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Abstract. Meta-kernelization theorems are general results that provide poly-
nomial kernels for large classes of parameterized problems. The known meta-
kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09)
and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by
solution size. We present meta-kernelization theorems that use structural param-
eters of the input and not the solution size. Let C be a graph class. We define the
C-cover number of a graph to be the smallest number of modules the vertex set
can be partitioned into such that each module induces a subgraph that belongs to
the class C.

We show that each graph problem that can be expressed in Monadic Second
Order (MSO) logic has a polynomial kernel with a linear number of vertices when
parameterized by the C-cover number for any fixed class C of bounded rank-width
(or equivalently, of bounded clique-width, or bounded Boolean-width). Many
graph problems such as c-COLORING, c-DOMATIC NUMBER and c-CLIQUE

COVER are covered by this meta-kernelization result.
Our second result applies to MSO expressible optimization problems, such

as MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, and MAXIMUM

CLIQUE. We show that these problems admit a polynomial annotated kernel with
a linear number of vertices.

1 Introduction

Kernelization is an algorithmic technique that has become the subject of a very active
field in parameterized complexity, see, e.g., the references in [14,21,27]. Kernelization
can be considered as a preprocessing with performance guarantee that reduces an in-
stance of a parameterized problem in polynomial time to a decision-equivalent instance,
the kernel, whose size is bounded by a function of the parameter alone [14,21,17]; if
the reduced instance is an instance of a different problem, then it is called a bikernel.
Once a kernel or bikernel is obtained, the time required to solve the original instance
is bounded by a function of the parameter and therefore independent of the input size.
Consequently one aims at (bi)kernels that are as small as possible.

Every fixed-parameter tractable problem admits a kernel, but the size of the kernel
can have an exponential or even non-elementary dependence on the parameter [16].
Thus research on kernelization is typically concerned with the question of whether a
fixed-parameter tractable problem under consideration admits a small, and in particu-
lar a polynomial, kernel. For instance, the parameterized MINIMUM VERTEX COVER
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problem (does a given graph have a vertex cover consisting of k vertices?) admits a
polynomial kernel containing at most 2k vertices.

There are many fixed-parameter tractable problems for which no polynomial kernels
are known. Recently, theoretical tools have been developed to provide strong theoret-
ical evidence that certain fixed-parameter tractable problems do not admit polynomial
kernels [3]. In particular, these techniques can be applied to a wide range of graph prob-
lems parameterized by treewidth and other width parameters such as clique-width, or
rank-width (see e.g., [3,5]). Thus, in order to get polynomial kernels, structural param-
eters have been suggested that are somewhat weaker than treewidth, including the ver-
tex cover number, max-leaf number, and neighborhood diversity [15,23]. While these
parameters do allow polynomial kernels for some problems, no meta-kernelization the-
orems are known. The general aim here is to find a parameter that admits a polynomial
kernel for the given problem while being as general as possible.

We extend this line of research by using results from modular decompositions and
rank-width to introduce new structural parameters for which large classes of problems
have polynomial kernels. Specifically, we study the rank-width-d cover number, which
is a special case of a C-cover number (see Section 3 for definitions). We establish the
following result which is an important prerequisite for our kernelization results.

Theorem 1. For every constant d, a smallest rank-width-d cover of a graph can be
computed in polynomial time.

Hence, for graph problems parameterized by rank-width-d cover number, we can al-
ways compute the parameter in polynomial time. The proof of Theorem 1 relies on a
combinatorial property of modules of bounded rank-width that amounts to a variant of
partitivity [9].

Our kernelization results take the shape of algorithmic meta-theorems, stated in
terms of the evaluation of formulas of monadic second order logic (MSO) on graphs.
Monadic second order logic over graphs extends first order logic by variables that may
range over sets of vertices (sometimes referred to as MSO1 logic). Specifically, for an
MSO formula ϕ, our first meta-theorem applies to all problems of the following shape,
which we simply call MSO model checking problems.

MSO-MCϕ

Instance: A graph G.
Question: Does G |= ϕ hold?

Many NP-hard graph problems can be naturally expressed as MSO model checking
problems, for instance c-COLORING, c-DOMATIC NUMBER and c-CLIQUE COVER.

Theorem 2. Let C be a graph class of bounded rank-width. Every MSO model checking
problem, parameterized by the C-cover number of the input graph, has a polynomial
kernel with a linear number of vertices.

