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Abstract. We consider a variant of the generalized assignment problem
(GAP) where the items have unit size and the amount of space used
in each bin is restricted to be either zero (if the bin is not opened)
or above a given lower bound (a minimum quantity). This problem is
known to be strongly NP-complete and does not admit a polynomial
time approximation scheme (PTAS).

By using randomized rounding, we obtain a randomized 3.93-approxi-
mation algorithm, thereby providing the first nontrivial approximation
result for this problem.
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1 Introduction

The generalized assignment problem (GAP) is a classical generalization of both
the (multiple) knapsack problem and the bin packing problem. In the classical
version of GAP (cf., for example, [1, 2]), one is given m bins, a capacity Bj for
each bin j, and n items such that each item i has size si,j and yields profit pi,j
when packed into bin j. The goal is to find a feasible packing of the items
into the bins that maximizes the total profit. The problem has many practical
applications, for which we refer to [2] and the references therein.

Recently, Krumke and Thielen [3] introduced the generalized assignment prob-
lem with minimum quantities (GAP-MQ), which is a variation of the generalized
assignment problem where the amount of space used in each bin is restricted to
be either zero (if the bin is not opened) or above a given lower bound (a min-
imum quantity). This additional restriction is motivated from many practical
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packing problems where it does often not make sense to open an additional con-
tainer (bin) if not at least a certain amount of space in it will be used. While
it is not hard to see that it is NP-hard to compute any feasible solution with
positive profit for the general version of GAP-MQ (and, hence, no polynomial
time approximation algorithm exists for the problem unless P = NP), comput-
ing nontrivial feasible solutions is easy when all items have unit size. Due to
its application in assigning students (unit size items) to seminars (bins) at a
university such that the total satisfaction (profit) of the students is maximized,
this special case of GAP-MQ where all items have unit size was termed seminar
assignment problem (SAP) in [3] and is formally defined as follows:

Definition 1 (Seminar Assignment Problem (SAP))
INSTANCE: The number n of items, m bins with capacities B1, . . . , Bm ∈ N

and minimum quantities q1, . . . , qm ∈ N (where qj ≤ Bj ≤ n for
all j = 1, . . . ,m), and a profit pi,j ∈ N resulting from assigning
item i to bin j for i = 1, . . . , n and j = 1, . . . ,m.

TASK: Find an assignment of a subset of the items to the bins such that the
number of items in each bin j is either zero (if bin j is not opened)
or at least qj and at most Bj and the total profit is maximized.

Note that, in the above definition and throughout the paper, we always assume
N to contain zero and denote the positive integers by N+.

Even though computing nontrivial feasible solutions for SAP is easy, a gap-
preserving reduction from the 3-bounded 3-dimensional matching problem (3DM-
3) given in [3] shows the existence of a constant ε0 > 0 such that it is strongly
NP-hard to approximate SAP within a factor smaller than (1 + ε0) even if all
profits pi,j are in {0, 1} and the minimum quantities and bin capacities of all
bins are fixed to three. In particular, the problem does not admit a polynomial
time approximation scheme (PTAS). Apart from these negative results, however,
the approximability of SAP (and, in particular, the existence of a constant fac-
tor approximation) remained open. As most standard techniques for designing
deterministic approximation algorithms fail for this problem due to the mini-
mum quantity restrictions (cf. [3]), it natural to consider randomization and to
ask whether a constant approximation ratio can be obtained by a randomized
algorithm.

In this paper, we answer this question by presenting a randomized 3.93-
approximation algorithm for SAP, which is the first nontrivial approximation
result for this problem. Our randomized rounding algorithm uses a packing-based
integer programming formulation, for which we show that the linear relaxation
can be solved in polynomial time by using column generation. In particular, by
using the probabilistic method (cf., for example, [4]), our result implies that the
integrality gap of this formulation is no larger than 3.93.

