
GetTCP+: Performance Monitoring System

at Transport Layer

Aleksandr A. Sannikov, Olga I. Bogoiavlenskaia, and Iurii A. Bogoiavlenskii

Petrozavodsk State University,
Lenin St., 33, 185640, Petrozavodsk, Russia
{sannikov,olbgvl,ybgv}@cs.petrsu.ru

http://cs.petrsu.ru

Abstract. Problem of the monitoring of the network performance is im-
portant task for different classes of network applications and services. In
this paper the system for monitoring of network connections at transport
layer is presented. In contrast to existing analogs the monitor is able to
provide details on network stack operation visible only at Linux kernel
level since the monitor presented operates in both kernel and user space.
The paper describes high level architecture of the system, important
features of the implementation and testing results.

Keywords: Monitoring, Network Stack, TCP, Linux Kernel.

1 Introduction

Data communication performance monitoring is one of the most important and
topical problems since monitoring data provide foundation for network design,
development, and administration solutions. The end-to-end path performance
plays the key role in this research since it essentially contributes to the end user
impression of quality of service available on the path.

In this work we present monitoring system GetTCP+ which collects informa-
tion on network connections at OSI [1] transport layer and derives performance
metrics for the end-to-end paths which are of particular interest for users. The
raw data are collected at the OS kernel level which lets monitor to have access
to the data unavailable at user’s space (e.g. congestion window size) and al-
lows avoiding data distortion and/or variables interpretation problems. Several
modules of GetTCP+ are based on facilities of GetTCP monitor [2].

Transport layer and namely Transmission Control Protocol (TCP) [3] is cho-
sen for monitoring since TCP is the only instance that provides flow control
solutions and is responsible for distrubuted control of connections access to the
network infrastructure. This work does not consider UDP protocol and its ex-
tentions, e.g. RTP, since they do not realize flow control algorithms and do not
perform data delivery control. Therefore monitoring of TCP behavior reveals
essentially wider range of information about end-to-end path performance. Also,
for some particular monitoring aspects the developed system captures certain
data at network layer, namely Internet Protocol (IP v4 and v6) as well.

S. Balandin et al. (Eds.): NEW2AN/ruSMART 2013, LNCS 8121, pp. 236–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://cs.petrsu.ru

GetTCP+: Performance Monitoring System at Transport Layer 237

Therefore related works in the area presenting several systems of network
monitoring which are widely used, e.g. IOS NetFlow [4] and its analogs, tcp-
dump [5], iperf [6] and others. Also, one have to mention systems for processing
and analysis of monitoring data e.g. Nagios [7], Ganglia [8], tcptrace [9]. Dis-
tinctly general network monitoring software GetTCP+ collects monitoring data
at the OS kernel level and hence gets information that either is totally unavail-
able at higher OS levels or could not be reliably obtained by network monitoring
software of general purpose. Thus, the example demonstrating erroneous esti-
mations of TCP segment size provided by tcpdump which was discovered and
corrected by the developed system will be presented further.

The rest of the paper is organized as follows. Section 2 describes general sys-
tem’s architecture, identifies modules which use and/or modify GetTCP libraries
and presents original facilities of GetTCP+ as well. Section 3 provides some de-
tails of the implementation, section 4 contains description of testbed and tests of
the system performed. The conclusion offers summary and directions of future
research.

2 System Architecture

The system architecture consists of two main units. These are data collection
(DC) subsystem and end-to-end path performance metrics storage. The archi-
tecture is presented on Fig.1.

Data collection subsystem is based on GetTCP kernel module and libgettcp
library [2]. The library provides tools for management of control trace points
sets and OS kernel module interface for communication and data transfer from
kernel space to the user space. Due to the monitoring purposes GetTCP sys-
tem was significantly modified as well. A new trace point sets for processing
connection events and adds segment related events. In particular flow filtering
tool, dynamically controlled parameters facility and support of general segmen-
tation offloading mechanism are implemented. Finally, several bugs were fixed
as well and the system was ported for modern Linux kernels (v2.6.38-3.1.10).
Using libgettcp interface and facilities DC subsystem extracts information about
end-to-end connection state. Also, it allows processing of single segment-related
events.