While MSO model checking problems already capture many important graph prob-
lems, there are some well-known optimization problems on graphs that cannot be cap-
tured in this way, such as MINIMUM VERTEX COVER, MINIMUM DOMINATING SET,
and MAXIMUM CLIQUE. Many such optimization graph problems can be equivalently
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stated as decision problems, in the following way. Let ϕ = ϕ(X) be an MSO formula
with one free set variable X and ♦ ∈ {≤,≥}.

MSO-OPT♦
ϕ

Instance: A graph G and an integer r ∈ N.
Question: Is there a set S ⊆ V (G) such that G |= ϕ(S) and |S| ♦ r?

We call problems of this form MSO optimization problems. MSO optimization prob-
lems form a large fragment of the so-called LinEMSO problems [2]. There are dozens
of well-known graph problems that can be expressed as MSO optimization problems.

We establish the following result (cf. Section 2 for the definition of a bikernel)

Theorem 3. Let C be a graph class of bounded rank-width. Every MSO optimization
problem, parameterized by the C-cover number of the input graph, has a polynomial
bikernel with a linear number of vertices.

In fact, the obtained bikernel is an instance of an annotated variant of the original MSO
optimization problem [1]. Hence, Theorem 3 provides a polynomial kernel for an an-
notated version of the original MSO optimization problem.

We would like to point out that a class of graphs has bounded rank-width iff it has
bounded clique-width iff it has bounded Boolean-width [7]. Hence, we could have
equivalently stated the theorems in terms of clique-width or Boolean-width. Further-
more we would like to point out that the theorems hold also for some classes C where
we do not know whether C can be recognized in polynomial time, and where we do
not know how to compute the partition in polynomial time. For instance, the theorems
hold if C is a graph class of bounded clique-width (it is not known whether graphs of
clique-width at most 4 can be recognized in polynomial time).

Note: Some proofs were omitted due to space constraints. A full version of this paper
is available on arxiv.org (arXiv:1303.1786).

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For i ∈ N

we write [i] to denote the set {1, . . . , i}.

Graphs. We will use standard graph theoretic terminology and notation (cf. [12]). A
module of a graph G = (V,E) is a nonempty set X ⊆ V such that for each vertex
v ∈ V \X it holds that either no element of X is a neighbor of v or every element of
X is a neighbor of v. We say two modules X,Y ⊆ V are adjacent if there are vertices
x ∈ X and y ∈ Y such that x and y are adjacent. A modular partition of a graphG is a
partition {U1, . . . , Uk} of its vertex set such that Ui is a module of G for each i ∈ [k].

Monadic Second-Order Logic on Graphs. We assume that we have an infinite supply
of individual variables, denoted by lowercase letters x, y, z, and an infinite supply of
set variables, denoted by uppercase letters X,Y, Z . Formulas of monadic second-order
logic (MSO) are constructed from atomic formulas E(x, y), X(x), and x = y using
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the connectives ¬ (negation), ∧ (conjunction) and existential quantification ∃x over in-
dividual variables as well as existential quantification ∃X over set variables. Individual
variables range over vertices, and set variables range over sets of vertices. The atomic
formula E(x, y) expresses adjacency, x = y expresses equality, and X(x) expresses
that vertex x in the set X . From this, we define the semantics of monadic second-order
logic in the standard way (this logic is sometimes called MSO1).

Free and bound variables of a formula are defined in the usual way. A sentence is a
formula without free variables. We write ϕ(X1, . . . , Xn) to indicate that the set of free
variables of formula ϕ is {X1, . . . , Xn}. If G = (V,E) is a graph and S1, . . . , Sn ⊆
V we write G |= ϕ(S1, . . . , Sn) to denote that ϕ holds in G if the variables Xi are
interpreted by the sets Si, for i ∈ [n].

We review MSO types roughly following the presentation in [24]. The quantifier
rank of an MSO formula ϕ is defined as the nesting depth of quantifiers in ϕ. For
non-negative integers q and l, let MSOq,l consist of all MSO formulas of quantifier
rank at most q with free set variables in {X1, . . . , Xl}.

