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Preface

This volume contains the papers that were presented at MFCS 2013: The 38th
International Symposium on Mathematical Foundations of Computer Science
held during August 26–30, 2013, at IST Austria, in Klosterneuburg, Austria. It
contains six invited and 67 contributed papers presented at the symposium. The
contributed papers were selected by the Program Committee (PC) out of a total
of 191 submissions. All submitted papers were peer reviewed and evaluated on
the basis of originality, quality, significance, and presentation. Each paper was
reviewed by at least three PC members with the help of external experts. The
PC also selected to give the Best Paper Awards, sponsored by European Asso-
ciation of Theoretical Computer Science (EATCS), jointly to “Improved bounds
for reduction to depth 4 and depth 3” by Sébastien Tavenas; and “Minimal in-
dices for successor search”by Sarel Cohen, Amos Fiat, Moshik Hershcovitch, and
Haim Kaplan. In addition, the paper by Sébastien Tavenas was also selected for
the Best Student Paper Award.

The program included six invited talks by:

– Sam Buss, University of California, San Diego, USA
– Leah Epstein, University of Haifa, Israel
– Jean Goubault-Larrecq, LSV, ENS Cachan, CNRS, INRIA, France
– Martin Grohe, RWTH Aachen University, Germany
– Elias Koutsoupias, University of Oxford, UK
– Nir Piterman, University of Leicester, UK

We thank all invited speakers for accepting our invitation and for their excellent
presentation at the symposium.

We thank all authors who submitted their work to MFCS 2013 for consid-
eration. We wish to thank all PC members and external reviewers for their
competent and timely handling of the submissions. The success of the scientific
program is due to their hard work. During the selection process and for prepar-
ing this volume, we used the EasyChair conference management system, which
provided excellent support.

The series of MFCS symposia has a well-established tradition since 1972, and
has been organized on a rotating basis in Poland, Czech Republic, and Slovakia.
The 2013 meeting added a new country to this history, and we are happy that
it could be Austria with its lasting and fruitful relationship to the original host
countries.

We gratefully acknowledge the support of IST Austria and EATCS. Spe-
cial thanks for local organization are due to: Martin Chmeĺık, Sebastian Nozzi,
Andreas Pavlogiannis, Johannes Reiter, and Marie Trappl.

June 2013 Krishnendu Chatterjee
Jǐŕı Sgall
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Kuperberg, Denis
Kyropoulou, Maria
La Torre, Salvatore
Lachish, Oded
Lasota, Slawomir
Lauze, Francois
Leupold, Peter
Ligett, Katrina
Limaye, Nutan
Lodya, Kamal
Lohrey, Markus
Lombardy, Sylvain
Lovett, Shachar
Lozin, Vadim
Lu, Songjian
�L ↪acki, Jakub
Magnin, Löıck
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Abstract. Alternation trading proofs are motivated by the goal of sep-
arating NP from complexity classes such as Logspace or NL; they have
been used to give super-linear runtime bounds for deterministic and co-
nondeterministic sublinear space algorithms which solve the Satisfiabil-
ity problem. For algorithms which use no(1) space, alternation trading
proofs can show that deterministic algorithms for Satisfiability require
time greater than ncn for c < 2 cos(π/7) (as shown by Williams [21,19]),
and that co-nondeterministic algorithms require time greater than ncn

for c < 3
√
4 (as shown by Diehl, van Melkebeek and Williams [5]). It is

open whether these values of c are optimal, but Buss and Williams [2]
have shown that for deterministic algorithms, c < 2 cos(π/7) is the best
that can obtained using present-day known techniques of alternation
trading.

This talk will survey alternation trading proofs, and discuss the opti-
mality of the unlikely value of 2 cos(π/7).

Keywords: Satisfiability, alternation trading, indirect diagonalization,
lower bounds.

1 Introduction

A central open problem in computer science is the question of whether nondeter-
ministic polynomial time (NP) is more powerful than ostensibly weaker compu-
tational classes such as polynomial time (P) or logarithmic space (Logspace).
These are famously important and difficult questions, and unfortunately, in spite
of over 40 years of concerted efforts to prove that NP �= P or NP �= Logspace,
it is generally felt that minimal progress has been made on resolving them.

Alternation trading proofs are a method aimed at separating NP from smaller
complexity classes, by using “indirect” diagonalization to prove separations. A
typical alternation trading proof begins with a simulation assumption, for in-
stance the assumption that the NP-complete problem of Satisfiability (SAT)
can be recognized by an algorithm which uses time nc and space no(1). Iterated

� Supported in part by NSF grant DMS-1101228.
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application of the simulation assumption allows it to be amplified into an as-
sertion which can be refuted by diagonalization. This yields a proof that the
simulation assumption is false.

One of the strongest alternation trading separations known to date is that
SAT cannot be recognized by a deterministic algorithm which uses time nc and
space no(1) for c a constant < 2 cos(π/7) ≈ 1.8109 (see Theorem 8 below). The
bound of 2 cos(π/7) on the runtime exponent might seem unlikely; however, it
has recently been shown that this bound on the exponent is optimal in the sense
that present-day techniques of alternation trading proofs cannot establish any
better runtime bound. This is stated as Theorem 10 below, and thus gives an
upper bound on the lower bounds that can be achieved with alternation trading
proofs — at least using currently known techniques. In short, we provably need
better techniques — or better ways to apply known techniques — in order to
get improved separation results via alternation trading proofs.

The next section outlines these results in more detail. However, many details of
the definitions and proofs are omitted. These details and additional background
information can be found in [19,2]. The earlier survey [12] provides an excellent
introduction to alternation trading proofs, but does not include the upper bounds
on lower bounds of Theorem 10.

2 Definitions and Preliminaries

We adopt the convention that time- and space-bounded algorithms are run on
Turing machines with random access tapes, as this permits robust definitions
for subquadratic time and sublinear space computational classes. Specifically,
Turing machines are assumed to be multitape machines that have random access
(indexed) tapes. This means that the Turing machine’s tapes come in pairs. Each
pair consists of a sequential access tape and a random access tape. The sequential
access tape is accessed as usual in the Turing machine model with a tape head
that can move at most one tape cell left or right per step. The random access tape
is indexed by the sequential access tape, so that the Turing machine has access
to the symbol written in the tape cell whose index is written on the sequential
access tape. The input string is stored on a read-only random access tape.

Random access Turing machines form a very robust model of computation; for
instance, [9] shows their equivalence to more general random access computers
up to logarithmic factors on runtime and space.

The space used by the Turing machine is the number of cells which are ac-
cessed on either kind of tape, except that the contents of the (read-only) in-
put tape do not count towards the space used by the Turing machine. For t a
time-constructible function, the complexity classes DTIME(t) and NTIME(t)
contain the languages L which can be recognized by deterministic, respectively
nondeterministic, algorithms which use time O(t).

We will work primarily with algorithms for Satisfiability that use sublinear
space of only no(1) or ne+o(1) for some constant e < 1. Note these sublinear space
algorithms do not even have sufficient space to store a single truth assignment
for an instance of Satisfiability.
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Definition 1. Let c, e ≥ 0. The complexity class DTISP(nc, ne) is the set of
decision problems L such that L can be recognized by a deterministic algorithm
which uses time nc+o(1) and space ne+o(1). The complexity class NTISP(nc, ne)
is defined similarly but allowing nondeterministic algorithms instead of deter-
ministic algorithms.

DTS(nc) is equal to DTISP(nc, n0). And NTS(nc) is NTISP(nc, n0).

It is a little unusual for the definitions of DTISP and NTISP to include the
“o(1)” terms in the exponents, but the advantage is that it gives extra no(1)

factors which can absorb polylogarithmic factors in time or space bounds.
The Cook-Levin theorem states that SAT is NP-complete. In fact, SAT is

NP-complete in a very strong way. An algorithm is called “quasilinear time”
provided it has runtime n(logn)O(1), and “polylogarithmic time” provided it
has runtime (log n)O(1).

Theorem 2. Let L ∈ NTIME(n). Then there is a quasilinear time many-one
reduction f from L to SAT such that there is a polylogarithmic time algorithm,
which given x and j, produces the j-th symbol of f(x).

The point of Theorem 2 is that the computational complexity of SAT is as
strong as any language in NTIME(n). In particular:

Corollary 3. Fix c ≥ 0. NTIME(t) ⊆ DTS(nc) if and only if SAT ∈ DTS(nc).

Proofs of Theorem 2 and its precursors were given by [14,17,15,3,16,18,7,12]. For
the most direct proof of Theorem 2 as stated see [12], which uses much the same
methods as [17,16].

Corollary 3 provides the justification for “slowdown” steps in alternation trad-
ing proofs. Alternation trading proofs also contain “speedup” steps which allow
sublinear space computations to be speeded up, at the cost of introducing al-
ternations. Speedup steps are based on the following theorem which states that
runtime can be speeded up by alternation. The theorem is based on techniques
independently developed by Bennett [1], Nepomnjaščĭı [13], and Kannan [10].
We state it only for the special case where the space is no(1), but it can be
generalized to space ne for constants e < 1.

Theorem 4. Suppose a > b > 0 and that L ∈ DTS(na). Then membership in L
can be expressed as

x ∈ L ⇔ (∃y, |y|≤|x|b+o(1))(∀z, |z|≤d log |x|)(〈x, g(y, z)〉 ∈ L′)

for some constant d > 0, some L′ ∈ DTS(na−b), and some function g ∈
DTS(n0) such that |(g(y, z)| = |x|o(1).

3 Separation Results with Alternation Trading

The first separation results using alternation trading were established by Kan-
nan [10] and Fortnow [6], who were motivated by problems such as proving
that NP is not equal to NL. Theorem 5 states a simplified version of Fortnow’s
results.
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Theorem 5. Let ε > 0. Then SAT /∈ DTISP(n1, n1−ε). In fact, we have
SAT /∈ NTISP(n1, n1−ε). Consequently, NTIME(n) �⊆ coNTISP(n1, n1−ε).

Fortnow’s theorem was quickly extended to better runtime lower bounds. Lipton
and Viglas [11] improved the n1 time bound to nc for all c <

√
2, but with

polylogarithmic space instead of n1−ε. Their methods give the following theorem:

Theorem 6. Let c <
√

2 ≈ 1.414. Then SAT /∈ DTS(nc).

This bound was improved by Fortnow and van Melkebeek [8,7] to use c < φ
where φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio.

Theorem 7. Let c < φ. Then SAT /∈ DTS(nc).

The bound c < φ was improved to c <
√

3 ≈ 1.732 by Williams [20] and to
c < 1.759 by Diehl and van Melkebeek [4] (the latter result was a more general
result about randomized computation). Finally, these bounds were improved by
Williams [21,19] to c < 2 cos(π/7) ≈ 1.8109. His theorem applied to a more
general setting of modular counting, but for SAT and NTIME(n) his results
were:

Theorem 8. Let c < 2 cos(π/7). Then SAT /∈ DTS(nc).

Corollary 9. Let c < 2 cos(π/7). Then NTIME(n) �⊆ DTS(nc).

Subsequently to proving Theorem 8, Williams used a computer-based search
(coded in Maple) to search for better alternation trading proofs. For this, Williams
formulated a precise set of inference rules that allow the derivation of assertions
about inclusions between complexity classes. We do not describe the inference
rules here, but they can be found in [19,2]. The essential idea is that the infer-
ence rules formalize the “slowdown” and “speedup” principles of Corollary 3 and
Theorem 4. This computerized search did not lead to any improved alternation
trading proofs beyond those already found for Theorem 8.

The somewhat mysterious value 2 cos(π/7) arises from its being one of the
roots of x3 − x2 − 2x + 1 = 0.

4 Limits on Alternation Trading Proofs

It had long been informally conjectured that alternation trading proofs should
be able to establish Theorems 6-8 for all values of c < 2. However, as a result
of the computerized search, Williams conjectured that the (admittedly unlikely
sounding) value 2 cos(π/7) is the best that can be achieved with his formalized
inference rules. This conjecture was recently proved by Buss and Williams [2]:

Theorem 10. The alternation trading proof inference system, as described in
[19,2], can prove that SAT /∈ DTS(nc) if and only if c < 2 cos(π/7).
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e c

0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058 e

c

1
0

1.8019

1

Fig. 1. Showing the maximum value of c, as a function of e, for which alternation trad-
ing proofs suffice to show that SAT is not in DTISP(nc, ne). The values are accurate
to within 10−5. This figure is from [2].

This inference system for alternation trading proofs includes all alternation trad-
ing proofs which have been developed so far, and seems to fully capture the power
of the Bennett-Nepomnjaščĭı-Kannan technique of Theorem 4. Thus, Theorem 10
appears to put a meaningful bound on what can be achieved by alternation trad-
ing proofs.

Fortnow and van Melkebeek [8] and Williams [19] also used alternation trading
proofs to prove results about NTIME(n) �⊆ DTISP(nc, ne) for values of c > 1
and e < 1. Already [8] showed that, for any value of e < 1, this holds for c
sufficiently close to 1; and improved values were given by [19]. The possible
values for c and e were further improved, and shown to be optimal by Buss and
Williams [2]:

Theorem 11. The alternation trading proof inference systems described in [19,2]
can prove SAT /∈ DTISP(nc, ne) for precisely the values of c and e graphed in
Fig. 1.

Unfortunately, the values shown in Fig. 1 are numerically computed; there is no
known formula for describing the values of c and e for which alternation trading
proofs exist.

5 Other Directions

So far, we have discussed the question of whether SAT lies in DTS(nc) or
DTISP(nc, ne) for constant values of c and e. The alert reader will have noticed
that Theorem 5 also discussed whether SAT lies in the nondeterministic class
NTISP(n1, n1−ε). A number of further such results have been obtained, in par-
ticular by [8,7,21,19], culminating in the following theorem proved by Diehl, van
Melkebeek, and Williams [5]:

Theorem 12. Let c < 3
√

4. Then SAT /∈ NTS(nc). Consequently, NTIME(n) �
⊆ coNTS(nc).
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It is tempting to conjecture that the methods of [2] can be extended to prove
that the constant 3

√
4 is optimal for what can be proved with alternation trading

proofs. However, to the best of our knowledge, this has not been attempted yet
and so it remains an open problem.
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Abstract. We discuss recent work on the subject of selfish bin packing.
In these problems, items are packed into bins, such that each item wishes
to minimize its own payoff. We survey the known results for a number
of variants, focusing on worst-case Nash equilibria and other kinds of
equilibria, and mentioning several results regarding issues of complexity
and convergence to equilibria.

1 Introduction

We discuss bin packing games with selfish items. In such games, n items are to
be packed into (at most) n bins, where each item chooses a bin that it wishes
to be packed into. The cost or payoff of an item i of size 0 < si ≤ 1 is defined
based on its weight wi > 0 and the contents of its bin. Nash equilibria (NE)
are defined as solutions where no item can change its choice unilaterally and
gain from this change. Bin packing games were inspired by the well-known bin
packing problem [49,18,21,17,19,20,65]. In this problem, a set of items, each
of size in (0, 1], is given. The goal is to partition (or pack) the items into a
minimum number of blocks, called bins. Each bin has unit capacity, and the
load of a bin is defined to be the total size of items packed into it. That is, the
goal is to find a packing of the items into a minimum number of bins, such that
the load of each bin is at most 1. The problem is NP-hard in the strong sense,
and thus theoretical research has concentrated on the study and development of
approximation algorithms, which allow to design nearly optimal solutions. A bin
packing algorithm is called online if it receives the items one by one, and it must
assign each item to a bin immediately and irrevocably without any information
on subsequent items. If the input is given as a set, then the problem is called
offline, in which case an algorithm is typically expected to run in polynomial
time. We define the measures for quality of equilibria seeing the suitable solutions
as approximation algorithms, possibly resulting from a process of local search.

The approximation ratio. Consider a minimization problem P with a set of
instances X . Given a set of solutions S, containing one solution for each σ ∈ X ,
whose cost is denoted by S(σ), assume that S(σ) is a positive integer for any
σ ∈ X . The set S can be a set of outputs of a given algorithm, or another class
of solutions with specific properties, such as various kinds of equilibria, outputs
of an algorithm (or a class of algorithms), etc. Let OPT (σ) denote the minimum

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 8–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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cost for the specific input σ, that is, the cost of an optimal algorithm for this
input. We define the (asymptotic) approximation ratio of S to be:

R(S) = lim sup
M→∞

max
σ

{S(σ)/OPT (σ) | OPT (σ) = M}.

We use the term (asymptotic) approximation ratio for any type of set of solutions
S. Note that in the literature, the term (asymptotic) competitive ratio is usually
used for online algorithms and has the same meaning. In what follows we mostly
deal with asymptotic approximation ratios and usually omit the word asymp-
totic. The absolute approximation of S is Rabs(S) = supσ{S(σ)/OPT (σ)}, and
the approximation ratio for the input σ is simply S(σ)/OPT (σ).

Games. A game (or a strategic game) consists of a finite set of (at least two)
players, and a finite, non-empty, set of strategies (or actions) that the set of
players can perform. Each player has to choose a strategy, and it has a payoff
associated with each one of the possible situations or outcomes (sets of strategies
of all players, containing one strategy for each player). Each outcome has a social
cost associated with it. A Nash equilibrium (an NE), introduced by Nash [62],
is a famous solution concept of a game, where no player can gain anything (that
is, decrease its payoff) by changing only its own strategy unilaterally. If each
player has chosen a strategy, and no player can benefit by changing its strategy
while the other players keep their unchanged, then the current set of strategy
choices and the corresponding payoffs constitute an NE. If a player chooses to
take one action with probability 1, then that player is playing a pure strategy,
and otherwise it is playing a mixed strategy. If all players play pure strategies,
then the resulting NE is called a pure NE. In what follows we focus on pure NE,
and use the term NE for a pure NE.

Measures. The price of anarchy (PoA) [53] of a game G is the ratio between the
maximum social cost of any NE, and the minimum social cost of any solution
(with a minimal number of non-empty bins). The price of stability (PoS) [3]
is defined analogously, taking into account the NE of the minimum social cost.
Note that in order to use the definitions of PoA and PoS, one obviously has to
prove first that G admits an NE. Using the definitions above, we can consider
a set of the worst NE and a set of the best NE (each containing one solution
for each input) as our sets of solutions, and then the PoA and PoS of G are the
approximation ratio for it according to the first set and second set, respectively.
A bin packing problem, where for each input and packing every item has a payoff
associated with it, can be seen as a class of games (details are given below). If
every such game admits an NE, then the PoA of the problem (respectively, PoS)
is defined as the asymptotic supremum PoA (respectively, PoS) over all games
in this class. That is, each one of the measures is the approximation ratio of a
class of solutions: the PoA is the approximation ratio of the set of worst NE,
and the PoS is the approximation ratio of the set of best NE.

Bin packing games. We now define classes of games based on bin packing
problems, called bin packing games. Every input of standard bin packing induces
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a standard bin packing game, and all such games are the class of standard bin
packing games. Moreover, we can define other classes of bin packing games that
are based on other variants of bin packing. In such games, each item corresponds
to a selfish player, trying to minimize its own cost, and the strategy of a player
is the bin in which it is packed. Changing the strategy of an item means that
it moves to be packed in a different bin. Such a deviation is possible only if the
empty space in the targeted bin is sufficient, and additional conditions on the
packing (if any) are satisfied (in the standard bin packing problem there are
no additional conditions). One example of such a variant is bin packing with
cardinality constraints [54,55,51,12,26,32,6], introduced by Krause, Shen, and
Schwetman [54]. In this problem, in addition to the usual constraint that the
total size of items packed into one bin cannot exceed 1, no bin can contain more
than k items for a given integer parameter k ≥ 2. In the corresponding games,
an item can move to a bin that has sufficient space for it, and has at most k− 1
items. In particular, for both these classes of games, an item can always move
to an empty bin.

Recall that every player i corresponding to an item (or simply the item i,
since we do not distinguish the player from its item) has a positive weight wi.
We define the cost (or payoff) of an item as follows. If an item of weight υ is
packed into a bin where the total weight of packed items is η (including this
item), then its cost is υ

η . The total payoff for a subset of items packed into one
bin is exactly 1. The set of strategies consists of all n bins, and thus we next
define the cost of an item that is packed in an invalid way. If an item is packed
into a bin whose packing is invalid, then we define its payoff as infinity. Recall
that an NE is a packing where no item can benefit from changing its strategy. It
is usually assumed that all bins of any considered packing are packed in a valid
way, due to the following. A socially optimal solution must be a valid solution
of the optimization problem, so all its bins must be packed in a valid way. An
NE cannot contain invalid bins either, as an item having an infinite cost would
benefit from moving into an empty bin (which must exist, if some bin contains
more than one item). Additionally, there is no need to consider the option of an
item migrating to a bin that becomes invalid as a result, since this can never
decrease the cost of the item. We are interested in the case of arbitrary or general
positive weights, but also in the special cases of unit weights (which is equivalent
to the case of equal weights), and it proportional weights (where for every item
i, we assume that wi = si). An NE packing is not necessarily optimal. Consider
for example proportional weights or unit weights. Take three items of size 0.51
and three items of size 0.26. The solution that packs the three smallest items
in one bin and the larger items in dedicated bins is an NE with respect to both
kinds of weights, but an optimal solution packs three bins with one item of each
size in each bin (see Figure 1).

This survey. We are interested in the price of anarchy for classes of bin pack-
ing games. Such studies originate in the inefficiency of large networks such as the



Bin Packing Games with Selfish Items 11

Internet, where the users act selfishly, and often even in an uncoordinated way.
These studies were first done for scheduling and routing [53,64,63,22,58,39] (in
some articles, the price of anarchy is called “coordination ratio”, and in particu-
lar, this is the case in the seminal paper of Koutsoupias and Papadimitriou [53]),
but there are applications where the bin packing models are more appropriate
[27,1]. Bin packing models are useful for scenarios where resources cannot have
arbitrary loads, and can be occupied only up to a certain level. In the case of car-
dinality constraints, a resource cannot be used by an unlimited number of users.
We discuss standard bin packing games and classes of games corresponding to
variants of bin packing. The specific game class depends on the types of items,
the allowed weights, the calculation of payoffs, and the definitions of valid bins.
We also discuss other kinds of equilibria, issues of complexity, and convergence
to equilibria.

Fig. 1. The top figures are examples of solutions for two games, where the packing on
the left hand side is an NE packing for unit weights, but not for proportional weights,
and the packing next to it is an NE for proportional weights but not for unit weights.
The costs of items are written next to them, where the costs for the figure on the left
hand side are for the case of proportional weights, and on the right hand side, for unit
weights. In the figure of the left hand size, if the item of size 0.1 migrates to the other
bin, its cost will be 0.1. In the figure on the right hand side, if an item this size migrates
to the other bin, its cost will become 0.2. The bottom figures are two solutions for one
input. The packing on the right hand side is an optimal packing and an NE for any set
of weights. It is not, however, an SNE for unit weights and for proportional weights.
The packing next to it is an SNE for both these kinds of weights. If we change the size
of larger items to 0.53, the packing on the left hand side will no longer be an NE for
proportional weights, but it remains an SNE for unit weights.
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2 A Discussion on Equilibria for Bin Packing Games

Stronger concepts of stable solutions were defined in order to separate the effect
of selfishness from the effect of lack of coordination. A strong equilibrium (an
SNE) [4,67,45,2,27,30,39] is a solution concept where not only a single player
cannot benefit from changing its strategy but no non-empty subset of players
can form a coalition, where a coalition means that a subset of players change
their strategies simultaneously, all gaining from the change. Obviously, by this
definition, an SNE is an NE. The grand coalition is defined to be a coalition
composed of the entire set of players. A solution is called weakly Pareto optimal
if there is no alternative solution to which the grand coalition can deviate simul-
taneously and every player benefits from it. A solution is called strictly Pareto
optimal if there is not alternative solution to which the grand coalition can devi-
ate simultaneously, such that at least one player benefits from it, and no player
has a larger cost as a result. The last two concepts are borrowed from welfare
economics. The two requirements, that a solution is both (strictly or weakly)
Pareto optimal and an NE results in two additional kinds of NE, Strictly Pareto
optimal NE (SPNE) and Weakly Pareto optimal NE (WPNE) [25,16,28,5,23].
By these definitions, every WPNE is an NE, every SPNE is a WPNE, and every
SNE is a WPNE. Strictly Pareto optimal points are of particular interest in eco-
nomics, as stated in a textbook, in a chapter by by Luc: “The concept of Pareto
optimality originated in the economics equilibrium and welfare theories at the
beginning of the past century. The main idea of this concept is that society is
enjoying a maximum ophelimity when no one can be made better off without
making someone else worse off” [57]. Even though these concepts are stronger
than NE, still for many problems a solution which is an SNE, an SPNE, or a
WPNE is not necessarily socially optimal. We define the strong price of anarchy
(SPoA) [2] as the ratio between the maximum social cost of any SNE and the
minimum social cost of any situation, and the SPoS is the ratio between the
minimum social cost of any SNE and the minimum social cost of any situation,
that is, the SPoA is the approximation ratio of the set of worst SNE, and the
SPoS is the approximation ratio of the set of best SNE. For SPNE and WPNE
we define the SPPoA and SPPoS, and the WPPoA and WPPoS analogously. See
Figure 1 and Figure 2 for some examples for the different concepts.

There are many ways of showing that NE exist for various bin packing games.
One way to show that every game has an NE is by showing that all games of a
given class of bin packing games belong to a specific class of (weighted) single-
ton congestion games [45,46], such that it is known that every game in the class
has a (pure) NE. Another method is by defining a process that converges into an
NE. More accurately, given a packing that is not necessarily an NE (it can be any
packing, in particular it can be a packing where each item is packed into a separate
bin, or a packing with a relatively small number of bins such as a socially optimal
packing), define a process where at each time, one item can migrate to another
bin, where its cost will be strictly smaller (the costs of other items packed into the
target bin may increase as a result). Such processes must converge since they can
reach every possible packing at most once, but they usually require exponential
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time (see [9,59,60]). Note that games with unit weights are in fact singleton con-
gestion games for which this process converges in polynomial time [45,46], but the
number of resources has an exponential size in the number of players, and it is not
given explicitly (these are all possible subsets of items that can be packed into a
bin). It is known, however, that for standard bin packing games with unit weights,
these processes still take polynomial time [44,23]. In [44], using a potential func-
tion, it is shown that the process converges using O(n2) migration steps. In [23], a
tight bound of Θ(n3/2) on the worst-case number of migration steps is shown us-
ing an additional potential function. The advantage of this approach is that it is
possible to use an approximate solution as an initial configuration. For example,
it is possible to apply an asymptotic approximation scheme by Fernandez de la
Vega and Lueker [38] or a fully polynomial approximation scheme by Karmarkar
and Karp [50] as suggested by Han et al. [44], and since no item can benefit from
moving into an empty bin, the output cannot contain a larger number of bins that
the initial configuration, so the output has both properties that it is an NE, and
it is an approximate solution of the same quality as the initial packing. Since the
initial configuration can potentially be an optimal one, we find that for any set
of weights, the PoS is equal to 1. Another way of showing that an NE exists for
every game is to show the stronger property that every game has an SNE. The
algorithm Greedy Set Cover (GSC) creates such equilibria [27,23], and the set of

Fig. 2. The two top figures are two solutions for one input. The one on the left hand
side is not an NE for proportional weights, but it is an NE for unit weights. For unit
weights, it is not an SPNE, since in the packing on the right hand side no item has
a larger cost, but the large items have smaller costs. The two bottom figures are two
solutions of one input, where the one on the left hand side is an NE for proportional
weights and for unit weights, but it not an NE, for example, if the weights of smaller
items are equal to 1, and the weights of larger items are equal to 4. For proportional
weights, it is not a WPNE, since in the packing on the right hand side every item has
a smaller cost (for unit weights there is no such example as every NE is a WPNE).
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executions of this algorithm gives exactly the set of SNE. The algorithm acts as
follows. Given an input set of items, it repeatedly find a maximum weight subset
of unpacked items that can be packed into a bin, packs it, and removes it from
the set of unpacked items. This algorithm requires exponential time for arbitrary
weights and for proportional weights (because it has to solve a knapsack prob-
lem before it packs a bin, and we cannot expect it to run in polynomial time for
proportional weight unless P=NP, as otherwise it would solve the 3-partition

problem in polynomial time), but using the properties of its output the existence
of an SNE (and thus also the existence of an NE) follows.

For proportional weights, this algorithm is actually the algorithm Subset Sum
[43,13,14,27,30], and for unit weights, a special case of GSC is the greedy algo-
rithm Next Fit Increasing (NFI), which sorts the items by non-decreasing
size and applies Next Fit (NF) [47,48], that is, uses one active bin at a time,
and replaces it with a new active bin if an item does not fit. The running time is
O(n log n). The running time is lower than that of the process described above,
and the resulting packing is not only an NE but also an SNE. Interestingly, it
turns out that NFI always creates the worst SNE (roughly speaking, the reason
for this property is that it always selects the smallest items and thus packs large
numbers of items in the few first bins). If an NE of better quality is needed, it
is possible to apply a fast heuristic [47,49,42,66] first, and then apply a process
that converges to an NE with at most the same number of bins.

For any set of weights, it is strongly NP-hard to find the best SNE, and it is
also NP-hard to find the best NE, which can be proved using a simple reduction
from 3-partition. However, for the case of proportional weights, finding an
arbitrary NE can be done using a polynomial time algorithm that is based on
applying FFD [47,49] (see definition below) multiple times in a certain way, as
Yu and Zhang [71] showed. For all kinds of weights, any optimal solution is both
weakly and strictly Pareto optimal. This property holds since the total cost of all
items is equal to the number of non-empty bins, and if in an alternative packing
no item increases its cost while some item reduces its cost, we find that the
number of bins in the alternative packing is smaller, contradicting optimality.
Thus, since there exists a socially optimal solution that is an NE, the SPPoS
and WPPoS are equal to 1 for every set of weights. On the other hand, for
some games (including games with unit weights and games with proportional
weights), no optimal solution is an SNE, and in fact, the SPoS is much higher
than 1. Consider the example given above (consisting of six items, also illustrated
in Figure 1). The optimal solution described there is unique (up to swapping the
positions of identical items), but it is not an SNE packing, as the three smallest
items would migrate together to an empty bin. The alternative solution described
above is an SNE. Note, however, that not every optimal solution is an NE, for
example, for an input consisting of four items, two of sizes 0.6 and two of sizes
0.2, a solution with two bins containing each one item of each size is optimal,
but both for proportional weights and for unit weights, a small item can benefit
from migrating to the other bin.
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3 Standard Bin Packing Games

In this section, we survey the known bounds on the measures defined above. Some
of the tight bounds are the approximation ratios of well-known algorithms, but
some bounds were not found in the past as approximation ratios of algorithms.

General Weights. The algorithm First Fit (FF) for bin packing processes a
list of items, and packs each item into the bin of smallest index where it can be
packed. The variant First Fit Decreasing (FFD) sorts the items by non-increasing
size and applies FF. Every NE can be obtained as an output of FF; sort the
bins by non-increasing total weights, and create a list of items according to the
ordering of bins. FF will create exactly the bins of the original packing. FF will
actually act as NF since no item can be packed into earlier bins (as this would
mean that the item benefits from moving there in the original packing, which
is an NE packing). Such a relation holds also between outputs of the algorithm
Subset Sum and of FF (that every output of Subset Sum can be achieved also
by FF) [13,14], and it holds for other classes of bin packing games.

Interestingly, for arbitrary weights, all inefficiency measures (PoA, SPoA, WP-
PoA, SPPoA), and even the SPoS are all equal to 1.7 [23], which is both the
asymptotic and absolute approximation ratio of First Fit [68,49,41,24]. As men-
tioned above, the PoS, WPPoS, and SPPoS are equal to 1. Additional properties
are revealed in [23], for example, the WPPoA is equal to the PoA for any class
of weights.

Proportional Weights. The bin packing game with proportional weights
(wi = si) was introduced by Bilò [9], who was the first to study the bin pack-
ing problem from this type of game theoretic perspective. He provided the first
bounds on the PoA, a lower bound of 8

5 and an upper bound of 5
3 . The quality

of NE solutions was further investigated in [27], where nearly tight bounds for
the PoA were given; an upper bound of 1.6428 and a lower bound of 1.6416
(see also [71]). Interestingly, the PoA is not equal to the approximation ratio of
any natural algorithm for bin packing. The SPoA and SPoS were also analyzed
in [27], and it was shown that these two measures are equal. Moreover, it was
shown the set of SNE and outputs of the Subset Sum algorithm [43,13] is the
same, which gave bounds on the SPoA and SPoS. In the paper [30], the exact
SPoA (which is also the approximation ratio of Subset Sum) was determined,
and it was shown that its value is approximately 1.6067. In the same article,
the parametric problem where the size of every item is upper bounded by a pa-
rameter is studied. Some properties of other measures that were not studied in
[9,27,30] (the ones related to Pareto optimal solutions) are mentioned in [23].

Unit Weights. The case of unit weights was introduced and studied by Han
et al. [44]. The authors showed that NFI creates an NE for every input. The
approximation ratio of NFI is known to be a sum of a series that is equal ap-
proximately to 1.69103 [40,7]. In fact, this last value is the approximation ratio
of a number of algorithms, it is the approximation ratio of NFI and of NFD
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(which sorts the items by non-increasing size and applies NF), and it is the limit
of the sequence of approximation ratios of a class of online algorithms, called
the Harmonic algorithms [56], which partition items into classes according
to size and pack each class independently using NF. It is also mentioned there
that since NE packing is the output of a run of FF, the PoA is at most 1.7.
An example is provided where an optimal solution uses 10 bins, while an NE
solution uses 17 bins. The problem was studied further in [23], and it turns out
that the PoA, WPPoA, and SPPoA are strictly below 1.7 (unlike the case of
general weights). The PoA is however at least 1.6966, so it is very close to 1.7.
The SPoA is equal to the value 1.69103 that is mentioned above, since NFI cre-
ates the worst SNE. However, unlike the case of proportional weights, the SPoS
is lower, and its value is approximately 1.611824, a new number in bin packing
that is also the sum of a series. The SPPoA is in [1.61678, 1.628113] (and the
WPPoA is equal to the PoA, and in fact, in this case every NE is a WPNE).

4 Games for Variants of Bin Packing

In this section we discuss several variants that have been studied. There are
additional variants that we do not discuss, since they are very different from
standard bin packing games. Two examples are selfish bin covering [10] and
selfish bin coloring [31]. Note that the term “bin packing games” is used in the
literature for a completely different type of games [35,36,52], and there is recent
interest in those games as well.

Bin Packing Game with Cardinality Constraints. These games were stud-
ied with respect to the PoA and PoS for the case of proportional weights [1]. By
applying GSC (that is, at each step, packing a set of maximum total size that
consists of at most k items) it is possible to show that every such game has an
SNE. For this class of games, the PoA and PoS were studied for the subclasses
of games with fixed k, as functions of k. The PoS is equal to 1 here as well, and
a complete analysis with tight bounds of the PoA as a function of k was given.
For k = 2 any NE is a socially optimal solution (thus the PoA is equal to 1, but
not every optimal solution is an NE). For k = 3 the PoA is equal to 11

7 , and for
any k ≥ 4 it is equal to 2 − 1

k . The overall PoA (over all values of k) is exactly
2. Interestingly, this property does not depend on the allowed item sizes, even if
items are restricted to be smaller than some value, still the overall PoA is 2. For
standard bin packing, this is not the case (already the approximation ratio of FF
tends to 1 when item sizes are very small) [49,30]. Additionally, one may expect
that cardinality constraints would have a different effect on the PoA. Intuitively,
it seems that very large values of k should have the same effect as no cardinality
constaints, but comparing these results to the results of [27] it can be seen that
this is not the case. Another possible expected behavior could be an increase of
the approximation ratio by 1 for large k as in [54,26], but this is not the case
here either.
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Multidimensional Generalizations. There are several kinds of multidimen-
sional bin packing problems. The dimension is usually denoted by d ≥ 2, and
obviously bounds depend on this parameter. In geometric packing [34,11,8], bins
are multidimensional cubes (or squares, if d = 2), and the items are boxes (or
rectangles, if d = 2). The items are to be packed in a non-overlapping manner
into the bins, such that the sides of the items are parallel to the sides of the bin.
In oriented packing, items cannot be rotated, while non-oriented packing is the
variant where an item can be rotated arbitrarily. There are variants where items
can be rotated only in specific directions [61,33]. The special case (of all these
variants) where items are cubes or squares is of particular interest. In vector
packing [69,15,8], bins are d-dimensional all-1 vectors, while items are non-zero
vectors of the same dimension whose components are in [0, 1]. The last problem
with d ≥ 2 generalizes bin packing with cardinality constraints (see [12]). Payoffs
of geometric packing games as well as vector packing games are defined similarly
to the one-dimensional one, and the proportional weights are defined according
to area or volume, where the volume of a d-dimensional box is its actual volume,
and the volume of a vector is the sum of its components. GSC can be applied
on inputs of these problems as well, showing that such games always have SNE
(but papers that studied such games usually prove directly that every such game
has at least one NE).

Two-dimensional geometric bin packing games were considered in [37]. It is
shown that the PoA for rectangle packing games is unbounded, while the PoA
for square packing games is constant. Ye and Chen [70] studied d-dimensional
vector packing games. They showed that the PoA for this class of games is Θ(d).
The upper bound shown by [70] once again follows from the relation to FF.
Improved bounds were given in [29]. In particular, it is proved in [29] that the
PoA for d dimensions exceeds the PoA for one dimension by at least d− 1, and
thus it is at least d+ 0.6416.

5 Summary

We surveyed the state-of-the-art for bin packing games with selfish items. Ob-
viously, as there are many variants of bin packing, many other classes of games
can be studied. It is also interesting to design polynomial time algorithms for
computing NE for those variants for which such algorithms are not known, and
to analyze additional kinds of equilibria.
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A Constructive Proof of the Topological Kruskal
Theorem

Jean Goubault-Larrecq
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Abstract. We give a constructive proof of Kruskal’s Tree Theorem—
precisely, of a topological extension of it. The proof is in the style of
a constructive proof of Higman’s Lemma due to Murthy and Russell
(1990), and illuminates the role of regular expressions there. In the pro-
cess, we discover an extension of Dershowitz’ recursive path ordering to
a form of cyclic terms which we call μ-terms. This all came from recent
research on Noetherian spaces, and serves as a teaser for their theory.

1 Introduction

Kruskal’s Theorem [33] states that the homeomorphic embedding ordering on
finite trees is a a well quasi-ordering. This is a deep and fundamental theorem in
the theory of well quasi-orderings. The aim of this paper is to give a constructive,
that is, an intuitionistic proof of this fact1.

I will explain what all that means in Section 2. I should probably admit right
away that I have not actively looked for such a proof. It came to me in 2010 as
a serendipitous by-product of research I was doing on Noetherian spaces, seen
as a generalization of well quasi-ordered spaces. The result is, hopefully, a nice
piece of mathematics. It is also an opportunity for me to explain various related
developments which I would dare to say have independent interest.

I would like to issue a word of warning, though. The constructive proofs of
the topological Higman and Kruskal theorems I am giving here were the first
I found. The non-constructive proofs of [29, Section 9.7] came second. These
are the ones I chose to publish, for good reason: once cast in formal language,
the original constructive proofs are terribly heavy. I have therefore opted for
a somewhat lighter presentation here, which stresses the beautiful core of the
proof, at the cost at being somewhat sketchy in Sections 4 (Higman) and 5
(Kruskal). And this core is: these theorems reduce to questions of termination
problems, which one can solve by using multiset orderings (Higman), resp. an
extension of Dershowitz’ multiset path ordering (Kruskal).

1 I will avoid any debate of what intuitionism or constructivism is, and assume the
logic of any of the modern proof assistants based on intuitionistic type theory, such
as Coq [6]. The full calculus of inductive constructions with universes is definitely
not needed, though. I only need first-order intuitionistic logic, plus a few inductively
defined predicates and relations, and their associated induction principles.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 22–41, 2013.
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2 Well Quasi-Orderings, Noetherian Spaces

A quasi-ordering on a set X is a reflexive and transitive binary relation � on X .
Given a subset A of X , we write �A for its upward closure �y � X � �x � A �x �
y�, and call A upward closed if and only if A 	 �A. A basis of an upward closed
subset E is any set A such that E 	 �A; E has a finite basis if and only if one
can take A finite. We define the downward closure 
A, and downward closed
subsets, similarly. We also write � for the converse of �, � for the strict part of
� (x � y iff x � y and not y � x),  for that of �.

There are many equivalent definitions of a well quasi-ordering (wqo for short),
of which here are a few:

1. every infinite sequence �xn�n�N in X is good, namely, there are two indices
m � n with xm � xn;

2. every infinite sequence �xn�n�N in X is perfect, i.e., has an infinite ascending
subsequence xn0 � xn1 � . . . � xni � . . . (with n0 � n1 � . . . � ni � . . .);

3. � is well-founded (there is no infinite descending sequence of elements x0 
x1  . . .  xn  . . .) and has no infinite antichain (an infinite sequence of
pairwise incomparable elements);

4. every upward closed subset U has a finite basis;
5. every ascending chain U0 � U1 � . . . � Un � . . . of upward closed subsets is

stationary (i.e., all Uns are equal from some rank n onwards);
6. every descending chain F0 � F1 � . . . � Fn � . . . of downward closed subsets

is stationary;
7. the strict inclusion ordering � is well-founded on downward closed subsets,

i.e., there is no infinite descending chain F0 � F1 � . . . � Fn � . . . of
downward closed subsets.

The latter shows that being a wqo is merely a termination property, only one
not on words, or on terms, as would be familiar in computer science [13], but
rather on downward closed subsets.

There are many useful wqos in nature: N with its natural ordering �, any
finite set, any finite product of wqos (in particular Nk with its componentwise
ordering: this is Dickson’s Lemma [18]), any finite coproduct of wqos, the set of
finite words X� over a well-quasi-ordered alphabet X (with the so-called word
embedding quasi-ordering: this is Higman’s Lemma [30]), the set of finite trees,
a.k.a., first-order terms, T �X� over a well-quasi-ordered signature X (with the
so-called tree embedding quasi-ordering: this is Kruskal’s Theorem [33]), notably.

There are also more and more applications of wqo theory in computer science.

Termination. An early application is Nachum Dershowitz’ discovery of the mul-
tiset path ordering on terms. This is a strict ordering �mpo on terms that is
well-founded, i.e., such that there is no infinite mpo-chain t0 

mpo t1 
mpo

. . . mpo tn 
mpo . . .: to show that a rewrite system R terminates, it is enough

to show that 
 mpo r for every rule 
� r in R. Dershowitz’ initial proof ([12],
see also [11]) rested on the remark that mpo is a simplification ordering: if t em-
beds into s, then t �mpo s. Given any infinite mpo-descending chain as above,
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by Kruskal’s Theorem one can find i � j such that ti embeds into tj . It follows
that ti �mpo tj , contradicting ti mpo tj . This uses characterization 1 of wqos.

This simple argument definitely relies on Kruskal’s deep result. The realization
that Dershowitz’ theorem required much less logical clout [26,8] came to me as
both a relief and a disappointment : I’ll recapitulate the elementary argument in
Section 3. I’ll also give a slight extension of this elementary argument to a form
of cyclic terms I have decided to call μ-terms. This will be instrumental in the
rest of the paper, and may even be useful in the rewriting community.

Minimal patterns. A second application arises from characterization 4. Given
an upward closed language L of elements in a wqo X , one can test whether
x � L by just checking finitely many equalities x1 � x, . . . , xn � x. Indeed,
property 4 states that one can write L as ��x1, . . . , xn�. For example, this is how
van der Meyden shows that fixed monadic queries to indefinite databases can
be evaluated in linear time in the size of the database [44], where x, x1, . . . , xn
are (encodings of models as) finite sequences of finite sets of logical atoms. The
query L defines the minimal patterns x1, . . . , xn to be checked, in the embedding
quasi-ordering on words. That the latter is a wqo is Higman’s Lemma, and the
fact that its standard proofs are non-constructive implies the curious fact that
one cannot a priori compute x1, . . . , xn from L. That is, a linear time algorithm
exists for each L. . . but what is it? Ogawa [40] solves the issue by extracting the
computational content of Murthy and Russell’s constructive proof of Higman’s
Lemma [37]. This computes the values x1, . . . , xn, hence derives a linear-time
algorithm for the query L, from L given as input.

WSTS. Another application is in verification of well-structured transition sys-
tems (WSTS) [1,25]. A WSTS is a (possible infinite-state) transition system
�X,��, with a wqo � of the set of states X , satisfying a monotonicity property.
For simplicity, we shall only consider strong monotonicity: if s � s� and s � t,
then there is a state t� such that t� t� and s� � t�.

Examples of WSTS abound. Petri nets are WSTS whose state space is Nk,
where k is the number of places. Affine nets [24] generalize these and many other
variants, and are still WSTS on Nk. Lossy channel systems [3] are networks of
finite-state automata that communicate over FIFO queues. They are WSTS
whose state space is

�m
i�1Qi �

�n
j�1Σ

�
j , where Qi is the finite state space of

the ith automaton, and Σj is the finite alphabet of the jth queue. Let us also
cite data nets [34], BVASS [46,10], and recent developments in the analysis of
processes [36,4,47,42], which require tree representations of state.

The simple structure of a WSTS implies that coverability is decidable in every
effective WSTS. This is the following question: given a state s � X and an upward
closed subset U of X , is there a state t � U that is reachable from s, i.e., such
that s �� t, where �� is the reflexive-transitive closure of �? By effective
WSTS, we mean that we can represent states on a computer (which implies
that every upward closed subset U is representable as well, as a finite set E,
by property 4), that � is decidable, and that the set of one-step predecessors
Pre�U� 	 �s � X � �t � U � s � t� of a state t is computable. This is the case
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of all WSTS mentioned above. Inclusion of upward closed subsets is decidable,
since �E1 � �E2 if and only if for every x � E1, there is a y � E2 with y � x.
That coverability is decidable is almost trivial: using a while loop, compute the
successive sets U0 	 U , Un�1 	 Un � Pre�Un�, and stop when Un�1 � Un;
this must eventually happen by property 5. Then there is a state in U that is
reachable from s if and only if s � Un.

In 1969, Karp and Miller [32] devised another way (historically, the first one)
of deciding coverability. They built a so-called coverability tree, and showed that
it was finite and effectively constructible by resorting to Dickson’s Lemma, plus
a few additional tricks. One of the tricks they required was to extend the state
space from Nk to Nk

ω, where Nω is N plus a fresh top element ω, the limit of any
ever growing sequence. Although it would seem natural that the construction
would generalize to every WSTS, progress was slow. One of the blocking factors
was to define a completion �X of a well quasi-ordered state space X , so that Karp
and Miller’s construction would adapt.

By analogy with Nk, �X should be X with some limit points added, and this
naturally calls for topology. Alain Finkel once asked me whether there would be
a notion of completion from topology that could serve this purpose. We realized
that the sobrification of X (see [29, Section 8.2]) was the right candidate, and
this led us to a satisfactory extension of Karp and Miller’s procedure to all WSTS
[20,21,23].

Noetherian spaces. In the process, going to topology begged the question whether
there is a topological characterization of wqos. I realized in [27] that this would
be the notion of Noetherian space, invented in algebraic geometry in the first
half of the 20th century. A Noetherian space is a space where every ascending
chain of opens is stationary: comparing this with property 5, we have merely
replaced “upward closed” by “open”.

Every quasi-ordered set can be equipped with the so-called Alexandroff topol-
ogy, whose opens are just the upward closed subsets. Property 5 immediately
implies that every wqo is Noetherian, once equipped with its Alexandroff topol-
ogy. The framework of Noetherian spaces also allows us to extend the WSTS
methodology to more kinds of transition systems. I have explained this in [28],
applying this to two examples: a certain kind of multi-stack automata, and con-
current polynomial programs manipulating numerical values (in R) that com-
municate through discrete signals over lossy channels. The decidability results
that I’m stating in these settings are far from trivial, but are low-hanging fruit
once we have the theory of Noetherian spaces available.

By “theory of Noetherian spaces”, I do not mean the one we inherit from
algebraic geometry, rather some natural results that arise from cross-fertilization
with wqo theory. (See [29, Section 9.7] for a complete treatment.) Of interest to
us are the following generalizations of Higman’s Lemma and Kruskal’s Theorem,
respectively:

Topological Higman Lemma [29, Theorem 9.7.33]: if X is Noetherian, then
the space of finite words X� with the word topology is Noetherian, too.
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Topological Kruskal Theorem [29, Theorem 9.7.46]: ifX is Noetherian, then
set space of finite trees T �X� with symbol functions taken from X is Noethe-
rian under the tree topology.

We define the word and tree topologies as follows. Intuitively, think of an open
set U as a test—namely, x passes the test if and only if x � U . In the word
topology, we wish the following to be a test: given tests U1, . . . , Un on letters
(open subsets of X), the word w passes the test X�U1X

� . . . X�UnX
� if and

only if w contains a (not necessarily contiguous) subword a1a2 . . . an with each
ai in Ui. In the tree topology, the basic tests are whether a given tree has an
embedded subtree of a given shape, and where each function symbol is in a given
open subset of X (possibly different at each node). In each case, these tests form
bases for the required topologies, i.e., the opens are all unions of such tests.

The proofs I give of these theorems in [29, Section 9.7] are elegant, yet terribly
topological, and rest on many results that require classical logic, and the Axiom
of Choice. Instead, we shall use the following remark.

Call a closed subset F irreducible if and only if, for every finite family of
closed subsets F1, . . . , Fn, if F � F1� . . .�Fn, then F � Fi for some i already.
By [29, Theorem 9.7.12], a space X is Noetherian if and only if: �
� the strict
inclusion relation � is well-founded on the set S�X� of irreducible closed subsets
of X (S�X� happens to be the sobrification of X we alluded to above), �T � the
whole space X can be written as the union of finitely many irreducible closed
subsets of X , and �W � given any two irreducible closed subsets F1, F2 of X ,
F1 � F2 can be written as the union of finitely many irreducible closed subsets
of X . It follows that every closed subset will be a finite union of irreducible
closed subsets, and that the strict inclusion ordering � will be well-founded on
closed subsets. The latter generalizes property 7, since in a quasi-ordered set,
the (Alexandroff) closed sets are exactly the downward closed sets.

This leads us to the following proof plan:

(A) Find concrete representations of all irreducible closed subsets. This pro-
gramme was initiated in [20] and carried out in [22], where we call the latter
S-representations. In both the word and tree cases, our S-representations are
certain forms of regular expressions, over words, or over trees. On words,
this generalizes the products and the semi-linear regular expressions (SRE)
of [2]; on trees, no prior work seems to have existed. These are effective rep-
resentations: we can decide inclusion (in polynomial time, modulo an oracle
deciding inclusion of irreducible closed subsets of letters, resp., of function
symbols), and we can compute finite intersections of S-representations (in
polynomial time again, provided the number of input representations is
bounded).

(B) Show directly that strict inclusion is well-founded on S-representations. This
will establish property �
�. Properties �T � and �W � are mostly obvious, since
we even have algorithms to compute finite intersections.

In the case of the topological Higman Lemma (on words), we shall obtain a
re-reading of Murthy and Russell’s celebrated constructive proof of Higman’s
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Lemma ([37]; see also [40], footnotes 6 and 7, for fixes to the definition of se-
quential regular expression). Our S-representations will be their sequential reg-
ular expressions, seen as the result of building SREs (originating in [2]) over
a cotopology. Our constructive proof of Kruskal’s Theorem, and indeed of its
topological generalization, is in the same spirit, and we believe it provides a
satisfactory answer to Murthy and Russell’s final question [37].

Intuitionism. One difficulty with finding intuitionistic proofs in the theory of
wqos is that properties 1–7 are not constructively equivalent. Notably, 2 is intu-
itionistically strictly stronger than 1, as Veldman notes [45, 1.3]. Indeed, 2 fails
on X 	 N in an intuitionistic setting, while 1 is constructively valid. Similarly,
4 fails on N2, intuitionistically, even for decidable subsets of N2 [45, 1.2].

Following Murthy and Russell, a constructive wqo is defined by the following
reformulation of property 1: (1’) the opposite of the prefix ordering on bad finite
sequences of words in X� is well-founded. A finite sequence x0, x1, . . . , xn is
bad iff it is not good, that is, if xi � xj for no i � j. The well-foundedness
requirement means that one cannot extend finite sequences (adding xn�1, xn�2,
etc.) indefinitely, keeping them all bad.

Murthy and Russell actually proved property 7. They derived (1’) from 7,
assuming � decidable in the constructive sense that �x, y � X � x � y ���x �
y� is provable. All the other constructive proofs I know of Higman’s Lemma
prove (1’), some of them directly [41,7,5]; the latter two do not require � to
be decidable. There are fewer intuitionistic proof of Kruskal’s Theorem. One is
due to Monika Seisenberger [43], who gives a direct proof of (1’) on trees, based
on a intuitionistic variant of Nash-Williams’ minimal bad sequence argument
[38]. She requires the quasi-ordering � on function symbols to be decidable.
Wim Veldman’s proof [45] does not make this requirement, but models tree
embedding with so-called at-most-ternary relations rather than using a binary
relation �. He shows that Kruskal’s original proof [33] can be made constructive,
replaying the needed part of Ramsey theory in intuitionistic logic. Curiously, our
proofs of the topological versions of Higman’s Lemma and Kruskal’s Theorem
are entirely constructive, and we only need to assume � decidable to deduce the
ordinary, order-theoretic versions of these results from the topological versions.

3 Path Orderings

Path orderings (mpo, lpo, rpo) have been an essential ingredient of termination
proofs for rewrite systems since their inception by Nachum Dershowitz in 1982
[12]. We shall concentrate on Dershowitz’ original multiset path ordering (a.k.a.,
mpo). He proved that the mpo was well-founded as a consequence of Kruskal’s
Theorem. We give an elementary, inductive, intuitionistic proof instead. This is
based on a paper I wrote in 2001 [26]. Coupet-Grimal and Delobel [8] imple-
mented a similar proof in Coq, with a proof of the Dershowitz-Manna Theo-
rem (which I had not given, but Nipkow had [39]—see below). Dershowitz and
Hoot’s earlier proof that the general path ordering is well-founded [15] is non-
constructive but elementary as well. Even earlier, Lescanne had already given an
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inductive proof that the mpo was well-founded [35, Theorem 5]; his proof relies
on Zorn’s Lemma (op.cit., Lemma 5), and ours will be simpler anyway, but his
notion of decomposition ordering is illuminating.

Let X be a set with a binary relation � on it. We again write  for the
converse of �. One thinks of � as a strict ordering, but this is not needed. What
will be important is that � is well-founded : classically, this means that there is
no infinite -chain x1  x2  . . .  xn  . . . Constructively, it is better to say
that � is well-founded iff every element is �-accessible, where �-accessibility is
the predicate defined inductively by (i.e., the least predicate such that):

every y � x is �-accessible

x is �-accessible

The set of �-accessible elements is traditionally called the well-founded part
of �, i.e., the set of elements that cannot start an infinite -chain. Since �-
accessibility is defined inductively, we obtain the following useful principle of
�-induction: to prove that a property P holds of every �-accessible element x,
it is enough to show it under the additional assumption that P holds of every
y � x (the induction hypothesis). Another useful principle is �-inversion: if x is
�-accessible, and x  y, then y is �-accessible as well.

Write ��x1, . . . , xn�� for the (finite) multiset consisting of the elements x1, . . . ,
xn � X . Let ��� be the empty multiset, and � denote multiset union. We use
the letters M , M �, . . . , for multisets. Intuitionistically, we assume an inductive
definition of multisets, e.g., as finite lists, and we will reason up to permutation.
(This actually incurs some practical difficulties in proof assistants such as Coq,
which we shall merrily gloss over.) On the set M�X� of multisets of elements of
X , we define the multiset extension �mul of �, inductively, by:

for every i (1 � i � n), x  xi

M � ��x�� mul M � ��x1, . . . , xn��

That is, we replace some element x by arbitrarily many smaller elements x1, . . . ,
xn. The following Dershowitz-Manna Theorem [17] is crucial.

Lemma 1 (Dershowitz-Manna, Nipkow). For all �-accessible elements x1,
. . . , xn � X, ��x1, . . . , xn�� is �mul-accessible. In particular, if � is well-founded
on X, then �mul is well-founded on M�X�.

Proof. We give Nipkow’s intuitionistic proof [39]. Let Acc denote the set of �mul-
accessible multisets. We prove that ��x1, . . . , xn�� � Acc by induction on n. The
case n 	 0 is obvious, while the induction step consists in showing that, for
every �-accessible x: ��� for every M � Acc, M ���x�� � Acc. Fix an �-accessible
x, and use �-induction. This provides us with the induction hypothesis: �a� for
every y � x, for every M � Acc, M � ��y�� � Acc. To prove ���, we show by
�mul-induction on M � Acc that: ���� M � ��x�� � Acc. This gives us the extra
induction hypothesis �b�: for every M � �mul M , M ����x�� � Acc. It now remains
to show that �a� and �b� imply ����. By definition of �mul-accessibility, this
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means showing that every multiset M1 �mul M � ��x�� is in Acc. There are two
cases: either M1 	 M � � ��x�� for some M � �mul M , and the claim follows from
�b�; or M1 	 M � ��x1, . . . , xm�� with x  x1, . . . , xm, then the claim follows by
induction on m, using �b� in the base case and �a� in the induction step. � 

It follows that, under the same assumptions, the transitive closure ��
mul of �mul

is well-founded: for any relation R, R-accessibility and R�-accessibility coincide.
Let now Σ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples f�t1, . . . , tn� of an element f of Σ and of finitely
many terms t1, . . . , tn. The base case is obtained when n 	 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application x�� to no argument. However, please do not confuse
the latter (free) variables with the (μ-bound) variables that we introduce later.

Let ! be the relation defined inductively by: f�s1, . . . , sm� ! g�t1, . . . , tn� if
and only if f 	 g, m 	 n, and there is a permutation π of �1, . . . , n� such that
sπ�i� ! ti for each i, 1 � i � n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation � on Σ. The multiset path ordering, or
mpo, �mpo is defined inductively (together with an auxiliary relation ") by:

�i � si
�
	

mpo t
�Sub�

f�s1, . . . , sm� 
mpo t

f�s1, . . . , sm� # g�t1, . . . , tn�
�j � f�s1, . . . , sm� 

mpo tj
�Gt�

f�s1, . . . , sm� 
mpo g�t1, . . . , tn�

where s �
	

mpo t abbreviates s mpo t or s ! t, and here are the clauses for ":

f � g
�� Fun�

f�s1, . . . , sm� � g�t1, . . . , tn�

��s1, . . . , sm�� ��
mpo��mul ��t1, . . . , tn��

�� Args�
f�s1, . . . , sm� � f�t1, . . . , tn�

In other words, " is the lexicographic product of � and of ��mpo��mul. The
relation " is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
f�s1, . . . , sm� with f �-accessible and s1, . . . , sm �mpo-accessible. Beware that
this does not mean that any #-chain starting from a term f�s1, . . . , sm� with
f �-accessible and s1, . . . , sm �mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term g�t1, . . . , tn� where
g is not �-accessible, or where some tj is not �mpo-accessible. Intuitionistically,
we define the restriction "
Acc of " to Acc by t "
Acc s iff t � Acc and s � Acc

and t " s; and we note that every term in Acc is "
Acc-accessible.
Replacing # by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
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ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all �-accessible is �mpo-
accessible. In particular, if � is well-founded, then �mpo is well-founded on
terms.

Proof. In the course of the proof, we shall need to observe that: ��� for every
�mpo-accessible term u, for every term t such that u ! t, t is �mpo-accessible.
This requires us to show first that if u ! t and t mpo s, then u mpo s, an easy
induction on the definition of �mpo. We show ��� by �mpo-induction on u, i.e.,
that for every t such that u ! t, for every s �mpo t, s is �mpo-accessible; the
assumptions imply s �mpo u, and the claim follows by induction hypothesis.

Let Acc be the set of �mpo-accessible terms, and W be the set of terms whose
function symbols are all �-accessible. As above, we define Acc as the set of terms
of the form f�t1, . . . , tn� such that f is �-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t �W is in Acc, by structural induction on t.
This means showing that for every s � Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation $, defined inductively by g�t1, . . . , tm� %
tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s � Acc that is not in Acc. In
other words, the set Acc�Acc is non-empty. Since " is
a lifting, it is well-founded on Acc, hence on Acc�Acc:
so there is a "-minimal element s in Acc � Acc. Since
s & Acc, it starts an infinite mpo-chain, so s mpo t
for some t & Acc. Among these terms t we pick one that
is $-minimal: writing t as g�t1, . . . , tn�, this assures us
that for every j such that s mpo tj , tj � Acc.

Acc � Acc

�

�mpo

�mpo
�mpo�mpo

�-minimal

�

�

t � g�t1 , . . . , tn�

s � f�s1, . . . , sm�

The fact s mpo t is obtained by rule �Sub� or by rule �Gt�. �Sub� is out of the
question, though, since that would mean s 	 f�s1, . . . , sm� with some si �	

mpo t;
but s � Acc implies si � Acc, hence t � Acc, either because si ! t, using ���,
or because si 

mpo t, using �mpo-inversion: contradiction. So rule �Gt� must
have been used: s # t 	 g�t1, . . . , tn� with s mpo tj for every j. Since s was
chosen #-minimal, t cannot be in Acc�Acc, and since t & Acc, t is not in Acc:
so tj & Acc for some j. However, s mpo tj together with the fact that t was
$-minimal implies tj � Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s � Acc then s � Acc.
Since " is a lifting, s � Acc is "
Acc-accessible, so "
Acc-induction applies and
we obtain the following induction hypothesis: �a� for every t " s, if t � Acc then
t � Acc. Our goal is to prove that s � Acc, i.e., that every t �mpo s is in Acc.
We show this by $-induction on t 	 g�t1, . . . , tn�, which means that we have the
extra induction hypothesis: �b� for every j, if tj �mpo s then tj � Acc. If t �mpo s
was obtained by �Sub�, then s 	 f�s1, . . . , sm� with si

�
	

mpo t for some i; since
s � Acc, si � Acc hence t � Acc, either by ��� if si ! t, or by �mpo-inversion if
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si 
mpo t. If t �mpo s was obtained by �Gt�, then s # t and s mpo tj for every

j. By �b�, tj � Acc for every j. Also, s # t implies f �
	 g, and since s � Acc, f is

�-accessible, hence also g: so t 	 g�t1, . . . , tn� is in Acc. By �a�, t � Acc. � 

I’m not claiming that the above proof is novel. This is the core of Theorem 1
of [26], later improved by Dawson and Goré [9]. Dershowitz [14] gives a broader
perspective on this kind of results. That its proof is constructive is also one
argument set forth in [26], and, as I’ve said already, this was made precise and
implemented in Coq by Coupet-Grimal and Delobel [8].

I had also argued that the proof technique of [26] extended to prove abstract
termination arguments, some of whose applied to graphs, for example. I’ll de-
velop this now for a new relation on a class of so-called μ-terms, defined by the
following (pseudo-)grammar:

s, t, u, v, . . . ::	 x variables
� f�t1, . . . , tn� applications, f � Σ,n � N
� μx 	 s � t iterators.

The iterator μx 	 s�x� � t should be thought of as some kind of infinite term
. . . s�. . . s�s�t�� . . .�. The variable x is bound in μx 	 s�t, its scope is s. A term t is
ground if and only if fv�t� 	 �, where the set fv�t� of free variables of t is defined
inductively by fv�x� 	 �x�, fv�f�s1, . . . , sm�� 	

�m
i�1 fv�si�, fv�μx 	 s � s�� 	

�fv�s�� �x�� � fv�s��. For instance, μx 	 f�x� � g�a� is a ground μ-term.
Again, we give ourselves a precedence � on Σ. We extend the definition of !

by letting μx 	 s � s� ! μx 	 t � t� if and only if s ! t and s� ! t�, and x ! x
for every variable x. (We make an abuse of notation here and silently assume a
form of α-renaming. A more correct definition would be: μx 	 s � s� ! μy 	 t � t�

iff s'x :	 z( ! t'y :	 z( and s� ! t�, for z a fresh variable. We shall make similar
abuses of notation in rules �μGtμ�, �μ"� and �μ"μ� below, to avoid clutter.) We
take the same rules defining �mpo and " as above, and add the following to also
compare variables and iterations, either together or with other terms:

(t ground μ-term)
�V ar�

x mpo t

s� �	
mpo t

�μSub�
μx 	 s � s� mpo t

μx 	 s � s� # g�t1, . . . , tn�
�j � μx 	 s � s� mpo tj

�μGt�
μx 	 s � s� mpo g�t1, . . . , tn�

μx 	 s � s� # μx 	 t � t�

μx 	 s � s� mpo t�
�μGtμ�

μx 	 s � s� mpo μx 	 t � t�

s mpo g�t1, . . . , tn�
�μ"�

μx 	 s � s� # g�t1, . . . , tn�

s mpo t
�μ"μ�

μx 	 s � s� # μx 	 t � t�

The unusual rule �V ar� states that every ground μ-term is strictly smaller than
any variable. This allows us to check, for example, that μx 	 f�x� � g�a� mpo

f�f�f�f�g�a�����, where a is a constant: using �μGt� and �μ"�, this requires us
to check two premises, of which one is f�x� mpo f�f�f�f�g�a�����; the latter
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follows, using �Gt�, from x mpo f�f�f�g�a����, and this, in turn, is an instance
of �V ar�. We leave the rest of the verification to the reader.

The above rules are probably not the ones one would have imagined. In
particular, it would seem natural to consider μx 	 s�x� � s� and s�μx 	 s � s��
as equivalent. This would suggest the following alternative to �μGt�: to prove
μx 	 s�x� � s� mpo t (where t 	 g�t1, . . . , tn�, and for simplicity we assume
both sides of the inequality to be ground), prove s�μx 	 s�x� � s�� mpo t and
�j � μx 	 s � s� mpo tj . Instead of proving s�μx 	 s�x� � s�� mpo t, �μGt� (to-
gether with �μ"�) only requires us to prove s�x� mpo t, a seemingly much
weaker statement, since x is not just greater than or equal to μx 	 s�x� � s�, but
strictly greater than any ground term by �V ar�. Although they are not what
we would imagined at first, these are the rules that arise from our study of the
topological Kruskal Theorem (Section 5).

The following is new, and probably useful in other contexts. Our proof is
intuitionistic. The proof is similar to Proposition 1, or to Theorem 1 of [26], but
we need a few easy additional arguments near the end of the proof.

Theorem 1. Every μ-term whose function symbols are all �-accessible is �mpo-
accessible. In particular, if � is well-founded, then �mpo is well-founded on μ-
terms.

Proof. One might think that Theorem 1 is an easy consequence of Proposition 1:
encode μx 	 s � s� as the ordinary term μ�s, s��, and the variable x as x��, and
extend the precedence appropriately. This strategy does not work, as for example
�V ar� requires x mpo μx 	 f�x��g�a�. In the encoding, this would force x mpo

μ�f�x�, g�a��, which is plainly false, since μ�f�x�, g�a�� mpo x.
We imitate the proof of Proposition 1. Again, we have: ��� for every �mpo-

accessible μ-term u, for every μ-term t such that u ! t, t is �mpo-accessible.
Define the immediate subterms of a μ-term in the expected way, as follows: the
immediate subterms of g�t1, . . . , tm� are t1, . . . , tn, the immediate subterms of
μx 	 s � s� are s and s�, and variables have no immediate subterms. We need to
define $ slightly differently, inductively, by: �i� g�t1, . . . , tm� % tj for all g � Σ,
μ-terms t1, . . . , tm and j; �ii� x % t for every variable x and ground μ-term t;
�iii� μx 	 s � s� % s� (not s!).

We first show that $ is well-founded. This is done in several steps. We first
show that every ground μ-term t is $-accessible, by induction on t; crucially, if
μx 	 s � s� is ground and μx 	 s � s� % s�, then s� is ground and the induction
hypothesis applies. We then do a secondary induction to establish that every
μ-term is $-accessible, using the previous claim in the case of variables.

Let Acc be the set of �mpo-accessible μ-terms, and W be the set of μ-terms
whose function symbols are all �-accessible. Say that a μ-term is head accessible
if and only if it is a variable, an iterator μx 	 s � s� with s head accessible, or an
application f�s1, . . . , sm� with f �-accessible. The point is: �)� if s # g�t1, . . . , tn�
and s is head accessible, then g is �-accessible. This is proved by induction on
the proof of s # g�t1, . . . , tn�; the base case is when s is of the form f�s1, . . . , sm�,
where necessarily f � g, and f is �-accessible since s is head accessible.
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We also define Acc as the set of head accessible μ-terms s whose immediate
subterms are all in Acc.

Again, " is a lifting, namely, every term in Acc is "
Acc-accessible. This is
proved in two steps. We first show that every variable x is "
Acc-accessible (vac-
uous: x # t for no μ-term t), and that every application f�s1, . . . , sm� in Acc is
"
Acc-accessible: this is by double induction (�-induction on f , then ��mpo��mul-
induction on ��s1, . . . , sm��), using the fact that f�s1, . . . , sm� # t implies that
t 	 g�t1, . . . , tn� with f  g or [f 	 g and ��s1, . . . , sm�� �mpo��mul ��t1, . . . , tn��].
We then show that every iterator μx 	 s � s� in Acc is "
Acc-accessible, by �mpo-
induction on s. To do so, we consider the μ-terms t � Acc such that t " μx 	 s�s�.
Those obtained by rule �μ"� are "
Acc-accessible by the first step, and those ob-
tained by rule �μ"μ� are "
Acc-accessible by the induction hypothesis.

Let us pause a minute, and observe the following, called ‘Property 1’ in [26].
For all μ-terms s, t, if s mpo t then either:

�i� s % u �
	

mpo t for some μ-term u, or:
�ii� s # t and s mpo u for every u $ t.

Case �i� happens in case s mpo t was derived using �Sub�, �μSub�, or �V ar�.
Case �ii� happens in case it was derived using �Gt�, �μGt�, or �μGtμ�.

We now show that every t � W is in Acc, by structural induction on t. This
means showing that for every s � Acc, s is in Acc. Since " is a lifting, s �
Acc is "
Acc-accessible, so "
Acc-induction applies and we obtain the following
induction hypothesis: �a� for every t " s, if t � Acc then t � Acc. Our goal is
to prove that s � Acc, i.e., that every t �mpo s is in Acc. We show this by $-
induction on t, which means that we have the extra induction hypothesis: �b� for
every u $ t, if u �mpo s then u � Acc. Since t �mpo s, either �i� or �ii� is true.
If �i� holds, then s % u �

	
mpo t, so u � Acc since s � Acc and u $ s; therefore

t � Acc, by ��� if u ! t, by �mpo-inversion if u mpo t. So assume �ii�. We claim
that t is in Acc. This is trivial if t is a variable. If t is an application g�t1, . . . , tn�
then for each j, tj $ s, so by taking u 	 tj in �b�, we obtain that tj is in Acc;
g is �-accessible since s # g�t1, . . . , tn�, using �)�; so t � Acc. If t is an iterator
μx 	 t1 � t2, then �b� only implies that t2 is in Acc. To obtain t1 � Acc, we realize
that we can only have derived s # t by rule �μ"μ�, which implies that s is of
the form μx 	 s1 � s2 with s1 

mpo t1: since s � Acc, s1 is in Acc hence t1 is in
Acc by �mpo-inversion. In any case, t is in Acc. Since also t " s, �a� applies, so
that t is in Acc, as desired. � 

4 A Constructive Proof of Higman’s Lemma

It is time to apply all this and prove the topological Higman Lemma. Given a set
X with a quasi-ordering �, the embedding quasi-ordering �� on X� is the small-
est relation such that x1 � y1, . . . , xn � yn imply x1 . . . xn � w0y1w1 . . . wn�1

ynwn, where w0, w1, . . . , wn�1, wn are arbitrary words in X�. In other words,
to go down in ��, remove some letters and replace the others by smaller ones.
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Higman’s Lemma states that if � is wqo, then so is ��. The topological Higman
Lemma states that if X is a Noetherian topological space, then X� with the
word topology is Noetherian, too. We have already discussed this in Section 2.

Step (A) of our proof plan consists in discovering an S-representation of X�,
for X Noetherian. (Step (A) is not constructive.) In [22], we defined an S-
representation of a Noetherian space X as a tuple �S,S �_� ,�, τ,*�, where
S is a set of elements, meant to denote the irreducible closed subsets of X ,
through the denotation map �_�, � denotes inclusion, τ represents the whole
space, and * implements intersection. We change this slightly, and replace �

by its strict part � 2. Hence, call S-representation of a Noetherian space X
any tuple �S,�, τ,*�, where S is a set, �_� : S � S�X� is a bijective denota-
tion function, � is a binary relation on S denoting strict inclusion (i.e., a � b
iff �a� � �b�), τ is a finite subset of S denoting the whole of X (�τ� 	 X ,
where we extend the notation �a� for a � S to �A� for A � P�S�, by letting
�A� 	 �a�A �a�), and for all a, b � S, a* b is a finite subset of S denoting their
intersection (�a* b� 	 �a�� �b�). When X is Noetherian, � will be well-founded
(property �
�), τ will exist by property �T �, and * will make sense because of
property �W �.

Since �a�� is irreducible for every a� � A�, the inclusion �A� � �A�� is equivalent
to A �� A�, where we write � for the union of � and 	, and the Hoare quasi-
ordering �� is defined by: for every a � A, there is an a� � A� such that a � a�.
Since A, A� are antichains, one can encode them as multisets. A moment’s notice
shows that the strict part of �� is just �mul

�. This will be used to compare
antichains A, A� below.

eP �
w P �

�w1�
eP �

w e�P �

a � a� P �
w P �

�w2�
a?P �

w a�
?
P �

P �
w P �

�w3�
a?P �

w a?P �

�i 	 ei �
e A�� P �

w P �

�w4�
e1 . . . ekP �

w A��P �

P �
w P �

�w5�
A�P �

w A�P �

Fig. 1. Deciding strict inclusion between word-products

Given an S-representation �S,S �_� ,�, τ,*� of X , Theorem 6.14 of [22] gives
us an S-representation �Sw,S �_�w ,�w, τw,*w� of X�. Sw is a set of so-called
word-products, first invented in the setting of forward coverability procedures
for lossy channel systems [2]. Define the atomic expressions as a? with a � S
(denoting the set of words with at most one letter in �a�), and A� with A a non-
empty finite antichain of S (denoting the set of words, of arbitrary length, whose

2 In all rigor, we should also include the associated congruence 
, defined by a 
 b
iff a � b and b � a. We silently assume we are working in the quotient of the S-
representation by 
. In proof assistants such as Coq, this is not an option, and the
standard solution is to use setoid types. In any case, considering 
 explicitly would
make our exposition too complex, and we shall therefore avoid it. We also change
the notation from � to � to avoid a conflict with the relations � of Section 3.
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letters are all in �A�). The word-products P , P �, . . . , are the finite sequences
e1e2 . . . en of atomic expressions, denoting the concatenations of words in the
denotations of e1, e2, . . . , en, and we define Sw as those that are reduced, namely
those where �eiei�1�w is included neither in �ei�w nor in �ei�1�w for every i.
Inclusion between word-products is decidable, using simple formulae given for
example in [22, Lemma 6.8, Lemma 6.9], and this allows us to give computable
predicates that sieve out the non-reduced word-products. We are more interested
in the relation �w. Two reduced word-products, that is, two elements of Sw,
have equal denotations iff they are equal. One can show that the strict inclusion
relation �w on reduced word-products is defined inductively by the rules of
Figure 1. We write P �w P � for P �w P � or P 	 P �. We also define the
auxiliary relation �e (strict inclusion of atomic expressions) by: a? �e a�

? iff
a � a�; a? �e A�� iff a � a� for some a� � A�; A� �e a�

? never; and A� �e A�� iff
A ��

mul A
�. We define τw as the antichain �τ��, and omit the definition of *w

[22, Lemma 6.11].
We now embark on step (B) of our proof plan. Contrarily to step (A), we

must pay attention to only invoke constructive arguments. So forget everything
we have done in step (A), except for the final result. Say that �S,�, τ,*� is a
constructive S-representation (without reference to X) if and only if S is a set
with a strict ordering �, and where: �
� � is well-founded; �T � S 	 
 τ ; �W � for
all a, b � S, 
 a� 
 b 	 
�a* b�; � stands for the union of � and 	, 
A for the
downward closure of a subset A of S with respect to �, and 
 a for 
�a�.

We now posit �Sw,�w, τw,*w� by the syntax given above, in step (A). Sw is
the set of reduced word-products over S, �w is defined inductively by �w1�–�w5�,
τw 	 �τ��, and we define *w by the recursive formula of [22, Lemma 6.11].

Theorem 2. If �S,�, τ,*� is a constructive S-representation, then so is �Sw,
�w, τw,*w�.

Proof. (Sketch.) There is a boring part, consisting in checking that �w is a
strict ordering, and that properties �T � and �W � hold. We omit it here. The
interesting part is checking that �w is well-founded. Define a mapping μ from
atomic expressions to pairs �i, A� � �0, 1��M�S� by μ�a?� 	 �0, ��a���, μ�A�� 	
�1, A�, and order them by the lexicographical product � of the ordering 0 � 1
and of ��

mul. Extend μ to word-products by μ�e1 . . . en� 	 ��μ�e1�, . . . , μ�en���. In
other words, we look at word-products as though they were multisets of atomic
expressions, where the latter as read as multisets of letters from S, plus a tag,
0 or 1. It is fairly easy to show that for all reduced word-products P , P �, if
P � P � then μ�P � ��

mul μ�P
��, by induction on the structure of a proof of

P � P �. By Lemma 1, ��
mul is well-founded. By ��

mul-induction on μ�P �, P is
then �-accessible, for every P � Sw. � 

The statement of Theorem 2 seems very far from Higman’s Lemma. Call con-
structive Noetherian space any tuple �X,T,�, ε�, where � is a well-founded
ordering on the set T (T is the cotopology) whose reflexive closure � makes T
a distributive lattice (this much implies classically that �T,�� is the lattice of
closed subsets of some Noetherian space, up to isomorphism), and ε � X � T
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(membership) is a binary relation such that for all A,B � T , A � B iff for every
x ε A, x ε B. We observe the following:

�a� Given a constructive S-representation �S,�, τ,*�, we think of elements of S
as irreducible closed subsets of some Noetherian spaceX , and we can build all
closed sets as finite unions thereof. We encode the latter as finite antichains,
hence as multisets. Letting T 	M�S�, � 	 ��

mul then defines the canonical
cotopology on �S,�, τ,*�. Any subset X of S then gives rise to a constructive
Noetherian space �X,M�S�,��

mul, ε�, where x ε M iff ��x�� ��mul�
� M .

�b� Conversely, every cotopology �T,�� gives rise to a trivial constructive S-
representation �S,�, τ,*� where S 	 T , � is �, τ 	 �+� where + is the top
element of T , and A*B 	 �A�B� where � is meet in T .

Given �a� and �b�, Theorem 2 and Lemma 1 then imply:

Corollary 1 (Topological Higman Lemma, Constructively). For every
constructive Noetherian space �X,T,�, ε�, �X�,M�Tw�, ��w

mul�
�, εw� is a con-

structive Noetherian space, with w εw M iff ��ηw�w��� ��w
mul�

� M , where ηw�x1
x2 . . . xm� 	 x?1x

?
2 . . . x

?
m.

This implies the usual form of Higman’s Lemma, by similar arguments as in
[37]. Assuming a decidable constructive wqo � on a set X , one can show, con-
structively, that the antichains E 	 �x1, . . . , xn� (interpreted as the downward
closed set X � �E) are the elements of a cotopology, where � is the strict part
of �; we let E � E� iff X � �E � X � �E�, iff for every y � X �, there is
an x � E such that x � y; and x ε E iff x � X � �E, iff for every y � E,
y � x. Recall that a finite sequence w1, . . . , wn in X� is bad iff wi �

� wj for
no i � j. Following Murthy and Russell, we show that the converse of the prefix
ordering on bad sequences w1, . . . , wn is well-founded, by ��w

mul�
�-induction on

the closed subset X� � ��w1, . . . , wn�—this induction principle is given to us
by Corollary 1. The set X� � ��w1, . . . , wn� is represented, constructively, as
the finite intersection of the sets X � �wi, using the + and � operations of the
cotopology; writing wi as the word x1x2 . . . xm, X � �wi is the word-product
�X��x1��X?�X��x2��X? . . . X?�X��xm�� if m � 1, the empty set otherwise
[22, Lemma 6.1]. This is the core of Murthy and Russell’s proof:

Theorem 3 (Murthy-Russell). Let X be a set with a decidable constructive
wqo �. Then �� is a (decidable) constructive wqo on X�.

5 A Constructive Proof of Kruskal’s Theorem

We use the same strategy for trees, i.e., first-order terms. Given a set X with a
quasi-ordering �, the (tree) embedding quasi-ordering � is inductively defined
by s � t, where s 	 f�s1, . . . , sm� and t 	 g�t1, . . . , tn�, iff s � tj for some j,
or f � g and s1 . . . sm �

�
 t1 . . . tn; note the use of the word embedding ordering

��
 on lists of immediate subterms, considered as words.
Given a constructive S-representation �S,�, τ,*�, we define a set St of regular

expressions on trees (the tree-products P ,Q, . . . ) inductively, as follows. Let � be



A Constructive Proof of the Topological Kruskal Theorem 37

a fresh constant. The elements P of St are the tree steps a�?��P �, where a � S and
P is a reduced word-product over St, and the tree iterators �

�m
i�1 ai�Qi��

���.�A,
where A is a finite set of elements of St, ai � S, and Qi is a word-product over
S � ���, which is either equal to ���� (which we shall simply write ��), or of
the form Qi1�

?Qi2�
? . . .�?Qiki where all Qijs are reduced word-products over

St [22, Lemma 9.20].
Tree steps are the analogue of a? for words. Intuitively, a�?��e1e2� will contain

all the terms of the form f�t1, t2� with f in (the denotation of) a, t1 in e1 and
t2 in e2, plus all the terms from e1 and from e2. Of course, e1e2 is not a word-
product, but, say, e?1e?2 is, and a�?��e?1e

?
2� will contain not just the terms above,

but also the terms of the form f�t1�, f�t2� and f��, with f � a, t1 � e1, t2 � e2.
Tree iterators �

�m
i�1 ai�Qi��

���.�A define the following language L, induc-
tively, by the following two rules. First, A is a set �P1, . . . , Pn� of tree-products,
and every element of any Pi is in L. Second, given any term t in the set de-
noted by a

�?�
i �Qi�, the term obtained from t by replacing each occurrence of

� by a (possibly different) term from L is again in L. For example, if P con-
tains terms t1, t2 and t3, then �a��?�?�����.��P � will contain f�t1, t1�, f�t2, t2�,
but also f�t1, t2�, f�t1, f�t2, t2��, f�f�t1, f�t2, t1��, f�t1, t3��, for f in a, among
other terms. As another example, �a��������.�� is the set of terms all of whose
function symbols are in a.

Much as we only considered reduced word-products in Section 4, we shall
restrict to canonical tree-products here. The tree-products considered in [22,
Section 9] are normal tree-products, a closely related notion. Normality requires,
for example, that in a tree iterator, �

�m
i�1 ai�Qi��

���.�A, �i� m is non-zero, �ii�
� occurs in every Qi, and �iii� A contains just one tree-product in case every
Qi is �-linear, i.e., does not contain �� and only one occurrence of �?. Here,
we need to require that the support supp Qi of every Qi, namely, the set of
(�-free) terms t such that the one-element sequence t is in the denotation of Qi,
is entirely contained in the denotation of A. This is easy to ensure, by adding
the required tree-products from supp Qi to A. . . but breaks �iii�. Instead, we
define canonical tree iterators as those satisfying �i�, �ii�, �iii��: if every Qi is
�-linear, then A denotes the union of

�m
i�1 supp Qi with at most one tree-

product; we also require: �iv� the tree steps ai�Qi� are pairwise incomparable,
�v� the elements of A are pairwise incomparable, and �vi� �

�m
i�1 ai�Qi��

���.�A
must not be included in

�m
i�1 supp Qi. Similarly, we define canonical trees steps

as those a?�P � that are not included in supp P . Every tree-product can be
canonicalized, i.e., transformed to a canonical one with the same denotation.

One can decide inclusion of canonical tree-products, in polynomial time, and
also compute finite intersections thereof (*t, τ t), using formulae given in [22,
Section 9], plus canonicalization. From these formulae, we deduce the rules for
strict inclusion �t on St—to be precise, on St union ���, where � will be
topmost—given in Figure 2. We again write �t for the reflexive closure of �t.
For a word-product P over St � ���, define sub�P � (denoting the support of
P ) by: sub�e1 . . . en� 	

�n
i�1 sub�ei�, sub�P ?� 	 �P � for P � St, sub��?� 	 �,

sub�A�� 	 A for A an antichain in St, sub���� 	 �. We also use an auxiliary



38 J. Goubault-Larrecq

�P � � St�
P � sub�P � 	 P �

�
t P

P �
�

t a�?��P �

�P � � St�

P �
�

t
�

a�
�?�
�P �� �t a�?��P �

�P � � sub�P �� 	 P �
�

t a�?��P �

a�
�?�
�P �� �t a�?��P �

a� � a

a�
�?�
�P � �t a�?��P �

P � ��t�w P

a�?��P �� �t a�?��P �

�P � � St�
P � A 	 P �

�
t P

P �
�

t �
m�

i�1

ai�Qi��
���.�A

i 	 a�
�?�
�P �� �t a�?�i �Qi�

�P � � sub�P �� 	 P �
�

t �
�m

i�1 ai�Qi��
���.�A

a�
�?�
�P �� �t �

m�

i�1

ai�Qi��
���.�A

��a�j
�?�
�Q�

j� � 1 � j � n�� �t
mul ��a

�?�
i �Qi� � 1 � i � n��

�P � � A� 	 P �
�

t �
�m

i�1 ai�Qi��
���.�A

�
n�

j�1

a�j�Q
�
j��

���.�A
�
�

t �
m�

i�1

ai�Qi��
���.�A

Fig. 2. Deciding strict inclusion between tree-products

relation �t, which should be reminiscent of ". The whole definition should, in
fact, remind you of the definition of �mpo on μ-terms, and this is no accident.

Theorem 4. If �S,�, τ,*� is a constructive S-representation, then so is �St,
�t, τ t,*t�.

Proof. (Sketch.) Only property �
� deserves attention. Define a syntactic trans-
lation from P � St to μ-terms ,P -, as follows. Our signature consists of all
elements of S, plus one fresh function symbol u (union). The following formulae
also define ,_- translations of various other syntactic categories, e.g., ,P - will
be a list of μ-terms for every word-product P over St, so that ,a?�P �- 	 a,P -
will be the application of the function symbol a to the list of arguments ,P -. We
use only one μ-bound variable, which we call �: this serves for tree iterators,
which are translated as iterators of the form μ � 	 s � t (third row below).

,a�?��P �- 	 a,P - ,e1e2 . . . em- 	 �,e1-, ,e2-, . . . , ,em-� ,�- 	 �
,P ?- 	 ,P - ,A�- 	 ,A- 	 u�,P1-, . . . , ,Pn-� where A 	 ��P1, . . . , Pn��

,�
�m

i�1 ai�Qi��
���.�A- 	 μ � 	 u�,a

�?�
1 �Q1�-, . . . , ,a

�?�
m �Qm�-� � ,A-

Define the precedence � by a � b iff a, b � S and a � b, or a 	 u and b � S (u is
least). We check that P �t P � implies ,P - �mpo ,P �-. (This was how �mpo was
found on μ-terms!) Theorem 1 then implies that �t is well-founded on St. � 

Corollary 2 (Topological Kruskal Theorem, Constructively). For ev-
ery constructive Noetherian space �X,T,�, ε�, �T �X�,M�T t�, ��t

mul�
�, εt� is

a constructive Noetherian space, with t εt M iff ��ηt�t��� ��t
mul�

�
M , where

ηt�f�t1, t2, . . . , tn�� 	 f �?��ηt�t1�
?ηt�t2�

? . . . ηt�tn�
?�.
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As for Higman’s Lemma, we obtain the ordinary form of Kruskal’s Theorem by
assuming a decidable constructive wqo � onX , and proving that the complement
.t of the upward closure of a single tree t in � is defined as the following
tree-product, built using tree iterators only: letting a abbreviate X � � f and
b abbreviate X itself, .f�� 	 �a��������.��, and .f�t1, . . . , tn� for n � 1 is
equal to �a����� b�.t1�

?.t2�
? . . .�?.tn��

���.�� (see [22, Lemma 9.8]; then use
canonicalization). The following is then constructive.

Theorem 5 (Kruskal, Constructively). Let X be a set with a decidable con-
structive wqo �. Then � is a (decidable) constructive wqo on T �X�.

6 Conclusion

The main thing one should remember is that proving that a given quasi-ordering
is well is just a matter of proving termination—not of the ordering itself, but of
strict inclusion between downward-closed subsets. In and of itself, this would be
no breakthrough. However, in applying this to Higman’s and Kruskal’s classical
theorems, this exposed a tight coupling between the word embedding ordering
and the multiset ordering (on word-products), and between the tree embedding
quasi-ordering and Dershowitz’ multiset path ordering (on tree-products).

While I have given relatively exhaustive proofs of the termination results of
Section 3, I have barely sketched the constructive proofs of the (topological)
Higman and Kruskal theorems in Sections 4 and 5. Playing these proofs in a
proof assistant such as Coq is in order, but certainly somewhat of an endeavor.

Finally, I would like to stress that although our proof techniques establish
the classical, order-theoretic versions of Higman’s and Kruskal’s theorems un-
der a decidability assumption, the topological versions are entirely constructive.
It therefore seems that the constructive contents of the order-theoretic and the
topological theorems are different—something that should be explored, by inves-
tigating into the computational contents of the relevant constructive proofs. We
also believe that the notion of constructive Noetherian space, and the related
notion of S-representation, should be of some importance, in intuitionistic logic
(where it sheds some light on the precise role of the sequential regular expressions
of Murthy and Russell, notably), as well as in the field of WSTS model-checking.

Acknowledgments. I must thank David Baelde, who found a mistake in an early
version of this paper, and Nachum Dershowitz, who gave me several additional
pointers. I have had several interesting discussions with Sylvain Schmitz, Alain
Finkel, and Jean-Pierre Jouannaud. All remaining errors are of course mine.
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Logical and Structural Approaches to the Graph

Isomorphism Problem
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Abstract. It is a long-standing open question whether there is a poly-
nomial time algorithm deciding if two graphs are isomorphic. Indeed,
graph isomorphism is one of the very few natural problems in NP that
is neither known to be in P nor known to be NP-complete. The question
is still wide open, but a number of deep partial results are known. On
the complexity theoretic side, we have good reason to believe that graph
isomorphism is not NP-complete: if it was NP-complete, then the poly-
nomial hierarchy would collapse to its second level. On the algorithmic
side, we know a nontrivial algorithm with a worst-case running time of

2O(
√

n logn) and polynomial time algorithms for many specific classes of
graphs. Many of these algorithmic results have been obtained through
a group theoretic approach that dominated the research on the graph
isomorphism problem since the early 1980s.

After an introductory survey, in my talk I will focus on approaches
to the graph isomorphism problem based on structural graph theory
and connections between logical definability, certain combinatorial algo-
rithms, and mathematical programming approaches to the isomorphism
problem.
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The study of prior-free auctions brings the Computer Science approach of worst-
case analysis to the classical economic problem of designing optimal auctions.
In this talk, I will discuss some recent developments on prior-free auctions for
digital goods.

A digital good, which can be reproduced without any cost, is to be sold to a
set of bidders (potential buyers); each bidder is willing to pay up to a certain
price to acquire the item and this price is a private value. The seller wants
to maximize the profit without knowing the private values of the bidders. Had
the private values been available, the solution would have been trivial—sell to
every bidder at their maximum acceptable price—but, the private information
of the bidders renders the objective unattainable, even in-approximable, when
the values are selected by an adversary. However, all is not lost if we are willing
to compare the obtained profit with a weaker optimal objective. A natural such
objective is F (2), equal to the optimal value that one can extract by offering the
same price to everyone; there is also a technical requirement that the price is
low enough to allow at least two bidders to buy the item. The obvious question
is to come up with an auction that achieves the best approximation ratio over
such an objective. Despite the simplicity of the framework, this question is still
open; even specific interesting algorithms, such as the RSOP algorithm, are not
completely understood.

In my talk, I will focus on two extensions of this framework:

Online Prior-Free Auctions. In this version, the bidders arrive one-by-one in
a random order and the seller must offer each bidder a take-it-or-leave-it price.
Because of the random arrival of the bidders, this model lies at the intersection of
prior-free auctions and secretary problems. I will discuss specific natural online
auctions, as well as the relation between online and offline auctions. As in the
case of offline auctions, we know algorithms that achieve constant approximation
ratio, but the optimal ratio is still unknown.

Ordered Bidders. In this version, the bidders have a specific order, although
they are not processed online. The requirement is that instead of competing
against the benchmark F (2), the auction competes against the harder benchmark
M (2), equal to the optimal profit from a set of prices that are non-decreasing
(with respect to the fixed order of the bidders); as in the case of F (2), there is
a technical requirement that the prices should not be higher than the second

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 43–44, 2013.
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value. Benchmark M (2) captures the case of asymmetric bidders: an auction
with constant approximation ratio against M (2) is within a constant factor of
the optimal profit when the bids are drawn from any sequence of probability
distributions in which each distribution stochastically dominates the next one.
I will discuss a recent result that gives an auction with constant approximation
ratio in this framework.



Synthesis from Temporal Specifications:

New Applications in Robotics
and Model-Driven Development

Nir Piterman
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Synthesis from temporal specifications is the automatic production of adaptable
plans (or input enabled programs) from high level descriptions. The assumption
underlying this form of synthesis is that we have two interacting reactive agents.
The first agent is the system for which the plan / program is being designed.
The second agent is the environment with which the system interacts. The exact
mode of interaction and the knowledge available to each of the agents depends
on the application domain. The high level description of the plan is usually given
in some form of temporal logic, where we often distinguish between assumptions
and guarantees. As we do not expect the system to function correctly in arbi-
trary environments, the assumptions detail what the system expects from the
environment. The guarantees are what the system is expected to fulfill in such
environments. Our algorithms then produce a plan that interacts with the en-
vironment and reacts to it so that the tasks assigned to the plan are fulfilled.
By definition, the plan is reacting to the moves of the environment and tries to
adapt itself to the current condition (as a function of that interaction).

Technically, the interaction between the system and its environment is mod-
eled as a two-player game, where system choices correspond to the execution of
the plan and environment choices correspond to the behavior of the environment.
The specifications, i.e., the assumptions on the environment and the guarantees
of the system, are translated to the winning conditions in the game: the system
has to be able to resolve its choices in such a way that it satisfies the specifica-
tion. The way the system resolves its choices, called strategy, is then translated
to a design that satisfies the specification. Verifying that such a strategy exists
and computing the strategy is referred to as “solving the game”. Different types
of games arise depending on the exact conditions of the interaction between the
agents, and depending on the winning conditions. In order to make synthesis
useful we have to come up with algorithms that work well for the games that
arise from interesting applications.

The theoretical framework for synthesis from temporal specifications has been
known for many years. The question of decidability of this form of synthesis was
raised by Church in the late 50’s [8]. Independently, Rabin [29] and Büchi and
Landweber [7] suggested tree automata and two-player games as a way to reason
about the interaction between the program and its environment. These solutions
concentrated on decidability and were not concerned with practicality. Pnueli
and Rosner cast this question in a modern setting and proved that synthesis
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from linear-time temporal logic (LTL) specifications is 2EXPTIME-complete
[28]. Indeed, this is the framework considered here.

The solution of Pnueli and Rosner called for the translation of the specifi-
cation to a deterministic Rabin automaton over infinite words [31]. Integrating
this automaton with the approach of Rabin produced a Rabin tree automaton
accepting winning strategies. Checking emptiness of this automaton corresponds
to deciding whether the specification is realizable. Finding a tree accepted by this
automaton corresponds to extracting a strategy. The two components of this so-
lution proved very hard to implement. Determinization of automata on infinite
words proved complicated to implement [18,1]. To the best of our knowledge,
emptiness of Rabin automata (equivalently solution of Rabin games) was never
implemented [13,28,26]. Improvements to determinization [25] are still challeng-
ing to implement effectively [34]. They lead to the slightly simpler parity au-
tomata / games, for which no efficient solution is known [17,15,32].

These difficulties led researchers to suggest two ways to bypass the two com-
plicated parts of this approach. One approach is to avoid determinization and
reduce synthesis to safety games [24,14,33]. This approach has been implemented
in various tools [16,12,5]. The second approach, the one advocated here, is to
restrict attention to a subset of LTL that can be solved more efficiently [27,4].

Specifically, we consider LTL formulas over Boolean variables partitioned to
sets of inputs and outputs, X and Y, respectively. Then, the specification has
the format ϕe → ϕs, where ϕe is a conjunction of assumptions on the behavior
of the environment and ϕs is a conjunction of guarantees of the system. Both
ϕe and ϕs are restricted to the form ψai ∧G ρat ∧

∧
i∈Iag GF Jai , for a ∈ {e, s},

where the components of ϕa take the following form.

– ψei is a Boolean formula over X and ψsi is a Boolean formula over X ∪ Y.
– ρet is a Boolean formula over X ∪ Y and X X and ρst is a Boolean formula

over X ∪Y andX X ∪X Y. That is, ρet is allowed to relate to the next values
of input variables and ρst is allowed to relate to the next values of both input
and output variables..

– Jai is a Boolean formula over X ∪ Y.

That is, the specification takes the following format:⎛⎝ψei ∧G ρet ∧
∧
i∈Ieg

GF Jei

⎞⎠ →

⎛⎝ψsi ∧G ρst ∧
∧
i∈Isg

GF Jsi

⎞⎠
Intuitively, this formula allows the system to update its initial assignment to
output variables based on the assignment to the input variables; it allows the
system to update output variables based on the way the environment updates
the input variables; and it allows the system to fulfill some liveness requirements
based on the environment fulfilling its own liveness requirements.1 We argue

1 We note that presentation of the specification in the form of such an implication
depends on the ability of the environment to fulfil its assumptions [19,4].
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that this form of specifications arise in practice and are sufficient to specify
many interesting designs. Furthermore, we show how to implement the solution
to the synthesis problem arising from such specifications using BDDs.

This approach has been adopted by some practitioners and led to applications
of synthesis in hardware design [2,3], robot-controller planning [9,20,21,35,37,36],
and user programming [22,23]. Adapting our solution to be used in the context
of robot-controller required to consider how to combine the discrete controller
produced by our approach with continuous controllers for various parts of the
robot [30]. Recently, we have adapted this approach to applications in model-
driven development [10,11,6]. This required us to adjust the setting to that of
games defined by labeled-transition systems, winning conditions defined by fluent
linear-temporal logic, and to enumerative representation of games.

Here we will survey the theoretical solution to synthesis proposed by Pnueli
and Rosner and some of the difficulties in applying it in practice. We will then
present our approach and some of the applications it was used for. We will also
cover some of the issues arising from adaptation of our approach to the usage
by practitioners in robotics and model-driven development.
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(mostly) Roderick Bloem, Victor Braberman, Nicolas D’Ippolito, Barbara Job-
stmann, Hadas Kress-Gazit, Amir Pnueli, Vasu Raman, Yaniv Sa’ar, and Se-
bastian Uchitel. References to our joint work are mentioned in the paper. I am
grateful to them for the great pleasure in working with them on these results.
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Abstract. We study the Max k-colored clustering problem, where, given
an edge-colored graph with k colors, we seek to color the vertices of the
graph so as to find a clustering of the vertices maximizing the number
(or the weight) of matched edges, i.e. the edges having the same color
as their extremities. We show that the cardinality problem is NP-hard
even for edge-colored bipartite graphs with a chromatic degree equal to
two and k ≥ 3. Our main result is a constant approximation algorithm
for the weighted version of the Max k-colored clustering problem which
is based on a rounding of a natural linear programming relaxation. For
graphs with chromatic degree equal to two, we improve this ratio by
exploiting the relation of our problem with the Max 2-and problem. We
also present a reduction to the maximum-weight independent set (IS)
problem in bipartite graphs which leads to a polynomial time algorithm
for the case of two colors.

1 Introduction

We consider the following problem: we are given an edge-colored graph G =
(V,E), where every edge e is labeled with one color among {1, 2, . . . , k} and it
is associated with a weight we. We are interested in coloring every vertex of the
graph with one of the k available colors so as to create at most k clusters. Each
cluster corresponds to the subgraph induced by the vertices colored with the
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same color. Given a coloring of the vertices, an edge is called matched if its color
is the same as the color of both its extremities. Our goal is to find a clustering
of the vertices maximizing the total weight of the matched edges of the graph.
We call this problem the Max k-colored clustering problem and we denote it as
Max-k-CC.

Our model has similarities with the centralized version of the information-
sharing model introduced by Kleinberg and Ligett [2,7]. In their model, the
edges are not colored and two adjacent nodes share information only if they are
colored with the same color. As they mention, one interesting extension of their
model would be the incorporation of different categories of information. The use
of colors in our model goes in this direction. Every edge-color corresponds to
a different information category and two adjacent vertices share information if
their color is the same as the color of the edge that connects them. While the
centralized version of the information-sharing problem of Kleinberg and Ligett
is easy to solve, we show that the introduction of colors in the edges of the graph
renders the problem NP-hard. In this paper, we focus on the centralized variant
of our problem and we study its approximability. Studying our problem from a
game theoretic point of view would be an interesting direction for future work.
Our problem is also related to the classical correlation clustering problem [1,6].

1.1 Related Works and Our Contribution

In Section 2, we formulate the problem as an integer linear program and we pro-
pose a constant-approximation ratio algorithm which is based on a randomized
rounding of its linear programming relaxation. Notice here that simpler rounding
schemes, apparently do not lead to a constant approximation algorithm. Another
observation is that our problem can be formulated as a combinatorial allocation
problem [4]. We can consider each color as a player and each vertex as an item,
where items have to be allocated to competing players by a central authority,
with the goal of maximizing the total utility provided to the players. Every player
(each color) has utility functions derived from the different subsets of vertices.
Feige and Vondrák [4] consider subadditive, fractional subadditive and submod-
ular functions. It is easy to see that in our case the function is supermodular
and hence, their method cannot be directly applied. At the end of Section 2, we
show that in the special case where the chromatic degree1 of the graph is equal
to two, our problem is a special case of the MAX 2-AND problem [10]. We show
in Section 3 that the cardinality Max k-colored problem is strongly NP-hard by
a reduction from Max-2-Sat, even for bipartite graphs with chromatic degree
equal to two, whenever the number of colors is any constant number k ≥ 3. In
Section 4, we present a reduction to the maximum-weight independent set (IS)
problem in bipartite graphs which allows us to get an optimal polynomial-time
algorithm for the case of two colors. Furthermore, we exploit this idea to get a

1 We define the chromatic degree of a vertex as the number of different colors which
appear in its incident edges. The chromatic degree of an edge-colored graph is the
maximum chromatic degree over all its vertices.
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2
k -approximation algorithm whose approximation ratio is better than the ratio
of the constant-approximation algorithm presented in Section 3 for any k ≤ 14.

2 A Constant Approximation Algorithm

As the problem is strongly NP-hard (see section 3), in the first part of this
section, we present a constant-factor approximation algorithm for our problem,
while in the second part we focus on graphs with chromatic degree equal to two.

For every vertex i of the graph and for every available color c, we introduce a
variable xic which is equal to one if i is colored with color c and zero otherwise.
Also, for every edge e = [i, j], we introduce a variable zij which is equal to one
if both extremities are colored with the same color as e, and zero otherwise. We
obtain the following ILP:

max
∑
e

weze

ze ≤ xic, ∀ e = [i, j] which is c-colored

ze ≤ xjc, ∀ e = [i, j] which is c-colored∑
c

xic = 1, ∀i

xic, ze ∈ {0, 1}, ∀i, c, e

We consider its linear relaxation, and we denote it by LP.
Our algorithm works in k iterations, by considering each color c, 1 ≤ c ≤ k, in-
dependently from the others, and so the order in which the colors are considered
does not matter. When an edge is chosen, this means that its two extremities get
the color of this edge. Since in general a vertex is adjacent to edges of different
colors, a vertex may get more than one colors. We want to avoid such situations,
and the way the algorithm assigns colors to vertices is designed to minimize the
number of such conflicts.

The algorithm is given below.

Algorithm RR
Phase I:
Solve the linear program LP, and let z∗e be the values of variables ze.
For each color c

Order, non decreasingly, the c-colored edges e1, . . . , el(c) according to
their z∗e values.
Let us assume that we have z∗e1 ≤ z∗e2 ≤ . . . ≤ z∗el(c) .

Let r be a random value in [0, 1].
Choose edges e with z∗e > r.

End For
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Phase II:
For each vertex v

If v gets no color or more than two colors, remove it (together with all its
adjacent edges) from graph G.

End For
Let G′ be the obtained graph.
For each vertex v in G′

If v got one color, then assign this color to it.
If v got two colors, then choose randomly one of them, each one with

probability 1/2.
End For

Notice that the algorithm does not assign colors to all vertices. Indeed, at the
end of Phase I some vertex may get no colors, and then in Phase II the algorithm
assigns colors only for a subgraph G′ of the initial graph G.

The folowing two Lemmas are straighforward to prove.

Lemma 1. For any edge e, the probability that e is chosen is z∗e .

Notice that for a vertex v, it may be the case that none of its adjacent edges
are chosen. In that case, v gets no color. But in general, several of its adjacent
edges can be chosen, and the vertex v can get more than one colors. We denote
by Xvc (resp. Xvc) the event that v gets (resp. does not get) color c.

Lemma 2. For any vertex v, if there exists at least one c-colored edge which is
incident to v then one has Pr(Xvc) = z∗e′ with e′ the c-colored edge which has
the maximal value of z∗e among all c-colored edges e which are incident to v.

Lemma 3. For any vertex v, one has
∑

c Pr(Xvc) ≤ 1.

Proof. For any color c, let e(c) be the c-colored edge which is incident to vertex v
(if such an edge exists), and with the maximal value of z∗e among all such edges.
From Lemma 2, one has Pr(Xvc) = z∗e(c). Therefore,

∑
c Pr(Xvc) ≤

∑
c z

∗
e(c) ≤∑

c x
∗
vc = 1.

As stated before, a vertex v can get more than one colors during the execution
of the algorithm. However, in general this number will be small. We have the
following lemmas.

Lemma 4. Given a set of independent events such that the sum of their proba-
bilities is less than or equal to 1, the probability of getting at most one of them
is greater or equal to 2/e.

Lemma 5. At any time during the execution of the algorithm, for any vertex v,
the probability that v gets at most one additional color until the end of the Phase
I of the algorithm is greater than or equal to 2/e.

Proof. The events: “v gets color c” for 1 ≤ c ≤ k, are independent, and the sum
of their probabilities is less than or equal to 1 according to Lemma 3. Therefore,
the result follows from Lemma 4.
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Proposition 1. At any time during the execution of the algorithm, consider
any edge e = [u, v], and let us denote by pu (resp. pv) the probability that u
(resp. v) gets at most one additional color until the end of the Phase I of the
algorithm. Let us denote by pu∧v the probability that both u and v get each one
at most one additional color until the end of the Phase I of the algorithm. Then,
one has pu∧v ≥ pu · pv.

Proof. In order to prove that the proposition holds, we consider a sequence of
algorithms denoted by Σ0, . . . , Σk, where Σ0 is our algorithm.

The difference among these algorithms comes from the way in which the
vertices get a color. Let us fix a color c. We consider two different procedures
for assigning colors to the vertices. The First procedure, assigns the colors in the
same way as our algorithm does. Let us recall how our algorithm works for just
two vertices: Without loss of generality, we assume that there exist an edge e′

adjacent to u with color c and an edge e′′ adjacent to v with color c (if such an
edge e′ does not exist, we are in the case p = 0 and y = q). Moreover e′ (resp. e′′)
is the edge with the maximal value of z∗e′ (resp. z∗e′′) among all c-colored edges
incident to u (resp. v). Let us assume that z∗e′ ≤ z∗e′′ . Let p be the probability
that u gets color c in the algorithm (we know that it is z∗e′ from Lemma 2),
and let q be the probability that v gets color c assuming that u does not get
color c. Using the First procedure, we color both vertices u and v (with color c)
with probability p, and we color only vertex v with probability (1 − p)q. The
Second procedure colors the vertices with color c independently. More precisely,
we color vertex u with probability p, and we color vertex v with probability
(1 − p)q + p := y.

In the algorithm Σ0, for each color c, 1 ≤ c ≤ k, we use the First procedure
for assigning colors to vertices. In the algorithm Σi, 1 ≤ i ≤ k, for colors c such
that 1 ≤ c ≤ i (resp. i + 1 ≤ c ≤ k) we use the Second procedure (resp. First
procedure) for assigning those colors to vertices. Thus, in algorithm Σk, all colors
are assigned to vertices using the Second procedure.

Let us fix any iteration (color) t, and let us analyze the behavior of those
algorithms from iteration t until the end of their execution (at the end of Phase
I), i.e. when colors t, t+1, . . . , k are assigned to vertices. Let us also consider any
edge e = [u, v]. We denote by pu(Σi) (resp. pv(Σi)) the probability that u (resp.
v) gets at most one additional color from iteration t until the end of iteration
k, for the algorithm Σi. Moreover, we denote by pu∧v(Σi) the probability that
both u and v get each one at most one additional color from iteration t until the
end of iteration k, for the algorithm Σi. Notice that one has for any vertex v,
pv(Σi) = pv(Σ0) for 1 ≤ i ≤ k. Let us now prove that for any 1 ≤ i ≤ k− 1, one
has pu∧v(Σi) ≥ pu∧v(Σi+1).

If t ≥ i + 2, since both algorithms Σi and Σi+1 use the First procedure to
assign colors c to vertices, for i+ 2 ≤ c ≤ k, they behave in the same way during
iterations t, t+ 1, . . . k, and so pu∧v(Σi) = pu∧v(Σi+1).

We now assume that 1 ≤ t ≤ i+ 1. Algorithms Σi and Σi+1 only differ in the
way they assign color i+1 to vertices. If there is no (i+1)-colored edge adjacent
to either u or v, then again those two algorithms have the same behavior from
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iteration t to k and so pu∧v(Σi) = pu∧v(Σi+1). Let us assume now w.l.o.g. that
there exists at least one (i+ 1)-colored edge which is adjacent to u. Recall that
we denote by Xvc (resp. Xvc) the event that v gets (resp. does not get) color c.
We have the following probabilities:

when Σ = Σi when Σ = Σi+1

PrΣ(Xu,i+1 ∧Xv,i+1) 0 p(1 − y)

PrΣ(Xu,i+1 ∧Xv,i+1) (1 − p)q (1 − p)y

PrΣ(Xu,i+1 ∧Xv,i+1) (1 − p)(1 − q) (1 − p)(1 − y)

PrΣ(Xu,i+1 ∧Xv,i+1) p py

Let us denote by A0 (resp. B0) the event which corresponds to the situation
where vertex u (resp. v) gets no additional color when considering iterations
(colors) in {t, t+1, . . . , k}\{i+1}. Let us also denote by A1 (resp. B1) the event
which corresponds to the situation where vertex u (resp. v) gets one additional
color when considering iterations (colors) in {t, t+1, . . . , k}\{i+1}. Since these
events do not depend on the color i + 1, they have the same probability for
algorithms Σi and Σi+1.

For Σ ∈ {Σ0, . . . , Σk}, one has pu∧v(Σ) = Pr(A0 ∧ B0) + Pr(A1 ∧ B0) ·
[PrΣ(Xu,i+1 ∧Xv,i+1) + PrΣ(Xu,i+1 ∧Xv,i+1)] + Pr(A0 ∧B1) · [PrΣ(Xu,i+1 ∧
Xv,i+1) + PrΣ(Xu,i+1 ∧Xv,i+1)] + Pr(A1 ∧B1) · [PrΣ(Xu,i+1 ∧Xv,i+1)].

As stated above, Pr(A0 ∧B0), P r(A1∧B0), P r(A0∧B1), P r(A1∧B1) are the
same for Σi and Σi+1. In the following table, we give the remaining terms, with
A = PrΣ(Xu,i+1∧Xv,i+1)+PrΣ(Xu,i+1∧Xv,i+1), B = PrΣ(Xu,i+1∧Xv,i+1)+
PrΣ(Xu,i+1 ∧Xv,i+1), and C = PrΣ(Xu,i+1 ∧Xv,i+1).

Σ = Σi Σ = Σi+1

A
(1 − p)q + (1 − p)(1 − q) =
(1− p)

y(1 − p) + (1 − p)(1 − y) =
(1− p)

B (1− p)(1− q)
p(1 − y) + (1 − p)(1 − y) =
(1− p)(1− q)

C (1− p)(1− q) (1− p)(1− y)

A term-by-term comparison is sufficient for concluding that pu∧v(Σi) ≥ pu∧v
(Σi+1).

Since in algorithm Σk, all colors are assigned to vertices using the Second
procedure, i.e. in an independent way, one has pu∧v(Σk) = pu(Σk) · pv(Σk).
Then pu∧v = pu∧v(Σ0) ≥ pu∧v(Σ1) ≥ . . . ≥ pu∧v(Σk) = pu(Σk) · pv(Σk) =
pu(Σ0) · pv(Σ0) = pu · pv.

Corollary 1. At any time during the execution of the algorithm, for any edge
e = [u, v], the probability that both u and v get each one at most one additional
color until the end of the algorithm is greater than or equal to 4/e2.

Proof. It follows directly from Proposition 1 and Lemma 5.
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Definition: An edge e = [u, v] is safe if both its extremities u and v are colored
with the color of edge e and each one of them gets at most one additional color.

Theorem 1. The algorithm RR is 1/e2 � 0.135-approximate for Max-k-CC.

Proof. Let e be any edge of the graph G. We are going to evaluate the probability
that edge e is matched in the solution returned by the algorithm. Let OPT be
the sum of weights of the matched edges in an optimal solution. Since the linear
program LP is a linear relaxation, we have

∑
e∈E wez

∗
e ≥ OPT . Since the colors

are considered in an independent way by the algorithm, we can assume w.l.o.g.
that edge e has color 1. This edge needs to be chosen in the first iteration of the
algorithm (i.e. when color 1 is considered). This occurs with the probability z∗e
according to Lemma 1. Then during the remaining iterations until the end of the
Phase I of the algorithm, i.e. when colors from 2 to k are considered, this edge
must remain safe so that it belongs to graph G′. This occurs with a probability
greater than or equal to 4/e2 according to Corollary 1. Thus, we have proved
that each edge e = [u, v] from G belongs to the graph G′ with a probability
greater than or equal to 4z∗e/e

2. We also know that if e = [u, v] belongs to G′

then each of the two vertices u and v got either one color, in this case it is
the color of edge e, or two colors, and in this case one of them is the color of
edge e. So assuming that e belongs to G′ the probability that e is matched is at
least 1/4. Overall, this probability is equal to 4z∗e/e

2 × 1/4 = z∗e/e
2. Thus the

cost of the solution returned by the algorithm is in expectation at least equal to∑
e∈E wez

∗
e/e

2 ≥ OPT/e2.

This algorithm can be derandomized by the method of conditional expecta-
tions [9]. The algorithm RR can also be used for the case where there are more
than one colors on the edges. It is sufficient to create parallel edges, i.e. one edge
for each color.

2.1 Graphs with a Chromatic Degree Equal to 2

In this case it is possible to define a quadratic program for this problem and
use semi definite relaxations to obtain algorithms with constant approximation
ratio.

We associate to each vertex v ∈ V a variable yv ∈ {−1, 1}. Furthermore,
we have an additional variable x ∈ {−1, 1}. Now for each couple (v, e), with
e an edge adjacent to v, we define a label l(v, e) ∈ {−1, 1}. This set of labels
must satisfy the following condition: For any vertex v, if e and e′ are two edges
adjacent to v with different colors, then l(v, e) �= l(v, e′). Since we know that in
the graph G′, for any vertex v, the set of its adjacent edges are colored with at
most 2 colors, it is easy to define such a set of labels (i.e. for all edges e colored
with the first (resp. second) color we set l(v, e) = 1 (resp. l(v, e) = −1). Notice
that it is possible to have l(u, e) �= l(v, e) for an edge e = [u, v]. An example is
given in Figure 1.

Now, for each edge e = [u, v] we define f(e) = 1+l(u,e)yux
2 + 1+l(v,e)yvx

2 . It is
easy to see that the objective function that we need to maximize can be written as
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Fig. 1. An example of labeling∑
e∈E′ wef(e). Various approximation ratios have been found for such problems

like MAX DICUT (see for example [10,8,3]).
In particular, this problem can be seen as a particular case of the problem

MAX 2-AND [10]. An instance of MAX 2-AND is composed of a collection of
clauses (with non-negative weights assigned to them) such that each clause is
either of the form zi or zi ∧ zj , where each zi is either a boolean variable xk
or its negation xk. The goal is to find an assignment of the boolean variables
x1, . . . xn, in order to maximize the weight of the satisfied clauses. It is easy to
see that any instance of our problem can be transformed to an equivalent MAX
2-AND instance for which an algorithm with an approximation ratio of 0.859
exists [10]. For example, for the instance given in Figure 1 we obtain the set of
clauses: x1 ∧ x2 (for edge [v1, v2]), x1 ∧ x5 (for edge [v1, v5]), x5 ∧ x4 (for edge
[v5, v4]), and so on.

3 Complexity

In this part we show that the problem is NP-complete for bipartite graphs if
we allow the initial coloring of the edges to contain three or more colors. Our
reduction is from Max-2-SAT.

Theorem 2. The Max-3-CC problem is NP-complete even for bipartite graphs
with chromatic degree two and we = 1, for every edge e of the graph.

Proof. Clearly the problem is in NP. Let us now give a polynomial time reduc-
tion R that maps any instance of the Max-2-SAT problem I

Max-2-SAT
=<

X , C, B > where X = {x1, . . . , xn} is a set of variables, C = {c1, . . . , cm} is a set
of disjunctive clauses with exactly two literals, and B ≤ m is a positive integer, to
an instance R(I

Max-2-SAT
) = I

Max-3-CC
=< G,C, f, 3 > for the Max-3-CC

problem. For the rest of the proof we assume that C = {R(ed),B(lue),G(reen)}.
The reduction is based on the gadgets presented in Figures 2 and 3.

The Gadgets. The set V is constructed as follows: For each variable xi of the
MAX-2-SAT formula we create a new node vi and for each c ∈ C we construct
four nodes vcup, vcdown, vcleft and vcright. Then for each clause, we add six edges
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ck = (xα ∨ xβ)
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ck = (x̄α ∨ x̄β)

Fig. 2. The case when all literals are positive or all literals are negative

based on whether both of the literals are positive or negative, or one of them is
negative and the other positive.

First Case: Assume that both of the literals are positive or both are negative
i.e. the clause is either ck = (xα ∨ xβ) or ck = (x̄α ∨ x̄β). Then we construct the
gadgets in Figure 2.

Second Case: Assume that one literal is positive and the other is negative.
That is, the clause is of the form ck = (xα ∨ x̄β) or ck = (x̄α ∨ xβ). Respectively
we construct the gadgets in Figure 3.

R

G

RR

G G

vβ

vα
ck = (xα ∨ x̄β)

G

R

GG

R R

vβ

vα
ck = (x̄α ∨ xβ)

Fig. 3. The case when one literal is positive and one literal is negative

Finally we set P = 3B + 2(m− B), where m is the total number of clauses.
It is not difficult to check that the constructed graph does not contain any

odd cycle and so it is bipartite. Also, for every vertex of the constructed graph
the edges that are incident to this vertex are colored with at most two different
colors, i.e. the chromatic degree of the graph is two.

Lemma 6. The maximum contribution that any gadget can have is exactly 3
and is obtained when at least one of the nodes vα and vβ has the same color as
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the edge that connects it with the rest of the gadget. If none of vα and vβ has
the same color with the edge that connects it with the rest of the gadget then the
maximum contribution that can be achieved is 2.

Proof. Simple case analysis.

Lemma 7. For an instance of the Max-2-SAT problem I
Max-2-SAT

=<
X , C, B >, there is a truth-assignment that satisfies at least B clauses if and
only if there is a clustering for the corresponding Max-3-CC problem with con-
tribution greater than or equal to 3 ·B+ 2(m−B), where m = |C| is the number
of clauses.

Proof. To prove the if direction, let T be a truth assignment that satisfies at least
B clauses of a 2-SAT formula F . In the derived graph, color green all the nodes
that correspond to variables that are true and red all the nodes that correspond
to false variables. In this way, for each satisfied clause the corresponding gadget
in the optimum clustering will have pay-off three.

Since each of the gadgets representing a satisfied clause will contribute three
to the pay-off and the satisfied clauses are L ≥ B the total optimal contribution
of these clauses will be 3 ·L. The gadgets of the rest m−L clauses will each have
optimal contribution 2 and the total optimal contribution from the unsatisfied
clauses will be 2 · (m− L). Hence the total pay-off will be 2 · (m− L) + 3 · L =
2 ·m + L ≥ 2 ·m + B = 3 ·B + 2(m−B).

For the opposite direction, suppose that the corresponding graph of a formula
F has a partition with pay-off at least 3 ·B + 2(m−B) = 2 ·m+B. Since each
one of the gadgets contributes to the pay-off either 2 or 3, there must exist at
least B gadgets with pay-off 3.

Let us assign the value true to the variables with green corresponding nodes
and the value false to the rest of the variables. Notice now that each one of the
gadgets with pay-off three corresponds to a satisfied clause.

Since the gadgets with pay-off 3 are at least B, there are at least B clauses
that are satisfied and the only if direction holds too.

4 A Reduction to the Independent Set problem

In this section we will show that the colored clustering problem can be reduced
to the IS problem in bipartite graphs.

Given an instance of the Max-k-CC problem, we create the line graph Gline

corresponding to the initial graph. We then construct a new graph G′
line by

deleting the edges between the vertices of Gline that correspond to neighboring
edges of the same color in G.

Lemma 8. The Max-k-CC problem has a clustering with pay-off P if and only
if the graph G′

line has an independent set of size P .

Proof. For the if direction, suppose that the initial problem has a partition with
pay-off P . For this to happen there must exist a set L of P edges with properly
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colored ends. Each edge e ∈ L is either adjacent to some other edges in L and all
have the same color or not adjacent with any other edge in L. In either case, the
vertex in G′

line that corresponds to e is not adjacent to any vertex corresponding
to some other edge in L, because in G′

line we have eliminated the edges between
vertices corresponding to adjacent edges with the same color. Hence, the nodes
of G′

line that correspond to edges in L form an independent set of size P .
To prove the opposite direction, let us examine an instance of the induced

problem that has an independent set of size P . The nodes that form the inde-
pendent set correspond to edges of the initial graph that either are not adjacent
or are adjacent and have the same color. Therefore it is possible to color the ex-
tremities of these edges with the same color as the edges themselves and hence
to produce a solution with pay-off P , because there are P such edges.

For k = 2, the constructed graph is always bipartite. Indeed, in G′
line we have

eliminated the edges between nodes of the line graph Gline that correspond to
edges of the same color in the initial graph G. So, while traversing any cycle
of G′

line the color of the corresponding edge must change from node to node.
Since there are only two different colors, any cycle must have even length and,
therefore, the graph is bipartite. Notice that our reduction holds also for the
weighted case.

As a result, given that a weighted independent set can be found in polynomial
time in a bipartite graph, we get that the weighted Max-2-CC is polynomially
solvable.

For any k ≥ 3 we can also derive from Lemma 8 a 2
k approximation algorithm

for the weighted Max-k-CC. Although, it is not a constant-approximation al-
gorithm its ratio is better than 1/e2 for every k ≤ 14. We use the following
Theorem, from [5]: Let G be a weighted graph with n vertices and m edges; let k
be an integer greater than one. If it takes only s steps to color the vertices of G
in k colors, then it takes only s+O(nm log(n2/m)) steps to find an independent
set whose weight is at least 2/k times the weight of an optimal independent set.
In our case we have s = 0.
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Abstract. In this paper we consider a generalization of the classical
knapsack problem. While in the standard setting a fixed capacity may
not be exceeded by the weight of the chosen items, we replace this
hard constraint by a weight-dependent cost function. The objective is
to maximize the total profit of the chosen items minus the cost induced
by their total weight. We study two natural classes of cost functions,
namely convex and concave functions. For the concave case, we show
that the problem can be solved in polynomial time; for the convex case
we present an FPTAS and a 2-approximation algorithm with the run-
ning time of O(n log n), where n is the number of items. Before, only a
3-approximation algorithm was known.

We note that our problem with a convex cost function is a special case
of maximizing a non-monotone, possibly negative submodular function.

1 Introduction

The knapsack problem is a classical problem of combinatorial optimization [5].
In the standard setting we must choose a subset of items to fit into a given
knapsack. Each item comes with a weight wj and a profit pj, and the goal is
to maximize the total profit, under the constraint that the total weight of the
chosen items should not exceed the knapsack’s capacity. A natural generalization
of the knapsack problem (and backed up by applications - see discussion below)
is to assume that we can “customize” the knapsack in which we pack the selected
items. In other words, we can pay more to buy a knapsack of a larger capacity.
This motivates our problem.

Consider U to be a set of items j, each with its own positive weight wj

and positive profit pj . Let c(W ) be a non-decreasing cost function c(W ),
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where W is the total weight of the chosen items. The function c is given
by an oracle and it is not part of the input. The goal is to maximize
the net value, which is the total profit of the chosen items minus the
cost of their total weight. Precisely, we want to maximize the objective
π(A) =

∑
j∈A pj − c(

∑
j∈A wj) over all possible subsets A ⊆ U of items.

Clearly, our problem contains the standard knapsack problem as a special case,
when the cost function switches from 0 to infinity at the capacity of the knapsack.

If we allow arbitrary non-decreasing functions, the problem is inapproximable
within any factor, unless P = NP. This follows by a simple reduction from the 2-
partition problem [5]; for details see the full version of our paper [11]. Therefore,
in this work, we consider two natural special cases of cost functions, namely
convex and concave functions.

Our Results. Let n = |U | be the number of items. We assume that each call of
the cost function takes constant time. Suppose that the cost function is convex.
Then our problem is (weakly) NP-hard, since it contains the original knapsack
problem as a special case.

– In Section 3 we present an O(n log n) time 2-approximation algorithm.
– In Section 4, we present an FPTAS (Fully Polynomial Time Approximation

Scheme). With any ε > 0, our FPTAS returns a solution with net value at
least 1− ε fraction of the optimal solution, in O(n3/ε2) time. Our FPTAS is
only slower than the well-known FPTAS for the original knapsack problem
by a factor of 1/ε.

Suppose that the cost function is convave.

– In Section 5, we present an exact algorithm with running time O(n log n).

Applications. Applications for our problem naturally arise in many areas, such
as cloud computing or connection management in wireless access points [1].
Consider for example a data center which earns a certain amount for every job
it processes. When accepting more and more jobs, the workload increases and
the data center must run its processors at higher speed to maintain an acceptable
quality of service. This results in a higher power consumption, which typically
grows convexly with the speed of the processor (cf. the cube-root rule for CMOS
based processors [2]). Consequently, the data center wants to select the most
profitable set of jobs, taking into account the energy costs, which depend on
the total volume of accepted jobs. This directly translates into our generalized
knapsack problem with a convex cost function.

The study of concave cost functions is motivated by the economies of scale
principle [10]. This principle states that the cost per unit decreases if the total
number of units increases, because efficiency increases and fixed costs are spread
over more units.

Related Work. The standard knapsack problem is well known to be NP-hard,
but one can approximate it within any factor greater than 1 in polynomial time
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[8]. Our generalized problem has been studied before under a convex cost func-
tion, by Barman et al. [1]. There the authors consider an online setting, where
items arrive over time in random order and the algorithm must make an irre-
vocable accept/reject decision as soon as a new item arrives. They assume a
convex cost function and develop an online algorithm which is constant com-
petitive in expectation. In addition they also study the problem under several
feasibility constraints. Even though their focus is on the online version, they
also present a result for our offline setting, namely a greedy algorithm which
achieves a 3-approximation. To the best of our knowledge, this was the best
known approximation ratio for this problem so far.

We note that in the convex costs setting, our problem amounts to maximizing
a non-monotone, possibly negative submodular function. Submodular function
maximization in general is a very active area of research that has recently at-
tracted much attention [3,4,9], and many other special cases (e.g. several graph
cut problems [6,7]) have been investigated. Not much is known for other prob-
lems where the submodular function is non-monotone and can take negative
values. Our results can be regarded as a first step in understanding this type of
problems.

Challenges and Techniques. A tricky aspect of our problem is that the ob-
jective, i.e. the net value, can be very small and even negative. In this situation,
the design and analysis of approximation algorithms often becomes more chal-
lenging. Although the usual dynamic program by Ibarra and Kim [8] can be
easily adapted for our more general case, the rounding technique is troublesome.
The reason is that our goal is to maximize the difference between the profit and
the cost. It could happen that both values are very large and almost coincide
in the optimal solution, resulting in a rather small net value. Thus, a relatively
small error in the rounding of profit and/or weight would cascade into a large
mistake in the final outcome. The same problem prevents us from guessing the
weight of the optimal solution, and then applying known algorithms for the
classic knapsack problem.

Our 2-approximation algorithm for convex costs does not resort to any round-
ing or guessing. Informally speaking, we use the optimal solution of a relaxed
version of our problem, where the items can be fractionally added into the col-
lection, to upper bound the net value of the original (non-fractional) problem.
However, this idea has to be carefully applied since the gap between the cost of
a fractional solution and an integral one can be arbitrarily large. We show that
this gap is bounded if the contribution (defined appropriately) of a job to the
optimal solution is bounded. Turning these ideas into a greedy algorithm we can
achieve the claimed result.

As just said, rounding the profits as for the usual knapsack problem might
decrease the objective by an arbitrarily large factor. Therefore our FPTAS can-
not rely on this technique. To overcome this difficulty, we use two crucial ideas.
First, we observe that the convexity of the cost function implies the following
fact: if A is an optimal subset of items, and A′ ⊆ A, we can assume that A′ has
minimum weight among all subsets of (U \A)∪A′ with net value at least π(A′).
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This indicates the use of a specially crafted dynamic programming tableau that
is indexed by the achievable net value. Secondly, instead of rounding the prof-
its/weights, we merge several entries of the tableau into one. Intuitively, this
corresponds to rounding the objective function so that it takes polynomially
many different values.

2 Preliminaries and Notations

The input is given by a set U of items, each having a positive weight wj and
positive profit pj , together with a non-decreasing cost function c = c(W ) that
denotes the cost of selecting items with total weight W . We assume that c is
given by an oracle which can be called in constant time, and that c(0) = 0.
Our goal is to find a set A ⊆ U of items that maximizes the total net value
π(A) =

∑
j∈A pj−c(

∑
j∈A wj). W.l.o.g. we assume the weights wj to be positive

integers (otherwise we can multiply them with their least common denominator
τ and use the modified cost function c′(W ) = c(W/τ)).

Throughout the paper we consider a fixed optimal solution OPT. We slightly
abuse notation by letting OPT denote both the set of items and the net value
of this solution. Furthermore, let WOPT denote the total weight of all items
in OPT. More generally we use WS to denote the total weight of all items in a
given set S.

For any item j, we define the density dj as the profit per unit of weight, i.e.
dj := pj/wj . Furthermore, it will sometimes be helpful to consider fractional
items, i.e. we pick only w < wj units of an item j and assume this fraction has
profit w · dj . Finally, we define δwj (W ) := w · dj − c(W + w) + c(W ) for every
item j and w ≥ −W . The intuitive meaning of δwj (W ) is the change in the net
value when adding w units of item j to a knapsack with current total weight W .
Note that we also allow negative w, which then describes the change in the net
value when removing |w| units of item j.

It is easy to see, that the function δwj (W ) satisfies the following property if c
is convex.

Proposition 1. Let c be a convex function. Then δwj (W ) = w ·dj − c(W +w) +

c(W ) is non-increasing in W , and δ−wj (W ) = −w · dj − c(W − w) + c(W ) is
non-decreasing in W , for any item j and w ≥ 0.

3 2-Approximation for Convex Costs

In this section we present a 2-approximation with running time O(n log n) for
the case of a convex cost function c. The main idea of the algorithm is as follows.
We try every item individually and compare their net values to the outcome of a
greedy procedure, which adds items in order of non-increasing densities. During
the procedure, we add an item j only if δ1j (WA +wj −1) ≥ 0, i.e. adding the last
unit of j does not decrease the net value. Thus, we may discard certain items
from the sorted list, but possibly continue to add further items with smaller



66 A. Antoniadis et al.

Algorithm:

Initialize a set of candidate solutions C := {∅}, and an empty solution A := ∅.
For every item j ∈ U do: C := C ∪

{
{j}

}
.

Sort the items in U by non-increasing densities, and let i1, i2, . . . in be the
items in this sorted order.

For k from 1 to n, do:

If δ1ik(WA + wik − 1) ≥ 0, then A := A ∪ {ik}.
Set C := C ∪ {A}.
Output a set B ∈ C with maximum net value π(B).

Fig. 1. A 2-approximation with running time O(n log n)

densities at a later point of time. The details of the algorithm are presented in
Figure 1.

It is easy to see that the running time of the proposed algorithm is dominated
by the sorting of the items, which can be done in O(n log n) time. We now turn
to proving the claimed approximation ratio of 2.

Theorem 1. The set B returned by the algorithm in Figure 1 satisfies π(B) ≥
1/2 · OPT.

The high-level idea of the proof of Theorem 1 is as follows. First, we divide the
items into two categories: heavy and light (see Definition 1). In Lemma 1 we show
that each heavy item in the optimal solution, by itself, is a 2-approximation. On
the other hand, if there is no heavy item in OPT, in Lemma 3 we show that the
greedy procedure results in a 2-approximation. Then Theorem 1 follows easily
from the two lemmas.

Definition 1. An item j ∈ U is called heavy if one of the following is true:

• wj > WOPT

• wj ≤ WOPT and δ
−wj

j (WOPT) < −1/2 · OPT (removing j from a knapsack
with total weight WOPT decreases the net value by more than 1/2 · OPT)

Items which are not heavy are called light. We denote the set of heavy items by
H := {j|j is heavy}.

We remark that this definition is only used in the analysis of our algorithm and
never in the algorithm itself.

Lemma 1. Assume OPT contains some heavy item j. Then π({j}) > 1/2·OPT.

Proof. First of all, observe that any heavy item in OPT satisfies the second
condition of Definition 1, because its weight cannot be more than the total weight
of OPT. Thus we have δ

−wj

j (WOPT) < −1/2 · OPT. Furthermore it holds that

δ
−wj

j (wj) ≤ δ
−wj

j (WOPT) by Proposition 1. Therefore δ
−wj

j (wj) < −1/2 · OPT,

and since π({j}) + δ
−wj

j (wj) = 0, we get π({j}) > 1/2 · OPT. ��
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We now consider the case that OPT does not contain any heavy item. Our first
step is to define a family of fractional solutions, which will serve as an upper
bound on OPT. To this end, consider the items in U \D, where D is a given set
of items that were discarded by the algorithm in the second for loop, and sort
them by non-increasing densities (breaking ties in the same way as the algorithm
does). We regard these items as a continuous “stream”, i.e. a sequence of unit-size
item fractions.

Definition 2. We denote by FD(W ) the (fractional) solution obtained by pick-
ing the first W units from the described stream.

Note that FD(W ) contains only complete (non-fractional) items, plus at most
one fractional item. The next lemma summarizes a number of useful properties
satisfied by FD(W ).

Lemma 2. The following three statements are true for any set of items D and
integer weights W and W ′:

(1) π
(
FD(W − 1)

)
≤ π

(
FD(W )

)
⇒ π

(
FD(W ′)

)
≤ π

(
FD(W )

)
∀W ′ ≤W

(2) π
(
FD(W − 1)

)
> π

(
FD(W )

)
⇒ π

(
FD(W ′)

)
< π

(
FD(W )

)
∀W ′ > W

(3) OPT ∩D = ∅ ⇒ π
(
FD(WOPT)

)
≥ OPT

Proof. Observe that π
(
FD(W )

)
− π

(
FD(W − 1)

)
= d− c(W ) + c(W − 1), where

d is the density of the W th unit in the stream. Since the items in the stream are
ordered by non-increasing densities, and c is convex, it follows that π

(
FD(W )

)
−

π
(
FD(W − 1)

)
is non-increasing in W . This immediately proves statements (1)

and (2).
For statement (3), note that FD(W ) maximizes the net value among all (pos-

sibly fractional) solutions with total weight W , that do not contain any item
from D. This is clearly true, because the cost is the same for all those solutions
(= c(W )), and FD(W ) maximizes the profit by choosing the units with the high-
est densities. Statement (3) follows. ��

Using these properties, we can now prove the following lemma, which is the main
technical contribution of this section.

Lemma 3. If OPT ∩ H = ∅, then the candidate A constructed by the greedy
procedure achieves π(A) ≥ 1/2 · OPT.

Proof. The algorithm starts the construction of A with an empty set A0 = ∅,
and then iterates through the sorted list of items to augment A0. During the
iteration, some items are added to A0, while others are discarded. We restrict our
attention to the moment t, when it happens for the first time that a light item
z gets discarded. If this never happens, t is just the time when the iteration is
finished and all items have been considered. Let Dt be the set of items discarded
up to this point (excluding z), and let At be the solution constructed until now.
Then Dt ⊆ H , while OPT ∩H = ∅. Thus Dt ∩ OPT = ∅, and hence

π
(
FDt(WOPT)

)
≥ OPT (1)
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by Lemma 2 (3). In the remaining part of the proof, our goal is to show the
following inequality:

π
(
FDt(WAt)

)
≥ π

(
FDt(WOPT)

)
− 1/2 · OPT. (2)

Together with (1) this proves the lemma for the following reason. First of all,
observe that At is exactly the same set of items as FDt(WAt), and therefore (1)
and (2) imply π(At) ≥ 1/2 ·OPT. As the iteration proceeds, the algorithm may
add further jobs to At, but for each such job j we know that δ1j (Wcur+wj−1) ≥ 0,
where Wcur is the total weight of A before j is added. Therefore adding item j
changes the net value by

δ
wj

j (Wcur) =

wj−1∑
r=0

δ1j (Wcur + r) ≥ wj · δ1j (Wcur + wj − 1) ≥ 0,

where the second inequality holds by Proposition 1. Thus every further job which
is added to At does not decrease the net value, and hence the final candidate A
satisfies π(A) ≥ π(At) ≥ 1/2 · OPT.

For the proof of (2), we distinguish two cases. Let us first assume that WOPT ≤
WAt . Clearly (2) is satisfied whenWOPT = WAt , so we can assumeWOPT < WAt .
Then at least one item has been added to A0 during the iteration up to time
t. Let k be the last item that was added on the way from A0 to At. Since
the algorithm decided to add k, we have 0 ≤ δ1k(WAt − 1). Now observe that
π
(
FDt(WAt)

)
−π

(
FDt(WAt −1)

)
= dk−c(WAt)+c(WAt −1) = δ1k(WAt −1) ≥ 0.

Hence we can apply Lemma 2 (1) to obtain π
(
FDt(WAt)

)
≥ π

(
FDt(WOPT)

)
.

We are left with the case that WOPT > WAt . In this case there must indeed
be a light item z which gets discarded at time t, because if the iteration was
finished at t and all light items were accepted, we would have OPT ⊆ At,
implying WOPT ≤ WAt , a contradiction.

The reason for the rejection of z is that 0 > δ1z(WAt +wz − 1), where the latter
is equal to π

(
FDt(WAt +wz)

)
−π

(
FDt(WAt +wz−1)

)
. We claim that this implies

WOPT ≤ WAt+wz . To see this, suppose for the sake of contradiction thatWOPT >
WAt + wz . Then Lemma 2 (2) yields π

(
FDt(WOPT)

)
< π

(
FDt(WAt + wz)

)
, and

together with (1) we obtain π
(
FDt(WAt + wz)

)
> OPT. However,FDt(WAt +wz)

is a feasible (non-fractional) solution, which contradicts the optimality of OPT.
Therefore we have

WAt < WOPT ≤WAt + wz. (3)

We continue by comparing the solutions FDt(WAt) and FDt(WOPT). Using (3),
we see that both solutions differ only by some non-zero fraction of z, namely by
Δw := WOPT −WAt units of z. In terms of the net value, we have

π
(
FDt(WAt)

)
= π

(
FDt(WOPT)

)
+ δ−Δw

z (WOPT).

So all we need to show for completing the proof of (2), is that

δ−Δw
z (WOPT) ≥ −1/2 · OPT.



How to Pack Your Items When You Have to Buy Your Knapsack 69

As z is a light item, we already know that δ−wz
z (WOPT) ≥ −1/2 · OPT. Now

consider the function f(x) := x · dz − c(WOPT + x) + c(WOPT) and observe that
f is concave. Clearly, f(0) = 0 and f(−wz) = δ−wz

z (WOPT) ≥ −1/2 · OPT. By
the concavity of f we can conclude that f(x) ≥ −1/2 ·OPT for all −wz ≤ x ≤ 0.
Therefore −1/2 · OPT ≤ f(−Δw) = δ−Δw

z (WOPT). This completes the proof of
(2), and hence the proof of the entire lemma. ��

Now Theorem 1 follows from Lemmas 1 and 3.

4 FPTAS for Convex Costs

In this section we describe an FPTAS for our problem if the cost function is
convex. The main idea of the FPTAS is to build up a tableau of polynomial size
using dynamic programming. Although obtaining a dynamic program of pseudo-
polynomial size is a relatively straightforward task, designing one that can be
effectively rounded is significantly more involved. To this end, we exploit the
convexity of the objective function to obtain a tableau that is indexed by the
net value achievable by sub-solutions. We will show that we can reduce the size
of this tableau to make it polynomial. In this process we again exploit convexity.
For the sake of conciseness we describe directly the tableau with polynomial size.

Before defining the dynamic program, we use the 2-approximation algorithm
from the previous section to obtain an upper bound UB on OPT, s.t. OPT ≤
UB ≤ 2OPT. Further, for all k ∈ {0, . . . , n} and N ∈ [0,UB], we define T ∗(k,N)
to be the minimum weight achievable by a subset of items A ⊆ {1, . . . , k} whose
net value is at least N , i.e.,

T ∗(k,N) := min{WA |π(A) ≥ N,A ⊆ {1, . . . , k}}.

If no subset A ⊆ {1, . . . , k} with π(A) ≥ N exists, we let T ∗(k,N) := ∞.
To elaborate the details of the FPTAS, let us fix an error bound ε > 0, and let


max := �(n+ 1)/ε� and C := UB/
max. Using dynamic programming, we build
up a table T (k, l), where k ∈ {0, . . . , n} and 
 ∈ {0, . . . , 
max}. Intuitively, T (k, 
)
compacts all values of T ∗(k,N) for N ∈ [
C, (
 + 1)C) into one entry. We now
describe the dynamic program. Initially, we set T (0, 0) := 0 and T (0, 
) := ∞
for all 
 �= 0. The remaining entries are computed by the recursive formula

T (k, 
) := min
{
T (k − 1, 
), (4)

min
′≥0

{T (k − 1, 
′) + wk | 
′C + δwk

k

(
T (k − 1, 
′)

)
≥ 
C}

}
.

Intuitively, the first term in the recursive formula corresponds to the case in
which item k does not belong to the set A in arg min{WA : π(A) ≥ 
C,A ⊆
{1, . . . , k}}. The second term is when k belongs to this set A. In this case we
need to check for the best choice among all T (k − 1, 
′) for 0 ≤ 
′.

In the following lemma we show that unless T (k, 
) = ∞, there always exists
a set A ⊆ {1, . . . , k} with weight T (k, 
) and net value at least 
C.
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Lemma 4. If T (k, 
) < ∞, then there exists A ⊆ {1, . . . , k} such that WA =
T (k, 
) and π(A) ≥ 
C.

Proof. We show this by induction on k. The base case for k = 0 holds trivially.
If T (k, 
) = T (k− 1, 
) then the claim is trivially true. Otherwise, let 
′ be such
that T (k, 
) = T (k− 1, 
′) +wk and 
′C + δwk

k

(
T (k− 1, 
′)

)
≥ 
C. By induction

hypothesis, we have that there exists A′ ⊆ {1, . . . , k−1} with WA′ = T (k−1, 
′)
and π(A′) ≥ 
′C. Then taking A := A′ ∪ {k} yields a set satisfying WA =
T (k, 
′)+wk = T (k, 
) and π(A) = π(A′)+δwk

k (WA′) ≥ 
′C+δwk

k

(
T (k−1, 
′)

)
≥


C. ��

The next lemma shows that the table T provides, in an appropriate fashion, a
good approximation for T ∗. In the following we denote by x+ := max{x, 0} for
all x ∈ R.

Lemma 5. For all k ∈ {0, . . . , n} and N ∈ [0,UB] it holds that

T
(
k, (
N − k)+

)
≤ T ∗(k,N), where 
N =

⌊
N

C

⌋
.

Before showing this lemma we show why it implies an FPTAS for our problem.

Theorem 2. If the function c is convex, our problem admits a (1 − ε)-approx-
imation algorithm with running time O(n3/ε2) for any ε > 0.

Proof. Using the proposed dynamic program, we fill the table T and search
for the largest 
 such that T (n, 
) < ∞. For proving correctness, take N :=
OPT and k := n in our previous lemma. It follows that T (n, (
OPT − n)+) ≤
T ∗(n,OPT) < ∞. Then, by Lemma 4, there exists a set of items A with

π(A) = (�OPT − n)+C ≥ (

⌊
OPT

C

⌋
− n)C ≥ (

OPT

C
− n− 1)C = OPT− C(n+ 1)

≥ OPT− εUB ≥ OPT− 2εOPT.

This set A can be easily computed by back-tracking. Thus, redefining ε as ε/2
yields a (1 − ε)-approximation. The table has O(n2/ε) many entries, and each
entry takes O(n/ε) time to compute. This implies the claimed running time. ��

It remains to show Lemma 5. In order to do that we need the following technical
property.

Proposition 2. For all k and 
1 ≤ 
2 it holds that T (k, 
1) ≤ T (k, 
2).

Proof. We argue by induction on k. If k = 0 then the proposition holds im-
mediately. By induction hypothesis, we assume that the proposition holds for
k − 1 and all 
1 ≤ 
2. Let us fix a value for 
1 and 
2 with 
1 ≤ 
2. By (4) we
have that either T (k, 
2) = T (k− 1, 
2), or T (k, 
2) = T (k− 1, 
′) +wk for some

′ ≥ 0 such that 
′C + δwk

k (T (k − 1, 
′)) ≥ 
2C. If the first case holds, then (4)
implies that T (k, 
1) ≤ T (k − 1, 
1), and the induction hypothesis yields that
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T (k − 1, 
1) ≤ T (k − 1, 
2) = T (k, 
2). We conclude that T (k, 
1) ≤ T (k, 
2) in
this case.

For the second case, where T (k, 
2) = T (k− 1, 
′) +wk, it is enough to notice
that T (k, 
1) ≤ T (k − 1, 
′) + wk = T (k, 
2). Indeed, this follows from (4), by
noting that


′C + δwk

k (T (k − 1, 
′)) ≥ 
2C ≥ 
1C.

��

Proof (Lemma 5). We show the lemma by induction on k. For k = 0, the claim
follows directly from the initial conditions for T . We now assume that the claim
is true for k − 1 and all N ∈ [0,UB]. For the induction step, let us fix a value
N . If T ∗(k,N) = ∞, the claim is obviously true. Otherwise there exists a set
of items A ⊆ {1, . . . , k}, such that π(A) ≥ N and WA = T ∗(k,N). We consider
two cases.

Case 1. k �∈ A.
In this case we have that T ∗(k − 1, N) = T ∗(k,N). Therefore it holds that

T
(
k, (
N − k)+

)
≤ T

(
k − 1, (
N − k)+

)
≤ T

(
k − 1, (
N − k + 1)+

)
≤ T ∗(k − 1, N) = T ∗(k,N).

Here, the first inequality follows from (4), the second by the previous proposition,
and the third one by the induction hypothesis.

Case 2. k ∈ A.
For this case we consider the value N ′ := π(A \ {k}), and we use the convexity
of the cost function to show the following property.

Claim. It holds that T ∗(k − 1, N ′) = WA\{k}.
We show the claim by contradiction. Let us assume that there exists a set A∗ ⊆
{1, . . . , k − 1} with π(A∗) ≥ N ′ and WA∗ < WA\{k}. Then WA∗∪{k} < WA, and

π(A∗ ∪ {k}) = π(A∗) + δwk

k (WA∗)

≥ N ′ + δwk

k (WA∗)

≥ N ′ + δwk

k (WA\{k}) = π(A),

where the last inequality follows from Proposition 1 and WA∗ < WA\{k}. This
implies that T ∗(k,N) < WA, which contradicts the definition of A. The claim
follows.

Using this claim we can conclude

N ′ + δwk

k

(
T ∗(k − 1, N ′)

)
≥ N. (5)

To simplify notation, let us call r := (
N ′ − k + 1)+. Our goal is to prove

T (k, (
N − k)+) ≤ T (k − 1, r) + wk. (6)

Then

T (k − 1, r) + wk ≤ T ∗(k − 1, N ′) + wk = WA\{k} + wk = T ∗(k,N),
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where the first inequality follows from the induction hypothesis, and the subse-
quent equality holds by the above claim, completes the induction step. To see
that (6) holds, note that

r · C + δwk

k

(
T (k − 1, r)

)
≥ N ′ − kC + δwk

k

(
T (k − 1, r)

)
≥ N ′ − kC + δwk

k

(
T ∗(k − 1, N ′)

)
≥ N − kC ≥ (
N − k)C.

In this computation, the first inequality holds by the definition of 
N ′ . The
second one follows by Proposition 1, and since the induction hypothesis implies
that T (k − 1, r) ≤ T ∗(k − 1, N ′). The third inequality is implied by (5).

This chain of inequalities implies (6), as long as 
N − k = (
N − k)+, since

′ = r is one possible choice in (4). On the other hand, if (
N − k)+ = 0, then
(6) also holds. Indeed, it is enough to notice that T (0, 0) = 0, and that applying
(4) iteratively implies that T (k, 0) = 0. This completes the proof. ��

5 Concave Costs

In this section we consider the problem under a concave cost function c. The
proof of the following lemma can be found in the full version of our paper [11].

Lemma 6. Let OPT be an optimal solution of maximal weight. Then OPT is
comprised of exactly the items that have density at least c(WOPT+1)−c(WOPT).

Lemma 6 directly suggests the algorithm in Figure 2.

Algorithm:

Initialize a solution A := ∅, and a candidate solution D := ∅.
Sort the items in U by non-increasing densities, and let i1, i2, . . . in be the
items in this sorted order.
For j from 1 to n, do:

D := D ∪ {ij}.
If π(D) ≥ π(A), then

A := D.

Output set A.

Fig. 2. An optimal algorithm for the concave costs setting

It is easy to see that this algorithm returns an optimal solution, since it selects
the best prefix of the sorted items, and Lemma 6 implies that OPT is such a
prefix. The running time is dominated by the sorting of the items. Note that by
storing some additional information, π(D) can be computed in constant time in

each iteration, because π(D) = π(D′) + δ
wij

ij
(W ′), where D′ corresponds to the

candidate solution of the previous iteration, and W ′ to its weight. Therefore we
obtain the following theorem.
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Theorem 3. For concave cost functions, an optimal solution can be computed
in time O(n logn).

6 Conclusion

In this paper, we study a generalization of the classical knapsack problem, where
the “hard” constraint on the capacity is replaced by a “soft” weight-dependent
cost function. An interesting direction for further study is to impose certain
restrictions on the set of chosen items. In Barman et al. [1], they show that if a
matroid constraint is imposed on the items, they can achieve a 4-approximation
for the case of a convex cost function. An obvious question is whether this can
be further improved.
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Abstract. We propose a general definition of composition operator on
Markov Decision Processes with rewards (MDPs) and identify a well
behaved class of operators, called safe, that are guaranteed to be non-
extensive w.r.t. the bisimilarity pseudometrics of Ferns et al. [10], which
measure behavioral similarities between MDPs. For MDPs built using
safe/non-extensive operators, we present the first method that exploits
the structure of the system for (exactly) computing the bisimilarity dis-
tance on MDPs. Experimental results show significant improvements
upon the non-compositional technique.

1 Introduction

Probabilistic bisimulation of Larsen and Skou [13] is the standard equivalence for
analyzing the behaviour of Markov chains. In [12], this notion has been extended
to Markov Decision Processes with rewards (MDPs) with the intent of reducing
the size of large systems to help the computation of optimal policies.

However, when the numerical values of probabilities are based on statistical
sampling or subject to error estimates, any behavioral analysis based on a notion
of equivalence is too fragile, as it only relates processes with identical behaviors.
This is a common issue in applications such as systems biology [15], games [4], or
planning [7]. Such problems motivated the study of behavioral distances (pseudo-
metrics) for probabilistic systems, firstly developed for Markov chains [9,17,16]
and later extended to MDPs [10]. These distances support approximate reasoning
on probabilistic systems, providing a way to measure the behavioral similarity
between states. They allow one to analyze models obtained as approximations
of others, more accurate but less manageable, still ensuring that the obtained
solution is close to the real one. For instance, in [2,3] the pseudometric of [10] is
used to compute (approximated) optimal polices for MDPs in applications for
artificial intelligence. These arguments motivate the development of methods to
efficiently compute behavioral distances for MDPs.

Realistic models are usually specified compositionally by means of operators
that describe the interactions between the subcomponents. These specifications
may thus suffer from an exponential growth of the state space, e.g. the parallel
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composition of n subsystems with m states may cause the main system to have
mn states. To cope with this problem, algorithms like [10,7,5] that need to in-
vestigate the entire state space of the system and even more recent proposals [1],
that avoid the entire state space exploration using on-the-fly techniques, are not
sufficient: one needs to reason compositionally.

Classically, the exact behavior of systems can be analyzed compositionally if
the considered behavioral equivalence (e.g. bisimilarity) is a congruence w.r.t.
the composition operators. When the behavior of processes is approximated by
means of behavioral distances, congruence is generalized by the notion of non-
extensiveness of the composition operators, that describes the relation between
the distances of the subcomponents to that of the composite system [9].

In this paper we study to which extent compositionality on MDPs can be
exploited in the computation of the behavioral pseudometrics of [10], hence how
the compositional structure of processes can be used in an approximated analysis
of behaviors. To this end we introduce a general notion of composition operator
on MDPs and characterize a class of operators, called safe, that are guaranteed
to be non-extensive. This class is shown to cover a wide range of known operators
(e.g. synchronous and asynchronous parallel composition), moreover its defining
property provides an easy systematic way to check non-extensiveness.

We provide an algorithm to compute the bisimilarity pseudometric by ex-
ploiting both the on-the-fly state space exploration in the spirit of [1], and the
compositional structure of MDPs built over safe operators. Experimental results
show that the compositional optimization yields a significant additional improve-
ment on top of that obtained by the on-the-fly method. In the best cases, the
exploitation of compositionality achieves a reduction of computation time by a
factor of 10, and for least significant cases the reduction is that of a factor of 2.

2 Markov Decision Processes and Behavioral Metrics

In this section we recall the definitions of finite discrete-time Markov Decision
Process with rewards (MDP), and of bisimulation relation on MDPs [12]. Then
we recall the definition of bisimilarity pseudometric introduced in [10], which
measures behavioral similarities between states.

We start recalling a few facts related to probability distributions that are es-
sential in what follows. A probability distribution over a finite set S is a function
μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We denote by Δ(S) the set of probability

distributions over S. Given μ, ν ∈ Δ(S), a distribution ω ∈ Δ(S×S) is a match-
ing for (μ, ν) if for all u, v ∈ S,

∑
s∈S ω(u, s) = μ(u) and

∑
s∈S ω(s, v) = ν(v);

we denote by Π(μ, ν) the set of matchings for (μ, ν). For a (pseudo)metric
d : S×S → [0,∞) over a finite set S, the Kantorovich (pseudo)metric is defined
by Td(μ, ν) = minω∈Π(μ,ν)

∑
u,v∈S ω(u, v)d(u, v), for arbitrary μ, ν ∈ Δ(S)1.

Definition 1 (Markov Decision Process). A Markov Decision Process is a
tuple M = (S,A, τ, ρ) consisting of a finite nonempty set S of states, a finite

1 Since S is finite, Π(μ, ν) describes a bounded transportation polytope [8], hence the
minimum in the definition of Td(μ, ν) exists and can be achieved at some vertex.
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nonempty set A of actions, a transition function τ : S × A → Δ(S), and a
reward function ρ : S ×A→ R.

The operational behavior of an MDP M= (S,A, τ, ρ) is as follows: the process in
the state s0 ∈ S chooses nondeterministically an action a ∈ A and it changes the
state to s1 ∈ S, with probability τ(s0, a)(s1). The choice of a in s0 is rewarded
by ρ(s0, a). The executions are transition sequences w = (s0, a0)(s1, a1) . . . ; the
challenge is to find strategies for choosing the actions in order to maximize the re-
ward Rλ(w) = limn→∞

∑n
i=0 λ

iρ(si, ai), where λ ∈ (0, 1) is a discount factor. A
strategy is given by a function π : S → Δ(A), called policy, where π(s0)(a) is the
probability of choosing the action a at state s0. Each policy π induces a probabil-
ity distribution over executions defined, for an arbitrary w = (s0, a0)(s1, a1) . . . ,
by P π(w) = limn→∞

∏n
i=0 π(si)(ai)·τ(si, ai)(si+1). The value of s ∈ S according

to π, written V π
λ (s), is the expected value of Rλ w.r.t. P π on the measurable

cylinder set of the executions starting from s. The mapping V π
λ : S → R is the

value function according to π. The value functions induce a preorder on policies
defined by π � π′ iff V π

λ (s) ≤ V π′
λ (s), for all s ∈ S. A policy π∗ is optimal for an

MDP M if it is maximal w.r.t. � among all policies for M. Given M, there al-
ways exists an optimal policy π∗, but it might not be unique; it has a unique value
function V π∗

λ satisfying the following system of equations known as the Bellman
optimality equations : V π∗

λ (s) = maxa∈A
(
ρ(s, a) +λ

∑
t∈S τ(s, a)(t) ·V π∗

λ (t)
)
, for

all s ∈ S. As reference on MDPs we recommend to consult [14].

Definition 2 (Stochastic Bisimulation). Let M = (S,A, τ, ρ) be an MDP.
An equivalence relation R ⊆ S × S is a stochastic bisimulation if whenever
(s, t) ∈ R then, for all a ∈ A, ρ(s, a) = ρ(t, a) and, for all R-equivalence classes
C, τ(s, a)(C) = τ(t, a)(C). Two states s, t ∈ S are stochastic bisimilar, written
s ∼M t, if they are related by some stochastic bisimulation on M.

To cope with the problem of measuring how similar two MDPs are, Ferns et
al. [10] defined a bisimilarity pseudometrics that measure the behavioural sim-
ilarity of two non-bisimilar MDPs. This is defined as the least fixed point of a
transformation operator on functions in [0,∞)S×S.

Let M = (S,A, τ, ρ) be an MDP and λ ∈ (0, 1) be a discount factor. The set
[0,∞)S×S of [0,∞)-valued maps on S × S equipped with the point-wise partial
order defined by d � d′ iff d(s, t) ≤ d′(s, t), for all s, t ∈ S, forms an ω-complete
partial order with bottom the constant zero-function 0, and greatest lower bound
given by (

�
i∈N

di)(s, t) = infi∈N di(s, t), for all s, t ∈ S. We define a fixed point
operator FM

λ on [0,∞)S×S , for d : S × S → [0,∞) and s, t ∈ S, as follows:

FM
λ (d)(s, t) = maxa∈A

(
|ρ(s, a) − ρ(t, a)| + λ · Td(τ(s, a), τ(t, a))

)
.

FM
λ is monotonic [10], thus, by Tarski’s fixed point theorem, it admits a least

fixed point. This fixed point is the bisimilarity pseudometric.

Definition 3 (Bisimilarity pseudometric). Let M be an MDP and λ ∈ (0, 1)
be a discount factor, then the λ-discounted bisimilarity pseudometric for M,
written δMλ , is the least fixed point of FM

λ .
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The pseudometric δMλ enjoys the property that two states are at zero distance if
and only if they are bisimilar. Moreover, in [6] it has been proved, using Banach’s
fixed point theorem, that for λ ∈ (0, 1), FM

λ has a unique fixed point.

3 Non-extensiveness and Compositional Reasoning

In this section we give a general definition of composition operator on MDPs that
subsumes most of the known composition operators such as the synchronous,
asynchronous, and CCS-like parallel compositions. We introduce the notion of
safeness for an operator and prove that it implies non-extensiveness. Recall that,
non-extensiveness corresponds to the quantitative analogue of congruence when
one aims to reason with behavioral distances, as advocated e.g. in [11,9].

Definition 4 (Composition Operator). Let Mi = (Si, Ai, τi, ρi), i = 1..n,
be MDPs. A composition operator on M1, . . . ,Mn is a tuple op = (A, opτ , opρ)
consisting of a nonempty set A of actions and the following operations

• on transitions functions: opτ :
∏n

i=1Δ(Si)
Si×Ai → Δ(S)S×A,

• on reward functions: opρ :
∏n

i=1 R
Si×Ai → RS×A.

where, S =
∏n

i=1 Si denotes the cartesian product of Si, i = 1..n. We denote by
op(Mi, . . . ,Mn) the composite MDP (S,A, opτ (τ1, . . . , τn), opρ(ρ1, . . . , ρn)).

Below we present examples, for two fixed MDPs MX = (X,AX , τX , ρX) and
MY = (Y,AY , τY , ρY ), of some of the known parallel composition operators.

Example 5. Synchronous Parallel Composition can be given as a binary
composition operator | = (AX ∩AY , |τ , |ρ), where

(τX |τ τY )((x, y), a)(u, v) = τX(x, a)(u) · τY (y, a)(v) ,

(ρX |ρ ρY )((x, y), a) = ρX(x, a) + ρY (y, a) .

