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Abstract. This paper introduces a class of register machines whose reg-
isters can be updated by polynomial functions when a transition is taken,
and the domain of the registers can be constrained by linear constraints.
This model strictly generalises a variety of known formalisms such as
various classes of Vector Addition Systems with States. Our main result
is that reachability in our class is PSPACE-complete when restricted to
one register. We moreover give a classification of the complexity of reach-
ability according to the type of polynomials allowed and the geometry
induced by the range-constraining formula.

1 Introduction

Register machines are a class of abstract machines comprising a finite-state con-
troller with a finite number of integer-valued registers that can be manipulated
or tested when a transition is taken. A prominent instance are counter machines
due to Minsky [18], which are obtained by restricting registers to range over
the naturals, allowing for addition of integers to the registers along transitions,
and testing registers for zero. A seminal result by Minsky states that counter
machines are Turing powerful in the presence of at least two registers. Decid-
ability can be obtained by further restricting counter machines and disallowing
zero tests, which yields a class of register machines known as Vector Addition
Systems with States (VASS) or Petri nets. Their reachability problem is known
to be decidable and EXPSPACE-hard [17,16].

A number of extensions, generalisations and restrictions of VASS can be found
in the literature. For instance, various extensions that increase the power of
transitions have been studied, including Reset/Transfer (Petri) nets [6], Petri
nets with inhibitory arcs [3], or Affine nets [8] which extend VASS such that
transitions can be any non-decreasing affine function; any of these extensions
lead to undecidability of reachability in the presence of more than one register.
On the other hand, relaxing the domain of the registers of a VASS to the integers,
or restricting VASS to just one register renders reachability NP-complete [12].
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In summary, we can identify three parameters in which the aforementioned
classes of register machines differ and which impact their expressiveness and the
complexity of reachability: (1) the number of registers available, (2) the shape
of the domain of the registers, and (3) the class of the transition functions used.
In this paper, we generalise (3) and study the decidability and complexity of
reachability when allowing for polynomial functions with integer coefficients to
update register values. To this end, we introduce polynomial register machines
(PRMs), a class of register machines in which the previously mentioned classes of
register machines embed smoothly. Of course, their undecidability results carry
over, but on the positive side we are able to identify a decidable class of PRMs
that is not contained in any of them.

The main result of this paper is to show that reachability in PRMs is PSPACE-
complete when restricted to one register. As a motivating example, consider
the question whether the following loop involving a single register variable x
terminates:

int x := 0
while (x < 5 ) :

x := x∗∗3 − 2x∗∗2 − x + 2

This example is inspired by an example given in [1], and in this example x al-
ternates between 0 and 2, and thus the loop never terminates. In fact, it is not
difficult to see that the loop never terminates for all values x < 3. However
for polynomials of higher degree and loops with a richer control structure, de-
ciding termination becomes non-obvious. Even in dimension one, problems of
this nature can become intriguingly difficult, see e.g. [2] for a discussion on open
problems of this kind. Reachability for non-deterministically applied affine trans-
formations from a finite set in dimension one has been shown to be decidable in
2-EXPTIME by Fremont [9].

There are a number of obstacles making it challenging to show decidability
and complexity results for reachability in PRMs. In some classes of register
machines, semi-linearity of the reachability set can be exploited in order to show
decidability. However, taking a single-state PRM with one self-loop that updates
the only register x with the polynomial p(x) = x2, we see that the reachability
set is not semi-linear. Moreover, the representation of the values that the register
x can take grows exponentially with the number of times the self-loop is taken,
which makes it not obvious how to decide reachability in polynomial space only.

The property that the reachability set is not semi-linear separates languages
generated by PRMs from classes of machines that have semi-linear reachability
sets, such as VASS in dimension one. More interestingly, PRMs can generate
languages that cannot be generated by general VASS, which do also not have
semi-linear reachability sets: the language L = {an2

: n > 0} over the singleton
alphabet {a} can easily be generated by a PRM with two control locations, but
not by any VASS [15].

Besides the aforementioned related work, as indicated by the example above,
work related to ours can be found in the area of program verification. In [1],
Babić et al. describe a semi decision procedure for proving termination of loops
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involving polynomial updates, similar to the one above. Another example is the
work by Bradley et al. [4] which provides a semi decision procedure for so-called
multipath polynomial programs. However, to the best of our knowledge, no sound
and complete algorithm for problems of this kind exists.