1.1 Previous Work

The classical GAP is well-studied in literature. A comprehensive introduction to
the problem can be found in [1]. A survey of algorithms for GAP is given in [2].
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For a survey on different variants of assignment problems studied in literature,
we refer to [5].

GAP is known to be APX-hard [6], but there exists a 2-approximation algo-
rithm [7, 6]. Cohen et al. [8] showed how any polynomial time α-approximation
algorithm for the knapsack problem can be translated into a polynomial time
(1+α)-approximation algorithm for GAP. A (1, 2)-approximation algorithm for
the equivalent minimization version of GAP, in which assigning item i to bin j
causes a cost ci,j , was provided by Shmoys and Tardos [7]: For every feasible
instance of GAP, their algorithm computes a solution that violates the bin ca-
pacities by at most a factor of 2 and whose cost is at most as large as the cost
of the best solution that satisfies the bin capacities strictly.

GAP is a generalization of both the (multiple) knapsack problem (cf. [1, 6, 9])
and the bin packing problem (cf. [10–12]). The multiple knapsack problem is the
special case of GAP where the size and profit of an item are independent of
the bin (knapsack) it is packed into. The bin packing problem can be seen as
the special case of the decision version of GAP in which all bins have the same
capacity and all profits are one. The question of deciding whether a packing
of total profit equal to the number of items exists is then equivalent to asking
whether all items can be packed into the given number of bins.

A dual version of bin packing (often called bin covering) in which minimum
quantities are involved was introduced in [13, 14]. Here, the problem is to pack
a given set of items with sizes that do not depend on the bins so as to maximize
the number of bins used, subject to the constraint that each bin contains items
of total size at least a given threshold T (upper bin capacities are not considered
due to the nature of the objective function). Hence, the bin covering problem
can be seen as a variant of GAP-MQ in which the minimum quantity is the
same for each bin and the objective is to maximize the number of bins used.
Since any approximation algorithm with approximation ratio strictly smaller
than 2 would have to solve the NP-complete partition problem when applied to
instances in which the sizes of the items sum up to two, it follows that (unless
P = NP) no polynomial time (2 − ε)-approximation for bin covering exists for
any ε > 0. In contrast, the main result of Assmann et al. [14] is an O(n log2 n)
time algorithm that yields an asymptotic approximation ratio of 4/3 for bin
covering, while easier algorithms based on next fit and first fit decreasing are
shown to yield asymptotic approximation ratios of 2 and 3/2, respectively. Later,
an asymptotic PTAS [15] and an asymptotic FPTAS [16] for bin covering were
developed.

Minimum quantities have recently been studied for minimum cost network
flow problems [17–19]. In this setting, minimum quantities for the flow on each
arc are considered, which results in the minimum cost flow problem becoming
strongly NP-complete [18]. Moreover, it was shown in [18] that (unless P = NP)
no polynomial time g(|I|)-approximation for the problem exists for any poly-
nomially computable function g : N+ → N+, where |I| denotes the encoding
length of the given instance. The special case of the maximum flow problem
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with minimum quantities has recently been studied in [20], where it was shown
that the problem is strongly NP-hard to approximate in general, but admits a
(2 − 1

λ)-approximation in the case of an identical minimum quantity λ on all
arcs.

The generalized assignment problem with minimum quantities (GAP-MQ)
and the seminar assignment problem (SAP) were introduced in [3], where it
was shown that the general version of GAP-MQ does not admit any polynomial
time approximation algorithm unless P = NP. For SAP, it was shown by a
gap-preserving reduction from the 3-bounded 3-dimensional matching problem
(3DM-3) that there exists a constant ε0 > 0 such that it is strongly NP-hard
to approximate SAP within a factor smaller than (1 + ε0) even if all profits pi,j
are in {0, 1} and the minimum quantities and bin capacities of all bins are
fixed to three. In particular, the problem does not admit a polynomial time
approximation scheme (PTAS). Apart from these negative results, however, the
approximability of SAP (and, in particular, the existence of a constant factor
approximation) remained open.