Let ϕ = ϕ(X1, . . . , Xl) and ψ = ψ(X1, . . . , Xl) be MSO formulas. We say ϕ
and ψ are equivalent, written ϕ ≡ ψ, if for all graphs G and U1, . . . , Ul ⊆ V (G),
G |= ϕ(U1, . . . , Ul) if and only if G |= ψ(U1, . . . , Ul). Given a set F of formulas,
let F/≡ denote the set of equivalence classes of F with respect to ≡. A system of
representatives of F/≡ is a set R ⊆ F such that R ∩ C �= ∅ for each equivalence class
C ∈ F/≡. The following statement has a straightforward proof using normal forms
(see Proposition 7.5 in [24] for details).

Fact 1. Let q and l be fixed non-negative integers. The set MSOq,l/≡ is finite, and one
can compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integers q and l the system of repre-
sentatives of MSOq,l/≡ given by Fact 1 is fixed.

Definition 4 (MSO Type). Let q, l be a non-negative integers. For a graph G and an
l-tuple U of sets of vertices of G, we define typeq(G,U) as the set of formulas ϕ ∈
MSOq,l such that G |= ϕ(U). We call typeq(G,U) the MSO rank-q type of U in G.

It follows from Fact 1 that up to logical equivalence, every type contains only finitely
many formulas. This allows us to represent types using MSO formulas as follows.

Lemma 5. Let q and l be non-negative integer constants, let G be a graph, and let U
be an l-tuple of sets of vertices ofG. One can compute a formula Φ ∈ MSOq,l such that
for any graph G′ and any l-tuple U ′ of sets of vertices of G′ we have G′ |= Φ(U ′) if
and only if typeq(G,U) = typeq(G

′,U ′). Moreover, if G |= ϕ(U) can be decided in
polynomial time for any fixed ϕ ∈ MSOq,l then Φ can be computed in time polynomial
in |V (G)|.
Proof. Let R be a system of representatives of MSOq,l/≡ given by Fact 1. Because q
and l are constant, we can consider both the cardinality of R and the time required to
compute it as constants. Let Φ ∈ MSOq,l be the formula defined as Φ =

∧
ϕ∈S ϕ ∧∧

ϕ∈R\S ¬ϕ, where S = {ϕ ∈ R : G |= ϕ(U ) }. We can compute Φ by deciding
G |= ϕ(U ) for each ϕ ∈ R. Since the number of formulas in R is a constant, this can
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be done in polynomial time if G |= ϕ(U ) can be decided in polynomial time for any
fixed ϕ ∈ MSOq,l.

Let G′ be an arbitrary graph and U ′ an l-tuple of subsets of V (G′). We claim that
typeq(G,U) = typeq(G

′,U ′) if and only if G′ |= Φ(U ′). Since Φ ∈ MSOq,l the
forward direction is trivial. For the converse, assume typeq(G,U ) �= typeq(G

′,U ′).
First supposeϕ ∈ typeq(G,U)\typeq(G′,U ′). The setR is a system of representatives
of MSOq,l/≡ , so there has to be a ψ ∈ R such that ψ ≡ ϕ. But G′ |= Φ(U ′) implies
G′ |= ψ(U ′) by construction of Φ and thusG′ |= ϕ(U ′), a contradiction. Now suppose
ϕ ∈ typeq(G

′,U ′) \ typeq(G,U ). An analogous argument proves that there has to be
a ψ ∈ R such that ψ ≡ ϕ and G′ |= ¬ψ(U ′). It follows that G′ �|= ϕ(U ′), which again
yields a contradiction. 
�

Fixed-Parameter Tractability and Kernels. A parameterized problem P is a subset of
Σ∗ × N for some finite alphabet Σ. For a problem instance (x, k) ∈ Σ∗ × N we call
x the main part and k the parameter. A parameterized problem P is fixed-parameter
tractable (FPT in short) if a given instance (x, k) can be solved in time O(f(k) ·p(|x|))
where f is an arbitrary computable function of k and p is a polynomial function.

A bikernelization for a parameterized problem P ⊆ Σ∗ × N into a parameterized
problem Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs in time
polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that (i) (x, k) ∈ P if and only if
(x′, k′) ∈ Q and (ii) |x′|+ k′ ≤ g(k), where g is an arbitrary computable function. The
reduced instance (x′, k′) is the bikernel. If P = Q, the reduction is called a kerneliza-
tion and (x′, k′) a kernel. The function g is called the size of the (bi)kernel, and if g is a
polynomial then we say that P admits a polynomial (bi)kernel.