Due to space constraints, we had to omit some proof details. An extended ver-
sion of this paper containing the omitted proofs in an appendix can be obtained
from the authors.

2 Preliminaries

Before we formally introduce PRMs, we provide some technical definitions and
known results on elementary algebra and number theory.

2.1 Technical Definitions and Known Results

By N,Z, R and C we denote the naturals, integers, reals and complex numbers,
respectively. All integers in this paper are assumed to be encoded in binary
unless stated otherwise. For z ∈ Z, we denote by sgn z the sign of z, and by
|z| its absolute value. For r1 ≤ r2 ∈ R, we denote by [r1, r2] the closed interval
{r ∈ R : r1 ≤ r ≤ r2}.

By Z[x] we denote the ring of polynomials with integer coefficients over vari-
ables x = (x1, . . . , xn). A polynomial p(x) ∈ Z[x] will be written as p(x) =
anx

n + · · ·+ a1x+ a0, and represented in sparse encoding by a sequence of pairs
(i, ai)i∈I , where I ⊆ {0, . . . , n} contains those indexes for which ai �= 0. Given
z ∈ Z and p(x) in our representation, deciding p(z) > 0 is known to be com-
putable in polynomial time [5]. Given a root c ∈ C of p(x), we will make use of
the following bound from [14] on the magnitude of c:

|c| ≤ 1 +
∑

0≤i<n

|ai/an|. (1)

Recall that for all m > 0, p(a) ≡ p(b) mod m whenever a ≡ b mod m for all
m > 0, i.e. all p(x) ∈ Z[x] are invariant w.r.t. residual classes. Given pairwise
co-prime m1, . . . ,mk > 0 and b1, . . . , bk ∈ Z, the Chinese remainder theorem
states that a system of k linear congruences x ≡ bi mod mi, 1 ≤ i ≤ k has a
unique solution modulo m1m2 · · ·mk. Moreover, recall that the prime number
theorem states that the number π(n) of primes below n grows as π(n) ∼ n/ lnn.
In particular, this implies that O(log n) bits are sufficient to represent the n-th
prime number.

A linear constraint φ(x) is a conjunction of atoms of the form � and p(x)∼z,
where p ∈ Z[x] is linear, z ∈ Z and ∼ ∈ {<,≤,=,≥, >}. The set of solutions
of φ(x) is {z ∈ Z

d : φ[z/x] is true} that we also denote by �φ(x)�. We say that
�φ(x)� is upward closed if whenever z ∈ �φ(x)� then z′ ∈ �φ(x)� for all z′ such
that z 
 z′. Here, 
 denotes the natural component-wise extension of the order
≤ on Z to tuples over Z.
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2.2 Polynomial Register Machines

This section introduces polynomial register machines. We only give full defini-
tions for dimension one, since the major part of this paper in Section 3 focuses
on this class. From the definitions below, it is easy to generalise to higher di-
mensions, which we are only going to discuss briefly in Section 4.

A polynomial register machine (PRM) is a tuple R = (Q,Δ, λ, φ), where Q is
a finite set of states or control locations, Δ ⊆ Q × Q is the transition relation,
λ : Δ→ Z[x] is the transition labelling function, labelling each transition with an
update polynomial, and φ(x) is a global invariant, which is a linear constraint. As
a convention, we assume 0 ∈ �φ(x)�, though all results in this paper hold without

this assumption. We write q
p(x)−−→ q′ whenever (q, q′) ∈ Δ and λ(q, q′) = p(x). The

set C(R) of configurations of R is C(R) def
= Q × �φ(x)� ⊆ Q × Z, and we write

configurations in C(R) as q(z). The size |R| of R is the number of bits required
to write down R and P (R) denotes the set of polynomials that occur in R.

The semantics of R is given by a transition system T (R) = (C(R),→R),
where q(z) →R q′(z′) if q

p(x)−−→ q′ and z′ = p(z). Reachability is to decide, given
q, q′ ∈ Q and z, z′ ∈ Z, does q(z) →∗R q′(z′) hold? Clearly, this problem can be
reduced in logarithmic space to deciding q(0)→∗R′ q′(0) for some PRM R′ linear
in the size of R, z and z′.

For dimensions d > 1, a d-PRM is obtained by amending the above definitions
such that φ(x) is free in x = (x1, . . . , xd) and transitions are labelled with vectors
of polynomials (p1(x1), . . . , pd(xd)) that are applied componentwise. The next
example shows how some of the classes of register machines mentioned in the
introduction can be embedded into PRMs.