2 Overview of the Algorithm

Before we present our randomized rounding algorithm for SAP in detail, we give
a brief overview of the different steps of our procedure and its analysis.

The algorithm is based on an integer programming formulation of SAP that
is introduced in Section 3. For each bin j, the integer program contains a binary
variable xt for every feasible packing of j (i.e., for every assignment of qj ≤ l ≤
Bj items to bin j), where xt = 1 means that packing t is selected for bin j. As we
show in Theorem 1, the linear relaxation of this integer program can be solved
in polynomial time by column generation even though it contains an exponential
number of variables xt.

After solving the linear relaxation of the integer program, our algorithm inde-
pendently selects a packing for each bin by using the value of variable xt in the
optimal solution (scaled by a suitably chosen factor α ∈ [0, 1]) as the probability
of using packing t for the corresponding bin j. The expected profit of the set
of packings obtained in this way is exactly α times the objective value of the
optimal solution of the linear relaxation used for the rounding, but the set of
packings will, in general, not correspond to a feasible integral solution as items
may be packed several times into different bins. Hence, in order to obtain a fea-
sible integral solution, we apply a clean-up procedure that works in two steps: In
the first step, we discard a subset of the bins opened in order to ensure that the
total number of places used in the bins is at most n. In the second step, we can
then replace all remaining multiply assigned items in the solution by unassigned
items in order to obtain a feasible integral solution. Overall, we show that, in
expectation, the profit decreases by at most a factor 3.93 during the clean-up
procedure, which yields the desired approximation guarantee.
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3 An Integer Programming Formulation

We start by introducing the IP-formulation on which our randomized rounding
algorithm is based.

Definition 2. A (feasible) packing of bin j is an incidence vector of a sub-
set of the items with cardinality at least qj and at most Bj, i.e., a vector t =
(t1, . . . , tn) ∈ {0, 1}n such that qj ≤ ∑n

i=1 ti ≤ Bj. The profit of t is pt :=∑n
i=1 pij · ti. The set of all feasible packings of bin j will be denoted by T (j) and

we write T :=
⋃̇m

j=1T (j).

Using this definition, we can formulate SAP as the following integer program:

max

m∑

j=1

∑

t∈T (j)

xtpt (1a)

s.t.
∑

t∈T (j)

xt ≤ 1 ∀ j ∈ {1, . . . ,m} (1b)

m∑

j=1

∑

t∈T (j)

xtti ≤ 1 ∀ i ∈ {1, . . . , n} (1c)

xt ∈ {0, 1} ∀ t ∈ T (1d)

Here, variable xt for t ∈ T (j) is one if and only if packing t is selected for bin j.
Constraint (1b) ensures that at most one packing is selected for each bin while
constraint (1c) ensures that each item is packed into at most one bin.

We now show that, even though the number of variables in IP (1) expo-
nential in the encoding length of the given instance of SAP, we can solve its
linear relaxation in polynomial time by using column generation. To this end,
it suffices to show that we can find a column (packing) of minimum reduced
cost in polynomial time, i.e., solve the pricing problem in polynomial time (cf.
[21, 22]). Denoting the dual variables corresponding to the constraints (1b) by
yj , j = 1, . . . ,m, and the dual variables corresponding to the constraints (1c) by
zi, i = 1, . . . , n, the reduced cost of a packing t ∈ T (j) of bin j is

c̄t = pt − yj −
n∑

i=1

tizi = −yj +

n∑

i=1

ti(pij − zi).

Hence, the pricing problem is

min
j=1,...,m

min
t∈T (j)

−yj +

n∑

i=1

ti(pij − zi).

