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Abstract. Koiran [7] showed that if an n-variate polynomial of de-
gree d (with d = nO(1)) is computed by a circuit of size s, then it
is also computed by a homogeneous circuit of depth four and of size

2O(
√
d log(d) log(s)). Using this result, Gupta, Kamath, Kayal and Sapthar-

ishi [6] gave an exp
(
O
(√

d log(d) log(n) log(s)
))

upper bound for the

size of the smallest depth three circuit computing an n-variate polyno-
mial of degree d = nO(1) given by a circuit of size s.

We improve here Koiran’s bound. Indeed, we show that if we
reduce an arithmetic circuit to depth four, then the size becomes

exp
(
O
(√

d log(ds) log(n)
))

. Mimicking the proof in [6], it also implies

the same upper bound for depth three circuits.
This new bound is not far from optimal in the sense that Gupta,

Kamath, Kayal and Saptharishi [5] also showed a 2Ω(
√

d) lower bound
for the size of homogeneous depth four circuits such that gates at the
bottom have fan-in at most

√
d. Finally, we show that this last lower

bound also holds if the fan-in is at least
√
d.

1 Introduction

Agrawal and Vinay proved [1] that if an n-variate polynomial f of degree d =
O(n) has a circuit of size 2o(d+d log(n

d )), then f can also be computed by a depth-
four circuit (

∑∏∑∏
) of size 2o(d+d log(n

d )). This result shows that for proving
arithmetic circuit lower bounds or black-box derandomization of identity testing,
the case of depth four arithmetic circuit is the general case in a certain sense.
This result arose after other ones on parallelization. Valiant, Skyum, Berkowitz
and Rackoff [9] proved that if a size-s depth-d circuit computes a polynomial
of degree d, then this polynomial can also be computed by a circuit of depth
O(log(d) log(s)) and of size bounded by a polynomial in s. Some years later,
Allender, Jiao, Mahajan and Vinay [2] showed that this parallelization could be
done uniformly. Their method for parallelization is reused in [1] and will be the
basis for the parallelization in this paper.

Agrawal and Vinay’s result only deals with polynomials of sub-exponential
complexity. But if the hypothesis is strengthened, it is possible to get a stronger
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conclusion. Indeed, Koiran [7] showed that if the circuit at the beginning is of
size s, then it can be computed by a homogeneous depth-four circuit of size

2O(
√
d log(d) log(s)). For example, if the permanent family is computed by a poly-

nomial size circuit (i.e., of size nc), then it is computed by a depth-four circuit

of size 2O(
√
n log2(n)). These results appear as an interesting approach to lower

bounds: if one finds a 2ω(
√
n log2(n)) lower bound on the size of depth-4 circuits

computing the permanent, then it will imply that there are no polynomial size
circuits for the permanent. The interest of this approach is confirmed by Gupta,
Kamath, Kayal and Saptharishi’s recent result [5]. They showed that if a homo-
geneous

∑∏∑∏
circuit where the bottom fan-in is bounded by t computes

the permanent of a matrix of size n × n, then its size is 2Ω(n
t ). In a recent pa-

per [6], the same authors improve the upper bound by transforming n-variate
circuits of size s and depth d (with d = nO(1)) into depth-3 circuits of size
exp

(
O(

√
d log s logn log d)

)
, moreover if the input is a branching program (and

not a circuit), the upper bound becomes exp
(
O(

√
d log s logn)

)
. In particular,

this result gives a depth-3 circuit of size 2O(
√
n logn) computing the determinant

of a matrix n×n. Nevertheless, the depth-3 circuit they get is not homogeneous,
and uses intermediate gates which compute polynomials of very high degree.