Example 1. A dimension d-VASS is a d-PRM with global invariant φ(x) =∧
1≤i≤d xi ≥ 0 and transition polynomials of the form pi(xi) = xi+ai; a bounded

d-counter automaton [13] with bounds b = (b1, . . . , bd) ∈ N
d is a d-PRM with

the same transition polynomials and φ(x) =
∧

1≤i≤d(xi ≥ 0 ∧ xi ≤ bi). A reset
d-VASS [6] can be simulated by employing polynomials of the form pi(xi) = 0
for resets.

The previous examples lead us to a classification of update polynomials. We
call a polynomial of the form p(x) = a1x + a0 a counter polynomial if a1 = 1,
counter-like polynomial if a1 ∈ {−1, 1}, and if the degree of p(x) is one then p(x)
is called an affine polynomial.

3 Reachability for One Register

This section proves the main theorem of this paper and shows that reachability
in PRMs is decidable and PSPACE-complete. For the lower bound, we show that
reachability becomes PSPACE-hard for update polynomials of degree two, even
if the global invariant is unconstrained and thus upward closed. Subsequently,
we show a matching upper bound which involves a thorough analysis of paths
in the transition systems generated by PRMs.
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3.1 Hardness for PSPACE

We reduce from the reachability problem for linear-bounded automata (LBA),
which is a well-known PSPACE-complete problem. An LBA (without input al-
phabet) is a tupleM = (QM, Γ,ΔM), where QM is a finite set of states and Γ
is a finite tape alphabet implicitly containing two distinguished symbols � and �
acting as left delimiter (�) and right delimiter (�). The transition relation is a
relation ΔM ⊆ QM × Γ × QM × Γ × {←,→} such that (q, γ, q′, γ′, d) ∈ ΔM
implies that wheneverM is in state q reading γ at the current head position on
the tape then M switches to the state q′ writing γ′ onto the tape and moving
the head in direction d ∈ {←,→}. We assume ΔM to be constrained such that
it respects the delimiters, i.e., it fulfils the conditions

(i) (q, �, q′, γ, d) ∈ ΔM implies γ = � and d =→; and
(ii) (q, �, q′, γ, d) ∈ ΔM implies γ = � and d =←.

A configuration of M is a tuple (q, �w�, i), where q ∈ Q is the current state,
w ∈ (Γ \ {�, �})∗ is the tape content and i ∈ {0, |w| + 1} is the position of the
read-write head. Hence, at head position 0 the tape content is � and at position
|w|+1 it is �. The successor relation →M between two configurations is defined
in the standard way.

Deciding whether (q0, �0
n�, 0) →∗M (qf , �0

n�, 0) for given n ∈ N (in unary)
and given states q0, qf ∈ QM of a given LBA M working on the alphabet
{�, 0, 1, �} is well-known to be PSPACE-complete. For our reduction, let us fix
such an LBAM and n ∈ N. The goal of the remainder of this section is to show
how we can compute in polynomial time fromM and n a PRM R = (Q,Δ, λ,�)
with particular control locations qR, q′R such that (q0, �0

n�, 0)→∗M (qf , �0
n�, 0)

if, and only if, qR(0) →∗R q′R(0), which gives PSPACE-hardness of reachability
in PRMs.

To begin with, let us discuss an encoding of configurations ofM. In the follow-
ing, let pi denote the (i+3)-th prime number, i.e., p1 = 7, p2 = 11, p3 = 13, etc.
Recall that by the prime number theorem pi can be represented using O(log i)

bits. Set P
def
=

∏
1≤i≤n pi, we call a residue class r modulo P valid if for each

1 ≤ i ≤ n there is some bi ∈ {0, 1} such that r ≡ bi mod pi. Otherwise, r
is called invalid. Our idea is to encode a tape configuration �w� of M with
w = w1 · · ·wn ∈ {0, 1}n via the unique valid residue class r modulo P satisfying
r ≡ wi mod pi for all 1 ≤ i ≤ n. Consequently, we can establish a one-to-one
correspondence between valid residue classes modulo P and tape contents ofM.
Thus, modulo each prime pi, we naturally view the residue classes 0 and 1 to
encode the Boolean values 0 and 1, respectively. During the simulation of M
by R, we will need a way to remember that an error has occurred. For that
reason, we extend the set of valid residue classes to the set S of sane residue
classes modulo P . Let 0 ≤ r < P , we call r sane if for every 1 ≤ i ≤ n there
is some bi ∈ {0, 1, 2} such that r ≡ bi mod pi. We regard the residue class 2 as
erroneous. Finally, let us introduce some additional notation that allows us to
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flipi(r)
def
=

