed for streaming algorithm (cf. CMM [21]).

In many applications of streaming data, objects are described by using mul-
tiple dimensions (e.g. the Network Intrusion Dataset [1] has 42 dimensions).
For such kinds of data with higher dimensions, distances grow more and more
alike due to an effect termed curse of dimensionality [7] (cf. the toy example
in Figure 1). Applying traditional clustering algorithms (called in this context:
full-space clustering algorithms) over such data objects will lead to useless clus-
tering results. In Figure 1, the majority of the black objects will be grouped
in a single-object cluster (outliers) when using a full-space clustering algorithm,
since they are all dissimilar, but apparently they are not as dissimilar as the gray
objects. The latter fact motivated the research in the domain of subspace and
projected clustering in the last decade which resulted in an established research
area for static data.

In parallel to developing these static data subspace clustering algorithms, a
group of measures for evaluating the clustering quality of offline subspace clus-
tering algorithms were established. Additionally, other measures were inherited
from traditional full-space clustering world (e.g. RNIA, CE [29], Entropy [30],
Accuracy [9] and F1).

Dim 1

Di
m

 2

Cluster 1

Cluster 1: DIM 1

Cl
us

te
r 1

: D
IM

 2
Cl

us
te

r 2

Fig. 1. An example of subspace clustering

For streaming data on the other hand, although a considerable research has
tackled the full-space clustering, relatively limited work has dealt with sub-
space clustering. HPStream [3], PreDeConStream [17], HDDStream [27] and
SiblingList [28] are the only works that have been done on projected/subspace
stream clustering.

Almost all of the above mentioned algorithms have used the clustering purity
[31] as the only measure for assessing the clustering quality. The purity was not
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mainly designed for subspace stream clustering, and does not reflect the cases
when clusters hidden in some subspaces are completely not discovered.

In this paper we propose, to the first of our knowledge, the first subspace clus-
tering measure that is designed for streaming data, called SubCMM : Subspace
Cluster Mapping Measure. SubCMM is an effective evaluation measure for
stream subspace clustering that is able to handle errors caused by emerging,
moving, or splitting subspace clusters. Additionally, we propose a novel method
for using available offline subspace clustering measures for data streams within
the Subspace MOA framework [14].

The remainder of this paper is organized as follows: Section 2 gives a short
overview of the related work from different neighboring areas to full-space and
subspace stream clustering algorithms as well as the measured used there. Section
3 introduces the Subspace MOA framework [14] and the novel method that we
use for adapting the offline subspace measures as well as our SubCMM measure
for using it under streaming environments. Our SubCMM measure is introduced
in Section 4. The suggested measures are then thoroughly evaluated using the
Subspace MOA framework in Section 5. Then we conclude the paper with a
short outlook in Section 6.

2 Related Work

In this section, we list the related work from three areas: subspace clustering
measures for static data, full-space stream clustering measures, and available
subspace stream clustering and measures. Finally we will detail CMM [21].

2.1 Subspace Clustering Measures for Static Data

SubClu [23] is a subspace clustering algorithm that uses the DBSCAN [12] clus-
tering model of density connected sets. PreDeCon [8] is a projected clustering
algorithm which adapts the concept of density based clustering [12]. and the
preference weighted neighborhood contains at least µ points. IncPreDeCon [22]
is an incremental version of the algorithm PreDeCon [8] designed to handle
accumulating data.

Evaluating the quality of the clustering delivered by the above algorithms was
performed using a set of measures, which can also be categorized according to
[26] depending on the required information about the ground truth clusters into
two categories:

1. Object-Based Measures: where only information on which objects should
be grouped together to form a cluster are used. Examples are: entropy
[30] which measures the homogeneity of the found clusters with respect to
the ground truth clusters, f1[6] which evaluates how well the ground truth
clusters are represented and accuracy [9].