The process MX | MY reacts iff MX and MY can react synchronously. Actions
are rewarded by summing up the rewards of the components. �

Example 6. CCS-like Parallel Composition can be defined by the composi-
tion operator ‖ = (AX ∪AY , ‖τ , ‖ρ), where

(τX ‖τ τY )((x, y), a)(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τX(x, a)(u) if a /∈ AY and v = y

τY (y, a)(v) if a /∈ AX and u = x

τX(x, a)(u) · τY (y, a)(v) if a ∈ AX ∩ AY

0 otherwise

(ρX ‖ρ ρY )((x, y), a) =

⎧⎪⎨⎪⎩
ρX(x, a) if a /∈ AY

ρY (y, a) if a /∈ AX

ρX(x, a) + ρY (y, a) if a ∈ AX ∩ AY

In the process MX ‖ MY , the components synchronize on the same action,
otherwise they proceed asynchronously. Asynchronous parallel composition can
be defined as above, requiring that the MDPs have disjoint set of actions. �



78 G. Bacci et al.

Before introducing the concept of non-extensiveness for a composition opera-
tor, we provide some preliminary notations. Consider the sets Xi, the functions
di : Xi×Xi → [0,∞), for i = 1..n, and p ∈ [1,∞]. We define the p-norm function
‖d1, . . . , dn‖p :

∏n
i=1Xi ×

∏n
i=1Xi → [0,∞) as follows:

‖d1, . . . , dn‖p((x1, . . . , xn), (y1, . . . , yn)) = (
∑n

i=1 di(xi, yi)
p)

1
p if p < ∞ ,

‖d1, . . . , dn‖∞((x1, . . . , xn), (y1, . . . , yn)) = max1≤i≤n di(xi, yi) .

Note that, if (Xi, di) are (pseudo)metric spaces, ‖d1, . . . , dn‖p is a (pseudo)metric
on

∏n
i=1Xi, known in the literature as the p-product (pseudo)metric.

Definition 7. Let p ∈ [1,∞]. A composition operator op on MDPs M1, . . . ,Mn

is p-non-extensive if δ
op(M1,...,Mn)
λ � ‖δM1

λ , . . . , δMn

λ ‖p. A composition operator
is non-extensive if it is p-non-extensive for some p.

Non-extensiveness for a composition operator ensures that bisimilarity is a con-
gruence with respect to it —direct consequence of Theorem 4.5 in [10].

Lemma 8. Let Mi = (Si, Ai, τi, ρi) be an MDP and si, ti ∈ Si, for i = 1..n,
and op be a p-non-extensive composition operator on M1, . . . ,Mn. Then,

i) if p < ∞, δ
op(M1,...,Mn)
λ ((s1, . . . , sn), (t1, . . . , tn)) ≤ (

∑n
i=1 δ

Mi

λ (si, ti)
p)

1
p

ii) if p = ∞, δ
op(M1,...,Mn)
λ ((s1, . . . , sn), (t1, . . . , tn)) ≤ maxni=1 δ

Mi

λ (si, ti).

Corollary 9. Let Mi = (Si, Ai, τi, ρi) be an MDP, si, ti ∈ Si, for i = 1..n, and
op be a non-extensive composition operator on M1, . . . ,Mn. If si ∼Mi ti for all
i = 1..n, then (s1, . . . , sn) ∼op(M1,...,Mn) (t1, . . . , tn).

In general, proving non-extensiveness for a composition operator on MDPs is
not a simple task, since one needs to consider the pseudometrics δMi

λ which

are defined as the least fixed point of FMi

λ . A simpler sufficient condition that
ensures non-extensiveness is the following:

Definition 10. Let Mi = (Si, Ai, τi, ρi), for i = 1..n, be MDPs and p ∈ [1,∞].
A composition operator op on M1, . . . ,Mn is p-safe if, for any di pseudometric
on Si, such that di � FMi

λ (di), it holds

F
op(M1,...,Mn)
λ (‖d1, . . . , dn‖p) � ‖FM1

λ (d1), . . . , FMn

λ (dn)‖p .

A composition operator on MDPs is safe if it is p-safe for some p ∈ [1,∞].

Theorem 11. Any safe composition operator on MDPs is non-extensive.

The examples of compositional operators that we have presented in this section
are all 1-safe, hence non-extensive.

Proposition 12. The composition operators of Examples 5–6 are 1-safe.
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4 Alternative Characterization of the Pseudometric

In this section we give an alternative characterization of δMλ based on the notion
of coupling that allows us to transfer the results previously proven for Markov
chains in [1,5] to MDPs. Then, we show how to relate this characterization to
the concept of non-extensiveness for compositional operators on MDPs.

Definition 13 (Coupling). Let M = (S,A, τ, ρ) be an MDP. A coupling for
M is a pair C = (ρ, ω), where ω : (S × S)×A→ Δ(S × S) is such that, for any
s, t ∈ S and a ∈ A, ω((s, t), a) ∈ Π(τ(s, a), τ(t, a)).

Given a coupling C = (ρ, ω) for M and a discount factor λ ∈ (0, 1), we define
the operator Γ C

λ : [0,∞)S×S → [0,∞)S×S , for d ∈ [0,∞)S×S and s, t ∈ S, by

Γ C
λ (d)(s, t) = maxa∈A

(
|ρ(s, a) − ρ(t, a)| + λ

∑
u,v∈S d(u, v) · ω((s, t), a)(u, v)

)
.

Note that, any coupling C = (ρ, ω) for M induces an MDP C∗ = (S×S,A, ω, ρ∗),
defined for any s, t ∈ S and a ∈ A by ρ∗((s, t), a) = |ρ(s, a) − ρ(t, a)|, and Γ C

λ

corresponds to the Bellman optimality operator on C∗. This operator is mono-
tonic and has a unique fixed point, hereafter denoted by γCλ , corresponding to
the value function for C∗ (see [14, §6.2]).

Next we see that the bisimilarity pseudometric δMλ can be characterized as
the minimum γCλ among all the couplings C for M.

Theorem 14. Let M be an MDP. Then, δMλ = min
{
γCλ | C coupling for M

}
.

Theorem 14 allows us to transfer the compositional reasoning on couplings. To
this end, we introduce the notion of composition operator on couplings.

Definition 15. Let Mi = (Si, Ai, τi, ρi) be MDPs, for i = 1..n. A coupling
composition operator for M1, . . . ,Mn is a tuple op∗ = (A, op∗ρ, op

∗
ω) consisting

of a nonempty set A, and the following operations, where S =
∏n

i=1 Si.

• op∗ρ :
∏n

i=1 R
Si×Ai → RS×A,

• op∗ω :
∏n

i=1Δ(Si × Si)
Si×Si×Ai → Δ(S × S)S×S×A,

Let Ci = (ρi, ωi) be a coupling for Mi, for i = 1..n, we denote by op∗(C1, . . . , Cn)
the composite coupling (op∗ρ(ρ1, . . . , ρn), op∗ω(ω1, . . . , ωn)). Moreover, op∗ is called
lifting of a composition operator op on M1, . . . ,Mn if, for all i = 1..n and Ci
coupling for Mi, op

∗(C1, . . . , Cn) is a coupling for op(M1, . . . ,Mn).

It is not always possible to find coupling composition operators that lift a com-
position operator on MDPs. Nevertheless, the composite operators presented in
Examples 5–6 can be lifted on couplings. We show in the next example how this
can be done for the CCS-like parallel composition. For the other example the
construction is similar.
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Example 16. The composition operator of Example 6 can be lifted on couplings
by the operator ‖∗ = (AX ∪AY , ‖ρ, ‖ω)

(ωX ‖ω ωY )(((x, y), (x′, y′)), a)((u, v), (u′, v′)) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωX((x, x′), a)(u, u′) if a /∈ AY , (v, v′) = (y, y′)

ωY ((y, y′), a)(v, v′) if a /∈ AX , (u, u′) = (x, x′)

ωX((x, x′), a)(u, u′) · ωY ((y, y′), a)(v, v′) if a ∈ AX ∩ AY

0 otherwise

Note how the definition above mimics the one in Example 6. �

Next we adapt the concept of safeness to coupling composition operators.

Definition 17. Let Mi = (Si, Ai, τi, ρi) be MDPs, i = 1..n and p ∈ [1,∞]. A
coupling composition operator op∗ on M1, . . . ,Mn is p-safe if, for all i = 1..n,
Ci coupling for Mi and di : Si × Si → [0,∞) such that di � Γ Ci

λ (di), it holds

Γ
op∗(C1,...,Cn)
λ (‖d1, . . . , dn‖p) � ‖Γ C1

λ (d1), . . . , Γ Cn

λ (dn)‖p .

A coupling composition operator is safe if it is p-safe for some p ∈ [1,∞].

As done for Proposition 12, the lifting in Example 16 can be shown to be 1-safe.
Non-extensiveness for an operator is ensured if it admits a lifting composition

operator on couplings that is safe, as proven by the following theorem.

Theorem 18. Let op∗ be a coupling composition operator that lifts a composi-
tion operator op on M1, . . . ,Mn. If op

∗ is safe, then op is non-extensive.

5 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem 14, in this section we propose
a procedure to exactly compute the bisimilarity pseudometric. This extends to
MDPs a method that has been proposed in [1] for Markov chains. We also show
how this strategy can be optimized to cope well with composite MDPs.

For a discount factor λ ∈ (0, 1), the set of couplings for M can be endowed
with the preorder �λ, defined by C �λ D iff γCλ � γDλ . Theorem 14 suggests to
look for a coupling for M which is minimal w.r.t. �λ. The enumeration of all
the couplings is clearly unfeasible, therefore it is crucial to provide an efficient
search strategy which prevents us to do that.

A Greedy Search Strategy. We provide a greedy strategy that explores the
set of couplings until an optimal one is eventually reached.

Let M = (S,A, τ, ρ) and C = (ρ, ω) be a coupling for M. Given s, t ∈ S,
a ∈ A, and μ ∈ Π(τ(s, a), τ(t, a)), we denote by C[(s, t), a/μ] the coupling (ρ, ω′)
for M, where ω′ is such that ω′((s, t), a) = μ and ω′((s′, t′), a′) = ω((s′, t′), a′)
for all s′, t′ ∈ S and a′ ∈ A with ((s′, t′), a′) �= ((s, t), a).
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Lemma 19. Let M = (S,A, τ, ρ) be an MDP, C be a coupling for M, s, t ∈ S,
a ∈ A, μ ∈ Π(τ(s, a), τ(t, a)), and D = C[(s, t), a/μ]. If ΓD

λ (γCλ)(s, t) < γCλ(s, t),
then γDλ � γCλ .

The lemma above states that C can be improved w.r.t. �λ by locally updating
it as C[(s, t), a/μ], with a matching μ ∈ Π(τ(s, a), τ(t, a)) such that∑

u,v∈S γ
C
λ(u, v) · μ(u, v) <

∑
u,v∈S γ

C
λ(u, v) · ω((s, t), a)(u, v) ,

where a ∈ A is the action that maximizes Γ C(γCλ)λ(s, t). A matching μ sat-
isfying the condition above can be obtained as a solution of a Transportation
Problem [8] with cost matrix (γCλ(u, v))u,v∈S and marginals τ(s, a) and τ(t, a),
hereafter denoted by TP (γCλ , τ(s, a), τ(t, a)). This gives us a strategy for moving
toward δMλ by successive improvements on the couplings.

Now we give a necessary and sufficient condition for termination.

Lemma 20. Let M = (S,A, τ, ρ) be an MDP and C be a coupling for M. If
γCλ �= δMλ , then there exist s, t ∈ S, a ∈ A, and μ ∈ Π(τ(s, a), τ(t, a)) such that
ΓD
λ (γCλ)(s, t) < γCλ(s, t), where D = C[(s, t), a/μ].

The above result ensures that, unless C is optimal w.r.t �λ, the hypotheses of
Lemma 19 are satisfied, so that, we can further improve C following the same
strategy. The next statement proves that this search strategy is correct.

Theorem 21. δMλ = γCλ iff there exists no coupling D for M s.t. ΓD
λ (γCλ) � γCλ .

Remark 22. In general, there could be an infinite number of couplings (ρ, ω).
However, for each fixed d ∈ [0,∞)S×S , the linear function mapping ω((s, t), a)
to

∑
u,v∈S d(u, v) · ω((s, t)a)(u, v) achieves its minimum at some vertex of the

transportation polytope P = Π(τ(s, a), τ(t, a)). Since the number of such ver-
tices is finite, using the optimal transportation schedule (which is a vertex in P )
for the update ensures that the search strategy is always terminating. �

Compositional Heuristic: Assume we want to compute the bisimilarity
distance for a composite MDP M = op(M1, . . . ,Mn). The greedy strategy
described above moves toward an optimal coupling for M starting from an arbi-
trary one. Clearly, the better is the initial coupling the fewer are the steps to the
optimal one. The following result gives a heuristic for choosing such a coupling
when op admits a safe lifting coupling composition operator.

Proposition 23. Let op be a composition operator on M1, . . . ,Mn, and op
∗ be

a p-safe coupling composition operator that lifts op. Then,

(i) γ
op∗(C1,...,Cn)
λ � ‖γC1

λ , . . . , γCn

λ ‖p, for any Ci coupling for Mi;

(ii) δ
op(M1,...,Mn)
λ � γ

op∗(D1,...,Dn)
λ � ‖δM1

λ , . . . , δMn

λ ‖p, where Di is a coupling
for Mi which is minimal w.r.t. �λ.

Proposition 23(ii) suggests to start from the coupling op∗(D1, . . . ,Dn), i.e., the
one given as the composite of the optimal couplings Di for the subcomponents

Mi. This ensures that the first over-approximation of δMλ , that is γ
op∗(D1,...,Dn)
λ ,

is at least as good as the upper bound given by non-extensiveness of op.
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Algorithm 1. On-the-Fly Bisimilarity Pseudometric

Input: MDP M = (S,A, τ, ρ); discount factor λ ∈ (0, 1); query Q ⊆ S × S.
1. C ← (ρ, empty); d ← empty; visited ← ∅; exact ← ∅; toComp ← Q; // Initialize
2. while ∃(s, t) ∈ toComp do
3. for all a ∈ A do guess μ ∈ Π(τ (s, a), τ (t, a)); UpdateC (M, (s, t), a, μ)
4. d ← BellmanOpt(λ,C, d) // update the current estimate
5. while C[(u, v), a] is not optimal for TP(d, τ (u, a), τ (v, a)) do
6. μ ← optimal schedule for TP(d, τ (u, a), τ (v, a))
7. UpdateC (M, (u, v), a, μ) // improve the current coupling
8. d ← BellmanOpt(λ, C, d) // update the current estimate
9. end while
10. exact ← exact ∪ visited // add new exact distances
11. toComp ← toComp \ exact // remove exactly computed pairs
12. end while
13. return d�Q // return the distance restricted to the pairs in Q

6 A Compositional On-the-Fly Algorithm

In this section we provide an on-the-fly algorithm for computing the bisimilarity
distance making full use of the greedy strategy presented in Section 5. Then, we
describe how to optimize the computation on composite MDPs.

Let M = (S,A, τ, ρ) be an MDP, Q ⊆ S×S, and assume we want to compute
δMλ restricted to Q, written δMλ �Q. Our strategy has the following features:

– when a coupling C is considered, γCλ can be computed solving the Bellman
optimality equation system associated with it;

– the current coupling C can be improved by a local update C[(u, v), a/μ] that
satisfies the hypotheses of Lemma 19.

Note that, γCλ�Q can be computed considering only the smallest independent
subsystem containing the variables associated with the pairs in Q. Therefore, we
do not need to store the entire coupling, but we can construct it on-the-fly.

The computation of δMλ �Q is implemented by Algorithm 1. We assume the
following global variables to store: C, the current partial coupling; d, the current
partial over-approximation of δMλ ; toComp, the pairs of states for which the
distance has to be computed; exact, the pairs of states (s, t) such that d(s, t) =
δMλ (s, t); visited, the pair of states considered so far.

At the beginning C and d are empty, there are no visited states and no exact
distances. While there are pairs (s, t) left to be computed we update C calling
the subroutine UpdateC on a matching μ ∈ Π(τ(s, a), τ(t, a)), for each a ∈ A.
Then, d is updated on all visited pairs with the over-approximation γCλ by calling
BellmanOpt . According to the greedy strategy, C is successively improved and
d is consequently updated, until no further improvements are possible. Each
improvement is demanded by the existence of a better transportation schedule.
When line 10 is reached, d(u, v) = δMλ (u, v) for all (u, v) ∈ visited, therefore
visited is added to exact and removed from toComp. If no more pairs have to be
considered, the exact distance on Q is returned.



Computing Behavioral Distances, Compositionally 83

Algorithm 2. UpdateC (M, (s, t), a, μ)

Input: MDP M = (S,A, τ, ρ); s, t ∈ S; a ∈ A, μ ∈ Π(τ (s, a), τ (t, a))
1. C ← C[(s, t), a/μ] // update the coupling
2. visited ← visited ∪ {(s, t)} // set (s, t) as visited
3. for all (u, v) ∈ {(u′, v′) | μ(u′, v′) > 0} \ visited do // for all demanded pairs
4. visited ← visited ∪ {(u, v)}
5. // propagate the construction
6. for all a ∈ A do guess μ′ ∈ Π(τ (u, a), τ (v, a)); UpdateC (M, (u, v), a, μ′)
7. end for

The subroutine UpdateC (Algorithm 2) updates the coupling C and recursively
populates it on all demanded pairs. BellmanOpt(λ, C, d) solves the smallest in-
dependent subsystem of the Bellman optimality equation system on the MDP
induced by C, that contains all the visited pairs. Notice that, the equation sys-
tem can be further reduced by Gaussian elimination, substituting the variables
associated with pairs (u, v) ∈ exact with d(u, v).

Compositional Optimizations: Algorithm 1 can be modified to handle com-
posite MDPs efficiently. Assume M = op(M1, . . . ,Mn) and to have a safe
coupling composition operator op∗ that lifts op. The compositional heuristic de-
scribed in Section 5 suggests to start from the coupling op∗(D1, . . . ,Dn) obtained
by composing the optimal couplings Di for each Mi. This is done running Algo-
rithm 1 in two modalities: master/slave. For each Mi, the master shares the data
structures Ci, di, visitedi, toCompi and exacti with the corresponding slave to keep
track of the computation of δMi

λ . When a new pair ((si, . . . , sn), (t1, . . . , tn)) is
considered, the master runs (possibly in parallel) n slave threads of Algorithm 1
on the query {(si, ti)}. At the end of these subcomputations, the couplings Ci
are optimal, and they are composed to obtain a coupling for M. Note that, the
master can reuse the values stored by the slaves in their previous computations.

Experimental Results: For Markov chains, in [1] it has already been shown
that an on-the-fly strategy yields, on average, significant improvements with
respect to the corresponding iterative algorithms.

ready

working stop

ai[1]

bi[−1]
ai+1[4]

1−pp

q

1−q
1

Here we focus on how the compositional opti-
mization affects the performances. To this end we
consider a simple yet meaningful set of experiments
performed on a collection of MDPs, parametric in
the probabilities, modeling a pipeline. The figure
aside specifies an element Ei(p, q) of the pipeline
with actions Ai = {ai, ai+1, bi}. Pipelines are mod-
eled as the parallel composition of different process-
ing elements, that are connected in series by means of synchronization on shared
actions. Table 1 reports the computation times of the tests2 we have run both

2 The tests have been made using a prototype implementation coded in Mathematica�

(available at http://people.cs.aau.dk/~giovbacci/tools.html) running on an
Intel Core-i5 2.4 GHz processor with 4GB of RAM.

http://people.cs.aau.dk/~giovbacci/tools.html
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Table 1. Comparison between the on-the-fly algorithm (OTF) and its compositional
optimization (COTF); E0 = E0(0.7, 0.2), E1 = E1(0.6, 0.2), and E2 = E2(0.5, 0.3)

Query Instance OTF COTF # States

All pairs

E0 ‖ E1 0.654791 0.97248 9
E1 ‖ E2 0.702105 0.801121 9

E0 ‖ E0 ‖ E1 48.5982 13.5731 27
E0 ‖ E1 ‖ E2 23.1984 19.9137 27
E0 ‖ E1 ‖ E1 126.335 13.6483 27
E0 ‖ E0 ‖ E0 49.1167 14.1075 27

Single pair

E0 ‖ E0 ‖ E0 ‖ E1 ‖ E1 16.7027 11.6919 243
E0 ‖ E1 ‖ E0 ‖ E1 ‖ E1 20.2666 16.6274 243
E2 ‖ E1 ‖ E0 ‖ E1 ‖ E1 22.8357 10.4844 243
E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 11.7968 6.76188 243

E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 ‖ E2 Time-out 79.902 729

on all-pairs queries and single-pair queries for several pipeline instances; timings
are expressed in seconds and, as for the single-pair case, they represent the av-
erage of 20 randomly chosen queries. Table 1 shows that the required overhead
for maintaining the additional data structure for the subcomponents, affects
the performances only on very small systems. In all other cases the composi-
tional optimization yields a significant reduction of the computation time that
varies from a factor of 2 up to a factor of 10. Notably, on single-pair queries the
compositional version can manage (relatively) large systems whereas the non-
compositional one exceeds a time-bound of 3 minutes. Interestingly, we observe
better reductions on all-pairs queries than in single-pairs; this may be due to fact
that the exact distances collected during the computation are used to further
reduce the size of the equation systems that are successively encountered.

7 Conclusions and Future Work

We have proposed a general notion of composition operator on MDPs and identi-
fied safeness as a sufficient condition for ensuring non-extensiveness. We showed
that the class of safe operators is general enough to cover a wide range of
known composition operators. Moreover, we presented an algorithm for comput-
ing bisimilarity distances on MDPs, which is able to exploit the compositional
structure of the system and applies on MDPs built over any safe operators. This
is the first proposal for a compositional algorithm for computing bisimilarity dis-
tances; before our contribution, the known tools were based on iterative methods
that, by their nature, cannot take advantage of the structure of the systems.

Our work can be extended in several directions. For instance, the notion of
safeness can be easily adapted to other contexts where bisimilarity pseudometrics
have a fixed point characterization. In the same spirit, one may obtain a sufficient
condition that ensures continuity of operators, which is the natural generalization
of non-extensiveness.
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(Extended Abstract)

Sebastian Bala

Institute of Computer Science
University of Wroc�law

Joliot-Curie 20, Wroc�law, Poland

Abstract. Weighted automata, especially min-plus automata that op-
erate over the tropical semiring, have both a beautiful theory and impor-
tant practical applications. In particular, if one could find a sequential or
finitely sequential equivalent to a given (or learned) min-plus automaton,
one could increase performance in several applications. But this question
has long remained open even as a decision problem. We show that ex-
istence of a finitely sequential equivalent for a given finitely ambiguous
min-plus automaton is decidable.

1 Introduction

Contrary to the classical case, weighted automata, in particular min-plus
automata, cannot always be determinized. Therefore, one classifies min-plus au-
tomata into a hierarchy, depending on the level of non-determinism. This hier-
archy starts with the class of sequential (deterministic) min-plus automata, and
includes unambiguous, finitely sequential, finitely ambiguous, and polynomially
ambiguous ones. In this context, natural questions arise: (1) given an automa-
ton from one class, is there a criterion that allows to determine if it recognizes a
function from a specific sub-class? (2) is the criterion decidable? (3) if the crite-
rion holds, can we effectively construct an equivalent automaton that belongs to
the sub-class? In practice (e.g. in speech recognition systems) one often learns
automata that are relatively unambiguous. For efficiency, one would like to con-
vert them into a disjoint union of a fixed number of sequential (deterministic)
automata - which can then be run very fast in parallel. Abstracting away from
many practical constraints, this problem corresponds to the following theoret-
ical question: given a finitely ambiguous min-plus automaton, does there exist
an equivalent finitely sequential one?
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In this paper, we provide an algorithm for deciding the above question. ,thereby
solving an extended a version of the problem raised in [1] by Kirsten and Lom-
bardy. Our proof is quite technical (the full version is in the appendix), but we
hope that the presented ideas and the algorithm can be used in many areas of the
theory of min-plus automata. The presented algorithm works in 2-NEXPTIME
by deciding the A−Fork Property. When the given automaton is finitely ambigu-
ous, the A-Fork Property can be seen as a generalization of the Twin Property
which is a necessary and sufficient condition for the existence of a deterministic
counterpart [2] for unambiguous automata and sufficient for an arbitrary min-
plus automata. We prove that the negation of the A-Fork Property is a necessary
and sufficient condition for the existence of a finitely sequential counterpart of
an automaton. We also show how to construct the suitable set of deterministic
automata if the A-Fork Property does not hold. Similar properties have been
defined for translations of finitely ambiguous [3] and polynomially ambiguous
automata [1] into unambigous ones.

2 Preliminaries

Formally a weighted finite automaton over a semiring K = ⟨K,+, ⋅,1K ,0K⟩ (wfa)
is a quintuple A = ⟨Q,Σ,λ,μ, γ⟩ where Σ is a finite alphabet, Q is a finite set
called states, λ, γ ∈ KQ, and μ ∶ Σ∗ → KQ×Q is a homomorphism into the semiring
of Q ×Q-matrices over K. A state q ∈ Q is called initial if λ[q] ≠ 0K and final if
γ[q] ≠ 0K .

A quadruple (p, a, l, q) ∈ Q×Σ×K×Q is a transition of the wfa A if μ(a)[p, q] =
l. A path π in A of length k is a sequence of transitions t1t2 . . . tk, where ti =
(qi−1, ai, li, qi). The word a1a2 . . . ak is the label of π and it is denoted by label(π).
A path π = t1t2 . . . tk is accepting if the first state of t1 is an initial one and the
last state of tk is an accepting one. An automaton A accepts a string w if there
exists an accepting path t1t2 . . . tk labeled by w. By L(A) we denote the set of
all strings accepted by A and we say that A recognizes the language L(A). We
call π(i, j) = titi+1 . . . tj−1 a subpath of π. The expression π′ ⊑ π denotes that π′

is a subpath of π.
An automaton A is deterministic (or sequential) if for each a ∈ Σ,q ∈ Q there

exists at most one q ∈ Q such that μ(a)[p, q] ≠ 0K and the set of initial states I is
a singleton. If the second condition is not satisfied, an automaton is called finitely
sequential (fseq). Let ambA ∶ Σ

∗

↦ N be a function which for each string w ∈ Σ∗

assigns to w number of different accepting paths labeled by w. An automaton
A is finitely ambiguous (famb) if there exists a nonnegative integer c such that
ambA(w) ≤ c for all w ∈ L(A). If c ≤ 1 then finitely ambiguous automata are
called unambiguous (namb). An automaton A is polynomially ambiguous (pamb)
if there exists a polynomial p such that ambA(w) < p(∣w∣). The class of sequential
automata and class of all automata are denoted respectively by seq and rat.

In this paper we study only automata over the tropical semiring ⟨{R ∪∞} =

R∞,min,+,∞,0⟩ earlier called min-plus automata. The constructive part of this
paper deals with the semiring with rational domain rather than real numbers, to
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deal with finite representations of numbers. A wfa A over the tropical semiring
defines a function S(A) ∶ Σ∗ → R∞ such that S(A)(w) = λ ⋅ μ(w) ⋅ γ for w ∈ Σ∗.
Later, the value S(A)(w) will be also denoted by ⟨w,A⟩.

In the tropical semiring, the weight of an accepting path is the sum of the
weights of the transitions taken along the path, and the value of a word w is the
minimal weight of an accepting path on it. Every not accepted string is mapped
into ∞.

By Seq,Namb,Fseq,Famb,Pamb,Rat we denote classes of functions described
by automata which respectively belong to seq,namb, fseq, famb,pamb, rat.

In order to make the text more readable we use an arrow notation together

with the notation of wfa introduced above. If we write
x
�→ q, it means λ[q] = x.

A sequence
v0
�→ q0

a1∣v1
���→ q1

a2∣v2
���→ ⋯

ai∣vi
��→ qi denotes a path π being a sequence of

transitions t1, . . . , ti such that label(π) = a1 . . . ai, the transition tj has weight vj ,
and λ[q0] = v0. We use an arrow notation solely to denote paths with weights in
R. A state q ∈ Q is accessible if there exists string w ∈ Σ∗ such that λμ(w)[q] ∈ R
and co-accessible if μ(w)γ[q] ∈ R. An automaton A is trimmed if all of its states
are accessible and co-accessible. We say that two states p and q are siblings if

they satisfy → qI
u
�→ p and → pI

u
�→ q for some u ∈ Σ∗.

A subpath π(i, j) = ti . . . tj is non-empty if 0 < i ≤ j ≤ k and proper if weights
of all transitions ti is in R. A subpath π(i, j) is a a loop if the source state of
transition ti and the destination state of tj are the same, and it is proper. We
say also that π(i, j) is a z−loop if z = label(π(i, j)) and π(i, j) is a loop. A triple
β = (p, q, z) ∈ Q2

×Σ∗ is a z-loop, if μ(z)[p, p], μ(z)[q, q] ∈ R.
States p, q ∈ Q are twins if for every words u1, u2 the following holds

if
x0
�→ pI

u1∣x1
���→ p

u2∣x2
���→ p and

y0
�→ qI

u1∣y1
���→ q

u2 ∣y2
���→ q then x2 = y2.

An automaton A has the twin property [2] if all pairs of its states p, q are twins.

For a t ∈ Σ+, a triple (q1, q2, t), where q1, q2 ∈ Q is a t−fork if q1
t
�→ q1 and q1

t
�→ q2.

By the [k] we denote the set {1, . . . , k}. An automaton A =

⊍

k
i=1Ai is a disjoint

sum of automata Ai if

1. Qi are pairwise disjoint sets of states and Q =

⋃

k
i=1Qi,

2. for each i ∈ [k], q ∈ Qi it holds that λi(q) = λ(q) and γi(q) = γ(q),
3. for each i, j ∈ [k], p ∈ Qi, q ∈ Qj if i = j then μ(a)[p, q] = μi(a)[p, q], else

μ(a)[p, q] = ∞.

For given two weighted transitions of the form t1 = (p1, a, v1, q1), t2 = (p2, a,
v2, q2) we define a product of transitions t1×t2 as a quadruple ((p1, p2), a, (v1, v2),
(q1, q2)). For given two paths θ1 = t1t2 . . . tn and θ2 = t

′

1t
′

2 . . . t
′

n by the product
of paths θ1 × θ2 we mean the sequence (t1 × t

′

1)(t2 × t
′

2) . . . (tn × t
′

n). For given
functions f ∶ A→ B and g ∶ B → C, by g ○ f we denote a function from A into C
which, for all a ∈ A, satisfies g(f(a)) = (g○f)(a). A min-plus transducer is a min-
plus automaton ⟨Q,Σ,λ,μ, γ⟩ which differs from previously defined automata by
definition of μ. In case of transducers, μ is a mapping of type Σ∗ ×Δ∗ → KQ×Q,
where Δ is a finite alphabet called the output alphabet.
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Let T1 = ⟨Q1,Σ ×Δ,λ1, μ1, γ1⟩ and T2 = ⟨Q2,Δ×Θ,λ2 , μ2, γ2⟩ be transducers.
The compostion of transducers T1 and T1, denoted by T2 ○ T1, is T = ⟨Q,Σ ×

Θ,λ,μ, γ⟩, where Q = Q1 ×Q2, λ((p, q)) = λ1(p) ⋅ λ2(q), γ(p, q) = γ1(p) ⋅ γ2(q)
and

μ((a, b))[(p1, p2), (q1, q2)] ∶= min{μ1
((a, c))[p1, q1] ⋅ μ

2
((c, b))[p2, q2] ∣ c ∈ Δ}.

Later on we compose also a transducer T1 with an automaton D. The only dif-
ference between composition of a transducer with a transducer and a transducer
with an automaton is the lack of the output alphabet in the second case. In
case of a classical automaton the mappings μ,λ and γ have weights from the set
{0K ,1K} of the semiring K.

Let A1, A2 be classical automata. By A1 ⊳ A2 we denote automaton which
accepts all strings w such that w = uv, u ∈ L(A1) and v ∈ L(A2).

2.1 Related Work

With respect to forms of nondeterminism, functions recognizable by automata
over tropical semirings form a hierarchy [3,4] which can be depicted as follows.

Seq ⊊ (Namb ∩ Fseq)
↗⊊ Fseq ⊊↘

↘⊊ Namb ⊊↗
Famb ⊊ Pamb ⊊ Rat

The question whether exists equivalent automaton which is deterministic is called
the determisation problem. Despite of the fact the problem was studied by sev-
eral researchers e.g. [1,3,5,2] the determinisation problem is still open. The best
known result [1] shows decidability of the determinisation problem for polyno-
mially ambiguous automata.

For unambiguous automata, the determinisation problem has a positive an-
swer if and only if the Twin Property holds [6,2]. The Twin Property is decid-
able in polynomial time (O(∣Q∣2 + ∣E∣2), where E is the set of transitions) for
unambiguous automata [7] and in polynomial space for arbitrary automata [8].
Moreover, the determinisation algorithm [2] returns automata of size at most
exponential with respect to the size of an input.

For finitely ambiguous automata the determinisation problem has been solved
[3] in two stages: First deciding if a translation to an unambiguous automaton is
possible and then deciding the Twin Property over the unambiguous equivalent
one. The first stage starts from translation of the given automaton into a finite
union of unambiguous ones. The best known translation is exponential in the
size of the automaton [9]. Then the Dominance Property is defined over the new
representation – the union of unambiguous automata. The Dominance Prop-
erty separates these unions which can be translated into unambiguous automata
from those which have no unambiguous equivalent. The property is decidable in
polynomial time with respect to the size of the union of unambiguous automata,
hence exponential with respect to the input.

In [1] Kirsten and Lombardy posed question if it is decidable whether finitely
ambiguous or finitely sequential equivalent exists for given polynomially ambigu-
ous automaton. The question is especially interesting in one aspect, namely one
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of the algorithms presented in [1] depends on the equivalence between polynomi-
ally ambiguous min-plus automaton and unambiguous min-plus automaton. This
problem is known to be decidable. Also equivalence between finitely ambiguous
automata is decidable [10,11]. The weaker formulation of the equivalence prob-
lem known to be undecidable is between to polynomially ambiguous automata
[12]. However, it is not known whether the equivalence is decidable if one of the
automata is finitely ambiguous or even finitely sequential.

3 Decomposition and Stronger Fork Property

By a result of Schützenberger and later (in most effective way) from [13], [3], [9],
every weighted finitely ambiguous automaton A can be decomposed into finitely
many unambiguous ones, denoted U(A) =

⊍

k
i=1 Ui. Thus the problem whether

given finitely ambiguous automaton has finitely sequential counterpart can be
transformed to the form with finitely many unambiguous automaton on the
input. In [13], [3] the outcome unambiguous automata are doubly exponential
in the size of the finitely ambiguous input. In [9], the resulting unambiguous
automata are at most exponential.

The automaton Ui is described by a tuple ⟨Σ,Ji, λi, μi, γi⟩. In [13], all Ui rec-
ognizes the same language. The unambiguous Ui in Sakarovitch’s and de Souza’s
construction [9] do not recognize the same language, what would be useful for
our purpose. However, the construction from [9] can be easily extended to one
which fulfills this property.

The main object we further consider is the automaton U = ⟨Σ,Q,λ,μ, γ⟩
which is the product of the Ui with Q =

∏i∈[k] Ji. Morphism μ maps Σ∗ into

(R ∪ {∞})

Q×Q×[k]
. Let the set of all proper paths in Ui be denoted by Π(Ui).

From now on, slightly abusing notation, assume that Ui is the automaton U with
transitions (p, a, q) weighted by (μ(a)[p, q])i. The component (μ(a)[p, q])i will
also be denoted μi(a)[p, q].

In [14] it has been shown that an unambiguous trimmed automaton A =

⟨Q,Σ,λ, μ, γ⟩ can be translated into a finitely sequential one if and only if it
does not satisfy the Fork Property defined in [14] as follows:

Definition 1 (Fork Property). A trimmed unambiguous automaton A has
the Fork Property (FP) if there exist states q1, q2 such that q1 and q2 are not
twins, but there exists a t ∈ Σ+ such that (q1, q2, t) is a t−fork.

Our main goal is to define a version of the fork property suitable for finitely
ambiguous automata. But first we need to restrict the formulation of the current
Fork Property, introducing the Stronger Fork Property.

If q1, q2 are not twins then there exists z such that (q1, q2, z) is a z−loop
with μ(z)[q1, q1] ≠ μ(z)[q2, q2]. In the Fork Property, defined above, we have
not restricted z and t in any way. In particular z and t do not have to depend
on the size of the given unambiguous automata. We are going to change this
for our purpose. Given a triple β = (p, q, t′), a quadruple α = (p, q, t′, t) is a
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β −modification if there exists a way of gradually removing loops from p
t′

�→ q

obtaining as a result a path p
t
�→ q such that (p, q, t) is a t−fork. Additionally

∣t∣ ≤ ∣Q∣2 as in Lemma 1 and there are no repeated states in the product path

(p, p)
t
�→ (p, q).

Definition 2 (Stronger Fork Property). A trimmed unambiguous automa-
ton A has the Stronger Fork Property (SFP) if (1) there exists a computable

function c(A), a v−loop (q1, q2, v) such that ∣v∣ ≤ c(A) and q1
v∣x2

��→ q1 and q2
v∣y2
��→

q2 and x2 ≠ y2, and (2) there exists a t
′
∈ Σ+ such that (q1, q2, t

′, t) is a (q1, q2, t
′
)

−modification and t ≤ ∣Q∣2.

We assume in the next lemma that weights of transitions of A are rational.

Lemma 1. An unambiguous automaton A satisfies the Fork Property if and
only if it satisfies the Stronger Fork Property.

4 A-Fork Property

In this section we assume that each state of U is accessible and co-accessible. A
triple β = (p, q, z) ∈ Q2

×Σ∗ is a z-loop, if μ(z)[p, p], μ(z)[q, q] ∈ R. Let τi(β) =�
if μi(z)[p, p] ≠ μi(z)[q, q] and τi(β) =→ if μi(z)[p, p] = μi(z)[q, q].

We may say that τi(β) describes the type of β from a point of view its i’th
coordinate. A path πi of a component Ui is a β−witness for β = (p, q, t′) if the
quadruple (p, q, t′, t) is a β−modification for some word t; π = θ1θ2θ3, where p
and q are respectively the first and the last state of θ2, label(θ2) = t

′ and there
exists z ∈ Σ+ such that τi((p, q, z)) =� . Then, α = (p, q, z) is a distinguisher of
β. Assume that (p, q, t′, t) is a β−modification such that ∣t∣ ≤ ∣Q∣2.

Definition 3 (Broken Path). A path π of the automaton U is i−broken if for
some i ∈ [k] the path πi is a β−witness for some β = (p, q, t) and there exists a
distiguisher α = (p, q, z). Otherwise, π is called i−nonbroken.

We also say that a projection πi of a path π is broken if a path π is i−broken.
Here and subsequently, μj(π) stands for the the projection on the weight of j′th
coordinate of the path π in U .

Definition 4 (Spoonfulness). An automaton U is a spoonful if there exists
natural number C such that for all accepting π ∈ Π(U) and i ∈ [k] there exists
j ∈ [k] such that if π is i−broken then π is j−nonbroken and μj(π) < μi(π) +C.

The intention of spoonfulness is to express that if πi can be ground to infer
nonexistence of a finitely sequential counterpart for Ui then there always exists
πj with label(πi) = label(πj) such that πj is nonbroken and it’s weight is not
substantially greater than πi. We say that an automaton U satisfies the A-Fork
property if it is not spoonful.
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5 Necessity

Assume now that U satisfies the A-Fork property. The aim of this section is to
give the sketch of the proof of the following theorem.

Theorem 1. If the automaton U satisfies the A-Fork property then S(A) /∈ Fseq.

Assumption 2. Suppose that there exists a finitely sequential automaton with
deterministic components D1, . . . ,Dl which recognizes the function S(A).

By D = ⟨Σ,D,λd, μd, γd⟩ we denote product of automata D1, . . . ,Dl defined
in the same way as U was defined with the respect to Ui. By mD and nD we
denote respectively the cell of the biggest transition weight in D1, . . . ,Dl and
∣D∣. By mU we denote the biggest transition’s weight in U1, . . . ,Uk.

Let α = (p, q, z) and β = (p, q, t′). Assume that Uχ is β−witness and α is a
distiguisher of β. A component Uχ satisfies the Stronger Fork Property. Assume
that τχ(β) =� and ∣z∣ < c(Uχ), where c(Uχ) is the constants mentioned in the
definition of the Stronger Fork Property.

Let σ = μχ(z)[p, p] − μχ(z)[q, q] and let δ = ⌈((mD +mU) ⋅ ∣zt∣)/∣σ∣⌉. Define
ς(u,m), as a sequence of strings um+1, um, um−1, . . . , u1 such that

um+1 = u; ui = ui+1tz
fi , where fi+1 > 4 ⋅ δ ⋅ fi, f1 ≥ 1 and m > (k + 1)nD + 1.

Consider now a sequence ς ′(u,m), of the form u′m+1, . . . , u
′

1, where u′i = uit
′zfi−1 .

The recursive construction is similar to constructions presented in [14] and [3].

Assumption 3. There exist m and ς ′(u,m) such that for more than nD indexes
κ ∈ [m] there are vκ which satisfy ⟨u′κvκ,A⟩ = λχμχ(u

′

κvκ)γχ = (λχμχ(uκ))[q] +
(μχ(ρκvκ)γχ)[q] ∈ R+.

Because of the lack of the space we do not present here the proof which is
technical. It may not be quite clear for the reader what kind of role Assumption
2 plays. Satisfaction of the Fork Property means that there exists some skeleton
of a path which can be a generator of a family of paths which form a witness
for nonexistence of a finitely sequential equivalent. The forming process follows
by proper alternate pumping of the fork part and the distinguisher part. The
technique is described in [14]. In case of the union of unambiguous automata,
accepting paths come from different components and we need to describe how
the generators behave simultaneously. Precisely, it is crucial whether for some
generator and the generated witness consists of paths which are optimal in large
enough amount. Optimal means with minimal weight among paths labeled by
the same word. This is what Assumption 3 expresses. In the next step, we prove
the following:

Lemma 2. Assumptions 2 and 3 are inconsistent.

Finally we prove the following lemma which already gives us the main result of
this section as a simple conclusion.

Lemma 3. If U has the A-Fork property then Assumption 3 holds.
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Because of the lack of the space we describe only the core idea of the proof.
We assume that Assumption 2 is satisfied along with the A-Fork Property. For
any positive integer C one can choose some path π in the product automaton
U in such a way that there exists a component πi which can be a generator of
witness. Additionally, all components which are nonbroken have weight greater
than the weight of πi and the difference of weights is at least C. It may happen
that there are other components which are of weight greater than the weight of
π but the difference of weights is smaller than C. However, all such paths are
also generators of some witnesses. We proceed by proving nonexistence of fseq
equivalent for all mentioned components simultaneously. But we need suitably
more pumping. This means that we tend to have u1 as a substring of the label
of the resulting path, but for properly large m. How many pumpings we do
depends in principle on the constant x and the maximal weight of loops in
distinguisher. The second parameter is also a constant because we can perform
pumping for strings z < c(A). There is one parameter of our schema which,
during the pumping we do, can have strong variation in the size and form of
strings t which form proper t−forks of pumped generators. The most technical
part is to choose the size of pumping in such a way that the size guarantees
existence of a proper number of strings which are of minimal weight and all
come from the same component. This means that for assumption for any l we
can choose such big C and the size of pumping such that the number of mentioned
paths is bigger than nD. Thus Assumption 3 is satisfied. Since we have to join
the effect of simultaneous proofs in one object, we use in this part some more
advance combinatorial analysis than only the pumping technique. The technique
deals with colorings of finite hypercubes.

6 Sufficiency

Recall that the automata Ui = ⟨Ji,Σ,λi, μi, γi⟩ introduced earlier are unambigu-
ous. Let us introduce more definitions from [14].

Definition 5 (Critical Pair). Let

Dj ∶= {⟨q1, q2⟩ ∈ Jj × Jj ∣ q1 and q2 are siblings, not twins in Uj}.

A pair ⟨q,E⟩ ∈ Jj ×P (Jj) is said to be critical if ∃p ∈ Jj , ⟨q, p⟩ ∈Dj ∧ {q, p} ⊆ E.

We define Ûj as ⟨Ĵ ,Σ, λ̂j , μ̂j , γ̂j⟩, where Ĵj ∶= Jj × P (Jj), γ̂j(⟨q,E⟩) ∶= γj(q),

λ̂j(⟨q,E⟩) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λj(q), if E = {r ∈ Jj ∣λj(r) ≠ ∞ }

∞ otherwise

μ̂j(a) (⟨q1,E1⟩, ⟨q2,E2⟩) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μj(a)(q1, q2), if q1 ∈ E1, and ⟨q1,E1⟩ is not critical

and E2 = {q∣∃p ∈ E1 μj(a)(p, q) ≠ ∞}

μj(a)(q1, q2), if q1 ∈ E1 ∧ ⟨q1,E1⟩ is critical

and E2 = {q∣μj(a)(q1, q) ≠ ∞}

∞ otherwise
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Each path π̂j in Ûj corresponds to the path πj in Uj , where consecutive states
of πj are created as projections on the first component of corresponding states
in π̂j . The hat operation establishes 1 − 1 correspondence between paths in Ui

and Ûi.

Definition 6 (Critical Form of Automaton). Let Û = ⟨Σ, Q̂, λ̂, μ̂, γ̂⟩ be the
product of Ûi automata with Q̂ =

∏i∈[k] Ĵi. The automaton Û is a critical form
of U .

Definition 7 (Close Approximation). The min-plus automaton B closely
approximates a min-plus automaton A if they recognize the same language L
and there exists constants C which depends on A such that for all w ∈ L

S(A)(w) −C ≤ S(B)(w) ≤ S(A)(w) +C.

This section shows that if the automaton U does not satisfy A-fork property then
the A is closely approximated by some finitely sequential automaton. From now
on assume that A−Fork Property is not satisfied for the automaton U . In this
section we show how to build an finitely sequential automaton, which is close
approximation of A, as a union

⊍

j∈[s]
⊍

s∈[∣Q∣]
⊍

a∈(Rj)
k
∪{ε}

Lj[a]. It will be define later

what means the Rj and m. In [14] the following theorems has been proven:

Theorem 4 ([14]). Let π̂j be a path of Ûj . If π̂j contains repeating critical
states then π̂j is broken.

Theorem 5 ([14]). If any accepting path π̂j in unambiguous automaton Ûj

contains at most ∣Q∣ critical states then Ûj has finitely sequential equivalent.

In [14] it has been proven a bit more, namely repeating critical states guarantees
nonexistence of the equivalent. Automaton Û can be seen as directed graph then
all cycles without repeating nodes can be determined.

Let us sketch the idea of our proof. Each accepting path in graph Û can
be decomposed into simple cycles which occurs on them and the part without
cycle. The first part is characterized by some sequence of nonnegative integers
a1, . . . , al ∈ N. Particular number ai denote the number of occurrence of suitable
simple cycle θi in given accepting path. A cycle θi corresponds to vector of weight
�→

θ i. Our approach is to consider linear combinations
�→

θ = a1
�→

θ 1
+ . . . + al

�→

θ l

which correspond to some accepting paths. Along with linear combinations we
observe which components of simple cycles contains at least one critical state
and which of them have coefficient ai > 1. Such coefficients make the particular
component of given π broken. The crucial element of the proof is to observe

which coordinates of
�→

θ are minimal if it is the set L ⊆ [k] the
�→

θ is called
L−minimal. The key lemma of this section is the following.

Lemma 4. Let π̂ be an accepting path in Û . If π̂ is L−minimal and for all j ∈ L
the path π̂ is j−broken then U satisfies A-fork property.
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The direct conclusion of this lemma is that

Corollary 1. For all L ⊆ [k] if π̂ is L−minimal then there exists j ∈ L such that
π is j−nonbroken.

Corollary 2. There exists constant C, depending on the automaton Û , such
that for all accepting paths π there exists nonbroken πj that for all i ∈ [k] the
following equation hold μi(π) +C > μi(π).

In the next part we constitutes a type of path (T,T ′), where T contains labels
of simple cycles which have only one occurrence in π̂ and T ′ contains labels of
simple cycles which appears more than one in π̂.

Using all possible types and L−minimality it is possible to show that existence
of π̂ from Lemma 4, which is j−broken for all j ∈ L is expressible in existential
fragment of Presburger Arithmetic. This fragment is decidable in np.

Now the automaton Û can be covered by several its simulations or rather
restrictions. Each of the restrictions is involved with sequence of critical states a.
The restriction involved with a accepts only this paths which have the sequence
a on it. The order of critical states vector a and the path coincide. If precondition
in the Lemma 4 is not satisfied for π̂ labeled by any word w then the weight of
the minimal component in the union of coverings can differ only from the best
path labeled by w in Û by some constant. The constant depends on the part of
the π̂ after removing all cycles. Hence it has to be bounded by some constant,
which depends only on Û . The conclusion of the reasoning above is the following
theorem.

Theorem 6. It is decidable in 2-nexptime if a given finitely ambiguous au-
tomaton is closely approximated by a finitely sequential automaton. If A is closely
approximated by some finitely ambiguous automaton then there exists approxi-
mating automaton of size at most triply exponential in the size of A.

The strategy of the previous section rules out all accepting paths of Ûj which
contains repeating critical states which always make the path broken. Instead of
analysis of paths in Û , this section applies strategy based on detection of suitable
properties of paths in Ui namely except for currently walked path π is accepting
we detect if

Property 1. The path π has β−witness for some β = (p, q, t′) such that β′ =
(p, q, t′, t) is a modifier for some t.

Property 2. There exists distinguisher α = (p, q, z) such that we visited a c dis-
joint copies of both types loops of the distinguisher. Only distinguishers with
∣z∣ < c(A) are taken into account.

To be more precise we detect subpaths of the form (p
z
�→)

cp
t′

�→ q(
z
�→ q)c for fixed

positive integer c.
The constant c is bounded by the bigger weight of accepting, cycle free path

U . The strategy we presented above is not yet precise. Despite we would like to
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avoid very formal presentation but presented strategy still needs more detailed
exposition. In order to check the first property, for given t−fork β = (p, q, t), it

is enough to detect if given path π visits the path p
t
�→ q.

The size of distinguishers depends on the automaton A and it is at most
exponential in the size of representation of A (exponential because we assume
that weights are stored in binary representation). In spite of z can be expo-
nentially large, z can be in the form uvxw where u, v,w and representation of
number x are of length polynomially bounded to the size of A. Therefore one
can enumerate all pairs (distinguisher ,t−fork) (α,β). A pair (α,β) can be seen
also as a type of set of paths (ρ1, ρ2, ρ3) which starts respectively with states
p, q, q, ends respectively with p, q, q and are labeled respectively by z, z, t. The
number of such triples (ρ1, ρ2, ρ3) is at most exponential with respect to the size
of representation of automaton A. By Ti we denote the set of such triples for Ui.
We emphasize that the first two coordinates of any triple denotes the loops of
distinguisher.

The detection can be realized by composition of the following automata: Let
ρ ∈ Ti and ρ = (ρ1, ρ2, ρ3). By Γρ1 and Γρ2 we denote the classical nondetermin-
istic automata over the alphabet G = Q ×Σ ×Q accepting only these sequences
π = t1t2⋯tl which belongs to Π(Ui) and π visits respectively ρ1, ρ2 at least c
times. The automaton Γρ3 accepts such proper paths which visits ρ3. Let Γρ be
the composition Γρ1 ⊳ Γρ3 ⊳ Γρ1 . By Γi we denote the

⊍ρ∈Ti Γρ. By Γ i we denote

automaton which recognizes Σ∗∖L(Γi) an by D(Γ i) its minimized deterministic
version.

Now extend an Ui = ⟨Ji,Σ,λi, μi, γi⟩ to transducer Ti = ⟨Ji,Σ ×Δ,λi, μi, γi⟩,
where Δ = Ji ×Σ × Ji, in such a way that

μi((r, a, s))[p, q] ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μi(a)[p, q] if r = p and q = s

∞ otherwise.

Let π be the accepting path labeled by word w. The composition Di =D(Γ i)○Ti

is a min-plus automaton with useful properties, namely the weight of accepted
word w in Di equals exactly the weight of w in Ui if there is no a pair (ρ1, ρ2, ρ3) ∈

Ti such that (ρ1)
cp

t′

�→ q(ρ3)
c is a subpath of π and (p, q, t′, t) ∈modif((p, q, t)).

With this definition one can prove that the min-plus automaton Di has no
Fork Property. Hence Di has a finitely sequential equivalent. Now one can show
that

⊍

k
i=1Di ≡ ⊍

k
i=1 Ui ≡ U . However this is the most technical part of this section

and we left it out because of lack of space. The direct consequence of the last
equivalence is the following.

Theorem 7. For the automaton U the following three statements are equivalent.
(1) The automaton U is spoonful. (2) The U is closely approximated by some
finitely sequential automaton. (3) S(A) ∈ Fseq.

Theorem 8. For a given finitely ambiguous automaton A it is decidable in
2-nexptime whether S(A) ∈ Fseq. If S(A) ∈ Fseq then there exists a finitely
sequential equivalent of the size at most triply exponential in the size of A.
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Abstract. The Guarded Negation Fragment (GNFO) is a fragment of first-order
logic that contains all unions of conjunctive queries, a restricted form of negation
that suffices for expressing some common uses of negation in SQL queries, and
a large class of integrity constraints. At the same time, as was recently shown,
the syntax of GNFO is restrictive enough so that static analysis problems such as
query containment are still decidable. This suggests that, in spite of its expres-
sive power, GNFO queries are amenable to novel optimizations. In this paper we
provide further evidence for this, establishing that GNFO queries have distinctive
features with respect to rewriting. Our results include effective preservation theo-
rems for GNFO, Craig Interpolation and Beth Definability results, and the ability
to express the certain answers of queries with respect to GNFO constraints within
very restricted logics.

1 Introduction

The guarded negation fragment (GNFO) is a syntactic fragment of first-order logic, in-
troduced in [BtCS11]. On the one hand, GNFO can be seen as a constraint language:
it captures classical database referential integrity constraints (that is, inclusion depen-
dencies), specifications of relationships between schemas given in a common schema
mapping language (namely that of Local-As-View constraints [Len02, FKMP05]) and
the first-order translations of ontologies specified in some of the most popular descrip-
tion logics [BCM+03]. It contains these prior classes by virtue of extending the Guarded
Fragment of first-order logic [AvBN98]. On the other hand, GNFO is more suitable than
the Guarded Fragment for defining queries: for example, it contains all positive exis-
tential queries, corresponding in expressiveness to unions of conjunctive queries. The
defining characteristic of GNFO formulas is that a subformula ψ(x) with free variables
x can only be negated when used in conjunction with a positive literal α(x,y), i.e. a
relational atom or an equality, containing all free variables of ψ, as in

α(x,y)∧¬ψ(x) ,

where order and repetition of variables is irrelevant. One says that the literal α(x,y)
guards the negation. Unguarded negations ¬φ(x) of formulas with at most one free
variable are supported through the use of an equality guard x = x.
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It was shown in [BtCS11] that GNFO possesses a number of desirable static analy-
sis properties. For example, every satisfiable GNFO-formula has a finite model (finite
model property), as well as a, typically infinite, model of bounded tree-width (tree-like
model property). It follows that satisfiability and implication (hence, by the finite model
property, finite satisfiability and finite implication) of GNFO formulas are decidable.

In [BtCO12] the implications of GNFO for database theory are explored: for exam-
ple, an SQL-based syntax for GNFO is defined, and an analog of stratified Datalog is
also presented. The complexity of query evaluation and “open world query answering”
(i.e. computing certain answers) is identified for several GNFO-based languages, and
many important static analysis problems for queries (e.g. boundedness for the GNFO-
variant of Datalog) are shown to be decidable.

In this work we investigate properties of GNFO related to rewriting. We first present
results showing that GNFO queries or constraints satisfying additional semantic prop-
erties can be rewritten into restricted syntactic forms. For example, we show that every
GNFO query that is closed under extensions can be effectively rewritten as an existential
GNFO formula.We give an analogous result for queries closed under homomorphisms.
We also show that the GNFO sentences that can be expressed in a common constraint
language – that of tuple-generating dependencies (TGDs), are precisely those that can
be rewritten into a recently-introduced class of TGDs, the frontier-guarded TGDs.

We then turn to the setting where one has views and queries both defined within
GNFO, imposing an additional restriction that the free variables in the views and queries
are guarded. We show that if the views and queries satisfy the semantic restriction that
the views determine the query, then we can find a rewriting of the query in terms of the
views, with the rewriting belonging again to GNFO. Following ideas of Marx [Mar07],
we proceed by showing that an important model theoretic theorem for first-order logic,
the Projective Beth Definability theorem, holds in GNFO. We show that, unlike in the
case of the Guarded Fragment, the more general Craig Interpolation Theorem of first-
order logic holds for GNFO. In contrast, we show that Craig Interpolation and Projec-
tive Beth fail for the guarded fragment, contradicting claims made in earlier work.

We also study the existence of rewritings computing the certain answer to conjunc-
tive queries. We show that GNFO sentences that take the form of dependencies have
particularly attractive properties from the point of view of open world query answering.
We extend and correct results of Baget et. al. [BMRT11b] by showing that the certain
answers are expressible in a small fragment of Datalog. Using this, we show that the
existence of first-order rewritings can be effectively decided for dependencies in GNFO.

For space reasons, most proofs are deferred to the full version.

2 Definitions and Preliminaries

We will make use of some basic notions of database theory – in particular the notion of
schema or signature, relational structures, and the following “classical” query classes:
conjunctive queries (CQs), Unions of Conjunctive Queries (UCQs), first-order logic
formulas (FO), existential and positive existential FO, and Datalog. Abiteboul, Hull,
and Vianu [AHV95] is a good reference for all of these languages. Note that by default
we allow constants in our signature (that is, in CQs, UCQs, etc.). In this work, by the
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active domain of a structure I we mean the set of values that occur in some relation of
I along with the values named by constants. In our arguments we will often make use
of the following basic notions from classical model theory: s a reduct of a structure is
obtained by restricting the signature), an expansion of a structure (obtained by adding
additional relations). By a fact of a structure A we mean an expression R(a1, . . . ,an)
where (a1, . . . ,an) is a tuple belonging to a relation RA. For structures I,J, we write
I ⊆ J if the domain of I is contained in the domain of J, every fact of I is also a fact of
J, and I and J agree on the interpretation of all constant symbols. In this case, we say
that I is a subinstance of J and that J is a super-instance of I. If, furthermore, every fact
of J containing only values from the domain of I belongs to I, then we say that I is an
induced substructure of J and J is an extension of I.

The Basics of GNFO. The Guarded Negation Fragment (GNFO) is built up inductively
according to the grammar:

φ ::= R(t)| t1 = t2 | ∃x φ | φ∨φ | φ∧φ | R(t,y)∧¬φ(y)

where R is either a relation symbol or the equality relation x = y, and the ti represent
either variables or constants. Notice that any use of negation must occur conjoined with
an atomic relation that contains all the free variables of the negated formula – such an
atomic relation is a guard of the formula. The purpose of allowing equalities as guards is
to ensure that every formula with at most one free variable can be considered guarded,
and we often write ¬φ instead of (x = x)∧¬φ, when φ has no free variables besides
(possibly) x. If τ is a signature consisting of constants and predicates, GNFO[τ] denotes
the GNFO formulas in signature τ.

GNFO should be compared to the Guarded Fragment, GFO [AvBN98], typically
defined via the grammar:

φ ::= R(x)| ∃x R(x,y)∧φ(x,y) | φ∨φ | φ∧φ | ¬φ(y)

It is easy to see that every union of conjunctive queries is expressible in GNFO. It
is only slightly more difficult to verify that every GFO sentence can be expressed in
GNFO [BtCS11]. Turning to fragments of first-order logic that are common in database
theory, consider guarded tuple-generating dependencies: that is, sentences of the form

∀x R(x)∧φ(x) →∃y ψ(x,y) .

where φ,ψ are conjunctions of relational atomic formulas. By simply writing out such a
sentence using ∃,¬,∧, one sees that it is convertible to a GNFO sentence. In particular,
every inclusion dependency is expressible in GNFO, and many of the common depen-
dencies used in data integration and and in exchange (e.g. linear-guarded dependencies,
also known as Local-As-View (LAV) constraints [Len02, FKMP05]) lie in GNFO.

Looking at constraints that come from Entity-Relationship and other semantic data
models, we see that concept subsumption, when translated into relational database ter-
minology, is expressible in GFO, hence in GNFO. Going further, many of the com-
mon description logic languages used in the semantic web (e.g. ALC and ALC H I O
[BCM+03]) are known to admit translations into GFO, and hence into GNFO.

We will frequently make use of the key result from [BtCS11]:

Theorem 1. A GNFO sentence is satisfiable over all structures iff it is satisfiable over
finite structures. Satisfiability and validity are decidable (and 2ExpTime-complete).
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We have mentioned before that GNFO can capture important integrity constraints, but
in [BtCO12] it is also argued that GN-RA, and hence GNFO, captures many uses of
negation in queries in practice.

3 Rewriting Special GNFO Queries

Preservation theorems in model theory are results that syntactically characterize the
formulas within a logic that satisfy important semantic properties. Two examples from
classical model theory are the Łoś-Tarski theorem, stating that the universal formulas
capture all first order properties closed under taking induced substructures, and the Ho-
momorphism Preservation theorem, stating that existential positive sentences capture
all first order properties closed under homomorphism [CK90]. It is known that the Łoś-
Tarski theorem fails if we consider equivalence only over finite structures [EF99], while
Rossman [Ros08] has shown that the Homomorphism Preservation theorem does hold
if we restrict attention to finite structures. A well-known preservation theorem from
modal logic is Van Benthem’s theorem, stating that basic modal logic captures pre-
cisely the fragment of first-order logic invariant under bisimulation [vB83]. The analog
for finite structures was proven to hold by Rosen [Ros97], cf. also [Ott04].

Here we will investigate the analogous questions for GNFO. We will start by showing
analogs of Van Benthem’s theorem for GNFO. We will then identify syntactic fragments
that capture the intersection of important fragments of first-order logic with GNFO –
from these, new semantic characterizations will follow, including analogs of the Łoś-
Tarski and Homomorphism Preservation theorems.

Characterizing GNFO within FO. We first look at the question of characterizing
GNFO as the set of all first-order formulas that are invariant under certain simula-
tion relations. In [BtCS11], guarded-negation bisimulation were introduced, and it was
shown that GNFO captures the fragment of first-order logic that is invariant under GN-
bisimulations. Here we give a characterization theorem for a simpler kind of simulation
relation, which we call a strong GN-bisimulation. We will use this characterization as a
basic tool throughout the paper – to show that a certain formula is in GNFO, to argue
that two structures must agree on all GNFO formulas, and to amalgamate structures that
cannot be distinguished by GN-sentences in a subsignature. The many uses of strong
GN-bisimulations suggest that it is really the “right” equivalence relation for GNFO.

Recall that a homomorphism from a structure A to a structure B is a map from the
domain of A to the domain of B that preserves the relations as well as the interpretation
of the constant symbols. We say that a set, or tuple, of elements from a structure A is
guarded in A if there is a fact of A that contains all elements in question except possibly
for those that are the interpretation of a constant symbol.

Definition 1 (Strong GN-bisimulations). A strong GN-bisimulation between struc-
tures A and B is a non-empty collection Z of pairs (a,b) of guarded tuples of elements
of A and of B, respectively, such that for every (a,b) ∈ Z:

– there is a homomorphism h : A→B with h(a) = b and such that “h is compatible
with Z”, meaning that (c,h(c)) ∈ Z for every guarded tuple c in A.

– there is a homomorphism g : B→ A with g(b) = a and such that “g is compatible
with Z”, meaning that (g(d),d) ∈ Z for every guarded tuple d in B.
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We write (A,a) →s
GN (B,b) if the map a  → b extends to a homomorphism from A to

B that is compatible with some strong GN-bisimulation between A and B. Note that,
here, a and b are not required to be guarded tuples. We write (A,a) ∼s

GN (B,b) if,
furthermore, a is a guarded tuple in A (in which case we also have that (B,b) ∼s

GN
(A,a)). These notations can also be indexed by a signature σ, in which case they are
defined in terms of σ-reducts of the respective structures. A first-order formula φ(x) is
preserved by ∼s

GN if, whenever (A,a) →s
GN (B,b) and A |= φ(a), then A |= φ(b).

The reader may verify as an exercise that if there exists a strong GN-bisimulation be-
tween two structures, then the respective induced substructures consisting of the ele-
ments designated by constant symbols must be isomorphic.

Our first “expressive completeness” result characterizes GNFO as the fragment of
first-order logic that is invariant for strong GN-bisimulations.

Theorem 2. A first-order formula φ(x) is preserved by →s
GN (over all structures) iff it

is equivalent to a GNFO formula.

Strong bisimulations will play a key role in our remaining results. When we want to
show that a GNFO formula φ can be replaced by another simpler φ′, we will often justify
this by showing that an arbitrary model of φ can be replaced by a strongly bisimilar
structure where φ′ holds (or vice versa). The proof of the “hard direction” of Theorem 2
uses the technique of recursively saturated models [CK90].

Characterizing Fragments of GNFO. We now look at characterizing the intersection
of GNFO with smaller fragments of first-order logic. We will start with tuple-generating
dependencies (TGDs). Recall that these are sentences of the form:

∀xφ(x) →∃yρ(x,y)

where φ and ρ are conjunctions of relational atoms (not equalities). TGDs capture many
classes of integrity constraints used in classical databases, in data exchange, and in on-
tological reasoning. Static analysis and query answering problems in the latter contexts
have in recent years been driving a quest for identifying expressive yet computationally
well-behaved classes of TGDs. A guarded TGD (GTGD) is one in which φ includes
an atom containing all variables occurring in the rule. Guarded TGDs constitute an
important class of TGDs at the heart of the Datalog± framework [CGL09, BGO10]
for which static analysis problems are decidable. More recently, Baget, Leclère, and
Mugnier [BLM10] introduced frontier-guarded TGDs (FGTGD), defined like guarded
TGDs, but where only the variables occurring both in φ and in ρ (the exported variables)
must be guarded by an atom in φ. All FGTGDs are equivalent to GNFO sentences, ob-
tained just by writing them out using existential quantification, negation, and conjunc-
tion. Theorem 3 below shows that these are exactly the TGDs that GNFO can capture.

We need two lemmas, one about GNFO and one about TGDs. For structure I and
superinstance J of I, let us denote by J " I the substructure of J obtained by remov-
ing all facts containing only values from the active domain of I. We say that J is a
squid-superinstance of I if (i) every set of elements from the active domain of I that is
guarded in J is already guarded in I, and (ii) J " I is a disjoint union of structures J′

for which it holds that (adom(J′)∩ adom(I)) \C is guarded in I, where C is the set of
elements of I named by a constant symbol (intuitively, we can think of J as a squid,
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where each J′ is one of its tentacles). The following lemma, intuitively, allows one to
turn an arbitrary superinstance of a structure I into a squid-superinstance of I, modulo
strong GN-bisimulation.

Lemma 1. For every pair of structures I,J with J being a super-instance of I, there is a
squid-superinstance J′ of I and a homomorphism h : J′ → J whose restriction to I is the
identity function, such that J′ ∼s

GN J via a strong GN-bisimulation that is compatible
with h. Moreover, we can choose J′ to be finite if J is.

We will make use of Lemma 1 as a tool for bringing certain conjunctive queries into
a restricted syntactic form, by exploiting the fact that, whenever a tuple from adom(I)
satisfies a conjunctive query in a squid-superinstance J of I, then we can partition the
atoms of the query into independent subsets that are mapped into different tentacles of J.

The following lemma expresses a general property of TGDs that follows from the
fact that TGDs are preserved under taking direct products of structures [Fag82].

Lemma 2. Let Σ be any set of TGDs and suppose Σ |= ∀x(φ(x)→∨
i=1...n∃yiψi(x,yi)),

where φ,ψi are conjunctions of atoms. Then Σ |= ∀x(φ(x) → ∃yiψi(x,yi)) for some
i ≤ n. This holds both over finite structures and over arbitrary structures.

We now return to describing our characterization of TGDs that lie in GNFO. Consider a
TGD ρ = ∀xβ(x)→∃zγ(xz). A specialisation of ρ is a TGD of the form ρθ = ∀xβ(x)→
∃z′γ′(xz′) obtained from ρ by applying some substitution θ mapping the variables z to
constant symbols or to variables among x and z. The following lemma states that as
far as strong GN-bisimulation invariant TGDs are concerned, we can replace any TGD
by specializations of it that are equivalent to frontier-guarded TGDs. Its proof relies
heavily on the two lemmas above.

Lemma 3. [TGD specialisations] Let Σ be a set of TGDs that is strong GN-bisimulation
invariant and let ρ be a TGD such that Σ |= ρ. Then there exists a specialisation ρ′ of
ρ such that Σ |= ρ′, and such that ρ′ is logically equivalent to a conjunction of frontier-
guarded TGDs. This holds both over finite structures and over arbitrary structures.

The result above immediately implies our first main characterization:

Theorem 3. Every GNFO-sentence that is equivalent to a finite set of TGDs on finite
structures is equivalent to a finite set of TGDs on arbitrary structures, and such a for-
mula is equivalent (over all structures) to a finite set of FGTGDs.

In the light of the above result, it may seem tempting to suppose that, similarly,
guarded TGDs form the intersection of TGDs and GFO. This is, however, not the case:
the TGD ∀xyzR(x,y)∧R(y,z) → P(x) can be equivalently expressed in GFO, but not by
means of a guarded TGD; and the guarded TGD ∀xP(x)→∃yz E(x,y)∧E(y,z)∧E(z,x)
is not expressible in GFO. Instead, we show that the intersection of GFO and TGDs is
acyclic frontier-guarded TGDs.

Recall from [Yan81] that an acyclic conjunctive query is a conjunctive query whose
hypergraph is acyclic. There is another equivalent characterization of acyclic conjunc-
tive queries, which is more convenient for our present purposes: a conjunctive query is
acyclic if it can be equivalently expressed by a formula of GFO built up from atomic for-
mulas using only conjunction and guarded existential quantification [GLS03]. We say
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that a TGD ρ = ∀xyβ(x,y) → ∃zγ(x,z) is acyclic if the conjunctive queries ∃yβ(x,y)
and ∃zγ(x,z) are both acyclic. Using Theorem 3 above, plus the “Treeification Lemma”
of [BGO10], we can characterize the GFO sentences that are equivalent to TGDs:

Theorem 4. Every GFO-sentence that is equivalent to a finite set of TGDs over finite
structures is equivalent to a finite set of TGDs on arbitrary structures, and such a for-
mula is equivalent (over all structures) to a finite set of acyclic FGTGDs.

Existential and Positive-Existential Formulas. We turn to characterizing the existen-
tial formulas that are in GNFO, establishing an analog of the Łoś-Tarski theorem. We
say that a first-order formula φ(x) is preserved under extensions over a given class of
structures if for all structure A and B from the class, such that A |= φ(a) and A is an
induced substructure of B, we have that B |= φ(a).

Theorem 5. Every GNFO formula that is preserved under extensions over finite struc-
tures has the same property over all structures, and such a formula is equivalent (over
all structures) to an existential formula in GNFO. Furthermore, we can decide whether
a formula has this property, and also find the existential GNFO formula effectively.

The first part of the first statement follows from the fact that the property of preservation
of a GNFO formula can be expressed as a GNFO sentence, along with the finite model
property for GNFO. The second part uses the classical Łoś-Tarski theorem to show that
a sentence is rewritable as an existential, and then uses our previous infrastructure (e.g.
strong bisimulations) to show that any unguarded negations in the existential formula
can be removed.

Finally, we consider the situation for GNFO formulas that are positive-existential
(for short, ∃+), i.e., that do not contain any negation (and hence, also, only existen-
tial quantification) Since GNFO contains all ∃+ formulas, Rossman’s theorem [Ros08]
implies that the ∃+ formulas are exactly the formulas in GNFO preserved by homomor-
phism, over all structures or (equivalently, by the finite model property for GNFO) over
finite structures. In addition, using the proof of Rossman’s theorem plus the decidability
of GNFO we can decide whether a GNFO formula can be written in ∃+.

Theorem 6. There is an effective algorithm for testing whether a given GNFO formula
is equivalent to a UCQ and, if so, computing such a UCQ.

4 Determinacy and Rewriting for Queries with Respect to Views

We now investigate properties pertaining to view-based query rewriting for GNFO.
Suppose V is a finite set of relation names, and we have FO formulas {φv : v ∈ V}

over a signature S that is disjoint from V . We consider each φv as defining a view v that is
to be made accessible to a user, where given a finite structure I, this view is the set φv(I)
of all tuples of elements satisfying φv in I. Suppose φQ is another first-order formula
over the signature S. We say that the views φv’s determine φQ if: for all finite structures
I and I′ with φv(I) = φv(I′) for all v ∈ V , we have φQ(I) = φQ(I′). Determinacy states
that the query result can be recovered from the results of the views, via some function.
Note that in this paper, when we talk about a set of views determining a query, we will
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always be working only over finite structures. Segoufin and Vianu initiated a study of
determinacy for queries, including the question of when the assumption of determinacy
implies that the recovery function is realized by a query. A rewriting of φQ over {φv :
v ∈ V} is a formula ρ over the signature V (where the arity of a relation v ∈ V is the
number of arguments of φv), such that for every structure I for signature S, ρ applied
to the view structure is the same as φQ(I). The view structure is the structure whose
domain is the set of all elements occurring in φv(I) for some v ∈ V , and that interprets
each v ∈ V by φv(I). It is known that determinacy for unions of conjunctive queries
is undecidable [NSV10], and that for UCQs determinacy does not imply rewritability
even in first-order logic.

In contrast, we will show that whenever GNFO {φv : v ∈ V} determines GNFO φQ,
then there is a rewriting, with the additional assumption that both {φv : v ∈ V} and
φQ are answer-guarded – for FO formulas, we mean by this that they are of the form
φ(x) = R(x)∧φ′ for some φ′ and relation symbol R. That is, we show that determinacy
implies rewritability for GNFO queries and views whose free variables are guarded.
Note that rewritings, when they exist, can always be taken to be domain-independent
queries, since the recovery function is (by definition) dependent only on the view extent.

Nash, Segoufin, and Vianu [NSV10] showed that these notions of determinacy and
rewritability are closely related to interpolation and definability theorems in classical
model theory. The Craig Interpolation theorem for first-order logic can be stated as
follows: given formulas φ,ψ such that φ |= ψ, there is a formula χ such that (i) φ |= χ,
and χ |= ψ (ii) all relations occurring in χ occur in both φ and ψ (iii) all constants
occurring in χ occur in both φ and ψ (iv) all free variables of χ are free variables of both
φ and ψ.

The Craig Interpolation theorem has a number of important consequences, including
the Projective Beth definability theorem. Suppose that we have a sentence φ over a first-
order signature of the form S∪{G}, where G is an n-ary predicate, and suppose S′ is a
subset of S. We say that φ implicitly defines predicate G over S′ if: for every S′-structure
I, every expansion to an S∪{G}-structure I′ satisfying φ has the same restriction to G
up to isomorphism. Informally, the S′ structure and the sentence φ determine a unique
value for G. We say that an n-ary predicate G is explicitly definable over S′ for mod-
els of φ if there is another formula ρ(x1 . . .xn) using only predicates from S′ such that
φ |= ∀x ρ(x)↔ G(x). It is easy to see that whenever G is explicitly definable over S′ for
models of φ, then φ implicitly defines G over S′. The Projective Beth Definability theo-
rem states the converse: if φ implicitly defines G over S′, then G is explicitly definable
over S′ for models of φ. In the special case where S′ = S, this is called simply the Beth
Definability theorem.

A proof of the Craig Interpolation theorem can be found in any model theory text-
book (e.g. [CK90]). The proof is not effective, and it has been shown that it cannot
be made effective [Fri76]. The Projective Beth Definability theorem follows from the
Craig Interpolation theorem. Both theorems fail when restricted to finite structures.

We say that a fragment of first-order logic has the Craig Interpolation Property (CIP)
if for all φ |= ψ in the fragment, the result above holds relative to the fragment. We
similarly say that a fragment satisfies the Projective Beth Definability Property (PBDP)
if the Projective Beth Definability theorem holds relativized to the fragment – that is,
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if φ in the hypothesis of the theorem lies in the fragment then there is a corresponding
formula ρ lying in the fragment as well. We talk about the Beth Definability Property
(BDP) for a fragment in the same way. The argument for first-order logic applies to any
fragment with reasonable closure properties [Hoo00] to show that CIP implies PBDP.

As shown by Nash, Segoufin, and Vianu, the PBDP easily implies that whenever
an FO query is determined by a set of FO views over all models, it is rewritable in
FO. The fact that determinacy of FO queries does not imply FO rewritability over finite
structures is related to the fact that CIP, PBDP, and BDP all fail for FO when implication
is considered over finite structures [EF99]. Hence it is of particular interest to look
at fragments of FO that have the finite model property, since there equivalence over
finite structures can be replaced by equivalence over all structures. Hoogland, Marx,
and Otto [HMO99] showed that the Guarded Fragment satisfies BDP but lacks CIP.
Marx [Mar07] went on to explore determinacy and rewriting for the Guarded Fragment
and its extensions. He argues that the PBDP holds for an extension of GFO called the
Packed Fragment; using this, he concludes that determinacy implies rewritability for
queries and views in the Packed Fragment. The definition of the Packed Fragment is
not important for this work, but at the end of this section we show that PBDP fails for
GFO, and also (contrary to [Mar07]) for the Packed Fragment. But we will adapt ideas
of Marx to show that CIP and PBDP do hold for GNFO. Using this we will conclude
that determinacy implies rewritability for answer-guarded GNFO views and queries.

Craig Interpolation and Beth Definability for GNFO. We now present the main tech-
nical result of this section. It is proven following a common approach in modal logic
(see, in particular, Hoogland, Marx, and Otto [HMO99]), via a result saying that we can
take two structures over different signatures, behaving similarly in the common signa-
ture, and amalgamate them to get a structure that is simultaneously similar to both of
them. The amalgamation results in turn rely on the notion of strong GN-bisimulation,
and use the proof of Theorem 2 to construct equivalent structures.

Theorem 7 (GNFO has Craig interpolation). For each pair of GNFO-formulas φ,ψ
such that φ |= ψ, there is a GNFO-formula χ such that (i) φ |= χ, and χ |= ψ, (ii) all
relations occurring in χ occur in both φ and ψ, (iii) all constants occurring in χ occur
in φ or ψ (or both), (iv) all free variables of χ are free variables of both φ and ψ.

Projective Beth Definability for GNFO follows by standard arguments [Hoo00]:

Theorem 8. If a GNFO-sentence φ in signature σ implicitly defines a relation symbol
G in terms of a signature τ ⊂ σ, and τ includes all constants from σ, then there is an
explicit definition of G in terms of τ relative to φ.

Observe that in Theorem 7, the interpolant is allowed to contain constant symbols out-
side of the common language. Indeed, this must be so, for GNFO lacks the stronger
version of interpolation where the interpolant can only contain constant symbols oc-
curring both in the antecedent and in the consequent. Recall that, in GNFO, as well as
GFO, constant symbols are allowed to occur freely in formulas, and that their occur-
rence is not governed by guardedness conditions. In particular, for example, the formula
∀yR(c,y) belongs to GFO (and to GNFO), while the formula ∀yR(x,y) does not. Now,
consider the valid entailment (x = c)∧∀yR(c,y) |= (x = d) → ∀yR(d,y). It is not
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hard to show that any interpolant φ(x) not containing the constants c and d must be
equivalent to ∀yR(x,y). This shows that there are valid GFO-implications for which
interpolants cannot be found in GNFO, if the interpolants are required to contain only
constant symbols occurring both in the antecedent and the consequent. In fact, in [tC05]
it was shown that, in a precise sense, every extension of GFO with this strong form of
interpolation has full first-order expressive power and is undecidable for satisfiability.

Applications to Rewriting. We can now state the consequence of the PBDP for
determinacy-and-rewriting (relying again on the finite model property of GNFO). Note
also that GNFO views V can check integrity constraints (e.g. inclusion dependencies)
as well as return results. Using the above, we can get:

Theorem 9. Suppose a set of answer-guarded GNFO views {φv : v ∈V} determine an
answer-guarded GNFO φQ on finite structures satisfying a set of GNFO sentences Σ.
Then there is a GNFO rewriting of φQ using {φv : v ∈ V} that is valid over structures
satisfying Σ. Furthermore, there is an algorithm that, given φi’s and φQ and Σ satisfying
the hypothesis, effectively finds such a formula ρ.

In particular, this holds if the view definitions φv are answer-guarded UCQs, φQ is an
answer-guarded UCQ, and Σ consists of inclusion dependencies and LAV constraints.

Note also that “{φv : v ∈ V} determine φQ” (when the φv and φQ are answer-guarded
and in GNFO) can be checked in 2ExpTime, since the property can again be expressed
as a GNFO sentence, after which Theorem 1 can be applied.

Negative Results for the Guarded and Packed Fragments. We now prove that PBDP
fails for the guarded fragment. This shows, intuitively, that if we want to express ex-
plicit definitions even for GFO implicitly-definable relations, we will need to use all of
GNFO.

Theorem 10. The PBDP fails for GFO.

Proof. Consider the GF sentence φ that is the conjunction of the following:

∀x C(x) → ∃yzu(G(x,y,z,u)∧E(x,y)∧E(y,z)∧E(z,u)∧E(u,x))
∀xy E(x,y)∧¬C(x) → P0(x)∧¬P1(x)∧¬P2(x)
∀xy Pi(x)∧E(x,y) → P(i+1 mod 3)(y) for all 0 ≤ i < 3

The first sentence forces that if C(x) holds, then x lies on a directed E-cycle of length
4. The remaining two sentences force that if ¬C(x) holds, then x only lies on directed
E-cycles whose length is a multiple of 3. Clearly, the relation C is implicitly defined
in terms of E . However, there is no explicit definition in GFO in terms of E , because
no formula of GFO can distinguish the directed E-cycle of length k from the directed
E-cycle of length 
 for 3 ≤ k < 
 [AvBN98]. ��

It follows from Theorem 10 that GFO lacks CIP as well, which was already known
[HMO99]. Furthermore, the above argument can be adapted to show that determinacy
does not imply rewritability for views and queries defined in GFO: consider the set of
views {φv1 ,φv2}, where φv1 = φ and φv2 (x,y) = E(x,y). Clearly, {φv1 ,φv2} determine the
query Q(x) = φ∧C(x). On the other hand, any rewriting would constitute an explicit
definition in GFO of C in terms of E , relative to φ, which we know does not exist.
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In [Mar07, Lemma 4.4] it was asserted that PBDP holds for an extension of the
Guarded Fragment, called the Packed Fragment, in which a guard R(x) may be a con-
junction of atomic formulas, as long as every pair of variables from x co-occurs in
one of these conjuncts. The proof of Theorem 10, however, shows that PBDP fails for
the Packed Fragment, because known results (cf. [Mar07]) imply that no formula of
the Packed Fragment can distinguish the cycle of length k from the cycle of length 
 for
4≤ k< 
. Indeed, it turns out that there is a flaw in the proof of Lemma 4.4 in [Mar07].

5 Rewriting GNFO Dependencies

Given a finite structure I, a set of integrity constraints Σ, and a query Q(x1 . . .xk), the
certain answers to Q on I (under Σ) are the set of tuples c1 . . .ck ∈ I such that c ∈
Q(M) for every M containing I and satisfying Σ. Calculating the certain answers is
a central problem in information integration and ontologies (in the former case one
restricts to M finite, but for our constraints there will be no distinction). One of the key
advantages of GNFO is that one can compute the certain answers for every Q and Σ in
GNFO, and thus in particular for every Σ in GNFO and conjunctive query Q [BtCO12].
Baget et al. [BLM10] proved that for every set of frontier-guarded dependencies Σ and
conjunctive query Q, the certain answers can be computed in polynomial time in I.
However, it is known that there are guarded TGDs and conjunctive queries such that
the certain answers can not be computed by a first-order query. We say that conjunctive
query Q is first-order rewritable under constraints Σ if there is a first-order formula φ
such that on any finite structure I φ(I) is exactly the certain answer to Q on I under Σ.
Our next goal will be to show that we can decide, given a set Σ of frontier-guarded TGDs
and a conjunctive query Q, whether or not Q is first-order rewritable. We will proceed
by first capturing the certain answers in a fragment of Datalog. In proving this, we
will follow (and correct) the approach of Baget et al. [BMRT11b], who argued that the
certain answers of conjunctive queries under frontier-guarded TGDs are rewritable in
Datalog. For guarded TGDs, this result had been announced by Marnette [Mar11]. The
proof of Baget et al. [BMRT11a] revolves around a “bounded base lemma” showing
that whenever a set of facts is not closed under “chasing” with FGTGDs, there is a
small subset that is not closed (Lemma 4 of [BMRT11a]). However both the exact
statement of that lemma and its proof are flawed. Our proof corrects the argument,
making use of model-theoretic techniques (including Lemma 1) to prove the bounded
base lemma. It then follows the rest of the argument in [BMRT11a] to show not only
Datalog-rewritability, but rewritability into a Datalog program comprised of frontier-
guarded rules. A conjunctive query is answer-guarded if it includes an atom that guards
all free variables. In particular all Boolean conjunctive queries are answer-guarded.

Theorem 11. For every set Σ of frontier-guarded TGDs, and for every answer-guarded
conjunctive query Q(x), one can effectively find a frontier-guarded Datalog program
that computes the certain answers to Q.

Note that entailment can be interpreted either in the classical sense or in the finite sense,
since we have the finite model property. Indeed, in our proofs, we use constructions that
make use of infinite structures, but the conclusion hold in the finite.
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In [BtCO12], a fragment of Datalog, denoted GN-Datalog was defined, and it was
shown that for this fragment one can decide whether a query is equivalent to a first-order
query (equivalently, as shown in [BtCO12], to some query obtained by unfolding the
Datalog rules finitely many times). Since GN-Datalog contains frontier-guarded Data-
log, we can combine the decision procedure from [BtCO12] with Theorem 11 to obtain:

Corollary 1. FO-rewritability of conjunctive queries under sets of frontier-guarded
TGDs is decidable.
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115 67 Praha 1, Czech Republic
{pudlak,thapen}@math.cas.cz

Abstract. A propositional proof system is weakly automatizable if there
is a polynomial time algorithm which separates satisfiable formulas from
formulas which have a short refutation in the system, with respect to
a given length bound. We show that if the resolution proof system is
weakly automatizable, then parity games can be decided in polynomial
time. We also define a combinatorial game and prove that resolution is
weakly automatizable if and only if one can separate, by a set decidable
in polynomial time, the games in which the first player has a positional
winning strategy from the games in which the second player has a posi-
tional winning strategy.

1 Introduction

Parity games, mean payoff games and simple stochastic games are three classes
of two player games, played by moving a token around a finite graph. In par-
ticular parity games have important applications in automata theory, logic, and
verification [11]. The main computational problem for all of these games is to
decide, given an instance of a game, which player has a positional winning strat-
egy. From this point of view, parity games are reducible to mean payoff games,
and mean payoff games are reducible to simple stochastic games [19, 23]. It is
known that the decision problem for simple stochastic games is reducible to a
search problem in the intersection of the classes PLS and PPAD [6, 13] (which
are believed to be incomparable [4]). None of the decision problems is known to
be in P, despite intensive research work on developing algorithms for them. For
several of the existing algorithms, exponential lower bounds on their runtime
have been given recently [9, 10].

Automatizability is an important concept for automated theorem proving.
Call a propositional proof system automatizable if there is an algorithm which,
given a tautology, produces a proof in time polynomial in the size of its smallest
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proof—this time condition is the best we can hope for, assuming NP �= coNP. Au-
tomatizability is a very strict notion. For example, Alekhnovich and Razborov [1]
have shown that resolution is not automatizable under a reasonable assumption
in parameterised complexity theory. Weak automatizability is a relaxation of
automatizability, where proofs of tautologies can be given in an arbitrary proof
system, and only the time of finding such proofs is restricted to polynomial in the
size of the smallest proof in a given proof system. This characterisation of weak
automatizability is equivalent to the existence of a polynomial time algorithm
which separates satisfiable formulas from formulas which have a short refutation
in the system with respect to a given length bound.

Two recent papers have shown a connection between weak automatizability
and the above mentioned games. Atserias and Maneva showed that if a certain
proof system (called PK1 in our notation) is weakly automatizable, then the de-
cision problem for mean payoff games is in P [3]. Huang and Pitassi strengthened
this to the decision problem for simple stochastic games [12]. In this paper we
extend these results to resolution and parity games. In Sect. 2 below we show
that if resolution is weakly automatizable, then parity games can be decided in
polynomial time.

In order to obtain a kind of reverse direction of this result, in Sect. 3 we
define a new game, the point-line game, also about moving a token around a
finite graph. We show that its complexity is equivalent to that of resolution, in a
certain sense. In particular, resolution is weakly automatizable if and only if one
can separate, by a set in P, the games in which the first player has a positional
winning strategy from the games in which the second player has a positional
winning strategy.

The essential part of the argument in Sect. 2, together with one direction of
Sect. 3, is to show that there is a polynomial-size propositional proof that winning
strategies cannot exist simultaneously for both players in a game. Propositional
proofs are complicated combinatorial objects, and constructing them by hand
can be difficult. Instead, we work with weak first-order bounded arithmetic theo-
ries which capture the logical content of these proof systems, and rely on known
translations of these to do the hard work of actually constructing the proposi-
tional proofs for us. These translations go back to Paris and Wilkie [17]. Later
work has given finer results about the logical depth of the propositional proofs.
The main result we need, a first order-theory which translates into polynomial-
size resolution, is essentially due to Kraj́ıček [14–16].

The full version of this paper, in preparation, will extend our methods to give
simplified proofs of the results mentioned above relating weak automatizability
of the proof system PK1 to the decision problem for mean payoff and simple
stochastic games [3, 12]. Furthermore, it will include a detailed proof of the
translation of first order-theories into polynomial-size propositional proofs, with
extra information about the fan-in k of connectives located at the maximum
depth of propositional formulas, namely that k can be bounded by a constant
that we can read directly from the formulas appearing in the first-order proof.
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Finding a polynomial time algorithm to solve parity games is a long-standing
open problem, so it is tempting to interpret our main result about parity games
and resolution as evidence either that resolution is not weakly automatizable, or
at least that if it is, then this will be hard to prove. On the other hand, modern
SAT solvers typically use algorithms which, given a formula, generate either a
satisfying assignment or what is essentially a resolution proof that the formula
is unsatisfiable. Thus it seems that a necessary condition for a formula to be
tractable by these SAT solvers is that the formula is either satisfiable, or has a
short resolution refutation. Our reduction can be used to translate a parity game
into a formula that satisfies at least this necessary condition. Hence, a possible
application is to try to combine our reduction with a SAT solver, to obtain a
new algorithm for solving parity games.

1.1 Resolution Proof Systems

For k ≥ 1, the propositional proof system Res(k) is defined as follows. Proposi-
tional formulas are formed from propositional variables p0, p1, p2, . . ., negation ¬,
and unbounded fan-in conjunctions and disjunctions

∧
and

∨
. Variables are

called atoms, and atoms and negated atoms are together called literals. Formu-
las are then defined inductively: each literal is a formula, and if Φ is a finite
non-empty set of formulas then

∧
Φ and

∨
Φ are formulas. For a formula ϕ, we

use ¬ϕ as an abbreviation for the formula formed from ϕ by interchanging
∧

and∨
and interchanging atoms and their negations. We treat the binary connectives

∧ and ∨ as the obvious set operations, for example
∨
Φ ∨

∨
Ψ =

∨
(Φ ∪ Ψ). If a

formula is a conjunction, we will sometimes treat it as the set of its conjuncts,
and vice versa.

A k-DNF is a disjunction of conjunctions of literals, where each conjunction
is of size at most k. Each line in a Res(k)-proof is a k-DNF, usually written as
the list of disjuncts separated by commas. The rules of Res(k) are as follows,
where Γ , Δ stand for sets of formulas, possibly empty, A, B for formulas, and
ai for literals:

Γ,A Γ,B
∧-introduction

Γ,A ∧ B

Γweakening
Γ,Δ

Γ, a1 ∧ . . . ∧ am Γ,¬a1, . . . ,¬am
cut

Γ

We also allow introduction of logical axioms a,¬a for atoms a.
A Res(k) refutation of a set of disjunctions Γ is a sequence of disjunctions

ending with the empty disjunction, such that each line in the proof is either in Γ ,
or a logical axiom, or follows from earlier disjunctions in the sequence by a rule.
The system Res(1) is called resolution and is denoted by Res.

We will also consider the proof system PK1, which is defined in the same way
as Res(k) but now dropping the bound on the number of literals in conjunctions.
That is, lines in PK1 proofs are unrestricted DNFs, instead of k-DNFs in case
of Res(k).
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1.2 Bounded Arithmetic

We could obtain the results of this paper by a careful use of the conventional
Buss-style bounded arithmetic theory T2

1 [5]. However, these would introduce un-
necessary complications to deal with sharply bounded quantification, so instead
we will work with simpler systems.

For r ∈ N, we will say that a function f : Nr → N is polynomially bounded
if there is some polynomial p such that f(x̄) ≤ p(x̄) for all x̄. Let L be the
language consisting of the constant symbols 0 and 1, and, for every r ∈ N, a
function symbol for every polynomially bounded function Nr → N and a relation
symbol for every relation on Nr. If the reader is uncomfortable with such a
large language, it can be replaced by any reasonably rich language extending
{0, 1,+, ·, <} as long as all functions in the language are polynomially bounded.
Let BASE be the set of true universal L-sentences. We will use this as our base
theory.

We extend L to a language L+ = L ∪ R̄ by adding a tuple R̄ of finitely
many new relation symbols. We will use these to stand for edges in a graph, or
strategies in a game, or whatever other objects we need to reason about.

Adapting notation from Wilmers [22], we define a strict Ud formula to be
one consisting of d alternating blocks of bounded quantifiers, beginning with
a universal block, followed by a quantifier-free L+ formula. To obtain optimal
results about the depth of the propositional translations of these formulas, we
add a technical requirement: the quantifier-free part should have the form of a
CNF if d is odd, or a DNF if d is even. Any quantifier-free formula is logically
equivalent to one in either form, so in the first-order proofs we construct in this
paper we can ignore this requirement. A Ud formula is a subformula of a strict
Ud formula. The strict Ed formulas and the Ed formulas are defined dually.

We remark that we will almost always work with bounded rather than un-
bounded quantifiers, and we will often not write the bounds if they are obvious,
for example if we are quantifying over the vertices of a given finite graph.

For d ≥ 0, we define Ud-IND to be BASE together with the usual induction
scheme

∀a, φ(0) ∧ ∀x<a[φ(x) → φ(x + 1)] → φ(a)

for each Ud formula φ(x), which may also contain other parameters. The theory
Ed-IND is defined similarly.

Similarly we define Ud-MIN to be the usual scheme asserting that any non-
empty Ud (with parameters) subset of an interval [0, a) has a least element. The
schemes Ed-MIN, Ud-MAX and Ed-MAX are the obvious variants of this.

Lemma 1. For d ≥ 0, the following hold over BASE:
1. Ed-IND is equivalent to Ud-IND
2. Ed-MAX is equivalent to Ed-MIN
3. Ud-MAX is equivalent to Ud-MIN
4. Ud+1-IND proves Ud-MAX and Ed+1-MAX. �

We now define a version of the Paris-Wilkie translation of first-order proofs in
bounded arithmetic into small propositional proofs [17]. We will use this as a tool
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for constructing resolution refutations out of U2-IND proofs. For each relation
symbol in R̄ of arity s, we fix a propositional variable ri1,...,is for each tuple
of numbers i1, . . . , is. We assume that all these propositional variables, for all
relation symbols in R̄, are pairwise distinct.

Let % and ⊥ denote the truth values true and false, respectively. An assign-
ment α is a total map from first-order variables to numbers, in which at most
finitely many variables are assigned non-zero values. For an assignment α, a
variable x and a number n, we write α[x  → n] for the assignment which maps x
to n and leaves the mapping of all other variables unchanged. We write [x  → n]
for the assignment which maps x to n and all other variables to 0.

Definition 2. We compute propositional translations as follows.
1. Any L formula φ has a definite truth value under α. If φ evaluates to true

we let 〈φ〉α be %, and if it evaluates to false we let 〈φ〉α be ⊥.
2. For t an L-term, we let 〈t〉α be the evaluation of t under α.
3. For R an s-ary relation symbol in R̄, and t̄ an s-tuple of L-terms, we let

〈R(t̄)〉α be the propositional variable ri1,...,is where each ij = 〈tj〉α, and let
〈¬R(t̄)〉α be the negated variable ¬ri1,...,is .

4. We let 〈φ ∧ ψ〉α be 〈φ〉α ∧ 〈ψ〉α and let 〈φ ∨ ψ〉α be 〈φ〉α ∨ 〈ψ〉α.
5. We let 〈∀x < t φ(x)〉α be

∧
{〈φ〉α[x �→m] : m < 〈t〉α}. Bounded existential

quantifiers are similarly translated into disjunctions.
Finally we simplify by inductively removing % from conjunctions, removing ⊥
from disjunctions, replacing conjunctions containing ⊥ with ⊥, and replacing
disjunctions containing % with %.

Theorem 3. Suppose that φ1(x), . . . , φ(x) are U2 formulas, with x the only
free variable, such that U2-IND proves ∀x¬(φ1(x) ∧ . . . ∧ φ(x)). Then for
some k ∈ N the family

Φn := 〈φ1(x)〉[x �→n] ∪ · · · ∪ 〈φ(x)〉[x �→n]

has polynomial size Res(k) refutations. �

1.3 Disjoint NP Pairs

A disjoint NP pair is simply a pair of disjoint NP sets. In the context of proof
complexity, these were first studied by Razborov in [20]. Our presentation fol-
lows [18]. A pair (A,B) is polynomially reducible to a pair (C,D) if there is
a polynomial time function f , defined on all strings, such that f [A] ⊆ C and
f [B] ⊆ D. A pair (A,B) is polynomially equivalent to a pair (C,D) if polynomial
reducibility holds in both directions. A pair (A,B) is polynomially separable if
there is a polynomial time function which takes the value 0 on strings in A and
the value 1 on strings in B.

If P is a propositional proof system, the canonical pair CP of P is the pair
(A,B) where

A = {(φ, 1m) : φ is satisfiable}
B = {(φ, 1m) : φ has a P-refutation of size at most m}.
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We say that P is weakly automatizable if CP is polynomially separable. In other
words, P is weakly automatizable if there is a polynomial time algorithm which
separates satisfiable formulas from formulas which have a short refutation in the
system with respect to a given length bound. This definition of weakly automa-
tizability is equivalent to others in the literature (see [2]).

To define the interpolation pair IP of P , let ΔP be the set of triples (φ, θ, π)
where φ and θ are propositional formulas in disjoint variables and π is a P-
refutation of φ ∧ θ. Then IP is the pair (A,B) where

A = {(φ, θ, π) ∈ ΔP : φ is satisfiable}
B = {(φ, θ, π) ∈ ΔP : θ is satisfiable}.

Given a triple (φ, θ, π) ∈ ΔP , at least one of φ and θ must be unsatisfiable.
We say that P has feasible interpolation if there is a polynomial time function
which, given such a triple as input, outputs 0 if φ is unsatisfiable and 1 if θ is
unsatisfiable. It is easy to show that P has feasible interpolation if and only if
IP is polynomially separable.

Proposition 4 ([2])
1. Resolution has feasible interpolation.
2. The following list of NP pairs are pairwise equivalent: The canonical pairs

of Res, Res(2), Res(3), . . . , and the interpolation pairs of Res(2), Res(3),
Res(4), . . . , and of PK1. �

Finally, we define the canonical pair of a class of two-player games to be the pair
(A0, A1) where Ai is the set of games in which player i has a positional winning
strategy. Naturally, for this to make sense we need there to be a definition of
what a positional strategy is, and for it to be possible to recognise a positional
winning strategy in NP.

2 Parity Games

Following Stirling [21] we will describe parity games in a simplified form, which
is linear-time equivalent to the usual definition. A parity game G is given by
a finite directed graph with vertices V and edges E satisfying the following
properties. The set V is the disjoint union of two sets V0 and V1 which we think
of as the vertices belonging respectively to player 0 and to player 1. The graph
has a designated start vertex s, and every vertex has at least one outgoing edge.
We identify V with the interval [n] = {0, . . . , n−1} where n = |V |. Below when
we talk about the “least” vertex we mean the least with respect to the usual
order on [n]. Without loss of generality, s = 0.

The game begins with a pebble placed on the start vertex s. On each turn,
the pebble is moved from its current vertex v along an edge in the graph. If
v ∈ V0 then player 0 chooses which edge to move it along. If v ∈ V1 then player 1
chooses. A play of the game is the infinite sequence v1, v2, . . . of vertices visited
by the pebble. To decide the winner of a play, let v be the least vertex which
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occurs infinitely often. If v ∈ V0 then player 0 wins and if v ∈ V1 then player 1
wins.

A positional strategy σ for player 0 is a map σ : V0 → V such that (x, σ(x)) is
an edge in E for each x ∈ V0. Similarly, a positional strategy τ for player 1 is a
map τ : V1 → V such that (x, τ(x)) ∈ E for each x ∈ V1.

The following theorem has been proven by Emerson [8] independently of a
similar result for mean payoff games by Ehrenfeucht and Mycielski [7]; the re-
duction from parity to mean payoff games was found later by Puri [19].

Theorem 5 (Emerson [8]). In each parity game, one of the players has a
positional winning strategy. �

From now on we will only discuss positional strategies, so we will usually omit
the word “positional”. Given a strategy σ for player 0, we will use Eσ to mean
the edge relation obtained from E by, for each vertex v ∈ V0, removing all
outgoing edges except for the one chosen in σ. We will similarly use Eτ to mean
E restricted by a strategy τ for player 1.

It is straightforward to show that the strategy σ is winning for player 0 if and
only if for every vertex t reachable from s in Eσ, for every path from t to t in Eσ,
the least vertex on the path is in V0. To prove our main result in this section,
we formalise this characterisation in such a way that we can prove in U2-IND
that player 0 and player 1 cannot simultaneously have winning strategies. In our
formalisation below, all quantifiers are implicitly bounded by n.

Expand the language L to include relation symbols E, V0, V1, Eσ, Rσ
min,

Eτ , Rτ
min and a constant symbol n. We will write G to stand for the tuple

E, V0, V1, n representing the structure of the game. The intended meaning of Eσ

is as described above. The intended meaning of the ternary relation Rσ
min(x, y, z)

is that there is a non-trivial path in Eσ from x to y on which the least vertex
visited is z. The relations Eτ and Rτ

min are similar.
Let Game(G) be a formula asserting that G is a suitable graph for a parity

game, that is, that V0 and V1 partition the vertices, and that every vertex has
at least one outgoing edge. Let Strategy0(G,Eσ) be a formula asserting that Eσ

represents a strategy for player 0, that is, that every vertex in V0 has an outgoing
edge in Eσ. Let Strategy1(G,Eτ ) be a similar formula for player 1. It is clear
that these can all be written as U2 formulas.

Let Win0(G,Eσ, Rσ
min) be the conjunction of the universal closures of

1. Strategy0(G,Eσ)
2. Eσ(x, y) ∧ z = min(x, y) → Rσ

min(x, y, z)
3. Rσ

min(x, y, u) ∧Rσ
min(y, z, v) ∧w = min(u, v) → Rσ

min(x, z, w)
4. Rσ

min(s, x, u) ∧Rσ
min(x, x, v) → v ∈ V0.

Let Win1(G,Eτ , Rτ
min) be a similar formula for player 1.

Lemma 6. If player 0 has a winning strategy in G, then there exist Eσ and Rσ
min

satisfying Win0(G,Eσ, Rσ
min). Similarly for player 1 and Win1(G,Eτ , Rτ

min). �

Theorem 7. Provably in U2-IND, it is impossible to satisfy formulas Game(G),
Win0(G,Eσ, Rσ

min) and Win1(G,Eτ , Rτ
min) simultaneously.
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Proof. Let R∗(x, y) be the formula ∃v, Rσ
min(x, y, v) ∧ Rτ

min(x, y, v). By condi-
tion 3 of Win0 and Win1, the relation R∗(x, y) is transitive. Moreover for every x
there is at least one y such that R∗(x, y), since we can take y to be the unique
successor of x in Eσ ∩ Eτ and take v to be min(x, y).

Let A(x) be the formula R∗(s, x)∧∀y>x¬R∗(x, y). Using E1-MAX, let x be
maximum such that R∗(s, x). It follows that A(x) holds. Hence using E2-MIN,
we let t be minimum such that A(t). Now using E1-MAX, let t′ be maximum
such that R∗(t, t′). By the transitivity of R∗, we know that R∗(s, t′) and also
that for all y > t′ we have ¬R∗(t′, y). Hence A(t′) holds, and therefore t′ ≥ t by
minimality of t. On the other hand, since A(t) and R∗(t, t′), we know t′ ≤ t. We
conclude that t′ = t.

We now have that R∗(s, t) and R∗(t, t). Hence there are vertices u and v
such that both Rσ

min(s, t, u) ∧ Rσ
min(t, t, v) and Rτ

min(s, t, u) ∧ Rτ
min(t, t, v) hold.

Therefore condition 4 must be false in either Win0 or Win1, since either v ∈ V0
or v ∈ V1. �

The formula Win0(G,Eσ, Rσ
min) is a conjunction of U2 formulas. Suppose we are

given a parity game G, with n vertices. Let α map the constant symbol n of
our language (which we treat here as a free variable) to the number n. Then
for some k ∈ N we can translate each such formula φ into a conjunction 〈φ〉α
of k-DNFs, with propositional variables for the relations Eσ, Rσ

min and for the
structure of the game G. We abuse notation and write 〈Win0(Eσ, Rσ

min)〉G for
the propositional formula obtained by taking the set of all the formulas 〈φ〉α and
substituting in, for the propositional variables describing the structure of G, the
values given by the actual game G.

In other words, 〈Win0(Eσ, Rσ
min)〉G is the propositional formula obtained by

translating Win0 and substituting in the real values of G. It is satisfiable if and
only if player 0 has a winning strategy in G. The formula 〈Win1(Eτ , Rτ

min)〉G is
similar.

Corollary 8. There is a number k ∈ N and a polynomial p such that for ev-
ery game G, the formula 〈Win0(Eσ, Rσ

min)〉G ∪〈Win1(Eτ , Rτ
min)〉G has a Res(k)

refutation of size p(n).

Proof. Take the proof given by Theorem 3, and substitute in the real values
of G. Observe that G satisfies Game(G), so all the initial formulas coming from
Game(G) vanish. �

Corollary 9. The canonical pair for parity games is reducible to the canonical
pair for resolution.

Proof. Let p and k be as in Corollary 8. By Proposition 4, it is enough to show
reducibility to the canonical pair for Res(k). The reduction function is given by

G  → ( 〈Win0(Eσ, Rσ
min)〉G, 1p(n) ).

If player 0 has a winning strategy for G then 〈Win0(Eσ, Rσ
min)〉G is satisfiable. On

the other hand, if player 1 has a winning strategy for G then 〈Win1(Eτ , Rτ
min)〉G
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•l1 •l2

• • •u

Vertex u connected to leaves l1
and l2 with points and lines

• • •v • • • •w

• • •u

Non-leaf vertices with points and lines

Fig. 1. Components of point-line game graphs

is satisfiable, and substituting the satisfying assignment into the Res(k) refuta-
tion from Corollary 8 yields the required refutation of 〈Win0(Eσ, Rσ

min)〉G of
size p(n). �

Corollary 10. If resolution is weakly automatizable, then parity games can be
decided in polynomial time. �

3 A Game Equivalent to Resolution

In this section we will define the point-line game and prove the following:

Theorem 11. The canonical pair for the point-line game is equivalent to the
canonical pair for resolution.

An instance of the point-line game is given by a finite directed acyclic graph
(V,E) with some extra structure. Namely, the set V is the disjoint union of sets
V0, V1 and F , where vertices in V0 and V1 belong respectively to player 0 and
player 1, and F contains exactly the leaf vertices, that is, those of out-degree 0.
There is a designated start vertex s of in-degree 0. Each vertex v contains a
set Sv of points. The start vertex is empty (contains no points) and every leaf
contains exactly one point. Vertices do not share points. If there is an edge (u, v)
in E, then some points in u may be connected to some points in v by lines.
A point in u may have lines out to many points in v, but each point in v has a
line in from at most one point in u, as in Fig. 1. During the game some points
will be assigned colours, either black, for player 0, or white, for player 1.

The game starts with a pebble on s. At the beginning of a general turn, the
pebble is on some vertex u and every point in u has a colour. As before, the
player who owns vertex u moves the pebble along an outgoing edge to a new
vertex v. Every point p in v that is connected by a line to some point q in u
is then coloured with q’s colour. Every other point in v is coloured with the
colour of the player who did not move. The game ends when the pebble reaches
a leaf w. The winner is the player whose colour is on the single point in w.

As before, a positional strategy is a function σ : V0 → V or τ : V1 → V as-
signing a choice of outgoing edge to each of a player’s vertices, regardless of the
history of the game or the colouring of the current vertex. However in this case,
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it is not in general true that a winning strategy exists if and only if a positional
winning strategy exists. One can give an example of such a game in which nei-
ther player has a positional winning strategy, while at the same time one of the
players must, as in any finite game, have a (non-positional) winning strategy.

Lemma 12. Given such a game G and a positional strategy σ for player 0,
it is decidable in polynomial time whether σ is a winning strategy. Hence the
canonical pair for point-line games is a disjoint NP pair.

Proof. We describe a polynomial time algorithm which, working backwards from
the leaves, labels each vertex u with either a set Bu ⊆ Su of points or a symbol
“Losing0”. This labelling will have the property that if u is labelled “Losing0”
then, regardless of the colouring of u, if the pebble reaches u then player 1,
playing optimally, will win the game if player 0 plays according to σ. If u is
not labelled “Losing0” then if player 0 plays according to σ and player 1 plays
optimally, player 0 will win the game from u if and only if all points in Bu are
coloured black. Thus σ is a winning strategy for player 0 if and only if the start
vertex s is not labelled “Losing0”.

The algorithm labels a vertex u using the following rules.

1. If u is a leaf, set Bu to be the (unique) point in u.
2. If u ∈ V1, suppose that u has children v1, . . . , vk and that these have all been

labelled. If any child vi is labelled “Losing0”, then label u as “Losing0”.
Otherwise, let Bu contain every point in u which is connected by a line to
some point in Bvi for some child vi (in other words, let Bu be the union of
the pre-images of the sets Bvi).

3. If u ∈ V0, let v = σ(u). Suppose that v has been labelled. If v is labelled
“Losing0” then label u as “Losing0”. If not, there are two possibilities. If
there is a point in Bv that is not connected by a line to any point in u,
label u as “Losing0”. Otherwise, let Bu be the set of points of u which are
connected by a line to some point in Bv. �

Theorem 13. The canonical pair for the point-line game is reducible to the
canonical pair for Res(k) for some k ∈ N, and hence to the canonical pair for
resolution by Proposition 4.

Proof. (Sketch.) We can write a formula Win0 which is satisfiable if and only
if there is a strategy σ for player 0 and a corresponding labelling of the graph,
as in the previous lemma, in which no leaf reachable from s under σ is labelled
“Losing0”. We can write a similar formula Win1 wrt. a strategy τ for player 1
and a corresponding labelling. The proof that Win0 and Win1 cannot be satisfied
simultaneously is then essentially a proof that the labelling algorithm works. We
prove, working from the leaves of the graph down to s, that if any node v is
reachable from s under both σ and τ , then Bσ

v ∩W τ
v is non-empty, where W τ is

player 1’s version of the relation Bσ and represents points that must be coloured
white for player 1 to win using strategy τ . This gives a contradiction when we
reach s, which contains no points.
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This argument formalises as a U2 induction (we also need to add relations Rσ

and Rτ , for reachability under σ and τ , respectively to Win0 and Win1, as in
the previous section). Thus, it translates into a Res(k) refutation, which gives
us our result, as in Corollaries 8 and 9. �

The other direction of Theorem 11 can be proven by showing that the interpo-
lation pair for PK1, which is equivalent to the canonical pair for resolution by
Proposition 4, is reducible to the canonical pair for the game.

Theorem 14. The interpolation pair of PK1 is reducible to the canonical pair
for the point-line game.

Proof. (Sketch.) Starting from a PK1-refutation of two sets of clauses Φ and
Ψ in disjoint sets of variables X and Y , we can construct in polynomial time
a game G such that if Φ is satisfiable then player 0 has a positional winning
strategy in G, and if Ψ is satisfiable then player 1 has such a strategy.

The game has one vertex for each DNF that forms a line in the proof, and
that vertex contains one point for each conjunction in the DNF. Additionally it
has one leaf vertex for each literal z arising from a variable in X ∪ Y . Each such
leaf vertex contains a single point.

The structure of the game is similar to that of the proof. The edges reflect
the structure of the proof, and two points are connected by a line if the corre-
sponding conjunctions stand in a natural direct ancestor relation. The vertices
corresponding to cut and ∧-introduction rules belong to player 0 if an X variable
is involved in the rule, and to player 1 if it is a Y variable. Vertices corresponding
to clauses from Φ belong to player 0, similarly for Ψ and player 1.

The game is constructed so that the following is true. Suppose player 0 knows
an assignment A to the X variables that satisfies Φ. Then he can use A to make
choices in the game guaranteeing that, whenever the pebble moves to a non-leaf
vertex u, then for every point p in u which corresponds to a conjunction whose
X-literals are all satisfied by A, p gets coloured black. This means that when
the game reaches a node corresponding to an initial clause of the proof, then if
the clause is from Φ at least one point will be black, and if it is from Ψ then all
the points will be black. Either way, player 0 will win. We have the symmetrical
property for player 1. �

A question motivated by our results is to find a direct reduction of parity games
to point-line games with positional strategies. Using such a reduction one may
be able to define a subclass of point-line games that always have positional
strategies, for which one could try to find a polynomial time algorithm instead
of working directly with parity games.
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Abstract. The first result presented in this paper is the closure under
complementation of the class of languages of finite N-free posets recog-
nized by branching automata. Relying on this, we propose a logic, named
Presburger-MSO or P-MSO for short, precisely as expressive as branch-
ing automata. The P-MSO theory of the class of all finite N-free posets
is decidable.

Keywords: N-free posets, series-parallel posets, sp-rational languages,
automata, commutative monoids, monadic second-order logic, Presburger
logic.

1 Introduction

In computer science, if Kleene automata, or equivalently, rational expressions
or finite monoids, are thought of as models of sequential programs, then intro-
ducing commutativity allows access to models of programs with permutation
of instructions, or to concurrent programming. Among the formal tools for the
study of commutativity in programs, let us mention for example Mazurkiewicz’s
traces, integer vector automata or commutative monoids.

In this paper, we are interested in another approach: the branching automata,
introduced by Lodaya and Weil [13–16]. Branching automata are a generalisation
of Kleene automata for languages of words to languages of finite N-free posets.
This class of automata takes into account both sequentiality and the fork-join
notion of parallelism, in which an execution flow f that splits into f1, . . . , fn con-
current execution flows, joins f1, . . . , fn before it continues. Divide-and-conquer
concurrent programming naturally uses this fork-join principle. Lodaya and Weil
generalized several important results of the theory of Kleene automata to branch-
ing automata, for example, a notion of rational expression with the same expres-
sivity as branching automata. They also investigated the question of the algebraic
counterpart of branching automata: the sp-algebras are sets equipped with two
different associative products, one of them being also commutative. Contrary to
the theory of Kleene automata, branching automata do not coincide any more
with finite sp-algebras, and it is not known if the class of languages recognized
by branching automata is closed under complementation.

An interesting particular case is the bounded-width rational languages [15],
where the cardinality of the antichains of the posets of languages are bounded by
an integer n. They correspond to fork-join models of concurrent programs with n

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 123–134, 2013.
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as the upper bound of the number of execution flows (n is the number of physical
processors). Bounded-width rational languages have a natural characterisation in
rational expressions, branching automata, and sp-algebras. Taking into account
those characterisations, the expressiveness of branching automata corresponds
exactly to the finite sp-algebras. Furthermore, Kuske [12] proved that in this
case, branching automata coincide also with monadic second-order logic, as it is
the case for the rational languages of finite words. As in the general case monadic-
second order logic is less expressive than branching automata, the question of
an equivalent logic was left open.

This paper contains two new results:

1. first, the closure under complementation of the class of rational languages
(Theorem 3);

2. second, we define a logic, named P-MSO logic, which basically is monadic
second-order logic enriched with Presburger arithmetic, that is exactly as
expressive as branching automata (Theorem 6).

The paper is organized as follows. Section 2 recalls basic definitions on posets.
Section 3 is devoted to branching automata and rational expressions. Finally
P-MSO is presented in Section 4.

All the proofs of the results of this paper are effective. As a consequence, the
P-MSO theory of the class of finite N-free posets is decidable.

2 Notation and Basic Definitions

Let E be a set. We denote by P(E), P+(E) and M>1(E) respectively the set
of subsets of E, the set of non-empty subsets of E and the set of multi-subsets
of E with at least two elements. For any integer n, the group of permutations of
{1, . . . , n} is denoted by Sn. The cardinality of E is denoted by |E|.

A poset (P,<P ) is composed of a set P equipped with a partial ordering <P . In
this paper we consider only finite posets. For simplicity, by poset we always mean
finite poset. A chain of length n in P is a sequence p1 <P · · · <P pn of elements
of P . An antichain E in P is a set of elements of P mutually incomparable for
<P . The width of P is the size of a maximal antichain of P . An alphabet is a
finite set whose elements are called letters. A poset (P,<P , ρ) labelled by A is
composed of a poset (P,<P ) and a map ρ : P → A which associates a letter
A with any element of P . Observe that the posets of width 1 labelled by A
correspond precisely to the usual finite words: finite totally ordered sequences
of letters. Throughout this paper, we use labelled posets as a generalisation
of words. In order to lighten the notation we write P for (P,<P , ρ) when no
confusion is possible. The unique empty poset is denoted by ε.

Let (P,<P , ρP ) and (Q,<Q, ρQ) be two disjoint posets labelled respectively
by the alphabets A and A′. The parallel product of P and Q, denoted P ‖ Q, is
the set P ∪ Q equipped with the orderings on P and Q such that the elements
of P and Q are incomparable, and labelled by A ∪ A′ by preservation of the
labels from P and Q. It is defined as (P ∪Q,<, ρ) where ρ(x) = ρP (x) if x ∈ P ,
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ρ(x) = ρQ(x) if x ∈ Q, and x < y if and only if (x, y ∈ P and x <P y) or
(x, y ∈ Q and x <Q y).

The sequential product of P and Q, denoted by P · Q or PQ for simplicity,
is the poset (P ∪ Q,<, ρ) labelled by A ∪ A′, such that ρ(x) = ρP (x) if x ∈ P ,
ρ(x) = ρQ(x) if x ∈ Q, and x < y if and only if one of the following conditions
is true:

– x ∈ P , y ∈ P and x <P y;
– x ∈ Q, y ∈ Q and x <Q y;

– x ∈ P and y ∈ Q

Observe that the parallel product is an associative and commutative operation
on posets, whereas the sequential product does not commute (but is associative).
The parallel and sequential products can be generalized to finite sequences of
posets. Let (Pi)i≤n be a sequence of posets. We denote by

∏
i≤n Pi = P0 · · · · ·Pn

and ‖i≤n Pi = P0 ‖ · · · ‖ Pn.
The class of series-parallel posets, denoted SP , is defined as the smallest set

containing the posets with zero and one element and closed under finite parallel
and sequential product. It is well known that this class corresponds precisely to
the class of N-free posets [22, 23], in which the exact ordering relation between
any four elements x1, x2, x3, x4 cannot be x1 < x2, x3 < x2 and x3 < x4. The
class of series-parallel posets over an alphabet A is denoted SP (A) (or SP+(A)
when the empty poset is not considered).

A block B of a poset (P,<) is a nonempty subset of P such that, if b, b′ ∈ B
such that b < b′, then for all elements of p ∈ P , if b ≤ p ≤ b′ then p ∈ B. We say
that B is connected if, for any different and incomparable b, b′ ∈ B there exists
b′′ ∈ B such that b, b′ ≤ b′′ or b′′ ≤ b, b′. A subset G of P is good if, for all p ∈ P ,
if p is comparable to an element of G and incomparable to another, then p ∈ G.

3 Rational Languages and Automata

A language over an alphabet A is a subset of SP (A). The sequential and parallel
product of labelled posets can naturally be extended to languages. If L1, L2 ⊆
SP (A), then L1 · L2 = {P1 · P2 | P1 ∈ L1, P2 ∈ L2} and L1 ‖ L2 = {P1 ‖ P2 |
P1 ∈ L1, P2 ∈ L2}.

3.1 Rational Languages

Let A and B be two alphabets and let P ∈ SP (A), L ⊆ SP (B) and ξ ∈ A.
We define the language L ◦ξ P of posets labelled by A ∪ B by substituting
non-uniformally in P each element labelled by ξ by a labelled poset of L. This
substitution L◦ξ is the homomorphism from (SP (A), ‖, ·) into the powerset al-
gebra (P(SP (A∪B)), ‖, ·) with a  → {a} for all a ∈ A, a �= ξ, and ξ  → L. It can
be easily extended from labelled posets to languages of posets. Using this, we
define the substitution and the iterated substitution on languages. By the way
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the usual Kleene rational operations [11] are recalled. Let L and L′ be languages
of SP (A):

L ◦ξ L′ = ∪
P∈L′

L ◦ξ P

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = ( ∪
j≤i

Ljξ) ◦ξ L

L∗ = {
∏
i<n

Pi : n ∈ N, Pi ∈ L}

A language L ⊆ SP (A) is rational if it is empty, or obtained from the letters
of the alphabet A using usual rational operators : finite union ∪, finite con-
catenation ·, and finite iteration ∗, and using also the finite parallel product ‖,
substitution ◦ξ and iterated substitution ∗ξ, provided that in L∗ξ any element
labelled by ξ in a labelled poset P ∈ L is incomparable with another element of
P . This latter condition excludes from the rational languages those of the form
(aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be not Kleene
rational. Observe also that the usual Kleene rational languages are a particular
case of the rational languages defined above, in which the operators ‖, ◦ξ and ∗ξ

are not used.

Example 1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest
language containing c and such that if p ∈ L, then a ‖ (bx) ∈ L.

L = {c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }

Let L be a language where the letter ξ is not used. In order to lighten the
notation we use the following abreviation:

L� = {ε} ◦ξ (L ‖ ξ)∗ξ = {‖i<n Pi : n ∈ N, Pi ∈ L}

L∗ is the sequential iteration of L whereas L� is its parallel iteration.
A language L is ‖-rational if it is rational without using the operators ·, ◦ξ, ∗

and ∗ξ (but � is allowed).

Remark 1. Any rational language L which does not make use of sequentiality
(i.e. PP ′ �∈ L for all P, P ′ ∈ SP+(A)) is ‖-rational.

A subset L of A� is linear if it has the form

L = a1 ‖ · · · ‖ ak ‖
(
∪i∈I(ai,1 ‖ · · · ‖ ai,ki)

)�
where the ai and ai,j are elements of A and I is a finite set. It is semi-linear if it
is a finite union of linear sets. We refer to [5] for a proof of the following result:

Theorem 1. Let A be an alphabet and L ⊆ A�. Then L is ‖-rational if and
only if it is semi-linear.
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3.2 Branching Automata

Branching automata are a generalisation of usual Kleene automata. They were
introduced by Lodaya and Weil [13–15].

A branching automaton (or just automaton for short) over an alphabet A is
a tuple A = (Q,A,E, I, F ) where Q is a finite set of states, I ⊆ Q is the set
of initial states, F ⊆ Q the set of final states, and E is the set of transitions
of A. The set of transitions of E is partitioned into E = (Eseq , Efork, Ejoin),
according to the different kinds of transitions:

– Eseq ⊆ (Q × A × Q) contains the sequential transitions, which are usual
transitions of Kleene automata;

– Efork ⊆ Q×M>1(Q) and Ejoin ⊆ M>1(Q)×Q are respectively the sets of
fork and join transitions.

Sequential transitions (p, a, q) ∈ Q×A×Q are sometimes denoted by p
a→ q.

We now turn to the definition of paths in automata. The definition we use in
this paper is different, but equivalent to, the one of Lodaya and Weil [13–16].
Paths in automata are posets labelled by transitions. A path γ from a state
p to a state q is either the empty poset (in this case p = q), or a non-empty
poset labelled by transitions, with a unique minimum and a unique maximum
element. The minimum element of γ is mapped either to a sequential transition
of the form (p, a, r) for some a ∈ A and r ∈ Q or to a fork transition of the
form (p,R) for some R ∈ M>1(Q). Symmetrically, the maximum element of γ
is mapped either to a sequential transition of the form (r′, a, q) for some a ∈ A
and r′ ∈ Q or to a join transition of the form (R′, q) for some R′ ∈ M>1(Q).
The states p and q are respectively called source (or origin) and destination of
γ. Two paths γ and γ′ are consecutive if the destination of γ is also the source of
γ′. Formally, the paths γ labelled by P ∈ SP (A) in A are defined by induction
on the structure of P :

– the empty poset ε is a path from p to p, labelled by ε ∈ SP (A), for all p ∈ Q;
– for any transition t = (p, a, q), then t is a path from p to q, labelled by a;
– for any finite set of paths {γ0, . . . , γk} (with k > 1) respectively labelled

by P0, . . . , Pk, from p0, . . . , pk to q0, . . . , qk, if t = (p, {p0, . . . , pk}) is a fork
transition and t′ = ({q0, . . . , qk}, q) a join transition, then γ = t(‖j≤k γj)t′
is a path from p to q and labelled by ‖j≤k Pj ;

– for any non-empty finite sequence γ0, . . . , γk of consecutive paths respectively
labelled by P0, . . . , Pk, then

∏
j<k+1 γj is a path labelled by

∏
j<k+1 Pj from

the source of γ0 to the destination of γk;

Observe that paths are labelled posets of three different forms: ε, t or tP t′ for
some transitions t, t′ and some labelled poset P . In an automaton A, a path γ

from p to q labelled by P ∈ SP (A) is denoted by γ : p
P

=⇒
A

q. A state s is a sink

if s is the destination of any path originating in s.
A labelled poset is accepted by an automaton if it is the label of a path, called

successful, leading from an initial state to a final state. The language L(A) is
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the set of labelled posets accepted by the automaton A. A language L is regular
if there exists an automaton A such that L = L(A).

Theorem 2 (Lodaya and Weil [13]). Let A be an alphabet, and L ⊆ SP (A).
Then L is regular if and only if it is rational.

Example 2. Figure 1 represents the automaton A = ({1, 2, 3, 4, 5, 6}, {a, b}, E,
{1}, {1, 6}), with Eseq = {(2, a, 4), (3, b, 5)}, Efork = {(1, {1, 1}), (1, {2, 3})} and
Ejoin = {({6, 6}, 6), ({4, 5}, 6)}, and an accepting path labelled by a ‖ b ‖ a ‖ b.
Actually, L(A) = (a ‖ b)�.

1
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4

5

6

a

b
1

1
2

1

3

2

3

5

4

5
6

6
4

6

a

b

b

a

Fig. 1. An automaton A with L(A) = (a ‖ b)� and an accepting path labelled by
a ‖ b ‖ a ‖ b

It is known from Lodaya and Weil [15] that the regular languages of SP (A)
are closed under finite union and finite intersection, but the closure under com-
plementation was still unexplored.

The first result of this paper is stated by the following Theorem which im-
plies that the class of regular languages of N-free posets is closed under boolean
operations.

Theorem 3. Let A be an alphabet. The class of regular languages of SP (A) is
effectively closed under complement.

The proof relies on an algebraic approach of regular languages, which was first
introduced by Lodaya and Weil [13–15]. Algebras considered here are of the
form (S, ·, ‖) (or just S for short) such that (S, ·) and (S, ‖) are respectively a
semigroup and a commutative semigroup, which may be infinites. The first step
consists in the construction of a morphism ϕ : SP (A) → S, where S is build
from an automaton A and L(A) = ϕ−1(X) for some X ⊆ S. Then we show that
ϕ−1(S − X) is regular by a reduction of the problem to the finitely generated
commutative semigroup case, and we conclude by the use of the following result

Theorem 4 (Eilenberg and Schützenberger [5]). If X and Y are rational
subsets of a commutative monoid M , then Y −X is also a rational subset of M .

As emphasized in [18], if M is finitely generated then Theorem 4 is effective.

4 P-MSO

In this section we define a logical formalism called P-MSO, which is a mix
between Presburger [17] and monadic second-order logic, and that has exactly
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the same expressivity as branching automata. As all the constructions involved
in the proof are effective, then the P-MSO theory of the class of finite N-free
posets is decidable.

Let us recall useful elements of monadic second-order logic, and settle some
notation. For more details about MSO logic we refer e.g. to Thomas’ survey
paper [4, 20]. The monadic second-order (MSO) logic is classical in set theory,
and was first set up by Büchi-Elgot-Trakhtenbrot for words [2, 6, 21]. In our
case, the domain of interpretation is the class of finite N-free posets.

Monadic second-order logic is an extension of first-order logic that allows to
quantify over elements as well as subsets of the domain of the structure. A
MSO-formula is given by the following grammar

ψ ::=Ra(x) | x ∈ X | x < y | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ
| ∃xψ | ∃Xψ | ∀xψ | ∀Xψ

where a ∈ A, x, y and X are respectively first- and second-order variables, Ra(x)
is interpreted as “x is labelled by a” (also denoted a(x) for readability), and all
other symbols have their usual meaning. The language Lψ of ψ is the class of
posets (P,<, ρ) labelled over A that satisfy ψ. Logical equivalence of formulæ
corresponds to the equality of their languages. In order to enhance readability of
formulæ we use several notations and abbreviations for properties expressible in
MSO. The following are usual and self-understanding: φ→ ψ, X ⊆ Y , x = y. We
also write ∃Xxψ for ∃x x ∈ X∧ψ, and extend this notion of relative quantification
to universal quantification and second-order variables. MSO logic is strictly less
expressive than automata. There is no MSO-formula that defines the language
(a ‖ b)�. On the contrary, MSO-definability implies rationality.

In order to capture the expressiveness of automata with logic we need to add
Presburger expressivity to MSO. Presburger logic is the first-order logic over
the structure (N,+) where + = {(a, b, c) : a + b = c}. A language L ⊆ Nn is
a Presburger set of Nn if L = {(x1, . . . , xn) : ϕ(x1, . . . , xn) is true } for some
Presburger formula ϕ(x1, . . . , xn). If ϕ(x1, . . . , xn) is given then L is called the
Presburger set of ϕ(x1, . . . , xn) (or of ϕ for short). Presburger logic provides tools
to manipulate semi-linear sets of A� with formulæ. Indeed, let A = {a1, . . . , an}
be an alphabet (n > 0). As a word u of A� can be thought of as a n-tuple
(|u|a1 , . . . , |u|an) of non-negative integers, where |u|a denotes the number of oc-
curences of letter a in u, then A� is isomorphic to Nn.

Example 3. Let A = {a, b, c} and L = {u ∈ A� : |u|a ≤ |u|b ≤ |u|c}. Then L is
isomorphic to {(na, nb, nc) ∈ N3 : na ≤ nb ≤ nc}, and thus the Presburger set of

ϕ(na, nb, nc) ≡ (∃x nb = na + x) ∧ (∃y nc = nb + y)

Semi-linear sets and Presburger sets are connected by the following Theorem:

Theorem 5 (Ginsburg and Spanier [8], Theorem 1.3). Let A be an al-
phabet and L ⊆ A�. Then L is semi-linear if and only if it is a Presburger set.
Furthermore, the construction of one description from the other is effective.
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The P-MSO logic is a melt of Presburger and MSO logics. From the syntactic
point of view, P-MSO logic contains MSO logic, and in addition formulæ of the
form

Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn))

where Z is the name of a (free) second-order variable, ψi(Ri) (for each i ∈ 1 . . . n)
a P-MSO formula having no free first-order variables, and only quantifications
relative to Ri, and ϕ(x1, . . . , xn) a Presburger formula with n free variables
x1, . . . , xn. Considering the formula ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn),
ϕ(x1, . . . , xn)) the only variable that counts as free in ψ(Z) is Z. Note that as n
can be any positive integer then P-MSO does not really fit into the framework
of usual formal propositional logic (where the arity of connectors are usually
fixed).

As in monadic second-order logic, the class of syntactically correct P-MSO
formulæ is closed under boolean operations, and existential and universal quan-
tification over first and second-order variables of a P-MSO formula that are
interpreted over elements or sets of elements of the domain of the structure. Se-
mantics of P-MSO formulæ is defined below by extension of semantics of Pres-
burger and MSO logics. The notions of a language and definability naturally
extend from MSO to P-MSO.

Before continuing with formal definitions, let us give some intuition on the
meaning of ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)). Let X
be an interpretation of a second-order variable Z in P , such that X is a good
block of P . That means, X is the poset associated with a sub-term of a term on
A (a full binary tree whose leaves are elements of A, and nodes are a sequential
or a parallel product) describing P , and is the parallel composition of m ≥ 1
connected blocks: X = X1 ‖ · · · ‖ Xm. Take n different colors c1, . . . , cn. To each
Xi we associate a color cj with the condition that Xi satisfies ψj(Xi). Observe
that this coloring may not be unique, and may not exist. Denote by xj the
number of uses of cj in the coloring of X . Then P,X |= ψ(Z) if there exists such
a coloring with x1, . . . , xn satisfying the Presburger condition ϕ(x1, . . . , xn).

More formally, let P ∈ SP (A), ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn),
ϕ(x1, . . . , xn)) be a P-MSO formula, X ⊆ P be an interpretation of Z in P
such that X is a good block of P . Then P,X |= ψ(Z) if there exist non negative
integers v1, . . . , vn and a partition (Z1,1, . . . , Z1,v1 , . . . , Zn,1, . . . , Zn,vn) of X into
connected blocks Zi,j such that

– (v1, . . . , vn) belongs to the Presburger set of ϕ(x1, . . . , xn),
– z ∈ Zi,j , z

′ ∈ Zi′,j′ implies that z and z′ are incomparable, for all possible
(i, j) and (i′, j′) with (i, j) �= (i′, j′),

– P,Zi,j |= ψi(Zi,j) for all i ∈ 1 . . . n and j ∈ 1 . . . vi.

Example 4. Let L be the language of Example 3, and ϕ(na, nb, nc) be the Pres-
burger formula of Example 3. For all α ∈ A, set ψα(X) ≡ Card1(X)∧∀Xx α(x),
where Card1(X) is a MSO formula (thus a P-MSO formula) which is true if and
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only if the interpretation of X has cardinality 1. Then L is the language of the
following P-MSO sentence:

∀P (∀p p ∈ P ) → Q(P, (ψa(X), na), (ψb(X), nb), (ψc(X), nc), ϕ(na, nb, nc))

Theorem 6. Let A be an alphabet, and L ⊆ SP (A). Then L is rational if and
only if is P-MSO definable.

The proof uses usual arguments adapted to the case of N-free posets.
The inclusion from left to right relies on the ideas of Büchi on words: the

encoding of accepting paths of a branching automaton A into a P-MSO formula.
Each letter of the poset is mapped to a sequential transition of A, and each part
of the poset of the form P = P1 ‖ · · · ‖ Pn (n > 1), as great as possible relatively
to inclusion and such that each Pi is a connected block of P , is mapped to a pair
(p, q) of states; informally speaking, p and q are the states that are supposed to
respectively begin and finish the part of the path labelled by P . The formula
guarantees that pairs of states and sequential transitions are chosen consistently

with the transitions of A, and that, if P = P1 ‖ · · · ‖ Pn as above and pi
Pi=⇒
A

qi for

all i ∈ 1 . . . n, then there exists a combination of fork transitions that connects
p to p1, . . . , pn, a sequence of join transitions that connects q1, . . . , qn to q, such

that a path p
P

=⇒
A

q in A is formed.

The inclusion from right to left relies on well-known techniques from words
adapted to posets. In this part of the proof posets are not just labelled by ele-
ments of the alphabet A, but by elements of A× P(V1) × P(V2), where V1 and
V2 are sets that contain respectively the names of the free first and second-order
variables of the formula (we do not consider here the variables that are inter-
preted over nonnegative integers). When formulæ are sentences, then the posets
are labelled by A× ∅ × ∅, which is similar to A. Observe that an interpretation
of the variables {x1, . . . , xn} = V1, {X1, . . . , Xm} = V2 in P induces a unique
poset labelled by elements of A × P(V1) × P(V2), and reciprocally. This allows
us to use indifferently one representation or the other in order to lighten the
notation. This labelling of posets by elements of A×P(V1)×P(V2) has a unique
restriction: the name of a free first-order variable x must appear at most once
in the labels of elements of the poset. An automaton Ar that accepts a poset if
and only if this condition is verified on its label can easily be constructed. We
may assume, up to an intersection with Ar ( the regular languages are closed
under intersection), that all the constructions of automata below have posets in
L(Ar) as inputs.

We build, by induction on the structure of ϕ(x1, . . . , xn, X1, . . . , Xm), an au-
tomaton Aϕ such that P, x1, . . . , xn, X1, . . . , Xm |= ϕ(x1, . . . , xn, X1, . . . , Xm)
if and only if P, x1, . . . , xn, X1, . . . , Xm ∈ L(Aϕ). The case n = m = 0 gives
the inclusion from right to left of Theorem 6. For formulæ of the form x < y
it suffices to build an automaton that checks if the poset has two elements p1
and p2 respectively labelled by (a1, X1, X2) and (a2, Y1, Y2) such that p1 < p2,
x ∈ X1 and y ∈ y1. An automaton that checks if the poset contains an element
labelled by (a,X1, X2) with x ∈ X1 can easily be constructed for formulæ of the
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form a(x). The case of formulæ of the form x ∈ X is similar. Constructions of
automata for the boolean connectors ∨, ∧ and ¬ are a consequence of Theorem 3
and the closure under finite union and intersection of regular languages. For for-
mulæ of the form ∃xφ or ∃Xφ, constructions are a consequence of the closure
under projection of regular languages. We finally turn to the last case where
the formula ψ has the form Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)).
Recall here that x1, . . . , xn are variables that are interpreted over nonnega-
tive integers, and that each ψi, i ∈ 1 . . . n, has only one free variable Ri,
which is second-order. By induction hypothesis, there is an automaton Aψi such
that P,R |= ψi(R) if and only if P,R ∈ L(Aψi). According to the semantics
of Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)), the only interpretations
of R in P verify (1) R = P and (2) P is a connected block. The conjunction of
(1) and (2) is a MSO-definable property of R, and thus it can be checked by an
automaton B. As a consequence of the closure under intersection of regular lan-
guages there exists an automaton A′

ψi
such that Li = L(A′

ψi
) = L(Aψi)∩L(B).

Now, let B = {b1, . . . , bn} be a new alphabet disjoint from A. As a consequence of
Theorems 5, 1 and 2 there is an automaton C over the alphabet B such that L(C)
is the Presburger set of ϕ(x1, . . . , xn) over B. Then Lψ = L1◦b1 (. . . (Ln◦bnL(C)))
thus Lψ is regular according to Theorem 2.

Example 5. Let L be the language over the alphabet A = {a, b} composed of the
sequential products of posets of the form P = P1 ‖ · · · ‖ Pn such that each Pi is
a nonempty totally ordered poset (i.e., a word), and that the number of Pi that
starts with an a is 2

3n. Set L1 = aA∗ and L2 = bA∗. Then L is the language of
the rational expression ((L1 ‖ L1 ‖ L2)�)∗. We define L by a P-MSO sentence
as follows. Given two elements of the poset denoted by first order variables x
and y, one can easily write a MSO formula Succ(x, y) (resp. Pred(x, y)) that is
true if and only if x is a successor (resp. predecessor) of y. Set

Lin(X) ≡∀Xx∀Xy∀Xz ((Succ(y, x) ∧ Succ(z, x)) → y = z)

∧ ((Pred(y, x) ∧ Pred(z, x)) → y = z)

ψ1(X) ≡Lin(X) ∧ ∃Xx a(x) ∧ ∀Xy x = y ∨ x < y

ψ2(X) ≡Lin(X) ∧ ∃Xx b(x) ∧ ∀Xy x = y ∨ x < y

ϕ(na, nb) ≡na = 2nb

Then L is the language of the following P-MSO sentence

ψ ≡ ∀P (∀p p ∈ P ) → ∃X1∃X2 P = X1 ⊕X2

∧ ∀U((MaxBlock(U,X1) ∨ MaxBlock(U,X2)) →
Q(U, (ψ1(R1), na), (ψ2(R2), nb), ϕ(na, nb))

with X = U ⊕ V ≡ Partition(U, V,X) ∧ (∀u∀v u ∈ U ∧ v ∈ V → ¬u ‖ v).
In the formula above, Partition(U, V,X) and u ‖ v respectively express with
MSO formulæ that (U, V ) partitions X , and that u and v are different and not
comparable. The MSO formula MaxBlock(U,X) express that U is a block of X ,
maximal relatively to inclusion.
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5 Conclusion

As all the constructions involved in the proof of Theorem 6 are effective, and
emptiness is decidable for languages of branching automata, P-MSO is decidable:

Theorem 7. Let A be an alphabet. The P-MSO theory of SP (A) is decidable.

In [15], Lodaya and Weil asked for logical characterizations of several classes
of rational languages. As it is equivalent to branching automata, P-MSO is the
natural logic to investigate such questions, that are still open.

Among the works connected to ours, let us mention Esik and Németh [7],
which itself has been influenced by the work of Hoogeboom and ten Pas [9, 10]
on text languages. They study languages of biposets from an algebraic, automata
and regular expressions based point of view, and the connections with MSO. A
biposet is a set equipped with two partial orderings; thus, N-free posets are a
generalisation of N-free biposets, where commutation is allowed in the parallel
composition.

MSO and Presburger logic were also mixed in other works, but for languages
of trees instead of N-free posets. Motivated by reasoning about XML documents,
Dal Zilio and Lugiez [3], and independently Seidl, Schwentick and Muscholl [19],
defined a notion of tree automata which combines regularity and Presburger
arithmetic. In particular in [19], MSO is enriched with Presburger conditions on
the children of nodes in order to select XML documents, and proved equivalent
to unranked tree automata. Observe that unranked trees are a particular case
of N-free posets. The logic named Unordered Presburger MSO logic in [19] is
contained in our P-MSO logic.

The quality of this paper has been enhanced by the comments of the anony-
mous referees. One of them noticed that Theorem 3 might also be retrieved using
the notion of Commutative Hedge automata (see e.g. [1]), as N-free posets can
be assimilated to terms over the operations of parallel and sequential products.
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18. Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003); English (and
revised) version: Elements of automata theory. Cambridge University Press (2009)

19. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Flum, J., Grädel,
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Abstract. We consider a variant of the generalized assignment problem
(GAP) where the items have unit size and the amount of space used
in each bin is restricted to be either zero (if the bin is not opened)
or above a given lower bound (a minimum quantity). This problem is
known to be strongly NP-complete and does not admit a polynomial
time approximation scheme (PTAS).

By using randomized rounding, we obtain a randomized 3.93-approxi-
mation algorithm, thereby providing the first nontrivial approximation
result for this problem.
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1 Introduction

The generalized assignment problem (GAP) is a classical generalization of both
the (multiple) knapsack problem and the bin packing problem. In the classical
version of GAP (cf., for example, [1, 2]), one is given m bins, a capacity Bj for
each bin j, and n items such that each item i has size si,j and yields profit pi,j
when packed into bin j. The goal is to find a feasible packing of the items
into the bins that maximizes the total profit. The problem has many practical
applications, for which we refer to [2] and the references therein.

Recently, Krumke and Thielen [3] introduced the generalized assignment prob-
lem with minimum quantities (GAP-MQ), which is a variation of the generalized
assignment problem where the amount of space used in each bin is restricted to
be either zero (if the bin is not opened) or above a given lower bound (a min-
imum quantity). This additional restriction is motivated from many practical
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packing problems where it does often not make sense to open an additional con-
tainer (bin) if not at least a certain amount of space in it will be used. While
it is not hard to see that it is NP-hard to compute any feasible solution with
positive profit for the general version of GAP-MQ (and, hence, no polynomial
time approximation algorithm exists for the problem unless P = NP), comput-
ing nontrivial feasible solutions is easy when all items have unit size. Due to
its application in assigning students (unit size items) to seminars (bins) at a
university such that the total satisfaction (profit) of the students is maximized,
this special case of GAP-MQ where all items have unit size was termed seminar
assignment problem (SAP) in [3] and is formally defined as follows:

Definition 1 (Seminar Assignment Problem (SAP))
INSTANCE: The number n of items, m bins with capacities B1, . . . , Bm ∈ N

and minimum quantities q1, . . . , qm ∈ N (where qj ≤ Bj ≤ n for
all j = 1, . . . ,m), and a profit pi,j ∈ N resulting from assigning
item i to bin j for i = 1, . . . , n and j = 1, . . . ,m.

TASK: Find an assignment of a subset of the items to the bins such that the
number of items in each bin j is either zero (if bin j is not opened)
or at least qj and at most Bj and the total profit is maximized.

Note that, in the above definition and throughout the paper, we always assume
N to contain zero and denote the positive integers by N+.

Even though computing nontrivial feasible solutions for SAP is easy, a gap-
preserving reduction from the 3-bounded 3-dimensional matching problem (3DM-
3) given in [3] shows the existence of a constant ε0 > 0 such that it is strongly
NP-hard to approximate SAP within a factor smaller than (1 + ε0) even if all
profits pi,j are in {0, 1} and the minimum quantities and bin capacities of all
bins are fixed to three. In particular, the problem does not admit a polynomial
time approximation scheme (PTAS). Apart from these negative results, however,
the approximability of SAP (and, in particular, the existence of a constant fac-
tor approximation) remained open. As most standard techniques for designing
deterministic approximation algorithms fail for this problem due to the mini-
mum quantity restrictions (cf. [3]), it natural to consider randomization and to
ask whether a constant approximation ratio can be obtained by a randomized
algorithm.

In this paper, we answer this question by presenting a randomized 3.93-
approximation algorithm for SAP, which is the first nontrivial approximation
result for this problem. Our randomized rounding algorithm uses a packing-based
integer programming formulation, for which we show that the linear relaxation
can be solved in polynomial time by using column generation. In particular, by
using the probabilistic method (cf., for example, [4]), our result implies that the
integrality gap of this formulation is no larger than 3.93.

1.1 Previous Work

The classical GAP is well-studied in literature. A comprehensive introduction to
the problem can be found in [1]. A survey of algorithms for GAP is given in [2].
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For a survey on different variants of assignment problems studied in literature,
we refer to [5].

GAP is known to be APX-hard [6], but there exists a 2-approximation algo-
rithm [7, 6]. Cohen et al. [8] showed how any polynomial time α-approximation
algorithm for the knapsack problem can be translated into a polynomial time
(1 +α)-approximation algorithm for GAP. A (1, 2)-approximation algorithm for
the equivalent minimization version of GAP, in which assigning item i to bin j
causes a cost ci,j , was provided by Shmoys and Tardos [7]: For every feasible
instance of GAP, their algorithm computes a solution that violates the bin ca-
pacities by at most a factor of 2 and whose cost is at most as large as the cost
of the best solution that satisfies the bin capacities strictly.

GAP is a generalization of both the (multiple) knapsack problem (cf. [1, 6, 9])
and the bin packing problem (cf. [10–12]). The multiple knapsack problem is the
special case of GAP where the size and profit of an item are independent of
the bin (knapsack) it is packed into. The bin packing problem can be seen as
the special case of the decision version of GAP in which all bins have the same
capacity and all profits are one. The question of deciding whether a packing
of total profit equal to the number of items exists is then equivalent to asking
whether all items can be packed into the given number of bins.

A dual version of bin packing (often called bin covering) in which minimum
quantities are involved was introduced in [13, 14]. Here, the problem is to pack
a given set of items with sizes that do not depend on the bins so as to maximize
the number of bins used, subject to the constraint that each bin contains items
of total size at least a given threshold T (upper bin capacities are not considered
due to the nature of the objective function). Hence, the bin covering problem
can be seen as a variant of GAP-MQ in which the minimum quantity is the
same for each bin and the objective is to maximize the number of bins used.
Since any approximation algorithm with approximation ratio strictly smaller
than 2 would have to solve the NP-complete partition problem when applied to
instances in which the sizes of the items sum up to two, it follows that (unless
P = NP) no polynomial time (2 − ε)-approximation for bin covering exists for
any ε > 0. In contrast, the main result of Assmann et al. [14] is an O(n log2 n)
time algorithm that yields an asymptotic approximation ratio of 4/3 for bin
covering, while easier algorithms based on next fit and first fit decreasing are
shown to yield asymptotic approximation ratios of 2 and 3/2, respectively. Later,
an asymptotic PTAS [15] and an asymptotic FPTAS [16] for bin covering were
developed.

Minimum quantities have recently been studied for minimum cost network
flow problems [17–19]. In this setting, minimum quantities for the flow on each
arc are considered, which results in the minimum cost flow problem becoming
strongly NP-complete [18]. Moreover, it was shown in [18] that (unless P = NP)
no polynomial time g(|I|)-approximation for the problem exists for any poly-
nomially computable function g : N+ → N+, where |I| denotes the encoding
length of the given instance. The special case of the maximum flow problem
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with minimum quantities has recently been studied in [20], where it was shown
that the problem is strongly NP-hard to approximate in general, but admits a
(2 − 1

λ)-approximation in the case of an identical minimum quantity λ on all
arcs.

The generalized assignment problem with minimum quantities (GAP-MQ)
and the seminar assignment problem (SAP) were introduced in [3], where it
was shown that the general version of GAP-MQ does not admit any polynomial
time approximation algorithm unless P = NP. For SAP, it was shown by a
gap-preserving reduction from the 3-bounded 3-dimensional matching problem
(3DM-3) that there exists a constant ε0 > 0 such that it is strongly NP-hard
to approximate SAP within a factor smaller than (1 + ε0) even if all profits pi,j
are in {0, 1} and the minimum quantities and bin capacities of all bins are
fixed to three. In particular, the problem does not admit a polynomial time
approximation scheme (PTAS). Apart from these negative results, however, the
approximability of SAP (and, in particular, the existence of a constant factor
approximation) remained open.

2 Overview of the Algorithm

Before we present our randomized rounding algorithm for SAP in detail, we give
a brief overview of the different steps of our procedure and its analysis.

The algorithm is based on an integer programming formulation of SAP that
is introduced in Section 3. For each bin j, the integer program contains a binary
variable xt for every feasible packing of j (i.e., for every assignment of qj ≤ l ≤
Bj items to bin j), where xt = 1 means that packing t is selected for bin j. As we
show in Theorem 1, the linear relaxation of this integer program can be solved
in polynomial time by column generation even though it contains an exponential
number of variables xt.

After solving the linear relaxation of the integer program, our algorithm inde-
pendently selects a packing for each bin by using the value of variable xt in the
optimal solution (scaled by a suitably chosen factor α ∈ [0, 1]) as the probability
of using packing t for the corresponding bin j. The expected profit of the set
of packings obtained in this way is exactly α times the objective value of the
optimal solution of the linear relaxation used for the rounding, but the set of
packings will, in general, not correspond to a feasible integral solution as items
may be packed several times into different bins. Hence, in order to obtain a fea-
sible integral solution, we apply a clean-up procedure that works in two steps: In
the first step, we discard a subset of the bins opened in order to ensure that the
total number of places used in the bins is at most n. In the second step, we can
then replace all remaining multiply assigned items in the solution by unassigned
items in order to obtain a feasible integral solution. Overall, we show that, in
expectation, the profit decreases by at most a factor 3.93 during the clean-up
procedure, which yields the desired approximation guarantee.
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3 An Integer Programming Formulation

We start by introducing the IP-formulation on which our randomized rounding
algorithm is based.

Definition 2. A (feasible) packing of bin j is an incidence vector of a sub-
set of the items with cardinality at least qj and at most Bj, i.e., a vector t =
(t1, . . . , tn) ∈ {0, 1}n such that qj ≤

∑n
i=1 ti ≤ Bj. The profit of t is pt :=∑n

i=1 pij · ti. The set of all feasible packings of bin j will be denoted by T (j) and

we write T :=
⋃̇m

j=1T (j).

Using this definition, we can formulate SAP as the following integer program:

max

m∑
j=1

∑
t∈T (j)

xtpt (1a)

s.t.
∑

t∈T (j)

xt ≤ 1 ∀ j ∈ {1, . . . ,m} (1b)

m∑
j=1

∑
t∈T (j)

xtti ≤ 1 ∀ i ∈ {1, . . . , n} (1c)

xt ∈ {0, 1} ∀ t ∈ T (1d)

Here, variable xt for t ∈ T (j) is one if and only if packing t is selected for bin j.
Constraint (1b) ensures that at most one packing is selected for each bin while
constraint (1c) ensures that each item is packed into at most one bin.

We now show that, even though the number of variables in IP (1) expo-
nential in the encoding length of the given instance of SAP, we can solve its
linear relaxation in polynomial time by using column generation. To this end,
it suffices to show that we can find a column (packing) of minimum reduced
cost in polynomial time, i.e., solve the pricing problem in polynomial time (cf.
[21, 22]). Denoting the dual variables corresponding to the constraints (1b) by
yj , j = 1, . . . ,m, and the dual variables corresponding to the constraints (1c) by
zi, i = 1, . . . , n, the reduced cost of a packing t ∈ T (j) of bin j is

c̄t = pt − yj −
n∑
i=1

tizi = −yj +

n∑
i=1

ti(pij − zi).

Hence, the pricing problem is

min
j=1,...,m

min
t∈T (j)

−yj +

n∑
i=1

ti(pij − zi).

This problem can be solved in polynomial time as follows: For each bin j, find-
ing a packing t ∈ T (j) of minimum reduced cost means solving a 0-1-knapsack
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problem with n unit size items, profit −(pij − zi) for item i, and the additional
constraint that at least qj items have to be packed into the knapsack. This
problem can be solved by greedily selecting the item i with minimum value pij−zi
until we have either selected Bj items, or the next item i satisfies pij − zi ≥
0. If this procedure returns an infeasible packing with less than qj items, we
continue selecting the item i with minimum value pij − zi (which is now always
nonnegative) until we have selected exactly qj items. Afterwards, we can solve
the pricing problem by simply comparing the best packings obtained for all bins
in order to find a packing of globally minimum reduced cost. Hence, we obtain:

Theorem 1. The linear relaxation of IP (1) can be solved in time polynomial
in the encoding length of the given instance of SAP.

4 The Randomized Rounding Procedure

We now present our randomized 3.93-approximation algorithm for SAP. In the al-
gorithm, we first solve the linear relaxation of of IP (1) obtaining an optimal frac-
tional solution x ∈ [0, 1]|T |. We then multiply all values xt by a factor α ∈ [0, 1]
(which will be chosen later) and consider the resulting value x̄t := αxt ∈ [0, 1]
as the probability of using packing t ∈ T (j) for bin j. More precisely, we inde-
pendently select a packing for each bin j at random, where packing t ∈ T (j) is
selected with probability x̄t = αxt, and with probability 1 −

∑
t∈T (j) x̄t, bin j

is not opened. Since we select at most one packing for each bin, the resulting
vector xIP ∈ {0, 1}|T | (where xIPt = 1 if and only if packing t was selected)
then satisfies constraint (1b), but is, in general, not a feasible solution to IP (1)
since it may violate constraint (1c) (an item may be packed several times into
different bins). In particular, the total number of items assigned to bins in
xIP may be larger than n (when counted with multiplicities). The expected
profit E(profit(xIP)), however, is exactly equal to α · profit(x), i.e., exactly
α times the profit profit(x) =: optLP of the optimal fractional solution x
obtained for the linear relaxation. We note this fact for later reference:

Observation 1. The vector xIP ∈ {0, 1}|T | obtained from the randomized round-
ing process satisfies E(profit(xIP)) = α · optLP.

We now show how we can turn xIP into a feasible solution of IP (1) while only
decreasing the expected profit by a constant factor. Our procedure works in two
steps: In the first step, we discard a subset of the bins opened in xIP in order
to ensure that the total number of places used in the bins is at most n. In the
second step, we can then replace all remaining multiply assigned items in the
solution by unassigned items in order to obtain a feasible integral solution.

We start by describing the first step of the procedure. Given the vector xIP ∈
{0, 1}|T | obtained from the randomized rounding process, we consider the fol-
lowing instance of the 0-1-knapsack problem (0-1-KP): The objects are the pack-
ings t ∈ T with xIPt = 1, i.e., the packings selected by xIP. The size of object t is
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the number of items contained in packing t and its profit is the profit pt of the
packing. The knapsack capacity is set to n.

Assuming that the total number of places used in the bins in xIP is in
[kn, (k + 1)n) for some k ∈ N, it is easy to compute an integral solution to
this knapsack instance with profit at least 1

2k+1 · profit(xIP): We can assign all
objects fractionally to at most (k+1) knapsacks of size n each such that at most
k objects are fractionally assigned (cf. Figure 1). Since the size of each object is
at most n, we can then remove the fractionally assigned objects from the knap-
sacks and put each of them into its own (additional) knapsack, which yields an
integral assignment of all objects to at most 2k + 1 knapsacks. Since all objects
together have total profit profit(xIP), this implies that the objects in the most
profitable one among these 2k + 1 knapsacks correspond to an integral solution
of the knapsack instance with profit at least 1

2k+1 ·profit(xIP) as desired1 and,
by choosing only the corresponding packings, we lose profit at most(

1 − 1

2k + 1

)
· profit(xIP) =

2k

2k + 1
· profit(xIP). (2)

0 n 2n 3n 4n kn (k + 1)n

. . .

Fig. 1. Fractional assigment of the objects to (k + 1) knapsacks of size n each. Frac-
tionally assigned objects are shown in grey.

In order to bound the expected loss in profit resulting from using only the
packings in our solution to the knapsack instance, we now consider the proba-
bility Pr(k) that the total number of places used in the bins in xIP is at least
kn for each k ∈ {1, 2, . . .} (if at most n places are used, we can use all packings
selected by xIP, so we do not lose any profit in this step). To this end, note that,
by constraint (1c), the total number of places used in the optimal fractional
solution x of IP (1) is at most n. Hence, since we used each packing t ∈ T (j)
with probability x̄t = αxt, the expected number of places used in xIP is at most
αn. Thus, Markov’s inequality yields that

Pr(k) = Pr
(
#(places used in xIP) ≥ kn

)
≤ αn

kn
=
α

k
for k ∈ {1, 2, . . .}. (3)

In the following, Pr ([kn, (k + 1)n)) will denote the probability that the total
number of places used in the bins in xIP is in [kn, (k+ 1)n) and ln(·) will denote

1 Note that this bound on the profit of an integral solution of the knapsack instance is
tight as long as k < n

4
− 1

2
as the example of 2k+1 objects of size n

2
�+1 > n

2
with unit

profits shows. Hence, also computing an optimal solution for the knapsack instance
(which is possible in polynomial time as the knapsack capacity n is polynomial)
would not yield a better bound in general.
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the natural logarithm. By (2) and (3), we then obtain that, in expectation, we
lose at most the following factor times the profit of xIP in the first step:

∞∑
k=1

Pr ([kn, (k + 1)n)) · 2k

2k + 1

=

∞∑
k=1

( ∞∑
l=k

Pr ([ln, (l + 1)n)) −
∞∑

l=k+1

Pr ([ln, (l + 1)n))

)
· 2k

2k + 1

=

∞∑
k=1

∞∑
l=k

Pr ([ln, (l + 1)n)) · 2k

2k + 1
−

∞∑
k=2

∞∑
l=k

Pr ([ln, (l + 1)n)) · 2(k − 1)

2(k − 1) + 1

=

∞∑
l=1

Pr ([ln, (l + 1)n))· 2
3

+

∞∑
k=2

∞∑
l=k

Pr ([ln, (l + 1)n))·
(

2k

2k + 1
− 2(k − 1)

2(k − 1) + 1

)

= Pr(1) · 2

3
+

∞∑
k=2

Pr(k) ·
(

2k

2k + 1
− 2(k − 1)

2(k − 1) + 1

)

= Pr(1) · 2

3
+

∞∑
k=2

Pr(k) · 2

4k2 − 1

≤ α · 2

3
+

∞∑
k=2

α

k
· 2

4k2 − 1

= α ·
∞∑
k=1

2

k(4k2 − 1)

= α · (4 ln(2) − 2)

= 2α · (2 ln(2) − 1)

Using Observation 1, this proves the following result:

Proposition 1. The packings obtained after the first step contain at most n
items in total and have expected profit at least α · (1 − 2α (2 ln(2) − 1)) · optLP.