DC subsystem consists of two parts: kernel module collecting monitoring data
and user-space interface transferring data into user space. Filtering mechanism
allows extracting flows important for monitoring. When some connection or seg-
ment related event rises, trace point handler generates data entry which contains
information about the event and the state of network connection. Then this entry
is transferred to user-space. At present, GetTCP+ provides following list of end-
to-end path metrics: source and destination hosts, maximal congestion window
size reached, total volume of transmitted data, number of sent segments, loss
rate, maximal segment size, also sequence of congestion window size and round
trip time sequence (for each TCP segment transmitted) if required. Thus, with
monitoring process organization one could get any information about transport
layer connections behavior.

238 A.A. Sannikov, O.I. Bogoiavlenskaia, I.A. Bogoiavlenskii

Fig. 1. System architecture

2.1 Storage Subsystem

The storage subsystem consists of three units. These are operating data man-
ager, storage interface and analyzer interface. Operating data manager(ODM)
processes running data for on-going TCP flows. A record about every trans-
mitted segment is placed into dynamic memory buffer associated with the flow.
When the flow ends, ODM processes the content of the buffer and saves a set
of metrics into storage, namely the source and destination, total data sent, flow
duration, segment loss rate, MSS, receiver advertised window, mean congestion
window, mean RTT. These metrics has been chosen since they are needed to
derive current or future TCP performance of the end-to-end path, by direct
evaluation or through performance models. After processing ODM instantly re-
moves dynamic buffer to free memory for further usage. On demand ODM can
save full sequence of segments data stored in the buffer as well.

The storage interface provides inter-operation between long-time storage and
internals of GetTCP+ such as DC and ODM subsystems, hence accumulating
the history of end-to-end path performance demonstrated.

GetTCP+: Performance Monitoring System at Transport Layer 239

The specific features of monitoring data can be denoted as following: data
saved never need modification, topicality of the data collected eventually expires,
domination of sequential access, data are processed by big slices. Due to these
reasons, the storage is based on a file system objects. The information about
each sub-network is stored in the separate directory as it is shown on figure 2.

Fig. 2. Storage structure

This directory contains the flow-list file with common information about flows
related with specified sub-network. In particular, the information contains: flow
ID, host and interface information,total data sent, flow duration and some met-
rics: loss rate, mean round trip time, mean window size. The example of flow-list
records follows:

Flow-ID, Source, Port, Dst, Port, Start(sec), (usec), End(sec), (usec), WMax, MSS, Sent, Lst, RTT(msec)

1839A6F7310580, 127.0.0.1, 55256, 79.133.201.85, 35091, 1334909306, 151608, 1334909474, 692132, 166, 1424, 147061, 78, 107207.893

18DE58F7310A80, 127.0.0.1, 55512, 79.133.201.85, 35091, 1334909474, 805528, 1334909622, 350665, 166, 1424, 147168, 142, 104185.041

196F2CF7310A80, 127.0.0.1, 55768, 79.133.201.85, 35091, 1334909623, 105733, 1334909756, 216969, 166, 1424, 147020, 43, 103939.189

The per-flow cache can be created out of dynamic buffer data records by
demand. It contains full sequence of data about segments sent. In the cache
file every record contains the time stamp, sequence number, congestion window
size, RTT duration etc. Thus, complete description of TCP flow behavior can
be reconstructed.

The current implementation of the storage offers three types of data pre-
sentation: as a log-file, CSV-formatted file and binary representation. Each of
them is available in two modes, namely verbose and standard. In a verbose
mode cache files for each flow are stored. Let us notice that verbose mode sig-
nificantly increases volume of stored data. For example the size of cache-file is
equal to 10Mb for 200Mb of transmitted data. At the same time, the size of one
record in flow-list file with general information and mean metrics is 200-300 bytes
approximately.

