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Abstract. The paper proposes a general notation for deterministic
automata traversing finite undirected structures: the graph-walking au-
tomata. This abstract notion covers such models as two-way finite au-
tomata, including their multi-tape and multi-head variants, tree-walking
automata and their extension with pebbles, picture-walking automata,
space-bounded Turing machines, etc. It is then demonstrated that every
graph-walking automaton can be transformed to an equivalent reversible
graph-walking automaton, so that every step of its computation is log-
ically reversible. This is done with a linear blow-up in the number of
states, where the linear factor depends on the degree of graphs being
traversed. The construction directly applies to all basic models covered
by this abstract notion.

1 Introduction

Logical reversibility of computations is an important property of computational
devices in general, which can be regarded as a stronger form of determinism.
Informally, a machine is reversible, if, given its configuration, one can always
uniquely determine its configuration at the previous step. This property is par-
ticularly relevant to the physics of computation, as irreversible computations
incur energy dissipation [18]. It is known from Lecerf [20] and Bennett [3] that
every Turing machine can be simulated by a reversible Turing machine. Later,
the time and space cost of reversibility was analyzed in the works of Bennett [4],
Crescenzi and Papadimitriou [10], Lange et al. [19] and Buhrman et al. [8]. A line
of research on reversibility in high-level programming languages was initiated by
Abramsky [1]. Reversibility in cellular automata also has a long history of re-
search, presented in surveys by Toffoli and Margolus [26] and by Kari [15]. In
the domain of finite automata, the reversible subclass of one-way deterministic
finite automata (1DFAs) defines a proper subfamily of regular languages [23].
On the other hand, every regular language is accepted by a reversible two-way
finite automaton (2DFA): as shown by Kondacs and Watrous [16], every n-state
1DFA can be simulated by a 2n-state reversible 2DFA.
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One of the most evident consequences of reversibility is that a reversible au-
tomaton halts on every input (provided that the state-space is bounded). The
property of halting on all inputs has received attention on its own. For time-
bounded and space-bounded Turing machines, halting can be ensured by ex-
plicitly counting the number of steps, as done by Hopcroft and Ullman [14]. A
different method for transforming a space-bounded Turing machine to an equiv-
alent halting machine operating within the same space bounds was proposed
by Sipser [24], and his approach essentially means constructing a reversible ma-
chine, though reversibility was not considered as such. In particular, Sipser [24]
sketched a transformation of an n-state 2DFA to an O(n2)-state halting 2DFA
(which is actually reversible), and also mentioned the possibility of an improved
transformation that yields O(n) states, where the multiplicative factor depends
upon the size of the alphabet. The fact that Sipser’s idea produces reversible
automata was noticed and used by Lange et al. [19] to establish the equivalence
of deterministic space s(n) to reversible space s(n). Next, Kondacs and Wa-
trous [16] distilled the construction of Lange et al. [19] into the mathematical
essence of constructing reversible 2DFAs. A similar construction for making a
2DFA halt on any input was later devised by Geffert et al. [13], who have amalga-
mated an independently discovered method of Kondacs and Watrous [16] with a
pre-processing step. For tree-walking automata (TWA), a variant of Sipser’s [24]
construction was used by Muscholl et al. [22] to transform an n-state automaton
to an O(n2)-state halting automaton.

The above results apply to various models that recognize input structures by
traversing them: such are the 2DFAs that walk over input strings, and the TWAs
walking over input trees. More generally, these results apply to such models
as deterministic space-bounded Turing machines, which have extra memory at
their disposal, but the amount of memory is bounded by a function of the size
of the input. What do these models have in common? They are equipped with a
fixed finite-state control, as well as with a finite space of memory configurations
determined by the input data, and with a fixed finite set of operations on this
memory. A machine of such a type is defined by a transition table, which instructs
it to apply a memory operation and to change its internal state, depending on
the current state and the currently observed data stored in the memory.