In the second step of our procedure, we now have to get rid of all multi-
ply assigned items in the solution obtained after the first step. Denoting by
j1(i), . . . , jk(i)(i) the bins a multiply assigned item i is currently assigned to, we
simply delete item i from all bins but the one among j1(i), . . . , jk(i)(i) in which
it yields the highest profit. Doing so for all multiply assigned items yields a solu-
tion in which no item is packed more than once. The minimum quantities of the
bins, however, may not be satisfied any more after deleting the multiply assigned
items. But since the total number of places used in the bins after the first step
was no more than the total number n of items available, we know that, for each
item i that was assigned to l ≥ 2 bins, there must be l − 1 items that were
not assigned to any bin after the first step. Hence, we can refill the l − 1 places
vacated by deleting item i from all but one bin with items that were previously
unassigned, and doing so for all multiply assigned items yields a feasible integral
solution to the given instance of SAP.
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In order to bound the expected loss in profit resulting from the second step
of our procedure, we want to bound the loss in profit resulting from deleting a
single item i from all but the most profitable bin it was previously assigned to.
To do so, we use that, by constraint (1c) and the scaling of the probabilities xt
given by the optimal fractional solution of IP (1) by α, the expected number of
bins item i was assigned to before the first step of the procedure is at most α.
Hence, by Markov’s inequality, the probability that item i was assigned to at
least k bins before the first step of the procedure can be upper bounded as

Pr(i in ≥ k bins) ≤ α

k
. (4)

Clearly, discarding a subset of the bins opened cannot increase the number of
bins item i is assigned to, so inequality (4) is still valid after the first step of our
procedure. Hence, denoting the probability that item i was assigned to exactly
k bins after the first step by Pr(i in k bins), we lose at most the following factor
times the total profit obtained from all copies of item i in the solution from the
first step:

m∑
k=2

Pr(i in k bins) · k − 1

k

=

m∑
k=2

(
m∑
l=k

Pr(i in l bins) −
m∑

l=k+1

Pr(i in l bins)

)
· k − 1

k

=

m∑
k=2

m∑
l=k

Pr(i in l bins) · k − 1

k
−

m∑
k=3

m∑
l=k

Pr(i in l bins) · k − 2

k − 1

=

m∑
l=2

Pr(i in l bins) · 1

2
+

m∑
k=3

m∑
l=k

Pr(i in l bins) ·
(
k − 1

k
− k − 2

k − 1

)

= Pr(i in ≥ 2 bins) · 1

2
+

m∑
k=3

Pr(i in ≥ k bins) ·
(
k − 1

k
− k − 2

k − 1

)

= Pr(i in ≥ 2 bins) · 1

2
+

m∑
k=3

Pr(i in ≥ k bins) · 1

k(k − 1)

≤ α

2
· 1

2
+

m∑
k=3

α

k
· 1

k(k − 1)

≤ α ·
∞∑
k=2

1

k2(k − 1)

= α ·
(

2 − π2

6

)
Together with the bound on the profit of the packings obtained after the first
step given in Proposition 1, this shows the following result:
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Proposition 2. The second step of the procedure yields a feasible integral solu-
tion to the given instance of SAP with expected profit at least(

1 +

(
π2

6
− 2

)
α

)
·
(

1 − 2α
(
2 ln(2) − 1

))
α · optLP.

Choosing the value α∗ maximizing the expected profit in Proposition 2 (which is
approximately 0.556339) yields an expected profit of at least 0.254551 · optLP.
As optLP is an upper bound on the profit of the optimal integral solution of
the given instance, taking the inverse of this factor and rounding up yields the
following theorem:

Theorem 2. With the right choice of α, the randomized rounding procedure
yields a randomized 3.93-approximation algorithm for SAP.

Using the probabilistic method (cf., for example, [4]), Theorem 2 yields an upper
bound of 3.93 on the integrality gap of IP (1): Since the expected profit of the
solution returned by the randomized rounding algorithm is at least 0.254551 ·
optLP, it follows that we obtain a feasible integral solution with profit at least
0.254551 · optLP with positive probability. In particular, there always exists a
feasible integral solution with profit at least 0.254551 · optLP, which (by again
taking the inverse of this factor and rounding up) proves the following result:

Corollary 1. The integrality gap of IP (1) is at most 3.93.

5 Conclusion and Open Problems

In this paper, we obtained the first nontrivial approximation result for SAP
by providing a randomized 3.93-approximation algorithm. We believe that the
approximation factor of 3.93 obtained for our algorithm is not tight and can be
slightly improved by using stronger probability bounds in some places in the
analysis. A natural open question is whether a constant factor approximation
for SAP can also be obtained by a deterministic algorithm. We believe that such
deterministic approximation algorithms exist, but will likely require techniques
different from the ones commonly used in approximation algorithms for the
generalized assignment problem without minimum quantities.
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Abstract. A query is determined by a view, if the result to the query can be re-
constructed from the result of the view. We consider the problem of deciding for
two given tree transformations, whether one is determined by the other. If the
view transformation is induced by a tree transducer that may copy, then determi-
nacy is undecidable, even for identity queries. For a large class of non-copying
views, namely compositions of functional extended linear top-down tree trans-
ducers with regular look-ahead, we show that determinacy is decidable, where
queries are given by deterministic top-down tree transducers with regular look-
ahead or by MSO tree transducers. We also show that if a query is determined,
then it can be rewritten into a query that works directly over the view and is in the
same class as the given query. The proof relies on the decidability of equivalence
for the two considered classes of queries, and on their closure under composition.

1 Introduction

Given a transformation between data structures, a basic question is what sort of in-
formation it preserves. In some contexts, one desires a transformation that is “fully
information-preserving” – one can recover the input from the output. In other cases
it may be acceptable, or even important, to hide certain pieces of information in the
input; but necessarily there is some important information in the input that must be
recoverable from the output. This notion has been studied in the database commu-
nity [29,26]: a query q is determined by another query v if there exists a function f
such that f(v(s)) = q(s) for every input s. The query v is referred to as “view”. Note
that nothing is said about how efficiently f can be computed (or if it can be computed
at all). We can then strengthen determinacy by requiring the function f to lie within a
certain class C; then f is a “rewriting in C”. These notions have received considerable
attention in the database setting [29,26,27,1].

In this paper we study determinacy and rewriting for classes of tree transforma-
tions (or, tree translations). Injectivity is undecidable for deterministic top-down tree
transducers [15,17]; hence, one cannot decide if the identity query is determined by
such a transducer. This holds for transducers that only copy once. We therefore re-
strict our attention to views induced by linear tree transducers. For the same reason we
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restrict to a single view (while in database research, normally multiple views are con-
sidered). Our main result is that determinacy is decidable for views that are composi-
tions of functional extended linear top-down tree transducers (with regular look-ahead)
and for queries that are either deterministic top-down tree transducers (with regular
look-ahead) or deterministic MSO definable tree transducers (where MSO stands for
Monadic Second-Order logic). Extended transducers generalize the left-hand sides of
conventional finite-state tree transducers (from one input symbol to an arbitrary “pat-
tern tree”). They were invented by Arnold and Dauchet [3] and have recently been
studied in [24,25,9]. Extended linear transducers are convenient because (1) they are
more powerful than ordinary linear top-down or bottom-up transducers and (2) they
allow to elegantly capture the inverses of translations.

As an example, consider the transformation v taking binary trees as input, with in-
ternal nodes labeled a, b, c, and leaves labeled l. It relabels the b nodes as a nodes, and
otherwise copies the tree as is. A linear top-down transducer implementing this transla-
tion v has a single state p and these translation rules:

p(a(x, y)) → a(p(x), p(y)) p(b(x, y)) → a(p(x), p(y))
p(c(x, y)) → c(p(x), p(y)) p(l()) → l()

Information about the (labels of) b nodes and a nodes is lost in the translation – e.g.,
from the output of v we cannot determine the answer to the identity query q0. In con-
trast, information about the l nodes and their relationship to c nodes is maintained. For
example, the query q1 that removes a and b nodes but keeps c and l nodes is determined
by v. Our algorithm can decide that q0 is not determined and q1 is.

Our decision procedure for determinacy establishes several results that are interest-
ing on their own. For a view v realized by an extended linear top-down tree transducer,
its inverse v−1 is a binary relation on trees. Our approach converts v−1 into a compo-
sition of two nondeterministic translations, a translation τ1 of a very simple form and
a translation τ2 in the same class as v. We then construct uniformizers u1, u2 of τ1, τ2
and compose them to form a uniformizer u of v−1. A uniformizer of a binary relation
R is a function u such that u ⊆ R and u has the same domain as R; thus u “selects”
one of the possibly several elements that R associates with an element of its domain. It
is easy to see that a query q is determined by v if and only if v ◦ u ◦ q = q (where ◦
denotes sequential composition, see the Preliminaries). We show that if q is a determin-
istic top-down or MSO definable tree translation, then so is v ◦ u ◦ q. This is achieved
by proving that u1, u2, and v are deterministic top-down and MSO definable tree trans-
lations. Since our two query classes are closed under composition and u = u1 ◦u2, this
shows that v ◦ u ◦ q is in the same class as q. We then decide v ◦ u ◦ q = q, and hence
determinacy, making use of the decidability of equivalence for deterministic top-down
or MSO definable tree translations ([16,13] or [12]). The same proof also shows that if
q is determined by v, then u ◦ q is a rewriting belonging to the same class as q.

Related Work. The notion of view-query determinacy was introduced by Segoufin and
Vianu in [29]. They focus on relational queries definable in first-order logic and show
that if such queries are determined over arbitrary structures, then they can be rewritten
in first-order, but that if they are determined over finite structures, they may require a
much more powerful relational query to be rewritten. Nash, Segoufin, and Vianu [26]
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summarize a number of other results on the relational case. Due to the differing data
models and notions of equality used in relational queries and tree structures, results
on determinacy for queries in the relational case do not (directly) apply to transducers,
and vice versa. In the context of unranked trees, determinacy is considered in Groz’s
thesis [20] for XML views and queries, see also [21]. Two notions of determinacy are
considered, depending on whether or not the output trees preserve provenance infor-
mation (i.e., node identities) from the input document. It is shown that both notions
of determinacy are undecidable for views and queries defined using a transformation
language that can select subtrees using regular XPath filters. On the positive side, it is
shown that if the views are “interval-bounded” – there is a bound on the number of con-
secutive nodes skipped along a path – then determinacy can be tested effectively. The
most related work is [23], which considers the determinacy problem (and rewriting)
explicitly for tree transducers, and solves it for functional extended linear bottom-up
views and deterministic bottom-up queries. Their approach is to decide determinacy
by testing functionality of the inverse of the view composed with the query. To this
end they generalize the functionality test for bottom-up transducers in [31] to extended
bottom-up transducers with “grafting” (needed for the inverse of the view). Our main
result generalizes the one of [23], and provides an alternative proof of it.

2 Preliminaries

For k ∈ N = {0, 1, . . .} let [k] denote the set {1, . . . , k}. For a binary relation R and
a set A we denote by R(A) the set {y | ∃x ∈ A : (x, y) ∈ R}, and by R(x) the set
R({x}). IfR ⊆ B×C for setsB andC, then ran(R) = R(B) and dom(R) = R−1(C).
For two relations R and S we denote the sequential composition “R followed by S” by
R ◦ S, i.e., for an element x, (R ◦ S)(x) = S(R(x)). Note this is in contrast to the
conventional use of ◦. If R,S are classes of binary relations, then R ◦ S = {R ◦ S |
R ∈ R, S ∈ S}, R∗ = {R1 ◦ · · ·◦Rn | n ≥ 1, Ri ∈ R}, and R−1 = {R−1 | R ∈ R}.

We define determinacy and rewritability, following [26]. Let Q,V be classes of par-
tial functions and let q ∈ Q and v ∈ V . We say that q is determined by v, if there exists
a function f such that v ◦ f = q. Note that the latter means that the domains of v ◦ f
and q coincide, and that f(v(s)) = q(s) for each s in that domain. Determinacy for
Q under V is the problem that takes as input q ∈ Q and v ∈ V and outputs “yes” if
q is determined by v, and “no” otherwise. Determinacy says that there is a functional
dependency of q on v, with no limit on how complex it is to reconstruct the answer to q
from the answer to v. A finer notion requires that the reconstruction be in a given class:
a class Q′ of partial functions is complete for V-to-Q rewritings, if for every q ∈ Q and
v ∈ V such that q is determined by v, there is an f ∈ Q′ with v ◦ f = q.

Trees and Tree Automata. A ranked alphabet consists of a finite set Σ together with a
mapping rankΣ : Σ → N. We write a(k) to denote that rankΣ(a) = k and define Σ(k)

as the set {a ∈ Σ | rankΣ(a) = k}. The set of (ranked, ordered, node-labeled, finite)
trees over Σ, denoted by TΣ , is the set of words defined recursively as the smallest
set T such that a(s1, . . . , sk) ∈ T if a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ T . For a
tree a() we simply write a. For a set T of trees, we denote by TΣ(T ) the set of trees
obtained from trees in TΣ by replacing arbitrary leaves by trees in T . We fix a countably
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infinite set X = {x1, x2, . . . } of variables. For k ∈ N, let Xk be the ranked alphabet

{x(0)1 , . . . , x
(0)
k }. For k ∈ N, an Xk-context (over Σ) is a tree C in TΣ(Xk) such that

each variable inXk occurs exactly once inC. For such a contextC and trees s1, . . . , sk,
C[s1, . . . , sk] denotes the tree obtained from C by replacing each xi ∈ Xk by si. Let
T1, . . . , Tn be sets of trees. For trees s1, . . . , sn that are not subtrees of another, we
denote by s[si ← Ti | i ∈ [n]] the set of trees obtained from s by replacing each
occurrence of a subtree si of s by a tree from Ti (where different occurrences of si need
not be replaced by the same tree). For a ranked alphabet Q with Q(1) = Q we denote
by Q(Xk) the set of trees {q(xi) | q ∈ Q, i ∈ [k]}. A deterministic bottom-up tree
automaton (dbta) over Σ is a tuple A = (P,Σ, F, δ) where P is a finite set of states,
Σ is a ranked alphabet, F ⊆ P is the set of final states, and δ is the transition function.
For every a ∈ Σ(k), k ≥ 0, and p1, . . . , pk ∈ P , δ(a, p1, . . . , pk) is an element of P .
The function δ is extended to trees s in TΣ in the usual way; the resulting function from
TΣ to P is denoted δ as well. Thus δ(s) is the state reached by A at the root of s. The
language accepted by A is L(A) = {s ∈ TΣ | δ(s) ∈ F}.

Convention: All lemmas, theorems, etc., stated in this paper (except in Section 4) are
effective.

3 Extended Top-Down and Bottom-Up Tree Transducers

An extended top-down tree transducer with regular look-ahead (ETR transducer) is a
tuple M = (Q,Σ,Δ, I, R, A) where Q is a ranked alphabet of states all of rank 1, Σ
and Δ are ranked alphabets of input and output symbols, respectively, I ⊆ Q is a set
of initial states, A = (P,Σ, F, δ) is a dbta called the look-ahead automaton, and R is
a finite set of rules of the form q(C) → ζ 〈p1, . . . , pk〉, where q ∈ Q, C �= x1 is an
Xk-context over Σ, k ≥ 0, ζ ∈ TΔ(Q(Xk)), and p1, . . . , pk ∈ P . For an input tree
s ∈ TΣ , the q-translation [[q]]M (s) is the smallest set of trees T ⊆ TΔ such that for
every rule q(C) → ζ 〈p1, . . . , pk〉 and all s1, . . . , sk ∈ TΣ , if s = C[s1, . . . , sk] and
δ(si) = pi for every i ∈ [k], then T contains the set of trees ζ[q′(xi) ← [[q′]]M (si) |
q′ ∈ Q, i ∈ [k]]. The translation [[M ]] realized by M is the binary relation {(s, t) ∈
TΣ × TΔ | s ∈ L(A), t ∈ ∪q∈I [[q]]M (s)}. The class of all translations realized by ETR

transducers is denoted ETR (and similarly for other transducers). The transducer M is
linear, if the right-hand side ζ of each rule is linear in the set of variables X , i.e., each
variable xi occurs at most once in ζ. We use “L” to abbreviate “linear”, i.e., ELTR is the
class of [[M ]] where M is a linear ETR transducer. Transducers without look-ahead are
defined by transducers with a trivial one-state look-ahead automaton (accepting TΣ);
this is indicated by omitting the superscript “R” for transducers and classes. Extended
top-down transducers are studied in, e.g., [3,24,25,9]. 1

An extended linear bottom-up tree transducer (ELB transducer) is a tuple B =
(Q,Σ,Δ, F,R) where Q is a ranked alphabet of states all of rank 1, Σ and Δ are
ranked alphabets of input and output symbols, respectively, F ⊆ Q is a set of final
states, and R is a finite set of rules of the form C[q1(x1), . . . , qk(xk)] → q(ζ), where

1 The class ELT is denoted l-XTOPef in [24], where “ef” denotes epsilon-freeness, meaning the
left-hand sides of rules are not of the form q(xi).
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k ≥ 0,C �= x1 is anXk-context overΣ, q1, . . . , qk, q ∈ Q, and ζ ∈ TΔ(Xk) is linear in
Xk. If ti ∈ [[qi]]B(si) then [[q]]B(C[s1, . . . , sk]) contains the tree ζ[xi ← {ti} | i ∈ [k]].
The translation realized by B is [[B]] = ∪q∈F [[q]]B . Extended linear bottom-up trans-
ducers are studied in, e.g., [3,9,23]. In [9,23], the left-hand side of a rule is allowed
to be of the form q(xi), and the corresponding (larger) class of translations is denoted
l-XBOT. It is easy to show that such rules can effectively be removed from a transducer
B when it is known that [[B]] is a function.

As we show in Section 4, determinacy is undecidable if the view transducers copy.
We therefore define views using linear transducers. We first show that for linear ex-
tended transducers, top-down (with look-ahead) gives the same translations as bottom-
up, just as for non-extended transducers (see Theorem 2.8 of [7]). The following result
was already pointed out below Proposition 5 in [9] (see also Theorem 3.1 of [19]).

Theorem 1. ELTR = ELB.

Proof. ⊆: Let M = (Q,Σ,Δ, I, R, (P,Σ, F, δ)) be an ELTR transducer. We construct
the ELB transducer B with the set P ∪ (Q × P ) of states and the set I × F of final
states. Its rules are defined as follows. For the first set of rules let d0 be a fixed ele-
ment of Δ(0). Let p1, . . . , pk, p ∈ P and a ∈ Σ(k) such that δ(a, p1, . . . , pk) = p.
(1) We add a(p1(x1), . . . , pk(xk)) → p(d0) as a rule of B. This rule outputs d0 and
changes the state to p, but recursive calls to it will only make use of the computed
state, not the output. (2) If M has the rule q(C) → ζ 〈p1, . . . , pk〉, then we add
C[state(x1), . . . , state(xk)] → 〈q, p〉(erase(ζ)) as a rule of B, where erase(ζ) is ob-
tained from ζ by replacing every q′(xi) by xi, while state(xi) = 〈q′, pi〉(xi) if q′ is the
unique state such that q′(xi) occurs in ζ and state(xi) = pi(xi) if no such q′ exists.
The correctness of the construction follows from the following claim (for q ∈ I and
p ∈ F ), which can be proved by a straightforward induction on the structure of s. Let
s ∈ TΣ , q ∈ Q, and p ∈ P .

Claim. (1) δ(s) = p if and only if [[p]]B(s) �= ∅. (2) If s ∈ dom([[〈q, p〉]]B), then
p = δ(s). (3) [[〈q, δ(s)〉]]B(s) = [[q]]M (s).

⊇: By the proof of Lemma 6 of [9], ELB is included in the class of all tree trans-
lations {(f(s), g(s)) | s ∈ L} where f is a linear non-deleting non-erasing tree ho-
momorphism, g is a linear tree homomorphism, and L is a regular tree language. By
Theorem 17 of [24], ELTR is equal to this class. ��

We now give a useful property of the composition closure of ELTR.

Lemma 2. If τ ∈ (ELTR)∗ and R is a regular tree language, then dom(τ), ran(τ),
τ(R), and τ−1(R) are regular tree languages.

Proof. We consider ELB translations, which suffices by Theorem 1. By Lemma 6 of [9],
every ELB translation is of the form {(f(s), g(s)) | s ∈ L} where f, g are linear tree
homomorphisms and L is a regular tree language. From this it follows (as stated in
Corollary 7 of [9]) that ELB translations preserve regularity. This implies that ran(τ) is
regular. The above form means that inverse ELB translations are also of that form and
hence preserve regularity. This implies that dom(τ) is regular. ��
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Functionality Test. Later when we prove determinacy results, we restrict our views to
classes of transducers that realize functions. In particular, we use the class (fu-ELTR)∗

of compositions of functional translations in ELTR, which properly contains fu-ELTR by
the proof of Theorem 5.2 of [25]. It is therefore important to know the next proposition.

Proposition 3. For an ELTR transducer M it is decidable whether [[M ]] is functional.

Proof. By Theorem 4.8 of [25], ETR = TR. The result follows because functionality is
decidable for TR transducers by [16] (see the sentence after Theorem 8 of [16]). ��

We note that it can be shown, using a variation of the Lemma of [8], that our class
(fu-ELTR)∗ is equal to the class fu-(ELTR)∗ of functional compositions of ELTR transla-
tions. However, we do not know whether functionality is decidable for such composi-
tions. Note also that it was recently shown in [18] that ELTR ◦ ELTR ◦ ELTR = (ELTR)∗.

Ordinary Top-Down Tree Transducers. The ETR transducer M is an (ordinary, not
extended) top-down tree transducer with regular look-ahead (TR transducer) if the left-
hand sideC of each of its rules contains exactly one symbol inΣ, i.e., each rule is of the
form q(a(x1, . . . , xk)) → ζ 〈p1, . . . , pk〉 with a ∈ Σ(k) and k ≥ 0. A TR transducer
is deterministic if it has exactly one initial state and for each q, a, and 〈p1, ..., pk〉 it has
at most one rule as above. Determinism is denoted by the letter “D”, thus we have DTR

and DLTR transducers. A TR transducer M is finite-copying (a TR
fc transducer) if each

input node is translated only a bounded number of times. Formally this means there
exists a number K such that for every p ∈ P , s ∈ TΣ({�}), and t ∈ [[Mp]](s), if �
occurs exactly once in s, then � occurs ≤ K times in t; here we assume that � is a
new input and output symbol of rank 0, and that Mp is M extended with the look-ahead
transition δ(�) = p and the rules q(�) → � for every state q. A DTR

fc transducer is a
deterministic TR

fc transducer. Note that LTR ⊆ TR
fc and that translations τ in TR

fc are of
linear size increase [11], i.e., there is a number N such that the size of t is at most N
times the size of s for every (s, t) ∈ τ .

We later need the following four results. Let DMSOTT be the class of deterministic
(or, parameterless) MSO definable tree translations (see, e.g., Chapter 8 of [5]).

Proposition 4. (1) DTR
fc ◦ DTR

fc ⊆ DTR
fc, (2) DTR

fc ⊆ DMSOTT, (3) DTR ◦ DTR ⊆ DTR, and
(4) DMSOTT ◦ DMSOTT ⊆ DMSOTT.

For result (4) see, e.g., [5]. Results (1) and (2) follow from Proposition 2 of [4] and The-
orem 7.4 of [10]. Result (1) is already mentioned in Theorem 5.4 of [14]. Result (3) is
in Theorem 2.11 of [7]. It is not difficult to prove (1) and (3) directly via straightforward
product constructions.

4 Undecidability Results

Let HOM denote the class of tree homomorphisms, i.e., translations realized by total (see
next paragraph) one-state DT transducers. As observed in [23], a function v is injective if
and only if q is determined by v, where q is the identity on dom(v). Since the injectivity
problem for HOM is undecidable by [17], one obtains (as stated in Theorem 17 of [23])
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undecidability of the determinacy problem for ID under HOM, where ID is the class of
identity translations on TΣ , for any ranked alphabet Σ.

We show that determinacy is undecidable for ID under total copy-once DT transduc-
ers (tot-DTco transducers). A DT transducer is total if for each state q and input symbol
a, it has a rule with left-hand side q(a(x1, . . . , xk)). It is copy-once if for every rule
q(a(x1, . . . , xk)) → ζ the initial state q0 does not occur in ζ, and ζ is linear in X if
q �= q0. Thus the transducer copies at most once, at the root node of the input tree. The
undecidability of injectivity for non-total DTco transducers was proved by Ésik in [15],
and in his PhD thesis (in Hungarian). Our proof for total DTco transducers (deferred to
the full version) is a slight variation of Ésik’s proof.

Theorem 5. Determinacy for ID under tot-DTco is undecidable.

Since, obviously, every DTco transducer is a DTfc transducer, and DTfc is (effectively)
included in DMSOTT by Proposition 4(2), this immediately gives undecidability of de-
terminacy for ID under DMSOTT (which slightly strengthens Theorem 19 of [23]).

One often considers determinacy for a query q under a set of views V . The extended
definition states that if two inputs give the same output for each view in V , then they
give the same output for q. In this case one has undecidability even when the views are
deterministic finite-state word transformations. Thus, in what follows we consider only
a single non-copying view.

5 Inverses and Uniformizers of Linear Extended Transducers

As Theorem 5 shows, determinacy cannot be decided under view transducers that copy,
not even for a single initial copy at the input root node. Let us therefore restrict our
attention to classes induced by linear view transducers. The results in this section hold
for arbitrary linear extended transducers. When we want to decide determinacy in Sec-
tion 6, we restrict the views to functional linear translations.

5.1 Inverses of Extended Linear Bottom-Up Transducers

Given an ELB transducer B, we would like to construct a transducer realizing its in-
verse [[B]]−1. Since B can translate the set of all input trees in TΣ to a single output
tree, a transducer realizing [[B]]−1 may need to translate a tree back to any tree in TΣ .
This is not possible by our extended top-down or bottom-up tree transducers because
the height of an output tree is linearly bounded by the height of the input tree. The
next, easy lemma “factors out” this problem by decomposing an ELB transducer into
a component that can be inverted as an extended top-down transducer, and a compo-
nent of a very simple form – a “projection mapping”. Let n-ELB denote the class of
non-deleting non-erasing ELB transducers: those in which every rule is of the form
C[q1(x1), . . . , qk(xk)] → q(ζ), such that each variable in Xk occurs in ζ and ζ �= x1.
The phrase “non-deleting” indicates that we do not drop an input xi, thus removing an
entire subtree from the input. Non-erasing indicates that we do not have a rule such as
q(a(x1, b)) → q′(x1), which “erases” the symbols a and b. Let Δ be a ranked alphabet
and H a set of symbols disjoint from Δ each of rank at least 1. The projection mapping
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from Δ ∪ H to Δ is the tree homomorphism πΔ,H = π : TΔ∪H → TΔ defined as:
π(h(s1, . . . , sk)) = π(s1) for h ∈ H(k) and π(d(s1, . . . , sk)) = d(π(s1), . . . , π(sk))
for d ∈ Δ(k), for all s1, . . . , sk ∈ TΔ∪H . We denote by PROJ the class of all projection
mappings.

Lemma 6. ELB ⊆ n-ELB ◦ PROJ.

Proof. Let B = (Q,Σ,Δ, F,R) be an ELB transducer and let m be the maximal
number of variables that occur in the left-hand side of any rule of B. We define the
ranked alphabet H = {#

(n+1)
n | 0 ≤ n ≤ m} and the n-ELB transducer B′ =

(Q,Σ,Δ ∪ H,F,R′). For every rule C[q1(x1), . . . , qk(xk)] → q(ζ) in R we let the
rule C[q1(x1), . . . , qk(xk)] → q(#n(ζ, xi1 , . . . , xin)) be in R′, where xi1 , . . . , xin are
all the variables from Xk that do not occur in ζ. Clearly, [[B′]] ◦ πΔ,H = [[B]]. ��

As shown in [3] (TIA−1 ⊆ TID), the inverse of an n-ELB can be converted to an ELT by
just “inverting the rules”.

Lemma 7. n-ELB−1 ⊆ ELT.

Proof. Let B = (Q,Σ,Δ, F,R) be an n-ELB transducer. We construct the ELT trans-
ducer M = (Q,Δ,Σ, F,R′) realizing B’s inverse. For every rule C[q1(x1), . . . ,
qk(xk)] → q(ζ) in R let the rule q(ζ) → C[q1(x1), . . . , qk(xk)] be in R′. It should
be clear that [[M ]] = [[B]]−1. ��

These two lemmas imply that ELB−1 ⊆ PROJ−1 ◦ ELT.

5.2 Uniformizers

Let τ ⊆ A × B be a translation and u a function from A to B. We say that u is a
uniformizer of τ if u ⊆ τ and dom(u) = dom(τ). For classes T ,U of translations we
say that T has uniformizers in U if for every τ ∈ T we can construct a uniformizer u
of τ such that u ∈ U . We say that the sequence τ1, . . . , τn of translations is compatible,
if for i ∈ [n− 1], ran(τi) ⊆ dom(τi+1 ◦ · · · ◦ τn). It is easy to see that if u1, . . . , un are
uniformizers of τ1, . . . , τn, respectively, and τ1, . . . , τn is compatible, then u1 ◦ · · ·◦un
is a uniformizer of τ1 ◦ · · · ◦ τn. Our goal is to show that ((ELTR)∗)−1 and (ELTR)∗

have uniformizers in DTR
fc. We do this by decomposing into compatible translations,

constructing uniformizers in DTR
fc for them, and then obtaining a uniformizer in DTR

fc
through Proposition 4(1). A similar idea was used in [8] to obtain uniformizers for
compositions of top-down and bottom-up tree translations in DTR.

Lemma 8. ELTR has uniformizers in DTR
fc.

Proof. By Theorem 4.8 of [25], ETR = TR. For a TR transducer M with [[M ]] ∈ ELTR,
we construct a dbta A recognizing its domain (cf. Corollary 2.7 of [7]). We now change
M so that the look-ahead automaton checks M ’s domain (by building a product au-
tomaton with A and changing the rules of the transducer appropriately). The resulting
transducer can be decomposed (by an obvious variant of Theorem 2.6 of [7]) into a finite
state relabeling B with the same domain as M , followed by a top-down tree transducer
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T . Note that [[B]] is a function; for the notion of finite-state relabeling see Definition 3.14
in [6]. It follows that ran([[B]]) ⊆ dom([[T ]]). Thus, [[B]], [[T ]] are compatible. A finite
state relabeling can be seen as a top-down tree transducer, so by the Lemma in [8] we
obtain uniformizers for [[B]] and [[T ]], both in DTR. Since DTR is closed under composi-
tion by Proposition 4(3), the composition of these uniformizers is a uniformizer of [[M ]],
in DTR. Obviously, ELTR translations are of linear size increase, and so this uniformizer
is of linear size increase. We obtain the desired result because DTR translations of linear
size increase are in DTR

fc by Section 7.1 of [11] (in fact, by the obvious generalization
of the latter result to partial transducers: introduce output dummies for undefined rules
and remove them later). ��

Note that there is an alternative proof to Lemma 8 which avoids the last step (of applying
linear size increase): First, it follows from the construction in the proof of Theorem 4.8
of [25] that ELTR ⊆ TR

fc. Second, the proof of the Lemma in [8] can easily be modified
into a proof that every TR transducer has a uniformizer in DTR, and the proof preserves
the finite-copying property.

An FTA transducer is a dbta A, seen as a tree transducer realizing the translation
[[A]], which is the identity function on L(A); composing a tree translation τ with [[A]]
amounts to restricting the range of τ to L(A): τ ◦ [[A]] = {(s, t) ∈ τ | t ∈ L(A)}.

Lemma 9. PROJ−1 ◦ FTA has uniformizers in DLTR.

Proof. Let τ = π−1 ◦ [[A]] where π ∈ PROJ and A is an FTA transducer. Thus, π =
πΣ,H for disjoint ranked alphabets Σ and H such that H(0) = ∅, and A is a dbta
(Q,Σ ∪ H,F, δ). Let C be the set of all X1-contexts C over Σ ∪ H such that the
left-most leaf of C has label x1 and all the ancestors of this leaf have labels in H . For
every a ∈ Σ(k) and q, q1, . . . , qk ∈ Q, let C(a, q, q1, . . . , qk) be the set of C ∈ C
such that δ(C[a(t1, . . . , tk)]) = q for all t1, . . . , tk ∈ TΣ∪H with δ(ti) = qi for every
i ∈ [k]. Let C0(a, q, q1, . . . , qk) be one (fixed) such C – since the set C(a, q, q1, . . . , qk)
is effectively regular, one can always compute such an elementC if the set is nonempty.
If there does not exist such a C then C0(a, q, q1, . . . , qk) is undefined.

Since the construction in the proof of the Lemma of [8] preserves linearity, LT has
uniformizers in DLTR. Hence, it suffices to construct an LT transducerM with [[M ]] ⊆ τ
and dom([[M ]]) = dom(τ). We define M = (Q,Σ,Σ ∪ H,F,R′) where R′ consists
of all rules q(a(x1, . . . , xk)) → C0(a, q, q1, . . . , qk)[a(q1(x1), . . . , qk(xk))] such that
C0(a, q, q1, . . . , qk) is defined. Intuitively, for s ∈ TΣ , M simulates top-down the state
behavior of A on some tree t in π−1(s) and, at each node of s, outputs a context in
C on which A has the same state behavior as on the context in C that is “above” the
corresponding node in t. Formally, the correctness of the construction follows from the
following claim (for q ∈ F ), which can easily be proved by structural induction on s
and induction on the size of t, respectively. Let q ∈ Q, s ∈ TΣ , and t ∈ TΣ∪H .

Claim. (1) If t ∈ [[q]]M (s), then π(t) = s and δ(t) = q. (2) If δ(t) = q, then π(t) ∈
dom([[q]]M ).

In both proofs one uses that π(C[t]) = π(t) for every C ∈ C. In the proof of (2)
one uses that t is of the form C[a(t1, . . . , tk)] with C ∈ C, k ≥ 0, a ∈ Σ(k) and
t1, . . . , tk ∈ TΣ∪H , and one applies the induction hypothesis to t1, . . . , tk. ��
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Lemma 10. ELB−1 has uniformizers in DTR
fc.

Proof. Let τ ∈ ELB−1. By Lemmas 6 and 7, τ ∈ PROJ−1 ◦ ELT. The domains of
translations in ELT are effectively regular by Lemma 2, thus we obtain τ = τ1 ◦ τ2 such
that the translations τ1 ∈ PROJ−1 ◦ FTA, τ2 ∈ ELT are compatible (by definition of the
FTA transducer). For τ1, τ2 we obtain, by Lemmas 9 and 8, uniformizers u1, u2 ∈ DTR

fc.
Then u1 ◦ u2 is a uniformizer for τ ; it is in DTR

fc by Proposition 4(1). ��

Theorem 11. ((ELTR)∗)−1 has uniformizers in DTR
fc.

Proof. Let T1, . . . , Tn be ELTR transducers. We change the Ti so that the sequence of
translations [[T1]]−1, . . . , [[Tn]]−1 is compatible, i.e., ran([[Ti]]

−1) ⊆ dom([[Ti+1]]−1 ◦
· · · ◦ [[Tn]]−1): We change the domain of Ti to be included in the range of [[Tn]] ◦
· · · ◦ [[Ti+1]]. This range is regular by Lemma 2. The domain of Ti is changed using
look-ahead, as in the proof of Lemma 8. Using Theorem 1 and Lemma 10 we obtain
uniformizers in DTR

fc for the [[Ti]]
−1. This proves the theorem, by Proposition 4(1). ��

Theorem 12. (ELTR)∗ has uniformizers in DTR
fc.

Proof. Let T1, . . . , Tn be ELTR transducers. We change the Ti so that [[T1]], . . . , [[Tn]] is
compatible, i.e., restrict Ti’s range to D = dom([[Ti+1]] ◦ · · · ◦ [[Tn]]), which is regular
by Lemma 2. The range of Ti can be restricted to D as follows. As mentioned in the
proof of Theorem 1, ELTR is the class of all translations of the form τ = {(f(s), g(s)) |
s ∈ L} where f is a linear non-deleting non-erasing tree homomorphism, g is a linear
tree homomorphism, and L is a regular tree language. The restriction of the range of
τ to D is {(f(s), g(s)) | s ∈ L, g(s) ∈ D} = {(f(s), g(s)) | s ∈ L ∩ g−1(D)}.
Since L ∩ g−1(D) is regular, this translation is again of the above form and hence in
ELTR. We obtain uniformizers in DTR

fc for the [[Ti]] by Lemma 8, and a uniformizer for
[[T1]] ◦ · · · ◦ [[Tn]] by Proposition 4(1). ��

6 Decidability of Determinacy and Rewriting

Consider a query q, a view v, and a uniformizer u of v−1, each of them a partial func-
tion. Clearly, q is determined by v if and only if v ◦ u ◦ q = q. For queries in DTR

or DMSOTT, equivalence is decidable [13,12], and they are closed under left compo-
sition with DTR

fc by Proposition 4. Thus, if v and u are in DTR
fc, then we can decide

determinacy. We will show that this holds for the views in the class (fu-ELTR)∗ of com-
positions of functions in ELTR. If v is in this class, then v−1 has a uniformizer u in DTR

fc
by Theorem 11. As the next corollary states, v itself is also in DTR

fc. The inclusion is
a direct consequence of Theorem 12; it is proper by Lemma 2 (because DTR

fc contains
translations that do not preserve regularity).

Corollary 13. (fu-ELTR)∗ � DTR
fc.

The main results of this paper are presented in the next two theorems.

Theorem 14. Determinacy is decidable for DTR and DMSOTT under (fu-ELTR)∗.



156 M. Benedikt, J. Engelfriet, and S. Maneth

Proof. Let v ∈ (fu-ELTR)∗. According to Corollary 13 and Theorem 11 we construct
DTR

fc transducersM1,M2 such that [[M1]] = v and [[M2]] = u is a uniformizer of v−1. If
a query is given as a DTR (DMSOTT) transducerN , then DTR (DMSOTT) transducersN ′

and N ′′ can be constructed with [[N ′]] = u ◦ [[N ]] and [[N ′′]] = v ◦ [[N ′]] = v ◦ u ◦ [[N ]].
This follows from Proposition 4. We can decide if [[N ′′]] = [[N ]] because equivalence is
decidable for DTR and DMSOTT transducers ([16,13] and [12]). ��
The proof of Theorem 14 also proves Theorem 15.

Theorem 15. Let V = (fu-ELTR)∗, v ∈ V , and let N be a DTR (DMSOTT) transducer
such that [[N ]] is determined by v. A DTR (DMSOTT) transducer N ′ can be constructed
such that v ◦ [[N ′]] = [[N ]]. That is, DTR (DMSOTT) is complete for V-to-DTR (V-to-
DMSOTT) rewritings.

Since the class fu-B of functional bottom-up translations is included in DTR by [8], it
is immediate from Theorems 14 and 1 that determinacy is decidable for fu-B under
fu-ELB, as proved in Theorem 16 of [23]. In Theorem 21 of [23] it is shown to be
decidable for q ∈ fu-B and v ∈ fu-ELB whether there exists f ∈ fu-B such that q = v◦f .
Theorem 15 shows that such an f can always be found in DTR.

Weakly Determined Queries. A query q is determined by a view v if there exists a
function f such that (1) dom(v ◦ f) = dom(q) and (2) f(v(s)) = q(s) for every
s ∈ dom(q). For practical purposes, condition (1) could be weakened to dom(v ◦ f) ⊇
dom(q). For a given element s, one first checks if s ∈ dom(q), and if so, obtains q(s) as
f(v(s)). We say that q is weakly determined by v if there exists f with f(v(s)) = q(s)
for every s ∈ dom(q). As an example consider q = {(1, 1)} and v = {(1, 1), (2, 1)}.
Then q is not determined by v, but is weakly determined. Let Q,V ,Q′ be classes of
partial functions. We say that Q′ is complete for weak V-to-Q rewritings, if for every
q ∈ Q and v ∈ V such that q is weakly determined by v, there is an f ∈ Q′ with
f(v(s)) = q(s) for every s ∈ dom(q). For a function τ : A → B and a set L let
τ � L denote the restriction of τ to inputs in L. Then q is weakly determined by v if
and only if q is determined by v � dom(q), with the same functions f . For q ∈ DTR or
q ∈ DMSOTT, dom(q) is effectively regular. And if v ∈ (fu-ELTR)∗ then v � L is in
(fu-ELTR)∗ for every regular tree language L (simply by adding it to the look-ahead of
the first transducer). Hence Theorems 14 and 15 also hold for weak determinacy.

Corollary 16. Let V = (fu-ELTR)∗. Weak determinacy is decidable for DTR and for
DMSOTT under V . The classes DTR and DMSOTT are complete for weak V-to-DTR and
weak V-to-DMSOTT rewritings, respectively.

Future Work. We would like to know the complexity of deciding determinacy. The
complexity of our algorithm is dominated by that of the equivalence tests in [13,12]:
double exponential time for DTR, non-elementary for DMSOTT (and nondeterministic
exponential time for streaming tree transducers [2]). Can we find subclasses of tree
transducers for which determinacy is polynomial-time testable (cf. [13,22,30])? Can
our results be extended to larger classes of tree transducers, such as deterministic macro
tree transducers (see, e.g., [10,11])? For those transducers, decidability of equivalence
is a long-standing open problem. It is interesting and practically important (for XML)
to study determinacy for unranked tree transducers, e.g., those of [28].
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Abstract. Establishing arc consistency on two relational structures is
one of the most popular heuristics for the constraint satisfaction problem.
We aim at determining the time complexity of arc consistency testing.
The input structures G and H can be supposed to be connected colored
graphs, as the general problem reduces to this particular case. We first
observe the upper bound O(e(G)v(H) + v(G)e(H)), which implies the
bound O(e(G)e(H)) in terms of the number of edges and the bound
O((v(G) + v(H))3) in terms of the number of vertices. We then show
that both bounds are tight up to a constant factor as long as an arc
consistency algorithm is based on constraint propagation (as all current
algorithms are).

Our argument for the lower bounds is based on examples of slow
constraint propagation. We measure the speed of constraint propagation
observed on a pair G,H by the size of a proof, in a natural combinatorial
proof system, that Spoiler wins the existential 2-pebble game on G,H .
The proof size is bounded from below by the game length D(G,H),
and a crucial ingredient of our analysis is the existence of G,H with
D(G,H) = Ω(v(G)v(H)). We find one such example among old bench-
mark instances for the arc consistency problem and also suggest a new,
different construction.

1 Introduction

According to the framework of [10], the constraint satisfaction problem (CSP)
takes two finite relational structures as input and asks whether there is a homo-
morphism between these structures. In this paper we consider structures with
unary and binary relations and refer to unary relations as colors and to binary
relations as directed edges. In fact, most of the time we deal with structures
where the only binary relation E is symmetric and irreflexive relation, i.e., with
vertex-colored graphs. This is justified by a linear time reduction from the CSP
on binary structures to its restriction on colored graphs.

Let G and H be an input of the CSP. It is customary to call the vertices of
G variables and the vertices of H values. A mapping from V (G) to V (H) then
corresponds to an assignment of values to the variables, and the assignment is
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satisfying if the mapping defines a homomorphism. Let a domain Dx ⊆ V (H)
of a variable x ∈ V (G) be a set of values such that for every homomorphism
h : G → H it holds that h(x) ∈ Dx. The aim of the arc consistency heuristic is
to find small domains in order to shrink the search space. The first step of the
arc consistency approach is to ensure node consistency, that is, Dx is initialized
to the set of vertices in H that are colored with the same color as x. The second
step is to iteratively shrink the domains according to the following rule:

If there exists an a ∈ Dx and a variable y ∈ V (G) such that {x, y} ∈
E(G) and {a, b} /∈ E(H) for all b ∈ Dy, then delete a from Dx.

A pair of graphs augmented with a set of domains is arc consistent if the
above rule cannot be applied and all domains are nonempty. We say that arc
consistency can be established for G and H , if there exists a set of domains such
that G and H augmented with these domains is arc consistent. Our aim is to
estimate the complexity of the following decision problem.

AC-Problem

Input : Two colored graphs G and H .
Question: Can arc consistency be established on G and H?

We observe that the AC-Problem can be solved in time O(v(G)e(H) +
e(G)v(H)), where v(G) and e(G) denote the number of vertices and the num-
ber of edges respectively. This upper bound has never been stated explicitly
although it can be obtained using known techniques. In terms of the overall
input size e(G) + e(H) this gives us only a quadratic upper bound, so there
could be a chance for improvement: Is it possible to solve the AC-Problem in
sub-quadratic or even linear time? In fact, we cannot rule out this possibility
completely. The first author [4] recently obtained lower bounds for higher lev-
els of k-consistency (note that arc consistency is equivalent to 2-consistency).
In particular, 15-consistency cannot be established in linear time and estab-
lishing 27-consistency requires more than quadratic time on multi-tape Turing
machines. The lower bounds are obtained in [4] via the time hierarchy theorem
and, unfortunately, these methods are not applicable to arc consistency because
of the blow-up in the reduction.

However, we show lower bounds for every algorithm that is based on constraint
propagation. A propagation-based arc consistency algorithm is an algorithm that
solves the AC-Problem by iteratively shrinking the domains via the arc consis-
tency rule above. Note that all currently known arc consistency algorithms (e.g.
AC-1, AC-3 [15]; AC-3.1/AC-2001 [7]; AC-3.2, AC-3.3; AC-3d; AC-4 [17]; AC-5;
AC-6; AC-7; AC-8; AC-∗ [18]) are propagation-based in this sense. Different AC
algorithms differ in the principle of ordering propagation steps; for a general
overview we refer the reader to [7]. The upper bound O(v(G)e(H) + e(G)v(H))
implies O(e(G)e(H)) in terms of the number of edges and O(n3) in terms of the
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number of vertices n = v(G) + v(H). Our main result, Theorem 10 in Section 5,
states that both bounds are tight up to a constant factor for any propagation-
based algorithm.

We obtain the lower bounds by exploring a connection between the existential
2-pebble game and propagation-based arc consistency algorithms. In its general
form, the existential k-pebble game is an Ehrenfeucht–Fräıssé like game that
determines whether two finite structures can be distinguished in the existential-
positive k-variable fragment of first order logic. It has found applications also
outside finite model theory: to study the complexity and expressive power of
Datalog [13], k-consistency tests [14,12,1,4] and bounded-width resolution [2,5].
It turns out that the existential 2-pebble game exactly characterizes the power
of arc consistency [14], i.e., Spoiler wins the existential 2-pebble game on two
colored graphs G and H iff arc consistency cannot be established.

The connection between the existential 2-pebble game and arc consistency
algorithms is deeper than just a reformulation of the AC-Problem. We show
that every constraint propagation-based arc consistency algorithm computes in
passing a proof of Spoiler’s win on instances where arc consistency cannot be
established. On the one hand these proofs of Spoiler’s win naturally correspond
to a winning strategy for Spoiler in the game. On the other hand they reflect
the propagation steps performed by an algorithm. We consider three param-
eters to estimate the complexity of such proofs: length, size and depth. The
length corresponds to the number of propagation steps, whereas size also takes
the cost of propagation into account. The depth corresponds to the number of
“nested” propagation steps and precisely matches the number of rounds D(G,H)
Spoiler needs to win the game. We observe that the minimum size of a proof
of Spoiler’s win on G and H bounds from below the running time of sequential
propagation-based algorithms, whereas the minimal depth matches the running
time of parallel algorithms.

We exhibit pairs of colored graphs G,H where D(G,H) = Ω(v(G)v(H)) and
hence many nested propagation steps are required to detect arc inconsistency.
Because these graphs have a linear number of edges this implies that there is no
sub-quadratic propagation-based arc consistency algorithm. It should be noted
that CSP instances that are hard for sequential and parallel arc consistency
algorithms, in the sense that they require many propagation steps, were explored
very early in the AI-community [9,19]. Such examples were also proposed to
serve as benchmark instances to compare different arc consistency algorithms
[8]. Graphs G and H with large D(G,H) can be derived from the old Domino

example [8], consisting of structures with two binary relations. We also provide
a new example, which we call Co-Wheels, that shows the same phenomenon
of slow constraint propagation for a more restricted class of rooted loopless
digraphs.

2 Preliminaries

The existential 2-pebble game on binary structures A and B [13] is played by two
players, Spoiler and Duplicator, to whom we will refer as he and she respectively.
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Each player has a pair of distinct pebbles p and q. A round consists of a move
of Spoiler followed by a move of Duplicator. Spoiler takes a pebble, p or q, and
puts it on a vertex in A. Then Duplicator has to put her copy of this pebble
on a vertex of B. Duplicator’s objective is to keep the following condition true
after each round: the pebbling should determine a partial homomorphism from
A to B.

For each positive integer r, the r-round existential 2-pebble game on A and
B is a two-person game of perfect information with a finite number of positions.
Therefore, either Spoiler or Duplicator has a winning strategy in this game, that
is, a strategy winning against every strategy of the opponent. Let D(A,B) denote
the minimum r for which Spoiler has a winning strategy. If such r does not exist,
we will write D(A,B) = ∞. As it is well known [13, Theorem 4.8], D(A,B) ≤ r
if and only if A can be distinguished from B by a sentence of quantifier rank r
in the existential-positive two-variable logic.

Suppose that D(A,B) < ∞. We say that Spoiler plays optimally if he never
loses an opportunity to win as soon as possible. More specifically, after a round
is ended in a position P (determined by the pebbled vertices), Spoiler makes the
next move according to a strategy that allows him to win from the position P
in the smallest possible number of rounds.

Lemma 1. If Spoiler plays optimally, then the following conditions are true.

1. Spoiler uses the pebbles alternately, say, p in odd and q in even rounds.
2. Whenever Spoiler moves a pebble, he moves it to a new position. That is,

if xi ∈ V (A) denotes the vertex choosen in the i-th round, then xi+2 �= xi.
Moreover, if xi+1 = xi, then xi+2 �= xi−1.

3. For all i, (xi, xi+1) or (xi+1, xi) satisfies at least one binary relation.

Lemma 1 has several useful consequences. The first of them is that, without loss
of generality, we can restrict our attention to connected structures. Two distinct
vertices of a binary structure A are adjacent in its Gaifman graph GA if they
satisfy at least one binary relation of A. Connected components of A are con-
sidered with respect to GA. Let A consist of connected components A1, . . . , Ak

and B consist of connected components B1, . . . , Bl. Then it easily follows from
part 3 of Lemma 1 that D(A,B) = mini maxj D(Ai, Bj). Another consequence
follows from parts 2 and 3.

Corollary 2. Suppose that the Gaifman graph GA of A is a tree. If D(A,B) <
∞, then D(A,B) < 2 v(A).

Furthermore, we now can state a general upper bound for D(A,B).

Corollary 3. If D(A,B) <∞, then D(A,B) ≤ v(A)v(B) + 1.

Proof. Assume that Spoiler plays optimally. Let xi ∈ V (A) and ui ∈ V (B)
denote the vertices pebbled in the i-th round. By part 1 of Lemma 1, we can
further assume that Spoiler’s move in the (i + 1)-th round depends only on
the (xi, ui). It readily follows that, if the game lasts r rounds, then the pairs
(x1, u1), . . . , (xr−1, ur−1) are pairwise different, and hence r−1 ≤ v(A)v(B). ��
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A5 B7

Fig. 1. The Domino example

The bound of Corollary 3 is tight, at least, up to a factor of 1/2. A suitable
lower bound can be obtained from the CSP instances that appeared in [9,8] under
the name of DOMINO problem and were used for benchmarking arc consistency
algorithms. A Domino instance consists of two digraphsAm and Bn whose arrows
are colored red and blue; see Fig. 1. Am is a directed cycle of length m with one
arrow colored blue and the others red. Bn is a blue directed path where red
loops are attached to all its n vertices. Spoiler can win the existential 2-pebble
game on Am and Bn by moving the pebbles along the cycle Am, always in
the same direction. By Lemma 1, this is the only way for him to win in the
minimum number of rounds. When Spoiler passes red edges, Duplicator stays
with both pebbles at the same vertex of Bn. Only when Spoiler passes the blue
edge, Duplicator passes a blue edge in Bn. Thus, if Duplicator starts playing in
the middle of Bn, she survives for at least 1

2 m(n− 1) rounds.

3 More Examples of Slow Constraint Propagation

The Domino pairs are remarkable examples of binary structures on which con-
straint propagation is as slow as possible, up to a constant factor of 1/2. An
important role in the Domino example is played by the fact that we have two
different edge colors. We now show that essentially the same lower bound holds
true over a rather restricted class of structures, namely rooted loopless digraphs,
where edges are uncolored, there is a single color for vertices, and only a single
root vertex is colored in it. It is also supposed that every vertex of a rooted
digraph is reachable from the root along a directed path.

G4

x0

H5

a0

Fig. 2. An example of Co-Wheels

By the wheel Wn we mean the rooted digraph with n+ 1 vertices where there
are arrows from the root to all the other n vertices and these vertices form a
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directed cycle. We call a pair of rooted digraphs Gm and Hn co-wheels if Gm is
obtained from Wm by removal of all but one of the arrows from the root and
Hn is obtained from Wn by removal of one arrow from the root; see an example
in Fig. 2.

Lemma 4. Let Gm and Hn be co-wheels. If m and n are coprime, then D(Gm,
Hn) < ∞ and D(Gm, Hn) > 1

2 m(n− 3).

Proof. Let V (Gm) = {xroot, x0, . . . , xm−1} and V (Hn) = {aroot, a0, . . . , an−1}.
Assume that x0 is adjacent to the root xroot of Gm, a0 is non-adjacent to the
root aroot of Hn, and the indices increase in the direction of arrows. We first
argue that Spoiler has a winning strategy in the existential 2-pebble game on
Gm and Hn. Let Spoiler pebble x0 in the first round. If Duplicator pebbles
the root, then Spoiler wins by pebbling xn−1. Assume that Duplicator responds
with at. If t = 0, Spoiler wins by putting the other pebble on the root. If t > 0,
Spoiler is able to force pebbling the pair (x0, a0) in a number of rounds. Indeed, if
Spoiler moves the pebbles alternately along the cycle so that the pebbled vertices
are always adjacent, then after 
m rounds Spoiler passes the cycle 
 times and
arrives again at x0, while Duplicator is forced to come to at+m, where the index
is computed modulo n. Since m and n are coprime, m mod n is a generator of the
cyclic group Zn. It follows that the parameter 
 can be chosen so that t+
m = 0
(mod n), and then at+m = a0.

We now have to show that Duplicator is able to survive at least 1
2 m(n − 3)

rounds. When considering the length of the game, we can assume that Spoiler
plays according to an optimal strategy. It follows by Lemma 1 that Spoiler
begins playing in a non-root vertex xs and forces pebbling the pair (x0, a0) as
explained above, by moving along the cycle always in the same direction. Let
D(xs, at) denote the minimum number of moves needed for Spoiler to reach this
configuration if Duplicator’s move in the first round is at.

Suppose first that s = 0 and also that Spoiler moves in the direction of arrows.
Then he can force pebbling (x0, a0) only in 
m moves with 
 satisfying t+
m = 0
(mod n). Denote r = -n/2. and let Duplicator choose t = (−rm) mod n. Then
the smallest possible positive value of 
 is equal to r. If Spoiler decides to move
in the opposite direction, we have the relation t− 
m = 0 (mod n), which gives
us 
 ≥ �n/2�. In both cases D(x0, at) ≥ 1

2 m(n− 1).
Suppose now that s > 0. Let Duplicator pebble at′ in the first round with

t′ = (t + s) mod n, where t is fixed as above. Note that, from the position
(x0, at), Spoiler can force the position (xs, at′) in s moves. Therefore, D(x0, at) ≤
s+D(xs, at′), which implies that D(xs, at′) ≥ D(x0, at)− (m− 1) > 1

2 m(n− 3),
as claimed. ��
The parameter D(Gm, Hn) does not change if we attach extra arrows to the
roots of the digraphs. In this way, Lemma 4 leads to the following result.

Theorem 5. For every pair of numbers M ≥ 5 and N ≥ 5, there is a pair
of rooted loopless digraphs G and H with v(G) = M and v(H) = N such that
D(G,H) < ∞ and D(G,H) ≥ (12 − o(1))MN . Here the o(1)-term is a function
of min(M,N).
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Fig. 3. Co-Wheels as colored graphs

Using a simple gadget, in the Co-Wheels pattern we can make edges undi-
rected simulating directions by vertex colors. In this way, we can construct ex-
amples of pairs with large D(G,H) also for colored graphs; see Fig. 3.

Corollary 6. Theorem 5 holds true also for colored undirected graphs with bound
D(G,H) ≥ (16 − o(1))MN .

Corollary 6 can be obtained also from the Domino pattern, though with a smaller
factor 1

8 − o(1); see Fig. 4. It is worth noting that G will be a unicyclic graph
while H will be a tree. Note that this result is best possible in the sense that,
by Corollary 2, G cannot be acyclic.

Corollary 7. For every M ≥ 7 there is a unicyclic colored graph GM with
M vertices and for every N ≥ 1 there is a tree HN with N vertices such that
D(GM , HN ) < ∞ and D(GM , HN ) > 1

8 (M − 1)(N − 5).

Fig. 4. The colored graphs obtained from the Domino example in Fig. 1.

4 Winner Proof Systems

Inspired by [3], we now introduce a notion that allows us to define a few useful
parameters measuring the speed of constraint propagation. In the next section
it will serve as a link between the length of the existential 2-pebble game on
(G,H) and the running time of an AC algorithm on input (G,H).

Let G and H be connected colored graphs, both with at least 2 vertices, and
N(x) denote the set of vertices adjacent to x. A proof system of Spoiler’s win
on (G,H) consists of axioms, that are pairs (y, b) ∈ V (G) × V (H) with y and b
colored differently, and derivations of pairs (x, a) ∈ V (G) × V (H) and a special
symbol ⊥ by the following rules :

– (x, a) is derivable from any set {y} ×N(a) such that y ∈ N(x);
– ⊥ is derivable from a set {y} × V (H).
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A proof is a sequence P = p1, . . . , p+1 such that if i ≤ 
, then pi ∈ V (G)×V (H)
and it is either an axiom or is derived from a set {pi1 , . . . , pis} of preceding pairs
pij ; also, p+1 = ⊥ is derived from a set of preceding elements of P . More
precisely, we regard P as a dag on 
 + 1 nodes where a derived pi sends arrows
to each pij used in its derivation. Moreover, we always assume that P contains
a directed path from ⊥ to each node, that is, every element of P is used while
deriving ⊥.

We define the length and the size of the proof P as length(P ) = v(P ) − 1
and size(P ) = e(P ) respectively. Note that length(P ) is equal to 
, the total
number of axioms and intermediate derivations in the proof. Since it is supposed
that the underlying graph of P is connected, we have length(P ) ≤ size(P ),
with equality exactly when P is a tree. The depth of P will be denoted by
depth(P ) and defined to be the length of a longest directed path in P . Obviously,
depth(P ) ≤ length(P ).

It is easy to show that a proof P exists iff D(G,H) < ∞ (see part 1 of
Theorem 8 below). Given such G and H , define the (proof) depth of (G,H)
to be the minimum depth of a proof for Spoiler’s win on (G,H). The (proof)
length and the (proof) size of (G,H) are defined similarly. We denote the three
parameters by depth(G,H), length(G,H), and size(G,H), respectively. Note
that depth(G,H) ≤ length(G,H) ≤ size(G,H).

Theorem 8. Let G and H be connected colored graphs, both with at least 2
vertices, such that D(G,H) <∞.

1. depth(G,H) = D(G,H).
2. depth(G,H) ≤ length(G,H) ≤ v(G)v(H) and this is tight up to a constant

factor: for every pair of integers M,N ≥ 2 there is a pair of colored graphs
G,H with v(G) = M and v(H) = N such that depth(G,H) ≥ (1

6−o(1))MN .
3. size(G,H) < 2 v(G)e(H) + v(H).
4. For every N there is a pair of colored graphs GN and HN both with N

vertices such that size(GN , HN ) > 1
128 N

3 for all large enough N .

Note that part 3 implies that size(G,H) < N3 if both both G and H have N
vertices. Therefore, part 4 shows that the upper bound of part 3 is tight up to
a constant factor.

Proof. 1. It suffices to prove that, for every r ≥ 0, Spoiler has a strategy allowing
him to win in at most r rounds starting from a position (x, a) if and only if
the pair (x, a) is derivable with depth r. This equivalence follows by a simple
inductive argument on r.

2. The upper bound on depth(G,H) follows from a simple observation that
any proof can be rewritten so that every axiom used and every derived pair
appears in it exactly once. The lower bound follows by part 1 from Corollary 6.

3. Consider a proof P where each pair (x, a) appears at most once. Since
the derivation of (x, a) contributes deg a arrows in P , and the derivation of ⊥
contributes v(H) arrows, we have
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size(P ) <
∑
(x,a)

deg a+ v(H) = v(G)
∑
a

deg a + v(H) = 2 v(G)e(H) + v(H).

The inequality is strict because there must be at least one axiom node, which
has out-degree 0.

4. Note that size(G,H) ≥ depth(G,H)δ(H), where δ(H) denotes the mini-
mum vertex degree of H . Therefore, we can take graphs G and H with almost
the same number of vertices and with quadratic depth(G,H), and make δ(H)
large by adding linearly many universal vertices of a new color to each of the
graphs. A universal vertex is adjacent to all other vertices in the graph. If each
of the graphs receives at least two new vertices, they have no influence on the
duration of the existential 2-pebble game.

More specifically, we use the co-wheels from Lemma 4 with coprime parame-
ters m = n−1 converted to colored graphs as in Corollary 6; see Fig. 3. Thus, we
have colored graphs G and H with v(G) = 3n− 2 and v(H) = 3n+ 1 such that
D(G,H) > 1

2 (n− 1)(n− 3). Add green universal vertices so that the number of
vertices in each graph becomes N = - 9

2 n.. For the new graphs GN and HN we
still have depth(GN , HN ) > 1

2 (n− 1)(n− 3) while now δ(HN ) ≥ 3
2 n. ��

5 Time Complexity of Arc Consistency

5.1 An Upper Bound

We now establish an upper bound of O(v(G)e(H) + e(G)v(H)) for the time
complexity of the AC-Problem. One way to obtain this result is to use the linear-
time reduction from arc consistency to the satisfiability problem for propositional
Horn clauses (Horn-Sat) presented by Kasif [11]. The reduction transforms the
input graphs G and H into a propositional Horn formula of size v(G)e(H) +
e(G)v(H) that is satisfiable iff arc consistency can be established on G and H .
The upper bound then follows by applying any linear time Horn-Sat algorithm.
Going a different way, we here show that the same bound can be achieved by a
propagation-based algorithm, that we call AC’13. On the one hand, AC’13 does
much the same of what a linear time Horn-Sat solver would do (after applying
Kasif’s reduction). On the other hand, it can be seen as a slightly accelerated
version of the algorithm AC-4 in [17].

Theorem 9. AC’13 solves the AC-Problem in time O(v(G)e(H) + e(G)v(H)).

Proof. A detailed proof of the algorithm’s correctness can be found in a full
version of the paper [6]. Let us analyze the running time. The initialization
phase requires O(v(G)v(H)) steps. The propagation phase takes deg a steps
for every (x, a) ∈ Q and deg x steps for every (x, b) such that counter[x,b]
gets 0. Since every pair is only put once on the queue and every counter voids
out only once, the total running time of the propagation phase is bounded by∑

(x,a)∈V (G)×V (H)(deg x + deg a) = v(G)e(H) + e(G)v(H). ��



168 C. Berkholz and O. Verbitsky

Algorithm 1. AC’13

Input: Two colored connected graphs G and H .
/*INITIALIZATION*/
Let Q be an empty queue.
for all x ∈ V (G) do

Dx ← {a ∈ V (H) | a has the same color as x};
if Dx = ∅ then return reject;

for all x ∈ V (G), a ∈ V (H) do
counter[x,a] ← deg a;
if a /∈ Dx then add (x, a) to Q;

/*PROPAGATION*/
while Q not empty do

Select and remove (x, a) from Q;
for all b ∈ N(a) do

counter[x,b] ← counter[x,b]−1;
if counter[x,b]= 0 then

for all y ∈ N(x) do
if b ∈ Dy then

Delete b from Dy;
Add (y, b) to Q;
if Dy = ∅ then return reject;

return accept;

5.2 Lower Bounds

Recall that by a propagation-based arc consistency algorithm we mean an algo-
rithm that solves the AC-Problem by iteratively deleting possible assignments a
to a variable x from the domain Dx according to the arc consistency rule and re-
jects iff one domain gets empty. Let us maintain a list L of deleted variable–value
pairs by putting a pair (x, a) there once a is deleted from Dx. If the algorithm
detects arc inconsistency, then it is evident that L, prepended with axioms and
appended with ⊥, forms a proof of Spoiler’s win. Thus, a propagation-based
arc consistency algorithm can be viewed as a proof search algorithm that pro-
duces (in passing) a proof P of Spoiler’s win. This situation is related to the
concept of a certifying algorithm [16]: Propagation-based algorithms not only
detect Spoiler’s win but also produce its certificate. For every derived element
of P , an algorithm has to recognize its already derived parents. This allows
us to relate the running time to the proof size. Specifically, given an arbitrary
propagation-based algorithm for the AC-Problem, let T (G,H) denote the time
it takes on input (G,H). If the input (G,H) is arc inconsistent, then

T (G,H) ≥ size(G,H). (1)

Theorem 10. Fix an arbitrary propagation-based algorithm.

1. Let T1(k, l) denote the worst-case running time of this algorithm over colored
graphs G and H with e(G) = k and e(H) = l. Then T1(k, l) > 1

8 (k−1)(l−4)
for all k and l.
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2. Let T2(n) denote the worst-case running time of the algorithm on inputs
(G,H) with v(G) + v(H) = n. Then T2(n) > 1

16 n
3 for all large enough n.

Proof. By Corollary 7, there are colored graphs Gk with e(Gk) = v(Gk) = k
and Hl with e(Hl) = v(Hl) − 1 = l for which 1

8 (k − 1)(l − 4) < D(Gk, Hl) <
∞. By the relation (1), on input (Gk, Hl) the algorithm takes time at least
size(Gk, Hl), for which we have size(Gk, Hl) ≥ depth(Gk, Hl) = D(Gk, Hl) by
part 1 of Theorem 8.

Part 2 follows from part 4 of Theorem 8. ��

Corollary 11. In terms of the parameters e(G) and e(H), the time bound O(e(G)
· e(H)) is optimal up to a constant factor among propagation-based algorithms.

Note that O(e(G)v(H) + v(G)e(H)) = O((v(G) + v(H))3).

Corollary 12. In terms of the parameter n = v(G) + v(H), the time bound
O(n3) is best possible for a propagation-based algorithm.

5.3 Parallel Complexity

It is known that the AC-Problem is PTIME-complete under logspace reduc-
tions [11,12]. Under the assumption that PTIME �= NC, it follows that the
AC-Problem cannot be parallelized. However, several parallel algorithms with
a polynomial number of processors appear in the literature (e.g., [19]). We are
able to show a tight connection between the running time of a parallel algo-
rithm and the round complexity of the existential 2-pebble game. The following
result is worth noting since D(G,H) = depth(G,H) can be much smaller than
size(G,H), and then a parallel propagation-based algorithm can be much faster
than any sequential propagation-based algorithm.

Theorem 13. 1. AC-Problem can be solved in time O(D(G,H)) on a CRCW-
PRAM with polynomially many processors.

2. Any parallel propagation-based arc consistency algorithm needs time D(G,H)
on arc inconsistent instances (G,H).

6 Conclusion and Further Questions

We investigated the round complexity D(G,H) = D2(G,H) of the existen-
tial 2-pebble game on colored graphs and established lower bounds of the form
Ω(v(G)v(H)), which translate to lower bounds on the nested propagation steps
in arc consistency algorithms. The next step in this line of research is to in-
vestigate the number of rounds D3(G,H) in the existential 3-pebble game that
interacts with path consistency (i.e., 3-consistency) algorithms in the same way as
the 2-pebble game with arc consistency. Note that D3(G,H) = O(v(G)2v(H)2)
and we conjecture that this bound is tight.

Finally, we want to stress that our lower bounds for the time complexity of
arc consistency hold only for constraint propagation-based algorithms. Is there
a faster way to solve the AC-Problem using a different approach?
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Abstract. We prove that various containment and validity problems for
tree pattern queries with respect to a schema are EXPTIME-complete.
When one does not require the root of a tree pattern query to match the
root of a tree, validity of a non-branching tree pattern query with respect
to a Relax NG schema or W3C XML Schema is already EXPTIME-hard
when the query does not branch and uses only child axes. These hardness
results already hold when the alphabet size is fixed. Validity with respect
to a DTD is proved to be EXPTIME-hard already when the query only
uses child axes and is allowed to branch only once.

1 Introduction

Tree pattern queries are omnipresent in query and schema languages for XML.
They form a logical core of the query languages XPath, XQuery, and XSLT,
and they are needed to define key constraints in XML Schema. Static analy-
sis problems such as containment, satisfiability, validity, and minimization for
tree pattern queries have been studied for over a decade [15,10,17,3] since their
understanding helps us, for example, in the development of query optimization
procedures. Since queries can usually be optimized more if schema information
is taken into account, these static analysis problems are also relevant in settings
with schema information [17,3]. This is the setting that we consider.

The literature uses the term “tree pattern query” for a variety of query lan-
guages. In this paper, we use the tree pattern queries as in [15], which can use
labels, wildcards (*), the child relation (/), the descendant relation (//), and
filtering ([·]) which allows them to branch. In the following, we us the terms
path query for tree pattern queries without [·] and child-only query for tree
pattern queries without //. Containment, satisfiability, and validity of tree pat-
tern queries are closely related to each other in the usual way, i.e., satisfiability
and validity are special cases of containment. Since tree pattern queries are not
closed under the Boolean operations, satisfiability and validity often have a lower
complexity than containment. Taking schema information into account usually
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increases the computational complexity. For example, containment of tree pat-
tern queries is coNP-complete [15] but becomes EXPTIME-complete if schema
information, even in its weakest form (a DTD) is provided [17].1

We investigate the complexity of the validity problem (with schema infor-
mation) and obtain complexity lower bounds that contrast rather sharply with
known upper bounds. Hashimoto et al. [12] showed that validity of path queries
with respect to DTDs is in PTIME. We prove:

– Validity of path queries with respect to tree automata is EXPTIME-hard,
even if the tree automata are XSDs with a constant-size alphabet (Theo-
rems 10 and 11).

– Validity of child-only tree pattern queries with respect to DTDs is already
EXPTIME-hard even if the tree pattern queries branch only once and the
branch has only one node (Theorem 12).

– As a simpler application of our techniques we prove as a warm-up: inclusion
of a DFA in a regular expression of the form Σ∗aΣnbΣ∗ is PSPACE-complete
over Σ = {a, b, c} (Theorem 9). This means that validity of very simple child-
only path queries is PSPACE-hard, even if trees don’t branch.2

Each case is only a very slight extension of the above mentioned PTIME scenario
of Hashimoto et al. [12]. Our semantics of path and tree pattern queries is such
that the root of the query does not need to be matched by the root of the
tree. For our EXPTIME-hardness results to hold when using the more restricted
semantics of [12], we would need queries to have one additional descendant axis,
placed at the root. On the other hand, the PTIME upper bound of [12] also
holds in our setting.

Our lower bounds are also relevant in terms of conjunctive queries over trees.
For example, Benedikt et al. ([2], Corollary 3) proved a matching EXPTIME
upper bound for validity of UCQs (Unions of Conjunctive Queries) with respect
to a tree automaton. Here, UCQs form a class of queries that do not use the
descendant axis but are strictly more general than child-only tree pattern queries
since their syntactic structure is not required to be tree-shaped. Recently, static
analysis for such queries (with schema information) has also been investigated in
[5,16], with complexity results ranging from tractable to 2EXPTIME-complete.

In our proofs we use restricted variants of tiling games (Section 3) that may
be interesting in their own right.

2 Preliminaries

We use standard definitions and notation for regular expressions and determinis-
tic finite automata (DFAs). DFAs are denoted as tuples (Q,Σ, δ, {q0}, F ) where
Q is the (finite) set of states, Σ is the (finite) alphabet, δ the transition function,
q0 the initial state and F ⊆ Q the set of accepting states.

1 Schemas can be given as DTDs (the weakest form), XSDs (in the middle), or tree
automata (the strongest form; defining regular tree languages), see [14].

2 This result has already been used in the context of XML key inference [1].
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Trees and Tree Pattern Queries. Schema languages for XML recognize trees
which are rooted, ordered, finite, labeled, unranked, and directed from the root
downwards. For this reason, we consider finite trees in which nodes can have
arbitrarily many children, ordered from left to right. However, we note that
the results in this paper hold equally well for automata and DTDs recognizing
unordered trees, that is, trees in which the children can occur in any order.
More formally, we view a tree t as a relational structure over a finite num-
ber of unary labeling relations a(·), for a ∈ Σ, and binary relations Child(·, ·)
and NextSibling(·, ·). Here, a(u) expresses that u is a node with label a, and
Child(u, v) (respectively, NextSibling(u, v)) expresses that v is a child (respec-
tively, the right sibling) of u. We denote the set of nodes of a tree t by Nodes(t).
We assume that trees are non-empty, i.e., Nodes(t) �= ∅. By Edges(t) we denote
the set of child edges of t. For a node u, we denote by labt(u) the unique symbol
a such that a(u) holds in t. We often omit t from this notation when t is clear
from the context. By root(t) we denote the root node of t. For a node u of t,
we denote by anc-strt(u) the string obtained by concatenating all labels on the
path from the root of t to u. That is, anc-strt(u) = labt(u1) · · · labt(uk) where
u1 = root(t), uk = u, and u1 · · ·uk is the path from u1 to uk. Similarly, ch-strt(u)
is the concatenation of the labels of all children of u, from left to right.

Definition 1. [Tree Pattern Query, Path Query] A tree pattern query, (TPQ),
over Σ is a tuple T = (p,Anc), where p is a tree that uses the labeling alphabet
Σ /{∗} and Anc ⊆ Edges(p) is the set of ancestor edges. A path query is a TPQ
in which each node in p has at most one child.

Here, we use ∗ as a wildcard label. More formally, the semantics of TPQs is
defined as follows. Let T = (p,Anc) be a TPQ and let s be a tree. Let vp ∈
Nodes(p) and vs ∈ Nodes(s). We say that vs matches vp if either lab(vp) = ∗
or lab(vs) = lab(vp). An embedding of T = (p,Anc) on a tree s is a mapping m
from Nodes(p) to Nodes(s) such that,

– for every node v ∈ Nodes(p), m(v) matches v, and

– for every two nodes v1, v2 ∈ Nodes(p),

• if (v1, v2) ∈ Edges(p) \ Anc, then (m(v1),m(v2)) ∈ Edges(s);

• if (v1, v2) ∈ Anc, then (m(v1),m(v2)) is in the transitive closure of
Edges(s).

Notice that the root of p does not need to be mapped to the root of s, which is
important when comparing our results to related work. The language defined by
T is denoted L(T ) and consists of all trees s for which there is an embedding of T
into s. Notice that our semantics defines tree pattern queries as Boolean queries.
Tree pattern queries form a natural fragment of the XPath query language [8].
We assume familiarity with the standard XPath notation of tree pattern queries
(see, e.g., [15]). Figure 1 contains an example of a tree pattern query and its
corresponding XPath notation.
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Fig. 1. A tree pattern query T =
(p,Anc) depicted as a tree (on the left)
and in XPath notation (on the right).
On the left, edges in Anc are drawn
as double lines. On the right, the
bracketed part corresponds to the left
branch in the tree. Slashes (’/’) rep-
resent edges and double slashes (’//’)
represent edges in Anc.

a

b

c ∗

∗ b

c

a / b [ // c / ∗ ] / ∗ // b / c

Schemas. We introduce our abstractions of Document Type Definition (DTD)
[6], XML Schema [19], and Relax NG schemas [9].

Definition 2. A Document Type Definition (DTD) over Σ is a triple D =
(Σ, d, S) where S ⊆ Σ is the set3 of start symbols and d is a set of rules of the
form a → R, where a ∈ Σ and R is a regular expression over Σ. No two rules
have the same left-hand side.

A tree t satisfies D if (i) labt(root(t)) ∈ S and, (ii) for every u ∈ Nodes(t) with
label a and n children u1, . . . , un from left to right, there is a rule a → R in
d such that labt(u1) · · · labt(un) ∈ L(R). By L(D) we denote the set of trees
satisfying D.

We abstract XML Schema Definitions as DFA-based XSDs. DFA-based XSDs
were introduced by Martens, Neven, Schwentick, and Bex [14,13] as formal model
for XML Schema convenient in proofs.4

Definition 3. A DFA-based XSD is a pair (A, λ), where A = (Q,Σ, δ, {qinit}, ∅)
is a DFA with initial state qinit and λ is a function mapping each state in Q\{qinit}
to a regular expression over Σ.

An tree t satisfies (A, λ) if, for every node u, A(anc-strt(u)) = {q} implies that
ch-strt(u) is in the language defined by λ(q).

We abstract from Relax NG schemas [9] by unranked tree automata.

Definition 4. A nondeterministic (unranked) tree automaton (NTA) over Σ is
a quadruple A = (Q,Σ, δ, F ), where Q is a finite set of states, F ⊆ Q is the
set of accepting states, and δ is a set of transition rules of the form (q, a) → L,

3 DTDs usually have a single start symbol in the literature. Our abstraction is slightly
closer to reality; it has no influence on our complexity results.

4 XML Schema Definitions are sometimes also abstracted as single-type EDTDs, but
it is well-known that DFA-based XSDs and single-type EDTDs can be converted
back and forth in polynomial time [11]. DFA-based XSDs [13] are called DFA-based
DTDs in [11] but are the same thing. Since they are a formal model for XSDs, we
choose to reflect this in their name.
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where q ∈ Q, a ∈ Σ, and L is a regular string language over Q, represented by
a regular expression.5

A run of A on a tree t is a labeling r : Nodes(t) → Q such that, for every
u ∈ Nodes(t) with label a and children u1, . . . , un from left to right, there exists
a rule (q, a) → L such that r(u) = q and r(u1) · · · r(un) ∈ L. Note that when
u has no children, the criterion reduces to ε ∈ L, where ε denotes the empty
string. A run on t is accepting if the root of t is labeled with an accepting state,
that is, r(root(t)) ∈ F . A tree t is accepted if there is an accepting run of A on
t. The set of all accepted trees is denoted by L(A) and is called a regular tree
language. From now on, we use the word “schema” to refer to DTDs, DFA-based
XSDs, or NTAs.

It is well-known that DTDs are less expressive than DFA-based XSDs, which
in turn are less expressive than NTAs [14]. Likewise, DTDs can be polynomial-
time converted into DFA-based XSDs, which can be polynomial-time converted
into NTAs.

We are concerned with the following decision problem:

Definition 5. Validity w.r.t. a schema: Given a TPQ T and a schema S, is
L(S) ⊆ L(T )?

3 Tiling Problems and Games

We recall definitions and properties of tiling systems, corridor tilings, and their
associated games. We define a restricted form of corridor tiling games that re-
mains EXPTIME-complete and may be of interest in its own right.

A tiling system S = (T, V,H, tfin) consists of a finite set T of tiles, two sets
V,H ⊆ T × T of vertical and horizontal constraints, respectively, and a final
tile tfin ∈ T . A solution for a tiling system S is a mapping τ : {1, . . . , n} ×
{1, . . . ,m} → T for some n,m ≥ 2 such that (i) the horizontal constraints are
fulfilled, that is, for every i ∈ {1, . . . , n−1}, j ∈ {1, . . . ,m}: (τ(i, j), τ(i+1, j)) ∈
H ; (ii) the vertical constraints are fulfilled, that is, for every i ∈ {1, . . . , n}, j ∈
{1, . . . ,m− 1}: (τ(i, j), τ(i, j + 1)) ∈ V ; and (iii) the final tile is correct, that is,
τ(n,m) = tfin.

In the corridor tiling problem one is given a tiling system S and a word
w = w1 · · ·wn ∈ T ∗ of tiles, called the initial row. The problem asks whether
there exists a solution to S with bottom row w, that is a mapping τ : {1, . . . , n}×
{1, . . . ,m} → T as above with n = |w| such that τ(i, 1) = wi for every i ∈
{1, . . . , n}.

It is well-known that the corridor tiling problem is PSPACE-complete [7].
However, this result even holds for some fixed tiling systems S. For a tiling
system S, we write Tiling(S) for the set of strings w such that S has a solution
with initial row w.

5 For our complexity results, it does not matter whether the languages L are repre-
sented by regular expressions, nondeterministic string automata, deterministic string
automata, or even as a finite set of strings.
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Theorem 6 ([7], Section 4). There is a tiling system S such that Tiling(S)
is PSPACE-hard.

This strengthening can be obtained by applying the argument of Section 4 in [7]
to some fixed PSPACE-complete language L and a TM M for L.

Tiling systems can also be used to define two-player games. The input for a
tiling game is the same as for the corridor tiling problem but the underlying idea
is different: two players, Constructor and Spoiler, alternatingly choose tiles.
Constructor’s goal is to build a solution for the tiling system and Spoiler’s
goal is to prevent that.

More formally, we associate with a tiling system S and an initial row w for
S a 2-player game as follows. The word w induces a mapping τ : {1, . . . , n} ×
{1} → T , where n = |w|. The two players alternatingly choose tiles t ∈ T ,
implicitly defining τ(1, 2), τ(2, 2), . . . , τ(n, 2), τ(1, 3), etc. A move is legal if it
satisfies the constraints. More precisely, a tile t is a legal move as τ(i, j) if
(τ(i − 1, j), τ(i, j)) ∈ H and (τ(i, j − 1), τ(i, j)) ∈ V . Players are not allowed to
play a non-legal move. Constructor loses the game if, at any point, one of the
players cannot make a legal move. On the other hand, Constructor wins if at
some point a correct corridor tiling for S is constructed (for some m).

For a tiling system S, we denote by TilingWinner(S) the set of all strings w
such that Constructor has a winning strategy for the game induced by S and
w. From [7] the following theorem immediately follows.6

Theorem 7 ([7], Theorem 5.1).
(a) For every tiling system S, TilingWinner(S) ∈ EXPTIME, and
(b) there is a tiling system S, for which TilingWinner(S) is EXPTIME-hard.

For our reductions we need to work with suitably restricted tiling systems which
we define next. Given a system S and an initial row w, a valid rectangle for S
and w is a tiling that is a solution except that the last tile need not be tfin,
i.e., it is a mapping R : {1, . . . , n} × {1, . . . ,m} → T with initial row w, where
n = |w| and m ≥ 1 that respects V and H . A tiling prefix for S and w is a
valid rectangle plus the beginning of a next row, that is, a mapping P from
{1, . . . , n} × {1, . . . ,m} ∪ {1, . . . , i} × {m+ 1} to T , for some i ∈ {1, . . . , n} and
m ≥ 1, with bottom row w that respects V and H . A tiling prefix for S and w
is valid if the partial row can be completed to form a valid rectangle. We define
the length of P to be nm+ i. In particular, every valid rectangle is also a valid
prefix. Given a tiling prefix P and a tile t, we write P.t for the extension of P
by t.

We call a tiling system S = (T, V,H, tfin) restricted if the following holds for
every initial row w.

(1) If |w| is odd, then w �∈ Tiling(S).
(2) For every valid prefix P there are exactly two tiles t1 and t2 such that P.t1

and P.t2 are valid prefixes.

6 Similarly as for Tiling(S), it suffices to fix an ATM for some EXPTIME-complete
language in the proof to infer Theorem 7 (b) from Theorem 5.1 in [7].
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(3) For every odd length valid prefix P , there are exactly two tiles t1 and t2
such that P.t1 and P.t2 are tiling prefixes.

The restriction guarantees that, if Constructor has a winning strategy, she
has one in which Spoiler always has exactly two legal moves.

Proposition 8. There is a restricted tiling system S, for which TilingWinner(S)
is EXPTIME-hard.

4 String Languages

Theorem 9. Validity of a regular expression r w.r.t. a DFA A, i.e., whether
L(A) ⊆ L(r), is PSPACE-complete even for regular expressions7 of the form
Σ∗aΣnbΣ∗ and DFAs over the alphabet Σ = {a, b, c}.

Proof. Obviously, the problem is in PSPACE since it can be reduced in logarith-
mic space to the containment problem for NFAs, which is known to be PSPACE-
complete [18]. We show the lower bound by reduction from Tiling(S), i.e., corri-
dor tiling with a fixed tiling system. Let S = (T, V,H, tfin) with T = {t1, . . . , tk}
be a tiling system such that Tiling(S) is PSPACE-hard. Notice that S exists by
Theorem 6. Given S and an initial row w, we will construct a regular expression
qw and a DFA A(S,w) such that L(A(S,w)) ⊆ L(qw) if and only if w �∈ Tiling(S).
Since PSPACE is closed under complement, this yields the desired result.

We associate with every tiling function τ : {1, . . . , n} × {1, . . . ,m} → T a
string wτ by simply concatenating all tiles in row-major order. More precisely,
wτ is the string from T ∗ of length mn that carries at position (j − 1)n + i tile
τ(i, j), for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

From S and an initial row w a DFA A(S,w) can be constructed in polynomial
time that tests whether a word v ∈ T ∗ has the following properties: (i) v has
prefix w; (ii) the length of v is a multiple of n

def
= |w|; (iii) the tiling function τ :

{1, . . . , n}×{1, . . . ,m} → T corresponding to v fulfills the horizontal constraints;
and (iv) τ(n,m) = tfin.

The task of qw will be to accept all words with a violation of some vertical
constraint. To achieve this with the limited form that we allow for qw we use a
more elaborate encoding of tiles for the actual reduction and define the DFA ac-
cordingly. We simultaneously encode tiles and their relevant vertical constraints
as strings of length 2k. For each i, j ∈ {1, . . . , k} we let eij be a symbol that
encodes whether (ti, tj) ∈ V as follows.

eij
def
=

{
a if (ti, tj) /∈ V

c otherwise.

Then, for each i ∈ {1, . . . , k}, we encode tile ti as the string
enc(ti)

def
= cc · · · cbc · · · cei1 · · · eik

7 Σn abbreviates concatenations of n symbols from Σ.
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of length 2k in which the entry labeled b is at position i. For a string v ∈ T ∗, we
write enc(v) for the symbol-wise encoding of v. It is straightforward to construct
from A(S,w) an automaton A′(S,w) that accepts all encodings enc(v) of strings
v ∈ L(A(S,w)). Finally, the regular expression qw is just (a + b + c)∗a(a + b +
c)(2n−1)k−1b(a+ b+ c)∗. ��

5 Hardness Results on Trees

In this section we are going to prove the following three results.

Theorem 10. Validity of tree pattern queries w.r.t. an NTA is EXPTIME-
complete even for path queries of the form a/ ∗ / ∗ / · · · / ∗ /b over schemas with
three symbols.

Theorem 11. Validity of tree pattern queries w.r.t. a DFA-based XSD is EXP-
TIME-complete even for path queries of the form a/∗/∗/ · · ·/∗/b over schemas
with four symbols.

Theorem 12. Validity of tree pattern queries w.r.t. a DTD is EXPTIME-
complete even for tree pattern queries of the form ∗[/a]/ ∗ / · · ·/ ∗ /b over DTDs.

Notice the subtle differences between the three cases: In the NTA case it suffices
to have path queries and three alphabet symbols. For DFA-based XSDs we use
one more alphabet symbol due to their limited expressiveness when compared to
NTAs. If we limit the expressiveness even more to DTDs, then validity of path
queries is not hard anymore, as was shown by Hashimoto et al. [12].

Theorem 13 ([12], Theorem 3). Validity of path queries w.r.t. a DTD is in
PTIME.

However, even allowing the path to have one additional leaf branching off makes
the validity problem EXPTIME-hard, even w.r.t. DTDs. Thus, compared to
Theorem 13, allowing a single branching as opposed to a pure path query or
using DFA-based XSDs as opposed to DTDs results in a provably exponential
blow-up in the time complexity for Validity.

All the problems considered in this section are in EXPTIME because of the
following result.

Theorem 14. [[4], Theorem 3.1] Validity of tree pattern queries w.r.t. an NTA
is in EXPTIME.

The lower bounds in Theorems 11 and 12 are shown by reductions from the
complement of the TilingWinner problem. For the purpose of these reductions
we use the restricted form of tiling games from Section 3.

Strategies for Constructor for some tiling system S and initial row w can
be represented by strategy trees as usual. The nodes of such a tree carry the tiles
chosen in the game. Each node that corresponds to a tile chosen by Spoiler has
a child labelled with the symbol that is chosen according to Constructor’s
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strategy. Each node v that corresponds to a tile chosen by Constructor has
one child for every possible legal move by Spoiler. Every internal node in the
tree corresponds to a tiling prefix, induced by the path from the root to that
node.

Proof (of Theorem 11). Let S = (T, V,H, tfin) be a restricted tiling system for
which TilingWinner(S) is EXPTIME-hard and w ∈ T ∗ an initial row. By defini-
tion of restricted tiling systems, the following holds for every tree s representing
a winning strategy of Constructor.

(i) Each path represents a solution for S (with initial row w), and
(ii) Each node corresponding to a tile chosen by Constructor has exactly

two children labelled by different tiles.

Thus, the following two statements are equivalent.

(a) w ∈ TilingWinner(S).
(b) There is a strategy tree s for Constructor with the properties (i) and (ii).

In the following we define an encoding function enc that maps strategy trees
fulfilling property (ii) to trees over alphabet {a, b, c, c′}. Furthermore, we con-
struct from S and w a DFA-based XSD (B, λ), and a path query P such that
the following are equivalent.

(c) There is a tree s′ of the form s′ = enc(s) for some strategy tree s for
Constructor with properties (i) and (ii).

(d) P is not valid w.r.t. (B, λ).

By combining the two above equivalences with the obvious equivalence between
(b) and (c) we get that w ∈ TilingWinner(S) if and only if P is not valid w.r.t.
(B, λ). The theorem then follows because we have a reduction from the comple-
ment of TilingWinner(S) to the validity problem and the former is EXPTIME-
complete because EXPTIME is closed under complementation. The encoding of
strategy trees is similar to the encoding of strings in the proof of Theorem 9. We
basically replace nodes of the tree by paths of length 2k, where k = |T |.

Let s be a strategy tree. We describe how the encoded tree enc(s) is obtained
from s. We use the definitions of eij and enc(ti) from Section 4.

For technical reasons that will become apparent below, we use the alphabet
Σ′ = {a, b, c, c′} and allow additional encodings of tiles as follows. For every
i, j ∈ {1, . . . , k} with i < j we let

enci(tj)
def
= cc · · · cc′c · · · cbc · · · cej1 · · · ejk,

be the string obtained from enc(tj) by replacing the symbol c at position i by c′.
In the following, we identify strings enc(ti) and enci(tj) with paths consisting of
2k nodes that are labelled according to enc(ti) and enci(tj), respectively.

We associate with each strategy tree s for Constructor an encoded tree
enc(s) in two stages. The first stage proceeds in a top-down fashion. We replace
the root with tile t by the path enc(t). We replace every node u that is the only
child of its parent and is labelled with some ti by enc(ti). For all siblings u and
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· · · ccbcacca bcccaaca c

bcccaaa cbcccaaa

c′bcacca cbcccaaa

· · · t3 t1

t2 t2
· · ·

· · ·

t3 t2
· · ·

· · ·

Fig. 2. At the top we see part of a strategy tree for Constructor in a game with
four tile types. Below is the encoding of the same part of the tree.

v in s labelled by tiles ti and tj , respectively, with i < j, we replace u by enc(ti)
and v by enci(tj).

In the second stage we combine the two paths enc(ti) and enci(tj) of a pair
of siblings u, v by a prefix tree that is obtained by identifying their prefixes of
length i−1 and put the resulting tree (or forest of two paths, if i = 1) below the
lowest node of the encoding of the parent of u and v. After this, we no longer
have siblings that carry the same label. The resulting tree is enc(s). We illustrate
the encoding with an example.

Example 15. Figure 2 shows an example of how the encoding in the proof
of Theorem 11 works. Let T = {t1, t2, t3, t4}, {(t1, t2), (t1, t3), (t2, t2), (t3, t1),
(t3, t2)} ⊆ H , and V = {(t1, t3), (t2, t1), (t3, t2), (t3, t3), (t4, t1)}. Thus, enc(t1) =
bcccaaca, enc(t2) = cbcccaaa, enc(t3) = ccbcacca, and enc(t4) = cccbcaaa. On
the top, we see a possible part of a strategy tree for Constructor, where the
tile t1 corresponds to a move of Constructor and t2 and t3 are the two possible
next legal moves of Spoiler. In the lower part we illustrate the encoding of this
tree fragment. We use strings to represent unary tree fragments to simplify the
picture. The encoding of the siblings t2 and t3 share a node because they have
the same prefix c.

The DFA-based XSD (B, λ) is constructed from S and w as follows. The DFA
B is a slight extension of the DFA A′(S,w) constructed in the proof of Theorem
9. It tests, for a path in the given tree whether its label sequence is an encoding
of a string x ∈ T ∗ such that

– x has prefix w;
– the length of x is a multiple of n

def
= |w|;

– the tiling function τ : {1, . . . , n}×{1, . . . ,m} → T corresponding to x fulfills
the horizontal constraints; and

– τ(n,m) = tfin.

Here, the encoding is over Σ′ and allows substrings of the form enci(tj) beyond
enc(ti) in even columns (chosen by Spoiler). The DFA A′(S,w) basically has
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states8 of the form (t, t′, i), where t is the previous tile (or # in column 1), t′ the
current tile (or # if this has not yet been determined) and i a counter modulo
2kn. In B, # also indicates that the current tile is not yet determined, but if c′

is read, t′ changes into “?” to indicate that the prefix tree has already branched
(but the tile on the current branch is still unknown). For the sake of clarity later
in the proof, we briefly assume that B has accepting states (that, by definition,
can only be reached after reading tfin). These states are only important to define
below where λ allows a node to be a leaf. We do not require accepting states in
B in our DFA-based XSD. The function λ is defined as follows.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which (t,
ti mod 2k) �∈ H , λ(q) = c.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which i indicates
an odd column (where Constructor is about to move) and (t, ti mod 2k) ∈
H or t = #, λ(q) = c + b.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which i indicates
an even column (where Spoiler is about to move) and (t, ti mod 2k) ∈ H ,
λ(q) = c+ bc′.

– For states of the form q = (t, t′, i) with (i mod 2k) < k and t′ ∈ T , λ(q) = c.
– For states of the form q = (t, ?, i) with (i mod 2k) < k, λ(q) = c + b.
– For states of the form q = (t, t′, i) with (i mod 2k) ≥ k and t′ ∈ T , λ(q) =
ej where t = t′ and j = i mod 2k.

– For states q corresponding to the first row, λ(q) is just the next symbol from
the encoding of w.

– For every “accepting state” q of B, λ(q) = ε+ b+ c.

Finally, the path query P has the form

a/ ∗ / ∗ / · · · / ∗ / ∗ /b︸ ︷︷ ︸
2nk−k+1 labels

.

To complete the proof it only remains to show that (c) and (d) are indeed
equivalent.

To this end, let us first assume that (c) holds, that is, there is a tree s′ of
the form s′ = enc(s) for some strategy tree s for Constructor with properties
(i) and (ii). Since s is a strategy tree, each of its paths represents a solution
for S with initial row w. As such, each path from root to leaf satisfies the
horizontal and vertical constraints. Since it has the correct length and satisfies
the horizontal constraints, B has a run over each path that ends in a state q
such that λ(q) = ε + b + c. Since each node that corresponds to a Spoiler

tile has exactly two children labelled by different tiles, we also have that, by
construction, the conditions on λ are fulfilled. Thus, enc(s) is satisfied by (B, λ).
Finally, since s does not have any violations against the vertical constraints, we
also have that P does not match s′ by construction. Therefore s′ is a witness for
the fact that P is not valid w.r.t. (B, λ).

8 It has further states for the prefix w and a rejecting sink state.
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For the other direction, let us assume that P is not valid w.r.t. (B, λ). Let s′ be
a tree that conforms to (B, λ) and in which P does not match. By construction
s′ = enc(s), for some tree s such that (ii) holds. Furthermore, as s′ conforms to
(B, λ) it follows that every path fulfills the horizontal constraints of S and ends
with the final tile tfin. Finally, as P does not match in s′ there is no violation of
any vertical constraint in s. Therefore, s also fulfills (i) and thus (c) holds. ��
The proofs of Theorems 10 and 12 can be obtained by adapting the above proof.
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16. Murlak, F., Ogiński, M., Przyby�lko, M.: Between tree patterns and conjunctive
queries: Is there tractability beyond acyclicity? In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 705–717. Springer, Heidelberg
(2012)

17. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. LMCS 2(3) (2006)

18. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time: Preliminary
report. In: STOC, pp. 1–9 (1973)

19. Thompson, H.S., Mendelsohn, N., Beech, D., Maloney, M.: XML Schema Definition
Language (XSD) 1.1, http://www.w3.org/TR/xmlschema11-1/

http://www.w3.org/TR/xpath/
http://www.relaxng.org
http://www.w3.org/TR/xmlschema11-1/


Auctions for Partial Heterogeneous Preferences

Piero A. Bonatti, Marco Faella, Clemente Galdi, and Luigi Sauro
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Abstract. Online privacy provides fresh motivations to generalized auc-
tions where: (i) preferences may be partial, because of lack of knowledge
and formalization difficulties; (ii) the preferences of auctioneers and bid-
ders may be heterogeneous and unrelated. We tackle these generalized
scenarios by introducing a few natural generalizations of first-price and
second-price auctions, and by investigating which of their classical prop-
erties are preserved under which conditions.

1 Introduction

In traditional economic models, partial preferences—that reflect lack of knowl-
edge [1]—are turned into total orders by means of utility functions [5]. This
approach does not readily apply to new markets where the “currency” is more
complex than money and may involve information. Consider online privacy. Some
previous works used bargaining [4] and a generalization of procurement auctions
[3] in order to reduce personal information disclosure and improve privacy. In this
context bids are contracts involving privacy policies and/or information requests
(e.g. login information, credit card data, etc.). The risks associated to informa-
tion disclosure contribute to the costs incurred by the user, and the value of
user information becomes part of the utility of service providers. The complex-
ity of these domains makes the adopted mechanisms depart from their classical
counterparts in several respects. For instance:

1) Preferences on bids are partial. Users do not have enough information
or cognitive/social capabilities to carry out a detailed risk analysis [12]. For
instance, this happens when preferences result from complex tradeoffs between
the different parameters of a contract (additional functionalities, cost, Quality
of Service (QoS), information disclosure risks, etc.) or when each user actually
consist of a group of persons where internal debates do not easily end up with a
complete preference. Additionally, it is almost impossible to formalize preferences
unambiguously. Human choices are not necessarily consistent along time. One
might toss a coin, but the way random choices are made affects the properties of
the game, as discussed later. So it is important to investigate partially ordered
bids in order to accurately analyze the possible consequences of uncertainty.

2) The preferences of bidders and auctioneers may be largely unrelated (while
in the classical setting they are based on a single totally ordered domain, i.e.
money, and the auctioneer’s preference is exactly the opposite of the bidders’).
So, in general, an agent does not know which offers are preferred by the others.
As an example of heterogeneous preferences consider a user with three mail
addresses: a private “anonymous” address ap, an institutional address ai related
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to her current role at work, and a personal office address ao. The user in general
prefers to disclose ap for privacy reasons, while a vendor prefers ai, instead,
which is more stable and independent from who is currently playing that role.
Spammers find the three addresses equally preferable.

We contribute to the analysis of this kind of games by introducing a few nat-
ural generalizations of second-price auctions, and investigating their properties,
with particular attention to truthfulness. Section 2 introduces the generalized
framework. Section 3 discusses the main drawbacks of linearizing preferences by
means of utility functions. Then, in Sec. 4 and 5, we introduce two mechanisms
with different properties, such as the amount of disclosed private information. A
final discussion concludes the paper. We assume the reader to be familiar with
the basics of mechanism design. Our notation follows [9].

2 The Playground

We start by introducing the common features of our generalized auctions. The
agents of such games consist of an auctioneer a and a set of bidders B =
{1, . . . , n}. The bids contain elements of an abstract set of possible values V. To
help intuition, V can be viewed as a set of possible contracts specifying both
the functional features of a service provided by a bidder, and its nonfunctional
properties, such as cost, QoS, and the information the user (the auctioneer) has
to disclose in order to access the service. Here, we assume that V is finite.1

An agent might not be able—or willing—to accept some outcomes v ∈ V (be-
cause of budget limitations, unsatisfactory privacy policies, etc.); this is modelled
by associating each agent i to a set of admissible values V ∗

i ⊆ V. The idea is
that if a bidder i wins the auction with outcome v �∈ V ∗

i , then i incurs a loss due
to penalties, bad reputation, costs higher than the value of the transaction, etc.

In general, a bidder b ∈ B does not know which values are preferred by a
(cf. point 2 in the introduction); furthermore, b may be allowed to bid a set of
equally preferable values (from b’s point of view), Vb ⊆ V, in order to offer a
wider choice to the auctioneer and improve the chance of winning the auction.
The auctioneer a may restrict acceptable values to a set Va (e.g. in classical
settings a may set a maximum price).

Based on the bids, a mechanism determines which agent is to provide the
service and under which conditions, by selecting a winner b ∈ B and a set of
possible outcomes po ⊆ Vb ∩ Va, from which the winner can freely choose its
preferred options. We are interested in stochastic mechanisms, so the outputs of
our auctions, from a bidder’s viewpoint, can be modelled by probability distri-
butions f ∈ Δ(B×P(V)),2 such that f(i, po) is the probability that i wins and
can choose the result of the auction from po.

Clearly, the goal of each agent x ∈ B ∪ {a} is to get a maximally preferred
value, according to a private preference relation ≤x over V. Sometimes, agents

1 Most of our results do not strictly require this assumption, but it remarkably sim-
plifies formal details without jeopardizing the applicability of our framework, since
options, rankings, etc. typically range over finite domains, in the real world.

2 Δ(X) denotes the set of all probability distributions over the set X.
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have not enough information to compare a given pair of values (e.g. it may be
difficult to evaluate the risks associated to two different information disclosures,
or the optimal tradeoff between quality, cost, and risks). In other cases, agents
may consider two values equally good (e.g. when two services are delivered under
the same preconditions and their functional differences are irrelevant to the user).
As usual, this is modelled by assuming ≤x to be an arbitrary preorder. As usual,
w <x v means that w ≤x v and v �≤x w. In the following, given a set of values
V ⊆ V, minx[V ] denotes the elements of V that are minimal w.r.t. the agent x:

minx[V ] = {v ∈ V | ∀w ∈ V w �<x v} .

Similarly, maxx[V ] denotes V ’s maximal values (w.r.t. x).
In strategic reasoning, the relations ≤i must be lifted to preference orderings

�i over stochastic auction outputs (Δ(B × P(V))). At this stage we do not
specify how; we only assume that �i is any relation satisfying:

PA f �i g if (sufficient condition, not necessary)
1.

∑
X∩V ∗

i =∅ f(i,X) ≥
∑

X∩V ∗
i =∅ g(i,X), and

2. for all V such that V ∩V ∗
i �= ∅ and f(i, V ) > 0, there exists W ⊇ V ∩V ∗

i

such that: g(i,W ) ≥
∑

X∩V ∗
i ⊆W f(i,X) .

Condition 1 reflects the meaning of V ∗
i : it says that it is better to reduce the

probability of a loss. Condition 2 says that g is preferable if it simultaneously
raises the probability of winning and enlarges the space of admissible choices
from which i can pick the outcome. Axiom PA shall be refined in Sec. 5.

3 Re-using Classical Second Price Auctions

A natural approach to truthful auctions in the new framework consists in: (i)
setting ≤a to one of the linearizations of the true (partial) preference relation ≤∗

a

of the auctioneer, and (ii) applying the classical second-price mechanism using
≤a. We will see that this plan has several drawbacks.

Utility theory defines linearizations in terms of a real-valued utility function
u such that v ≤∗

a w iff u(v) ≤ u(w) and v <∗
a w iff u(v) < u(w). This tight

correspondence is possible under the assumption that ≤∗
a is a weak order, i.e.

asymmetric and negatively transitive (if x �<∗
a y and y �<∗

a z then x �<∗
a z) [5].

Currently, there is no evidence that preferences are weak orders in our scenarios.
The next issue (robustness) is that non-best offers might not belong to the

admissible values V ∗
b for the winner b. Then b incurs a loss, and it might be unable

to complete the transaction, which damages the auctioneer, too. For example,
the user might send her Mastercard instead of a Paypal receipt, but the provider
might only be equipped for Paypal payments.

The third problem is that two or more bidders may submit a maximal offer.
The naive solution consists in choosing the winner among them according to some
criterion (say, an arbitrary, a priori ordering of bidders, a random choice, etc.).
Unfortunately, the resulting game is not truthful: it is easy to find cases in which
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an agent finds it profitable to bid something higher than the truthful bid, in order
to raise the probability of winning to 1. This problem affects also classical second-
price auctions; indeed, Vickrey assumes that the maximal offer is unique.3 While
this might be realistic in some standard auctions based on purely monetary
payments, it is not realistic to assume it in our reference scenarios, where many
different offers may be equally good or incomparable.

The fourth problem is that a priori linearizations of ≤a introduce a bias over
bidders that may affect truthfulness, damage some bidders, and cause lock-in
effects. Even if linearizations were randomly generated anew for each auction,
the mechanism would not be truthful. Consider an auction with 3 bidders and
assume that a linearization and a winner (among those who make a <a-maximal
bid) are selected randomly with uniform probability. Assume also that the winner
can choose a preferred item from those that are ranked second-best or higher by
<a, like in [6]. Suppose that V = {v1, v2, v3}, v1 <

∗
a v2, and v3 is not comparable

(in ≤∗
a) with v1 and v2. There are three strict linearizations (v1 <a v2 <a v3,

v1 <a v3 <a v2, and v3 <a v1 <a v2) plus two linearizations where v3 is given
the same rank as v1 and v2, respectively. Let the bids of agents 1 and 2 be v1 and
v2, respectively. Bidder 3 is such that V ∗

3 = {v1, v3} and v2 <3 v3 <3 v1. The
reader may easily verify that if bidder 3 offers its true preferred value v1 then
it loses in all cases. Bidding the (non-admissible) value v2 is the best strategy
in 4 out of five linearizations. If the outcome had to be taken exactly from the
second-best offers, then v2 would be a dominant strategy.

Finally, from a practical perspective, preference linearizations exclude a priori
some of the possible outcomes; this precludes any chance of re-introducing the
user in the game and have her make the final choice among a set of incomparable
options, possibly using situation-specific knowledge and preferences that have
not been formalized nor encoded in the user agent.

4 Relaxing the Second Price Notion

The notion of second price can be relaxed according to two simple principles: (a)
the outcome v should belong to Va∩Vb, where b is the winner; (b) v should not be
worse (for a) than any other bid w ∈ Va ∩ Vi (i �= b). We introduce mechanisms
based on these principles that address the problems raised in Sec. 3.

Mechanism 1’s inputs are vectors σ = 〈(Va,≤a), V1, . . . , Vn〉 that represent
the auctioneer’s restrictions and preference (Va,≤a) and the bids. For all such
σ, we will denote by σ−i = 〈(Va,≤a), V1, . . . , Vi−1, ∅, Vi+1, . . . , Vn〉. The set of
admissible outcomes for σ is:

adm(σ) = Va ∩
⋃
i∈B Vi . (1)

The candidate winners are those that submit an optimal offer:

cw(σ) = {i ∈ B | Vi ∩ maxa[adm(σ)] �= ∅} . (2)

3 There exist auctions for selling multiple instances of a same good that yield multiple
winners, but in our reference scenarios users eventually choose only one provider.
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The actual winner can be selected in many possible ways, with or without bias.
Formally, let a selection function be a function sel : P(B)\∅ → Δ(B) such that,
for each non-empty P ⊆ B, sel(P )(u) > 0 iff u ∈ P . As the set of candidate
winners gets larger, the probability of winning should not increase, so we require
sel to be inverse monotonic, i.e., for all P,Q such that ∅ ⊂ P ⊆ Q ⊆ B, ∀u ∈ P ,
sel(P )(u) ≥ sel(Q)(u).

Finally, the possible outcomes for i, formalizing principles (a) and (b), are:

po(σ, i) = {v ∈ Va ∩ Vi | ∀w ∈ adm(σ−i), v �<a w} . (3)

The mechanism, for all given σ, consists of three phases:

– Phase one: The mechanism computes an extended set of candidate winners
cw+(σ). If |cw(σ)| > 1 then cw+(σ) = cw(σ); else, if cw(σ) = {j}, then
cw+(σ) = cw(σ) ∪ cw (σ−j). The winner is selected from cw+(σ) with prob-
ability distribution sel(cw+(σ)).

– Phase two: The selected winner i receives from the mechanism an extended
set of possible outcomes po+(σ, i). If cw (σ) = {j} and i �= j, then po+(σ, i) =
po(σ−j , i); else po+(σ, i) = po(σ, i). The winner then selects a non-empty set
value(σ, i) ⊆ po+(σ, i) and returns it to the auctioneer.

– Phase three: The auctioneer chooses the outcome of the auction from the set
maxa[value(σ, i)].

Example 1. Let B = {1, 2, 3} and V = P × {cc, pp}, where P is the set of
all prices with two decimal digits, cc represents credit card information and pp
Paypal payments. The intended meaning of (p,m) ∈ V is that the requested
service costs p and should be payed with method m. Let (p1,m1) ≤a (p2,m2) iff
p1 ≥ p2 and either m1 = m2 or m1 = pp and m2 = cc (since Paypal payments
do not reveal credit card information). For i ∈ B, v1 ≤i v2 iff v2 ≤a v1. Let
Va = {v | v ≤a (22, cc) ∨ v ≤a (25, pp)}, V1 = {(p, cc) | p ≥ 20}, V2 = {(p,m) |
p ≥ 20 ∧m ∈ {cc, pp}}, and V3 = {(p, pp) | p ≥ 21}. The best offer is (20, pp) ∈
V2 and hence cw(σ) = {2}. The other optimal bids are not comparable, so
cw+(σ) = B. Bidder 1 can choose the results of the auction from po+(σ, 1) =
{(p, cc) | 20 ≤ p ≤ 20.99}, as higher prices are dominated by the offers of
bidder 3, and method pp is not admissible for 1. Bidder 2’s space of choices
is po+(σ, 2) = {(20, cc)} ∪ {(p, pp) | 20 ≤ p ≤ 21}. The values (p, pp) with
p > 21 are excluded because they are dominated by the offer of bidder 3. Finally,
po+(σ, 3) = {(p, pp) | 21 ≤ p ≤ 25}; the upper bound is set by Va. ��

Strategic Reasoning. The relevant result of Mechanism 1 for a winner i is
(i, po+(σ, i)), because i can freely select its preferred outcomes from po+(σ, i).
Accordingly, the stochastic outputs of Mechanism 1 are the distributions:

fσ(i, V ) =

{
sel(cw+(σ))(i) if V = po+(σ, i) ,
0 otherwise.

(4)

As usual, let (V, σ−i) denote the input obtained from σ by replacing Vi with V .
Mechanism 1 is truthful if bidding the true admissible set is a dominant strategy,
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that is, for all inputs σ and σ′ = (V ∗
i , σ−i), fσ �i fσ′ . In general, Mechanism 1

is not truthful, as shown by the following example.

Example 2. Let B = {1, 2, 3} and V = {a, b, c} = Va. Assume that V ∗
1 =

{a} and V ∗
2 = V ∗

3 = {b}. The only preference expressed by the auctioneer is
b ≤a c and the selection function is the uniform distribution. Let V3 = {b, c},
σ = 〈(Va,≤a), V ∗

1 , V
∗
2 , V3〉 and σ′ be the truthful strategy profile. By adding the

value c to her bid, bidder 3 manages to exclude bidder 2 from the auction, so
that cw+(σ) = {1, 3}, whereas cw+(σ′) = {1, 2, 3}. Moreover, po+(σ, 3) = {b, c},
so bidder 3 can safely choose value b in Phase two of the auction. It is possible
(i.e., consistent with PA) that bidder 3 strictly prefers σ over σ′, thus violating
truthfulness. ��

It can be proved that whenever i bids non-admissible values, there exists a
context such that the outcome is not admissible and i incurs a loss. Formally,
for all Vi �⊆ V ∗

i , there exist σ = 〈(Va,≤a), V1, . . . , Vi, . . . , Vn〉 and W such that
fσ(i,W ) = 1 and W ∩ V ∗

i = ∅. If the expected loss is high enough, then i is
induced to bid only admissible values, i.e. Vi ⊆ V ∗

i . In this case, the truthful
strategy is dominant:

Theorem 1. For all σ = 〈(Va,≤a), V1, . . . , Vn〉 such that Vi ⊆ V ∗
i , fσ �i

f(V ∗
i ,σ−i).

Proof. (Sketch) Vi ⊆ V ∗
i implies that: (i) if i ∈ cw+(σ) then i ∈ cw+(σ′), where

σ′ = (V ∗
i , σ−i), (ii) cw+(σ) ⊇ cw+(σ′), and (iii) po+(σ, i) ⊆ po+(σ′, i). By

(i), (ii), and the inverse monotonicity of sel , fσ(i, po+(σ, i)) ≤ fσ′(i, po+(σ′, i)).
Then, by (iii) and axiom PA, we obtain fσ �i fσ′ . ��

Truthfulness for unrestricted bids can be proved if ≤a consists of a totally ordered
sequence of layers such that (i) the members of each layer are strictly better than
all the members of the preceding layers; (ii) within each layer, values are either
equivalent or incomparable. Formally, ≤a should be reflexive, transitive and
quasi negatively transitive, i.e., if y �≤a x, x �≤a y, and y �<a z, then x �≤a z. We
call such a preorder superweak, as its strict version <a generalizes weak orders.
Notice that the preference relation ≤a of Example 2 is not superweak.

Theorem 2. If ≤a is superweak then Mechanism 1 is truthful.

Proof. Let σ = (Vi, σ−i) and σ′ = (V ∗
i , σ−i). Assume that Vi �⊆ V ∗

i (the other
cases are covered by Theorem 1). First suppose that i �∈ cw+(σ); then for all W ,
fσ(i,W ) = 0; moreover, by definition, po+(σ′, i) ⊆ V ∗

i , so the first condition of
PA is satisfied by f = fσ and g = fσ′ ; the second condition is vacuously true,
so fσ �i fσ′ . Next suppose that i ∈ cw+(σ) and i �∈ cw+(σ′). Then the offers
of the other bidders dominate those in Vi ∩ V ∗

i and hence po+(σ, i) ∩ V ∗
i = ∅.

From the properties of sel and PA it follows that fσ �i fσ′ . Finally suppose
that i ∈ cw+(σ) ∩ cw+(σ′). By quasi negative transitivity, the best offers of
i, that is Vi ∩ maxa[adm(σ)], are either in the same layer as the best offers
of the other bidders in cw+(σ), or strictly preferred to all the offers of the
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bidders in cw(σ−i). Similarly for V ∗
i and σ′. In all cases, cw+(σ) = cw(σ−i) ∪

{i} = cw (σ′−i) ∪ {i} = cw+(σ′) and hence fσ(i, po+(σ, i)) = fσ′(i, po+(σ′, i)).
Moreover, po+(σ, i)∩V ∗

i = po+((Vi∩V ∗
i , σ−i), i) ⊆ po+((V ∗

i , σ−i), i) = po+(σ′, i)
so, by PA, fσ �i fσ′ . ��
Note that if V is the classic, totally ordered set of monetary values and the winner
chooses the minimum price from po+, then Mechanism 1 says: (i) if the maximal
offer v1 is submitted by a single bidder b, then the price paid is the second best
offer, v2, and the winner may be either b or any of the bidders that offered v2;
(ii) if two or more bidders offer v1, then the winner is one of those agents and
the price paid is v1. This variation of second price auctions affects the probability
of winning, not the outcome. It is truthful for any number of maximal offers, so
Vickrey’s uniqueness assumption can be dropped. This improvement is due to the
extended sets cw+ and po+ that are insensitive to overbidding.

5 Second Family of Mechanisms

A drawback of Mechanism 1 is that the winner has no incentive to maximize
its choice value(σ, i); on the contrary, i may prefer to return a single value to
hide its preferences from the auctioneer, which makes Phase 3 useless. In the
following, we tackle this limitation by having the mechanism act like a trusted
third party that optimizes the outcome using the preferences of all agents (of
course agents may lie).

Mechanism 2’s input space Σ consists of all σ = 〈〈Va,≤a〉, 〈V1,≤1〉, . . . ,
〈Vn,≤n〉〉 where, for each agent x ∈ B ∪ {a}, Vx ⊆ V is the set of x’s offers
and ≤x is a preference relation over V. Each Vi is assumed to be upward-closed
w.r.t. the corresponding ≤i, that is, if v ≤i w and v ∈ Vi then w ∈ Vi.

We decompose the mechanism into a deterministic module res : Σ → P(B ×
V) and a stochastic module smod : P(B ×V) → Δ(B ×V). Intuitively, res(σ)
returns the set of all eligible adjudgements (i, v) where i awards the auction by
providing the value v. Thus, the set of candidate winners is formally defined as
cw(σ) = {i ∈ B | ∃v ∈ V (i, v) ∈ res(σ)}. Once the deterministic module has
returned a set of all the possible results res(σ) = P , the mechanism draws a
final result (i, v) ∈ P according with the distribution smod(P ).4 In particular,
smod does not enable to draw a rejected pair; hence, it returns a distribution
that assigns positive values to the elements of res(σ) only. Finally, a mechanism
is defined as the composition mech = smod ◦ res : Σ → Δ(B ×V). Notice that,
differently from Mechanism 1, once an input σ is provided to mech, a unique
winner and value are returned without any further interaction with the parties.

Let po(σ, i) be defined as in Sec. 4; value(σ, i) is directly calculated by the
mechanism by means of the preference relation ≤i provided in the input σ,
value(σ, i) = maxi[po(σ, i)]. Then, as in the 3rd phase of Mechanism 1, the ≤a-
maximal values v ∈ value(σ, i) are selected and paired with i, hence res(σ) =
{(i, v) ∈ B ×V | v ∈ maxa[value(σ, i)]}.

4 This can be regarded as an instance of the stochastic outputs f ∈ Δ(B,P(V)) of
Sec. 2 by identifying each (i, v) with (i, {v}).
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It can be seen that (i) res is robust in the sense that whenever there exists
an admissible result adm(σ) �= ∅, then res does not fail (i.e. res(σ) �= ∅); (ii) res
generalizes the standard second-price mechanism: When ≤x is the same total
order for all x ∈ B and ≤a is the opposite of ≤x, we obtain res(σ) = {(i, v)},
where Vi contains the maximal bid, and v is the second-best bid.

In what follows, we are interested in two particular stochastic modules that
we call totally random module, smod t, and candidate-value random module,
smodcv. The former makes each element in res(σ) equiprobable. Formally, given
res(σ) = P , smod t returns the distribution f = smod t(P ) over B ×V defined
as follows: f((i, v)) = 1

|P | if (i, v) ∈ P , where |P | is as usual the cardinality of

P , 0 otherwise. Then, the probability of winning is defined as

pw t(σ, i) =
∑

(i,v)∈B×V f((i, v)) = |P i|
|P | ,

where P i restricts P to the pairs of type (i, v), for some v ∈ V. Notice that
smod t does not equally distribute the probability of winning over the set cw(σ) of
candidate winners. For example, if res(σ) = {(1, v), (1, v′), (2, w)}, then pw t(1) =
2
3 whereas pw t(2) = 1

3 .
The candidate-value random module, instead, returns a distribution over B×

V that makes the probability of winning equal for all the candidate winners.
Formally, given res(σ) = P and g = smodcv(P ), we have

g((i, v)) =

{ 1
|cw(σ)|·|P i| if (i, v) ∈ P

0 otherwise.

Clearly, we have that the probability of winning is: pw cv(σ, i) = 1
|cw(σ)| .

Strategic Reasoning. An auction can be seen as a game where each agent has
its own private set of admissible values and preference relation 〈V ∗

x ,≤∗
x〉, but it

can possibly lie if this provides a better result. In this perspective, the input
σ ∈ Σ is a strategy profile and mech(σ) is the outcome. Here, we consider the
viewpoint of the bidders where a particular 〈Va,≤a〉 is fixed in σ and each bidder
i ∈ B plays 〈Vi,≤i〉.

In order to act strategically, a bidder has to compare different outcomes, which
means “lifting” a preference relation ≤∗

i over V to a preference relation �i over
output distributions, i.e., elements of Δ(B×V). This will be done in two steps.
In the first step, we define the preference relation over pairs in B ×V.

Definition 1. Given the pair 〈V ∗
i ,≤∗

i 〉 for the bidder i, the extension of ≤∗
i over

the set of outputs B × V is defined as follows, for all j, h �= i and v, w ∈ V:
(i) (i, v) ≤∗

i (i, w) iff v ≤∗
i w, (ii) (j, v) ≤∗

i (h,w) and (h,w) ≤∗
i (j, v), (iii)

(j, w) <∗
i (i, v) if v ∈ V ∗

i , and (i, v) <∗
i (j, w) otherwise.

Intuitively, each bidder i cares for its own outputs (i, v), according to its pref-
erence ≤∗

i . Moreover, admissible values are better than values assigned to the
other bidders, whereas non-admissible values are judged as a loss — hence, the
bidder would prefer to abandon the auction. Once we have defined a preference
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over outputs (j, v) ∈ B ×V, we do not need to look inside them anymore and
use y, z, possibly with subscripts, as typical letters to denote them.

In the second step we lift the preference relation to distributions in Δ(B×V).
In the following, given two probability distributions f, g ∈ Δ(B ×V) and α ∈
[0, 1], αf+(1−α)g denotes the convex combination such that (αf+(1−α)g)(z) =
αf(z) + (1 − α)g(z). Moreover, for a preference relation �i, f ∼i g means that
f �i g and g �i f and f ≺i g means that f �i g and g ��i f . For y ∈ B ×V,
we denote by [y] the distribution that assigns 1 to y.

Definition 2. Given 〈V ∗
i ,≤∗

i 〉, a partial preorder �i over Δ(B ×V) is a pref-
erence relation for i iff

1. for all j, h ∈ B and v, w ∈ V, [(j, v)] �i [(h,w)] iff (j, v) ≤∗
i (h,w) (proper

lifting);
2. if f ≺i g and 0 ≤ α < β ≤ 1, then αg + (1 − α)f ≺i βg + (1 − β)f ;
3. if f1 �i g1, f2 �i g2, and 0 ≤ α ≤ 1, then αf1 +(1−α)f2 �i αg1+(1−α)g2;
4. if f1 ≺i g1, f2 �i g2, and 0 ≤ α ≤ 1, then αf1 +(1−α)f2 ≺i αg1+(1−α)g2;
5. if 0 ≤ α ≤ 1, and αf1 + (1 − α)f2 ≺i αg1 + (1 − α)g2, then there exist

j, k ∈ {1, 2} such that fj ≺i gk.

The first of the above axioms connects �i with the preference over pairs (i, v)
introduced in Definition 1. Axioms 2-4 are borrowed from classic decision the-
ory [8]. Finally, Axiom 5 states a necessary condition for strictly preferring a
mixed distribution over another one. When preference relations are assumed to
be linear orders, as in classical decision theory, Axiom 5 is a consequence of
Axioms 2-4. Distributions f of the type αf1 +(1−α)f2 can be seen as a random
choice which picks f1 with probability α and f2 with probability 1 − α. Com-
paring such distribution with another one g of the same type αg1 + (1 − α)g2
encompasses four possible draws: (f1, g1), (f1, g2), (f2, g1), and (f2, g2). If there
is no draw in which the second component is better than the second, Axiom 5
requires that g is not strictly preferred to f .

For a distribution f ∈ Δ(B×V), we denote by supp(f) the support of f , i.e.,
the set of items to which f assigns positive probability. The following result can
be proven by induction on the total size of the two supports of f and g.

Lemma 1. Let f, g ∈ Δ(B × V) be such that, for all x ∈ supp(f) and y ∈
supp(g), x �≶i y (resp., x �≤∗

i y). Then, f �≶i g (resp., f �≺i g).

Truthfulness. As seen in Sec. 3, if we assume that two or more bidders can
provide the same bid, even standard second-price mechanisms are not truthful.
Since standard second-price mechanisms is a particular case of mech, in general
mech is not truthful, either. However, some aspects deserve attention: First, by
not playing truthfully a bidder may increase its probability of winning but it
cannot obtain a better value. Second, bluffing is profitable only if bids include
some value which is not admissible for the bidder. The following theorems show
that the first aspect holds in general (Theorem 3), whereas the second one de-
pends on which stochastic module is adopted. In particular, by adopting the
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candidate-value random module, an analogue of Theorem 1 holds (Theorem 4).
On the contrary, Theorem 5 shows that with the totally random module a bidder
i can safely profit from lying.

In this section we obtain a weaker form of truthfulness than in Section 4:
whereas Theorem 1 states that being truthful is as good as lying (mech(σ) �i

mech(σ∗), where σ∗ is a truthful profile), the forthcoming Theorem 4 states
that lying is not strictly better than telling the truth (mech(σ∗) �≺i mech(σ)),
i.e. truthful and non-truthful strategies may lead to incomparable outcomes. In
the following, let σ∗i = 〈V ∗

i ,≤∗
i 〉. First we prove that bidders cannot obtain better

values by deviating from truthful strategies.

Theorem 3. Let σ = (σi, σ−i) ∈ Σ be an input and σ∗ = (σ∗i , σ−i). There do
not exist (i, v) ∈ res(σ) and (i, w) ∈ res(σ∗), such that w <∗

i v.

Proof. Let S = {v ∈ Va | ∀w ∈ adm(σ−i), v �<a w}, A = max≤i S and A∗ =
max≤∗

i
S. Clearly, there do not exist v ∈ A and w ∈ A∗, such that w <∗

i v. By def-
inition and upward-closure of Vi and V ∗

i , value(σ, i) ⊆ A and value(σ∗, i) ⊆ A∗.
Then, thesis immediately follows from the fact that res(σ, i) ⊆ {i} × value(σ, i)
and res(σ∗, i) ⊆ {i} × value(σ∗, i). ��
Theorem 4 proves that using the candidate-value random module, a bidder i
can improve σ∗i (which means excluding some candidate winner, by Theorem 3)
only by declaring a value not in V ∗

i (which introduces the possibility of a loss).
On the contrary, Theorem 5 shows that with the total random module, i might
profitably adopt a non-truthful strategy σi with no risks (as Vi ⊆ V ∗

i ). Lemma 2
is used in the proof of Theorem 4.

Lemma 2. Let σ = (σi, σ−i) ∈ Σ be an input and σ∗ = (σ∗i , σ−i). If Vi ⊆ V ∗
i ,

then pw cv(σ, i) ≤ pwcv(σ∗, i).

Theorem 4. Let mech = smodcv ◦ res, σ = (σi, σ−i) ∈ Σ be a strategy profile
and σ∗ = (σ∗i , σ−i). If Vi ⊆ V ∗

i , then mech(σ∗) �≺i mech(σ).

Proof. Let f∗ = mech(σ∗) and f = mech(σ). Split f∗ (resp., f) into the sub-
distribution f∗i that assigns probability to the pairs (i, v) and the sub-distribution
f∗−i that assigns probability to the pairs (j, v), for j �= i, so that f∗ = α·f∗−i+(1−
α)·f∗i and f = β ·f−i+(1−β)·fi. Since 1−α = pw cv(σ∗, i) and 1−β = pw cv(σ, i),
by Lemma 2 it holds that α ≤ β. Then

f = α · f−i + (β − α) · f−i + (1− β) · fi = α · f−i + (1− α)
(β − α

1− α
· f−i +

1− β

1− α
· fi

)
= α · f−i + (1− α)f ′.

Now, by Def. 1, f−i ∼i f
∗
−i and f−i ≺i f

∗
i . Assume by contradiction that f∗ ≺i f .

By applying Axiom 3 twice, we have f∗i ≺i f
′. By Axiom 5, f∗i ≺i f−i or f∗i ≺i fi.

The former is an immediate contradiction. The latter is a contradiction, too,
because by Theorem 3 we can apply Lemma 1 to f∗i and fi, and obtain f∗i �≺i fi.

��
Theorem 5. Let mech = smod t◦res, there exists a strategy profile σ = (σi, σ−i)
∈ Σ such that Vi ⊆ V ∗

i and mech(σ∗) ≺i mech(σ), where σ∗ = (σ∗i , σ−i).
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6 Related Work

Traditionally, neither partial nor heterogeneous preferences over auction bids
are considered [10,9]. In economic models, preferences are typically linearized
through utility functions (e.g. [2]); moreover, it is typically assumed that pref-
erences are already almost total orders (i.e. weak orders) [5]. Partial preferences
are first class citizens in mechanisms without money; usually results on incen-
tive compatibility are negative, e.g. the Gibbard-Satterthwaite theorem in social
choice theory ([9,11]). Second-price auctions have been generalized to partial
preferences in [3] according to principles (a) and (b) (cf. Sec. 4). That approach
is based on a bid domain that represents only information disclosures, and two
ad hoc preference relations that are not suitable for modelling service cost, QoS,
functional differences, etc, as discussed in [3]. Our mechanisms, instead, are gen-
eral enough to cover all these features and a much wider range of preferences.

In [7] a generic model for matching with contracts (using a doctor-hospital
metaphor) is introduced. If offers are made by doctors, hospital preferences sat-
isfy the law of aggregate demand, and doctors are substitutes, then revealing the
doctors’ true preferences is a dominant strategy. However definitions and results
rely on the assumption that such preferences are total orders, and if any of the
above hypotheses is dropped, then truthfulness does not hold.

Finally, [6] introduces Vickrey auctions without payments, using qualitative
preference relations. Auctioneers and bidders have independent preferences, as
in our framework; moreover, infinite bid domains are considered. There are three
major differences, though: First, the preference relation of the auctioneer is re-
stricted to total preorders (actually, plain linear orders in the finite case), and
the auction’s definition (based on a pretty standard notion of second best offer)
is not well-defined for the unrestricted partial preferences we deal with. Second,
in [6] the auctioneer’s preferences must be published in advance, while we admit
games—such as Mechanism 1—where preferences can be kept private (the key
is defining bids as sets of alternative values). Third, in [6] the tie-breaking over
multiple maximal offers is dealt with by assuming the auctioneer’s preferences
to be equipeaked (all local maxima are also global maxima). Using cw+ and
po+, instead, we can prove truthfulness for all superweak auctioneer preference
orders, that cover all the preference orders of [6] as a special case. Moreover, we
prove weaker forms of truthfulness for unrestricted partial preferences.

7 Conclusions

When the preferences on bids are partial and heterogeneous, generalizing sec-
ond price auctions in a way that preserves truthfulness is a nontrivial task. The
approach based on linearizing preferences leaves a number of problems open (cf.
Sec. 3). The generalization of the second price notion based on principles (a) and
(b) (cf. Sec. 4), in general, does not yield truthful mechanisms, since overbidding
may be profitable in some contexts. Still, overbidding yields potential losses, and
if risks are higher than potential gain, then the truthful strategy is dominant.
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These results hold for two different kinds of mechanism: Mechanism 1 does not
require agents to publish their preferences, but the only guarantee for the auc-
tioneer is that the outcome is not worse than any of the offers of non-winners
(by principle (b)). The instances of Mechanism 2, instead, need preferences to be
disclosed; however, they yield a ≤a-maximal value from the ≤i-maximal options
of winner i. Mechanism 1 is truthful in a stronger sense: telling the truth is at
least as good as any other strategy, while in Mechanism 2 telling the truth is one
of possibly many, incomparable optimal strategies; moreover, the winner must
be chosen with some care to achieve truthfulness. Both mechanisms are robust,
that is, they introduce no additional transaction failures. In Mechanism 1 we ex-
perimented with extended sets of candidate winners and possible outcomes (cw+

and po+) that induce unconditional truthfulness when the auctioneer’s prefer-
ence relation ≤a is “layered” (superweak order). This approach applies also to
the classical scenarios based on monetary payments where multiple optimal of-
fers may occur (they are explicitly excluded in classical truthfulness proofs); the
auctioneer’s outcome is at least as good as in standard second-price auctions.
We expect similar techniques to yield analogous results in Mechanism 2.
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Abstract. Let G be a finite undirected graph. A vertex dominates itself
and its neighbors in G. A vertex set D is an efficient dominating set (e.d.
for short) of G if every vertex of G is dominated by exactly one vertex of
D. The Efficient Domination (ED) problem, which asks for the existence
of an e.d. in G, is known to be NP-complete even for very restricted graph
classes.

In particular, the ED problem remains NP-complete for 2P3-free graphs
and thus for P7-free graphs. We show that the weighted version of the
problem (abbreviated WED) is solvable in polynomial time on various
subclasses of P7-free graphs, including (P2 + P4)-free graphs, P5-free
graphs and other classes.

Furthermore, we show that a minimum weight e.d. consisting only of
vertices of degree at most 2 (if one exists) can be found in polynomial
time. This contrasts with our NP-completeness result for the ED problem
on planar bipartite graphs with maximum degree 3.

Keywords: efficient domination, Pk-free graphs, polynomial-time algo-
rithm, robust algorithm.

1 Introduction

Packing and covering problems in graphs and hypergraphs and their relationships
belong to the most fundamental topics in combinatorics and graph algorithms
and have a wide spectrum of applications in computer science, operations re-
search and many other fields. Packing problems ask for a maximum collection of
objects which are not “in conflict”, while covering problems ask for a minimum
collection of objects which “cover” some or all others. A good example is the
Exact Cover Problem (X3C [SP2] in the monograph by Garey and Johnson [19])
asking for a subset F ′ of a set family F over a ground set, say V , covering every
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vertex in V exactly once. It is well known that this problem is NP-complete even
for set families containing only 3-element sets (see [19]) as shown by Karp [21].

The following variant of the domination problem is closely related to the
Exact Cover Problem: Let G = (V,E) be a finite undirected graph. A vertex
v dominates itself and its neighbors. A vertex subset D ⊆ V is an efficient
dominating set (e.d. for short) of G if every vertex of G is dominated by exactly
one vertex in D. Obviously, D is an e.d. of G if and only if the subfamily of all
closed neighborhoods of vertices in D is an exact cover of the vertex set of G.
Note that not every graph has an e.d.; the Efficient Dominating Set (ED)
problem asks for the existence of an e.d. in a given graph G.

The notion of efficient domination was introduced by Biggs [3] under the name
perfect code. In [1,2], among other results, it was shown that the ED problem is
NP-complete. It is known that ED is NP-complete even for bipartite graphs [36],
chordal graphs [36], planar bipartite graphs [29], chordal bipartite graphs [29],
and planar graphs with maximum degree 3 [16,22]. Efficient dominating sets are
also called independent perfect dominating sets in various papers, and a lot of
work has been done on the ED problem which is motivated by various applica-
tions, among them coding theory and resource allocation in parallel computer
networks; see, e.g., [1–3, 13, 24–26,29, 32, 35, 36].

In this paper, we will also consider the weighted version of the ED problem:

Weighted Efficient Domination (WED)

Instance: A connected graph G = (V,E) with vertex weights ω : V → N.
Task: Find an e.d. of minimum total weight,

or determine that G contains no e.d.

The WED (and consequently the ED) problem is solvable in polynomial time for
trees [35], cocomparability graphs [10, 13], split graphs [11], interval graphs [12,
13], circular-arc graphs [12], permutation graphs [24], trapezoid graphs [24,
25], bipartite permutation graphs [29], distance-hereditary graphs [29], block
graphs [36] and hereditary efficiently dominatable graphs [32].

For a set F of graphs, a graph G is called F-free if G contains no induced
subgraph from F . For two graphs F and G, we say that G is F -free if it is
{F}-free. Let Pk denote a chordless path with k vertices, and let Pi +Pj denote
the disjoint union of Pi and Pj . We write 2Pi for Pi + Pi. From the proof of
the NP-completeness result for chordal graphs in [36] it follows that for 2P3-free
graphs, the ED problem remains NP-complete and thus, it is also NP-complete
for P7-free graphs.

A set M of edges in a graph G is an efficient edge dominating set of G
if and only if it is an e.d. in the line graph L(G) of G (these sets are also
called dominating induced matchings in some papers). It is known that deciding
if a given graph has an efficient edge dominating set is NP-complete, see e.g.
[4, 8, 9, 20, 28, 30]. Hence, we have:

Corollary 1. For line graphs, the ED problem is NP-complete.
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Since line graphs are claw-free, ED is NP-complete for claw-free graphs. More-
over, we mentioned already that ED is NP-complete for bipartite graphs (and
thus for triangle-free graphs) and for chordal graphs (and thus for Ck-free graphs
where Ck is a cycle of order k ≥ 4). Therefore, if F contains an induced cycle
or claw then ED is NP-complete on F -free graphs. This is why we subsequently
consider F -free graphs where F is cycle- and claw-free, i.e., a disjoint union of
paths.

In this paper, we present polynomial-time algorithms for the WED problem
for various subclasses of 2P3-free graphs as well as of P7-free graphs and also
sharpen one of the NP-completeness results by showing that the ED problem
remains NP-complete for planar bipartite graphs of maximum degree 3. Most of
our algorithms are robust in the sense of [34]: For the algorithm working on a
given graph class C, it is not necessary to recognize whether the input graph is
in C; the algorithm either solves the problem or finds out that the input graph is
not in C. For the class of P5-free graphs, we give two different polynomial-time
algorithms for ED which lead to incomparable time bounds. The algorithms are
formulated as search algorithms for WED, but with minor modifications, all e.d.s
also can be enumerated.

Contrary to the above NP-completeness result on planar bipartite graphs of
maximum degree 3, we show that it can be decided in polynomial-time whether
an input graph G contains an e.d. D containing only vertices of degree at most
2 in G, and if this is the case, such an e.d. of minimum weight can also be found
efficiently.

Due to space limitation, we omit most of the proofs and some procedures;
see [7] for a full version of this paper.

2 Basic Notions and Results

All graphs considered in this paper will be finite, undirected and simple (i.e.,
without loops and multiple edges). For a graph G, let V (G) denote its vertex set
and E(G) its edge set; for short, let V = V (G) and E = E(G). Let |V | = n and
|E| = m. A graph is nontrivial if it has at least two vertices. For a vertex v ∈ V ,
N(v) = {u ∈ V | uv ∈ E} denotes its open neighborhood, and N [v] := {v}∪N(v)
denotes its closed neighborhood. The degree of a vertex x in a graph G is d(x) :=
|N(x)|. A vertex v sees the vertices in N(v) and misses all the others. A vertex
u is universal for G = (V,E) if N [u] = V . For standard graph notions such as
independent sets, complement graph, and connected components we refer to [5].

Let δG(v, w) (δ(v, w) for short if G is clear from the context) denote the
distance between v and w in G. The square of a graph G = (V,E) is the graph
G2 = (V,E2) such that uv ∈ E2 if and only if δG(u, v) ∈ {1, 2}. In [6,23,32], the
following relationship between the ED problem on a graph G and the maximum
weight independent set (MWIS) problem on G2 is used:

Lemma 1. Let G = (V,E) be a graph and ω(v) := |N [v]| a vertex weight func-
tion for G. Then the following are equivalent for any subset D ⊆ V :
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(i) D is an efficient dominating set in G.
(ii) D is a (maximum weight) independent set in G2 with ω(D) = |V |.

Thus, the ED problem on a graph class C can be reduced to the MWIS problem
on the squares of graphs in C. In Section 5, we will give an example for this
reduction which leads to a polynomial-time solution for ED on P5-free graphs;
for most classes, however, the direct way for ED is more efficient.

Given a graph G = (V,E) and a vertex v ∈ V , we define the distance levels
Ni(v) = {w ∈ V | δ(v, w) = i} for all i ∈ N. If v is fixed, we denote Ni(v) by Ni.

3 The WED Problem for 2P2-Free Graphs

A graph G = (V,E) is a split graph if V can be partitioned into a clique C and
an independent set I with C ∩ I = ∅. In [11], the WED problem (with vertex
and edge weights) was solved in linear time for split graphs.

Since a graph is a split graph if and only if it is {2P2, C4, C5}-free [17], 2P2-free
graphs generalize split graphs.

Theorem 1. For 2P2-free graphs, the WED problem can be solved in linear time
O(n + m).

For showing Theorem 1, we need some definitions and preparing steps; see [18]
for the following basic notions on modular decomposition. A set H of at least
two vertices of a graph G is called homogeneous if H �= V (G) and every vertex
outside H is either adjacent to all vertices in H , or to no vertex in H . Obviously,
H is homogeneous in G if and only if H is homogeneous in the complement
graph G. A graph is prime if it contains no homogeneous set. A homogeneous
set H is maximal if no other homogeneous set properly contains H . It is well
known that in a connected graph G with connected complement G, the maximal
homogeneous sets are pairwise disjoint and can be determined in linear time
(see, e.g., [31]). The characteristic graph G∗ of G results from G by contracting
each of the maximal homogeneous sets H of G to a single representative vertex
h ∈ H , and connecting two such vertices by an edge if and only if they are
adjacent in G. It is well known that G∗ is a prime graph.

Let G be a connected 2P2-free graph. If G is not connected, then the existence
of an e.d. D in G implies |D| = 1. Thus, in this case, we have to test whether
G has a universal vertex. Hence, from now on assume that G is connected. The
characteristic graph G∗ of G is well-defined and prime.

If G has an e.d. D, then for every homogeneous set H of G: |H ∩D| ≤ 1. (1)

Proof of (1): Assume that there is a homogeneous set H of G and d, d′ ∈ D with
d �= d′ and d, d′ ∈ H . Since G is connected, there is a vertex x ∈ V \ H with
dx ∈ E and d′x ∈ E – a contradiction to the e.d. property. ��
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If G has an e.d. D, then no d ∈ D is in a homogeneous set of G. (2)

Proof of (2): Assume that there is d ∈ D in a homogeneous set H . Let x ∈ H be
another vertex in H . If dx �∈ E, there must be d′ ∈ D with d′ �= d and xd′ ∈ E.
By (1), d′ �∈ H . Since H is a homogeneous set, dd′ ∈ E – a contradiction. Hence,
dx ∈ E.

Since G is connected, G has no universal vertex and thus |D| > 1. Let d′ ∈ D
with d′ �= d. By (1), d′ �∈ H . Since G is connected, d′ has at least one neighbor,
say x′. Since D is an e.d., dd′ �∈ E and hence x′ �∈ H . By the e.d. property and
since H is a homogeneous set, xx′ �∈ E and dx′ /∈ E. Hence, d, x, d′, x′ induce a
2P2 in G – a contradiction. ��

Next we claim:

For every d ∈ D with |N(d)| ≥ 2, N(d) is a homogeneous set in G. (3)

Proof of (3): Assume that for d ∈ D with |N(d)| ≥ 2, N(d) is not homogeneous.
Then there are x, y ∈ N(d), and z /∈ N(d) such that xz ∈ E and yz /∈ E. Since
z /∈ N(d) and, by the e.d. property, z /∈ D, there is a vertex d′ ∈ D with d′ �= d
and d′z ∈ E, but now, d, y, d′, z induce a 2P2, a contradiction. ��
Furthermore,

if D is an e.d. of G, then D is an e.d. of G∗. (4)

Proof of (4): Let D be an e.d. of G. By (2), no d ∈ D is in a homogeneous set of
G. Therefore, all vertices of D are contained in G∗. By construction of G∗, set
D is an e.d. in it. ��

Hence, to find an e.d. of a 2P2-free graph G, by (2) and (4), it suffices to check
if G∗ admits an e.d. D∗ such that no vertex of D∗ is in a homogeneous set of G.
To do so, we need the following notion:

A thin spider is a split graph G = (V,E) with partition V = C ∪ I into a
clique C and an independent set I such that every vertex of C has exactly one
neighbor in I and vice versa. We claim:

A nontrivial prime 2P2-free graph G has an e.d. ⇔ G is a thin spider. (5)

Proof of (5): Obviously, in a thin spider the independent set I is an e.d. Con-
versely, let D be an e.d. of G. By the e.d. property, D is an independent set.

We claim that |N(d)| = 1 for every d ∈ D: Since G is connected, |N(d)| ≥ 1
holds for all d ∈ D. Assume that |N(d)| > 1 for some d ∈ D. Then by (3), N(d)
is a homogeneous set – a contradiction.

We claim that G[V \D] is a clique: If there are x, x′ ∈ V \D with xx′ �∈ E,
there are d, d′ ∈ D with xd ∈ E and x′d′ ∈ E. Then by the e.d. property
d, x, d′, x′ induce a 2P2 in G – a contradiction.

Since every vertex of V \D has exactly one neighbor in D, G is a thin spider.
��
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Thus, an algorithm for solving the WED problem on 2P2-free graphs does the
following: For a given nontrivial connected 2P2-free graph G:

1. Check whether G is connected. If not, then check whether G has a universal
vertex. If not, then G has no e.d. Otherwise, minimize ω(u) over all universal
vertices u of G.

2. (Now G and G are connected.) Construct the characteristic graph G∗ of G
and check whether G∗ is a thin spider. If not, then G has no e.d. If G∗ is a
thin spider, then let V (G∗) = C ∪ I be its split partition. Check if any vertex
of I is in a homogeneous set of G. If so, then G has no e.d., otherwise, I is
the minimum weight e.d. for G.

Since modular decomposition can be computed in linear time [31], Theorem 1
follows. Note that it is not known whether 2P2-free graphs can be recognized in
linear time; Theorem 1 assumes that the input graph is known to be 2P2-free.

4 A Direct Solution for the WED Problem on P5-Free
Graphs and Related Classes

Since the ED problem is NP-complete for P7-free graphs, it is interesting to
study the complexity of the WED problem for subclasses of P7-free graphs. We
start with P5-free graphs. Note that the complexity of the closely related MWIS
problem on P5-free graphs is a long standing open problem [27, 33].

Theorem 2. The WED problem is solvable in time O(nm) on P5-free graphs
in a robust way.

To prove Theorem 2, we need some preparing steps: Assume that G admits an
e.d. D. Let v ∈ D and let N1, N2, . . . be its distance levels. If G is P5-free, clearly
Ni = ∅ for all i > 3. Moreover, clearly

N1 ∩D = N2 ∩D = ∅. (6)

Furthermore,

for every edge yz ∈ E in G[N3] : N(y) ∩N2 = N(z) ∩N2. (7)

Proof of (7): Assume without loss of generality that there is x ∈ (N(y) \N(z))∩
N2. Let w ∈ N(x) ∩N1. Then v, w, x, y, z is a P5 in G—a contradiction. ��
Let H be a component of G[N3]. By (6) and because Ni = ∅ for all i > 3, all
vertices of N3 must be dominated by vertices in D ∩N3 and by (7), all vertices
of H have at least one common neighbor in N2. Hence,

H contains a nonempty set of vertices UH which are universal in H, (8)

and since the choice of a universal vertex of H for D is independent from the
choice in the other components of G[N3], we may assume that

for every component H,D contains a vertex of UH with minimum weight. (9)
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By (6), the vertices of N2 must be dominated by vertices of N3, hence every
vertex of N2 has at least one neighbor in N3. Together with (7) and (9) this
implies that

for all w ∈ N2, N(w) ∩N3 is a component of G[N3], (10)

because otherwise a vertex of N2 would have two neighbors in D.
Conversely:

Claim 1 If D ⊆ V (G) such that for every w ∈ N2, N(w) ∩ N3 is a connected
component of G[N3], and D contains a universal vertex u of every component of
G[N3], then D ∪ {v} is an e.d. of G.

Proof. Clearly, the assumptions imply that D is an independent set. Moreover,
D contains no vertices with common neighbors, because v has distance 3 to
all other vertices of D and if there are two vertices in D ∩ N3 with a common
neighbor w, then w ∈ N2 by construction, contradicting the assumption that
N(w)∩N3 is a connected component of G[N3]. All vertices of N1 are connected
to v, all vertices in N2 have a neighbor in D∩N3 and all vertices in N3 \D have
a neighbor in D. Hence, D is dominating, and thus an e.d. ��

Claim 1 enables us to give the following algorithm:

Algorithm: Robust-P5-Free-WED

Input: A connected graph G = (V,E) with vertex weights ω : V → N.
Output: One of the following: An e.d. D of G of minimum weight, or a proof
that G admits no e.d., or a P5 in G.

1. Set D := ∅.
2. For every vertex v ∈ V , do

2.1. Determine the distance levels N1, N2, . . . of v.
2.2. If N4 �= ∅ then Stop—G is not P5-free.
2.3. Find the components H1, . . . , Hk of G[N3], and for every Hi let Ui

be the set of universal vertices of Hi.
2.4. Check for every w ∈ N2 and every Hi if w sees either every or no

vertex of Hi. If not then Stop—G is not P5-free.
2.5. Check for every w ∈ N2 if there is an Hi such that w sees exactly

the vertices of Hi in N3. If not, then v is an unsuccessful choice—
Continue with next loop iteration.

2.6. Check if every Ui is nonempty. If not, then v is an unsuccessful
choice—Continue with next loop iteration.

2.7. Let ui ∈ Ui of min. weight for every Ui. Set D := D∪{{v, u1, . . . , uk}}.
3. For every D ∈ D, check if D is an e.d. of G and calculate its weight.
4. If D contains no e.d. of G, Stop, otherwise, Return a set D ∈ D that is

an e.d. of G of minimum weight.

A proof that the algorithm is correct and runs in linear time can be found
in [7]. This completes the proof of Theorem 2.
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The technique used in algorithm Robust-P5-Free-WED, that is, testing for
every vertex v if there is an e.d. D with v ∈ D by analyzing the distance levels,
can be extended to some superclasses of P5-free graphs and related classes. The
algorithms and their analysis are much more involved than in the P5-free case;
the details can be found in [7]. The graph S1,2,2 consists of a chordless path
(a, b, c, d, e) and an additional vertex f adjacent to c (i.e., S1,2,2 results from a
claw by subdividing two of the edges by one vertex each). Since S1,2,2 contains
the claw as induced subgraph, the ED problem is NP-complete on S1,2,2-free
graphs.

Theorem 3. For {P6, S1,2,2}-free graphs, the WED problem can be solved in
time O(n2m) by a robust algorithm.

Theorem 3 is mostly motivated by the fact that the complexity of ED is open
for P6-free graphs.

Theorem 4. For {2P3, S1,2,2}-free graphs, the WED problem can be solved in
time O(n5) by a robust algorithm.

Theorem 4 is mostly motivated by the fact that ED is NP-complete for 2P3-free
graphs as well as for S1,2,2-free graphs.

Theorem 5. The WED problem can be solved on (P2 +P4)-free graphs in time
O(nm) by a robust algorithm.

5 Solving the ED Problem via Squares of Graphs

As already mentioned, Lemma 1 gives a close relationship between the ED prob-
lem on G and the MWIS problem on G2. This relationship was used in [32] to
show that the ED problem is polynomially solvable in the class of {S1,2,2, net}-
free graphs, by reducing it to the MWIS problem in claw-free graphs. The
net is the triangle with three pendant edges, that is, the graph (V,E) with
V = {a, b, c, d, e, f} and E = {ab, bc, ca, ad, be, cf}.

This approach can also be used to solve the ED problem in the class of P5-free
graphs. Let P denote an induced copy of P4 in G with vertices a, b, c, d and edges
ab, bc, cd. Then a and d are the endpoints of P , and b and c are the midpoints
of P .

Proposition 1. In a P5-free graph G, midpoints of an induced P4 are not in
any e.d. of G.

Proof. Let G be a P5-free graph having an e.d. D, and let a, b, c, d induce a P4 in
G with edges ab, bc, cd. Assume to the contrary that b ∈ D. Then, since d /∈ D,
there is some d′ ∈ D with dd′ ∈ E. Now, by the e.d. property, a, b, c, d, d′ induce
a P5, a contradiction. ��

Theorem 6. If graph G is P5-free and has an e.d. then G2 is P4-free.
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Proof (sketch). Let G = (V,E) be a P5-free graph having an e.d. D, and assume
to the contrary that G2 contains an induced P4 (a, b, c, d). Then δG(a, b) ≤ 2,
δG(b, c) ≤ 2, and δG(c, d) ≤ 2 while δG(a, c) ≥ 3, δG(a, d) ≥ 3, and δG(b, d) ≥ 3.
Since (a, b, c, d) is a P4 in G2, δG(a, b) = δG(b, c) = δG(c, d) = 1 is impossible.
Thus, there are additional vertices of G in the subgraph G[P ] which lead to the
P4 (a, b, c, d) in G2. If there is only one additional vertex x ∈ G being adjacent
to b and c then P = (a, b, x, c, d) is an induced P5 in G, a contradiction. Thus,
there are at least two additional vertices x, y. If there are only two, say x, y, such
that x sees a and b and y sees b and c then, since G is P5-free, xy ∈ E but now
a, x, y, c, d induce a P5, a contradiction. Thus, the only remaining cases are the
following two:

(1) There are two vertices x, y ∈ G such that P = (a, x, b, c, y, d) is a path in G
with xy ∈ E.

(2) There are three vertices x, y, z ∈ G such that P = (a, x, b, y, c, z, d) is a path
in G with xy, xz, yz ∈ E.

Case (1): We first claim that none of the vertices a, x, b, c, y, d are in D: By
Proposition 1, b, c, x, y /∈ D. Then there is c′ ∈ D with cc′ ∈ E. Suppose that
a ∈ D. Then c′x /∈ E by the e.d. property. Since a, x, b, c, c′ do not induce a P5,
c′b ∈ E follows. Since by Proposition 1, c′ is not a midpoint of a P4 (d, c′, b, x),
it follows that c′d /∈ E. Since c′, b, x, y, d do not induce a P5, c′y ∈ E follows
but now c′ is a midpoint of P4 (b, c′, y, d), a contradiction. Thus, a /∈ D and by
symmetry, also d /∈ D.

Now a, x, b, c, y, d /∈ D. Thus, there is a′ ∈ D with aa′ ∈ E. By the distances in
G2, a′ misses c and d, and thus, there is c′ ∈ D with c′c ∈ E and c′ �= a′. Since
a′ ∈ D is not a midpoint of a P4, a, a′, b, c do not induce a P4 and thus a′b /∈ E.
Since a′, a, x, b, c do not induce a P5, a′x ∈ E and thus by the e.d. property,
c′x /∈ E. Since a′ ∈ D is not a midpoint of a P4, a, a′, y, c do not induce a P4

and thus a′y /∈ E. Since a′, x, y, c, c′ do not induce a P5, c′y ∈ E holds. Since
a′, x, b, c, c′ do not induce a P5, c′b ∈ E but now (b, c′, y, d) is a P4 with midpoint
c′, a contradiction.

Case (2) works with similar arguments as Case (1), but we omit the details due
to space constraints. See [7] for the complete proof. ��

Let T (n,m) be the best time bound for constructing G2 from given graph G.
Using the fact that the MWIS and recognition problems are solvable in linear
time for P4-free graphs [14, 15], we have, by Lemma 1:

Corollary 2. For a given P5-free graph G, the ED problem can be solved in
time T + O(|E(G2)|).

Since G2 can be computed from G using matrix multiplication, this time bound
is incomparable with the O(nm) bound obtained in Theorem 2.
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6 The Bounded-Degree WED Problem

Various NP-completeness results from the literature can be sharpened in the
following way:

Theorem 7. The ED problem is NP-complete on planar bipartite graphs of max-
imum degree 3.

This raises the question about e.d.’s consisting of vertices with bounded degree.
For a non-negative integer k, an e.d. D in a graph G is said to be k-bounded if
every vertex in D has degree at most k in G. For short, a k-bounded e.d. will
also be referred to as a k-b.e.d.. The task of the k-Bounded Weighted Efficient
Domination (k-BWED) problem is to determine whether a given vertex-weighted
graph G admits a k–b.e.d., and if so, to compute one of minimum weight. Clearly,
a graph G admits a 0-b.e.d. if and only if it is edgeless. It is also straightforward
to see that G admits a 1-b.e.d. if and only if each connected component of G
is either K1, K2, or the vertices of degree 1 in it form an ED set. Therefore,
the k-BWED problem is solvable in linear time for k ∈ {0, 1}. On the other
hand, since the ED problem is NP-complete for graphs of maximum degree 3 by
Theorem 7, the k-BWED problem is NP-complete for every k ≥ 3.

Theorem 8. The 2-BWED problem is solvable in polynomial time.

Proofs of Theorems 7 and 8 can be found in [7].

7 Conclusion

In this paper, we studied the Weighted Efficient Domination on F -free graphs in
a systematic way. As described in the introduction, it follows from known results
that ED is NP-complete for F -free graphs whenever F contains a cycle or claw.
Thus, we focus on graphs F that are the disjoint union of paths. Furthermore,
it follows from the proof of the NP-completeness result for chordal graphs in [36]
that ED is NP-complete for 2P3-free graphs and thus for P7-free graphs. We
obtained new polynomial-time results for various subclasses of P7-free graphs
as shown in Figure 1 below. The results for {2P3, S1,2,2}-free and {P6, S1,2,2}-
free graphs complement the polynomial-time result for {S1,2,2, net}-free graphs
from [32].

By previous results, the results of this paper, and some simple observations
(among them the observation that for 3P2-free graphs, ED is solvable in poly-
nomial time), it follows that the complexity of ED for the class of F -free graphs
is known for all graphs F with at most 6 vertices, except for F = P6. Thus, two
of the most challenging related questions seem to be:

(i) What is the complexity of ED for P6-free graphs?
(ii) Can WED be solved in linear time for P5-free graphs?
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(P2 + P7)
-free

P7-free

2P3-free

S1,2,2-free

(P2 + P6)
-free

(P2 + P5)
-free

P6-free

(P2 + P4)
-free

(P2 + P3)
-free

{2P3, S1,2,2}
-free

{P6, S1,2,2}
-free

P5-free

2P2

-free

split

NP-complete open polynomial linear

Fig. 1. The complexity of the Efficient Dominating Set Problem on several graph
classes. The arrows denote graph class inclusions. The results for the grey highlighted
classes are introduced in this paper, and hold for the weighted case of the problem.
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Bringing Order to Special Cases

of Klee’s Measure Problem

Karl Bringmann�

Max Planck Institute for Informatics

Abstract. Klee’s Measure Problem (KMP) asks for the volume of
the union of n axis-aligned boxes in Rd. Omitting logarithmic factors,
the best algorithm has runtime O∗(nd/2) [Overmars,Yap’91]. There are
faster algorithms known for several special cases: Cube-KMP (where all
boxes are cubes), Unitcube-KMP (where all boxes are cubes of equal
side length), Hypervolume (where all boxes share a vertex), and k-
Grounded (where the projection onto the first k dimensions is a Hy-

pervolume instance).

In this paper we bring some order to these special cases by providing
reductions among them. In addition to the trivial inclusions, we establish
Hypervolume as the easiest of these special cases, and show that the
runtimes of Unitcube-KMP and Cube-KMP are polynomially related.
More importantly, we show that any algorithm for one of the special
cases with runtime T (n, d) implies an algorithm for the general case with
runtime T (n, 2d), yielding the first non-trivial relation between KMP
and its special cases. This allows to transfer W[1]-hardness of KMP to
all special cases, proving that no no(d) algorithm exists for any of the
special cases assuming the Exponential Time Hypothesis. Furthermore,
assuming that there is no improved algorithm for the general case of
KMP (no algorithm with runtime O(nd/2−ε)) this reduction shows that
there is no algorithm with runtime O(n�d/2�/2−ε) for any of the special
cases. Under the same assumption we show a tight lower bound for a
recent algorithm for 2-Grounded [Yıldız,Suri’12].

1 Introduction

Klee’s measure problem (KMP) asks for the volume of the union of n axis-
aligned boxes in Rd, where d is considered to be a constant. This is a classic
problem with a long history [2, 10, 11, 15, 17, 18]. The fastest algorithm has
runtime O(nd/2 logn) for d � 2, given by Overmars and Yap [17], which was
slightly improved to nd/22O(log∗ n) by Chan [10]. Thus, for over twenty years there
has been no improvement over the runtime bound nd/2. As already expressed
in [10], one might conjecture that no improved algorithm for KMP exists, i.e.,
no algorithm with runtime O(nd/2−ε) for some ε > 0.
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However, no matching lower bound is known, not even under reasonable com-
plexity theoretic assumptions. The best unconditional lower bound is Ω(n log n)
for any dimension d [11]. Chan [10] proved that KMP is W[1]-hard by giving
a reduction to the k-Clique problem. Since his reduction has k = d/2, we can
transfer runtime lower bounds from k-Clique to KMP, implying that there is no
no(d) algorithm for KMP assuming the Exponential Time Hypothesis (see [16]).
However, this does not determine the correct constant in the exponent. More-
over, Chan argues that since no “purely combinatorial” algorithm with runtime
O(nk−ε) is known for Clique, it might be that there is no such algorithm with
runtime O(nd/2−ε) for KMP, but this does not rule out faster algorithms using,
e.g., fast matrix multiplication techniques.

Since no further progress was made for KMP for a long time, research turned
to the study of the following special cases. For each one we list the asymptotically
fastest results.

• Cube-KMP: Here the given boxes are cubes, not necessarily all with the
same side length. This case can be solved in time O(n(d+2)/3) for d � 2 [6].
In dimension d = 3 this has been improved to O(n log4 n) by Agarwal [1]. In
dimensions d � 2 even the general case can be solved in time O(n logn). As
described in [6], there are simple reductions showing that the case of cubes
is roughly the same as the case of “α-fat boxes”, where all side lengths of a
box differ by at most a constant factor α.

• Unitcube-KMP: Here the given boxes are cubes, all of the same side
length. This is a specialization of Cube-KMP, so all algorithms from above
apply. The combinatorial complexity of a union of unit cubes is O(n�d/2�) [5].
Using this, there are algorithms with runtime O(n�d/2� polylogn) [14] and

O(n�d/2�−1+ 1
�d/2� polylogn) [9]. Again, there is a generalization to “α-fat

boxes of roughly equal size” with the same computational complextiy [6].
• Hypervolume: Here all boxes have a common vertex. Without loss of gen-

erality, we can assume that they share the vertex (0, . . . , 0) ∈ Rd and lie in
the positive orthant Rd

�0. This special case is of particular interest for prac-
tice, as it is used as an indicator of the quality of a set of points in the field of
Evolutionary Multi-Objective Optimization [3, 13, 20, 21]. Improving upon
the general case of KMP, there is an algorithm with runtime O(n log n)
for d = 3 [4]. The same paper also shows an unconditional lower bound of
Ω(n logn) for d > 1, while #P -hardness in the number of dimensions was
shown in [8]. Recently, an algorithm with runtime O(n(d−1)/2 logn) for d � 3
was presented in [19].

• k-Grounded: Here the projection of the input boxes to the first k dimen-
sions is a Hypervolume instance, where 0 � k � d, the other coordinates
are arbitrary. This rather novel special case appeared in [19], where an algo-
rithm with runtime O(n(d−1)/2 log2 n) for d � 3 was given for 2-Grounded.

Note that for none of these special cases W[1]-hardness is known, so there is
no larger lower bound than Ω(n logn) (for constant or slowly growing d), not
even under reasonable complexity theoretic assumptions. Also note that there
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are trivial inclusions of some of these special cases: Each special case can be seen
as a subset of all instances of the general case. As such subsets, the following
inclusions hold.

• Unitcube-KMP ⊆ Cube-KMP ⊆ KMP.
• (k + 1)-Grounded ⊆ k-Grounded for all k.
• d-Grounded = Hypervolume and 0-Grounded = KMP.

This allows to transfer some results listed above to other special cases.

1.1 Our results

We present several reductions among the above four special cases and the general
case of KMP. They provide bounds on the runtimes needed for these variants
and, thus, yield some order among the special cases.

Our first reduction relates Hypervolume and Unitcube-KMP.