2. Object- and Subspace-Based Measures: where information on objects
as well as their relevant dimensions (i.e. the subspaces where they belong
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to) are used. Examples are: (a)RNIA [29] (Relative Non Intersecting Area)
which measures to which extent the ground truth subobjects are covered
by the found subobjects and (b) CE [29] (Clustering Error) which is an
advanced version of RNIA and differs that it maps each found cluster to at
most one ground truth cluster and also each ground truth cluster to at most
one found cluster.

2.2 Full-Space Clustering Measures for Streaming Data

There is a rich body of literature on stream clustering. Convex stream cluster-
ing approaches are based on a k-center clustering [2,16]. Detecting clusters of
arbitrary shapes in streaming data has been proposed using kernels [18], fractal
dimensions [24] and density based clustering [10,11]. Another line of research
considers the anytime clustering with the existence of outliers [15].

To reflect the quality of the full-space clustering algorithm, many evaluation
measures are used. Some of those are inherited from the offline clustering world
(cf. for instance: SSQ [13], Silhouette Coefficients [19] and purity [31]).
Other measures were mainly developed specifically for assessing the quality of
full space stream clustering algorithms like CMM [21] (cf. Section 2.4).

2.3 Subspace Clustering Measures for Streaming Data

Sibling Tree [28] is a grid-based subspace clustering algorithm where the stream-
ing distribution statistics is monitored by a list of grid-cells. Once a grid-cell is
dense, the tree grows in that cell in order to trace any possible higher dimensional
cluster. HPStream [3] is a k-means-based projected clustering algorithm for high
dimensional data stream. PreDeConStream [17] and HDDStream [27] are re-
cent density-based projected stream clustering algorithms that were developed
developed upon PreDeCon [8] in the offline phase.

Almost all of the above mentioned subspace stream clustering algorithms have
used the clustering purity [31] as the only measure for assessing the clustering
quality. Although the purity has proved to be popular and good when used with
full-space stream clustering, it was not mainly designed for subspace stream
clustering, and does not reflect the cases when clusters hidden in some subspaces
are completely not discovered. Additionally, because of its property of neglecting
the shaped of the ground truth, errors occurring on the borders of detected
microclusters are not correctly punished due to the fast change of the shape or
the position of the cluster.

2.4 Review: CMM [21]

We will review CMM separately here, since it is the only stream clustering
measure that was designed for streaming applications, and because it is the
full-space version of our proposed measure: SubCMM. CMM (Cluster Mapping
Measure) consists of three phases.
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First, each found cluster is assigned to one of the ground truth clusters based
on class distribution in each cluster. In Figure 2(a), a plain circle represents a
ground cluster, and a dashed circle means a predicted cluster. Each dot is a data
point having its class label expressed by colors. Class frequencies are counted
for each cluster, and each prediction cluster is mapped to a ground truth cluster
that has the most similar class distribution. For Figure 2(a), the found cluster
is mapped to the gray circle ground truth cluster.

(a) (b)

Fig. 2. CMM: (a) The mapping phase of the found cluster to a ground truth cluster,
(b) Different penalties for two clusterings having the same accuracy

Second, the penalty for every incorrectly predicted point is calculated. In
Figure 2(a), it can be seen that a lot of black points are included in the found
cluster, which are incorrectly clustered, and some of the gray points are excluded
in the cluster even if they are not noises. These points are ”fault objects” and
give they are penalized like this: pen(o, Ci) = con(o, Cl(o)).(1−con(o,map(Ci)))
where Ci is a prediction cluster to which the object o belongs to, Cl(o) is a
ground truth cluster (hidden cluster) representing the original class label of o,
and map(Ci) is the hidden cluster on which Ci is mapped through the cluster
mapping phase. The two clusters in Figure 2(b) have same accuracy, but it looks
obvious that the left clustering has a bigger problem. If a fault object is closely
connected to its hidden cluster, then the error becomes much severe since it
was meant to be easily clustered. On the other hand, if the object has high
connectivity to the found cluster, CMM allows a low penalty since it was hard
to be clustered correctly. The connectivity con(o, C) from an object to a cluster
is exploiting the average k-neighborhood distance.