This paper proposes a general notation for such computational models: the
graph-walking automata (GWA). In this setting, the space of memory configura-
tions is regarded as an input graph, where each node is a memory configuration,
labelled by the data observed by the machine in this position, and the operations
on the memory become labels of the edges. Then a graph-walking automaton tra-
verses an input graph using a finite-state control and a transition function with
a finite domain, that is, at any moment the automaton observes one of finitely
many possibilities. The definitions assume the following conditions on the orig-
inal models, which accordingly translate to graph-walking automata; these as-
sumptions are necessary to transform deterministic machines to reversible ones:

1. Every elementary operation on the memory has an opposite elementary oper-
ation that undoes its effect. For instance, in a 2DFA, the operation of moving
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the head to the left can be undone by moving the head to the right. In terms
of graphs, this means that input graphs are undirected, and each edge has its
end-points labelled by two opposite direction symbols, representing traversal
of this edge in both directions.

2. The space of memory configurations on each given input object is finite, and
it functionally depends on the input data. For graph-walking automata, this
means that input graphs are finite. Though, in general, reversible computa-
tion is possible in devices with unbounded memory, the methods investigated
in this paper depend upon this restriction.

3. The automaton can test whether the current memory configuration is the
initial configuration. In a graph-walking automaton, this means that the
initial node, where the computation begins, has a distinguished label.

Besides the aforementioned 2DFAs, TWAs and space-bounded Turing machines,
graph-walking automata cover such generalizations as multi-head automata, au-
tomata with pebbles, etc.

The goal of this paper is to deal with the reversibility of computations on
the general level, as represented by the model of graph-walking automata. The
main results of this paper are transformations from automata of the general form
to the returning automata, which may accept only in the initial node, and from
returning to reversible automata. Both transformations rely on the same effective
construction, which generalizes the method of Kondacs and Watrous [16], while
the origins of the latter can be traced to the general idea due to Sipser [24]. The
constructions involve only a linear blow-up in the number of states. Both results
apply to every concrete model of computation representable as GWAs.

Investigating further properties of graph-walking automata is proposed as a
worthy subject for future research. Models of this kind date back to automata
in labyrinths, introduced by Shannon and later studied by numerous authors as
a model of graph exploration by an agent following the edges of an undirected
graph. This line of research has evolved into a thriving field of algorithms for
searching and automatic mapping of graphs, which is surveyed in the recent
paper by Fraigniaud et al. [12]. Other important models defining families of
graphs are graph-rewriting systems and monadic second-order logic on graphs
researched by Courcelle [9], and graph tilings studied by Thomas [25].

2 Graph-Walking Automata

The automata studied in this paper walk over finite undirected graphs, in which
every edge can be traversed in both directions. The directions are identified by
labels attached to both ends of an edge. These labels belong to a finite set of
directions D, with a bijective operation − : D → D representing opposite direc-
tions. If a graph models the memory, the directions represent elementary opera-
tions on this memory, and the existence of opposite directions means that every
elementary operation on the memory can be reversed by applying its opposite.

Definition 1. A signature S consists of
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– a finite set of directions D;
– a bijective operation − : D → D, satisfying −(−d) = d for all d ∈ D;
– a finite set Σ of possible labels of nodes of the graph;
– a non-empty subset Σ0 ⊆ Σ of labels allowed in the initial node;
– a set Da ⊆ D of directions for every a ∈ Σ.

In each graph over S, every node labelled with a ∈ Σ must be of degree |Da|,
with the incident edges corresponding to the elements of Da.

Definition 2. A graph over the signature S is a quadruple (V, v0,+, λ), where

– V is a finite set of nodes;
– v0 ∈ V is the initial node;
– +: V × D → V is a partial mapping, satisfying the following condition of

invertibility by opposite directions: for every v ∈ V and d ∈ D, if v + d is
defined, then (v + d) + (−d) is defined too and (v + d) + (−d) = v. In the
following, v − d denotes v + (−d);

– the total mapping λ : V → Σ is a labelling of nodes, such that for all v ∈ V ,
(i) d ∈ Dλ(v) if and only if v + d is defined,
(ii) λ(v) ∈ Σ0 if and only if v = v0.

