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Abstract. We present O(n)-space data structures to support various
range frequency queries on a given array A[0 : n − 1] or tree T with n
nodes. Given a query consisting of an arbitrary pair of pre-order rank in-
dices (i, j), our data structures return a least frequent element, mode, or
α-minority of the multiset of elements in the unique path with endpoints
at indices i and j in A or T . We describe a data structure that sup-
ports range least frequent element queries on arrays in O(

√
n/w) time,

improving the Θ(
√
n) worst-case time required by the data structure of

Chan et al. (SWAT 2012), where w ∈ Ω(log n) is the word size in bits.
We describe a data structure that supports range mode queries on trees
in O(log log n

√
n/w) time, improving the Θ(

√
n log n) worst-case time

required by the data structure of Krizanc et al. (ISAAC 2003). Finally,
we describe a data structure that supports range α-minority queries on
trees in O(α−1 log log n) time, where α ∈ [0, 1] is specified at query time.

1 Introduction

The frequency, denoted freqA[i:j](x), of an element x in a multiset stored as an
array A[i : j] is the number of occurrences of x in A[i : j]. Elements a and b in
A[i : j] are respectively a mode and a least frequent element of A[i : j] if for all
c ∈ A[i : j], freqA[i:j](a) ≥ freqA[i:j](c) ≥ freqA[i:j](b). Finally, given α ∈ [0, 1],
an α-minority of A[i : j] is an element d ∈ A[i : j] such that 1 ≤ freqA[i:j](d) ≤
α|j− i+1|. Conversely, d is an α-majority of A[i : j] if freqA[i:j](d) > α|j− i+1|.

We study the problem of indexing a given array A[0 : n− 1] to construct data
structures that can be stored using O(n) words of space and support efficient
range frequency queries. Each query consists of a pair of input indices (i, j) (along
with a value α ∈ [0, 1] for α-minority queries), for which a mode, least frequent
element, or α-minority of A[i : j] must be returned. Range queries generalize to
trees, where they are called path queries: given a tree T and a pair of indices
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(i, j), a query is applied to the multiset of elements stored at nodes along the
unique path in T whose endpoints are the two nodes with pre-order traversal
ranks i and j.

Krizanc et al. [12] presented O(n)-space data structures that support range
mode queries in O(

√
n log logn) time on arrays and O(

√
n logn) time on trees.

Chan et al. [3,4] achieved o(
√
n) query time with an O(n)-space data structure

that supports queries in O(
√

n/w) ⊆ O(
√

n/ logn) time on arrays, where w ∈
Ω(log n) is the word size in bits.

For range least frequent elements, Chan et al. [5] presented an O(n)-space
data structure that supports queries in O(

√
n) time on arrays. Range mode and

range least frequent queries on arrays appear to require significantly longer times
than either range minimum or range selection queries; respective reductions from
boolean matrix multiplication show that query times significantly lower than

√
n

are unlikely for either problem with linear space [3,5]. Whereas an O(n)-space
data structure that supports range mode queries on arrays in o(

√
n) time is

known [3], the space reduction techniques applied to achieve the time improve-
ment are not directly applicable to the setting of least frequent elements. Chan
et al. [5] ask whether o(

√
n) query time is possible in an O(n)-space linear data

structure, observing that “unlike the frequency of the mode, the frequency of
the least frequent element does not vary monotonically over a sequence of ele-
ments. Furthermore, unlike the mode, when the least frequent element changes
[in a sequence], the new element of minimum frequency is not necessarily lo-
cated in the block in which the change occurs” [5, p. 11]. By applying different
techniques, this paper presents the first O(n)-space data structure that supports
range least frequent element queries on arrays in o(

√
n) time; specifically, we

achieve O(
√

n/w) ⊆ O(
√

n/ logn) query time.
Finally, the range α-majority query problem was introduced by Durocher et

al. [7,8], who presented an O(n log(α−1))-space data structure that supports
queries in O(α−1) time for any α ∈ (0, 1) fixed during preprocessing. When
α is specified at query time, Gagie et al. [9] and Chan et al. [5] presented
O(n log n)-space data structures that support queries in O(α−1) time, and Belaz-
zougui et al. [2] presented an O(n)-space data structure that supports queries in
O(α−1 log log(α−1)) time. For range α-minority queries, Chan et al. [5] described
an O(n)-space data structure that supports queries in O(α−1) time, where α is
specified at query time.