{
r[1 mod pi] if r ≡ 0 mod pi

r[0 mod pi] if r ≡ 1 mod pi

r[2 mod pi] if r ≡ 2 mod pi

eqzero i(r)
def
=

{
r[0 mod pi] if r ≡ 0 mod pi

r[2 mod pi] if r ≡ 1 mod pi

r[2 mod pi] if r ≡ 2 mod pi

Fig. 1. The mappings flipi and eqzeroi

alter a residue class r locally. Let 0 ≤ r < P , 1 ≤ i ≤ n and 0 ≤ a < pi, we
denote by r[a mod pi] the unique residue class r′ modulo P satisfying

r′ ≡ a mod pi; and

r′ ≡ r mod pj for all 1 ≤ j ≤ n such that j �= i.

The existence of r′ is guaranteed by the Chinese remainder theorem.
For each 1 ≤ i ≤ n, we define mappings flipi, eqzeroi, eqonei : S → S that

allow us to perform tests and operations on sane residue classes. The definitions
of flipi and eqzeroi are given in Figure 1. Given 0 ≤ r < P , flipi(r) flips the
bit encoded in the residue class modulo pi, provided it is not erroneous. If it is
erroneous, it remains so after an application of flipi. Similarly, eqzeroi allows for
“guess-testing” of the bit encoded in the residue class modulo pi: if r ≡ 0 mod pi
then this value is preserved by the application of eqzeroi. Otherwise, eqzeroi maps
r to 2 so that it informally speaking “remembers” the wrong guess by mapping to
a value r′ such that r′ ≡ 2 mod pi. The mapping eqonei is defined analogously to
eqzeroi and allows for “guess-testing” whether r ≡ 1 mod pi. The crucial point of
our reduction is that flipi, eqzeroi and eqonei can be implemented via quadratic
polynomials with coefficients of polynomial bit size.

Lemma 2. For any 1 ≤ i ≤ n and any of flipi, eqzeroi, eqonei : S → S, there
is a quadratic polynomial with coefficients from {0, . . . , P − 1} that realises the
respective function.

Proof. Let us first give polynomials for each of the mappings that work in Z/piZ.
One easily verifies that the polynomials

peqzero(x)
def
= −x2 + 3x pflip(x)

def
= 3 · 2−1 · x2 − 5 · 2−1 · x+ 1

peqone(x)
def
= x2 − 2x+ 2

realise the respective mappings. Here, it is important to recall that pi ≥ 7 and
that 2 has a multiplicative inverse. However, the polynomials above are generally
not realising the identity in Z/pjZ for j �= i, which is required by the definition
of flipi, eqzeroi and eqonei. For instance, in Z/7Z we do not have x2 − 2x +
2 ≡ x. Thus, for each of the three polynomials pflip(x), peqzero(x), peqone(x),
written as a2x

2+a1x+a0, in order to obtain corresponding polynomials pflip,i(x),
peqzero,i(x), peqone,i(x), we apply the Chinese remainder theorem and for every
k ∈ {0, 1, 2} replace ak with a′k, where a′k is the unique solution in Z/PZ to the
system of congruences x ≡ ak mod pi and x ≡ bk mod pj for each 1 ≤ j �= i ≤ n

with b1
def
= 1 and b0 = b2

def
= 0. ��
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(q, i, b)
eqzeroi+1−−−−−→ (q, i + 1, 0) if b = b

′
, d =→

(q, i, b)
eqonei+1−−−−−→ (q, i + 1, 1) if b = b′, d =→

(q, i, b)
eqzeroi−1−−−−−→ (q, i− 1, 0) if b = b′, d =←

(q, i, b)
eqonei−1−−−−−→ (q, i− 1, 1) if b = b′, d =←

(q, i, b)
eqzeroi+1◦flipi−−−−−−−−−→ (q, i+ 1, 0) if b 
= b

′
, d =→

(q, i, b)
eqonei+1◦flipi−−−−−−−−→ (q, i+ 1, 1) if b 
= b′, d =→

(q, i, b)
eqzeroi−1◦flipi−−−−−−−−−→ (q, i− 1, 0) if b 
= b′, d =←

(q, i, b)
eqonei−1◦flipi−−−−−−−−→ (q, i− 1, 1) if b 
= b

′
, d =←

Fig. 2. Transitions of R for simulating a transition (q, b, q′, b′, d) of M

We have now accumulated all ingredients that enable us to simulateM with
a PRM R. Subsequently, we will identify each mapping flipi, eqzeroi and eqonei
with the corresponding polynomial from Lemma 2. We now define the control
locations of Q, the transitions Δ and the labelling function λ of R. The control
locations of R contain those of M paired with the head position and a guess