It is well known that every fixed-parameter tractable problem admits a generic kernel,
but the size of this kernel can have an exponential or even non-elementary dependence
on the parameter [13]. Since recently there have been workable tools available for pro-
viding strong theoretical evidence that certain parameterized problems do not admit a
polynomial kernel [3,25].

Rank-width. The graph invariant rank-width was introduced by Oum and Seymour [26]
with the original intent of investigating the graph invariant clique-width. It later turned
out that rank-width itself is a useful parameter, with several advantages over clique-
width.

For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U ×W -submatrix of
the adjacency matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and
w ∈W , of AG[U,W ] is 1 if and only if {u,w} is an edge of G. The cut-rank function
ρG of a graph G is defined as follows: For a bipartition (U,W ) of the vertex set V (G),
ρG(U) = ρG(W ) equals the rank of AG[U,W ] over GF(2).

A rank-decomposition of a graph G is a pair (T, μ) where T is a tree of maximum
degree 3 and μ : V (G) → {t : t is a leaf of T} is a bijective function. For an edge e
of T , the connected components of T − e induce a bipartition (X,Y ) of the set of
leaves of T . The width of an edge e of a rank-decomposition (T, μ) is ρG(μ−1(X)).
The width of (T, μ) is the maximum width over all edges of T . The rank-width of G is
the minimum width over all rank-decompositions of G.
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vcn nd rwc1 rwc2 rwc3 · · · rw

tw

Fig. 1. Relationship between graph invariants: the vertex cover number (vcn), the neighborhood
diversity (nd), the rank-width-d cover number (rwcd), the rank-width (rw), and the treewidth
(tw). An arrow from A to B indicates that for any graph class for which B is bounded also A is
bounded. See Proposition 8 and [26] for references.

Theorem 6 ([22]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G, we
can output a rank-decomposition of width at most k or confirm that the rank-width of
G is larger than k in time O(n3).

Theorem 7 ([20]). Let d ∈ N be a constant and let ϕ and ψ = ψ(X) be fixed MSO
formulas. Given a graph G with rw(G) ≤ d, we can decide whether G |= ϕ in poly-
nomial time. Moreover, a set S ⊆ V (G) of minimum (maximum) cardinality such that
G |= ψ(S) can be found in polynomial time, if one exists.

3 Rank-Width Covers

Let C be a graph class containing all trivial graphs, i.e., all graphs consisting of only a
single vertex. We define a C-cover of G as a modular partition {U1, . . . , Uk} of V (G)
such that the induced subgraph G[Ui] belongs to the class C for each i ∈ [k]. Accord-
ingly, the C-cover number of G is the size of a smallest C-cover of G.

Of special interest to us are the classes Rd of graphs of rank-width at most d. We
call the Rd-cover number also the rank-width-d cover number. If C is the class of all
complete graphs and all edgeless graphs, then the C-cover number equals the neighbor-
hood diversity [23], and clearly C � R1. Figure 1 shows the relationship between the
rank-width-d cover number and some other graph invariants.

We state some further properties of rank-width-d covers.

Proposition 8. Let vcn, nd, and rw denote the vertex cover number, the neighborhood
diversity, and the rank-width of a graphG, respectively. Then the following (in)equalities
hold for any d ∈ N:

1. rwcd(G) ≤ nd(G) ≤ 2vcn(G),
2. if d ≥ rw(G), then |rwcd(G)| = 1.

Proof. (1) The neighborhood diversity of a graph is also a rank-width-1 cover. The
neighborhood diversity is known to be upper-bounded by 2vcn(G) [23].

(2) This follows immediately from the definition of rank-width-d covers. 
�

3.1 Finding the Cover

Next we state several properties of modules of graphs. These will be used to obtain a
polynomial algorithm for finding smallest rank-width-d covers.
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The symmetric difference of sets A,B is A�B = (A \B)∪ (B \A). Sets A and B
overlap if A ∩B �= ∅ but neither A ⊆ B nor B ⊆ A.

Definition 9. Let S ⊆ 2S be a family of subsets of a set S. We call S partitive if it
satisfies the following properties:

1. S ∈ S, ∅ /∈ S, and {x} ∈ S for each x ∈ S.
2. For every pair of overlapping subsetsA,B ∈ S, the setsA∪B,A∩B,A�B,A\B,

and B \A are contained in S.