Third, derive a final CMM value by summing up all the penalties weighted

over its own lifespan: CMM(R,H) = 1−
∑

o∈F w(o).pen(o,R)
∑

o∈O w(o).con(o,Cl(o)) Where R: repre-

sents the found clusters, H : represents the ground truth (hidden) clusters, O: is
the set of objects o, F : is fault set, and w(o): is the weight of o.

In the next section, we will explain our Subspace MOA tool, which we used
to adapt the offline subspace clustering measures for the streaming scenario.
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3 The Subspace MOA Framework [14]

OpenSubspace framework [25] was proposed to evaluate and explorate subspace
clustering algorithms in WEKA with a rich body of most state of the art sub-
space/projected clustering algorithms and measures. In Subspace MOA [14], we
have used this framework within the MOA framework [20] to bring the powerful
subspace evaluation measures from the offline to the streaming world. Addition-
ally, we built all the required additional units:

3.1 Subspace Stream Generator

Subspace MOA offers a synthetic random RBF subspace generator with the pos-
sibility of varying multiple parameters of the generated stream and its subspace
events. One can vary: the number of dimensions, the number of relevant dimen-
sions (i.e. the number of dimensions of the subspaces that contain the ground
truth clusters), the number of the generated clusters, the radius of the generated
clusters, the speed of the movement of the generated clusters, the percentage of
the allowed overlapping between clusters, and the percentage of noise. Please
note that some dimensions of a point could represent a noise within some sub-
space, while other dimensions could be a part of a ground truth cluster in other
subspace. The generated noise percentage in this case represents a guaranteed
noise in all subspaces. Subspace MOA gives also the possibility of reading exter-
nal ARFF files.

3.2 Subspace Stream Clustering Algorithms

In order to have a rich number of variants, Subspace MOA offers the possibility
of making your own flavor of subspace stream clustering algorithm. It follows for
this reason the online-offline model used in most stream clustering algorithms (cf.
[2], [10], [17]). In the online phase, a summarization of the data stream points
is performed and the resulting microclusters is given by sets of cluster features
CFi = (N,LSi, SSi) which represent the number of points within that micro-
cluster, their linear sum and their squared sum, respectively. Subspace MOA
offers three algorithms to form these microclusters and continuously maintain
them. These are: CluStream, DenStream, and the cluster generator. In the of-
fline phase, the clustering features are used to reconstruct an approximation to
the original N points using Gaussian functions to reconstruct spherical micro-

clusters centered at ci =
LSi

N with a radius: r =
√

SS
N − (LS

N )2 (SS = 1
d

∑d
i=1 SSi

and LS = 1
d

∑d
i=1 LSi). The generated N points are forwarded to one of the five

subspace clustering algorithms. These are SubClu [23], ProClus [4], Clique [5],
P3C, and FIRES. This results with 15 different combinations of algorithms that
can be tested.
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3.3 Subspace Stream Evaluation Measures

Then we have adapted the most famous offline subspace clustering measures
(CE [29], Entropy [30], F1 [6], RNIA [29]) measures to the streaming scenario.
Additionally, we have implemented our novel SubCMM measure (cf. Section
4). The user has the possibility to select the evaluation frequency, the window
size is then set accordingly, and the evaluation measure is applied over the found
clusters when compared against the ground truth clusters within that window.
The output of these evaluation measures is delivered to the user according to the
MOA conventions in three ways: (a) in a textual form, where summarization
values are printed gradually in the output panel under the ”Setup” tab as the
stream evolves, (b) in a numerical form, where recent values are of all measures
are printed instantly under the ”Visualization” tab, and (c) in a plotted form of
a selected measure from the recent values. The evolving of the final clustering of
the selected subspace clustering algorithms as well as the evolving of the ground
truth stream is visualized in a two dimensional representation. Users can select
any pair of dimensions to visualize the evolving ground truth as well as the
resulted clustering. Different to MOA, Subspace MOA is able to visualize and
get the quality measures of arbitrarily shaped clusters.