of the contents of the tape cell at the current head position, i.e., Q
def
= QM ×

{0, . . . , n+ 1} × {0, 1}.
For every control location (q, i, b) ofR such that 1 ≤ i ≤ n and every transition

(q, b, q′, b′, d) ∈ ΔM of M, Δ contains the transitions shown in Figure 2, and

an additional transition (qf , i, 0)
x−P−−→ (qf , i, 0) for each b ∈ {0, 1}. The degree of

the polynomials in Figure 2 is actually four, but quadratic polynomials can be
regained by replacing a single transition with two consecutive transitions. Also,
for brevity we have omitted the cases when the head moves to position 0 or n+1,
whose behaviour can easily be hard-wired into R.

The transitions of R are chosen such that every time we simulate a move
of the head of M, we guess the contents of the next tape cell. The guess is
instantaneously verified through the application of the polynomials eqzeroi−1,
eqzeroi+1, eqonei−1 and eqonei+1 along the transition: if the guess was wrong,
the value of the register x becomes 2 modulo some prime pi and will remain
2 modulo this prime forever. Simulating writing to a cell is done via the flipi

polynomials, which are only applied if the currently read bit differs from the bit
that is ought to be written. Finally, there is a self-loop at the control locations
(qf , i, b) subtracting P allows for checking that we end with a register value z
such that z ≡ 0 mod P . Setting qR = (q0, 0, 0) and q′R = (qf , 0, 0), by induction
on the length of the run of M and R respectively, it is easily verified that
(q0, �0

n�, 0)→∗M (qf , �0
n�, 0) if, and only if, qR(0)→∗R q′R(0).

3.2 Membership in PSPACE

We now show the existence of a PSPACE algorithm that decides reachability
in PRMs in the most unconstrained case where register values come from Z.
We will generalise this to the case of general formulas in the end of this sec-
tion. Due to space constraints, it is not possible to give all technical details and
formal proofs, we rather prefer presenting our algorithm on a high level and only
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state the most important technical results that give the PSPACE upper bound.
All formal details can be found in the appendix of the extended version of this
paper.

For the remainder of this section, let us fix a PRM R = (Q,Δ, λ, φ) with one
register x and control locations q, q′ ∈ Q for which we wish to decide q(0) →∗R
q′(0). Denote by a and d the largest absolute value of all coefficients of the
update polynomials in R and their maximum degree, respectively. We assume
that every p(x) ∈ P (R) is a non-constant polynomial. Otherwise, reachability
can be reduced to a bounded number of reachability queries in PRMs with no
constant update polynomials by guessing the order in which these transitions are
traversed. The same approach would also enable us to additionally equip PRMs
with zero tests.

Note that in the following, when referring to the size of a number, we refer
to the number of bits required for its representation. On a high level, we can
identify three key observations and ideas that lead us to our upper bound:

(i) There exists a bound b of size polynomial in |R| such that once the ab-
solute register value of x goes above b, only counter-like polynomials can
decrement the absolute value of x due to monotonicity properties of non-
counter-like polynomials. A similar observation is part of the argument
in [9] to show decidability of reachability for non-deterministic applications
of affine polynomials.

(ii) The previous observation suggests that we should extract a 1-VASS C from
the transitions from R labelled with counter-like polynomials that can sim-
ulate R acting on those transitions. This in turn enables us to make use of
the property that reachability relations for 1-VASS are ultimately periodic
with some period m of size polynomially bounded in |C| [10,11] and hence
|R|, and that reachability in 1-VASS can be decided in NP [12] and hence
in PSPACE. In particular, this makes it possible to witness the existence
of paths in T (R) decrementing the register value from arbitrarily large ab-
solute register values x, provided we know the residue class of x modulo
m.