Definition 3. A deterministic graph-walking automaton (GWA) over a signa-
ture S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, δ, F ), where

– Q is a finite set of internal states,
– q0 ∈ Q is the initial state,
– F ⊆ Q×Σ is a set of acceptance conditions, and
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where it is defined.

Given a graph (V, v0,+, λ), the automaton begins its computation in the state
q0, observing the node v0. At each step of the computation, with the automaton
in a state q ∈ Q observing a node v, the automaton looks up the transition table
δ for q and the label of v. If δ(q, λ(v)) is defined as (q′, d), the automaton enters
the state q′ and moves to the node v + d. If δ(q, λ(v)) is undefined, then the
automaton accepts the graph if (q, λ(v)) ∈ F and rejects otherwise.

The two most well-known special cases of GWAs are the 2DFAs, which walk
over path graphs, and TWAs operating on trees.

Example 1. A two-way deterministic finite automaton (2DFA) operating on a
tape delimited by a left-end marker � and a right-end marker �, with the tape
alphabet Γ , is a graph-walking automaton operating on graphs over the signature
S with D = {+1,−1}, Σ = Γ ∪ {�,�}, Σ0 = {�}, D� = {+1}, D� = {−1} and
Da = {+1,−1} for all a ∈ Γ .

All connected graphs over this signature are path graphs, containing one instance
of each end-marker and an arbitrary number of symbols from Γ in between.
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For an input string w = a1 . . . an, with n � 0, the corresponding graph has the
set of nodes V = {0, 1, . . . , n, n + 1} representing positions on the tape, with
v0 = 0 and with v + d defined as the sum of integers. These nodes are labelled
as follows: λ(0) = �, λ(n+ 1) = � and λ(i) = ai for all i ∈ {1, . . . , n}.
Consider tree-walking automata, defined by Aho and Ullman [2, Sect. VI] and
later studied by Bojańczyk and Colcombet [6,7]. Given an input binary tree, a
tree-walking automaton moves over it, scanning one node at a time. At each step
of its computation, it may either go down to any of the sons of the current node
or up to its father. Furthermore, in any node except the root, the automaton is
invested with the knowledge of whether this node is the first son or the second
son [6]. Traversal of trees by these automata can be described using directions
of the form “go down to the i-th son” and the opposite “go up from the i-th son
to its father”.

In the notation of graph-walking automata, the knowledge of the number of
the current node among its siblings is given in its label: for each label a, the set
of valid directions Da contains exactly one upward direction and all downward
directions. Furthermore, by analogy with 2DFAs, the input trees of tree-walking
automata shall have end-markers attached to the root and to all leaves; in both
cases, these markers allow a better readable definition.

Example 2. A tree-walking automaton on k-ary trees uses the set of directions
D = {+1,+2, . . . ,+k,−1,−2, . . . ,−k}, with −(+i) = −i, where positive di-
rections point to children and negative ones to fathers. Trees are graphs la-
belled with symbols in Σ = {�,⊥1, . . . ,⊥k} ∪ Γ , where the top marker � with
D� = {+1} is the label of the root v0 (and accordingly, Σ0 = {�}), while each
i-th bottom marker ⊥i with D⊥i = {−i} is a label for leaves. Elements of the
set Γ are used to label internal nodes of the tree, so that for each a ∈ Γ there
exists i ∈ {1, . . . , k} with Da = {−i,+1, . . . ,+k}, which means that every node
labelled by a is the i-th child of its father.

In general, consider any computational device recognizing input objects of any
kind, which has a fixed number of internal states and employs auxiliary mem-
ory holding such data as the positions of reading heads and the contents of any
additional data structures. Assume that for each fixed input, the total space of
possible memory configurations of the device and the structure of admissible
transitions between these configurations are known in advance. The set of mem-
ory configurations with the structure of transitions forms a graph of memory
configurations, which can be presented in the notation assumed in this paper by
taking elementary operations on the memory as directions. The label attached
to the currently observed node represents the information on the memory con-
figuration available to the original device, such as the contents of cells observed
by heads; along with its internal state, this is all the data it can use to determine
its next move. Thus the device is represented as a graph-walking automaton.