In this paper we improve Koiran’s bound. We show that a circuit
of size s can be parallelized homogeneously in depth 4 and in size

exp
(
O
(√

d log(ds) log(n)
))

such that the fan-in of each multiplication gate

is bounded by O
(√

d log ds
logn

)
. We can notice that as n ≤ s, the result implies

Koiran’s bound and is generally better (in the case where d, s = nΘ(1), Koiran’s

bound is 2O(
√
n log2 n) while the new bound is 2O(

√
n log n)). It implies that a

2ω(
√
n log(n)) lower bound for depth-4 circuits computing the permanent gives

a super-polynomial lower bound for general circuits computing the permanent.
Moreover, using this result in Gupta, Kamath, Kayal and Saptharishi’s proof
instead of Koiran’s result slightly improves the depth-3 upper bound. An n-
variate circuit of size s and depth d is computed by a depth-3 circuit of size

exp
(
O(

√
d log(ds) log n)

)
. So, we get the same bound for the reduction at depth

3 starting from an arithmetic circuit as from an arithmetic branching program.
Finally in Section 6, we show, by a counting argument, that if a homogeneous∑∏∑∏

circuit where the bottom fan-in is lower-bounded by t computes the
permanent (or the determinant) of a matrix of size n×n, then its size is 2Ω(t log n).

2 Arithmetic Circuits

We give here a brief introduction to arithmetic circuits theory. The reader can
find more detailed information in [10,3,8,4]. In this theory, we measure the com-
plexity of polynomial functions using arithmetic circuits.

Definition 1. An arithmetic circuit is a finite acyclic directed graph with ver-
tices of in-degree 0 or more and exactly one vertex of out-degree 0. Vertices of
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in-degree 0 are called inputs and labeled by a constant or a variable. The other
vertices are labeled by × or + (or sometimes by � in this paper) and called com-
putation gates (the in-degree of these gates will be also called the fan-in). The
vertex of out-degree 0 is called the output. The vertices of a circuit are commonly
called gates and its edges arrows. Finally, we call a formula, an arithmetic circuit
such that the underlying graph is a tree.

Each gate of a circuit computes a polynomial (defined by induction). The poly-
nomial computed by a circuit corresponds to the polynomial computed by the
output of this circuit. For a gate α, we denote [α] the polynomial computed
by this gate. A circuit is called homogeneous is all its gates compute homoge-
neous polynomials. In fact, for some proofs, we will use circuits with several
outputs (each one corresponds to an out-degree 0 gate). A �-gate corresponds
to a multiplication-by-a-scalar gate. The fan-in of such a gate will be always 2
and at least one of its inputs corresponds to a constant (We will give a syntactic
restriction just after the next definition).

Definition 2. The size of a circuit is its number of gates. The depth is the
maximal length of a directed path from an input to an output. The degree of a
gate is defined recursively: any variable input is of degree 1, constant inputs are
of degree 0, the degree of a + or �-gate is the maximum of the incoming degrees
and the degree of a ×-gate is the sum of the incoming degrees.

We can now put a restriction for the �-gates. For each one of these gates, one
of its child has to be of degree 0.

For a given circuit we will consider graphs called parse trees. A parse tree
corresponds, in the spirit, to the computation of one particular monomial.

Definition 3. The set of parse trees of a circuit C is defined by induction on
its size:

• If C is of size 1 it has only one parse tree, itself.
• If the output gate of C is a +-gate whose arguments are the gates α1, . . . , αk,
then the parse trees of C are obtained by taking, for an arbitrary i ≤ k, a
parse tree of the sub-circuit rooted in αi and the arrow from αi to the output.

• If the output gate of C is a ×-gate or an �-gate whose arguments are the
gates α1, . . . , αk, the parse trees of C are obtained by taking disjoint copies
of parse tree of the sub-circuits rooted in αi for all i ≤ k and the arrows from
all αi to the output.

The polynomial computed by a circuit C becomes the sum of the monomials
computed by the parse trees of C.

We will use some convenient notations which are defined in [6]. A depth-4
circuit such that gates are multiplication gates at level one and three and addi-
tion gates at levels two and four are denoted

∑∏∑∏
circuits. Furthermore,

a
∑∏[α] ∑∏[β]

circuit is a
∑∏∑∏

circuit such that the fan-in of the mul-
tiplication gates at level 3 is bounded by α, and the fan-in of the multiplication
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gates at level 1 is bounded by β. For example, a
∑∏[α] ∑∏[β]

circuit computes
a polynomial of the form:

t∑

i=1

ai∏

j=1

ui,j∑

k=1

bi,j,k∏

l=1

xi,j,k,l

where ai ≤ α, bi,j,k ≤ β.