This problem can be solved in polynomial time as follows: For each bin j, find-
ing a packing t ∈ T (j) of minimum reduced cost means solving a 0-1-knapsack
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problem with n unit size items, profit −(pij − zi) for item i, and the additional
constraint that at least qj items have to be packed into the knapsack. This
problem can be solved by greedily selecting the item i with minimum value pij−zi
until we have either selected Bj items, or the next item i satisfies pij − zi ≥
0. If this procedure returns an infeasible packing with less than qj items, we
continue selecting the item i with minimum value pij − zi (which is now always
nonnegative) until we have selected exactly qj items. Afterwards, we can solve
the pricing problem by simply comparing the best packings obtained for all bins
in order to find a packing of globally minimum reduced cost. Hence, we obtain:

Theorem 1. The linear relaxation of IP (1) can be solved in time polynomial
in the encoding length of the given instance of SAP.

4 The Randomized Rounding Procedure

We now present our randomized 3.93-approximation algorithm for SAP. In the al-
gorithm, we first solve the linear relaxation of of IP (1) obtaining an optimal frac-
tional solution x ∈ [0, 1]|T |. We then multiply all values xt by a factor α ∈ [0, 1]
(which will be chosen later) and consider the resulting value x̄t := αxt ∈ [0, 1]
as the probability of using packing t ∈ T (j) for bin j. More precisely, we inde-
pendently select a packing for each bin j at random, where packing t ∈ T (j) is
selected with probability x̄t = αxt, and with probability 1 − ∑

t∈T (j) x̄t, bin j
is not opened. Since we select at most one packing for each bin, the resulting
vector xIP ∈ {0, 1}|T | (where xIP

t = 1 if and only if packing t was selected)
then satisfies constraint (1b), but is, in general, not a feasible solution to IP (1)
since it may violate constraint (1c) (an item may be packed several times into
different bins). In particular, the total number of items assigned to bins in
xIP may be larger than n (when counted with multiplicities). The expected
profit E(profit(xIP)), however, is exactly equal to α · profit(x), i.e., exactly
α times the profit profit(x) =: optLP of the optimal fractional solution x
obtained for the linear relaxation. We note this fact for later reference:

Observation 1. The vector xIP ∈ {0, 1}|T | obtained from the randomized round-
ing process satisfies E(profit(xIP)) = α · optLP.

We now show how we can turn xIP into a feasible solution of IP (1) while only
decreasing the expected profit by a constant factor. Our procedure works in two
steps: In the first step, we discard a subset of the bins opened in xIP in order
to ensure that the total number of places used in the bins is at most n. In the
second step, we can then replace all remaining multiply assigned items in the
solution by unassigned items in order to obtain a feasible integral solution.

We start by describing the first step of the procedure. Given the vector xIP ∈
{0, 1}|T | obtained from the randomized rounding process, we consider the fol-
lowing instance of the 0-1-knapsack problem (0-1-KP): The objects are the pack-
ings t ∈ T with xIP

t = 1, i.e., the packings selected by xIP. The size of object t is
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the number of items contained in packing t and its profit is the profit pt of the
packing. The knapsack capacity is set to n.

Assuming that the total number of places used in the bins in xIP is in
[kn, (k + 1)n) for some k ∈ N, it is easy to compute an integral solution to
this knapsack instance with profit at least 1

2k+1 · profit(xIP): We can assign all
objects fractionally to at most (k+1) knapsacks of size n each such that at most
k objects are fractionally assigned (cf. Figure 1). Since the size of each object is
at most n, we can then remove the fractionally assigned objects from the knap-
sacks and put each of them into its own (additional) knapsack, which yields an
integral assignment of all objects to at most 2k + 1 knapsacks. Since all objects
together have total profit profit(xIP), this implies that the objects in the most
profitable one among these 2k + 1 knapsacks correspond to an integral solution
of the knapsack instance with profit at least 1

2k+1 ·profit(xIP) as desired1 and,
by choosing only the corresponding packings, we lose profit at most

(

1− 1

2k + 1

)

· profit(xIP) =
2k

2k + 1
· profit(xIP). (2)

0 n 2n 3n 4n kn (k + 1)n

. . .

Fig. 1. Fractional assigment of the objects to (k + 1) knapsacks of size n each. Frac-
tionally assigned objects are shown in grey.