As an example of such a representation, consider 2DFAs equipped with mul-
tiple reading heads, which can independently move over the same input tape:
the multi-head automata.
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Example 3. A k-head 2DFA with a tape alphabet Γ is described by a graph-
walking automaton as follows. Its memory configuration contains the positions
of all k heads on the tape. The set of directions is D = {−1, 0,+1}k\{0}k, where
a direction (s1, . . . , sk) with si ∈ {−1, 0,+1} indicates that each i-th head is to

be moved in the direction si. Each label in Σ =
(
Γ∪{�,�})k contains all the data

observed by the automaton in a given memory configuration: this is a k-tuple
of symbols scanned by all heads. There is a unique initial label corresponding
to all heads parked at the left-end marker, that is, Σ0 = {(�, . . . ,�)}. For each
node label (s1, . . . , sk) ∈ Σ, the set of directions D(s1,...,sk) contains all k-tuples

(d1, . . . , dk) ∈ {−1, 0,+1}k, where di 
= −1 if si = � and di 
= +1 if si = �; the
latter conditions disallow moving any heads beyond either end-marker.

The automaton operates on graphs of the following form. For each input string
a1 . . . an ∈ Γ ∗, let a0 = � and an+1 = � for uniformity. Then the set of nodes
of the graph is a discrete k-dimensional cube V = {0, 1, . . . , n, n + 1}k, with
each node (i1, . . . , ik) ∈ V labelled with (ai1 , . . . , aik) ∈ Σ. The initial node is
v0 = (0, . . . , 0), labelled with (�, . . . ,�).
The graphs representing memory configurations of k-head 2DFAs, as described
in Example 3, are not all connected graphs over the given signature. If edges are
connected differently than in a grid of the form given above, the resulting graph
no longer corresponds to the space of configurations of a k-head 2DFA on any
input. However, on the subset of graphs of the intended form, a GWA defined
in Example 3 correctly represents the behaviour of a k-head 2DFA.

Several other models of computation can be described by GWAs in a similar
way. Consider two-way finite automata with pebbles, introduced by Blum and
Hewitt [5]: these are 2DFAs equipped with a fixed number of pebbles, which
may be dispensed at or collected from the currently visited cell. When such
automata are represented as GWAs, the currently visited node of a graph repre-
sents the positions of the head and pebbles, while the label encodes the symbol
observed by the head, together with the information on which pebbles are cur-
rently placed, and which of them are placed at the observed cell. This model can
be extended to tree-walking automata with pebbles, first considered by Engel-
friet and Hoogeboom [11] and subsequently studied by Muscholl et al. [22]. All
these models can be further extended to have multiple reading heads, to work
over multidimensional arrays (such as the 4DFAs of Blum and Hewitt [5]), etc.,
and each case can be described by an appropriate kind of GWAs operating over
graphs that encode the space of memory configurations of the desired automata.

Typical models that cannot be described as automata walking on undirected
graphs are those, which cannot immediately return to the previous configuration
after any operation. Such are the 1DFAs [23] or pushdown automata [17].

3 Reversibility and Related Notions

The definition of logical reversibility for graph-walking automata is comprised
of several conditions, and the first condition is that each state is accessed from
a unique direction.
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Definition 4. A graph-walking automaton is called direction-determinate, if ev-
ery state is reachable from a unique direction, that is, there exists a partial func-
tion d : Q → D, such that δ(q, a) = (q′, d′) implies d′ = d(q′). As the direction
is always known, the notation for the transition function can be simplified as
follows: for each a ∈ Σ, let δa : Q → Q be a partial function defined by δa(p) = q
if δ(p, a) = (q, d(q)).

A GWA can be made direction-determinate by storing the last used direction in
its state.

Lemma 1. For every graph-walking automaton with a set of states Q and a set
of directions D, there exists a direction-determinate automaton with the set of
states Q×D, which recognizes the same set of graphs.

Another subclass of automata requires returning to the initial node after accep-
tance.