Theorem 10 ([9]). The family of modules of a graph G is partitive.

Lemma 11 ([6]). Let G be a graph and x, y ∈ V (G). There is a unique minimal (with
respect to set inclusion) module M of G such that x, y ∈ M , and M can be computed
in time O(|V (G)|2).
Definition 12. LetG be a graph and d ∈ N. We define a relation∼G

d on V (G) by letting
v ∼G

d w if and only if there is a module M of G with v, w ∈ M and rw(G[M ]) ≤ d.
We drop the superscript from ∼G

d if the graph G is clear from context.

Proposition 13. For every graph G and d ∈ N the relation ∼d is an equivalence rela-
tion, and each equivalence class U of ∼d is a module of G with rw(G[U ]) ≤ d.

Corollary 14. Let G be a graph and d ∈ N. The equivalence classes of ∼d form a
smallest rank-width-d cover of G.

Proposition 15. Let d ∈ N be a constant. Given a graph G and two vertices v, w ∈
V (G), we can decide whether v ∼d w in polynomial time.

Proof (of Theorem 1). Let d ∈ N be a constant. Given a graph G, we can compute
the set of equivalence classes of ∼d by testing whether v ∼d w for each pair of ver-
tices v, w ∈ V (G). By Proposition 15, this can be done in polynomial time, and by
Corollary 14, V (G)/∼d is a smallest rank-width-d cover of G. 
�

4 Kernels for MSO Model Checking

In this section, we show that every MSO model checking problem admits a polynomial
kernel when parameterized by the C-cover number of the input graph, where C is some
recursively enumerable class of graphs satisfying the following properties:

(I) C contains all trivial graphs, and a C-cover of a graph G with minimum cardinality
can be computed in polynomial time.

(II) There is an algorithm A that decides whetherG |= ϕ in time polynomial in |V (G)|
for any fixed MSO sentence ϕ and any graph G ∈ C.

For obtaining the kernel for MSO model checking problems, we proceed as follows.
First, we compute a smallest rank-width-d cover of the input graph G in polynomial
time. Second, we compute for each module a small representative of constant size.
Third, we replace each module with a constant size module, which results in the kernel.
We show how to carry out the second and third steps below.
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Let G be a graph and U ⊆ V (G). Let V be an l-tuple of sets of vertices of G. We
write V |U = (V1∩U, . . . , Vl∩U) to refer to the elementwise intersection of V with U .
If {U1, . . . , Uk} is a modular partition ofG and i ∈ [k] we will abuse notation and write
V |i = V Ui if there is no ambiguity about what partition the index refers to.

Definition 16 (Congruent). Let q and l be non-negative integers and let G and G′

be graphs with modular partitions M = {M1, . . . ,Mk} and M ′ = {M ′
1, . . . ,M

′
k},

respectively. Let V0 be an l-tuple of subsets of V (G) and let U0 be an l-tuple of sub-
sets of V (G′). We say (G,M ,V0) and (G′,M ′,U0) are q-congruent if the following
conditions are met:

1. For every i, j ∈ [k] with i �= j, Mi andMj are adjacent in G if and only if M ′
i and

M ′
j are adjacent in G′.

2. For each i ∈ [k], typeq(G[Mi],V0|i) = typeq(G
′[M ′

i ],U0|i).
We begin by showing how congruents are related to the previously introduced notion of
types.

Lemma 17. Let q and l be non-negative integers and let G and G′ be graphs with
modular partitions M = {M1, . . . ,Mk} and M ′ = {M ′

1, . . . ,M
′
k}. Let V0 be an

l-tuple of subsets of V (G) and let U0 be an l-tuple of subsets of V (G′). If (G,M ,V0)
and (G′,M ′,U0) are q-congruent, then typeq(G,V0) = typeq(G

′,U0).

Next, we showcase the tool we use to replace a graph G by a small representative.

Lemma 18. Let C be a recursively enumerable graph class and let q be a non-negative
integer constant. Let G ∈ C be a graph. If G |= ϕ can be decided in time polynomial
in |V (G)| for any fixed ϕ ∈ MSOq,0 then one can in polynomial time compute a graph
G′ ∈ C such that |V (G′)| is bounded by a constant and typeq(G) = typeq(G

′).