4 SubCMM : Subspace Cluster Mapping Measure

We adopted important concepts of CMM (cf. Section 2.4) and revised its internal
structure to develop a novel evaluation measure for subspace clusterings. The
motivation for having a special subspace version of CMM becomes clear when
using CMM directly for subspace clustering scenarios. Consider the matrix rep-
resentation of data in Figure 3, where columns represent the objects and rows
represent the attributes. Thus, each object is represented by a column, where its
lines represent the attributes of this object. Assume that neighboring columns
represent neighboring objects. Each circle is an attribute value of an object and
the color denotes its class label (gray means noise). Blue, red, purple and orange
subspace colors represent ground truth classes and the green dashed rectan-
gle represents the found cluster of some stream clustering algorithm. In Figure
3(a), the found cluster is delivered by a full-space stream clustering algorithm,
and thus it contains only complete columns in the matrix representation. CMM
would not be able to map the found cluster C to the class blue since no obvious
single class lable for each object can be found. Additionally, a subspace stream
clustering algorithm would deliver clusters that look like C in Figure 3(b). Here,
clusters could contain an arbitrary number of rows. Again, data objects in dif-
ferent clusters are defined in different spaces so we cannot simply count objects
to compute class distributions as in CMM. We propose checking the class label
of each attribute value (represented here by circle), instead of objects, we call
it: Subobjects eij . Thus, in the matrix representations in Figure 3(b), it seems
reasonable to assign the found cluster to class blue, since it contains 13 blue
circles, one red circle and one noise circle. A similar discussion was mentioned
in [29], to define the distance between subspace clusters.
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Fig. 3. (a) Full-space clustering and CMM over the matrix representation of subobjects,
(b) Subspace clustering idea using SubCMM and penalizing fault subobjects

Thus, the penalty calculations in current CMM should be changed according
to the revised clustering mapping phase. As we construct class distributions in
a cluster in the matrix-element-wise way, the fault set consists of fault matrix
elements, and a fault object o in pen(o, Ci) is to be replaced with a fault ma-
trix element eij , which is the j − th subobject of i − th object (cf. Figure 3(b)).
Thus the penalty for each wrongly clustered subobject eij can be calculated as:
pen(eij , C) = con(eij , Cl(eij)).(1 − con(eij ,map(Ci)). To calculate the penalty
in this fashion, we have to define the connectivity between a subobject eij and a
subspace clusterC. In CMM, the connectivity is based on average k-neighborhood
distance, which computes Euclidean distance between two data objects and only
the difference between attribute values of a same dimension is needed. In the
SubCMM, we consider additionally the distance between different dimensions:
con(eij , C) = subcon(eij , C).objcon(eij , C) where subcon(eij, C), the subspace
connectivity, represents how much eij is connected to the subspace of C, and
objcon(eij , C), the object connectivity, means how much eij is connected to the
(sub)objects of C. We define the object connectivity as:

objcon(eij , C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if [eij ∈ C] or if [eij /∈ C] AND
[knhObjDistS (eij , C) < knhObjDistS(C)]

0 if C = null
knhObjDistS(C)

knhObjDistS(eij ,C)
else

where knhObjDistS(eij , C) is the average k-neighborhood distance from eij to
the subobjects in C within the subspace S, and knhDistS(C) is the average k-
neighborhood distance between objects in C within S. The subspace connectivity
subcon(eij, C) is similarly defined as:

subcon(eij , C) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if [j ∈ S] or if [j /∈ S] AND
[knhDimDisteij (j, C) < knhDimDisteij (C)]

0 if C = null
knhDimDist

eij (C)

knhDimDist
eij (j,C)

else
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where: knhDimDisteij(j, C) is the average k-neighborhood distance from the
vector vj = [eaj ] where a ∈ C to all the vectors vl = [eal] where a ∈ C and all
l ∈ S constructed from the objects of C defined in S.