First type of data presentation is log-file form. In this case each line for
standard mode represents one flow. Such form improves visibility of collected

240 A.A. Sannikov, O.I. Bogoiavlenskaia, I.A. Bogoiavlenskii

data, but increases volume of data stored. This mode simplifies GetTCP+ de-
ployment. Second type is CSV-formatted file. In this case volume of stored data
and its visibility decreases insignificantly, although this mode simplifies auto-
matic processing of monitoring results. Finally, the third form is raw binary
data storage. This form is equal to CSV-form by structure and significantly
increases performance of the system and reduces volume of data stored. Also
some special approaches in data storage can be applicable in this form, e.g. flow
indexing.

The interface of analysis subsystem provides access to collected data to any
analytical application in necessary form. This subsystem can be implemented as
set of plug-in modules according to the requirements of analytical application.

2.2 Tracepoints

Let us consider the set of the trace points implemented more in detail. The set is
used to get information about TCP flows and separate segments. The tracepoints
define breakpoints inside kernel image and associate handlers with them. When
control flow reaches a trace point the correspondent handler invokes. GetTCP+
implements a set of trace point handlers located in the network stack of Linux
kernel. For the aims of monitoring four events are essential and henceforth, four
tracepoints are defined.

The first two of them are flow start event and flow end event which are con-
nected with the start and termination of a TCP flow. The events provide common
flow information and their handlers are associated to TCP state machine as it
is shown on Figure 3.

Fig. 3. Flow state-related tracepoints

GetTCP+: Performance Monitoring System at Transport Layer 241

When the machine changes the state of a connection to “established”,
flow start event event is been raised. The event handler performs filtering of
the end-to-end path an if it is under monitoring the handler generates record
containing information about network device and destination host. When TCP
state machine leaves established state flow stop event is rising. In this case han-
dler provides information about flow duration, maximal congestion window size
reached and maximum segment size of the connection.

For per-segment monitoring two other events are used. This events are asso-
ciated with reached list of unacknowledged segments from retransmission mech-
anism of TCP, as shown on Figure 4. Each segment sent is added to this list. If
the segment is unacknowledged during RTO or treated lost due to SACK infor-
mation or triple acknowledgment is considered lost and then it is retransmitted
by TCP implementation. Thus we can monitor losses. If the segment is acknowl-
edged is removed from the retransmission list. Hence both the segment sent and
it’s acknowledgment are avaliable the same time. So DC subsystem can obtain
full information about the segment.

Fig. 4. Segment-related tracepoints

Every unacknowledged segments are considered as lost. The information
about connection state is generated by flow retr event event handler for all such
segments.

3 Implementation Special Features

To monitor the flow a special mechanism is required for clustering flows by
destination hosts. It should provide the ability of host identification and binding
of network flows to such hosts. IP protocol is used for this aims. IP-address can
identify both single hosts and sub-networks.

During GetTCP+ development IPv4 and IPv6 facilities were added. It allows
collection, storing and processing information about hosts or sub-networks for
any IP-based network.

242 A.A. Sannikov, O.I. Bogoiavlenskaia, I.A. Bogoiavlenskii

3.1 Segmentation Offloading

The Linux kernel since v2.6.13 uses the set of extensions and improvements of
network stack performance. For example, TCP CUBIC flow control algorithm
differs (as shown in [10]) from original version proposed in [11]. Some of these
changes can affect monitoring tools distorting final results of monitoring. In
particular, TSO – TCP segmentation offloading mechanism, may have influenced
collected data about TCP flows.

TSO delegates to network interface card the task of splitting big data frames
into segments of the size acceptable by data communication network. By this
way network stack becomes able to process segments of the sizes several times
bigger than MTU. As a result, CPU workload reduces. This technology is es-
pecially appropriate in high-performance networks such as 1000BASE-T. As it
was shown in [12], TSO significantly increases performance of the network stack.
TSO usage looks like transmission of big-size segments at higher layers, because
of splitting segments at the network device. So the user space application is not
able to estimate the real segment size. Thus, widely used tcpdump utility pro-
vides erroneous information about segment sizes in high-performance network
with the throughput about 50 Mb/sec which enables TSO option. One can ob-
serve on Fig. 5 dynamics of segment sizes transmitted during a connection visible
by tcpdump. At the same time, the real segment size always was equal to 1424
bytes. Meanwhile, according to the data provided by tcpdump, the segment size
reached 22784 bytes. This is equal at least to 16 transmitted segments.