Theorem 1. If there is an algorithm for Unitcube-KMP with runtime
TUnitcube-KMP(n, d), then there is an algorithm for Hypervolume with runtime

THypervolume(n, d) � O(TUnitcube-KMP(n, d)).

Note that if Hypervolume were a subset of Unitcube-KMP, then the same
statement would hold, with the constant hidden by the O-notation being 1.
Hence, this reduction can nearly be seen as an inclusion. Moreover, together with
the trivial inclusions this reduction establishes Hypervolume as the easiest of
all studied special cases.

Corollary 1. For all studied special cases, Hypervolume, Unitcube-KMP,
Cube-KMP, and k-Grounded (for any 0 � k � d), we have the unconditional
lower bound Ω(n log n) for any d > 1.

One can find contradicting statements regarding the feasibility of a reduction as
in Theorem 1 in the literature. On the one hand, existence of such a reduction
has been mentioned in [19]. On the other hand, a newer paper [12] contains this
sentence: “Better bounds have been obtained for the KMP on unit cubes ..., but
reducing the hypervolume indicator to such problems is not possible in general.”
In any case, to the best of our knowledge a proof of such a statement cannot be
found anywhere in the literature.

Our second reduction substantiates the intuition that the special cases Cube-

KMP and Unitcube-KMP are very similar, by showing that their runtimes
differ by at most a factor of O(n). Recall that Unitcube-KMP ⊆ Cube-KMP

was one of the trivial inclusions. We prove an inequality in the other direction
in the following theorem.

Theorem 2. If there is an algorithm for Unitcube-KMP with runtime
TUnitcube-KMP(n, d), then there is an algorithm for Cube-KMP with runtime

TCube-KMP(n, d) � O(n · TUnitcube-KMP(n, d)).
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Our third and last reduction finally allows to show lower bounds for all spe-
cial cases. We show an inequality between the general case of KMP and 2k-
Grounded, in the opposite direction than the trivial inclusions. For this, we
have to increase the dimension in which we consider 2k-Grounded.

Theorem 3. If there is an algorithm for 2k-Grounded in dimension d + k
with runtime T2k-Grounded(n, d + k), then there is an algorithm for KMP in
dimension d with runtime

TKMP(n, d) � O(T2k-Grounded(n, d+ k)).

Note that, if we set k = d, the special case 2k-Grounded in d + k dimensions
becomes Hypervolume in 2d dimensions. Since we established Hypervolume

as the easiest variant, the above reduction allows to transfer W[1]-hardness from
the general case to all special cases. Since the dimension is increased only by a
constant factor, even the tight lower bound on the runtime can be transferred
to all special cases.

Corollary 2. There is no no(d) algorithm for any of the special cases Hyper-

volume, Unitcube-KMP, Cube-KMP, and k-Grounded, assuming the Ex-
ponential Time Hypothesis.

We immediately get more precise lower bounds if we assume that no improved
algorithm exists for KMP (no algorithm with runtime O(nd/2−ε)).

Corollary 3. If there is no improved algorithm for KMP, then there is no
algorithm with runtime O(n�d/2�/2−ε) for any of Hypervolume, Unitcube-

KMP, Cube-KMP, and k-Grounded, for any ε > 0.

This shows the first lower bound for all studied special cases that is larger than
Ω(n logn). Note that there is, however, a wide gap to the best known upper
bound of O(n(d+2)/3) for Hypervolume, Unitcube-KMP, and Cube-KMP.

Furthermore, setting k = 1, Theorem 3 immediately implies that the recent al-
gorithm for 2-Grounded with runtime O(n(d−1)/2 log2 n) [19] is optimal (apart
from logarithmic factors and if there is no improved algorithm for KMP).

Corollary 4. If there is no improved algorithm for KMP, then there is no
algorithm for 2-Grounded with runtime O(n(d−1)/2−ε) for any ε > 0.

To simplify our runtime bounds, in some proofs we use the following technical
lemma. Informally, it states that for any k-Grounded algorithm with runtime
T (n, d) we have T (O(n), d) � O(T (n, d)). Note that in this paper we hide by
the O-notation any functions depending solely on d.

Lemma 1. Fix 0 � k � d and c > 1. If there is an algorithm for k-Grounded

with runtime Tk-Grounded(n, d) then there is another algorithm for k-Grounded

with runtime T ′
k-Grounded

(n, d) satisfying

T ′
k-Grounded

(cn, d) � O(Tk-Grounded(n, d)).

Due to space constraints, the proofs of this and other statements can be found
in the full version of this paper [7].
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1.2 Notation and Organization

A box is a set of the form B = [a1, b1]× . . .× [ad, bd] ⊂ Rd, ai, bi ∈ R, ai � bi. A
cube is a box with all side lengths equal, i.e., |b1−a1| = . . . = |bd−ad|. Moreover,
a KMP instance is simply a set M of n boxes. In Cube-KMP all these boxes
are cubes, and in Unitcube-KMP all these boxes are cubes of common side
length. In Hypervolume, all input boxes share the vertex (0, . . . , 0) ∈ Rd, i.e.,
each input box is of the form B = [0, b1] × . . . × [0, bd]. In k-Grounded, the
projection of each input box to the first k dimensions is a Hypervolume box,
meaning that each input box is of the form B = [a1, b1] × . . . × [ad, bd] with
a1 = . . . = ak = 0.

We write the usual Lebesgue measure of a set A ⊆ Rd as vol(A). For sets
R,A ⊆ Rd we write volR(A) := vol(R ∩ A), the volume of A restricted to R.
For a KMP instance M we let U(M) :=

⋃
B∈M B. To shorten notation we write

vol(M) := vol(U(M)) and volR(M) := vol(R ∩ U(M)).
In the next section we present the proof of Theorem 1. In Section 3 we prove

Theorem 2. The proof of Theorem 3 is split into Section 4 and Section 5: We first
give the reduction for 2-Grounded (again split into the case d = 1 and a gener-
alization to larger dimensions) and then generalize this result to 2k-Grounded,
k > 1. We close with an extensive list of open problems.

2 Hypervolume � Unitcube-KMP

In this section we prove Theorem 1 by giving a reduction from Hypervolume

to Unitcube-KMP.
Given an instance of Hypervolume, let Δ be the largest coordinate of any

box. We extend all boxes to cubes of side length Δ, yielding a Unitcube-KMP

instance. In this process, we make sure that the new parts of each box will not lie
in the positive orthant Rd

�0, but in the other orthants, as depicted in Figure 1.

This means that the volume of the newly constructed cubes - restricted to Rd
�0 -

is the same as the volume of the input boxes. To compute this restricted volume,
we compute the volume of the constructed Unitcube-KMP instance once with
and once without an additional cube C = [0, Δ]d. From this we can infer the
volume of the input Hypervolume instance.

C

Δ

Fig. 1. Construction in the proof of Theorem 1
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3 Unitcube-KMP � Cube-KMP

In this section we prove Theorem 2 by giving a reduction from Cube-KMP to
Unitcube-KMP.

Given a Cube-KMP instance, let C be the cube with smallest side length.
We will compute the contribution v of C, i.e., the volume of space that is con-
tained in C but no other cube. Having this, we can delete C and recurse on the
remaining boxes. Adding up yields the total volume of the input instance.

To compute v, we modify each cube such that it becomes a cube of C’s side
length and its restriction to C stays the same, as depicted in Figure 2. Applying
this construction to all input boxes, we get a Unitcube-KMP instance that,
inside C, looks the same as the input Cube-KMP instance. Computing the
volume of this new instance once with and once without C allows to infer v.

v
C

v
C

Fig. 2. Construction in the proof of Theorem 2

4 2-Grounded � KMP

We first show the reduction of Theorem 3 for 2-Grounded, i.e., we show
TKMP(n, d) � O(T2-Grounded(n, d + 1)) by giving a reduction from KMP to
2-Grounded. This already implies Corollary 4 and lays the foundations for the
complete reduction given in the next section.

We begin by showing the reduction for d = 1. As a second step we show how
to generalize this to larger dimensions.

4.1 Dimension d = 1

We want to give a reduction from KMP in 1 dimension to 2-Grounded in 2
dimensions. Note that the latter is the same as Hypervolume in 2 dimensions.
Let M be an instance of KMP in 1 dimension, i.e., a set of n intervals in R. We
will reduce the computation of vol(M) to two instances of 2-Grounded.

Denote by x1 < . . . < xm the endpoints of all intervals in M (if all endpoints
are distinct then m = 2n). We can assume that x1 = 0 after translation. Consider
the boxes

Ai := [m− i− 1,m− i] × [xi, xi+1]
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in R2 for 1 � i � m−1, as depicted in Figure 3. Denote the union of these boxes
by A. Note that the volume of box Ai is the same as the length of the interval
[xi, xi+1]. This means that we took the chain of intervals {[xi, xi+1]} and made
it into a staircase of boxes {Ai}, where each box has the same volume as the
corresponding interval.

x1 x2 x3 x4x5 x6

I

x2

x3

x4

x5

x6

0 = x1

0 1 2 3 4 5

CI

A1

A2

A3

A4

A5

Fig. 3. The left hand side depicts all endpoints 0 = x1 � . . . � x6 of a 1-dimensional
KMP instance. An input interval I is indicated. The right hand side shows the result
of our transformation. Each interval [xi, xi+1] to the left corresponds to a box Ai to
the right. The interval I gets mapped to the box CI . The shaded regions depict the set
A ( , the union of all Ai) and the set T0 ( ).

Now consider an interval I = [xj , xk] ∈M . We construct the box

CI := [0,m− j] × [0, xk],

also shown in Figure 3. Then CI contains the boxes Ai with j � i < k and (its
interior) has no common intersection with any other box Ai. This is easily seen
as Ai ⊆ CI iff m− i � m− j and xi+1 � xk. Hence, for any interval I ∈ M we
constructed a box CI that contains exactly those boxes Ai whose corresponding
interval [xi, xi+1] is contained in I, or in other words

[xi, xi+1] ⊆ I ⇔ Ai ⊆ CI ,

vol([xi, xi+1] ∩ I) = vol(Ai ∩ CI).

From these properties it follows that the volume of CI restricted to A is the
same as the length of I, i.e.,

volA(CI) = vol(I).

Furthermore, considering the whole set M of intervals, the interval [xi, xi+1]
is contained in some interval in M iff the box Ai is contained in some box in
CM := {CI | I ∈M}. This yields

vol(M) = volA(CM ).
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It remains to reduce the computation of volA(CM ) to two 2-Grounded in-
stances. For this we consider

T0 :=
⋃

1�i�m

C[xi,xi].

Informally speaking, T0 consists of all points “below” A, as depicted in Figure 3.
Note that no set Aj is contained in T0. Moreover, we consider the set T1 := T0∪A.
Observe that we can write

T1 =
⋃

1�i�m−1

C[xi,xi+1],

since Ai ⊆ C[xi,xi+1]. Note that both sets T0 and T1 are unions of O(n)
2-Grounded boxes. Informally, T0 is the maximum 2-Grounded instance
that has volA(T0) = 0, and T1 is the minimum 2-Grounded instance with
volA(T1) = vol(A). Now, we can compute volA(CM ) as follows.

Lemma 2. In the above situation we have

volA(CM ) = vol(A) + vol(T0 ∪ U(CM )) − vol(T1 ∪ U(CM )).

Proof. Set U := U(CM ). Using T0 ⊆ T1 and A = T1 \ T0 in a sequence of simple
transformations, we get

vol(T1 ∪ U) − vol(T0 ∪ U) = vol((T1 ∪ U) \ (T0 ∪ U))

= vol((T1 \ T0) \ U)

= vol(A \ U)

= vol(A) − vol(A ∩ U)

= vol(A) − volA(CM ),

which proves the claim. ��

Note that vol(A) =
∑

i vol(Ai) =
∑

i |xi+1 − xi| = |xm − x1| is trivial. Also
note that both sets T0 and T1 are the union of O(n) 2-Grounded boxes, so that
vol(Tb ∪U(CM )) can be seen as a 2-Grounded instance of size O(n), for both
b ∈ {0, 1}. Hence, we reduced the computation of the input instance’s volume
vol(M) to volA(CM ) and further to the 2-Grounded instances vol(T0 ∪
U(CM )) and vol(T1 ∪ U(CM )).

As we have to sort the given intervals first, we get

TKMP(n, 1) � O(T2-Grounded(O(n), 2) + n logn).

Note that this inequality alone gives no new information, as already Klee [15]
showed that TKMP(n, 1) � O(n log n). However, we get interesting results when
we generalize this reduction to higher dimensions in the next section.
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4.2 Larger Dimensions

In this section we show how the reduction from the last section carries over
to larger dimensions, yielding a reduction from KMP in d dimensions to 2-
Grounded in d+1 dimensions. This implies TKMP(n, d) � O(T2-Grounded(n, d+
1)).

Assume we are given a KMP instance M in dimension d. The idea is that we
use the dimension doubling reduction from the last section on the first dimension
and leave all other dimensions untouched. More precisely, for a box B ∈ M let
π1(B) be its projection onto the first dimension and let π∗(B) be its projection
onto the last d − 1 dimensions, so that B = π1(B) × π∗(B). Now follow the
reduction from the last section on the instance M ′ := {π1(B) | B ∈ M}. This
yields sets A, T0, T1, and a box CI for each I ∈ M ′.

We set CB := Cπ1(B) × π∗(B) and CM = {CB | B ∈ M}. A possible way of

generalizing A would be to set A′′ := A×Rd−1. Then we would be interested in
volA′′(CM ), which can be seen to be exactly vol(M). This definition of A′′ is,
however, not simple enough, as it is not a difference of 2-Grounded instances
(unlike A = T1 \ T0). To give a different definition, assume (after translation)
that all coordinates of the input instance are non-negative and let Δ be the
maximal coordinate in any dimension. We set A′ := A × [0, Δ]d−1 and still get
the same volume volA′(CM ) = vol(M). This allows to generalize T0 and T1 to
T ′
0 := T0 × [0, Δ]d−1 and T ′

1 := T1 × [0, Δ]d−1, while still having

volA′(CM ) = vol(A′) + vol(T ′
0 ∪ U(CM )) − vol(T ′

1 ∪ U(CM )).

Note that T ′
0 and T ′

1 are also a union of O(n) 2-Grounded boxes, so a volume
such as vol(T ′

0∪U(CM )) can be seen as a 2-Grounded instance. This completes
the reduction and yields the time bound

TKMP(n, d) � O(T2-Grounded(O(n), d + 1) + n logn).

Using the lower bound Ω(n logn) of Corollary 1 we can hide the additional
n logn in the first summand. Moreover, first using the technical Lemma 1 we
can finally simplify this to the statement of Corollary 4,

TKMP(n, d) � O(T2-Grounded(n, d+ 1)).

5 2k-Grounded � KMP

It is left to show the full version of Theorem 3, i.e., to give a reduction from
KMP in dimension d to 2k-Grounded in dimension d+ k. A full proof of this
can be found in the full version of this paper, here we only present an outline.

The first steps of generalizing the reduction from the last section to the case
k > 1 are straightforward. We want to use the dimension doubling reduction from
Section 4.1 on each one of the first k dimensions. For any box B ∈ Rd denote
its projection onto the i-th dimension by πi(B), 1 � i � k, and its projection
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onto dimensions k + 1, . . . , d by π∗(B). We use the reduction from Section 4.1
on each dimension 1 � i � k, i.e., on each instance M (i) := {πi(B) | B ∈ M},

yielding sets A(i), T
(i)
0 , T

(i)
1 , and a box C

(i)
I for each I ∈ M (i).

For a box B ∈ M we now define CB := C
(1)
π1(B) × . . .× C

(k)
πk(B) × π∗(B). This

is a box in Rd+k, it is even a 2k-Grounded box, as its projection onto the first
2k coordinates has the vertex (0, . . . , 0). Let CM := {CB | B ∈ M}. Setting
Ω := [0, Δ] and A := A(1) × . . .×A(k) ×Ωd−k, we now can show the following.

Lemma 3. We have vol(M) = volA(CM ).

The hard part of the reduction that remains to show is that the right hand
side of this can indeed be computed using 2k-Grounded calls, although A is a
non-trivial region.

For 1 � i � k and b ∈ {0, 1} we set T̃
(i)
b := Ω2(i−1) ×T

(i)
b ×Ωd+k−2i. This set

in Ωd+k consists of all points x whose projection to dimensions 2i− 1 and 2i is

contained in T
(i)
b . Note that each set T̃

(i)
b can be written as the union of O(n)

2k-Grounded boxes, since T
(i)
b is the union of 
 = O(n) 2-Grounded boxes in

R2. Thus, we can use an algorithm for 2k-Grounded to compute any volume

of the form vol(T̃
(i)
b ∪ V ), where V is a union of O(n) 2k-Grounded boxes.

Furthermore, define for S ⊆ [k]

DS :=

( ⋃
i∈S

T̃
(i)
1

)
∪

⋃
i∈[k]\S

T̃
(i)
0 .

Note that DS ⊆ DS′ holds for S ⊆ S′. We can express A using the sets DS as
shown by the following lemma.

Lemma 4. We have A =
⋂

1�i�kD{i} \D∅.

Moreover, each DS can be written as the union of O(n) 2k-Grounded instances,

since the same was true for the sets T̃
(i)
b . Hence, we can use an algorithm for

2k-Grounded to compute the volume

HS := vol(DS ∪ U(CM )).

Finally, we show that we can compute volA(CM ) from the HS by an interesting
usage of the inclusion-exclusion principle, finishing the reduction.

Lemma 5. We have volA(CM ) = vol(A) +
∑

S⊆[k](−1)|S|HS .

Proof (Sketch). In this proof we write for short U := U(CM ). Using Lemma 4
and the inclusion-exclusion principle we arrive at

vol(A) − volA(U) = vol(A \ U) = vol

( ⋂
1�i�k

D{i} \ (D∅ ∪ U)
)

=
∑

∅�=S⊆[k]

(−1)|S|+1
vol

( ⋃
i∈S

D{i} \ (D∅ ∪ U)

)
.

Together with HS −H∅ = vol(DS \ (D∅ ∪ U)) = vol

(⋃
i∈S D{i} \ (D∅ ∪ U)

)
and some simplifications, this proves the claim. ��
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6 Conclusion

We presented reductions between the special cases Cube-KMP, Unitcube-

KMP, Hypervolume, and k-Grounded of Klee’s measure problem. These re-
ductions imply statements about the runtime needed for these problem variants.
We established Hypervolume as the easiest among all studied special cases, and
showed that the variants Cube-KMP and Unitcube-KMP have polynomially
related runtimes. Moreover, we presented a reduction from the general case of
KMP to 2k-Grounded. This allows to transfer W[1]-hardness from KMP to
all special cases, proving that no no(d) algorithm exists for any of the special
cases assuming the Exponential Time Hypothesis. Moreover, assuming that no
improved algorithm exists for KMP, we get a tight lower bound for a recent
algorithm for 2-Grounded, and a lower bound of roughly n(d−1)/4 for all other
special cases. Thus, we established some order among the special cases of Klee’s
measure problem.

Our results lead to a number of open problems, both asking for new upper
and lower bounds:

• Is there a polynomial relation between Hypervolume and
Unitcube-KMP, similar to Cube-KMP and Unitcube-KMP, or
do both problems have significantly different runtimes?

• Show that no improved algorithm exists for KMP, e.g., assuming the Strong
Exponential Time Hypothesis, as has been done for the Dominating Set
problem, see [16]. Or give an improved algorithm.

• Assuming that no improved algorithm for KMP exists, we know that the
optimal runtimes of Hypervolume and Cube-KMP/Unitcube-KMP are
of the form ncd·d±O(1), with cd ∈ [1/4, 1/3]. Determine the correct value
of cd.

• Generalize the O(n(d−1)/2 log2 n) algorithm for 2-Grounded [19] to an
O(n(d−k)/2+o(1)) algorithm for 2k-Grounded. This would again be opti-
mal by Theorem 3.

• We showed the relation TKMP(n, d) � O(T2k-Grounded(n, d + k)). Show
an inequality in the opposite direction, i.e., a statement of the form
Tk-Grounded(n, d) � O(TKMP(n, d′)) with d′ < d.
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Abstract. Probabilistic analysis for metric optimization problems has
mostly been conducted on random Euclidean instances, but little is
known about metric instances drawn from distributions other than the
Euclidean.

This motivates our study of random metric instances for optimization
problems obtained as follows: Every edge of a complete graph gets a
weight drawn independently at random. The length of an edge is then
the length of a shortest path (with respect to the weights drawn) that
connects its two endpoints.

We prove structural properties of the random shortest path metrics
generated in this way. Our main structural contribution is the construc-
tion of a good clustering. Then we apply these findings to analyze the
approximation ratios of heuristics for matching, the traveling salesman
problem (TSP), and the k-center problem, as well as the running-time
of the 2-opt heuristic for the TSP. The bounds that we obtain are con-
siderably better than the respective worst-case bounds. This suggests
that random shortest path metrics are easy instances, similar to random
Euclidean instances, albeit for completely different structural reasons.

1 Introduction

For large-scale optimization problems, finding optimal solutions within reason-
able time is often impossible, because many such problems, like the traveling
salesman problem (TSP), are NP-hard. Nevertheless, we often observe that sim-
ple heuristics succeed surprisingly quickly in finding close-to-optimal solutions.
Many such heuristics perform well in practice but have a poor worst-case per-
formance. In order to explain the performance of such heuristics, probabilistic
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analysis has proved to be a useful alternative to worst-case analysis. Probabilistic
analysis of optimization problems has been conducted with respect to arbitrary
instances (without the triangle inequality) [15,23] or instances embedded in Eu-
clidean space. In particular, the limiting behavior of various heuristics for many
of the Euclidean optimization problems is known precisely [35].

However, the average-case performance of heuristics for general metric in-
stances is not well understood. This lack of understanding can be explained by
two reasons: First, independent random edge lengths (without the triangle in-
equality) and random geometric instances are relatively easy to handle from a
technical point of view – the former because of the independence of the lengths,
the latter because Euclidean space provides a structure that can be exploited.
Second, analyzing heuristics on random metric spaces requires an understanding
of random metric spaces in the first place. While Vershik [33] gave an analysis
of a process for obtaining random metric spaces, using this directly to analyze
algorithms seems difficult.

In order to initiate systematic research of heuristics on general metric spaces,
we use the following model, proposed by Karp and Steele [24, Section 3.4]: Given
an undirected complete graph, we draw edge weights independently at random.
Then the length of an edge is the length of a shortest path connecting its end-
points. We call such instances random shortest path metrics.

This model is also known as first-passage percolation, and has been intro-
duced by Broadbent and Hemmersley as a model for passage of fluid in a porous
medium [6, 7]. More recently, it has also been used to model shortest paths in
networks such as the internet [12]. The appealing feature of random shortest
path metrics is their simplicity, which enables us to use them for the analysis of
heuristics.

1.1 Known and Related Results

There has been significant study of random shortest path metrics or first-passage
percolation. The expected length of an edge is known to be Θ(log n/n) [9,21], and
the same asymptotic bound holds also for the longest edge almost surely [18,
21]. This model has been used to analyze algorithms for computing shortest
paths [16, 18, 28]. Kulkarni and Adlakha have developed algorithmic methods
to compute distribution and moments of several optimization problems [25–
27]. Beyond shortest path algorithms, random shortest path metrics have been
applied only rarely to analyze algorithms. Dyer and Frieze, answering a question
raised by Karp and Steele [24, Section 3.4], analyzed the patching heuristic for
the asymmetric TSP (ATSP) in this model. They showed that it comes within
a factor of 1 + o(1) of the optimal solution with high probability. Hassin and
Zemel [18] applied their findings to the 1-center problem.

From a more structural point of view, first-passage percolation has been ana-
lyzed in the area of complex networks, where the hop-count (the number of edges
on a shortest path) and the length of shortest path trees have been analyzed [20].
These properties have also been studied on random graphs with random edge
weights [5, 19]. More recently, Addario-Berry et. al. [1] showed that the number
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of edges in the longest of the shortest paths is O(log n) with high probability,
and hence the shortest path trees have depth O(log n).

1.2 Our Results

As far as we are aware, simple heuristics such as greedy heuristics have not been
studied in this model yet. Understanding the performance of such algorithms is
particularly important as they are easy to implement and used in many appli-
cations.

We provide a probabilistic analysis of simple heuristics for optimization un-
der random shortest path metrics. First, we provide structural properties of
random shortest path metrics (Section 3). Our most important structural con-
tribution is proving the existence of a good clustering (Lemma 3.8). Then we
use these structural insights to analyze simple algorithms for minimum weight
matching and the TSP to obtain better expected approximation ratios compared
to the worst-case bounds. In particular, we show that the greedy algorithm for
minimum-weight perfect matching (Theorem 4.2), the nearest-neighbor heuristic
for the TSP (Theorem 4.3), and every insertion heuristic for the TSP (Theo-
rem 4.4) achieve constant expected approximation ratios. We also analyze the
2-opt heuristic for the TSP and show that the expected number of 2-exchanges
required before the termination of the algorithm is bounded by O(n8 log3 n)
(Theorem 4.5). Investigating further the structural properties of random short-
est path metrics, we then consider the k-center problem (Section 5), and show
that the most trivial procedure of choosing k arbitrary vertices as k-centers yields
a 1 + o(1) approximation in expectation, provided k = O(n1−ε) for some ε > 0
(Theorem 5.2).

2 Model and Notation

We consider undirected complete graphs G = (V,E) without loops. First, we
draw edge weights w(e) independently at random according to the exponential
distribution with parameter 1. (Exponential distributions are technically the
easiest to handle because they are memoryless. However, our results hold also for
other distributions, in particular for the uniform distribution on [0, 1]. We briefly
discuss this in Section 6.) Second, let the distances or lengths d : V ×V → [0,∞)
be given by the lengths of the shortest paths between the vertices with respect to
the weights thus drawn. In particular, we have d(v, v) = 0 for all v ∈ V , we have
d(u, v) = d(v, u) because G is undirected, and we have the triangle inequality:
d(u, v) ≤ d(u, x) + d(x, v) for all u, x, v ∈ V . We call the complete graph with
edge lengths d obtained from random weights w a random shortest path metric.

We use the following notation: Let Δmax = maxe∈E d(e) denote the longest
edge in the random shortest path metric. Let Nv

Δ = {u ∈ V | d(u, v) ≤ Δ} be
the set of all nodes in a Δ-environment of v, and let kvΔ = |Nv

Δ| the number of
nodes around v in a Δ-environment. We denote the minimal Δ such that there
are at least k nodes within a distance of Δ of v by Δv

k. Formally, we define
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Δv
k = min{Δ | kvΔ ≥ k}. Note that v ∈ Nv

Δ for any Δ ≥ 0 because the distance
of v to itself is 0. Consequently, we have Δv

1 = 0 and kv0 ≥ 1.
By Exp(λ), we denote the exponential distribution with parameter λ. By exp,

we denote the exponential function. For n ∈ N, let [n] = {1, . . . , n}, and let
Hn =

∑n
i=1 1/i be the n-th harmonic number.

3 Structural Properties of Shortest Path Metrics

3.1 Random Process

To understand random shortest path metrics, it is convenient to fix a starting
vertex v and see how the lengths from v to the other vertices develop. In this
way, we analyze the distribution of Δv

k.
The values Δv

k are generated by a simple birth process as follows. (The same
process has been analyzed by Davis and Prieditis [9], Janson [21], and also in
subsequent papers.) For k = 1, we have Δv

k = 0. For k ≥ 1, we are looking for
the closest vertex to any vertex in Nv

Δv
k

in order to obtain Δv
k+1. This conditions

all edges (u, x) with u ∈ Nv
Δv

k
and x /∈ Nv

Δv
k

to be of length at least Δv
k −

d(v, u). Otherwise, x would already be in Nv
Δv

k
. The set Nv

Δv
k

contains k vertices.

Thus, there are k · (n − k) connections from Nv
Δv

k
to the rest of the graph.

Consequently, the difference δk = Δv
k − Δv

k−1 is distributed as the minimum
of k(n − k) exponential random variables (with parameter 1), or, equivalently,
as an exponential random variable with parameter k · (n − k). We obtain that

Δv
k+1 =

∑k
i=1 Exp

(
i · (n− i)

)
. (Note that the exponential distributions and the

random variables δ1, . . . , δn are independent.)
Exploiting linearity of expectation and that the expected value of Exp(λ) is

1/λ yields the following theorem.

Theorem 3.1. For any k ∈ [n] and any v ∈ V , we have E
(
Δv
k

)
= 1

n ·
(
Hk−1 +

Hn−1 −Hn−k
)
and Δv

k is distributed as
∑k−1

i=1 Exp
(
i · (n− i)

)
.

From this result, we can easily deduce two known results: averaging over k yields
that the expected length of an edge is Hn−1

n−1 ≈ lnn/n [9,21]. By considering Δv
n,

we obtain that the longest edge incident to a fixed vertex has an expected length
of 2Hn−1/n ≈ 2 · lnn/n [21]. For completeness, the length of the longest edge in
the whole graph is roughly 3 · lnn/n [21].

3.2 Distribution of Δv
k

Let us now have a closer look at the distribution of Δv
k for fixed v ∈ V and

k ∈ [n]. Let F v
k denote the cumulative distribution function (CDF) of Δv

k, i.e.,
F v
k (x) = P(Δv

k ≤ x). A careful analysis of the distribution of a sum of exponential
random variables yields the following two lemmas.

Lemma 3.2. For every Δ ≥ 0, v ∈ V , and k ∈ [n], we have(
1 − exp(−(n− k)Δ)

)k−1 ≤ F v
k (Δ) ≤

(
1 − exp(−nΔ)

)k−1
.



Random Shortest Paths 223

Proof. We have already seen that Δv
k is a sum of exponentially distributed ran-

dom variables with parameters λi = i(n− i) ∈ [(n − k)i, ni] for i ∈ [k − 1]. We
approximate the parameters by ci for c ∈ {n−k, n}. The distribution with c = n
is stochastically dominated by the true distribution, which is in turn dominated
by the distribution obtained for c = n− k.

We keep c as a parameter and obtain the following density function for the sum
of exponentially distributed random variables with parameters c, . . . , (k−1)·c [31,
p. 308ff]:

k−1∑
i=1

⎛⎝ ∏
j∈[k−1]\{i}

j

j − i

⎞⎠ · ci · exp(−cix) =
k−1∑
i=1

(k−1)!
i · (−1)i−1

(i− 1)!(k − 1 − i)!
· ci · exp(−cix)

=

k−1∑
i=1

(
k − 1

i

)
(−1)i−1 · ci · exp(−cix).

Integrating plus the binomial theorem yields

k−1∑
i=1

(
k − 1

i

)(
− exp(−cix)

)
(−1)i−1 · ci · exp(−cix) =

(
− exp(−cx) + 1

)k−1 − 1.

Taking the difference of the function values at Δ and 0 yields
(
1−exp(−cΔ)

)k−1
,

which yields the bounds claimed by choosing c = n− k and c = n. ��

Lemma 3.3. Fix Δ ≥ 0 and a vertex v ∈ V . Then(
1 − exp(−(n− k)Δ)

)k−1 ≤ P
(
kvΔ ≥ k

)
≤

(
1 − exp(−nΔ)

)k−1
.

We can improve Lemma 3.2 slightly in order to obtain even closer lower and
upper bounds. For n, k ≥ 2, combining Lemmas 3.2 and 3.4 yields tight lower
and upper bounds if we disregard the constants in the exponent, namely F v

k (Δ) =(
1 − exp(−Θ(nΔ))

)Θ(k)
.

Lemma 3.4. For all v ∈ V , k ∈ [n], and Δ ≥ 0, we have F v
k (Δ) ≥ (1 −

exp(−(n− 1)Δ/4))n−1 and F v
k (Δ) ≥ (1 − exp(−(n− 1)Δ/4))

4
3 (k−1).

3.3 Tail Bounds for kv
Δ and Δmax

Our first tail bound for kvΔ, which is the number of vertices within a distance of
Δ of a given vertex v, follows directly from Lemma 3.2.

From this lemma we derive the following corollary, which is a crucial ingredient
for the existence of good clusterings and, thus, for the analysis of the heuristics
in the remainder of this paper.

Corollary 3.5. Let n ≥ 5 and fix Δ ≥ 0 and a vertex v ∈ V . Then we have

P
(
kvΔ < min

{
exp (Δn/5) ,

n+ 1

2

})
≤ exp (−Δn/5) .

Corollary 3.5 is almost tight according to the following result.
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Corollary 3.6. Fix Δ ≥ 0, a vertex v ∈ V , and any c > 1. Then

P
(
kvΔ ≥ exp(cΔn)

)
< exp

(
−(c− 1)Δn

)
.

Janson [21] derived the following tail bound for the length Δmax of the longest
edge. A qualitatively similar bound can be proved using Lemma 3.3 and can also
be derived from Hassin and Zemel’s analysis [18]. However, Janson’s bound is
stronger with respect to the constants in the exponent.

Lemma 3.7 (Janson [21, p. 352]). For any fixed c > 3, we have P(Δmax >
c ln(n)/n) ≤ O(n3−c log2 n).

3.4 Stars and Clusters

In this section, we show our main structural contribution, which is a more global
property of random shortest path metrics. We show that such instances can be
divided into a small number of clusters of any given diameter.

From now on, let #(n,Δ) = min{exp(Δn/5), (n+ 1)/2}, as in Corollary 3.5.
If the number kvΔ of vertices within a distance of Δ of v is at least #(n,Δ), then
we call the vertex v a dense Δ-center, and we call the set Nv

Δ of vertices within
a distance of at most Δ of v (including v itself) the Δ-star of v. Otherwise, if
kvΔ < #(n,Δ), and v is not part of any Δ-star, we call the vertex v a sparse Δ-
center. Any two vertices in the sameΔ-star have a distance of at most 2Δ because
of the triangle inequality. If Δ is clear from the context, then we also speak
about centers and stars without parameter. We can bound, by Corollary 3.5, the
expected number of sparse Δ-centers to be at most O(n/#(n,Δ)).

We want to partition the graph into a small number of clusters, each of di-
ameter at most 6Δ. For this purpose, we put each sparse Δ-center in its own
cluster (of size 1). Then the diameter of each such cluster is 0 ≤ 6Δ and the
number of these clusters is expected to be at most O(n/#(n,Δ)).

We are left with the dense Δ-centers, which we cluster using the following
algorithm: Consider an auxiliary graph whose vertices are all Δ-centers. We draw
an edge between two dense Δ-centers u and v if Nu

Δ ∩ Nv
Δ �= ∅. Now consider

any maximal independent set of this auxiliary graph (for instance, a greedy
independent set), and let t be the number of its vertices. Then we form initial
clusters C′

1, . . . , C
′
t, each containing one of the Δ-stars corresponding to the

vertices in the independent set. By the independence, all t Δ-stars are disjoint,
which implies t ≤ n/#(n,Δ). The star of every remaining center v has at least
one vertex (maybe v itself) in one of the C′

i. We add all remaining vertices of Nv
Δ

to such a C′
i to form the final clusters C1, . . . , Ct. Now, the maximum distance

within each Ci is at most 6Δ: Consider any two vertices u, v ∈ Ci. The distance
of u towards its closest neighbor in the initial star C′

i is at most 2Δ. The same
holds for v. Finally, the diameter of the initial star C′

i is also at most 2Δ.
With this partitioning, we have obtained the following structure: We have

an expected number of O(n/#(n,Δ)) clusters of size 1 and diameter 0, and a
number of O(n/#(n,Δ)) clusters, each of size at least #(n,Δ) and diameter
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at most 6Δ. Thus, we have O(n/#(n,Δ)) = O(1 + n/ exp(Δn/5)) clusters in
total. We summarize these findings in the following lemma. It will be the crucial
ingredient for bounding the expected approximation ratios of the greedy, nearest-
neighbor, and insertion heuristics.

Lemma 3.8. Consider a random shortest path metric and let Δ ≥ 0. If we par-
tition the instance into clusters, each of diameter at most 6Δ, then the expected
number of clusters needed is O(1 + n/ exp(Δn/5)).

4 Analysis of Heuristics

In order to bound approximation ratios, we will exploit a simple upper bound on
the probability that an optimal TSP tour or matching has a length of at most c
for some small constant c. Note that the expected lengths of the minimum-length
perfect matching and the optimal TSP are Θ(1) even without taking shortest
paths [15, 34]. Thus, both the optimal TSP and the optimal matching have an
expected length of O(1) for random shortest path metrics.

4.1 Greedy Heuristic for Minimum-Length Perfect Matching

Finding minimum-length perfect matchings in metric instances is the first prob-
lem that we consider. This problem has been widely considered in the past and
has applications in, e.g., optimizing the speed of mechanical plotters [29,32]. The
worst-case running-time of O(n3) for finding an optimal matching is prohibitive
if the number n of points is large. Thus, simple heuristics are often used, with
the greedy heuristic being probably the simplest one: at every step, choose an
edge of minimum length incident to the unmatched vertices and add it to the
partial matching. Let GREEDY denote the cost of the matching output by this
greedy matching heuristic, and let MM denote the optimum value of the mini-
mum weight matching. The worst-case approximation ratio for greedy matching
on metric instances is Θ(nlog2(3/2)) [29], where log2(3/2) ≈ 0.58. In the case of
Euclidean instances, the greedy algorithm has an approximation ratio of O(1)
with high probability on random instances [3]. For independent random edge
weights (without the triangle inequality), the expected weight of the matching
computed by the greedy algorithm is Θ(log n) [10] whereas the optimal matching
has a weight of Θ(1) with high probability, which gives an O(log n) approxima-
tion ratio.

We show that greedy matching finds a matching of constant expected length
on random shortest path metrics. The proof is similar to the ones of Theorems 4.3
and 4.4, and we include it as an example.

Theorem 4.1. E[GREEDY] = O(1).

Proof. Set Δi = i/n for i ∈ {0, 1, . . . , logn}. We divide the run of GREEDY in
phases as follows: We say that GREEDY is in phase i if the lengths of the edges
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it inserts are in the interval (6Δi−1, 6Δi]. Lemma 3.7 allows to show that the
expected sum of all lengths of edges longer than 6ΔO(logn) is o(1), so we can
ignore them.

Since the lengths of the edges that GREEDY adds increases monotonically,
GREEDY goes through phases i with increasing i (while a phase can be empty).
We now estimate the contribution of phase i to the matching computed by
GREEDY. Using Lemma 3.8, after phase i − 1, we can find a clustering into
clusters of diameter at most 6Δi−1 using an expected number ofO(1+n/e(i−1)/5)
clusters. Each such cluster can have at most one unmatched vertex. Thus, we
have to add at most O(1 + n/e(i−1)/5) edges in phase i, each of length at most
6Δi. Thus, the contribution of phase i is O(Δi(1 + n/e(i−1)/5)) in expectation.
Summing over all phases yields the desired bound:

E[GREEDY] = o(1) +

logn∑
i=1

O
( i

e(i−1)/5
+

i

n

)
= O(1).

��

Careful analysis allows us to even bound the expected approximation ratio.

Theorem 4.2. The greedy algorithm for minimum-length matching has con-
stant approximation ratio on random shortest path metrics, i.e.,

E
[
GREEDY

MM

]
∈ O(1).

4.2 Nearest-Neighbor Algorithm for the TSP

A greedy analogue for the traveling salesman problem (TSP) is the nearest neigh-
bor heuristic: Start with a vertex v as the current vertex, and at every iteration
choose the nearest yet unvisited neighbor u of the current vertex as the next
vertex in the tour and move to the next iteration with the new vertex u as the
current vertex. Let NN denote both the nearest-neighbor heuristic itself and the
cost of the tour computed by it. Let TSP denote the cost of an optimal tour. The
nearest-neighbor heuristic NN achieves a worst-case ratio of O(log n) for met-
ric instances and also an average-case ratio (for independent, non-metric edge
lengths) of O(log n) [2]. We show that NN achieves a constant approximation
ratio on random shortest path instances. The proof is similar to the ones of
Theorems 4.1 and 4.2.

Theorem 4.3. E[NN] = O(1) and E
[

NN
TSP

]
∈ O(1).

4.3 Insertion Heuristics

An insertion heuristic for the TSP is an algorithm that starts with an ini-
tial tour on a few vertices and extends this tour iteratively by adding the
remaining vertices. In every iteration, a vertex is chosen according to some
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rule, and this vertex is inserted at the place in the current tour where it in-
creases the total tour length the least. Certain insertion heuristics such as nearest
neighbor insertion (which is different from the nearest neighbor algorithm from
the previous section) are known to achieve constant approximation ratios [30].
The random insertion algorithm, where the next vertex is chosen uniformly at
random from the remaining vertices, has a worst-case approximation ratio of
Ω(log logn/ log log logn), and there are insertion heuristics with a worst-case
approximation ratio of Ω(logn/ log logn) [4].

For random shortest path metrics, we show that any insertion heuristic pro-
duces a tour whose length is expected to be within a constant factor of the
optimal tour. This result holds irrespective of which insertion strategy we actu-
ally use. It holds even in the (admittedly a bit unrealistic) scenario, where an
adversary specifies the order in which the vertices have to be inserted after the
random instance is drawn.

Theorem 4.4. The expected cost of the TSP tour obtained with any insertion
heuristics is bounded from above by O(1). This holds even against an adaptive
adversary, i.e., if an adversary chooses the order in which the vertices are in-
serted after the edge weights are drawn.

Furthermore, the expected approximation ratio of any insertion heuristic is
also O(1).

4.4 Running-Time of 2-Opt for the TSP

The 2-opt heuristic for the TSP starts with an initial tour and successively
improves the tour by so-called 2-exchanges until no further refinement is possible.
In a 2-exchange, a pair of edges e1 = {u, v} and e2 = {x, y} are replaced by a
pair of edges f1 = {u, y} and f2 = {x, v} to get a shorter tour. The 2-opt
heuristic is easy to implement and widely used. In practice, it usually converges
quite quickly to close-to-optimal solutions [22]. However, its worst-case running-
time is exponential [14]. To explain 2-opt’s performance on geometric instances,
Englert et al. [14] have proved that the number of iterations that 2-opt needs
is bounded by a polynomial in a smoothed input model for geometric instances.
Also for random shortest path metrics, the expected number of iterations that
2-opt needs is bounded by a polynomial. The proof is similar to Englert et al.’s
analysis [14].

Theorem 4.5. The expected number of iterations that 2-opt needs to find a local
optimum is bounded by O(n8 log3 n).

5 k-Center

In the (metric) k-center problem, we are given a finite metric space (V, d) and
should pick k points U ⊆ V such that

∑
v∈V minu∈U d(v, u) is minimized. We

call the set U a k-center. Gonzalez [17] gave a simple 2-approximation for this
problem and showed that finding a (2 − ε)-approximation is NP-hard.
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In this section, we consider the k-center problem in the setting of random
shortest path metrics. In particular we examine the approximation ratio of the
algorithm TRIVIAL, which picks k points independent of the metric space, e.g.,
U = {1, . . . , k}, or k random points in V . We show that TRIVIAL yields a
(1 + o(1))-approximation for k = O(n1−ε). This can be seen as an algorithmic
result since it improves upon the worst-case approximation factor of 2, but it is
essentially a structural result on random shortest path metrics. It means that any
set of k points is, with high probability, a very good k-center, which gives some
knowledge about the topology of random shortest path metrics. For larger, but
not too large k, i.e., k ≤ (1 − ε)n, TRIVIAL still yields an O(1)-approximation.

The main insight comes from generalizing the growth process described in
Section 3.2 Fixing U = {v1, . . . , vk} ⊆ V we sort the vertices V \ U by their
distance to U in ascending order, calling the resulting order vk+1, . . . , vn. Now
we consider δi = d(vi+1, U)− d(vi, U) for k ≤ i < n. These random variables are
generated by an easy growth process analogously to Section 3.2, which shows
that the δi are independent and δi ∼ Exp(i(n − i)). Since the cost of U as a
k-center can be expressed using the δi’s and since aExp(1) ∼ Exp(1/a), we have

cost(U) =
∑n−1

i=k (n− i) · δi ∼
∑n−1

i=k (n− i) ·Exp(i(n− i)) ∼
∑n−1

i=k Exp(i). From
this, we can read off the expected cost of U immediately, and thus the expected
cost of TRIVIAL.

Lemma 5.1. Fix U ⊆ V of size k. We have E[TRIVIAL] = E[cost(U)] = Hn−1−
Hk−1 = ln(n/k) + Θ(1).

By closely examining the random variable
∑n−1

i=k Exp(i), we can show good tail
bounds for the probability that the cost of U is lower than expected. Together
with the union bound this yields tail bounds for the optimal k-center CENTER,
which implies the following theorem. In this theorem, the approximation ratio

becomes 1 + O
( ln ln(n)

ln(n)

)
for k = O(n1−ε).

Theorem 5.2. Let k ≤ (1 − ε)n for some constant ε > 0. Then E
[
TRIVIAL
CENTER

]
=

O(1). If we even have k ≤ cn for some sufficiently small constant c ∈ (0, 1), then

E
[
TRIVIAL
CENTER

]
= 1 + O

( ln ln(n/k)
ln(n/k)

)
.

6 Remarks and Open Problems

The results of this paper carry over to the case of edge weights drawn according
to the uniform distribution on the interval [0, 1]. The analysis remains basically
identical, but gets technically a bit more difficult because we lose the memory-
lessness of the exponential distribution. The intuition is that, because the longest
edge has a length of O(log n/n) = o(1), only the behavior of the distribution in
a small, shrinking interval [0, o(1)] is relevant. Essentially, if the probability that
an edge weight is smaller than t is t+ o(t), then our results carry over. We refer
to Janson’s coupling argument [21] for more details.

To conclude the paper, let us list the open problems that we consider most
interesting:
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1. While the distribution of edge lengths in asymmetric instances does not differ
much from the symmetric case, an obstacle in the application of asymmet-
ric random shortest path metrics seems to be the lack of clusters of small
diameter (see Section 3). Is there an asymmetric counterpart for this?

2. Is it possible to prove even an 1 + o(1) (like Dyer and Frieze [11] for the
patching algorithm) approximation ratio for any of the simple heuristics
that we analyzed?

3. What is the approximation ratio of 2-opt in random shortest path metrics?
In the worst case on metric instances, it is O(

√
n) [8]. For edge lengths drawn

uniformly at random from the interval [0, 1] without taking shortest paths,

the expected approximation ratio is O(
√
n · log3/2 n) [13]. For d-dimensional

geometric instances, the smoothed approximation ratio isO(φ1/d) [14], where
φ is the perturbation parameter.

We easily get an approximation ratio of O(log n) based on the two facts
that the length of the optimal tour is Θ(1) with high probability and that
Δmax = O(log n/n) with high probability. Can we prove that the expected
ratio of 2-opt is o(log n)?
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Abstract. Valence automata are a generalization of various models of
automata with storage. Here, each edge carries, in addition to an in-
put word, an element of a monoid. A computation is considered valid if
multiplying the monoid elements on the visited edges yields the identity
element. By choosing suitable monoids, a variety of automata models
can be obtained as special valence automata. This work is concerned
with the accepting power of valence automata. Specifically, we ask for
which monoids valence automata can accept only context-free languages
or only languages with semilinear Parikh image, respectively. First, we
present a characterization of those graph products (of monoids) for which
valence automata accept only context-free languages. Second, we provide
a necessary and sufficient condition for a graph product of copies of the
bicyclic monoid and the integers to yield only languages with semilinear
Parikh image when used as a storage mechanism in valence automata.
Third, we show that all languages accepted by valence automata over
torsion groups have a semilinear Parikh image.

1 Introduction

A valence automaton is a finite automaton in which each edge carries, in addition
to an input word, an element of a monoid. A computation is considered valid if
multiplying the monoid elements on the visited edges yields the identity element.
By choosing suitable monoids, one can obtain a wide range of automata with
storage mechanisms as special valence automata. Thus, they offer a framework
for generalizing insights about automata with storage. For examples of automata
as valence automata, see [4,19].

In this work, we are concerned with the accepting power of valence automata.
That is, we are interested in relationships between the structure of the monoid
representing the storage mechanism and the class of languages accepted by the
corresponding valence automata. On the one hand, we address the question for
which monoids valence automata accept only context-free languages. Since the
context-free languages constitute a very well-understood class, insights in this
direction promise to shed light on the acceptability of languages by transferring
results about context-free languages.

A very well-known result on context-free languages is Parikh’s Theorem, which
states that the Parikh image (that is, the image under the canonical morphism
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onto the free commutative monoid) of each context-free language is semilinear (in
this case, the language itself is also called semilinear). It has various applications
in proving that certain languages are not context-free and its effective nature
(one can actually compute the semilinear representation) allows it to be used in
decision procedures for numerous problems (see [15] for an example from group
theory and [10] for others). It is therefore our second goal to gain understanding
about which monoids cause the corresponding valence automata to accept only
languages with a semilinear Parikh image.

Our contribution is threefold. First, we obtain a characterization of those
graph products (of monoids) whose corresponding valence automata accept only
context-free languages. Graph products are a generalization of the free and the
direct product in the sense that for each pair of participating factors, it can be
specified whether they should commute in the product. Since valence automata
over a group accept only context-free languages if and only if the group’s word
problem (and hence the group itself) can be described by a context-free grammar,
such a characterization had already been available for groups in a result by
Lohrey and Sénizergues [13]. Therefore, our characterization is in some sense an
extension of Lohrey and Sénizergues’ to monoids.

Second, we present a necessary and sufficient condition for a graph product
of copies of the bicyclic monoid and the integers to yield, when used in va-
lence automata, only languages with semilinear Parikh image. Although this is a
smaller class of monoids than arbitrary graph products, it still covers a number
of storage mechanisms found in the literature, such as pushdown automata, blind
multicounter automata, and partially blind multicounter automata (see [19] for
more information). Hence, our result is a generalization of various semilinearity
results about these types of automata.

Third, we show that every language accepted by a valence automaton over a
torsion group has a semilinear Parikh image. On the one hand, this is particularly
interesting because of a result by Render [16], which states that for every monoid
M , the languages accepted by valence automata over M either (1) coincide with
the regular languages, (2) contain the blind one-counter languages, (3) contain
the partially blind one-counter languages, or (4) are those accepted by valence
automata over an infinite torsion group (which is not locally finite). Hence, our
result establishes a strong language theoretic property in the fourth case and
thus contributes to completing the picture of language classes that can arise
from valence automata.

On the other hand, Lohrey and Steinberg [15] have used the fact that for
certain groups, valence automata accept only semilinear languages (in different
terms, however) to obtain decidability of the rational subset membership prob-
lem. However, their procedures require that the semilinear representation can be
obtained effectively. Since there are torsion groups where even the word problem
is undecidable [1], our result yields examples of groups that have the semilin-
earity property but which do not permit the computation of a corresponding
representation. Our proof is based on well-quasi-orderings (see, e.g., [11]).
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2 Basic Notions

In this section, we will fix some notation and introduce basic concepts.
A monoid is a set M together with an associative operation and a neutral

element. Unless defined otherwise, we will denote the neutral element of a monoid
by 1 and its operation by juxtaposition. That is, for a monoid M and elements
a, b ∈ M , ab ∈M is their product. In each monoid M , we have the submonoids
R(M) = {a ∈ M | ∃b ∈ M : ab = 1} and, L(M) = {a ∈ M | ∃b ∈ M : ba = 1}.
When using a monoid M as part of a control mechanism, the subset J(M) =
{a ∈ M | ∃b, c ∈ M : bac = 1} plays an important role1. A subgroup of a monoid
is a subset that is closed under the operation and is a group.

For an alphabet X , we will write X∗ for the set of words over X . The empty
word is denoted by λ ∈ X∗. Given alphabets X and Y , subsets of X∗ and
X∗ × Y ∗ are called languages and transductions, respectively. A family is a set
of languages that is closed under isomorphism and contains at least one non-
trivial member. For a transduction T ⊆ X∗ × Y ∗ and a language L ⊆ X∗, we
write T (L) = {v ∈ Y ∗ | ∃u ∈ L : (u, v) ∈ T }. For any finite subset S ⊆ M of a
monoid, let XS be an alphabet in bijection with S. Let ϕS : X∗

S → M be the
morphism extending this bijection. Then the set {w ∈ X∗

S | ϕS(w) = 1} is called
the identity language of M with respect to S.

Let F be a family of languages. An F-grammar is a quadrupleG = (N, T, P, S)
where N and T are disjoint alphabets and S ∈ N . P is a finite set of pairs
(A,M) with A ∈ N and M ⊆ (N ∪ T )∗, M ∈ F . A pair (A,M) ∈ P will also
be denoted by A → M . We write x ⇒G y if x = uAv and y = uwv for some
u, v, w ∈ (N ∪ T )∗ and (A,M) ∈ P with w ∈ M . The language generated by
G is L(G) = {w ∈ T ∗ | S ⇒∗

G w}. Languages generated by F -grammars are
called algebraic over F . The family of all languages that are algebraic over F
is called the algebraic extension of F . The algebraic extension of the family of
finite languages is denoted CF, its members are called context-free.

Given an alphabet X , we write X⊕ for the set of maps α : X → N. Elements
of X⊕ are called multisets. By way of pointwise addition, written α+β, X⊕ is a
monoid. The Parikh mapping is the mapping Ψ : X∗ → X⊕ such that Ψ(w)(x)
is the number of occurrences of x in w for every w ∈ X∗ and x ∈ X .

Let A be a (not necessarily finite) set of symbols and R ⊆ A∗ × A∗. The
pair (A,R) is called a (monoid) presentation. The smallest congruence of A∗

containing R is denoted by ≡R and we will write [w]R for the congruence class
of w ∈ A∗. The monoid presented by (A,R) is defined as A∗/≡R. Note that since
we did not impose a finiteness restriction on A, every monoid has a presentation.
By B, we denote the monoid presented by (A,R) with A = {x, x̄} and R = (xx̄, λ)
and called bicyclic monoid. The elements [x]R and [x̄]R are called its positive and
negative generator, respectively. The set D1 of all w ∈ {x, x̄}∗ with [w]R = [λ]R
is called the Dyck language. The group of integers is denoted Z. We call 1 ∈ Z
its positive and −1 ∈ Z its negative generator.

1 Note that R(M), L(M), and J(M) are the R-, L-, and J -class, respectively, of the
identity and hence are important concepts in the theory of semigroups [7].
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Let M be a monoid. An automaton over M is a tuple A = (Q,M,E, q0, F ), in
which Q is a finite set of states, E is a finite subset of Q×M ×Q called the set
of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The step
relation ⇒A of A is a binary relation on Q×M , for which (p, a) ⇒A (q, b) if and
only if there is an edge (p, c, q) such that b = ac. The set generated by A is then
S(A) = {a ∈M | ∃q ∈ F : (q0, 1) ⇒∗

A (q, a)}. A set R ⊆ M is called rational if it
can be written as R = S(A) for some automaton A over M . Rational languages
are also called regular, the corresponding class is denoted REG. A class C for
which L ∈ C implies T (L) ∈ C for rational transductions T is called a full trio.

For n ∈ N and α ∈ X⊕, we use nα to denote α + · · · + α (n summands).
A subset S ⊆ X⊕ is linear if there are elements α0, . . . , αn such that S =
{α0 +

∑n
i=1miαi | mi ∈ N, 1 ≤ i ≤ n}. A set S ⊆ C is called semilinear if it

is a finite union of linear sets. In slight abuse of terminology, we will sometimes
call a language L semilinear if the set Ψ(L) is semilinear.

A valence automaton over M is an automaton A over X∗ × M , where X
is an alphabet. Instead of A = (Q,X∗ ×M,E, q0, F ), we then also write A =
(Q,X,M,E, q0, F ) and for an edge (p, (w,m), q) ∈ E, we also write (p, w,m, q).
The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}. The
class of languages accepted by valence automata over M is denoted by VA(M).
It is well-known that VA(M) is the smallest full trio containing every identity
language of M (see, for example, [9]).

A graph is a pair Γ = (V,E) where V is a finite set and E ⊆ {S ⊆ V | 1 ≤
|S| ≤ 2}. The elements of V are called vertices and those of E are called edges. If
{v} ∈ E for some v ∈ V , then v is called a looped vertex, otherwise it is unlooped.
A subgraph of Γ is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Such a subgraph is
called induced (by V ′) if E′ = {S ∈ E | S ⊆ V ′}, i.e. E′ contains all edges from
E incident to vertices in V ′. By Γ \ {v}, for v ∈ V , we denote the subgraph of Γ
induced by V \ {v}. Given a graph Γ = (V,E), its underlying loop-free graph is
Γ ′ = (V,E′) with E′ = E ∩ {S ⊆ V | |S| = 2}. For a vertex v ∈ V , the elements
of N(v) = {w ∈ V | {v, w} ∈ E} are called neighbors of v. Moreover, a clique is
a graph in which any two distinct vertices are adjacent. A simple path of length
n is a sequence x1, . . . , xn of pairwise distinct vertices such that {xi, xi+1} ∈ E
for 1 ≤ i < n. If, in addition, we have {xn, x1} ∈ E, it is called a cycle. Such a
cycle is called induced if {xi, xj} ∈ E implies |i − j| = 1 or {i, j} = {1, n}. A
loop-free graph Γ = (V,E) is chordal if it does not contain an induced cycle of
length ≥ 4. It is well-known that every chordal graph contains a vertex whose
neighborhood is a clique [3]. By C4 and P4, we denote the cycle of length 4 and
the simple path of length 4, respectively. A loop-free graph is called a transitive
forest if it is the disjoint union of comparability graphs of rooted trees. A result
by Wolk [17] states that a loop-free graph is a transitive forest if and only if it
contains neither C4 nor P4 as an induced subgraph.

Let Γ = (V,E) be a loop-free graph and Mv a monoid for each v ∈ V with
a presentation (Av, Rv) such that the Av are pairwise disjoint. Then the graph
product M = M(Γ, (Mv)v∈V ) is the monoid given by the presentation (A,R),
where A =

⋃
v∈V Av and R = {(ab, ba) | a ∈ Av, b ∈ Aw, {v, w} ∈ E}∪

⋃
v∈V Rv.



Semilinearity and Context-Freeness of Languages 235

Note that for each v ∈ V , there is a map ϕv : M → Mv such that ϕv is the
identity map on Mv. When V = {0, 1} and E = ∅, we also write M0 ∗M1 for M
and call this the free product of M0 and M1. Given a subset U ⊆ V , we write
M�U for the product M(Γ ′, (Mv)v∈U ), where Γ ′ is the subgraph induced by U .

Let Γ = (V,E) be a (not necessarily loop-free) graph. Furthermore, for each
v ∈ V , let Mv be a copy of B if v is an unlooped vertex and a copy of Z if
v is looped. If Γ− is obtained from Γ by removing all loops, we write MΓ for
the graph product M(Γ−, (Mv)v∈V ). For information on valence automata over
monoids MΓ , see [19]. For i ∈ {0, 1}, let Mi be a monoid and let ϕi : N → Mi

be an injective morphism. Let ≡ be the smallest congruence in M0 ∗M1 such
that ϕ0(a) ≡ ϕ1(a) for every a ∈ N . Then the monoid (M0 ∗M1)/ ≡ is denoted
by M0 ∗N M1 and called a free product with amalgamation.

3 Auxiliary Results

In this section, we present auxiliary results that are used in later sections. In
the following, we will call a monoid M an FRI-monoid (or say that M has the
FRI-property) if for every finitely generated submonoid N of M , the set R(N)
is finite. In [16] and independently in [18], the following was shown.

Theorem 1. VA(M) = REG if and only if M is an FRI-monoid.

The first lemma states a well-known fact from semigroup theory.

Lemma 1. For each monoid M , exactly one of the following holds: Either J(M)
is a group or M contains a copy of B as a submonoid.

We will employ a result by van Leeuwen [12] stating that semilinearity of all
languages is preserved by building the algebraic extension of a language family.

Theorem 2. Let F be a family of semilinear languages. Then every language
that is algebraic over F is also semilinear.

In light of the previous theorem, the following implies that the class of monoids
M for which VA(M) contains only semilinear languages is closed under taking
free products with amalgamation over a finite identified subgroup that contains
the identity of each factor. In the case where the factors are residually finite
groups, this was already shown in [15, Lemma 8] (however, for a more general
operation than free products with amalgamation). The following also implies
that if VA(Mi) contains only context-free languages for i ∈ {0, 1}, then this is
also true for VA(M0 ∗F M1).

Theorem 3. For each i ∈ {0, 1}, let Mi be a finitely generated monoid and F
be a subgroup that contains Mi’s identity. Every language in VA(M0 ∗F M1) is
algebraic over VA(M0) ∪ VA(M1).

Proof. Since the algebraic extension of a full trio is again a full trio, it suffices
to show that with respect to some generating set S ⊆ M0 ∗F M1, the identity
language of M0 ∗F M1 is algebraic over VA(M0) ∪ VA(M1).
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For i ∈ {0, 1}, let Si ⊆ Mi be a finite generating set for Mi such that F ⊆ Si.
Furthermore, let Xi be an alphabet in bijection with Si and let ϕi : X∗

i →Mi be
the morphism extending this bijection. Moreover, let Yi ⊆ Xi be the subset with
ϕi(Yi) = F . Let ψi : Mi → M0 ∗F M1 be the canonical morphism. Since F is a
subgroup of M0 and M1, ψ0 and ψ1 are injective (see e.g. [7, Theorem 8.6.1]).
Let X = X0 ∪X1 and let ϕ : X∗ →M0 ∗F M1 be the morphism extending ψ0ϕ0

and ψ1ϕ1. Then the identity language of M0 ∗F M1 is ϕ−1(1) and we shall prove
the theorem by showing that ϕ−1(1) is algebraic over VA(M0)∪VA(M1). We will
make use of the following fact about free products with amalgamation of monoids
with a finite identified subgroup. Let s1, . . . , sn, s

′
1, . . . , s

′
m ∈ (X∗

0 \ ϕ−1
0 (F )) ∪

(X∗
1 \ ϕ−1

1 (F )), such that sj ∈ X∗
i if and only if sj+1 ∈ X∗

1−i for 1 ≤ j < n,
i ∈ {0, 1} and s′j ∈ X∗

i if and only if s′j+1 ∈ X∗
1−i for 1 ≤ j < m, i ∈ {0, 1}. Then

the equality ϕ(s1 · · · sn) = ϕ(s′1 · · · s′m) implies n = m. A stronger statement was
shown in [14, Lemma 10]. We will refer to this as the syllable property.

For each i ∈ {0, 1} and f ∈ F , we define Li,f = ϕ−1
i (f) and write yf for

the symbol in Yi with ϕi(yf ) = f−1. Then clearly Li,1 ∈ VA(Mi). Furthermore,
since Li,f = {w ∈ X∗

i | yfw ∈ Li,1}, (here we again use that F is a group) we
can obtain Li,f from Li,1 by a rational transduction and hence Li,f ∈ VA(Mi).

Let F = VA(M0)∪VA(M1). Since for each F -grammar G, it is clearly possible
to construct an F -grammar G′ such that L(G′) consists of all sentential forms
of G, it suffices to construct an F -grammar G = (N, T, P, S) with N ∪ T = X
and S ⇒∗

G w if and only if ϕ(w) = 1 for w ∈ X∗. We construct G = (N, T, P, S)
as follows. Let N = Y0 ∪ Y1 and T = (X0 ∪ X1) \ (Y0 ∪ Y1). As productions,
we have y → L1−i,f for each y ∈ Yi where f = ϕi(y). Since 1 ∈ F , we have an
ei ∈ Yi with ϕi(ei) = 1. As the start symbol, we choose S = e0. We claim that
for w ∈ X∗, we have S ⇒∗

G w if and only if ϕ(w) = 1.
The “only if” is clear. Let w ∈ X∗ with ϕ(w) = 1. Write w = w1 · · ·wn such

that wj ∈ X∗
0∪X∗

1 for all 1 ≤ j ≤ n such that wj ∈ X∗
i if and only if wj+1 ∈ X∗

1−i
for i ∈ {0, 1} and 1 ≤ j < n. We show by induction on n that S ⇒∗

G w. For
n ≤ 1, we have w ∈ X∗

i for some i ∈ {0, 1}. Since 1 = ϕ(w) = ψi(ϕi(w)) and ψi
is injective, we have ϕi(w) = 1 and hence w ∈ Li,1. This means S = e0 ⇒G w
or S = e0 ⇒G e1 ⇒G w, depending on whether i = 1 or i = 0.

Now let n ≥ 2. We claim that there is a 1 ≤ j ≤ n with ϕ(wj) ∈ F . Indeed,
if ϕ(wj) /∈ F for all 1 ≤ j ≤ n and since ϕ(w1 · · ·wn) = 1 = ϕ(λ), the syllable
property implies n = 0, against our assumption. Hence, let f = ϕ(wj) ∈ F .
Furthermore, let wj ∈ X∗

i and choose y ∈ Y1−i so that ϕ1−i(y) = f . Then
ψi(ϕi(wj)) = ϕ(wj) = f and the injectivity of ψi yields ϕi(wj) = f . Hence,
wj ∈ Li,f and thus w′ = w1 · · ·wj−1ywj+1 · · ·wn ⇒G w. For w′ the induction
hypothesis holds, meaning S ⇒∗

G w′ and thus S ⇒∗
G w. ��

4 Context-Freeness

In this section, we are concerned with the context-freeness of languages accepted
by valence automata over graph products. The first lemma is a simple observation
and we will not provide a proof. In the case of groups, it appeared in [5].
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Lemma 2. Let Γ = (V,E) and M = M(Γ, (Mv)v∈V ) be a graph product. Then
for each v ∈ V , we have M ∼= (M�V \{v}) ∗M�N(v)

(M�N(v) ×Mv).

The following is a result by Lohrey and Sénizergues [13].

Theorem 4. Let Gv be a non-trivial group for each v ∈ V . Then M(Γ, (Gv)v∈V )
is virtually free if and only if (1) for each v ∈ V , Gv is virtually free, (2) if Gv

and Gw are infinite and v �= w, then {v, w} /∈ E, (3) if Gv is infinite, Gu and
Gw are finite and {v, u}, {v, w} ∈ E, then {u,w} ∈ E, and (4) Γ is chordal.

Aside from Theorem 3, the following is the key tool to prove our result on
context-freeness. We call a monoid M context-free if VA(M) ⊆ CF.

Lemma 3. The direct product of monoids M0 and M1 is context-free if and only
if for some i ∈ {0, 1}, Mi is context-free and M1−i is an FRI-monoid.

Proof. Suppose Mi is context-free and M1−i is an FRI-monoid. Then each lan-
guage L ∈ VA(Mi×M1−i) is contained in VA(Mi×N) for some finitely generated
submonoid N of M1−i. Since M1−i is an FRI-monoid, N has finitely many right-
invertible elements and hence J(N) is a finite group. Since no element outside
of J(N) can appear in a product yielding the identity, we may assume that
L ∈ VA(Mi × J(N)). This means, however, that L can be accepted by a valence
automaton over Mi by keeping the right component of the storage monoid in
the state of the automaton. Hence, L ∈ VA(Mi) is context-free.

Suppose VA(M0×M1) ⊆ CF. Then certainly VA(Mi) ⊆ CF for each i ∈ {0, 1}.
This means we have to show that at least one of the monoids M0 and M1 is an
FRI-monoid and thus, toward a contradiction, assume that none of them is.2

By Lemma 1, for each i, either J(Mi) is a subgroup of Mi or Mi contains a
copy of B as a submonoid. Since every infinite virtually free group contains an
element of infinite order, we have that for each i, either (1) J(Mi) is an infinite
group and hence contains a copy of Z or (2) Mi contains a copy of B. In any case,
VA(M0 ×M1) contains {anbmcndm | n,m ≥ 0}, which is not context-free. ��

We are now ready to prove our main result on context-freeness. Since for a graph
product M = M(Γ, (Mv)v∈V ), there is a morphism ϕv : M →Mv for each v ∈ V
that restricts to the identity on Mv, we have J(M) ∩Mv = J(Mv): While the
inclusion “⊇” is true for any submonoid, given b ∈ J(M) ∩Mv with abc = 1,
a, c ∈ M , we also have ϕv(a)bϕv(c) = ϕv(abc) = 1 and hence b ∈ J(Mv). This
means no element of Mv \ J(Mv) can appear in a product yielding the identity.
In particular, removing a vertex v with J(Mv) = {1} will not change VA(M).
Hence, our requirement that J(Mv) �= {1} is not a serious restriction.

Theorem 5. Let Γ = (V,E) and let J(Mv) �= {1} for any v ∈ V . M =
M(Γ, (Mv)v∈V ) is context-free if and only if
(1) for each v ∈ V , Mv is context-free,
(2) if Mv and Mw are not FRI-monoids and v �= w, then {v, w} /∈ E,

2 In the full version, we have a second proof for the fact that VA(M0 ×M1) contains
non-context-free languages in this case. It is elementary in the sense that it does not
invoke the fact that context-free groups are virtually free.
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(3) if Mv is not an FRI-monoid, Mu and Mw are FRI-monoids and {v, u},
{v, w} ∈ E, then {u,w} ∈ E, and

(4) the graph Γ is chordal.

Proof. First, we show that conditions (1)–(4) are necessary. For (1), this is im-
mediate and for (2), this follows from Lemma 3. If (3) is violated then for some
u, v, w ∈ V , Mv × (Mu ∗ Mw) is a submonoid of M such that Mu and Mw

are FRI-monoids and Mv is not. Since Mu and Mw contain non-trivial (finite)
subgroups, Mu ∗Mw contains an infinite group and is thus not an FRI-monoid,
meaning Mv × (Mu ∗Mw) is not context-free by Lemma 3.

Suppose (4) is violated for context-free M . By (2) and (3), any induced cycle
of length at least four involves only vertices with FRI-monoids. Each of these,
however, contains a non-trivial finite subgroup. This means M contains an in-
duced cycle graph product of non-trivial finite groups, which is not virtually free
by Theorem 4 and hence has a non-context-free identity language.

In order to prove the other direction, we note that VA(M) ⊆ CF follows if
VA(M ′) ⊆ CF for every finitely generated submonoid M ′ ⊆ M . Since every such
submonoid is contained in a graph product N = M(Γ, (Nv)v∈V ) where each Nv

is a finitely generated submonoid of Mv, it suffices to show that for such graph
products, we have VA(N) ⊆ CF. This means whenever Mv is an FRI-monoid, Nv

has finitely many right-invertible elements. Moreover, since Nv ∩ J(N) = J(Nv),
no element of Nv \ J(Nv) can appear in a product yielding the identity. Hence,
if Nv is generated by S ⊆ Nv, replacing Nv by the submonoid generated by
S ∩ J(Nv) does not change the identity languages of the graph product. Thus,
we assume that each Nv is generated by a finite subset of J(Nv). Therefore,
whenever Mv is an FRI-monoid, Nv is a finite group.

We first establish sufficiency in the case that Mv is an FRI-monoid for every
v ∈ V and proceed by induction on |V |. This means that Nv is a finite group
for every v ∈ V . Since Γ is chordal, there is a v ∈ V whose neighborhood is a
clique. This means N�N(v) is a finite group and hence N�N(v) ×Nv context-free
by Lemma 3. Since N�V \{v} is context-free by induction, Theorem 3 and Lemma
2 imply that N is context-free.

To complete the proof, suppose there are n vertices v ∈ V for which Mv is not
an FRI-monoid. We proceed by induction on n. The case n = 0 is treated above.
Choose v ∈ V such that Mv is not an FRI-monoid. For each u ∈ N(v), Mu

is an FRI-monoid by condition (2), and hence Nu a finite group. Furthermore,
condition (3) guarantees that N(v) is a clique and hence N�N(v) is a finite group.
As above, Theorem 3 and Lemma 2 imply that N is context-free. ��

5 Semilinearity

A well-known theorem by Chomsky and Schützenberger [2] was re-proved and
phrased in terms of valence automata in the following way by Kambites [9].

Theorem 6. VA(Z ∗ Z) = CF.
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Using standard methods of formal language theory, one can show:

Lemma 4 ([15,19]). If every language in VA(M) is semilinear, then so is every
language in VA(M × Z).

The following is a consequence of the results of Greibach [6] and Jantzen [8].

Lemma 5. VA(B× B) contains a non-semilinear language.

The next result also appears in [19], where, however, it was not made explicit
that the language is unary. A proof can be found in the full version.

Lemma 6. If Γ ’s underlying loop-free graph contains P4 as an induced sub-
graph, then VA(MΓ ) contains an undecidable unary language.

We are now ready to show the first main result of this section. Note that the first
condition of the following theorem is similar to conditions (2) and (3) in Theorem
5 (and 4): we have looped vertices instead of FRI-monoids (finite groups) and
unlooped vertices instead of non-FRI-monoids (infinite groups).

Theorem 7. All languages in VA(MΓ ) are semilinear if and only if (1) Γ con-
tains neither nor as an induced subgraph and (2) Γ ’s underlying
loop-free graph contains neither C4 nor P4 as an induced subgraph.

Proof. First, observe that if VA(Ni) ⊆ VA(Mi) for i = 0, 1 then VA(N0 ×N1) ⊆
VA(M0×M1). Let Γ = (V,E). Suppose conditions 1 and 2 hold. We proceed by
induction on |V |. 2 implies that Γ ’s underlying loop-free graph is a transitive
forest. If Γ is not connected, then MΓ is a free product of graph products MΓ1

and MΓ2, for which VA(MΓi) contains only semilinear languages by induction.
Hence, by Theorems 2 and 3, every language in VA(MΓ ) is semilinear. If Γ is
connected, there is a vertex v ∈ V that is adjacent to every vertex other than
itself. We distinguish two cases.

If v is a looped vertex, then VA(MΓ ) = VA(Z ×M(Γ \ {v})), which contains
only semilinear languages by induction and Lemma 4. If v is an unlooped vertex,
then by 1, V \ {v} induces a clique of looped vertices. Thus, MΓ ∼= B× Z|V |−1,
meaning VA(MΓ ) contains only semilinear languages by Lemma 4.

We shall now prove the other direction. If Γ contains as an induced
subgraph, then VA(B × B) is included in VA(MΓ ) and the former contains a
non-semilinear language by Lemma 5. If Γ contains , then MΓ contains
a copy of B× (Z∗Z) as a submonoid. By Theorem 6, we have VA(B) ⊆ VA(Z∗Z)
and hence the observation above implies VA(B× B) ⊆ VA(B× (Z ∗ Z)).

Suppose Γ ’s underlying loop-free graph contains C4 as an induced subgraph.
Since we have already shown that the presence of or as an induced
subgraph guarantees a non-semilinear language in VA(MΓ ), we may assume
that all four participating vertices are looped. Hence, MΓ contains a copy of
(Z ∗Z) × (Z ∗Z). By Theorem 6 and the observation above, this means VA(B×
B) ⊆ VA(MΓ ). Thus, VA(MΓ ) contains non-semilinear languages. Finally, if
Γ ’s underlying loop-free graph contains P4 as an induced subgraph, Lemma 6
provides the existence of an undecidable unary language in VA(MΓ ). Since such
a language cannot be semilinear, the lemma is proven. ��
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Torsion Groups. A torsion group is a group G in which for each g ∈ G,
there is a k ∈ N \ {0} with gk = 1. In the following, we show that for torsion
groups G, all languages in VA(G) are semilinear. The key ingredient in our proof
is showing that a certain set of multisets is upward closed with respect to a
well-quasi-ordering. A well-quasi-ordering on A is a reflexive transitive relation
≤ on A such that for every infinite sequence (an)n∈N, an ∈ A, there are indices
i < j with ai ≤ aj . We call a subset B ⊆ A upward closed if a ∈ B and a ≤ b
imply b ∈ B. A basic observation about well-quasi-ordered sets states that for
each upward closed set B ⊆ A, the set of its minimal elements is finite and B is
the set of those a ∈ A with m ≤ a for some minimal m ∈ B (see [11]).

Given multisets α, β ∈ X⊕ and k ∈ N, we write α ≡k β if α(x) ≡ β(x)
(mod k) for each x ∈ X . We write α ≤k β if α ≤ β and α ≡k β. Clearly, ≤k

is a well-quasi-ordering on X⊕: Since ≡k has finite index in X⊕, we find in any
infinite sequence α1, α2, . . . ∈ X⊕ an infinite subsequence α′1, α

′
2, . . . ∈ X⊕ of ≡k-

equivalent multisets. Furthermore, ≤ is well-known to be a well-quasi-ordering
and yields indices i < j with α′i ≤ α′j and hence α′i ≤k α

′
j . If S ⊆ X⊕ is upward

closed with respect to ≤k, we also say S is k-upward-closed. The observation
above means in particular that every k-upward-closed set is semilinear.

Theorem 8. For every torsion group G, the languages in VA(G) are semilinear.

Proof. Let G be a torsion group and K be accepted by the valence automaton
A = (Q,X,G,E, q0, F ). We regard the finite set E as an alphabet and define
the automaton Â = (Q,E,G, Ê, q0, F ) such that Ê = {(p, (p, w, g, q), g, q) |
(p, w, g, q) ∈ E}. Let K̂ = L(Â). Clearly, in order to prove Theorem 8, it suffices
to show that K̂ is semilinear.

For a word w ∈ E∗, w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn), we write σ(w) for
the set {pi, qi | 1 ≤ i ≤ n}. w is called a p, q-computation if p1 = p, qn = q, and
qi = pi+1 for 1 ≤ i < n. A q, q-computation is also called a q-loop. Moreover, a
q-loop w is called simple if qi �= qj for i �= j.

For each S ⊆ Q, let FS be the set of all words w ∈ E∗ with σ(w) = S and for
which there is a q ∈ F such that w is a q0, q-computation and |w| ≤ |Q|·(2|Q|+1).
Let LS ⊆ E∗ consist of all w ∈ E∗ such that w is a simple q-loop for some q ∈ S
and σ(w) ⊆ S. Note that LS is finite, which allows us to define the alphabet
YS so as to be in bijection with LS . Let ϕ : YS → LS be this bijection and let
ϕ̃ : Y ⊕

S → E⊕ be the morphism with ϕ̃(y) = Ψ(ϕ(y)) for y ∈ YS .
For p, q-computations v, w ∈ E∗, we write v 1 w if σ(v) = σ(w) and w = rst

such that r is a p, q′-computation, s is a simple q′-loop, t is a q′, q-computation,
and v = rt. Moreover, let � be the reflexive transitive closure of 1. In other words,
v � w means that w can be obtained from v by inserting simple q-loops for states
q ∈ Q without increasing the set of visited states. For each v ∈ FS , we define

Uv = {μ ∈ Y ⊕
S | ∃w ∈ K̂ : v � w, Ψ(w) = Ψ(v) + ϕ̃(μ)}

(note that there is only one S ⊆ Q with v ∈ FS). We claim that

Ψ(K̂) =
⋃
S⊆Q

⋃
v∈FS

Ψ(v) + ϕ̃(Uv). (∗)
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The inclusion “⊇” holds by definition. For the other direction, we show by induc-
tion on n that for any qf ∈ F and any q0, qf -computation w ∈ E∗, |w| = n, there
is a v ∈ FS for S = σ(w) and a μ ∈ Y ⊕

S with v � w and Ψ(w) = Ψ(v) + ϕ̃(μ).
If |w| ≤ |Q| · (2|Q| + 1), this is satisfied by v = w and μ = 0. Therefore, as-
sume |w| > |Q| · (2|Q| + 1) and write w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn). Since
n = |w| > |Q| · (2|Q| + 1), there is a q ∈ Q that appears more than 2|Q| + 1 times
in the sequence q1, . . . , qn. Therefore, we can write

w = w0(p′1, x
′
1, g

′
1, q)w1 · · · (p′m, x′m, g′m, q)wm

withm > 2|Q|+1. Observe that for each 1 ≤ i < m, the wordwi(p
′
i+1, x

′
i+1, g

′
i+1, q)

is a q-loop. Sincem−1 > 2|Q|, there are indices 1 ≤ i < j < mwithσ(wi(p
′
i+1, x

′
i+1,

g′i+1, q)) = σ(wj(p
′
j+1, x

′
j+1, g

′
j+1, q)). Furthermore, we can find a simple q-loop 


as a subword of wi(p
′
i+1, x

′
i+1, g

′
i+1, q). This means for the word w′ ∈ E∗, which is

obtained fromw by removing 
, we have σ(w′) = σ(w) and thusw′ 1 w. Moreover,
with S = σ(w) and ϕ(y) = 
, y ∈ YS , we have Ψ(w) = Ψ(w′) + ϕ̃(y). Finally,
since |w′| < |w|, the induction hypothesis guarantees a v ∈ FS and a μ ∈ Y ⊕

S with
v � w′ and Ψ(w′) = Ψ(v)+ ϕ̃(μ). We have v � w and Ψ(w) = Ψ(v)+ ϕ̃(μ+y) and
the induction is complete. In order to prove “⊆” of (∗), suppose w ∈ K̂. Since w is
a q0, qf -computation for some qf ∈ F , we can find the above v ∈ FS , S = σ(w),
and μ ∈ Y ⊕

S with v � w and Ψ(w) = Ψ(v) + ϕ̃(μ). This means μ ∈ Uv and hence
Ψ(w) is contained in the right hand side of (∗). This proves (∗).

By (∗) and since FS is finite for each S ⊆ Q, it suffices to show that Uv is
semilinear for each v ∈ FS and S ⊆ Q. Let γ : E∗ → G be the morphism with
γ((p, x, g, q)) = g for (p, x, g, q) ∈ E. Since G is a torsion group, the finiteness of
LS permits us to choose a k ∈ N such that γ(
)k = 1 for any 
 ∈ LS. We claim
that Uv is k-upward-closed. It suffices to show that for μ ∈ Uv, we also have
μ+k ·y ∈ Uv for any y ∈ YS . Hence, let μ ∈ Uv with w ∈ K̂ such that v � w and
Ψ(w) = Ψ(v)+ ϕ̃(μ) and let μ′ = μ+k ·y. Let 
 = ϕ(y) ∈ LS be a simple q-loop.
Then q ∈ S and since σ(w) = σ(v) = S, we can write w = r(q1, x1, g1, q)s,
r, s ∈ E∗. The fact that w ∈ K̂ means in particular γ(w) = 1. Thus, the word
w′ = r(q1, x1, g1, q)


ks is a q0, qf -computation for some qf ∈ F with γ(w′) = 1

since γ(
)k = 1. This means w′ ∈ K̂ and Ψ(w′) = Ψ(w)+k ·Ψ(
) = Ψ(v)+ ϕ̃(μ+
k · y). We also have σ(
) ⊆ S and hence v � w � w′. Thus, μ′ = μ+ k · y ∈ Uv.
This proves Uv to be k-upward-closed and thus semilinear. ��
Render [16] proved that for every monoid M , the class VA(M) either (1) coin-
cides with the regular languages, (2) contains the blind one-counter languages,
(3) contains the partially blind one-counter languages, or (4) consists of those
accepted by valence automata over an infinite torsion group. Hence, we obtain:

Corollary 1. For each monoid M , at least one of the following holds:
(1) VA(M) contains only semilinear languages. (2) VA(M) contains the lan-
guages of blind one-counter automata. (3) VA(M) contains the languages of par-
tially blind one-counter automata.

There are torsion groups with an undecidable word problem [1], hence:

Corollary 2. There is a group G with an undecidable word problem such that
all languages in VA(G) are semilinear.
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As another application, we can show that the one-sided Dyck language is not
accepted by any valence automaton over G× Zn where G is a torsion group.

Corollary 3. For torsion groups G and n ∈ N, we have D1 /∈ VA(G × Zn).

Acknowledgements. We are indebted to one of the anonymous referees, who
pointed out a misuse of terminology in a previous version of Theorem 3.
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Abstract. We study the consequences of NP having non-uniform poly-
nomial size circuits of various types. We continue the work of Agrawal
and Arvind [1] who study the consequences of Sat being many-one re-
ducible to functions computable by non-uniform circuits consisting of a
single weighted threshold gate. (Sat ≤p

m LT1). They claim that P = NP

follows as a consequence, but unfortunately their proof was incorrect.
We take up this question and use results from computational learning

theory to show that if Sat ≤p
m LT1 then PH = P

NP.
We furthermore show that if Sat disjunctive truth-table (or major-

ity truth-table) reduces to a sparse set then Sat ≤p
m LT1 and hence a

collapse of PH to P
NP also follows. Lastly we show several interesting

consequences of Sat ≤p
dtt SPARSE.

1 Introduction

In this paper we study consequences of NP having non-uniform polynomial size
circuits of various types. This question is intimately related to the existence of
sparse hard sets for Sat under different types of reductions, and has played a
central role in complexity theory starting with the work of Berman, Hartmanis,
Karp, Lipton and Mahaney [13, 23, 26].

Karp and Lipton showed that if NP is Turing reducible to a sparse set then the
polynomial time hierarchy collapses to its second level. This was later improved
to a collapse of PH = ZPP

NP [24, 14], and finally PH = S
p
2 [15]. Improvement

of this result to a deeper collapse is a challenging open question whose positive
solution would imply new unconditional circuit lower bounds.

Mahaney [26] showed that if Sat reduces many-one to a sparse set then in
fact P = NP. This implication was subsequently improved by Ogiwara and
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Watanabe [29] to bounded truth-table reductions, and later work extended this
result to other weak reductions [6, 7, 8, 30, 5, 9, 10]. Notoriously open is to
show a similar result for disjunctive truth-table reductions. The best known
consequence of this is a collapse of PH to P

NP [11].
Agarwal and Arvind [1] took a geometric view of this question and studied the

consequences of Sat many-one reducing to LT1, the class of languages accepted
by non-uniform circuits consisting of a single weighted linear-threshold gate. They
claimed that Sat ≤p

m LT1 implies P = NP — unfortunately, the proof in that pa-
per was flawed, as it relied essentially on their incorrect Splitting Lemma (p. 203).1

We take a fresh look at this approach and connect it with results in learning
theory. We use an efficient deterministic algorithm from Maass and Turán [25]
for learning half spaces, to obtain a collapse of the polynomial-time hierarchy to
P

NP from the assumption that Sat ≤p
m LT1. Interestingly the main ingredient

in the learning algorithm is the use of linear programming, which also featured
prominently in the work of Agrawal and Arvind.

The use of learning theory in this area of complexity theory is not new and
was used before by [24, 14, 18, 19], however the use of deterministic learning
algorithms in relationship with the polynomial time hierarchy is new.

Next we examine the consequences of Sat ≤p
dtt SPARSE and make a link

with the geometric approach above. Using the leftset technique from [29] it is
easy to show for conjunctive truth-table reductions that if Sat ≤p

ctt SPARSE

then P = NP. Frustratingly, for disjunctive truth table reductions the best
known consequence is PH = P

NP, a result due to Arvind et al.[11], who use
a complicated argument. We use error-correcting codes to show that Sat ≤p

dtt

SPARSE implies that Sat ≤p
m LT1, which with our previous result gives a new

and more modular proof of the collapse to P
NP. Our new approach enables us

to obtain the same collapse for majority reductions.
We finish with a handful of new consequences of Sat ≤p

dtt SPARSE and
Sat ≤p

maj SPARSE. Interestingly it turns out that in the case of disjunctive

reductions, improvement of the above results to PH = P
NP

‖ is sufficient to obtain
the full collapse to P = NP.

2 Preliminaries

We assume that the reader is familiar with computational complexity, as ex-
pounded, for instance, in [4]. In particular, we make use of

A ∈ P/poly ⇐⇒ A ≤p
T SPARSE,

so a reduction to a sparse set can be seen as a polynomial-time circuit. The
weaker the reduction, the weaker the access to non-uniformity.

1 The mistake in this Splitting Lemma was not seen by any of the paper’s referees,
but instead was accidentally discovered years later. For an anecdotal account of
the episode, please consult http://blog.computationalcomplexity.org/2009/10/
thanks-for-fuzzy-memories.html .

http://blog.computationalcomplexity.org/2009/10/thanks-for-fuzzy-memories.html
http://blog.computationalcomplexity.org/2009/10/thanks-for-fuzzy-memories.html
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The least common notation we use, is: PNP

‖ and FP
NP

‖ , which are the classes
of sets and functions, respectively, that are polynomial-time computable with
non-adaptive queries to an NP oracle; PNP[q], and FP

NP[q], the classes of sets
and functions that are polynomial-time computable by asking no more than q(n)
(possibly adaptive) queries to an NP oracle.

A linear threshold function L : {0, 1}m → {0, 1} is defined by a vector of m
real numbers w ∈ Rm, called weights, a threshold θ ∈ R, and the equation

L(z) =

{
1 if z · w > θ, and

0 if z · w ≤ θ.

Here z · w denotes the inner product
∑m

i=1 ziwi.
We let LT1(m) denote the class of linear-threshold functions with m-bit binary

inputs. We may freely assume, for functions in LT1(m), that the weights and
thresholds are integers of bit-length m logm [27, Thm. 16].

In this paper we are concerned with three kinds of reductions:

Definition 1. (dtt reductions) A set A disjunctive truth-table reduces to a
set S, written A ≤p

dtt S, if there exists a polytime computable function Q,
outputting a set of queries, such that

x ∈ A ⇐⇒ Q(x) ∩ S �= ∅.

(majority reductions) A set A majority truth-table reduces to a set S, written
A ≤p

maj S, if there exists a function Q, as above, such that

x ∈ A ⇐⇒ |Q(x) ∩ S| > |Q(x)|
2

(LT1 reductions) A set A reduces to linear-threshold functions, written A ≤p
m

LT1, if there exists a polytime computable function f , and a family {Ln}n∈N

of linear threshold functions, such that2

x ∈ A=n ⇐⇒ Ln(f(x)) = 1.

3 If Sat ≤p
m LT1 ...

Attempting to derive P = NP should prove difficult, since by the results in the
next section this would imply the same collapse for dtt and majority reductions
to sparse sets. Since A ≤p

m LT1 implies A ∈ P/poly , then from Sat ≤p
m LT1 and

[15] we get PH = S
p
2. This collapse can be improved in the following way:

Theorem 1. If Sat ≤p
m LT1, then PH = P

NP.

2 Notice that the length of f(x) must be a function of the length of x.
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We take a similar approach as [14]: the existence of a suitable learning algorithm
will, under the assumption that Sat ≤p

m LT1, collapse the polynomial-time
hierarchy. The difference being that we have a deterministic learning algorithm
for linear threshold functions, but only (zero-error) probabilistic algorithms with
access to an NP oracle are known that can learn general circuits.

Our learning model is the online learning model of Angluin [3] for learning
with counter-examples. In our case, the learner wishes to identify an unknown
linear threshold function, say L ∈ LT1(m). At each learning step, the algorithm
proposes some hypothesis H ∈ LT1(m). If H �= L, then the algorithm is given
a counter-example x such that H(x) �= L(x). The algorithm is not allowed to
make any assumptions on the choice of counter-example, which could very well
be adversarially chosen. Based on the previous counter-examples and hypotheses,
the algorithm suggests a new hypothesis which is correct on the inputs seen so
far, and the process is repeated until H = L. The learning complexity of such
an algorithm is the maximum number of these steps that it will need in order
to learn any function in LT1(m).

Theorem 2 ([25]). There is a deterministic polynomial-time algorithm for
learning LT1(m) functions in O(m3 logm) steps.

As a corollary, will be able to prove Theorem 1, and the forthcomming Theorem
3. It should be noted that both of these theorems hold for polynomial-time many-
one reductions to any class of functions which, like LT1, have a polynomial-time
algorithm for learning with counter-examples.

Proof (of Theorem 1). Suppose Sat ≤p
m LT1, and let Ln be a family of linear

threshold functions, and f a polytime reduction, such that

ψ ∈ Sat
=n ⇐⇒ Ln(f(ψ)) = 1. (1)

For a given formula of length n, we use the algorithm of Theorem 2 in order
to uncover a linear threshold function H with the same property (1) as Ln, in
polynomial time with the help of an NP oracle.

Let m = |f(ψ)| on inputs ψ of length n. We proceed as follows: we start with
an initial hypothesis H for Ln, given by the learning algorithm for LT1(m). Then
at each step in the learning process we ask the NP oracle if there exists some
formula ψ of length n such that:

1. ψ has no variables and evaluates to true, but H(f(ψ)) = 0, or
2. ψ has no variables and evaluates to false, but H(f(ψ)) = 1, or
3. H(f(ψ)) = 1 but both H(f(ψ0)) = 0 and H(f(ψ1)) = 0, or
4. H(f(ψ)) = 0, but H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

Above, ψ0 and ψ1 are obtained by replacing the first variable of ψ respectively
with 0 or 1. Essentially, we are asking whether the set Sat(H) = {ψ|H(f(ψ)) =
1} violates the self-reducibility of Sat. If this is not the case, then necessarily
Sat(H) = Sat

=n, and we are done.
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But if the self-reducibility is violated, then for at least one φ ∈ {ψ, ψ0, ψ1},
we must have H(f(φ)) �= Ln(f(φ)), and so f(φ) gives us a counter-example to
update the hypothesis H . We use prefix-search to obtain such a formula φ, and
from equation (1) this will provide us with a counter-example, i.e., H(f(φ)) �=
Ln(f(φ)).

After O(m3 logm) = poly(n) many iterations, we will either have learnt Ln, or
otherwise obtained an hypothesis H suitable for the purpose of querying Sat

=n.
By feeding the NP oracle the suitable linear-threshold functions, it now be-

comes possible to simulate a Σp
2 computation. So Σp

2 , and consequently all of
PH, collapses to P

NP. ��

The algorithm above is non-adaptive, and in order to solve Sat
=n, it potentially

asks Ω(nm3 logm)-many queries to Sat. We can be a bit more clever, and
actually reduce this number to n. This will essentially give us the following:

Theorem 3. If Sat ≤p
m LT1, then NP

Sat
=n

⊆ P
Sat[n] ∩NP/lin.

Proof. The idea is to use the self-reducibility of Sat once again, in order to
learn Sat

=n first for formulas with no variables (formulas over constants, which
evaluate to true or false), then for formulas with 1 variable, then 2 variables, and
so on. Let Sat

=n
k be the set of satisfiable formulas having exactly k variables.

Starting with the initial hypothesis H , we set out to learn Sat
=n
0 . What is the

largest number of mistakes that we can make, i.e., how many times might we
need to change our hypothesis H until we have properly learned Sat

=n
0 ?

Using a Sat oracle, we can ask: is there a sequence ψ1, . . . , ψ of 
 formulas,
having 0 vars, such that ψi+1 is always a counter-example to the hypothesis
constructed by our learning algorithm after seeing ψ1, . . . , ψi?

3

We know that such a sequence will have at most poly(n) formulas, and so using
binary search, then by making O(log n) such queries, we can find the length of
the largest sequence of counter-examples which can be given to our learning
algorithm before it necessarily learns Sat

=n
0 . Let this length be 
0.

Then because 
0 is maximal, at this point we know that if the learning al-
gorithm is given any sequence of 
0-many counter-examples having no vari-
ables, the constructed hypothesis H will be correct on Sat

=n
0 , in the sense that

ψ ∈ Sat
=n
0 ⇐⇒ H(f(ψ)) = 1.

Now that we know 
0, we set out to learn Sat
=n
1 . Using Sat as an oracle,

we may ask: Is there a sequence of 
0 counter-examples with 0 vars, followed
by 
 counter-examples with 1 var? Thus we may obtain 
1, the length of the
largest sequence of counter-examples with 1 var, that can be given to the learning
algorithm after it has already learned every possible formula with 0 vars.

3 Formalizing the question as an NP-set gives us:

A = {〈0n, 0�〉 | ∃ψ,H∀i Hi = Learner(ψ1, . . . , ψi) ∧Hi−1(f(ψi)) �= Sat(ψi)},

where ψ is a sequence of �-many formulas with 0 vars, H is a sequence of �-many
threshold functions, and i ∈ {1, . . . , �}. Notice that Hi−1(f(ψi)) �= Sat(ψi) is decid-
able in polynomial time because the formulas ψi have no variables.
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In general we know 
0, . . . , 
k−1, and we set out to learn Sat
=n
k . Using Sat as

an oracle, we ask: Is there a sequence of 
0 counter-examples with 0-vars, followed
by 
1 counter-examples with 1-var, . . ., followed by 
k−1 counter-examples with
k − 1 vars, followed by 
 counter-examples with k vars?

The key observation is that in order for the Sat oracle to be able to tell
whether a formula ψ with k variables is a counter-example to hypothesis H ,
i.e., whether H(f(ψ)) �= Sat(ψ), it will need to know whether ψ is or is not
satisfiable. In order to know this, the Sat oracle uses H itself, which at this
point is known to be correct for formulas with k − 1 variables, and thus ψ ∈
Sat ⇐⇒ H(f(ψ0)) = 1 or H(f(ψ1)) = 1.

In the end we have n + 1 numbers 
0, . . . , 
n, and we know that if the learn-
ing algorithm is given any sequence of 
0-many counter-examples having no
variables, followed by 
1 counter-examples having 1 variable, . . ., followed by

n counter-examples having n variables, then the constructed hypothesis H
will be correct on all of Sat

=n. Furthermore, such a sequence must exist by
construction.

These numbers take up at most O(n log n) many bits, and each bit is the
outcome of one (much larger, adaptive) query to Sat. Having access to 
0, . . . , 
n,
an NP machine can guess a proper sequence of counter-examples, and it will thus
obtain an hypothesis H which it can use to answer any query to Sat

=n. Thus
NP

Sat
=n

⊆ P
Sat[n logn], and NP

Sat
=n

⊆ NP/n logn.
In order to improve n logn into n bits, or even n

c logn bits, the proof is similar,

but instead of learning how to decide Sat
=n for one extra variable at a time, we

learn O(log n) many extra variables at a time — this requires us to unfold the
self-reduction tree O(log n)-deep. ��
Under the assumption that Sat has polynomial-size circuits, we may decide, in
coNP, whether a given string α(n) encodes a circuit correct for Sat=n. However,
there will possibly be many strings with this property — the following theorem
gives us a way to single out, in coNP, a unique advice string α(n) suitable to
decide Sat

=n.

Theorem 4. If NP ⊆ P/poly, and PH ⊆ P
NP, then PH ⊆ P/α for some

polynomial advice function 0n  → α(n) whose graph Gα = {〈0n, α(n)〉|n ∈ N} ∈
coNP.

Proof. Let A be Δ2-complete. Then there is a polytime machine M that decides
A=n with polynomially-long advice γ(n), where γ(n) codes a circuit solving
Sat

=m, for some m = poly(n). The machine M uses γ(n) to answer the queries
needed in the Δ2 computation of A. Furthermore, the function 0n  → α̃(n),
given by

α̃(n) is the lexicographically smallest string

such that x ∈ A=n ⇐⇒ M(x)/α̃(n) = 1,

is in PH and thus in FP
Sat. Then let N be a polytime machine computing α̃ with

a Sat oracle, and let’s say it makes k queries to compute α̃(n). Let S ∈ coNP

be the set of strings 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 such that
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1. Na(0n) = α̃ (i.e., when a1, . . . , ak are given as answers to the queries of N ),
2. if ai = 1 then yi is the lexicographically smallest satisfying assignment of

the i-th formula queried by Na, and
3. if ai = 0 then yi = λ (the empty string) and the i-th formula queried by Na

is not satisfiable.

Notice that for a given n, the string 〈0n, α̃, a1, . . . , ak, y1, . . . , yk〉 ∈ S is uniquely
defined, so S is the graph of α(n) = 〈α̃, a1, . . . , ak, y1, . . . , yk〉. When given α(n),
an algorithm for A can simply check if M(x)/α̃ = 1. ��

Corollary 5. If Sat ≤p
m LT1, then PH ⊆ P/α for some polynomial advice

function 0n  → α(n) whose graph Gα ∈ coNP.

4 LT1 versus dtt and maj Reductions

In this section we show that LT1 reductions can simulate dtt and majority re-
ductions to sparse sets. Thus, effectively, the collapses we have proven for LT1

reductions imply similar collapses for dtt and majority reductions.

Theorem 6. If A ≤p
dtt SPARSE or A ≤p

maj SPARSE, then A ≤p
m LT1.

Proof. We will use a Reed-Solomon code to construct the LT1 reduction. Suppose
A ≤p

dtt S ∈ SPARSE, and assume w.l.o.g. that the dtt reduction is given by a
polytime computable function Q, such that

x ∈ A=n ⇐⇒ S=m ∩Q(x) �= ∅, (2)

|S=m| = m, and

|Q(x)| = d.

That is, for every input x of length n, Q(x) = {y1, . . . , yd} always queries the
same number of d = d(n) strings of the same length m = m(n), and that there
will be exactly m many such strings in S=m. Such an assumption can always be
made by tweaking the reduction and changing S accordingly.

We will be working over the field F2� , for 
 ≥ �log dm2�. For any given binary
string s of length m, we define the polynomial ps(z) =

∑m
i=1 siz

i−1. Now let
C(s) be the encoding of s as a 2 × 2-long binary string: this string is the
concatenation of ps(a), as a goes through all the 2 elements of F2� ; each ps(a)
is in turn encoded by a binary string of length 2, having a 1 at position ps(a)
(for some fixed enumeration of F2�), and 0s elsewhere.

Note that |C(s)| = O(d2m4) = poly(n). Then vitally note that by encoding
strings this way, the number of bit positions where C(s) and C(y) are both 1,
given by the inner product C(s) · C(y),4 is exactly the number of elements

4 Note that the binary strings C(s) and C(y) are seen as 0-1 vectors, and that the

inner product is a natural number
∑2�×2�

j=1 C(s)jC(y)j .
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a ∈ F2� where ps(a) = py(a). So for any two words s, y ∈ {0, 1}m, using the fact
that ps − py is either identically zero, or has at most m− 1 roots,{

C(y) · C(s) ≤ m− 1 if y �= s, and

C(y) · C(s) ≥ dm2 if y = s.

Define g(x) =
∨d
i=1 C(yi), where Q(x) = {y1, . . . , yd}, and by

∨
we mean

bitwise-OR. Then{
g(x) · C(s) ≤

∑d
i=1 C(yi) · C(s) ≤ d(m− 1) if s �∈ Q(x), and

g(x) · C(s) ≥ dm2 if s ∈ Q(x).

Finally, let wn = ⊕s∈S=mC(s), and f(x) = (g(x))⊕m, where by ⊕ we mean the
direct sum of vectors / concatenation of strings. Then f(x) ·wn =

∑
s∈S=m g(x) ·

C(s), and we come to{
f(x) · wn ≤ md(m− 1) if S=m ∩Q(x) = ∅, and

f(x) · wn ≥ dm2 if S=m ∩Q(x) �= ∅.
(3)

So x ∈ A ⇐⇒ f(x) · wn > dm(m− 1), showing that A ≤p
m LT1.

The transformation for maj reductions is similar. We begin with a dtt reduc-
tion function Q, which is like before, except that now Equation (2) is replaced
with

x ∈ A=n ⇐⇒ |S=m ∩Q(x)| > d

2
.

Then both the LT1 reduction function f , and the set of weights wn are con-
structed exactly in the same way, but over a slightly larger field. Working through
the proof, if 2 is the size of our chosen field, and K = |S=m∩Q(x)|, then Equa-
tion (3) becomes:

2K ≤ f(x) · wn ≤ 2K + d(m− 1)(m−K).

Now choose 
 ≥ �log 4dm2� as the size of our field. Using the defining property
of the maj reduction, a small computation will show us that

x ∈ A=n ⇐⇒ K >
d

2
⇐⇒ f(x) · wn > 2

(
d

2
+

1

4

)
— this defines our LT1 reduction. ��

5 If Sat ≤p
dtt SPARSE ...

Disjunctive truth-table reductions to sparse sets are powerful enough to simulate
bounded truth-table reductions to sparse sets [2]. But the collapses that are
known, under the assumption that Sat ≤p

dtt SPARSE, are not as strong as
those for btt reductions. We can summarize what was known about Sat ≤p

dtt

SPARSE, in the following two theorems:
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Consequense 1 ([16, 12]). ... then FP
NP

‖ = FP
NP[log], UP ⊆ P, and NP =

RP. ��
Consequense 2 ([11]). ... then PH = P

NP = P
RP = BPP. ��

To these consequences, we append our own observations, which follow from the
results in the previous sections.

Consequense 3. ... then NP
Sat

=n

⊆ P
Sat[n], NP

Sat
=n

⊆ NP/lin. ��
Consequense 4. ... then PH ⊆ P/α for some function 0n  → α(n) whose graph
Gα ∈ coNP. ��
Finally, we note that we are not far away from obtaining the final consequence
P = NP.

Consequense 5. ... then E �⊆ NP/log.

Consequense 6. ... then E
NP �⊆ SIZE(2εn) for some ε > 0.

Consequense 7. ... then the following statements are all equivalent:

1. P = NP.
2. P

NP = P
NP

‖ .
3. coNP ∩ SPARSE ⊆ NP.
4. E

NP = E
NP

‖ .

Proof (of Consequence 5). [17] show that

EXP ⊆ P
NP

‖ ⇐⇒ EXP ⊆ NP/log.

But if we had EXP ⊆ P
NP

‖ , then we could compute the lexicographically least

satisfying assignment of a given formula in FP
NP

‖ , and thus in FP
NP[log], by

Consequence 1. But then we could also do it in FP alone, simply by trying every
possible answer to the queries made by the FP

NP[log] computation. But then
P = NP, and the necessary conclusion EXP ⊆ PH ⊆ P would contradict the
time-hierarchy theorem. ��
Proof (of Consequence 6). By counting there is a function f : {0, 1}logn →
{0, 1} �∈ SIZE(nε) which can be found in P

Σ2 [cf. 22], and thus, by Consequence
2, in P

NP. Translating this upwards we get a set in E
NP with no circuits of size

2εn. ��
Proof (of Consequence 7). As in the proof of Consequence 5, P = NP follows
if we are able to compute the least satisfying assignment of a given formula in
FP

NP

‖ . This is trivially the case when P
NP = P

NP

‖ .
Now if SPARSE ∩ coNP ⊆ NP, then, from Consequence 4, we get PH ⊆

NP
Gα ⊆ NP

NP∩SPARSE: the non-deterministic machine just guesses the advice
α and checks it using the oracle. But NP

NP∩SPARSE ⊆ NP [cf 21], and thus the
least satisfying assignment of a given formula can be obtained in FP

NP

‖ .

To see the third equivalence, notice that E
NP = E

NP

‖ , then Consequence 6

implies we can derandomise BPP in P
NP

‖ [cf. 28, 20]; since PH ⊆ BPP, this

implies that the least satisfying assignment can be found in FP
NP

‖ . ��
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6 Final Remarks

We remark that our paper also draws new conclusions from Sat ≤p
maj SPARSE.

It was previously known that, under this hypothesis, NP = RP, but it remains
open to show that FP

NP

‖ = FP
NP[log] [cf. 12]. However, the results in this paper

imply that Consequences 2, 3 and 4 of the previous section also apply to the
Sat ≤p

maj SPARSE case, which was previously unknown.
Clearly, the most important open question is to prove that Sat ≤p

m LT1

implies that P = NP, or otherwise show a relativized world where only the
former holds.
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[11] Arvind, V., Köbler, J., Mundhenk, M.: Upper bounds for the complexity of sparse
and tally descriptions. Theor. Comput. Syst. 29, 63–94 (1996)

[12] Arvind, V., Torán, J.: Sparse sets, approximable sets, and parallel queries to
NP. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 281–290.
Springer, Heidelberg (1999)

[13] Berman, L., Hartmanis, J.: On isomorphisms and density of NP and other com-
plete sets. In: Proc. 8th STOC, pp. 30–40 (1976)
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Abstract. We consider various decision problems for probabilistic finite automata
(PFA)s with isolated cut-points. Recall that a cut-point x is said to be isolated for
a PFA if the acceptance probability of all finite strings is bounded away from x.
First we establish the exact level of undecidability of the problem of determining
if a cut-point is isolated; we show this problem to be Σ0

2-complete. Next we intro-
duce a new class of PFAs called eventually weakly ergodic PFAs that generalize
ergodic and weakly ergodic PFAs. We show that the emptiness and universality
problem for these PFAs is decidable provided the cut-point is isolated.

1 Introduction

A probabilistic finite automaton (PFA) [21,20] is like a deterministic finite automaton
except that after reading an input symbol the automaton rolls a dice to determine the
next state. Thus the transition function of a PFA associates a probability distribution
on next states with each state and input symbol. Given an acceptance threshold or cut-
point x and an initial distribution μ, the language recognized by a PFA B (denoted as
L>x(B, μ)) is the collection of all finite words u that reach a final state with probability
> x when B is started with initial distribution μ. Surprisingly, even though PFAs have
only finitely many states, they are known to recognize non-regular languages [21].

One semantic restriction that has been extensively studied is that of cut-points being
isolated [21,4,5,15] — a cut-point x is isolated for PFA B and initial distribution μ, if
there is an ε > 0 such that any input word u is either accepted with probability at most
x − ε or with probability at least x + ε. Thus, the acceptance probability of any input
word is bounded away from the cut-point x. Isolated cut-points are important because
algorithms described by PFAs are useful mainly when there is a separation between
the probability of accepting the good inputs from the probability of accepting the bad
inputs. Isolation allows one to use standard algorithmic techniques like amplification by
running multiple copies of the algorithm to drive down the probability of error. PFAs
with isolated cut-points are the constant space analogues of probabilistic polynomial
time complexity classes like BPP and RP.

In this paper, we consider various decision problems for PFAs with isolated cut-
points. The first problem we consider is that of determining if a cut-point x is isolated
for a PFA B and initial distribution μ. The problem was shown to be undecidable (in
fact, r.e.-hard) by Bertoni [4,5] when x ∈ (0, 1). Recently, the problem was shown to
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be undecidable (in fact, co-r.e.-hard) even when x is either 0 or 1 [15]. Determining the
exact level of undecidability was posed as a problem in Bertoni’s original paper and has
remained open until now. We show that this problem is Σ0

2-complete (Theorem 1).
Next, we consider the emptiness and universality problems for PFAs with isolated

cut-points. The decidability of these problems is still open. We conjecture that these
problems are undecidable. Our belief in this result stems from the undecidability of the
problem of determining if a cut-point is isolated. Also, Condon-Lipton’s [13] undecid-
ability proof for the emptiness problem for PFAs (without the cut-point being necessar-
ily isolated) can be modified to establish the undecidability of the emptiness problem
for PFAs with semi-isolated cut-points — x is a semi-isolated cut-point for PFA B and
initial distribution μ if there is an ε > 0 such that every input is either accepted with
probability at most x or with probability at least x + ε. Thus, if x is semi-isolated then
x + ε/2 is an isolated cut-point (for some unknown ε) .

Given our belief in the undecidability of the emptiness and universality problems
for general PFAs with isolated cut-points, we consider restricted classes of PFAs. Er-
godicity and weak ergodicity have played an important role in the study of Markov
Chains and non-homogeneous Markov Chains, and have been considered in the context
of PFAs in the past [22,19,17,7]. Recall that a Markov Chain is ergodic if its transition
graph forms an aperiodic, strongly connected component. Weak ergodicity for non-
homogeneous Markov Chains means that any sequence of input symbols has only one
terminal strongly connected component and this component is aperiodic. In this paper
we generalize both ergodic and weakly ergodic PFAs to define a new class that we call
eventually weakly ergodic (see Definition 4). Informally, these are PFAs such that the
states can be partitioned into sets QT , Q1, . . . Qr and there is an 
 such that in the tran-
sition graph on any word of length 
, Q1, . . .Qr are the terminal strongly connected
components, and these are aperiodic. Any state in QT has a non-zero probability of
reaching some state in ∪iQi on any word of length 
. Note that any Markov chain is
eventually weakly ergodic (see Proposition 1).

There are several natural classes of systems that can be modeled as eventually weakly
ergodic PFAs. One such class of protocols is randomized leadership election protocols
in which a leader is elected amongst a set of “equally” likely candidates. Such a pro-
tocol usually proceeds in rounds until a leader is elected. Once a leader is elected the
protocol stops and each “elected” choice forms a closed communicating class. Further-
more, leadership election protocols normally ensure that there is a constant number k,
such that in every k rounds the probability that a leader is elected is > 0.

Another class of systems relates to “Dolev-Yao” modeling of probabilistic security
protocols such as probabilistic anonymity protocols. In this setting, protocol partici-
pants are modeled as processes that can send and receive messages, and the communi-
cation is mediated through an attacker than can intercept messages, inject and modify
messages. The attacker keeps track of the messages exchanged and nondeterministi-
cally chooses to send new messages to protocol participants. An “attack” is a particular
resolution of the nondeterministic choices of the attacker, and protocol analysis checks
for security under every possible attack. For a faithful analysis [14,12,6,16,11,10], we
have to consider view-consistent [10] attack strategies in which, at any instance, the
attacker must do the same actions in all computations in which its view is the same
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upto that instance. Under suitable bounds (memory of the attacker, message size and
number of sessions), we can model the resulting system as a PFA: an input letter being
a “view-consistent” function from the (bounded) view of the attacker to the set of its
possible choices. The resulting PFA is also likely to satisfy eventual weak ergodicity
because there will often be a constant number k such that each session finishes within
k-steps with probability > 0.

We establish the following two results for eventually weakly ergodic PFAs: (a) the
problem of determining if x is isolated is r.e.-complete (as opposed to Σ0

2-complete for
general PFAs) (Theorem 3), and (b) L>x(B, μ) is regular and can be computed, if x is
isolated (Theorem 2). The second observation allows us to conclude that the emptiness
and universality problems for eventually weakly ergodic PFAs with isolated cut-points
is decidable. These results are useful when we know that x is an isolated cut point and
we want to know whether at least one string is accepted with probability> x. Note that
if the cut-point is not isolated, the emptiness and universality problems for such special
PFAs is undecidable (Proposition 3).

Related Work. As already mentioned above, the problem of checking emptiness of
PFAs is undecidable [13]. For weakly ergodic PFAs, [7] shows that the problem of
checking emptiness/universality is decidable under the assumption that the cut-point
is isolated. The class of eventually weakly ergodic PFAs is a strict superset of weakly
ergodic PFAs (See Example 2). Hence that result does not apply to our setting. Further-
more, the proof of that result relies on the existence of a unique compact non-empty
set of distributions W which is invariant on the set of inputs (that is W = {μδa | μ ∈
W, δa is the transition matrix on the input a}). Eventually weakly ergodic matrices do
not enjoy these properties and we have to appeal to different proof methods.

A decidability result under the assumption of isolation is also obtained in [18]. How-
ever, our results are incomparable to the results in [18]. They consider contracting
PFAs which are different from eventually weakly ergodic matrices (see Remark 1 on
Page 260). Furthermore, they only consider emptiness/universality problem relative to
restricted sets of inputs (and not over the whole language).

2 Preliminaries

We assume that the reader is familiar with regular languages and basic measure theory.
We will also assume that the reader is familiar with the basic theory of Markov Chains.
The set of natural numbers will be denoted by N. The powerset of any set A will be
denoted by 2A. Given any set Σ, Σ∗(Σ+ respectively) will denote the set of finite
words (nonempty finite words respectively) over Σ. A set L ⊆ Σ∗ is said to be a
language over Σ. Given ρ ∈ Σ∗, |ρ| will denote the length of ρ. Given 
 ∈ N, Σ will
denote the set {u ∈ Σ∗ | |u| = 
} and Σ< will denote the set {u ∈ Σ∗ | |u| < 
}.

2.1 Arithmetical Hierarchy

Let Δ be a finite alphabet. A language L over Δ is a set of finite strings over Δ. Arith-
metical hierarchy consists of classes of languages Σ0

n, Π0
n for each integer n > 0.
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Fix an n > 0. A language L ∈ Σ0
n iff there exists a recursive predicate φ(u,x1, ...,xn)

where u is a variable ranging overΔ∗, and for each i, 0 < i ≤ n, xi is a finite sequence
of variables ranging over integers such that

L = {u ∈ Δ∗ | ∃x1, ∀x2, . . . , Qnxn φ(u,x1, ...,xn)}

whereQn is an existential quantifier if n is odd, else it is a universal quantifier. Note that
the quantifiers in the above equation are alternating starting with an existential quanti-
fier. The class Π0

n is exactly the class of languages that are complements of languages
in Σ0

n. Σ0
1, Π

0
1 are exactly the class of R.E.-sets and co-R.E.-sets. Let C be a class in

the arithmetic hierarchy. L ∈ C is said to be C-complete if for every L′ ∈ C there is
a computable function f such that x ∈ L′ iff f(x) ∈ L. A well known Σ0

2-complete
language is the set of deterministic Turing machine encodings that halt on finitely many
inputs.

2.2 Distributions and Stochastic Matrices

Distributions. A probability distribution over a finite set Q is a map μ : Q → [0, 1]
s.t.

∑
q∈Q μ(q) = 1. For Q′ ⊆ Q, we shall write μ(Q′) for

∑
q∈Q′ μ(q). Dist(Q) will

denote the set of all distributions over Q. The map d : Dist(Q) × Dist(Q) → [0, 1]
defined as

d(μ, ν) =

∑
q∈Q |μ(q) − ν(q)|

2
= max

Q′⊆Q
|μ(Q′) − ν(Q′)|

defines a metric on the set Dist(Q). Note that d(μ, ν) ≤ 1. Unless otherwise stated, we
assume that μ(q) is a rational number.

Stochastic Matrices. A stochastic matrix over a finite set Q is a matrix δ : Q × Q →
[0, 1] s.t. ∀q ∈ Q.

∑
q′∈Q δ(q, q

′) = 1. Mat=1(Q) will denote the set of all stochastic
matrices over the set Q. For δ ∈ Mat=1(Q) and μ ∈ Dist(Q), μδ denotes the distribu-
tion, given by μδ(q) =

∑
q′∈ Q μ(q′)δ(q′, q). Unless otherwise stated, we assume that

δ(q, q′) is a rational number. Given δ1, δ2 ∈ Mat=1(Q), we write δ1δ2 to denote the
matrix product of δ1 and δ2 and we write (δ1) to denote the 
-times product of δ1.

Given a state q ∈ Q, and a matrix δ ∈ Mat=1(Q), we write post(q, δ) = {q′ |
δ(q, q′) > 0}. Given Q′ ⊆ Q, we write post(Q′, δ) = ∪q∈Q′post(q, δ). Q′ ⊆ Q is said
to be closed for δ if post(Q′, δ) ⊆ Q′. It is easy to see that if Q′ is closed for δ, then the
matrix δ|Q′ obtained by restricting δ to Q′ × Q′ is a stochastic matrix over Q′. Given
Δ ⊆ Mat=1(Q), Q′ ⊆ Q is said to be closed for Δ if Q′ is closed for each δ ∈ Δ. If
Q′ is closed for Δ, we let Δ|Q′ = {δ|Q′ | δ ∈ Δ}.
δ ∈ Mat=1(Q) is said to be irreducible if for each q, q′ ∈ Q, there is an 
 > 0

s.t. δ(q, q′) > 0. The period of q, written periodδ(q), is defined to be the the greatest
common divisor of {j | δj(q, q) > 0}. δ is said to be aperiodic if for every q ∈ Q,
periodδ(q) = 1. δ is said to be ergodic if it is aperiodic and irreducible.

Markov chains. A Markov chain M is a tuple (Q, δ, μ) s.t. Q is a finite set of states,
δ ∈ Mat=1(Q) and an initial distribution μ ∈ Dist(Q). A Markov chain defines a
sequence of distributions μ0, μ1, · · · where μi = μδi.
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2.3 Probabilistic Finite Automata

A probabilistic finite automaton [20,21] is like a deterministic automaton except that the
transition function from a state on a given input is described as a probability distribution
that determines the probability of transitioning to the next state.

Definition 1. A Probabilistic Automaton (PFA) is a tupleB=(Σ,Q,Qf, Δ={δa}a∈Σ)
where Σ is a finite nonempty set of input symbols and is called the input alphabet,Q is
a finite set of states, Qf ⊆ Q is the set of accepting/final states and Δ = {δa}a∈Σ is a
collection of stochastic matrices, one each for each input letter a.

Notation: Given a PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ) and a word u = a0 · · ·am ∈
Σ∗, we denote the matrix δa0 · · · δam by δu. If u is the empty word then δu shall denote
the identity matrix. Given a nonempty set Σ1 ⊆ Σ, we denote the set of matrices
{δa}a∈Σ1 by ΔΣ1 .

Language of a PFA. Language of a PFA is defined relative to an initial distribution
and a cut-point. Formally, given a PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ), an initial
distribution μ ∈ Dist(Q) and v ∈ Σ∗, the quantity μδv(Qf ) is called the probability of
B accepting v when started in μ and shall be denoted by PraccB, μ(v). For x ∈ [0, 1], the
set of words

L>x(B, μ) = {v ∈ Σ∗ | PraccB, μ(v) > x}

is said to be the language accepted by B with initial distribution μ and cut-point x.
PFAs can recognize non-regular languages [21]. Furthermore, the problem of decid-

ing emptiness and universality respectively for PFAs is undecidable [20,13].

2.4 Isolated Cut-Points

A much celebrated result of PFAs concerns isolated cut-points. A cut-point x is said to
be isolated if there is an ε such that every word is either accepted with probability at
least x + ε or accepted with probability at most x− ε. Formally,

Definition 2. Given a PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ) and an initial distribution
μ, x is said to be an isolated cut-point for (B, μ) with a degree of isolation ε > 0 if for
each v ∈ Σ∗, |PraccB, μ(v) − x| > ε. x is said to be an isolated cut-point for (B, μ) if
there is an ε > 0 s.t. x is an isolated cut-point for (B, μ) with a degree of isolation ε.

A famous result of Rabin [21] says that if x is an isolated cut-point for (B, μ) then
L>x(B, μ) is a regular language. This fact raises two interesting questions.

The first one asks if there is an algorithm that decides given a PFA B, an initial
distribution μ and a cut-point x ∈ [0, 1], whether x is an isolated cut-point for (B, μ)
or not. Bertoni [4,5] showed that the problem is undecidable when x ∈ (0, 1). A close
examination of the proof reveals that this problem is r.e.-hard. Recently, Gimbert and
Oualhadj [15] showed that the problem remains undecidable even when x is 0 or 1. A
close examination of their proof reveals that this problem is co-r.e.-hard also. However,
the exact level of undecidability of this problem remained open.
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The second question asks if there is a decision procedure that given a PFA B, an
initial distribution μ and a cut-point x ∈ [0, 1] isolated for (B, μ) decides whether the
language L>x(B, μ) is empty or not. This problem seems to be less studied in literature.
A close examination of Rabin’s proof shows that if a degree of isolation ε is known,
then L>x(B, μ) can be computed as the proof computes an upper bound on the number
of states of the deterministic automaton recognizing L>x(B, μ) in terms of ε and the
number of states of B. However, the status of the problem when the degree of isolation
is not known, remains open.

3 Checking Isolation in PFAs

The following theorem states that the problem of checking whether a given x is isolated
for a given PFAA is Σ0

2-complete, thus settling the open problem posed in [4,5] (please
note that the results also apply when x is 0 or 1).

Theorem 1. Given a PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ), an initial distribution μ ∈
Dist(Q) and rational x ∈ [0, 1], the problem of checking if x is an isolated cut-point
for (B, μ) is Σ0

2-complete.

Proof. Please note that x is isolated for (B, μ) iff

∃n ∈ N, n > 0. ∀u ∈ Σ∗.|PraccB, μ(u) − x| > 1

n
.

This demonstrates that the problem of checking if x is isolated for (B, μ) is in Σ0
2.

For the lower bound, please observe that it suffices to show that the problem of
checking if 1 is isolated for (B, μ) is Σ0

2-hard. We will demonstrate this by a reduc-
tion from emptiness checking problem of Probabilistic Büchi Automata (PBA)s [2].
A PBA B′ = (Σ′, Q′, Q′

f , Δ
′ = {δ′a}a∈Σ′) is like a PFA except that it is used to

define languages over infinite words. Given a PBA B′ and an initial distribution μ′,
L>0(B′, μ′) ⊆ Σω denotes the set of infinite words accepted by B′ with probability
> 0. Intuitively, B accepts an infinite word α with probability > 0 if on input α, the
measure of all (infinite) paths that visit Q′

f infinitely often is > 0. The exact definition
of what it means for a PBA to accept an infinite word α with probability > 0 is be-
yond the scope of the paper and the interested reader is referred to [1]. We recall the
necessary results.

We had shown the following problem to be Σ0
2-complete in [9]: Given a PBA B′

and an initial distribution μ′, check whether L>0(B′, μ′) = ∅. We will use this decision
problem to establish the lower bound result.

Given a PBA, B′ = (Σ′, Q′, Q′
f , Δ

′ = {δ′a}a∈Σ′), an initial distribution μ′ and
Q′′ ⊆ Q′, let reachable(Q′′) be the predicate (∃u ∈ Σ∗. (μ′δu)(Q′′) > 0). Given

q ∈ Q and v ∈ Σ+, let Pr
Q′

f
q,v(Q′′) be the probability that the PFA B′, on input v, when

started in q reaches Q′′ after passing through a state in Q′
f .

We had shown in [9] that L>0(B′, μ′) �= ∅ iff

∃Q′′ ⊆ Q′. (reachable(Q′′) and

(∀n ∈ N, n > 0. ∃v ∈ Σ+. ∀q ∈ Q′′. Pr
Q′

f
q,v(Q′′) > 1 − 1

2n )).
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Observe first that the predicate reachable(·) is a recursive predicate. Now, pick a new
element † not in Q′ and for all subsets Q′′ ⊆ Q′ s.t. reachable(Q′′) is true, construct
a PFA BQ′′ and an initial distribution μQ′′ as follows. The input alphabet is Σ′. The
states of BQ′′ are Q′ ∪ (Q′ ×{†}). The set of final states of BQ′′ are Q′′ ×{†}. The set
of transitions Δ′′ = {δ′′a}a∈Σ′ is as follows. For each a ∈ Σ′:

– δ′′a(q1, q2) = δ′a(q1, q2) if q1 ∈ Q′ and q2 ∈ Q′ \Q′
f .

– δ′′a(q1, (q2, †)) = δ′a(q1, q2) if q1 ∈ Q′ and q2 ∈ Q′
f .

– δ′′a((q1, †), (q2, †)) = δ′a(q1, q2) if q1, q2 ∈ Q′.

Let μQ′′ be the distribution assigns probability 1
|Q′′| to each q ∈ Q′′ where |Q′′| is the

number of elements of Q′′. It can be easily shown that L>0(B′, μ′) = ∅ iff ∀Q′′ ⊆ Q,
reachable(Q′′) implies that 1 is an isolated cut-point for (BQ′′ , μQ′′).

While the reduction above is a truth-table reduction, note that by taking “disjoint”
union of the PFAs BQ′′ , adding a new initial state, a new reject state and new input
symbols, we can easily construct a many-to-one reduction. The result now follows. ��
Remark 1. We can conclude from the proof of Theorem 1 that the problem of checking
whether 1 is an isolated cut-point for a PFA A is equivalent to the problem of checking
whether a PBA B accepts an infinite word with probability > 0. The proof of Theo-
rem 1 establishes one side of this equivalence and the converse is established in [3] (see
Remark 5.7 on Page 41).

4 Weak Ergodicity and Eventually Weak Ergodicity

Ergodicity is an important concept that is useful in the study of stochastic matrices. We
will recall this notion shortly and its extension to sets of stochastic matrices. We shall
need one notation: Given a nonempty finite set Δ ⊆ Mat=1(Q) of stochastic matrices
and 
 > 0, let Δ = {δ1δ2 · · · δ | δi ∈ Δ}.

Recall that a stochastic matrix is ergodic if it is irreducible and aperiodic. A Markov
chain M = (Q, δ, μ) is ergodic if the matrix δ is ergodic. Ergodic chains have a special
property that they converge to a unique stationary distribution in the limit irrespective
of the starting distribution. More generally, this fact generalizes to Markov chains that
a) have a single closed communicating class and b) this class is aperiodic. The notion
of ergodicity has been extended to sets of stochastic matrices [22,19,17] and such sets
are called weakly ergodic sets. Analogous to the convergence to the stationary distribu-
tion, if Δ is weakly ergodic then for any “long enough sequence” δ1, · · · , δ, any two
distributions μ1δ1 · · · δ, μ2δ1 · · · δ are “very close.” We recall the formal definition of
weakly ergodic matrices introduced in [7].

Definition 3. A finite set of stochastic matrices Δ over a finite state space Q is said
to be strongly semi-regular if for each δ ∈ Δ there is a state qδ s.t. for each q ∈ Q
δ(q, qδ) > 0. Δ is weakly ergodic if there is an 
 > 0 s.t. Δ is strongly semi-regular. A
PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ) is weakly ergodic if Δ is weakly ergodic.

Example 1. Consider the 2-element set Δ shown in Figure 1.a). Δ can be seen to be
strongly semi-regular and hence weakly ergodic as follows: the transition represented
by solid edges always “hits” the state H and the transition corresponding to the dashed
edges always “hits” the state G.
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Fig. 1. a) Δ shown is weakly ergodic. There are two matrices in Δ: transitions of first one are
shown as solid edges, while transitions of second one are shown as dashed edges. b) Δ is singleton
and hence is eventually weakly ergodic. Δ is not weakly ergodic. c) Δ shown is not eventually
weakly ergodic. There are two matrices in Δ: transitions of first one are shown as solid edges,
while transitions of second one are shown as dashed edges.

Remark 2. There are several other equivalent definitions of weakly ergodic set of ma-
trices. For example, one formulation [22] says that a finite set of matrices is weakly
ergodic if every finite product of matrices has only one closed communicating class
that is irreducible and aperiodic. There is an algorithm [22,19] that given a nonempty,
finite set Δ ⊆ Mat=1(Q) checks if Δ is weakly ergodic or not.

Eventually weakly ergodic sets. Even when stochastic matrices are not ergodic, the
notion of ergodicity proves useful for analysis of Markov chains. This is because for
any stochastic matrix δ, there is an 
 > 0 such that Q can be written as a disjoint sum
Q = QT ∪Q′

1 · · ·Q′
m where Q′

j is an aperiodic, closed communicating class for δ and
QT is the set of transient states for δ. This observation motivates the following:

Definition 4. Δ ⊆ Mat=1(Q) is said to be eventually weakly ergodic if there is a
partition QT , Q1, . . . Qr of Q and a natural number 
 > 0 s.t. for each 1 ≤ i ≤ r the
following conditions hold–

– Qi is closed for Δ.
– Δ|Qi is strongly semi-regular.
– For each q ∈ QT and each δ ∈ Δ, post(q, δ) ∩ (∪1≤j≤rQj) �= ∅.

The tuple (
,QT , (Q0, . . . , Qr)) is said to be a witness of eventual weak ergodicity. A
PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ) is eventually weakly ergodic if Δ is eventually
weakly ergodic.

Remark 3. Please note that we are requiring that each Qi be closed for Δ and not for
Δ. This means that Qi is closed for all Δ′ s.t. 
′ is a multiple of 
. For 
′ which is
not a multiple of 
, a δ ∈ Δ′ may take a state in Qi to a state not in Qi. For example,
consider the singleton Δ in Figure 1.b). Note that Δ is eventually weakly ergodic (but
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not weakly ergodic) with witness (2, ∅, ({E}, {F})). Note that the sets {E} and {F}
are closed for Δ′ iff 
′ is even.

As expected, each singleton turns out to be eventually weakly ergodic.

Proposition 1. If Δ ⊆ Mat=1(Q) and |Δ| = 1 then Δ is eventually weakly ergodic.

Example 2. Observe that the Δ shown in Figure 1.c) is not eventually weakly ergodic.
This can be seen as follows. For each 
, the only closed class of Δ is the set of all
states. Let δsolid and δdashed be the matrices shown with solid lines and dashed lines
respectively. For any δ ∈ δ of the form δsolidδdashedδsolidδdashed · · · , post(δ, {B})∩
post(δ, {C}) = ∅. On the other hand, Δ shown in Figure 1.b) is eventually weakly
ergodic with (2, ∅, ({E}, {F})) as a witness of eventual weak ergodicity.

Remark 4. The contracting PFAs considered in [18] are different from eventually
weakly ergodic matrices. Contracting PFAs are PFAs in which each transition matrix
has only one closed communicating class which is aperiodic. The set Δ in Figure (1.c)
is not eventually weakly ergodic but is contracting and the set Δ in Figure (1.b) is
eventually weakly ergodic but not contracting.

The algorithm for checking whether a finite set of matrices are weakly ergodic can be
extended to checking whether a finite set of matrices is eventually weakly ergodic.

Proposition 2. The problem of checking given nonempty, finite set Δ ⊆ Mat=1(Q),
whether Δ is eventually weakly ergodic is decidable. Furthermore, if Δ is eventually
weakly ergodic then a witness of eventual weak ergodicity can be computed.

5 Decision Problems for Eventually Weakly Ergodic PFAs

We shall now study the problems of deciding emptiness and isolation for eventually
weakly ergodic PFAs. We start by discussing the emptiness problem.

5.1 Emptiness/Universality Checking for Eventually Weakly Ergodic PFAs

The problem of checking emptiness of a PFA is undecidable [20,13]. The problem
continues to remain undecidable for eventually weakly ergodic PFAs. The proof of
undecidability is similar to the one used in [8] to show that the problem of checking
emptiness of finite probabilistic monitors is undecidable.

Proposition 3. The following problems are undecidable: Given an eventually weakly
ergodic PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ), an initial distribution μ ∈ Dist(Q) and
rational x ∈ (0, 1) check whether a) L>x(B, μ) = ∅ and whether b) L>x(B, μ) = Σ∗.

Therefore, it follows that the syntactic restriction of eventually weak ergodicity is not
enough for deciding emptiness of probabilistic automata. However, we will show that
the problem of checking emptiness becomes decidable under the promise that the cut-
point is isolated. In order to establish this result, we shall first establish a useful lemma
(Lemma 1). In order to state this lemma, we need one auxiliary definition. Note that by
the notation m|n we mean that m divides n.
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Definition 5. Given an alphabet Σ and natural numbers 
, 
′ > 0 such that 
′|
, let
c(,′) : Σ∗ → Σ∗ be defined as follows.

c(,′)(u) =

{
u if |u| < 
′ + 2
;

u0u1v1 if u = u0u1wv1, |u0| < 
′, |u1| = 
, w ∈ (Σ′)+ and |v1| = 

.

Informally, given 
, 
′ and Σ such that 
′|
, the function c(,′)(·) works as follows. If
u is a string whose length is a multiple of 
′, then c(,′)(u) keeps the prefix of length

 of u and the suffix of the length 
 of u and “cuts” away the rest of the string. If the
length of the u is not a multiple of 
′ then it selects the largest suffix whose length is a
multiple of 
′ and applies c(,′)(·) to it.

The following lemma states that if B is eventually weakly ergodic then the distri-
bution obtained by inputting a word in Σ∗ is determined up to a given ε by the initial
distribution and an appropriate “cut” (which depends only on B and ε).

Lemma 1. Given an eventually weakly ergodic PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ)
and ε > 0, there are 
 > 0 and 
′ > 0 s.t. 
′|
 and

∀μ0 ∈ Dist(Q) . ∀u ∈ Σ∗ . d(μ0δu, μ0δc(�,�′)(u)) < ε.

Furthermore, if ε is rational then 
, 
′ can be computed from B and ε.

We shall now show that if B is eventually weakly ergodic and x is an isolated cut point
for (B, μ) then there is an algorithm that computes the regular language L>x(B, μ).
Recall that regularity is a consequence of Rabin’s theorem on isolated cut-points (see
Section 2.4). Indeed, as observed in Section 2.4, Rabin’s proof can also be used to
compute the regular language, provided we can compute a degree of isolation. The
eventually weak ergodicity condition allows us to compute this.

Lemma 2. There is a procedure that given an eventually weakly ergodic PFA B =
(Σ,Q,Qf , Δ = {δa}a∈Σ), a distribution μ ∈ Dist(Q) and a rational x ∈ [0, 1] such
that x is an isolated cut-point for (B, μ) terminates and outputs ε > 0 such that ε is a
degree of isolation.

Proof. Consider the procedure in Figure 2. Thanks to Lemma 1, if the procedure ter-
minates then the ε returned is a degree of isolation. Hence, it suffices to show that
the procedure terminates if x is an isolated cut-point for (B, μ). Let ε0 be a degree
of isolation and fix it. Thus, for all u ∈ Σ∗, |PraccB, μ(u) − x| > ε0. Let ε(n) be the
value of variable ε at the beginning of the nth unrolling of the while loop. As long
as isolationfound is false, ε(n) = 1

2n . Let N0 = -log2 ε0. + 1. As ε(N0) < ε0 and
∀u ∈ Σ∗, |PraccB, μ(u) − x| > ε0, isolationfound must become true at the end of N0th
unrolling, if not before. ��

Lemma 2 along with the proof of Rabin’s theorem on isolated cut-points can now be
used to establish our main result.

Theorem 2. There is a procedure that given an eventually weakly ergodic PFA B =
(Σ,Q,Qf , Δ = {δa}a∈Σ), a distribution μ ∈ Dist(Q) and a rational x ∈ [0, 1]
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Input: B, μ, x where
B = (Σ,Q,Qf ,Δ = {δa}a∈Σ) is an eventually weakly ergodic PFA,
μ ∈ Dist(Q) is the initial distribution and x ∈ [0, 1] is a rational number

{
isolationfound := false;
ε := 1

2
;

while not(isolationfound)
do

Compute �, �′ > 0 such that
∀μ0 ∈ Dist(Q). ∀u ∈ Σ∗. d(μ0δu, μ0δc(�,�′)(u)) < ε;

currisolation := minv∈(Σ)<2�+�′ |μδv(Qf )− x|;
If currisolation ≤ ε then ε := ε

2

else {ε := currisolation − ε; isolationfound = true; }
od;
return(ε);
}

Fig. 2. Procedure for computing the degree of isolation

such that x is an isolated cut-point for (B, μ) terminates and outputs the regular lan-
guage L>x(B, μ). Therefore, the following problems are decidable: Given an eventually
weakly ergodic PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ), a distribution μ ∈ Dist(Q) and
rational x ∈ [0, 1] s.t. x is an isolated cut-point, a) check whether L>x(B, μ) = ∅ and
b) check whether L>x(B, μ) = Σ∗.

5.2 Checking Isolation for Weakly Ergodic PFAs

A close examination of the proof of undecidability of checking isolation in PFAs given
in Bertoni [4,5] reveals that the problem of checking isolation is r.e.-hard even for
eventually weakly ergodic automata. Furthermore, if we run the procedure in Lemma 2
on an arbitrary (i.e., not necessarily isolated) cut-point x then the procedure terminates
if and only if x is an isolated cut-point, implying that checking isolation is in r.e..

Theorem 3. The following problem is r.e.-complete: Given an eventually weakly er-
godic PFA B = (Σ,Q,Qf , Δ = {δa}a∈Σ), a distribution μ ∈ Dist(Q) and rational
x, check if x is isolated for (B, μ).

6 Conclusions

We have established the exact level of undecidability of checking if a given threshold x
is an isolated cut point for a given PFA A, showing it to be Σ0

2 -complete. We have also
proved decidability of non-emptiness (and universality) for eventually weakly ergodic
automata, given that the automaton has an isolated cut-point. The problem of decid-
ability/undecidability of checking non-emptiness for arbitrary PFAs with isolated cut
points is still an open problem.
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On Stochastic Games with Multiple Objectives

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,
Aistis Simaitis, and Clemens Wiltsche

Department of Computer Science, University of Oxford, United Kingdom

Abstract. We study two-player stochastic games, where the goal of one
player is to satisfy a formula given as a positive boolean combination of
expected total reward objectives and the behaviour of the second player
is adversarial. Such games are important for modelling, synthesis and
verification of open systems with stochastic behaviour. We show that
finding a winning strategy is PSPACE-hard in general and undecidable
for deterministic strategies. We also prove that optimal strategies, if they
exists, may require infinite memory and randomisation. However, when
restricted to disjunctions of objectives only, memoryless deterministic
strategies suffice, and the problem of deciding whether a winning strategy
exists is NP-complete. We also present algorithms to approximate the
Pareto sets of achievable objectives for the class of stopping games.

1 Introduction

Stochastic games [20] have many applications in semantics and formal verifica-
tion, and have been used as abstractions for probabilistic systems [15], and more
recently for quantitative verification and synthesis of competitive stochastic sys-
tems [8]. Two-player games, in particular, provide a natural representation of
open systems, where one player represents the system and the other its environ-
ment, in this paper referred to as Player 1 and Player 2, respectively. Stochasticity
models uncertainty or randomisation, and leads to a game where each player can
select an outgoing edge in states he controls, while in stochastic states the choice
is made according to a state-dependent probability distribution. A strategy de-
scribes which actions a player picks. A fixed pair of strategies and an initial
state determines a probability space on the runs of a game, and yields expected
values of given objective (payoff) functions. The problem is then to determine
if Player 1 has a strategy to ensure that the expected values of the objective
functions meet a given set of criteria for all strategies that Player 2 may choose.

Various objective functions have been studied, for example reachability, ω-
regular, or parity [4]. We focus here on reward functions, which are determined
by a reward structure, annotating states with rewards. A prominent example is
the reward function evaluating total reward, which is obtained by summing up
rewards for all states visited along a path. Total rewards can be conveniently used
to model consumption of resources along the execution of the system, but (with
a straightforward modification of the game) they can also be used to encode
other objective functions, such as reachability.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 266–277, 2013.
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Although objective functions can express various useful properties, many sit-
uations demand considering not just the value of a single objective function,
but rather values of several such functions simultaneously. For example, we may
wish to maximise the number of successfully provided services and, at the same
time, ensure minimising resource usage. More generally, given multiple objective
functions, one may ask whether an arbitrary boolean combination of upper or
lower bounds on the expected values of these functions can be ensured (in this
paper we restrict only to positive boolean combinations, i.e. we do not allow
negations). Alternatively, one might ask to compute or approximate the Pareto
set, i.e. the set of all bounds that can be assured by exploring trade-offs. The
simultaneous optimisation of a conjunction of objectives (also known as multi-
objective, multi-criteria or multi-dimensional optimisation) is actively studied
in operations research [21] and used in engineering [17]. In verification it has
been considered for Markov decision processes (MDPs), which can be seen as
one-player stochastic games, for discounted objectives [5] and general ω-regular
objectives [10]. Multiple objectives for non-stochastic games have been stud-
ied by a number of authors, including in the context of energy games [22] and
strategy synthesis [6].

In this paper, we study stochastic games with multi-objective queries, which
are expressed as positive boolean combinations of total reward functions with
upper or lower bounds on the expected reward to be achieved. In that way we
can, for example, give several alternatives for a valid system behaviour, such
as “the expected consumption of the system is at most 10 units of energy and
the probability of successfully finishing the operation is at least 70%, or the
expected consumption is at most 50 units, but the probability of success is at
least 99%”. Another motivation for our work is assume-guarantee compositional
verification [19], where the system satisfies a set of guarantees ϕ whenever a set
of assumptions ψ is true. This can be formulated using multi-objective queries
of the form

∧
ψ ⇒

∧
ϕ. For MDPs it has been shown how to formulate assume-

guarantee rules using multi-objective queries [10]. The results obtained in this
paper would enable us to explore the extension to stochastic games.

Contributions. We first obtain nondeterminacy by a straightforward modifi-
cation of earlier results. Then we prove the following novel results for multi-
objective stochastic games:

– We prove that, even in a pure conjunction of objectives, infinite memory and
randomisation are required for the winning strategy of Player 1, and that the
problem of finding a deterministic winning strategy is undecidable.

– For the case of a pure disjunction of objectives, we show that memoryless
deterministic strategies are sufficient for Player 1 to win, and we prove that
determining the existence of such strategies is an NP-complete problem.

– For the general case, we show that the problem of deciding whether Player 1
has a winning strategy in a game is PSPACE-hard.

– We provide Pareto set approximation algorithms for stopping games. This
result directly applies to the important class of discounted rewards for non-
stopping games, due to an off-the-shelf reduction [9].
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Related Work. Multi-objective optimisation has been studied for various sub-
classes of stochastic games. For non-stochastic games, multi-dimensional ob-
jectives have been considered in [6,22]. For MDPs, multiple discounted objec-
tives [5], long-run objectives [2], ω-regular objectives [10] and total rewards [12]
have been analysed. The objectives that we study in this paper are a special
case of branching time temporal logics for stochastic games [3,1]. However, al-
ready for MDPs, such logics are so powerful that it is not decidable whether
there is an optimal controller [3]. A special case of the problem studied in this
paper is the case where the goal of Player 1 is to achieve a precise value of
the expectation of an objective function [9]. As regards applications, stochastic
games with a single objective function have been employed and implemented
for quantitative abstraction refinement for MDP models in [15]. The usefulness
of techniques for verification and strategy synthesis for stochastic games with
a single objective is demonstrated, e.g., for smart grid protocols [8]. Applica-
tions of multi-objective verification include assume-guarantee verification [16]
and controller synthesis [13] for MDPs.

2 Preliminaries

We begin this section by introducing notations used throughout the paper. We
then provide the definition of stochastic two-player games together with the
concepts of strategies and paths of the game. Finally, we introduce the objectives
that are studied in this paper.

2.1 Notation

Given a vector x ∈ Rn, we use xi to refer to its i-th component, where 1 ≤ i ≤ n,

and define the norm ‖x‖ def
=

∑n
i=1 |xi|. Given a number y ∈ R, we use x ± y to

denote the vector (x1±y, x2±y, . . . , xn±y). Given two vectors x,y ∈ Rn, the dot
product of x and y is defined by x ·y =

∑n
i=1 xi ·yi, and the comparison operator

≤ on vectors is defined to be the componentwise ordering. The sum of two sets
of vectors X,Y ⊆ Rn is defined by X + Y = {x + y |x ∈ X,y ∈ Y }. Given a

set X , we define the downward closure of X as dwc(X)
def
= {y | ∃x ∈ X .y ≤ x}

and the upward closure as up(X)
def
= {y | ∃x ∈ X .x ≤ y}. We denote by R±∞

the set R ∪ {+∞,−∞}, and we define the operations · and + in the expected
way, defining 0 · x = 0 for all x ∈ R±∞ and leaving −∞+∞ undefined. We also
define function sgn(x) : R±∞ → N to be 1 if x > 0, −1 if x < 0 and 0 if x = 0.

A discrete probability distribution (or just distribution) over a (countable) set
S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We write D(S) for the

set of all distributions over S. Let supp(μ) = {s ∈ S | μ(s) > 0} be the support
set of μ ∈ D(S). We say that a distribution μ ∈ D(S) is a Dirac distribution
if μ(s) = 1 for some s ∈ S. We represent a distribution μ ∈ D(S) on a set
S = {s1, . . . , sn} as a map [s1  → μ(s1), . . . , sn  → μ(sn)] and omit the elements
of S outside supp(μ) to simplify the presentation. If the context is clear we
sometimes identify a Dirac distribution μ with the unique element in supp(μ).
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2.2 Stochastic Games

In this section we introduce turn-based stochastic two-player games.

Stochastic Two-player Games. A stochastic two-player game is a tuple G =
〈S, (S�, S♦, S©), Δ〉 where S is a finite set of states partitioned into sets S�,
S♦, and S©; Δ : S × S → [0, 1] is a probabilistic transition function such that
Δ(〈s, t〉) ∈ {0, 1} if s ∈ S� ∪ S♦ and

∑
t∈S Δ(〈s, t〉) = 1 if s ∈ S©.

S� and S♦ represent the sets of states controlled by players Player 1 and
Player 2, respectively, while S© is the set of stochastic states. For a state s ∈ S,

the set of successor states is denoted by Δ(s)
def
= {t ∈ S | Δ(〈s, t〉)>0}. We

assume that Δ(s) �= ∅ for all s ∈ S. A state from which no other states except
for itself are reachable is called terminal, and the set of terminal states is denoted

by Term
def
= {s ∈ S | Δ(〈s, t〉)=1 iff s = t}.

Paths. An infinite path λ of a stochastic game G is an infinite sequence s0s1 . . .
of states such that si+1 ∈ Δ(si) for all i ≥ 0. A finite path is a finite such
sequence. For a finite or infinite path λ we write len(λ) for the number of states
in the path. For i < len(λ) we write λi to refer to the i-th state si of λ. For a
finite path λ we write last(λ) for the last state of the path. For a game G we
write Ω+

G for the set of all finite paths, and ΩG for the set of all infinite paths,
and ΩG,s for the set of infinite paths starting in state s. We denote the set of

paths that reach a state in T ⊆ S by ♦T def
= {ω ∈ ΩG | ∃i . ωi ∈ T }.

Strategies. A strategy of Player 1 is a (partial) function π : Ω+
G →D(S), which

is defined for λ ∈ Ω+
G only if last(λ) ∈ S�, such that s ∈ supp(π(λ)) only if

Δ(〈last(λ), s〉) = 1. A strategy π is a finite-memory strategy if there is a finite
automaton A over the alphabet S such that π(λ) is determined by last(λ) and the
state of A in which it ends after reading the word λ. We say that π is memoryless
if last(λ)=last(λ′) implies π(λ)=π(λ′), and deterministic if π(λ) is Dirac for all
λ ∈ Ω+

G . If π is a memoryless strategy for Player 1 then we identify it with the
mapping π : S� → D(S). A strategy σ for Player 2 is defined similarly. We denote
by Π and Σ the sets of all strategies for Player 1 and Player 2, respectively.

Probability Measures. A stochastic game G, together with a strategy pair
(π, σ) ∈ Π × Σ and a starting state s, induces an infinite Markov chain on the
game (see e.g. [9]). We define the probability measure of this Markov chain by
Prπ,σG,s . The expected value of a measurable function f : Sω→R±∞ is defined as

Eπ,σ
G,s [f ]

def
=

∫
ΩG,s

f dPrπ,σG,s . We say that a game G is a stopping game if, for every

pair of strategies π and σ, a terminal state is reached with probability 1.

Rewards. A reward function r : S → Qn assigns a reward vector r(s) ∈ Qn to
each state s of the game G. We use ri for the function defined by ri(t) = r(t)i
for all t. We assume that for each i the reward assigned by ri is either non-
negative or non-positive for all states (we adopt this approach in order to express
minimisation problems via maximisation, as explained in the next subsection).
The analysis of more general reward functions is left for future work. We define
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the vector of total reward random variables rew(r) such that, given a path λ,
rew(r)(λ) =

∑
j≥0 r(λj).

2.3 Multi-objective Queries

A multi-objective query (MQ) ϕ is a positive boolean combination (i.e. disjunc-
tions and conjunctions) of predicates (or objectives) of the form r $% v, where r is
a reward function, v ∈ Q is a bound and $% ∈ {≥,≤} is a comparison operator.
The validity of an MQ is defined inductively on the structure of the query: an
objective r $% v is true in a state s of G under a pair of strategies (π, σ) if and
only if Eπ,σ

G,s [rew(r)] $% v, and the truth value of disjunctions and conjunctions
of queries is defined straightforwardly. Using the definition of the reward func-
tion above, we can express the operator ≤ by using ≥, applying the equivalence
r ≤ v ≡ (−r ≥ −v). Thus, throughout the paper we often assume that MQs
only contain the operator ≥.

We say that Player 1 achieves the MQ ϕ (i.e., wins the game) in a state s if it
has a strategy π such that for all strategies σ of Player 2 the query ϕ evaluates
to true under (π, σ). An MQ ϕ is a conjunctive query (CQ) if it is a conjunction
of objectives, and a disjunctive query (DQ) if it is a disjunction of objectives.

For a MQ ϕ containing n objectives ri $%i vi for 1 ≤ i ≤ n and for x ∈ Rn we
use ϕ[x] to denote ϕ in which each ri $%i vi is replaced with ri $%i xi.

Reachability. We can enrich multi-objective queries with reachability objectives,
i.e. objectives ♦T ≥ p for a set of target states T ⊆ S, where p ∈ [0, 1] is a bound.
The objective ♦T ≥ p is true under a pair of strategies (π, σ) if Prπ,σG,s (♦T ) ≥
p, and notions such as achieving a query are defined straightforwardly. Note
that queries containing reachability objectives can be reduced to queries with
total expected reward only (see [7] for a reduction). It also follows from the
construction that if all target sets contain only terminal states, the reduction
works in polynomial time.

Pareto Sets. Let ϕ be an MQ containing n objectives. The vector v ∈ Rn is
a Pareto vector if and only if (a) ϕ[v − ε] is achievable for all ε > 0, and (b)
ϕ[v + ε] is not achievable for any ε > 0. The set P of all such vectors is called a
Pareto set. Given ε > 0, an ε-approximation of a Pareto set is a set of vectors
Q satisfying that, for any w ∈ Q, there is a vector v in the Pareto set such that
‖v−w‖ ≤ ε, and for every v in the Pareto set there is a vector w ∈ Q such that
‖v −w‖ ≤ ε.

Example. Consider the game G from Figure 1 (left). It consists of one Player 1
state s0, one Player 2 state s1, six stochastic states s2, s3, s4, s5, t1 and t2, as well
as two terminal states t′1 and t′2. Outgoing edges of stochastic states are assigned
uniform distributions by convention. For the MQ ϕ1 = r1 ≥ 2

3 ∧ r2 ≥ 1
6 , where

the reward functions are defined by r1(t1)=r2(t2)=1 and all other values are zero,
the Pareto set for the initial state s0 is shown in Figure 1 (centre). Hence, ϕ1 is
satisfied at s0, as (23 ,

1
6 ) is in the Pareto set. For the MQ ϕ2 = r1 ≥ 2

3∧−r2 ≥ − 1
6 ,

Figure 1 (right) illustrates the Pareto set for s0, showing that ϕ2 is not satisfied
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Fig. 1. An example game (left), Pareto set for ϕ1 at s0 (centre), and Pareto set for
ϕ2 at s0 (right), with bounds indicated by a dot. Note that the sets are unbounded
towards −∞.

at s0. Note that ϕ1 and ϕ2 correspond to the combination of reachability and
safety objectives, i.e., ♦{t′1} ≥ 2

3 ∧ ♦{t′2} ≥ 1
6 and ♦{t′1} ≥ 2

3 ∧ ♦{t′2} ≤ 1
6 .

3 Conjunctions of Objectives

In this section we present the results for CQs. We first recall that the games are
not determined, and then show that Player 1 may require an infinite-memory ran-
domised strategy to win, while it is not decidable whether deterministic winning
strategies exist. We also provide fixpoint equations characterising the Pareto sets
of achievable vectors and their successive approximations.

Theorem 1 (Non-determinacy, optimal strategies [9]). Stochastic games
with multiple objectives are, in general, not determined, and optimal strategies
might not exist, already for CQs with two objectives.

Theorem 1 carries over from the results for precise value games, because the
problem of reaching a set of terminal states T ⊆ Term with probability precisely
p is a special case of multi-objective stochastic games and can be expressed as a
CQ ϕ = ♦T ≥ p ∧ ♦T ≤ p.

Theorem 2 (Infinite memory). An infinite-memory randomised strategy may
be required for Player 1 to win a multi-objective stochastic game with a CQ even
for stopping games with reachability objectives.

Proof. To prove the theorem we will use the example game from Figure 2. We
only explain the intuition behind the need of infinite memory here; the formal
proof is presented in [7]. First, we note that it is sufficient to consider deter-
ministic counter-strategies for Player 2, since, after Player 1 has proposed his
strategy, the resulting model is an MDP with finite branching [18]. Consider the

game starting in the initial state s0 and a CQ ϕ =
∧3
i=1 ♦Ti ≥ 1

3 , where the
target sets T1, T2 and T3 contain states labelled 1, 2 and 3, respectively. We
note that target sets are terminal and disjoint, and for any π and σ we have that∑3

i=1 Prπ,σG,s0(♦Ti) = 1, and hence for any winning Player 1 strategy π it must be

the case that, for any σ, Prπ,σG,s0(♦Ti) = 1
3 for 1 ≤ i ≤ 3.
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Fig. 2. Game where Player 1 requires infinite memory to win.

Let E be the set of runs which never take any transition check . The game
proceeds by alternating between the two steps A and B as indicated in Figure 2.
In step A, Player 1 chooses a probability to go to T1 from state s4, and then
Player 2 gets an opportunity to “verify” that the probability Prπ,σG,s0(♦T1|E) of

runs reaching T1 conditional on the event that no check action was taken is 1
3 . She

can do this by taking the action check and so ensuring that Prπ,σG,s0(♦T1|ΩG \E) =
1
3 . If Player 2 again does not choose to take check , the game continues in step
B, where the same happens for T2, and so on.

When first performing step A, Player 1 has to pick probability 1
3 to go to

T1. But since the probability of going from s4 to T2 is < 1
3 , when step B is

performed for the first time, Player 1 must go to T2 with probability y0 >
1
3 to

compensate for the “loss” of the probability in step A. However, this decreases
the probability of reaching T1 at step B, and so Player 1 must compensate for it
in the subsequent step A by taking probability > 1

3 of going to T1. This decreases
the probability of reaching T2 in the second step B even more (compared to first
execution of step A), for which Player 1 must compensate by picking y1 > y0 >

1
3

in the second execution of step B, and so on. So, in order to win, Player 1 has to
play infinitely many different probability distributions in states s4 and s8. Note
that, if Player 2 takes action “check”, Player 1 can always randomise in states s7
and s11 to achieve expectations exactly 1

3 for all objectives. ��

In fact, the above idea allows us to encode natural numbers together with op-
erations of increment and decrement, and obtain a reduction of the location
reachability problem in the two-counter machine (which is known to be unde-
cidable [14]) to the problem of deciding whether there exists a deterministic
winning strategy for Player 1 in a multi-objective stochastic game.

Theorem 3 (Undecidability). The problem whether there exists a determin-
istic winning strategy for Player 1 in a multi-objective stochastic game is unde-
cidable already for stopping games and conjunctions of reachability objectives.

Our proof is inspired by the proof of [3] which shows that the problem of existence
of a winning strategy in an MDP for a PCTL formula is undecidable. However,
the proof of [3] relies on branching time features of PCTL to ensure the counter
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Fig. 3. Increment gadget for counter j

values of the two-counter machine are encoded correctly. Since MQs only allow
us to express combinations of linear-time properties, we need to take a different
approach, utilising ideas of Theorem 2. We present the proof idea here; for the
full proof see [7]. We encode the counter machine instructions in gadgets similar
to the ones used for the proof of Theorem 2, where Player 1 has to change the
probabilities with which he goes to the target states based on the current value
of the counter. For example, the gadget in Figure 3 encodes the instruction
to increment the counter j. The basic idea is that, if the counter value is cj
when entering the increment gadget, then in state s5 Player 1 has to assign
probability exactly 2

3·2cj to the edge 〈s5, s6〉, and then probability 2
3·2cj+1 to the

edge 〈s9, s10〉 in s9, resulting in the counter being incremented. The gadgets
for counter decrement and zero-check can be found in [7]. The resulting query
contains six target sets. In particular, there is a conjunct ♦Tt ≥ 1, where the
set Tt is not reached with probability 1 only if the gadget representing the
target counter machine location is reached. The remaining five objectives ensure
that Player 1 updates the counter values correctly (by picking corresponding
probability distributions) and so the strategy encodes a valid computation of
the two-counter machine. Hence, the counter machine terminates if and only if
there does not exist a winning strategy for Player 1.

We note that the problem of deciding whether there is a randomised win-
ning strategy for Player 1 remains open, since the gadgets modelling decrement
instructions in our construction rely on the strategy being deterministic. Never-
theless, for stopping games, in Theorem 4 below we provide a functional that,
given a CQ ϕ, computes ε−approximations of the Pareto sets, i.e. the sets con-
taining the bounds x so that Player 1 has a winning strategy for ϕ[x − ε]. As
a corollary of the theorem, using a simple reduction (see e.g. [9]) we get an ap-
proximation algorithm for the Pareto sets in non-stopping games with (multiple)
discounted reward objectives.

Theorem 4 (Pareto set approximation). For a stopping game G and a CQ
ϕ =

∧n
i=1 ri ≥ vi, an ε−approximation of the Pareto sets for all states can be
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computed in k = |S| + �|S| · ln(ε·(n·M)−1)
ln(1−δ) � iterations of the operator F : (S →

P(Rn)) → (S → P(Rn)) defined by

F (X)(s)
def
=

⎧⎪⎨⎪⎩
dwc(conv(

⋃
t∈Δ(s)Xt)+r(s)) if s ∈ S�

dwc(
⋂
t∈Δ(s)Xt+r(s)) if s ∈ S♦

dwc(
∑

t∈Δ(s)Δ(〈s, t〉) ·Xt+r(s)) if s ∈ S©,

where the initial sets are X0
s

def
= {x ∈ Rn |x ≤ r(s)} for all s ∈ S, and M =

|S| · maxs∈S,i |ri(s)|
δ for δ = p

|S|
min and pmin being the smallest positive probability

in G.

We first explain the intuition behind the operations when r(s) = 0. For s ∈
S�, Player 1 can randomise between successor states, so any convex combination
of achievable points in Xk−1

t for the successors t ∈ Δ(s) is achievable in Xk
s ,

and so we take the convex closure of the union. For s ∈ S♦, a value in Xk
s is

achievable if it is achievable in Xk−1
s for all successors t ∈ Δ(s), and hence we

take the intersection. Finally, stochastic states s ∈ S© are like Player 1 states
with a fixed probability distribution, and hence the operation performed is the
weighted Minkowski sum. When r(s) �= 0, the reward is added as a contribution
to what is achievable at s.

Proof (Outline). The proof, presented in [7], consists of two parts. First, we prove
that the result of the k-th iteration of F contains exactly the points achievable
by some strategy in k steps; this is done by applying induction on k. As the
next step, we observe that, since the game is stopping, after |S| steps the game

has terminated with probability at least δ = p
|S|
min. Hence, the maximum change

to any dimension to any vector in Xk
s after k steps of the iteration is less than

M ·(1−δ)�
k

|S| �. It follows that k = |S|+�|S| · ln(ε·(n·M)−1)
ln(1−δ) � iterations of F suffice

to yield all points which are within ε from the Pareto points for r.

4 General Multi-objective Queries

In this section we consider the general case where the objective is expressed as
an arbitrary MQ. The nondeterminacy result from Theorem 1 carries over to the
more general MQs, and, even if we restrict to DQs, the games stay nondetermined
(see [7] for a proof). The following theorem establishes lower complexity bounds
for the problem of deciding the existence of the winning strategy for Player 1.

Theorem 5. The problem of deciding whether there is a winning strategy for
Player 1 for an MQ ϕ is PSPACE-hard in general, and NP-hard if ϕ is a DQ.