After revisiting some necessary previous work in Section 2, in Section 3 we de-
scribe the firstO(n)-space data structure that achieves o(

√
n) time for range least

frequent queries on arrays, supporting queries in O(
√

n/w) time. We then extend
this data structure to the setting of trees. In Section 4 we present an O(n)-space
data structure that supports path mode queries on trees in O(log logn

√
n/w)

time. To do so, we construct O(n)-space data structures that support colored
nearest ancestor queries on trees in O(log logn) time (find the nearest ancestor
with value k of node i, where i and k are given at query time); path frequency
queries on trees in O(log logn) time (count the number of instances of k on the
path between nodes i and j, where i, j, and k are given at query time); and
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Table 1. worst-case query times of previous best and new O(n)-space data structures

range query input previous best new (this paper)

least frequent element
array O(

√
n) [5] O(

√
n/w)

tree no previous result O(log log n
√

n/w)

mode
array O(

√
n/w) [3,4]

tree O(
√
n log n) [11,12] O(log log n

√
n/w)

α-minority
array O(α−1) [5]
tree no previous result O(α−1 log log n)

k-nearest distinct ancestor queries on trees in O(k) time (return k ancestors of
node i such that each ancestor stores a distinct value and the distance to the
furthest ancestor from i is minimized, where i and k are given at query time).
Finally, in Section 5 we present an O(n)-space data structure that supports path
α-minority query on trees in O(α−1 log logn) time, where α is given at query
time. Our contributions are summarized in Table 1.

We assume the Word RAM model of computation using words of size w ∈
Ω(log n) bits, where n denotes the number of elements stored in the input ar-
ray/tree. Unless explicitly specified otherwise, space requirements are expressed

in multiples of words. We use the notation log(k) to represent logarithm iterated
k times; that is, log(1) n = logn and log(k) n = log log(k−1) n for any integer
k > 1. To avoid ambiguity, we use the notation (logn)2 instead of log2 n.

2 Chan et al.’s Framework for Range Least Frequent
Element Query on Arrays

Our data structure for range least frequent element queries on an arbitrary
given input array A[0 : n − 1] uses a technique introduced by Chan et al. [5].
Upon applying a rank space reduction to A, all elements in A are in the range
{0, . . . , Δ− 1}, where Δ denotes the number of distinct elements in the original
array A. Before returning the result of a range query computation, the corre-
sponding element in the rank-reduced array is mapped to its original value in
constant time by a table lookup [3,5]. Chan et al. [5] prove the following result.

Theorem 1 (Chan et al. [5]). Given any array A[0 : n − 1] and any fixed
s ∈ [1, n], there exists an O(n + s2)-word space data structure that supports
range least frequent element query on A in O(n/s) time and requires O(n · s)
preprocessing time.

The data structure of Chan et al. includes index data that occupy a linear number
of words, and two tables Dt and Et whose sizes (O(s2) words each) depend on
the parameter s. Let t be an integer blocking factor. Partition A[0 : n − 1]
into s = �n/t� blocks of size t (except possibly the last block which has size
1 + [(n− 1) mod t]). For every pair (i, j), where 0 ≤ i < j ≤ s− 1, the contents
of the tables Dt and Et are as follows:
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– Dt(i, j) stores a least frequent element in A[i · t : j · t− 1], and
– Et(i, j) stores an element which is least frequent in the multiset of elements

that are in A[i · t : j · t−1] but not in A[i · t : (i+1)t−1]∪A[(j−1)t : j · t−1].

In the data structure of Chan et al. [5], the tables Dt and Et are the only
components whose space bound depends on s. The cost of storing and accessing
the tables can be computed separately from the costs incurred by the rest of
the data structure. The proof for Theorem 1 given by Chan et al. implies the
following result.

Lemma 1 (Chan et al. [5]). If the tables Dt and Et can be stored using
S(t) bits of space to support lookup queries in T (t) time, then, for any {i, j} ⊆
{0, . . . , n−1}, a least frequent element in A[i : j] can be computed in O(T (t)+ t)
time using an O(S(t) + n logn)-bit data structure.