(iii) Observation (i) additionally enables us to show that paths in T (R) whose
absolute register value stays above b allow for deriving paths with special
properties such that in particular residue classes modulo m of the register
values occurring on the derived path are preserved. More precisely, we can
derive paths for which a bound on the length of sequences that strictly
decrease the absolute values of the register x exists. This in turn enables
us to witness in PSPACE the existence of paths that end with a register
value in a certain residue class modulom by simulatingR on residue classes
modulo m without explicitly constructing those paths.

By gluing (ii) and (iii) together, we can then show that the PSPACE upper bound

for reachability in PRMs follows. In the following, set b
def
= d(a+2). Observation

(i) above is a consequence of the following lemma.
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Lemma 3. Let p(x) ∈ P (R) be non-counter-like. Then p(x) is monotonically
increasing or decreasing in Z \ [−b, b], and |p(z)| ≥ 2|z| for all z ∈ Z \ [−b, b].
The proof of the lemma is a straight-forward application of the inequality (1) in
Section 2.1. It allows us to conclude that non-counter-like polynomials behave
monotonically outside [−b, b].

Before we start with formally discussing Observations (ii) and (iii), we need
to introduce some auxiliary technical notation. A q(z)-q′(z′) path π in T (R)
of length n is a finite sequence of configurations π : q1(z1)q2(z2) · · · qn+1(zn+1)
such that q(z) = q1(z1), q

′(z′) = qn+1(zn+1) and qi(zi) →R qi+1(zi+1) for all
1 ≤ i ≤ n. We write π : q(z)→∗R q′(z′) if π is a q(z)-q′(z′) path and denote the
length of π by |π|. Let I ⊆ Z, we say that π stays in I if zi ∈ I for all 1 ≤ i ≤ n.

A path is counter-like if for all qi
p(x)−−→ qi+1, p(x) is counter-like.

Now turning towards Observation (ii), the 1-VASS C def
= (QC , ΔC , λC) discussed

above is obtained from the counter-like transitions of R as follows, where ΔC
def
=

Δ1 ∪Δ2:

QC
def
= {q∼ : q ∈ Q,∼ ∈ {+,−}};

Δ1
def
= {(q∼1 , q∼2 ) : q1, q2 ∈ Q, q1

p(x)=x+a0−−−−−−→ q2 ∈ Δ};
Δ2

def
= {(q∼1

1 , q∼2
2 ) : q1, q2 ∈ Q, q1

p(x)=−x+a0−−−−−−−→ q2 ∈ Δ,∼1 �= ∼2}
λC

def
= (q∼1

1 , q∼2
2 ) �→ x+∼2a0 if q1

a1x+a0−−−−→ q2 ∈ Δ.

The idea behind this construction is as follows. The counter of C stores the
absolute value of the register x of R. The control locations of C are control
locations from R with an indicator of the sign of the register x, e.g. q− indicates
that the control location is q and the value of the register x is negative. The
transitions in Δ1 and Δ2 are defined such that they obey a flip of the sign. The
following lemma, which can easily be shown by induction, enables us to relate
paths in T (R) and T (C).
Lemma 4. Let q1(z1), q2(z2) ∈ C(R) and let z = min{|z1|, |z2|} such that z > a.
There exists a counter-like path π : q1(z1)→∗R q2(z2) staying in Z\(−z, z) if, and
only if, there exists a path π′ : q∼1

1 (|z1| − z)→∗C q∼2
2 (|z2| − z) for ∼i = sgn(zi).

The benefit we get from extracting a 1-VASS from the counter-like transitions
of R is that we can employ known periodicity properties for counter automata.
The following proposition is a consequence of Lemma 5.1.9, pp. 139 in [11]. It
allows us to conclude that reachability in 1-VASS is ultimately periodic with a
small period of polynomial size.

Proposition 5 ([10,11]). Let C = (QC , ΔC , λC) be a 1-VASS with maximum
absolute increment a. There exists a fixed polynomial p and a period m ≤
(|QC |a)|QC| such that for any q, q′ ∈ QC and n′ ∈ N there exists a set of residue
classes R ⊆ {0, . . . ,m− 1} such that for all n > 2p(|C|) + n′,

q(n)→∗C q′(n′) if, and only if, n ≡ r mod m for some r ∈ R.
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Fig. 3. Illustration of making a path non-dropping

For the remainder of this section, fix m to be the period from Proposition 5. We
will now elaborate on Observation (iii) and turn towards normalising paths of R
in T (R) whose register values stay in Z \ [−b, b]. To this end, we define a partial
order 
m ⊆ Z× Z such that

z1 
m z2 if sgn(z1) = sgn(z2), |z1| ≤ |z2| and z1 ≡ z2 mod m.