The above theorem is proved by reductions from QBF and 3SAT, respectively
(see [7] for the proofs). The reduction from QBF is similar to the one in [11], the
major differences being that our results apply even when the target states are
terminal, and that we need to deal with possible randomisation of the strategies.
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We now establish conditions under which a winning strategy for Player 1
exists. Before we proceed, we note that it suffices to consider MQs in conjunctive
normal form (CNF) that contain no negations, since any MQ can be converted to
CNF using standard methods of propositional logic. Before presenting the proof
of Theorem 6, we give the following reformulation of the separating hyperplane
theorem, proved in [7].

Lemma 1. Let W ⊆ Rm
±∞ be a convex set satisfying the following. For all j,

whenever there is x ∈ W such that sgn(xj) ≥ 0 (resp. sgn(xj) ≤ 0), then
sgn(yj) ≥ 0 (resp. sgn(yj) ≤ 0) for all y ∈W . Let z ∈ Rm be a point which does
not lie in the closure of up(W ). Then there is a non-zero vector x ∈ Rm such
that the following conditions hold:

1. for all 1 ≤ j ≤ m we have xj ≥ 0;
2. for all 1 ≤ j ≤ m, if there is w ∈ W satisfying wj = −∞, then xj = 0; and
3. for all w ∈W , the product w · x is defined and satisfies w · x ≥ z · x.

Theorem 6. Let ψ =
∧n
i=1

∨m
j=1 qi,j ≥ ui,j be an MQ in CNF, and let π be a

strategy of Player 1. The following two conditions are equivalent.

– The strategy π achieves ψ.
– For all ε > 0 there are nonzero vectors x1, . . .xn ∈ Rm

≥0, such that π achieves

the conjunctive query ϕ =
∧n
i=1 ri ≥ vi, where ri(s) = xi·(qi,1(s), . . . , qi,m(s))

and vi = xi · (ui,1−ε, . . . , ui,m−ε) for all 1 ≤ i ≤ n.

Proof (Sketch). We only present high-level intuition here, see [7] for the full
proof. Using the separating hyperplane theorem we show that if there exists a
winning strategy for Player 1, then there exist separating hyperplanes, one per
conjunct, separating the objective vectors within each conjunct from the set of
points that Player 2 can enforce, and vice versa. This allows us to reduce the MQ
expressed in CNF into a CQ, by obtaining one reward function per conjuct, which
is constructed by weighthing the original reward function by the characteristic
vector of the hyperplane.

When we restrict to DQs only, it follows from Theorem 6 that there exists a
strategy achieving a DQ if and only if there is a strategy achieving a certain
single-objective expected total reward, and hence we obtain the following theo-
rem.

Theorem 7 (Memoryless deterministic strategies).Memoryless determin-
istic strategies are sufficient for Player 1 to achieve a DQ.

Since memoryless deterministic strategies suffice for optimising single total re-
ward, to determine whether a DQ is achievable we can guess such a strategy for
Player 1, which uniquely determines an MDP. We can then use the polynomial
time algorithm of [10] to verify that there exists no winning Player 2 strategy.
This NP algorithm, together with Theorem 5, gives us the following corollary.

Corollary 1. The problem whether a DQ is achievable is NP-complete.
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Using Theorem 6 we can construct an approximation algorithm computing
Pareto sets for disjunctive objectives for stopping games, which performs mul-
tiple calls to the algorithm for computing optimal value for the single-objective
reward.

Theorem 8 (Pareto sets). For stopping games, given a vector r = (r1, . . . , rm)
of reward functions, an ε-approximation of the Pareto sets for disjunction of ob-

jectives for r can be computed by (2·m
2·(M+1)
ε )m−1 calls to a NP∩coNP algorithm

computing single-objective total reward, where M is as in Theorem 4.

Proof (Sketch). By Theorem 6 and a generalisation of Lemma 1 (see [7]), we
have that a DQ ϕ =

∨m
j=1 rj ≥ vj is achievable if and only if there exists π

and x ∈ Rm
≥0 such that ∀σ ∈ Σ .Eπ,σ

G,s [x · rew(r)] ≥ x · v, which is a single-
objective query decidable by an NP∩coNP oracle. Given a finite set X ⊆ Rm,
we can compute values dx = supπ infσ E

π,σ
G,s [x · rew(r)] for all x ∈ X , and define

UX =
⋃

x∈X{p | x · p ≤ dx}. It is not difficult to see that UX yields an under-
approximation of achievable points. Let τ = ε

2·m2·(M+1) . We argue that when

we let X be the set of all non-zero vectors x such that ‖x‖ = 1, and where all
xi are of the form τ · ki for some ki ∈ N, we obtain an ε-approximation of the
Pareto set by taking all Pareto points on UX (see [7] for a proof).

The above approach, together with the algorithm for Pareto set approximations
for CQs from Theorem 4, can be used to compute ε-approximations of the Pareto
sets for MQs expressed in CNF. The set UX would then contain tuples of vectors,
one per conjunct.

5 Conclusions

We studied stochastic games with multiple expected total reward objectives, and
analysed the complexity of the related algorithmic problems. There are several
interesting directions for future research. Probably the most obvious is settling
the question whether the problem of existence of a strategy achieving a MQ
is decidable. Further, it is natural to extend the algorithms to handle long-run
objectives containing mean-payoff or ω-regular goals, or to lift the restriction on
reward functions to allow both negative and positive rewards at the same time.
Another direction is to investigate practical algorithms for the solution for the
problems studied here, such as more sophisticated methods for the approxima-
tion of Pareto sets.
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Abstract. We give a new successor data structure which improves upon
the index size of the Pǎtraşcu-Thorup data structures, reducing the index
size from O(nw4/5) bits to O(n logw) bits, with optimal probe complex-
ity. Alternatively, our new data structure can be viewed as matching the
space complexity of the (probe-suboptimal) z-fast trie of Belazzougui et
al. Thus, we get the best of both approaches with respect to both probe
count and index size. The penalty we pay is an extra O(logw) inter-
register operations. Our data structure can also be used to solve the
weak prefix search problem, the index size of O(n logw) bits is known to
be optimal for any such data structure.

The technical contributions include highly efficient single word indices,
with out-degree w/ logw (compared to the w1/5 out-degree of fusion tree
based indices). To construct such high efficiency single word indices we
device highly efficient bit selectors which, we believe, are of independent
interest.

Keywords: Predecessor Search, Succinct Data Structures, Cell Probe
Model, Fusion Trees, Tries, Word RAM model.

1 Introduction

A fundamental problem in data structures is the successor problem: given a
RAM with w bit word operations, and n keys (each w bits long), give a data
structure that answers successor queries efficiently. We distinguish between the
space occupied by the n input keys themselves, which is O(nw) bits, and the
additional space requires by the data structure which we call the index. The two
other performance measures of the data structure which are of main interest
are how many accesses to memory (called probes) it performs per query, and the
query time or the total number of machine operations performed per query, which
could be larger than the number of probes. We can further distinguish between
probes to the index and probes to the input keys themselves. The motivation is
that if the index is small and fits in cache probes to the index would be cheaper.
We focus on constructing a data structure for the successor problem that requires
sublinear o(nw) extra bits.

The simplest successor data structure is a sorted list, this requires no in-
dex, and performs O(log n) probes and O(log n) operations per binary search.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 278–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This high number of probes that are widely dispersed can makes this solution
inefficient for large data sets.

Fusion trees of Fredman and Willard [10] (see also [11]) reduce the number of
probes and time to O(logw n). A fusion tree node has outdegree B = w1/5 and
therefore fusion trees require only O(nw/B) = O(nw4/5) extra bits.

Another famous data structure is the y-fast trie of Willard [18]. It requires
linear space (O(nw) extra bits) and O(logw) probes and time per query.

Pǎtraşcu and Thorup [14] solve the successor problem optimally (to within
an O(1) factor) for any possible point along the probe count/space tradeoff, and
for any value of n and w. However, they do not distinguish between the space
required to store the input and the extra space required for the index. They
consider only the total space which cannot be sublinear.

Pǎtraşcu and Thorup’s linear space data structure for successor search is an
improvement of three previous data-structures and achieves the following bounds.

1. For values of n such that logn ∈ [0, log2 w
log logw ] their data structure is a fu-

sion tree and therefore the query time is O(logw n). This bound increases
monotonically with n.

2. For n such that logn ∈ [ log2 w
log logw ,

√
w] their data structure is a generalization

of the data structure of Beame & Fich [3] that is suitable for linear space, and
has the bound O( logw

log logw−log log logn ). This bound increases from O( logw
log logw )

at the beginning of this range to O(logw) at the end of the range.
3. For values of n such that logn ∈ [

√
w,w] their data structure is a slight

improvement of the van Emde Boas (vEB) data structure [17] and has
the bound of O(max{1, log(w−logn

logw )}). This bound decreases with n from

O(logw) to O(1).

A recent data structure of Belazzougui et al. [5] called the probabilistic z-fast
trie, reduces the extra space requirement to O(n logw) bits, but requires a (sub-
optimal) expected O(logw) probes (and O(log n) probes in the worst case). See
Table 1 for a detailed comparison between various data structures for the succes-
sor porblem with respect to the space and probe parameters under consideration.

Consider the following multilevel scheme to reduce index size: (a) partition the
keys into consecutive sets of w1/5 keys, (b) build a Fusion tree index structure
for each such set (one w bit word), and (c) index the smallest key in every such
group using any linear space data structure. The number of fusion tree nodes
that we need n/w1/5 and the total space required for these nodes and the data
structure that is indexing them is O(nw4/5).

This standard bucketing trick shows that we can get indices of smaller size
by constructing a “fusion tree node” of larger outdegree. That is we seek a data
structure, which we refer to as a word-index, that by using O(1) words can answer
successor queries with respect to as many keys as possible.

Our main contribution is such a word index that can handle w/ logw keys
(rather than w1/5 for fusion trees).1 However, this new highly compact index

1 The w/ logw keys take more than O(1) words but are not considered part of the
word index.



280 S. Cohen et al.

Table 1. Requirements of various data structures for the successor problem. The word
length is w and the number of keys is n. Indexing groups of w/ logw consecutive keys
with our new word indices we can reduce the space of any of the linear space data
structures above to O(n logw) bits while keeping the number of probes the same and
increasing the query time by O(logw).

Data Structure Ref.
Index size
(in bits)

# Non-index
Probes

Total
# Probes

# operations

Binary Search – O(log n) O(log n) O(#probes)

van Emde Boas [17] O(2w) O(1) O(logw) O(#probes)

x-fast trie [18] O(nw2) O(1) O(logw) O(#probes)

y-fast trie [18] O(nw) O(1) O(logw) O(#probes)

x-fast trie
on “splitters”
poly(w) apart

Folklore O(n/poly(w)) O(logw) O(logw) O(#probes)

Beame & Fich [3] Θ(n1+εw) O(1) O
(

logw
log logw

)
O(#probes)

Fusion Trees [10] O(nw4/5) O(1) O
(

log n
logw

)
O(#probes)

z-fast trie [5,4,6] O(n logw)
exp.

w.c.

O(1)

O(log n)

O(logw)

O(log n)
O(#probes)

Pǎtraşcu & Thorup [14]
O(nw) or

O(nw4/5)
O(1)

Optimal given
linear space

O(#probes)

Pǎtraşcu & Thorup
+ γ-nodes

This Paper O(n logw) O(1)
Optimal given
linear space

O(#probes
+ logw)

requires Θ(logw) operations per search (versus the O(1) operations required by
Fusion trees).

Using these word indices we obtain, as described above, a (deterministic) data
structure that, for any n, w, answers a successor query with an optimal number
of probes (within an O(1) factor), and requires only O(n logw) extra bits. We
remark that we only probe O(1) non-index words (which is true of Pǎtraşcu-
Thorup data structures as well, with minor modifications). The penalty we pay
is an additional O(logw) in the time complexity.

Indices of small size are particularly motivated today by the multicore shared
memory architectures abundant today [8,15]. When multiple cores access shared
cache/memory, contention arises. Such contention is deviously problematic be-
cause it may cause serialization of memory accesses, making a mockery of mul-
ticore parallelism. Multiple memory banks and other hardware are attempts to
deal with such problems, to various degrees. Thus, the goals of reducing the in-
dex size, so it fits better in fast caches, reducing the number of probes extraneous
to the index, and the number of probes within the index, become critical.

2 High Level Overview of Our Results and Their
Implications

Computation Model: We assume a RAM model of computation with w bits
per word. A key (or query) is one word (w bits long). We can operate on the
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registers using at least a basic instruction set consisting of (as defined in [7]):
Direct and indirect addressing, conditional jump, and a number of inter-register
operations, including addition, subtraction, bitwise Boolean operations and left
and right shifts. All operations are unit cost. One of our construction does not
require multiplication.

We give three variants of high outdegree single word indices which we call α
nodes, β nodes, and γ nodes. Each of these structures index w/ logw keys and
answer successor queries using only O(1) w-bit words, O(logw) time, and O(1)
extra-index probes (in expectation for α and β nodes, worst case for γ nodes)
to get at most two of the w/ logw keys.

The α node is simply a z-fast trie ([5]) applied to w/ logw keys. Given the
small number of keys, the z-fast trie can be simplified. A major component of
the z-fast trie involves translating a prefix match (between a query and a trie
node) to the query rank. As there are only w/ logw keys involved, we can discard
this part of the z-fast trie and store ranks explicitly in O(1) words.

Based on a different set of ideas, β nodes are arguably simpler than the z-fast
trie, and have the same performance as the α nodes. As β-nodes are not our
penultimate construction, the full description of β-nodes is in appendix, in the
full version of this article [1].

Our penultimate variant, γ nodes, has the advantages that it is determinis-
tic and gives worst case O(1) non-index probes, and, furthermore, requires no
multiplication.

To get the γ nodes we introduce highly efficient bit-selectors (see section 2.2)
that may be of independent interest. Essentially, a bit-selector selects a multiset
of bits from a binary input string and outputs a rearrangement of these bits
within a shorter output string.

Thorup [16] proved that it is impossible to have O(1) time successor search
in a “standard AC(0) model”, for any non-constant number of keys, unless one
uses enormous space, 2Ω(w), where w is the number of bits per word. This means
that it would be impossible to derive an improved γ-node (or Fusion tree node)
with O(1) time successor search in the “standard AC(0) model”.

2.1 Succinct Successor Data Structure

As mentioned in the introduction we obtain using our word indices a successor
data structure that requires O(n logw) bits in addition to the input keys. The
idea is standard and simple: We divide the keys into consecutive chunks of size
w/ logw keys each. We index each chunk with one of our word indices and
index the chunks (that is the first key in each chunk) using another linear space
data structure. This has the following consequences depending upon the linear
space data structure which we use to index the chunks. (We henceforth refer to
our γ-nodes, but similar results can be obtained using either α or β nodes in
expectation.)

Fusion Trees + γ-nodes: This data structure answers successor queries with
O(logw n) probes, and O(logw n+ logw) time.
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The Optimal Structure of Pǎtraşcu & Thorup + γ-nodes: Here the
number of probes to answer a query is optimal, the time is O(#probes+ logw).

y-fast-trie + γ-nodes: This gives an improvement upon the recently introduced
[probabilistic] z-fast-trie, [5,4] (we omit the “probabilistic” prefix hereinafter).
The worst-case probes and query time improves from O(log n) to O(1) probes
and O(logw) query time, and the data structure is deterministic.

The Weak Prefix Search Problem: In this problem the query is as follows.
Given a bit-string p, such that p is the prefix of at least one key among the n
input keys, return the range of ranks of those input keys having p as a prefix.

It is easy to modify the index of our successor data structures to a new data
structure for “weak prefix search”. We construct a word x containing the query
p padded to the right with trailing zeros, and a word y containing the query p
padded to the right with trailing ones. Searching for the rank of the successor of
x in S and the rank of the predecessor of y in S gives the required range.

We note that we can carry out the search of the successor of x and the
predecessor of y without accessing the keys indexed by the γ nodes. As we will
see, our γ nodes implement a succinct blind tree. Searching a blind trie for the
right rank of the successor typically requires accessing one of the indexed keys.
But, as implicitly used in [6], this access can be avoided if the query is a padded
prefix of an indexed key such as x and y above. This implies that the keys
indexed by the γ nodes can in fact be discarded and not stored at all. We get a
data structure of overall size O(n logw) bits for weak prefix search.

Belazzougui et al., [6], show that any data structure supporting “weak prefix
search” must have size Ω(n logw) bits. Hence, our index size is optimal for this
related problem.

2.2 Introducing Bit-Selectors and Building a (k, k)-Bit Selector

To construct the γ-nodes we define and construct bit selectors as follows. A
(k, L) bit-selector, 1 ≤ k ≤ L ≤ w, consists of a preprocessing phase and a query
phase, (see figure in the appendix of the full version of this article [1]):

– The preprocessing phase: The input is a sequence of length k (with repeti-
tions),

I = I[1], I[2], . . . , I[k],

where 0 ≤ I[j] ≤ w − 1 for all j = 1, . . . , k. Given I, we compute the
following:
• A sequence of k strictly increasing indices,

0 ≤ j1 < j2 < · · · < jk ≤ L− 1, and,
• An O(1) word data structure, D(I).

– The query phase: given an input word x, and using D(I), produces an output
word y such that

yj� = xI[], 1 ≤ 
 ≤ k,

ym = 0, m ∈ {0, . . . w − 1} − {j}k=1.
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One main technically difficult result is a construct for (k, k) bit-selectors for all
1 ≤ k ≤ w/ logw (Section 3). The bit selector query time is O(logw), while the
probe complexity and space are constant.

With respect to upper bounds, Brodnik, Miltersen, and Munro [7], give several
bit manipulation primitives, similar to some of the components we use for bit-
selection, but the setting of [7] is somewhat different, and there is no attempt
to optimize criteria such as memory probes and index size. The use of Benes
networks to represent permutations also appears in Munro et. al [13].

Note that, for (k, k)-bit-selectors, it must be that j = 
 − 1, 1 ≤ 
 ≤ k,
independently of I. For a sequence of indices I, we define x[I] to be the bits of
x in these positions (ordered as in I), if I has multiplicities then x[I] also has
multiplicities. With this notation a (k, k) bit selector D(I) computes x[I] for a
query x in O(logw) time.

A (w1/5, w4/5) bit-selector is implicit in fusion trees and lie at the core of the
data structure. Figure 1 compares the fusion tree bit-selector with our construc-
tion.

k L |D(I)| in words # Operations Multiplication?

Fusion tree
bit-selector

1 ≤ k ≤ w1/5 k4 O(1) O(1) Yes

Our bit-selector 1 ≤ k ≤ w/ logw k O(1) O(logw) No

Fig. 1. The bit-selector used for Fusion Trees in [10,11] vs. our bit-selector

We remark that Andersson, Miltersen, and Thorup [2] give an AC(0) imple-
mentation of fusion trees, i.e., they use special purpose hardware to implement
a (k, k) bit-selector (that produces a sketch of length k containing k bits of the
key). Ignoring other difficulties, computing a [perfect] sketch in AC(0) is easy:
just lead wires connecting the source bits to the target bits. With this inter-
pretation, our bit-selector is a software implementation in O(logw) time that
implements the special purpose hardware implementation of [2].

Our bit-selectors are optimal with respect to query time, when considering
implementation on a “practical RAM” (no multiplication is allowed) as defined
by Miltersen [12]. This follows from Brodnik et al. [7] (Theorem 17) who prove
that in the “practical RAM” model, any (k, k)-bit-selector, with k ≥ log10 w,
requires at least Ω(log k) time per bit-selector query. (Observe that the bit-
reversal of Theorem 17 in [7] is a special case of bit-selection).

3 Bit Selectors

In this section we describe both the preprocessing and selection operations for
our bit-selectors. We sketch the selection process, which makes use of D(I), the
output of the preprocessing. A more extensive description and figures can be
found in the appendix, in the full version of this article [1].
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D(I) consists of O(1) words and includes precomputed constants used during
the selection process. As D(I) is O(1) words, we assume that D(I) is loaded into
registers at the start of the selection process. Also, the total working memory
required throughout the selection is O(1) words, all of whom we assume to reside
within the set of registers.

Partition the sequence σ = 0, 1, . . . , w − 1 into w/ logw blocks (consecutive,
disjoint, subsequences of σ), each of length logw. Let Bj denote the jth block of
a word, i.e., Bj = j logw, j logw + 1, . . . , (j + 1) logw− 1, 0 ≤ j ≤ w/ logw− 1.

Given an input word x and the precomputed D(I), the selection process goes
through the seven phases sketched below.

In this high level explanation we give an example input using the following
parameters: The word length w = 16 bits, a bit index requires logw = 4 bits, I
consists of w/ logw = 4 indices (with repetitions). A “block” consists of logw = 4
bits, and there are w/ logw = 4 blocks.

As a running example let the input word be x = 1000 1101 1110 0011 and
let I =< 0, 15, 12, 15 >, the required output is x[I] = 1101.

Phase 0: Zero irrelevant bits. We take the mask M with ones at positions in I,
and set x = x AND M . For our example this gives
Input : M = 1000 0000 0000 1001, x = 1000 1101 1110 0011;
Phase 0: M = 1000 0000 0000 1001, x = 1000 0000 0000 0001.

Phase 1: Packing blocks to the Left: All bits of x whose index belongs to some
block are shifted to the left within the block. We modify the mask M accord-
ingly. Let the number of such bits in block j be bj . This phase transforms M
and x as follows:
Phase 0: M = 1000 0000 0000 1001, x = 1000 0000 0000 0001;
Phase 1: M = 1000 0000 0000 1100, x = 1000 0000 0000 0100;
Note that b0 = 1, b1 = b2 = 0, and b3 = 2. Phase 1 requires O(logw) operations
on a constant number of words (or registers).

Phase 2: Sorting Blocks in descending order of bj (defined in Phase 1 above).
This phase transforms M and x as follows:
Phase 1: M = 1000 0000 0000 1100, x = 1000 0000 0000 0100;
Phase 2: M = 1100 1000 0000 0000, x = 0100 1000 0000 0000;
Technically, phase 2 uses a Benes network to sort the blocks in descending order
of bj , in our running example this means block 3 should come first, then block 0,
then blocks 2 and 3 in arbitrary order. Brodnik, Miltersen, and Munro [7] show
how to simulate a Benes network on bits of a word, we extend this so as to sort
entire blocks of logw bits.
The precomputed D(I) includes O(1) words to encode this Benes network. Phase
2 requires O(logw) bit operations on O(1) words.

Phase 3: Dispersing bits: reorganize the word produced in Phase 2 so that each
of the different bits whose index is in I will occupy the leftmost bit of a unique
block. As there may be less distinct indices in I than blocks, some of the blocks
may be empty, and these will be the rightmost blocks. This process requires
O(logw) word operations to reposition the bits. This phase transforms M and
x as follows:
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Phase 2: M = 1100 1000 0000 0000, x = 0100 1000 0000 0000;
Phase 3: M = 1000 1000 1000 0000, x = 0000 1000 1000 0000;

Phase 4: Packing bits. The goal now is to move the bits positioned by Phase 3
at the leftmost bits of the leftmost r blocks (r being the number of indices in I
without repetitions). Again, by appropriate bit manipulation, this can be done
with O(logw) word operations (see appendix in [1]). This phase transforms M
and x as follows:
Phase 3: M = 1000 1000 1000 0000, x = 0000 1000 1000 0000;
Phase 4: M = 1110 0000 0000 0000, x = 0110 0000 0000 0000;
We remark that if r = k, i.e., if I contains no duplicate indices, then we can skip
Phases 5 and 6 whose purpose is to duplicate those bits required several times
in I.

Phase 5: Spacing the bits. Once again, we simulate a Benes network on the
k leftmost bits. The purpose of this permutation is to space out and rearrange
the bits so that bits who appear multiple times in I are placed so that multiple
copies can be made.
In our running example, phase 5 changes neither M nor x, but this is coinci-
dental – for other inputs (I ′ �= I) phase 5 would not be the identity function.
Phase 5 is yet another application of a Benes network and requires O(logw)
word operations.

Phase 6: Duplicating bits - we duplicate the bits for which space was prepared
during Phase 5. This phase transforms M and x as follows:
Phase 5: M = 1110 0000 0000 0000, x = 0110 0000 0000 0000;
Phase 6: M = 1111 0000 0000 0000, x = 0111 0000 0000 0000;
Technically, phase 6 makes use of shift and OR operations, where the shifts are
decreasing powers of two.

Phase 7: Final positioning: The bits are all now in the k leftmost positions of a
word, every bit appears the same number of times it’s index appears in I, and we
need to run one last Benes network simulation so as to permute these k bits. This
permutation gives the final outcome. This phase transforms M and x as follows:
Phase 6: M = 1111 0000 0000 0000, x = 0111 0000 0000 0000;
Phase 7: M = 1111 0000 0000 0000, x = 1101 0000 0000 0000;
Note the leftmost |I| = w/ logw = 4 bits of x contain the required output of the
bit selector.

4 γ-Nodes

In this section we use the (w/ logw,w/ logw)−bit-selector, described above, to
build a γ-node defined as follows.

Definition 1. A γ-node answers successor queries over a static set S of at
most w/ logw w-bit keys. The γ-node uses a compact index of O(1) w-bit words,
in addition to the input S. Successor queries perform O(1) word probes, and
O(logw) operations.
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We describe the γ-node data structure in stages, beginning with a slow γ-node
below. A slow γ-node is defined as a γ-node but performs O(w/ logw) operations
rather than O(logw).

4.1 Construction of Slow γ-Nodes

We build a blind trie over the set of keys S = y1 < y2, . . . , < yk, k ≤ w/ logw.
We denote this trie by T (S). The trie T (S) is a full binary tree with k leaves,
each corresponds to a key, and k−1 internal nodes. (We do not think of the keys
as part of the trie.) We store T (S) in O(1) w-bit words. (The keys, of course
require |S|w bits.) T (S) has the following structure:

1. Each internal node of T (S) has pointers to its left and right children.
2. An internal node u includes a bit index, iu, in the range 0, . . . , w − 1, iu

is the length of the longest common prefix of the keys associated with the
leaves in the subtree rooted at u.

3. Key yi corresponds to the ith leaf from left to right. We store i in this leaf
and denote this leaf by 
(yi).

4. Keys associated with descendants of the left-child of u have bit iu equals to
zero. Analogously, keys associated with descendants of the right-child of u
have bit iu equals to one.

In addition to T (S), we assume that the keys in S are stored in memory, con-
secutively in sorted order.

Indices both in internal nodes and leaves are in the range 0, . . . , w − 1 and
thereby require O(logw) bits. Since T (S) has O(w/ logw) nodes, a pointer to
a node also requires O(logw) bits. Thus, in total, each node in T (S) requires
only O(logw) bits. It follows that T (S) (internal nodes and leaves) requires only
O(w) bits (or, equivalently, can be packed into O(1) words).

Fundamentally, a blind-search follows a root to leaf path in blind trie T (S),
ignoring intermediate bits. Searching T (S) for a query x always ends at leaf of
the trie (which contains the index of some key). Let bs(x, S) denote the index
stored at this leaf, and let bkey(x) be ybs(x,S). I.e., blind search for query x in

T (S) leads to a leaf that points to bkey(x). In general, bkey(x) is not the answer
to the successor query, but it does have the longest common prefix of x amongst
all keys in S. (See [9].)

To arrive at the successor of x, we retrieve bkey(x) and compute its longest
common prefix with x. Let b be the next bit of x, after LCP(x, bkey(x)). We use
b to pad the remaining bits, let ‖ denote concatenation, and let

z = LCP(x, bkey(x))‖bw−|LCP(x,bkey(x))|.

Finally, we perform a second blind-search on z. The result of this second search
gives us the index of the successor to x to within ±1.

Overall, the number of probes required for such a search is O(1). However,
the computation time is equal to the length of the longest root to leaf path in
T (S), which is O(w/ logw).
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4.2 Improving the Running Time

Using our (w/ logw,w/ logw)-bit-selector we can reduce the search time in
the blind trie from O(w/ logw) to O(logw) operations while still representing
the trie in O(1) words. For that we change the first part of the query, that is the
blind-search for bs(x, S) (the index of bkey(x)). Rather than walking top down
along a path in the trie we use a binary search as follows.

We need the following notation. Any node u ∈ T (S), internal node or leaf,
defines a unique root to u path in T (S). Denote this path by πu = v0, v1, . . . , v|πu|
where v0 is the root, v|πu| = u, and vi is the parent of vi+1. For any node u ∈ T (S)
let Iu be the sequence of indices iv for all internal nodes v along πu. Also, let
ζu be a sequence of zeros and ones, one entry per edge in πu, zero for an edge
pointing left, one otherwise. For all 1 ≤ q ≤ |S| we define πq = π(yq), Iq = I(yq),
and ζq = ζ(yq). The following lemma is straightforward.

Lemma 1. For any index 1 ≤ q ≤ |S|, query x, we have that

ζq is lexicographically smaller than x[Iq ] ⇒ yq < bkey(x)

ζq = x[Iq ] ⇒ yq = bkey(x),

ζq is lexicographically larger than x[Iq ] ⇒ yq > bkey(x).

Based on Lemma 1, given query x, we can do binary search to find bs(S, x):

L← 1, R ← |S|, q ← -(L + R)/2.
while ζq �= x[Iq ] do

if ζq < x[Iq] then R← q
else L← q
end if
q ← -(L + R)/2.

end while
return q

Lemma 2. The above binary search algorithm returns bs(x, S) and has O(logw)
iterations.

Next we show how to implement each iteration of this binary search and compare
x[Iq ] and ζq in O(1) time while keeping the trie stored in O(1) words.

For this we devise a sequence I of bit indices, of lengthw/ logw. Prior to running
the binary search we use the bit-selector of Section 3 to compute x[I] and later we
use x[I] to construct x[Iq ] in every iteration in O(1) time. We extract x[Iq ] from
x[I] and retrieve ζq using O(1) additional words. The details are as follows.

The O(1) Words Which Form the γ Node: For each 1 ≤ q ≤ |S| there
is a unique interval [Lq, Rq] of which q may be the splitting point (i.e. q =
-(Lq + Rq)/2.) during the binary search. Let πq = u1, u2, . . . , ut = 
(yq) be the
path to q as defined above. Define jLq ∈ 1, . . . , t to be the length of the longest
common prefix of πq and πLq . That is ujL is the lowest common ancestor of the
leaves 
(yq) and 
(yLq). Define jRq analogously, and let j = max(jLq , jRq ).
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Let π̃q be the suffix of πq starting at node uj+1, and let Ĩq be the suffix of
Iq starting at Iq[j + 1]. (These are the indices stored in uj+1, uj+2, . . . , ut−1).

Similarly, let ζ̃q be the suffix of ζq, starting at the jth element.
Given S, for every 1 ≤ q ≤ |S| we precompute and store the following data: jLq ,

jRq , Ĩq, ζ̃q. It is easy to verify thatO(1) words suffice to store the 4|S| values above.
Indeed, jLq and jRq are indices in 1, . . . , |S|, O(logw) bits each. As the number of
keys |S| ≤ w/ logw, all the jLq ’s, and jRq ’s fit in O(1) words. Since π̃q paths are
pairwise disjoint, the sum of their path lengths is O(|S|) = O(w/ logw). Hence,
storing all the sequences ζ̃q, 1 ≤ q ≤ w/ logw, requires no more than O(w/ logw)

bits. We store the ζ̃q’s concatenated in increasing order of q in a single word Z.
The sequence I for which we construct the bit selector is the concatenation of the

Ĩq sequences, in order of q. As above, it follows that I is a sequence of O(w/ logw)
logw-bit indices. The bit selector D(I) is also stored as part of the γ node.

For each q we also compute and store the index sq of the starting position of

ζ̃q in Z. This is the same as the index of the starting position of Iq in I. Clearly
all these indices sq can be stored in a single word.

Implementing the Blind Search: As we mentioned, given x as a query to
the γ-node, we compute x[I] (once) from x and D(I), which requires O(logw)
operations and no more than O(1) probes.

At the start of an iteration of the binary search, we have a new value of q, and
access to the following values, all of whom are in O(1) registers from previous
iterations:

x[I], jLq , jRq Lq, Rq, ζLq , ζRq , x[ILq ], x[IRq ].

For the rest of this section let L = Lq and R = Rq. We now compute ζq and

x[Iq ]. We retrieve jL, jR from the data-structure, and we also retrieve x[Ĩq ] from

x[I] and ζ̃q from Z (note that x[Ĩq ] is stored consecutively in x[I] and ζ̃q is stored
consecutively in Z, and we use sq to know where they start).

If jL ≥ jR, we compute x[Iq] ← (x[IL][1, . . . , jL])‖(x[Ĩq]) and ζq ← (ζL[1, . . . ,

jL])‖(ζ̃q).
Analogously, if jL < jR, and we compute

x[Iq ] ← (x[IR][1, . . . , jR])‖(x[Ĩq ])

ζq ← (ζR[1, . . . , jR])‖(ζ̃q).

All these operations are easily computed usingO(1) SHIFT, AND, OR operations.

5 Open Issues

1. Our (k, k)-bit selector takes O(logw) operations, which are optimal when
k ≥ wε for any constant ε > 0. What can be done for smaller values of k?
(E.g., for k = O(1) one can definitely do better).

2. It follows from Thorup ([16]) that, in the practical-RAM model, a search
node with fan-out w

logw requires Ω(log logw) operations. Our γ nodes have

fan out w/ logw and require O(logw) operations. Can this gap be bridged?
3. A natural open question is if the additive O(logw) in time complexity is

required or not.
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Abstract. The aim of the paper is to examine the computational com-
plexity and algorithmics of enumeration, the task to output all solutions
of a given problem, from the point of view of parameterized complexity.
First we define formally different notions of efficient enumeration in the
context of parameterized complexity. Second we show how different algo-
rithmic paradigms can be used in order to get parameter-efficient enumera-
tion algorithms in a number of examples. These paradigms use well-known
principles from the design of parameterized decision as well as enumera-
tion techniques, like for instance kernelization and self-reducibility. The
concept of kernelization, in particular, leads to a characterization of fixed-
parameter tractable enumeration problems.

1 Introduction

This paper is concerned with algorithms for and complexity studies of enumera-
tion problems, the task of generating all solutions of a given computational prob-
lem. The area of enumeration algorithms has experienced tremendous growth
over the last decade. Prime applications are query answering in databases and
web search engines, data mining, web mining, bioinformatics and computational
linguistics.

Parameterized complexity theory provides a framework for a refined analysis
of hard algorithmic problems. It measures complexity not only in terms of the in-
put size, but in addition in terms of a parameter. Problem instances that exhibit
structural similarities will have the same or similar parameter(s). Efficiency now
means that for fixed parameter, the problem is solvable with reasonable time
resources. A parameterized problem is fixed-parameter tractable (in FPT) if it
can be solved in polynomial time for each fixed value of the parameter, where
the degree of the polynomial does not depend on the parameter. Much like in the
classical setting, to give evidence that certain algorithmic problems are not in
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FPT one shows that they are complete for superclasses of FPT, like the classes
in what is known as the W-hierarchy.

Our main goal is to initiate a study of enumeration from a parameterized
complexity point of view and in particular to develop parameter-efficient enu-
meration algorithms. Preliminary steps in this direction have been undertaken
by H. Fernau [5]. He considers algorithms that output all solutions of a problem
to a given instance in polynomial time for each fixed value of the parameter,
where, as above, the degree of the polynomial does not depend on the parame-
ter (let us briefly call this fpt-time). We subsume problems that exhibit such an
algorithm in the class Total-FPT. (A similar notion was studied by Damaschke
[4]). Algorithms like these can of course only exists for algorithmic problems that
possess only relatively few solutions for an input instance. We therefore consider
algorithms that exhibit a delay between the output of two different solutions of
fpt-time, and we argue that this is the “right way” to define tractable parame-
terized enumeration. The corresponding complexity class is called Delay-FPT.

We then study the techniques of kernelization (stemming from parameterized
complexity) and self-reducibility (well-known in the design of enumeration al-
gorithms) under the question if they can be used to obtain parameter-efficient
enumeration algorithms. We study these techniques in the context of different
algorithmic problems from the context of propositional satisfiability (and vertex
cover, which can, of course, also be seen as a form of weighted 2-CNF satisfiability
question). We obtain a number of upper and lower bounds on the enumerability
of these problems.

In the next section we introduce parameterized enumeration problems and
suggest four hopefully reasonable complexity classes for their study. In the fol-
lowing two sections we study in turn kernelization and self-reducibility, and
apply them to the problems Vertex-Cover, MaxOnes-SAT and detection of
strong Horn-backdoor sets. We conclude with some open questions about related
algorithmic problems.

2 Complexity Classes for Parameterized Enumeration

Because of the amount of solutions that enumeration algorithms possibly pro-
duce, the size of their output is often much larger (e.g., exponentially larger) than
the size of their input. Therefore, polynomial time complexity is not a suitable
yardstick of efficiency when analyzing their performance. As it is now agreed,
one is more interested in the regularity of these algorithms rather than in their
total running time. For this reason, the efficiency of an enumeration algorithm is
better measured by the delay between two successive outputs, see e.g., [7]. The
same observation holds within the context of parametrized complexity and we
can define parameterized complexity classes for enumeration based on this time
elapsed between two successive outputs. Let us start with the formal definition
of a parameterized enumeration problem.

Definition 1. A parameterized enumeration problem (over a finite alphabet Σ)
is a triple E = (Q, κ, Sol) such that
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– Q ⊆ Σ∗,
– κ is a parameterization of Σ∗, that is κ : Σ∗ → N is a polynomial time

computable function.
– Sol : Σ∗ → P(Σ∗) is a function such that for all x ∈ Σ∗, Sol(x) is a finite

set and Sol(x) �= ∅ if and only if x ∈ Q.

If E = (Q, κ, Sol) is a parameterized enumeration problem over the alphabet Σ,
then we call strings x ∈ Σ∗ instances of E, the number κ(x) the corresponding
parameter, and Sol(x) the set of solutions of x. As an example we consider the
problem of enumerating all vertex covers with bounded size of a graph.

Problem: All-Vertex-Cover

Input: An undirected graph G and a positive integer k

Parameter: k

Output: The set of all vertex covers of G of size ≤ k

An enumeration algorithm A for the enumeration problem E = (Q, κ, Sol) is an
algorithm, which on the input x of E, outputs exactly the elements of Sol(x)
without duplicates, and which terminates after a finite number of steps on every
input.

At first we need to fix the notion of delay for algorithms.

Definition 2 (Delay). Let E = (Q, κ, Sol) be a parameterized enumeration
problem and A an enumeration algorithm for E. Let x ∈ Q, then we say that the
i-th delay of A is the time between outputting the i-th and (i+ 1)-st solutions in
Sol(x). Further, we define the 0-th delay as the precalculation time as the time
from the start of the computation to the first output statement. Analogously, the
n-th delay, for n = |Sol(x)|, is the postcalculation time which is the time needed
after the last output statement until A terminates.

We are now ready to define different notions of fixed-parameter tractability for
enumeration problems.

Definition 3. Let E = (Q, κ, Sol) be a parameterized enumeration problem and
A an enumeration algorithm for E.

1. The algorithm A is a Total-FPT algorithm if there exist a computable func-
tion t : N → N and a polynomial p such that for every instance x ∈ Σ∗, A
outputs all solutions of Sol(x) in time at most t(κ(x)) · p(|x|).

2. The algorithm A is a Delay-FPT algorithm if there exist a computable func-
tion t : N → N and a polynomial p such that for every x ∈ Σ∗, A outputs all
solutions of Sol(x) with delay of at most t(κ(x)) · p(|x|).

Though this will not be in the focus of the present paper, we remark that, in
analogy to the non-parameterized case (see [3,15]), one can easily adopt the
definition for Inc-FPT algorithms whose ith delay is at most t(κ(x)) · p(|x| + i).
Similarly, one gets the notion of Output-FPT algorithms which is defined by a
runtime of at most t(κ(x)) · p(|x| + |Sol(x)|).
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Definition 4. The class Total-FPT (resp., Delay-FPT) is the class of all pa-
rameterized enumeration problems that admit a Total-FPT (resp., Delay-FPT)
enumeration algorithm.

Observe that Fernau’s notion of fixed parameter enumerable [5] is equivalent to
our term of Total-FPT. Obviously the existence of a Total-FPT enumeration
algorithm requires that for every instance x the number of solution is bounded
by f(κ(x)) · p(|x|), which is quite restrictive. Nevertheless, Fernau was able to
show that the problem Minimum-Vertex-Cover (where we are only interested
in vertex covers of minimum cardinality) is in Total-FPT, but by the just given
cardinality constraint, All-Vertex-Cover is not in Total-FPT. In the upcom-
ing section we will prove that All-Vertex-Cover is in Delay-FPT; hence we
conclude:

Corollary 5. Total-FPT � Delay-FPT.

We consider that Delay-FPT should be regarded as the good notion of tractabil-
ity for parameterized enumeration complexity.

3 Enumeration by Kernelization

Kernelization is one of the most successful techniques in order to design para-
meter-efficient algorithms, and actually characterizes parameter-tractable prob-
lems. Remember that kernelization consists in a pre-processing, which is a poly-
nomial time many-one reduction of a problem to itself with the additional prop-
erty that the (size of the) image is bounded in terms of the parameter of the
argument (see e.g., [6]).

In the following we propose a definition of an enum-kernelization, which should
be seen as a pre-processing step suitable for an efficient enumeration.

Definition 6. Let (Q, κ, Sol) be a parameterized enumeration problem over Σ.
A polynomial time computable function K : Σ∗ → Σ∗ is an enum-kernelization
of (Q, κ, Sol) if there exist:

1. a computable function h : N → N such that for all x ∈ Σ∗ we have
(x ∈ Q ⇔ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)),

2. a computable function f : Σ∗2 → P(Σ∗), which from a pair (x,w) where
x ∈ Q and w ∈ Sol(K(x)), computes a subset of Sol(x), such that
(a) for all w1, w2 ∈ Sol(K(x)), w1 �= w2 ⇒ f(x,w1) ∩ f(x,w2) = ∅,
(b)

⋃
w∈Sol(K(x))

f(x,w) = Sol(x)

(c) there exists an enumeration algorithm Af , which on input (x,w), where
x ∈ Q and w ∈ Sol(K(x)), enumerates all solutions of f(x,w) with delay
p(|x|) · t(κ(x)), where p is a polynomial and t is a computable function.

If K is an enum-kernelization of (Q, κ, Sol), then for every instance x of Q the
image K(x) is called an enum-kernel of x (under K).
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An enum-kernelization is a reduction K from a parameterized enumeration
problem to itself. As in the decision setting it has the property that the image is
bounded in terms of the parameter argument. For a problem instance x, K(x) is
the kernel of x. Observe that if K is an enum-kernelization of the enumeration
problem (Q, κ, Sol), then it is also a kernelization for the associated decision
problem. In order to fit for enumeration problems, enum-kernelizations have the
additional property that the set of solutions of the original instance x can be
rebuilt from the set of solutions of the image K(x) with Delay-FPT. This can
be seen as a generalization of the notion of full kernel from [4], appearing in the
context of what is called subset minimization problems. A full kernel is a kernel
that contains all minimal solutions, since they represent in a certain way all
solutions. In the context of backdoor sets (see the next section), what is known
as a loss-free kernel [13] is a similar notion. In our definition, an enum-kernel is
a kernel that represents all solutions in the sense that they can be obtained with
FPT delay from the solutions for the kernel.

Vertex cover is a very famous problem whose parameterized complexity has
been extensively studied. It is a standard example when it comes to kernelization.
Let us examine it in the light of the notion of enum-kernelization.

Proposition 7. All-Vertex-Cover has an enum-kernelization.

Proof. Given a graph G = (V,E) and a positive integer k, we are interested
in enumerating all vertex covers of G of size at most k. We prove that the
famous Buss’ kernelization [6, pp. 208ff] provides an enum-kernelization. Let us
remember that Buss’ algorithm consists in applying repeatedly the following
rules until no more reduction can be made:

1. If v is a vertex of degree greater than k, remove v from the graph and decrease
k by one.

2. If v is an isolated vertex, remove it.

The algorithm terminates and the kernel K(G) is the reduced graph (VK , EK)
so obtained if it has less than k2 edges, and the complete graph Kk+1 otherwise.

One verifies that whenever in a certain step of the removing process rule (1) is
applicable to a vertex v, and v is not removed immediately, then rule (1) remains
applicable to v also in any further step, until it is removed. Therefore, whenever
we have a choice during the removal process, our choice does not influence the
finally obtained graph: the kernel is unique.

Suppose that K(G) = (VK , EK). Let VD be the set of vertices (of large degree)
that are removed by the rule (1) and VI the set of vertices (isolated) that are
removed by the rule (2). On the one hand every vertex cover of size ≤ k of G
has to contain VD. On the other hand, no vertex from VI is part of a minimal
vertex cover. Thus, all vertex covers of G are obtained in considering all the
vertex covers of K(G), completing them by VD and by some vertices of VI up
to the cardinality k. Therefore, given W a vertex cover of K(G), then we define
f(G,W ) = {W∪VD∪V ′ | V ′ ⊆ VI , |V ′| ≤ k−|W |−|VD|}. It is then clear that for
W1 �= W2, W1,W2 ∈ Sol(K(G)), we have that f(G,W1) ∩ f(G,W2) = ∅. From
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the discussion above we have that
⋃
W∈Sol(K(G)) f(G,W ) is the set of all ≤ k-

vertex covers of G. Finally, given W a vertex cover of K(G), after a polynomial
time pre-processing of G by Buss’s kernelization in order to compute VD and
VI , the enumeration of f(G,W ) comes down to an enumeration of all subsets
of VI of size at most k − |W | − |VD|. Such an enumeration can be done with
polynomial delay by standard algorithms. Therefore, the set f(G,W ) can be
enumerated with polynomial delay and, a fortiori, with Delay-FPT. ��

As in the context of decision problems, enum-kernelization actually characterizes
the class of enumeration problems having Delay-FPT-algorithm, as shown in the
following theorem.

Theorem 8. For every parameterized enumeration problem (Q, κ, Sol) over Σ,
the following are equivalent:

1. (Q, κ, Sol) is in Delay-FPT
2. For all x ∈ Σ∗ the set Sol(x) is computable and (Q, κ, Sol) has an enum-

kernelization.

Proof. (2) ⇒ (1): Let K be an enum-kernelization of (Q, κ, Sol). Given an in-
stance x ∈ Σ∗ the following algorithm enumerates all solution in Sol(x)
with Delay-FPT: compute K(x) in polynomial time, say p′(|x|). Compute
Sol(K(x)), this requires a time g(κ(x)) for some function g since the size of
K(x) is bounded in terms of the parameter argument. Apply successively the
enumeration algorithm Af to the input (x,w) for each w ∈ Sol(K(x)). Since
Af requires a delay p(|x|) · t(κ(x)), the delay of this enumeration algorithm
is bounded from above by (p′(|x|) +p(|x|)) · (g(κ(x)) + t(κ(x))). The correct-
ness of the algorithm follows from the definition of an enum-kernelization
(Item 2.(a) ensures that there is no repetition, Item 2.(b) that all solutions
are output).

(1) ⇒ (2): Let A be an enumeration algorithm for (Q, κ, Sol) that requires delay
p(n) · t(k) where p is a polynomial and t some computable function. Without
loss of generality we assume that p(n) ≥ n for all positive integer n. If Q = ∅
or Q = Σ∗ then (Q, κ, Sol) has a trivial kernelization that maps every x ∈ Σ∗

to the empty string ε. If Q = ∅ we are done. If Q = Σ∗, then fix wε ∈ Sol(ε)
and set for all x, f(x,wε) = Sol(x) and f(x,w) = ∅ for w ∈ Sol(ε) \ {wε}.
Otherwise, we fix x0 ∈ Σ∗ \Q, and x1 ∈ Q with w1 ∈ Sol(x1).

The following algorithm A′ computes an enum-kernelization for (Q, κ, Sol):
Given x ∈ Σ∗ with n := |x| and k = κ(x),

1. the algorithm simulates p(n) · p(n) steps of A.
2. If it stops with the answer “no solution”, then set K(x) = x0 (since

x0 /∈ Q, the function f does not need to be defined).
3. If a solution is output within this time, then set K(x) = x1, f(x,w1) =

Sol(x) and f(x,w) = ∅ for all w ∈ Sol(x1) \ {w1}.
4. If it does not output a solution within this time, then it holds n ≤ p(n) ≤

t(k) and then we set K(x) = x, and f(x,w) = {w} for all w ∈ Sol(x).
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Clearly K(x) can thus be computed in time p(n)2, |K(x)| ≤ |x0|+ |x1|+t(k),
(x ∈ Q ⇔ K(x) ∈ Q), and the function f we have obtained satisfies all the
requirements of Theorem 6, in particular the enumeration algorithm A can
be used to enumerate f(x,w) when applicable. Therefore K provides indeed
an enum-kernelization for (Q, κ, Sol). ��

Corollary 9. All-Vertex-Cover is in Delay-FPT.

Remark 10. Observe that in the proof of Theorem 7, the enumeration of the
sets of solutions obtained from a solution W of K(G) is enumerable even with
polynomial-delay, we do not need fpt delay. We will show in the full paper that
this is a general property: Enum-kernelization can be equivalently defined as
FPT-preprocessing followed by enumeration with polynomial delay.

4 Enumeration by Self-reducibility

In this section we would like to exemplify the use of the algorithmic paradigm of
self-reducibility ([16,8,15]), on which various enumeration algorithms are based
in the literature. The self-reducibility property of a problem allows a “search-
reduces-to-decision” algorithm to enumerate the solutions. This technique seems
quite appropriate for satisfiability related problems. We will first investigate the
enumeration of models of a formula having weight at least k, and then turn
to strong HORN-backdoor sets of size k. In the first example the underlying
decision problem can be solved in using kernelization (see [9]), while in the
second it is solved in using the bounded-search-tree technique.

4.1 Enumeration Classification for MaxOnes-SAT

The self-reducibility technique was in particular applied in order to enumerate
all satisfying assignments of a generalized CNF-formula [1], thus allowing to
identify classes of formulas which admit efficient enumeration algorithms. In the
context of parameterized complexity a natural problem is MaxOnes-SAT, in
which the question is to decide whether there exists a satisfying assignment of
weight at least k, the integer k being the parameter. We are here interested in
the corresponding enumeration problem, and we will study it for generalized
CNF formulas, namely in Schaefer’s framework. In order to state the problem
we are interested in more formally, we need some notation.

A logical relation of arity k is a relation R ⊆ {0, 1}k. By abuse of notation
we do not make a difference between a relation and its predicate symbol. A
constraint, C, is a formula C = R(x1, . . . , xk), where R is a logical relation of
arity k and the xi’s are (not necessarily distinct) variables. If u and v are two
variables, then C[u/v] denotes the constraint obtained from C in replacing each
occurrence of v by u. An assignment m of truth values to the variables satisfies
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite

set of logical relations. A Γ -formula φ, is a conjunction of constraints using
only logical relations from Γ and is hence a quantifier-free first order formula.
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With Var(φ) we denote the set of variables appearing in φ. A Γ -formula φ is
satisfied by an assignment m : Var(φ) → {0, 1} if m satisfies all constraints in
φ simultaneously (such a satisfying assignment is also called a model of φ). The
weight of a model is given by the number of variables set to true. Assuming a
canonical order on the variables we can regard models as tuples in the obvious
way and we do not distinguish between a formula φ and the logical relation
Rφ it defines, i.e., the relation consisting of all models of φ. In the following
we will consider two particular constraints, namely Imp(x, y) = (x → y) and
T(x) = (x).

We are interested in the following parameterized enumeration problem.

Problem: Enum-MaxOnes-SAT(Γ )

Input: A Γ -formula ϕ and a positive integer k

Parameter: k

Output: All assignments satisfying ϕ of weight ≥ k

The corresponding decision problem, denoted by MaxOnes-SAT(Γ ), i.e., the
problem to decide if a given formula has a satisfying assignment of a given weight,
has been studied by Kratsch et al. [9]. They completely settle the question of its
parameterized complexity in Schaefer’s framework. To state their result we need
some terminology concerning types of Boolean relations.

Well known already from Schaefer’s original paper [14] are the following
seven classes: We say that a Boolean relation R is a-valid (for a ∈ {0, 1}) if
R(a, . . . , a) = 1. A relation R is Horn (resp., dual Horn) if R can be defined
by a CNF formula which is Horn (resp., dual Horn), i.e., every clause contains
at most one positive (resp., negative) literal. A relation R is bijunctive if R can
be defined by a 2-CNF formula. A relation R is affine if it can be defined by
an affine formula, i.e., conjunctions of XOR-clauses (consisting of an XOR of
some variables plus maybe the constant 1)—such a formula may also be seen as
a system of linear equations over GF[2]. A relation R is complementive if for all
m ∈ R we have also 1⊕m ∈ R.

Kratsch et al. [9] introduce a new restriction of the class of bijunctive relations
as follows. For this they use the notion of frozen implementation, stemming from
[12]. Let ϕ be a formula and x ∈ Var(ϕ), then x is said to be frozen in ϕ if
it is assigned the same truth value in all its models. Further, we say that Γ
freezingly implements a given relation R if there is a Γ -formula ϕ such that
R(x1, . . . xn) ≡ ∃Xϕ, where ϕ uses variables from X ∪ {x1, . . . xn} only, and all
variables in X are frozen in ϕ. For sake of readability, we denote by 〈Γ 〉fr the set
of all relations that can be freezingly implemented by Γ . A relation R is strongly
bijunctive if it is in 〈{(x ∨ y), (x �= y), (x → y)}〉fr.

Finally, we say that a constraint language Γ has one of the just defined prop-
erties if every relation in Γ has the property.

Theorem 11. [9, Thm. 7] If Γ is 1-valid, dual-Horn, affine, or strongly bi-
junctive, then MaxOnes-SAT(Γ ) is in FPT. Otherwise MaxOnes-SAT(Γ ) is
W[1]-hard.
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Interestingly we can get a complete classification for enumeration as well. The
fixed-parameter efficient enumeration algorithms are obtained through the algo-
rithmic paradigm of self-reducibility.

We would like to mention that an analogously defined decision problem
MinOnes-SAT(Γ ) is in FPT (by a bounded search-tree algorithm) and the
enumeration problem has FPT-delay for all constraint langauges Γ . The deci-
sion problem ExactOnes-SAT(Γ ) has been studied by Marx [10] and shown
to be in FPT iff Γ has a property called “weakly separable”. We remark that
it can be shown, again by making use of self-reducibility, that under the same
conditions, the corresponding enumeration algorithm has FPT-delay. This will
be presented in the full paper. In the present submission we concentrate on the,
as we think, more interesting maximization problem, since here, the classifica-
tion of the complexity of the enumeration problem differs from the one for the
decision problem, as we state in the following theorem.

Theorem 12. If Γ is dual-Horn, affine, or strongly bijunctive, then there is a
Delay-FPT algorithm for Enum-MaxOnes-SAT(Γ ). Otherwise such an algo-
rithm does not exist unless W[1] = FPT.

It would be interesting for those cases of Γ that do not admit a Delay-FPT
algorithm to determine an upper bound besides the trivial exponential time
bound to enumerate all solutions. In particular, are there such sets Γ for which
Enum-MaxOnes-SAT(Γ ) is in Output-FPT?

Proof. (of Theorem 12) We first propose a canonical algorithm for enumerating
all satisfying assignments of weight at least k. The function HasMaxOnes(φ, k)
tests if the formula φ has a model of weight at least k.

Algorithm 2. Enumerate the models of weight at least k

Input: A formula φ with Var(φ) = {x1, . . . , xn}, an integer k
Output: All sat. assignments (given as sets of variables) of φ of weight ≥ k.

1 if HasMaxOnes(φ, k) then Generate(φ, ∅, k, n)

Procedure Generate(φ,M,w, p) :

1 if w = 0 or p = 0 then return M
2 else
3 if HasMaxOnes(φ[xp = 1], w − 1) then
4 Generate(φ[xp = 1],M ∪ {xp}, w − 1, p− 1)

5 if HasMaxOnes(φ[xp = 0], w) then Generate(φ[xp = 0],M,w, p− 1)

Observe that if Γ is dual-Horn, affine, or strongly bijunctive, then according to
Theorem 12 the procedure HasMaxOnes(φ, k) can be performed in FPT. Moreover
essentially if φ is dual-Horn (resp., affine, strongly bijunctive) then so are φ[xp =
0] and φ[xp = 1] for any variable xp. Therefore, in all these cases the proposed
enumeration algorithm has clearly Delay-FPT. ��
A full version of the proof can be found in the arXiv [2].
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4.2 Enumeration of Strong HORN-Backdoor Sets

We consider here the enumeration of strong backdoor sets. Let us introduce
some relevant terminology [18]. Consider a formula φ, a set V of variables of φ,
V ⊆ Var(φ). For a truth assignment τ , φ(τ) denotes the result of removing all
clauses from φ which contain a literal x with τ(x) = 1 and removing literals y
with τ(y) = 0 from the remaining clauses.

The set V is a strong HORN-backdoor set of φ if for all truth assignment
τ : V → {0, 1} we have φ(τ) ∈ HORN. Observe that equivalently V is a strong
HORN-backdoor set of φ if φ|V is HORN, where φ|V denotes the formula
obtained from φ in deleting in φ all occurrences of variables from V .

Now let us consider the following enumeration problem.

Problem: Exact-Strong-BackDoorSet[HORN]

Input: A formula φ in CNF

Parameter: k

Output: The set of all strong HORN-backdoor sets of φ of size
exactly k

From [11] we know that detection of strong HORN-backdoor sets is in FPT. In
using a variant of bounded-search tree the authors use in their FPT-algorithm,
together with self-reducibility we get an efficient enumeration algorithm for all
strong HORN-backdoor sets of size k.

Theorem 13. Exact-Strong-BackDoorSet[HORN] is in Delay-FPT.

Proof. The procedure GenerateSBDS(φ,B, k, V ) depicted in Algorithm 1 enu-
merates all sets S ⊆ V of size k such that B∪S is a strong HORN-backdoor set
for φ, while the function Exists-SBDS(φ, k, V ) tests if φ has a strong HORN-
backdoor set of size exactly k made of variables from V .

The point that this algorithm is indeed in Delay-FPT relies on the fact that
the function Exists-SBDS depicted in Algorithm 2 is in FPT. This function is an
adaptation of the one proposed in [11]. There Nishimura et al. use an important
fact holding for non-HORN clauses (i.e., clauses contains at least two positive
literals): if p1, p2 are two positive literals then either one of them must belong
to any strong backdoor set of the complete formula.

In their algorithm they just go through all clauses for these occurrences. How-
ever for our task, the enumeration of the backdoor sets, it is very important to
take care of the ordering of variables. The reason for this is the following. Using
the algorithm without changes makes it impossible to enumerate the backdoor
sets because wrong sets would be considered: e.g., for some formula φ and vari-
ables x1, . . . , xn let B = {x2, x4, x5} be the only strong backdoor set. Then,
during the enumeration process, one would come to the point where the sets
with x2 have been investigated (our algorithm just enumerates from the small-
est variable index to the highest). When we start investigating the sets containing
x4, the procedure would then wrongly say ”yes there is a backdoor set contain-
ing x4” which is not desired in this situation because we finished considering x2
(and only want to investigate backdoor sets that do not contain x2).
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Algorithm 3. Enumerate all strong HORN-backdoor sets of size k

Input: A formula φ, an integer k
Output: All strong HORN-backdoor sets of size k.

1 if Exists-SBDS(φ, k,Var(φ)) then GenerateSBDS(φ, ∅, k,Var(φ))

Procedure GenerateSBDS(φ,B, k, V ) :

1 if k = 0 or V = ∅ then return B
2 else
3 if Exists-SBDS(φ|B∪{min(V )}, k − 1, V \ {min(V )}) then
4 GenerateSBDS(φ,B ∪ {min(V )}, k − 1, V \ {min(V )})
5 if Exists-SBDS(φ|B , k, V \ {min(V )}) then
6 GenerateSBDS(φ,B, k, V \ {min(V )})

Function Exists-SBDS(φ, k, V ) :

1 if k = 0 or V = ∅ then
2 if φ|V ∈ HORN then return true else return false

3 if there is a clause C with two positive literals p1, p2 then
4 if exactly one of p1 and p2 is in V , say p1 ∈ V, p2 /∈ V then
5 if Exists-SBDS(φ|{p1}, k − 1, V \ {p1}) then return true

6 else
7 if p1 ∈ V and p2 ∈ V then
8 if Exists-SBDS(φ|{p1}, k − 1, V \ {p1}) then return true
9 if Exists-SBDS(φ|{p2}, k − 1, V \ {p2}) then return true

10 return false

11 else return true

Therefore the algorithm needs to consider only the variables in the set V
where in each recursive call the minimum variable (i.e., the one with smallest
index) is removed from the set V of considered variables. ��

5 Conclusion

We made a first step to develop a computational complexity theory for pa-
rameterized enumeration problems by defining a number of, as we hope, useful
complexity classes. We examined two design paradigms for parameterized algo-
rithms from the point of view of enumeration. Thus we obtained a number of
upper bounds and also some lower bounds for important algorithmic problems,
mainly from the area of propositional satisfiability.

As further promising problems we consider the cluster editing problem [4] and
the k-flip-SAT problem [17].

Of course it will be very interesting to examine further algorithmic paradigms
for their suitability to obtain enumeration algorithms. Here, we think of the
technique of bounded search trees and the use of structural graph properties like
treewidth.



Paradigms for Parameterized Enumeration 301

Acknowledgements. We are very thankful to Frédéric Olive for helpful dis-
cussions. We also acknowledge many helpful comments from the reviewers.

References
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2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010)

10. Marx, D.: Parameterized complexity of constraint satisfaction problems. Compu-
tational Complexity (14), 153–183 (2005)

11. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to horn
and binary clauses. In: Proc. SAT (2004)

12. Nordh, G., Zanuttini, B.: Frozen boolean partial co-clones. In: Proc. ISMVL, pp.
120–125 (2009)

13. Samer, M., Szeider, S.: Backdoor trees. In: Proc. AAAI, pp. 363–368. AAAI Press
(2008)

14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–
226. ACM Press (1978)

15. Schmidt, J.: Enumeration: Algorithms and complexity. Master’s thesis, Leibniz
Universität Hannover (2009)

16. Schnorr, C.P.: Optimal algorithms for self-reducible problems. In: Proc. ICALP,
pp. 322–337 (1976)

17. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX
SAT. Discrete Optimization 8(1), 139–145 (2011)

18. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Proc. IJCAI, pp. 1173–1178 (2003)



Complexity of Checking Bisimilarity

between Sequential and Parallel Processes
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1 Institute of Computer Science, University of Bayreuth
2 Dept. of Computer Science, FEI, Technical University of Ostrava

wczerwin@mimuw.edu.pl, {petr.jancar,martin.kot,zdenek.sawa}@vsb.cz

Abstract. Decidability of bisimilarity for Process Algebra (PA) pro-
cesses, arising by mixing sequential and parallel composition, is a long-
standing open problem. The known results for subclasses contain the
decidability of bisimilarity between basic sequential (i.e. BPA) processes
and basic parallel processes (BPP). Here we revisit this subcase and
derive an exponential-time upper bound. Moreover, we show that the
problem if a given basic parallel process is inherently sequential, i.e.
bisimilar with an unspecified BPA process, is PSPACE-complete. We
also introduce a model of one-counter automata, with no zero tests but
with counter resets, that capture the behaviour of processes in the inter-
section of BPA and BPP.

1 Introduction

Bisimilarity (i.e. bisimulation equivalence) is a fundamental behavioral equiv-
alence in concurrency and process theory. Related decidability and complexity
questions on various classes of infinite-state processes are an established research
topic; see e.g. [2,17] for surveys. One of long-standing open problems in this area
is the decidability question for process algebra (PA) processes where sequential
and parallel compositions are mixed. An involved procedure working in double-
exponential nondeterministic time is known for the normed subclass of PA [7].

More is known for the subclasses of PA where only one type of composition
is allowed. The class Basic Process Algebra (BPA) is the “sequential” subclass,
while Basic Parallel Processes (BPP) is the “parallel” subclass. Bisimilarity of
BPA processes is in 2-EXPTIME [3,10], and EXPTIME-hard [14]. On BPP, bisim-
ilarity is PSPACE-complete [12,16]. For normed subclasses of BPA and BPP, the
problem is polynomial [9,8]. A unified polynomial algorithm [5] decides bisimi-
larity on a superclass of both normed BPP and normed BPA.

The most difficult part of the algorithm for normed PA [7] deals with the case
when (a process expressed as) sequential composition is bisimilar with (a process
expressed as) parallel composition. A proper analysis when a BPA process is
bisimilar with a BPP seems to be a natural prerequisite for understanding this
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difficult part. Comparing normed BPA and normed BPP was shown decidable
in exponential time [4], and later in polynomial time [11].

For comparing general (unnormed) BPA processes with BPP processes only
decidability has been known [13]. The algorithm in [13] checks if a BPP process
can be modelled by a (special) pushdown automaton. In the negative case this
BPP process cannot be bisimilar to any BPA process; in the positive case, a spe-
cial one-counter automaton with resets, bisimilar to the BPP process, can be con-
structed. The BPA-BPP decidability then follows from the decidability of bisim-
ilarity for pushdown processes, which is an involved result by Sénizergues [15];
the latter problem has been recently shown to be non-elementary [1].

Here we revisit the bisimilarity problem comparing BPA and BPP processes
and improve the decidability result [13] by showing an exponential-time upper
bound; the known lower bound is PTIME-hardness, inherited already from finite-
state processes. We also get a completeness result: we show that deciding if a
given BPP process is BPA-equivalent, i.e. equivalent to some (unspecified) BPA
process, is PSPACE-complete. PSPACE-hardness of this problem follows by a
straightforward use of the results in [16], more difficult has been to show the
upper bound; this is done in Sect. 3. (We have no upper bound for the opposite
problem, asking if a given BPA process is equivalent to some BPP process.)
When a BPP process is found to be BPA-equivalent then we can construct a
concrete equivalent BPA process, as is also shown in Sect. 3; the construction
yields a double exponential bound on its size. To achieve a single exponential
upper bound (in Sect. 4) when comparing a given BPP process with a given BPA
process, we need to go in more details, and substantially improve the previous
constructions. If a given BPP process is BPA-equivalent then we construct a
special exponentially bounded one-counter net with resets (OCNR) bisimilar
with this BPP process. The last step is deciding bisimilarity between the OCNR
and a given BPA process. The idea of the algorithm guaranteeing the overall
exponential upper bound is sketched in Sect. 4.

2 Notation, Definitions, and Results

Sect. 2.1 provides the definitions, and Sect. 2.2 summarizes the results. Sect. 2.3
recalls the notion of dd-functions and their properties, to be used in the proofs.

2.1 Basic Definitions and Notation

For a set A, by A∗ we denote the set of finite sequences of elements of A, i.e., of
words over A; ε denotes the empty word, and |w| denotes the length of w ∈ A∗.
We use N to denote the set of nonnegative integers {0, 1, 2, . . .}.

LTS. A labelled transition system (LTS) is a tuple L = (S,A, ( a−→)a∈A)

where S is a set of states, A is a set of actions, and
a−→⊆ S × S is a set of

transitions labelled with a; we put −→=
⋃
a∈A

a−→. We write s
a−→ s′ instead of

(s, s′) ∈ a−→, and s −→ s′ instead of (s, s′) ∈−→. For w ∈ A∗, we define s
w−→ s′

inductively: s
ε−→ s; if s

a−→ s′ and s′
u−→ s′′ then s

au−→ s′′. By s −→∗ s′ we
denote that s′ is reachable from s, i.e., s

w−→ s′ for some w ∈ A∗.



304 W. Czerwiński et al.

Bisimilarity. Given an LTS L = (S,A, ( a−→)a∈A), a symmetric relation B ⊆
S × S is a bisimulation if for any (s, t) ∈ B and s

a−→ s′ there is t′ such

that t
a−→ t′ and (s′, t′) ∈ B. Two states s, t are bisimilar, i.e., bisimulation

equivalent, if there is a bisimulation containing (s, t); we write s ∼ t to denote
that s, t are bisimilar. The relation ∼ is indeed an equivalence on S; it is the
maximal bisimulation, i.e., the union of all bisimulations. When comparing the
states from different LTSs L1, L2, we implicitly refer to the disjoint union of L1

and L2.

BPA (Basic Process Algebra, or basic sequential processes). A BPA system is a
tuple Σ = (V,A,R), where V is a finite set of variables, A is a finite set of actions,

and R is a finite set of rules of the form A
a−→ α where A ∈ V , a ∈ A, and α ∈

V ∗. A BPA system Σ = (V,A,R) gives rise to the LTS LΣ = (V ∗,A, ( a−→)a∈A)

where the relations
a−→ are induced by the following (deduction) rule: if X

a−→ α

is in R then Xβ
a−→ αβ for any β ∈ V ∗. A BPA process is a pair (Σ,α) where

Σ = (V,A,R) is a BPA system and α ∈ V ∗; we often write just α when Σ is clear
from context.

BPP (Basic Parallel Processes). A BPP system can be defined as arising from a
BPA system when the concatenation is viewed as commutative, thus stand-
ing for a parallel composition instead of a sequential one. For later techni-
cal reasons we present BPP systems as communication-free Petri nets, called
BPP-nets here; these are classical place/transition nets with labelled transitions
where each transition has exactly one input place. A BPP net is thus a tuple
Δ = (P,Tr , pre, post,A, λ) where P is a finite set of places, Tr is a finite set
of transitions, pre : Tr → P is a function assigning an input place to each
transition, post : Tr × P → N is (equivalent to) a function assigning a multiset
of output places to each transition, A is a finite set of actions, and λ : Tr → A
is a function labelling each transition with an action. A marking M : P → N is
a multiset of places, also viewed as a function assigning a nonnegative number
of tokens to each place. (We could also view P as variables and Tr as rules.)

A BPP net Δ = (P,Tr , pre, post,A, λ) gives rise to the transition-based LTS

LTr
Δ = (NP ,Tr , (

t−→)t∈Tr ) where M
t−→ M ′ iff M(pre(t)) ≥ 1, M ′(pre(t)) =

M(pre(t)) − 1 + post(t, pre(t)), and M ′(p) = M(p) + post(t, p) for each

p �= pre(t). The action-based LTS LΔ = (NP ,A, ( a−→)a∈A) arises from LTr
Δ

by putting M
a−→M ′ iff M

t−→M ′ for some t where λ(t) = a.
A BPP process is a pair (Δ,M) where Δ is a BPP net and M is a state in

LΔ (i.e., a marking); we write just M when Δ is clear from context.

2.2 Results

We assume some standard presentation of the inputs; it does not matter if the
numbers post(t, p) in the BPP definitions are presented in unary or in binary.
The first result clarifies the complexity question of deciding if a basic parallel
process is inherently sequential. The second result gives an upper bound on the
complexity of deciding bisimulation equivalence of a given pair of one sequential



Complexity of Checking Bisimilarity 305

and one parallel process. The known lower bound is PTIME-hardness in this case.
For the counterpart of the question in Theorem 1 we get only a lower bound.
The lower bounds in Theorem 1 and Proposition 3 can be derived routinely by
using the PSPACE-hardness of regularity shown in [16]. The result of clarifying
the intersection of BPA and BPP by using OCNR (one-counter nets with resets)
is not stated explicitly here.

Theorem 1. It is PSPACE-complete to decide for a given BPP process (Δ,M)
if there is a BPA process (Σ,α) such that α ∼M .

Theorem 2. The problem to decide, given a BPA process (Σ,α) and a BPP
process (Δ,M), if α ∼ M is in EXPTIME.

Proposition 3. It is PSPACE-hard to decide for a given BPA process (Σ,α) if
there is a BPP process (Δ,M) such that α ∼M .

2.3 Distance-to-Disabling Functions (dd-functions)

We add further notation and recall the notion of dd-functions introduced in [12].
Let Nω = N ∪ {ω} where ω stands for an infinite number satisfying n < ω,

n+ ω = ω + n = ω − n = ω + ω = ω − ω = ω for all n ∈ N.

Distance. Let L = (S,A, ( a−→)a∈A) be an LTS. We capture the (reachability)
distance of a state s ∈ S to a set of states U ⊆ S by the function dist : S×2S →
Nω given by the following definition, where we put min ∅ = ω :

dist(s, U) = min{
 ∈ N | there are w ∈ A∗, s′ ∈ U where |w| = 
, s
w−→ s′}.

We note that s −→ s′ implies dist(s′, U) ≥ dist(s, U) − 1, i.e., the distance
can drop by at most 1 in one step; moreover, if dist(s, U) = ω then dist(s′, U) =
ω. On the other hand, a finite distance can increase even to ω in one step. A
one-step change thus belongs to Nω,−1 = Nω ∪ {−1}. By our definitions, if
dist(s, U) = dist(s′, U) = ω then dist(s, U) + x = dist(s′, U) for any x ∈
Nω,−1; formally any x ∈ Nω,−1 can be viewed as a respective change in this case.

DD-Functions. Distance-to-disabling functions (related to the LTS L), or dd-

functions for short, are defined inductively. By s
a−→ we denote that a ∈ A is

enabled in s, i.e., s
a−→ s′ for some s′. By s � a−→ we denote that a is disabled

in s, i.e., ¬(s
a−→). We put disableda = {s ∈ S | s � a−→}. For each a ∈ A,

the function dda : S → Nω defined by dda(s) = dist(s,disableda) is a (basic)
dd-function.

If F = (d1, d2, . . . , dk) is a tuple of dd-functions and δ = (x1, x2, . . . , xk) ∈
(Nω,−1)k then disableda,F ,δ = {s ∈ S | for any s′ ∈ S, if s

a−→ s′ then there
is i ∈ {1, 2, . . . , k} such that di(s) + xi �= di(s

′)}. (Hence s ∈ disableda,F ,δ

has no outgoing a-transition which would cause the change δ of the values of
dd-functions in F .) The function dda,F ,δ : S → Nω defined by dda,F ,δ(s) =
dist(s,disableda,F ,δ) is also a dd-function.

A path s1
a1−→ s2

a2−→ · · · sm
am−→ sm+1 in L is d-reducing, for a dd-function d,

if d(si+1) − d(si) = −1 for all i ∈ {1, 2, . . . ,m}.
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It is easy to verify (inductively) that s ∼ s′ implies d(s) = d(s′) for every

dd-function d. If the LTS L = (S,A, ( a−→)a∈A) is image-finite, i.e., the set

{s′ | s a−→ s′} is finite for any s ∈ S and a ∈ A (which is the case of our LΣ ,
LΔ) then we get a full characterization of bisimilarity on S:

Proposition 4. For any image-finite LTS L = (S,A, ( a−→)a∈A), the set {(s, s′) |
d(s) = d(s′) for every dd-function d} is the maximal bisimulation (i.e., the rela-
tion ∼ on S).

DD-Functions on BPP. Let Δ = (P,Tr , pre, post,A, λ) be a BPP net; LΔ =

(NP ,A, ( a−→)a∈A) is the respective LTS. ForQ ⊆ P we put unmark(Q) = {M ∈
NP | M(p) = 0 for each p ∈ Q}, and normQ(M) = dist(M,unmark(Q)). The
next proposition is standard (by a use of dynamic programming); we stipulate
0 · ω = ω · 0 = 0 and n · ω = ω · n = ω when n ≥ 1.

Proposition 5. There is a polynomial-time algorithm that, given a BPP net
Δ = (P,Tr , pre, post,A, λ) and Q ⊆ P , computes a function c : Q → Nω such
that for any M ∈ NP we have normQ(M) =

∑
p∈Q c(p) ·M(p).

We note that the coefficient c(p) attached to p ∈ Q either is ω or is at most
exponential (in the size of Δ). The places p ∈ Q with cp = ω constitute a
trap, in fact the maximal trap in Q; we call R ⊆ P a trap if each t ∈ Tr with
pre(t) ∈ R satisfies post(t, p) ≥ 1 for at least one p ∈ R. We also note that each

transition t ∈ Tr has an associated δtQ ∈ Nω,−1 such that M
t−→ M ′ implies

normQ(M ′) = normQ(M) + δtQ (which is trivial when normQ(M) = ω); we

have δtQ = ω if t puts a token in a trap in Q. The next lemma follows from [12].

Lemma 6.
1. Given a BPP net Δ = (P,Tr , pre, post,A, λ), any dd-function d in LΔ has
the associated set Qd ⊆ P such that d(M) = normQd

(M).
2. The problem to decide if a given set Q ⊆ P is important, i.e., associated with
a dd-function, is PSPACE-complete.

Propositions 4, 5 and Lemma 6 imply that the question whether M �∼ M ′ can
be decided by a nondeterministic polynomial-space algorithm, guessing a set Q
and verifying that Q is important and normQ(M) �= normQ(M ′). Bisimilarity
of BPP processes is thus in PSPACE.

DD-Functions on BPA. We now assume a BPA system Σ = (V,A,R) and
the respective LTS LΣ . For any α ∈ V ∗ we define the norm of α as ‖α‖ =
dist(α, {ε}). If ‖α‖ = ω then obviously α ∼ αβ for any β. For any considered
α we can thus assume that either α is normed, i.e., ‖α‖ < ω, or α = βU where
‖β‖ < ω and U ∈ V is an unnormed variable, i.e., ‖U‖ = ω; the pseudo-norm
pn(α) is equal to ‖α‖ in the first case, and to ‖β‖ in the second case. A transition

Xβ
a−→ γβ is pn-reducing if ‖γ‖ = ‖X‖ − 1 < ω.

A dd-function d is prefix-encoded above C ∈ N if for any α ∈ V ∗ satisfying
C < d(α) < ω we have that each transition α

a−→ α′ is d-reducing iff it is
pn-reducing; d is prefix-encoded if it is prefix-encoded above some C ∈ N.
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The next lemma is shown in [13]; it is intuitively clear: a BPA process can
“remember” large values only by long strings.

Lemma 7. For any BPA system, every dd-function is prefix-encoded.

3 Sequentiality of Basic Parallel Processes is in PSPACE

In this section we prove the PSPACE upper bound stated in Theorem 1; this will
follow from Proposition 9 and Lemmas 10 and 11.

Given an LTS L = (S,A, ( a−→)a∈A), by reach(s) we denote the set {s′ |
s −→∗ s′} of the states reachable from s. A state s ∈ S is BPA-equivalent if
there is some BPA process (Σ,α) such that s ∼ α; in this case all s′ ∈ reach(s)
are BPA-equivalent.

We say that a path s1
a1−→ s2

a2−→ · · · sm
am−→ sm+1 in L is a d-down path,

for a dd-function d, if d(sm+1) < d(si) for all i ∈ {1, 2, . . . ,m}. (Note that
a d-down path might contain steps which are not d-reducing.) The difference
d(s1)−d(sm+1) is called the d-drop of the path.

We now formulate a crucial condition that is necessary for a state to be BPA-
equivalent. It is motivated by this observation based on Lemma 7: If d(Xα) is
finite and large, for a dd-function d and a BPA process Xα, then any d-down
path from Xα with the d-drop ‖X‖ finishes in α. (By “large” we also mean larger
than d(γ) for all unnormed right-hand sides γ in the BPA rules.)
In the next definition it might be useful to imagine s ∼ Xα and k = ‖X‖.

Definition 8. Given an LTS, a state s0 is down-joining if for any dd-functions
d1, d2 (not necessarily different) there are B,C ∈ N such that for every s ∈
reach(s0) where ω > d1(s) > C and ω > d2(s) > C we have the following:

there is k such that 1 ≤ k ≤ B and for any d1-down path s
w1−→ s1 with the

d1-drop k and any d2-down path s
w2−→ s2 with the d2-drop k we have s1 ∼ s2.

Proposition 9. If s0 in an LTS is BPA-equivalent then s0 is down-joining.

Proof. Let (Σ,α0), where Σ = (V,A,R), be a BPA process such that s0 ∼ α0.
We put B = max{‖X‖;X ∈ V, ‖X‖ < ω} (where max ∅ = 0). For dd-functions
d1, d2 we choose some sufficiently large C so that we can apply the observation
before Def. 8 to both d1 and d2. The claim can be thus verified easily. ��

In the case of BPP processes, the down-joining property will turn out to be also
sufficient for BPA-equivalence, and to be verifiable in polynomial space. The
next lemma is a crucial step to show this. It also says that if a BPP process M0

is down-joining then there is an exponential constant C such that for the LTS
restricted to reach(M0) we have: the values of dd-functions forM ∈ reach(M0)
that are finite and large, i.e. larger than C, are all equal; if a dd-function becomes
large (by performing a transition) then all previously large dd-function have been
already set to ω; if a large dd-function is sufficiently decreased (by a sequence of
transitions) then the values of small dd-functions are determined, independently
of the particular way and value of this decreasing.
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Lemma 10. There is a polynomial-space algorithm deciding if a given BPP
process (Δ,M0) is down-joining. Moreover, in the positive case the algorithm
returns exponentially bounded C ∈ N such that for any M ∈ reach(M0) and
any dd-functions d1, d2, d3, d, d

′ we have:

1. If C < d1(M) < ω and C < d2(M) < ω then d1(M ′) = d2(M ′) for all
M ′ ∈ reach(M); moreover, if d3(M) �= d1(M) and M −→∗ M ′ −→ M ′′

where C < d3(M ′′) < ω then d1(M ′) = d2(M ′) = ω.

2. If M
w1−→ M1 is a d-down path with the d-drop C1 ≥ C and M

w2−→ M2 is
a d-down path with the d-drop C2 ≥ C, and d′(M) �= d(M), then d′(M1) =
d′(M2).

Proof. (Sketch of the idea.) Let Δ = (P,Tr , pre, post,A, λ) be a BPP net.
We recall that each dd-function d coincides with normQ for some important
set Q ⊆ P (and there thus exist at most exponentially many pairwise different
dd-functions). Each t ∈ Tr has an associated change δtQ as we have already
discussed; recall that t also has the associated label λ(t) ∈ A. We also recall that
it is PSPACE-complete to decide if a given Q is important.

We now assume a given M0 and restrict ourselves to reach(M0). Our claimed
algorithm will be using a subprocedure for deciding if some sets are important,
and we can allow ourselves even the luxurious NPSPACE-upper bound for ques-
tions in our analysis (since PSPACE = NPSPACE).

The reachability relation on LΔ was studied in detail by Esparza [6], and
we could use deciding various questions which are reducible to Integer Linear
Programming by [6]. A crucial point is simple: In a BPP net, each token can
move freely between connected places, possibly generating other tokens; trav-
elling along a cycle can “pump” some places above any bound. We can de-
cide, e.g., if a concrete place p ∈ P can get arbitrarily large values M(p) for
M ∈ reach(M0) where we might also have some specified constraints, like that
some traps are not marked by M (have no tokens in M) and that some specific
transitions are enabled in M (or in some M ′ ∈ reach(M)).

We can thus check (in nondeterministic polynomial space) if there are two
important sets Q1, Q2 such that for any b ∈ N there is M ∈ reach(M0) such
that normQ1(M), normQ2(M) are finite, bigger than b, and different. If this
is the case (i.e., we have found some appropriate “pumping” cycles) then M0 is
surely not down-joining, as can be verified by a straightforward analysis.

A full technical proof would require a complete analysis of all possible viola-
tions of the down-joining property. In principle, it is a routine (omitted here due
to the limited space); some exponential C claimed for the case with no violations
can be also derived by a straightforward technical analysis. ��

Lemma 11. Any down-joining BPP process (Δ,M0) is BPA-equivalent.

Proof. Let Δ = (P,Tr , pre, post,A, λ) be a BPP net, and let M0 be down-
joining. We will construct a BPA process (Σ,α) such that M0 ∼ α; the size
of (Σ,α) will be double exponential in the size of (Δ,M0). We note that in
this proof the size plays no role, since just the existence of some such (Σ,α) is
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sufficient; in Sect. 4 we will discuss the details of the one-counter net (OCNR)
that is single exponential.

Let d1 = normQ1 , . . . , dm = normQm be all pairwise different dd-functions,
given by all important sets Qi ⊆ P . We put D(M) = (d1(M), . . . , dm(M)) ∈
(Nω)m and recall that M ∼M ′ iff D(M) = D(M ′). We also note that m ≤ 2|P |.

Let LD
Δ = ({D(M) | M ∈ NP },A, ( a−→)a∈A) be the LTS where M

a−→ M ′

in LΔ induces D(M)
a−→ D(M ′) in LD

Δ. It is straightforward to verify that
M ∼ D(M). We also note that for deciding if a label-change (a, δ) ∈ A×(Nω,−1)m

is enabled in D, i.e., if D
a−→ (D+ δ), it suffices to know type(D) ∈ {0,+, ω}m

where type(D)(i) = 0,+, ω if D(i) = 0, 0 < D(i) < ω, D(i) = ω, respectively.
We define L as the restriction of LD

Δ to the state set S = {D(M) | M ∈
reach(M0)}; we note that D0 = D(M0) is down-joining in L. Let C ∈ N be the
constant guaranteed by Lemma 10; we assume, moreover, that D0(i) ≤ C for all
i ∈ {1, 2, . . . ,m} such that D0(i) < ω, and that C is bigger than any possible
finite increase of any di in one step. For any D ∈ S we say that D(i) is small if
D(i) ≤ C or D(i) = ω; otherwise D(i) is big.

We build a BPA system Σ = (V,A,R) where variables in V are tuples of the
form (vec,big,⊥) or (vec,big,det, �⊥) where vec ∈ ({0, 1, . . . , C} ∪ {ω})m,
big ⊆ {1, 2, . . . ,m}, and det : ({1, 2, . . . ,m}�big) → ({0, 1, . . . , C}∪{ω}). We
aim to achieve D0 ∼ (D0, ∅,⊥) (in the disjoint union of L and LΣ). In fact, we

will stepwise construct a bijection between the paths D0
a1−→ D1

a2−→ · · · ar−→ Dr

in L and α0
a1−→ α1

a2−→ · · · ar−→ αr in LΣ , where α0 = (D0, ∅,⊥); we will have
Dx ∼ αx. In general, αx ∈ V ∗ corresponding to Dx in two paths related by the
bijection will be either a variable (vec, ∅,⊥), in which case Dx = vec, or of the
form

(vec1,big,det, �⊥), (vec2,big,det, �⊥) . . . (vec−1,big,det, �⊥), (vec,big,⊥),
(1)

for 
 ≥ 1 and big �= ∅, where the following will hold:

1. for any i1, i2 ∈ big we have vecj(i1) = vecj(i2) for all j ∈ {1, 2, . . . , 
};

2. for any i ∈ big, sum(i) =
∑

j=1 vecj(i) is finite, and equal to Dx(i);
3. for any i ∈ big, vecj(i) is positive for each j ∈ {1, 2, . . . , 
}, with the possible

exception in the case 
 = 1 where we might have vec1(i) = 0;
4. for any i �∈ big, vec1(i) = Dx(i);
5. for any i �∈ big and j ∈ {2, 3, . . . , 
} we have vecj(i) = det(i).

We note that i ∈ big does not necessarily imply that sum(i) is big; this just
signals that Dy(i) was big for some y ≤ x. By Lemma 10(2), the values vecj(i)
in 5. are thus determined; this will be clarified below.

We now inductively define the sets V and R in Σ; we start with putting
(D0, ∅,⊥) in V . We leave implicit a verification of the soundness of our construc-
tion and of the above claimed conditions. Each (vec,big,⊥) will be unnormed,
and such a variable always finishes our considered strings αx.

Suppose (vec,big,det,bot) ∈ V is the first variable in some αx, correspond-
ing to some Dx, as given around (1); here bot ∈ {⊥, �⊥} and det is assumed to



310 W. Czerwiński et al.

be missing if bot = ⊥. Suppose also some concrete (a, δ) which is enabled by

type(vec) (i.e., Dx
a−→ (Dx + δ) in LD

Δ; note that type(Dx) = type(vec)).
In this case we proceed as follows (using Lemma 10 implicitly):

1. If bot = �⊥ and vec(i) + δ(i) = 0 for some i ∈ big (which implies vec(i) +

δ(i) = 0 for each i ∈ big), then we add the rule (vec,big, �⊥)
a−→ ε.

2. If vec(i) + δ(i) = ω for some i ∈ big (which implies vec(i) + δ(i) = ω for

each i ∈ big) then we add (vec,big,det,bot)
a−→ ((vec + δ), ∅,⊥).

3. If none of 1.,2. applies and vec(i) + δ(i) ∈ {0, 1, . . . , C} ∪ {ω} for all i then

we add (vec,big,det,bot)
a−→ ((vec + δ),big,det,bot).

4. If C < vec(i) + δ(i) < ω for some i (in which case none of 1.,2.,3. applies):
Denote big

′ = {i | C < vec(i) + δ(i) < ω}; our assumptions imply that
there is k, 1 ≤ k < C, such that vec(i) + δ(i) = C+k for each i ∈ big

′, and,
moreover, big′ = big if big �= ∅. If bot = �⊥ then we add
(vec,big,det, �⊥)

a−→ (vec′,big′,det, �⊥)(vec′′,big′,det, �⊥)
where we put vec′(i) = C and vec

′′(i) = k for each i ∈ big
′, and vec

′(i) =
vec(i) + δ(i) and vec

′′(i) = det(i) for each i �∈ big
′.

If bot = ⊥ then we add
(vec,big,⊥)

a−→ (vec′,big′,det, �⊥)(vec′′,big′,⊥)
where we put vec′(i) = C and vec

′′(i) = k for each i ∈ big
′, and vec

′(i) =
vec(i) + δ(i) for each i �∈ big

′; det is defined by using Lemma 10(2): for

some i′ ∈ big
′ we take a di′ -down path (Dx + δ)

w−→ D′ with the di′ -drop C
and put det(i) = vec

′′(i) = D′(i) for each i �∈ big
′. ��

4 Bisimilarity between BPA and BPP in EXPTIME

In this section we give the main ideas of the proof of Theorem 2. We assume
a fixed instance of the problem — a fixed BPA Σ = (V,A,R) with the initial
configuration α0 and a fixed BPP Δ = (P,Tr , pre, post,A, λ) with the initial
marking M0, for which we have already checked (in polynomial space) that M0

is down-joining (otherwise obviously α0 �∼ M0).
We recall the exponential constant C discussed in and before Lemma 10. The

discussion and the construction of the BPA in Lemma 11 suggests that (Δ,M0)
can be represented by a certain kind of one-counter process, called a one-counter
net with resets (OCNR). It stores the values of “small” dd-functions (that are
either ω or less than C) in the control unit and the value of big dd-functions in the
counter. The transitions that set the big dd-functions to ω will be represented by
special reset transitions that reset the value of the counter to some fixed value,
independent of the previous value of the counter.

On the high level, the algorithm works as follows. For a given BPP process
(Δ,M0) it constructs a bisimilar OCNR Γ with an initial configuration c0 such
that M0 ∼ c0. The size of Γ is at most exponential w.r.t. the size of (Δ,M0)
and Γ can be constructed in exponential time. The algorithm then decides in
exponential time if α0 ∼ c0.

OCNR. A one-counter net with resets is a tuple Γ = (F ,A, R=0, R>0), where
F is a finite set of control states, A is a (finite) set of actions, and R=0, R>0 ⊆
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F ×A×RuleTypes× (N∪ {−1})×F are finite sets of rules, where RuleTypes =
{change, reset}. Informally, R=0 are the rules, which are enabled when the value
of the counter is zero, and R>0 are the rules, which are enabled when the counter
is non-zero. We require that (g, a, ξ, d, g′) ∈ R=0 implies d ≥ 0, and that R=0 ⊆
R>0, as there is no test for zero.

Configurations of an OCNR Γ = (F ,A, R=0, R>0) are pairs (g, k), where
g ∈ F and k ∈ N is the value of the counter. To denote configurations, we will
write g(k) instead of (g, k). We also use c1, c2, . . . to denote configurations of Γ .
The OCNR Γ generates the LTS (S,A,−→) where S = F × N and where the
transitions are defined as follows:

– g(k)
a−→ g′(k + d) iff (g, a, change, d, g′) ∈ R′

– g(k)
a−→ g′(d) iff (g, a, reset, d, g′) ∈ R′,

where R′ = R=0 for k = 0, and R′ = R>0 for k > 0.
A transition performed due to some rule (g, a, t, reset, g) ∈ R=0 ∪ R>0 is

called a reset, and a transition performed due to some rule (g, a, t, change, g) ∈
R=0 ∪R>0 is called a change.

Note that OCNR can be easily encoded into a pushdown automaton, but not
in BPA, as, intuitively, we need states.

Construction of an OCNR Bisimilar to (Δ,M0). Let us start with some
technical definitions. A marking M is big, if there is some dd-function d such
that C ≤ d(M) < ω. A marking, which is not big, is small.

Let reach(M0) be the set of markings reachable from M0, and let Mbig be
the set of the big markings in reach(M0). We define a function cnt : Mbig → N,
where cnt(M) is the value d(M) for the dd-functions d that are big in M .

Let �C⊆ reach(M0) × reach(M0) be the equivalence where M �C M ′ iff
M,M ′ differ only on values of big dd-functions (i.e., d(M) �= d(M ′) implies
C ≤ d(M) < ω and C ≤ d(M ′) < ω). Let B be the partition of reach(M0)
according to �C , i.e., the elements of B are sets of markings, where M,M ′ are
in the same set B ∈ B iff M �C M ′. We will show later that the number of
classes in B is at most exponential.

A class B ∈ B is small if it contains only small markings, and big otherwise.
(Note that in a big class, all markings are big.)

For each class B ∈ B, Γ contains a corresponding control state fB. The
control states corresponding to small classes are called fs-states, and the control
states corresponding to big classes are called oc-states. The sets of fs-states and
oc-states are denoted Ffs and Foc, respectively.

The OCNR Γ is constructed in such a way that each configuration fB(0),
where B is small, is bisimilar to any marking M ∈ B, and each configura-
tion fB(k), where B is big and k ≥ C, is bisimilar to any marking M ∈ B with
cnt(M) = k. In each configuration fB(k) where B is big and k ≥ 0, the values of
dd-functions will be the same as the values of these functions in markings in B,
except the functions, which are big in markings in B, which will have value k.

The transitions of Γ are constructed in an obvious way to meet the above
requirement. In particular, the only resets in Γ are transitions in states from
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Foc that correspond to setting big dd-functions to ω. The initial configuration
c0 is the configuration corresponding to M0.

By CΓ we denote the set of configurations {f(0) | f ∈ Ffs} ∪ {g(k) | g ∈
Foc, k ≥ 0}. Note that reach(c0) ⊆ CΓ .

Bounding the Size of Γ . Because the number of (different) dd-functions on Δ
is exponential and each small dd-function has at most exponential value, we
can naively estimate the number of control states of Γ as double exponential.
A closer analysis reveals that this number is single exponential.

For this purpose, it is useful to introduce so called symbolic markings. A sym-
bolic marking M is obtained from a marking M by replacing the values M(p),
where M(p) ≥ C, with some special symbol ∗. Let symbC be the function that
assigns to each marking the corresponding symbolic marking, and let SC =
{symbC(M) | M ∈ reach(M0)}. It is clear that for given a symbolic marking
M we can check in polynomial space whether M ∈ SC . Moreover, from M we can
easily determine, which transitions (and so, which actions and changes on values
of dd-functions) are enabled in any marking M such that symbC(M) = M . It is
also clear that SC contains at most K = (C + 1)|P | symbolic markings.

Observation 12 For each M,M ′ ∈ reach(M0), symbC(M) = symbC(M ′)
implies M �C M ′.

From Observation 12 we see that �C has at most K equivalence classes, which
means that Γ has at most exponential number of control states. By using sets
of symbolic markings as a succinct representation of control states of Γ , Γ can
be constructed in exponential time.

The constructed OCNR Γ has some additional special properties that allow
us to decide bisimilarity between BPA processes (Σ,α0) and the OCNR process
(Γ, c0) in exponential time, w.r.t. the original BPA-BPP instance. The OCNR
with these additional properties is called a special OCNR (sOCNR). Due to lack
of space, the description of these properties together with the description of the
rest of the algorithm are omitted here.

Lemma 13. There is an exponential time algorithm that for a given BPP pro-
cess (Δ,M0) constructs an sOCNR process (Γ, c0) such that M0 ∼ c0.

Lemma 14. There is an algorithm deciding for a given BPA process (Σ,α0) and
the constructed sOCNR process (Γ, c0), whether α0 ∼ c0. The running time of
the algorithm is exponential wrt the size of the original instance of the problem.

Intuitively, the basic idea, on which the algorithm from Lemma 14 is based, is
the following. When Aβ ∼ c, where A ∈ V is normed, β ∈ V ∗ and c ∈ CΓ ,
then there must exist some c′ ∈ CΓ such that β ∼ c′. This means that β can be
replaced with c′ in Aβ, by which we obtain the configuration Ac′ in a transition
system that can be viewed as a sequential composition of BPA Σ and sOCNR Γ .
We can then characterize the bisimulation equivalence in this combined system
by a bisimulation base consisting of pairs of configurations of the form (Ac′, c)
where Ac′ ∼ c, resp. (A, c) where A ∼ c.
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This bisimulation base is still infinite but it can be represented succinctly
due to fact that there is some computable exponential constant B such that
if Af(k) ∼ g(
), where A is normed, then if k or 
 is greater than B, then
‖A‖+k = 
 and it holds for each k ≥ B that Af(k) ∼ g(
) iff Af(k+1) ∼ g(
+1).
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5. Czerwinski, W., Fröschle, S.B., Lasota, S.: Partially-commutative context-free pro-
cesses: Expressibility and tractability. Information and Computation 209(5), 782–
798 (2011)

6. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae 31(1), 13–25 (1997)

7. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

8. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
bisimulation equivalence of normed basic parallel processes. Mathematical Struc-
tures in Computer Science 6, 251–259 (1996)

9. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theor. Comput. Sci. 158, 143–159 (1996)
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Abstract. Let P be an orthogonal polygon. Consider a sliding camera
that travels back and forth along an orthogonal line segment s ⊆ P as its
trajectory. The camera can see a point p ∈ P if there exists a point q ∈ s
such that pq is a line segment normal to s that is completely contained
in P . In the minimum-cardinality sliding cameras problem, the objective
is to find a set S of sliding cameras of minimum cardinality to guard P
(i.e., every point in P can be seen by some sliding camera in S) while in
the minimum-length sliding cameras problem the goal is to find such a
set S so as to minimize the total length of trajectories along which the
cameras in S travel.

In this paper, we first settle the complexity of the minimum-length
sliding cameras problem by showing that it is polynomial tractable even
for orthogonal polygons with holes, answering a question posed by Katz
and Morgenstern [9]. Next we show that the minimum-cardinality sliding
cameras problem is NP-hard when P is allowed to have holes, which
partially answers another question posed by Katz and Morgenstern [9].

1 Introduction

The art gallery problem is well known in computational geometry, where the ob-
jective is to cover a geometric shape (e.g., a polygon) with the union of the visi-
bility regions of a set of point guards while minimizing the number of guards. The
problem’s multiple variants have been examined extensively (e.g., see [1,15,17])
and can be classified based on the type of guards (e.g., points or line segments),
the type of visibility model, and the geometric shape (e.g., simple polygons,
orthogonal polygons [6], or polyominoes [2]).

In this paper, we consider a variant of the orthogonal art gallery problem
introduced by Katz and Morgenstern [9], in which sliding cameras are used to
guard the gallery. Let P be an orthogonal polygon with n vertices. A sliding
camera travels back and forth along an orthogonal line segment s inside P . The
camera (i.e., the guarding line segment s) can see a point p ∈ P (equivalently, p
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Fig. 1. An illustration of the MCSC and MLSC problems. Each grid cell has size 1×1.
(a) A simple orthogonal polygon P . (b) The trajectories of two sliding cameras s1 and
s2 are shown in pink and green, respectively; each shaded region indicates the visibility
region of the corresponding camera. This set of two cameras is an optimal solution to
the MCSC problem on P . (c) A set of five sliding cameras whose total length is 8,
which is an optimal solution for the MLSC problem on P .

is orthogonally visible to s) if and only if there exists a point q on s such that pq
is normal to s and is completely contained in P . We study two variants of this
problem: in the minimum-cardinality sliding cameras (MCSC) problem, we wish
to minimize the number of sliding cameras so as to guard P entirely, while in the
minimum-length sliding cameras (MLSC) problem the objective is to minimize
the total length of trajectories along which the cameras travel; we assume that
in both variants of the problem, polygon P and sliding cameras are constrained
to be orthogonal. In both problems, every point in P must be visible to some
camera. See Figure 1.

Throughout the paper, we denote an orthogonal polygon with n vertices by
P . Moreover, we denote the set of vertices and the set of edges of P by V (P )
and E(P ), respectively. We consider P to be a closed set; therefore, a camera’s
trajectory may include an edge of P . We also assume that a camera can see
any point on its trajectory. We say that a set T of orthogonal line segments
contained in P is a cover of P , if the corresponding cameras can collectively see
any point in P ; equivalently, we say that the line segments in T guard P entirely.

Related Work. The art gallery problem was first introduced by Klee in 1973.
Two years later, Chvátal [3] gave an upper bound proving that -n/3. point
guards are always sufficient and sometimes necessary to guard a simple polygon
with n vertices. The orthogonal art gallery problem was first studied by Kahn
et al. [7] who proved that -n/4. guards are always sufficient and sometimes nec-
essary to guard the interior of a simple orthogonal polygon. Lee and Lin [12]
showed that the problem of guarding a simple polygon using the minimum num-
ber of guards is NP-hard. Moreover, the problem was also shown to be NP-hard
for orthogonal polygons [16]. Even the problem of guarding the vertices of an
orthogonal polygon using the minimum number of guards is NP-hard [10].

Limiting visibility allows some versions of the problem to be solved in polyno-
mial time. Motwani et al. [14] studied the art gallery problem under s-visibility,
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where a guard point p ∈ P can see all points in P that can be connected to p
by an orthogonal staircase path contained in P . They use a perfect graph ap-
proach to solve the problem in polynomial time. Worman and Keil [18] defined
r-visibility, in which a guard point p ∈ P can see all points q ∈ P such that
the bounding rectangle of p and q (i.e., the axis-parallel rectangle with diagonal
pq) is contained in P . Given that P has n vertices, they use a similar approach

to Motwani et al. [14] to solve this problem in Õ(n17) time, where Õ() hides
poly-logarithmic factors. Moreover, Lingas et al. [13] presented a linear-time
3-approximation algorithm for this problem.

Recently, Katz and Morgenstern [9] introduced sliding cameras as another
model of visibility to guard a simple orthogonal polygon P ; they study the
MCSC problem. They first consider a restricted version of the problem, where
cameras are constrained to travel only vertically inside the polygon. Using a
similar approach to Motwani et al. [14] they construct a graph G corresponding
to P and then show that (i) solving this problem on P is equivalent to solving
the minimum clique cover problem on G, and that (ii) G is chordal. Since the
minimum clique cover problem is polynomial-time solvable on chordal graphs,
they solve the vertical-camera MCSC problem in polynomial time. They also
generalize the problem such that both vertical and horizontal cameras are al-
lowed (i.e., the MCSC problem); they present a 2-approximation algorithm for
this problem under the assumption that the given input is an x-monotone or-
thogonal polygon. They leave open the complexity of the problem and mention
studying the minimum-length sliding cameras problem as future work.

A histogram H is a simple orthogonal polygon that has an edge, called the
base, whose length is equal to the sum of the lengths of the edges of H that
are parallel to the base. Moreover, a double-sided histogram is the union of two
histograms that share the same base edge and that are located on opposite sides
of the base. It is easy to observe that the MCSC problem is equivalent to the
problem of covering P with minimum number of double-sided histograms. Fekete
and Mitchell [4] proved that partitioning an orthogonal polygon (possibly with
holes) into a minimum number of histograms is NP-hard. However, their proof
does not directly imply that the MCSC problem is also NP-hard for orthogonal
polygons with holes.

Our Results. In this paper, we first answer a question posed by Katz and
Morgenstern [9] by proving that the MLSC problem is solvable in polynomial
time even for orthogonal polygons with holes (see Section 2). We next show that
the MCSC problem is NP-hard for orthogonal polygons with holes (see Section 3)
that partially answers another question posed by Katz and Morgenstern [9]. We
conclude the paper in Section 4.

2 The MLSC Problem: An Exact Algorithm

In this section, we give an algorithm that solves the MLSC problem exactly in
polynomial time even when P has holes. Let T be a cover of P . In this section,
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we say that T is an optimal cover for P if the total length of trajectories along
which the cameras in T travel is minimum over that of all covers of P . Our
algorithm relies on reducing the MLSC problem to the minimum-weight vertex
cover problem in bipartite graphs. We remind the reader of the definition of the
minimum-weight vertex cover problem:

Definition 1. Given a graph G = (V,E) with positive vertex weights, the
minimum-weight vertex cover problem is to find a subset V ′ ⊆ V that is a vertex
cover of G (i.e., every edge in E has at least one endpoint in V ′) such that the
sum of the weights of vertices in V ′ is minimized.

The minimum-weight vertex cover problem is NP-hard in general [8]. However,
König’s theorem [11] that describes the equivalence between maximum matching
and vertex cover in bipartite graphs implies that the minimum-weight vertex
cover problem in bipartite graphs is solvable in polynomial time. Given P , we
first construct a vertex-weighted graph GP and then we show (i) that the MLSC
problem on P is equivalent to the minimum-weight vertex cover problem on GP ,
and (ii) that graph GP is bipartite.

Similar to Katz and Morgenstern [9], we define a partition of an orthogonal
polygon P into rectangles as follows. Extend the two edges of P incident to
every reflex vertex in V (P ) inward until they hit the boundary of P . Let S(P )
be the set of the extended edges and the edges of P whose endpoints are both
non-reflex vertices of P . We refer to elements of S(P ) simply as edges. The edges
in S(P ) partition P into a set of rectangles; let R(P ) denote the set of resulting
rectangles. We observe that in order to guard P entirely, it suffices to guard all
rectangles in R(P ). The following observations are straightforward:

Observation 1. Let T be a cover of P and let s be an orthogonal line segment
in T . Then, for any partition of s into line segments s1, s2, . . . , sk the set T ′ =
(T \{s})∪{s1, . . . , sk} is also a cover of P and the respective sums of the lengths
of segments in T and T ′ are equal.

Observation 2. Let T be a cover of P . Moreover, let T ′ be the set of line seg-
ments obtained from T by translating every vertical line segment in T horizon-
tally to the nearest boundary of P to its right and every horizontal line segment
in T vertically to the nearest boundary of P below it. Then, T ′ is also a cover of
P and the respective sums of the lengths of line segments in T and T ′ are equal.
We call T ′ a regular cover of P .

We first need the following result.

Lemma 1. Let R ∈ R(P ) be a rectangle and let T be a cover of P . Then, there
exists a set T ′ ⊆ T such that all line segments in T ′ have the same orientation
(i.e., they are all vertical or they are all horizontal) and they collectively guard
R entirely.

Proof. Suppose no such set T ′ exists. Let Rv (resp., Rh) be the subregion of
R that is guarded by the union of the vertical (resp., horizontal) line segments
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Fig. 2. An illustration of the re-
duction; each grid cell has size 1×1.
(a) An orthogonal polygon P along
with the elements of B(P ) labelled
as a, b, c, . . . , i. (b) The graph GP

associated with P ; the integer value
besides each vertex indicates the
weight of the vertex. The vertices of
a vertex cover on GP and their cor-
responding guarding line segments
for P are shown in red.
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in T and let Rc
v = R \ Rv (resp., Rc

h = R \ Rh). Since R cannot be guarded
exclusively by vertical line segments (resp., horizontal line segments), we have
Rc
v �= ∅ (resp., Rc

h �= ∅). Choose any point p ∈ Rc
v and let Lh be the maximal

horizontal line segment inside R that crosses p. Since no vertical line segment
in T can guard p, we conclude that no point on Lh is guarded by a vertical line
segment in T . Similarly, choose any point q ∈ Rc

h and let Lv be the maximal
vertical line segment inside R that contains q. By an analogous argument, we
conclude that no point on Lv is guarded by a horizontal line segment. Since Lh
and Lv are maximal and have perpendicular orientations, Lh and Lv intersect
inside R. Therefore, no orthogonal line segment in T can guard the intersection
point of Lh and Lv, which is a contradiction. �

Given P , let H(P ) denote the subset of the boundary of P consisting of line
segments that are immediately to the right of or below P ; in other words, for
each edge e ∈ H(P ), the region of the plane immediately to the right of or below
e does not belong to the interior of P . Let B(P ) denote the partition of H(P )
into line segments induced by the edges in S(P ). The following lemma follows
by Lemma 1 and Observations 1 and 2:

Lemma 2. Every orthogonal polygon P has an optimal cover T ⊆ B(P ).

Observation 3. Let P be an orthogonal polygon and consider its corresponding
set R(P ) of rectangles induced by edges in S(P ). Every rectangle R ∈ R(P ) is
seen by exactly one vertical line segment in B(P ) and exactly one horizontal
line segment in B(P ). Furthermore, if T ⊆ B(P ) is a cover of P , then every
rectangle in R(P ) must be seen by at least one horizontal or one vertical line
segment in T .

We denote the horizontal and vertical line segments in B(P ) that can see a
rectangle R ∈ R(P ) by RV and RH , respectively. Using Observation 3, we now
describe a reduction of the MLSC problem to the minimum-weight vertex cover
problem. We construct an undirected weighted graph GP = (V,E) associated
with P as follows: each line segment s ∈ B(P ) corresponds to a vertex vs ∈ V
such that the weight of vs is the length of s. We denote the vertex in V that
corresponds to the line segment s ∈ B(P ) by vs. Two vertices vs, vs′ ∈ V are
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adjacent in GP if and only if the line segments s and s′ can both see a common
rectangle R ∈ R(P ). See Figure 2. By Observation 3 the following result is
straightforward:

Observation 4. There is a bijection between rectangles in R(P ) and edges in
GP .

Next we show equivalency between the two problems and then prove that graph
GP is bipartite.

Theorem 1. The MLSC problem on P reduces to the minimum-weight vertex
cover problem on GP .

Proof. Let S0 be a vertex cover of GP and let C0 be a cover of P defined in
terms of S0; the mapping from S0 to C0 will be defined later. Moreover, for each
vertex v of GP let w(v) denote the weight of v and for each line segment s ∈ C0

let len(s) denote the length of s. We need to prove that S0 is a minimum-weight
vertex cover of GP if and only if C0 is an optimal cover of P . We show the
following stronger statements: (i) for any vertex cover S of GP , there exists a
cover C of P such that ∑

s∈C
len(s) =

∑
v∈S

w(v),

and (ii) for any cover C of P , there exists a vertex cover S of GP such that∑
v∈S

w(v) =
∑
s∈C

len(s).

Part 1. Choose any vertex cover S of GP . We find a cover C for P as follows:
for each edge (vs, vs′) ∈ E, if vs ∈ S we locate a guarding line segment on the
boundary of P that is aligned with the line segment s ∈ B(P ). Otherwise, we
locate a guarding line segment on the boundary of P that is aligned with the
line segment s′ ∈ B(P ). Since at least one of vs and vs′ is in S, we conclude
by Observation 4 that every rectangle in R(P ) is guarded by at least one line
segment located on the boundary of P and so C is a cover of P . Moreover, for
each vertex in S we locate exactly one guarding line segment on the boundary
of P whose length is the same as the weight of the vertex. Therefore,∑

s∈C
len(s) =

∑
v∈S

w(v).

Part 2. Choose any cover C of P . We construct a vertex cover S for GP as
follows. By Observation 2, let T ′ be the regular cover obtained from C. Moreover,
let M be the partition of T ′ into line segments induced by the edges in S(P ).
By Lemma 1, for any rectangle R ∈ R(P ), there exists a set C′

R ⊆ C such
that all line segments in C′

R have the same orientation and collectively guard R.
Therefore, M is also a cover of P . Now, let S be the subset of the vertices of GP

such that vs ∈ S if and only if s ∈ M . Since M is a cover of GP we conclude,
by Observation 4, that S is a vertex cover of GP . Moreover, we observe that∑

v∈S
w(v) =

∑
s∈M

len(s) =
∑
s∈C

len(s). �
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Lemma 3. Graph GP is bipartite.

Proof. The proof follows from the facts that (i) we have two types of vertices in
GP ; those that correspond to the vertical line segments in B(P ) and those that
correspond to the horizontal line segments in B(P ), and that (ii) no two vertical
line segments in B(P ) nor any two horizontal line segments in B(P ) can see a
fixed rectangle in R(P ). �

It is easy to see that the construction in the proof of Theorem 1 can be com-
pleted in polynomial time. Therefore, by Theorem 1, Lemma 3 and the fact that
minimum-weight vertex cover is solvable in polynomial time on bipartite graphs
[11], we have the main result of this section:

Theorem 2. Given an orthogonal polygon P with n vertices, there exists an
algorithm that finds an optimal cover of P in time polynomial in n.

3 The MCSC Problem

In this section, we show that the following problem is NP-hard:

Fig. 3. An L-hole gadget; each
grid cell has size 1

12
× 1

12

MCSC With Holes

Input: An orthogonal polygon P , possibly with
holes and an integer k.
Output: Yes, if there exists k orthogonal line seg-
ments inside P that guard P entirely; No, other-
wise.

We show NP-hardness by a reduction from the
minimum hitting of horizontal unit segments problem, which we call the Min

Segment Hitting problem. The Min Segment Hitting problem is defined
as follows [5]:

Min Segment Hitting

Input: n pairs (ai, bi), i = 1, . . . , n, of integers and an integer k
Output: Yes, if there exist k orthogonal lines l1, . . . , lk in the plane, i.e., for
each i, li is horizontal or vertical, such that each line segment [(ai, bi), (ai+1, bi)]
is hit by at least one of the lines; No, otherwise.

Hassin and Megiddo [5] prove that the Min Segment Hitting problem is NP-
complete. Let I be an instance of the Min Segment Hitting problem, where
I is a set of n horizontal unit-length segments with integer coordinates. We con-
struct an orthogonal polygon P (with holes) such that there exists a set of k
orthogonal lines that hit the segments in I if and only if there exists a set C of
k + 1 orthogonal line segments inside P that collectively guard P . Throughout
this section, we refer to the segments in I as unit segments and to the segments
in C as line segments.
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si

p(si)

(a) The L-holes associated with a
line segment si ∈ I , where ai is
odd.

si sj

p(si)

p(sj)

(b) An illustration of the L-holes associated
with two line segments in I that share a com-
mon endpoint.

Fig. 5. An illustration of the gadgets used in the reduction

si

p(si)

Fig. 4. The L-holes associated
with a line segment si ∈ I , where
ai is even

Gadgets. We first observe that any two unit
segments in I can share at most one point,
which must be a common endpoint of the two
unit segments. For each unit segment si ∈ I,
1 ≤ i ≤ n, we denote the left endpoint of si by
(ai, bi) and, therefore, the right endpoint of si
is (ai + 1, bi). Moreover, let N(si) denote the
set of unit segments in I that have at least
one endpoint with x-coordinate equal to ai
or ai + 1. Our reduction refers to an L-hole,
which we define as a minimum-area orthogonal polygon with six vertices at grid
coordinates such that exactly one is a reflex vertex. Figure 3 shows an L-hole. We
constrain each grid cell to have size 1

12 × 1
12 . An L-hole may be rotated by π/2,

π or 3π/2. For each unit segment si ∈ I, we associate exactly four L-holes with
si depending on the parity of ai: if ai is even, then Figure 4 shows the L-holes
associated with si. If ai is odd, then Figure 5a shows the L-holes associated with
si. Note that, in this case, the L-holes are located such that the vertical distance
between any point on an L-hole and si is at least 3/12. Note the red vertex on
the bottom left L-hole of si in Figure 4 and the blue vertex on the bottom right
L-hole of si in Figure 5a; we call this vertex the visibility vertex of si, which we
denote p(si).

Observe that the L-holes associated with si do not interfere with the L-
holes associated with the line segments in N(si) because for any unit segment
sj ∈ N(si) the vertical distance d between si and sj is either zero or at least
one. If d ≥ 1, then it is trivial that the L-holes of si do not interfere with those
of sj . Now, suppose that si and sj share a common endpoint; that is d = 0.
Since si and sj have unit lengths ai and aj have different parities and, therefore,
the L-holes associated with si and sj do not interfere with each other. Figure 5b
shows an example of such two unit segments si and sj and their corresponding
L-holes. We now describe the reduction.

Reduction. Given an instance I of the Min Segment Hitting problem, we
first associate each unit segment in si ∈ I with four L-holes depending on
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Fig. 6. A complete example of the re-
duction, where I = {s1, s2, . . . , s9},
with the assumption that a1 is even.
Each line segment that has a bend rep-
resents an L-hole associated with a unit
segment. The visibility vertices of the
unit segments in I are shown red or blue
appropriately. Note the green vertex on
the lower left corner of the smaller rect-
angle; this vertex is only visible to the
line segments that pass through the in-
terior of the smaller rectangle, which in
turn cannot intersect any unit segment
in I .

s1

s3

s5

s6

s2

s7

s8s4

s9
e′

e

whether ai is even or odd. After adding the corresponding L-holes, we enclose I
in a rectangle such that all unit segments and the L-holes associated with them
lie in its interior. Finally, we create a small rectangle on the bottom left corner
of the bigger rectangle (see Figure 6) such that any orthogonal line that passes
through the smaller rectangle cannot intersect any of the unit segments in I.
See Figure 6 for a complete example of the reduction. Let P be the resulting
orthogonal polygon. Observe from Figure 4 (see also Figure 5a) that the left
endpoint (resp., the right endpoint) of every unit segment s ∈ I is vertically
aligned with the rightmost edges (resp., leftmost edges) of the two left L-holes
(resp., right L-holes) associated with s. This provides the following observation.

Observation 5. Let s be a unit segment in I and let l be a vertical line seg-
ment contained in P that can see p(s). Moreover, let l′ be the maximal vertical
line segment that is aligned with l. If l′ does not intersect s, then p(s′) is not
orthogonally visible to l′ for all s′ ∈ I \ {s}.

We now show the following lemma.

Lemma 4. There exist k orthogonal lines such that each unit segment in I is
hit by one of the lines if and only if there exists k + 1 orthogonal line segments
contained in P that collectively guard P .

Proof. (⇒) Suppose there exists a set S of k lines such that each unit segment
in I is hit by at least one line in S. Let L ∈ S and let LP = L ∩ P . If L is
horizontal, then it is easy to see that L, and therefore LP , does not cross any L-
hole inside P . Similarly, if L is vertical and passes through an endpoint of some
unit segment(s) in I, then neither L nor LP passes through the interior of any
L-hole in P .1 Now, suppose that L is vertical and passes through the interior of
some unit segment s ∈ I. Translate LP horizontally such that it passes through
the midpoint of s. Since unit segments have endpoints on adjacent integer grid
point, LP still crosses the same set of unit segments of I as it did before this move.

1 Note that it is possible for L to pass through the boundary of some L-hole.
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Moreover, this ensures that LP does not cross any L-hole inside P . Consider the
set S′ = {LP | L ∈ S}.

We observe that the line segments in S′ cannot guard the interior of the
smaller rectangle. Moreover, if all line segments in S′ are vertical or all are
horizontal, then they cannot collectively guard the outer rectangle entirely.2 In
order to guard P entirely, we add one more orthogonal line segment C as follows:
if all line segments in S′ are vertical (resp., horizontal), then C is the maximal
horizontal (resp., the maximal vertical) line segment inside P that aligns the
upper edge (resp., the right edge) of the smaller rectangle of P ; see the line
segment e (resp., e′) in Figure 6. If the line segments in S′ are a combination
of vertical and horizontal line segments, then C can be either e or e′. It is easy
to observe that now the line segments in S′ along with C collectively guard P
entirely. Therefore, we have established that the entire polygon P is guarded by
k + 1 orthogonal line segments inside P in total.

(⇐) Now, suppose that there exists a set M of k+1 orthogonal line segments
contained in P that collectively guard P . Let c ∈ M and let Lc denote the
line induced by c. We now describe how to find k lines that form a solution to
instance I by moving the line segments in M accordingly such that each unit
segment in I is hit by at least one of the corresponding lines. Let c0 ∈ M be the
line segment that guards the bottom left vertex of the smaller rectangle of P .
We know that Lc0 cannot guard p(s) for any unit segment s ∈ I. For each unit
segment s ∈ I in order, consider a line segment l ∈ M \ {c0} that guards p(s);
let l′ be the maximal line segment inside P that is aligned with l. We observe
that l′ must intersect the rectangle whose endpoints are the reflex vertices of the
L-holes associated with unit segment s (see the pink rectangle in Figure 4 for an
example). If l′ is horizontal and Ll′ does not align s, then move l′ accordingly
up or down until it aligns with s. Thus, Ll′ is a line that hits s. Now, suppose
that l′ is vertical. If l′ intersects s, then Ll′ also intersects s. It might be possible
that l′ is vertical and guards p(s), but Ll′ does not intersect s; in this case, by
Observation 5, p(s) is the only visibility vertex that is visible to l′. So, move l′

horizontally to the left or to the right until it hits s. Therefore, Ll′ is a line that
hits s after this move.

We observe that we obtained exactly one line from each line segment in M \
{c0}. Therefore, we have found k lines such that each unit segment in I is hit
by at least one of the lines. This completes the proof of the lemma. �

By Lemma 4 we obtain the main result of this section:

Theorem 3. The MCSC With Holes is NP-hard.

4 Conclusion

In this paper, we studied the problem of guarding an orthogonal polygon P using
sliding cameras that was introduced by Katz and Morgenstern [9]. We considered

2 Specifically, in either cases, there are regions between two L-holes associated with
different unit segments that cannot be guarded by any line segment.
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two variants of this problem: the MCSC problem (in which the objective is to
minimize the number of sliding cameras used to guard P ) and the MLSC problem
(in which the objective is to minimize the total length of trajectories along which
the cameras travel).

We gave a polynomial-time algorithm that solves the MLSC problem exactly
even for orthogonal polygons with holes, answering a question posed by Katz
and Morgenstern [9]. We also showed that the MCSC problem is NP-hard when
P contains holes, which partially answers another question posed by Katz and
Morgenstern [9]. Although we settled the complexity of the MLSC problem, the
complexity of the MCSC problem for any simple orthogonal polygon remains
open. Giving an approximation algorithm for the MCSC problem on any simple
orthogonal polygon is also another direction for future work.
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13. Lingas, A., Wasylewicz, A., Żyliński, P.: Linear-time 3-approximation algorithm

for the r-star covering problem. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM
2008. LNCS, vol. 4921, pp. 157–168. Springer, Heidelberg (2008)

14. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star
polygons: the perfect graph approach. In: Proc. ACM SoCG, pp. 211–223 (1988)

15. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press (1987)
16. Schuchardt, D., Hecker, H.-D.: Two NP-hard art-gallery problems for ortho-

polygons. Math. Logic Quarterly 41(2), 261–267 (1995)
17. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Comp. Geom.,

pp. 973–1027. North-Holland (2000)
18. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery

problem. Int. J. of Comp. Geom. & App. 17(2), 105–138 (2007)



Linear-Space Data Structures for Range

Frequency Queries on Arrays and Trees�

Stephane Durocher1, Rahul Shah2,
Matthew Skala1, and Sharma V. Thankachan2

1 University of Manitoba, Winnipeg, Canada
{durocher,mskala}@cs.umanitoba.ca

2 Louisiana State University, Baton Rouge, USA
{rahul,thanks}@csc.lsu.edu

Abstract. We present O(n)-space data structures to support various
range frequency queries on a given array A[0 : n − 1] or tree T with n
nodes. Given a query consisting of an arbitrary pair of pre-order rank in-
dices (i, j), our data structures return a least frequent element, mode, or
α-minority of the multiset of elements in the unique path with endpoints
at indices i and j in A or T . We describe a data structure that sup-
ports range least frequent element queries on arrays in O(

√
n/w) time,

improving the Θ(
√
n) worst-case time required by the data structure of

Chan et al. (SWAT 2012), where w ∈ Ω(log n) is the word size in bits.
We describe a data structure that supports range mode queries on trees
in O(log log n

√
n/w) time, improving the Θ(

√
n log n) worst-case time

required by the data structure of Krizanc et al. (ISAAC 2003). Finally,
we describe a data structure that supports range α-minority queries on
trees in O(α−1 log log n) time, where α ∈ [0, 1] is specified at query time.

1 Introduction

The frequency, denoted freqA[i:j](x), of an element x in a multiset stored as an
array A[i : j] is the number of occurrences of x in A[i : j]. Elements a and b in
A[i : j] are respectively a mode and a least frequent element of A[i : j] if for all
c ∈ A[i : j], freqA[i:j](a) ≥ freqA[i:j](c) ≥ freqA[i:j](b). Finally, given α ∈ [0, 1],
an α-minority of A[i : j] is an element d ∈ A[i : j] such that 1 ≤ freqA[i:j](d) ≤
α|j− i+1|. Conversely, d is an α-majority of A[i : j] if freqA[i:j](d) > α|j− i+1|.

We study the problem of indexing a given array A[0 : n− 1] to construct data
structures that can be stored using O(n) words of space and support efficient
range frequency queries. Each query consists of a pair of input indices (i, j) (along
with a value α ∈ [0, 1] for α-minority queries), for which a mode, least frequent
element, or α-minority of A[i : j] must be returned. Range queries generalize to
trees, where they are called path queries: given a tree T and a pair of indices
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(i, j), a query is applied to the multiset of elements stored at nodes along the
unique path in T whose endpoints are the two nodes with pre-order traversal
ranks i and j.

Krizanc et al. [12] presented O(n)-space data structures that support range
mode queries in O(

√
n log logn) time on arrays and O(

√
n logn) time on trees.

Chan et al. [3,4] achieved o(
√
n) query time with an O(n)-space data structure

that supports queries in O(
√
n/w) ⊆ O(

√
n/ logn) time on arrays, where w ∈

Ω(log n) is the word size in bits.
For range least frequent elements, Chan et al. [5] presented an O(n)-space

data structure that supports queries in O(
√
n) time on arrays. Range mode and

range least frequent queries on arrays appear to require significantly longer times
than either range minimum or range selection queries; respective reductions from
boolean matrix multiplication show that query times significantly lower than

√
n

are unlikely for either problem with linear space [3,5]. Whereas an O(n)-space
data structure that supports range mode queries on arrays in o(

√
n) time is

known [3], the space reduction techniques applied to achieve the time improve-
ment are not directly applicable to the setting of least frequent elements. Chan
et al. [5] ask whether o(

√
n) query time is possible in an O(n)-space linear data

structure, observing that “unlike the frequency of the mode, the frequency of
the least frequent element does not vary monotonically over a sequence of ele-
ments. Furthermore, unlike the mode, when the least frequent element changes
[in a sequence], the new element of minimum frequency is not necessarily lo-
cated in the block in which the change occurs” [5, p. 11]. By applying different
techniques, this paper presents the first O(n)-space data structure that supports
range least frequent element queries on arrays in o(

√
n) time; specifically, we

achieve O(
√
n/w) ⊆ O(

√
n/ logn) query time.

Finally, the range α-majority query problem was introduced by Durocher et
al. [7,8], who presented an O(n log(α−1))-space data structure that supports
queries in O(α−1) time for any α ∈ (0, 1) fixed during preprocessing. When
α is specified at query time, Gagie et al. [9] and Chan et al. [5] presented
O(n log n)-space data structures that support queries in O(α−1) time, and Belaz-
zougui et al. [2] presented an O(n)-space data structure that supports queries in
O(α−1 log log(α−1)) time. For range α-minority queries, Chan et al. [5] described
an O(n)-space data structure that supports queries in O(α−1) time, where α is
specified at query time.

After revisiting some necessary previous work in Section 2, in Section 3 we de-
scribe the first O(n)-space data structure that achieves o(

√
n) time for range least

frequent queries on arrays, supporting queries in O(
√
n/w) time. We then extend

this data structure to the setting of trees. In Section 4 we present an O(n)-space
data structure that supports path mode queries on trees in O(log logn

√
n/w)

time. To do so, we construct O(n)-space data structures that support colored
nearest ancestor queries on trees in O(log logn) time (find the nearest ancestor
with value k of node i, where i and k are given at query time); path frequency
queries on trees in O(log logn) time (count the number of instances of k on the
path between nodes i and j, where i, j, and k are given at query time); and
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Table 1. worst-case query times of previous best and new O(n)-space data structures

range query input previous best new (this paper)

least frequent element
array O(

√
n) [5] O(

√
n/w)

tree no previous result O(log log n
√

n/w)

mode
array O(

√
n/w) [3,4]

tree O(
√
n log n) [11,12] O(log log n

√
n/w)

α-minority
array O(α−1) [5]
tree no previous result O(α−1 log log n)

k-nearest distinct ancestor queries on trees in O(k) time (return k ancestors of
node i such that each ancestor stores a distinct value and the distance to the
furthest ancestor from i is minimized, where i and k are given at query time).
Finally, in Section 5 we present an O(n)-space data structure that supports path
α-minority query on trees in O(α−1 log logn) time, where α is given at query
time. Our contributions are summarized in Table 1.

We assume the Word RAM model of computation using words of size w ∈
Ω(log n) bits, where n denotes the number of elements stored in the input ar-
ray/tree. Unless explicitly specified otherwise, space requirements are expressed

in multiples of words. We use the notation log(k) to represent logarithm iterated
k times; that is, log(1) n = logn and log(k) n = log log(k−1) n for any integer
k > 1. To avoid ambiguity, we use the notation (logn)2 instead of log2 n.

2 Chan et al.’s Framework for Range Least Frequent
Element Query on Arrays

Our data structure for range least frequent element queries on an arbitrary
given input array A[0 : n − 1] uses a technique introduced by Chan et al. [5].
Upon applying a rank space reduction to A, all elements in A are in the range
{0, . . . , Δ− 1}, where Δ denotes the number of distinct elements in the original
array A. Before returning the result of a range query computation, the corre-
sponding element in the rank-reduced array is mapped to its original value in
constant time by a table lookup [3,5]. Chan et al. [5] prove the following result.

Theorem 1 (Chan et al. [5]). Given any array A[0 : n − 1] and any fixed
s ∈ [1, n], there exists an O(n + s2)-word space data structure that supports
range least frequent element query on A in O(n/s) time and requires O(n · s)
preprocessing time.

The data structure of Chan et al. includes index data that occupy a linear number
of words, and two tables Dt and Et whose sizes (O(s2) words each) depend on
the parameter s. Let t be an integer blocking factor. Partition A[0 : n − 1]
into s = �n/t� blocks of size t (except possibly the last block which has size
1 + [(n− 1) mod t]). For every pair (i, j), where 0 ≤ i < j ≤ s− 1, the contents
of the tables Dt and Et are as follows:
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– Dt(i, j) stores a least frequent element in A[i · t : j · t− 1], and
– Et(i, j) stores an element which is least frequent in the multiset of elements

that are in A[i · t : j · t−1] but not in A[i · t : (i+1)t−1]∪A[(j−1)t : j · t−1].

In the data structure of Chan et al. [5], the tables Dt and Et are the only
components whose space bound depends on s. The cost of storing and accessing
the tables can be computed separately from the costs incurred by the rest of
the data structure. The proof for Theorem 1 given by Chan et al. implies the
following result.

Lemma 1 (Chan et al. [5]). If the tables Dt and Et can be stored using
S(t) bits of space to support lookup queries in T (t) time, then, for any {i, j} ⊆
{0, . . . , n−1}, a least frequent element in A[i : j] can be computed in O(T (t)+ t)
time using an O(S(t) + n logn)-bit data structure.

When t ∈ Θ(
√
n), the tables Dt and Et can be stored explicitly in linear space. In

that case, S(t) ∈ O((n/
√
n)2 logn) = O(n logn) bits and T (t) ∈ O(1), resulting

in an O(n logn)-bit (O(n)-word) space data structure that supports O(
√
n)-time

queries [5]. In the present work, we describe how to encode the tables using fewer
bits per entry, allowing them to contain more entries, and therefore allowing a
smaller value for t and lower query time.

We also refer to the following lemma by Chan et al. [3]:

Lemma 2 (Chan et al. [3]). Given an array A[0 : n − 1], there exists an
O(n)-space data structure that returns the index of the q-th instance of A[i] in
A[i : n− 1] in O(1) time for any 0 ≤ i ≤ n− 1 and any q.

3 Faster Range Least Frequent Element Query on Arrays

We first describe how to calculate the table entries for a smaller block size using
lookups on a similar pair of tables for a larger block size and some index data
that fits in linear space. Then, starting from the t =

√
n tables which we can

store explicitly, we apply that block-shrinking operation log∗ n times, ending
with blocks of size O(

√
n/w), which gives the desired lookup time.

At each level of the construction, we partition the array into three levels of
blocks whose sizes are t (big blocks), t′ (small blocks), and t′′ (micro blocks),
where 1 ≤ t′′ ≤ t′ ≤ t ≤ n. We will compute table entries for the small blocks,
Dt′ and Et′ , assuming access to table entries for the big blocks, Dt and Et.
The micro block size t′′ is a parameter of the construction but does not directly
determine which queries the data structure can answer. Lemma 3 follows from
Lemmas 4 and 5 (see Section 3.1). The bounds in Lemma 3 express only the cost
of computing small block table entries Dt′ and Et′ , not for answering a range
least frequent element query at the level of individual elements.

Lemma 3. Given block sizes 1 ≤ t′′ ≤ t′ ≤ t ≤ n, if the tables Dt and Et can
be stored using S(t) bits of space to support lookup queries in T (t) time, then



Linear-Space Data Structures for Range Frequency Queries 329

S smallS L S R

S 1 S 2 S 4S 3

S Q

S big

Fig. 1. illustration in support of Lemma 3

the tables Dt′ and Et′ can be stored using S(t′) bits of space to support lookup
queries in T (t′) time, where

S(t′) = S(t) + O(n + (n/t′)2 log(t/t′′)) , and (1)

T (t′) = T (t) + O(t′′) . (2)

Following Chan et al. [3,5], we call a consecutive sequence of blocks in A a span.
For any span SQ among the Θ((n/t′)2) possible spans of small blocks, we define
Sbig, Ssmall, SL, and SR, as follows (see Figure 1):

– Sbig: the unique minimal span of big blocks containing SQ,
– SL: the leftmost big block in Sbig,
– SR: the rightmost big block in Sbig, and
– Ssmall: the span of big blocks obtained by removing SL and SR from Sbig.
– SL is divided into S1 (outside SQ) and S2 (inside SQ).
– SR is divided into S3 (inside SQ) and S4 (outside SQ).

Let Sbig = A[i : j], hence Ssmall = A[i + t : j − t] and SQ = A[iQ : jQ]. In
Sections 3.1 and 3.2 we show how to encode the entries in Dt′(·, ·) and Et′(·, ·)
in O(log(t/t′′)) bits. In brief, we store an approximate index and approximate
frequency for each entry and decode the exact values at query time.

3.1 Encoding and Decoding of Dt′(·, ·)
We denote the least frequent element in SQ by π and its frequency in SQ by fπ.
We consider three cases based on the indices at which π occurs in Sbig as follows.
The case that applies to any particular span can be indicated by 2 bits, hence
O(2(n/t′)2) bits in total. We use the same notation for representing a span as
for the set of distinct elements within it.

Case 1: π is present in SL ∪ SR but not in Ssmall As explicit storage of π is
costly, we store the approximate index at which π occurs in SL ∪ SR, and the
approximate value of fπ, in O(log(t/t′′)) bits. Later we show how to decode π
and fπ in O(t′′) time using the stored values.

The approximate value of fπ can be encoded using the following observations.
We have |SL ∪ SR| ≤ 2t. Therefore fπ ∈ [1, 2t]. Explicitly storing fπ requires
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log(2t) bits. However, an approximate value of fπ (with an additive error at most
of t′′) can be encoded in fewer bits. Observe that t′′-fπ/t′′. ≤ fπ < t′′-fπ/t′′.+t′′.
Therefore the value -fπ/t′′. ∈ [0, 2t/t′′) can be stored using O(log(t/t′′)) bits and
accessed in O(1) time. The approximate location of π is a reference to a micro
block within SL ∪ SR (among 2t/t′′ micro blocks) which contains π and whose
index can be encoded in O(log(t/t′′)) bits. There can be many such micro blocks,
but we choose one carefully from among the following possibilities:

– the rightmost micro block in S1 which contains π,
– the leftmost micro block in S2 which contains π,
– the rightmost micro block in S3 which contains π, and
– the leftmost micro block in S4 which contains π.

Next we show how to decode the exact values of π and fπ. Consider the case when
the micro block (say Bm) containing π is in S1. First initialize π′ to any arbitrary
element and f ′π to τ (an approximate value of fπ), such that τ − t′′ ≤ fπ < τ .
Upon terminating the following algorithm, we obtain the exact values of π and
fπ as π′ and f ′π respectively. Scan the elements in Bm from left to right and let
k denote the current index. While k is an index in Bm, do:

1. If the second occurrence of A[k] in A[k : n − 1] is in S1, then go to Step 1
with k ← k + 1.

2. If the (f ′π + 1)st occurrence of A[k] in A[k : n− 1] is in SQ, then go to Step
1 with k ← k + 1.

3. Set f ′π ← f ′π − 1, π′ ← A[k], and go Step 2.

This algorithm finds the rightmost occurrence of π within Bm, i.e., the rightmost
occurrence of π before the index iQ. Correctness can be proved via induction as
follows: after initializing π′ and f ′π, at each step we check whether the element
A[k] is a least frequent element in SQ among all the elements in Bm which we
have seen so far. Step 1 discards the position k if the rightmost occurrence of A[k]
inBm is not at k, because we will see the same element eventually. Note that if the
rightmost occurrence of A[k] in Bm is at the position k, then the frequency of the
element A[k] in SQ = A[iQ : jQ] is exactly one less than its frequency in A[k : jQ].
Using this property, we can check in O(1) time whether the frequency of A[k] in
SQ is less than f ′π (Step 2). If so, we update the current best answer π′ byA[k] and
compute the exact frequency of A[k] in SQ in Step 3. We scan all elements in Bm

and on completion the value stored at π′ represents the least frequent element in
SQ among all elements present in Bm. Since π is present in Bm, π is the same as
π′, and fπ = f ′π. By Lemma 2, each step takes constant time. Since τ − fπ ≤ t′′,
the total time is proportional to |Bm| = t′′, i.e., O(t′′) time.

The remaining three cases, in which Bm is within S2, S3, and S4, respectively,
can be analyzed similarly.

Case 2: π is present in SL ∪ SR and in Ssmall The approximate position of π is
encoded as in Case 1. In this case, however, fπ can be much larger than 2t. Observe
that α ≤ fπ ≤ α + 2t, where α is the frequency of the least frequent element in
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Ssmall, which is already stored and can be retrieved in T (t) time. Therefore, an
approximate value fπ−α (with an additive error of at most t′′) can be stored using
O(log(t/t′′)) bits and decoded in T (t) + O(1) time. The approximate location of
π among the four possibilities as described in Case 1 is also maintained. By the
algorithm above we can decode π and fπ in T (t) + O(t′′) time.

Case 3: π is present in Ssmall but in neither SL nor SR Since π is the least frequent
element in SQ, and does not appear in SL ∪ SR, it is the least frequent element
in Ssmall that does not appear in SL ∪ SR. This implies π is the least frequent
element in Sbig that does not appear in SL∪SR (which is precomputed as stored).
Therefore the time required for decoding the values of π and fπ is T (t) + O(1).]

Lemma 4. The table Dt′(·, ·) can be stored using O((n/t′)2 log(t/t′′)) bits in ad-
dition to S(t) and any value within it can be decoded in T (t) + O(t′′) time.

3.2 Encoding and Decoding of Et′(·, ·)
Let φ denote the least frequent element in SQ that does not appear in the leftmost
and rightmost small blocks in SQ and let fφ denote its frequency in SQ. As before,
we consider three cases for the indices at which φ occurs in Sbig. The case that
applies to any particular span can be indicated by 2 bits, hence O((n/t′)2 × 2)
bits in total for any single given value of t′.

For each small block (of size t′) we maintain a hash table that can answer
whether a given element is present within the small block in O(1) time. We can
maintain each hash table in O(t′) bits for an overall space requirement of O(n)
bits for any single given value of t′, using perfect hash techniques such as those of
Schmidt and Siegel [14], Hagerup and Tholey [10], or Belazzougui et al. [1].

Case 1: φ is present in SL ∪ SR but not in Ssmall In this case, fφ ∈ [1, 2t], and its
approximate value and approximate position (i.e., the relative position of a small
block) can be encoded in O(log(t/t′′)) bits. Encoding is the same as the encoding
of π in Case 1 of Dt′(·, ·). For decoding we modify the algorithm for Dt′(·, ·) to
use the hash table for checking that A[k] is not present in the first and last small
blocks of SQ. The decoding time can be bounded by O(t′′).

Case 2: φ is present in SL ∪ SR and in Ssmall The approximate position of φ
is stored as in Case 1. The encoding of fφ is more challenging. Let α denote the
frequency of the least frequent element in Ssmall, which is already stored and can
be retrieved in T (t) time. If fφ > α+2t, the element φ cannot be the least frequent
element of any span S, where S contains Ssmall and is within Sbig. In other words,
φ is useful if and only if fφ ≤ α + 2t. Moreover, fφ ≥ α. Therefore we store the
approximate value of fφ if and only if it is useful information, and in such cases
we can do it using only O(log(t/t′′)) bits. Using similar arguments to those used
before, the decoding time can be bounded by T (t) + O(t′′).

Case 3: φ is present in Ssmall but in neither SL nor SR Since φ is the least frequent
element in SQ that does not appear in the leftmost and rightmost small blocks in
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SQ, and does not appear in SL ∪ SR, it is the least frequent element in SQ that
does not appear in SL∪SR. Therefore, π it is the least frequent element in Ssmall

(as well as Sbig) that does not appear in SL∪SR (which is precomputed as stored).
Hence φ and fφ can be retrieved in T (t) + O(1) time.

Lemma 5. The table Et′(·, ·) can be encoded in O(n + (n/t′)2 log(t/t′′)) bits in
addition to S(t) and any value within it can be decoded in T (t) + O(t′′) time.

By applying Lemma 3 with carefully chosen block sizes, followed by Lemma 1 for
the final query on a range of individual elements, we show the following result.

Theorem 2. Given any array A[0 : n− 1], there exists an O(n)-word space data
structure that supports range least frequent element queries on A in O(

√
n/w)

time, where w = Ω(log n) is the word size.

Proof. Let th = log(h) n
√
n/w and t′′h =

√
n/w/ log(h+1) n, where h ≥ 1. Then

by applying Lemma 3 with t = th, t′ = th+1, and t′′ = t′′h, we obtain the following:

S(th+1) = S(th) + O
(
n+ (n/th+1)2 log(th/t

′′
h)
)
∈ S(th) + O(nw/ log(h+1)n)

T (th+1) = T (th) + O(t′′h) ∈ T (th) +O(
√
n/w/ log(h+1)n) .

By storing Dt1 and Et1 explicitly, we have S(t1) ∈ O(n) bits and T (t1) ∈ O(1).
Applying Lemma 1 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√
n/w) ∈ O

⎛⎝nw

log∗ n∑
h=1

1

log(h) n

⎞⎠ = O(nw)

T (
√
n/w) ∈ O

⎛⎝√
n/w

log∗ n∑
h=1

1

log(h) n

⎞⎠ = O(
√
n/w) . ��

4 Path Frequency Queries on Trees

In this section, we generalize the range frequency query data structures to apply
to trees (path mode query). The linear time bound of Chan et al. [5] for range
mode queries on arrays depends on the ability to answer a query of the form “is
the frequency of element x in the range A[i : j] greater than k?” in constant time.
There is no obvious way to generalize the data structure for such queries on arrays
to apply to trees. Instead, we use the following lemma for an exact calculation of
path frequency (not just whether it is greater than k). The proof is omitted due
to space constraints.

Lemma 6. Given any tree T of n nodes, there exists an O(n)-word data struc-
ture that can compute the number of occurrences of x on the path from i to j in
O(log logn) time for any nodes i and j in T and any element x.
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The following lemma describes a scheme for selecting some nodes in T as marked
nodes, which split the tree into blocks over which we can apply the same kinds of
block-based techniques that were effective in the array versions of the problems.
The proof is omitted due to space constraints.

Lemma 7. Given a tree T with n nodes and an integer t < n which we call the
blocking factor, we can choose a subset of the nodes, called the marked nodes, such
that:

– at most O(n/t) nodes are marked;
– the lowest common ancestor of any two marked nodes is marked; and
– the path between any two nodes contains ≤ t consecutive unmarked nodes.

4.1 A Simple Data Structure for Path Mode Query

A simple path mode data structure follows naturally: we store the answers ex-
plicitly for all pairs of marked nodes, then use the data structure of Lemma 6 to
compute exact frequencies for a short list of candidate modes. We let the blocking
factor be a parameter, to support later use of this as part of a more efficient data
structure.

Lemma 8. For any blocking factor t, if we can answer path mode queries between
marked nodes in time T (t) with a data structure of S(t) bits, then we can answer
path mode queries between any nodes in time T (t)+O(t log logn) with a data struc-
ture of S(t) + O(n log n) bits.

Proof. As in the array case considered by Chan et al. [5], we can split the query
path into a prefix of size O(t), a span with both endpoints marked, and a suffix
of size O(t) using Lemma 7. The mode of the query must either be the mode of
the span, or it must occur within the prefix or the suffix. We find the mode of the
span in T (t) time by assumption, and compute its frequency in O(log logn) time
using the data structure of Lemma 6. Then we also compute the frequencies of
all elements in the prefix and suffix, for a further time cost of O(t log logn). The
result follows. ��

Setting t =
√
n and using a simple lookup table for the marked-node queries gives

O(
√
n log logn) query time with O(n) words of space.

4.2 A Faster Data Structure for Path Mode Query

To improve the time bound by an additional factor of
√
w, we derive the following

lemma and apply it recursively.

Lemma 9. For any blocking factor t, given a data structure that can answer path
mode queries between marked nodes in time T (t) with a space requirement of S(t)
bits, there exists a data structure answering path mode queries between marked
nodes for blocking factor t′ in time T (t′) = T (t) + O(t′′ log logn) with a space
requirement S(t′) = S(t) + O(n + (n/t′)2 log(t/t′′)) bits, where t > t′ > t′′.
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Proof. (Sketch) Assume the nodes in T are marked based on a blocking factor t
using Lemma 7, and the mode between any two marked nodes can be retrieved in
T (t) time using an S(t)-bit structure. Now we are interested in encoding the mode
corresponding to the path between any two nodes i′ and j′, which are marked
based on a smaller blocking factor t′. Note that there are O((n/t′)2) such pairs.
The tree structure along with this new marking information can be maintained in
O(n) bits using succinct data structures [13]. Where i and j are the first and last
nodes in the path from i′ to j′, marked using t as the blocking factor, the path
between i′ and j′ can be partitioned as follows: the path from i′ to i, which we call
the path prefix ; the path from i to j; and the path from j to j′, which we call the
path suffix. The mode in the path from i′ to j′ must be either (i) the mode of i to
j path or (ii) an element in the path prefix or path suffix.

In case (i), the answer is already storedusingS(t) bits and can be retrieved inT (t)
time. Case (ii) is more time-consuming. Note that the number of nodes in the path
prefix and path suffix isO(t). In case (ii) our answer must be stored in a node in the
path prefix which is k < t nodes away from i′, or in a node in the path suffix which
is k < t nodes away from j′. Hence an approximate value of k (call it k′, with k <
k′ ≤ k+ t′′) can be maintained inO(log(t/t′′)) bits. In order to obtain a candidate
list, we first retrieve the node corresponding to k′ using a constant number of level
ancestor queries (each taking O(1) time [13]) and its O(t′′) neighboring nodes in
the i′ to j′ path. The final answer can be computed by evaluating the frequencies
of these O(t′′) candidates using Lemma 6 in O(t′′ log logn) overall time. ��
The following theorem is our main result on path mode query.

Theorem 3. There exists a linear-space (in words; that is, O(n log n) bits) data
structure that answers path mode queries on trees in O(log logn

√
n/w) time.

Proof. Let th = log(h) n
√
n/w and t′′h =

√
n/w/ log(h+1) n, where h ≥ 1. Then

by applying Lemma 9 with t = th, t′ = th+1, and t′′ = t′′h, we obtain the following:

S(th+1) = S(th) + O
(
n + (n/th+1)

2 log(th/t
′′
h)

)
∈ S(th) + O(nw/ log(h+1) n)

T (th+1) = T (th) + O(t′′h log logn) ∈ T (th) + O(log logn
√
n/w/ log(h+1) n) .

By storing Dt1 and Et1 explicitly, we have S(t1) ∈ O(n) bits and T (t1) ∈ O(1).
Applying Lemma 8 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√
n/w) ∈ O

⎛⎝nw

log∗ n∑
h=1

1

log(h) n

⎞⎠ = O(nw)

T (
√
n/w) ∈ O

⎛⎝log logn
√
n/w

log∗ n∑
h=1

1

log(h) n

⎞⎠ = O(log logn
√
n/w) .

��

Similar techniques lead to a data structure for tree path least frequent element
queries; we defer the proof to the full version due to space constraints.

Theorem 4. There exists a linear-space data structure that answers path least fre-
quent element queries on trees in O(log logn

√
n/w) time.
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5 Path α-Minority Query on Trees

An α-minority in a multiset A, for some α ∈ [0, 1], is an element that occurs at
least once and as no more than α proportion ofA. If there are n elements inA, then
the number of occurrences of the α-minority in A can be at most αn. Elements in
A that are not α-minorities are calledα-majorities. Chan et al. studied α-minority
range queries in arrays [5]; here, we generalize the problem to path queries on trees.
In general, an α-minority is not necessarily unique; given a query consisting of a
pair of tree node indices and a value α ∈ [0, 1] (specified at query time), our data
structure returns one α-minority, if at least one exists, regardless of the number of
distinct α-minorities. As in the previous section, we can compute path frequencies
inO(log log n) time (Lemma 6); then a data structure similar to the one for arrays
gives us distinct elements within a path in constant time per distinct element.
Combining the two gives a bound of O(α−1 log logn) time for α-minority queries.

As discussed by Chan et al. for the case of arrays [5], examining α−1 distinct
elements in a query range allows us to guarantee either that we have examined an
α-minority, or that noα-minority exists. So we construct a data structure based on
the hive graph of Chazelle [6] for the k-nearest distinct ancestor problem: given
a node i, find a sequence a1, a2, . . . of ancestors of i such that a1 = i, a2 is the
nearest ancestor of i distinct from a1, a3 is the nearest ancestor of i distinct from
a1 and a2, and so on. Queries on the data structure return the distinct ancestors
in order and in constant time each. The proof is omitted due to space constraints.

Lemma 10. There exists a linear-space data structure that answers k-nearest dis-
tinct ancestor queries on trees in O(k) time, returning them in nearest-to-furthest
order in O(1) time each, so that k can be chosen interactively.

Lemmas 6 and 10 give the following theorem.

Theorem 5. There exists a linear-space data structure that answers path
α-minority queries on trees in O(α−1 log logn) time (where α and the path’s end-
points are specified at query time).

Proof. We construct the data structures of Lemma 6 and Lemma 10, both of which
use linear space. To answer a path α-minority query between two nodes i and j,
we find the α−1 nearest distinct ancestors (or as many as exist, if that is fewer)
above each of i and j. That takes α−1 time. If an α-minority exists between i and
j, then one of these candidates must be an α-minority. We can test each one in
O(log logn) using the path frequency data structure, and the result follows. ��

6 Discussion and Directions for Future Research

Our data structures for path queries refer to Lemma 6. Consequently, each has
query time O(log logn) times greater than the corresponding time on arrays. For
arrays, Chan et al. [3] use O(1)-time range frequency queries for the case in which
the element whose frequency is being measured is at an endpoint of query range.
Generalizing this technique to path queries on trees should allow each data struc-
ture’s query time to be decreased accordingly.
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Abstract. We develop a theory for state-based noninterference in a set-
ting where different security policies—we call them local policies—apply
in different parts of a given system. Our theory comprises appropriate
security definitions, characterizations of these definitions, for instance in
terms of unwindings, algorithms for analyzing the security of systems
with local policies, and corresponding complexity results.

1 Introduction

Research in formal security aims to provide rigorous definitions for different no-
tions of security as well as methods to analyse a given system with regard to
the security goals. Restricting the information that may be available to a user
of the system (often called an agent) is an important topic in security. Nonin-
terference [GM82, GM84] is a notion that formalizes this. Noninterference uses
a security policy that specifies, for each pair of agents, whether information is
allowed to flow from one agent to the other. To capture different aspects of in-
formation flow, a wide range of definitions of noninterference has been proposed,
see, e.g., [YB94, Mil90, vO04, WJ90].

In this paper, we study systems where in different parts different policies ap-
ply. This is motivated by the fact that different security requirements may be
desired in different situations, for instance, a user may want to forbid interference
between his web browser and an instant messenger program while visiting bank-
ing sites but when reading a news page, the user may find interaction between
these programs useful.

As an illustrating example, consider the system depicted in Fig. 1, where three
agents are involved: an administrator A and two users H and L. The rounded
boxes represent system states, the arrows represent transitions. The labels of the
states indicate what agent L observes in the respective state; the labels of the
arrows denote the action, either action a performed by A or action h performed
by H , inducing the respective transition. Every action can be performed in every
state; if it does not change the state (i. e., if it induces a loop), the corresponding
transition is omitted in the picture.

The lower part of the system constitutes a secure subsystem with respect to
the bottom policy: when agent H performs the action h in the initial state, the
observation of agent L changes from 0 to 1, but this is allowed according to the
policy, as agent H may interfere with agent L—there is an edge from H to L.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 337–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Similarly, the upper part of the system constitutes a secure subsystem with
respect to the top policy: interference between H and L is not allowed—no edge
from H to L—and, in fact, there is no such interference, because L’s observation
does not change when h performs an action.

obsL : 0

obsL : 0

obsL : 1

obsL : 0

a

h

h

A H

L

A H

L

Fig. 1. System with local policies

However, the entire system is
clearly insecure: agent A must not in-
terfere with anyone—there is no edge
starting from A in either policy—but
when L observes “1” in the lower
right state, L can conclude that A did
not perform the a action depicted.

Note that interference between H
and L is allowed, unless A performs
action a. But L must not get to know
whether a was performed. To achieve
this, interference between H and L must never be allowed. Otherwise, as we have
just argued, L can—by observing H ’s actions—conclude that in the current part
of the system, interference between H and L is still legal and thus A did not
perform a. In other words, in the policy of the lower part, the edge connecting
H and L can never be “used” for an actual information flow. We call such edges
useless.—Useless edges are a key issue arising in systems with local policies.
Our results. We develop a theory of noninterference with local policies which
takes the aforementioned issues into account. Our contributions are as follows:

1. We provide new and natural definitions for noninterference with local poli-
cies, both for the transitive [GM82, GM84] (agent L may only be influenced
by agent H if there is an edge from H to L in the policy) and for the in-
transitive setting [HY87] (interference between H and L via “intermediate
steps” is also allowed).

2. We show that policies can always be rewritten into a normal form which
does not contain any “useless” edges (see above).

3. We provide characterizations of our definitions based on unwindings, which
demonstrate the robustness of our definitions and from which we derive
efficient verification algorithms.

4. We provide results on the complexity of verifying noninterference. In the
transitive setting, noninterference can be verified in nondeterministic loga-
rithmic space (NL). In the intransitive setting, the problem is NP-complete,
but fixed-parameter tractable with respect to the number of agents.

Our results show significant differences between the transitive and the intran-
sitive setting. In the transitive setting, one can, without loss of generality, al-
ways assume a policy is what we call uniform, which means that each agent
may “know” (in a precise epistemic sense) the set of agents that currently may
interfere with him. Assuming uniformity greatly simplifies the study of noninter-
ference with local policies in the transitive setting. Moreover, transitive nonin-
terference with local policies can be characterized by a simple unwinding, which
yields very efficient algorithms.
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In the intransitive setting, the situation is more complicated. Policies cannot
be assumed to be uniform, verification is NP-complete, and, consequently, we
only give an unwinding condition that requires computing exponentially many
relations. However, for uniform policies, the situation is very similar to the tran-
sitive setting: we obtain simple unwindings and efficient algorithms.

As a consequence of our results for uniform policies, we obtain an unwind-
ing characterization of IP-security [HY87] (which uses a single policy for the
entire system). Prior to our results, only an unwinding characterization that
was sound, but not complete for IP-security was known [Rus92]. Our new un-
winding characterization immediately implies that IP-security can be verified in
nondeterministic logarithmic space, which improves the polynomial-time result
obtained in [E+11]. Proofs and additional details can be found in [ESW13].

Related Work. Our definition for intransitive security is a generalization of IP-
security [HY87] mentioned above. The issues raised against IP-security in [vdM07]
are orthogonal to the issues arising from local policies. We therefore study local
policies in the framework of IP-security, which is technically simpler than, e.g.,
TA-security as defined in [vdM07].

Several extensions of intransitive noninterference have been discussed, for in-
stance, in [RG99, MSZ06]. In [Les06], a definition of intransitive noninterference
with local policies is given, however, the definition in [Les06] does not take into
account the aforementioned effects, and that work does not provide complete
unwinding characterizations nor complexity results.

2 State-Based Systems with Local Policies

We work with the standard state-observed system model, that is, a system is a
deterministic finite-state automaton where each action belongs to a dedicated
agent and each agent has an observation in each state. More formally, a system
is a tuple M = (S, s0, A, step, obs, dom), where S is a finite set of states, s0 ∈ S
is the initial state, A is a finite set of actions, step : S × A → S is a transition
function, obs : S×D → O is an observation function, where O is an arbitrary set
of observations, and dom : A→ D associates with each action an agent, where D
is an arbitrary finite set of agents (or security domains).

For a state s and an agent u, we write obsu(s) instead of obs(s, u). For
a sequence α ∈ A∗ of actions and a state s ∈ S, we denote by s · α the state
obtained when performing α starting in s, i.e., s ·ε = s and s ·αa = step(s ·α, a).

A local policy is a reflexive relation 	 ⊆ D×D. To keep our notation simple,
we do not define subsystems nor policies for subsystems explicitly. Instead, we
assign a local policy to every state and denote the policy in state s by 	s.
We call the collection of all local policies (	s)s∈S the policy of the system. If
(u, v) ∈ 	s for some u, v ∈ D, s ∈ S, we say u 	s v is an edge in (	s)s∈S .
A system has a global policy if all local policies 	s are the same in all states,
i.e., if u	s v does not depend on s. In this case, we denote the single policy by
	 and only write u 	 v. We define the set u
s as the set of agents that may
interfere with u in s, i.e., the set {v | v 	s u}.
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In the following, we fix an arbitrary system M and a policy (	s)s∈S .
In our examples, we often identify a state with an action sequence leading to

it from the initial state s0, that is, we write α for s0 · α, which is well-defined,
because we consider deterministic systems. For example, in the system from
Fig. 1, we denote the initial state by ε and the upper right state by ah. In
each state, we write the local policy in that state as a graph. In the system
from Fig. 1, we have H 	ε L, but H �	a L. In general, we only specify the
agents’ observations as far as relevant for the example, which usually is only the
observation of the agent L. We adapt the notation from Fig. 1 to our definition
of local policies, which assigns a local policy to every state: we depict the graph
of the local policy inside the rounded box for the state, see Fig. 2.

3 The Transitive Setting

In this section, we define noninterference for systems with local policies in the
transitive setting, give several characterizations, introduce the notion of useless
edge, and discuss it. The basic idea of our security definition is that an occurrence
of an action which, according to a local policy, should not be observable by an
agent u must not have any influence on u’s future observations.

Definition 3.1 (t-security). The system M is t-secure iff for all u ∈ D, s ∈ S,
a ∈ A and α ∈ A∗ the following implication holds:

If dom(a) �	s u, then obsu(s · α) = obsu(s · aα) .

A B

L
obsL : 0

A B

L
obsL : 1

A B

L
obsL : 2

b

a
ba

Fig. 2. A t-secure system

Fig. 2 shows a t-secure system. In contrast, the sys-
tem in Fig. 1 is not t-secure, since A �	ε L, but
obsL(ah) �= obsL(h).

3.1 Characterizations of t-Security

In Theorem 3.4, we give two characterizations of
t-security, underlining that our definition is quite
robust. The first characterization is based on an op-
erator which removes all actions that must not be
observed. It is essentially the definition from Goguen
and Meseguer [GM82, GM84] of the purge operator generalized to systems with
local policies.

Definition 3.2 (purge for local policies). For all u ∈ D and s ∈ S let
purge(ε, u, s) = ε and for all a ∈ A and α ∈ A∗ let

purge(aα, u, s) =

{
a purge(α, u, s · a) if dom(a) 	s u

purge(α, u, s) otherwise .

The other characterization is in terms of unwindings, which we define for local
policies in the following, generalizing the definition of Haigh and Young [HY87].
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Definition 3.3 (transitive unwinding with local policies). A transitive
unwinding for M with a policy (	s)s∈S is a family of equivalence relations
(∼u)u∈D such that for every agent u ∈ D, all states s, t ∈ S and all a ∈ A, the
following holds:
– If dom(a) �	s u, then s ∼u s · a. (LRt)—local respect
– If s ∼u t, then s · a ∼u t · a. (SCt)—step consistency
– If s ∼u t, then obsu(s) = obsu(t). (OCt)—output consistency

Our characterizations of t-security are spelled out in the following theorem.

Theorem 3.4 (characterizations of t-security). The following are equiva-
lent:
1. The system M is t-secure.
2. For all u ∈ D, s ∈ S, and α, β ∈ A∗ with purge(α, u, s) = purge(β, u, s), we

have obsu(s · α) = obsu(s · β).
3. There exists a transitive unwinding for M with the policy (	s)s∈S.

Unwinding relations yield efficient verification procedure. For verifying t-security,
it is sufficient to compute for every u ∈ D the smallest equivalence relation
satisfying (LRt) and (SCt) and check that the function obsu is constant on
every equivalence class. This can be done with nearly the same algorithm as is
used for global policies, described in [E+11]. The above theorem directly implies
that t-security can be verified in nondeterministic logarithmic space.

3.2 Useless Edges

An “allowed” interference v 	s u may contradict a “forbidden” interference
v �	s′ u in a state s′ that should be indistinguishable to s for u. In this case, the
edge v 	s u is useless. What this means is that an edge v 	s u in the policy
may be deceiving and should not be interpreted as “it is allowed that v interferes
with u”, rather, it should be interpreted as “it is not explicitly forbidden that v
interferes with u”. To formalize this, we introduce the following notion:

Definition 3.5 (t-similarity). States s, s′ are t-similar for an agent u ∈ D,
denoted s ≈u s

′, if there exist t ∈ S, a ∈ A, and α ∈ A∗ such that dom(a) �	t u,
s = t · aα, and s′ = t · α.