3 Upper Bounds

Here, we state the main theorem in this paper.

Theorem 1. Let f be an n-variate polynomial computed by a circuit of size
s and of degree d. Then f is computed by a

∑∏∑∏
circuit C of size

2
O
(√

d log(ds) logn
)
. Furthermore, if f is homogeneous, it will be also the case

for C.

The previous theorem can be directly applied for the permanent.

Theorem 2. If the n×n permanent is computed by a circuit of size polynomial

in n, then it is also computed by a
∑∏∑∏

circuit of size 2O(
√
n log(n)).

In their paper [6], Gupta, Kamath, Kayal and Saptharishi used the previous

2
√
d log2(s) bound [7] for parallelizing at depth 3. They showed that:

Proposition 1 (Theorem 1.1 in [6]). Let f(x) ∈ Q[x1, . . . , xn] be an n-
variate polynomial of degree d = nO(1) computed by an arithmetic circuit of size
s. Then it can also be computed by a

∑∏∑
circuit of size 2O(

√
d logn log s log d).

In fact, their proof is divided into three parts. First they transform circuits
into depth-4 circuits, then they transform depth-4 circuits into depth-5 circuits
using only sum and exponentiation gates. And finally they transform these last
circuits into depth-3 circuits. Using Theorem 1 instead of Theorem 4.1 in their
paper improves the first part of their proof. That implies a small improvement
of Theorem 1.1 in [6]:

Corollary 1. Let f(x) ∈ Q[x1, . . . , xn] be an n-variate polynomial of degree
d = nO(1) computed by an arithmetic circuit of size s. Then it can also be
computed by a

∑∏∑
circuit of size 2O(

√
d logn log s).

4 Useful Propositions

For proving Theorem 1, we will need the following propositions.
The next result is folklore. A proof can be found in [2].
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Proposition 2. If f is a degree-d polynomial computed by a {+,×}-circuit C
of size s such that the fan-in of each +-gate is unbounded and the fan-in of each
×-gate is bounded by 2, then there exists a circuit C̃ of size s(d+ 1)2 with d+1
outputs O0, O1, . . . , Od such that:

• the fan-in of each +-gate is unbounded,
• the fan-in of each ×-gate is bounded by 2,
• for each i, the gate Oi computes the homogeneous part of f of degree i,
• C̃ is homogeneous,
• the degree of each gate of C̃ equals the degree of the polynomial computed by
this gate.

We define ×-balanced {×,+,�}-circuits.
Definition 4. A {×,+,�}-circuit C is called ×-balanced if and only if all the
following properties are verified:

• the fan-in of each ×-gate is at most 5,
• the fan-in of each +-gate is unbounded,
• the fan-in of each �-gate is at most 2,
• for each ×-gate α, each one of its arguments is of degree at most half of the
degree of α.

The last condition can not be true for the multiplication by a scalar. It is the
reason, we introduced the operator �.

The next proposition which is implicitly a first result of parallelization is
almost the same result that we can find in Section 2 in [1] or in Theorem 2.7
in [8]. We give a proof in appendix.

Proposition 3. Let f be a homogeneous degree-d polynomial computed by a
size-s circuit C̃ defined as in the conclusion of Proposition 2. Then f is com-
puted by a homogeneous ×-balanced {×,+,�}-circuit of size s6 + s4 + 1 and of
degree d.

Agrawal and Vinay already noticed that Valiant, Skyum, Berkowitz and Rack-
off’s famous result [9] is a direct corollary of this proposition.

Corollary 2. Let f be a polynomial of degree d computed by a circuit of
size s. Then f is computed by a {+,×}-circuit of size (sd)O(1) and of depth
O(log(s) log(d)) where each + and ×-gate is of fan-in 2.

5 Proof of Theorem 1

For realizing the reduction to depth four, Koiran begins by transforming the
circuit into an equivalent arithmetic branching program. Then, he parallelizes
the branching program, and finally comes back to the circuits. The problem with
this strategy is that the transformation from circuits to branching programs
requires an increase in the size of our object. If the circuit is of size s, our new
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branching program is of size slog(d). Here, the approach is to directly parallelize
the circuit without using arithmetic branching programs in intermediate steps.