Informally speaking, we show that if the register values encountered along a
path fluctuate too much then we can decrease the magnitude of fluctuation

while staying invariant w.r.t. 
m. Formally, set f
def
= (2|Q|m)2 + (2|Q|m) and

let π : q(z)→∗R q′(z′) be a path. We say that π is dropping if there are 1 ≤ i <
j < |π| such that π(i) = qi(zi), π(j) = qj(zj) and |zi| − |zj| > f . Observe that
for any non-dropping path π : q(z)→ q′(z′), we have |z′| ≥ |z| − f .

Lemma 6. Let π : q(z)→∗R q′(z′) be a path staying in Z\[−b, b]. If π is dropping
then there is a path π′ staying in Z\ [b, b] such that π′ : q(z)→∗R q′(z′′) for some
z′′ ∈ Z, z′ 
m z′′ and |π′| < |π|.
Figure 3 illustrates the main idea. There, the illustrated path on top is dropping
between register values z1 and z2. A counting argument shows that we can then
find some z′2 in the interval [z1 − f, z1] such that z2 
m z′2, which allows us
to chop the path. We can then mimic the remainder of the path and end with
some register value z′3 such that z3
mz′3, illustrated at the bottom of Figure 3.
A repeated application of the lemma allows us to make any path non-dropping,
and it is not difficult to see that witnessing the existence of a non-dropping path
reaching a certain residue class modulo m can be done in space polynomial in
|R|. This brings us to the main theorem of this paper.

Theorem 7. Reachability in PRMs is PSPACE-complete.

Proof (sketch). The main idea is that we can simulate R as long as its register
values stay inside [−B,B] for some sufficiently large B ∈ N of polynomial bit-size
in |R|. Here, it is important that checking whether an application of an update
polynomial p(x) to the current register value z ∈ Z leaves the interval [−B,B]
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Table 1. Complexity landscape of reachability in d-PRMs

counter polynomials arbitrary polynomials

finite upward closed Z
d finite upward closed Z

d

d = 1 PSPACE-c.[7] NP-complete [12] PSPACE-complete

d > 1 PSPACE-c.[13] EXPSPACE-h.,dec.[16,17] NP-c. PSPACE-c. undec. [19]

can be decided in polynomial time, and that p(z) can be computed in polynomial
time if p(z) ∈ [−B,B] [5]. If the interval [−B,B] were to be left, we compute
p(z) mod m, guess a residue class r modulo m, and then check using Lemma 6 in
polynomial space for the existence of a non-dropping path starting with register
value p(z) mod m reaching some register value in the residue class r. Moreover,
we can use C together with Proposition 5 to check in polynomial space that from
the residue class r there is a counter-like path back into [−B,B]. ��
The proof of PSPACE-completeness can straight-forwardly be adapted to the
case where the global invariant φ(x) imposes an upward-closed domain on the
register x. The main difference is that C constructed above must not allow for
flipping of signs, and when simulating R on the residue classes modulo m in the
proof of Theorem 7 no transitions can be taken that result in a flip of the sign
of the register.

Remark 8. A possible generalisation of PRMs could be to allow the global in-
variant to be a Presburger formula open in one variable x. Since the sets defined
by such formulas are ultimately periodic below and above zero, it is not difficult
to adapt the techniques used for showing the PSPACE upper bound in order to
show that reachability is decidable. However, unsurprisingly the complexity of
reachability may potentially increase by several exponents.

4 Concluding Remarks

This paper introduced polynomial register machines, a class of infinite-state
systems comprising a finite number of integer-valued registers, whose domain
is constrained by a linear constraint, with a finite-state controller which can
update the registers along transitions by an application of a polynomial function.
Our main result is that reachability with one register is PSPACE-complete. For
higher dimensions, as discussed in the introduction, reachability becomes quickly
undecidable, in particular already in the presence of two integer-valued registers
and affine polynomials with integer coefficients [19].

A detailed complexity landscape classifying the complexity of reachability
according to the number of registers, the type of update polynomials and the
domain constraint is given in Table 1 together with bibliographic references. The
results of this paper are emphasised by grey background colour.
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