When t ∈ Θ(
√
n), the tablesDt and Et can be stored explicitly in linear space. In

that case, S(t) ∈ O((n/
√
n)2 logn) = O(n logn) bits and T (t) ∈ O(1), resulting

in an O(n logn)-bit (O(n)-word) space data structure that supports O(
√
n)-time

queries [5]. In the present work, we describe how to encode the tables using fewer
bits per entry, allowing them to contain more entries, and therefore allowing a
smaller value for t and lower query time.

We also refer to the following lemma by Chan et al. [3]:

Lemma 2 (Chan et al. [3]). Given an array A[0 : n − 1], there exists an
O(n)-space data structure that returns the index of the q-th instance of A[i] in
A[i : n− 1] in O(1) time for any 0 ≤ i ≤ n− 1 and any q.

3 Faster Range Least Frequent Element Query on Arrays

We first describe how to calculate the table entries for a smaller block size using
lookups on a similar pair of tables for a larger block size and some index data
that fits in linear space. Then, starting from the t =

√
n tables which we can

store explicitly, we apply that block-shrinking operation log∗ n times, ending
with blocks of size O(

√
n/w), which gives the desired lookup time.

At each level of the construction, we partition the array into three levels of
blocks whose sizes are t (big blocks), t′ (small blocks), and t′′ (micro blocks),
where 1 ≤ t′′ ≤ t′ ≤ t ≤ n. We will compute table entries for the small blocks,
Dt′ and Et′ , assuming access to table entries for the big blocks, Dt and Et.
The micro block size t′′ is a parameter of the construction but does not directly
determine which queries the data structure can answer. Lemma 3 follows from
Lemmas 4 and 5 (see Section 3.1). The bounds in Lemma 3 express only the cost
of computing small block table entries Dt′ and Et′ , not for answering a range
least frequent element query at the level of individual elements.

Lemma 3. Given block sizes 1 ≤ t′′ ≤ t′ ≤ t ≤ n, if the tables Dt and Et can
be stored using S(t) bits of space to support lookup queries in T (t) time, then
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Fig. 1. illustration in support of Lemma 3

the tables Dt′ and Et′ can be stored using S(t′) bits of space to support lookup
queries in T (t′) time, where

S(t′) = S(t) +O(n+ (n/t′)2 log(t/t′′)) , and (1)

T (t′) = T (t) +O(t′′) . (2)

Following Chan et al. [3,5], we call a consecutive sequence of blocks in A a span.
For any span SQ among the Θ((n/t′)2) possible spans of small blocks, we define
Sbig, Ssmall, SL, and SR, as follows (see Figure 1):

– Sbig: the unique minimal span of big blocks containing SQ,
– SL: the leftmost big block in Sbig,
– SR: the rightmost big block in Sbig, and
– Ssmall: the span of big blocks obtained by removing SL and SR from Sbig.
– SL is divided into S1 (outside SQ) and S2 (inside SQ).
– SR is divided into S3 (inside SQ) and S4 (outside SQ).

Let Sbig = A[i : j], hence Ssmall = A[i + t : j − t] and SQ = A[iQ : jQ]. In
Sections 3.1 and 3.2 we show how to encode the entries in Dt′(·, ·) and Et′(·, ·)
in O(log(t/t′′)) bits. In brief, we store an approximate index and approximate
frequency for each entry and decode the exact values at query time.

3.1 Encoding and Decoding of Dt′(·, ·)
We denote the least frequent element in SQ by π and its frequency in SQ by fπ.
We consider three cases based on the indices at which π occurs in Sbig as follows.
The case that applies to any particular span can be indicated by 2 bits, hence
O(2(n/t′)2) bits in total. We use the same notation for representing a span as
for the set of distinct elements within it.

Case 1: π is present in SL ∪ SR but not in Ssmall As explicit storage of π is
costly, we store the approximate index at which π occurs in SL ∪ SR, and the
approximate value of fπ, in O(log(t/t′′)) bits. Later we show how to decode π
and fπ in O(t′′) time using the stored values.