The idea is to split the circuit into two parts: gates of degree lower than√
d and gates of larger degree. Furthermore, a circuit such that the degree of

each gate is bounded by
√
d computes a degree-

√
d polynomial and so can be

written as a sum of at most sO(
√
d) monomials. Then, if each part of our circuit

computes polynomials of degrees bounded by
√
d, we just have to get the two

depth-2 circuits and connect them together. The main difficulty comes from the
fact it is not always true that the sub-circuit obtained by the gates of degree
larger than

√
d is of degree smaller than

√
d. For example, for the comb graph

with n− 1 ×-gates and n variable inputs:

x1 · (x2 · (x3 · (. . .)))
the degree of the first part is

√
n, but the degree of the second one is n−√

n.
In fact, following ideas from [6], we are going to cut not exactly at level

√
d.

It will give a sharper result.

Lemma 1. Let f be a homogeneous n-variate polynomial of degree d computed
by a homogeneous ×-balanced {×,+,�}-circuit C of size σ. Then f is computed

by a homogeneous
∑∏[15a] ∑∏[ da ] circuit of size 1+

(
σ+15a
15a

)
+ σ+ σ

(n+ d
a

d
a

)
+n

for any positive constant a smaller than d.

To get nicer expressions, we will use the following consequence of Stirling’s for-
mula: (A proof appears in [1])

Lemma 2.
(
k + l

l

)

= 2O(l+l log k
l )

First, let us see how Lemma 1 implies Theorem 1.

Proof (Proof of Theorem 1). Let f be an n-variate polynomial computing by a
circuit of size s and degree d. Let C̃ be the homogeneous circuit for the poly-
nomial that we get by Proposition 2. The circuit C̃ is of size t = s(d + 1)2 and
computes all polynomials f0, . . . , fd where fi is the homogeneous part of f of
degree i. Then for each i ≤ d, there exists a homogeneous ×-balanced circuit C
of size σ = t6 + t4 + 1 computing fi. We apply Lemma 1 for the circuit C with

a =
√
d log n
log σ . Using Lemma 2 we get a homogeneous

∑∏∑∏
circuit of size

1+
(
σ+15a
15a

)
+σ+σ

(n+ d
a

d
a

)
+n = 2O(

√
d log σ logn). At the end, we just have to add

together homogeneous parts fi. As σ = O(s6d12), it gives a 2
O
(√

d log(ds) logn
)

upper bound for the size.

Remark 1. Choosing the easier assignment a =
√
d gives a 2O(

√
d log(ds)) upper

bound.
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Proving Lemma 1 will complete the proof.

Proof (Proof of Lemma 1). We define circuits C1 and C2 as follows. C1 is the
circuit we get by keeping only gates of C of degree < d

a . Circuit C2 is made up of

the remaining gates (i.e., those of degree ≥ d
a ) and of the inputs of these gates.

These inputs are the only gates which belong both in C1 and in C2.
Each gate α of C1 has degree at most d

a , so computes a polynomial of degree

at most d
a . By homogeneity of C, the polynomial computed in α is homogeneous.

Consequently, α is a homogeneous sum of at most
(n+ d

a
d
a

)
monomials, and so, can

be computed by a homogeneous depth-2 circuit of size 1 +
(n+ d

a
d
a

)
+ n (The “1”

encodes the +-gate, the “n” encodes the input gates, and the remainder encodes
the ×-gates).

We are going to show now that the degree of C2 is bounded by 15a.
Let δ be the degree of C2. There exists a degree-δ monomial m in C2. Let T

be a parse tree computing m.
We partition the set of ×-gates of T into 3 sets:

• G0 = {α ∈ T |α is a × -gate and all children of α are leaves of T }
• G1 = {α ∈ T |α is a × -gate and exactly one child of α is not a leaf}
• G2 = {α ∈ T |α is a × -gate and at least two children of α are not leaves}.

Then, if we consider the sub-tree S of T with only gates of C2, then G0 are leaves
of S, G1 are internal vertices of fan-in 1 and G2 are internal vertices of fan-in at
least 2.

The proof is in two parts. First we upperbound the size of the sets G0, G1 and
G2. Then, we upperbound the degree of m.