GetTCP+ prototype is able to operate at kernel’s level tracks segmentation
offloading and provides correct information about segment size and count. DC
subsystem tracks TSO state and parameters passed to it during transmission.
One is able to provide correct information about segments characteristics im-
mediately after splitting data to transmit by network interface card under such
approach.

3.2 Kernel Module Configuration and Flow Filtering

The run-time configuration interface allows passing specific options to kernel
module without reloading, in contrast to the method of passing options as ar-
guments to kernel module. This approach lets an end user change parameters of
monitoring dynamically which simplifies the system deployment and exploiting.

At the user space the configuration interfaces are presented through
gettcp conf setup(name, value) function added to libgettcp library. This function
gets parameter’s name and value as a string. Kernel module provides the set of
interface functions for secure access to parameter list from handler functions.

The filtering mechanism allows extracting flows important for monitoring.
Thus, end user can denote flows related to particular host, sub-network or net-
work interface only. The implementation of filtering in kernel space reduces data
flow transmitted to user-space. The filtering is based on two lists: the list of de-
vices and the list of sub-networks. For their management several functions were
introduced in the user-space:

GetTCP+: Performance Monitoring System at Transport Layer 243

Fig. 5. Histogram of segment sizes provided by tcpdump

– gettcp conf adddev(dname) – adds device with a specified name to the mon-
itoring list.
The monitoring is performed only for devices included in this list. Behavior
of this filter can be inverted with DEV FLTR EXCLUDED option.

– gettcp conf addadr(adr, mask) - adds sub-network or a single host to mon-
itoring list. The filtering is performed by address and network mask. Be-
havior of this filter is similar to the device filter and can be controlled by
ADDR FLTR EXCL.

The filtering trace point handler is invoked at flow-start. The value of
probed sock field from tcp sock structure makes the monitoring for the flow neces-
sary. Further, at the trace points involving processing time, the monitor behavior
for the flow is defined by probed sock value. If flow is filtered, all related events
are ignored and no data is produced.

4 Testing GetTCP+

GetTCP+ was tested for several network fragments with different characteris-
tics and structure. In particular, the fragments with high performance and the

244 A.A. Sannikov, O.I. Bogoiavlenskaia, I.A. Bogoiavlenskii

fragments with low throughput, the high round trip time and the loss rate were
tested. The four series of experiments were performed from testbed presented
on Fig. 6. The monitor GetTCP+ run on the host A which is Intel Celeron 2.20
GHz with RAM 1G and the network connections to Ethernet LAN 1000Base-T
and 3G-network on 256Kb/s. The first series of experiments were conducted for
the network path with high throughput and low round trip time. This fragment
consists of two host connected via router by gigabit Ethernet (A⇒B route on
Fig. 6). In this case GetTCP+ was tested under high load.

Fig. 6. Testbed

The second and third series of experiments were performed for routes with dif-
ferent throughput and round trip time (i. e. A⇒C and A⇒PetrSU⇒D routes).
The fourth series of experiments were performed on the fragment with high
loss rate and round trip time (A⇒ISP Core Network⇒D route). During every
experiment TCP flow of 200 Mbyte was generated by iperf tool at the source
host. At the same time these flows were under GetTCP+ monitoring. General
information about flows i.e. connection duration, total data sent and average
throughput were compared to those provided by iperf reports and they corre-
spond completely. The sequences of congestion window sizes provided by cache
file follow current TCPNewReno standard and CUBIC implementation for Linux
version 2.6.38 completely as well. The round trip time estimations were tested
against those provided by ping utility and they demonstrated accordance as well.