Definition 5. A graph-walking automaton is called returning, if it has F ⊆
Q×Σ0, that is, if it accepts only at the initial node.

For each computational model mentioned in Section 2, returning after acceptance
is straightforward: a 2DFA moves its head to the left, a 2DFA with pebbles picks
up all its pebbles, a space-bounded Turing machine erases its work tape, etc.
However, for graphs of the general form, finding a way back to the initial node
from the place where the acceptance decision was reached is not a trivial task.
This paper defines a transformation to a returning automaton, which finds the
initial node by backtracking the accepting computation.

Theorem 1. For every direction-determinate graph-walking automaton with n
states, there exists a direction-determinate returning graph-walking automaton
with 3n states recognizing the same set of graphs.

For every direction-determinate graph-walking automaton, consider the inverses
of transition functions by all labels, δ−1

a : Q → 2Q for a ∈ Σ, defined by
δ−1
a (q) = { p | δa(p) = q }. Given a configuration of a direction-determinate
automaton, one can always determine the direction d, from which the automa-
ton came to the current node v at the previous step; and if the function δλ(v−d)

is furthermore injective, then the state at the previous step is also known, and
hence the configuration at the previous step is uniquely determined. This leads
to the following definition of automata, whose computations can be uniquely
reconstructed from their final configurations:

Definition 6. A direction-determinate graph-walking automaton is reversible,
if

i. every partial function δa is injective, that is, |δ−1
a (q)| � 1 for all a ∈ Σ and

q ∈ Q, and
ii. the automaton is returning, and for each a0 ∈ Σ0, there exists at most one

state q, such that (q, a0) ∈ F (this state is denoted by qa0
acc).
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The second condition ensures that if an input graph (V, v0,+, λ) is accepted,

then it is accepted in the configuration (q
λ(v0)
acc , v0). Therefore, this assumed ac-

cepting computation can be traced back, beginning from its final configuration,
until either the initial configuration (q0, v0) is reached (which means that the au-
tomaton accepts), or a configuration without predecessors is encountered (then
the automaton does not accept this graph). This reverse computation can be
carried out by another reversible GWA.

Lemma 2. On each finite input graph (V, v0,+, λ), a reversible graph-walking
automaton beginning in an arbitrary configuration (q̂, v̂) either halts after finitely
many steps, or returns to the configuration (q̂, v̂) and loops indefinitely.

The second case in Lemma 2 allows a reversible automaton to be non-halting,
if its initial configuration can be re-entered. This possibility may be ruled out
by disallowing any transitions leading to the initial state. Another imperfection
of reversible automata is that while they may accept only in a single designated
configuration, there are no limitations on where they may reject. Thus, back-
tracking a rejecting computation is not possible, because it is not known where
it ends. The below strengthened definition additionally requires rejection to take
place in a unique configuration, analogous to the accepting configuration.

Definition 7. A strongly reversible automaton is a reversible automaton A =
(Q, q0, δ, F ) with non-reenterable initial state, which additionally satisfies the
following conditions:

iii. for every non-initial label a ∈ Σ \ Σ0, the partial function δa is a bijection
from { p ∈ Q | −d(p) ∈ Da } to { q ∈ Q | d(q) ∈ Da },

iv. for each initial label a0 ∈ Σ0, there is at most one designated rejecting state
qa0

rej ∈ Q, for which neither δa0(q
a0

rej) is defined, nor (qa0

rej, a0) is in F ,
v. for all a0 ∈ Σ0 and for all states q ∈ Q \ {qa0

acc, qa0

rej}, δa0(q) is defined if and
only if −d(q) ∈ Da0 or q = q0.