In C, the degree of “m” is at least the sum of the degrees of the gates of G0

(since two of these gates can not appear on the same path). Each one of these
gates is in C2, so is of degree at least d

a in C. As m is of degree at most d in C,
it means that the number of gates in G0 is at most a.

In C, the degree of “m” is at least the sum of the degrees of the leaves directly
connected to a gate of G1. For each gate α of G1, exactly one of its inputs β is in
C2, hence of degree at least

d
a in C. By Proposition 3, the degree of α is at least

two times the degree of β, it yields that the sum of degrees of inputs of α which
are in C1 is also at least d

a . Then, the number of vertices in G1 is at most a.
Finally, in a tree, the number of leaves is larger than the number of vertices

of fan-in at least 2. Then in S, we get that:

|G2| ≤ |G0| ≤ a.

In C2, the degree of the monomial m is the number of leaves labelled by a non-
constant leaf in T . We match each leaf with the first ×-gate which is connected
to it. As in T , the fan-in of the ×-gates is bounded by 5, the fan-in of the +-gates
is bounded by 1 and each �-gates add only one constant input, then the number
of variable leaves connected to a particular ×-gate is at most 5. So the number
of leaves in T is at most:

5× (|G0|+ |G1|+ |G2|) ≤ 15a.
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This proves that the degree of C2 is at most 15a. Then, the number of inputs of
C2 is bounded by the number of gates in C1 and so in C (which is σ). So, there
exists a depth-2 circuit which compute C2, of size 1+

(
σ+15a
15a

)
+σ with as inputs

the gates of C1.
Consequently, each polynomial fi can be computed by a homogeneous

∑∏[a]∑∏[ da ] circuit of size at most 1 +
(
σ+15a
15a

)
+ σ + σ

(n+ d
a

d
a

)
+ n.

6 A Lower Bound

In [5], it was proved that if a homogeneous depth-four circuit computing Permn

has its bottom fan-in bounded by t, then the size of the circuit is at least 2Ω(
n
t ).

But what happens if bottom multiplication gates all have a large fan-in? We
show that this implies a similar lower bound for the size of the circuit:

Theorem 3. If C is a homogeneous
∑∏∑∏

circuit which computes Permn

(or Detn) such that the fan-in of each bottom multiplication gate is at least t,
then the size of C is at least 2Ω(t log(n)).

Our approach is only based on counting the number of monomials. We begin by
some definitions.

Definition 5. For a multivariate polynomial f(x) =
∑mf

i=1 aixi, we will denote
Mf the set {xi | xi is a monomial of f }. If E is a set of polynomials, we also
define ME =

⋃
f∈E Mf .

We can notice MPermn
= { x1,σ(1) . . . xn,σ(n) | σ ∈ Sn }. So, |MPermn

| = n!.

Definition 6. Let E be a set of polynomials. Let us denote

E+ = { f1 + . . .+ fm | m ∈ N and ∀i ≤ m, fi ∈ E }
and E×k = { f1 × . . .× fm | m ≤ k and ∀i ≤ m, fi ∈ E }

Lemma 3. Let E be a set of polynomials. Then,

ME+ = ME and |ME×s | ≤ (|ME |+ 1)s .

Proof. If x is a monomial in ME+ , it means there exist polynomials f1, . . . , fm
in E such that x is a monomial of f1 + . . .+ fm. Then there exists i ≤ m such
that x is a monomial of fi and so x is an element of ME . Hence ME+ ⊆ ME .
Moreover, as E ⊆ E+, we get ME ⊆ ME+ .

Moreover, if x is a monomial in ME×s , it means there exist polynomials
f1, . . . , fm in E such that x is a monomial of f1 × . . . × fm with m ≤ s. It
implies that x ∈ {x1 × . . . × xm | m ≤ s and xi ∈ ME }. That is to say,
x ∈ {x1 × . . .× xs | and xi ∈ (ME ∪ {1}) }. It proves the lemma.