In order to bound the expected loss in profit resulting from using only the
packings in our solution to the knapsack instance, we now consider the proba-
bility Pr(k) that the total number of places used in the bins in xIP is at least
kn for each k ∈ {1, 2, . . .} (if at most n places are used, we can use all packings
selected by xIP, so we do not lose any profit in this step). To this end, note that,
by constraint (1c), the total number of places used in the optimal fractional
solution x of IP (1) is at most n. Hence, since we used each packing t ∈ T (j)
with probability x̄t = αxt, the expected number of places used in xIP is at most
αn. Thus, Markov’s inequality yields that

Pr(k) = Pr
(
#(places used in xIP) ≥ kn

) ≤ αn

kn
=

α

k
for k ∈ {1, 2, . . .}. (3)

In the following, Pr ([kn, (k + 1)n)) will denote the probability that the total
number of places used in the bins in xIP is in [kn, (k+1)n) and ln(·) will denote

1 Note that this bound on the profit of an integral solution of the knapsack instance is
tight as long as k < n

4
− 1

2
as the example of 2k+1 objects of size �n

2
�+1 > n

2
with unit

profits shows. Hence, also computing an optimal solution for the knapsack instance
(which is possible in polynomial time as the knapsack capacity n is polynomial)
would not yield a better bound in general.
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the natural logarithm. By (2) and (3), we then obtain that, in expectation, we
lose at most the following factor times the profit of xIP in the first step:

∞∑

k=1

Pr ([kn, (k + 1)n)) · 2k

2k + 1

=

∞∑

k=1

( ∞∑

l=k

Pr ([ln, (l+ 1)n))−
∞∑

l=k+1

Pr ([ln, (l+ 1)n))

)

· 2k

2k + 1

=

∞∑

k=1

∞∑

l=k

Pr ([ln, (l+ 1)n)) · 2k

2k + 1
−

∞∑

k=2

∞∑

l=k

Pr ([ln, (l+ 1)n)) · 2(k − 1)

2(k − 1) + 1

=

∞∑

l=1

Pr ([ln, (l+ 1)n))· 2
3
+

∞∑

k=2

∞∑

l=k

Pr ([ln, (l + 1)n))·
(

2k

2k + 1
− 2(k − 1)

2(k − 1) + 1

)

= Pr(1) · 2
3
+

∞∑

k=2

Pr(k) ·
(

2k

2k + 1
− 2(k − 1)

2(k − 1) + 1

)

= Pr(1) · 2
3
+

∞∑

k=2

Pr(k) · 2

4k2 − 1

≤ α · 2
3
+

∞∑

k=2

α

k
· 2

4k2 − 1

= α ·
∞∑

k=1

2

k(4k2 − 1)

= α · (4 ln(2)− 2)

= 2α · (2 ln(2)− 1)

Using Observation 1, this proves the following result:

Proposition 1. The packings obtained after the first step contain at most n
items in total and have expected profit at least α · (1− 2α (2 ln(2)− 1)) · optLP.

In the second step of our procedure, we now have to get rid of all multi-
ply assigned items in the solution obtained after the first step. Denoting by
j1(i), . . . , jk(i)(i) the bins a multiply assigned item i is currently assigned to, we
simply delete item i from all bins but the one among j1(i), . . . , jk(i)(i) in which
it yields the highest profit. Doing so for all multiply assigned items yields a solu-
tion in which no item is packed more than once. The minimum quantities of the
bins, however, may not be satisfied any more after deleting the multiply assigned
items. But since the total number of places used in the bins after the first step
was no more than the total number n of items available, we know that, for each
item i that was assigned to l ≥ 2 bins, there must be l − 1 items that were
not assigned to any bin after the first step. Hence, we can refill the l − 1 places
vacated by deleting item i from all but one bin with items that were previously
unassigned, and doing so for all multiply assigned items yields a feasible integral
solution to the given instance of SAP.
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In order to bound the expected loss in profit resulting from the second step
of our procedure, we want to bound the loss in profit resulting from deleting a
single item i from all but the most profitable bin it was previously assigned to.
To do so, we use that, by constraint (1c) and the scaling of the probabilities xt

given by the optimal fractional solution of IP (1) by α, the expected number of
bins item i was assigned to before the first step of the procedure is at most α.
Hence, by Markov’s inequality, the probability that item i was assigned to at
least k bins before the first step of the procedure can be upper bounded as