The requirement on the range of δa, with a /∈ Σ0, in condition (iii) means that
if a-labelled nodes have a direction d ∈ Da for reaching a state q ∈ Q, then
there is a state p ∈ Q, in which this direction d can be used to get to q. The
requirement on the domain of δa means that this function is defined precisely
for those states p, which can be possibly entered in a-labelled nodes, that is, for
such states p, that the direction for entering p leads to these nodes. This in par-
ticular implies that whenever a computation of a strongly reversible automaton
enters a configuration (p, v) with λ(v) /∈ Σ0 (that is, v 
= v0), the next step of
the computation is defined and the automaton cannot halt in this configuration.
Similarly, condition (v) ensures that the computation cannot halt in the initial
node, unless it reaches either the corresponding accepting state qa0

acc or the cor-
responding rejecting state qa0

rej. Because the initial state of a strongly reversible
automaton is not re-enterable, Lemma 2 guarantees that its computation begin-
ning in the initial configuration always halts, with its head scanning the initial
node, and either in the accepting state or in the rejecting state.



Reversibility of Computations in Graph-Walking Automata 603

Lemma 3. For every finite input graph (V, v0,+, λ), a strongly reversible graph-
walking automaton, starting in the initial configuration, either accepts in the

configuration (q
λ(v0)
acc , v0) or rejects in the configuration (q

λ(v0)
rej , v0).

The transformation of a deterministic automaton to a reversible one developed
in this paper ensures this strongest form of reversibility.

Theorem 2. For every direction-determinate returning graph-walking automa-
ton with n states, there exists a strongly reversible graph-walking automaton with
2n+ 1 states recognizing the same set of graphs.

Theorems 1–2 and Lemma 1 together imply the following transformation:

Corollary 1. For every graph-walking automaton with n states and d directions,
there exists a strongly reversible automaton with 6dn + 1 states recognizing the
same set of graphs.

4 Reversible Simulation of Irreversible Automata

The fundamental construction behind all results of this paper is the following
reversible simulation of an arbitrary deterministic graph-walking automaton.

Lemma 4. For every direction-determinate automaton A = (Q, q0, δ, F ) there

exists a reversible automaton B = (
−→
Q ∪ [Q], δ′, F ′) without an initial state, where−→

Q = {−→q | q ∈ Q } and [Q] = { [q] | q ∈ Q } are disjoint copies of Q, with the
corresponding directions d′(−→q ) = d(q) and d′([q]) = −d(q), and with acceptance
conditions F ′ =

{
([δa0(q0)], a0)

∣
∣ a0 ∈ Σ0, δa0(q0) is defined

}
, which has the

following property: For every graph (V, v0,+, λ), its node v̂ ∈ V and a state
q̂ ∈ Q of the original automaton, for which (q̂, λ(v̂)) ∈ F and −d(q̂) ∈ Dλ(v̂), the
computation of B beginning in the configuration ([q̂], v̂ − d(q̂)),

– accepts in the configuration ([δλ(v0)(q0)], v0), if (q̂, v̂) 
= (q0, v0) and A accepts
this graph in the configuration (q̂, v̂), as shown in Figure 1 (case 1).

– rejects in (
−→̂
q , v̂), otherwise (see Figure 1, case 2).

Proof (the overall idea). As per Sipser’s [24] general approach, the automaton B
searches through the tree of the computations of A leading to the configuration
(q̂, v̂), until it finds the initial configuration of A or until it verifies that the
initial configuration is not in the tree. While searching, it remembers a single
state of A, as well as one bit of information indicating the current direction of
search: a state [q] ∈ [Q] means tracing the computation in reverse, while in a

state −→q ∈ −→
Q the computation of A is simulated forward1.

1 To compare, Sipser [24], followed by Muscholl et al. [22], has the simulating au-
tomaton remember two states of the original automaton, leading to a quadratic size
blowup, while Morita’s [21] simulation remembers a state and a symbol.
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Fig. 1. Reversible GWA B in Lemma 4 checking whether A accepts in (q̂, v̂):

(1) if so, accept in ([q], v0), where q = δa0(q0); (2) otherwise, reject in (
−→̂
q , v̂)

Whenever B reaches a state [q] in a node v, this means that the computation
of A, beginning in the state q with the head in the neighbouring node v + d(q),
eventually leads to the configuration (q̂, v̂). In this way, the backward compu-
tation traces the state and the position of the head in a forward computation,
but the state and the position are always out of synchronization by one step.
When the automaton switches to forward simulation, and reaches a state −→q ,
its head position is synchronized with the state, and this represents the original
automaton’s being in the state q, observing the same node.