The approximate value of fπ can be encoded using the following observations.
We have |SL ∪ SR| ≤ 2t. Therefore fπ ∈ [1, 2t]. Explicitly storing fπ requires
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log(2t) bits. However, an approximate value of fπ (with an additive error at most
of t′′) can be encoded in fewer bits. Observe that t′′
fπ/t′′� ≤ fπ < t′′
fπ/t′′�+t′′.
Therefore the value 
fπ/t′′� ∈ [0, 2t/t′′) can be stored using O(log(t/t′′)) bits and
accessed in O(1) time. The approximate location of π is a reference to a micro
block within SL ∪ SR (among 2t/t′′ micro blocks) which contains π and whose
index can be encoded in O(log(t/t′′)) bits. There can be many such micro blocks,
but we choose one carefully from among the following possibilities:

– the rightmost micro block in S1 which contains π,
– the leftmost micro block in S2 which contains π,
– the rightmost micro block in S3 which contains π, and
– the leftmost micro block in S4 which contains π.

Next we show how to decode the exact values of π and fπ. Consider the case when
the micro block (say Bm) containing π is in S1. First initialize π

′ to any arbitrary
element and f ′

π to τ (an approximate value of fπ), such that τ − t′′ ≤ fπ < τ .
Upon terminating the following algorithm, we obtain the exact values of π and
fπ as π′ and f ′

π respectively. Scan the elements in Bm from left to right and let
k denote the current index. While k is an index in Bm, do:

1. If the second occurrence of A[k] in A[k : n − 1] is in S1, then go to Step 1
with k ← k + 1.

2. If the (f ′
π + 1)st occurrence of A[k] in A[k : n− 1] is in SQ, then go to Step

1 with k ← k + 1.
3. Set f ′

π ← f ′
π − 1, π′ ← A[k], and go Step 2.

This algorithm finds the rightmost occurrence of π within Bm, i.e., the rightmost
occurrence of π before the index iQ. Correctness can be proved via induction as
follows: after initializing π′ and f ′

π, at each step we check whether the element
A[k] is a least frequent element in SQ among all the elements in Bm which we
have seen so far. Step 1 discards the position k if the rightmost occurrence of A[k]
inBm is not at k, because we will see the same element eventually. Note that if the
rightmost occurrence of A[k] in Bm is at the position k, then the frequency of the
element A[k] in SQ = A[iQ : jQ] is exactly one less than its frequency in A[k : jQ].
Using this property, we can check in O(1) time whether the frequency of A[k] in
SQ is less than f ′

π (Step 2). If so, we update the current best answer π′ byA[k] and
compute the exact frequency of A[k] in SQ in Step 3. We scan all elements in Bm

and on completion the value stored at π′ represents the least frequent element in
SQ among all elements present in Bm. Since π is present in Bm, π is the same as
π′, and fπ = f ′

π. By Lemma 2, each step takes constant time. Since τ − fπ ≤ t′′,
the total time is proportional to |Bm| = t′′, i.e., O(t′′) time.

The remaining three cases, in which Bm is within S2, S3, and S4, respectively,
can be analyzed similarly.

Case 2: π is present in SL ∪ SR and in Ssmall The approximate position of π is
encoded as in Case 1. In this case, however, fπ can be much larger than 2t. Observe
that α ≤ fπ ≤ α + 2t, where α is the frequency of the least frequent element in
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Ssmall, which is already stored and can be retrieved in T (t) time. Therefore, an
approximate value fπ−α (with an additive error of at most t′′) can be stored using
O(log(t/t′′)) bits and decoded in T (t) + O(1) time. The approximate location of
π among the four possibilities as described in Case 1 is also maintained. By the
algorithm above we can decode π and fπ in T (t) +O(t′′) time.

Case 3: π is present in Ssmall but in neither SL nor SR Since π is the least frequent
element in SQ, and does not appear in SL ∪ SR, it is the least frequent element
in Ssmall that does not appear in SL ∪ SR. This implies π is the least frequent
element in Sbig that does not appear in SL∪SR (which is precomputed as stored).
Therefore the time required for decoding the values of π and fπ is T (t) +O(1).]

Lemma 4. The table Dt′(·, ·) can be stored using O((n/t′)2 log(t/t′′)) bits in ad-
dition to S(t) and any value within it can be decoded in T (t) +O(t′′) time.