Observe that t-similarity is identical with the smallest equivalence relation sat-
isfying (LRt) and (SCt). Also observe that the system M is t-secure if and only
if for every agent u, if s ≈u s

′, then obsu(s) = obsu(s′).
The notion of t-similarity allows us to formalize the notion of a useless edge:

Definition 3.6 (useless edge). An edge v 	s u is useless if there is a state s′

with s ≈u s
′ and v �	s′ u.

For example, consider again the system in Fig. 1. Here, the local policy in the
initial state allows information flow from H to L. However, if L is allowed to
observe H ’s action in the initial state, then L would know that the system is in



342 S. Eggert, H. Schnoor, and T. Wilke

the initial state, and would also know that A has not performed an action. This
is an information flow from A to L, which is prohibited by the policy.

Useless edges can be removed without any harm:

Theorem 3.7 (removal of useless edges). Let (	′
s)s∈S be defined by

	′
s = 	s \ {v 	s u | v 	s u is useless} for all s ∈ S.

Then M is t-secure w. r. t. (	s)s∈S iff M is t-secure w. r. t. (	′
s)s∈S.

The policy (	′
s)s∈S in Theorem 3.7 has no useless edges, hence every edge in one

of its local policies represents an allowed information flow—no edge contradicts
an edge in another local policy. Another interpretation is that any information
flow that is forbidden is directly forbidden via the absence of the corresponding
edge. In that sense, the policy is closed under logical deduction.

We call a policy (	s)s∈S uniform if u
s = u
s′ holds for all states s and s′

with s ≈u s
′. In other words, in states that u should not be able to distinguish,

the exact same set of agents may interfere with u. Hence u may “know” the set
of agents that currently may interfere with him. Note that a policy is uniform
if and only if it does not contain useless edges. (This is not true in the intransi-
tive setting, hence the seemingly complicated definition of uniformity.) Uniform
policies have several interesting properties, for example, with a uniform policy
the function purge behaves very similarly to the setting with a global policy:
it suffices to verify action sequences that start in the initial state of the system
and purge satisfies a natural associativity condition on a uniform policy.

4 The Intransitive Setting

In this section, we consider the intransitive setting, where, whenever an agent
performs an action, this event may transmit information about the actions the
agent has performed himself as well as information about actions by other agents
that was previously transmitted to him. The definition follows a similar pattern
as that of t-security: if performing an action sequence aα starting in a state s
should not transmit the action a (possibly via several intermediate steps) to the
agent u, then u should be unable to deduce from his observations whether a
was performed. To formalize this, we use Leslie’s extension [Les06] of Rushby’s
definition [Rus92] of sources.

Definition 4.1 (sources). For an agent u let src(ε, u, s) = {u} and for a ∈ A,
α ∈ A∗, if dom(a) 	s v for some v ∈ src(α, u, s · a), then let src(aα, u, s) =
src(α, u, s · a) ∪ {dom(a)}, and else let src(aα, u, s) = src(α, u, s · a).

The set src(aα, u, s) contains the agents that “may know” whether the action a
has been performed in state s after the run aα is performed: initially, this is only
the set of agents v with dom(a) 	s v. The knowledge may be spread by every
action performed by an agent “in the know:” if an action b is performed in a later
state t, and dom(b) already may know that the action a was performed, then all
agents v with dom(b) 	t v may obtain this information when b is performed.
Following the discussion above, we obtain a natural definition of security:
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Definition 4.2 (i-security). The system M is i-secure iff for all s ∈ S, a ∈ A,
and α ∈ A∗, the following implication holds.

If dom(a) /∈ src(aα, u, s), then obsu(s · aα) = obsu(s · α).

The definition formalizes the above: if, on the path aα, the action a is not trans-
mitted to u, then u’s observation must not depend on whether a was performed;
the runs aα and α must be indistinguishable for u.

Consider the example in Fig. 1. The system remains insecure in the intransitive
setting: as A must not interfere with any agent in any state, we have dom(a) /∈
src(ah, L, ε), where again, according to our convention, ε denotes the initial
state. So, the system is insecure, since obsL(ah) �= obsL(h).

4.1 Characterizations and Complexity of i-Security

We now establish two characterizations of intransitive noninterference with local
policies and study the complexity of verifying i-security. Our characterizations
are analogous to the ones obtained for the transitive setting in Theorem 3.4.
The first one is based on a purge function, the second one uses an unwinding
condition. This demonstrates the robustness of our definition and strengthens
our belief that i-security is indeed a natural notion.

We first extend Rushby’s definition of ipurge to systems with local policies.

Definition 4.3 (intransitive purge for local policies). For all u ∈ D and
all s ∈ S, let ipurge(ε, u, s) = ε and, for all a ∈ A and α ∈ A∗, let

ipurge(aα, u, s) =

{
a ipurge(α, u, s · a) if dom(a) ∈ src(aα, u, s),

ipurge(α, u, s) otherwise.

The crucial point is that in the case where a must remain hidden from agent u, we
define ipurge(aα, u, s) as ipurge(α, u, s) instead of the possibly more intuitive
choice ipurge(α, u, s · a), on which the security definition in [Les06] is based.

We briefly explain the reasoning behind this choice. To this end, let ipurge′

denote the alternative definition of ipurge outlined above. Consider the sequence
ah, performed from the initial state in the system in Fig. 1. Clearly, the action a
is purged from the trace, thus the result of ipurge′ is the same as applying
ipurge′ to the sequence h starting in the upper left state. However, in this
state, the action h is invisible for L, hence ipurge′ removes it, and thus purging
ah results in the empty sequence. On the other hand, if we consider the sequence
h also starting in the initial state, then h is not removed by ipurge′, since H
may interfere with L. Hence ah and h do not lead to the same purged trace—
a security definition based on ipurge′ does not require ah and h to lead to
states with the same observation. Therefore, the system is considered secure in
the ipurge′-based security definition from [Les06]. However, a natural definition
must require ah and h to lead to the same observation for agent L, as the action
a must always be hidden from L.

We next define unwindings for i-security and then give a characterization of
i-security based on them.
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Definition 4.4 (intransitive unwinding). An intransitive unwinding for the
system M with a policy (	s)s∈S is a family of relations (
D′)D′⊆D such that

D′⊆ S × S and for all D′ ⊆ D, all s, t ∈ S and all a ∈ A, the following hold:
– s 
{u∈D | dom(a) ��su} s · a. (LRi)
– If s 
D′′ t, then s · b 
D′′ t · b, where D′′ = D′ if dom(b) ∈ D′,

and else D′′ = D′ ∩ {u | dom(b) �	s u}. (SCi)
– If s 
D′ t and u ∈ D′, then obsu(s) = obsu(t), (OCi)

Intuitively, s 
D′ t expresses that there is a common reason for all agents in D′

to have the same observations in s as in t, i.e., if there is a state s̃, an action a
and a sequence α such that s = s̃ · aα, t = s̃ · α, and dom(a) /∈ src(aα, u, s̃) for
all agents u ∈ D′.

Theorem 4.5 (characterization of i-security). The following are equiva-
lent:
1. The system M is i-secure.
2. For all agents u, all states s, and all action sequences α and β with

ipurge(α, u, s) = ipurge(β, u, s), we have obsu(s · α) = obsu(s · β).
3. There exists an intransitive unwinding for M and (	s)s∈S .

In contrast to the transitive setting, the unwinding characterization of i-security
does not lead to a polynomial-time algorithm to verify security of a system, be-
cause the number of relations needed to consider is exponential in the number
of agents in the system. Unless P = NP, we cannot do significantly better, be-
cause the verification problem is NP-complete; our unwinding characterization,
however, yields an FPT-algorithm.

Theorem 4.6 (complexity of i-security). Deciding whether a given system
is i-secure with respect to a policy is NP-complete and fixed-parameter tractable
with the number of agents as parameter.

4.2 Intransitively Useless Edges

H

D
obsL : 0

H D

L
obsL : 0

obsL : 1

D

L
obsL : 0

obsL : 2

obsL : 0obsL : 0

h1

h2

d

d

h1
h2

Fig. 3. Intransitively useless edge

In our discussion of t-security we ob-
served that local policies may contain
edges that can never be used. This is-
sue also occurs in the intransitive set-
ting, but the situation is more involved.
In the transitive setting, it is sufficient
to “remove any incoming edge for u that
u must not know about” (see Theo-
rem 3.7). In the intransitive setting it is
not: when the system in Fig. 3 is in state
h1, then agent L must not know that the
edge D 	 L is present, since states ε and
h1 should be indistinguishable for L, but clearly, the edge cannot be removed
without affecting security. However, useless edges still exist in the intransitive
setting, even in the system from Figure 3, as we will show below.
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To formally define useless edges, we adapt t-similarity to the intransitive set-
ting in the natural way.

Definition 4.7 (i-similarity). For an agent u, let ≈i
u be the smallest equiv-

alence relation on the states of M such that for all s ∈ S, a ∈ A, α ∈ A∗, if
dom(a) /∈ src(aα, u, s), then s · aα ≈i

u s · α. We call states s and s′ with s ≈i
u s

′

i-similar for u.

Using this, we can now define intransitively useless edges:

Definition 4.8 (intransitively useless edge). Let e be an edge in a local
policy of (	s)s∈S and let (	̂s)s∈S be the policy obtained from (	s)s∈S by

removing e. Let ≈i
u and ≈̂i

u be the respective i-similarity relations. Then e is

intransitively useless if s ≈i
u s

′ if and only if s≈̂i
us

′ for all states s and s′ and
all agents u.

An edge is intransitively useless if removing it does not forbid any information
flow that was previously allowed. In particular, such an edge itself cannot be used
directly. Whether an edge is useless does not depend on the observation function
of the system, but only on the policy and the transition function, whereas a
definition of security compares observations in different states.

If the policy does not contain any intransitively useless edges, then there is
no edge in any of its local policies that is contradicted by other aspects of the
policy. In other words, the set of information flows forbidden by such a policy
is closed under logical deduction—every edge that can be shown to represent a
forbidden information flow is absent in the policy.

Fig. 3 shows a secure system with an intransitively useless edge. The system
is secure (agent L knows whether in the initial state, h1 or h2 was performed,
as soon as this information is transmitted by agent D). The edge H 	h1 L is
intransitively useless, as explained in what follows.

The edge allows L to distinguish between the states h1, h1h1, h1h2. However,
one can verify that h2h1 ≈i

L h1, h2h1h1 ≈i
L h2h1, h2h1h1 ≈i

L h1h1, h2h1h2 ≈i
L

h2h1, and h2h1h2 ≈i
L h1h2 all hold. Symmetry and transitivity of ≈i

L imply that
all the three states h1, h1h1, h1h2 are ≈i

L-equivalent. Hence the edge H 	h1 L
is indeed intransitively useless (and the system would be insecure if h1, h1h1,
and h1h2 would not have the same observations).

Intransitively useless edges can be removed without affecting security:

Theorem 4.9 (removal of intransitively useless edges). Let (	′
s)s∈S be

obtained from (	s)s∈S by removing a set of edges which are intransitively use-
less. Then M is i-secure with respect to (	s)s∈S if and only if M is i-secure
with respect to (	′

s)s∈S .

This theorem implies that for every policy (	s)s∈S , a policy (	′
s)s∈S without

intransitively useless edges that is equivalent to (	s)s∈S can be obtained from
(	s)s∈S by removing all intransitively useless edges.
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4.3 Sound Unwindings and Uniform Intransitive Policies

The exponential size unwinding of i-security given in Section 4.1 does not yield
a polynomial-time algorithm for security verification. Since the problem is NP-
complete, such an algorithm—and hence an unwinding that is both small and
easy to compute—does not exist, unless P = NP. In this section, we define
unwinding conditions that lead to a polynomial-size unwinding and are sound
for i-security, and are sound and complete for i-secure in the case of uniform
policies. Uniform policies are (as in the transitive case) policies in which every
agent “may know” the set of agents who may currently interfere with him, that
is, if an agent u must not distinguish two states by the security definition, then
the set of agents that may interfere with u must be identical in these two states.
Formally, we define this property as follows.

Definition 4.10 (intransitive uniform). A policy (	s)s∈S is intransitively
uniform, if for all agents u and states s, s′ with s ≈i

u s
′, we have that u
s = u
s′ .

Note that this definition is very similar to the uniformity condition for the tran-
sitive setting, but while in the transitive setting, uniform policies and policies
without useless edges coincide, this is not true for intransitive noninterference
(in fact, neither implication holds).

Uniformity, on an abstract level, is a natural requirement and often met in con-
crete systems, since an agent usually knows the sources of information available
to him. In the uniform setting, many of the subtle issues with local policies do not
occur anymore; as an example, i-security and the security definition from [Les06]
coincide for uniform policies. Uniformity also has nice algorithmic properties, as
both, checking whether a system has a uniform policy and checking whether a
system with a uniform policy satisfies i-security, can be performed in polyno-
mial time. This follows from the characterizations of i-security in terms of the
unwindings we define next.

Definition 4.11 (uniform intransitive unwinding). A uniform intransitive
unwinding for M with a policy (	s)s∈S is a family of equivalence relations ∼s̃,v

u

for each choice of states s̃ and agents v and u, such that for all s, t ∈ S, and all
a ∈ A, the following holds:
– If s ∼s̃,v

u t, then obsu(s) = obsu(t). (OCu
i )

– If s ∼s̃,v
u t, then u
s = u
t . (PCu

i )
– If s ∼s̃,v

u t and a ∈ A with v �	s̃ dom(a), then s · a ∼s̃,v
u t · a. (SCu

i )

– If dom(a) �	s̃ u, then s̃ ∼s̃,dom(a)
u s̃ · a. (LRu

i )

In the following theorem intransitive uniformity and i-security (for uniform poli-
cies) are characterized by almost exactly the same unwinding. The only difference
is that for uniformity we require policy consistency (PCu

i ), since we are concerned
with having the same local policies in certain states, while for security, we require
(OCu

i ), since we are interested in observations.
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Theorem 4.12 (uniform unwinding characterizations)
1. The policy (	s)s∈S is intransitively uniform if and only if there is a uniform

intransitive unwinding for M and (	s)s∈S that satisfies (PCu
i ), (SCu

i ), and
(LRu

i ).
2. If (	s)s∈S is intransitively uniform, then M is i-secure if and only if there

is a uniform intransitive unwinding that satisfies (OCu
i ), (SCu

i ) and (LRu
i ).

In particular, if an unwinding satisfying all four conditions exists, then a system
is secure. Due to Theorem 4.6, we cannot hope that the above unwindings com-
pletely characterize i-security, and indeed the system in Fig. 3 is i-secure but
not intransitively uniform. However, for uniform policies, Theorem 4.12 immedi-
ately yields efficient algorithms to verify the respective conditions via a standard
dynamic programming approach:

Corollary 4.13 (uniform unwinding verification)
1. Verifying whether a policy is intransitively uniform can be performed in non-

deterministic logarithmic space.
2. For systems with intransitively uniform policies, verifying whether a system

is i-secure can be performed in nondeterministic logarithmic space.

The above shows that the complexity of intransitive noninterference with local
policies comes from the combination of local policies that do not allow agents to
“see” their allowed sources of information with an intransitive security definition.
In the transitive setting, this interplay does not arise, since there a system always
can allow agents to “see” their incoming edges (see Theorem 3.7).

4.4 Unwinding for IP-Security

In the setting with a global policy, i-security is equivalent to IP-security as
defined in [HY87]. For IP-security, Rushby gave unwinding conditions that are
sufficient, but not necessary. This left open the question whether there is an
unwinding condition that exactly characterizes IP-security, which we can now
answer positively as follows. Clearly, a policy that assigns the same local policy
to every state is intransitively uniform. Hence our results immediately yield a
characterization of IP-security with the above unwinding conditions, and from
these, an algorithm verifying IP-security in nondeterministic logarithmic space
can be obtained in the straight-forward manner.

Corollary 4.14 (unwinding for IP-security)
1. A system is IP-secure if and only if it has an intransitive unwinding satisfying

(OCu
i ), (SCu

i ), and (LRu
i ).

2. IP-security can be verified in nondeterministic logarithmic space.

5 Conclusion

We have shown that noninterference with local policies is considerably different
from noninterference with a global policy: an allowed interference in one state
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may contradict a forbidden interference in another state. Our new definitions
address this issue. Our purge- and unwinding-based characterizations show that
our definitions are natural, and directly lead to our complexity results.

We have studied generalizations of Rusby’s IP-security [Rus92]. An interesting
question is to study van der Meyden’s TA-security [vdM07] in a setting with local
policies. Preliminary results indicate that such a generalization needs to use a
very different approach from the one used in this paper.

References

[E+11] Eggert, S., van der Meyden, R., Schnoor, H., Wilke, T.: The complexity of
intransitive noninterference. In: IEEE Symposium on Security and Privacy,
pp. 196–211. IEEE Computer Society (2011)

[ESW13] Eggert, S., Schnoor, H., Wilke, T.: Noninterference with local policies. CoRR,
abs/1208.5580 (2013)

[GM82] Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc.
IEEE Symp. on Security and Privacy, Oakland, pp. 11–20 (1982)

[GM84] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE
Symp. on Security and Privacy (1984)

[HY87] Haigh, J.T., Young, W.D.: Extending the noninterference version of MLS for
SAT. IEEE Trans. on Software Engineering SE-13(2), 141–150 (1987)

[Les06] Leslie, R.: Dynamic intransitive noninterference. In: Proc. IEEE Interna-
tional Symposium on Secure Software Engineering (2006)

[Mil90] Millen, J.K.: Hookup security for synchronous machines. In: CSFW, pp. 84–
90 (1990)

[MSZ06] Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification
and qualified robustness. Journal of Computer Security 14(2), 157–196 (2006)

[RG99] Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In:
IEEE Computer Security Foundations Workshop, pp. 228–238 (1999)

[Rus92] Rushby, J.: Noninterference, transitivity, and channel-control security poli-
cies. Technical Report CSL-92-02, SRI International (December 1992)

[vdM07] van der Meyden, R.: What, indeed, is intransitive noninterference? In:
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Abstract. We introduce a binary counter that supports increments and
decrements in O(1) worst-case time per operation. (We assume that
arithmetic operations on an index variable that is stored in one computer
word can be performed in O(1) time each.) To represent any integer in
the range from 0 to 2n−1, our counter uses an array of at most n bits plus
few words of �lg(1+n)� bits each. Extended-regular and strictly-regular
counters are known to also support increments and decrements in O(1)
worst-case time per operation, but the implementation of these counters
would require O(n) words of extra space, whereas our counter only needs
O(1) words of extra space. Compared to other space-efficient counters,
which rely on Gray codes, our counter utilizes codes with binary weights
allowing for its usage in the construction of efficient data structures.

1 Introduction

A numeral system provides a specification for how to represent integers. In a
positional numeral system, a string d = 〈dn−1, . . . , d1, d0〉 of digits is used to
represent an integer, n being the length of the representation. As in the decimal
system, d0 denotes the least-significant digit, dn−1 the most-significant digit, and
dn−1 �= 0. If wi is the weight of di, the string represents the decimal number
value(d) =

∑n−1
i=0 diwi. (An empty string can be used to represent zero.)

A numeral system comprises four components:

1. The digit set specifies the values that the digits can take. For example, in a
redundant binary system the digit set is {0, 1, 2}.

2. The weight set specifies the weights that the digits represent when deter-
mining the decimal value of the underlying integer. For example, a binary
system uses the binary weights wi = 2i where i ∈ {0, 1, . . . , n− 1}.

3. The rule set specifies the rules that the representation of each integer must
obey. For example, the regular system [3] is a redundant binary system where
every two 2’s have at least one 0 in between.

4. The operation set specifies the operations that are to be supported. In this
paper we only consider in details increment (increase the value by one) and
decrement (decrease the value by one) operations. However, it is also relevant
to support other arithmetic operations like additions and subtractions.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 349–360, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A representation of an integer that is subject to increments and decrements
is called a counter. To represent an integer in the range [0 . . 2n−1], the ordinary
binary counter is space-efficient requiring n bits, but an increment or a decrement
requires Θ(n) bit flips in the worst case. A regular counter—a counter using the
regular system [3]—supports increments (of arbitrary digits) with a constant
number of digit changes per operation. An extended-regular counter [3,10,13]
uses the digit set {0, 1, 2, 3} imposing a rule set that between any two 3’s there
is a digit other than 2 and between any two 0’s there is a digit other than 1. Such
a counter supports both increments and decrements (of arbitrary digits) with
a constant number of digit changes per operation. A strictly-regular counter [9]
provides the same guarantee, but it uses the digit set {0, 1, 2}. Unfortunately,
the implementation of the aforementioned regular counters would require up to
n indices in addition to the space needed by the digits themselves.

Recently, efficient and more space-economical counters were proposed by Bose
et al. [1], Brodal et al. [2], and Rahman and Munro [16]. In these papers the
complexity of the operations was analysed in the bit-probe model. In [2], using
a representation of n + 1 bits, each of the increment and decrement operations
could be accomplished by reading lgn + O(1) bits and writing O(1) bits.

We use the word-RAM model [12] as our model of computation. If a counter
requires n bits, these bits are kept compactly in an array of �n/w� words, where
w is the size of the machine word in bits. In addition to these words, we only
allow the usage of O(1) other words. Also we assume that, for a problem of size
n, w ≥ �lg(1 + n)�, i.e. a variable counting the number of bits and a variable
referring to a position in the array of bits can each fit in one computer word.

In this paper we introduce an in-place binary counter; it uses n + O(lg n)
bits, and supports increment and decrement operations in O(1) worst-case time.
This solves an open problem stated, for example, in Demaine’s lecture notes [4].
In the bit-probe model, both our increment and decrement operations involve
O(lg n) bit accesses and modifications. However, the bits accessed and modified
are stored in a constant number of words, and we only perform O(1) word
operations per increment and decrement . We can also test whether the value
of the counter is zero in O(1) worst-case time. Conceptually, our counter is
a modification of a regular counter; instead of giving preference to handling
the carries (2’s) at the least-significant end of the representation, we handle the
carries at the most-significant end first. Although increments are easy and direct,
incorporating decrements is more involved and tricky. A simple consequence
of our construction is a new representation of positive integers, using binary
weights, in which a positive integer with value K is coded using lgK+O(lg lgK)
bits and the encoding differs from that of K + 1 only in O(lg lgK) bits.

Compared to other space-efficient counters, our counter has a significant ad-
vantage: It can be applied in the construction of efficient data structures [3,17].
For a survey on numeral systems and their applications to data structures, we
refer to [14, Chapter 9]. The idea is to relate the number of objects of a specific
type in a data structure to the value of a digit. Often two objects of the same
size can be combined efficiently, and one object can be split into two objects
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of the same size. These operations are the exact counterparts for the carry and
borrow operations that are employed by binary counters. On the other hand,
the known space-economical counters [1,2,16] rely on some variant of a Gray
code [11], and more involved operations, like bit flips, required by a Gray code
can seldom be simulated at the level of the data structure. Because the upper
bound for the sum of the digits of our counter is optimized (the sum of the digits
representing a positive integer K is at most �lg(1 +K)�), the number of objects
in the corresponding data structure is bounded from above as well.

The drawback of the ordinary binary counter is that increment costs O(1)
only in the amortized (not wost-case) sense, and that it cannot support both
increment and decrement operations efficiently at the same time. Since our in-
place counter supports both increment and decrement operations efficiently, it
can be used as a replacement for the ordinary binary counter even in applications
where space-saving is not the main goal. As for the data structure, the cost of
the insert operation, which resembles increment and appends a new element to
the data structure, is O(1) in the worst case. Additionally, the cost of the borrow
operation, which resembles decrement and removes an arbitrary element from
the data structure, is O(1) in the worst case. The importance of fast borrow has
been demonstrated in several earlier papers; see for example [5,6,7,13].

2 The Data Structure

Our objective is to implement a counter that represents an integer in the range
[0 . . 2n − 1] with at most n + O(lg n) bits. Assuming �lg(1 + n)� bits fit in one
computer word, our counter uses a constant number of words in addition to the n
bits. To represent a positive integerK, the counter has the following characteristics:

C1. The sum of the digits is at most �lg(1 + K)�.
C2. Other than the least-significant digit, at most one digit has value 2, and all

the other digits are 0’s and 1’s.
C3. The most-significant digit is always non-zero. Due to the binary weights,

we have K ≥ 2n−1 implying n ≤ �lg(1 + K)�.

Let 
 denote the current length of the number representation and assume
that the string of digits in the representation is d = 〈d−1, dn−2, . . . , d0〉. A
straightforward implementation of our in-place counter is to store the value of
d0, which is at most 
, in one word that we call x . In addition, we store the index
of the digit with value 2 (if any such digit other than the least-significant one
exists); this also consumes one word that we call α. Each of the other digits is
either 0 or 1. To store these bits, we assume the availability of an (infinite) array
b, the first 
 bits (or �
/w� words) of which are in use. To be able to efficiently
incorporate the decrement operations, we shall also use two more variables: β
and ζ. The meaning of β will be explained later; ζ counts the number of 0 bits
in d. The representation of the integer 50 is given in Fig. 1.

To distinguish whether there is a 2 in the representation or not, while still
using as few bits as indicated, we use an extra bit called carry (which could
actually be the unused bit b0) and adopt the following convention:
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〈 1, 0, 1, 1, 0, − 〉
b5 b4 b3 b2 b1 b0

� = 6

x = 2

carry = 1 (indicates that there is a 2)

α = 2

ζ = 2

Fig. 1. Representation of the integer 50 when only increment is supported

• If carry = 1, then the actual value of dα is 2. Otherwise, dα equals bα.

We still maintain the stored bit in bα to be 1 when carry = 1. Accordingly,

value(d) =

{
x +

∑−1
i=1 bi · 2i if carry = 0,

x + 2α +
∑−1

i=1 bi · 2i if carry = 1.

The following procedure is used to initialize our counter to zero.

Algorithm initialize(b, �, x , carry, α, β, ζ)

1: � ← 1
2: x ← 0
3: carry ← 0
4: α ← 1
5: β ← 1
6: ζ ← 0

2.1 Increments

To maintain C1 we need a mechanism to reduce the sum of the digits within
the increment operations. Instead of monitoring this sum until it reaches the
threshold, we reduce the sum of the digits by one with every increment operation
whenever possible. We use a procedure called fix -carry that works as follows: If
there exists an index α �= 0 where dα is a 2 (i.e. carry = 1), we set dα to 0 and
increase dα+1 by one. Otherwise, if d0 ≥ 2, we decrease d0 by two and increase
d1 by one. Note that a fix -carry does not change the value of the number, and
in addition it maintains all the aforementioned characteristics.

To increment a number, we perform a fix -carry operation and add one to x .

Algorithm increment(b, �, x , carry, α, ζ)

1: fix -carry(b, �, x , carry, α, ζ)
2: x ← x + 1
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Algorithm fix -carry(b, �, x , carry, α, ζ)

1: if carry = 1
2: bα ← 0
3: ζ ← ζ + 1
4: α ← α+ 1
5: else if x ≥ 2
6: x ← x − 2
7: α ← 1
8: else
9: return
10: if α = �
11: � ← �+ 1
12: b�−1 ← 1
13: carry ← 0
14: else if bα = 0
15: bα ← 1
16: ζ ← ζ − 1
17: carry ← 0
18: else
19: carry ← 1

For more illustration, here are the first 50 positive integers obtained by ap-
plying increment repeatedly: 1, 2, 11, 12, 21, 102, 111, 112, 121, 202, 1003, 1012,
1021, 1102, 1111, 1112, 1121, 1202, 2003, 10004, 10013, 10022, 10103, 10112,
10121, 10202, 11003, 11012, 11021, 11102, 11111, 11112, 11121, 11202, 12003,
20004, 100005, 100014, 100023, 100104, 100113, 100122, 100203, 101004, 101013,
101022, 101103, 101112, 101121, 101202.

We would further characterize any representation of our counter, resulting
from a sequence of increment operations, with the following properties:

P1. The value of the least-significant digit is greater than 0.
P2. If there is a digit with value 2 other than the least-significant digit, all the

digits between this 2 and the least-significant digit are 0’s.

In consequence, the number d is kept as a string of the form (1(0|1)∗)∗x or
(1(0|1)∗)∗20∗x, where x is a positive integer and * denotes zero or more repeti-
tions of the preceding digit or string of digits.

P3. If d is of the form 1∗2, there is obviously no 0 digits in d. Otherwise, if
d is of the form 1∗20∗x or if there is no digit in d with value 2 other than
(possibly) the least-significant digit, the number of 0 digits in d equals x−1.
Otherwise, the number of 0 digits in d equals x.

We can thus express this property using the following trichotomy:⎧⎨⎩
ζ = 0 if d ∈ 1∗2,
ζ = x − 1 if d ∈ 1∗20∗x ∪ (1(0|1)∗)∗x,
ζ = x otherwise.

(1)

As a consequence of P3, the following property also holds:
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P4. If no digit is larger than 1, then all the digits are 1’s.

This property results from P3 because carry = 0 and x = 1 imply ζ = 0.

Lemma 1. The increment operation sustains the characteristics and properties.

Proof. Trivially the characteristics are valid for a counter whose value is one.
Increasing the least-significant digit by one may only break C1 if the sum of
the digits exceeds the threshold by one. The fix -carry operation decreases the
sum of the digits by one returning it back below the threshold, unless no digit
with a value greater than one exists. In this latter case, assuming that the sum
of the digits after the increment operation is s, then the resulting integer is at
least 2s−1; this ensures the validity of C1. If before this operation there exists
α �= 0 where dα has value 2, then after the increment operation dα is 0 and at
most one digit other than d0 with value 2 may exist; this digit is dα+1. If before
the increment operation there was no digit other than d0 with value 2, at most
one digit may have value 2 after the increment operation; this digit is d1. The
validity of C2 follows.

It is easy to verify that the increment operation maintains P1 and P2. We
show next, using induction on the counter values, that P3 and accordingly P4

are true. Initially, for d = 12 the first case of (1) holds. Later on, an increment
applied to d ∈ 11∗2 results in d ∈ 1∗21 and the second case of (1) holds. Starting
with d ∈ 1∗20∗x, an increment will increase both x and ζ by one, and the second
equation of (1) will still be valid. Starting with d ∈ 1(0|1)∗0x when x ≥ 2, an
increment will decrease both x and ζ by one, and the second equation of (1) will
still be valid. Alternatively, starting with d ∈ 1(0|1)∗0(0|1)∗1x when x ≥ 2, an
increment will decrease x by one, while ζ will not change, and the third case of
(1) will then be fulfilled. A complementing state for these last two is when x = 1;
we may assume then, using P4, that d ∈ 1∗1. In such a case, an increment will
result in d ∈ 1∗2, and we are back to the first case of (1). Lastly, consider the
third case where d ∈ 1(0|1)∗0(0|1)∗20∗x. Starting with d ∈ 1(0|1)∗0(0|1)∗120∗x,
an increment will increase both x and ζ by one, and the third equation of (1)
will still be valid. Staring with d ∈ 1(0|1)∗020∗x, an increment will increase x by
one, while ζ will not change, and the second case of (1) will then be fulfilled. ��

Note that, for any sequence of increment operations, C1 can even be shown
to hold with equality. To advocate for this, we point out that every fix -carry
operation decreases the sum of the digits by one, except when all the digits are
1’s. In other words, the only case the sum of the digits increases is when the
value of the counter becomes a power of two after the increment operation.

2.2 Decrements

Our objective is to implement the decrement operations as the reverse of the cor-
responding increment operations. To efficiently implement fix -borrow , we need
to figure out the changes that were made to the counter when it was last in-
creased beyond its current value. More precisely, we need to know the index of
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the digit that the corresponding fix -carry operation changed back in history.
The fix -carry operation used the index, say γ, of the currently second-least-
significant non-zero digit. Assuming that γ is available, the fix -borrow operation
decreases the corresponding digit dγ by one and increases its preceding digit by
two. This may result in losing track of γ!

Algorithm fix -borrow (b, �, x , carry, γ, ζ)

1: if carry = 1
2: bγ ← 1
3: else if γ = �− 1
4: � ← �− 1
5: else
6: bγ ← 0
7: ζ ← ζ + 1
8: if γ > 1
9: γ ← γ − 1
10: bγ ← 1
11: carry ← 1
12: ζ ← ζ − 1
13: else // we lose track of the correct value of γ if carry = 0
14: x ← x + 2
15: carry ← 0

If it happens that dα �= 0, then we are lucky as γ is equal to α that we
are already maintaining. However, dα may become 0 following the decrement
operation. To see the problem, consider for example the case when decrement
is to be applied to a number 10000001x . Before this operation, γ is equal to 1.
But the preceding number that resulted in this number via the corresponding
increment operation is 10000000(x + 1) with γ = 8. How would we find the new
value of γ in constant time within the decrement operation?

The critical property that gets us to a worst-case constant-time implementa-
tion of decrement is P3. Our idea is to decrease the value of the least-significant
digit with every decrement , while possibly not performing a fix -borrow . More
precisely, within some decrement operations we incrementally walk through the
zero digits, two digits at a time, until we reach the digit dγ . We then perform
the postponed fix -borrow operations within the upcoming decrement operations
working with double the speed (two fix -borrow operations at a time). To effi-
ciently implement the decrement operations, we maintain the index α that we
are up to so far in our search for γ, leaving behind its old (before starting the
search) value stored as β. In accordance, the decrement operations work in three
modes: In the normal mode, when dβ �= 0 (which implies α = β), each decrement
operation performs one fix -borrow operation using the index α as the argument.
In the search mode, each decrement operation sequentially traverses the next two
digits and increases α by two as long as both digits are 0’s. Once a decrement
operation reaches a non-zero digit, i.e. α = γ, we switch to the rapid mode as
there are postponed fix -borrow operations; in this mode each decrement opera-
tion performs two fix -borrow operations using the index α as the argument.
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Another subtle issue to be considered is when the corresponding increment
operation has not performed a fix -carry . This only happens if the number we
want to decrease is d ∈ 1∗2. To be able to distinguish this case from the case
d ∈ 11∗01∗2, we check if there are no 0’s in the number, i.e. x = 2 and ζ = 0.
In such a case, we skip the fix -borrow operation altogether. We also skip the
fix -borrow operation if the number that is to be decreased is 1.

Algorithm decrement(b, �, x , carry, α, β, ζ)

1: if � = 1 or (x = 2 and ζ = 0)
2: x ← x− 1
3: return
4: if bβ �= 0 // work in normal mode
5: fix -borrow (b, �, x , carry, α, ζ)
6: β ← α
7: else if bα = 0 // work in search mode
8: α ← α+ 1
9: if bα = 0
10: α ← α+ 1
11: else // switch to rapid mode
12: fix -borrow (b, �, x , carry, α, ζ)
13: else // work in rapid mode
14: fix -borrow (b, �, x , carry, α, ζ)
15: fix -borrow (b, �, x , carry, α, ζ)
16: x ← x − 1

The correctness of the construction is a consequence of property P3 that
implies that x will always be non-zero, and hence we can decrease its value
while the decrement operations are working in any of the three modes. However,
when incorporating the decrement operations, P3 would not hold as tight as
before and must be relaxed as follows:

P3’. If there is a digit in d with value 2 other than the least-significant digit,
the number of zero digits in d is bounded by twice the value of the least-
significant digit. Otherwise, the number of zero digits is bounded by twice
the value of the least-significant digit minus two.{

ζ ≤ 2x − 2 if carry = 0,
ζ ≤ 2x if carry = 1.

In the revised implementation of increment we have to consider the case
when there are postponed fix -borrow operations. To be able to detect this, we
make use of the index β. Whenever α > β, it means that there have been more
decrement operations than increment operations since the time we switched to
the search mode. Here the increment operation only needs to undo what a pre-
ceding decrement has done. More precisely, in this case the increment operation
increases the least-significant digit and instead of performing a fix -carry opera-
tion it moves β two steps forward. Once β and α meet, i.e. α = β, this means
that there is no postponed fix -borrow operations, and the increment operation
should work in the normal mode by calling fix -carry .
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〈 1, 0, 1, 0, 0, − 〉

b5 b4 b3 b2 b1 b0

� = 6

x = 2

carry = 1

α = 3

β = 1

ζ = 3

Fig. 2. A representation of the integer 50 when both increment and decrement are
supported; this representation was obtained by starting from the representation of
Fig. 1, performing three increment operations followed by three decrement operations

Algorithm increment(b, �, x , carry, α, β, ζ)

1: if α = β // work in normal mode
2: fix -carry(b, �, x , carry, α, ζ)
3: β ← α
4: else // work in search mode
5: β ← β + 2
6: x ← x + 1

In Fig. 2 one representation of the integer 50 is given when the decrement
operation and the revised increment operation are in use. This example shows
that the representation of our integers is not unique, since a number can have
several representations depending on the sequence of operations applied.

Note that the increment and decrement operations keep either α = β or α > β
with α− β being an even positive integer.

Lemma 2. The increment and decrement operations sustain the characteristics
and the relaxed properties.

Proof. The fix -borrow operation increases the sum of the digits by one. When
two fix -borrow operations are performed per decrement in the rapid mode, the
sum of the digits increases as a result. However, a second fix -borrow is executed
only if it was postponed in a previous decrement , indicating that C1 was satisfied
with a strict inequality; this ensures the validity of C1 following any decrement
operation. On the other hand, the increment operation skips calling fix -carry
only when α > β. We start the search mode when α = β = 1, a decrement
moves α two steps forward, and an increment moves β two steps forward. The
condition α > β then implies that there are postponed fix -borrow operations.
Hence, there is no need to execute a fix -carry within such increment operation;
this ensures the validity of C1 following any increment operation.

If there is a digit dα whose value is 2, the fix -borrow operation decreases dα
to 1 and then adds two to the preceding digit. In accordance, at most one 2 may
exist and is preceded by 0’s up to (and not including) the least-significant digit.
The same fact holds as a result of the fix -carry operation. The validity of C2

and that of P2 are thus sustained.
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To prove P3’, we use the relation α−β ≤ ζ that is true because dj = 0 for all
j satisfying α− 1 ≥ j ≥ β. It follows that we only need to show the dichotomy:{

ζ ≤ x + (α − β)/2 − 1 if carry = 0,
ζ ≤ x + (α − β)/2 if carry = 1.

(2)

The proof is by induction on the operations sequence. The base case follows
by noting that an initial sequence of increment operations maintains (1) and
α = β. When the decrement operations work in the search mode, carry = 0
and the first inequality of (2) holds. With each of those decrement operations, x
decreases by one and α increases by two; the first inequality is still guaranteed.
As an exception, the last decrement operation working in the search mode may
execute a fix -borrow operation. As a result, the value of α does not change; but
then we have carry = 1, guaranteeing the second inequality of (2). For each of the
following decrement operations working in the rapid mode, x decreases by one
and α decreases by two, but ζ decreases by two (via two fix -borrow operations);
the second inequality of (2) is still valid. For a decrement operation to reset the
carry bit back to 0, the 2 must vanish; this only happens if α = 1. In such a
case, as a result of the decrement operation, x increases by one and both α and
ζ do not change; so now the first inequality of (2) is guaranteed. Each of the
other decrement operations working in the normal mode keeps α = β and either
decreases both x and ζ by one or increases both by one. An exception is when
the decrement operation is applied to a number where x = 2 and ζ = 0. In this
case, the resulting number has all 1’s, and the first inequality of (2) is still valid.
An increment operation working in the search mode increases x by one and β
by two. We also need to mention that the increment operations working in the
normal mode maintain the induction hypothesis. This follows using arguments
similar to those of Lemma 1 and by noting that these operations keep α = β. In
conclusion, the two operations in all modes maintain (2), and P3’ is satisfied. It
directly follows from the first inequality of P3’ that P4 is also satisfied.

Using P3’, since ζ ≥ 0, the only case where x could have possibly been 0 is
when carry = 1. Contradictorily, it follows that in this case ζ = 0. The value of
the least-significant digit must then be greater than 0, and P1 holds. ��

In fact, we can prove a tighter version of C1. We namely argue that
∑−1

i=0 di =
�lg(1 + K)� − (α − β)/2. The equation is true when α = β (as we have shown
for the increment operations); that is when the operations work in the normal
mode. A decrement operation working in the search mode increases α by two,
and hence decreases the right-hand side by one, but it decreases the left-hand
side by one as well. A decrement operation working in the rapid mode calls
fix -borrow twice and decreases x by one. As a result, the left-hand side increases
by one and the right-hand side also increases by one (as α decreases by two). An
increment operation working in the search mode increases the left-hand side by
one, but then it increases the right-hand side by one (as β increases by two).
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3 Remarks

Let 〈dn−1, . . . , d1, d0〉 be a string of bits representing a positive integer, where
dn−1 �= 0. To distinguish all the possible representations, at least n−O(1) bits
are needed by any counter. A binary counter stores the bits and the length
of the representation. Thus, the total space usage is n + O(lg n) bits. Our in-
place counter achieves the same space bound. In addition, our counter supports
increment and decrement operations in O(1) worst-case time.

The main ingredients of our counter are: 1) a binary encoding of an integer in
the leading n− 1 bits of the representation, 2) at most one carry whose position
is recalled, 3) the least-significant digit that can take any value up to n, and 4)
at most one delayed query “find the next non-zero digit” that is in progress.

We can efficiently support the addition of two of our counters by summing
the individual bit-array representations, the two carries, and the values of the
two least significant digits for both, and then converting the resulting binary
number back to the required form. It is possible to do this conversion such that
the properties are maintained. Most importantly, the least-significant digit must
be made larger than the number of 0 bits. When implemented this way, an
addition requires O(n) bit operations, n being the number of bits of the longer
counter. Moreover, for the addition of binary numbers we can rely on word-wise
operations so that the addition takes O(n/w) worst-case time on the word RAM,
w being the size of the machine word in bits.

A binary counter that supports increments, decrements, and additions is often
used in the implementation of mergeable priority queues. For example, a binomial
queue [17], which is a sequence of heap-ordered binomial trees (for the definition
of a binomial tree, we refer to any well-equipped textbook on data structures,
e.g. [15, Section 11.4]), relies on a binary counter. A 1 bit at position r in the
numeral representation of N , where N is the number of elements stored, means
that the data structure contains a binomial tree of 2r nodes. When a carry is
propagated, two binomial trees are joined, and when a borrow is propagated, a
binomial tree is split into two; both of these operations can be carried out in O(1)
worst-case time on binomial trees. By replacing the ordinary binary counter with
our counter, the data structure can support both insert and borrow operations
in O(1) worst-case time, whereas Vuillemin’s original implementation supports
both of these operations in Θ(lgN) worst-case time.

A run-relaxed heap [5], which is a sequence of almost heap-ordered binomial
trees, uses a counter that bounds the sum of the digits to at most �lg(1 + N)�,
where N is the number of elements. A two-tier relaxed heap [8] uses the zeroless
version of the extended-regular counter [3,10,13] to keep track of the trees in the
structure (for the description of zeroless counters, see [14, Chapter 9]). In both of
these data structures the counters used could be replaced by our counter. This
replacement has an interesting trade-off: borrow and delete operations would
become more efficient, but decrease and union operations would become less
efficient. The main reason why we cannot support the last two operations ef-
ficiently is that our counter does not support increments of arbitrary digits; it
just efficiently supports the increment and decrement of the value by one.
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We leave it as an open problem to extend our in-place counter to support a
larger operation set efficiently.
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Abstract. We study several variants of a fixed length ski rental problem
and related scheduling problems with rejection. A ski season consists of
m days, and an equipment of cost 1 is to be used during these days.
The equipment can be bought on any day, in which case it can be used
without any additional cost starting that day and until the vacation ends.
On each day, the algorithm is informed with the current non-negative
cost of renting the equipment. As long as the algorithm did not buy
the equipment, it must rent it every day of the vacation, paying the
rental cost of each day of rental. We consider the case of arbitrary, non-
increasing, and non-decreasing rental costs. We consider the case where
the season cannot end before the mth day, and the case that it can end
without prior notice. We propose optimal online algorithms for all values
of m for all variants. The optimal competitive ratios are either defined
by solutions of equations (closed formulas or finite recurrences) or sets
of mathematical programs, and tend to 2 as m grows.

1 Introduction

We consider deterministic ski rental problems with a finite time horizon, and
related scheduling problems. In such ski rental problems, a positive integer m ≥ 2
is given, and the input corresponds to a process that either consists of exactly
m steps, or of at most m steps, as follows. Every step consists of a request and
dealing with it subsequently, and it is called a day. The goal of the algorithm is
to use a certain equipment incurring a minimum total cost. One option for each
step is buying the equipment for a cost of 1. Once the equipment was bought,
further requests (of future steps) do not incur any cost. For 1 ≤ j ≤ m, request
j has a rental cost qj ≥ 0, and the alternative way of dealing with it is renting
it for the cost qj . The value qj is unknown prior to the jth day. Thus, since
buying is possible at all times, given a new request such that the equipment
was not bought previously, it is possible to deal with it either by buying the
equipment or by renting it. The cost of an algorithm is the total rental cost paid
in all steps, plus the buying cost, if the equipment was ever bought. The classic
(deterministic) ski rental problem [16,20,15,14,13] is the case where all rental
costs are equal, and the number of days is not known in advance (an upper
bound on the number of days is not known either). This problem is attributed
to Rudolph (see [16]). In this paper we study problems where one has to decide
(every day) whether to buy or rent skis when it is known that the ski season

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 361–372, 2013.
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lasts m days. In some of the variants it could end earlier without a prior notice
(but it cannot end later). We study the general scenario, where the rental costs
can be very different on different days. In the case of arbitrary costs, they can
go up and down, due to supply and demand. In the case of non-increasing costs,
which is probably the most realistic case, the cost cannot go up, since as the
season proceeds, the demand is unlikely to increase. We also consider the case
of non-decreasing costs, where the merchants try to pressure the skiers to buy
as the season is closer to its end and increase the requested rental costs.

Formally, we consider three variants with exactly m days; the general case of
arbitrary rental costs, denoted by SR(m), and the cases with non-increasing and
non-decreasing rental costs, denoted by SRD(m) and SRIF(m), respectively. We
are also interested in the variants with at mostm days. In the cases of SR(m) and
SRD(m), the variant with at most m days is the same as the one with exactly
m days, as requests of zero rental cost can be added at the end of the input.
For the case of non-decreasing rental costs, this is an additional variant that we
call SRIT(m). We show that this case is indeed different from SRIF(m). We
study related problems of online scheduling with rejection of jobs with equal job
processing times (also called unit size jobs or unit jobs) on m identical machines.
The input consists of jobs arriving one by one. An arriving job j is presented
together with a non-negative rejection penalty wj . An algorithm has to make
an immediate decision for each arriving job, that is, the job needs to be either
rejected, in which case the algorithm pays its penalty, or otherwise it must be
scheduled to run on a machine, in which case it contributes its processing time
to the completion time of that machine. The objective is to minimize the sum of
the makespan of the schedule for all accepted jobs and the total penalty of all the
rejected jobs. The makespan of a schedule is defined as the maximum completion
time of any machine. If the number of input jobs is at most m, then the problem
is equivalent to SR(m) for the online variant (with arbitrary rejection penalties),
and it is equivalent to SRD(m) and SRIT(m), for the semi-online variants with
non-increasing and non-decreasing rejection penalties, respectively, (and if it is
known that the rejection penalties are non-decreasing and the number of jobs is
exactly m, then the problem is equivalent to SRIF(m)). In the full version of this
paper we also consider each of these problems with an arbitrary number of jobs
n (known or unknown in advance), and their relation to the ski rental problems.
We give more details regarding the relation between the problems in the full
version of this paper. Throughout the paper, we let opt denote an optimal
offline algorithm as well as its cost. The competitive ratio of an algorithm is the
worst-case ratio (over all inputs) between the cost of the algorithm and opt. The
optimal competitive ratio is the supremum value such that no algorithm can have
a smaller competitive ratio, and an algorithm that has this competitive ratio is
called an optimal online algorithm. An algorithm is called r-competitive if its
competitive ratio does not exceed r. Note that our optimal online algorithms use
their (optimal) competitive ratios as a parameter. If instead of the exact value of
the optimal competitive ratio only an approximation is known, then in all cases
the algorithm can be applied instead with an upper bound on this value.
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Previous Work. In standard ski rental, it is assumed that both the rental cost
and the buying cost are fixed (but the length of the skiing season is unknown).
For this problem, the optimal competitive ratio is 2 [16]. Many variants of ski
rental were studied. In one type of variants, the influence of economic effects on
prices, such as various interest rates, was studied [7,5,4,22,24]. Another approach
was to define versions of ski rental where the algorithm can choose not necessarily
between buying and renting, but possibly between other options, some of which
are some mixture between buying and renting [11,17,8,23,18]. For example, an
option can be a situation where it is possible to buy a member card that gives
a discount on rental. Additional variants were studied in [6,1,19]. Bienkowski [3]
studied a problem where costs can change over time, but the ratio between the
buying cost and rental cost is fixed. He considered variants with known game
end and with unknown game end. Irani and Ramanathan [12] studied a version
where the buying cost varies, but the rental cost stays fixed. The problem of
scheduling unit jobs without rejection is trivial (jobs are scheduled in a round-
robin manner), while the scheduling problem of unit jobs with rejection is a non-
trivial problem (see [2,10]). Multiprocessor scheduling with rejection was first
introduced by Bartal at al. [2] and many variants have been studied since then
(see for example [21,9]). Bartal at al. [2] designed an optimal online algorithm

of competitive ratio 1 + φ for arbitrary values of m, where φ =
√
5+1
2 ≈ 1.618

is the golden ratio. They improved this result for m = 2 by giving an optimal
online algorithm with a competitive ratio of φ. All the lower bounds in that
paper consist of unit jobs (while the algorithms can act on inputs of jobs with
arbitrary sizes). They also presented a sequence of lower bounds on the optimal
competitive ratio for fixed values of m, where this sequence of lower bounds on
the competitive ratios tends to 2 for large values of m. The lower bounds are
related to our work and we will discuss them in detail.

Our Results and the Structure of the Paper. We provide optimal online
algorithms for all four variants. These competitive ratios are not always given
by a closed formula, but in all cases, they can be computed. We present the
competitive ratios for 2 ≤ m ≤ 20 in Table 1. All variants except for SRD(m)
are studied in Section 2. The optimal competitive ratio in each one of these cases
can be computed for any m ≥ 2, and it is either a closed expression, or it can be
found by solving an equation that is based on a finite recurrence. The variant
SRD(m) requires a more delicate treatment and it is studied in Section 3. For
this case the optimal competitive ratio is obtained by solving O(m) non-trivial
mathematical programs. All optimal competitive ratios are monotonically non-
decreasing functions of m, tending to 2 for m → ∞. We give a direct proof
of this property for each one of the cases. Note that the overall upper bound
of 2 follows from previous work, and the overall lower bound of 2 follows from
previous work in all cases except for SRIF(m). In the full version of the paper we
discuss the relation to scheduling problems (with arbitrary numbers of unit jobs)
and show that in all cases except for the case of arbitrary rejection penalties the
best competitive ratio is the same as for the corresponding ski rental variant.
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2 Threshold Based Algorithms for Three Variants

In this section we consider the cases of unrestricted inputs and inputs with non-
decreasing rental costs. For these problems we use algorithms with relatively
simple structures that we now define. We define a sequence Θi ≥ 0 (for 0 ≤ i ≤
m − 1), where Θi is called the ith threshold. The requirements for thresholds
are Θ0 = 0, and that Θi is a monotonically non-decreasing function of i. Let
θi = Θi − Θi−1 ≥ 0 for 1 ≤ i ≤ m − 1. A threshold based algorithm (or a
threshold algorithm) is defined as follows. Given the ith request (for 1 ≤ i ≤ m),
if the equipment was already bought by the algorithm, then the algorithm does
nothing. Otherwise, for i < m, if

∑i
j=1 qj ≤ Θi, then the algorithm rents the

equipment, and otherwise buys it, and for the mth request, it rents the equipment
if qm ≤ 1, and otherwise buys it.

The simple algorithm for the classic ski rental [16] problem can be seen as a
threshold algorithm with Θi = 1 for i = 1, 2, . . . ,m − 1. It is 2-competitive; if
opt < 1, the algorithm is optimal since it always rents. Otherwise, opt = 1,
and the total rental cost of the algorithm (excluding the rental cost of the last
request, if it is rented) never exceeds 1, while the cost of buying (or the cost of

Table 1. A comparison of the competitive ratios for the different variants

c.r. for: SR(m) SRD(m) SRIT(m) SRIF(m)

denoted by: ρ(m) R(m) λ(m) ω(m)

m = 2 1.618034
√
2 = 1.414213

√
5+1
2

≈ 1.618034
√

3+1
2

≈ 1.366025

m = 3 1.839287 1.618034
√
17+3
4

≈ 1.7807764 1.513312

m = 4 1.927562 1.686141 1.847127 1.595093

m = 5 1.965948 1.816496 1.882782 1.648127

m = 6 1.983583 1.839287 1.904988 1.685787

m = 7 1.991964 1.866025 1.920133 1.714170

m = 8 1.996031 1.894427 1.931119 1.736479

m = 9 1.998029 1.912868 1.939451 1.754571

m = 10 1.999019 1.925819 1.945986 1.769601

m = 11 1.999510 1.927562 1.951249 1.782329

m = 12 1.999756 1.935414 1.955578 1.793278

m = 13 1.999878 1.942809 1.959201 1.802818

m = 14 1.999939 1.948683 1.962278 1.811223

m = 15 1.999969 1.953462 1.964923 1.818697

m = 16 1.999985 1.957426 1.967222 1.825397

m = 17 1.999992 1.960769 1.969238 1.831445

m = 18 1.999996 1.963624 1.971021 1.836939

m = 19 1.999998 1.965948 1.972608 1.841957

m = 20 1.999999 1.966089 1.974030 1.846562

m = 37 almost 2 1.983738 1.986208 1.891795

m = 70 almost 2 1.992031 1.992780 1.923967

m = 135 almost 2 1.996055 1.996276 1.946731
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renting the last request if the algorithm never buys) if at most 1, for a total cost
of at most 2. This algorithm can be used for the variants studied here. Thus, all
the competitive ratios that we will find are at most 2, and in order to show that
a sequence of competitive ratios tends to 2 for large m, it is sufficient to show
that the limit (for m tending to infinity) is no smaller than 2. The known tight
result for classic ski rental also implies that the optimal competitive ratios for
SR(m), SRIT(m), and SRD(m), tend to 2 as m grows. Specifically, a worst-
case instance consists of requests of rental costs 1

M for an integer M , stopping
the input after the algorithm buys, or after there were 2M − 1 requests, if the
algorithm did not buy by then. The optimal competitive ratio for this input is
2 − 1

M . Letting m = 2M − 1 results in lower bounds for these three variants.
Threshold algorithms are a generalization of this method. Thresholds are not

necessarily universal in the sense that the algorithm still buys once its total rental
cost is about to reach a certain number, but this target number can depend on
the index of the request. Such algorithms are useful for inputs of known length.
In the next theorem we analyze such algorithms, and prove lower bounds using
instances where the rental costs are based on differences between consecutive
thresholds (i.e., the values θi are used as rental costs in the difficult inputs). The
upper bounds the are proved for threshold algorithms are called Rt and R′

t.

Theorem 1. Consider a sequence Θm−1 ≥ Θm−2 ≥ · · · ≥ Θ1 ≥ Θ0 = 0, and
let θi = Θi −Θi−1 for 1 ≤ i ≤ m− 1.

A threshold based algorithm with the thresholds Θi (0 ≤ i ≤ m − 1) has a

competitive ratio of at most Rt = max
{
Θm−1 + 1,max1≤i≤m−1

{
Θi−1+1

Θi

}}
for

SR(m) (and for SRIT(m)), and at most

R′
t = max

{
Θm−1 + 1, max

1≤i≤m−1

{
Θi−1 + 1

Θi−1 + (m− i+ 1)θi

}}
for SRIF(m). The competitive ratio of any algorithm for SR(m) is at least

min
{
Θm−1 + 1,min1≤i≤m−1

{
Θi−1+1

Θi

}}
. If the sequence θi is monotonically

non-decreasing, and θm−1 ≤ 1, then the last expression is a lower bound on
the competitive ratio of any algorithm for SRIT(m) as well, and under the same
conditions on the sequence, the competitive ratio of any algorithm for SRIF(m)

is at least min
{
Θm−1 + 1,min1≤i≤m−1

{
Θi−1+1

Θi−1+(m−i+1)θi

}}
.

A lower bound for SR(m) was given by [2]. They present it for the more general
problem of scheduling with rejection on identical machines, but it is not difficult
to see that it holds for SR(m), and for completeness, we present it using our ter-
minology. Let gm(ρ) = ρm−

∑m
j=1 ρ

j−1, and let ρ(m) be a solution of the equation
gm(ρ) = 0 in (1, 2). As gm(2) = 1, and gm(1) = −(m− 1) < 0 for m ≥ 2, such a

solution must exist (since gm is continuous). We have ρ(2) =
√
5+1
2 = φ ≈ 1.618.

Let θj = 1
(ρ(m))j for 1 ≤ j ≤ m − 1, and Θi =

∑i
j=1 θj . By Theorem 1, the

competitive ratio of the threshold algorithm that uses these thresholds is at most
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max{Θm−1 + 1,max1≤i≤m−1{Θi−1+1
Θi

}}. We have Θm−1 + 1 =
∑m−1

j=1 θj + 1 =∑m−1
j=0

1
(ρ(m))j = ρ(m), by the definition of ρ(m). Additionally,

Θi−1 + 1

Θi
=

∑i−1
j=1 θj + 1∑i

j=1 θj
=

∑i−1
j=0

1
(ρ(m))j∑i

j=1
1

(ρ(m))j

= ρ(m) .

Since this shows that ρ(m) is the optimal competitive ratio for SR(m), the
value ρ(m) is unique. Note that ρ(m + 1) > ρ(m) since by using (ρ(m))m =∑m

j=1(ρ(m))j−1 we find

gm+1(ρ(m)) = (ρ(m))m+1 −
m+1∑
j=1

(ρ(m))j−1 =
m∑
j=1

(ρ(m))j −
m∑
j=0

(ρ(m))j < 0 ,

while gm+1(2) > 0 for m ≥ 1. Therefore, ρ(m+1) that satisfies gm+1(ρ(m+1)) =
0 also satisfies ρ(m) < ρ(m + 1) < 2. We can show that ρ(m) tends to 2 as m
grows by showing ρ(m) ≥ 2 − 1

2m−1 . To show this, we prove gm(2 − 1
2m−1 ) ≤ 0

(and therefore the solution of gm(ρ) = 0 is in [2 − 1
2m−1 , 2)). We have gm(ρ) =

ρm − ρm−1
ρ−1 = ρm+1−2ρm+1

ρ−1 . Thus, showing gm(ρ) ≤ 0 is equivalent to showing

ρm(2−ρ) ≥ 1. Letting ρ = 2− 1
2m−1 , we would like to show (2− 1

2m−1 )m/2m−1 ≥ 1,
or alternatively, (1 − 1

2m )m ≥ 1
2 . We prove by induction that (1 − 1

2m )c ≥ 1 −
1

2m−c+1 holds for any integer 1 ≤ c ≤ m. For c = 1 this inequality holds with
equality. Assume that it holds for c ≥ 1, that is, (1 − 1

2m )c ≥ 1 − 1
2m−c+1 . To

prove (1 − 1
2m )c+1 ≥ 1 − 1

2m−c we write (1 − 1
2m )c+1 = (1 − 1

2m )c · (1 − 1
2m ) ≥

(1− 1
2m−c+1 ) ·(1− 1

2m ) > 1− 1
2m−c+1 − 1

2m > 1− 1
2m−c+1 − 1

2m−c+1 = 1− 1
2m−c . The

case c = m proves the above condition. We have proved the following proposition
(the lower bound is implied also by the results of [2]).

Proposition 1. The optimal competitive ratio for SR(m) is ρ(m), a monoton-
ically increasing function of m, tending to 2 as m grows to infinity.

Next, we consider SRIF(m). For 1 ≤ r ≤ 2, define the following thresholds. Let

Θ0(r) = 0, Θi(r) = Θi−1(r) + 1−(r−1)Θi−1(r)
r(m−i+1) (and θi(r) = Θi(r) − Θi−1(r) for

1 ≤ i ≤ m− 1). Informally, since the process ends when the algorithm buys, an
adversary who tries to force a large competitive ratio would define thresholds
such that the algorithm is forced to pay as much as possible for renting. The
thresholds are chosen such that Θi(r) is the maximum amount that an algorithm
can be forced to pay for renting the first i requests without buying the equipment,
if it does not want to reach or exceed the competitive ratio r (and buying the
equipment would cause this). Once it already paid Θi−1(r), and the ith request
rental cost θi(r), if it buys the equipment, then its competitive ratio will be
r. For example, θ1(r) = Θ1(r) = 1

rm . If it buys the equipment, its cost is 1,
while if all further rental costs are equal to θ1(r), then the cost of rejecting all

of them is 1
r . For i > 1, we have θi(r) = 1−(r−1)Θi−1(r)

r(m−i+1) . If the algorithm buys

the equipment when the ith request is given, then its cost is Θi−1(r) + 1, and if
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all further rental costs are equal to θi(r), then the cost of renting all requests is

Θi−1(r) + (m− i+ 1)θi(r) = 1+Θi−1(r)
r (by definition).

Theorem 2. The optimal competitive ratio for SRIF(m) is a monotonically
non-decreasing function of m, tending to 2 as m grows to infinity.

The function ω(m) denotes the optimal competitive ratio for SRIF(m).
Finally, consider SRIT(m). In this case we will use different thresholds for

the lower bound and the upper bound, and apply the two parts of Theorem 1.
Let α(m) be the positive solution of α2(m − 1)2 + α − 1 = 0, that is, 1

m <

α(m) =

√
4(m−1)2+1−1

2(m−1)2 < 1
m−1 (the bounds on α(m) can be proved using simple

algebra, by substituting into the quadratic equation it can be seen that there
is a root between these values, while the other root is negative). Let λ(m) =

(m−1)α(m)+1 = (m−2)α(m)+1
(m−1)α(m) =

√
4(m−1)2+1+2m−3

2(m−1) (this is the greater solution

of (m − 1)λ2 + (3 − 2m)λ − 1 = 0). Using simple calculus it can be seen that
λ(m) is a monotonically increasing function of m that tends to 2 for sufficiently
large values of m.

Letting θi = α(m) for 1 ≤ i ≤ m− 1, and using the second part of Theorem
1 we find a lower bound that is the minimum between 1 + (m− 1)α(m) = λ(m)

and min1≤i≤m−1{ (i−1)α(m)+1
iα(m) }. The minimum of the last expression is obtained

for i = m− 1, giving (m−2)α(m)+1
(m−1)α(m) = λ(m).

For the algorithm, we use Θi = (m−1)α(m) for 1 ≤ i ≤ m−1. This algorithm
requires a different analysis. If neither the algorithm nor opt buy the equipment,
then the algorithm is optimal. If opt buys the equipment but the algorithm does
not, or the algorithm buys the equipment upon the arrival of the mth request,
then opt = 1, while the cost of the algorithm never exceeds (m − 1)α(m) + 1,
giving a competitive ratio of at most λ(m). We are left with the case that the
algorithm buys the equipment on the ith day, where i < m. Since the algorithm
has no additional costs afterwards, we can assume that this is the last request,
and

∑i−1
j=1 qj ≤ (m − 1)α(m) <

∑i
j=1 qj . If opt = 1, then since

∑i−1
j=1 qi ≤

(m− 1)α(m), while the cost of the algorithm is
∑i−1

j=1 qj + 1 ≤ (m− 1)α(m) + 1,

the competitive ratio is at most λ(m). Finally, if opt < 1, then opt =
∑i

j=1 qj .

Since q1 ≤ q2 ≤ . . . ≤ qi, we have
∑i−1

j=1 qj ≤ i−1
i

∑i
j=1 qj . We find a competitive

ratio of at most
i−1
i

∑i
j=1 qj+1∑

i
j=1 qj

= i−1
i + 1∑

i
j=1 qj

≤ 1 − 1
i + 1

(m−1)α(m) . Using

i ≤ m− 1, this is at most 1 − 1
m−1 + 1

(m−1)α(m) = (m−2)α(m)+1
(m−1)α(m) = λ(m).

We have proved the following theorem.

Theorem 3. The optimal competitive ratio for SRIT(m) is λ(m), a monoton-
ically non-decreasing function of m, tending to 2 as m grows to infinity.

3 The Variant SRD(m)

Threshold algorithms perform well when the worst-case scenario is of the fol-
lowing form. The algorithm is forced to keep renting, by ensuring that at each
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step the rental cost paid so far plus the buying cost is too high compared to
the cost of an optimal solution (so if the algorithm buys, then it immediately
has a high competitive ratio). Finally, just before the input ends, the mth re-
quest has a high rental cost and the algorithm is forced to buy (or to rent for
the cost of buying). However, this situation cannot be enforced for SRD(m),
since if the rental cost for the first day it at least 1, then the algorithm should
obviously buy the equipment immediately, and otherwise, the rental cost of the
last request cannot be 1. Thus, buying (after paying a large amount for renting
previous requests) cannot be enforced by a single request but it is enforced by a
subsequence of the requests that appear last in the sequence, where renting all
of them is too expensive (for example, if the last j requests have each a rental
cost of 1

j , then their total rental cost is the same as the cost of buying). More-
over, in the previous cases, the adversary could choose rental costs greedily, i.e.,
the worst-case scenario occurred when each request had a maximum rental cost
under the condition that it still forces the algorithm to rent it. Since large rental
costs increase the cost of the algorithm but also of optimal solutions, it is not
necessarily the worst-case scenario for all variants. In this section we encounter
a variant where the adversary whose strategy is to present at each time a re-
quest of maximum rental cost that will still be rented by the algorithm does not
lead to the worst-case inputs. In this section, we study the remaining variant
SRD(m) and show that the optimal competitive ratio can be expressed as the
maximum solution of a class of mathematical programs. The algorithm uses this
competitive ratio as a parameter, and instead of using thresholds on the total
rental cost, it makes its decisions based both on the total rental cost so far and
the rental cost of the current request.

3.1 The Mathematical Program

We present a class of mathematical programs, denoting one program by Πk(m).
We let Rk(m) denote the objective value of Πk(m) (we later show that this
value is well-defined). The program corresponds to a specific value of m, and
additionally, to an integer parameter 1 ≤ k ≤ m. Let R(m) = max1≤k≤mRk(m).
Later, we will show that the optimal competitive ratio for SRD(m) is exactly
R(m). Given a solution of Πk(m), we will show that the variables p1, . . . , pk
provide a worst-case input with the competitive ratio Rk(m). This proof will
also provide some intuition for the constraints of Πk(m).
The mathematical program Πk(m)

maximize R s.t.

R ≥ 1 (1)

pi ≥ pi+1 for 1 ≤ i ≤ k − 1 (2)

pk ≥ 0 (3)∑k
i=1 pi ≤ 1 (4)
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∑k
i=1 pi ≥ R− 1 (5)∑k

i=1 pi + (m− k) · pk ≥ R (6)∑j−1
i=1 pi · (R− 1) + pj ·R ≤ 1 for 1 ≤ j ≤ k (7)

Proposition 2. The value Rk(m) is well-defined, and 1 ≤ Rk(m) ≤ 2 for all m.
The optimal competitive ratio for SRD(m) is at least Rk(m) for any 1 ≤ k ≤ m.

Table 2 contains the competitive ratios for 2 ≤ m ≤ 20, as well as the values of
k and the rental costs of an optimal solution for Πk(m).

Table 2. The values R(m) are given together with values of k such that R(m) =
Rk(m), and the list of rental costs of the first k requests of a lower bound instance (the
remaining costs should add a cost of 1, so their total rental cost must be at least 1, no
matter if the algorithm buys the equipment or not, and if their costs are equal, then
it take any value in [ 1

m−k
, qk]). Note that there is no clear structure for the worst-case

inputs, and in most cases the first few values cannot be obtained using a greedy process
(of selecting the rental costs to be as large as possible or as small as possible).

m competitive ratio k rental costs for the worst-case instance q1, q2, . . .

2 1.414213 1 0.707107

3 1.618034 1 0.618034

4 1.686141 2 0.421535, 0.421535

5 1.816496 2 0.483163, 1/3 ≈ 0.333333

6 1.839287 2 0.543689, 0.295598

7 1.866025 3 0.349563, 0.266463, 1/4 = 0.25

8 1.894427 3 0.438646, 0.255781, 1/5 = 0.2

9 1.912868 3 0.487951, 0.258253, 1/6 ≈ 0.166667

10 1.925819 3 0.519148, 0.263816, 1/7 ≈ 0.142857

11 1.927561 3 0.518790, 0.269143, 0.139628

12 1.935414 4 0.352506, 0.264382, 0.193525, 1/8 = 0.125

13 1.942809 4 0.366610, 0.274818, 0.190270, 1/9 ≈ 0.111111

14 1.948683 4 0.389994, 0.279508, 0.179181, 1/10 = 0.1

15 1.953462 4 0.418022, 0.280420, 0.164111, 1/11 ≈ 0.090909

16 1.957426 4 0.439401, 0.284652, 0.150039, 1/12 ≈ 0.083333

17 1.960769 4 0.461537, 0.282966, 0.139343, 1/13 ≈ 0.076923

18 1.963624 4 0.488031, 0.268670, 0.135494, 1/14 ≈ 0.071429

19 1.965948 4 0.508660, 0.258735, 0.131608, 0.066944

20 1.966089 5 0.385565, 0.248135, 0.169317, 0.096408, 1/15 ≈ 0.066667

We present some additional properties of the function R(m) in the following
proposition. These properties are useful for calculating the value of R(m) for
fixed values of m (and we used them in the process of computing Table 1), since
they reduce the number of values of k that have to be checked.
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Proposition 3. For any m ≥ 2, R(m + 1) ≥ R(m). The function R(m) tends
to 2 when m grows to infinity. For k ≥ -m2 ., Rk(m) ≥ Rk+1(m) holds. Let 
 be
such that 
 + 2 ≤ m < 
 + 2+1. We have R(m) > Ri(m), for i < 
.

3.2 The Algorithm

We define an algorithm for SRD(m). At each step, given a new request (if the algo-
rithm did not buy the equipment yet), it examines the current request and decides
whether to buy the equipment. If the algorithm does not buy the equipment, it
can decide to rent all further requests, or to rent just the current request, in which
case it continues and considers the next request. Thus, the algorithm is applied on
the first request, and then on each further request as long as the algorithm does
not buy and it does not decide to rent all the remaining requests. The algorithm
calls the procedure Examine that has three parameters. The parameter 1 ≤ i ≤ m
is the index of the current request, the parameter q is its rental cost, and Q is the
total rental cost of requests 1, . . . , i. If the procedure returns rent all, then from
now on, all further requests are rented, that is, requests i, . . . ,m are rented. If the
algorithm returns buy, then the algorithm buys now, and if it returns rent, then
the current request is rented, and the next request is examined using the same
procedure. We define the main procedure. The variable k is used for the index of
the current request. The main procedure for m is defined as follows. It initializes
k = 1 and Q = 0. For request k, Q is increased by qk and Examine(k, q,Q) is
applied. If it returns buy, then the equipment is bought and the algorithm halts.
If it returns rent all, then the equipment is rented for requests k, k+ 1, . . . ,m,
and halts after the mth request. If it returns rent, then request k is rented; in
this case if k = m, then the algorithm halts, and otherwise it lets k = k + 1, and
applies examine again with the new value of k.

Examine(i, q, Q)
1. If Q+ (m− i)q ≤ R(m), then return rent all.
2. If Q > 1, then return buy.
3. If Q− q + 1 ≤ R(m) ·Q, then return buy.
4. Return rent.

Theorem 4. The competitive ratio of the algorithm is R(m).

Proof. We split the analysis of the competitive ratio into several cases, according
to the last call of Examine (Examine is applied at least once, for i = 1). Let
1 ≤ k ≤ m denote the last index of any request that Examine was applied for,
and Q and q denote the last values of the corresponding variables. The cases
correspond to the step of Examine that was applied in the last call for it (since
exactly one of the four steps is applied in each call).

Case 1. Examine(k, q,Q) applied step 1, and returned rent all. We have Q +
(m− k)q ≤ R(m), and the algorithm rents all m requests, so its cost is

∑m
j=1 qj .

If opt does not buy the equipment, then its cost is
∑m

j=1 qj as well, and the al-
gorithm is optimal. Otherwise opt buys the equipment and opt = 1. The cost
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of the algorithm is
∑k

j=1 qj +
∑m

j=k+1 qj ≤ Q + (m − k)q, since qj ≤ qk = q for
k < j ≤ m, and since opt = 1, the competitive ratio does not exceed R(m).

Case 2. Examine(k, q,Q) applied step 4 and returned rent. Since the algorithm
must examine the next request, if it exists, using Examine, the only case that
this is the last application of Examine is k = m. Since the algorithm reached this
step, the condition of step 2 does not hold, and

∑m
j=1 qj = Q ≤ 1. Moreover, since

the algorithm reached this step, it rented all requests, and its cost is
∑m

j=1 qj ,
which is the optimal cost as well.Thus, in this case the algorithm is optimal.

Case 3. Examine(k, q,Q) applied step 3 and returned buy. Since the algorithm

reached this step, it must hold that
∑k

j=1 qj ≤ 1, as step 2 was not applied. We

find opt = min{1,
∑m

j=1 qj} ≥
∑k

j=1 qj = Q. The algorithm buys the equip-

ment, so its cost is
∑k−1

j=1 qj + 1 = Q− q + 1. By the condition of this case, this
is at most R(m) ·Q, that is, the competitive ratio does not exceed R(m).
Case 4. Examine(k, q,Q) applied step 2 and returned buy. Since the condition

of step 2 holds for k,
∑k

i=1 qi > 1, and therefore opt = 1.

If k = 1, then the algorithm buys the equipment already for the first request, so
its cost is 1 = opt, and thus the algorithm is optimal. In what follows we assume
k > 1. As the condition of step 1 does not hold during the first application of

Examine, we have q1 >
R(m)
m > 0, and we get

∑j
i=1 qi > 0 for 1 ≤ j ≤ m. Let

k′ = k−1 ≥ 1. The cost of the algorithm is
∑k′

i=1 qi+1. Assume by contradiction
that the competitive ratio exceeds R(m), and denote the competitive ratio by

R̃. We have
∑k′

i=1 qi + 1 = R̃, since opt = 1. Since step 4 was applied in all
the previous iterations, the condition of step 3 did not hold, so for all j ≤ k′,∑j−1

i=1 qi + 1 > R(m) · (
∑j

i=1 qi). Let r̃ = min1≤j≤k′
∑j−1

i=1 qi+1∑j
i=1 qi

. By the previous

properties, r̃ > R(m). Additionally, when Examine was applied for request k′,

the conditions of steps 1 and 2 did not hold, and thus
∑k′

i=1 qi + (m− k′)qk′ >

R(m) and
∑k′

i=1 qi ≤ 1. Let R̂ = min{R̃,
∑k′

i=1 qi + (m− k′)qk′ , r̃} > R(m).
Consider the mathematical programΠk′ (m). We show that the set of variables

pi = qi for 1 ≤ i ≤ k′, and R = R̂, give a feasible solution. Since R(m) ≥ 1,
R̂ > 1, and constraint (1) holds. Constraints (2) and (3) hold by the properties
of the input (having non-negative non-increasing rental costs). The properties
mentioned above show that constraints (6) and (4) must hold, and additionally,

the family of constraints (7) holds for 1 ≤ j ≤ k′. Since
∑k′

i=1 qi + 1 = R̃ ≥ R̂,
constraint (5) holds as well. Thus, there is a feasible solution whose objective
value is R̂ > R(m) ≥ Rk′(m), contradicting the definition of R(m). ��
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Abstract. Orthogonal ray graphs are the intersection graphs of hor-
izontal and vertical rays (i.e. half-lines) in the plane. If the rays can
have any possible orientation (left/right/up/down) then the graph is a
4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are
only pointing into the positive x and y directions, the intersection graph
is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any
direction but the vertical ones can only have the positive direction. The
recognition problem of 2-DORGs, which are a nice subclass of bipartite
comparability graphs, is known to be polynomial, while the recognition
problems for 3-DORGs and 4-DORGs are open. Recently it has been
shown that the recognition of unit grid intersection graphs, a superclass
of 4-DORGs, is NP-complete. In this paper we prove that the recogni-
tion problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of
the vertices of G (which corresponds to the four possible ray directions).
For the proof, given the graph G, we first construct two cliques G1, G2

with both directed and undirected edges. Then we successively augment
these two graphs, constructing eventually a graph G̃ with both directed
and undirected edges, such that G has a 4-DORG representation if and
only if G̃ has a transitive orientation respecting its directed edges. As a
crucial tool for our analysis we introduce the notion of an S-orientation
of a graph, which extends the notion of a transitive orientation. We ex-
pect that our proof ideas will be useful also in other situations. Using
an independent approach we show that, given a permutation π of the
vertices of U (π is the order of y-coordinates of ray endpoints for U),
while the partition {L,R} of V \ U is not given, we can still efficiently
check whether G has a 3-DORG representation.

1 Introduction

Segment graphs, i.e. the intersection graphs of segments in the plane, have been
the subject of wide spread research activities (see e.g. [2, 12]). More tractable
subclasses of segment graphs are obtained by restricting the number of directions
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for the segments to some fixed positive integer k [4,11]. These graphs are called
k-directional segment graphs. For the easiest case of k = 2 directions, segments
can be assumed to be parallel to the x- and y-axis. If intersections of parallel
segments are forbidden, then 2-directional segment graphs are bipartite and the
corresponding class of graphs is also known as grid intersection graphs (GIG),
see [9]. The recognition of GIGs is NP-complete [10].

Since segment graphs are a fairly complex class, it is natural to study the
subclass of ray intersection graphs [1]. Again, the number of directions can be
restricted by an integer k, which yields the class of k-directional ray intersection
graphs. Particularly interesting is the case where all rays are parallel to the x-
or y-axis. The resulting class is the class of orthogonal ray graphs, which the
subject of this paper. A k-directional orthogonal ray graph, for short a k-DORG
(k ∈ {2, 3, 4}), is an orthogonal ray graph with rays in k directions. If k = 2
we assume that all rays point in the positive x- and the positive y-direction, if
k = 3 we additionally allow the negative x-direction.

The class of 2-DORGs was introduced in [19], where it is shown that the class
of 2-DORGs coincides with the class of bipartite graphs whose complements are
circular arc graphs, i.e. intersection graphs of arcs on a circle. This characteriza-
tion implies the existence of a polynomial recognition algorithm (see [13]), as well
as a characterization based on forbidden subgraphs [5]. Alternatively, 2-DORGs
can also be characterized as the comparability graphs of ordered sets of height
two and interval dimension two. This yields another polynomial recognition al-
gorithm (see e.g. [7]), and due to the classification of 3-interval irreducible posets
([6], [21, sec 3.7]) a complete description of minimally forbidden subgraphs. In a
very nice recent contribution on 2-DORGs [20], a clever solution has been pre-
sented for the jump number problem for the corresponding class of posets and
shows a close connection between this problem and a hitting set problem for axis
aligned rectangles in the plane.

4-DORGs in VLSI Design. In [18] 4-DORGs were introduced as a mathe-
matical model for defective nano-crossbars in PLA (programmable logic arrays)
design. A nano-crossbar is a rectangular circuit board with m× n orthogonally
crossing wires. Fabrication defects may lead to disconnected wires. The bipartite
intersection graph that models the surviving crossbar is an orthogonal ray graph.

We briefly mention two problems for 4-DORGs that are tackled in [18]. One
of them is that of finding, in a nano-crossbar with disconnected wire defects,
a maximal surviving square (perfect) crossbar, which translates into finding a
maximal k such that the balanced complete bipartite graph Kk,k is a subgraph of
the orthogonal ray graph modeling the crossbar. This balanced biclique problem
is NP-complete for general bipartite graphs but turns out to be polynomially
solvable on 4-DORGs [18]. The other problem, posed in [16], asks how difficult
it is to find a subgraph that would model a given logic mapping and is shown
in [18] to be NP-hard.

4-DORGs andUGIGs. A unit grid intersection graph (UGIG) is a GIG that ad-
mits an orthogonal segment representation with all segments of equal (unit) length.
Every 4-DORG is a GIG. This can be seen by intersecting the ray representation
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Fig. 1. (a) A nano-wire crossbar with disconnected wire defects, (b) the bipartite graph
modeling this crossbar, and (c) a 4-DORG representation of this graph. Note that
vertex t is not present, since the corresponding wire is not connected to the crossbar
boundary, hence with the remaining circuit.

with a rectangleR, that contains all intersections between the rays in the interior.
To see that every 4-DORG is a UGIG, we first fix an appropriate length for the
segments, e.g. the length d of the diagonal of R. If we only keep the initial part of
length d from each ray we get a UGIG representation. Essentially this construction
was already used in [18].

Unit grid intersection graphs were considered in [15]. There it is shown that
UGIG contains P6-free bipartite graphs, interval bigraphs and bipartite permu-
tation graphs. Actually, these classes are already contained in 2-DORG. An-
other contribution of [15] is to provide an example showing that the inclusion
of UGIG in GIG is proper. In [17] it is shown that interval bigraphs belong to
UGIG. Hardness of Hamiltonian cycle for inputs from UGIG and hardness of
graph isomorphism for inputs from GIG have been shown in [22]. Very recently
it was shown that the recognition of UGIGs is NP-complete [14]. With this last
result we find 4-DORG nested between 2-DORG and UGIG with easy and hard
recognition, respectively. This fact was central for our motivation to attack the
open recognition problem for 4-DORGs [19].

Our Contribution. In this paper we prove that, given a graph G along with
a partition {L,R,U,D} of its vertices, it can be efficiently checked whether G
has a 4-DORG representation such that the vertices of L (resp. the vertices of
R, U , D) correspond to the rays pointing leftwards (resp. rightwards, upwards,
downwards). To obtain our result, we first construct two cliques G1, G2 that
have both directed and undirected edges. Then we iteratively augment G1 and
G2, constructing eventually a graph G̃ with both directed and undirected edges.
As we prove, the input graph G has a 4-DORG representation if and only if G̃
has a transitive orientation respecting its directed edges. As a crucial tool for
our results, we introduce the notion of an S-orientation of an arbitrary graph,
which extends the notion of a transitive orientation. By setting D = ∅, our
results trivially imply that, given a partition {L,R,U} of the vertices of G, it
can be efficiently checked whether G has a 3-DORG representation according to
this partition. With an independent approach, we show that if we are given a
permutation π of the vertices of U (which represents the order of y-coordinates
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of ray-endpoints for the set U) but the partition {L,R} of V \ U is unknown,
then we can still efficiently check whether G has a 3-DORG representation.
The method we use to prove this result can be viewed as a particular partition
refinement technique. Such techniques have various applications in string sorting,
automaton minimization, and graph algorithms (see [8] for an overview).

Notation. We consider in this article simple undirected and directed graphs. For
a graph G, we denote its vertex and edge set by V (G) and E(G), respectively. In
an undirected graphG, the edge between vertices u and v is denoted by uv, and in
this case u and v are said to be adjacent in G. The set N(v) = {u ∈ V : uv ∈ E}
is called the neighborhood of the vertex v of G. If the graph G is directed, we
denote by 〈uv〉 the oriented arc from u to v. If G is the complete graph (i.e. a
clique), we call an orientation λ of all (resp. of some) edges of G a (partial)
tournament of G. If in addition λ is transitive, then we call it a (partial) tran-
sitive tournament. Given two matrices A and B of size n × n each, we call by
O(MM(n)) the time needed by the fastest known algorithm for multiplying A
and B; currently this can be done in O(n2.376) time [3].

Let G be a 4-DORG. Then, in a 4-DORG representation of G, every ray is
completely determined by one point on the plane and the direction of the ray.
We call this point the endpoint of this ray. Given a 4-DORG G along with a
4-DORG representation of it, we may not distinguish in the following between a
vertex of G and the corresponding ray in the representation, whenever it is clear
from the context. Furthermore, for any vertex u of G we will denote by ux and
uy the x-coordinate and the y-coordinate of the endpoint of the ray of u in the
representation, respectively.

2 4-Directional Orthogonal Ray Graphs

In this section we investigate some fundamental properties of 4-DORGs and their
representations, which will then be used for our recognition algorithm. The next
observation on a 4-DORG representation is crucial for the rest of the section.

Observation 1 Let G = (V,E) be a graph that admits a 4-DORG representa-
tion, in which L (resp. R,U,D) is the set of leftwards (resp. rightwards, upwards,
downwards) oriented rays. If u ∈ U and v ∈ R (resp. v ∈ L), then uv ∈ E if
and only if ux > vx (resp. ux < vx) and uy < vy. Similarly, if u ∈ D and v ∈ R
(resp. v ∈ L), then uv ∈ E if and only if ux > vx (resp. ux < vx) and uy > vy.

For the remainder of the section, let G = (V,E) be an arbitrary input graph
with vertex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R) × (U ∪D).

The Oriented Cliques G1 and G2. In order to decide whether the input graph
G = (V,E) admits a 4-DORG representation, in which L (resp. R, U , D) is the
set of leftwards (resp. rightwards, upwards, downwards) oriented rays, we first
construct two auxiliary cliques G1 and G2 with |V | vertices each. We partition
the vertices of G1 (resp. G2) into the sets Lx, Rx, Ux, Dx (resp. Ly, Ry, Uy, Dy).
The intuition behind this notation for the vertices of G1 and G2 is that, if G
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has a 4-DORG representation with respect to the partition {L,R,U,D}, then
each of these vertices of G1 (resp. G2) corresponds to the x-coordinate (resp. y-
coordinate) of the endpoint of a ray of G in this representation.

We can now define some orientation of the edges of G1 and G2. The intuition
behind these orientations comes from Observation 1: if the input graph G is a 4-
DORG, then it admits a 4-DORG representation such that, for every u ∈ U ∪D
and v ∈ L ∪R, we have that ux > vx (resp. uy > vy) in this representation if
and only if 〈uxvx〉 (resp. 〈uyvy〉) is an oriented edge of the clique G1 (resp. G2).
That is, since all x-coordinates (resp. y-coordinates) of the endpoints of the rays
in a 4-DORG representation can be linearly ordered, these orientations of the
edges of G1 (resp. G2) build a transitive tournament.

Therefore, the input graph G admits a 4-DORG representation if and only if
some edges of G1, G2 are forced to have specific orientations in these transitive
tournaments of G1 and G2, while some pairs of edges of G1, G2 are not allowed
to have a specific pair of orientations in these tournaments. Motivated by this,
we introduce in the next two definitions the notions of type-1-mandatory ori-
entations and of forbidden pairs of orientations, which will be crucial for our
analysis in the remainder of Section 2.

Definition 1 (type-1-mandatory orientations). Let u ∈ U ∪ D and v ∈
L ∪R, such that uv ∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the orientations
〈uxvx〉 (resp. 〈vxux〉) and 〈vyuy〉 of G1 and G2 are called type-1-mandatory.
If u ∈ D and v ∈ R (resp. v ∈ L) then the orientations 〈uxvx〉 (resp. 〈vxux〉)
and 〈uyvy〉 of G1 and G2 are called type-1-mandatory. The set of all type-1-
mandatory orientations of G1 and G2 is denoted by M1.

Definition 2 (forbidden pairs of orientations). Let u ∈ U ∪ D and
v ∈ R ∪ L, such that uv /∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the
pair {〈uxvx〉 , 〈vyuy〉} (resp. the pair {〈vxux〉 , 〈vyuy〉}) of orientations of G1

and G2 is called forbidden. If u ∈ D and v ∈ R (resp. v ∈ L) then the pair
{〈uxvx〉 , 〈uyvy〉} (resp. the pair {〈vxux〉 , 〈uyvy〉}) of orientations of G1 and G2

is called forbidden.

For simplicity of notation in the remainder of the paper, we introduce in the
next definition the notion of optional edges.

Definition 3 (optional edges). Let {〈pq〉 , 〈ab〉} be a pair of forbidden orien-
tations of G1 and G2. Then each of the (undirected) edges pq and ab is called
optional edges.

The Augmented Oriented Cliques G∗
1 and G∗

2. We iteratively augment the
cliques G1 and G2 into the two larger cliques G∗

1 and G∗
2, respectively, as follows.

For every optional edge pq of G1 (resp. of G2), where p ∈ Ux∪Dx and q ∈ Lx∪Rx

(resp. p ∈ Uy ∪Dy and q ∈ Ly ∪ Ry), we add two vertices rp,q and rq,p and we
add all needed edges to make the resulting graph G∗

1 (resp. G∗
2) a clique. Note

that, if the initial graph G has n vertices and m non-edges (i.e.
(
n
2

)
−m edges),

then G∗
1 and G∗

2 are cliques with n + 2m vertices each. We now introduce the
notion of type-2-mandatory orientations of G∗

1 and G∗
2.
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Definition 4 (type-2-mandatory orientations). For every optional edge pq
of G∗

1, the orientations 〈prp,q〉 and 〈qrq,p〉 of G∗
1 are called type-2-mandatory

orientations of G∗
1. For every optional edge pq of G∗

2, the orientations 〈rp,qp〉
and 〈rq,pq〉 of G∗

2 are called type-2-mandatory orientations of G∗
2. The set of all

type-2-mandatory orientations of G∗
1 and G∗

2 is denoted by M2.

The Coupling of G∗
1 and G∗

2 into the Oriented Clique G∗. Now we itera-
tively construct the clique G∗ from the cliques G∗

1 and G∗
2, as follows. Initially

G∗ is the union of G∗
1 and G∗

2, together with all needed edges such that G∗ is
a clique. Then, for every pair {〈pq〉 , 〈ab〉} of forbidden orientations of G∗

1 and
G∗

2 (where pq ∈ E(G1) and ab ∈ E(G2), cf. Definition 2), we merge in G∗ the
vertices rb,a and rp,q, i.e. we have rb,a = rp,q in G∗. Recall that each of the
cliques G∗

1 and G∗
2 has n + 2m vertices. Therefore, since G∗

1 and G∗
2 have m

pairs {〈pq〉 , 〈ab〉} of forbidden orientations, the resulting clique G∗ has 2n+ 3m
vertices. We now introduce the notion of type-3-mandatory orientations of G∗.

Definition 5 (type-3-mandatory orientations). For every pair {〈pq〉 , 〈ab〉}
of forbidden orientations of G∗

1 and G∗
2, the orientation 〈rq,pra,b〉 is called a type-

3-mandatory orientation of G∗. The set of all type-3-mandatory orientations of
G∗ is denoted by M3.

Whenever the orientation of an edge uv of G∗ is type-1 (resp. type-2, type-3)-
mandatory, we may say for simplicity that the edge uv (instead of its orientation)
is type-1 (resp. type-2, type-3)-mandatory. An example for the construction of
G∗ from G∗

1 and G∗
2 is illustrated in Figure 2, where it is shown how two optional

edges pq ∈ E(G∗
1) and ab ∈ E(G∗

2) are joined together inG∗, where {〈pq〉 , 〈ab〉} is
a pair of forbidden orientations of G∗

1 and G∗
2. For simplicity of the presentation,

only the optional edges pq and ab, the type-2-mandatory edges prp,q, qrq,p, ara,b,
brb,a, and the edges rp,qrq,p and ra,brb,a are shown in Figure 2. Furthermore, the
type-2-mandatory orientations 〈prp,q〉, 〈qrq,p〉, 〈ra,ba〉, and 〈rb,ab〉, as well as
the type-3-mandatory orientation 〈rq,pra,b〉, are drawn with double arrows in
Figure 2 for better visibility.

In the next theorem we provide a characterization of 4-DORGs in terms of a
transitive tournament λ∗ of the clique G∗. The main novelty of the characteriza-
tion of Theorem 1 is that it does not rely on the forbidden pairs of orientations.

p

qa

b

ra,b rq,p

rb,a = rp,q

Fig. 2. An example of joining in G∗ the pair of optional edges {pq, ab}, where pq ∈
E(G1) and ab ∈ E(G2).
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This characterization will be used in Section 4, in order to provide our main re-
sult of the paper, namely the recognition of 4-DORGs with respect to the vertex
partition {L,R,U,D}.

Theorem 1. The next two conditions are equivalent:

1. The graph G = (V,E) with n vertices has a 4-DORG representation with
respect to the vertex partition {L,R,U,D}.

2. There exists a transitive tournament λ∗ of G∗, such that M1∪M2∪M3 ⊆ λ∗,
and in addition:
(a) let pq be an optional edge of G∗

1 and pw /∈M2 be an incident edge of pq
in G∗

1; then 〈wrp,q〉 ∈ λ∗ implies that 〈wp〉 ∈ λ∗,
(b) let pq be an optional edge of G∗

2 and pw /∈M2 be an incident edge of pq
in G∗

2; then 〈rp,qw〉 ∈ λ∗ implies that 〈pw〉 ∈ λ∗,
(c) let pq be an optional edge of G∗

1 (resp. G∗
2), where p ∈ Ux∪Dx (resp. p ∈

Uy ∪Dy); then we have:
(i) either 〈pq〉 , 〈rp,qq〉 , 〈rp,qrq,p〉 ∈ λ∗ or 〈qp〉, 〈qrp,q〉, 〈rq,prp,q〉 ∈ λ∗,
(ii) for any incident optional edge pq′ of G∗

1 (resp. G∗
2), either

〈pq〉 , 〈rp,q′q〉 ∈ λ∗ or 〈qp〉 , 〈qrp,q′〉 ∈ λ∗,
(iii) for any incident optional edge p′q of G∗

1 (resp. G∗
2), either

〈rp,qq〉 , 〈rp,qrq,p′ 〉 ∈ λ∗ or 〈qrp,q〉 , 〈rq,p′rp,q〉 ∈ λ∗.

Furthermore, as we can prove, given a transitive tournament λ∗ of G∗ as in
Theorem 1, a 4-DORG representation of G can be computed in O(n2) time. An
example of the orientations of condition 2(c) in Theorem 1 (for the case of G∗

1)
is shown in Figure 3. For simplicity of the presentation, although G∗

1 is a clique,
we show in Figure 3 only the edges that are needed to illustrate Theorem 1.

3 S-Orientations of Graphs

In this section we introduce a new way of augmenting an arbitrary graph G
by adding a new vertex and some new edges to G. This type of augmentation
process is done with respect to a particular edge ei = xiyi of the graph G, and
is called the deactivation of ei in G. In order to do so, we first introduce the
crucial notion of an S-orientation of a graph G (cf. Definition 7), which extends
the classical notion of a transitive orientation. For the remainder of this section,
G denotes an arbitrary graph, and not the input graph discussed in Section 2.

Definition 6. Let G = (V,E) be a graph and let (xi, yi), 1 ≤ i ≤ k, be k ordered
pairs of vertices of G, where xiyi ∈ E. Let Vout, Vin be two disjoint vertex subsets
of G, where {xi : 1 ≤ i ≤ k} ⊆ Vout ∪ Vin. For every i = 1, 2, . . . , k:

– a special neighborhood of xi is a vertex subset S(xi) ⊆(
N(xi) ∩

(⋂
xj=xi

N(yj)
))

\ {xj : 1 ≤ j ≤ k},
– the forced neighborhood orientation of xi is:

• the set F (xi) = {〈xiz〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vout,
• the set F (xi) = {〈zxi〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vin.
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Fig. 3. An example of the orientations of the clique G∗
1 in the transitive tournament

λ∗, where p ∈ Ux∪Dx (cf. condition 2(c) in Theorem 1): (a) both possible orientations
where the optional edges pq and pq′ are incident and (b) both possible orientations
where the optional edges pq and p′q are incident. In both (a) and (b), the orientations
of the type-2-mandatory edges are drawn with double arrows. The case for G2 is the
same, except that the orientation of the type-2-mandatory edges is the opposite.

Definition 7. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be
a special neighborhood in G. Let T be a transitive orientation of G. Then T is
an S-orientation of G on the special neighborhoods S(xi), 1 ≤ i ≤ k, if for every
i = 1, 2, . . . , k:

1. F (xi) ⊆ T and
2. for every z ∈ S(xi), 〈xiyi〉 ∈ T if and only if 〈zyi〉 ∈ T .

Definition 8. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be a
special neighborhood in G. Let T be an S-orientation of G on the sets S(xi), 1 ≤
i ≤ k. Then T is consistent if, for every i = 1, 2, . . . , k, it satisfies the following
conditions, whenever zw ∈ E, where z ∈ S(xi) and w ∈ (N(xi)∩N(yi)) \S(xi):

– if xi ∈ Vout, then 〈wz〉 ∈ T implies that 〈wxi〉 ∈ T ,
– if xi ∈ Vin, then 〈zw〉 ∈ T implies that 〈xiw〉 ∈ T .

In the next definition we introduce the notion of deactivating an edge ei = xiyi
of a graph G, where S(xi) is a special neighborhood in G. In order to deactivate
edge ei of G, we augment appropriately the graph G, obtaining a new graph
G̃(ei) that has one new vertex.

Definition 9. Let G = (V,E) be a graph and let S(xi) be a special neighborhood

in G. The graph G̃(ei) obtained by deactivating the edge ei = xiyi (with respect
to Si) is defined as follows:

1. V (G̃(ei)) = V ∪ {ai} (i.e. add a new vertex ai to G),

2. E(G̃(ei)) = E ∪ {zai : z ∈ N(xi) \ S(xi)}.
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Algorithm 1. Recognition of 4-DORGs

Input: An undirected graph G = (V,E) with a vertex partition V = L ∪R ∪ U ∪D
Output: A 4-DORG representation for G, or the announcement that G is not a 4-

DORG graph

1: n ← |V |; m ←
(
n
2

)
− |E| {m is the number of non-edges in G}

2: Construct from G the clique G1 with vertex set Lx∪Rx∪Ux∪Dx and the clique G2

with vertex set Ly ∪Ry ∪ Uy ∪Dy

3: Construct the set M1 of type-1-mandatory orientations in G1 and G2

4: Construct the m forbidden pairs of orientations of G1 and G2

5: Construct from G1, G2 the augmented cliques G∗
1, G

∗
2 and the set M2 of type-2-

mandatory orientations
6: Construct from G∗

1, G
∗
2 the clique G∗ and the set M3 of type-3-mandatory orienta-

tions

7: for i = 1 to m do
8: Let piqi ∈ E(G1), aibi ∈ E(G2) be the optional edges in the ith pair of forbidden

orientations, where pi ∈ Ux ∪Dx, qi ∈ Lx ∪Rx, ai ∈ Uy ∪Dy , bi ∈ Ly ∪Ry

9: (x2i−1, y2i−1) ← (pi, qi); (x2i, y2i) ← (qi, rpi,qi)
10: (x2m+2i−1, y2m+2i−1) ← (ai, bi); (x2m+2i, y2m+2i) ← (bi, rai,bi)
11: S(xi) ← {rxj,yi : xj = xi}
12: Construct the graph G̃∗ by iteratively deactivating all edges xiyi, 1 ≤ i ≤ 4m

13: if G̃∗ has a transitive orientation T̃ such that M1 ∪M2 ∪M3 ⊆ T̃ then
14: return the 4-DORG representation of G computed by Theorem 1
15: else
16: return “G is not a 4-DORG graph with respect to the partition {L,R,U,D}”

After deactivating the edge ek of G, obtaining the graph G̃(ek), we can continue
by sequentially deactivating the edges ek−1, ek−2, . . . , e1, obtaining eventually

the graph G̃.

Theorem 2. Let G = (V,E) be a graph and S(xi), 1 ≤ i ≤ k, be a set of k
special neighborhoods in G. Let M0 be an arbitrary set of edge orientations of
G, and let G̃ be the graph obtained after deactivating all edges ei = xiyi, where
1 ≤ i ≤ k.

– If G has a consistent S-orientation T on S(x1), S(x2), . . . , S(xk) such that

M0 ⊆ T , then G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃
for every i = 1, 2, . . . , k.

– If G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃ for every
i = 1, 2, . . . , k, then G has an S-orientation T on S(x1), S(x2), . . . , S(xk)
such that M0 ⊆ T .

4 Efficient Recognition of 4-DORGs

In this section we complete our analysis in Sections 2 and 3 and we present our 4-
DORG recognition algorithm (cf. Algorithm 1). Let G = (V,E) be an arbitrary



382 S. Felsner, G.B. Mertzios, and I. Mustat, ă

input graph that is given along with a vertex partition V = L ∪R ∪ U ∪D,
such that E ⊆ (L ∪R) × (U ∪D). Assume that G has n vertices and m non-
edges (i.e.

(
n
2

)
−m edges). First we construct from G the cliques G1, G2, then we

construct the augmented cliques G∗
1, G

∗
2, and finally we combine G∗

1 and G∗
2 to

produce the clique G∗ (cf. Section 2). Then, for a specific choice of 4m ordered
pairs (xi, yi) of vertices, where 1 ≤ i ≤ 4m (cf. Algorithm 1), and for particular
sets S(xi) and neighborhood orientations F (xi), 1 ≤ i ≤ 4m (cf. Definitions 6
and 7), we iteratively deactivate the edges xiyi, 1 ≤ i ≤ 4m (cf. Section 3),

constructing thus the graph G̃∗. Then, we can prove that for a specific partial
orientation of the graph G̃∗, G̃∗ has a transitive orientation that extends this
partial orientation if and only if the input graph G has a 4-DORG representation
with respect to the vertex partition {L,R,U,D}. The proof of correctness of
Algorithm 1 and the timing analysis are given in the next theorem.

Theorem 3. Let G = (V,E) be a graph with n vertices, given along with a ver-
tex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R) × (U ∪D). Then Al-
gorithm 1 constructs in O(MM(n2)) time a 4-DORG representation for G with
respect to this vertex partition, or correctly announces that G does not have a
4-DORG representation.

5 Recognizing 3-DORGs with Partial Representation
Restrictions

In this section we consider a bipartite graph G = (A,B,E), where |A| = m and
|B| = n, given along with an ordering π = (v1, v2, . . . , vm) of the vertices of A.
The question we address is the following: “Does G admit a 3-DORG represen-
tation where A (resp. B) is the set of rays oriented upwards (resp. horizontal,
i.e. either leftwards or rightwards), such that, whenever 1 ≤ i < j ≤ m, the
y-coordinate of the endpoint of vi ∈ A is greater than that of vj ∈ A?” Our ap-
proach uses the adjacency relations in G to recursively construct an x-coordinate
ordering of the endpoints of the rays in the set A. If during the process we do not
reach a contradiction, we eventually construct a 3-DORG representation for G,
otherwise we conclude that such a representation does not exist.

Definition 10. Let P1, P2 be two ordered partitions of the same base set S.
Then P1 and P2 are compatible if there exists an ordered partition R of S which
is refining and order preserving for both P1 and P2. A linear order L respects
an ordered partition P of S, if L and P are compatible.

Here we provide the main ideas and an overview of our algorithm. We start with
the trivial partition of the set A (consisting of a single set including all elements
of A). During the algorithm we process each vertex of V = A∪B once, and each
time we process a new vertex we refine the current partition of the vertices of
A, where the final partition of A implies an x-coordinate ordering of the rays of
A. In particular, the algorithm proceeds in |A| = m phases, where during phase
i we process vertex vi ∈ A (the sequence of the vertices in A is according to
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Color chart:
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Partitions:

(4)(1)(3)(52)

u3

Fig. 4. Construction of a 3-DORG representation. Top left of the figure: the bipartite
graph G with the given vertex ordering π = (v1, v2, v3, v4, v5). Top-right: the chain of
partition refinements. Bottom left: The 3-DORG representation of G as read from the
partition chain.

the given ordering π). During phase i, we process sequentially every neighbor
u ∈ N(vi) ⊆ B that has not been processed in any previous phase j < i.

For every i = 1, 2, . . . ,m let Ai = {vi, vi+1, . . . , vm} be the set of vertices of
A that have not been processed before phase i. At the end of every phase i,
we fix the position of vertex vi ∈ A in the final partition of A, and we ignore
vi in the subsequent phases (i.e. during the phases j > i we consider only the
restriction of the current partition to the vertices of Ai+1). Phase i starts with
the partition of Ai that results at the end of phase i−1. For any vertex u ∈ N(vi)
that we process during phase i, we check whether the current partition P of Ai is
compatible with at least one of the ordered partitions Q1 = (N(u), Ai\N(u)) and
Q2 = (Ai \N(u), N(u)). If not, then we conclude that G is not a 3-DORG with
respect to the given ordering π of A. Otherwise we refine the current partition P
into an ordered partition that is also a refinement of Q1 (resp. Q2). In the case
where P is compatible with both Q1 and Q2, it does not matter if we compute
a common refinement of P with Q1 or Q2. If we can execute all m phases of this
algorithm without returning that a 3-DORG representation does not exist, then
we can compute a 3-DORG representation of G in which the y-coordinates of
the endpoints of the rays of A respect the ordering π. In this extended abstract
this construction is illustrated in the example of Figure 4.

Theorem 4. Given a bipartite graph G = (V,E) with color classes A,B and an
ordering π of A, we can decide in O(|V |2) time whether G admits a 3-DORG
representation where A are the vertical rays and the y-coordinates of their end-
points respect the ordering π.
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Abstract. We introduce the notion of recursive quantum Markov chain
(RQMC) for analysing recursive quantum programs with procedure calls.
RQMCs are natural extension of Etessami and Yannakakis’s recursive
Markov chains where the probabilities along transitions are replaced by
completely positive and trace-nonincreasing super-operators on a state
Hilbert space of a quantum system.

We study the reachability problem for RQMCs and establish a reduc-
tion from it to computing the least solution of a system of polynomial
equations in the semiring of super-operators. It is shown that for an
important subclass of RQMCs, namely linear RQMCs, the reachability
problem can be solved in polynomial time. For general case, technique of
Newtonian program analysis recently developed by Esparza, Kiefer and
Luttenberger is employed to approximate reachability super-operators.
A polynomial time algorithm that computes the support subspaces of
the reachability super-operators in general case is also proposed.

1 Introduction

The model of recursive Markov chains (RMCs), defined in [9], is an extension
of both Markov chains and recursive state machines [2,3]. A RMC consists of a
collection of finite-state Markov chains with the ability to invoke each other in
a potentially recursive manner; it is especially suitable to describe probabilistic
programs with procedures. RMCs have been proven to be linear-time equiva-
lent to probabilistic Pushdown Automata presented in [8], and they both have
been widely used as the mathematical models for software model checking and
program analysis.

Quantum Markov chains (QMCs) have been widely used in quantum optics
and quantum information theory. Recently, they have also been employed in the
studies of quantum programs. In the literature, there were quite a few different no-
tions of QMC, introduced by authors from different research communities. These
models roughly fall into two categories: 1) the fully quantum ones [1,6,10,19,20]
where the Hilbert space of the quantum system is regarded as the state space of
the Markov model (thus infinite), while all possible quantum operations constitute
transitions between the states; 2) the semi-quantum ones [12,11] where the state
space of the model is still taken classical (and usually can be finite), while the tran-
sitions between them are quantum - transitions are labelled with super-operators
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on the Hilbert space associated with the quantum system. This treatment is ac-
tually stemmed from the well-known slogan quantum data, classical control for
quantum computers architecture [16]: the (classical) states are used to label the
nodes in the control flow of a program, while super-operators along the transitions
encode the manipulation applied on the quantum data.

In this paper, we introduce the notion of recursive quantum Markov chain
(RQMC) based on the second type of QMCs. It can also be regarded as a quan-
tum extension of RMC where the probabilities along the transitions are replaced
with super-operators on a given Hilbert space. Similar to RMC, this notion of
RQMC is especially suitable for defining semantics for recursive quantum pro-
grams which include procedure calls.

The distinct advantage of the second type of QMCs, and thus our model of
RQMC as well, for model checking purpose, is twofold: (1) They provide a way
to check once for all in that once a property is checked to be valid, it holds
for all input quantum states. For example, for reachability problem considered
in this paper we indeed calculate the accumulated super-operator, say E , along
all possible paths. As a result, the reachability probability when the program is
executed on the input quantum state ρ is simply tr(E(ρ)). (2) In these models, as
all quantum effects are encoded in the super-operators labelling the transitions,
and the nodes are kept purely classical, techniques from classical model checking
can be adapted to verification of quantum systems. This has been shown in [11]
for QMCs, and will be further extended to RQMCs defined in this paper.

A fundamental problem for RMCs is the following: given two vertices u and
v, what is the probability of reaching v, starting from u, both with the empty
context? This is called reachability problem, and has wide applications for many
other analyses of RMCs. In this paper, we are going to investigate reachability
problem for RQMCs, but instead of computing reachability probability from u
to v, we now need to compute the accumulated super-operator along all possible
paths leading from u to v. Similar to [9], this problem can be reduced to the
termination problem where both the initial and the destination vertices are from
the same component, and the destination vertex is an exit node. The contribution
of the paper is three-fold:

(1) For an important subclass of RQMCs, namely linear RQMCs, we provide a
polynomial time algorithm to compute all termination super-operators. Even
for this simplest case, computing the termination super-operators is highly
non-trivial, and some techniques beyond those introduced in previous works
such as [11] and [9] must be introduced.

(2) For general RQMCs, we adapt the Newtonian program analysis recently de-
veloped in [7] to approximate termination super-operators. Note that the
technique proposed in [7] cannot be applied directly because there the coef-
ficient domain is required to be an ω-continuous semiring, while the set of
super-operators, although being a semiring, is not ω-continuous.

(3) For general RQMCs, we propose a polynomial time algorithm to compute the
support subspaces of the termination super-operators, which are of special
interest for the purpose of safety analysis.
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2 Preliminaries

2.1 Semiring of Super-Operators

We fix a finite dimensional Hilbert space H throughout this paper. Let L(H),
D(H), and S(H) be the sets of linear operators, density operators, and super-
operators on H, respectively. In this paper, by super-operators we mean com-
pletely positive super-operators. Let IH and 0H be the identity and null super-
operators on H, respectively. Then obviously, (S(H),+, ◦) forms a semiring
where ◦ is the composition of super-operators defined by (E ◦ F)(ρ) = E(F(ρ))
for any ρ ∈ D(H). We always omit the symbol ◦ and write EF directly for E ◦F .
We will use two different orders over S(H).

Definition 1. Let E ,F ∈ S(H).

(1) E � F if there exists G ∈ S(H) such that G + E = F ;
(2) E � F if for any ρ ∈ D(H), tr(E(ρ)) ≤ tr(F(ρ)).

It is easy to check that if E � F , then there exits a unique G such that G+E = F .
Note that the trace of a (unnormalised) quantum state is exactly the probability
that the (normalised) state is reached [16]. Intuitively, E � F if and only if the
success probability of performing E is always not greater than that of performing
F , whatever the initial state is. Let � be the kernel of �; that is, � = � ∩ �.
Then E � IH if and only if E is trace-preserving while E � 0H if and only if
E = 0H.

Let S1(H) = {E ∈ S(H) : E � IH} be the set of trace-nonincreasing super-
operators on H. Let S1(H)n be the set of n-size vectors over S1(H), and extend
the partial order � componentwise to it. Then for any n ≥ 1, (S1(H)n,�) is a
complete partially ordered set [16] with the least element 0H = (0H, . . . , 0H).

The next lemma, which is very useful for our purpose, shows that � is pre-
served by the right-composition of super-operators, while � is preserved by both
the left and the right compositions of super-operators.

Lemma 1. Let E ,F ,G ∈ S(H).

(1) If E � F , then EG � FG. Especially, EF � F provided that E ∈ S1(H).
(2) If E � F , then both GE � GF and EG � FG.

2.2 Polynomials over Super-Operators

Let X̃ be a finite set of variables. A valuation is a mapping v : X̃ → S1(H). We
write vX for v(X) and denote the set of valuations by V. Then V is isomorphic

to the set S1(H)|X̃| when an arbitrary total order is defined in X̃ . Consequently,
we will not distinguish these two notations in this paper. A monomial is a finite
expression E0X0E1X1 · · · Ek−1Xk−1Ek where k ≥ 0, each Ei ∈ S1(H), and each

Xi ∈ X̃. Given a monomial m = E0X0E1X1 · · · Ek−1Xk−1Ek and a valuation
v, we define m(v), the value of m at v, as E0vX0E1vX1 · · · Ek−1vXk−1

Ek. We
denote by last(m) = Ek the rightmost super-operator in m. A polynomial is an
expression of the form

∑
1≤i≤kmi where k ≥ 1 and for each i, mi is a monomial.

The value of f =
∑

imi at v is defined by f(v) =
∑

imi(v).
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Definition 2. A polynomial f =
∑

1≤i≤kmi is called trace-nonincreasing if∑
1≤i≤k last(mi) � IH.

By Lemma 1, we can easily check that a trace-nonincreasing polynomial is ac-
tually a mapping from V to S1(H). In the rest of this paper, if not otherwise
stated, any polynomial is assumed to be trace-nonincreasing.

A vector f of polynomials is a mapping that assigns to each variable X ∈ X̃
a polynomial. Naturally, f induces a mapping, denoted again by f for simplicity,
from V to V as follows. For each v ∈ V, let f(v) be the valuation such that

for every X ∈ X̃ , (f(v))X = fX(v) where we write fX for f(X). It is easy to
observe that f is a Scott continuous function over the complete partially ordered

set S1(H)|X̃|. Thus we have the following theorem, which is a special case of
Kleene’s well-known fixed point theorem.

Theorem 1. Let f be a vector of polynomials. Then f has a unique least fixed
point μf in V. Furthermore, μf is the supremum (with respect to �) of the
Kleene sequence given by v(0) = f(0H), and v(i+1) = f(v(i)) for i ≥ 0.

2.3 Quantum Markov Chains

To conclude this section, we recall the definition of quantum Markov chains
which was first used to model check quantum programs as well as quantum
cryptographic protocols in [11].

Definition 3. A super-operator weighted Markov chain, or quantum Markov
chain (QMC), over H is a tuple (S, δ), where

– S is a finite or countably infinite set of states;
– δ : S × S → S1(H) is called the transition relation such that for each s ∈ S,∑

t∈S δ(s, t) � IH.

The only difference between QMC and classical Markov chain (MC) is that the
probabilities along the transitions in MCs are replaced by super-operators on a
given Hilbert space in QMCs (and accordingly, the condition that all probabili-
ties from a given state sum up to 1 is replaced by that all super-operators from
it sum up to a trace-preserving one). This similarity, together with some nice
properties of the set of super-operators, makes it possible to adapt techniques
from classical model checking to the quantum case, as shown in [11].

3 Recursive Quantum Markov Chains

Now we present the main definition of this paper, which can be regarded as an
extension of both the QMC in [11] and the RMC defined in [9]. The definition
follows closely from [3] and [9].

Definition 4. A recursive super-operator weighted Markov chain, or recursive
quantum Markov chain (RQMC), over H is a tuple A = (A1, . . . , Ak) where
for each 1 ≤ i ≤ k, the component Ai is again a tupe (Ni, Bi, Γi, Eni, Exi, δi)
consisting of
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– A finite set Ni of nodes, with two special subsets Eni of entry nodes and Exi
of exit nodes;

– A finite set Bi of boxes, and a mapping Γi : Bi → {1, . . . , k} that assigns to
each box (the index of) one of the components A1, . . . , Ak;

– To each box b ∈ Bi we associate a set of call ports Callb = {(b, en) : en ∈
EnΓi(b)}, and a set of return ports Returnb = {(b, ex) : ex ∈ ExΓi(b)};

– Let

Vi = (Ni\Exi) ∪
⋃
b∈Bi

Returnb and Wi = (Ni\Eni) ∪
⋃
b∈Bi

Callb.

A transition relation δi is a mapping δi : Vi × Wi → S1(H) such that for
each u ∈ Vi we have

∑
v∈Wi

δi(u, v) � IH.

Let Qi = Ni ∪
⋃
b∈Bi

(Returnb ∪ Callb), and Q = ∪k
i=1Qi be the set of all

vertices. Let B = ∪k
i=1Bi. Similar to [9], we can construct a (countably infinite

state) QMC based on the RQMC A as MA = (SA, δA) where SA ⊆ B∗ ×Q and
δA : SA × SA → S1(H) as follows

(1) 〈ε, u〉 ∈ SA for all u ∈ Q, and δA(〈ε, u〉, 〈ε, u〉) = IH if u is an exit node. Here
ε is the empty string;

(2) if 〈β, u〉 ∈ SA and δi(u, v) �= 0H for some i, then 〈β, v〉 ∈ SA and

δA(〈β, u〉, 〈β, v〉) = δi(u, v);

(3) if 〈β, (b, en)〉 ∈ SA for some (b, en) ∈ Callb, then 〈βb, en〉 ∈ SA and

δA(〈β, (b, en)〉, 〈βb, en〉) = IH;

(4) if 〈βb, ex〉 ∈ SA for some (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ SA and

δA(〈βb, ex〉, 〈β, (b, ex)〉) = IH;

(5) SA is the smallest set satisfying (1) to (4), and δA(〈β, u〉, 〈α, v〉) = 0H if it
is not defined in (1) to (4).

Intuitively, given a pair 〈β, u〉 in SA, the sequence β denotes the stack of pending
recursive calls and u the current control state.

Lemma 2. For any RQMC A, the MA defined above is indeed a QMC.

Example 1. Suppose two players, Alice and Bob, want to randomly choose a
winner among them, by taking a qubit system q as the coin. The protocol of
Alice goes as follows. She first measures the system q according to the observable
MA = 0|ψ〉〈ψ| + 1|ψ⊥〉〈ψ⊥| where {|ψ〉, |ψ⊥〉} is an orthonormal basis of Hq. If
the outcome 0 is observed, then she is the winner. Otherwise, she gives the
quantum system to Bob and lets him decide. After Bob’s manipulation, Alice
performs a super-operator F on q if Bob is the winner. Bob’s protocol goes
similarly, except that his measurement operator is MB = 0|φ〉〈φ|+1|φ⊥〉〈φ⊥| for
another orthonormal basis {|φ〉, |φ⊥〉} of Hq, and his post-Alice super-operator,
if the winner is Alice, is G.

We can formally describe such a protocol as a quantum program with proce-
dure calls as follows.
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Fig. 1. The RQMC for a quantum program with recursive procedure calls

Global variables winner : String, q : qubit
Program Alice
switch MA[q] do
case 0
winner := ‘A’;

case 1
Call Bob;
if winner = ‘B’ then
q := F [q];

od

Program Bob
switch MB[q] do
case 0
winner := ‘B’;

case 1
Call Alice;
if winner = ‘A’ then
q := G[q];

od

The semantics of this program can be described by the RQMC depicted in Fig-
ure 1 where the exits ex1 and ex′1 represent that Alice wins, while ex2 and ex′2
represent Bob wins. The super-operators E0 = {|ψ〉〈ψ|} and E1 = {|ψ⊥〉〈ψ⊥|}
correspond respectively to the measurement outcomes 0 and 1 when MA is ap-
plied. Similarly, F0 = {|φ〉〈φ|} and F1 = {|φ⊥〉〈φ⊥|}. For simplicity, we omit all
IH labels.

4 Reachability Problems

In this paper, we will focus on some fundamental reachability problems for
RQMCs. Note that given a RQMC A over H, there are two different notions
of states: classical states in SA of the underlying QMC MA, and the quantum
states in the associated Hilbert space H. Thus naturally, we have three versions
of reachability problems:

– Classical state reachability. Given a pair of vertices u, v ∈ Q, let Eu,v be the
accumulated super-operator along all the possible paths inMA from the initial
state 〈ε, u〉 to the destination state 〈ε, v〉. We call Eu,v the reachability super-
operator from u to v, and our goal is to compute it for any u and v in Q.

– Quantum state reachability. We take an initial classical state 〈ε, u〉 in MA

and an initial quantum state ρ ∈ D(H). Then a quantum state σ ∈ D(H)
is reachable if along some finite path in MA which starts from 〈ε, u〉, the
associated quantum system evolves from ρ into σ.
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– Quantum subspace reachability. Note that for the purpose of safety analysis,
sometimes we are only concerned with the subspaces of H spanned by the
reachable states, while the exact forms of them are irrelevant. In this setting,
we would like to compute the support subspace of Eu,v, called reachable
subspace, for all u, v ∈ Q.

Obviously, the last two problems can be regarded as special cases of the first
one: given u ∈ Q and ρ ∈ D(H), if we are able to compute the reachability
super-operators Eu,v for all v ∈ Q, then a state σ is reachable if and only if
σ ∈ {Eu,v(ρ) : v ∈ Q}, and the reachable subspace from u to u′ is simply the
subspace spanned by the Kraus operators of Eu,u′ . Furthermore, similar to [9], we
can reduce classical state reachability problem to the termination problem where
both the initial and the destination vertices are from the same component Ai,
and the destination vertex is an exit node. To be more specific, the reachability
super-operator for two given vertices of a RQMC is exactly a certain termination
super-operator in another efficiently constructible RQMC. For this reason, we
are going to focus on termination problem in the rest of the paper.

To conclude this section, we reduce the calculation of termination super-
operators to the problem of computing the least solution to a system of polyno-
mial equations.

Definition 5. Let A = (A1, . . . , Ak) be a RQMC where Ai = (Ni, Bi, Γi, Eni,
Exi, δi). We construct a system of polynomial equations, with super-operator

coefficients, over the variables X̃ = {Xu,ex : u ∈ Qi, ex ∈ Exi, 1 ≤ i ≤ k} as
follows. The equations are indexed by u and ex, and have the form Xu,ex = fu,ex
where fu,ex is defined, for any u ∈ Qi and ex ∈ Exi, by

(1) fu,ex = IH if u = ex, and fu,ex = 0H if u ∈ Exi\{ex};
(2) If u ∈ Ni\Exi or u is a return port, then fu,ex =

∑
v∈Wi

Xv,exδi(u, v);
(3) If u = (b, en) is a call point, then fu,ex =

∑
ex′∈ExΓi(b)

X(b,ex′),exXen,ex′ .

Given a RQMC A = (A1, · · · , Ak), we let ξ = maxi∈{1,...,k} |Exi| be the max-
imum number of exit nodes among all components. Then the number of all
possible vertex-exit pairs is |X̃ | ≤

∑k
i=1 |Qi| · |Exi| ≤ |Q|ξ. That is, the number

of polynomials {fu,ex} defined in Definition 5 is bounded by |Q|ξ.

Theorem 2. Let A be a RQMC. Then the system of polynomials {fu,ex} de-

fined in Definition 5 is a continuous function from S1(H)|X̃| to S1(H)|X̃|. Fur-
thermore, for any u and ex from the same component of A, Eu,ex is exactly
the (u, ex)-component of the least solution to the system of equations {Xu,ex =
fu,ex}.

5 Computing Reachability Super-Operators for Linear
RQMCs

This section is devoted to the calculation of reachability super-operators for an
important class of RQMCs, namely linear RQMCs where there is no path in
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any component from a return port to a call port. The solution here also serves
as a key ingredient of the Newtonian method for approximating the termination
super-operators for general RQMCs in Sec 6.

Note that in the worst case, O(d4) complex numbers are needed to represent a
super-operator on a d-dimensional Hilbert space (maximally d2 Kraus operators,
each being a d×d matrix). For a RQMC A = (A1, · · · , Ak) over H with dim(H) =
d, we let |A| = |Q|d4 be the size of A. Then we have the following theorem.

Theorem 3. Given a linear RQMC A, we can calculate in time complexity
O(|A|4ξ4) the reachability super-operators Eu,ex for all vertex-exit pairs (u, ex)
from the same component of A.

6 Newtonian Method for Approximating Termination
Super-Operators of General RQMCs

As our RQMC model includes classical RMCs as a subset, we cannot hope to
have a finite method to solve termination problem for general RQMCs, and an
approximate algorithm is the only possibility. Kleene’s method (Theorem 1 of
this paper) has already provided a natural way for the approximation, but as
pointed out in [9] and [7], it normally has a very slow convergence rate, and an
extension of Newtonian method can be employed to give a faster approximation,
both for RMCs and for equations over ω-continuous semirings. In this section,
we are going to explore the possibility of extending this method to approximate
termination super-operators for general RQMCs. Note that the technique pro-
posed in [7] cannot be applied directly because there the coefficient domain is
required to be an ω-continuous semiring in which every ω-chain has a supremum.
The set of super-operators, although being a semiring, is not ω-continuous, and
it seems impossible to simply add an extra element to make it ω-continuous, just
like what we did for the semiring of nonnegative real numbers.

However, as S1(H)|X̃| is a complete partially ordered set, and the system of

equations which concerns us is a continuous map from S1(H)|X̃| to itself, it is
possible to adapt the Newtonian program analysis for our purpose.

Recall that for a polynomial f over S1(H) and X ∈ X̃, the differential of f
with respect to X at the point v is the mapping DXf |v : V → S1(H) inductively
defined as [7]:

DXf |v(w) =

⎧⎪⎪⎨⎪⎪⎩
0H, if f ∈ S1(H) or f ∈ X̃\{X};
wX , if f = X ;
DXg|v(w)h(v) + g(v)DXh|v(w), if f = gh;∑

iDXfi|v(w), if f =
∑

i fi.

The differential of f at v ∈ V is the function Df |v =
∑

X∈X̃ DXf |v, and the
differential of a vector f of polynomials is defined as the function Df |v : V → V
such that (Df |v(w))X = DfX |v(w).
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Definition 6. Let f : V → V be a vector of polynomials. For i ≥ 0, the ith New-
ton approximant v(i) of μf is inductively defined by v(0) = f(0H) and v(i+1) =
v(i) + Δ(i), where Δ(i) is the least solution of

Df |v(i)(X) + δ(i) = X (1)

and δ(i) is the (unique) valuation satisfying f(v(i)) = v(i) + δ(i).

The sequence (v(i))i∈N in the previous definition is called the Newton sequence
of f , and its well-definedness is guaranteed by the following theorem.

Theorem 4. For any vector of polynomial over S1(H), Newton sequence exists
and is unique.

Finally, we can show that compared with Kleene’s method, the Newton sequence
performs better in approximating the least fixed point for a given vector of
polynomials.

Theorem 5. Let f be a vector of polynomials with the Newton sequence (v(i))i∈N.
Then

(1) for any i, k(i) � v(i) � μf = supj k
(i) where (k(i))i∈N is the Kleene sequence

for f , defined in Theorem 1.
(2) μf = limi→∞ v(i).

Note that for each i ≥ 0, the left hand side of Eq.(1) is a vector of linear
polynomials. The result shown in Sec 5 can be employed to compute its least
fixed point Δ(i). Thus Theorem 5 indeed provides a way to approximate the
termination super-operators for any RQMCs.

7 Computing Reachable Subspaces for General RQMCs

The problem of computing reachability super-operators is very hard for general
RQMCs, and the last section is devoted to a Newtonian method for approximat-
ing them. In this section, we turn to a simplified version of this problem which
is of special interest in safety analysis: instead of calculating the exact form of
reachability super-operators, we are concerned with the support subspaces of
them. Here the support subspace of a super-operator E ∈ S(H) with the Kraus
operators {Ei : i ∈ I} is defined to be supp(E) = span{Ei : i ∈ I}. It turns out
that this simplified problem can be solved in polynomial time.

We first show that the support subspaces of the least fixed-point for a vector
of polynomials can be calculated with at most |X̃|d2 Kleene iterations. The idea
is similar to [21].

Lemma 3. Let f be a vector of polynomials over S1(H), and k(0),k(1), · · · the

Kleene sequence of f defined in Theorem 1. Then for any X ∈ X̃, supp[(μf)X ] =

supp[(k(n))X ] for some n ≤ |X̃ |d2, where d = dim(H) is the dimension of H.
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Algorithm 1. Computing the support subspaces of the least fixed-point
for a vector of polynomials

Input : A vector of polynomials f = {fX =
∑

i∈IX
mX

i : X ∈ X̃} with

mX
i = EX,i

0 Y X,i
0 · · · EX,i

ki−1Y
X,i
ki−1E

X,i
ki

.

Output: An orthonormal basis BX of supp[(μf)X ] for each X ∈ X̃.

for X ∈ X̃ do
set of matrices BX ← ∅;
integer nX ← 0;

end

for j = 1 : |X̃ |d2 do

for X ∈ X̃ do
n′
X ← nX ;

for i ∈ IX do

for E0 ∈ EX,i
0 , B0 ∈ B

Y
X,i
0

, · · · , Eki ∈ EX,i
ki

do

C ← E0B0 · · ·Eki−1Bki−1Eki ; (**)
(*Gram-Schmidt orthonormalization*)
C ← C −

∑
B∈BX

tr(B†C)B;

if C �= 0 then
nX ← nX + 1;

BX ← BX ∪ {C/tr(C†C)};
end

end

end

end
if nX = n′

X for all X then

return {BX : X ∈ X̃}
end

end

Algorithm 1 implements Lemma 3 where for each X , i, and j, the super-operator
EX,i
j is given by the set of its Kraus operators. The termination of Algorithm 1

follows directly from Lemma 3, and the correctness is guaranteed by the following
Lemma.

Lemma 4. For any E ,F ∈ S(H), if E = {Ei : i ∈ I} and B is an orthonormal
basis of supp(F), then supp(EF) = span{EiB : i ∈ I, B ∈ B} and supp(FE) =
span{BEi : i ∈ I, B ∈ B}.
As the number of Kraus operators for a super-operator on H can be assumed to
be no more than d2, we have |IX | ≤ d2 for each X . Then the time complexity
of Algorithm 1 is calculated as

|X̃|d2 ·
∑
X∈X̃

∑
i∈IX

∑
E0∈EX,i

0 ,··· ,Eki
∈EX,i

ki

d3(2ki + 1) = O(|X̃ |2kd4k+9) (2)

where k = max{ki} is the maximum degree of the monomials in f .
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Observe that from Definition 5, in the system of equations corresponding to
a given RQMC A, each nontrivial polynomial fu,ex has the simple form

∑
iXiEi

or
∑

iXiYi. That means at the line (**) in Algorithm 1, only two matrix multi-
plications are needed; thus the innermost for-loop takes time O(d2 ·d2 ·d3). Con-

sequently, for RQMC A the complexity in Eq.(2) can be refined as O(|X̃ |2d11).

Noting again that |A| = |Q|d4 and |X̃| ≤ |Q|ξ, we immediately obtain the fol-
lowing theorem.

Theorem 6. Given a RQMC A, we can compute in time O(|A|2ξ2d3) an or-
thonormal basis of supp(Eu,ex) for all vertex-exit pairs (u, ex) from the same
component of A, where d = dim(H) is the dimension of H.

To conclude this section, we would like to point out the implication of our result
here for classical RMCs, which correspond to the case of d = 1. Note that a 1-
dimensional Hilbert space H has only two subspaces: 0-dimensional subspace {0}
and H itself. Computing the support subspace of a reachability super-operator
Eu,ex is equivalent to determining if ex is reachable from u. Thus our algorithm
indeed solves the (qualitative) reachability problem for classical RMCs in time
O(|A|2ξ2). Note that the same problem has been proven in [2] to be decidable in
time O(|A|θξ) where θ = maxi∈{1,...,k} min{|Eni|, |Exi|} is the maximum, over
all components, of the minimum of the number of entry nodes and the number
of exit nodes.

8 Conclusion and Future Work

In this paper, the notion of quantum recursive Markov chain is defined, and
fundamental problems such as reachability and termination, characterised by
the accumulated super-operators along certain paths of the underlying QMCs,
are identified. For linear QRMCs, we show that the reachability problem can
be solved in polynomial time. For general case, we are able to approximate the
reachability super-operators for all vertex-exit pairs by adapting the technique
of Newtonian program analysis [7], or compute the support subspaces of them
in polynomial time.

We note that our algorithm in Theorem 3 for linear RQMCs is based on the
Jordan decomposition for matrices. Although Jordan decomposition is not very
expensive in theory - it takes O(n4) time to decompose an n × n matrix, in
practice it is not numerically stable thus usually is avoided. For future work we
are going to exploit other more stable ways to deal with this problem.

Acknowledgement. This work was partially supported by Australian Research
Council (grant numbers DP110103473, DP130102764, and FT100100218). The
authors are also supported by the Overseas Team Program of Academy of Math-
ematics and Systems Science, Chinese Academy of Sciences.



396 Y. Feng, N. Yu, and M. Ying

References

1. Accardi, L.: Nonrelativistic quantum mechanics as a noncommutative Markov pro-
cess. Advances in Mathematics 20(3), 329–366 (1976)

2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Transactions on Programming Lan-
guages and Systems 27(4), 786–818 (2005)

3. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220.
Springer, Heidelberg (2001)

4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Tele-
porting an unknown quantum state via dual classical and EPR channels. Physical
Review Letters 70, 1895–1899 (1993)

5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle opera-
tors on Einstein-Podolsky-Rosen states. Physical Review Letters 69(20), 2881–2884
(1992)

6. Breuer, H., Petruccione, F.: The theory of open quantum systems. Oxford Univer-
sity Press, New York (2002)

7. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. Journal of
the ACM 57(6), 33 (2010)

8. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. In: IEEE Symposium on Logic in Computer Science (LICS 2004), pp.
12–21 (July 2004)

9. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM 56(1), 1 (2009)

10. Faigle, U., Schönhuth, A.: Discrete Quantum Markov Chains.
Arxiv.org/abs/1011.1295 (2010)

11. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. Journal of
Computer and System Sciences 79, 1181–1198 (2013)

12. Gudder, S.: Quantum Markov chains. Journal of Mathematical Physics 49(7),
072105, 14 (2008)

13. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum The-
ory. Springer, Berlin (1983)

14. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton
University Press, Princeton (1955)

15. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cam-
bridge University Press (2000)

16. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527–586 (2004)

17. Steel, A.: A new algorithm for the computation of canonical forms of matrices over
fields. Journal of Symbolic Computation 24(3-4), 409–432 (1997)

18. Watrous, J.: Lecture Notes on Theory of Quantum Information (2011),
https://cs.uwaterloo.ca/~watrous/CS766/

19. Ying, M., Li, Y., Yu, N., Feng, Y.: Model-Checking Linear-Time Properties of
Quantum Systems. Arxiv.org/abs/1101.0303. Submitted to ACM Transactions on
Computational Logic (revised)

20. Ying, M., Yu, N., Feng, Y., Duan, R.: Verification of Quantum Programs. Science
of Computer Programming 78, 1679–1700 (2013)

21. Yu, N., Ying, M.: Reachability and Termination Analysis of Concurrent Quantum
Programs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 69–83. Springer, Heidelberg (2012)

https://cs.uwaterloo.ca/~watrous/CS766/


Ordering Metro Lines by Block Crossings
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Abstract. A problem that arises in drawings of transportation networks is to
minimize the number of crossings between different transportation lines. While
this can be done efficiently under specific constraints, not all solutions are visu-
ally equivalent. We suggest merging crossings into block crossings, that is, cross-
ings of two neighboring groups of consecutive lines. Unfortunately, minimizing
the total number of block crossings is NP-hard even for very simple graphs. We
give approximation algorithms for special classes of graphs and an asymptotically
worst-case optimal algorithm for block crossings on general graphs.

1 Introduction

In many metro maps and transportation networks some edges, that is, railway track or
road segments, are used by several lines. To visualize such networks, lines that share an
edge are drawn individually along the edge in distinct colors. Often, some lines must
cross, and it is desirable to draw the lines with few crossings. The metro-line crossing
minimization problem has recently been introduced [4]. The goal is to order the lines
along each edge such that the number of crossings is minimized. So far, the focus has
been on the number of crossings and not on their visualization, although two line orders
with the same crossing number may look quite differently; see Fig. 1.

Our aim is to improve the readability of metro maps by computing line orders that
are aesthetically more pleasing. To this end, we merge pairwise crossings into crossings
of blocks of lines minimizing the number of block crossings in the map. Informally, a
block crossing is an intersection of two neighboring groups of consecutive lines sharing
the same edge; see Fig. 1(b). We consider two variants of the problem. In the first
variant, we want to find a line ordering with the minimum number of block crossings.
In the second variant, we want to minimize both pairwise and block crossings.

Problem Definition. The input consists of an embedded graph G = (V,E), and a set
L = {l1, . . . , l|L|} of simple paths inG. We callG the underlying network and the paths

(a) (b)

Fig. 1. Optimal orderings of a metro network: (a) 12 pairwise crossings; (b) 3 block crossings
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lines. The nodes of G are stations and the endpoints v0, vk of a line (v0, . . . , vk) ∈ L
are terminals. For each edge e = (u, v) ∈ E, let Le be the set of lines passing through e.
For i ≤ j < k, a block move (i, j, k) on the sequence π = [π1, . . . , πn] of lines on e is
the exchange of two consecutive blocks πi, . . . , πj and πj+1, . . . , πk. We are interested
in line orders π0(e), . . . , πt(e)(e) on e, so that π0(e) is the order of lines Le on e close
to u, πt(e)(e) is the order close to v, and each πi(e) is an ordering of Le so that πi+1(e)
is constructed from πi(e) by a block move. We say that there are t block crossings on e.

(a)

(b)

Fig. 2. Consistent line or-
ders (a) without, (b) with an
unavoidable vertex crossing

Following previous work [1,13], we use the edge cross-
ings model, that is, we do not hide crossings under station
symbols if possible. Two lines sharing at least one common
edge either do not cross or cross each other on an edge but
never in a node; see Fig. 2(a). For pairs of lines sharing a
vertex but no edges, crossings at the vertex are allowed and
not counted as they exist in any solution. We call them un-
avoidable vertex crossings; see Fig. 2(b). If the line orders
on the edges incident to a vertex v produce only edge cross-
ings and unavoidable vertex crossings, we call them consis-
tent in v. Line orders for all edges are consistent if they are
consistent in all nodes. More formally, we can check consis-
tency of line orders in a vertex v by looking at each incident
edge e. Close to v the order of lines Le on e is fixed. The
other edges e1, . . . , ek incident to v contain lines ofLe. The
combined order of Le on the edges e1, . . . , ek must be the
same as the order on e; otherwise, lines of Le would cross
in v. The block crossing minimization problem (BCM) is defined as follows.

Problem 1 (BCM). Let G = (V,E) be an embedded graph and let L be a set of lines
on G. For each edge e ∈ E, find line orders π0(e), . . . , πt(e)(e) such that the total
number of block crossings,

∑
e∈E t(e), is minimum and the line orders are consistent.

In this paper, we restrict our attention to instances with two additional properties. First,
any line terminates at nodes of degree one and no two lines terminate at the same node
(path terminal property). Second, the intersection of two lines, that is, the edges and
vertices they have in common, forms a path (path intersection property). This includes
the cases that the intersection is empty or a single node. If both properties hold, a pair of
lines either has to cross, that is, a crossing is unavoidable, or it can be kept crossing-free,
that is, a crossing is avoidable. The orderings that are optimal with respect to pairwise
crossings are exactly the orderings that contain just unavoidable crossings (Lemma 2
in [13]); that is, any pair of lines crosses at most once, in an equivalent formulation.
As this is a very reasonable condition also for block crossings, we use it to define the
monotone block crossing minimization problem (MBCM) whose feasible solutions must
have the minimum number of pairwise crossings.

Problem 2 (MBCM). Given an instance of BCM, find a feasible solution that minimizes
the number of block crossings subject to the constraint that no two lines cross twice.

On some instances BCM does allow fewer crossings than MBCM does; see Fig. 3.
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Table 1. Overview of our results for BCM and MBCM

graph class BCM MBCM

single edge 11/8-approximation [7] 3-approximation Sec. 2
path 3-approximation Sec. 3 3-approximation [9]
tree ≤ 2|L| − 3 crossings Sec. 4 ≤ 2|L| − 3 crossings Sec. 4
upward tree — 6-approximation Sec. 4
general graph O(|L|

√
|E|) crossings Sec. 5 O(|L|

√
|E|) crossings Sec. 5

Our Contribution. We introduce the new problems BCM and MBCM. To the best of
our knowledge, ordering lines by block crossings is a new direction in graph drawing.
So far BCM has been investigated only for the case that the skeleton, that is, the graph
without terminals, is a single edge [2], while MBCM is a completely new problem.

We first analyze MBCM on a single edge (Sec. 2), exploiting, to some extent, the
similarities to sorting by transpositions [2]. Then, we use the notion of good pairs of
lines, that is, lines that should be neighbors, for developing an approximation algorithm
for BCM on graphs whose skeleton is a path (Sec. 3); we properly define good pairs
so that changes between adjacent edges are taken into account. Yet, good pairs can not
always be kept close; we introduce a good strategy for breaking pairs when needed.

Unfortunately, the approximation algorithm does not generalize to trees. We do, how-
ever, develop a worst-case optimal algorithm for trees (Sec. 4). It needs 2|L| − 3 block
crossings and there are instances in which this number of block crossings is necessary in
any solution. We then use our algorithm for obtaining approximate solutions for MBCM
on the special class of upward trees.

As our main result, we develop an algorithm for obtaining a solution for (M)BCM on
general graphs (Sec. 5). We show that it uses only monotone block moves and analyze
the upper bound on the number of block crossings. While the algorithm itself is simple
and easy to implement, proving the upper bound is non-trivial. We also show that our
algorithm is asymptotically worst-case optimal. Table 1 summarizes our results.

Related Work. Line crossing problems in transportation networks were initiated by
Benkert et al. [4], who considered the problem of metro-line crossing minimization
(MLCM) on a single edge. MLCM in its general model is challenging; its complex-
ity is open and no efficient algorithms are known for the case of two or more edges.
Bekos et al. [3] addressed the problem on paths and trees. They also proved that a variant
in which all lines must be placed outermost in their terminals is NP-hard. Subsequently,
Argyriou et al. [1] and Nöllenburg [13] devised polynomial-time algorithms for general
graphs with the path terminal property. A lot of recent research, both in graph drawing
and information visualization, is devoted to edge bundling where some edges are drawn
close together—like metro lines—which emphasizes the structure of the graph [14].
Pupyrev et al. [14] studied MLCM in this context and suggested a linear-time algorithm
for MLCM on instances with the path terminal property. All these works are dedicated
to pairwise crossings; the optimization criterion being the number of crossing pairs of
lines.
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A closely related problem arises in VLSI design, where the goal is to minimize inter-
sections between nets (physical wires) [10,12]. Net patterns with fewer crossings most
likely have better electrical characteristics and require less wiring area; hence, it is an
important optimization criterion in circuit board design. Marek-Sadowska and Sarrafza-
deh [12] considered not only minimizing the number of crossings, but also suggested
distributing the crossings among circuit regions in order to simplify net routing.

BCM on a single edge is equivalent to the problem of sorting a permutation by
block moves, which is well studied in computational biology for DNA sequences; it
is known as sorting by transpositions [2,6]. The task is to find the shortest sequence
of block moves transforming a given permutation into the identity permutation. The
complexity of the problem was open for a long time; only recently it has been shown
to be NP-hard [5]. The currently best known algorithm has an approximation ratio
of 11/8 [7]; no tight upper bound is known. There are several variants of sorting by
transpositions; see the survey of Fertin et al. [8]. For instance, Vergara et al. [11] used
correcting short block moves to sort a permutation. In our terminology, these are mono-
tone moves such that the combined length of exchanged blocks does not exceed three.
Hence, their problem is a restricted variant of MBCM on a single edge; its complexity is
unknown.

2 Block Crossings on a Single Edge

First, we restrict our attention to networks consisting of a single edge with multiple lines
passing through it. BCM then can be reformulated as follows. Given two permutationsπ
and τ (determined by the order of terminals on both sides of the edge), find the shortest
sequence of block moves transforming π into τ . By relabeling we can assume that τ is
the identity permutation, and the goal is to sort π. This problem is known as sorting by
transpositions [2]. We concentrate on the new problem of sorting with monotone block
moves; that means that the relative order of any pair of elements changes at most once.
The problems are not equivalent; see Fig.3 for an example where non-monotonicity
allows fewer crossings. In what follows, we give lower and upper bounds on the number
of block crossings for MBCM on a single edge. Additionally, we present a simple 3-
approximation algorithm for the problem.

3 2 5 4 1

1 2 3 4 5

3 2 5 4 1

1 2 3 4 5

Fig. 3. Permutation [3 2 5 4 1]
is sorted with 2 block moves
and 3 monotone block moves

We first introduce some terminology following the
one from previous works where possible. Let π =
[π1, . . . , πn] be a permutation of n elements. For con-
venience, we assume there are extra elements π0 =
0 and πn+1 = n + 1 at the beginning of the per-
mutation and at the end, respectively. A block in π
is a sequence of consecutive elements πi, . . . , πj with
i ≤ j. A block move (i, j, k) with i ≤ j <
k on π maps [. . . πi−1πi . . . πjπj+1 . . . πkπk+1 . . . ] to
[. . . πi−1πj+1 . . . πkπi . . . πjπk+1 . . . ]. We say that a
block move (i, j, k) is monotone if πq > πr for all
i ≤ q ≤ j < r ≤ k. We denote the minimum number
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of monotone block moves needed to sort π by bc(π). An ordered pair (πi, πi+1) is a
good pair if πi+1 = πi + 1, and a breakpoint otherwise. Intuitively, sorting π is a pro-
cess of creating good pairs (or destroying breakpoints) by block moves. A permutation
is simple if it has no good pairs. Any permutation can be uniquely simplified—by glue-
ing good pairs together and relabeling—without affecting its distance to the identity
permutation [6]. A breakpoint (πi, πi+1) is a descent if πi > πi+1, and a gap otherwise.
We use bp(π), des(π), and gap(π) to denote the number of breakpoints, descents, and
gaps in π. The inverse of π is the permutation π−1 in which each element and the index
of its position are exchanged, that is, π−1

πi
= i for 1 ≤ i ≤ n. A descent in π−1, that is, a

pair of elements πi = πj + 1 with i < j, is called an inverse descent in π. Analogously,
an inverse gap is a pair of elements πi = πj + 1 with i > j + 1. Now, we give lower
and upper bounds for MBCM.

A lower bound. It is easy to see that a block move affects three pairs of adjacent ele-
ments. Therefore the number of breakpoints can be reduced by at most three in a move.
As only the identity permutation has no breakpoints, this implies bc(π) ≥ bp(π)/3 for
a simple permutation [2]. The following observations yield better lower bounds.

Lemma 1. In a monotone block move, the number of descents in a permutation de-
creases by at most one, and the number of gaps decreases by at most two.

Proof. Consider a monotone move [. . . ab . . . cd . . . ef . . . ] ⇒ [. . . ad . . . eb . . . cf . . . ];
it affects three adjacencies. Suppose a descent is destroyed between a and b, that is,
a > b and a < d. Then, b < d contradicting monotonicity. Similarly, no descent can
be destroyed between e and f . Since c > d, no gap can be destroyed between c and d.

��

Lemma 2. In a monotone block move, the number of inverse descents decreases by at
most one, and the number of inverse gaps decreases by at most two.

Proof. Consider a monotone exchange of blocks πi, . . . , πj and πj+1, . . . , πk. Note
that inverse descents can only be destroyed between elements πq (i ≤ q ≤ j) and πr
(j + 1 ≤ r ≤ k). Suppose that the move destroys two inverse descents such that the
first block contains elements x + 1 and y + 1, and the second block contains x and y.
Since the block move is monotone, y + 1 > x and x+ 1 > y, which means that x = y.

On the other hand, there cannot be inverse gaps between elements πq (i ≤ q ≤ j)
and πr(j + 1 ≤ r ≤ k). Therefore, there are only two possible inverse gaps between
πi−1 and πr(j < r ≤ k), and between πq(i ≤ q ≤ j) and πk+1. ��

Theorem 1. A lower bound on the number of monotone block moves needed to sort a
permutation is bc(π) ≥ max(des(π), gap(π)/2, des(π−1), gap(π−1)/2).

An upper bound. We suggest a simple algorithm for sorting a simple permutation π: In
each step find the smallest i such that πi �= i and move element i to position i, that is,
exchange block πi, . . . , πk−1 and πk, where πk = i. Clearly, the step destroys at least
one breakpoint. Therefore bc(π) ≤ bp(π) and the algorithm yields a 3-approximation.

Theorem 2. There exists an O(n2)-time 3-approximation algorithm for MBCM on a
single edge.
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3 Block Crossings on a Path

Now we consider an embedded graph G = (V,E) consisting of a path P = (VP , EP )
with attached terminals. In every node v ∈ VP the clockwise order of terminals adjacent
to v is given, and we assume the path is oriented from left to right. We say that a line l
starts at v if v is the leftmost vertex on P that lies on l and ends at its rightmost vertex
of the path. As we consider only crossings of lines sharing an edge, we assume that the
terminals connected to any path node v are in such an order that first lines end at v and
then lines start at v; see Fig. 5.

We suggest a 3-approximation algorithm for BCM. Similar to the single edge case,
the basic idea of the algorithms is to consider good pairs of lines. A good pair is, in-
tuitively, an ordered pair of lines that will be adjacent—in this order—in any feasible
solution when one of the lines ends. We argue that our algorithm creates at least one
additional good pair per block crossing, while even the optimum creates at most three
new good pairs per crossing. To describe our algorithm we first define good pairs.

Definition 1 (Good pair).
(i) If two lines a and b end on the same node, and a and b are consecutive in clockwise

order, then (a, b) is a good pair (as it is in the case of a single edge in Sec. 2).
(ii) Let v be a node with edges (u, v) and (v, w) on P , let a1 be the first line starting

on v aboveP , and let a2 be the last line ending on v above P as in Fig. 4. If (a1, b)
is a good pair, then (a2, b) also is a good pair. We say that (a2, b) is inherited from
(a1, b), and identify (a1, b) with (a2, b), which is possible as a1 and a2 do not
share an edge. Analogously, there is inheritance for lines starting/ending below P .

b

a1

a2

v

Fig. 4. Inheritance of a good
pair above node v

As a preprocessing step, we add a virtual line te (be) for
each edge e ∈ EP . The line te (be) is the last line starting
before e, and the first line ending after e to the top (bottom).
Although virtual lines are never moved, te (be) does partic-
ipate in good pairs, which model the fact that the first lines
ending after an edge should be brought to the top (bottom).

There are important properties of good pairs (see full ver-
sion for proofs [9]). On an edge e ∈ EP there is, for each
line l, at most one good pair (l′, l) and at most one good
pair (l, l′′). If e ∈ EP is the last edge before line l ends to the top (bottom), then there
exists a good pair (l′, l) ((l, l′′)) on e.

In what follows, we say that a solution (or algorithm) creates a good pair in a block
crossing if the two lines of the good pair are brought together in the right order by that
block crossing; analogously, we speak of breaking good pairs. It is easy to see that any
solution, especially an optimal one, has to create all good pairs, and a block crossing can
create at most three new pairs. There are only two possible ways for creating a good
pair (a, b): (i) a and b start at the same node consecutively in the right order, that is,
they form an initial good pair, or (ii) a block crossing brings a and b together. Similarly,
good pairs can only be destroyed by crossings before both lines end.

Using good pairs, we formulate our algorithm as follows; see Fig. 5 for an example.
We follow P from left to right. On an edge e = (u, v) there are red lines that end at

v to the top, green lines that end at v to the bottom, and black lines that continue on the
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e

Fig. 5. Ordering the lines on edge e in a step
of the algorithm

e l

a
c

b
a

Fig. 6. The (necessary) insertion of line l forces
breaking the good pair (a, b) (≡ (a, c)) on edge e

next edge. We bring the red lines in the right order to the top by moving them upwards.
Doing so, we keep existing good pairs together. If a line is to be moved, we consider
the lines below it consecutively. As long as the current line forms a good pair with the
next line, we extend the block that will be moved. We stop at the first line that does not
form a good pair with its successor. Finally we move the whole block of lines linked
by good pairs in one block move to the top. Next, we bring the green lines in the right
order to the bottom, again keeping existing good pairs together. There is an exception,
where one good pair on e cannot be kept together. If the moved block is a sequence of
lines containing both red and green lines, and possibly some—but not all—black lines,
then it has to be broken; see Fig. 6. Note that this can only happen in the last move on
an edge. There are two cases:

(i) A good pair in the sequence contains a black line and has been created by the
algorithm previously. We break the sequence at this good pair.

(ii) All pairs with a black line are initial good pairs, that is, were not created by a
crossing. We break at the pair that ends last of these. Inheritance is also considered, that
is, a good pair ends only when the last of the pairs that are linked by inheritance ends.

After an edge has been processed, the lines ending to the top and to the bottom are
on their respective side in the right relative order. Hence, our algorithm produces a
feasible solution. We show that it produces a 3-approximation for the number of block
crossings. A key property is that our strategy for case (ii) is optimal (see full version for
the proof [9]).

Theorem 3. Let bcalg and OPT be the number of block crossings created by the algo-
rithm and an optimal solution, respectively. Then, bcalg ≤ 3 OPT.

The algorithm needs O(|L|(|L| + |EP |)) time. Note that it does normally not pro-
duce orderings with monotone block crossings. It can be turned into a 3-approximation
algorithm for MBCM. To this end, the definition of inheritance of good pairs, as well
as the step of destroying good pairs is adjusted (see full version [9]).

Theorem 4. There existO(|L|(|L|+|EP |))-time 3-approximation algorithms for BCM
and MBCM on a path.

4 Block Crossings on Trees

In what follows we focus on instances of (M)BCM that are trees. We first give an
algorithm that bounds the number of block crossings. Then, we consider trees with an
additional constraint on the lines; for these we develop a 6-approximation for MBCM.
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Theorem 5. For any tree T and lines L on T , we can order the lines with at most
2|L| − 3 monotone block crossings in O(|L|(|L| + |E|)) time.

Proof. We give an algorithm in which paths are inserted one by one into the current
order; for each newly inserted path we create at most 2 monotone block crossings. The
first line cannot create a crossing, and the second line crosses the first one at most once.

u v

a

b
c

Fig. 7. Insertion of a new
line (red, fat) into the cur-
rent order on edges (v, a)
and (v, b)

We start at an edge (u, v) incident to a terminal. When pro-
cessing the edge the pathsLuv are already in the correct order;
they do not need to cross on yet unprocessed edges of T . We
consider all unprocessed edges (v, a), (v, b), . . . incident to
v and build the correct order for them. The relative order of
lines also passing through (u, v) is kept unchanged. For all
lines passing through v that were not treated before, we apply
an insertion procedure; see Fig. 7. Consider, e.g., the inser-
tion of a line passing through (v, a) and (v, b). Close to v we
add l on both edges at the innermost position such that we do
not get vertex crossings with lines that pass through (v, a) or
(v, b). We find its correct position in the current order of lines
Lva close to a, and insert it using one block crossing. This
crossing will be the last one on (v, a) going from v to a. Similarly, l is inserted into
Lvb. We have to make sure that lines that do not have to cross are inserted in the right
order. As we know the right relative order for a pair of such lines we can make sure that
the one that has to be innermost at node v is inserted first. Similarly, by looking at the
clockwise order of edges around v, we know the right order of line insertions such that
there are no avoidable vertex crossings. When all new paths are inserted the orders on
(v, a), (v, b), . . . are correct; we proceed by recursively processing these edges.

When inserting a line, we create at most 2 block crossings, one per edge of l incident
to v. After inserting the first two lines into the drawing there is at most one crossing.
Hence, we get at most 2|L|−3 block crossings in total. Suppose monotonicity would be
violated, that is, there is a pair of lines that crosses twice. The crossings then have been
introduced when inserting the second of those lines on two edges incident to a node v.
This can, however, not happen, as at node v the two edges are inserted in the right order.
Hence, the block crossings of the solution are monotone. ��
While the upper bound that our algorithm yields is tight (see full version [9]), it does
not guarantee an approximation. Next, we introduce an additional constraint on the
lines, which helps us to approximate the minimum number of block crossings.

Upward Trees. We consider MBCM on an upward tree T , that is, a tree that has a
planar upward drawing in which all paths are monotone in vertical direction, and all
path sources are on the same height as well as all path sinks; see Fig. 8. Note that a
graph whose skeleton is a path is not necessarily an upward tree. Our algorithm consists
of three steps. First, we perform a simplification step removing some lines. Second, we
use the algorithm for trees given in Sec. 4 on a simplified instance. Finally, we reinsert
the removed lines into the constructed order. We first analyze the upward embedding.

Given an upward drawing of T , we read a permutation π produced by the terminals
on the top; we assume that the terminals produce the identity permutation on the bottom.
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1 4 5 2 6 3

1 4 52 63

1 4,5 2 6 3

1 4,52 63

1 4,5 2 6 3

1 4,52 63

1 4 5 2 6 3

1 4 52 63

(a) (b) (c)

Fig. 8. Algorithm for upward trees: (a) simplification, (b) line ordering, (c) reinsertion

Similar to the single edge case the goal is to sort π by a shortest sequence of block
moves. Edges of T restrict some block moves on π; e.g., the blocks 1 4 and 5 in Fig. 8
cannot be exchanged as there is no suitable edge. However, we can use the lower bound
for block crossings on a single edge, see Sec. 2: For sorting a simple permutation π, at
least bp(π)/3 block moves are necessary. We stress that simplicity of π is crucial here.
To get an approximation, we show how to simplify a tree.

Consider two non-intersecting paths a and b that are adjacent in both permutations
and share a common edge. We prove that one of these paths can be removed without
changing the optimal number of block crossings. First, if any other line c crosses a then
it also crosses b (i). This is implied by planarity and y-monotonicity of the drawing. Sec-
ond, if c crosses both a and b then all three paths share a common edge (ii); otherwise,
there would be a cycle due to planarity. Hence, for any solution for the paths L − {b},
we can construct a solution for L by inserting b without any new block crossing. To
insert b, we must first move all block crossings on a to the common subpath with b.
This is possible due to observation (ii). Finally, we can place b parallel to a.

To get a 6-approximation for an upward tree T , we first remove lines until the tree is
simple. Then we apply the insertion algorithm presented in Sec. 4, and finally reinsert
the lines removed in the first step. The number of block crossings is at most 2|L′|, where
L′ is the set of lines of the simplified instance. As an optimal solution has at least |L′|/3
block crossings for this simple instance, and reinserting lines does not create new block
crossings, we get the following theorem.

Theorem 6. The algorithm yields a 6-approximation for MBCM on upward trees.

5 Block Crossings on General Graphs

Finally, we consider general graphs. We suggest an algorithm that achieves an upper
bound on the number of block crossings and show that it is asymptotically worst-case
optimal. Our algorithm uses monotone block moves, that is, each pair of lines crosses
at most once. The algorithm works on any embedded graph; it does not even need to be
planar, we just need to know the circular order of incident edges around each vertex.

The idea of our algorithm is simple. We go through the edges in some arbitrary order,
similar to previous work on standard metro-line crossing minimization [1,13]. When we
treat an edge, we completely sort the lines that traverse it. A crossing between a pair of
lines can be created on the edge only if this edge is the first one treated by the algorithm
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e

(a)

e

(b)

Fig. 9. Sorting the lines on edge e. (a) Cutting edges (marked) define groups. The lines marked
in gray are merged as they are in the same group on both sides. (b) Sorting by insertion into the
largest group (red, fat); the merged lines always stay together, especially in their block crossing.

that is used by both lines of the pair; see Algorithm 1. The crucial part is sorting the
lines on an edge. Suppose we currently deal with edge e and want to sort Le. Due to the
path intersection property, the edge set used by the lines in Le forms a tree on each side
of e; see Fig. 9. We cut these trees at those edges that have already been processed by
our algorithm. Now, each line on e starts at a leaf on one side and ends at a leaf on the
other side. Note that multiple lines can start or end at the same leaf.

From the tree structure and the orderings on the edges processed previously, we get
two orders of the lines, one on each side of e. We consider groups of lines that start
or end at a common leaf of the tree (like the red lines in Fig. 9). All lines of a group
have been seen on a common edge, and, hence, have been sorted. Therefore lines of
the same group form a consecutive subsequence on one side of e, and have the same
relative order on the other side of e.

Let g and g′ be a group of lines on the left and on the right side of e, respectively.
Suppose the set L′ of lines starting in g and ending in g′ consists of multiple lines. As
the lines of g as well as the lines of g′ stay parallel on e, L′ must form a consecutive sub-
sequence (in the same order) on both sides. Now we merge L′ into one representative,
that is, we remove all lines of L′ and replace them by a single line that is in the position
of the lines of L′ on the sequences on both sides of e. Once we find a solution, we
replace the representative by the sequence without changing the number of block cross-
ings. Consider a crossing that involves the representative of L′, that is, it is part of one
of the moved blocks. After replacing it, the sequence L′ of parallel lines is completely
contained in the same block. Hence, we do not need additional block crossings.

We apply this merging for all pairs of groups on the left and right end ofE. Then, we
identify a group with the largest number of lines after merging, and insert all remaining
lines into it one by one. Clearly, each insertion requires at most one block crossing; in
Fig. 9 we need three block crossings to insert the lines into the largest (red) group. After
computing the crossings, we undo the merging step and get a solution for edge e.

foreach edge e with |Le| > 1 do
Build order of lines on both sides of e
Merge lines that are in the same group on both sides
Find the largest group of consecutive lines that stay parallel on e
Insert all other lines into this group and undo merging

Algorithm 1. Ordering the lines on a graph
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Theorem 7. Algorithm 1 sorts all lines in O(|E|2|L|) time by monotone block moves.
The resulting number of block crossings is O(|L|

√
|E′|), where E′ is the set of edges

with at least two lines on them.

Proof. First, it is easy to see that no avoidable crossings are created, due to the path
intersection property. Additionally, we care about all edges with at least two lines, which
ensures that all unavoidable crossings will be placed. Hence, we get a feasible solution
using monotone crossings. Our algorithm sorts the lines on an edge in O(|L||E|) time.
We can build the tree structure and find the orders and groups by following all lines until
we find a terminal or an edge that was processed before in O(|L||E|) time. Merging
lines and finding the largest group needO(|L|) time; sorting by insertion into this group
and undoing the merging can be done in O(|L|2) time. Note that |L| ≤ |E| due to the
path terminal property.

For analyzing the total number of block crossings, we maintain an information ta-
ble T with |L|2 entries. Initially, all the entries are empty. After processing an edge e in
our algorithm, we fill entries T [l, l′] of the table for each pair (l, l′) of lines that we see
together for the first time. The main idea is that with be block crossings on edge e we
fill at least b2e new entries of T . The upper bound then can be concluded.