Finally, in Lemma 19 below we use Lemma 18 to obtain our polynomial kernels.

Lemma 19. Let q be a non-negative integer constant, and let C be a recursively enu-
merable graph class satisfying (II). Then given a graphG and a C-cover {U1, . . . , Uk},
one can in polynomial time compute a graph G′ with modular partition {U ′

1, . . . , U
′
k}

such that (G,U ) and (G′,U ′) are q-congruent and for each i ∈ [k], G′[U ′
i ] ∈ C and

the number of vertices in U ′
i is bounded by a constant.

Proposition 20. Let ϕ be a fixed MSO sentence. Let C be a recursively enumerable
graph class satisfiying (I) and (II). Then MSO-MCϕ has a polynomial kernel parame-
terized by the C-cover number of the input graph.

Proof (of Theorem 2). Immediate from Theorems 1, 6, and 7 in combination with
Proposition 20. 
�
Corollary 21. The following problems have polynomial kernels when parameterized by
the rank-width-d cover number of the input graph: c-COLORING, c-DOMATIC NUM-
BER, c-PARTITION INTO TREES, c-CLIQUE COVER, c-PARTITION INTO PERFECT

MATCHINGS, c-COVERING BY COMPLETE BIPARTITE SUBGRAPHS.
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5 Kernels for MSO Optimization

By definition, MSO formulas can only directly capture decision problems such as 3-
coloring, but many problems of interest are formulated as optimization problems. The
usual way of transforming decision problems into optimization problems does not work
here, since the MSO language cannot handle arbitrary numbers.

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [2] (while
studying graphs of bounded tree-width), and later Courcelle, Makowsky, and Rotics [10]
(for graphs of bounded clique-width), specifically extended the expressive power of
MSO logic to define so-called LINEMS optimization problems, and consequently also
showed the existence of efficient (parameterized) algorithms for such problems in the
respective cases.

The class of so-called MSO optimization problems (problems which may be stated as
MSO-OPT♦

ϕ ) considered here are a streamlined and simplified version of the formalism
introduced in [10]. Specifically, we consider only a single free variable X , and ask for
a satisfying assignment of X with minimum or maximum cardinality. To achieve our
results, we need a recursively enumerable graph class C that satisfies (I) and (II) along
with the following property:

(III)Let ϕ = ϕ(X) be a fixed MSO formula. Given a graph G ∈ C, a set S ⊆
V (G) of minimum (maximum) cardinality such that G |= ϕ(S) can be found in
polynomial time, if one exists.

Our approach will be similar to the MSO kernelization algorithm, with one key differ-
ence: when replacing the subgraph induced by a module, the cardinalities of subsets of
a given q-type may change, so we need to keep track of their cardinalities in the original
subgraph.

To do this, we introduce an annotated version of MSO-OPT♦
ϕ . Given a graph G =

(V,E), an annotation W is a set of triples (X,Y,w) with X ⊆ V, Y ⊆ V,w ∈ N. For
every set Z ⊆ V we define

W(Z) =
∑

(X,Y,w)∈W,X⊆Z,Y∩Z=∅
w.

We call the pair (G,W) an annotated graph. If the integer w is represented in binary,
we can represent a triple (X,Y,w) in space |X | + |Y | + log2(w). Consequently, we
may assume that the size of the encoding of an annotated graph (G,W) is polynomial
in |V (G)| + |W|+max(X,Y,w)∈W log2 w.

Each MSO formula ϕ(X) and ♦ ∈ {≤,≥} gives rise to an annotated MSO-
optimization problem.

aMSO-OPT♦
ϕ

Instance: A graph G with an annotation W and an integer r ∈ N.
Question: Is there a set Z ⊆ V (G) such that G |= ϕ(Z) and W(Z)♦ r?

Notice that any instance of MSO-OPT♦
ϕ is also an instance of aMSO-OPT♦

ϕ with the
trivial annotation W = { ({v}, ∅, 1) : v ∈ V (G) }. The main result of this section
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is a bikernelization algorithm which transforms any instance of MSO-OPT♦
ϕ into an

instance of aMSO-OPT♦
ϕ ; this kind of bikernel is called an annotated kernel [1].