Also, the delays were estimated. The delays are brought into Linux network
stack performance by developed trace point handlers. Linux network stack per-
formance. The execution time of particular functions was measured by Ftrace
tool. This is internal function’s tracer included in the main line Linux kernel since
v2.6.27 and it could be used for estimation of the particular function execution
time [13]. The average delays measured are following:

Notice, that handlers tcp end event() and tcp start event() are invoked once
per flow, handler tcp retr event() is invoked only for lost segments and the loss

GetTCP+: Performance Monitoring System at Transport Layer 245

Event Handler Mean delay

flow start event tcp start event() 16.904 usec
flow ack event tcp ack event() 0.628 usec
flow retr event tcp retr event() 1.172 usec
flow end event tcp end event() 2.480 usec

rate in the experiments conducted did not exceed 5%. Meanwhile, average pro-
cessing time is 8.406 usec for standard tcp transmit skb() function which in-
vokes tcp ack event() handler, and for standard function tcp retransmit skb() it
is 17.8 usec. Henceforth, GetTCP+ kernel space modules does not bring signifi-
cant delays into performance of the Linux network stack. Thus, GetTCP+ was
tested in different networking environments, and it has shown high stability and
performance.

5 Conclusion

The monitoring system GetTCP+ for observation on the end-to-end paths per-
formance at transport layer was developed. This system produces general and/or
detailed data of TCP flows performance for the source-destination pairs. The sys-
tem provides filtering flows, data storage tools, dynamic settings control, using
trace points handlers.

In contrast to other existing systems, the certain modules of GetTCP+ oper-
ate at OS Linux kernel level. Thus, the system provides accurate and complete
information about connection’s behavior. It provides correct data which oth-
erwise could be distorted by the monitoring tools operating at user space, e.g.
tcpdump. The system processes specific important features of network stack, such
as TCP segmentation offloading. The interfaces provided by the system allow its
integration to the network analysis tools.

For future development we plan to implement an analytical component into
the system. Implementation of external interface for storage system will expand
the area of GetTCP+ applications as well.

References

1. International Standard ISO/IEC 7498-1, p. 68 (1996)
2. Ponomarev, V.A., Bogoyavlenskaya, O.Y., Bogoyavlenskiy, Y.A.: Configurable

Kernel-Level Monitoring System of the TCP Behavior. In: Information Technolo-
gies 2010, vol. 1, pp. 54–56 (2010)

3. Allman, M., Paxson, V., Blanton, E.: RFC 5681: TCP Congestion Control (2009),
http://datatracker.ietf.org/doc/rfc5681/

4. Cisco IOS NetFlow, http://www.cisco.com/en/US/products/
ps6601/products ios protocol group home.html

5. tcpdump/Libpcap public repository, http://www.tcpdump.org/
6. Iperf - TCP/UDP Bandwidth Measurement tool, http://iperf.fr/

http://datatracker.ietf.org/doc/rfc5681/
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.tcpdump.org/
http://iperf.fr/

246 A.A. Sannikov, O.I. Bogoiavlenskaia, I.A. Bogoiavlenskii

7. Josephsen, D.: Building a Monitoring Infrastructure with Nagios, 1st edn. (2007)
ISBN 0-13-223693-1

8. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia distributed monitoring sys-
tem: design, implementation, and experience. Parallel Computing 30 (2004)

9. Tcptrace Homepage, http://www.tcptrace.org/
10. Leith, D.J., Shorten, R.N., McCullagh, G.: Experimental evaluation of Cubic-TCP.

In: Proceedings of the 6th International Workshop on Protocols for Fast Long-
Distance Networks, March 5-7 (2008)

11. Ha, S., Rhee, I., Xu, L.: CUBIC: A New TCP-Friendly Hight-Speed TCP Variant.
ACM SIGOPS Operating Systems Review - Research and Developments in the
Linux Kernel 42(5), 64–74 (2008)

12. Linux: TCP Segmentation Offload (TSO), http://kerneltrap.org/node/397
13. Bird, T.: Measuring Function Duration with Ftrace. In: Proceedings of the Linux

Symposium, pp. 47–54 (July 2009)

http://www.tcptrace.org/
http://kerneltrap.org/node/397

	GetTCP+: Performance Monitoring System at Transport Layer

	1 Introduction
	2 System Architecture
	2.1 Storage Subsystem
	2.2 Tracepoints

	3 Implementation Special Features
	3.1 Segmentation Offloading
	3.2 Kernel Module Configuration and Flow Filtering

	4 Testing GetTCP+
	5 Conclusion
	References