And knhDimDisteij(C) is the average k-neighborhood distance between vec-
tors vl constructed from C as above. One can regard this as performing the
same procedure of calculating object connectivity on a transposed data matrix.
Finally, we have to compute the final SubCMM value with the revised penalties.
In this phase, we can just follow the CMM, but the fault object o must be a
fault matrix element eij , and the weights of eijs are equal when they belong to
a same object.

SubCMM(R,H) = 1−
∑

eij∈F w(i) · pen(eij , R)∑
i∈DB w(i)

∑
j∈D con(eij , Cl(eij))

5 Experimental Evaluation

To test the performance of the suggested subspace stream clustering measures,
we have used Subspace MOA [14] as the testing framework. We have used: CluS-
tream+PROCLUS as the tested subspace stream clustering algorithm, and the
RBF subspace stream generator as the ground truth stream. We compared the
performance of SubCMM, RNIA, CE, Entropy and F1 as representatives of sub-
space stream clustering measures against the performance of CMM and Rand
statistic as representatives of full-space stream clustering measures. In all of the
following experiments, the stream and algorithm parameter settings, unless oth-
erwise mentioned, are: number of stream attributes= 12, number of attributes of
generated clusters= 4, number of generated clusters=5, noise level=10%, apeed
of movement of clusters=0.01 per 200 points (which reflects the evolving speed
of the concept drift of the stream), the evaluation frequency= 1000, and the de-
caying threshold= 0.1. Figure 4 compares the performance of subspace stream
clustering measures (left) against full-space clustering algorithms when varying
the pure noise percentage around the generated ground truth clusters. Appar-
ently, most subspace measures are sensitive to the increasing of noise, different to
the full-space ones. The stable high value that full-space measures give is due to
the clusters which are accidentally created out the combination of clusters gen-
erated in the lower dimensions. Even for those clusters, when using the full-space
measures, the quality does not decrease as in the subspace measures. Figure 5
shows the performance of both subspace and full-space measures when varying
the number of generated ground truth clusters. Here the expected effect is a
decreasing of the quality as the number of clusters increases. Again, full-space
measures are relatively stable, while most subspace measures are sensitive.

Figure 6 depicts the quality of subspace and full-space measures when varying
the radius of the generated clusters. Again the expected change here is a quality
decrease as the radius increases. This is clear to see with most subspace measures,
while only a slightly decrease can be seen on the full-space measures. The latter
decrease, is due to the higher density of the noisy points around the accidentally
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Fig. 4. Clustering quality of a subspace stream clustering algorithm when varying the
noise level using: (a) Subspace measures, (b) Full-space measures
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Fig. 5. Clustering quality of a subspace stream clustering algorithm when varying the
number of clusters using: (a) Subspace measures, (b) Full-space measures
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Fig. 6. Clustering quality of a subspace stream clustering algorithm when varying the
radius of clusters using: (a) Subspace measures, (b) Full-space measures

generated clusters in the full space. This noise might wrongly be added to the
clusters in the full-space, and only this noise is punished by full-space measures
and not the noise in lower dimensions.

6 Conclusion and Future Work

In this paper we have suggested a new way for evaluating stream subspace cluster-
ing algorithms by making use of available offline subspace clustering algorithms
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as well as using the streaming environment to be able to handle streams. Addi-
tionally, we have suggested a first subspace clustering measure which was mainly
designed for streaming algorithms. We have thoroughly tested these measures by
comparing them to full-space ones. We could show the superiority of most of the
suggested measures in the subspace streaming cases. In the future we plan to fur-
ther improve the performance of SubCMM, and we want to test available subspace
stream clustering algorithms using our measures.
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23. Kröger, P., Kriegel, H.-P., Kailing, K.: Density-connected subspace clustering for
high-dimensional data. In: SDM, pp. 246–257 (2004)

24. Lin, G., Chen, L.: A grid and fractal dimension-based data stream clustering algo-
rithm. In: ISISE 2008, pp. 66–70 (2008)
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