The results below are stated and proved for minimization problems aMSO-OPT≤
ϕ

only. This is without loss of generality—the proofs for maximization problems are sym-
metric.

Lemma 22. Let q and l be non-negative integers and let G and G′ be a graphs such
that G and G′ have the same q + l MSO type. Then for any l-tuple V of sets of ver-
tices of G, there exists an l-tuple U of sets of vertices of G′ such that typeq(G,V ) =
typeq(G

′,U).

Proof. Suppose there exists an l-tuple V of sets of vertices of G, and a formula ϕ =
ϕ(X1, . . . , Xl) ∈ MSOq,l such that G |= ϕ(V1, . . . , Vl) but for every l-tuple U of
sets of vertices of G′ we have G′ �|= ϕ(U1, . . . , Ul). Let ψ = ∃X1 . . . ∃Xl ϕ. Clearly,
ψ ∈ MSOq+l,0 and G |= ψ but G′ �|= ψ, a contradiction. 
�
Using Lemma 22 and the results of Section 4, we may proceed directly to the construc-
tion of our annotated kernel.

Lemma 23. Let ϕ = ϕ(X) be a fixed MSO formula and C be a recursively enumerable
graph class satisfiying (II) and (III). Then given an instance (G, r) of MSO-OPT≤

ϕ and
a C-cover {U1, . . . , Uk} of G, an annotated graph (G′,W) satisfying the following
properties can be computed in polynomial time.

1. (G, r) ∈ MSO-OPT≤
ϕ if and only if (G′,W , r) ∈ aMSO-OPT≤

ϕ .
2. |V (G′)| ∈ O(k).
3. The encoding size of (G′,W) is O(k log(|V (G)|)).

The last obstacle we face is that the annotation itself may be “too large” for the kernel.
Here we use the following simple folklore result, which allows us to prove that either
our annotated kernel is “small enough”, or we can solve our problem in polynomial
time (and subsequently output a trivial yes/no instance).

Fact 2 (Folklore). Given an MSO sentence ϕ and a graph G, one can decide whether
G |= ϕ in time O(2nl), where n = |V (G)| and l = |ϕ|.

Proposition 24. Let ϕ = ϕ(X) be a fixed MSO formula, and let C be a recursively enu-
merable graph class satisfying (I), (II), and (III). Then MSO-OPT≤

ϕ has a polynomial
bikernel parameterized by the C-cover number of the input graph.

Proof (of Theorem 3). Immediate from Theorems 1, 6, and 7 when combined with
Proposition 24. 
�
Corollary 25. The following problems have polynomial bikernels when parameterized
by the rank-width-d cover number of the input graph: MINIMUM DOMINATING SET,
MINIMUM VERTEX COVER, MINIMUM FEEDBACK VERTEX SET, MAXIMUM INDE-
PENDENT SET, MAXIMUM CLIQUE, LONGEST INDUCED PATH, MAXIMUM BIPAR-
TITE SUBGRAPH, MINIMUM CONNECTED DOMINATING SET.



Meta-kernelization with Structural Parameters 467

6 Conclusion

Recently Bodlaender et al. [4] and Fomin et al. [18] established meta-kernelization
theorems that provide polynomial kernels for large classes of parameterized problems.
The known meta-kernelization theorems apply to optimization problems parameterized
by solution size. Our results are, along with very recent results parameterized by the
modulator to constant-treedepth [19], the first meta-kernelization theorems that use a
structural parameter of the input and not the solution size. In particular, we would
like to emphasize that our Theorem 3 applies to a large class of optimization problems
where the solution size can be arbitrarily large.

It is also worth noting that our structural parameter, the rank-width-d cover number,
provides a trade-off between the maximum rank-width of modules (the constant d) and
the maximum number of modules (the parameter k). Different problem inputs might
be better suited for smaller d and larger k, others for larger d and smaller k. This two-
dimensional setting could be seen as a contribution to multivariate complexity analysis
as advocated by Fellows et al. [15].

We conclude by mentioning possible directions for future research. We believe that
some of our results can be extended from modular partitions to partitions into
splits [8,11]1. This would indeed result in more general parameters, however the precise
details require further work (one problem is that while all modules are partitive, only
strong splits have this property). Another direction is to focus on polynomial kernels
for problems which cannot be described by MSO logic, such as HAMILTONIAN PATH

or CHROMATIC NUMBER.
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