More precisely, let the information gain I(e) be the number of pairs of (not neces-
sarily distinct) lines l, l′ that we see together on a common edge e for the first time.
Clearly,

∑
e∈E I(e) ≤ |L|2. Suppose that b2e ≤ I(e) for each edge e. Then,

∑
e∈E b

2
e ≤∑

e∈E I(e) ≤ |L|2. Using the Cauchy-Schwarz inequality |〈x, y〉| ≤
√
〈x, x〉 · 〈y, y〉

with x as the vector of the be and y as a vector of 1-entries, we see that the total number
of block crossings is

∑
e∈E′ be ≤ |L|

√
|E′|.

Let us show that b2e ≤ I(e) for an edge e. We analyze the lines after the merging
step. Consider the groups on both sides of e; we number the groups on the left side
L1, . . . ,Ln and the groups on the right side R1, . . . ,Rm with li = |Li|, rj = |Rj |
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Without loss of generality, we can assume that L1 is
the largest group into which all remaining lines are inserted. Then, be ≤ |Le| − l1.
Let sij be the number of lines that are in group Li on the left side and in group Rj

on the right side of e. Note that sij ∈ {0, 1}, otherwise we could still merge lines.
Then li =

∑
j sij , rj =

∑
i sij , s := |Le| =

∑
ij sij , and be = s − l1. The in-

formation gain is I(e) = s2 −
∑

i l
2
i −

∑
j r

2
j +

∑
ij s

2
ij . Using sij ∈ {0, 1}, it is

easy to see that b2e ≤ I(e). To complete the proof, note that the unmerging step cannot
decrease I(e). ��

In the full version [9] we show that the upper bound that our algorithm achieves is tight
by using the existence of special Steiner systems for building (non-planar) worst-case
examples of arbitrary size in which many block crossings are necessary.

6 Conclusion and Open Problems

We introduced a new variant of the metro-line crossing minimization problem, and pre-
sented algorithms for single edges, paths, trees, and general graphs. The following is a
list of some interesting open problems and future work.
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1. What is the complexity status of MBCM on a single edge?
2. Can we derive an approximation algorithm for (M)BCM on trees and general graphs?
3. For making a metro line easy to follow the important criterion is the number of its

bends. Hence, an interesting question is how to sort metro lines using the minimum
total number of bends.
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Abstract. This paper introduces a class of register machines whose reg-
isters can be updated by polynomial functions when a transition is taken,
and the domain of the registers can be constrained by linear constraints.
This model strictly generalises a variety of known formalisms such as
various classes of Vector Addition Systems with States. Our main result
is that reachability in our class is PSPACE-complete when restricted to
one register. We moreover give a classification of the complexity of reach-
ability according to the type of polynomials allowed and the geometry
induced by the range-constraining formula.

1 Introduction

Register machines are a class of abstract machines comprising a finite-state con-
troller with a finite number of integer-valued registers that can be manipulated
or tested when a transition is taken. A prominent instance are counter machines
due to Minsky [18], which are obtained by restricting registers to range over
the naturals, allowing for addition of integers to the registers along transitions,
and testing registers for zero. A seminal result by Minsky states that counter
machines are Turing powerful in the presence of at least two registers. Decid-
ability can be obtained by further restricting counter machines and disallowing
zero tests, which yields a class of register machines known as Vector Addition
Systems with States (VASS) or Petri nets. Their reachability problem is known
to be decidable and EXPSPACE-hard [17,16].

A number of extensions, generalisations and restrictions of VASS can be found
in the literature. For instance, various extensions that increase the power of
transitions have been studied, including Reset/Transfer (Petri) nets [6], Petri
nets with inhibitory arcs [3], or Affine nets [8] which extend VASS such that
transitions can be any non-decreasing affine function; any of these extensions
lead to undecidability of reachability in the presence of more than one register.
On the other hand, relaxing the domain of the registers of a VASS to the integers,
or restricting VASS to just one register renders reachability NP-complete [12].

� The authors are supported by the French Agence Nationale de la Recherche,
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In summary, we can identify three parameters in which the aforementioned
classes of register machines differ and which impact their expressiveness and the
complexity of reachability: (1) the number of registers available, (2) the shape
of the domain of the registers, and (3) the class of the transition functions used.
In this paper, we generalise (3) and study the decidability and complexity of
reachability when allowing for polynomial functions with integer coefficients to
update register values. To this end, we introduce polynomial register machines
(PRMs), a class of register machines in which the previously mentioned classes of
register machines embed smoothly. Of course, their undecidability results carry
over, but on the positive side we are able to identify a decidable class of PRMs
that is not contained in any of them.

The main result of this paper is to show that reachability in PRMs is PSPACE-
complete when restricted to one register. As a motivating example, consider
the question whether the following loop involving a single register variable x
terminates:

int x := 0
while (x < 5 ) :

x := x∗∗3 − 2x∗∗2 − x + 2

This example is inspired by an example given in [1], and in this example x al-
ternates between 0 and 2, and thus the loop never terminates. In fact, it is not
difficult to see that the loop never terminates for all values x < 3. However
for polynomials of higher degree and loops with a richer control structure, de-
ciding termination becomes non-obvious. Even in dimension one, problems of
this nature can become intriguingly difficult, see e.g. [2] for a discussion on open
problems of this kind. Reachability for non-deterministically applied affine trans-
formations from a finite set in dimension one has been shown to be decidable in
2-EXPTIME by Fremont [9].

There are a number of obstacles making it challenging to show decidability
and complexity results for reachability in PRMs. In some classes of register
machines, semi-linearity of the reachability set can be exploited in order to show
decidability. However, taking a single-state PRM with one self-loop that updates
the only register x with the polynomial p(x) = x2, we see that the reachability
set is not semi-linear. Moreover, the representation of the values that the register
x can take grows exponentially with the number of times the self-loop is taken,
which makes it not obvious how to decide reachability in polynomial space only.

The property that the reachability set is not semi-linear separates languages
generated by PRMs from classes of machines that have semi-linear reachability
sets, such as VASS in dimension one. More interestingly, PRMs can generate
languages that cannot be generated by general VASS, which do also not have
semi-linear reachability sets: the language L = {an2

: n > 0} over the singleton
alphabet {a} can easily be generated by a PRM with two control locations, but
not by any VASS [15].

Besides the aforementioned related work, as indicated by the example above,
work related to ours can be found in the area of program verification. In [1],
Babić et al. describe a semi decision procedure for proving termination of loops
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involving polynomial updates, similar to the one above. Another example is the
work by Bradley et al. [4] which provides a semi decision procedure for so-called
multipath polynomial programs. However, to the best of our knowledge, no sound
and complete algorithm for problems of this kind exists.

Due to space constraints, we had to omit some proof details. An extended ver-
sion of this paper containing the omitted proofs in an appendix can be obtained
from the authors.

2 Preliminaries

Before we formally introduce PRMs, we provide some technical definitions and
known results on elementary algebra and number theory.

2.1 Technical Definitions and Known Results

By N,Z, R and C we denote the naturals, integers, reals and complex numbers,
respectively. All integers in this paper are assumed to be encoded in binary
unless stated otherwise. For z ∈ Z, we denote by sgn z the sign of z, and by
|z| its absolute value. For r1 ≤ r2 ∈ R, we denote by [r1, r2] the closed interval
{r ∈ R : r1 ≤ r ≤ r2}.

By Z[x] we denote the ring of polynomials with integer coefficients over vari-
ables x = (x1, . . . , xn). A polynomial p(x) ∈ Z[x] will be written as p(x) =
anx

n + · · ·+ a1x+ a0, and represented in sparse encoding by a sequence of pairs
(i, ai)i∈I , where I ⊆ {0, . . . , n} contains those indexes for which ai �= 0. Given
z ∈ Z and p(x) in our representation, deciding p(z) > 0 is known to be com-
putable in polynomial time [5]. Given a root c ∈ C of p(x), we will make use of
the following bound from [14] on the magnitude of c:

|c| ≤ 1 +
∑

0≤i<n
|ai/an|. (1)

Recall that for all m > 0, p(a) ≡ p(b) mod m whenever a ≡ b mod m for all
m > 0, i.e. all p(x) ∈ Z[x] are invariant w.r.t. residual classes. Given pairwise
co-prime m1, . . . ,mk > 0 and b1, . . . , bk ∈ Z, the Chinese remainder theorem
states that a system of k linear congruences x ≡ bi mod mi, 1 ≤ i ≤ k has a
unique solution modulo m1m2 · · ·mk. Moreover, recall that the prime number
theorem states that the number π(n) of primes below n grows as π(n) ∼ n/ lnn.
In particular, this implies that O(log n) bits are sufficient to represent the n-th
prime number.

A linear constraint φ(x) is a conjunction of atoms of the form % and p(x)∼z,
where p ∈ Z[x] is linear, z ∈ Z and ∼ ∈ {<,≤,=,≥, >}. The set of solutions
of φ(x) is {z ∈ Zd : φ[z/x] is true} that we also denote by �φ(x)�. We say that
�φ(x)� is upward closed if whenever z ∈ �φ(x)� then z′ ∈ �φ(x)� for all z′ such
that z � z′. Here, � denotes the natural component-wise extension of the order
≤ on Z to tuples over Z.
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2.2 Polynomial Register Machines

This section introduces polynomial register machines. We only give full defini-
tions for dimension one, since the major part of this paper in Section 3 focuses
on this class. From the definitions below, it is easy to generalise to higher di-
mensions, which we are only going to discuss briefly in Section 4.

A polynomial register machine (PRM) is a tuple R = (Q,Δ, λ, φ), where Q is
a finite set of states or control locations, Δ ⊆ Q × Q is the transition relation,
λ : Δ → Z[x] is the transition labelling function, labelling each transition with an
update polynomial, and φ(x) is a global invariant, which is a linear constraint. As
a convention, we assume 0 ∈ �φ(x)�, though all results in this paper hold without

this assumption. We write q
p(x)−−→ q′ whenever (q, q′) ∈ Δ and λ(q, q′) = p(x). The

set C(R) of configurations of R is C(R)
def
= Q × �φ(x)� ⊆ Q × Z, and we write

configurations in C(R) as q(z). The size |R| of R is the number of bits required
to write down R and P (R) denotes the set of polynomials that occur in R.

The semantics of R is given by a transition system T (R) = (C(R),→R),

where q(z) →R q′(z′) if q
p(x)−−→ q′ and z′ = p(z). Reachability is to decide, given

q, q′ ∈ Q and z, z′ ∈ Z, does q(z) →∗
R q′(z′) hold? Clearly, this problem can be

reduced in logarithmic space to deciding q(0) →∗
R′ q′(0) for some PRM R′ linear

in the size of R, z and z′.
For dimensions d > 1, a d-PRM is obtained by amending the above definitions

such that φ(x) is free in x = (x1, . . . , xd) and transitions are labelled with vectors
of polynomials (p1(x1), . . . , pd(xd)) that are applied componentwise. The next
example shows how some of the classes of register machines mentioned in the
introduction can be embedded into PRMs.

Example 1. A dimension d-VASS is a d-PRM with global invariant φ(x) =∧
1≤i≤d xi ≥ 0 and transition polynomials of the form pi(xi) = xi+ai; a bounded

d-counter automaton [13] with bounds b = (b1, . . . , bd) ∈ Nd is a d-PRM with
the same transition polynomials and φ(x) =

∧
1≤i≤d(xi ≥ 0 ∧ xi ≤ bi). A reset

d-VASS [6] can be simulated by employing polynomials of the form pi(xi) = 0
for resets.

The previous examples lead us to a classification of update polynomials. We
call a polynomial of the form p(x) = a1x + a0 a counter polynomial if a1 = 1,
counter-like polynomial if a1 ∈ {−1, 1}, and if the degree of p(x) is one then p(x)
is called an affine polynomial.

3 Reachability for One Register

This section proves the main theorem of this paper and shows that reachability
in PRMs is decidable and PSPACE-complete. For the lower bound, we show that
reachability becomes PSPACE-hard for update polynomials of degree two, even
if the global invariant is unconstrained and thus upward closed. Subsequently,
we show a matching upper bound which involves a thorough analysis of paths
in the transition systems generated by PRMs.
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3.1 Hardness for PSPACE

We reduce from the reachability problem for linear-bounded automata (LBA),
which is a well-known PSPACE-complete problem. An LBA (without input al-
phabet) is a tuple M = (QM, Γ,ΔM), where QM is a finite set of states and Γ
is a finite tape alphabet implicitly containing two distinguished symbols $ and %
acting as left delimiter ($) and right delimiter (%). The transition relation is a
relation ΔM ⊆ QM × Γ × QM × Γ × {←,→} such that (q, γ, q′, γ′, d) ∈ ΔM
implies that whenever M is in state q reading γ at the current head position on
the tape then M switches to the state q′ writing γ′ onto the tape and moving
the head in direction d ∈ {←,→}. We assume ΔM to be constrained such that
it respects the delimiters, i.e., it fulfils the conditions

(i) (q, $, q′, γ, d) ∈ ΔM implies γ = $ and d = →; and
(ii) (q, %, q′, γ, d) ∈ ΔM implies γ = % and d = ←.

A configuration of M is a tuple (q, $w%, i), where q ∈ Q is the current state,
w ∈ (Γ \ {$, %})∗ is the tape content and i ∈ {0, |w| + 1} is the position of the
read-write head. Hence, at head position 0 the tape content is $ and at position
|w|+ 1 it is %. The successor relation →M between two configurations is defined
in the standard way.

Deciding whether (q0, $0n%, 0) →∗
M (qf , $0n%, 0) for given n ∈ N (in unary)

and given states q0, qf ∈ QM of a given LBA M working on the alphabet
{$, 0, 1, %} is well-known to be PSPACE-complete. For our reduction, let us fix
such an LBA M and n ∈ N. The goal of the remainder of this section is to show
how we can compute in polynomial time from M and n a PRM R = (Q,Δ, λ,%)
with particular control locations qR, q

′
R such that (q0, $0n%, 0) →∗

M (qf , $0n%, 0)
if, and only if, qR(0) →∗

R q′R(0), which gives PSPACE-hardness of reachability
in PRMs.

To begin with, let us discuss an encoding of configurations of M. In the follow-
ing, let pi denote the (i+3)-th prime number, i.e., p1 = 7, p2 = 11, p3 = 13, etc.
Recall that by the prime number theorem pi can be represented using O(log i)

bits. Set P
def
=

∏
1≤i≤n pi, we call a residue class r modulo P valid if for each

1 ≤ i ≤ n there is some bi ∈ {0, 1} such that r ≡ bi mod pi. Otherwise, r
is called invalid. Our idea is to encode a tape configuration $w% of M with
w = w1 · · ·wn ∈ {0, 1}n via the unique valid residue class r modulo P satisfying
r ≡ wi mod pi for all 1 ≤ i ≤ n. Consequently, we can establish a one-to-one
correspondence between valid residue classes modulo P and tape contents of M.
Thus, modulo each prime pi, we naturally view the residue classes 0 and 1 to
encode the Boolean values 0 and 1, respectively. During the simulation of M
by R, we will need a way to remember that an error has occurred. For that
reason, we extend the set of valid residue classes to the set S of sane residue
classes modulo P . Let 0 ≤ r < P , we call r sane if for every 1 ≤ i ≤ n there
is some bi ∈ {0, 1, 2} such that r ≡ bi mod pi. We regard the residue class 2 as
erroneous. Finally, let us introduce some additional notation that allows us to
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flipi(r)
def
=

{
r[1 mod pi] if r ≡ 0 mod pi
r[0 mod pi] if r ≡ 1 mod pi
r[2 mod pi] if r ≡ 2 mod pi

eqzero i(r)
def
=

{
r[0 mod pi] if r ≡ 0 mod pi
r[2 mod pi] if r ≡ 1 mod pi
r[2 mod pi] if r ≡ 2 mod pi

Fig. 1. The mappings flipi and eqzeroi

alter a residue class r locally. Let 0 ≤ r < P , 1 ≤ i ≤ n and 0 ≤ a < pi, we
denote by r[a mod pi] the unique residue class r′ modulo P satisfying

r′ ≡ a mod pi; and

r′ ≡ r mod pj for all 1 ≤ j ≤ n such that j �= i.

The existence of r′ is guaranteed by the Chinese remainder theorem.
For each 1 ≤ i ≤ n, we define mappings flipi, eqzeroi, eqonei : S → S that

allow us to perform tests and operations on sane residue classes. The definitions
of flipi and eqzeroi are given in Figure 1. Given 0 ≤ r < P , flipi(r) flips the
bit encoded in the residue class modulo pi, provided it is not erroneous. If it is
erroneous, it remains so after an application of flipi. Similarly, eqzeroi allows for
“guess-testing” of the bit encoded in the residue class modulo pi: if r ≡ 0 mod pi
then this value is preserved by the application of eqzeroi. Otherwise, eqzeroi maps
r to 2 so that it informally speaking “remembers” the wrong guess by mapping to
a value r′ such that r′ ≡ 2 mod pi. The mapping eqonei is defined analogously to
eqzeroi and allows for “guess-testing” whether r ≡ 1 mod pi. The crucial point of
our reduction is that flipi, eqzeroi and eqonei can be implemented via quadratic
polynomials with coefficients of polynomial bit size.

Lemma 2. For any 1 ≤ i ≤ n and any of flipi, eqzeroi, eqonei : S → S, there
is a quadratic polynomial with coefficients from {0, . . . , P − 1} that realises the
respective function.

Proof. Let us first give polynomials for each of the mappings that work in Z/piZ.
One easily verifies that the polynomials

peqzero(x)
def
= −x2 + 3x pflip(x)

def
= 3 · 2−1 · x2 − 5 · 2−1 · x + 1

peqone(x)
def
= x2 − 2x+ 2

realise the respective mappings. Here, it is important to recall that pi ≥ 7 and
that 2 has a multiplicative inverse. However, the polynomials above are generally
not realising the identity in Z/pjZ for j �= i, which is required by the definition
of flipi, eqzeroi and eqonei. For instance, in Z/7Z we do not have x2 − 2x +
2 ≡ x. Thus, for each of the three polynomials pflip(x), peqzero(x), peqone(x),
written as a2x

2+a1x+a0, in order to obtain corresponding polynomials pflip,i(x),
peqzero,i(x), peqone,i(x), we apply the Chinese remainder theorem and for every
k ∈ {0, 1, 2} replace ak with a′k, where a′k is the unique solution in Z/PZ to the
system of congruences x ≡ ak mod pi and x ≡ bk mod pj for each 1 ≤ j �= i ≤ n

with b1
def
= 1 and b0 = b2

def
= 0. ��
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(q, i, b)
eqzeroi+1−−−−−→ (q, i + 1, 0) if b = b

′
, d = →

(q, i, b)
eqonei+1−−−−−→ (q, i + 1, 1) if b = b′, d = →

(q, i, b)
eqzeroi−1−−−−−→ (q, i− 1, 0) if b = b′, d = ←

(q, i, b)
eqonei−1−−−−−→ (q, i− 1, 1) if b = b′, d = ←

(q, i, b)
eqzeroi+1◦flipi−−−−−−−−−→ (q, i+ 1, 0) if b �= b

′
, d = →

(q, i, b)
eqonei+1◦flipi−−−−−−−−→ (q, i+ 1, 1) if b �= b′, d = →

(q, i, b)
eqzeroi−1◦flipi−−−−−−−−−→ (q, i− 1, 0) if b �= b′, d = ←

(q, i, b)
eqonei−1◦flipi−−−−−−−−→ (q, i− 1, 1) if b �= b

′
, d = ←

Fig. 2. Transitions of R for simulating a transition (q, b, q′, b′, d) of M

We have now accumulated all ingredients that enable us to simulate M with
a PRM R. Subsequently, we will identify each mapping flipi, eqzeroi and eqonei
with the corresponding polynomial from Lemma 2. We now define the control
locations of Q, the transitions Δ and the labelling function λ of R. The control
locations of R contain those of M paired with the head position and a guess

of the contents of the tape cell at the current head position, i.e., Q
def
= QM ×

{0, . . . , n + 1} × {0, 1}.
For every control location (q, i, b) of R such that 1 ≤ i ≤ n and every transition

(q, b, q′, b′, d) ∈ ΔM of M, Δ contains the transitions shown in Figure 2, and

an additional transition (qf , i, 0)
x−P−−→ (qf , i, 0) for each b ∈ {0, 1}. The degree of

the polynomials in Figure 2 is actually four, but quadratic polynomials can be
regained by replacing a single transition with two consecutive transitions. Also,
for brevity we have omitted the cases when the head moves to position 0 or n+1,
whose behaviour can easily be hard-wired into R.

The transitions of R are chosen such that every time we simulate a move
of the head of M, we guess the contents of the next tape cell. The guess is
instantaneously verified through the application of the polynomials eqzeroi−1,
eqzeroi+1, eqonei−1 and eqonei+1 along the transition: if the guess was wrong,
the value of the register x becomes 2 modulo some prime pi and will remain
2 modulo this prime forever. Simulating writing to a cell is done via the flipi
polynomials, which are only applied if the currently read bit differs from the bit
that is ought to be written. Finally, there is a self-loop at the control locations
(qf , i, b) subtracting P allows for checking that we end with a register value z
such that z ≡ 0 mod P . Setting qR = (q0, 0, 0) and q′R = (qf , 0, 0), by induction
on the length of the run of M and R respectively, it is easily verified that
(q0, $0n%, 0) →∗

M (qf , $0n%, 0) if, and only if, qR(0) →∗
R q′R(0).

3.2 Membership in PSPACE

We now show the existence of a PSPACE algorithm that decides reachability
in PRMs in the most unconstrained case where register values come from Z.
We will generalise this to the case of general formulas in the end of this sec-
tion. Due to space constraints, it is not possible to give all technical details and
formal proofs, we rather prefer presenting our algorithm on a high level and only
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state the most important technical results that give the PSPACE upper bound.
All formal details can be found in the appendix of the extended version of this
paper.

For the remainder of this section, let us fix a PRM R = (Q,Δ, λ, φ) with one
register x and control locations q, q′ ∈ Q for which we wish to decide q(0) →∗

R
q′(0). Denote by a and d the largest absolute value of all coefficients of the
update polynomials in R and their maximum degree, respectively. We assume
that every p(x) ∈ P (R) is a non-constant polynomial. Otherwise, reachability
can be reduced to a bounded number of reachability queries in PRMs with no
constant update polynomials by guessing the order in which these transitions are
traversed. The same approach would also enable us to additionally equip PRMs
with zero tests.

Note that in the following, when referring to the size of a number, we refer
to the number of bits required for its representation. On a high level, we can
identify three key observations and ideas that lead us to our upper bound:

(i) There exists a bound b of size polynomial in |R| such that once the ab-
solute register value of x goes above b, only counter-like polynomials can
decrement the absolute value of x due to monotonicity properties of non-
counter-like polynomials. A similar observation is part of the argument
in [9] to show decidability of reachability for non-deterministic applications
of affine polynomials.

(ii) The previous observation suggests that we should extract a 1-VASS C from
the transitions from R labelled with counter-like polynomials that can sim-
ulate R acting on those transitions. This in turn enables us to make use of
the property that reachability relations for 1-VASS are ultimately periodic
with some period m of size polynomially bounded in |C| [10,11] and hence
|R|, and that reachability in 1-VASS can be decided in NP [12] and hence
in PSPACE. In particular, this makes it possible to witness the existence
of paths in T (R) decrementing the register value from arbitrarily large ab-
solute register values x, provided we know the residue class of x modulo
m.

(iii) Observation (i) additionally enables us to show that paths in T (R) whose
absolute register value stays above b allow for deriving paths with special
properties such that in particular residue classes modulo m of the register
values occurring on the derived path are preserved. More precisely, we can
derive paths for which a bound on the length of sequences that strictly
decrease the absolute values of the register x exists. This in turn enables
us to witness in PSPACE the existence of paths that end with a register
value in a certain residue class modulo m by simulating R on residue classes
modulo m without explicitly constructing those paths.

By gluing (ii) and (iii) together, we can then show that the PSPACE upper bound

for reachability in PRMs follows. In the following, set b
def
= d(a+ 2). Observation

(i) above is a consequence of the following lemma.
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Lemma 3. Let p(x) ∈ P (R) be non-counter-like. Then p(x) is monotonically
increasing or decreasing in Z \ [−b, b], and |p(z)| ≥ 2|z| for all z ∈ Z \ [−b, b].
The proof of the lemma is a straight-forward application of the inequality (1) in
Section 2.1. It allows us to conclude that non-counter-like polynomials behave
monotonically outside [−b, b].

Before we start with formally discussing Observations (ii) and (iii), we need
to introduce some auxiliary technical notation. A q(z)-q′(z′) path π in T (R)
of length n is a finite sequence of configurations π : q1(z1)q2(z2) · · · qn+1(zn+1)
such that q(z) = q1(z1), q′(z′) = qn+1(zn+1) and qi(zi) →R qi+1(zi+1) for all
1 ≤ i ≤ n. We write π : q(z) →∗

R q′(z′) if π is a q(z)-q′(z′) path and denote the
length of π by |π|. Let I ⊆ Z, we say that π stays in I if zi ∈ I for all 1 ≤ i ≤ n.

A path is counter-like if for all qi
p(x)−−→ qi+1, p(x) is counter-like.

Now turning towards Observation (ii), the 1-VASS C def
= (QC , ΔC , λC) discussed

above is obtained from the counter-like transitions of R as follows, where ΔC
def
=

Δ1 ∪Δ2:

QC
def
= {q∼ : q ∈ Q,∼ ∈ {+,−}};

Δ1
def
= {(q∼1 , q

∼
2 ) : q1, q2 ∈ Q, q1

p(x)=x+a0−−−−−−→ q2 ∈ Δ};

Δ2
def
= {(q∼1

1 , q∼2
2 ) : q1, q2 ∈ Q, q1

p(x)=−x+a0−−−−−−−→ q2 ∈ Δ,∼1 �= ∼2}

λC
def
= (q∼1

1 , q∼2
2 )  → x + ∼2a0 if q1

a1x+a0−−−−→ q2 ∈ Δ.

The idea behind this construction is as follows. The counter of C stores the
absolute value of the register x of R. The control locations of C are control
locations from R with an indicator of the sign of the register x, e.g. q− indicates
that the control location is q and the value of the register x is negative. The
transitions in Δ1 and Δ2 are defined such that they obey a flip of the sign. The
following lemma, which can easily be shown by induction, enables us to relate
paths in T (R) and T (C).

Lemma 4. Let q1(z1), q2(z2) ∈ C(R) and let z = min{|z1|, |z2|} such that z > a.
There exists a counter-like path π : q1(z1) →∗

R q2(z2) staying in Z\(−z, z) if, and
only if, there exists a path π′ : q∼1

1 (|z1| − z) →∗
C q

∼2
2 (|z2| − z) for ∼i = sgn(zi).

The benefit we get from extracting a 1-VASS from the counter-like transitions
of R is that we can employ known periodicity properties for counter automata.
The following proposition is a consequence of Lemma 5.1.9, pp. 139 in [11]. It
allows us to conclude that reachability in 1-VASS is ultimately periodic with a
small period of polynomial size.

Proposition 5 ([10,11]). Let C = (QC , ΔC , λC) be a 1-VASS with maximum
absolute increment a. There exists a fixed polynomial p and a period m ≤
(|QC |a)|QC| such that for any q, q′ ∈ QC and n′ ∈ N there exists a set of residue
classes R ⊆ {0, . . . ,m− 1} such that for all n > 2p(|C|) + n′,

q(n) →∗
C q

′(n′) if, and only if, n ≡ r mod m for some r ∈ R.
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Fig. 3. Illustration of making a path non-dropping

For the remainder of this section, fix m to be the period from Proposition 5. We
will now elaborate on Observation (iii) and turn towards normalising paths of R
in T (R) whose register values stay in Z \ [−b, b]. To this end, we define a partial
order �m ⊆ Z× Z such that

z1 �m z2 if sgn(z1) = sgn(z2), |z1| ≤ |z2| and z1 ≡ z2 mod m.

Informally speaking, we show that if the register values encountered along a
path fluctuate too much then we can decrease the magnitude of fluctuation

while staying invariant w.r.t. �m. Formally, set f
def
= (2|Q|m)2 + (2|Q|m) and

let π : q(z) →∗
R q′(z′) be a path. We say that π is dropping if there are 1 ≤ i <

j < |π| such that π(i) = qi(zi), π(j) = qj(zj) and |zi| − |zj| > f . Observe that
for any non-dropping path π : q(z) → q′(z′), we have |z′| ≥ |z| − f .

Lemma 6. Let π : q(z) →∗
R q′(z′) be a path staying in Z\[−b, b]. If π is dropping

then there is a path π′ staying in Z\ [b, b] such that π′ : q(z) →∗
R q′(z′′) for some

z′′ ∈ Z, z′ �m z′′ and |π′| < |π|.

Figure 3 illustrates the main idea. There, the illustrated path on top is dropping
between register values z1 and z2. A counting argument shows that we can then
find some z′2 in the interval [z1 − f, z1] such that z2 �m z′2, which allows us
to chop the path. We can then mimic the remainder of the path and end with
some register value z′3 such that z3�mz

′
3, illustrated at the bottom of Figure 3.

A repeated application of the lemma allows us to make any path non-dropping,
and it is not difficult to see that witnessing the existence of a non-dropping path
reaching a certain residue class modulo m can be done in space polynomial in
|R|. This brings us to the main theorem of this paper.

Theorem 7. Reachability in PRMs is PSPACE-complete.

Proof (sketch). The main idea is that we can simulate R as long as its register
values stay inside [−B,B] for some sufficiently large B ∈ N of polynomial bit-size
in |R|. Here, it is important that checking whether an application of an update
polynomial p(x) to the current register value z ∈ Z leaves the interval [−B,B]
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Table 1. Complexity landscape of reachability in d-PRMs

counter polynomials arbitrary polynomials

finite upward closed Zd finite upward closed Zd

d = 1 PSPACE-c.[7] NP-complete [12] PSPACE-complete

d > 1 PSPACE-c.[13] EXPSPACE-h.,dec.[16,17] NP-c. PSPACE-c. undec. [19]

can be decided in polynomial time, and that p(z) can be computed in polynomial
time if p(z) ∈ [−B,B] [5]. If the interval [−B,B] were to be left, we compute
p(z) mod m, guess a residue class r modulo m, and then check using Lemma 6 in
polynomial space for the existence of a non-dropping path starting with register
value p(z) mod m reaching some register value in the residue class r. Moreover,
we can use C together with Proposition 5 to check in polynomial space that from
the residue class r there is a counter-like path back into [−B,B]. ��

The proof of PSPACE-completeness can straight-forwardly be adapted to the
case where the global invariant φ(x) imposes an upward-closed domain on the
register x. The main difference is that C constructed above must not allow for
flipping of signs, and when simulating R on the residue classes modulo m in the
proof of Theorem 7 no transitions can be taken that result in a flip of the sign
of the register.

Remark 8. A possible generalisation of PRMs could be to allow the global in-
variant to be a Presburger formula open in one variable x. Since the sets defined
by such formulas are ultimately periodic below and above zero, it is not difficult
to adapt the techniques used for showing the PSPACE upper bound in order to
show that reachability is decidable. However, unsurprisingly the complexity of
reachability may potentially increase by several exponents.

4 Concluding Remarks

This paper introduced polynomial register machines, a class of infinite-state
systems comprising a finite number of integer-valued registers, whose domain
is constrained by a linear constraint, with a finite-state controller which can
update the registers along transitions by an application of a polynomial function.
Our main result is that reachability with one register is PSPACE-complete. For
higher dimensions, as discussed in the introduction, reachability becomes quickly
undecidable, in particular already in the presence of two integer-valued registers
and affine polynomials with integer coefficients [19].

A detailed complexity landscape classifying the complexity of reachability
according to the number of registers, the type of update polynomials and the
domain constraint is given in Table 1 together with bibliographic references. The
results of this paper are emphasised by grey background colour.
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Abstract. We study the parameterized complexity of separating a small
set of vertices from a graph by a small vertex-separator. That is, given a
graph G and integers k, t, the task is to find a vertex set X with |X| ≤ k
and |N(X)| ≤ t. We show that

– the problem is fixed-parameter tractable (FPT) when parameterized
by t but W[1]-hard when parameterized by k, and

– a terminal variant of the problem, where X must contain a given
vertex s, is W[1]-hard when parameterized either by k or by t alone,
but is FPT when parameterized by k + t.

We also show that if we consider edge cuts instead of vertex cuts, the
terminal variant is NP-hard.

1 Introduction
We investigate two related problems that concern separating a small vertex set
from a graph G = (V, E). Specifically, we consider finding a vertex set X of size
at most k such that
1. X is separated from the rest of V by a small cut (e.g. finding communities

in a social network, cf. [14]), or
2. X is separated from the rest of V by a small cut and contains a specified

terminal vertex s (e.g. isolating a dangerous node, cf. [11,13]).
We focus on parameterized complexity of the vertex-cut versions of these problems.

Parameterized Vertex Cuts. Our interest in the vertex-cut version stems
from the following parameterized separation problem, studied by Marx [16]. Let
N(X) denote the vertex-neighborhood of X .

Cutting k Vertices
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a set X ⊆ V such that |X| = k and |N(X)| ≤ t?

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 421–432, 2013.
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In particular, Marx showed that Cutting k Vertices is W[1]-hard even
when parameterized by both k and t. We contrast this result by investigating the
parameterized complexity of the two related separation problems with relaxed
requirement on the size of the separated set X .

Cutting at Most k Vertices
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that |X| ≤ k and |N(X)| ≤ t?

Cutting at Most k Vertices with Terminal
Input: Graph G = (V, E), terminal vertex s, integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that s ∈ X, |X| ≤ k and
|N(X)| ≤ t?

We show that these closely related problems exhibit quite different complex-
ity behaviors. In particular, we show that Cutting at Most k Vertices is
fixed-parameter tractable (FPT) when parameterized by the size of the separa-
tor t, while we need both k and t as parameters to obtain an FPT algorithm
for Cutting at Most k Vertices with Terminal. A full summary of the
parameterized complexity of these problems and our results is given in Table 1.

The main algorithmic contribution of our paper is the proof that Cutting at
most k vertices is FPT when parameterized by t (Theorem 2). To obtain this
result, we utilize the concept of important separators introduced by Marx [16].
However, a direct application of important separators—guess a vertex contained
in the separated set, and find a minimal set containing this vertex that can
be separated from the remaining graph by at most t vertices—does not work.
Indeed, pursuing this approach would bring us to essentially solving Cutting at
most k vertices with terminal, which is W[1]-hard when parameterized by
t. Our FPT algorithm is based on new structural results about unique important

Table 1. Parameterized complexity of Cutting k Vertices, Cutting at Most k
Vertices, and Cutting at Most k Vertices with Terminal

Parameter Cutting k Vertices Cutting ≤ k Vertices Cutting ≤ k Vertices
with Terminal

k W[1]-hard, [16] W[1]-hard, Thm 3 W[1]-hard, Thm 3
t W[1]-hard, [16] FPT, Thm 2 W[1]-hard, Thm 5

k and t W[1]-hard, [16] FPT, Thm 1 FPT, Thm 1
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separators of minimum size separating pairs of vertices. We also observe that it
is unlikely that Cutting at most k vertices has a polynomial kernel.

Edge Cuts. Although our main focus is on vertex cuts, we will also make some
remarks on the edge-cut versions of the problems. In particular, the edge-cut
versions again exhibit a different kind of complexity behavior. Let ∂(X) denote
the edge-boundary of X .

Cutting at Most k Vertices by Edge-Cut
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that |X| ≤ k and |∂(X)| ≤ t?

Cutting k Vertices by Edge-Cut with Terminal
Input: Graph G = (V, E), terminal vertex s, integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a set X ⊆ V such that s ∈ X, |X| ≤ k and |∂(X)| ≤ t?

Results by Watanabe and Nakamura [19] imply that Cutting at most k
vertices by edge-cut can be done in polynomial time even when k and t
are part of the input; more recently, Armon and Zwick [2] have shown that this
also holds in the edge-weighted case. Lokshtanov and Marx [15] have proven
that Cutting at most k vertices by edge-cut with terminal is fixed-
parameter tractable when parameterized by k or by t; see also [5]. We complete
the picture by showing that Cutting at most k vertices by edge-cut with
terminal is NP-hard (Theorem 6). The color-coding techniques we employ in
Theorem 1 also give a simple algorithm with running time 2k+t+o(k+t) · nO(1).

Related edge-cut problems have received attention in the context of approxi-
mation algorithms. In contrast to Cutting at most k vertices by edge-cut,
finding a minimum-weight edge-cut that separates exactly k vertices is NP-hard.
Feige et al. [9] give a PTAS for k = O(log n) and an O(k/ log n)-approximation
for k = Ω(log n); Li and Zhang [14] give an O(log n)-approximation. Approxima-
tion algorithms have also been given for unbalanced s-t-cuts, where s and t are
specified terminal vertices and the task is to find an edge cut (X, V \ X) with
s ∈ X and t ∈ V \ S such that (a) |X | ≤ k and weight of the cut is minimized
[11,14], or (b) weight of the cut is at most w and |X | is minimized [13].

2 Basic Definitions and Preliminaries

Graph Theory. We follow the conventions of Diestel [7] with graph-theoretic
notations. We only consider finite, undirected graphs that do not contain loops
or multiple edges. The vertex set of a graph G is denoted by V (G) and the edge
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set is denoted by E(G), or simply by V and E, respectively. Typically we use n
to denote the number of vertices of G and m the number of edges.

For a set of vertices U ⊆ V (G), we write G[U ] for the subgraph of G induced
by U , and G−U for the graph obtained form G by the removal of all the vertices
of U , i.e., the subgraph of G induced by V (G) \ U . Similarly, for a set of edges
A, the graph obtained from G by the removal of all the edges in A is denoted
by G − A.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the set
of vertices which are adjacent to v. The degree of a vertex v is dG(v) = |NG(v)|.
For a set of vertices U ⊆ V (G), we write NG(U) = ∪v∈U NG(v)\U and ∂G(U) =
{uv ∈ E(G) | u ∈ U, v ∈ V (G) \ U}. We may omit subscripts in these notations
if there is no danger of ambiguity.

Submodularity. We will make use of the well-known fact that given a graph
G, the mapping 2V → Z defined by U �→ |N(U)| is submodular. That is, for
A, B ⊆ V we have

|N(A ∩ B)| + |N(A ∪ B)| ≤ |N(A)| + |N(B)| . (1)

Important Separators. Let G be a graph. For disjoint sets X, Y ⊆ V , a vertex
set S ⊆ V \ (X ∪ Y ) is a (vertex) (X, Y )-separator if there is no path from X to
Y in G − S. An edge (X, Y )-separator A ⊆ E is defined analogously. Note that
we do not allow deletion of vertices in X and Y , and thus there are no vertex
(X, Y )-separators if X and Y are adjacent. As our main focus is on the vertex-
cut problems, all separators are henceforth vertex-separators unless otherwise
specified.

We will make use of the concept of important separators, introduced by
Marx [16]. A vertex v is reachable from a set X ⊆ V if G has a path that
joins a vertex of X and v. For any sets S and X ⊆ V \ S, we denote the set
of vertices reachable from X in G − S by R(X, S). An (X, Y )-separator S is
minimal if no proper subset of S is an (X, Y )-separator. For (X, Y )-separators
S and T , we say that T dominates S if |T | ≤ |S| and R(X, S) is a proper subset
of R(X, T ). For singleton sets, we will write x instead of {x} in the notations
defined above.

Definition 1 ([16]). An (X, Y )-separator S is important if it is minimal and
there is no other (X, Y )-separator dominating S.

In particular, this definition implies that for any (X, Y )-separator S there exists
an important (X, Y )-separator T with |T | ≤ |S| and R(X, T ) ⊇ R(X, S). If S is
not important, then at least one of the aforementioned relations is proper.

The algorithmic usefulness of important separators follows from the fact that
the number of important separators of size at most t is bounded by t alone, and
furthermore, these separators can be listed efficiently. Moreover, minimum-size
important separators are unique and can be found in polynomial time. That is,
we will make use of the following lemmas.
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Lemma 1 ([6]). For any disjoint sets X, Y ⊆ V , the number of important
(X, Y )-separators of size at most t is at most 4t, and all important (X, Y )-
separators of size at most t can be listed in time 4t · nO(1).

Lemma 2 ([16]). For any sets X, Y ⊆ V , if there exists an (X, Y )-separator,
then there is exactly one important (X, Y )-separator of minimum size. This sep-
arator can be found in polynomial time.

Parameterized Complexity. We will briefly review the basic notions of pa-
rameterized complexity, though we refer to the books of Downey and Fellows [8],
Flum and Grohe [10], and Niedermeier [18] for a detailed introduction. Param-
eterized complexity is a two-dimensional framework for studying the computa-
tional complexity of a problem; one dimension is the input size n and another
one is a parameter k. A parameterized problem is fixed-parameter tractable (or
FPT) if it can be solved in time f(k) ·nO(1) for some function f , and in the class
XP if it can be solved in time O

(
nf(k)) for some function f .

Between FPT and XP lies the class W[1]. One of basic assumptions of the
parameterized complexity theory is the conjecture that W[1] �= FPT, and it
is thus held to be unlikely that a W[1]-hard problem would be in FPT. For
exact definition of W[1], we refer to the books mentioned above. We mention
only that Indpendent Set and Clique parameterized by solution size are two
fundamental problems that are known to be W[1]-complete.

The basic way of showing that a parameterized problem is unlikely to be
fixed-parameter tractable is to prove W[1]-hardness. To show that a problem is
W[1]-hard, it is enough to give a parameterized reduction from a known W[1]-
hard problem. That is, let A, B be parameterized problems. We say that A is
(uniformly many-one) FPT-reducible to B if there exist functions f, g : N → N,
a constant c ∈ N and an algorithm A that transforms an instance (x, k) of A
into an instance (x′, g(k)) of B in time f(k)|x|c so that (x, k) ∈ A if and only if
(x′, g(k)) ∈ B.

Cutting Problems with Parameters k and t. In the remainder of this
section, we consider Cutting at most k vertices, Cutting at most k ver-
tices with terminal, and Cutting at most k vertices by edge-cut with
terminal with parameters k and t. We first note that if there exists a solution
for one of the problems, then there is also a solution in which X is connected;
indeed, it suffices to take any maximal connected Y ⊆ X . Furthermore, we note
finding a connected set X with |X | = k and |N(X)| ≤ t is fixed-parameter
tractable with parameters k and t due to a result by Marx [16, Theorem 13],
and thus Cutting at most k vertices is also fixed-parameter tractable with
parameters k and t.

We now give a simple color-coding algorithm [1,4] for the three problems
with parameters k and t, in particular improving upon the running time of the
aforementioned algorithm for Cutting at most k vertices.
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Theorem 1. Cutting at most k vertices, Cutting at most k vertices
with terminal, and Cutting at most k vertices by edge-cut with
terminal can be solved in time 2k+t · (k + t)O(log(k+t)) · nO(1).

Proof. We first consider a 2-colored version of Cutting at most k vertices.
That is, we are given a graph G where each vertex is either colored red or blue
(this is not required to be a proper coloring), and the task is to find a connected
red set X with |X | ≤ k such that N(X) is blue and |N(X)| ≤ t. If such a set
exists, it can be found in polynomial time by trying all maximal connected red
sets.

Now let G = (V, E) be a graph. Assume that there is a set X with |X | ≤ k
and |N(X)| ≤ t; we may assume that X is connected. It suffices to find a coloring
of V such that X is colored red and N(X) is colored blue. This can be done
by coloring each vertex v either red or blue independently and uniformly at
random. Indeed, this gives a desired coloring with probability at least 2−(k+t),
which immediately yields a 2k+t ·nO(1) time randomized algorithm for Cutting
at Most k Vertices.

This algorithm can be derandomized in standard fashion using universal sets
(compare with Cai et al. [4]). Recall that a (n, �)-universal set is a collection of
binary vectors of length n such that for each index subset of size �, each of the 2�

possible combinations of values appears in some vector of the set. A construction
of Naor et al. [17] gives a (n, �)-universal set of size 2� · �O(log �) log n that can be
listed in linear time. It suffices to try all colorings induced by a (n, k+t)-universal
set obtained trough this construction.

The given algorithm works for Cutting at most k vertices with termi-
nal with obvious modifications. That is, given a coloring, we simply check if the
terminal s is red and its connected red component is a solution. This also works
for Cutting at most k vertices by edge-cut with terminal, as we have
|N(X)| ≤ |∂(X)|.

3 Cutting at Most k Vertices Parameterized by t

In this section we show that Cutting at Most k Vertices is fixed-parameter
tractable when parameterized by the size of the separator t only. Specifically, we
will prove the following theorem.

Theorem 2. Cutting at Most k Vertices can be solved in time 4t · nO(1).

The remainder of this section consists of the proof of Theorem 2. Note that we
may assume 3

4 t < k < n − t. Indeed, if k ≤ ct for a fixed constant c < 1, then we
can apply the algorithm of Theorem 1 to solve Cutting at Most k Vertices
in time 4tnO(1). On the other hand, if k ≥ n − t, then any vertex set X of size
k is a solution, as |N(X)| ≤ n − k ≤ t.

We start by guessing a vertex u ∈ V that belongs to a solution set X if one
exists; specifically, we can try all choices of u. We cannot expect to necessarily
find a solution X that contains the chosen vertex u, even if the guess is correct,
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as the terminal variant is W[1]-hard. We will nonetheless try; turns out that the
only thing that can prevent us from finding a solution containing u is that we
find a solution not containing u.

With u fixed, we compute for each v ∈ V \ ({u} ∪ N(u)) the unique minimum
important (u, v)-separator Sv. This can be done in polynomial time by Lemma
2. Let V0 be set of those v with |Sv| ≤ t, and denote R(v) = R(v, Sv). Finally, let
X be a set family consisting of those R(v) for v ∈ V0 that are inclusion-minimal,
i.e., if R(v) ∈ X, then there is no w ∈ V0 such that R(w) � R(v). Note that we
can compute the sets V0, R(v) and X in polynomial time.

There are now three possible cases that may occur.

1. If V0 = ∅, we conclude that we have no solution containing u.
2. If there is v ∈ V0 such that |R(v)| ≤ k, then X = R(v) gives a solution, and

we stop and return a YES-answer.
3. Otherwise, X is non-empty and for all sets A ∈ X we have |A| > k.

We only have to consider the last case, as otherwise we are done. We will show that
in that case, the sets A ∈ X can be used to find a solution X containing u if one
exists. For this, we need the following structural results about the sets R(v).

Lemma 3. For any v, w ∈ V0, if w ∈ R(v) then R(w) ⊆ R(v).

Proof. Let A = R(v) and B = R(w). Since Sv = N(A) is a (u, v)-separator of
minimum size, we must have |N(A ∪ B)| ≥ |N(A)|. By (1), we have

|N(A ∩ B)| ≤ |N(A)| + |N(B)| − |N(A ∪ B)| ≤ |N(B)| .

Because w ∈ A, the set N(A ∩ B) is a (u, w)-separator. Thus, if B �= A ∩ B,
then N(A ∩ B) is a (u, w)-separator that witnesses that Sw is not an important
separator. But this is not possible by the definition of Sw, so we have B =
A ∩ B ⊆ A.

Lemma 4. Any distinct A, B ∈ X are disjoint.

Proof. Assume that A, B ∈ X are distinct and intersect. Then there is v ∈ A∩B.
Since v ∈ A, the set N(A) is a (u, v)-separator of size at most t, and v ∈ V0.
Recall that X contains inclusion-minimal sets R(w) for w ∈ V0. But by Lemma 3,
R(v) is a proper subset of both A and B, which is not possible by the definition
of X.

Now assume that the input graph G has a solution for Cutting at Most k
Vertices containing u. In particular, then there is an inclusion-minimal set
X ⊆ V with u ∈ X satisfying |X | ≤ k and |N(X)| ≤ t. Let us fix one such
set X .

Lemma 5. For all A ∈ X, the set A is either contained in X ∪ N(X) or does
not intersect it.
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Proof. Suppose that there is a set A ∈ X that intersects both X ∪ N(X) and its
complement. Let Y = V \ (X ∪ N(X)).

Now let v ∈ A ∩ Y . By Lemma 3, we have R(v) = A. If |N(A ∪ Y )| > |N(Y )|
then it follows from (1) that

|N(A ∩ Y )| ≤ |N(A)| + |N(Y )| − |N(A ∪ Y )| < |N(A)| .

However, this would imply that N(A ∩ Y ) is a (u, v)-separator smaller than
Sv = N(A).

Thus, we have |N(A ∪ Y )| ≤ |N(Y )|. But X ′ = X \ (A ∪ Y ∪ N(A ∪ Y )) is a
proper subset of X ; furthermore, any vertex of N(X ′) that is not in N(A∪Y ) is
also in N(X) \ N(Y ), so we have |N(X ′)| ≤ |N(X)| ≤ t. This is in contradiction
with the minimality of X .

Lemma 6. Let Z be the union of all A ∈ X that do not intersect X ∪ N(X).
Then Z �= ∅ and there is an important (Z, u)-separator S of size at most t such
that |R(u, S)| + |S| ≤ k + t.

Proof. Let S = N(X). Consider an arbitrary v ∈ V \ (X ∪S); such vertex exists,
since k + t < n. Since S separates v from u, the set R(v) is well-defined.

Suppose now that R(v) is not contained in R(v, S). Let B = R(u, Sv). Since Sv

is a minimum-size (u, v)-separator we have |N(B)| = |N(R(v))|. But N(X ∪ B)
also separates u and v, so we have |N(X ∪ B)| ≥ |N(R(v))| = |N(B)|. By (1),
we have

|N(X ∩ B)| ≤ |N(X)| + |N(B)| − |N(X ∪ B)| ≤ |N(X)| ≤ t .

But since R(v) is not contained R(v, S), it follows that X ∩ B is a proper subset
of X , which contradicts the minimality of X .

Thus we have R(v) ⊆ R(v, S). It follows that R(v, S) contains a set A ∈ X,
which implies that Z �= ∅ and v ∈ R(A, S) ⊆ R(Z, S). Furthermore, since
v ∈ V \ (X ∪ S) was chosen arbitrarily, we have that R(Z, S) = V \ (X ∪ S).

If S is an important (Z, u)-separator, we are done. Otherwise, there is an
important (Z, u)-separator T with |T | ≤ |S| and R(Z, S) ⊆ R(Z, T ). But then
we have |T | ≤ t, and R(u, T ) ∪ T ⊆ X ∪ S, that is, |R(u, T ) ∪ T | ≤ k + t.

Recall now that we may assume |A| > k for all A ∈ X. Furthermore, we have
|X ∪ N(X)| ≤ k + t <

(
2 + 1

3
)

k and the sets A ∈ X are disjoint by Lemma 4.
Thus, at most two sets A ∈ X fit inside X ∪N(X) by Lemma 5. This means that
if we let Z be the union of all A ∈ X that do not intersect X ∪N(X), then as we
have already computed X, we can guess Z by trying all O(n2) possible choices.

Assume now that X is a minimal solution containing u and our guess for Z
is correct. We enumerate all important (Z, u)-separators of size at most t. We
will find by Lemma 6 an important (Z, u)-separator S such that |S| ≤ t and
|R(u, S)| + |S| ≤ k + t. If |R(u, S)| ≤ k, we have found a solution. Otherwise,
we delete a set S′ of |R(u, S)| − k elements from R(u, S) to obtain a solution
X ′. To see that this suffices, observe that N(X ′) ⊆ S′ ∪S. Therefore, |N(X ′)| ≤
|S′| + |S| = |R(u, S)| − k + |S| ≤ t. As all important (Z, u)-separators can be
listed in time 4t · nO(1) by Lemma 1, the proof of Theorem 2 is complete.



On the Parameterized Complexity of Cutting a Few Vertices from a Graph 429

4 Hardness Results

We start this section by complementing Theorem 2, as we show that Cutting
at Most k Vertices is NP-complete and W[1]-hard when parameterized by
k. We also show that same holds for Cutting at Most k Vertices with
Terminal. Note that both of these problems are in XP when parameterized by
k, as they can be solved by checking all vertex subsets of size at most k.

Theorem 3. Cutting at Most k Vertices and Cutting at Most k Ver-
tices with Terminal are NP-complete and W[1]-hard with the parameter k.

Proof. We prove the W[1]-hardness claim for Cutting at Most k Vertices
by a reduction from Clique. Recall that this W[1]-complete (see [8]) problem
asks for a graph G and a positive integer k where k is a parameter, whether G
contains a clique of size k. Let (G, k) be an instance of Clique, n = |V (G)|
and m = |E(G)|; we construct an instance (G′, k′, t) of Cutting at Most k
Vertices as follows. Let HV be a clique of size n3 and identify n vertices of HV

with the vertices of G. Let HE be a clique of size m and identify the vertices of
HE with the edges of G. Finally, add an edge between vertex v of HV and vertex
e of HE whenever v is incident to e in G. Set k′ =

(
k
2
)

and t = k + m − (
k
2
)
. The

construction is shown in Fig. 1 a).
If G has a k-clique K, then for the set X that consists of the vertices e of HE

corresponding to edges of K we have |X | =
(

k
2
)

and |NG′(X)| = k + m − (
k
2
)
.

On the other hand, suppose that there is a set of vertices X of G′ such that
|X | ≤ k′ and |NG′(X)| ≤ t. First, we note that X cannot contain any vertices of
HV , as then NG′(X) would be too large. Thus, the set X consists of vertices of
HE . Furthermore, we have that |X | =

(
k
2
)
. Indeed, assume that this is not the

case. If |X | ≤ (
k−1

2
)

=
(

k
2
) − k, then, since X has at least one neighbor in HV ,

we have

|NG′(X)| ≥ m − |X | + 1 ≥ m −
(

k

2

)
+ k + 1 ,

and if
(

k−1
2

)
< |X | <

(
k
2
)
, then X has at least k neighbors in HV , and thus

|NG′(X)| ≥ m − |X | + k > m −
(

k

2

)
+ k .

Thus, we have that X only consist of vertices of HE and |X | =
(

k
2
)
. But then

the vertices of HV that are in NG′(X) form a k-clique in G.
The W[1]-hardness proof for Cutting at Most k Vertices with Termi-

nal uses the same arguments. The only difference is that we add the terminal s
in the clique HE and let k′ =

(
k
2
)

+ 1 (see Fig. 1 b).
Because Clique is well known to be NP-complete [12] and our parameterized

reductions are polynomial in k, it immediately follows that Cutting at Most
k Vertices and Cutting at Most k Vertices with Terminal are NP-
complete.



430 F.V. Fomin, P.A. Golovach, and J.H. Korhonen

While we have an FPT-algorithm for Cutting at Most k Vertices when
parameterized by k and t or by t only, it is unlikely that the problem has a
polynomial kernel (we refer to [8,10,18] for the formal definitions of kernels). Let
G be a graph with s connected components G1, . . . , Gs, and let k ≥ 1, t ≥ 0 be
integers. Now (G, k, t) is a YES-instance of Cutting at Most k Vertices if
and only if (Gi, k, t) is a YES-instance for some i ∈ {1, . . . , s}, because it can
always be assumed that a solution is connected. By the results of Bodlaender et
al. [3], this together with Theorem 3 implies the following.

Theorem 4. Cutting at Most k Vertices has no polynomial kernel when
parameterized either by k and t or by t only, unless NP ⊆ coNP/poly.

s

n

HV

u v

HE e = uv

n

HV

u v

HE e = uvs

a) b)

u v

E e = uv

V

c)

Fig. 1. Constructions of G′ in the proofs of Theorems 3 and 5

We will next show that when we consider the size of the separator t as the sole
parameter, adding a terminal makes the problem harder. Indeed, while Cutting
at Most k Vertices with Terminal with parameter t is trivially in XP, we
next show that it is also W[1]-hard, in contrast to Theorem 2.

Theorem 5. Cutting at Most k Vertices with Terminal is W[1]-hard
with parameter t.

Proof. Again, we prove the claim by a reduction from Clique. Let (G, k) be a
clique instance, n = |V (G)| and m = |E(G)|; we create an instance (G′, k′, t, s) of
Cutting at Most k Vertices with Terminal. The graph G′ is constructed
as follows. Create a new vertex s as the terminal. For each vertex and edge of G,
add a corresponding vertex to G′, and add an edge between vertices v and e in
G′ when e is incident to v in G. Finally, connect all vertices of G′ corresponding
to vertices of G to the terminal s, and set k′ = n − k + m − (

k
2
)

+ 1 and t = k.
The construction is shown in Fig. 1 c).

If G has a k-clique K, then cutting away the k vertices of G′ corresponding
to K leaves exactly n − k + m − (

k
2
)

+ 1 vertices in the connected component of
G′ − K containing s. Now suppose that X ⊆ V (G′) is a set with s ∈ X such
that |X | ≤ k′ and |NG′(X)| ≤ t, and let S = NG′(X). Note that the elements of
V (G′) that do not belong to X are exactly the elements v ∈ S and the vertices
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corresponding to e = uv such that u, v ∈ S and e /∈ S; denote this latter set of
elements by E0. Since X is a solution, we have |S| + |E0| ≥ (

k
2
)

+ k, and thus
|E0| ≥ (

k
2
)
. But this is only possible if S is a k-clique in G.

Finally, we show that Cutting at most k vertices by edge-cut with
terminal is also NP-hard.

Theorem 6. Cutting at most k vertices by edge-cut with terminal
is NP-complete.

Proof. We give a reduction from the Clique problem. It is known that this prob-
lem is NP-complete for regular graphs [12]. Let (G, k) be an instance of Clique,
with G being a d-regular n-vertex graph. We create an instance (G′, k′, t, s) of
Cutting k Vertices by Edge-Cut with Terminal as follows. The graph
G′ is constructed by starting from a base clique of size dn. One vertex in this
base clique is selected as the terminal s, and we additionally distinguish d spe-
cial vertices. For each v ∈ V (G), we add a new vertex to G′, and add an edge
between this vertex and all of the d distinguished vertices of the base clique. For
each edge e = uv in G, we also add a new vertex to G′, and add edges between
this vertex and vertices corresponding to u and v. The construction is shown in
Fig. 2. We set k′ = dn + k +

(
k
2
)

and t = dn − 2
(

k
2
)
.

E

d

s

u v

e = uv

base clique

V

Fig. 2. Construction of G′ in the proof of Theorem 6

If G has a k-clique K, then selecting as X the base clique and all vertices of
G′ corresponding to vertices and edges of K gives a solution to (G′, k′, t, s), as
we have |X | = dn + k +

(
k
2
)

and |∂(X)| = (dn − dk) +
(
dk − 2

(
k
2
))

= dn − 2
(

k
2
)
.

For the other direction, consider any solution X to instance (G′, k′, t, s). The
set X must contain the whole base clique, as otherwise there are at least dn − 1
edges inside the base clique that belong to ∂(X). Let V0 ⊆ V and E0 ⊆ E be the
subsets of X corresponding to vertices and edges of G, respectively. If E0 = ∅,
then |∂(X)| = dn. Assume now that V0 is fixed, and consider how adding vertices
to E0 changes |∂(X)|. For each edge e ∈ E(G), if neither of the endpoints of e
is in V0, then adding e to E0 adds 2 to |∂(X)|. If exactly one of the endpoints
of e is in V0, then adding e to E0 does not change |∂(X)|. Finally, if both of the
endpoints of e are in V0, then adding e to E0 reduces |∂(X)| by 2. Thus, in order
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to have |∂(X)| ≤ dn − 2
(

k
2
)
, we must have that |E0| ≥ (

k
2
)

and the endpoints of
all edges in E0 are in V0. But due to the requirement that |X | ≤ dn + k +

(
k
2
)
,

this is only possible if V0 induces a clique in G.
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Abstract. We consider the problem of fixed-polynomial lower bounds
on the size of arithmetic circuits computing uniform families of polyno-
mials. Assuming the Generalised Riemann Hypothesis (GRH), we show
that for all k, there exist polynomials with coefficients in MA having no
arithmetic circuits of size O(nk) over C (allowing any complex constant).
We also build a family of polynomials that can be evaluated in AM hav-
ing no arithmetic circuits of size O(nk). Then we investigate the link
between fixed-polynomial size circuit bounds in the Boolean and arith-
metic settings. In characteristic zero, it is proved that NP �⊂ size(nk), or
MA ⊂ size(nk), or NP = MA imply lower bounds on the circuit size of
uniform polynomials in n variables from the class VNP over C, assum-
ing GRH. In positive characteristic p, uniform polynomials in VNP have
circuits of fixed-polynomial size if and only if both VP = VNP over Fp

and ModpP has circuits of fixed-polynomial size.

Keywords: Arithmetic circuits, Circuit lower bounds, Valiant’s classes,
Complex field, Arthur-Merlin.

1 Introduction

Baur and Strassen [1] proved in 1983 that the number of arithmetic operations
needed to compute the polynomials xn1 + . . . + xnn is Ω(n logn). This is still the
best lower bound on uniform polynomials on n variables and of degree nO(1), if
uniformity means having circuits computed in polynomial time.

If no uniformity condition is required, lower bounds for polynomials have
been known since Lipton [10]. For example, Schnorr [14], improving on [10] and
Strassen [15], showed for any k a lower bound Ω(nk) on the complexity of a
family (Pn) of univariate polynomials of degree polynomial in n – even allow-
ing arbitrary complex constants in the circuits. The starting point of Schnorr’s
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method is to remark that the coefficients of a polynomial computed by a cir-
cuit using constants α = (α1, . . . , αp) is given by a polynomial mapping in α.
Hence, finding hard polynomials reduces to finding a point outside the image of
the mapping associated to some circuit which is universal for a given size. This
method has been studied and extended by Raz [12].

In the Boolean setting, this kind of fixed-polynomial lower bounds has already
drawn a lot of attention, from Kannan’s result [7] proving that for all k, Σp

2 does
not have circuits of size nk, to [3], delineating the frontier of Boolean classes
which are known to have fixed-polynomial size circuits lower bounds. It might
seem easy to prove similar lower bounds in the algebraic world, but the fact that
arbitrary constants from the underlying field (e.g. C) are allowed prevents from
readily adapting Boolean techniques.

Different notions of uniformity can be thought of, either in terms of the cir-
cuits computing the polynomials, or in terms of the complexity of computing
the coefficients. For instance, an inspection of the proof of Schnorr’s result men-
tioned above shows that the coefficients of the polynomials can be computed in
exponential time. But this complexity is generally considered too high to qualify
these polynomials as uniform.

The first problem we tackle is the existence of hard polynomials (i.e. without
small circuits over C) but with coefficients that are “easy to compute”. The search
for a uniform family of polynomials with no circuits of size nk was pursued recently
by Jansen and Santhanam [6]. They show in particular that there exist polynomi-
als with coefficients in MA (thus, uniform in some sense) but not computable by
arithmetic circuits of size nk overZ.1 Assuming the Generalised Riemann Hypoth-
esis (GRH), we extend their result to the case of circuits over the complex field.
GRH is used to eliminate the complex constants in the circuits, by considering
solutions over Fp of systems of polynomial equations, for a small prime p, instead
of solutions over C. In fact, the family of polynomials built by Jansen and San-
thanam is also uniform in the following way: it can be evaluated at integer points
in MA. Along this line, we obtain families of polynomials without arithmetic cir-
cuits of size nk over C and that can be evaluated in AM. The arbitrary complex
constants prevents us to readily adapt Jansen and Santhanam’s method and we
need to use in addition the AM protocol of Koiran [8] in order to decide whether
a system of polynomial equations has a solution over C.

Another interesting and robust notion of uniformity is provided by Valiant’s
algebraic class VNP, capturing the complexity of the permanent. The usual defini-
tion is non-uniform, but a natural uniformity condition can be required and gives
two equivalent characterisations: in terms of the uniformity of circuits and in terms
of the complexity of the coefficients. This is one of the notions we shall study in this
paper and which is also used by Raz [12] (where the term explicit is used to denote
uniform families of VNP polynomials). The second problem we study is therefore
to give an Ω(nk) lower bound on the complexity of an n-variate polynomial in the
uniform version of the classVNP. Note that from Valiant’s criterion, it corresponds

1 Even though this result is not stated explicitly in their paper, it is immediate to adapt
their proof to our context.
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to the coefficients being in GapP, so it is a special case of coefficients that are easy
to compute. Even though MA may seem a small class in comparison with GapP (in
particular due to Toda’s theorem PH ⊆ P#P), the result obtained above does not
yield lower bounds for the uniform version of VNP.

We show how fixed-polynomial circuit size lower bound on uniform VNP is
connected to various questions in Boolean complexity. For instance, the hypoth-
esis that NP does not have circuits of size nk for all k, or the hypothesis that MA
has circuits of size nk for some k, both imply the lower bound on the uniform
version of VNP assuming GRH. Concerning the question on finite fields, we show
an equivalence between lower bounds on uniform VNP and standard problems
in Boolean and algebraic complexity.

The paper is organised as follows. Definitions, in particular of the uniform
versions of Valiant’s classes, are given in Section 2. Hard families of polynomials
with easy to compute coefficients, or that are easy to evaluate, are built in
Section 3. Finally, conditional lower bounds on uniform VNP are presented in
the last section.

2 Preliminaries

Arithmetic Circuits. An arithmetic circuit over a field K is a directed acyclic
graph whose vertices have indegree 0 or 2 and where a single vertex (called the
output) has outdegree 0. Vertices of indegree 0 are called inputs and are labelled
either by a variable xi or by a constant α ∈ K. Vertices of indegree 2 are called
gates and are labelled by + or ×.

The polynomial computed by a vertex is defined recursively as follows: the
polynomial computed by an input is its label; a + gate (resp. × gate), having
incoming edges from vertices computing the polynomials f and g, computes
the polynomial f + g (resp. fg). The polynomial computed by a circuit is the
polynomial computed by its output gate.

A circuit is called constant-free if the only constant appearing at the inputs is
−1. The formal degree of a circuit is defined by induction in the following way:
the formal degree of a leaf is 1, and the formal degree of a sum (resp. product)
is the maximum (resp. sum) of the formal degree of the incoming subtrees (thus
constants “count as variables” and there is no possibility of cancellation).

We are interested in sequences of arithmetic circuits (Cn)n∈N, computing se-
quences of polynomials (Pn)n∈N (we shall usually drop the subscript “n ∈ N”).

Definition 1. Let K be a field. If s : N → N is a function, a family (Pn) of
polynomials over K is in asizeK(s(n)) if it is computed by a family of arithmetic
circuits of size O(s(n)) over K.

Similarly, size(s(n)) denotes the set of (Boolean) languages decided by Boolean
circuits of size O(s(n)).

Counting Classes. A function f : {0, 1}� → N is in #P if there exists a
polynomial p(n) and a language A ∈ P such that for all x ∈ {0, 1}�

f(x) = |{y ∈ {0, 1}p(|x|), (x, y) ∈ A}|.
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A function g : {0, 1}� → Z is in GapP if there exist two functions f, f ′ ∈ #P such
that g = f−f ′. The class C=P is the set of languages A = {x, g(x) = 0} for some
function g ∈ GapP. The class ⊕P is the set of languages A = {x, f(x) is odd}
for some function f ∈ #P. We refer the reader to [4] for more details on counting
classes.

Valiant’s Classes and Their Uniform Counterpart. Let us first recall the
usual definition of Valiant’s classes.

Definition 2 (Valiant’s classes). Let K be a field. A family (Pn) of polyno-
mials over K is in the class VPK if the degree of Pn is polynomial in n and (Pn)
is computed by a family (Cn) of polynomial-size arithmetic circuits over K.

A family (Qn(x)) of polynomials over K is in the class VNPK if there exists
a family (Pn(x, y)) ∈ VPK such that

Qn(x) =
∑

y∈{0,1}�n
Pn(x, y)

where 
n denotes the length of y in Pn.

The size of x and y is limited by the circuits for Pn and is therefore polynomial.
Note that the only difference between VPK and asizeK(poly) is the constraint on
the degree of Pn. If the underlying field K is clear, we shall drop the subscript
“K” and speak only of VP and VNP. Based on these usual definitions, we now
define uniform versions of Valiant’s classes.

Definition 3 (Uniform Valiant’s classes). Let K be a field. A family of
circuits (Cn) is called uniform if the (usual, Boolean) encoding of Cn can be
computed in time nO(1). A family of polynomials (Pn) over K is in the class
unif-VPK if it is computed by a uniform family of constant-free arithmetic cir-
cuits of polynomial formal degree.

A family of polynomials (Qn(x)) over K is in the class unif-VNPK if Qn has
n variables x = x1, . . . , xn and there exists a family (Pn(x, y)) ∈ unif-VPK such
that

Qn(x) =
∑

y∈{0,1}�n
Pn(x, y)

where 
n denotes the length of y in Pn.

The uniformity condition implies that the size of the circuit Cn in the definition
of unif-VP is polynomial in n. Note that unif-VPK and unif-VNPK only depend
on the characteristic of the field K (indeed, since no constant from K is allowed
in the circuits, these classes are equal to the ones defined over the prime subfield
of K).

In the definition of unif-VNP, we have chosen to impose that Qn has n vari-
ables because this enables us to give a very succinct and clear statement of our
questions. This is not what is done in the usual non-uniform definition where
the number of variables is only limited by the (polynomial) size of the circuit.
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The well-known “Valiant’s criterion” is easily adapted to the uniform case in
order to obtain the following alternative characterisation of unif-VNP.

Proposition 1 (Valiant’s criterion). In characteristic zero, a family (Pn) is
in unif-VNP iff Pn has n variables, a polynomial degree and its coefficients are
computable in GapP; that is, the function mapping (c1, . . . , cn) to the coefficient
of Xc1

1 · · ·Xcn
n in Pn is in GapP.

The same holds in characteristic p > 0 with coefficients in “GapP mod p”2.

Over a field K, a polynomial P (x1, . . . , xn) is said to be a projection of a
polynomial Q(y1, . . . , ym) if P (x1, . . . , xn) = Q(a1, . . . , am) for some choice of
a1, . . . , am ∈ {x1, . . . , xn} ∪K. A family (Pn) reduces to (Qn) (via projections)
if Pn is a projection of Qq(n) for some polynomially bounded function q.

The Hamiltonian Circuit polynomials are defined by

HCn(x1,1, . . . , xn,n) =
∑
σ

n∏
i=1

xi,σ(i),

where the sum is on all cycles σ ∈ Sn (i.e. on all the Hamiltonian cycles of the
complete graph over {1, . . . , n}). The family (HCn) is known to be VNP-complete
over any field [16] (for projections).

Elimination of Complex Constants in Circuits. The weight of a polyno-
mial P ∈ C[X1, . . . , Xn] is the sum of the absolute values of its coefficients. We
denote it by ω(P ). It is well known that for P,Q ∈ C[X1, . . . , Xn] and α ∈ C,
ω(PQ) � ω(P )ω(Q), ω(P + Q) � ω(P ) + ω(Q) and ω(αP ) = |α|ω(P ).

The following result gives a bound on the weight of a polynomial computed
by a circuit.

Lemma 1. Let P be a polynomial computed by an arithmetic circuit of size s
and formal degree d with constants of absolute value bounded by M � 2, then
ω(P ) � M s·d.

Proof. We prove it by induction on the structure of the circuit C which computes
P . The inequality is clear if the output of C is a constant or a variable since
ω(P ) � M , s � 1 and d � 1 in this case. If the output of P is a + gate then P is
the sum of the value of two polynomials P1 and P2 calculated by subcircuits of
C of formal degree at most d and size at most s−1. By induction hypothesis, we
have ω(P1) � Md(s−1) and ω(P1) � Md(s−1). We have ω(P ) � ω(P1) + ω(P2)
so ω(P ) � 2 ·Md(s−1) � Md(s−1)+1 � Mds. If the output of C in a × gate, P
is the product some polynomials P1 and P2 each calculated by circuits of size
at most s − 1 and degrees d1 and d2 respectively such that d1 + d2 = d. Then
ω(P ) � ω(P1)ω(P2) � M (s−1)d1M (s−1)d2 = M (s−1)d � M sd. ��
2 This is equivalent to the fact that for all v ∈ Fp, the set of monomials having
coefficient v is in ModpP.
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For a ∈ N, we denote by π(a) the number of prime numbers smaller than or
equal to a. For a system S of polynomial equations with integer coefficients, we
denote by πS(a) the number of prime numbers p � a such that S has a solution
over Fp. The following lemma will be useful for eliminating constants from C.
(Note that the similar but weaker statement first shown by Koiran [8] as a step
in his proof of Theorem 1 would be enough for our purpose.)

Lemma 2 (Bürgisser [2, p. 64]). Let S be a system of polynomial equations

P1(x) = 0, . . . , Pm(x) = 0

with coefficients in Z and with the following parameters : n unknowns, and for
all i, degree of Pi at most d and ω(Pi) � w. If the system S has a solution over
C then under GRH,

πS(a) � π(a)

dO(n)
−
√
a log(wa).

At last, we need a consequence of VNP having small arithmetic circuits over the
complex field.

Lemma 3. Assume GRH. If VP = VNP over C, then CH = MA.

Proof. Assume VP = VNP over C. From the work on Boolean parts of Valiant’s
classes [2, Chapter 4], this implies P/poly = PP/poly = CH/poly, therefore MA =
CH [11]. ��

3 Hard Polynomials with Coefficients in MA

We begin with lower bounds on polynomials with coefficients in PH before bring-
ing them down to MA.

Hard Polynomials with Coefficients in PH. We first need to recall a couple
of results. The first one is an upper bound on the complexity of the following
problem called HN (named after Hilbert’s Nullstellensatz):

Input A system S = {P1 = 0, . . . , Pm = 0} of n-variate polynomial equations
with integer coefficients, each polynomial Pi ∈ Z[x1, . . . , xn] being given as
a constant-free arithmetic circuit.

Question Does the system S have a solution over Cn?

Theorem 1 (Koiran [8]). Assuming GRH is true, HN ∈ PH.

Koiran’s result is stated here for polynomials given by arithmetic circuits, instead
of the list of their coefficients. Adapting the result of the original paper in terms
of arithmetic circuits is not difficult: it is enough to add one equation per gate
expressing the operation made by the gate, thus simulating the whole circuit.

The second result is used in the proof of Schnorr’s result mentioned in the
introduction.
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Lemma 4 (Schnorr [14]). Let (Un) be the family of polynomials defined in-
ductively as follows:{
U1 = a

(1)
0 + b

(1)
0 x where a

(1)
0 , b

(1)
0 and x are new variables

Un =
(∑n−1

i=1 a
(n)
i Ui

)(∑n−1
i=1 b

(n)
i Ui

)
where a

(n)
i , b

(n)
i are new variables.

Thus Un has variables x, a
(j)
i and b

(j)
i (for 1 � j � n and 0 � i < j). For

simplicity, we will write Un(a, b, x), where the total number of variables in the
tuples a, b is n(n+ 1).

For every univariate polynomial P (x) over C computed by an arithmetic cir-
cuit of size s, there are constants a, b ∈ Cs(s+1) such that P (x) = Us(a, b, x).

The polynomials Us in this lemma are universal in the sense that they can sim-
ulate any circuit of size s; the definition of such a polynomial indeed reproduces
the structure of an arbitrary circuit by letting at each gate the choice of the
inputs and of the operation, thanks to new variables.

The third result we’ll need is due to Hrubeš and Yehudayoff [5] and relies
on Bézout’s Theorem. Showing Theorem 2 could also be done without using
algebraic geometry, but this would complicate the overall proof.

Lemma 5 (Hrubeš and Yehudayoff [5]). Let F : Cn → Cm be a polynomial
map of degree d > 0, that is, F = (F1, . . . , Fm) where each Fi is a polynomial of
degree at most d. Then |F (Cn) ∩ {0, 1}m| � (2d)n.

We are now ready to give our theorem.

Theorem 2. Assume GRH is true. For any constant k, there is a family (Pn)
of univariate polynomials with coefficients in {0, 1} satisfying:

– deg(Pn) = nO(1) (polynomial degree);
– the coefficients of Pn are computable in PH, that is, on input (1n, i) we can

decide in PH if the coefficient of xi is 1;
– (Pn) is not computed by arithmetic circuits over C of size nk.

Proof. Fix s = nk. Consider the universal polynomial Us(a, b, x) of Lemma 4

simulating circuits of size s. If α
(s)
i denotes the coefficient of xi in Us, then we

have the relation
α
(s)
i =

∑
i1+i2=i
s1,s2<s

a(s)s1 b
(s)
s2 α

(s1)
i1

α
(s2)
i2

.

By induction, the coefficient α
(s)
i is therefore a polynomial in a, b of degree

� (i + 1)22s.
Now, we would like to find a polynomial whose coefficients are different from

the α
(s)
i for any value of a, b. This will be done thanks to Lemma 5, but we have

to use it in a clever way because our method requires to use interpolation on
d+1 points to identify two polynomials of degree d: hence we need to “truncate”
the polynomial Us to degree d.
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Fix d = s4. It follows from the beginning of the proof that the map computing
the first (d + 1) coefficients of Us

F : Cs(s+1) → Cd+1

(a, b)  → (α
(s)
0 , . . . , α

(s)
d )

is a polynomial map of degree at most (d+1)22s. Since ((d+1)22s)s(s+1) < 2d+1,
by Lemma 5 there exist coefficients (β0, . . . , βd) ∈ {0, 1}d+1 not in F (Cs(s+1)).
In other words, for any values of a, b in C, the first (d+1) coefficients of Us differ
from (β0, . . . , βd).

Let Pβ(x) be the polynomial
∑d

i=0 βix
i and let us call Us|d the truncation

of Us up to degree d, that is, the sum of all the monomials of degree � d in
x. For any instantiation of a, b in C, we have Us|d(a, b, x) �= Pβ(x). Since both
polynomials are of degree smaller than or equal to d, this means that there
exists an integer m ∈ {0, . . . , d} such that Us|d(a, b,m) �= Pβ(m). Therefore the
following system of polynomial equations with unknowns a, b:

Sβ = {Us|d(a, b,m) = Pβ(m) : m ∈ {0, . . . , d}}

has no solution over C.
Conversely, consider now this system for other coefficients than β, that is, Sγ

for γ0, . . . , γd ∈ {0, 1}. If Sγ does not have a solution over C, this means that
for any instantiation of a, b ∈ C we have Us|d(a, b, x) �= Pγ(x), hence Pγ is not
computable by a circuit of size s by Lemma 4.

The goal now is then to find values of γ ∈ {0, 1}d+1 such that Sγ does not
have a solution over C.

Remark first that on input γ0, . . . , γd ∈ {0, 1} and m ∈ {0, . . . , d}, we
can describe in polynomial time a circuit Cγ,m(a, b) computing the polynomial
Us|d(a, b,m) − Pγ(m). Indeed, Us is computable by an easily described circuit
following its definition, hence its truncation to degree d also is (by computing the
homogeneous components up to degree d), and a circuit for Pγ is also immediate
if we are given γ. Therefore, we can describe in polynomial time the system Sγ
to be used in Theorem 1.

The algorithm in PH to compute the coefficients of a polynomial Pβ without
circuits of size s is then the following on input (1n, i):

– Find the lexicographically first γ0, . . . , γd ∈ {0, 1} such that Sγ �∈ HN;
– accept iff γi = 1.

This algorithm is in PHHN. By Theorem 1, if we assume GRH then the problem
HN is in PH. We deduce that computing the coefficients of Pγ can be done in
PH. ��

Hard Polynomials with Coefficients in MA. Allowing n variables instead
of only one, we can even obtain lower bounds for polynomials with coefficients
in MA.
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Corollary 1. Assume GRH is true. For any constant k, there is a family (Pn)
of polynomials on n variables, with coefficients in {0, 1}, of degree nO(1), with
coefficients computable in MA, and such that (Pn) �∈ asizeC(nk).

Proof. If the Hamiltonian family (HCn) does not have circuits of polynomial
size over C, consider the following variant of a family with n variables:
HC′

n(x1, . . . , xn) = HC�
√
n�(x1, . . . , x�

√
n�2). This is a family whose coefficients

are in P (hence in MA) and without circuits of size nk.
On the other hand, if the Hamiltonian family (HCn) has circuits of polynomial

size over C, then PH = MA by Lemma 3. Therefore the family of polynomials of
Theorem 2 has its coefficients in MA. ��

Hard Polynomials That Can Be Evaluated in AM. A family of polyno-
mials (Pn(x1, . . . , xn)) is said to be evaluable in AM if the language

{(x1, . . . , xn, i, b) | the i-th bit of Pn(x1, . . . , xn) is b}

is in AM, where x1, . . . , xn, i are integers given in binary and b ∈ {0, 1}. In the
next proposition, we show how to obtain polynomials which can be evaluated in
AM. The method is based on Santhanam [13] and Koiran [9] (proof omitted due
to space constraints).

Proposition 2. Assume GRH is true. For any constant k, there is a family
(Pn) of polynomials on n variables, with coefficients in {0, 1}, of degree nO(1),
evaluable in AM and such that (Pn) �∈ asizeC(nk).

4 Conditional Lower Bounds for Uniform VNP

In Characteristic Zero. In this whole section we assume GRH is true. Our
main result in this section is that if for all k, C=P has no circuits of size nk, then
the same holds for unif-VNP (in characteristic zero). For the clarity of exposition,
we first prove the weaker result where the assumption is on the class NP instead.

Lemma 6. If there exists k such that unif-VNP ⊆ asizeC(nk), then there exists

 such that NP ⊆ size(n).

Proof. Let us assume that unif-VNP ⊆ asizeC(nk). Let L ∈ NP. There is a
polynomial q and a polynomial time computable relation φ : {0, 1}∗×{0, 1}∗ →
{0, 1} such that for all x ∈ {0, 1}n, x ∈ L if and only if ∃y ∈ {0, 1}q(n) φ(x, y) = 1.

We define the polynomial Pn by

Pn(X1, . . . , Xn) =
∑

x∈{0,1}n

⎛⎝ ∑
y∈{0,1}q(n)

φ(x, y)

⎞⎠ n∏
i=1

Xxi

i (1 −Xi)
1−xi .

Note that for x ∈ {0, 1}n, Pn(x) is the number of elements y in relation with x via
φ. By Valiant’s criterion (Proposition 1), the family (Pn) belongs to unif-VNP in
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characteristic 0. By hypothesis, there exists a family of arithmetic circuits (Cn)
over C computing (Pn), with Cn of size t = O(nk).

Let α = (α1, . . . , αt) be the complex constants used by the circuit. We have
Pn(X1, . . . , Xn) = Cn(X1, . . . , Xn, α). Take one unknown Yi for each αi and one
additional unknown Z, and consider the following system S:{(∏

x∈L∩{0,1}n Cn(x, Y )
)
· Z = 1

Cn(x, Y ) = 0 for all x ∈ {0, 1}n \ L.
Note that introducing one equation for each x ∈ L ∩ {0, 1}n (as we did for each
x ∈ {0, 1}n\L) would not work since it would require to introduce an exponential
number of new variables.

Let β =
(∏

x∈L∩{0,1}n Cn(x, α)
)−1

. Then (α, β) is a solution of S over C.

The system S has t+1 = O(nk) unknowns. The degree of Cn(x, Y ) is bounded

by 2t; hence the degree of S is at most 2O(nk). Moreover, the weight of the

polynomials in S is bounded by 22
O(nk)

using Lemma 1.
Since the system S has the solution (α, β) over C, by Lemma 2 it has a

solution over Fp for some p small enough. We recall that π(p) ∼ p/ log p; hence

the system S has a solution over Fp for p = 2O(n2k).
Consider p as above and (α′, β′) a solution of the system S over Fp. By

definition of S, when the circuit Cn is evaluated over Fp, the following is satisfied:{
∀x ∈ L ∩ {0, 1}n, Cn(x, α′) �= 0,

∀x ∈ {0, 1}n \ L, Cn(x, α′) = 0.

Computations over Fp can be simulated by Boolean circuits, using log2 p bits
to represent an element of Fp, and O(log2 p) gates to simulate an arithmetic
operation. This yields Boolean circuits of size n for 
 = O(k) to decide the
language L. ��

Theorem 3. Assume GRH is true. Suppose one of the following conditions
holds:

1. NP �⊂ size(nk) for all k;
2. C=P �⊂ size(nk) for all k;
3. MA ⊂ size(nk) for some k;
4. NP = MA.

Then unif-VNP �⊂ asizeC(nk) for all k.

Proof. The first point is proved in Lemma 6.
The second point subsumes the first since coNP ⊆ C=P. It can be proved in a

very similar way. Indeed consider L ∈ C=P and f ∈ GapP such that x ∈ L ⇐⇒
f(x) = 0, and its associated family of polynomials

Pn(X1, . . . , Xn) =
∑

x∈{0,1}n
f(x)

n∏
i=1

Xxi

i (1 −Xi)
1−xi



On Fixed-Polynomial Size Circuit Lower Bounds for Uniform Polynomials 443

as in the proof of Lemma 6. Then for all x ∈ {0, 1}n, Pn(x) = 0 iff x ∈ L. The
family (Pn) belongs to unif-VNP and thus, assuming unif-VNP ⊂ asizeC(nk), has
arithmetic circuits (Cn) over C of size t = O(nk). Constants of C are replaced
with elements of a small finite field by considering the system:{

Cn(x, Y ) = 0 for all x ∈ L ∩ {0, 1}n(∏
x∈{0,1}n\L Cn(x, Y )

)
· Z = 1.

The end of the proof is similar.
For the third point, let us assume unif-VNP ⊂ asizeC(poly). It implies VP =

VNP thanks to the VNP-completeness of the uniform family (HCn), then MA =
PP by Lemma 3. This implies MA �⊂ size(nk) for all k since PP �⊂ size(nk) for all
k [17].

For the last point, assume NP = MA. If NP is without nk circuits for all k,
then the conclusion comes from the first point. Otherwise MA has nk-size circuits
and the conclusion follows from the previous point. ��

For any constant c, the class PNP[nc] is the set of languages decided by a poly-
nomial time machine making O(nc) calls to an NP oracle. It is proven in [3]

that NP ⊂ size(nk) implies PNP[nc] ⊂ size(nck
2

). Hence, it is enough to assume
fixed-polynomial lower bounds on this larger class PNP[nc] for some c to get
fixed-polynomial lower bounds on unif-VNPC.

An Unconditional Lower Bound in Characteristic Zero. In this part we
do not allow arbitrary constants in circuits. We consider instead circuits with
−1 as the only scalar that can label the leaves. For s : N → N, let asize0(s) be
the family of polynomials computed by families of unbounded degree constant-
free circuits of size O(s) (in characteristic zero). Note that the formal degree of
these circuits are not polynomially bounded: hence, large constants produced by
small arithmetic circuits can be used. (The proof of the next theorem has been
omitted due to space constraints).

Theorem 4. unif-VNP �⊂ asize0(n
k) for all k.

In Positive Characteristic. This subsection deals with fixed-polynomial lower
bounds in positive characteristic. The results are presented in characteristic 2
but they hold in any positive characteristic p (replacing ⊕P with ModpP). (The
proof has been omitted due to space constraints.)

Theorem 5. The following are equivalent:

– unif-VNPF2 ⊂ asizeF2(nk) for some k;
– VPF2 = VNPF2 and ⊕P ⊂ size(nk) for some k.

Acknowledgements. We thank Guillaume Malod for useful discussions and
Thomas Colcombet for some advice on the presentation.
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Abstract. We examine the algorithmic tractability of NP-hard combi-
natorial feature selection problems in terms of parameterized complexity
theory. In combinatorial feature selection, one seeks to discard dimen-
sions from high-dimensional data such that the resulting instances fulfill
a desired property. In parameterized complexity analysis, one seeks to
identify relevant problem-specific quantities and tries to determine their
influence on the computational complexity of the considered problem.
In this paper, for various combinatorial feature selection problems, we
identify parameterizations and reveal to what extent these govern com-
putational complexity. We provide tractability as well as intractability
results; for example, we show that the Distinct Vectors problem on
binary points is polynomial-time solvable if each pair of points differs in
at most three dimensions, whereas it is NP-hard otherwise.

1 Introduction

Feature selection in a high-dimensional data space means to choose a subset of
features (that is, dimensions) such that some desirable data properties are pre-
served or achieved. Combinatorial feature selection [14, 5] is a well-motivated
alternative to the more frequently studied affine feature selection: While affine
feature selection combines features to reduce dimensionality, combinatorial fea-
ture selection chooses a subspace by discarding some dimensions. The advantage
of the latter is that the resulting reduced feature space is easier to interpret. See
Charikar et al. [5] for a more extensive discussion in favor of combinatorial feature
selection. Unfortunately, combinatorial feature selection problems are typically
computationally very hard to solve (NP-hard and also hard to approximate [5]),
resulting in the use of heuristic approaches in practice [2, 8, 12, 13].

In this work, mainly following Charikar et al. [5], who provided classical
computational hardness results (NP-hardness and inapproximability), we adopt
the fresh perspective of parameterized complexity analysis. We thus refine the
known picture of the computational complexity landscape of combinatorial fea-
ture selection problems. Intuitively speaking, our guiding principle is to identify
� Vincent Froese was supported by DFG, project DAMM (NI 369/13). René van Bev-
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problem-specific parameters (quantities such as number of dimensions to discard
or number of dimensions to keep) and to analyze how these quantities influence
the problem complexity. The point here is that in relevant applications these
parameters can be small. Hence, the central question is whether the considered
problems become computationally tractable in the case of small parameters.

We revisit two categories of combinatorial feature selection problems (namely
dimension reduction and clustering problems) as introduced by Charikar et al. [5].
Within their framework they defined (amongst others) two problems called Dis-
tinct Vectors and Hidden Clusters. In this work, we consider Distinct
Vectors and introduce a new problem called Lp-Hidden Cluster Graph
which is based on Hidden Clusters. For both problems, we shed new light on
the (non-)existence of provably tractable special cases.

Distinct Vectors is a dimension reduction problem defined as follows:

Distinct Vectors
Input: A multiset S = {x1, . . . , xn} ⊆ Σd of n distinct points in d dimensions

and k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≤ k such

that all points in S|K are still distinct?

Throughout this work, S|K := {x1|K , . . . , xn|K} denotes the multiset of projec-
tions xi|K of the points in S into the dimensions in K, that is, dimensions not
in K are set to zero. Distinct Vectors is NP-hard to approximate within
a logarithmic factor [5]. It is also known as the Minimal Reduct problem in
rough set theory [17] and was already earlier proven to be NP-hard [18].

In the clustering category, we assume that the input data would cluster well
once some noise is removed. The representative problem for this category is
Hidden Clusters [5]. The goal is to maximize the number of dimensions that
allow for a clustering of the data into a predefined number of cluster centers of a
given radius. Notably, the number of sought clusters has to be known in advance.
This is not always realistic. Hence, we would like also to reveal clusterings in our
data without knowing the number of clusters beforehand. To this end, we employ
a clustering notion from graph-based data clustering: Instead of formulating a
cluster as a point set within a given radius r from some center as in Hidden
Clusters, we now formulate a cluster as a set of points of pairwise distance
at most r. Such sets of points form cliques in a “threshold graph” that contains
an edge between two points whenever their distance is at most r. The search
for a clustering now essentially becomes the search for a graph whose connected
components are cliques. In contrast to Hidden Clusters, this also expresses
the need of points in different clusters to be dissimilar to each other.

Lp-Hidden Cluster Graph
Input: A set S = {x1, . . . , xn} ⊆ Σd with Σ ⊆ Q, r ∈ Q+

0 , k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k such

that the graph GK = (V, EK) with V := S, EK := {{xi, xj} | xi �= xj ∈
V, dist(p)

|K (xi, xj) ≤ r} is a cluster graph (that is, a union of disjoint cliques)?
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Herein, dist(p)
|K is a metric computing the distance between two points from Σd

projected to the dimensions in K. We explicitly consider the distance func-
tions induced by the Lp-norm: dist(p)(x, y) :=

∑d
j=1 |(x − y)j |p for p ∈ N and

dist(∞)(x, y) := maxj∈{1,...,d} |(x − y)j |. By (x)j we denote the value of x ∈ Σd

in the j-th dimension. Note that GK is a so-called unit ball graph.
Parameterized complexity preliminaries. The computational complexity of a pa-
rameterized problem is measured in terms of two quantities: one is the input size,
the other is the parameter (usually a positive integer). A parameterized prob-
lem L ⊆ Σ∗ ×N is called fixed-parameter tractable with respect to a parameter k
if it can be solved in f(k) · |x|O(1) time, where f is a computable function only
depending on k, and |x| is the size of the input instance x. A problem kernel for
a parameterized problem is a many-one self-reduction that runs in polynomial
time such that the produced instances have size upper-bounded by some func-
tion exclusively depending on the parameter. Existence of a problem kernel is
equivalent to fixed-parameter tractability [10, 11, 16].

A parameterized reduction from a parameterized problem P to another pa-
rameterized problem P ′ is a function that, given an instance (x, k), computes
in f(k) · |x|O(1) time an instance (x′, k′) (with k′ only depending on k) such
that (x, k) is a “yes”-instance of P if and only if (x′, k′) is a “yes”-instance of P ′.
The two basic complexity classes for showing (presumable) fixed-parameter in-
tractability are called W[1] and W[2]; the standard assumption is that W[1]-hard
and W[2]-hard problems are not fixed-parameter tractable [10, 11, 16].

Throughout this work we assume that arithmetic operations such as additions
and comparisons of numbers can be done in O(1) time.

Our contributions. For Distinct Vectors we prove W[2]-hardness with re-
spect to the solution size k. In addition, we observe that it cannot be solved
in do(k) · |x|O(1) time unless W[1] = FPT (which is strongly believed not to
be the case). Moreover, for Distinct Vectors restricted to a binary input al-
phabet, we give the following complexity dichotomy: if the maximum pairwise
Hamming distance h between input points is at most three, then Distinct Vec-
tors is polynomial-time solvable, and it is NP-complete for h ≥ 4. The latter
NP-completeness proof also implies W[1]-hardness with respect to the parameter
d − k (“number of dimensions to discard”). In contrast, we provide some prob-
lem kernels with respect to the combined parameters “alphabet size combined
with k” and “h combined with k”.

For Lp-Hidden Cluster Graph, we show that it is W[2]-hard with respect
to the number t of discarded dimensions for all p ∈ N, whereas it is fixed-
parameter tractable with respect to t combined with the radius r. L∞-Hidden
Cluster Graph even is polynomial-time solvable in general.

Due to the lack of space, several technical details are deferred to a full version.

2 Distinct Vectors
Skowron and Rauszer [18] first proved NP-hardness for Minimal Reduct
(which is equivalent to Distinct Vectors) by a reduction from Hitting Set.
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Charikar et al. [5] additionally showed that there is some constant c such that
Distinct Vectors is not polynomial-time approximable within a factor of
c log d unless P = NP. We analyze various restricted scenarios for the Distinct
Vectors problem and conduct a more fine-grained computational complexity
analysis which, unfortunately, yields further hardness results in most cases. More
specifically, we consider the cases of (i) retaining few dimensions, (ii) deleting
few dimensions, and (iii) small pairwise differences between points.

We first present results for a binary input alphabet in Section 2.1 and then
proceed with results for larger and unbounded alphabet size in Section 2.2.

2.1 Bounded Pairwise Hamming Distance: A Complexity Dichotomy

Throughout this subsection we focus on instances with a binary input alpha-
bet Σ = {0, 1}. We further restrict our considerations to instances with points
of bounded “degree of distinctiveness”. Herein, we refer to instances where each
pair of points differs in at most h dimensions. In other words, the Hamming
distance of any pair of points is bounded from above by h. For example, this
situation can arise for sparse data sets where the points mainly contain 0’s. Intu-
itively, if the data set consists of points that are all “similar” to each other, one
could hope to be able to solve the instance efficiently since there are at most h
dimensions to choose from in order to distinguish two points. The following the-
orem, however, shows that this intuition is deceptive: when crossing a certain
threshold of dissimilarity, the complexity suddenly changes.

Theorem 1. For a binary input alphabet Σ = {0, 1}, Distinct Vectors is

i) solvable in O(n3d) time if the maximum pairwise Hamming distance h of
the input vectors is at most three, and

ii) NP-hard for h ≥ 4.

In order to prove (i), we use the following combinatorial lemma.

Lemma 2. Let m, n ∈ N with m > n + 1 and let A = {A1, . . . , Am} be a family
of pairwise different sets of size n each with ∀Ai �= Aj : |Ai ∩ Aj | = n − 1. Then,
∀Ai �= Aj : Ai ∩ Aj =

⋂m
k=1 Ak.

Now, we can sketch a proof of Theorem 1(i).

Proof (Sketch, Theorem 1(i)). We give a search tree algorithm that solves a
given Distinct Vectors instance (S, k). The restriction h = 3 guarantees that
there are not “too many” branches in the search tree to consider and, hence,
that the search tree has polynomial size. For x ∈ S and i ∈ N we define
Dx := {j ∈ {1, . . . , d} | (x)j = 1} and Si := {x ∈ S | i = |Dx|}. Without
loss of generality, we can assume that 0 := (0, . . . , 0) ∈ S. If this is not the case,
then we can simply fix an arbitrary point x0 ∈ S and exchange 1’s and 0’s in
all points in S in all dimensions where x0 equals 1. This yields an equivalent
instance with x0 = 0 ∈ S in linear time.
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Fig. 1. The points in S3|D3 ⊆ {0, 1}7 represented as
rows of a matrix with columns corresponding to the
dimensions in D3. Empty cells represent zero entries.
Each pair of points shares a 1 in two dimensions. For
more than four points there exist two dimensions in
which all points equal 1. At most one of the other
dimensions is not contained in a solution.

Let (S, k), S ⊆ {0, 1}d, be an instance of Distinct Vectors with |S| = n.
The bound h = 3 implies that each point in S contains at most three 1’s since
otherwise it differs in more than three dimensions from 0. Thus, we can partition
the data set S = {0} � S1 � S2 � S3. Moreover, the restriction h = 3 also implies
the following two conditions, which constitute the crucial aspects for our proof.

∀x, y ∈ S3 : |Dx ∩ Dy| = 2, (1)
∀x, y ∈ S2 : |Dx ∩ Dy| = 1. (2)

Both conditions have to be met since otherwise there exists a pair of points differ-
ing in at least four dimensions. The algorithm starts with considering the subset
S3. The points in S3 can only be distinguished from each other by a subset of the
dimensions D3 :=

⋃
x∈S3

Dx. If |S3| ≤ 4, then we simply branch over all possible
subsets of D3. With a constant number of at most four distinct points in S3,
the size of D3 is also bounded by a constant and so there are only constantly
many subsets to try. If |S3| > 4, then statement (1) together with Lemma 2
implies that C3 :=

⋂
x∈S3

Dx contains two dimensions. It follows that for each
dimension j ∈ D3 \ C3 there exists exactly one point x ∈ S3 with (x)j = 1. This
situation is depicted in Figure 1. In order to distinguish all points in S3 from each
other, any solution contains at least all but one dimension from D3 \ C3. Hence,
we can try out all subsets of D3\C3 of size at least |S3|−1. Together with the four
possible subsets of C3 we end up with at most 4(n + 1) subsets of D3 to branch
over. Similarly, we obtain that we have to branch over at most 2(n+1) subsets of
dimensions to distinguish all points in S2. Thus, we end up with O(n2) possible
subset selections. For the set S1 no branching is necessary. For each selection we
check whether it is a solution or not. This can be done in O(nd) time by sorting
the data set lexicographically with radix sort and comparing successive points.
Overall, we obtain a search tree algorithm with running time of O(n3d). ��
When the pairwise Hamming distance h of the input vectors is at least four, the
conditions (1) and (2) from the proof of Theorem 1(i) do not hold. Therefore, we
cannot apply Lemma 2, which is crucial in that it guarantees a regular structure
of the data set that makes the instance easy to solve. Instead, we can observe
that, if a pair of points is allowed to take on different values in at least four
dimensions, then the data set can “encode” arbitrary graphs. We exploit this
to prove Theorem 1(ii), that is, that Distinct Vectors is NP-complete for
h ≥ 4. To this end, we describe a polynomial-time many-one reduction from a
special variant of the Independent Set problem in graphs, which is defined
as follows.



450 V. Froese et al.

Distance-3 Independent Set
Input: An undirected graph G = (V, E) and k ∈ N.
Question: Is there a subset of vertices I ⊆ V of size at least k such that any

pair of vertices from I has distance at least three?

Here, the distance of two vertices is the number of edges contained in a shortest
path between them. Distance-3 Independent Set can easily be shown to be
NP-hard by a reduction from Induced Matching [3].

We are now ready to prove that Distinct Vectors is NP-complete for h ≥ 4,
even if the input alphabet Σ is binary.

Proof (Theorem 1(ii)). It is easy to check that Distinct Vectors is in NP. To
show NP-hardness, let (G = (V, E), k) with |V | = n and |E| = m be an instance
of Distance-3 Independent Set and let Z be the m×n transposed incidence
matrix of G with rows corresponding to edges and columns to vertices. The data
set S of our Distinct Vectors instance (S, k′) is defined to contain all m row
vectors of Z and the null point 0 = (0, . . . , 0) ∈ {0, 1}n. The sought solution
size is set to k′ := n − k. Notice that each point in S contains exactly two 1’s
(except for 0). Thus, each pair of points differs in at most h = 4 dimensions. The
instance (S, k′) can be computed in O(nm) time.

Correctness of the reduction follows by the following argument: The subset
I ⊆ V is a solution of (G, k) if and only if it is of size k and every edge in G has
at least one endpoint in V \ I and no vertex in V \ I has two neighbors in I. In
other words, the latter condition says that no two edges with an endpoint in I
share the same endpoint in V \ I. Equivalently, for the subset K of dimensions
corresponding to the vertices in V \ I, it holds that all row vectors of Z in S|K
contain at least one 1 and no two vectors contain only a single 1 in the same
dimension. This holds if and only if K is a solution for (S, k′), because S contains
the null point and thus two points can only be identical in S|K if either they
consist of 0’s only or contain a single 1 in the same dimension. ��
We remark that from a W[1]-hardness result for Induced Matching [15] we can
infer W[1]-hardess for Distance-3 Independent Set with respect to k. Since
the proof of Theorem 1(i) yields a parameterized reduction from Distance-3
Independent Set parameterized by k to Distinct Vectors parameterized
by the number n − k′ = k of dimensions to discard, we have the following:

Corollary 3. Distinct Vectors is W[1]-hard with respect to the number of
dimensions to delete.

2.2 Distinct Vectors with an Arbitrary Alphabet

As we have seen in Section 2.1, Distinct Vectors is NP-complete and W[1]-
hard with respect to the number of dimensions to be deleted even in the case
of a binary alphabet when the pairwise Hamming distance of the vectors is
bounded by four. Nevertheless, we note later in this section that some tractability
results are achievable even for larger alphabets. First, however, we mention that
Hitting Set parameterized by the sought solution size (which is W[2]-hard,
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as shown by Downey and Fellows [10]) is parameterized reducible to Distinct
Vectors in the case of an arbitrary alphabet size, which yields the following:

Theorem 4. Allowing an arbitrary alphabet size, Distinct Vectors is W [2]-
hard with respect to the parameter k.

Proof. We give a parameterized reduction from Hitting Set:

Hitting Set
Input: A finite universe U , a collection C of subsets of U and a nonnegative

integer k.
Question: Is there a subset K ⊆ U with |K| ≤ k such that K contains at least

one element from each subset in C?

Given an instance (U, C, k) of Hitting Set with U = {u1, . . . , um} and
C = {C1, . . . , Cn}, we construct a Distinct Vectors instance (S, k′) with
S := {x1, . . . , xn, 0} ⊆ Nm and k′ := k, where 0 = (0, . . . , 0) and

(xi)j :=

{
i, uj ∈ Ci

0, uj �∈ Ci

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.

The above instance is polynomial-time computable. If K ⊆ U is a solution
of (U, C, k), then K ∩ Ci �= ∅ for all Ci ∈ C and thus for each xi ∈ S there is
a dimension corresponding to some element in K, such that xi equals i in this
dimension and is thus different from all other points in S. Conversely, in order to
distinguish any xi ∈ S from 0, any solution K ′ of (S, k′) has to contain a dimen-
sion where xi is different from 0. This implies that the subset of U corresponding
to K ′ contains at least one element of each Ci and is thus a solution of the original
instance. Finally, note that this is a parameterized reduction since k′ = k. ��
It was shown by Chen et al. [6] that, unless FPT = W[1], Hitting Set cannot
be solved in |U |o(k) · |x|O(1) time. Since the reduction from Hitting Set yields
an instance with d = |U | dimensions and solution size k in polynomial time, it
follows that Distinct Vectors cannot be solved in do(k) · |x|O(1) time unless
FPT = W[1]. On the positive side, Distinct Vectors can trivially be solved by
trying out all subsets of dimensions of size k within dk ·|x|O(1) time. Consequently,
we obtain the following corollary.

Corollary 5. If FPT �= W[1], then the fastest algorithm solving Distinct
Vectors has a running time of dΘ(k) · |x|O(1).

Although Theorem 4 shows that Distinct Vectors is W[2]-hard with respect
to the parameter k, we can provide a problem kernel for Distinct Vectors
if we additionally consider the input alphabet size |Σ| as parameter. The size
of the problem kernel is superexponential in the parameter (k, |Σ|). Clearly, a
problem kernel of polynomial size would be desirable. However, based on the
complexity-theoretic assumption that the polynomial hierarchy does not col-
lapse, polynomial-size kernels do not exist even with the additional parameter n
of input points:
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Theorem 6.

i) There exists an O(|Σ||Σ|k+k
/|Σ|! · log |Σ|)-size problem kernel computable

in O(d2n2) time for Distinct Vectors.
ii) Unless NP ⊆ coNP/poly, Distinct Vectors does not admit a polynomial-

size kernel with respect to the combined parameter (n, |Σ|, k).

Proof (Sketch). (i) The idea is that k dimensions can distinguish at most |Σ|k
points. Observe that every dimension partitions the data set into at most |Σ| non-
empty subsets. If any two dimensions yield the same partitioning, we can simply
delete one of them. Thus, any “yes”-instance has at most |Σ||Σ|k

/|Σ|! essentially
different dimensions. Any larger instance can be discarded as “no”-instance.

(ii) The reduction from Hitting Set in the proof of Theorem 4 can easily be
turned into a reduction from the closely related Set Cover. For Set Cover,
Dom et al. [9] showed that there is no polynomial-size kernel, which in combi-
nation with the reduction also excludes polynomial-size kernels for Distinct
Vectors. ��
Besides parameterizing by the alphabet size, the maximum Hamming distance h
of all pairs of points also yields tractability results. It is possible to reduce Dis-
tinct Vectors to h-Hitting Set for which problem kernels with respect
to (h, k) are known [1]. These can be used to obtain problem kernels for Dis-
tinct Vectors in turn. We omit the details here and refer to a full version.

In this subsection we have seen that Distinct Vectors can basically be
regarded as a special Hitting Set problem. Interestingly, Hitting Set with
respect to the solution size is W[2]-hard in general, but for constant-size al-
phabets, Distinct Vectors is fixed-parameter tractable (Theorem 6). Thus,
the set systems induced by instances of Distinct Vectors involve a certain
structure that makes them easier to solve.

3 Hidden Cluster Graph

This section investigates the complexity of Hidden Cluster Graph. It turns
out that, in contrast to the Hidden Clusters problem—which is NP-hard for
the radius r = 0 and, hence, for arbitrary metrics—the choice of the distance
function has a considerable influence on the tractability of Hidden Cluster
Graph.

Theorem 7.

i) L∞-Hidden Cluster Graph is solvable in O(d(n2d + n3)) time.
ii) For p ∈ N, Lp-Hidden Cluster Graph is NP-complete and even W[2]-

hard with respect to the parameter “maximum number t of allowed dimen-
sion deletions”.

Proof (Sketch). The proof of (i) is deferred to a full version of the paper. The
basic idea is to insert missing edges by deleting all dimensions in which the
corresponding endpoints differ more than r.
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To prove (ii), first observe that Lp-Hidden Cluster Graph is contained
in NP: given a solution set K, we can build the corresponding graph GK and
check whether it is a cluster graph in polynomial time. To show NP- and W[2]-
hardness, we give a polynomial-time executable parameterized many-one reduc-
tion from the NP-hard and W[2]-hard Lobbying problem [7, 4] occurring in
computational social choice.

Lobbying
Input: A matrix A ∈ {0, 1}m×n with an odd number n of columns and an

integer k > 0.
Question: Can one modify (set to zero) at most k columns in A such that in

the resulting matrix each row contains at least as many zeros as ones?

Compared with the problem definition of Bredereck et al. [4], we exchanged the
roles of ones and zeros and of rows and columns. This clearly does not change
the complexity. Moreover, we ask for “at least as many” instead of “more” zeros
than ones per row. Since the problem is W[2]-hard with respect to k if the num-
ber of columns n is odd [7], these conditions are equivalent and our variant is
also W[2]-hard. We assume that every row of A contains more ones than zeros
because otherwise we could delete it from the input without changing the answer
to the question.

Our reduction works as follows: Let (A, k) be an instance of Lobbying with
A ∈ {0, 1}m×n containing m rows a1, . . . , am ∈ {0, 1}n. We define an Lp-Hidden
Cluster Graph instance (S, r, k′) with

S :=
⋃

1≤i≤m

{ui, vi, wi} ⊆ Σn, r := 2p−1n, k′ := n − k.

The idea is to let S contain three data points ui, vi, and wi for every row ai in A
such that their induced subgraph Hi := G{1,...,n}[{ui, vi, wi}] is a P3, that is, a
path with three vertices. To this end, let

u1 := 0, w1 := 2a1, v1 :=
u1 + w1

2
,

ui := wi−1 + 2n, wi := ui + 2ai, vi := ui + wi

2
,

for i ∈ {2, . . . , m}, where x := (x, . . . , x) ∈ Σn for x ∈ Σ. The above construc-
tion requires N ⊆ Σ in order to be well-defined. It is computable in O(mn) time.
Note that this is a parameterized reduction with respect to t since t = n−k′ = k.
Figure 2 illustrates the constructed data set. Now, for all i = 1, . . . , m,

dist(p)(ui, wi) =
n∑

j=1
2p · |(ai)j |p ≥ 2p ·

(
n + 1

2

)
> r

and dist(p)(ui, vi) = dist(p)(vi, wi) ≤ n ≤ r. Since G{1,...,n} is defined to contain
an edge between two vertices if and only if the distance of their corresponding
points in S is at most r, it follows indeed that Hi is a P3. By construction, the
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Fig. 2. A two-dimensional
illustration of the con-
structed Lp-Hidden Clus-
ter Graph instance: For
each row ai in the lobbying
matrix A there are three
points ui, vi, wi in the data
set S such that, for every
non-empty subset of dimen-
sions K, they induce a P3
in GK . This is achieved by
recursively setting vi = ui+
ai, wi = vi + ai and choos-
ing an appropriate radius
‖ai‖p

p ≤ r < ‖2ai‖p
p. Note

that the point ui+1 is de-
fined such that its distance
to wi is greater than r in
every dimension, which en-
sures that there is no edge
between vertices from dif-
ferent P3’s for any K.
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subgraphs Hi are independent of each other in the sense that, for every non-
empty subset K ⊆ {1, . . . , n} of dimensions, GK never contains an edge between
any vertices from Hi and Hj for i �= j. To verify this, let 1 ≤ i < j ≤ m and note
that, by construction, the smallest distance between any vertices from Hi and
Hj is the distance of wi and uj . For every non-empty subset K of dimensions,
dist(p)

|K (uj , wi) is

∑
l∈K

∣∣∣(wi + (j − i) · 2n +
j−i−1∑

k=1
2ai+k

)
l
− (wi)l

∣∣∣p

≥
∑
l∈K

2p|(n)l|p = 2p|K| · n ≥ 2pn > r.

Thus, there cannot be an edge in GK between vertices from Hi and Hj for any K.
It follows that the only solution of this instance is the cluster graph consisting of
the m disjoint triangles obtained by inserting the missing edge in each Hi. In order
to insert the missing edge between ui and wi in every Hi, we have to find a subset
of dimensions K such that

dist(p)
|K (ui, wi) = 2p

∑
j∈K

|(ai)j |p ≤ r = 2p−1n

holds for all i = 1, . . . , m. In other words, we have to delete at most t dimensions
(that is, setting entries in ai to zero) such that for the remaining dimensions K
it holds that

∑
j∈K |(ai)j |p ≤ n/2. Since ai is a binary vector, this upper bound
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states that the modified ai contains at least as many zeros as ones, which is exactly
our Lobbying problem. So, the Lp-Hidden Cluster Graph instance is a “yes”-
instance if and only if the initial Lobbying instance is a “yes”-instance. ��
The reduction in the proof of Theorem 7(ii) is not only running in polynomial
time but also is a polynomial parameter transformation in the sense that the
number of data points n equals three times the number of rows of A, the number t
of dimensions to discard equals k and the number d of dimensions equals the
number of columns of A. Hence, we can transfer some problem kernel lower bound
results for Lobbying [4, Theorems 3 & 4] to Lp-Hidden Cluster Graph.

Corollary 8. Unless NP ⊆ coNP/poly, Lp-Hidden Cluster Graph does nei-
ther admit a polynomial-size kernel with respect to (n, t) nor with respect to d.

One easily observes that the proof of Theorem 7(ii) generates instances of Lp-
Hidden Cluster Graph of unbounded diameter δ, which is defined as the
maximum distance between any two vectors in S. This scenario seems not always
realistic in practice since features often take on values around some expected
value. And indeed, we can show that if δ and the number t of dimensions to
be deleted are constant, then Lp-Hidden Cluster Graph is solvable in cubic
time. To this end, observe that if r > δ in an input instance, we can immediately
answer “yes”, since the graph G{1,...,d} is then a clique and thus a cluster graph.
For r ≤ δ, we can prove the following theorem using a search tree algorithm. For
bounding the search tree size, we need the additional condition that the data set
only contains integers.

Theorem 9. Lp-Hidden Cluster Graph is O((2pr)t · (n2d + n3))-time solv-
able for p ∈ N and an alphabet Σ ⊆ Z.

Obviously, Theorem 9 does not yield an algorithm that is applicable to large
data sets. Yet it shows that, despite the hardness of the problem in the general
case, the development of efficient algorithms on realistic data might be possible.

4 Outlook

We conclude with some directions for future research. As to Distinct Vec-
tors, our kernelization results in Theorem 6 (lower and upper bounds) are still
far apart and ask for closing this gap. Further, it would be interesting to find
improved kernels for the parameterization by Hamming distance h and number
of retained dimensions k. Here, exploiting structural restrictions in context with
connections to Hitting Set seems promising. Finally, we left open to general-
ize the polynomial-time algorithm for pairwise Hamming distance at most three
from binary alphabets (see Theorem 1) to general alphabets.

As to Hidden Cluster Graph, spotting further natural and useful param-
eterizations is desirable.

Acknowledgements. We are grateful to anonymous MFCS referees for exten-
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Abstract. Meta-kernelization theorems are general results that provide poly-
nomial kernels for large classes of parameterized problems. The known meta-
kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09)
and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by
solution size. We present meta-kernelization theorems that use structural param-
eters of the input and not the solution size. Let C be a graph class. We define the
C-cover number of a graph to be the smallest number of modules the vertex set
can be partitioned into such that each module induces a subgraph that belongs to
the class C.

We show that each graph problem that can be expressed in Monadic Second
Order (MSO) logic has a polynomial kernel with a linear number of vertices when
parameterized by the C-cover number for any fixed class C of bounded rank-width
(or equivalently, of bounded clique-width, or bounded Boolean-width). Many
graph problems such as c-COLORING, c-DOMATIC NUMBER and c-CLIQUE

COVER are covered by this meta-kernelization result.
Our second result applies to MSO expressible optimization problems, such

as MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, and MAXIMUM

CLIQUE. We show that these problems admit a polynomial annotated kernel with
a linear number of vertices.

1 Introduction

Kernelization is an algorithmic technique that has become the subject of a very active
field in parameterized complexity, see, e.g., the references in [14,21,27]. Kernelization
can be considered as a preprocessing with performance guarantee that reduces an in-
stance of a parameterized problem in polynomial time to a decision-equivalent instance,
the kernel, whose size is bounded by a function of the parameter alone [14,21,17]; if
the reduced instance is an instance of a different problem, then it is called a bikernel.
Once a kernel or bikernel is obtained, the time required to solve the original instance
is bounded by a function of the parameter and therefore independent of the input size.
Consequently one aims at (bi)kernels that are as small as possible.

Every fixed-parameter tractable problem admits a kernel, but the size of the kernel
can have an exponential or even non-elementary dependence on the parameter [16].
Thus research on kernelization is typically concerned with the question of whether a
fixed-parameter tractable problem under consideration admits a small, and in particu-
lar a polynomial, kernel. For instance, the parameterized MINIMUM VERTEX COVER
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problem (does a given graph have a vertex cover consisting of k vertices?) admits a
polynomial kernel containing at most 2k vertices.

There are many fixed-parameter tractable problems for which no polynomial kernels
are known. Recently, theoretical tools have been developed to provide strong theoret-
ical evidence that certain fixed-parameter tractable problems do not admit polynomial
kernels [3]. In particular, these techniques can be applied to a wide range of graph prob-
lems parameterized by treewidth and other width parameters such as clique-width, or
rank-width (see e.g., [3,5]). Thus, in order to get polynomial kernels, structural param-
eters have been suggested that are somewhat weaker than treewidth, including the ver-
tex cover number, max-leaf number, and neighborhood diversity [15,23]. While these
parameters do allow polynomial kernels for some problems, no meta-kernelization the-
orems are known. The general aim here is to find a parameter that admits a polynomial
kernel for the given problem while being as general as possible.

We extend this line of research by using results from modular decompositions and
rank-width to introduce new structural parameters for which large classes of problems
have polynomial kernels. Specifically, we study the rank-width-d cover number, which
is a special case of a C-cover number (see Section 3 for definitions). We establish the
following result which is an important prerequisite for our kernelization results.

Theorem 1. For every constant d, a smallest rank-width-d cover of a graph can be
computed in polynomial time.

Hence, for graph problems parameterized by rank-width-d cover number, we can al-
ways compute the parameter in polynomial time. The proof of Theorem 1 relies on a
combinatorial property of modules of bounded rank-width that amounts to a variant of
partitivity [9].

Our kernelization results take the shape of algorithmic meta-theorems, stated in
terms of the evaluation of formulas of monadic second order logic (MSO) on graphs.
Monadic second order logic over graphs extends first order logic by variables that may
range over sets of vertices (sometimes referred to as MSO1 logic). Specifically, for an
MSO formula ϕ, our first meta-theorem applies to all problems of the following shape,
which we simply call MSO model checking problems.

MSO-MCϕ

Instance: A graph G.
Question: Does G |= ϕ hold?

Many NP-hard graph problems can be naturally expressed as MSO model checking
problems, for instance c-COLORING, c-DOMATIC NUMBER and c-CLIQUE COVER.

Theorem 2. Let C be a graph class of bounded rank-width. Every MSO model checking
problem, parameterized by the C-cover number of the input graph, has a polynomial
kernel with a linear number of vertices.

While MSO model checking problems already capture many important graph prob-
lems, there are some well-known optimization problems on graphs that cannot be cap-
tured in this way, such as MINIMUM VERTEX COVER, MINIMUM DOMINATING SET,
and MAXIMUM CLIQUE. Many such optimization graph problems can be equivalently
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stated as decision problems, in the following way. Let ϕ = ϕ(X) be an MSO formula
with one free set variable X and ♦ ∈ {≤,≥}.

MSO-OPT♦ϕ
Instance: A graph G and an integer r ∈ N.
Question: Is there a set S ⊆ V (G) such that G |= ϕ(S) and |S| ♦ r?

We call problems of this form MSO optimization problems. MSO optimization prob-
lems form a large fragment of the so-called LinEMSO problems [2]. There are dozens
of well-known graph problems that can be expressed as MSO optimization problems.

We establish the following result (cf. Section 2 for the definition of a bikernel)

Theorem 3. Let C be a graph class of bounded rank-width. Every MSO optimization
problem, parameterized by the C-cover number of the input graph, has a polynomial
bikernel with a linear number of vertices.

In fact, the obtained bikernel is an instance of an annotated variant of the original MSO
optimization problem [1]. Hence, Theorem 3 provides a polynomial kernel for an an-
notated version of the original MSO optimization problem.

We would like to point out that a class of graphs has bounded rank-width iff it has
bounded clique-width iff it has bounded Boolean-width [7]. Hence, we could have
equivalently stated the theorems in terms of clique-width or Boolean-width. Further-
more we would like to point out that the theorems hold also for some classes C where
we do not know whether C can be recognized in polynomial time, and where we do
not know how to compute the partition in polynomial time. For instance, the theorems
hold if C is a graph class of bounded clique-width (it is not known whether graphs of
clique-width at most 4 can be recognized in polynomial time).

Note: Some proofs were omitted due to space constraints. A full version of this paper
is available on arxiv.org (arXiv:1303.1786).

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For i ∈ N
we write [i] to denote the set {1, . . . , i}.

Graphs. We will use standard graph theoretic terminology and notation (cf. [12]). A
module of a graph G = (V,E) is a nonempty set X ⊆ V such that for each vertex
v ∈ V \X it holds that either no element of X is a neighbor of v or every element of
X is a neighbor of v. We say two modules X,Y ⊆ V are adjacent if there are vertices
x ∈ X and y ∈ Y such that x and y are adjacent. A modular partition of a graph G is a
partition {U1, . . . , Uk} of its vertex set such that Ui is a module of G for each i ∈ [k].

Monadic Second-Order Logic on Graphs. We assume that we have an infinite supply
of individual variables, denoted by lowercase letters x, y, z, and an infinite supply of
set variables, denoted by uppercase letters X,Y, Z . Formulas of monadic second-order
logic (MSO) are constructed from atomic formulas E(x, y), X(x), and x = y using
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the connectives ¬ (negation), ∧ (conjunction) and existential quantification ∃x over in-
dividual variables as well as existential quantification ∃X over set variables. Individual
variables range over vertices, and set variables range over sets of vertices. The atomic
formula E(x, y) expresses adjacency, x = y expresses equality, and X(x) expresses
that vertex x in the set X . From this, we define the semantics of monadic second-order
logic in the standard way (this logic is sometimes called MSO1).

Free and bound variables of a formula are defined in the usual way. A sentence is a
formula without free variables. We write ϕ(X1, . . . , Xn) to indicate that the set of free
variables of formula ϕ is {X1, . . . , Xn}. If G = (V,E) is a graph and S1, . . . , Sn ⊆
V we write G |= ϕ(S1, . . . , Sn) to denote that ϕ holds in G if the variables Xi are
interpreted by the sets Si, for i ∈ [n].

We review MSO types roughly following the presentation in [24]. The quantifier
rank of an MSO formula ϕ is defined as the nesting depth of quantifiers in ϕ. For
non-negative integers q and l, let MSOq,l consist of all MSO formulas of quantifier
rank at most q with free set variables in {X1, . . . , Xl}.

Let ϕ = ϕ(X1, . . . , Xl) and ψ = ψ(X1, . . . , Xl) be MSO formulas. We say ϕ
and ψ are equivalent, written ϕ ≡ ψ, if for all graphs G and U1, . . . , Ul ⊆ V (G),
G |= ϕ(U1, . . . , Ul) if and only if G |= ψ(U1, . . . , Ul). Given a set F of formulas,
let F/≡ denote the set of equivalence classes of F with respect to ≡. A system of
representatives of F/≡ is a set R ⊆ F such that R ∩ C �= ∅ for each equivalence class
C ∈ F/≡. The following statement has a straightforward proof using normal forms
(see Proposition 7.5 in [24] for details).

Fact 1. Let q and l be fixed non-negative integers. The set MSOq,l/≡ is finite, and one
can compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integers q and l the system of repre-
sentatives of MSOq,l/≡ given by Fact 1 is fixed.

Definition 4 (MSO Type). Let q, l be a non-negative integers. For a graph G and an
l-tuple U of sets of vertices of G, we define typeq(G,U) as the set of formulas ϕ ∈
MSOq,l such that G |= ϕ(U). We call typeq(G,U) the MSO rank-q type of U in G.

It follows from Fact 1 that up to logical equivalence, every type contains only finitely
many formulas. This allows us to represent types using MSO formulas as follows.

Lemma 5. Let q and l be non-negative integer constants, let G be a graph, and let U
be an l-tuple of sets of vertices of G. One can compute a formula Φ ∈ MSOq,l such that
for any graph G′ and any l-tuple U ′ of sets of vertices of G′ we have G′ |= Φ(U ′) if
and only if typeq(G,U) = typeq(G

′,U ′). Moreover, if G |= ϕ(U) can be decided in
polynomial time for any fixed ϕ ∈ MSOq,l then Φ can be computed in time polynomial
in |V (G)|.

Proof. Let R be a system of representatives of MSOq,l/≡ given by Fact 1. Because q
and l are constant, we can consider both the cardinality of R and the time required to
compute it as constants. Let Φ ∈ MSOq,l be the formula defined as Φ =

∧
ϕ∈S ϕ ∧∧

ϕ∈R\S ¬ϕ, where S = {ϕ ∈ R : G |= ϕ(U ) }. We can compute Φ by deciding
G |= ϕ(U ) for each ϕ ∈ R. Since the number of formulas in R is a constant, this can
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be done in polynomial time if G |= ϕ(U ) can be decided in polynomial time for any
fixed ϕ ∈ MSOq,l.

Let G′ be an arbitrary graph and U ′ an l-tuple of subsets of V (G′). We claim that
typeq(G,U) = typeq(G

′,U ′) if and only if G′ |= Φ(U ′). Since Φ ∈ MSOq,l the
forward direction is trivial. For the converse, assume typeq(G,U ) �= typeq(G

′,U ′).
First supposeϕ ∈ typeq(G,U)\typeq(G′,U ′). The setR is a system of representatives
of MSOq,l/≡ , so there has to be a ψ ∈ R such that ψ ≡ ϕ. But G′ |= Φ(U ′) implies
G′ |= ψ(U ′) by construction of Φ and thusG′ |= ϕ(U ′), a contradiction. Now suppose
ϕ ∈ typeq(G

′,U ′) \ typeq(G,U ). An analogous argument proves that there has to be
a ψ ∈ R such that ψ ≡ ϕ and G′ |= ¬ψ(U ′). It follows that G′ �|= ϕ(U ′), which again
yields a contradiction. ��

Fixed-Parameter Tractability and Kernels. A parameterized problem P is a subset of
Σ∗ × N for some finite alphabet Σ. For a problem instance (x, k) ∈ Σ∗ × N we call
x the main part and k the parameter. A parameterized problem P is fixed-parameter
tractable (FPT in short) if a given instance (x, k) can be solved in time O(f(k) ·p(|x|))
where f is an arbitrary computable function of k and p is a polynomial function.

A bikernelization for a parameterized problem P ⊆ Σ∗ × N into a parameterized
problem Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs in time
polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that (i) (x, k) ∈ P if and only if
(x′, k′) ∈ Q and (ii) |x′|+ k′ ≤ g(k), where g is an arbitrary computable function. The
reduced instance (x′, k′) is the bikernel. If P = Q, the reduction is called a kerneliza-
tion and (x′, k′) a kernel. The function g is called the size of the (bi)kernel, and if g is a
polynomial then we say that P admits a polynomial (bi)kernel.

It is well known that every fixed-parameter tractable problem admits a generic kernel,
but the size of this kernel can have an exponential or even non-elementary dependence
on the parameter [13]. Since recently there have been workable tools available for pro-
viding strong theoretical evidence that certain parameterized problems do not admit a
polynomial kernel [3,25].

Rank-width. The graph invariant rank-width was introduced by Oum and Seymour [26]
with the original intent of investigating the graph invariant clique-width. It later turned
out that rank-width itself is a useful parameter, with several advantages over clique-
width.

For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U ×W -submatrix of
the adjacency matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and
w ∈W , of AG[U,W ] is 1 if and only if {u,w} is an edge of G. The cut-rank function
ρG of a graph G is defined as follows: For a bipartition (U,W ) of the vertex set V (G),
ρG(U) = ρG(W ) equals the rank of AG[U,W ] over GF(2).

A rank-decomposition of a graph G is a pair (T, μ) where T is a tree of maximum
degree 3 and μ : V (G) → {t : t is a leaf of T} is a bijective function. For an edge e
of T , the connected components of T − e induce a bipartition (X,Y ) of the set of
leaves of T . The width of an edge e of a rank-decomposition (T, μ) is ρG(μ−1(X)).
The width of (T, μ) is the maximum width over all edges of T . The rank-width of G is
the minimum width over all rank-decompositions of G.
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vcn nd rwc1 rwc2 rwc3 · · · rw

tw

Fig. 1. Relationship between graph invariants: the vertex cover number (vcn), the neighborhood
diversity (nd), the rank-width-d cover number (rwcd), the rank-width (rw), and the treewidth
(tw). An arrow from A to B indicates that for any graph class for which B is bounded also A is
bounded. See Proposition 8 and [26] for references.

Theorem 6 ([22]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G, we
can output a rank-decomposition of width at most k or confirm that the rank-width of
G is larger than k in time O(n3).

Theorem 7 ([20]). Let d ∈ N be a constant and let ϕ and ψ = ψ(X) be fixed MSO
formulas. Given a graph G with rw(G) ≤ d, we can decide whether G |= ϕ in poly-
nomial time. Moreover, a set S ⊆ V (G) of minimum (maximum) cardinality such that
G |= ψ(S) can be found in polynomial time, if one exists.

3 Rank-Width Covers

Let C be a graph class containing all trivial graphs, i.e., all graphs consisting of only a
single vertex. We define a C-cover of G as a modular partition {U1, . . . , Uk} of V (G)
such that the induced subgraph G[Ui] belongs to the class C for each i ∈ [k]. Accord-
ingly, the C-cover number of G is the size of a smallest C-cover of G.

Of special interest to us are the classes Rd of graphs of rank-width at most d. We
call the Rd-cover number also the rank-width-d cover number. If C is the class of all
complete graphs and all edgeless graphs, then the C-cover number equals the neighbor-
hood diversity [23], and clearly C � R1. Figure 1 shows the relationship between the
rank-width-d cover number and some other graph invariants.

We state some further properties of rank-width-d covers.

Proposition 8. Let vcn, nd, and rw denote the vertex cover number, the neighborhood
diversity, and the rank-width of a graphG, respectively. Then the following (in)equalities
hold for any d ∈ N:

1. rwcd(G) ≤ nd(G) ≤ 2vcn(G),
2. if d ≥ rw(G), then |rwcd(G)| = 1.

Proof. (1) The neighborhood diversity of a graph is also a rank-width-1 cover. The
neighborhood diversity is known to be upper-bounded by 2vcn(G) [23].

(2) This follows immediately from the definition of rank-width-d covers. ��

3.1 Finding the Cover

Next we state several properties of modules of graphs. These will be used to obtain a
polynomial algorithm for finding smallest rank-width-d covers.



Meta-kernelization with Structural Parameters 463

The symmetric difference of sets A,B is A4B = (A \B)∪ (B \A). Sets A and B
overlap if A ∩B �= ∅ but neither A ⊆ B nor B ⊆ A.

Definition 9. Let S ⊆ 2S be a family of subsets of a set S. We call S partitive if it
satisfies the following properties:

1. S ∈ S, ∅ /∈ S, and {x} ∈ S for each x ∈ S.
2. For every pair of overlapping subsetsA,B ∈ S, the setsA∪B,A∩B,A4B,A\B,

and B \A are contained in S.

Theorem 10 ([9]). The family of modules of a graph G is partitive.

Lemma 11 ([6]). Let G be a graph and x, y ∈ V (G). There is a unique minimal (with
respect to set inclusion) module M of G such that x, y ∈ M , and M can be computed
in time O(|V (G)|2).

Definition 12. LetG be a graph and d ∈ N. We define a relation∼G
d on V (G) by letting

v ∼G
d w if and only if there is a module M of G with v, w ∈ M and rw(G[M ]) ≤ d.

We drop the superscript from ∼G
d if the graph G is clear from context.

Proposition 13. For every graph G and d ∈ N the relation ∼d is an equivalence rela-
tion, and each equivalence class U of ∼d is a module of G with rw(G[U ]) ≤ d.

Corollary 14. Let G be a graph and d ∈ N. The equivalence classes of ∼d form a
smallest rank-width-d cover of G.

Proposition 15. Let d ∈ N be a constant. Given a graph G and two vertices v, w ∈
V (G), we can decide whether v ∼d w in polynomial time.

Proof (of Theorem 1). Let d ∈ N be a constant. Given a graph G, we can compute
the set of equivalence classes of ∼d by testing whether v ∼d w for each pair of ver-
tices v, w ∈ V (G). By Proposition 15, this can be done in polynomial time, and by
Corollary 14, V (G)/∼d is a smallest rank-width-d cover of G. ��

4 Kernels for MSO Model Checking

In this section, we show that every MSO model checking problem admits a polynomial
kernel when parameterized by the C-cover number of the input graph, where C is some
recursively enumerable class of graphs satisfying the following properties:

(I) C contains all trivial graphs, and a C-cover of a graph G with minimum cardinality
can be computed in polynomial time.

(II) There is an algorithm A that decides whetherG |= ϕ in time polynomial in |V (G)|
for any fixed MSO sentence ϕ and any graph G ∈ C.

For obtaining the kernel for MSO model checking problems, we proceed as follows.
First, we compute a smallest rank-width-d cover of the input graph G in polynomial
time. Second, we compute for each module a small representative of constant size.
Third, we replace each module with a constant size module, which results in the kernel.
We show how to carry out the second and third steps below.
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Let G be a graph and U ⊆ V (G). Let V be an l-tuple of sets of vertices of G. We
write V |U = (V1∩U, . . . , Vl∩U) to refer to the elementwise intersection of V with U .
If {U1, . . . , Uk} is a modular partition ofG and i ∈ [k] we will abuse notation and write
V |i = V Ui if there is no ambiguity about what partition the index refers to.

Definition 16 (Congruent). Let q and l be non-negative integers and let G and G′

be graphs with modular partitions M = {M1, . . . ,Mk} and M ′ = {M ′
1, . . . ,M

′
k},

respectively. Let V0 be an l-tuple of subsets of V (G) and let U0 be an l-tuple of sub-
sets of V (G′). We say (G,M ,V0) and (G′,M ′,U0) are q-congruent if the following
conditions are met:

1. For every i, j ∈ [k] with i �= j, Mi and Mj are adjacent in G if and only if M ′
i and

M ′
j are adjacent in G′.

2. For each i ∈ [k], typeq(G[Mi],V0|i) = typeq(G
′[M ′

i ],U0|i).

We begin by showing how congruents are related to the previously introduced notion of
types.

Lemma 17. Let q and l be non-negative integers and let G and G′ be graphs with
modular partitions M = {M1, . . . ,Mk} and M ′ = {M ′

1, . . . ,M
′
k}. Let V0 be an

l-tuple of subsets of V (G) and let U0 be an l-tuple of subsets of V (G′). If (G,M ,V0)
and (G′,M ′,U0) are q-congruent, then typeq(G,V0) = typeq(G

′,U0).

Next, we showcase the tool we use to replace a graph G by a small representative.

Lemma 18. Let C be a recursively enumerable graph class and let q be a non-negative
integer constant. Let G ∈ C be a graph. If G |= ϕ can be decided in time polynomial
in |V (G)| for any fixed ϕ ∈ MSOq,0 then one can in polynomial time compute a graph
G′ ∈ C such that |V (G′)| is bounded by a constant and typeq(G) = typeq(G

′).

Finally, in Lemma 19 below we use Lemma 18 to obtain our polynomial kernels.

Lemma 19. Let q be a non-negative integer constant, and let C be a recursively enu-
merable graph class satisfying (II). Then given a graphG and a C-cover {U1, . . . , Uk},
one can in polynomial time compute a graph G′ with modular partition {U ′

1, . . . , U
′
k}

such that (G,U ) and (G′,U ′) are q-congruent and for each i ∈ [k], G′[U ′
i ] ∈ C and

the number of vertices in U ′
i is bounded by a constant.

Proposition 20. Let ϕ be a fixed MSO sentence. Let C be a recursively enumerable
graph class satisfiying (I) and (II). Then MSO-MCϕ has a polynomial kernel parame-
terized by the C-cover number of the input graph.

Proof (of Theorem 2). Immediate from Theorems 1, 6, and 7 in combination with
Proposition 20. ��

Corollary 21. The following problems have polynomial kernels when parameterized by
the rank-width-d cover number of the input graph: c-COLORING, c-DOMATIC NUM-
BER, c-PARTITION INTO TREES, c-CLIQUE COVER, c-PARTITION INTO PERFECT

MATCHINGS, c-COVERING BY COMPLETE BIPARTITE SUBGRAPHS.
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5 Kernels for MSO Optimization

By definition, MSO formulas can only directly capture decision problems such as 3-
coloring, but many problems of interest are formulated as optimization problems. The
usual way of transforming decision problems into optimization problems does not work
here, since the MSO language cannot handle arbitrary numbers.

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [2] (while
studying graphs of bounded tree-width), and later Courcelle, Makowsky, and Rotics [10]
(for graphs of bounded clique-width), specifically extended the expressive power of
MSO logic to define so-called LINEMS optimization problems, and consequently also
showed the existence of efficient (parameterized) algorithms for such problems in the
respective cases.

The class of so-called MSO optimization problems (problems which may be stated as
MSO-OPT♦ϕ ) considered here are a streamlined and simplified version of the formalism
introduced in [10]. Specifically, we consider only a single free variable X , and ask for
a satisfying assignment of X with minimum or maximum cardinality. To achieve our
results, we need a recursively enumerable graph class C that satisfies (I) and (II) along
with the following property:

(III)Let ϕ = ϕ(X) be a fixed MSO formula. Given a graph G ∈ C, a set S ⊆
V (G) of minimum (maximum) cardinality such that G |= ϕ(S) can be found in
polynomial time, if one exists.

Our approach will be similar to the MSO kernelization algorithm, with one key differ-
ence: when replacing the subgraph induced by a module, the cardinalities of subsets of
a given q-type may change, so we need to keep track of their cardinalities in the original
subgraph.

To do this, we introduce an annotated version of MSO-OPT♦ϕ . Given a graph G =
(V,E), an annotation W is a set of triples (X,Y,w) with X ⊆ V, Y ⊆ V,w ∈ N. For
every set Z ⊆ V we define

W(Z) =
∑

(X,Y,w)∈W,X⊆Z,Y∩Z=∅
w.

We call the pair (G,W) an annotated graph. If the integer w is represented in binary,
we can represent a triple (X,Y,w) in space |X | + |Y | + log2(w). Consequently, we
may assume that the size of the encoding of an annotated graph (G,W) is polynomial
in |V (G)| + |W| + max(X,Y,w)∈W log2 w.

Each MSO formula ϕ(X) and ♦ ∈ {≤,≥} gives rise to an annotated MSO-
optimization problem.

aMSO-OPT♦ϕ
Instance: A graph G with an annotation W and an integer r ∈ N.
Question: Is there a set Z ⊆ V (G) such that G |= ϕ(Z) and W(Z)♦ r?

Notice that any instance of MSO-OPT♦ϕ is also an instance of aMSO-OPT♦ϕ with the
trivial annotation W = { ({v}, ∅, 1) : v ∈ V (G) }. The main result of this section
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is a bikernelization algorithm which transforms any instance of MSO-OPT♦ϕ into an
instance of aMSO-OPT♦ϕ ; this kind of bikernel is called an annotated kernel [1].

The results below are stated and proved for minimization problems aMSO-OPT≤ϕ
only. This is without loss of generality—the proofs for maximization problems are sym-
metric.

Lemma 22. Let q and l be non-negative integers and let G and G′ be a graphs such
that G and G′ have the same q + l MSO type. Then for any l-tuple V of sets of ver-
tices of G, there exists an l-tuple U of sets of vertices of G′ such that typeq(G,V ) =
typeq(G

′,U).

Proof. Suppose there exists an l-tuple V of sets of vertices of G, and a formula ϕ =
ϕ(X1, . . . , Xl) ∈ MSOq,l such that G |= ϕ(V1, . . . , Vl) but for every l-tuple U of
sets of vertices of G′ we have G′ �|= ϕ(U1, . . . , Ul). Let ψ = ∃X1 . . . ∃Xl ϕ. Clearly,
ψ ∈ MSOq+l,0 and G |= ψ but G′ �|= ψ, a contradiction. ��

Using Lemma 22 and the results of Section 4, we may proceed directly to the construc-
tion of our annotated kernel.

Lemma 23. Let ϕ = ϕ(X) be a fixed MSO formula and C be a recursively enumerable
graph class satisfiying (II) and (III). Then given an instance (G, r) of MSO-OPT≤ϕ and
a C-cover {U1, . . . , Uk} of G, an annotated graph (G′,W) satisfying the following
properties can be computed in polynomial time.

1. (G, r) ∈ MSO-OPT≤ϕ if and only if (G′,W , r) ∈ aMSO-OPT≤ϕ .
2. |V (G′)| ∈ O(k).
3. The encoding size of (G′,W) is O(k log(|V (G)|)).

The last obstacle we face is that the annotation itself may be “too large” for the kernel.
Here we use the following simple folklore result, which allows us to prove that either
our annotated kernel is “small enough”, or we can solve our problem in polynomial
time (and subsequently output a trivial yes/no instance).

Fact 2 (Folklore). Given an MSO sentence ϕ and a graph G, one can decide whether
G |= ϕ in time O(2nl), where n = |V (G)| and l = |ϕ|.

Proposition 24. Let ϕ = ϕ(X) be a fixed MSO formula, and let C be a recursively enu-
merable graph class satisfying (I), (II), and (III). Then MSO-OPT≤ϕ has a polynomial
bikernel parameterized by the C-cover number of the input graph.

Proof (of Theorem 3). Immediate from Theorems 1, 6, and 7 when combined with
Proposition 24. ��

Corollary 25. The following problems have polynomial bikernels when parameterized
by the rank-width-d cover number of the input graph: MINIMUM DOMINATING SET,
MINIMUM VERTEX COVER, MINIMUM FEEDBACK VERTEX SET, MAXIMUM INDE-
PENDENT SET, MAXIMUM CLIQUE, LONGEST INDUCED PATH, MAXIMUM BIPAR-
TITE SUBGRAPH, MINIMUM CONNECTED DOMINATING SET.
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6 Conclusion

Recently Bodlaender et al. [4] and Fomin et al. [18] established meta-kernelization
theorems that provide polynomial kernels for large classes of parameterized problems.
The known meta-kernelization theorems apply to optimization problems parameterized
by solution size. Our results are, along with very recent results parameterized by the
modulator to constant-treedepth [19], the first meta-kernelization theorems that use a
structural parameter of the input and not the solution size. In particular, we would
like to emphasize that our Theorem 3 applies to a large class of optimization problems
where the solution size can be arbitrarily large.

It is also worth noting that our structural parameter, the rank-width-d cover number,
provides a trade-off between the maximum rank-width of modules (the constant d) and
the maximum number of modules (the parameter k). Different problem inputs might
be better suited for smaller d and larger k, others for larger d and smaller k. This two-
dimensional setting could be seen as a contribution to multivariate complexity analysis
as advocated by Fellows et al. [15].

We conclude by mentioning possible directions for future research. We believe that
some of our results can be extended from modular partitions to partitions into
splits [8,11]1. This would indeed result in more general parameters, however the precise
details require further work (one problem is that while all modules are partitive, only
strong splits have this property). Another direction is to focus on polynomial kernels
for problems which cannot be described by MSO logic, such as HAMILTONIAN PATH

or CHROMATIC NUMBER.
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Abstract. In the context of distance oracles, a labeling algorithm com-
putes vertex labels during preprocessing. An s, t query computes the
corresponding distance using the labels of s and t only, without looking
at the input graph. Hub labels is a class of labels that has been exten-
sively studied. Performance of the hub label query depends on the label
size. Hierarchical labels are a natural special kind of hub labels. These la-
bels are related to other problems and can be computed more efficiently.
This brings up a natural question of the quality of hierarchical labels. We
show that there is a gap: optimal hierarchical labels can be polynomially
bigger than the general hub labels. To prove this result, we give tight
upper and lower bounds on the size of hierarchical and general labels for
hypercubes.

1 Introduction

The point-to-point shortest path problem is a fundamental optimization problem
with many applications. Dijkstra’s algorithm [6] solves this problem in near-
linear time [10] on directed and in linear time on undirected graphs [13], but
some applications require sublinear distance queries. This is possible for some
graph classes if preprocessing is allowed (e.g., [5,8]). Peleg introduced a distance
labeling algorithm [12] that precomputes a label for each vertex such that the
distance between any two vertices s and t can be computed using only their labels.
A special case is hub labeling (HL) [8]: the label of u consists of a collection of
vertices (the hubs of u) with their distances from u. Hub labels satisfy the cover
property: for any two vertices s and t, there exists a vertex w on the shortest s–t
path that belongs to both the label of s and the label of t.

Cohen et al. [4] give a polynomial-time O(log n)-approximation algorithm for
the smallest labeling (here n denotes the number of vertices). (See [3] for a gen-
eralization.) The complexity of the algorithm, however, is fairly high, making
it impractical for large graphs. Abraham et al. [1] introduce a class of hierar-
chical labelings (HHL) and show that HHL can be computed in O∗(nm) time,
where m is the number of arcs. This makes preprocessing feasible for moderately
large graphs, and for some problem classes produces labels that are sufficiently
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small for practical use. In particular, this leads to the fastest distance oracles for
continental-size road networks [2]. However, the algorithm of [1] does not have
theoretical guarantees on the size of the labels.

HHL is a natural algorithm that is closely related to other widely studied
problems, such as vertex orderings for contraction hierarchies [9] and elimination
sequences for chordal graphs (e.g., [11]). This provides additional motivation for
studying HHL. This motivation is orthogonal the relationship of HHL to HL,
which is not directly related to the above-mentioned problems.

HHL is a special case of HL, so a natural question is how the label size is
affected by restricting the labels to be hierarchical. In this paper we show that
HHL labels can be substantially bigger than the general labels. Note that it is
enough to show this result for a special class of graphs. We study hypercubes,
which have a very simple structure. However, proving tight bounds for them is
non-trivial: Some of our upper bound constructions and lower bound proofs are
fairly involved.

We obtain upper and lower bounds on the optimal size for both kinds of labels
in hypercubes. In particular, for a hypercube of dimension d (with 2d vertices),
we give both upper and lower bounds of 3d on the HHL size. For HL, we also give
a simple construction producing labels of size 2.83d, establishing a polynomial
separation between the two label classes. A more sophisticated argument based
on the primal-dual method yields (2.5 + o(1))d upper and lower bounds on the
HL size. Although the upper bound proof is non-constructive, it implies that the
Cohen et al. approximation algorithm computes the labels of size (2.5 + o(1))d,
making the bound constructive.

The paper is organized as follows. After introducing basic definitions in Sec-
tion 2, we prove matching upper and lower bounds on the HHL size in Section 3.
Section 4 gives a simple upper bound on the size of HL that is polynomially
better than the lower bound on the size of HHL. Section 5 strengthens these
results by proving a better lower bound and a near-matching upper bound on
the HL size. Section 6 contains the conclusions.

2 Preliminaries

In this paper we consider shortest paths in an undirected graph G = (V,E), with
|V | = n, |E| = m, and length 
(a) > 0 for each arc a. The length of a path P in
G is the sum of its arc lengths. The distance query is as follows: given a source
s and a target t, to find the distance dist(s, t) between them, i.e., the length of
the shortest path Pst between s and t in G. Often we will consider unweighted
graphs (
 ≡ 1).

Dijkstra’s algorithm [6] solves the problem in O(m + n logn) [7] time in the
comparison model and in linear time in weaker models [13]. However, for some
applications, even linear time is too slow. For faster queries, labeling algorithms
preprocess the graph and store a label with each vertex; the s–t distance can
be computed from the labels of s and t. We study hub labelings (HL), a special
case of the labeling method. For each vertex v ∈ V , HL precomputes a label
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L(v), which contains a subset of vertices (hubs) and, for every hub u the distance
dist(v, u). Furthermore, the labels obey the cover property : for any two vertices
s and t, L(s) ∩ L(t) must contain at least one vertex on the shortest s–t path.

For an s–t query, among all vertices u ∈ L(s)∩L(t) we pick the one minimizing
dist(s, u) + dist(u, t) and return the corresponding sum. If the entries in each
label are sorted by hub vertex ID, this can be done with a sweep over the two
labels, as in mergesort. The label size of v, |L(v)|, is the number of hubs in L(v).
The time for an s–t query is O(|L(s)| + |L(t)|).

The labeling L is the set of all labels. We define its size as
∑

v(|L(v)|). Cohen
et al. [4] show how to generate in O(n4) time a labeling whose size is within a
factor O(log n) of the optimum.

Given two distinct vertices v, w, we say that v � w if L(v) contains w. A label-
ing is hierarchical if � is a partial order. We say that this order is implied by the
labeling. Labelings computed by the algorithm of Cohen et al. are not necessarily
hierarchical. Given a total order on vertices, the rank function r : V → [1 . . . n]
ranks the vertices according to the order. We will call the corresponding order r.

We define a d-dimensional hypercube H = (V,E) graph as follows. Let n = 2d

denote the number of vertices. Every vertex v has an d-bit binary ID that we will
also denote by v. The bits are numbered from the most to the least significant
one. Two vertices v, w are connected iff their IDs differ in exactly one bit. If
i is the index of that bit, we say that (v, w) flips i. We identify vertices with
their IDs, and v ⊕ w denotes exclusive or. We also sometimes view vertices as
subsets of {1 . . . d}, with bits indicating if the corresponding element is in or out
of the set. Then v ⊕w is the symmetric difference. The graph is undirected and
unweighted.

3 Tight Bounds for HHL on Hypercubes

In this section we show that a d-dimensional hypercube has a labeling of size 3d,
and this labeling is optimal.

Consider the following labeling: treat vertex IDs as sets. L(v) contains all
vertices whose IDs are subsets of that of v. It is easy to see that this is a valid
hierarchical labeling. The size of the labeling is

d∑
i=0

2i
(
d

i

)
= 3d.

Lemma 1. A d-dimensional hypercube has an HHL of size 3d.

Next we show that 3d is a tight bound. Given two vertices v and w of the
hypercube, the induced hypercube Hvw is the subgraph induced by the vertices
that have the same bits in the positions where the bits of v and w are the same,
and arbitrary bits in other positions. Hvw contains all shortest paths between v
and w. For a fixed order of vertices v1, v2, . . . , vn (from least to most important),
we define a canonical labeling as follows: w is in the label of v iff w is the
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maximum vertex of Hvw with respect to the vertex order. The labeling is valid
because for any s, t, the maximum vertex of Hst is in L(s) and L(t), and is on
the s–t shortest path. The labeling is HHL because all hubs of a vertex v have
ranks greater or equal to the rank of v. The labeling is minimal because if w is
the maximum vertex in Hvw, then w is the only vertex of Hvw ∩ L(w), so L(v)
must contain w.

Lemma 2. The size of a canonical labeling is independent of the vertex ordering.

Proof. It is sufficient to show that any transposition of neighbors does not affect
the size. Suppose we transpose vi and vi+1. Consider a vertex w. Since only
the order of vi and vi+1 changed, L(w) can change only if either vi ∈ Hvi+1w

or vi+1 ∈ Hviw, and vi+1 is the most important vertex in the corresponding
induced hypercubes. In the former case vi+1 is removed from L(w) after the
transposition, and in the latter case vi is added. There are no other changes to
the labels.

Consider a bijection b : H ⇒ H , obtained by flipping all bits of w in the
positions in which vi and vi+1 differ. We show that vi+1 is removed from L(w)
iff vi is added to L(b(w)). This fact implies the lemma.

Suppose vi+1 is removed from L(w), i.e., vi ∈ Hvi+1w and before the trans-
position vi+1 is the maximum vertex in Hvi+1w. From vi ∈ Hvi+1w it follows
that vi coincides with vi+1 in the positions in which vi+1 and w coincide. Thus
b doesn’t flip bits in the positions in which vi+1 and w coincide. So positions in
which vi+1 and w coincide are exactly the same in which b(vi+1) and b(w) coin-
cide. Moreover, in these positions all four vi+1, w, b(vi+1) and b(w) coincide. So
each vertex from Hvi+1,w contains in Hb(vi+1),b(w) and vice versa, thus implying
Hvi+1w = Hb(vi+1)b(w). Note that b(vi+1) = vi, and therefore Hvi+1w = Hvib(w).
Before the transposition, vi+1 is the maximum vertex of Hvib(w) and therefore
L(b(w)) does not contain vi. After the transposition, vi becomes the maximum
vertex, so L(b(w)) contains vi.

This proves the if part of the claim. The proof of the only if part is similar. ��

The hierarchical labeling of size 3d defined above is canonical if the vertices
are ordered in the reverse order of their IDs. Therefore we have the following
theorem.

Theorem 1. Any hierarchical labeling of a hypercube has size of at least 3d.

4 An O(2.83d) HL for Hypercubes

Next we show an HL for the hypercube of size O(2.83d). Combined with the
results of Section 3, this implies that there is a polynomial (in n = 2d) gap
between hierarchical and non-hierarchical label sizes.

Consider the following HL L: For every v, L(v) contains all vertices with
the first -d/2. bits of ID identical to those of v and the rest arbitrary, and all
vertices with the last �d/2� bits of ID identical to those of v and the rest arbitrary.
It is easy to see that this labeling is non-hierarchical. For example, consider two
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distinct vertices v, w with the same -d/2. first ID bits. Then v ∈ L(w) and
w ∈ L(v).

To see that the labeling is valid, fix s, t and consider a vertex u with the first
-d/2. bits equal to t and the last �d/2� bits equal to s. Clearly u is in L(s)∩L(t).
The shortest path that first changes bits of the first half of s to those of t and
then the last bits passes through u.

The size of the labeling is 2d · (2�d/2� + 2�d/2�) = O(2
3
2d) = O(2.83d). We have

the following result.

Theorem 2. A d-dimensional hypercube has an HL of size O(2.83d).

5 Better HL Bounds

The bound of Theorem 2 can be improved. Let OPT be the optimal hub labeling
size for a d-dimensional hypercube. In this section we prove the following result.

Theorem 3. OPT = (2.5 + o(1))d

The proof uses the primal-dual method. Following [4], we view the labeling prob-
lem as a special case of SET-COVER. We state the problem of finding an
optimal hub labeling of a hypercube as an integer linear program (ILP) which
is a special case of a standard ILP formulation of SET-COVER (see e.g. [14]),
with the sets corresponding to the shortest paths in the hypercube. For every
vertex v ∈ {0, 1}d and every subset S ⊆ {0, 1}d we introduce a binary variable
xv,S . In the optimal solution xv,S = 1 iff S is the set of vertices whose labels

contain v. For every unordered pair of vertices {i, j} ⊆ {0, 1}d we introduce the

following constraint: there must be a vertex v ∈ {0, 1}d and a subset S ⊆ {0, 1}d
such that v ∈ Hij (recall that the subcube Hij consists of vertices that lie on the
shortest paths from i to j), {i, j} ⊆ S, and xv,S = 1. Thus, OPT is the optimal
value of the following integer linear program:

min
∑
v,S

|S| · xv,S subject to⎧⎨⎩xv,S ∈ {0, 1} ∀ v ∈ {0, 1}d , S ⊆ {0, 1}d∑
S⊇{i,j}
v∈Hij

xv,S ≥ 1 ∀ {i, j} ⊆ {0, 1}d (1)

We consider the following LP-relaxation of (1):

min
∑
v,S

|S| · xv,S subject to⎧⎨⎩xv,S ≥ 0 ∀ v ∈ {0, 1}d , S ⊆ {0, 1}d∑
S⊇{i,j}
v∈Hij

xv,S ≥ 1 ∀ {i, j} ⊆ {0, 1}d (2)

We denote the optimal value of (2) by LOPT, and bound OPT as follows:

Lemma 3. LOPT ≤ OPT ≤ O(d) · LOPT
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Proof. The first inequality follows from the fact that (2) is a relaxation of (1).
As (1) corresponds to the standard ILP-formulation of SET-COVER, and (2)

is the standard LP-relaxation for it, we can use the well-known (e.g., [14], The-
orem 13.3) result: The integrality gap of LP-relaxation for SET-COVER is
logarithmic in the number of elements we want to cover, which in our case is
O(n2) = O(22d). This implies the second inequality. ��

Now consider the dual program to (2).

max
∑
{i,j}

y{i,j} subject to⎧⎨⎩y{i,j} ≥ 0 ∀ {i, j} ⊆ {0, 1}d∑
{i,j}⊆S
Hij�v

y{i,j} ≤ |S| ∀v ∈ {0, 1}d , S ⊆ {0, 1}d (3)

The dual problem is a path packing problem. The strong duality theorem implies
that LOPT is also the optimal solution value for (3).

We strengthen (3) by requiring that the values y{i,j} depend only on the
distance between i and j. Thus, we have variables ỹ0, ỹ1, . . . , ỹd. Let Nk denote
the number of vertex pairs at distance k from each other. Note that since ỹ’s
depend only on the distance and the hypercube is symmetric, it is enough to add
constraints only for one vertex (e.g., 0d); other constraints are redundant. We
have the following linear program, which we call regular, and denote its optimal
value by ROPT.

max
∑
k

Nk · ỹk subject to⎧⎨⎩ỹk ≥ 0 ∀ 0 ≤ k ≤ d∑
{i,j}⊆S
Hij�0d

ỹdist(i,j) ≤ |S| ∀S ⊆ {0, 1}d (4)

Clearly ROPT ≤ LOPT. The following lemma shows that in fact the two values
are the same.

Lemma 4. ROPT ≥ LOPT

Proof. Intuitively, the proof shows that by averaging a solution for (3), we obtain
a feasible solution for (4) with the same objective function value.

Given a feasible solution y{i,j} for (3), define

ỹk =

∑
{i,j}:dist(i,j)=k y{i,j}

Nk
.

From the definition, ∑
{i,j}

y{i,j} =
∑
k

Nk · ỹk.

We need to show that ỹk is a feasible solution for (4).

Consider a random mapping ϕ : {0, 1}d → {0, 1}d that is a composition of a

mapping i  → i ⊕ p, where p ∈ {0, 1}d is a uniformly random vertex, and a uni-
formly random permutation of coordinates. Then, clearly, we have the following
properties:
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– ϕ preserves distance;
– ϕ is a bijection;
– if the distance between i and j is k, then the pair (ϕ(i), ϕ(j)) is uniformly

distributed among all pairs of vertices at distance k from each other.

Let S ⊆ {0, 1}d be a fixed subset of vertices. As y{i,j} is a feasible solution of (3),
we have ∑

{i,j}⊆S
Hij�0d

y{i,j} ≤ |S|.

We define a random variable X as follows:

X =
∑

{i,j}⊆ϕ(S)
Hij�ϕ(0d)

y{i,j}.

Since ϕ is a bijection and y is a feasible solution of (3), we have Eϕ[X ] ≤ |S|.
Furthermore, Eϕ[X ] is equal to

Eϕ

⎡⎢⎢⎢⎣ ∑
{i,j}⊆ϕ(S)
Hij�ϕ(0d)

y{i,j}

⎤⎥⎥⎥⎦ = Eϕ

⎡⎢⎢⎢⎣ ∑
{i,j}⊆S
Hij�0d

y{ϕ(i),ϕ(j)}

⎤⎥⎥⎥⎦ =
∑

{i,j}⊆S
Hij�0d

Eϕ

[
y{ϕ(i),ϕ(j)}

]
.

Since (ϕ(i), ϕ(j)) is uniformly distributed among all pairs of vertices at distance
dist(i, j), the last expression is equal to

∑
{i,j}⊆S
Hij�0d

ỹdist(i,j). ��

Combining Lemmas 3 and 4, we get

ROPT ≤ OPT ≤ O(d) · ROPT.

It remains to prove that ROPT = (2.5 + o(1))d. For 0 ≤ k ≤ d, let ỹ∗k denote
the maximum feasible value of ỹk. It is easy to see that maxkNkỹ

∗
k ≤ ROPT ≤

(d + 1) · maxkNkỹ
∗
k. Next we show that maxkNkỹ

∗
k = (2.5 + o(1))d.

To better understand (4), consider the graphs Gk for 0 ≤ k ≤ d. Vertices of
Gk are the same as those of the hypercube, interpreted as subsets of {1, . . . , d}.
Two vertices are connected by an edge in Gk iff there is a shortest path of
length k between them that passes through 0d in the hypercube. This holds iff
the corresponding subsets are disjoint and the cardinality of the union of the
subsets is equal to k.

Consider connected components of Gk. By Ci
k (0 ≤ i ≤ -k/2.) we denote the

component that contains sets of cardinality i (and k − i).
If k is odd or i �= k/2, Ci

k is a bipartite graph, with the right side vertices
corresponding to sets of cardinality i, and the left side vertices – to sets of
cardinality k− i. The number of these vertices is

(
d
i

)
and

(
d

k−i
)
, respectively. Ci

k

is a regular bipartite graph with vertex degree on the right side equal to
(
d−i
k−i

)
:
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given a subset of i vertices, this is the number of ways to choose a disjoint subset
of size k − i. The density of Ci

k is (
d
i

)
·
(
d−i
k−i

)(
d
i

)
+

(
d

k−i
) .

If k is even and i = k/2, then Gi
k is a graph with

(
d
i

)
vertices corresponding to

the subsets of size i. The graph is regular, with the degree
(
d−i
k−i

)
. The density of

Ci
k written to be consistent with the previous case is again(

d
i

)
·
(
d−i
k−i

)(
d
i

)
+

(
d

k−i
) .

Next we prove a lemma about regular graphs, which may be of independent
interest.

Lemma 5. In a regular graph, density of any subgraph does not exceed the den-
sity of the graph. In a regular bipartite graph (i.e., degrees of each part are
uniform), the density of any subgraph does not exceed the density of the graph.

Proof. Let x be the degree of a regular graph. The density is a half of the
average degree, and the average degree of any subgraph is at most x, so the
lemma follows.

Now consider a bipartite graph with X vertices on the left side and Y vertices
of the right side. Consider a subgraph with X ′ vertices on the left and Y ′ vertices
on the right. Assume X/X ′ ≥ Y/Y ′; the other case is symmetric.

Let x be the degree of the vertices on the left size, then the graph density is
x ·X/(X + Y ). For the subgraph, the number of edges adjacent to X ′ is at most
x ·X ′, so the subgraph density is at most

x ·X ′

X ′ + Y ′ =
x ·X

X + Y ′X/X ′ ≤
x ·X

X + Y ′Y/Y ′ =
x ·X
X + Y

.

��

By the lemma, each Ci
k is the densest subgraph of itself, and since Ci

k are con-
nected components of Gk, the densest Ci

k is the densest subgraph of Gk.
Next we prove a lemma that gives (the inverse of) the value of maximum

density of a subgraph of Gk.