Let C be a
∑∏∑∏

circuit. The gates of the circuit are layered into five
levels. Inputs are at level 0, multiplication gates at levels 1 and 3 and addition
gates at levels 2 and 4. For each level i, let us denote si the number of gates
at this level, ti an upper bound on the fan-in of these gates and Ei the set of
polynomials computed at this level.
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Lemma 4. Any
∑∏∑∏

circuit that computes Permn (or Detn) such that
the fan-in of the multiplication gates at level 3 is bounded by v must have size
exp

[
Ω
(
n
v log(n)

)]
.

Proof. We notice that the hypothesis in the lemma about the bound of the fan-in
just states that t3 ≤ v.

The polynomials in E1 are just monomials. So, |ME1 | ≤ s1. We have:

E4 ⊆ E+
3 , E3 ⊆ E×t3

2 and E2 ⊆ E+
1 .

Then by Lemma 3,

|ME4 | ≤ (s1 + 1)t3 ≤ (s1 + 1)v.

However, as Permn is an element of E4, we also have:

|ME4 | ≥ |MPermn
| = n!.

So, s1 ≥ (n!)
1
v − 1 = 2Ω(

n
v log(n))

The result of this lemma directly implies Theorem 3.

Proof (Proof of Theorem 3). Let C be a homogeneous
∑∏∑∏

circuit which
computes Permn (or Detn) such that the fan-in of each bottom gate is at least
t. It implies that the degree of each gate at level 1 and 2 is at least t. As the
circuit is homogeneous, the degree of a gate at level 3 is upperbounded by n and
lowerbounded by t times the number of inputs of this gate. Consequently, in C,
the fan-in of the multiplication gates at level 3 is bounded by n

t . Then Lemma 4
implies the theorem.

In fact, for computing the determinant, we can also notice that the fan-in of
multiplication gates in the depth-four circuits that we get either in [7] or here in
Section 5, is linear in

√
n. It implies that in this case, the bounds are tight.

Corollary 3. If C is a
∑∏∑∏

circuit which computes Detn such that the
fan-in of each bottom multiplication gate is Ω(

√
n) or such that the fan-in of

each multiplication gate of level 3 is O(
√
n), then the minimal size of C is

2Θ(
√
n log(n)).

Proof. Koiran’s result [7] implies that there exist depth-four circuits for Detn

of size 2O(
√
n logn) such that all multiplication gates have fan-in bounded by

O(
√
n). For the lowerbound, the case where the bottom fan-in is lowerbounded

by Ω(
√
n) is given by Theorem 3. The case where the fan-in of gates of level 3

is bounded by O(
√
n) is given by Lemma 4.

Consequently, it would be an interesting question to know the lower bound on
the size of an homogeneous circuit computing Detn. In [5] the authors show that
if the circuit is such that the fan-in of bottom gates is bounded by O(

√
n), then

the size is 2Ω(
√
n). Here, we show that if all bottom fan-in are lowerbounded

by Ω(
√
n), then the size is 2Ω(

√
n log n). What happens if in the circuit, there

are some bottom gates with a large fan-in and some bottom gates with a small
fan-in?
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Question 1. Is it true that if C is a homogeneous depth-four circuit which com-
putes Detn then the size of C is at least 2Ω(

√
n)?

Acknowledgments. The author thanks Pascal Koiran for helpful discussions and

comments on this work.
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by the constant value of this gate. Then, by homogeneity, constants can not be
entries of a +-gate. Then, for each ×-gate such that one entry is a constant, we
replace the ×-gate by a scalar �-gate. We can notice that this transformation
does not increase the size of the circuit. Second, we can reorder the children of
the ×-gates and of the �-gates so as to for each one of these gates, the degree
of the rightmost child is larger or equals the degree of the other child. We get a
circuit C1 of size s.

We define now a new circuit C2 which satisfies the criteria of the proposition.
For each pair of gates α and β in C1, we define the gate (α;β) in C2 as follows:
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• If β is a leaf, then [(α;β)] equals the sum of the parse trees rooted in α such
that β appears in the rightmost path (ie, β is the leaf of the rightmost path).

• If β is not a leaf, then [(α;β)] equals the sum of the parse trees rooted in α
such that β appears in the rightmost path and where the subcircuit rooted
in β is deleted. That is as if we replace the gate β by the input 1 in the
rightmost path and we compute [(α;β)] with β = 1 a leaf.