Pr(i in ≥ k bins) ≤ α

k
. (4)

Clearly, discarding a subset of the bins opened cannot increase the number of
bins item i is assigned to, so inequality (4) is still valid after the first step of our
procedure. Hence, denoting the probability that item i was assigned to exactly
k bins after the first step by Pr(i in k bins), we lose at most the following factor
times the total profit obtained from all copies of item i in the solution from the
first step:

m∑

k=2

Pr(i in k bins) · k − 1

k

=

m∑

k=2

(
m∑

l=k

Pr(i in l bins)−
m∑

l=k+1

Pr(i in l bins)

)

· k − 1

k

=

m∑

k=2

m∑

l=k

Pr(i in l bins) · k − 1

k
−

m∑

k=3

m∑

l=k

Pr(i in l bins) · k − 2

k − 1

=

m∑

l=2

Pr(i in l bins) · 1
2
+

m∑

k=3

m∑

l=k

Pr(i in l bins) ·
(
k − 1

k
− k − 2

k − 1

)

= Pr(i in ≥ 2 bins) · 1
2
+

m∑

k=3

Pr(i in ≥ k bins) ·
(
k − 1

k
− k − 2

k − 1

)

= Pr(i in ≥ 2 bins) · 1
2
+

m∑

k=3

Pr(i in ≥ k bins) · 1

k(k − 1)

≤ α

2
· 1
2
+

m∑

k=3

α

k
· 1

k(k − 1)

≤ α ·
∞∑

k=2

1

k2(k − 1)

= α ·
(

2− π2

6

)

Together with the bound on the profit of the packings obtained after the first
step given in Proposition 1, this shows the following result:
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Proposition 2. The second step of the procedure yields a feasible integral solu-
tion to the given instance of SAP with expected profit at least

(

1 +

(
π2

6
− 2

)

α

)

·
(

1− 2α
(
2 ln(2)− 1

)
)

α · optLP.

Choosing the value α∗ maximizing the expected profit in Proposition 2 (which is
approximately 0.556339) yields an expected profit of at least 0.254551 · optLP.
As optLP is an upper bound on the profit of the optimal integral solution of
the given instance, taking the inverse of this factor and rounding up yields the
following theorem:

Theorem 2. With the right choice of α, the randomized rounding procedure
yields a randomized 3.93-approximation algorithm for SAP.

Using the probabilistic method (cf., for example, [4]), Theorem 2 yields an upper
bound of 3.93 on the integrality gap of IP (1): Since the expected profit of the
solution returned by the randomized rounding algorithm is at least 0.254551 ·
optLP, it follows that we obtain a feasible integral solution with profit at least
0.254551 · optLP with positive probability. In particular, there always exists a
feasible integral solution with profit at least 0.254551 · optLP, which (by again
taking the inverse of this factor and rounding up) proves the following result:

Corollary 1. The integrality gap of IP (1) is at most 3.93.

5 Conclusion and Open Problems

In this paper, we obtained the first nontrivial approximation result for SAP
by providing a randomized 3.93-approximation algorithm. We believe that the
approximation factor of 3.93 obtained for our algorithm is not tight and can be
slightly improved by using stronger probability bounds in some places in the
analysis. A natural open question is whether a constant factor approximation
for SAP can also be obtained by a deterministic algorithm. We believe that such
deterministic approximation algorithms exist, but will likely require techniques
different from the ones commonly used in approximation algorithms for the
generalized assignment problem without minimum quantities.
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