3.2 Encoding and Decoding of Et′(·, ·)
Let φ denote the least frequent element in SQ that does not appear in the leftmost
and rightmost small blocks in SQ and let fφ denote its frequency in SQ. As before,
we consider three cases for the indices at which φ occurs in Sbig. The case that
applies to any particular span can be indicated by 2 bits, hence O((n/t′)2 × 2)
bits in total for any single given value of t′.

For each small block (of size t′) we maintain a hash table that can answer
whether a given element is present within the small block in O(1) time. We can
maintain each hash table in O(t′) bits for an overall space requirement of O(n)
bits for any single given value of t′, using perfect hash techniques such as those of
Schmidt and Siegel [14], Hagerup and Tholey [10], or Belazzougui et al. [1].

Case 1: φ is present in SL ∪ SR but not in Ssmall In this case, fφ ∈ [1, 2t], and its
approximate value and approximate position (i.e., the relative position of a small
block) can be encoded in O(log(t/t′′)) bits. Encoding is the same as the encoding
of π in Case 1 of Dt′(·, ·). For decoding we modify the algorithm for Dt′(·, ·) to
use the hash table for checking that A[k] is not present in the first and last small
blocks of SQ. The decoding time can be bounded by O(t′′).

Case 2: φ is present in SL ∪ SR and in Ssmall The approximate position of φ
is stored as in Case 1. The encoding of fφ is more challenging. Let α denote the
frequency of the least frequent element in Ssmall, which is already stored and can
be retrieved in T (t) time. If fφ > α+2t, the element φ cannot be the least frequent
element of any span S, where S contains Ssmall and is within Sbig. In other words,
φ is useful if and only if fφ ≤ α + 2t. Moreover, fφ ≥ α. Therefore we store the
approximate value of fφ if and only if it is useful information, and in such cases
we can do it using only O(log(t/t′′)) bits. Using similar arguments to those used
before, the decoding time can be bounded by T (t) +O(t′′).

Case 3: φ is present in Ssmall but in neither SL nor SR Since φ is the least frequent
element in SQ that does not appear in the leftmost and rightmost small blocks in
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SQ, and does not appear in SL ∪ SR, it is the least frequent element in SQ that
does not appear in SL∪SR. Therefore, π it is the least frequent element in Ssmall

(as well as Sbig) that does not appear in SL∪SR (which is precomputed as stored).
Hence φ and fφ can be retrieved in T (t) +O(1) time.

Lemma 5. The table Et′(·, ·) can be encoded in O(n + (n/t′)2 log(t/t′′)) bits in
addition to S(t) and any value within it can be decoded in T (t) +O(t′′) time.

By applying Lemma 3 with carefully chosen block sizes, followed by Lemma 1 for
the final query on a range of individual elements, we show the following result.

Theorem 2. Given any array A[0 : n− 1], there exists an O(n)-word space data
structure that supports range least frequent element queries on A in O(

√
n/w)

time, where w = Ω(log n) is the word size.

Proof. Let th = log(h) n
√
n/w and t′′h =

√
n/w/ log(h+1) n, where h ≥ 1. Then

by applying Lemma 3 with t = th, t
′ = th+1, and t′′ = t′′h, we obtain the following:

S(th+1) = S(th) +O
(
n+ (n/th+1)

2 log(th/t
′′
h)
) ∈ S(th) +O(nw/ log(h+1)n)

T (th+1) = T (th) +O(t′′h) ∈ T (th)+O(
√
n/w/ log(h+1)n) .

By storing Dt1 and Et1 explicitly, we have S(t1) ∈ O(n) bits and T (t1) ∈ O(1).
Applying Lemma 1 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√
n/w) ∈ O

⎛

⎝nw

log∗ n∑

h=1

1

log(h) n

⎞

⎠ = O(nw)

T (
√
n/w) ∈ O

⎛

⎝
√
n/w

log∗ n∑

h=1

1

log(h) n

⎞

⎠ = O(
√

n/w) . �

4 Path Frequency Queries on Trees

In this section, we generalize the range frequency query data structures to apply
to trees (path mode query). The linear time bound of Chan et al. [5] for range
mode queries on arrays depends on the ability to answer a query of the form “is
the frequency of element x in the range A[i : j] greater than k?” in constant time.
There is no obvious way to generalize the data structure for such queries on arrays
to apply to trees. Instead, we use the following lemma for an exact calculation of
path frequency (not just whether it is greater than k). The proof is omitted due
to space constraints.