The proofs of both theorems follow from this lemma. In the proof of Theo-
rem 1, an arbitrary direction-determinate GWA A is transformed to a returning
direction-determinate GWA, which operates as follows: first it simulates A until
it accepts, and then backtracks the accepting computation of A to its initial
configuration, using the reversible automaton constructed from A according to
Lemma 4. If A rejects or loops, the constructed automaton will reject or loop in
the same way, as it will never reach the backtracking stage.

In the proof of Theorem 2, a given returning direction-determinate automaton
A is simulated by a reversible automaton B of Lemma 4.

5 Application to Various Types of Automata

The aim of this section is to revisit several models of computation represented
as GWAs in Section 2, and apply the results of this paper to each of them.

Proposition 1. Each n-state 2DFA has an equivalent (4n + 3)-state strongly
reversible 2DFA.

Indeed, for 2DFAs, the set of directions D = {−1,+1} is a two-element set,
and hence the transformation to direction-determinate duplicates the number of
states. In order to make a direction-determinate 2DFA returning, it is sufficient
to add one extra state, in which the automaton will move the head to the left-
end marker after it decides to accept. Applying Theorem 2 to the resulting
automaton gives a strongly reversible 2DFA with 4n+ 3 states.
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In the case of 2DFAs, Theorem 2 is essentially a generalization of the construc-
tion by Kondacs and Watrous [16] from 1DFAs to direction-determinate 2DFAs.
The transformation of an n-state 2DFA to a 2DFA with 4n+ const states that
halts on every input, presented by Geffert et al. [13], most likely results in the
same reversible automaton as constructed in Proposition 1, but both main steps
of the construction are amalgamated into one. Thus, the two-step transformation
proving Proposition 1 explains the construction given by Geffert et al. [13].

Turning to tree-walking automata, Muscholl et al. [22] proved that an n-state
TWA can be transformed to a halting TWA with O(n2) states, using another
implementation of Sipser’s method [24]. This can be now improved as follows.

Proposition 2. Any n-state TWA over k-ary trees can be transformed to a
(4kn+ 2k + 1)-state strongly reversible TWA.

Here the transformation to direction-determinate multiplies the number of states
by |D| = 2k. Parking the head after acceptance generally requires only one extra
state, in which the automaton will go up to the root. However, in order to keep
the resulting automaton direction-determinate, one has to use k extra states
q1return, . . . , q

k
return with d(qireturn) = −i. Reversibility is ensured by Theorem 2,

which produces 2(2kn+ k) + 1 states, as stated.
The next model are the multi-head automata, for which Morita [21] proved

that an n-state k-head 2DFA can be transformed to a reversible k-head 2DFA
with O(n) states, where the constant factor depends both on k and on the
alphabet. The general results of this paper imply a transformation with the
constant factor independent of the alphabet.

Proposition 3. Any n-state k-head 2DFA can be transformed to a (2(3k−1)n+
2k + 1)-state strongly reversible k-head 2DFA.

Since there are 3k − 1 directions, the transformation to direction-determinate
automaton incurs a (3k − 1)-times blowup. Adding k extra states to park all
k heads after acceptance produces an automaton with (3k − 1)n + k states, to
which Theorem 2 is applied.

In the full paper, it is similarly shown how to transform an n-state Turing
machine operating in marked space s(�), with an m-symbol work alphabet, to a
(6(m2 −m+ 4)n+ 6m+ 16)-state reversible Turing machine of the same kind.
There are also transformations of an n-state 4DFA to a (8n+ 9)-state strongly
reversible 4DFA, and of an n-state k-pebble 2DFA to a ((4k+4)n+2k+5)-state
strongly reversible k-pebble 2DFA. The list of such results can be continued
further, by representing various models of computation with a bounded graph
of memory configurations as graph-walking automata, and then applying the
general theorems of this paper.
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7. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. SIAM Journal on Computing 38(2), 658–701 (2008)
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