We notice here that it is easy to get the polynomial computed by the gate α:
[α] =

∑
l leaf[(α; l)].

Now, we show how one can compute the value of the gates (α;β).

• If β does not appear on the rightmost path of a parse tree rooted in α, then
(α;β) = 0.

• If α is a leaf, then (α;α) = α and else (α;α) = 1.
• Otherwise α and β are two different gates and α is not a leaf. If α is a +-gate,
then [(α;β)] is simply the sum of all [(α′, β)], where α′ is a child of α.

• If α is a �-gate, then one child is a constant c and the other child is a gate
α′. Then (α;β) is simply the scalar operation [(α;β)] = [(c; c)]� [(α′;β)].

• If α is a ×-gate. There are two cases.
- First case: β is a leaf. Then deg(α) > deg(β) = 1. On each rightmost
path ending on β of a parse tree rooted in α, there exists exactly one
×-gate γ and its right child on this path γr such that:

deg(γ) > deg(α)/2 ≥ deg(γr). (1)

Conversely, we notice that for each gate γ satisfying (1), if [(α; γ)] and
[(γr;β)] are not zero, then γ is on a rightmost path from α to β. Then,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (1)

[(α; γ)][(γl; l)][(γr;β)].

One can notice that deg(α;β) = deg(α). Using (1):

deg(α; γ) = deg(α) − deg(γ) < deg(α)/2

deg(γr;β) = deg(γr) ≤ deg(α)/2

deg(γl; l) = deg(γl) ≤ deg(γr) ≤ deg(α)/2.

Consequently, [(α;β)] is computed by a depth-2 circuit of size at most
s2 + 1: a +-gate where each child is a ×-gate of fan-in 3. Each child of
these ×-gates is of degree at most the half of the degree of the ×-gate.

- Second case: β is not a leaf. Then there exists on every rightmost paths
rooted in α a ×-gate γ and its child on this path γr such that:

deg(γ) ≥ (deg(α) + deg(β))/2 > deg(γr). (2)

Then by the same argument,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (2)

[(α; γ)][(γl; l)][(γr;β)]. (3)
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We have this time with (2):

deg(α;β) = deg(α) − deg(β)

deg(α; γ) = deg(α)− deg(γ) ≤ (deg(α)− deg(β)) /2

deg(γr;β) = deg(γr) < (deg(α)− deg(β)) /2.

The problem here is that the degree of (γl; l) could be larger than the
average of the degrees of α and β. If γl is of degree at most 1 (and so
exactly 1) and if the degree of (α;β) is also 1, then γ = α (they are the
same gate) and (γr;β) is of degree 0 and computes a constant cγ . Hence,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (2)

[cγ ]� [(γl; l)].

Now, if the degree of γl is again 1 but if (α;β) is of degree at least 2,
then the computation of the gate (α;β) by the formula (3) works (ie., the
degree of (γl; l) is smaller than half of the degree of (α;β)). Otherwise,
the degree of γl is at least 2 and at most deg(α;β). As l is a leaf, we
can apply the first case (even if γl is not a ×-gate). There exists also on
every rightmost paths rooted in γl a ×-gate μ and its child on this path
μr such that:

deg(μ) > deg(γl)/2 ≥ deg(μr). (4)

Then,

[(α;β)] =
∑

l1,l2,γ,μ

[(α; γ)][(γr ;β)][(γl;μ)][(μl; l2)][(μr; l1)] (5)

where the sum is taken over all l1, l2 leaves, γ ×-gate verifying (2) and
μ ×-gate verifying (4).
The degrees of the gates (γl;μ), (μl; l2) and (μr; l1) are bounded by half
of the degree of γl. Hence, [(α;β)] is computed by a depth-2 size-s4 + 1
circuit. The ×-gates are of fan-in bounded by 5 and the degree of their
children is bounded by half their degree.

Consequently, for each gates α and β in C1, the gate (α;β) is computed in C2

by a sub-circuit of size at most s4+1. At the end we get a circuit of size at most
s6 + s2 which computes all gates (α;β). Finally, f is computed by a circuit of
size bounded by s6 + s2 + 1.

That proves the proposition.
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