Lemma 6. Given any tree T of n nodes, there exists an O(n)-word data struc-
ture that can compute the number of occurrences of x on the path from i to j in
O(log logn) time for any nodes i and j in T and any element x.
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The following lemma describes a scheme for selecting some nodes in T as marked
nodes, which split the tree into blocks over which we can apply the same kinds of
block-based techniques that were effective in the array versions of the problems.
The proof is omitted due to space constraints.

Lemma 7. Given a tree T with n nodes and an integer t < n which we call the
blocking factor, we can choose a subset of the nodes, called the marked nodes, such
that:

– at most O(n/t) nodes are marked;
– the lowest common ancestor of any two marked nodes is marked; and
– the path between any two nodes contains ≤ t consecutive unmarked nodes.

4.1 A Simple Data Structure for Path Mode Query

A simple path mode data structure follows naturally: we store the answers ex-
plicitly for all pairs of marked nodes, then use the data structure of Lemma 6 to
compute exact frequencies for a short list of candidate modes. We let the blocking
factor be a parameter, to support later use of this as part of a more efficient data
structure.

Lemma 8. For any blocking factor t, if we can answer path mode queries between
marked nodes in time T (t) with a data structure of S(t) bits, then we can answer
path mode queries between any nodes in time T (t)+O(t log logn) with a data struc-
ture of S(t) +O(n log n) bits.

Proof. As in the array case considered by Chan et al. [5], we can split the query
path into a prefix of size O(t), a span with both endpoints marked, and a suffix
of size O(t) using Lemma 7. The mode of the query must either be the mode of
the span, or it must occur within the prefix or the suffix. We find the mode of the
span in T (t) time by assumption, and compute its frequency in O(log logn) time
using the data structure of Lemma 6. Then we also compute the frequencies of
all elements in the prefix and suffix, for a further time cost of O(t log logn). The
result follows. �
Setting t =

√
n and using a simple lookup table for the marked-node queries gives

O(
√
n log logn) query time with O(n) words of space.

4.2 A Faster Data Structure for Path Mode Query

To improve the time bound by an additional factor of
√
w, we derive the following

lemma and apply it recursively.

Lemma 9. For any blocking factor t, given a data structure that can answer path
mode queries between marked nodes in time T (t) with a space requirement of S(t)
bits, there exists a data structure answering path mode queries between marked
nodes for blocking factor t′ in time T (t′) = T (t) + O(t′′ log logn) with a space
requirement S(t′) = S(t) +O(n+ (n/t′)2 log(t/t′′)) bits, where t > t′ > t′′.
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Proof. (Sketch) Assume the nodes in T are marked based on a blocking factor t
using Lemma 7, and the mode between any two marked nodes can be retrieved in
T (t) time using an S(t)-bit structure. Now we are interested in encoding the mode
corresponding to the path between any two nodes i′ and j′, which are marked
based on a smaller blocking factor t′. Note that there are O((n/t′)2) such pairs.
The tree structure along with this new marking information can be maintained in
O(n) bits using succinct data structures [13]. Where i and j are the first and last
nodes in the path from i′ to j′, marked using t as the blocking factor, the path
between i′ and j′ can be partitioned as follows: the path from i′ to i, which we call
the path prefix ; the path from i to j; and the path from j to j′, which we call the
path suffix. The mode in the path from i′ to j′ must be either (i) the mode of i to
j path or (ii) an element in the path prefix or path suffix.

In case (i), the answer is already storedusingS(t) bits andcanbe retrieved inT (t)
time. Case (ii) is more time-consuming. Note that the number of nodes in the path
prefix and path suffix isO(t). In case (ii) our answermust be stored in a node in the
path prefix which is k < t nodes away from i′, or in a node in the path suffix which
is k < t nodes away from j′. Hence an approximate value of k (call it k′, with k <
k′ ≤ k+ t′′) can be maintained inO(log(t/t′′)) bits. In order to obtain a candidate
list, we first retrieve the node corresponding to k′ using a constant number of level
ancestor queries (each taking O(1) time [13]) and its O(t′′) neighboring nodes in
the i′ to j′ path. The final answer can be computed by evaluating the frequencies
of these O(t′′) candidates using Lemma 6 in O(t′′ log logn) overall time. �
The following theorem is our main result on path mode query.

Theorem 3. There exists a linear-space (in words; that is, O(n log n) bits) data
structure that answers path mode queries on trees in O(log logn

√
n/w) time.

Proof. Let th = log(h) n
√
n/w and t′′h =

√
n/w/ log(h+1) n, where h ≥ 1. Then

by applying Lemma 9 with t = th, t
′ = th+1, and t′′ = t′′h, we obtain the following:

S(th+1) = S(th) +O
(
n+ (n/th+1)

2 log(th/t
′′
h)
) ∈ S(th) +O(nw/ log(h+1) n)

T (th+1) = T (th) +O(t′′h log logn) ∈ T (th) +O(log logn
√
n/w/ log(h+1) n) .

By storing Dt1 and Et1 explicitly, we have S(t1) ∈ O(n) bits and T (t1) ∈ O(1).
Applying Lemma 8 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√
n/w) ∈ O

⎛

⎝nw

log∗ n∑

h=1

1

log(h) n

⎞

⎠ = O(nw)

T (
√
n/w) ∈ O

⎛

⎝log logn
√
n/w

log∗ n∑

h=1

1

log(h) n

⎞

⎠ = O(log logn
√
n/w) .

�

Similar techniques lead to a data structure for tree path least frequent element
queries; we defer the proof to the full version due to space constraints.

Theorem 4. There exists a linear-space data structure that answers path least fre-
quent element queries on trees in O(log logn

√
n/w) time.
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5 Path α-Minority Query on Trees

An α-minority in a multiset A, for some α ∈ [0, 1], is an element that occurs at
least once and as nomore than α proportion ofA. If there are n elements inA, then
the number of occurrences of the α-minority in A can be at most αn. Elements in
A that are not α-minorities are calledα-majorities. Chan et al. studied α-minority
range queries in arrays [5]; here, we generalize the problem to path queries on trees.
In general, an α-minority is not necessarily unique; given a query consisting of a
pair of tree node indices and a value α ∈ [0, 1] (specified at query time), our data
structure returns one α-minority, if at least one exists, regardless of the number of
distinct α-minorities. As in the previous section, we can compute path frequencies
inO(log log n) time (Lemma 6); then a data structure similar to the one for arrays
gives us distinct elements within a path in constant time per distinct element.
Combining the two gives a bound of O(α−1 log logn) time for α-minority queries.

As discussed by Chan et al. for the case of arrays [5], examining α−1 distinct
elements in a query range allows us to guarantee either that we have examined an
α-minority, or that noα-minority exists. So we construct a data structure based on
the hive graph of Chazelle [6] for the k-nearest distinct ancestor problem: given
a node i, find a sequence a1, a2, . . . of ancestors of i such that a1 = i, a2 is the
nearest ancestor of i distinct from a1, a3 is the nearest ancestor of i distinct from
a1 and a2, and so on. Queries on the data structure return the distinct ancestors
in order and in constant time each. The proof is omitted due to space constraints.

Lemma 10. There exists a linear-space data structure that answers k-nearest dis-
tinct ancestor queries on trees in O(k) time, returning them in nearest-to-furthest
order in O(1) time each, so that k can be chosen interactively.

Lemmas 6 and 10 give the following theorem.

Theorem 5. There exists a linear-space data structure that answers path
α-minority queries on trees in O(α−1 log logn) time (where α and the path’s end-
points are specified at query time).

Proof. We construct the data structures of Lemma 6 and Lemma 10, both of which
use linear space. To answer a path α-minority query between two nodes i and j,
we find the α−1 nearest distinct ancestors (or as many as exist, if that is fewer)
above each of i and j. That takes α−1 time. If an α-minority exists between i and
j, then one of these candidates must be an α-minority. We can test each one in
O(log logn) using the path frequency data structure, and the result follows. �

6 Discussion and Directions for Future Research

Our data structures for path queries refer to Lemma 6. Consequently, each has
query time O(log logn) times greater than the corresponding time on arrays. For
arrays, Chan et al. [3] use O(1)-time range frequency queries for the case in which
the element whose frequency is being measured is at an endpoint of query range.
Generalizing this technique to path queries on trees should allow each data struc-
ture’s query time to be decreased accordingly.
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