Lemma 6. For fixed d and k with k ≤ d, the minimum of the expression(
d
x

)
+

(
d

k−x
)(

d
x

)
·
(
d−x
k−x

)
is achieved for x = -k/2. and x = �k/2� (with the two values being equal).
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Proof. Using the standard identity(
d

x

)
·
(
d− x

k − x

)
=

(
d

k − x

)
·
(
d− k + x

x

)
we write the expression in the lemma as

1(
d−x
k−x

) +
1(

d−k+x
x

) =
(d− k)!(k − x)!

(d− x)!
+

(d− k)!x!

(d− k + x)!
.

Since d− k is a constant, we need to minimize

1

(k − x + 1) · . . . · (d− x)
+

1

(x + 1) · . . . · (d− k + x)
. (5)

Note that the expression is symmetric around x = k/2: for y = k − x, the
expression becomes

1

(y + 1) · . . . · (d− k + y)
+

1

(k − y + 1) · . . . · (d− y)
.

So it is enough to show that for x ≥ �k/2�, the minimum is achieved at x = �k/2�.
We will need the following auxiliary lemma.

Lemma 7. If 0 ≤ s ≤ t and α ≥ β ≥ 1, then αt+ s/β ≥ t+ s.

Proof. Since 2 ≤ α+ 1/α ≤ α+ 1/β, we have α− 1 ≥ 1− 1/β. Thus, (α− 1)t ≥
s(1 − 1/β), and the lemma follows. ��

It is clear that for every x the first term of (5) is not less than the second one.
If we move from x to x+ 1, then the first term is multiplied by (d− x)/(k − x),
and the second term is divided by (d− k + x + 1)/(x+ 1). Since

d− x

k − x
− d− k + x + 1

x + 1
=

(d− k)(2x + 1 − k)

(x + 1)(k − x)
≥ 0,

we can invoke Lemma 7 with t and s being equal to the first and the second
term of (5), respectively, α = (d− x)/(k − x), β = (d− k + x + 1)/(x + 1). ��

Recall that ỹ∗k denotes the maximum feasible value of ỹk.

Lemma 8.

ỹ∗k =

⎧⎪⎪⎨⎪⎪⎩
1 k = 0

2/
(
d−i
i

)
k = 2i, i > 0((

d
i

)
+

(
d

i+1

))
/
((

d
i

)
·
(
d−i
i+1

))
k = 2i+ 1.

Proof. Fix k and consider the maximum density subgraph of Gk. Inverse of the
subgraph density is an upper bound on a feasible value of ỹk.

On the other hand, it is clear that we can set ỹk to the inverse density of the
densest subgraph ofGk and other ỹ’s to zero, and obtain the feasible solution of (4).

By applying Lemma 6, we obtain the desired statement. ��
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Recall that Nk denotes the number of vertex pairs at distance k from each other.
For each vertex v, we can choose a subset of k bit positions and flip bits in these
positions, obtaining a vertex at distance k from v. This counts the ordered pairs,
we need to divide by two to get the the number of unordered pairs:

Nk = 2d
(
d

k

)
/2,

except for the case k = 0, where N0 = 2d.
Finally, we need to find the maximum value of

ψ(k) := Nk · ỹ∗k = 2d ·
{(

d
2i

)
/
(
d−i
i

)
k = 2i(

d
2i+1

)
·
((

d
i

)
+

(
d

i+1

))
/
(

2 ·
(
d
i

)
·
(
d−i
i+1

))
k = 2i+ 1.

One can easily see that ψ(2i+ 1)/ψ(2i) = (d+ 1)/(4i+ 2). So, if we restrict our
attention to the case k = 2i, we could potentially lose only polynomial factors.

We have
ψ(2i+ 2)

ψ(2i)
=

d− i

4i+ 2
.

This expression is greater than one if i < (d − 2)/5. The optimal i has to be as
close as possible to the bound. As d→ ∞, this is d

5 · (1 + o(1)).
We will use the standard fact: if for n → ∞,m/n→ α, then(

n

m

)
= (2H(α) + o(1))n,

where H is the Shannon entropy function H(α) = −α log2 α−(1−α) log2(1−α).
Thus, if d→ ∞, k/d→ 2/5, then

ψ(k) = (21+H(0.4)−0.8·H(0.25) + o(1))d.

One can verify that
21+H(0.4)−0.8·H(0.25) = 2.5,

so we have the desired result.

6 Concluding Remarks

We show a polynomial gap between the sizes of HL and HHL for hypercubes.
Although our existence proof for (2.5 + o(1))d-size HL is non-constructive, the
approximation algorithm of [4] can build such labels in polynomial time. How-
ever, it is unclear how these labels look like. It would be interesting to have an
explicit construction of such labels.

Little is known about the problem of computing the smallest HHL. We do
not know if the problem is NP-hard, and we know no polynomial-time algorithm
for it (exact or polylog-approximate). These are interesting open problems.
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The HL vs. HHL separation we show does not mean that HHL labels are
substantially bigger than the HL ones for any graphs. In particular, experiments
suggest that HHL works well for road networks. It would be interesting to char-
acterize the class of networks for which HHL works well.

Note that an arbitrary (non-hub) labelings for the hypercube can be small:
we can compute the distances from the standard d-bit vertex IDs. It would be
interesting to show the gap between HL and HHL for graph classes for which
arbitrary labelings must be big.

We believe that one can prove an Θ∗(n1.5) bound for HL size on constant
degree random graphs using the primal-dual method. However, for this graphs
it is unclear how to prove tight bounds on the size of HHL.
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Abstract. In the shortest common superstring problem (SCS) one is
given a set s1, . . . , sn of n strings and the goal is to find a shortest string
containing each si as a substring. While many approximation algorithms
for this problem have been developed, it is still not known whether it
can be solved exactly in fewer than 2n steps. In this paper we present an
algorithm that solves the special case when all of the input strings have
length 3 in time 3n/3 and polynomial space. The algorithm generates a
combination of a de Bruijn graph and an overlap graph, such that a SCS
is then a shortest directed rural postman path (DRPP) on this graph.
We show that there exists at least one optimal DRPP satisfying some
natural properties. The algorithm works basically by exhaustive search,
but on the reduced search space of such paths of size 3n/3.

1 Introduction

The shortest common superstring problem (SCS) is: given a set {s1, . . . , sn}
of n strings, find a shortest string containing each si as a substring (w.l.o.g.,
we assume that no input string is a subtstring of another). The problem is
known to be NP-hard and has many practical applications including data stor-
age, data compression, and genome assembly. For this reason, approximation
algorithms for SCS are widely studied. For a long time the best known ap-
proximation ratio was 2.5 by Sweedyk [26] (the same bound also follows from
2/3-approximation for MAX-ATSP [15,24]). Very recently the bound was im-
proved to 2 11

23 by Mucha [23]. The best known inapproximability ratio (under
the P �= NP assumption) is 345

344 by Karpinski and Schmied [17].
At the same time it is not known whether SCS can be solved in fewer than

O∗(2n) steps (O∗(·) suppresses polynomial factors of input length). Note that
SCS is a permutation problem: to find a string containing all si’s in a given order
one just overlaps the strings in this order. Thus, the trivial algorithm requires
O∗(n!) time. Now consider the following suffix graph of the given set of strings:
the set of vertices is {s1, . . . , sn}, vertices si and sj are joined by an arc of weight
|suffix(si, sj)| where suffix(si, sj) is the shortest string such that sj is a suffix of
si ◦ suffix(si, sj) (where ◦ denotes concatenation). SCS can be solved by finding
a shortest traveling salesman path (TSP) in this graph. For TSP, the classical
dynamic programming based O∗(2n) algorithm discovered by Bellman [2] and
independently by Held and Karp [12] is well-known.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 480–491, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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There are two natural special cases of SCS: the case when the size of the
alphabet is bounded by a constant and the case when all input strings have
length r. The latter case is called r-SCS. Note that when both these parameters
are bounded the problem degenerates as the number of possible input strings
is then also bounded by a constant. It is known that both SCS over the binary
alphabet and 3-SCS are NP-hard, while 2-SCS can be solved in linear time [10]
and 2-SCS with multiplicities (where each input string is given together with the
number of its occurrences in a superstring) can be solved in quadratic time [7].
Vassilevska [27] showed that SCS over the binary alphabet cannot be much
easier than the general case. Namely, she provided a polynomial-time reduction
of general SCS to SCS over the binary alphabet that preserves the number of
input strings. It implies that α-approximation of SCS over the binary alphabet
is not easier than α-approximation of general SCS. It also means that an O∗(cn)-
algorithm for SCS over the binary alphabet implies an O∗(cn)-algorithm for the
general case. Hence SCS for smaller size alphabet cannot be much easier. Our
result suggests that SCS for shorter strings can actually be easier to solve.

In this paper we present an algorithm solving a special case when all of the
input strings have length 3 in time O∗(3n/3) and polynomial space. The approach
is based on finding a shortest rural postman path in the de Bruijn graph of the
given set of strings. The algorithm works basically by exhaustive search, but
having reduced the search space to size 3n/3, and then inspecting each possibility
in polynomial time. We show that for the case of 3-strings to find an optimal
rural path it is enough to guess where such a path enters each weakly connected
component formed by input strings. We then show that for a component on k
arcs there are at most k such entry points. Since the total number of arcs is n,
the running time is roughly kn/k and this does not exceed 3n/3 (for k ∈ N).

The current situation with exact algorithms for SCS is similar to what is
known for some other NP-hard problems — say, the satisfiability problem (SAT),
the maximum satisfiability problem (MAX-SAT), and the traveling salesman
problem (TSP). Namely, despite many efforts the best known algorithms for
the general versions of these problems run in time O∗(2n) (n being the number
of variables/vertices). At the same time better upper bounds are known for
special cases of these problems: O(1.308n) for 3-SAT [13], O(1.731n) for MAX-
2-SAT [28], O(1.251n) for TSP on cubic graphs [14], O∗(1.109n) for (n, 3)-MAX-
2-SAT [19], cn (where c < 2) for SAT [5] and MAX-SAT [8,19] on formulas with
constant clause density. Moreover, it is known that k-SAT can be solved in time
O((2 − 2/k)n) [22] and TSP can be solved in time O((2 − ε)n), where ε > 0
depends only on the degree bound of a graph [4].

2 General Setting

Throughout the paper S = {s1, . . . , sn} is an input set of strings over an al-
phabet Σ, and n is the number of strings. W.l.o.g. we assume that no si is a
substring of sj for any i �= j.

For strings s and t, by s ◦ t we denote the concatenation of s and t.
By overlap(s, t) we denote the longest suffix of s that is also a prefix of t.
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By prefix(s, t) we denote the first |s|−|overlap(s, t)| symbols of s and by suffix(s, t)
we denote the last |t| − |overlap(s, t)| symbols of t. Clearly,

prefix(s, t) ◦ overlap(s, t) = s and overlap(s, t) ◦ suffix(s, t) = t .

2.1 Suffix Graphs and the Traveling Salesman Problem

Clearly, s◦suffix(s, t) is the shortest string containing s and t in this order. More
generally, the shortest string containing strings si1 , . . . , sin in this order is

si1 ◦ suffix(si1 , si2) ◦ · · · ◦ suffix(sin−1 , sin) .

Thus, the goal of SCS is to find a permutation of n input strings minimizing
the total length of the suffix function. As mentioned in the introduction, one
can define a complete directed graph on the given set {s1, . . . , sn} of n strings
as a set of vertices where vertices si and sj are joined by an arc of weight
|suffix(si, sj)| (suffix graph). Solving SCS then corresponds to solving TSP in this
graph. This connection has been used in essentially all previous approximation
algorithms for SCS. This graph however is asymmetric (i.e., directed) and the
best known algorithm due to Bellman [2], Held and Karp [12] uses O∗(2n) time
and space. There are also algorithms based on inclusion-exclusion with running
time O∗(2n ·M) and space O∗(M) [18,16,1] (here, M is the maximal arc weight).
Lokshtanov and Nederlof [21] show how to solve TSP in O∗(2n ·M) time with
only O∗(1) = poly(n, logM) space. For symmetric TSP, Björklund [3] recently
came up with an O∗(1.657n ·M) time randomized algorithm. Note that for SCS,
M does not exceed the size of the input, hence the mentioned inclusion-exclusion
algorithm solves SCS in O∗(2n) time and polynomial space.

2.2 De Bruijn Graphs and the Rural Postman Problem

In this paper we deal with another useful concept, namely de Bruijn graphs. Such
graphs are widely used in genome assembly, one of the most important practical
applications of SCS [25]. At the same time they have only few applications in
theoretical investigations of SCS. To simplify its definition from now on we stick
to strings of length 3 only. So, let S = {s1, . . . , sn} be a set of 3-strings over the
alphabetΣ. The de Bruijn graphDG is a weighted complete directed graph (with
loops, but without multiple arcs) with the set of vertices Σ2. Distinct vertices s
and t are joined by an arc of weight |suffix(s, t)|. Also, for each string from Σ2

consisting of the same two symbols there is a loop of weight 1. Intuitively, the
weight of an arc (s, t) is equal to the number of symbols we need to spell going
from a string s to a string t. (Particularly, going from a string AA to itself we
need to spell one more A, that is why loops are of weight 1.) Thus, all arcs in
DG have weight either 1 or 2. Note that any 3-string s over Σ defines an arc of
weight 1 in DG: the arc joins the prefix of s of length 2 and the suffix of s of
length 2. Thus, what we are looking for in the SCS problem is a shortest path
in DG going through all the arcs ES given by S.
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This problem is known as directed rural postman path problem (DRPP).
In DRPP one is given a weighted graph G = (V,E) and a subset ER ⊆ E
of its arcs and the goal is to find a shortest path in G going through all the arcs
of ER. The arcs from ER are called required, all the remaining arcs are called
optional. A path going through all the required arcs is called a rural path and a
shortest such path is called an optimal rural path.1

DRPP has many practical applications (see, e.g., [9,11]). At the same time
almost no non-trivial exact algorithms are known for DRPP. As with SCS and
TSP, for DRPP there is a simple algorithm with the running time O∗(n!) (for
DRPP, by n we denote the number of required arcs) as well as dynamic pro-
gramming based algorithm with running time O∗(2n). DRPP generalizes such
problems as Chinese Postman Problem and Asymmetric TSP. If the set of re-
quired arcs forms a single weakly connected component (weakly connected com-
ponents of a directed graph are just connected components in this graph with
all directed arcs replaced by undirected edges), then the problem can be solved
in polynomial time: all one needs to do is to add arcs of minimal total weight
to imbalanced vertices. This can be done by finding a minimum weight perfect
matching in an appropriate bipartite graph (details can be found, e.g., in [6]). If
the set of required arcs forms more than just one weakly connected component
then DRPP becomes NP-hard [20]. The reason is that now one not only needs
to balance all the imbalanced vertices by adding arcs of minimal total weight
but also to guarantee somehow that the resulting graph is connected. This turns
out to be harder.

However 2-SCS can be solved in polynomial time even if the input strings form
more than one weakly connected component. The important property of 2-SCS
(as opposed to, say, 3-SCS) is that 2-strings from different weakly connected
components always have zero overlap. This means that one can find an optimal
rural path for each component separately.

3 Algorithm

The set S of 3-strings defines the required set of arcs ES in the de Bruijn
graphDG. What we are looking for is a shortest path in this graph going through
all the required arcs (an optimal rural path). Optional arcs have weight 1 or 2
while all required arcs have weight 1. For each vertex of the graph we know the
number of adjacent incoming and outgoing required arcs, but we do not know
the number of adjacent incoming and outgoing optional arcs (in an optimal rural
path).

Note the following two simple properties of an optimal rural path.

– An optimal rural path does not start and does not end with an optional arc
(removing such an arc leaves a rural path of smaller weight).

1 We use the term “path” to denote a path that may go through some vertices and
arcs more than once (a term “walk” is also used in the literature for this). A simple
path is a path without repeated vertices and arcs.



484 A. Golovnev, A.S. Kulikov, and I. Mihajlin

– There always exists an optimal rural path that does not contain an optional
arc followed by another optional arc. Two such arcs can be replaced by a
single arc. Since all arcs have weight 1 or 2 this does not increase the total
weight of a path.

By dre
in(v) and dre

out(v) we denote the number of required incoming and outgoing
arcs to v, respectively: dre

in(v) = |{(u, v) ∈ ES}| and dre
out(v) = |{(v, w) ∈ ES}|.

Similarly, for a path P in DG, by dop
in (P, v) and dop

out(P, v) we denote the number
of optional incoming and outgoing arcs for the vertex v in the path P :

dop
in (P, v) = |{(u, v) | (u, v) ∈ P, (u, v) �∈ ES}|,

dop
out(P, v) = |{(v, w) | (v, w) ∈ P, (v, w) �∈ ES}| .

Recall that a path may go through a particular vertex more than once, so these
degrees may be greater than 1. Also, the path P may go through a particular arc
more than once hence the sets in the right hand side of the definition dop

in (P, v)
and dop

out(P, v) are actually multisets. In other words, dop
in (P, v) (dop

out(P, v)) is
the number of times the path P enters (respectively, leaves) the vertex v by an
optional arc.

Definition 1 (configuration). A configuration is a pair f = (fin, fout) of
functions from V to N. A configuration tells for each vertex the number of in-
coming and outgoing optional arcs of a path. Consequently we say that a configu-
ration is consistent with a path P iff fin(v) = dopin (P, v) and fout(v) = dopout(P, v)
for each vertex v. A path in DG determines a configuration in a natural way.

Definition 2 (normal configuration, special vertex). We say that a con-
figuration f = (fin, fout) is normal iff the following three conditions hold.

– It is consistent with at least one rural path. This, in particular, means that
for all but two vertices v (the two exceptional vertices being the first and the
last vertices of a path)

fin(v) + drein(v) = fout(v) + dreout(v). (1)

– For each weakly connected component C of ES ,∑
v∈C

min{fin(v), fout(v)} ≤ 1 . (2)

I.e., each weakly connected component contains at most one vertex that has
both incoming and outgoing optional arcs. Moreover if such a vertex exists
then it has just one incoming or one outgoing arc. Such a vertex is called
special.

– For each vertex v, if v has only incoming (outgoing) required arcs then it has
only outgoing (incoming) optional arcs:

(dreout(v) = 0 ⇒ fin(v) = 0) and (drein(v) = 0 ⇒ fout(v) = 0). (3)

In particular, a vertex v with min{drein(v), dreout(v)} = 0 cannot be special.
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Definition 3 (normal path). A normal path is a path with a normal configu-
ration.

The motivation for studying configurations is given by the following lemmas
(which are proven below).

Lemma 1. There exists an optimal rural path that is normal.

Lemma 2. Given a normal configuration f of an (unknown) optimal rural path
we can find in polynomial time an optimal rural path consistent with f .

It remains to show that the number of different normal configurations is not too
large. This is guaranteed by the following lemmas.

Lemma 3. A weakly connected component C of ES consisting of k arcs has at
most k different normal configurations.

Lemma 4. All normal configurations can be enumerated in time O∗(3n/3) and
polynomial space.

Using these four lemmas the main result of the paper follows almost immediately.

Theorem 1. The 3-SCS problem can be solved in time O∗(3n/3) and polynomial
space.

Proof. Due to Lemma 4 we can enumerate all normal configurations in time
O∗(3n/3) and polynomial space. By Lemma 1 at least one of these configurations
corresponds to an optimal rural path. Given such a configuration we can recover
an optimal rural path by Lemma 2. ��

3.1 Proofs

In this subsection, we complete the analysis of the algorithm by proving the
lemmas given in the previous subsection. In the proofs, we often consider a
path as a sequence of vertices. In this notation, lower case letters are used to
denote vertices while upper case letters denote parts of a path, i.e., sequences of
vertices (possibly empty). E.g., to specify that a path P starts with a vertex s,
goes through a vertex v and ends in a vertex t we write P = sAvBt. In the
pictures below, required arcs are shown in bold, optional arcs are thin and gray,
snaked arcs denote just a part of a path.

Proof (of Lemma 1). Let P be an optimal rural path containing the minimal
number of optional arcs. We show that if P is not a normal path, then the
number of optional arcs in P can be decreased without increasing its weight.
This is done by replacing two optional arcs with a new one. Since all arcs have
weights 1 or 2, this replacement does not increase the weight of P .
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Consider a weakly connected component C and let x be the last vertex of C in
the path P . To guarantee that (2) holds we first transform P such that for all
vertices v of C with the only possible exception of x we have

min{dop
in (P, v), dop

out(P, v)} = 0 .

Assume that a vertex v �= x not fulfilling this equality exists in C. Denote
incoming and outgoing optional arcs of v by (w1, v) and (v, u1), respectively. Let
u2 be a vertex such that the arc (u2, v) precedes the arc (v, u1) in P and w2 be a
vertex such that the arc (v, w2) follows the arc (w1, v) in P . Since the path does
not contain two consecutive optional arcs, the arcs (u2, v) and (v, w2) differ from
the arcs (w1, v) and (v, u1). We now consider the following two cases depending
on whether the path first goes through (u2, v) and (v, u1) or through (w1, v) and
(v, w2).

1. The path P has the form sAu2vu1Bw1vw2CxDt (i.e., P first goes through
(u2, v) and (v, u1) and only then through (w1, v) and (v, w2)). We trans-
form it to sAu2vw2CxDtu1Bw1. Note that this transformation increases
the number of optional arcs out of t, but it reduces the total number of
optional arcs.

s t
u2

v

w2

x

u1w1

A

B

C

D

s t
u2

v

w2

x

u1w1

A

B

C

D

2. The path P has the form sAw1vw2Bu2vu1CxDt. We then replace the arcs
(w1, v) and (v, u1) by a new arc (w1, u1). As a result we get the path
sAw1u1CxDt and a cycle vw2Bu2v. Recall however that C is a weakly con-
nected component. This means that the new path has at least one vertex in
common with the cycle. Thus we can glue this cycle into this path.

s t
u2

v

w2

x

u1w1

A

B
C

D

s t
u2

v
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x

u1w1

A

B
C

D

Clearly both transformations above do not break the path and decrease the total
number of optional arcs.
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We now show that P can be transformed so that min{dop
in (P, x), dop

out(P, x)} ≤
1. Assume for the sake of contradiction that x has in P at least two incoming
and at least two outgoing optional arcs. Let (v, x) and (x,w) be the first optional
incoming and outgoing arcs for x in P . Consider two subcases.

1. P first goes through (v, x) and then through (x,w). Since P has at least
two optional arcs out of x the path P has the form sAvxBxwCxDt. We
transform it to sAvwCxBxDt.

2. P first goes through (x,w). Then it has the form sAxwBvxCt and can be
transformed to sAxCtwBv.

Thus, P satisfies (2).
Finally, we show how to transform P so that (3) holds. Consider a vertex

v ∈ C and assume w.l.o.g. that it has no incoming required arcs (i.e., dre
in(v) = 0).

Assume that P also has an optional arc (v, w). Since P cannot start with an
optional arc it has an arc (u, v) preceding (v, w) and this arc is also optional.
But then two optional arcs (u, v) and (v, w) can be replaced with an arc (u,w).
This again contradicts the assumption that P has the minimal possible number
of optional arcs. The case dre

out(v) = 0 is treated similarly. Thus, P satisfies (3).
We conclude that any rural path with the minimal number of optional arcs

satisfies the properties (2) and (3). The property (1) holds for such a path for a
trivial reason. Thus, any such path is normal. ��
Proof (of Lemma 2). In the following we assume that we know the first vertex
s and the last vertex t of an optimal rural path that we are looking for. Since
the first and the last arc of such a path are both required arcs, enumerating all
such pairs (s, t) can be done in O(n2) time.

To find the required path we modify the graph DG and the set of required
arcs ES as follows:

– Introduce |Σ| new vertices labeled by single symbols and join them to all
other vertices by arcs of weight equal to the length of the suffix of the
two corresponding strings. E.g., w(A, AB) = 1, w(A, BC) = 2, w(BC, A) = 1,
w(BA, A) = 0, w(A, B) = 1.

– For each vertex v of the initial graph DG labeled by AB add fin(v) copies of
the arc (A, AB) and fout(v) copies of (AB, B) to the set of required arcs ES .

Denote the resulting graph by DG′ and the resulting set of required arcs by E′
S .

It is worth to note that E′
S is a multiset, namely it might contain several copies

of new required arcs (e.g., fin(AB) copies of the arc (A, AB)).
Let C1, . . . , Cp be the weakly connected components of ES and C′

1, . . . , C
′
q be

the weakly connected components of E′
S . Clearly q ≤ p and for each Ci there is

C′
j such that Ci ⊆ C′

j .
First we show that the weight of an optimal rural path with configuraion f

in DG is equal to the weight of an optimal rural path in DG′. Indeed, given
an optimal rural path P consistent with f in DG one replaces each its optional
arc (AB, CD) (of weight 2) with three arcs (AB, B), (B, C), (C, CD) (of total weight
0 + 1 + 1 = 2) and each optional arc (AB, BC) (of weight 1) with two arcs (AB, B),
(B, BC) (of total weight 0 + 1 = 1). The resulting path P ′ is a rural path in DG′:
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we replaced exactly fout(AB) optional arcs out of the vertex AB with new required
arcs (AB, B). Moreover, this path clearly has exactly the same weight. Conversely,
let P ′ be an optimal rural path in DG′. Just by removing all vertices labeled
by single symbols we get a rural path P consistent with f whose weight is not
greater than the weight of P ′.

Now we show that an optimal rural path in DG′ can be found in polynomial
time. For this, we show that it is enough to solve the problem for each weakly
connected component of E′

S separately.
Let P ′ be such an optimal rural path in DG′. Translate it back to a path P

in DG by removing all vertices labeled by single symbols. Let P = A1A2 . . . Ak

where each sequence of vertices Ai lies inside the same weakly connected com-
ponent C′

j of E′
S and Ai and Ai+1 belong to different components. Denote by

ui, vi the first and the last vertex of Ai (recall that the path does not contain an
optional arc followed by another optional arc). A simple but crucial observation
is that each arc (vi, ui+1) has weight 2. Indeed, if w(vi, ui+1) = 1 then vi = AB

and ui+1 = BC. Note that (vi, ui+1) is an optional arc since vi and ui+1 belong
to different components of E′

S (and hence to different components of ES). This
means that fout(vi) > 0 and fin(ui+1) > 0. But then the arcs (AB, B) and (B, BC)
are required in DG′ and thus vi and ui+1 lie in the same weakly connected
component of E′

S .
We would like to show now that there exists an optimal rural path P ′ in

DG′ that goes through each component of E′
S separately. For this, we show

that if P ′ enters the same component of E′
S more than once then we can reduce

the number of optional arcs between the components by transforming a path
(without increasing the total weight of the path). As before, translate the path
P ′ back to P . Now assume that for some component C′

j , the path P enters C′
j at

least two times, i.e., there are two optional arcs (a1, b1) and (a2, b2) in P such that
b1, b2 ∈ C′

j and a1, a2 �∈ C′
j . Assume that C′

j is not the last component of the path
P (the case when it is the last one is similar). This means that P must also leave
the component C′

j two times. More formally, P contains two optional arcs (b3, a3)
and (b4, a4) where b3, b4 ∈ C′

j and a3, a4 �∈ C′
j . Replace now the arcs (a1, b1) and

(b3, a3) by (b3, b1) and (a1, a3). It is easy to see that such a transformation does
not change the degrees of vertices. To guarantee that the resulting set of arcs
is a single path but not a cycle and a path we note that b1, b2, b3, b4 lie in the
same weakly connected component. Also, the weight of the path is not increased
(since w(a1, b1) = w(b3, a3) = 2 while w(b3, b1), w(a1, a3) ≤ 2).

Thus, to find an optimal rural path in DG′ we can find an optimal path
for each component of E′

S separately and then join the found paths arbitrarily
(recall that solving DRPP for a weakly connected component is a polynomial
problem). ��

Proof (of Lemma 3). Let

mindegre(v) = min{dre
in(v), dre

out(v)}, mindegop(v) = min{fin(v), fout(v)}.

By definition of a normal configuration (see (3)) each component contains at
most one special vertex, i.e., a vertex with mindegop = 1. Recall from the proof
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of Lemma 4 that we only need to know which vertex in a configuration is special
(if any) to fully determine the configuration.

We now consider the following two cases.
C is Eulerian. Clearly C contains at most k vertices (and contains exactly k

vertices when it is a simple cycle). Note that if ES does not consist of C only
then C must contain at least one special vertex in any rural path and hence the
number of different normal configurations for C is k. At the same time, if ES
contains C only then an optimal rural path can be found in polynomial time.

C is not Eulerian. By (3), it is enough to show that C contains at most (k− 1)
vertices with non-zero mindegre. Then either one of these (k−1) vertices is special
or there are no special vertices — thus, at most k different configurations.

To show that there are at most (k − 1) vertices in C with non-zero mindegre

consider two subcases.

1. By removing directions of the arcs in C we get a simple path on k arcs. Then
C contains (k + 1) vertices but both ends of this path have zero mindegre.

2. Otherwise C contains at most k vertices. If the number of vertices is strictly
smaller than k then we are done. If the number of vertices is equal to k we
find a vertex with zero mindegre. For this, take any vertex in C and start a
path from it. As a result we either arrive to a vertex with zero out-degree (in
this case we are done) or construct a cycle. Since C is weakly connected for
at least one of the vertices of this cycle the sum of in-degree and out-degree
is at least 3. But then C must contain a vertex with in-degree plus out-degree
equal to 1 and we are done again. ��

Proof (of Lemma 4). LetES consist of t weakly connected components C1, . . . , Ct,
let also ni be the number of required arcs in Ci (hence n1 + · · · + nt = n). By
Lemma 3 above, for Ci there are at most ni different configurations. Thus, the
total number of normal configurations for ES is at most

∏t
i=1 ni. We show that

this is at most 3n/3 by induction on n. The base case n = 1 is clear. Induction
step:

t∏
i=1

ni = nt ·
t−1∏
i=1

ni ≤ 3
n−nt

3 nt = 3
n−nt

3 +log3 nt .

This does not exceed 3n/3 since log3 nt ≤ nt/3 for any nt ∈ N.
Enumerating all normal configurations is easy: for each weakly connected

component we just need to select a special vertex. Indeed, if a vertex v �= s, t
is special then min{fin(v), fout(v)} = 1, otherwise min{fin(v), fout(v)} = 0. The
exact values of fin(v) and fout(v) can be then derived from the equality (1). ��

4 Further Directions

The natural open question is to solve SCS in less than 2n steps. An apparently
easier problem is to prove an upper bound O∗(2α(r)n) for r-SCS where α(r) < 1
for all r.
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Abstract. We investigate the parameterized complexity of the following
edge coloring problem motivated by the problem of channel assignment
in wireless networks. For an integer q ≥ 2 and a graph G, the goal is to
find a coloring of the edges of G with the maximum number of colors
such that every vertex of the graph sees at most q colors. This problem
is NP-hard for q ≥ 2, and has been well-studied from the point of view of
approximation. Our main focus is the case when q = 2, which is already
theoretically intricate and practically relevant. We show fixed-parameter
tractable algorithms for both the standard and the dual parameter, and
for the latter problem, the result is based on a linear vertex kernel.

1 Introduction

Graph coloring problems are a broad and fundamental class of problems, in-
volving an assignment of colors to the elements of a graph subject to certain
constraints. They are often useful in modeling practical questions (map color-
ing, scheduling, register allocation, and pattern matching, to name a few), and
have therefore been of central algorithmic interest. On the other hand, they have
also been the subject of intensive structural study.

We are interested in the following edge coloring problem. For an integer q ≥ 2
and a simple, undirected graph G = (V,E), an assignment of colors to the edges
of G is called an edge q-coloring if for every vertex v ∈ V , the edges incident on
v are colored with at most q colors. An edge q-coloring that uses the maximum
number of colors is called a maximum edge q-coloring. We note that the flavor
of this question is quite different from the classical edge coloring question, which
is a minimization problem, and the constraints require a vertex to be incident to
completely distinct colors. This problem definition is motivated by the problem
of channel assignment in wireless networks (as pointed out in [1,10], see also [18]).
The interference between the frequency channels is understood to be a bottleneck
for bandwidth in wireless networks. The goal is to minimize interference to opti-
mize bandwidth. Some wireless LAN standards allow multiple non-overlapping
frequency channels to be used simultaneously. In this scenario, a computer on
the network equipped with multiple interface cards can use multiple channels.
The goal is to maximize the number of channels used simultaneously, if all the
nodes in the network have q interface cards. It turns out that the network can be
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c© Springer-Verlag Berlin Heidelberg 2013
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modelled by a simple, undirected graph, while the channel assignment problem
corresponds to a coloring of the edges where the edges incident to any given
vertex are not colored with more than q colors. The maximum edge q-coloring is
also considered in combinatorics, as a particular case of the anti-Ramsey number,
see [1] for the details of this formulation.

The problem is already interesting for the special case when q = 2. It is known
to be NP-complete and APX-hard [1] and also admits a 2-approximation algo-
rithm [10]. In their work on this problem, Feng et al [10] show the problem to be
polynomial time for trees and complete graphs for q = 2, and Adamaszek and
Popa [1] demonstrate a 5/3-approximation algorithm for graphs which have a
perfect matching. Given these developments, it is natural to pursue the param-
eterized complexity of the problem. Our main focus will be on the case when
q = 2, and we note that this special case continues to be relevant in practice.

The goal of parameterized complexity is to find ways of solving NP-hard
problems more efficiently than brute force. Here the aim is to restrict the combi-
natorial explosion to a parameter that is hopefully much smaller than the input
size. It is a two-dimensional generalization of “P vs. NP” where, in addition to
the overall input size n, one studies how a secondary measurement (called the
parameter), that captures additional relevant information, affects the computa-
tional complexity of the problem in question. Parameterized decision problems
are defined by specifying the input, the parameter, and the question to be an-
swered. The two-dimensional analogue of the class P is decidability within a
time bound of f(k)nc, where n is the total input size, k is the parameter, f
is some computable function and c is a constant that does not depend on k
or n. A parameterized problem that can be decided in such a time-bound is
termed fixed-parameter tractable (FPT). For general background on the theory
of fixed-parameter tractability, see [9], [11], and [17].

A parameterized problem is said to admit a polynomial kernel if every in-
stance (I, k) can be reduced in polynomial time to an equivalent instance with
both size and parameter value bounded by a polynomial in k. The study of ker-
nelization is a major research frontier of parameterized complexity and many
important recent advances in the area are on kernelization. These include gen-
eral results showing that certain classes of parameterized problems have poly-
nomial kernels [2,5,12] or randomized kernels [16]. The recent development of a
framework for ruling out polynomial kernels under certain complexity-theoretic
assumptions [4,7,13] has added a new dimension to the field and strengthened
its connections to classical complexity. For overviews of kernelization we refer
to surveys [3,15] and to the corresponding chapters in books on parameterized
complexity [11,17].

Our Contributions. We develop FPT algorithms and kernels for the maximum
edge 2-coloring problem. The standard parameter is the solution size, or the
number of colors used. On the other hand, it is known that the maximum number
of colors used in an edge 2-coloring in a graph on n vertices is at most the number
of vertices in the graph. This leads to a natural “dual” parameterization below
an upper bound. Specifically, we ask if we can color the graph with at least (n−k)
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colors, and we treat k as the parameter. As an aside, we also characterize the class
of graphs that can be colored with n colors as being two-factors (this is implicit
in several notions in the literature, and we state the proof for completeness).

Let us consider the problem with the standard parameter. A straightforward
and well-understood observation [1,10] is that the maximum edge 2-coloring
number is at least the size of the maximum matching of the graph. There-
fore, if a graph G has a matching of size at least k, then G is a YES-instance.
This is a simple polynomial time preprocessing step, and therefore we may as-
sume throughout that the size of the maximum matching in the input graph is
bounded by k. Consequently, the vertex cover of the input is bounded by 2k and
the treewidth is bounded by 2k. We do not consider these natural structural
parameterizations separately, since they are implicitly bounded in terms of the
solution size.

We note that the expressibility of the maximum edge 2-colorability question
in MSO2 is easily verified. Therefore, we may easily classify the the problem as
being FPT (parameterized by the solution size), by an application of Courcelle’s
theorem [6]. However, the running time of the algorithm obtained from this
meta theorem is impractical, and therefore, we explore the possibility of better
algorithms specific to the problem. We first show an exponential kernel obtained
by the application of some simple reduction rules, which also implies that the
problem is FPT. We then present a concrete FPT algorithm that runs in time
O∗(kk)1 for the problem. Also, for the dual parameterization, we obtain a linear
vertex kernel, with O(k) vertices and O(k2) edges. This implies a FPT algorithm

with running time O∗(kk
2

).
This paper is organized as follows. In Section 2 we provide some basic defi-

nitions and facts. In section 3, we consider the standard parameter and present
an exponential kernel and a FPT algorithm. In section 4, we consider the dual
parameter and show a linear vertex kernel. Due to space constraints, some proofs
have been omitted. Such statements are marked with a �, and we refer the reader
to a full version of the paper [14] for the complete details.

2 Preliminaries

In this section we state some basic definitions related to parameterized complex-
ity and graph theory, and give an overview of the notation used in this paper. To
describe running times of algorithms we sometimes use the O∗ notation. Given
f : N → N, we define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some poly-
nomial function. That is, the O∗ notation suppresses polynomial factors in the
running-time expression. The set of natural numbers (that is, nonnegative inte-
gers) is denoted by N. For a natural number n let [n] := {1, . . . , n}. By logn we
mean �logn� if an integer is expected.

1 The O∗ notation is used to suppress polynomial factors in the running time (c.f.
Section 2).
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Graphs. In the following, let G = (V,E) and G′ = (V ′, E′) be graphs, and
U ⊆ V some subset of vertices of G. The union of graphs G and G′ is defined
as G ∪ G′ = (V ∪ V ′, E ∪E′), and their intersection is defined as G ∩ G′ =
(V ∩ V ′, E ∩ E′). A set U is said to be a vertex cover of G if every edge in G is
incident to at least one vertex in U . U is said to be an independent set in G if
no two elements of U are adjacent to each other. The independence number of
G is the number of vertices in a largest independent set in G. U is said to be
a clique in G if every pair of elements of U is adjacent to each other. A set U
is said to be a dominating set in G if every vertex in V \ U is adjacent to some
vertex in U . A two-factor is a graph where every vertex has degree exactly two.
We refer the reader to [8] for details on standard graph theoretic notation and
terminology we use in the paper.

Parameterized Complexity. A parameterized problem Π is a subset of Γ ∗ × N,
where Γ is a finite alphabet. An instance of a parameterized problem is a tuple
(x, k), where k is called the parameter. A central notion in parameterized com-
plexity is fixed-parameter tractability (FPT) which means, for a given instance
(x, k), decidability in time f(k) · p(|x|), where f is an arbitrary function of k
and p is a polynomial in the input size. The notion of kernelization is formally
defined as follows.

Definition 1. [Kernelization] [17,11] A kernelization algorithm for a param-
eterized problem Π ⊆ Γ ∗×N is an algorithm that, given (x, k) ∈ Γ ∗×N, outputs,
in time polynomial in |x| + k, a pair (x′, k′) ∈ Γ ∗ × N such that (a) (x, k) ∈ Π
if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable
function. The output instance x′ is called the kernel, and the function g is re-
ferred to as the size of the kernel. If g(k) = kO(1) (resp. g(k) = O(k)) then we
say that Π admits a polynomial (resp. linear) kernel.

The Maximum Edge Coloring Problem Let G = (V,E) be a graph, and let c be
an assignment of k colors to the edges of G, that is, let c be a surjective function
from E to [k]. We say that c is an edge coloring of the graph using k colors. For
a subset F of the edge set E, let c(F ) denote the set of colors assigned to the
edge set F , that is,

c(F ) =
⋃
e∈F

c(e).

We say that c is q-valid if every vertex in the graph is incident to edges colored
with at most q distinct colors. Formally, if Fv denotes the set of edges incident
on a vertex v, then an edge coloring c is q-valid if |c(Fv)| ≤ q for all v ∈ V .
We denote by σq(G) the largest integer k for which there exists a q-valid edge
coloring function with k colors. When considering the special case q = 2, we drop
the subscript, and simply use σ(G) to refer to the maximum number of colors
with which G admits a 2-valid edge coloring. The first algorithmic question that
arises is the following:



496 P. Goyal, V. Kamat, and N. Misra

Max Edge 2-Coloring Parameter: k
Input: A graph G and an integer k

Question: Is σ(G) ≥ k, that is, is there a 2-valid edge coloring of G
with at least k colors?

We first note that the Max Edge 2-Coloring problem is equivalent to its
exact version:

Proposition 1 (�). For a graph G, σ(G) ≥ k if and only if there is a 2-valid
edge coloring of G with exactly k colors.

Therefore, when parameterizing by the standard parameter, we will address the
question of whether there is a 2-valid edge coloring that uses exactly k colors, and
we refer to this as the Exact Edge 2-Coloring problem. We now introduce
the dual parameterization. We will need some terminology first. Let G be a graph
and let c : E → [k] be a 2-valid edge coloring of G with k colors. For 1 ≤ i ≤ k, let
Fi denote the set of edges e for which c(e) = i, that is, Fi = c−1(i). Notice that
each Fi is non-empty. Fix an arbitrary edge ei ∈ Fi, and let H be the subgraph
induced by {e1, . . . , ek}. We call H the character subgraph of G. Notice that
Δ(H) ≤ 2. It is also easy to argue that σ(G) ≤ |V | by examining the character
subgraph and using the fact that it has at most |V | edges (see [10]). Therefore,
we may ask the following question:

(n− k)-Edge 2-Coloring Parameter: k
Input: A graph G and an integer k

Question: Is σ(G) ≥ (n− k), that is, is there a 2-valid edge coloring of
G with at least (n− k) colors?

An useful notion is that of a palette assignment associated with an edge coloring
c. Recall that for a vertex v, we use Fv to denote the set of edges incident on v.
If c : E → [k] is an edge coloring, then the palette assignment associated with c
is the function c† defined as: c†(v) = c(Fv). Note that in general, c† is a function

from V to 2[k], however, if c is a 2-valid coloring, then c† : V →
(
[k]
2

)
∪ [k]∪ {∅}.

We conclude this introduction to the maximum edge coloring problem with a
straightforward characterization of graphs for which σ(G) = |V |.

Proposition 2 (�). A graph G = (V,E) is a two factor if, and only if,
σ(G) = |V |.

3 A FPT Algorithm for Max Edge 2-Coloring

We begin by describing an exponential kernel for the Exact Edge 2-Coloring

problem. We will subsequently describe a detailed FPT algorithm. We first ob-
serve that if G has a matching of k edges, then it is already a Yes-instance of
the problem.
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Proposition 3 (�). Let (G, k) be an instance of Exact Edge 2-Coloring,
and let m denote the number of edges in G. If m < k, then G is a No-instance.
If the size of the maximum matching in G is at least (k− 1) and m ≥ k, then G
is a Yes-instance.

Let (G = (V,E), k) be an instance of Exact Edge 2-Coloring. The first step
towards an exponential kernel is to identify a matching of maximum size, say
M , and return a trivial Yes-instance if |M | ≥ k − 1. If this is not the case, let
S ⊆ V be the set of both endpoints of every edge in M . We use I to denote
V \ S. Note that |S| ≤ 2k − 4 and I is an independent set.

For T ⊆ S, let IT ⊆ I denote the set of vertices v in I for which N(v) = T .
Note that {IT | T ⊆ S} forms a partition of I into at most 2|S| classes. We are
now ready to suggest our first reduction rule.

(R1) For T ⊆ S, and let r := max{10, |T | + 1}. If |IT | > r, delete all but r
vertices from IT . The reduced instance has the same parameter as the
original.

It is easy to see that this reduction rule may be applied in O(|I|) time. We now
prove the correctness of this rule.

Proposition 4 (�). Let (G, k) be an instance of Exact Edge 2-Coloring,
let S be a vertex cover of G and let T ⊆ S. Let (H, k) be the instance obtained
by applying (R1) to G with respect to T . The instances (G, k) and (H, k) are
equivalent.

Lemma 1. Exact Edge 2-Coloring has a kernel on O(4k ·(2k−4)) vertices.

Proof. Notice that once reduced with respect to (R1), for every T ⊆ S, there
are at most max{10, |T | + 1} vertices in G. Thus, a conservative upper bound
on the number of vertices in a reduced instance would be (|S|+ 2|S||S|), and the
lemma follows from the fact that |S| ≤ 2k − 4. ��

We now turn to a FPT algorithm for Exact Edge 2-Coloring. See Algo-
rithm 1 in the full version [14] for a pseudocode-based description of the overall
algorithm. Recall that the goal is to compute a 2-valid edge coloring that uses
k colors. We begin by using Proposition 3 to accept instances with a maximum
matching on at least k − 1 edges, and reject instances that have fewer than k
edges. Otherwise, let S be the vertex cover obtained by choosing both endpoints
of a maximum matching.

The algorithm begins by guessing a palette assignment τ to the vertices in
S. First, some simple sanity checks are implemented. Note that if c is a 2-
valid edge coloring of G that uses k colors, and S is a vertex cover of G, then⋃
v∈S c

†(v) = [k] (if not, the missing color cannot be attributed to any edge).
Therefore, we ensure that

⋃
v∈S τ(v) = [k]. Also, for an edge in S, the palettes

assigned to the endpoints clearly cannot be disjoint. Therefore, for u, v ∈ S, if
(u, v) ∈ E, we ensure that τ(u) ∩ τ(v) �= ∅.
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Let G be a Yes-instance of Exact Edge 2-Coloring, and suppose c is a 2-
valid edge coloring of G that uses k colors. Let Xc ⊆ [k] be the set of colors used
by c on S. More formally, Xc :=

⋃
e∈G[S] c(e). The second step of the algorithm

involves guessing this subset of colors, that is, we consider all possible subsets
of [k] as candidates for being the exact set of colors that are realized by some
2-valid coloring when restricted to G[S].

Let X ⊆ [k] be the colors that are to be realized in S. All the colors in X are
initially labelled unused. Note that for u, v ∈ S, if (u, v) ∈ E, puv := τ(u) ∩ τ(v)
either has one or two colors. If the intersection has one color, say i, and i /∈ X ,
then we reject the guess X . On the other hand, if i ∈ X , we assign i to the edge
between u and v and update the label for i as used. Notice that this is a “forced”
assignment, since this is the only way to extend c to the edge uv while respecting
τ . On the other hand, suppose puv has two colors. If neither of these colors is
in X , then we may reject this guess. If it has two colors and only one of them
is in X , then we assign the color in X to (u, v) and update its label as used.
Otherwise, we branch on the two possibilities of c(u, v), which come from puv.
Note that the count of colors labelled unused in |X | drops by exactly one in both
branches, so this is a two-way branching, where the corresponding search tree
has depth bounded by |X |. This completes the description of the functionality
of CheckTop (see also Function CheckTop in the full version [14]).

Finally, we need to realize the colors in [k] \ X on the edges that have one
endpoint each in S and G \ S. To this end, we compute the lists of feasible
assignments of colors for each vertex in G\S, based on τ . In particular, a pair of
colors {i, j} belongs to the feasibility list 
(u) of a vertex u ∈ G \ S if there is a
way of coloring the edges incident on u with the colors i and j while respecting
the palette τ . In other words, one of the colors i or j appears in τ(v) for every
v ∈ N(u). If such a list is empty, then we know that no feasible extension of τ
exists. On the other hand, if the list contains a unique set, then we may color
the edges incident on u according to the unique possibility.

Other than the special cases above, we know, for the same reasons as in the
proof of Proposition 4, that these lists either have constant size, or have one
color in common. When the lists have one color in common, then this color can
be removed from [k] \ X , as such a color will be used by any coloring c that
respects τ .

For lists 
(u) of constant size, as long as at least two elements in the list
contain a color from [k] \X , we branch on such elements. Note that the depth
of branching is bounded by [k] \X and the width is bounded by a constant (at
most 10, see Proposition 4). If exactly one element in 
(u) contains a color from
[k]\X , then we color u according to that element. If no elements in 
(u) contain
colors from [k]\X , then color u according to any element in the list of its feasible
assignments.

Finally, we are left with a situation where some colors from [k] \X still need
to be assigned, and the only vertices from G \ S that are left are those whose
lists contain a common color. Now this is a question of whether every color that
remains in [k] \ X can be matched to a vertex from G \ S whose feasibility
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list contains that color. To this end, we construct the bipartite graph H =
((A∪B), E) as follows. The vertex set A has one vertex for every color in [k]\X .
The vertex set B has one vertex for every u ∈ G \S for which the feasibility list
of u has a common color. For i ∈ A and u ∈ B, add the edge (i, u) if 
(u) has a
set which contains i. Now we compute a maximum matching M in H , and it is
easy to see that the remaining colors can be realized if and only if M saturates
A (see also the pseudocode for function CheckAcross in the full version [14]).

This brings us to the main result of this section.

Theorem 1. There is an algorithm with running time O∗((20k)k) Exact Edge

2-Coloring.

Proof. The correctness is accounted for in the description of the algorithm.
Guessing the palette assignment requires time O∗((k +

(
k
2

)
)k) and guessing

X ⊆ [k] incurs an expense of 2k. We note that the only branching steps happen
in lines 22—28 of CheckTop and lines 47—52 in CheckAcross. The former
is a two-way branching with a cost of 2|X| and the latter is a 10-way branching
with a cost of 10|[k]\X|. Overall, therefore, the running time of these branch-
ing steps is bounded by 10k. Therefore, the overall running time is bounded by
O∗(20k), as desired. We refer the reader to the full version of the paper [14] for
the detailed pseudocode. ��

4 Parameterizing below an Upper Bound: A Linear
Kernel

We now address the question of whether a given graph G = (V,E) admits a 2-
valid edge coloring using at least (n− k) colors, where n := |V |. In this section,
we show a polynomial kernel with parameter k. We note that the NP-hardness
of the question is implicit in the NP-hardness of the Max Edge 2-Coloring

Problem shown in [1].
The kernel is essentially obtained by studying the structure of a Yes-instances

of the problem. We argue that if G is a Yes-instance, c is a 2-valid edge coloring
of G using at least (n − k) colors, and H is a character subgraph of G with
respect to c, then |V (H)| must be at least (n− k), or in other words, G \H is at
most k. We then proceed to show that the components which are not cycles in H
are also bounded. An easy but crucial observation is that any vertex cannot be
adjacent to too many vertices whose palettes are disjoint. On the other hand, we
are able to bound the number of vertices in H whose palettes are not disjoint.
This leads to a bound on the maximum degree of G in terms of k. Finally, we
show a reduction rule that applies to “adjacent degree two vertices”, and this
finally rounds off the analysis of the kernel size. We now formally describe the
sequence of claims leading up to the kernel.

We begin by analyzing the structure of Yes-instances of the problem. Let
G = (V,E) be a graph that admits a 2-valid edge coloring using at least (n− k)
colors. Let c be such a coloring, and let H be a character subgraph with respect
to c. Since Δ(H) ≤ 2, the components of H comprise of paths and cycles.
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Let C1, . . . , Cr denote the components of H that are cycles and let P1, . . . , Ps
denote the components that are paths. Let the sizes of these components be
c1, . . . , cr, p1, . . . , ps, respectively. We first claim that s ≤ k.

Proposition 5 (�). Let c be a 2-valid edge coloring of G using at least (n− k)
colors, and let H be a character subgraph with respect to c. If H consists of s
paths of lengths p1, . . . , ps and r cycles of lengths c1, . . . , cr, then s ≤ k.

Next, we show that there are at most k vertices in G that are not in H .

Proposition 6. Let c be a 2-valid edge coloring of G using at least (n − k)
colors, and let H be a character subgraph with respect to c. Then, |G \H | ≤ k.

Proof. Suppose, for the sake of contradiction, that |G \ H | > k. This in turn
implies that |H | < n−k. Recall, however, that Δ(H) ≤ 2, and therefore |E(H)| ≤
2|H|
2 = |H | < n − k. However, since H is character subgraph of G with respect

to a coloring that uses at least (n − k) colors, we have that |E(H)| ≥ n − k.
Therefore, the above amounts to a contradiction. ��

Let P denote the set of endpoints of the paths P1, . . . , Ps. Notice that |P| ≤ 2k.
Let T denote the remaining vertices in H , that is, T := H \ P . We now claim
that the maximum degree of G in T is bounded:

Proposition 7. For a graph G that admits a 2-valid edge coloring using at least
(n− k) colors, its character subgraph is such that, any vertex u in G is adjacent
to at most six vertices in T .

Proof. Let c be a 2-valid edge coloring of G using at least (n− k) colors, and let
H , P and T be defined as above.

Suppose, for the sake of contradiction, that there is a vertex u ∈ G that has
more than six neighbors in T . Since Δ(H [T ]) ≤ 2, in any subset of seven vertices
of T , there is at least one triplet of vertices, say x, y, and z that are mutually
non-adjacent in H . By definition of H and T , we know that the palettes of x, y
and z with respect to c have two colors each and are mutually disjoint:

c†(x) ∩ c†(y) = ∅; c†(x) ∩ c†(z) = ∅; and c†(y) ∩ c†(z) = ∅.

It follows that |c†(x)| = |c†(y)| = |c†(z)| = 2. Since u is adjacent to x, y and
z, we conclude that there is no way to extend c to a 2-valid coloring of the
edges (u, x), (u, y) and (u, z). Therefore, we contradict our assumption that c is
a 2-valid edge coloring of G using at least (n− k) colors, and conclude that all
vertices in G have at most six neighbours in T .

The following corollary is implied by the fact that there are at most 3k vertices
in the graph other than T .

Corollary 1. Let G be a graph that admits a 2-valid edge coloring using at least
(n− k) colors. Then Δ(G) ≤ 3k + 6.
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We now state the reduction rules that define the kernelization.

(R1) If Δ(G) > 3k + 6, then return a trivial No-instance.
(R2) Let u and v be adjacent vertices with d(u) = d(v) = 2, and let v′ be

the other neighbor of v. Delete v and add the edge (u, v′). Let the graph
obtained thus be denoted by H . Then the reduced instance is (H,n∗−k),
where n∗ = |V (H)| = (n−1). Notice that the parameter does not change.

It is easy to see that both the reduction rules above can be executed in lin-
ear time. The correctness of (R1) follows from Corollary 1. We now show the
correctness of the second reduction rule.

Proposition 8. [�] Let G be a graph where vertices u and v are adjacent, and
d(u) = d(v) = 2. Let v′ be the other neighbor of v. Let H be the graph obtained
from G after an application of reduction rule (R2). The graph G has a 2-valid
edge coloring that uses at least (n − k) colors if and only if the graph H has a
2-valid edge coloring that uses at least (n− k − 1) colors.

Observe that Proposition 8 implies the correctness of (R2). We now turn to an
analysis of the size of the kernel.

Lemma 2. If (G,n− k) is a Yes-instance of (n− k)-Edge 2-Coloring that
is reduced with respect to (R2), then |V (G)| = O(k).

Proof. Since G is a Yes-instance, it admits a 2-valid edge coloring c using at least
(n− k) colors. Let H be a character subgraph with respect to c. Let C1, . . . , Cr

denote the components of H that are cycles and let P1, . . . , Ps denote the com-
ponents that are paths.

Let P denote the set of endpoints of the paths P1, . . . , Ps and let T denote
the remaining vertices in H , that is, T := H \ P . Let |P1| = |G \H | + |P|. By
Proposition 7, we know that every vertex in G, has at most six neighbors in T .
Since |P1| ≤ 3k (this follows from Proposition 5), the number of vertices in T
that have neighbors in P1 is at most 3k · 6 = 18k. Notice that all other vertices
in T have degree two in G. Therefore, we conclude that the number of vertices
of G that have degree three or more is at most 3k + 18k = 21k.

We now have that |P| ≤ 2k and |G \H | ≤ k, hence it remains to bound the
vertices in T . Notice that the vertices of T have degree two or more in G. Among
them, the vertices that have degree three or more in G are bounded by 21k. The
vertices left are the vertices in T that have degree two in G. Since the graph is
reduced with respect to (R2), the neighbors of these vertices have either degree
one or degree three or more. Note that the number of degree one vertices is at
most |P| + |G \ H | ≤ 3k. Hence the number of degree two vertices in T is at
most 21k · 6 + 3k = 129k. Thus the total number of vertices in T is also O(k).
This concludes our argument.

5 Concluding Remarks and Future Work

The most natural unresolved question is to settle the kernelization complexity
of the maximum edge 2-coloring problem when parameterized by the solution
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size. The exponential kernel described in this work implies a polynomial kernel
when the input is restricted to graphs where the maximum degree is a constant,
and also if the input is restricted to graphs without cycles of length four. These
observations are interesting because the problem continues to be NP-complete for
both of these graph classes. The NP-hardness for graphs of bounded degree can
be obtained by easy modifications to the reduction proposed in [1], and the NP-
hardness on graphs without cycles of length four is given in the full version for
completeness. Given these results, the question of whether the problem admits
a polynomial kernel on general graphs is an interesting open problem.

Improved FPT algorithms for both the standard and the dual parameter,
specifically with running time O(ck) for some constant c, will be of interest as
well. It is also natural to pursue the above-guarantee version of the question,
with the size of the maximum matching used as the guarantee. In particular, if
γ is the size of a maximum matching in a graph G, we would like to study the
question of checking if G can be colored with at least (γ+k) colors, parameterized
by k.

For the more general question of Maximum Edge q-Coloring, note that
since the problem is NP-complete for fixed values of q, the question is para-NP-
complete when parameterized by q alone. Generalizing some of the results that
hold for q = 2 is also an interesting direction for future work.
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Abstract. We prove a new efficiently computable lower bound on the
coefficients of stable homogeneous polynomials and present its algorthmic
and combinatorial applications. Our main application is the first poly-
time deterministic algorithm which approximates the partition functions
associated with boolean matrices with prescribed row and column sums
within simply exponential multiplicative factor. This new algorithm is
a particular instance of new polynomial time deterministic algorithms
related to the multiple partial differentiation of polynomials given by
evaluation oracles.

1 Basic Definitions and Motivations

For given two integer vectors r = (r1, ..., rn) and c = (c1, ..., cm), we denote
as BMr,c the set of boolean n ×m matrices with prescribed rows sums r and
column sums c.

Next, we introduce an analogue of the permanent (a partition function asso-
ciated with BMr,c):

PEr,c(A) =:
∑

B∈BM(r,c)

∏
1≤i≤n;1≤j≤m

A(i, j)B(i,j), (1)

where A is n×m complex matrix. Note that if A is a n× n matrix; r = c = en,
where en is n-dimensional vector of all ones, then the definition (1) reduces to
the permanent: PEen,en(A) = per(A).

The main focus of this note is on bounds and deterministic algorithms for
PEr,c(A) in the non-negative case A ≥ 0. To avoid messy formulas, we will
mainly focus below on the uniform square case, i.e. n = m and ri = cj = r, 1 ≤
i, j ≤ n and use simplified notations: BMren,ren =: BM(r, n);PEren,ren(A) =:
PE(r, A).

Boolean matrices with prescribed row and column sums is one of the most
classical and intensely studied topics in analytic combimatorics, with applica-
tions to many areas from applied statistics to the representation theory. We,
as many other researchers, are interested in the counting aspect, i.e. in com-
puting/bounding/approximating the partition function PEr,c(A). It was known

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 504–515, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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already to W.T.Tutte [17] that this partition function can be in poly-time re-
duced to the permanent. Therefore, if A is nonnegative the famous FPRAS [19]
can be applied and this was already mentioned in [19] as one of the main appli-
cations. We are after deterministic poly-time algorithms. A. Barvinok initiated
this, deterministic, line of algorithmic research in [14]. He also used the reduction
to the permanent and the Van Der Waerden-Falikman-Egorychev (VFE) [10],
[9] celebrated lower bound on the permanent of doubly-stochastic matrices. The
techniques in [14] result in a deterministic poly-time algorithm approximating
PE(r, A) within multiplicative factor (Ω(

√
n))n for any fixed r, even for r = 1.

Such pure approximation is due the fact that the reduction to the permanent
produces highly structured n2 × n2 matrices. VFE bound is clearly a power-
ful algorithmic tool, as was recently effectively illustrated in [18]. Yet, neither
VFE nor even more refined Schrijver’s lower bound [2] are sharp enough for
those structured matrices. This phenomenon was observed by A. Schrijver 30
years ago in [1]. The author introduced in [11] and [4] a new approach to lower
bounds. We will give a brief description of the approach and refine it. The new
lower bounds are asymptoticaly sharp and allow, for instance, to get a determin-
istic poly-time algorithm to approximate PE(r, A) within multiplicative factor

f(r)n, where f(r) = r!(n−r)!nn

rr(n−r)n−rn! ≈
√

2πmin(r, n− r). Besides, we show that

algorithm from [14] actually approximates within multiplicative factor f(r)2n.
So, for fixed r or n− r the new bounds give simply exponential factor. But, say
for r = n

2 , the current factor is not simply exponential. Is there a deterministic
Non-Approximability result for PE(n2 , A)?

We also study the sparse case, i.e. when, say, the columns of matrix A have
relatively small number of non-zero entries. In this direction we generalize, re-
prove, sharpen the results of A. Schrijver [1] on how many k-regular subgraphs
2k-regular bipartite graph can have.

The main moral of this paper is that when one needs to deal with the per-
manent of highly structured matrices the only (and often painless) way to get
sharp lower bounds is to use stable polynomials approach.Prior to [11] and
[4] VFE was, essentially, the only general pourpose non-trivial lower bound on
the permanent. It is not true anymore.

1.1 Generating Polynomials

The goal of this subsection is to represent PEr,c(A) as a coefficient of some
effectively computable polynomial.

1. The following natural representation in the case of unit weights, i.e A(i, j) ≡
1, was already in [16], the general case of it was used in [14].

PEr,c(A) = [
∏

1≤i≤n
yrii

∏
1≤j≤m

x
cj
j ]

∏
1≤i≤n,1≤j≤m

(1 + A(i, j)xjyi), (2)

i.e. PEr,c(A) is the coefficient of the monomial
∏

1≤i≤n y
ri
i

∏
1≤j≤m x

cj
j in

the non-homogeneous polynomial
∏

1≤i≤n,1≤j≤m(1 + A(i, j)xjyi).
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It is easy to convert non-homogeneous formula (2) into a homogeneous one:

PEr,c(A) = [
∏

1≤j≤m
x
cj
j

∏
1≤i≤n

zm−ri
i ]

∏
1≤i≤n,1≤j≤m

(zi + A(i, j)xj). (3)

As the polynomial
∏

1≤i≤n,1≤j≤m(zi+A(i, j)xj) is a product of linear forms,
the formula (3) allows to express PEr,c(A) as the permanent of some nm×
nm matrix, the fact essentially proved in a very different way in [17].The
permanent also showed up, in a similar context of Eulerian Orientations,
in [1].

Indeed, associate with any k × l matrix B the product polynomial

ProdB(x1, ..., xl) =:
∏

1≤i≤k

∑
1≤j≤l

B(i, j)xj . (4)

Then

[
∏

1≤j≤l
x
ωj

j ]ProdB(x1, ..., xl) = per(Bω1,...,ωl
)

∏
1≤j≤l

(ωj !)
−1, (5)

where k × k matrix Bω1,...,ωl
consists of ωj copies of the jth column of B,

1 ≤ j ≤ l.

2. We will use below the following equally natural representation. Recall the
definition of standard symmetric functions:

Sk(x1, ..., xm) =
∑

1≤i1<..<ik≤m

∏
1≤j≤k

xij ,

and define the following homogeneous polynomial

ESr,c;A(x1, ..., xm) =
∏

1≤i≤n
Sri(A(i, 1)x1, ..., A(i,m)xm). (6)

Then

PEr,c(A) = [
∏

1≤j≤n
x
cj
j ]ESr,c;A(x1, ..., xm). (7)

Remark 1. Note that in the square case n = m, the polynomial ESen,em;A =
ProdA. The polynomial ESr,c;A is, of course, related to the polynomial
TM(z1, ..., zn;x1, ..., xm) =:

∏
1≤i≤n,1≤j≤m(zi + A(i, j)xj):

ESr,c;A(x1, ..., xm) = const
∏

1≤i≤n

∂m−ri

∂zm−ri
i

TM(zi = 0, 1 ≤ i ≤ n;x1, ..., xm).

(8)
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1.2 Exact Algorithms

It is well known that the coefficient [
∏

1≤j≤n x
cj
j ]ESr,c;A(x1, ..., xm) can be com-

puted by evaluating the polynomial ESr,c;A at
∏

1≤j≤n(1 + cj) points. Which
gives(see Remark (1)) an exact algorithm for PEr,c(A) of complexity

O

⎛⎝min(
∏

1≤j≤n
(1 + cj)nm log(m),

∏
1≤i≤m

(1 + ri)nm log(n))

⎞⎠ .

Thus if n > m and m is fixed then the exists a polynomial in n exact deterministic
algorithm to compute PEr,c(A).

1.3 Previous Work

Estimation of the cardinality |BMr,c| = PEr,c(A), where A = Jn,m = ene
T
m is a

matrix of all ones, is one of classical topics in analytic combinatorics. The reader
may consult Barvinok’s paper [14] for references to most major results on the
topic.

To avoid messy formulas, we will mainly focus below on the uniform square
case, i.e. n = m and ri = cj = r, 1 ≤ i, j ≤ n and use simplified notations:

BMren,ren =: BM(r, n);PEren,ren =: PE(r, A).

It is easy to see that PE(r, A) is #P-Complete for all 1 ≤ r < n. The connection
to the permanent implies that for non-negative matrices A there is FPRAS for
PE(r, A). We are interested in this paper in deterministic algorithms. Probably,
the first published deterministic algorithm to approximate PE(r, A) within a
multiplicative factor appeared in Barvinok’s paper [14]:

Define

α(A) = inf
zj ,xi>0

∏
1≤i≤n,1≤j≤m(zj + A(i, j)xi)∏

1≤i≤n x
ri
i

∏
1≤j≤m z

n−cj
j

.

Then

α(A) ≥ PE(r, A) ≥ vdw(n2)

(vdw(n − r)vdw(r))n
α(A), (9)

where vdw(k) =: k!
kk . As the number log(α(A)) can computed(approximated

within small additive error) via the convex minimization, the bounds (9) give a
poly-time deterministic algorithm to approximate PE(r, A) within multiplica-

tive factor γn =: ( vdw(n2)
(vdw(n−r)vdw(r))n )−1. The factor γn is not simply exponential

even for r = 1, indeed (γn)
1
n ≈ const(

√
n) for a fixed r. The proof of (9) in

[14] is based on the Sinkhorm’s Scaling and the Van Der Waerden-Falikman-
Egorychev lower bound on the permanent of doubly-stochatic matrices.
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2 Our Results

We prove and apply in this paper an optimized version of our lower bounds
on the coefficients of H-Stable polynomials [8]. The lower bounds in [8] were
obtained by a naive application of the lower on the mixed derivative of H-Stable
polynomials.

When applied to the polynomial
∏

1≤i≤n,1≤j≤m(zj +A(i, j)xi), it implies the
following bounds:

α(A) ≥ PE(r, A) ≥
(

vdw(n)

vdw(n − r)vdw(r)

)2n

α(A) (10)

I.e. for the fixed r the Barvinok’s approach gives a deterministic algorithm to
approximate PE(r, A) within simply exponential factor ( er

vdw(r))
2n. We stress

again that this result seems to be unprovable by using only Van Der Waerden-
Falikman-Egorychev and alike purely permanental bounds, even the newest ones
in [7].

When applied to the the polynomial ESr,c;A(x1, ..., xm), our new bounds im-
plies the following inequality

μ(A) ≥ PE(r, A) ≥
(

vdw(n)

vdw(n − r)vdw(r)

)n ∏
2≤j≤n

(
vdw(n)

vdw(n − cj)vdw(cj)

)
μ(A),

(11)
where

μ(A) =: inf
xj>0

ESr,c;A(x1, ..., xm)∏
1≤j≤m x

cj
j

Note that

log(μ) = inf∑
1≤j≤m yj=0

log(ESr,c;A(exp(
y1
c1

), ..., exp(
ym
cm

))),

and the function log(ESr,c;A(exp(y1c1 ), ..., exp(ymcm ))) is convex in ys. For the fixed
r this gives a deterministic poly-time algorithm to approximate PE(r, A) within
simply exponential factor ( er

vdw(r))
n. The detailed complexity analysis of the

convex minimization will be described in the full version of the paper.
In the sparse case we get a much better lower bound(not fully optimized yet):

μ(A) ≥ PE(r, A) ≥
∏

2≤j≤n

(
vdw(Colj)

vdw(Colj − r)vdw(r)

)
μ(A), (12)

where Colj is the number of nonzer entries in the jth column of A.
Our final result is the following combinatorial lower bound: LetA ∈ BMkr,kc �=

∅. Then

inf
xj>0

ESr,c;A(x1, ..., xm)∏
1≤j≤n x

cj
j

=
∏

1≤i≤n

(
kri
ri

)
(13)
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and

PEr,c(A) ≥
∏

1≤i≤n

(
kri
ri

) ∏
2≤j≤m

vdw(kcj)

vdw(kcj − cj)vdw(cj)
(14)

The formula (14) can be sligthly, i.e. by const(k, t) > 1, improved in the regular

case. In particular, const(2, t) =
((

2t
t

))−1
22t.

Let A ∈ BMkten,kten , where k, t are positive integers. Then

PEten,ten(A) ≥
(
kt

t

)n(
vdw(kt)

vdw((k − 1)t)vdw(t)

)n−k
vdw(kt)

vdw(t)k
. (15)

The inequalities (14, 15) generalize and improve results from [1].
All the inequalities in this section are fairly direct corollaries of

Theorem(3) (see the main inequality (25)).

3 Stable Homogeneous Polynomials

3.1 Definitions and Previous Results

The next definition introduces key notations and notions.

Definition 1. 1. The linear space of homogeneous polynomials with real (com-
plex) coefficients of degree n and in m variables is denoted HomR(m,n)
(HomC(m,n)).
We denote as Hom+(m,n) (Hom++(n,m)) the closed convex cone of poly-
nomials p ∈ HomR(m,n) with nonnegative (positive) coefficients.

2. For a polynomial p ∈ Hom+(n, n) we define its Capacity as

Cap(p) = inf
xi>0,

∏
1≤i≤n xi=1

p(x1, . . . , xn) = inf
xi>0

p(x1, . . . , xn)∏
1≤i≤n xi

. (16)

3. Consider a polynomial p ∈ HomC(m,n),

p(x1, . . . , xm) =
∑

(r1,...,rm)

ar1,...,rm
∏

1≤i≤m
xrii .

We define Rankp(S) as the maximal joint degree attained on the subset
S ⊂ {1, . . . ,m}:

Rankp(S) = max
ar1,...,rm �=0

∑
j∈S

rj . (17)

If S = {i} is a singleton, we define degp(i) = Rankp(S).
4. A polynomial p ∈ HomC(m,n) is called H-Stable if p(Z) �= 0 provided

Re(Z) > 0; is called H-SStable if p(Z) �= 0 provided Re(Z) ≥ 0 and∑
1≤i≤mRe(zi) > 0.
We coined the term “H-Stable” to stress two things: Homogeniety and

Hurwitz’ stability.
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5. We define

vdw(i) =
i!

ii
;G(i) =

vdw(i)

vdw(i − 1)
=

(
i − 1

i

)i−1

, i > 1;G(1) = 1. (18)

Note that vdw(i) and G(i) are strictly decreasing sequences.

The main inequality in [4] was stated as the following theorem

Theorem 1. Let p ∈ Hom+(n, n) be H-Stable polynomial. Then the following
inequality holds

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥

∏
2≤i≤n

G
(

min(i, degp(i))
)
Cap(p). (19)

Associate with a polynomial p ∈ Hom+(n, n) the following sequence of polyno-
mials qi ∈ Hom+(i, i):

qn = p, qi(x1, . . . , xi) =
∂n−i

∂xi+1 . . . ∂xn
p(x1, . . . , xi, 0, . . . , 0); 1 ≤ i ≤ n− 1.

The inequality (19) is, actually, a corollary of the following inequality, which
holds for H-Stable polynomials:

Cap(qi) ≥ Cap(qi−1) ≥ G(degqi(i))Cap(qi), n ≥ i ≥ 2. (20)

As Cap(q1) = ∂n

∂x1...∂xn
p(0, . . . , 0), one gets that

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥

∏
2≤i≤n

G
(
degqi(i))

)
Cap(p). (21)

The inequality (19) follows from (21) because G(i) is decreasing and degqi(i) ≤
min(i, degp(i).

3.2 New Observations

There were several reasons why the inequality (19) was stated as the main result:

1. It is simpler to understand than more general one (21). It was sufficient for
the killer application: a short, transparent proof of the (improved) Schri-
jver’s lower bound on the number of perfect matchings in k-regular bipartite
graphs.

2. For the most of natural polynomials, the gegrees degqi(i) are straightforward
to compute. Moreover, if a polynomial p with integer coefficients is given as
an evaluation oracle then Rankp(S) can be computed in polynomial time
via the univariate interpolation. On the other hand, if i = n − [na], a > 0
then even deciding whether degqi(i) is equal zero is NP-HARD. Indeed,
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consider, for instance, the following family of polynomials, essentialy due to
A. Barvinok:

p(x1, ..., xn) = BarA(xn, ...., xn−[na]+1)(x1 + ... + xn−[na])
n−[na],

where BarA(xn, ...., xn−[na]) = tr((Diag(xn, ...., xn−[na])A)[n
a]) and A is the

adjacency matrix of an undirected graph. If the graph has a Hamiltonian
cycle then degqi(i) = i and zero otherwise.

3.3 New Structural Results

The following simple bound was overlooked in [4]:
degqi(i) ≤ min(Rankp({i, ..., n}) − n+ i, degp(i)). So, if

Rankp({j, ..., n}) − n+ j ≤ k : k + 1 ≤ j ≤ n (22)

then
∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ Cap(p)G(k)n−kvdwk. (23)

Example 1. Let A be n×n doubly-stochastic matrix with the following pentagon
shaped support: A(i, j) = 0 : j − i ≥ n − k. Then the product polynomial
ProdA(x1, ..., xn) =

∏
1≤i≤n

∑
[ 1 ≤ j ≤ nA(i, j)xj satisfies the inequalities (22)

and cap(ProdA) = 1. Therefore per(A) ≥ G(k)n−kvdwk. This lower bound was
proved by very different methods in [20], moreover it was shown there that it is
sharp. Therefore, the more general bound (23) is sharp as well.

We remind the following result(combination of results in [6] and [11]).

Theorem 2. Let p ∈ Hom+(m,n), p(x1, ..., xm)=
∑

r1+...+rm=n ar1,...,rnx
r1
1 ...x

rm
m

be H-Stable. Then

1.
ar1,...,rm > 0 ⇐⇒

∑
j∈S

rj ≤ Rankp(S) : S ⊂ {1, . . . ,m}. (24)

2. The set function Rankp(S) is submodular.
3. As ar1,...,rm > 0 iff minS⊂{1,...,m}(Rankp(S)−

∑
j∈S rj) ≥ 0 hence given the

evaluation oracle for p there is poly-time detrministic algorithm to decide
whether ar1,...,rm > 0.

Lemma 1. Let p ∈ Hom+(n, n) be H-Stable polynomial with integer coeffi-
cients given as an evaluation oracle.Then for any i ≥ 1 there is a deterministic
strongly polynomial algorithm to compute degqi(i).

Proof: Associate with the number i and any polynomial p ∈ Hom+(n, n) the
following polynomials
Pl(y1, ..., yn) = p(z1, ...., zn) where0 ≤ l ≤ n− i− 1 and zj = y1 + ...+ yl, 1 ≤

j ≤ i− 1; zi = yl+1 + ...+ yn−i; zi+k = yi+k, 1 ≤ k ≤ n− i.
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Then degqi(i) ≥ n − i − l iff ∂n

∂y1...∂yn
P (0, . . . , 0) > 0. Now, if the original

polynomial p is H-Stable then the polynomials Pl are H-Stable, have integer
coefficients and evaluation oracles. Therefore we can apply the submodular min-
imization algorithm from Theorem (2) to decide whether the monomial y1...yn
is in the support of Pl. Running this algorithm at most i ≤ n times will give us
degqi(i).

Example 2. Consider the following H-Stable polynomial
GRr,c(x1, ..., xm) =

∏
1≤i≤n Sri(x1, ..., xm);

∑
j cj =

∑
i ri.

Clearly, the monomial
∏

1≤j≤n x
cj
j is in the support iff the set BMr,c is not

empty, i.e. there exists a boolean matrix with column sums c and row sums r.
It is easy to see that
RankGRr,c(S) =

∑
1≤i≤n min(|S|, ri). It follows from the characterization (24)

that BMr,c is not empty iff
∑

j∈S cj ≤
∑

1≤i≤n min(|S|, ri) for all subsets S ⊂
{1, ...,m}. Equivalently, for the ordered column sums cj1 ≥ cj2 ≥ ... ≥ cjm the
following inequalities hold:∑

1≤k≤t cjk ≤
∑

1≤i≤n min(t, ri); 1 ≤ t ≤ m.
These are the famous Gale-Ryser inequalities, albeit stated without Ferrers ma-
trices.

4 Main New Lower Bound

Let p ∈ Hom+(d,m) be a homogeneous polynomial in m variables, of degree d
and with non-negative coefficients. We fix a monomial

∏
1≤j≤m x

cj
j ,

∑
1≤j≤m cj =

d and assume WLOG that cj > 0, 1 ≤ j ≤ m. Let 0 ≤ ac1,...,cm = [
∏

1≤j≤m x
cj
j ]p

be a coefficient of the monomial. Define Capc1,...,cm(p) =: infxj>0
p(x1,...,xm)∏

1≤j≤m x
cj
j

.

Clearly, ac1,...,cm ≤ Capc1,...,cm(p).

Theorem 3. Let p ∈ Hom+(d,m) be H-Stable. Define the following family of
polynomials:
Qm = p,Qi ∈ Hom(d− (cn + ... + ci+1), i),m− 1 ≥ i ≥ 1:

Qi =
∂cn+...+ci+1

∂x
ci+1

i+1 . . . ∂xcnn
p(x1, . . . , xi, 0, . . . , 0); 1 ≤ i ≤ m− 1.

Denote dg(i) =: degQi(i). Then the following inequality holds

ac1,...,cm ≥ Capc1,...,cm(p)
∏

2≤j≤m

vdw(dg(j))

vdw(cj)vdw(dg(j) − cj)
(25)

Corollary 1. Let p ∈ Hom+(d,m) be H-Stable. Then the following (non-
optimized but easy to use) lower bound holds:

ac1,...,cm ≥ Capc1,...,cm(p)
∏

1≤j≤m

vdw(degp(j))

vdw(cj)vdw(degp(j) − cj)
(26)
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Our proof is, similarly to [4], by induction, which is based on the following
bivariate lemma.

Lemma 2. p ∈ Hom+(d, 2) be H-Stable, i.e. p(x1, x2) =
∑

0≤i≤d aix
d−i
1 xi2

and 1 ≤ c2 < d. Then

ac2 ≥ Capd−c2,c2(p)
vdw(d)

vdw(c2)vdw(d − c2)
.

Proof: Define the following polynomial P ∈ Hom+(d, d):
P (y1, ..., yd−c2 ; z1, ..., zc2) = p( 1

d−c2
∑

1≤k≤d−c2 yk,
1
c2

∑
1≤i≤c2 zi.

It follows from the standard AG inequality that Capd−c2,c2(p) = Cap(P )
and it is easy to see that P is H-Stable. Consider the following polynomial
R(z1, ..., zc2) =:

∏
1≤k≤d−c2

∂
∂yk

P (yk = 0, 1 ≤ k ≤; z1, ..., zc2). First, it follows

from (20) that Cap(R) ≥ G(d)...G(c2 + 1)Cap(P ). By the direct inspection,
R(z1, ..., zc2) = ac2vdw(d−c2)( 1

c2

∑
1≤i≤c2 zi)

c2 . ThereforeCap(R) = ac2vdw(d−
c2).

Putting things together gives that

ac2 ≥ G(d)...G(c2+1)
vdw(d−c2) Capd−c2,c2(p) = vdw(d)

vdw(c2)vdw(d−c2)Capd−c2,c2(p).

Proof: [Sketch of a proof of Theorem (3)]. Let p ∈ Hom+(d,m) be H-Stable.
Expand it in the last variable:
p(x1, ..., xm) =

∑
0≤i≤degp(m) x

i
mTi(x1, ..., xm−1). Our goal is to prove that

Capc1,...,cm−1(Tcm) ≥ vdw(d)

vdw(cm)vdw(d − cm)
Capc1,...,cm−1,cm(p). (27)

Fix positive numbers (y1, ..., ym−1) and consider the following bivariate polyno-
mial: W (t, xm) = p(ty1, ..., tym−1, xm). The polynomial W is of degree D and
H-Stable. Note that W (t, xm) ≥ Capc1,...,cm(p)td−cmxcmm

∏
1≤i≤m−1 y

cj
i . It fol-

lows from Lemma(2) that

Ti(y1, ..., ym−1) ≥ vdw(d)
vdw(cm)vdw(d−cm)Capc1,...,cm(p)

∏
1≤i≤m−1 y

cj
i , which

proves the inequality (27). Now the polynomial Tcm ∈ Hom+(d − cm,m − 1)
is also H-Stable [4]. Thus we can apply the same argument to the polynomial
Tcm(x1, ..., xm−1) and so on until only the first variable x1 remains.

Example 3. 1. The polynomial from [14] TM(z1, ..., zn;x1, ..., xm) =:∏
1≤i≤n,1≤j≤m(zi +A(i, j)xj). Consider, just for the illustration, the square

uniform case: n = m, c = (n − r, ..., n − r; r, ..., r). Note that the degrees of
all variable are bounded by n. Using non-optimized lower bound (26) we get
that the coefficient

an−r,...,n−r;r,...,r ≥ Capn−r,...,n−r;r,...,r(TZ)

(
vdw(n)

vdw(r)vdw(n − r)

)2n

2. We give a lower bound on |BM(r, n)|. The polynomial is Symr,n(x) =:
(Sr(x1, ..., xn))n. Degree of each variable is n. Capr,...,r(Symr,n) =

(
n
r

)n
.

The slightly optimized lower bound is
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|BM(r, n)| ≥
(
n

r

)n(
vdw(n)

vdw(r)vdw(n − r)

)n(r−1)
r

vdw(n)(vdw(r)−
n
r ). (28)

One of the first asymptocally exact results was proved by Everrett in [15](his
proof is rather involved):

|BM(r, n)| =
(rn)!

(r!)2n
exp(−1

2
(r − 1)2)β(r, n), (29)

where limn→∞ β(r, n) = 1 for any fixed integer number r. We will compare
our new lower bounds with (29).

Define EV ER(r, n) =: (rn)!
(r!)2n exp(− 1

2 (r − 1)2) and

HY P (r, n) =
(
n
r

)n (
vdw(n)

vdw(r)vdw(n−r)

)n(r−1)
r

vdw(n)(vdw(r)−
n
r );

i.e. Ever(r, n) is the Everett-Stein asymptotically exact extimate and
Hyp(r, n) is our lower bound on |BM(r, n)|. Using the Stirling formula, one

gets that limn→∞
Ever(r,n)
HY P (r,n) =

√
r for a fixed r. Not bad at all, considering

how computationally and conceptually simple is our derivation of (28)!
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Abstract. We initiate a comprehensive study of the complexity of com-
puting Boolean functions by polynomial threshold functions (PTFs) on
general Boolean domains. A typical example of a general Boolean do-
main is {1, 2}n. We are mainly interested in the length (the number of
monomials) of PTFs, with their degree and weight being of secondary
interest.

First we motivate the study of PTFs over the {1, 2}n domain by show-
ing their close relation to depth two threshold circuits. In particular we
show that PTFs of polynomial length and polynomial degree compute
exactly the functions computed by polynomial size THR ◦MAJ circuits.
We note that known lower bounds for THR◦MAJ circuits extends to the
likely strictly stronger model of PTFs. We also show that a “max-plus”
version of PTFs are related to AC0 ◦ THR circuits.

We exploit this connection to gain a better understanding of threshold
circuits. In particular, we show that (super-logarithmic) lower bounds
for 3-player randomized communication protocols with unbounded error
would yield (super-polynomial) size lower bounds for THR◦THR circuits.

Finally, having thus motivated the model, we initiate structural stud-
ies of PTFs. These include relationships between weight and degree of
PTFs, and a degree lower bound for PTFs of constant length.

1 Introduction

Let f : X → {−1, 1} be a Boolean function on a domain X ⊆ Rn. We say that a
real n-variate polynomial P is a polynomial threshold function (PTF) computing
f if for all x ∈ X it holds that f(x) = sgn(P (x)). Polynomial threshold func-
tion have been studied intensively for decades. Much of this work was motivated by
questions in computer science [27], and PTFs are now an important object of study
in areas such as Boolean circuit complexity [4,10,2,19], learning theory [16,17], and
communication complexity [28]. The main motivation of this paper is Boolean cir-
cuit complexity. A major and long-standing open problem is to obtain an explicit
super-polynomial lower bound for depth two threshold circuits. A long line of re-
search have established lower bounds for several subclasses of depth two threshold
circuits. The largest subclass for which super-polynomial lower bounds are known
is the class THR ◦MAJ of depth two threshold circuits, where all gates except the

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 516–527, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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output gate is required to compute threshold functions with polynomially bounded
weights [8]. We shall see that PTFs on general Boolean domains are tightly con-
nected to both these classes of circuits.

For a PTF P we will be interested in the several measures of complexity. The
length of P , denoted by len(P ), is the number of monomials of P . The degree
of P , denoted by deg(P ), is the usual total degree of P . Finally, note that in
the case that X is a finite domain, without loss of generality one may assume
that the coefficients of P are integers, and can thus speak of the weight of P ,
meaning the largest magnitude of a coefficient of P .

We restrict our focus to the case of computing Boolean functions with Boolean
inputs. More precisely we only consider the case when the domain X is a Boolean
n-cube, X = {a, b}n, for distinct a, b ∈ R. Such representations of Boolean
functions have been studied intensively due to their fundamental nature and
vast number of applications. This research has almost exclusively focused on the
two Boolean n-cubes, {0, 1}n and {−1, 1}n, sometimes denoted as the “standard
basis” and the “Fourier basis”, respectively. Indeed, most often the notion of
PTFs is defined specifically for the case of the domain {−1, 1}n. This choice
is, however, of little consequence when one disregards the length as a parameter
and focuses on the degree, as is the case in many applications of PTFs. Note also
that for these two domains any PTF can without loss of generality be assumed
to be multilinear, meaning that all variables have individual degree at most 1.

Focusing on the length of a PTF rather than the degree, the choice of domain
becomes crucial already for the case of the two domains {0, 1}n and {−1, 1}n.
This was studied in depth by Krause and Pudlák [19]. Minksy and Papert [20]
has shown that the parity function requires exponential length over the domain
{0, 1}n (cf. [9,1]), whereas it can be computed by a PTF of length 1 over the
domain {−1, 1}n. Conversely, Krause and Pudlák construct a PTF on domain

{0, 1}n of length
√
n that require length 2n

Ω(1)

on domain {−1, 1}n. For this
construction, large weight is crucial. Indeed, Krause and Pudlák also show that
any function computed by a polynomial length and polynomial weight PTF on
the domain {0, 1}n can also be computed by a polynomial length and polynomial
weight PTF on the domain {−1, 1}n.

A notable exception to the focus on the domains {0, 1}n and {−1, 1}n is the
work of Basu et al. [1] that consider representing the parity function (or rather,
a natural generalization of the parity function) on domains of the form X = An,
for a set A ⊆ Z. They especially focus on the cases A = {0, 1, . . . ,m} and
A = {1, 2, . . . ,m}, where m � 2. It is important to note that on most Boolean
domains {a, b}n, it is not without loss of generality to assume that polynomials
are multilinear. One may easily convert a given PTF into a multilinear PTF
computing the same function, but such a conversion may change both the length
as well as the weight significantly. Indeed, Basu et al. show that the parity
function provides such an example. Namely they show that on the domain {1, 2}n
there is a PTF of length n + 1 and degree n2 computing the parity function,
whereas any multilinear PTF computing the same function must have length 2n.
Thus evaluating PTFs on general Boolean domains has the effect that allowing
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high degree (meaning polynomial, exponential, or perhaps even higher), may
help to greatly reduce the length needed to compute a given Boolean function.

In this paper our aim is to investigate in detail the computational power of
PTFs of polynomial length over a general Boolean domain of the form {a, b}n,
a �= b. Some of these domains essentially corresponds to the two usual domains
{0, 1}n and {−1, 1}n, namely those that are simple scalings {0, a}n and {a,−a}n,
and we shall hence not consider these further. In particular we shall by general
Boolean domains, refer to any other Boolean domain {a, b}. For most of our
results it turns out the precise choice of general domain does not matter (in fact
all our results hold when sgn(a) = sgn(b)), and we shall henceforth develop our
results in terms of the domain {1, 2}n.

1.1 Our Results

Over the usual Boolean domains {0, 1}n and {−1, 1}n PTFs are basic extensions
of linear threshold functions that are still very limited in expressive power. More
specifically they correspond to the subclass of THR◦AND circuits with no nega-
tions of inputs in the case of domain {0, 1}n and THR◦XOR circuits in the case of
domain {−1, 1}n (multiplication over {0, 1} is AND, and over {−1, 1} — XOR).
In these cases PTFs require exponential length to compute simple functions
such as symmetric Boolean functions [4,18]. Over a general Boolean domain the
situation changes drastically. We show that in this case PTFs of just constant
length can actually compute interesting classes of functions (see Proposition 1
and Proposition 2). More importantly, when moving to polynomial length PTFs
obtain computational power right at the frontier of known circuit lower bounds
for threshold circuits. Namely we show in Theorem 3 that PTFs of polynomial
length and polynomial degree compute exactly the functions computed by poly-
nomial size THR◦MAJ circuits. This tight connection is the main motivation to
our studies of PTFs over general domains. The circuit class THR ◦MAJ is the
largest depth two threshold circuit class for which superpolynomial lower bounds
are known (note, that the class MAJ ◦THR is known to be strictly smaller [10]).
These lower bounds were obtained by sign rank lower bounds of matrices, or
equivalently lower bounds for unbounded error communication complexity [8],
and this is still the only lower bound method known for this class of circuits. In
Section 3.2 we show that this lower bound method applies to PTFs, even with
no degree restriction. We tend to believe that allowing exponential or perhaps
even larger degree allows for more Boolean functions to be computed by PTFs,
and we relate this in Proposition 7 to a question about simulating large weights
by small weights in threshold circuits in a very strong way. This in turn also
gives an indication that the power of the sign rank lower bound method extends
beyond THR ◦MAJ circuits.

Our study of PTFs on general Boolean domains and its connection to the
threshold circuits leads also to a possible way to approach the major open prob-
lem of proving lower bounds for THR◦THR circuits. Just as is the case of THR◦
MAJ circuits, most lower bounds for classes of threshold circuits have been ob-
tained using various models of communication complexity [11,15,10,23,8,29,26].
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In Section 3.3 we generalize the notion of sign rank to higher order tensors, which
captures a suitable generalization of unbounded error communication complex-
ity to the multiparty number-on-the-forehead setting. We show that good lower
bounds for order 3 tensors (or equivalently, 3-party communication protocols)
would yield lower bounds for THR ◦THR circuits. An important technical ingre-
dient in this connection along with PTFs over general domain is a previous result
showing that the threshold gates at the second level can be exchanged with exact
threshold gates [13]. While we currently know no lower bounds for this commu-
nication model1, we feel this relation is significant, given the previous successes
of communication complexity for lower bounds for threshold circuit classes, and
deserves further study. Multi-party communication complexity have been used
earlier for threshold circuit classes, but in the bounded error setting. In particu-
lar, lower bounds have been obtained for depth 3 unweighted threshold circuits
with small bottom fanin [15]. In the unbounded error setting we can additionally
address depth 3 weighted threshold circuits with small bottom fanin.

In addition to PTFs on general domains we also consider a max-plus version
of PTFs. The max-plus algebra works over the max-plus semiring, which is the
set of integers with the max operation playing the role of addition and the usual
addition playing the role of multiplication [30,6]. This setting arises as a “limit”
case in several areas of mathematics and turns out to be helpful. In our case
it turns out that max-plus PTFs are connected with PTFs over the general
domains and are moreover connected to the hierarchy of AC0 ◦ THR circuits.

The above relations between PTFs on general Boolean domains and thresh-
old circuits further motivate an in-depth study of PTFs, besides them being
a fundamental way to represent Boolean functions. For instance, it is tempt-
ing to conjecture that PTFs of polynomial length can only compute functions
computable by polynomial size constant depth threshold circuits. It seems that
before such questions can be addressed, one needs more insight into PTFs. We
currently don’t know how large PTF degree can be useful for computation. In
Section 5 we show that the minimal degree of a PTF within a given length
bound can be bounded in terms of its integer weights, and conversely the inte-
ger weights can be bounded in terms of its degree. These bounds are obtained
by setting up suitable linear programs and integer linear programs, where the
variables are exponents or weights respectively, and then using known bounds
on feasible basic solutions and small integer feasible solutions.

Finally we study the relations between PTFs over different general domains.
Though we are unable to completely resolve the questions arising here, we still
can prove some nontrivial relations. In particular we can prove that if |a| �= |b|
then PTFs of polynomial length over the domain {a, b}n are equivalent to those
over domain {ak, bk}n for any k. In particular this shows the equivalence in
expressive power of the domains {1, 2}n and {1,−2}n.

Due to space constraints, several proofs, remarks and even entire sections are
omitted compared to the full version of the paper [14].

1 Unlike the case of bounded error communication complexity, even obtaining non-
explicit lower bounds pose a challenge, since counting arguments fail [24].
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2 Preliminaries

Polynomial Threshold Functions. For given length bound l(n) and degree
bound d(n), we let PTFa,b(l(n), d(n)) denote the class of Boolean functions on
domain {a, b}n computed by polynomial threshold functions of length l(n) and
degree d(n). That is f ∈ PTFa,b(l(n), d(n)) if and only if there is a polynomial
p(x) ∈ Z[x] with l(n) monomials of degree at most d(n) and such that for all
x ∈ {a, b}n we have f(x) = 1 if and only if p(x) � 0. Of particular interest
is the case when l(n) is a polynomial in n. For this reason we will abbreviate
PTFa,b(poly(n), d(n)) by PTFa,b(d(n)). If we do not wish to impose a degree
bound we write this as PTFa,b(l(n),∞) and PTFa,b(∞), respectively. As men-
tioned in the introduction we state our results in terms of the specific domain
{1, 2}n. We remark that in most of our results one may replace {1, 2} be any
other domain {a, b}, where |a| �= |b|, and a, b �= 0. The exceptions to this are
our results about PTFs of constant length2, namely Propositions 1, 2, and 18 as
well as Theorem 19. These results hold instead assuming sgn(a) = sgn(b).

Exponential Form of PTFs. We shall find it convenient to switch back
to the standard domain {0, 1}n even when considering PTFs over the domain
{1, 2}n. Given variables y1, . . . , yn ∈ {1, 2}, define x1, . . . , xn ∈ {0, 1} by xi =
log2(yi). Correspondingly, yi = 2xi . Under this change of variables monomials
turn into exponential functions, ya1

1 . . . yan
n = 2a1x1+...+anxn and more generally a

polynomial P (y) =
∑l

j=1 cj
∏n

i=1 y
aij

i , turns into a weighted sum of exponential

functions: P (y) =
∑l

j=1 cj2
∑n

i=1 aijxi , where aij � 0 are the non-negative integer
exponents of the polynomial. Rewriting a PTF in this way, we shall say it is in
exponential form. We shall in general allow also for negative integer coefficients
aij in the exponents. They can be easily made positive by simply multiplying
the entire expression with the term 2

∑n
i=1 bixi for large enough bi. This in turn

requires us to redefine the degree of the polynomial in the natural way to suit
this. Sometimes it may also be convenient to move the absolute value of the
coefficients |cj | to the exponents as an additive term log2(|cj |) in order to make
all coefficients of the exponential form be ±1.

Boolean Functions and Circuit Classes. We use mostly standard definitions
and notation of Boolean functions and circuits built from these, see e.g. [13].

3 PTFs and Threshold Circuits

3.1 Circuit Characterizations

We first note that PTFs already of length 2 on domain {1, 2}n can compute the
class of linear threshold functions, and this is in fact an exact characterization.
Also polynomial degree corresponds to polynomial weights.

Proposition 1. PTF1,2(2,∞) = THR and PTF1,2(2, poly(n)) = MAJ.

2 Note that the XOR function can be computed by a length 1 PTF over the domain
{1,−2} but not over the domain {1, 2}.
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With more work we can characterize the Boolean functions computed by
constant length PTFs on domain {1, 2}n as the class of constant size Boolean
combinations of linear threshold functions. This class of functions was considered
earlier in the setting of learning in [16].

Proposition 2. PTF1,2(O(1),∞)=ANYO(1)◦THR, and PTF1,2(O(1), poly(n))=
ANYO(1) ◦MAJ

In the case of polynomial degree we can characterize the Boolean functions
computed by polynomial length PTFs on domain {1, 2}n as a class of depth 2
threshold functions with polynomially bounded weights on the bottom level.

Theorem 3. PTF1,2(poly(n)) = THR ◦MAJ

Proof. We first construct a PTF given a THR ◦MAJ circuit. Suppose that the
output threshold gate is given by the inequality (

∑s
k=1 wkyk) − t � 0. Let

l1(x), . . . , ls(x) be the linear expressions defining the s majority gates with in-
teger coefficients. Let p(n) be a polynomial such that |lk(x)| � p(n) for all
x ∈ {0, 1}n and all k. Let m = 2p(n) + 1 and define the m × m matrix
A = (aij) by aij = 2(i−p(n)−1)(j−1) for i, j = 1, . . . ,m. Note that A is a
Vandermonde matrix with distinct rows, and hence A is invertible. Define u =
(0, . . . , 0︸ ︷︷ ︸

p(n)

, 1, . . . , 1︸ ︷︷ ︸
p(n)+1

)T, and let v = A−1u. We now define PTFs by the exponential

forms E1(x), . . . , Es(x) given by Ek(x) =
∑m

j=1 vj2
(j−1)lk(x). By construction

we have Ek(x) = ulk(x)+p(n)+1. In other words, whenever lk(x) < 0 we have
Ek(x) = 0 and whenever lk(x) � 0 we have Ek(x) = 1. We then obtain a PTF
for the entire circuit by the exponential form E(x) = (

∑s
k=1 wkEk(x)) − t.

Conversely consider a PTF in its exponential form E(x) =
∑s

k=1 ck2lk(x),
where the coefficients of lk(x) are positive integers of polynomial magnitude.
Thus there is a polynomial p(n) such that 0 � lk(x) � p(n) for all x ∈ {0, 1}n
and all k. We now construct a THR ◦ EMAJ circuit as follows. For every k ∈
{1, . . . , s} and for every j ∈ {0, . . . , p(n)}, we take an EMAJ gate deciding
whether l(x) = j, and then feed the output of this gate into the output THR
gate with weight ck2j. This THR ◦ EMAJ circuit is then easily converted into a
THR ◦MAJ circuit [13].

3.2 Lower Bounds for PTFs

The sign rank of a real matrix A = (aij) with nonzero entries is the minimum
possible rank of a real matrix B = (bij) of same dimensions as A satisfying
sgn(aij) = sgn(bij) for all i, j. We are interested in the sign rank of matrices
defined from Boolean functions. Let f : {a, b}n×{a, b}n → {−1, 1} be a Boolean
function of 2n bits partitioned in two blocks each of n bits. We associate with
f a 2n × 2n matrix Mf , the “communication matrix”, indexed by x, y ∈ {a, b}n
and defined by (Mf)x,y = f(x, y).

Lemma 4. Assume f : {1, 2}n × {1, 2}n → {−1, 1} is computed by a PTF on
{1, 2}n × {1, 2}n of length s. Then the matrix Mf has sign rank at most s.
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Proof. Consider the PTF for f in exponential form E(x, y) =
∑s

j=1 cj2
lj(x,y).

For each j, define the 2n × 2n matrix Bj , indexed by x, y ∈ {0, 1}n, defined
by (Bj)x,y = 2lj(x,y). From this definition we immediately have that the matrix
B =

∑s
j=1 cjBj is a sign representation of Mf . Now note that we can write

lj(x, y) = l
(1)
j (x) + l

(2)
j (y). Hence Bj is an outer product, Bj = b

(1)
j b

(2)
j

T
, where

b
(1)
j , b

(2)
j ∈ {0, 1}n are defined by (b

(1)
j )x = 2l

(1)
j (x) and (b

(2)
j )y = 2l

(2)
j (y). It follows

that Bj is of rank at most 1, and hence rank(B) �
∑s

j=1 rank(Bj) � s.

Thus lower bounds on the sign rank of communication matrices of Boolean
functions directly implies length lower bounds for PTFs on domain {1, 2}n not
depending on the degree and weights. Strong lower bounds are now known for
several of Boolean functions. We mention two of particular interest. Forster [7]
proved that the sign rank of the 2n × 2n matrix corresponding to the inner
product mod 2 function, IP2(x, y), has sign rank 2

n
2 . Razborov and Sherstov [26]

proved that the sign rank of the 2m
3 × 2m

3

matrix corresponding to the Boolean

function fm(x, y) =
∧m
i=1

∨m2

j=1(xij ∧ yij) is 2Ω(m). Combining these results with
Lemma 4 we have the following.

Corollary 5. Any PTF on domain {1, 2}n×{1, 2}n for IP2 requires length 2
n
2 .

Any PTF on domain {1, 2}m3 × {1, 2}m3

for fm requires length 2Ω(m).

Sign rank was previously used to give the first lower bounds for THR ◦ MAJ
circuits and sign rank remains the only known method for obtaining such lower
bounds. Since PTFs can compute all functions computed by THR◦MAJ circuits
already with polynomial degree by Theorem 3, Corollary 5 indicates that the
lower bound technique of sign rank is applicable to more general models of
computation. Showing that these models are indeed stronger would require a
different lower bound method for THR ◦MAJ circuits. Instead we will relate the
question whether PTFs with no degree restrictions are more expressive than
PTFs of polynomial degree to a question about threshold circuits.

For this we will need the following lemma.

Lemma 6. For any s we have THRs ◦ ETHR ⊆ PTF1,2(s+ 1,∞) ◦ AND2.
In particular, THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2.

Proof. From [13] we have THR ◦ THR = THR ◦ ETHR, so the second statement
follows from the first. Consider a THRs ◦ ETHR circuit C with ETHR gates
g1, . . . , gs defined by integer linear expressions l1(x), . . . , ls(x), and suppose the
output THR gate is given by sgn(

∑s
j=1 wjyj − t), where wj �= 0 for all j. We

define polynomials p1, . . . , ps by pj(x) = −Cj lj(x)2 for large enough constants
Cj . Then 2pj(x) = 1 for lj(x) = 0 and 2pj(x) close to zero for lj(x) �= 0, so 2pj(x)

is a good approximation of ETHR gate corresponding to lj . More specifically,
let 0 < m � miny∈{0,1}s |

∑s
j=1 wjyj − t| be such that m/(2s|wj|) < 1 for all

j, let mj = min{x∈{0,1}n|lj(x) �=0} lj(x)2 and let cj = -log2((2s|wj |)/m)/mj.. Let
x ∈ {0, 1}n and define y ∈ {0, 1}s be yj = 1 if and only if lj(x) = 0. Then

|yj − 2pj(x)| � m/2s|wj| and thus
∣∣∣∑s

j=1 wjyj −
∑s

j=1 wj2
pj(x)

∣∣∣ � m
2 . It follows
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that the sign of
∑s

j=1 wj2
pj(x) − t corresponds to the output of the circuit. On

the other hand, it is easy to see that after opening the brackets in the exponents
this expression corresponds to a PTF1,2(s + 1,∞) ◦ AND2 circuit.

Proposition 7. PTF1,2(poly(n)) � PTF1,2(∞) unless THR◦THR ⊆ THR◦MAJ◦
AND2.

Proof. Assume PTF1,2(poly(n)) = PTF1,2(∞). Then THR ◦THR ⊆ PTF1,2(∞) ◦
AND2 = PTF1,2(poly(n))◦AND2 = THR◦MAJ◦AND2, where the first inclusion
follows from Lemma 6 and the last equality follows from Theorem 3.

We tend to consider the inclusion THR ◦ THR ⊆ THR ◦ MAJ ◦ AND2 as being
unlikely to hold. Note that this would also mean THR ◦ THR ◦ AND = THR ◦
MAJ ◦ AND.

3.3 Sign Complexity of Tensors and Depth 2 Threshold Circuits

In this section we define the notion of sign complexity of an arbitrary order
tensor, generalizing sign rank of matrices. The definition is made with the aim
of capturing a notion of k-party unbounded error communication complexity.
For simplicity we give the definition for the special case of order 3 tensors. The
extension to tensors of any order k is direct.

Let A = (aijk) be an order 3 tensor. We say that A is a cylinder tensor if there
is an order 2 tensor A′ = (a′ij) such either aijk = a′jk, for all i, j, k, aijk = a′ik
for all i, j, k, or aijk = a′ij , for all i, j, k. In other words an order 3 tensor is a
cylinder tensor if there are two indices such that every entry depends only on the
value of these two indices. An order 3 tensor A is a cylinder product if it can be
written as a Hadamard product A15A25A3 where A1,A2, and A3 are cylinder

tensors. That is, aijk = a
(1)
jk a

(2)
ik a

(3)
ij , for all i, j, k, where A1 = (a

(1)
jk ),A2 = (a

(2)
ik ),

A3 = (a
(3)
ij ). The sign complexity of an order 3 tensor A = (aijk) is the minimum

r such that there exist cylinder product tensors B1, . . . , Br, with B = (b
()
ijk),

such that sgn(aijk) = sgn
(
b
(1)
ijk + · · · + b

(r)
ijk

)
, for all i, j, k.

In the full version of this paper we generalize unbounded error communication
complexity to the multi-party number-on-the-forehead (NOF) setting, and show
that sign complexity of tensors essentially captures communication complexity
in this setting.

For a Boolean function f : {0, 1}n× {0, 1}n× {0, 1}n → {−1, 1} we associate
with f a 2n×2n×2n tensor Tf , the “communication tensor”, indexed by x, y, z ∈
{0, 1}n and defined by (Tf )xyz = f(x, y, z).

Proposition 8. Assume that f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} is com-
puted by a THRs ◦ ETHR circuit. Then the sign complexity of Tf is at most
s+ 1.

Proof. From Lemma 6 we have that sgn
(∑s+1

j=1 wj2
pj(x,y,z)

)
= f(x, y, z), for all

x, y, z ∈ {0, 1}n, where pj(x, y, z) are degree 2 polynomials. Now notice that we
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can rewrite each pj as pj(x, y, z) = p
(1)
j (y, z) + p

(2)
j (x, z) + p

(3)
j (x, y) and we can

rewrite the above as sgn
(∑s+1

j=1 wj2
p
(1)
j (y,z)2p

(2)
j (x,z)2p

(3)
j (x,y)

)
= f(x, y, z). Since

each of the exponential expressions wj2
p
(1)
j (y,z), 2p

(2)
j (x,z), and 2p

(3)
j (x,y) define

2n × 2n × 2n cylinder tensors, this shows that the sign complexity of Tf is at
most s + 1.

Using the result of [13] that THR ◦ THR = THR ◦ ETHR this translates to a
statement about THR ◦THR circuits. Inspection of the proof of [13, Theorem 7]
along with Proposition 8 above and the equivalence to unbounded error commu-
nication complexity gives us the following.

Corollary 9. Assume that f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} has un-
bounded error 3-player NOF communication complexity c. Then every THR ◦
THRcomputing f must contain 2c/poly(n) THR gates.

Remark 10. The above result can be generalized to THR ◦ THR ◦ANDk circuits
by considering communication protocols with 2k+ 1 parties. If lower bounds for
such circuits could be obtained for increasing k, they could using the switching
lemma be generalized to THR ◦ THR ◦ AND circuits, or even THR ◦ THR ◦ AC0

circuits (cf. [25,12]).

4 Max-plus PTFs

Let Li(x) and Mj(x) be integer linear forms, where i = 1, . . . , l1 and j = 1, . . . , l2.
By max-plus PTFs we denote expressions of the form

max
i=1,...,l1

(Li(x)) � max
j=1,...,l2

(Mj(x)). (1)

The length of the PTF (1) is l1 + l2, the degree is the maximal sum of absolute
values of all coefficients of L1, . . . , Ll1 and M1, . . . ,Ml2 except the constant term.
Note that max-plus PTFs are essentially just polynomial inequalities in the max-
plus algebra.

Notations mpPTF(l(n), d(n)), mpPTF(d(n)), mpPTF(∞), etc. are introduced
analogously to usual PTFs. It turns out that the class mpPTF(∞) is related to
AC0 ◦ THR circuits, but the other hand max-plus PTFs are not stronger than
usual PTFs.

Lemma 11. AND ◦ THR,OR ◦ THR ⊆ mpPTF(∞), and
mpPTF(∞) ⊆ AND ◦ OR ◦ THR,OR ◦ AND ◦ THR

Lemma 12. For all b > 1 there is a constant C such that mpPTF(l(n), d(n)) ⊆
PTF1,b(l(n), C · d(n) log l(n)).

From the lemma above and Corollary 5 we immediately obtain the following.

Corollary 13. Any max-plus PTF computing IP2 requires length 2
n
2 . Any max-

plus PTF computing fm requires length 2Ω(m).
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We note that for AND◦THR and OR◦THR circuits lower bounds are known (the
standard proof of the lower bound on the size of DNF for the parity function
works). ForAND◦OR◦THR and OR◦AND◦THR circuits no superpolynomial lower
bounds for explicit functions are known. Thus mpPTF(∞) is an intermediate
class in the AC0 ◦ THR hierarchy for which we do know a lower bound. On
the other hand the class is still rather strong. We show that it contains some
functions which are complicated for other complexity classes.

The ODD-MAX-BIT function (abbreviated here by OMB) was defined by
Beigel [3] as OMB(x1, . . . , xn) = 1 if and only if (max{i | xi = 1} mod 2) = 1.

Lemma 14. PARITY ∈ mpPTF(poly(n)), OMB ◦ THR ⊆ mpPTF(∞).

Buhrman et al. [5] proved that the function OMB ◦AND2 is not in the class
MAJ ◦MAJ, thus mpPTF(∞) � MAJ ◦MAJ. Besides max-plus PTFs which are
just polynomial inequalities in the max-plus algebra, we can consider systems
of max-plus polynomial inequalities. The results above shows that this class is
equivalent reformulation of AND ◦ OR ◦ THR circuits.

Corollary 15. The functions computed by systems of max-plus PTFs are ex-
actly those computed by AND ◦ OR ◦ THR circuits.

5 Weights and Degree

In this section we address the question of the minimal degree of a PTF computing
a given Boolean function. Currently we are unable to give an upper bound on the
degree required to compute a Boolean function given a bound on the length. That
is, we don’t know if PTF1,2(poly(n), d(n)) = PTF1,2(∞) for any function d(n),
and in particular we don’t know if PTF1,2(poly(n)) = PTF1,2(∞), though as we
have indicated we believe the latter to be false. We first show that the degree can
be bounded in terms of the weight, and conversely the weight can be bounded
in terms of the degree. We currently know of no method to bound the degree
and weight simultaneously in terms of the length. The proof by Muroga, Toda
and Takasu [22] (cf. [21]), showing that linear threshold functions needs integer
weights of magnitude no more than (n+ 1)(n+1)/2/2n can readily be adapted to
PTFs on domain {1, 2}n to give a bound on weight in terms of degree.

Proposition 16. Suppose P is a PTF of degree d and length s. Then there is
another PTF P ′ of degree d and length s having weight at most ss/22ds such that
sgn(P (x)) = sgn(P ′(x)) for all x ∈ {1, 2}n. Furthermore the set of monomials
of P ′ is the same of P .

A more complicated proof can give us a bound in another direction.

Proposition 17. Suppose P is a PTF having integer coefficients, weight W and
length s with n variables. Then there is another PTF P ′ of weight W and length s
having degree at most (sn+1)(sn)sn/2�log2 s+log2W �sn such that sgn(P (x)) =
sgn(P ′(x)) for all x ∈ {1, 2}n. Furthermore the (multi)set of weights of P ′ is the
same of P .
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Propositions 16 and 17 implies for example that for a PTF of length poly(n), if

the degree is at most 2poly(n) then the weight can be assumed to be 22
poly(n)

, and
vise versa. Note that the proof of Proposition 2 together with the upper bound
nO(n) on the weight of linear threshold functions [21] imply that any PTF P of
constant length is equivalent to another PTF P ′ of constant length and degree
nO(n). However the precise length of P ′ is exponential in the length of P . We
are able to avoid the exponential increase only for length 3. The proof of this
is rather complicated and we feel that this gives some indications about the
difficulty of the general problem.

Proposition 18. Any PTF of length 3 over the domain {1, 2}n is equivalent to
a length 3 PTF with degree nO(n).

Next we prove an exponential degree lower bound for PTFs of constant length.
Namely, we prove a degree lower bound of the form 2Ω(nε) for any PTF of
constant length s computing OMB, where ε depends on s.

By Proposition 2 we have PTF1,2(O(1),∞) = ANYO(1) ◦ THR. The proof
along the same lines can give us that a PTF of individual degree at most d
and length k can in fact be turned into a constant size DNF, i.e. we obtain an
OR

22
O(k2) ◦AND2O(k2) ◦THR circuit where all threshold gates are computed with

integer weights of magnitude at most d. We thus just give weight lower bounds
for ORO(1) ◦ ANDO(1) ◦ THR circuits.

Theorem 19. Any circuit in the class ORk ◦ANDl◦THR computing OMB func-

tion on n variables require weights of size 2Ω(n1/kl).

Finally we state our most notable result on relations between the domains.

Lemma 20. For all a, b ∈ R such that |a| �= |b| and for any k we have PTFa,b(∞)
= PTFak,bk(∞).
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Reachability in Higher-Order-Counters�
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Abstract. Higher-order counter automata (HOCA) can be either seen
as a restriction of higher-order pushdown automata (HOPA) to a unary
stack alphabet, or as an extension of counter automata to higher levels.
We distinguish two principal kinds of HOCA: those that can test whether
the topmost counter value is zero and those which cannot.

We show that control-state reachability for level k HOCA with 0-
test is complete for (k − 2)-fold exponential space; leaving out the 0-
test leads to completeness for (k − 2)-fold exponential time. Restricting
HOCA (without 0-test) to level 2, we prove that global (forward or back-
ward) reachability analysis is P-complete. This enhances the known re-
sult for pushdown systems which are subsumed by level 2 HOCA without
0-test.

We transfer our results to the formal language setting. Assuming that
P � PSPACE � EXPTIME, we apply proof ideas of Engelfriet and
conclude that the hierarchies of languages of HOPA and of HOCA form
strictly interleaving hierarchies. Interestingly, Engelfriet’s constructions
also allow to conclude immediately that the hierarchy of collapsible push-
down languages is strict level-by-level due to the existing complexity re-
sults for reachability on collapsible pushdown graphs. This answers an
open question independently asked by Parys and by Kobayashi.

1 From Higher-Order Pushdowns to Counters and Back

Higher-order pushdown automata (HOPA) — also known as iterated pushdown
automata — were first introduced by Maslov in [15] and [16] as an extension of
classical pushdown automata where the pushdown storage is replaced by a nested
pushdown of pushdowns of . . . of pushdowns. After being originally studied as
acceptors of languages, these automata have nowadays obtained renewed interest
as computational model due to their connection to safe higher-order recursion
schemes. Recent results focus on algorithmic questions concerning the under-
lying configuration graphs, e.g., Carayol and Wöhrle [5] showed decidability of
the monadic second-order theories of higher-order pushdown graphs due to the
pushdown graph’s connection to the Caucal-hierarchy [6], and Hague and Ong
determined the precise complexity of the global backwards reachability problem
for HOPA: for level k it is complete for DTIME(

⋃
d∈N

expk−1(nd)) [9].1

� The second author is supported by the DFG research project GELO. We both thank
M. Bojańczyk, Ch. Broadbent, and M. Lohrey for helpful discussions and comments.

1 We define exp0(n) := n and expk+1(n) := exp(expk(n)) for any natural number k.
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In the setting of classical pushdown automata it is well known that restrict-
ing the stack alphabet to one single symbol, i.e., reducing the pushdown storage
to a counter, often makes solving algorithmic problems easier. For instance,
control state reachability for pushdown automata is P-complete whereas it is
NSPACE(log(n))-complete for counter automata. Then again, results from
counter automata raise new insights to the pushdown case by providing algo-
rithmic lower bounds and important subclasses of accepted languages separating
different classes of complexity. In this paper we lift this idea to the higher-order
setting by investigating reachability problems for higher-order counter automata
(HOCA), i.e., HOPA over a one-element stack alphabet. Analogously to counter
automata, we introduce level k HOCA in two variants: with or without 0-tests.
Throughout this paper, we write k-HOCA− for the variant without 0-tests and
k-HOCA+ for the variant with 0-tests. Transferring our results’ constructions
back to HOPA will then allow to answer a recent open question [17,14].

To our knowledge, the only existing publication on HOCA is by Slaats [18].
She proved that (k + 1)-HOCA+ can simulate level k pushdown automata (ab-
breviated k-HOPA). In fact, even (k + 1)-HOCA− simulate k-HOPA. Slaats con-
jectured that L(k-HOCA+) � L(k-HOPA) where L(X) denotes the languages
accepted by automata of type X . We can confirm this conjecture by com-
bining the proof ideas of Engelfriet [7] with our main result on control-state
reachability for HOCA in Theorems 13 and 14: control state reachability on
k-HOCA+ is complete for DSPACE(

⋃
d∈N

expk−2(nd)) and control state reach-
ability on k-HOCA− is complete for DTIME(

⋃
d∈N

expk−2(nd)). These results
are obtained by adapting a proof strategy relying on reductions to bounded
space storage automata originally stated for HOPA by Engelfriet [7]. His main
tool are auxiliary SPACE(b(n)) P k automata where P k denotes the storage
type of a k-fold nested pushdown (see Section 2 for a precise definition). Such
a (two-way) automaton has an additional storage of type P k, and a Turing
machine worktape with space b(n). His main technical result shows a trade off
between the space bound b and the number of iterated pushdowns k. Roughly
speaking, exponentially more space allows to reduce the number of nestings of
pushdowns by one. Similarly, at the cost of another level of pushdown, one can
trade alternation against nondeterminism. Here, we also restate reachability on
k-HOCA+ as a membership problem on alternating auxiliary SPACE(expk−3(n))
Z+ automata (where Z+ is the new storage type of a counter with 0-test).
For our DSPACE(

⋃
d∈N

expk−2(nd))-hardness proof we provide a reduction of
DSPACE(

⋃
d∈N

exp(expk−3(nd))) to alternating auxiliary SPACE(expk−3(n))
Z+ automata that is inspired by Jancar and Sawa’s PSPACE-completeness
proof for the non-emptiness of alternating automata [11]. For containment we
adapt the proof of Engelfriet [7] and show that membership for alternating aux-
iliary SPACE(expk−3(n)) Z+ automata can be reduced to alternating reacha-
bility on counter automata of size expk−2(n), where n is the size of the original
input, which is known to be in DSPACE(

⋃
d∈N

expk−2(nd)) (cf. [8]).
For the case of k-HOCA− the hardness follows directly from the hardness of

reachability for level (k−1) pushdown automata and the fact that the latter can



530 A. Heußner and A. Kartzow

be simulated by k-HOCA−. For containment in DTIME(
⋃
d∈N

expk−2(nd)) the
mentioned machinery of Engelfriet reduces the problem to the case k = 2.

The proof that control-state reachability on 2-HOCA− is in P is implied by
Theorem 5 which proves a stronger result: both the global regular forward and
backward reachability problems for 2-HOCA− are P-complete. The backward
reachability problem asks, given a regular set C of configurations, for a (regular)
description of all configurations that allow to reach one in C. This set is typically
denoted as pre∗(C). Note that there is no canonical way of defining a regular set
of configurations of 2-HOCA−. We are aware of at least three possible notions:
regularity via 2-store automata [2], via sequences of pushdown-operations [4],
and via encoding in regular sets of trees. We stick to the latter, and use the
encoding of configurations as binary trees introduced in [12]: We call a set C of
configurations regular if the set of encodings of configurations {E(c) | c ∈ C} is
a regular set of trees (where E denotes the encoding function from [12]). Note
that the other two notions of regularity are both strictly weaker (with respect
to expressive power) than the notion of regularity we use here. Nevertheless, our
result does not carry over to these other notions of regularity as they admit more
succinct representations of certain sets of configurations. See [10] for details.

Besides computing pre∗(C) in polynomial time our algorithm also allows
to compute the reachable configurations post∗(C) in polynomial time. Thus,
2-HOCA− subsumes the well-known class of pushdown systems [1] while still
possessing the same good complexity with respect to reachability problems.

Due to the lack of space, detailed formal proofs are deferred to a long version
of this article [10].

2 Formal Model of Higher-Order Counters

2.1 Storage Types and Automata

An elegant way for defining HOCA and HOPA is the use of storage types and
operators on these (following [7]). For simplicity, we restrict ourselves to what
Engelfriet calls finitely encoded storage types.

Definition 1. For X some set, we call a function t : X → {true, false} an X-
test and a partial function f : X → X an X-operation.
A storage type is a tuple S = (X,T, F, x0) where X is the set of S-configurations,
x0 ∈ X the initial S-configuration, T a finite set of X-tests and F a finite set
of X-operations containing the identity on X, i.e., idX ∈ F .

Let us fix some finite alphabet Σ with a distinguished symbol ⊥ ∈ Σ. Let
PΣ = (X,T, F, x0) be the pushdown storage type where X = Σ+, x0 = ⊥,
T = {topσ | σ ∈ Σ} with topσ(w) = true if w ∈ Σ∗σ, and F = {pushσ | σ ∈ Σ}∪
{pop, id} with id = idX , pushσ(w) = wσ for all w ∈ X , and pop(wσ) = w for all
w ∈ Σ+ and σ ∈ Σ and pop(σ) undefined for all σ ∈ Σ. Hence, PΣ represents a
classical pushdown stack over the alphabet Σ. We write P for P{⊥,0,1}.
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We define the storage type counter without 0-test Z = P{⊥}, which is the
pushdown storage over a unary pushdown alphabet. We define the storage type
counter with 0-test Z+ exactly like Z but we add the test empty? to the set of
tests where empty?(x) = true if x = ⊥ (the plus in Z+ stands for “with 0-test”).
In other words, empty? returns false iff the operation pop is applicable.

Definition 2. For a storage type S = (X,T, F, x0) we define an S automaton
as a tuple A = (Q, q0, qf , Δ) where as usual Q is a finite set of states with initial
state q0 and final state qf and Δ is the transition relation. The difference to a
usual automaton is the definition of Δ by Δ = Q× {true, false}T ×Q× F .

For q ∈ Q and x ∈ X , a transition δ = (q, R, p, f) is applicable to the configura-
tion (q, x) if f(x) is defined and if for each test t ∈ T we have R(t) = t(x), i.e.,
the result of the storage-tests on the storage configuration x agree with the test
results required by the transition δ. If δ is applicable, application of δ leads to
the configuration (p, f(x)). The notions of a run, the accepted language, etc. are
now all defined as expected.

The Pushdown Operator We also consider PΣ as an operator on other storage
types as follows. Given a storage type S = (X,T, F, x0) let the storage type
pushdown of S be PΣ(S) = (X ′, T ′, F ′, x′0) where X ′ = (Σ × X)+, x′0 =
(⊥, x0), T ′ = {topσ | σ ∈ Σ}∪{test(t) | t ∈ T }, F ′ =

{
pushγ,f | γ ∈ Σ, f ∈ F

}
∪{

stayf | f ∈ F
}
∪ {pop}, and where for all x′ = β(σ, x), β ∈ (Σ ×X)∗, σ ∈ Σ,

x ∈ X it holds that
– topτ (x′) = (τ = σ),
– test(t)(x′) = t(x),
– pushτ,f(x′) = β(σ, x)(τ, f(x))

if f is defined on x (and undefined otherwise),
– stayf (x′) = β(σ, f(x))

if f is defined on x (and undefined otherwise), and
– pop(x′) = β if β is nonempty (and undefined otherwise).
Note that stayidX = idX′ whence F ′ contains the identity. As for storages, we
define the operator P to be the operator P{⊥,0,1}.

2.2 HOPA, HOCA, and Their Reachability Problems

We can define the iterative application of the operator P on some storage S
as follows: let P0(S) = S and Pk+1(S) = P(Pk(S)). A level k higher-order
pushdown automaton is a Pk−1(P) automaton. We abbreviate the class of all
these automata with k-HOPA. A level k higher-order counter automaton with
zero-test is a Pk−1(Z+) automaton and k-HOCA+ denotes the corresponding
class.2. Similarly, k-HOCA− denotes the class of level k higher-order counter
automata without zero-test which is the class of Pk−1(Z) automata. Obviously,

2 A priori our definition of k-HOCA+ results in a stronger automaton model than that
used by Slaats. In fact, both models are equivalent (cf. [10]).
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for any level k it holds that L(k-HOCA−) ⊆ L(k-HOCA+) ⊆ L(k-HOPA) where
L(X) denotes the languages accepted by automata of type X .

We next define the reachability problems which we study in this paper.

Definition 3. Given an S automaton and one of its control states q ∈ Q, then
the control state reachability problem asks whether there is a configuration (q, x)
that is reachable from (q0, x0) where x ∈ X is an arbitrary S-configuration.

Assuming a notion of regularity for sets of S configurations (and hence for sets of
configurations of S automata), we can also define a global variant of the control
state reachability problem.

Definition 4. Given an S automaton A and a regular set of configurations C,
the regular backwards reachability problem demands a description of the set of
configurations from which there is a path to some configuration c ∈ C.

Analogously, the regular forward reachability problem asks for a description of
the set of configurations reachable from a given regular set C. In the following
section, we consider the regular backwards (and forwards) reachability problem
for the class of 2-HOCA− only.

3 Regular Reachability for 2-HOCA−

The goal of this section is to prove the following theorem extending a known
result on regular reachability on pushdown systems to 2-HOCA−:

Theorem 5. Reg. backwards/forwards reachability on 2-HOCA− is P-complete.

3.1 Returns, Loops, and Control State Reachability

Proving Theorem 5 is based on the “returns-&-loops” construction for 2-HOPA
of [12]. As a first step, we consider the simpler case of control-state reachability:

Proposition 6. Control state reachability for 2-HOCA− is P-complete.

In [12] it has been shown that certain runs, so-called loops and returns, are the
building blocks of any run of a 2-HOPA in the sense that solving a reachability
problem amounts to deciding whether certain loops and returns exist. Here, we
analyse these notions more precisely in the context of 2-HOCA− in order to
derive a polynomial control state reachability algorithm. Using this algorithm
we can then also solve the regular backwards reachability problem efficiently.

For this section, we fix a P(Z)-automaton A = (Q, q0, F,Δ). Recall that the
P(Z)-configurations of A are elements of (Σ×{⊥}+)+. We identify ⊥m+1 with
the natural number m and the set of storage configurations with (Σ × N)+.

Definition 7. Let s ∈ (Σ × N)+, t ∈ Σ × N and q, q′ ∈ Q be states of A. A
return of A from (q, st) to (q′, s) is a run r from (q, st) to (q′, s) such that except
for the final configuration no configuration of r is in Q× {s}.

Let s ∈ (Σ × N)∗, t ∈ Σ × N. A loop of A from (q, st) to (q′, st) is a run r
from (q, st) to (q′, st) such that no configuration of r is in Q× {s}.
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One of the underlying reasons why control state reachability for pushdown sys-
tems can be efficiently solved is the fact that it is always possible to reach a
certain state without increasing the pushdown by more than polynomially many
elements. In the following, we prove an analogue of this fact for P(Z). For a
given configuration, if there is a return or loop starting in this configuration,
then this return or loop can be realised without increasing the (level 2) push-
down more than polynomially. This is due to the monotonic behaviour of Z:
given a Z configuration x, if we can apply a sequence ϕ of transitions to x then
we can apply ϕ to all bigger configurations, i.e., to any configuration of the form
pushn⊥(x). Note that this depends on the fact that Z contains only trivial tests
(the test top⊥ always returns true). In contrast, for Z+, if ϕ applies a couple
of pop operations and then tests for zero and performs a transition, then this is
not applicable to a bigger counter because the 0-test would now fail.

For a P(Z) configuration x = (σ1, n1)(σ2, n2) . . . (σm, nm), let |x| = m be its
height. Let r be some run starting in (q, x) for some q ∈ Q. The run r increases
the height by at most k if |x′| ≤ |x| + k for all configurations (q′, x′) of r.

Definition 8. Let s ∈ ({⊥} × N)+. We write retk(s) and lpk(s), resp., for the
set of pairs of initial and final control states of returns or loops starting in s and
increasing the height by at most k. We write ret∞(s) and lp∞(s),resp., for the
union of all retk(sw) or lpk(s).

The existence of a return (or loop) starting in sw (or s′w) (with s ∈ ({⊥} ×
N)+, s′ ∈ ({⊥}×N)∗ and w ∈ {⊥}×N) does not depend on the concrete choice
of s or s′. Thus, we also write retk(w) for retk(sw) and lpk(w) for lpk(s′w).

By induction on the length of a run, we first prove that P(Z) is monotone
in the following sense: let s ∈ (Σ × N)∗, t = (σ, n) ∈ Σ × N, q, q′ ∈ Q and r
a run starting in (q, st) and ending in state q′. If the topmost counter of each
configuration of r is at least m, then for each n′ ≥ n−m there is a run r′ starting
in (q, s(σ, n′)) and performing exactly the same transitions as r. In particular,
for all k ∈ N∪ {∞}, σ ∈ Σ and m1 ≤ m2 ∈ N, retk((σ,m1)) ⊆ retk((σ,m2)) and
lpk((σ,m1)) ⊆ lpk((σ,m2)).

We next show that the sequence (retk((σ,m)))m∈N stabilises at m = |Σ||Q|2.
From this we conclude that ret∞ = ret|Σ|2|Q|4 , i.e., in order to realise a return
with arbitrary fixed initial and final configuration, we do not have to increase
the height by more than |Σ|2|Q|4 (if there is such a return at all).

Lemma 9. For k ∈ N ∪ {∞}, σ ∈ Σ, m ≥ |Σ||Q|2, and m′ ≥ 2 · |Σ||Q|2, we
have retk((σ,m)) = retk((σ, |Σ||Q|2)) and lp∞((σ,m′)) = lp∞((σ, 2 · |Σ||Q|2)).

The proof uses the fact that we can find an m′ ≤ |Σ||Q|2 with retk((σ,m′)) =
retk(σ,m′ + 1) for all σ by the pigeonhole-principle. Using monotonicity of P(Z)
we conclude that retk(σ,m′) = retk(σ,m) for all m ≥ m′. A similar applica-
tion of the pigeonhole-principle shows that there is a k ≤ |Σ|2 · |Q|4 such that
retk((σ, i)) = retk+1((σ, i)) for all σ and all i ≤ |Σ||Q|2 (or equivalently for all
i ∈ N). By induction on k′ ≥ k we show that retk′ = retk because any subreturn
that increases the height by k + 1 can be replaced by a subreturn that only
increases the height by k. Thus, we obtain the following lemma.
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GeneratePDA(A,A):
Input: 2-HOCA− A = (Q, q0, Δ) over Σ, matrix A = (aσ,p,q)(σ,p,q)∈Σ×Q2 over N ∪ {∞}
Output: 1-HOPA A′ simulating A

1 k0 := |Σ|2 · |Q|4; h0 :=|Σ| · |Q2|; Δ′ := ∅
2 foreach δ ∈ Δ:
3 if δ == (q, (σ,⊥), staypop, p):
4 foreach i in {0, . . . , h0}: Δ′:=Δ′ ∪ {((q, σ),⊥i, pop, (p, σ)), ((q, σ), ,⊥∞, pop, (p, σ))}
5 elseif δ==(q, (σ,⊥), staypush⊥ , p)

6 Δ′:=Δ′ ∪ {((q, σ),⊥∞, push⊥∞ , (p, σ))} ∪ {((q, σ),⊥h0
, push⊥∞ , (p, σ))}

7 foreach i in {0, . . . , h0 − 1}}: Δ′ := Δ′ ∪ {((q, σ),⊥i, push⊥i+1
, (p, σ))}

8 elseif δ==(q, (σ,⊥), pushτ,id, p)

9 foreach r in Q such that aτ,p,r �= ∞:
10 foreach i in {aτ,p,r, aτ,p,r + 1, . . . , h0} ∪ {∞}: Δ′ := Δ′ ∪ {((q, σ),⊥i, id, (r, σ))

11 A′:=(Q ×Σ, (q0,⊥), Δ′)
12 return A′

Fig. 1. 2-HOCA− to 1-HOPA Reduction Algorithm

Lemma 10. For all i ∈ N and σ ∈ Σ, we have ret∞((σ, i)) = ret|Σ|2·|Q|4((σ, i))
and lp∞ = lp|Σ|2|Q|4+1.

We now can prove that control-state reachability on 2-HOCA− is P-complete.

Proof (of Proposition 6). Since 2-HOCA− can trivially simulate pushdown au-
tomata, hardness follows from the analogous hardness result for pushdown au-
tomata. Containment in P uses the following ideas:

1. We assume that the input (A, q) satisfies that q is reachable in A iff (q, (⊥, 0))
is reachable and that A only uses instructions of the forms pop, pushσ,id, and
stayf . Given any 2-HOCA− A′ and a state q, it is straightforward to construct
(in polynomial time) a 2-HOCA− A that satisfies this condition such that q
is reachable in A′ iff it is reachable in A.

2. Recall that ret∞(w) = retk0(w) for k0 = |Σ|2 · |Q|4 and for all w ∈ Σ×N. Set
h0 = |Σ| · |Q2|. We want to compute a table (aσ,p,q)σ,p,q∈Σ×Q2 with values
in {∞, 0, 1, 2, . . . , h0} such that aσ,p,q = min{i | (p, q) ∈ retk0((σ, i))} (where
we set min{∅} = ∞). Due to Lemmas 9 and 10 such a table represents ret∞
in the sense that (p, q) ∈ ret∞((σ, i)) iff i ≥ aσ,p,q.

3. With the help of the table (aσ,p,q)(σ,p,q)∈Σ×Q2 we compute in polynomial
time a P automaton A∞ which executes the same level 1 transitions as A and
simulates loops of A in the following sense: if there is a loop of A starting in
(q, (σ, i)) performing first a pushτ,id operation and then performing a return
with final state p, we allow A′ to perform an id-transition from (q, (σ, i))
to (p, (σ, i)). This new system basically keeps track of the height of the
pushdown up to h0 by using a pushdown alphabet {⊥0, . . . ,⊥h0,⊥∞} where
the topmost symbol of the pushdown is ⊥i iff the height of the pushdown
is i (where ∞ stands for values above h0). After this change of pushdown
alphabet, the additional id-transitions are easily computable from the table
(aσ,p,q)(σ,p,q)∈Σ×Q2 . The resulting system has size O(h20 · (|S| + 1)), i.e., is
polynomial in the original system A.

4. Using [1], check for reachability of q in the pushdown automaton A∞.
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ReachHOCA-(A, qf ):
Input: 2-HOCA− A = (Q, q0, Δ) over Σ, qf ∈ Q
Output: whether qf is reachable in A

1 k0 := |Σ|2 · |Q|4; h0 :=|Σ| · |Q2|;
2 foreach (σ, p, q) in Σ ×Q2: aσ,p,q := ∞
3 for k = 1, 2, . . . , k0:
4 Ak := GeneratePDA(A, (aσ,p,q)(σ,p,q)∈Σ×Q2 )
5 foreach (r, (τ,⊥), pop, q) in Δ and (σ, p) in Σ ×Q:
6 for i = h0, h0 − 1, . . . , 1, 0:
7 if ReachPDA (Ak, ((p, σ), i), (r, τ)): a′

σ,p,q := i

8 foreach (σ, p, q) in Σ ×Q2: aσ,p,q :=a′
σ,p,q

9 A∞ :=GeneratePDA(A, (aσ,p,q)(σ,p,q)∈Σ×Q2 )
10 if Reach(A∞, ((q0,⊥), 0), (qf ,⊥)): return true else return false

Fig. 2. Reachability on 2-HOCA− Algorithm 2

In fact, for step 2 we already use a variant of steps 3 and 4: we compute ret∞ =
ret|Σ|2|Q|4 by induction starting with ret0. If we remove all level 2 operations from
A and store the topmost level 2 stack-symbol in the control state we obtain a
pushdown automaton B such that (q, q′) ∈ ret0(σ, k) (w.r.t. A) iff there is a
transition (p, (σ,⊥), pop, q′) of A and the control state (p, σ) is reachable from
((p, σ), k) in B. Thus, the results of polynomially many reachability queries for
B determine the table for ret0. Similarly, we can use the table of reti to compute
the table of reti+1 as follows. A return extending the height of the pushdown by
i+ 1 decomposes into parts that do not increase the height at all and parts that
perform a pushτ,id followed by a return increasing the height by at most i. Using
the table for reti we can easily enrich B by id-transitions that simulate such
push operations followed by returns increasing the height by at most i. Again,
determining whether (q, q′) ∈ reti+1(σ, k) reduces to one reachability query on
this enriched B for each pop-transition of A.

With these ideas in mind, it is straightforward to check that algorithm
ReachHOCA- in Figure 2 (using algorithm GeneratePDA of Figure 1 as subroutine
for step 3) solves the reachability problem for 2-HOCA− (of the form described
in step 1) in polynomial time. In this algorithm, ReachPDA (A′, c, q) refers to
the classical polynomial time algorithm that determines whether in the (level 1)
pushdown automaton A′ state q is reachable when starting in configuration c;
a transition (q, (σ, τ), f, p) refers to a transition from state q to state p applying
operation f that is executable if the (level 2) test topσ and the (level 1) test
test(topτ ) both succeed. ��

3.2 Regular Reachability

In order to define regular sets of configurations, we recall the encoding of 2-HOPA
configurations as trees from [12]. Let p = (σ1, v1)(σ2, v2) . . . (σm, vm) ∈ P(Z).
If v1 = 0, we set pl = ∅ and pr = (σ2, v2) . . . (σm, vm). Otherwise, there is
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a maximal 1 ≤ j ≤ m such that v1, . . . , vj ≥ 1 and we set pl = (σ1, v1 −
1) . . . (σj , vj − 1) and pr = (σj+1, vj+1) . . . (σm, vm) if j < m and pr = ∅ if
j = m. The tree-encoding E of p is given as follows:

E(p) =

⎧⎪⎨⎪⎩
∅ if p = ∅
⊥(σ1,E(pr)) if p = (σ1, 0)pr

⊥(E(pl),E(pr)) otherwise, q

⊥

⊥

⊥

a

⊥

a

⊥

a

⊥

⊥

b

where ⊥(t1, t2) is the tree with root ⊥ whose left subtree is t1 and whose right
subtree is t2. For a configuration c = (q, p) we define E(c) to be the tree q(E(p), ∅).
The picture beside the definition of E shows the encoding of the configuration
(q, (a, 2)(a, 2)(a, 0)(b, 1)). Note that for each element (σ, i) of p, there is a path
to a leaf l which is labelled by σ such that the path to l contains i + 2 left
successors. Moreover, the inorder traversal of the tree induces an order of the
leaves which corresponds to the left-to-right order of the elements of p. We call
a set C of configurations regular if the set {E(c) | c ∈ C} is a regular set of trees.

E turns the reachability predicate on 2-HOCA− into a tree-automatic relation
[12], i.e., for a given 2-HOCA− A, there is a tree-automaton TA accepting the
convolution of E(c1) and E(c2) for 2-HOCA− configurations c1 and c2 iff there is
a run of A from c1 to c2. This allows to solve the regular backwards reachability
problem as follows. On input a 2-HOCA− and a tree automaton T recognising a
regular set C of configurations, we first compute the tree-automaton TA. Then
using a simple product construction of TA and T and projection, we obtain an
automaton Tpre which accepts pre∗(C) = {E(c) | ∃c′ ∈ C and a run from c to c′}.
The key issue for the complexity of this construction is the computation of TA
from A. The explicit construction of TA in [12] involves an exponential blow-up.
In this construction the blow-up is only caused by a part of TA that computes
ret∞(σ,m) for each σ ∈ Σ on input a path whose labels form the word ⊥m.
Thus, we can exhibit the following consequence.

Corollary 11 ([12]). Given a 2-HOCA− A with state set Q, we can compute
the tree automaton TA in P, if we can compute from A in P a deterministic
word automaton T ′ with state set Q′ ⊆

∏
σ∈Σ(2Q×Q)2 such that for all m ∈ N

the state of T ′ on input ⊥m is (ret∞(σ,m), lp∞(σ,m))σ∈Σ.

Thus, the following lemma completes the proof of Theorem 5.

Lemma 12. Let A be a 2-HOCA− with state set Q. We can compute in poly-
nomial time a deterministic finite word automaton A′ with state set Q′ of size
at most 2 · (|Σ| · |Q|2 + 1) such that A′ is in state (ret∞((σ, n)), lp∞((σ, n)))σ∈Σ
after reading ⊥n for every n ∈ N.

Proof. Let n0 = 2 · |Σ| · |Q|2. Recall algorithm ReachHOCA- of Figure 2. In this
polynomial time algorithm we computed a matrix A = (aσ,p,q)(σ,p,q)∈Σ×Q2 rep-
resenting ret∞ and a pushdown automaton A∞ (of level 1) simulating A in the
sense that A∞ reaches a configuration ((q, σ)p) for a pushdown p of height n if
and only if A reaches (q, (σ, n)). It is sufficient to describe a polynomial time
algorithm that computes Mi = (ret∞((σ, n)), lp∞((σ, n)))σ∈Σ for all n ≤ n0. A′
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is then the automaton with state set {Mi | i ≤ n0}, transitions from Mi to
Mi+1 for each i < n0 and a transition from Mn0 to Mn0 . The correctness of this
construction follows from Lemma 9.

Let us now describe how to compute Mi in polynomial time. Since A∞ simu-
lates A correctly, there is a loop from (q, (σ, i)) to (q′, (σ, i)) of A if and only if
there is a run of A∞ from ((q, σ), pi) to ((q′, σ), pi) for pi = ⊥0⊥1 . . .⊥i (where
we identify ⊥j with ⊥∞ for all j > h0). Thus, we can compute the loop part of
Mi by n0 many calls to an algorithm for reachability on pushdown systems. Note
that (p, q) ∈ ret∞((σ, i)) with respect to A if there is a state r and some τ ∈ Σ
such that (r, τ, pop, q) is a transition of A and (r, τ) is reachable in A∞ from
((q, σ), i). Thus, with a loop over all transitions of A we reduce the computation
of the returns component of Mi to polynomially many control state reachability
problems on a pushdown system. ��

4 Reachability for k-HOCA− and k-HOCA+

Using slight adaptations of Engelfriet’s seminal paper [7], we can lift the result
on reachability for 2-HOCA− to reachability for k-HOCA− (cf. [10]).

Theorem 13. For k ≥ 2, the control state reachability problem for k-HOCA− is
complete for DTIME(

⋃
d∈N

expk−2(nd)). For k ≥ 1, the alternating control state
reachability problem for k-HOCA− is complete for DTIME(

⋃
d∈N

expk−1(nd)).

Hardness follows from the hardness of control state reachability for (k− 1)-HOPA
[7] and the trivial fact that the storage type Pk−1 of (k− 1)-HOPA can be triv-
ially simulated by the storage type Pk−1(Z) of k-HOCA−. Containment for the
first claim is proved by induction on k (the base case k = 2 has been proved
in the previous section). For k ≥ 3, we use Lemma 7.11, Theorems 2.2 and 2.4
from [7] and reduce reachability of k-HOCA− to reachability on (exponentially
bigger) (k− 1)-HOCA−. For the second claim, we adapt Engelfriet’s Lemma 7.11
to a version for the setting of alternating automata (instead of nondeterminis-
tic automata) and use his Theorems 2.2. and 2.4 in order to show equivalence
(up to logspace reductions) of alternating reachability for (k− 1)-HOCA− and
reachability for k-HOCA−.

We can also reduce reachability for k-HOCA+ to reachability for (k−1)-fold ex-
ponentially bigger 1-HOCA+. Completeness for NSPACE(log(n)) of reachabil-
ity for 1-HOCA+ (cf. [8]) yields the upper bounds for reachability for k-HOCA+.
The corresponding lower bounds follow by applications of Engelfriet’s theorems
and an adaptation of the PSPACE-hardness proof for emptiness of alternating
finite automata by Jancar and Sawa [11].

Theorem 14. For k ≥ 2, (alternating) control state reachability for k-HOCA+

is complete for (DSPACE(
⋃
d∈N

expk−1(nd))) DSPACE(
⋃
d∈N

expk−2(nd)).
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5 Back to HOPS: Applications to Languages

Engelfriet [7] also discovered a close connection between the complexity of the
control state reachability problem for a class of automata and the class of lan-
guages recognised by this class. We restate a slight extension (cf. [10]) of these
results and use them to confirm Slaat’s conjecture from [18].

Proposition 15. Let S1 and S2 be storage types and C1, C2 complexity classes
such that C1 � C2. If control state reachability for nondeterministic Si automata
is complete for Ci, then there is a deterministic S2 automaton accepting some
language L such that no nondeterministic S1-automaton accepts L.

In fact, Engelfriet’s proof can be used to derive a separating language. For a
storage type S = (X,T, F, x0), we define the language of valid storage sequences
VAL(S) as follows. For each test t ∈ T and r ∈ {true, false} we set tr :=
id�{x∈X|t(x)=r} and set Σ = F ∪ {tr | t ∈ T, r ∈ {true, false}}. For s ∈ Σ∗

such that s = a1 . . . an, and x ∈ X we write s(x) for an(an−1(. . . a1(x) . . . )). We
define VAL(S) = {s ∈ Σ∗ |s(x0) is defined} .

If the previous proposition separates the languages of S2 automata from those
of S1 automata, then it follows from the proof that VAL(S2) is not accepted by
any S1 automato (cf. [10]).

Corollary 16. If DTIME(
⋃
d∈N

expk(nd)) � DSPACE(
⋃
d∈N

expk(nd)) �
DTIME(

⋃
d∈N

expk+1(nd)), then L((k− 1)-HOPA) � L(k-HOCA−) �
L(k-HOCA+) � L(k-HOPA).

The crucial underlying construction detail of the proof of Proposition 15 is quite
hidden within the details of Engelfriet’s technical and long paper. Its useful-
ness in other contexts — e.g., for higher-order pushdowns or counters — has
been overseen so far. Here we give another application to collapsible push-
down automata: reachability for collapsible pushdown automata of level k is
DSPACE(expk−1(n))-complete (cf. [3]). Thus, Proposition 15 trivially shows
that the language of valid level (k + 1) collapsible pushdown storage sequences
separates the collapsible pushdown languages of level k+1 from those of level k.
This answers a question asked by several experts in this field (cf. [17,14]). In
fact, [17] uses a long and technical construction to prove the weaker result that
there are more level 2k collapsible pushdown languages than level k collapsible
pushdown languages. From Proposition 15 one also easily derives the level-by-
level strictness of the collapsible pushdown tree hierarchy and the collapsible
pushdown graph hierarchy (cf. [13,14]).

6 Future Work

Our result on regular reachability gives hope that also complexity results on
model checking for logics like the μ-calculus extend from pushdown automata
to 2-HOCA. 2-HOCA− probably is a generalisation of pushdown automata that
retains the good complexity results for basic algorithmic questions. It is also
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interesting whether the result on regular reachability extends to the different
notions of regularity for k-HOCA mentioned in the introduction. HOCA also can
be seen as a new formalism in the context of register machines as currently used
in the verification of concurrent systems. HOCA allow to store pushdown-like
structures of register values and positive results on model checking HOCA could
be transferred to verification questions in this concurrent setting.
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Abstract. Polynomial-time many-one reductions provide the standard
notion of completeness for complexity classes. However, as first expli-
cated by Berman and Hartmanis in their work on the isomorphism
conjecture, all natural complete problems are actually complete under re-
ductions with stronger properties. We study the length-increasing prop-
erty and show under various computational hardness assumptions that
all PSPACE-complete problems are complete via length-increasing re-
ductions that are computable with a small amount of nonuniform advice.

If there is a problem in PSPACE that requires exponential time, then
polynomial size advice suffices to give li-reductions to all PSPACE-
complete sets. Under the stronger assumption that linear space requires
exponential-size NP-oracle circuits, we reduce the advice to logarithmic
size. Our proofs make use of pseudorandom generators, hardness versus
randomness tradeoffs, andworst-case to average-case hardness reductions.

Keywords: computational complexity, completeness, length-increasing
reductions, PSPACE.

1 Introduction

Completeness is arguably the single most important notion in computational
complexity theory. Many natural problems that arise in practice turn out be
complete for appropriate complexity classes. Informally, a set A is complete for a
class C if A belongs to C and every set from C “polynomial-time reduces” to A. In
his seminal paper, Cook [Coo71] used Turing reductions to define completeness.
However, Karp [Kar72] used a much more restrictive notion, many-one reduc-
tions, to define completeness. Since then polynomial-time many-one reductions
have been considered as the most natural reductions to define completeness.

It has been observed that most problems remain complete under more strin-
gent notions of reducibility. Perhaps the most restrictive notion of a polynomial-
time reduction is that of isomorphic reduction. Two sets A andB are p-isomorphic
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if there exists a polynomial-time computable, one-one, onto, and polynomial-
time invertible reduction from A to B. Berman and Hartmanis [BH77] observed
that all known natural NP-complete sets are indeed p-isomorphic and this led to
their famous “isomorphism conjecture”—all NP-complete sets are p-isomorphic
to SAT. Berman and Hartmanis characterized isomorphism in terms of one-
one, length-increasing reductions. They showed that two sets A and B are p-
isomorphic if they are reducible to each other via one-one, polynomial-time in-
vertible length-increasing reductions. We write “li-reduction” as an abbreviation
for “length-increasing reduction.” Thus the isomorphism conjecture is equiva-
lent to the following statement: All NP-complete sets are complete via one-one,
polynomial-time invertible li-reductions.

Though the original isomorphism conjecture concerns the class NP, a similar
conjecture can be formulated for classes such as E, NE, and PSPACE. In spite
of many years of research we do not have concrete evidence for or against the
isomorphism conjecture for any complexity class. This has led researchers to
ask weaker questions such as: Do complete sets for a class remain complete
under one-one reductions? Do complete sets for a class remain complete under
li-reductions? Even these weaker questions are not completely resolved and we
only know of some partial answers.

Berman [Ber77] showed that all complete sets for E are complete under one-
one, li-reductions. Ganesan and Homer [GH92] showed that all NE-complete sets
are complete under one-one reductions. For quite sometime, there had been no
progress on NP and the first major result for NP is due to Agrawal [Agr02].
He showed that if one-way permutations exist, then all NP-complete sets are
complete via one-one, P/poly-computable li-reductions. Since then there have
been several results of this nature. Hitchcock and Pavan [HP07] showed that
if NP does not have p-measure zero, then all NP-complete sets are complete
via P/poly li-reductions. Buhrman, Hescott, Homer, and Torenvliet [BHHT10]
improved this result to show that under the same hypothesis, NP-complete sets
are complete via li-reductions that use a logarithmic amount of advice. Next,
Agrawal and Watanabe [AW09] showed that if regular one-way functions ex-
ist, then NP-complete sets are complete via one-one, P/poly li-reductions. Most
recently, Gu, Hitchcock, and Pavan [GHP12] showed that if NP contains a lan-

guage that requires time 2n
Ω(1)

at almost all lengths, then NP-complete sets are
complete via P/poly li-reductions. All of the known results till date concern the
complexity classes NP, E, and NE.

In this paper, we consider the question of whether PSPACE-complete sets are
complete via li-reductions. It should be noted that the proofs of many of the
aforementioned results go through if one replaces NP with PSPACE. For ex-
ample, Agrawal’s proof shows that if one-way permutations exist, then all com-
plete sets for PSPACE are complete via, one-one, P/poly li-reductions. Similarly,
Hitchcock and Pavan’s proof shows that if PSPACE does not have p-measure
zero, then PSPACE-complete sets are complete via P/poly li-reductions. How-
ever, Gu, Hitchcock, and Pavan’s proof does not go through if one replaces NP
with PSPACE.



542 J.M. Hitchcock and A. Pavan

In this paper we establish new results regarding PSPACE-complete sets. Us-
ing ideas from [GHP12], we first give evidence that PSPACE-complete sets are
complete via non uniform, li-reductions. Our first main result is the following.

Theorem I. If PSPACE contains a language that requires 2n
ε

time at almost
all lengths, then PSPACE-complete sets are complete via li-reductions that use
a polynomial amount of advice.

We note that the hypothesis used in this result is a worst-case hardness hy-
pothesis (as opposed to average-case or almost-everywhere hardness hypotheses
used in the works of [Agr02, HP07, BHHT10]). Next we address the question
of whether we can eliminate or reduce the amount of nonuniformity used. We
establish two sets of results. Our first result on this shows that nonuniformity in
the reductions can be traded for nondetermisnism. We show that if NP contains a
language that requires 2n

Ω(1)

time at almost all lengths, then PSPACE-complete
sets are complete via strong nondeterministic (SNP) li-reductions.

Next we show that using stronger hypotheses the amount of nonuniformity
can be reduced. Our second main contribution is the following.

Theorem II. If there is a language in linear space that requires exponential size
NP-oracle circuits, then PSPACE-complete sets are complete via li-reductions
that use a logarithmic amount of advice.

The proof of this theorem is nonstandard. All known proofs that establish length-
increasing completeness are of the following form: Say A is a complete language
and we wish to prove that it is complete via li-reductions. All known proofs
first define an intermediate language S and show that a standard complete lan-
guage (such as SAT or K) length-increasing reduces to S, and there is a length-
increasing reduction from S to A. We note that this approach may not work
for our case (see the discussion after the statement of Theorem 3.4). Our proof
proceeds by constructing two intermediate languages S1 and S2. We show both
S1 and S2 length-increasing reduce to A. Our final length-increasing reduction
from K to A goes via S1 on some strings, and via S2 on other strings. We use
tools from pseudorandomness and hardness amplification to establish this result.

The following table compares some of the main results of this paper.

class hardness assumption li-reduction type

PSPACE 2n
Ω(1)

time P/poly

NP 2n
Ω(1)

time SNP

LINSPACE 2Ω(n) NP-oracle circuits P/ log

PSPACE 2n
Ω(1)

circuits P/ log

E 2Ω(n) NP-oracle circuits

The interpretation of a line in the table is that if the class (or pair of classes for
the last line) satisfies the hardness assumption, then PSPACE-complete sets are
complete under li-reductions of the stated type.
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2 Preliminaries

Let H be a class of length bound functions mapping N → N. A function f :
Σ∗ → Σ∗ is P/H-computable if there exist a polynomial-time computable g :
Σ∗ × Σ∗ → Σ∗ and an l(n) ∈ H so that for every n, there is an advice string
an ∈ Σ≤l(n) such that for all x ∈ Σn, f(x) = g(x, an). We will use the length
bound classes poly = {l : l(n) = nO(1)} and log = {l : l(n) = O(log n)}.

Given a language L, L=n denotes the set of strings of length n that belong
to L. For a language L, we denote the characteristic function of L with L itself.
That is, L(x) is 1 if x ∈ L, otherwise L(x) equals 0. Given two languages A and
B, we say that A and B are infinitely often equivalent, A =io B, if for infinitely
many n, A=n = B=n. Given a complexity class C, we define ioC as

ioC = {A | ∃B ∈ C, A =io B}.

In this paper we will use strong nondeterministic reductions [AM77]. A lan-
guage A is SNP-reducible to a language B if there is a polynomial-time bounded
nondeterministic machine M such that for every x the following holds:

– Every path of M(x) outputs a string y or outputs a special symbol ⊥. Dif-
ferent paths of M(x) may output different strings.

– If a path outputs a string y, then x ∈ A ⇔ y ∈ B.

We say that an SNP reduction is length-increasing if the length of every output
(excluding ⊥) is greater than the length of the input.

For a Boolean function f : Σn → Σ, CC(f) is the smallest number s such that
there is circuit of size s that computes f , and CCNP(f) is the smallest number
s such that there is a size s, NP-oracle circuit that computes f . The Boolean
function f is (s, ε)-hard if for every circuit of size at most s, Prx∈Σn [C(x) �=
f(x)] ≥ ε.

Definition 2.1. A pseudorandom generator (PRG) family is a collection of
functions G = {Gn : Σm(n) → Σn} such that Gn is uniformly computable
in time 2O(m(n)) and for every circuit of C of size O(n),∣∣∣∣ Pr

x∈Σn
[C(x) = 1] − Pr

y∈{0,1}m(n)
[C(Gn(y)) = 1

∣∣∣∣ ≤ 1

n
.

A pseudorandom generator is secure against NP-oracle circuits if the above state-
ment holds when the circuits have access to an NP-oracle.

There are many results that show that the existence of hard functions in expo-
nential time implies PRGs exist. We will use the following.

Theorem 2.2 ([KvM02]). If there is a language A in E and an ε > 0 such
that CCNP(An) ≥ 2εn for all sufficiently large n, then there is a constant k and a
PRG family G = {Gn : Σk logn → Σn} that is secure against NP-oracle circuits.
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3 PSPACE-Complete Sets

We will first prove that if PSPACE contains a worst-case hard language, then
PSPACE-complete sets are complete via P/poly li-reductions. We will use ideas
from [GHP12]. As noted before, the proof of the analogous result in [GHP12]
does not go through if we replace NP with PSPACE. This is because that proof
uses the fact that NP contains complete languages that are disjunctively self-
reducible. Since every disjunctively self-reducible language is in NP, we cannot
hope that PSPACE has a disjunctively self-reducible complete set unless NP
equals PSPACE. To get around this problem, we will use the fact that PSPACE
is closed under complementation.

Theorem 3.1. If there is language L in PSPACE that is not in ioDTIME(2n
ε

)
for some ε > 0, then all PSPACE-complete sets are complete via P/poly li-
reductions.

Proof. Let A be a PSPACE-complete set that can be decided in time 2n
k

, and
let K be the standard PSPACE-complete set that can be decided in time 2cn,
for some constants k and c. We define the following intermediate language S,
where δ = ε

ck .

S =
{
〈x, y〉

∣∣ |y| = |x|δ, L(x) ⊕K(y) = 1
}

Since S is in PSPACE, there is a many-one reduction f from S to A.
Let

Tn =
{
x ∈ Σn

∣∣∣ x ∈ L, ∀y ∈ Σnδ

, |f(〈x, y〉)| > nδ
}
.

We will first show that Tn is not an empty set.

Lemma 3.2. For all but finitely many n, Tn �= ∅.

Proof. Suppose there exist infinitely many n for which Tn = ∅. We will exhibit
an algorithm that decides L correctly in time 2n

ε

for every n at which Tn = ∅.
Consider the following algorithm for L.

1. Input x, |x| = n.
2. Cycle through all y of length nδ and find a y such that |f(〈x, y〉)| ≤ nδ. If

no such y is found reject x.
3. Suppose such a y is found. Compute K(y) and A(f(〈x, y〉)).
4. Accept x if and only if A(f(〈x, y〉)) ⊕K(y) = 1.

Consider a length n at which Tn = ∅. Let x be an input of length n. We first
consider the case when the above algorithm finds a y in Step 2. Since f is
many-one reduction from S to A, we have L(x) ⊕ K(y) = A(f(〈x, y〉)). Thus
L(x) = K(y)⊕A(f(〈x, y〉)). Therefore the algorithm is correct in this case. Now
consider the case when the algorithm does not find a y. Since Tn = ∅, for every
x (of length n) in L, it must be the case that the length of f(〈x, y〉) is at most
nδ for some y of length nδ. Thus if the algorithm does not find a y in Step 2,
then it must be the case that x /∈ L. In this case, the algorithm correctly rejects
x. Therefore the algorithm is correct on all strings of length n.
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The time taken find a y in Step 2 is bounded by 22n
δ

. The time taken to

compute K(y) is 2cn
δ

. The time taken to compute A(f(〈x, y〉) is at most 2m
k

,
where m = |f(〈x, y〉)|. Since the length of f(〈x, y〉) is at most nδ and δ = ε/ck,
the total time taken by the above algorithm is bounded by 2n

ε

.
Thus if Tn = ∅ for infinitely many n, then L is in ioDTIME(2n

ε

) and this
contradicts the hardness of L. �

We will now describe the P/poly many-one reduction from K to A. Let zn be
the lexicographically smallest string from Tn. It exists because of the previous
lemma. On input y of length nδ, the reduction outputs f(〈zn, y〉). Since zn ∈ L,
y ∈ K if and only if 〈zn, y〉 is in S. Since f is a many-one reduction from S to
A, this is a many-one reduction from K to A. By the definition of zn, we have
that the length of f(〈zn, y〉) is bigger than nδ. Since y is of length nδ, this is
a li-reduction from K to A. The advice for the reduction is zn. Thus, this is a
P/poly reduction. �

Theorem 3.3. If there is language L in NP that is not in ioDTIME(2n
ε

) for
some ε > 0, then all PSPACE-complete sets are complete via SNP li-reductions.

The proof of Theorem 3.3 uses the same setup as Theorem 3.1. Consider S and
Tn as before. We have that Tn is not empty for all but finitely many lengths.
The reduction will use nondeterminism to find string in Tn. Let y be an input of
length nδ. Nondeterministically guess a string z of length n and verify that such
that z is in L and |f(〈z, y〉)| > nδ. If the verification is successful, then output
f(〈z, y〉). Otherwise, output ⊥. Since Tn is not empty, there exist at least one
path that guesses a z from Tn and on this path the reduction is correct. Note
that any path that fails to guess a z ∈ Tn will output ⊥. Thus there is no path
on which the reduction outputs a wrong answer. Thus S is SNP-complete via
li-reductions.

We now show how to reduce the number of advice bits from polynomial to
logarithmic with a stronger hypothesis. We will show that if the worst-case NP-
oracle circuit complexity of LINSPACE is 2Ω(n), then PSPACE-complete sets
are complete via li-reductions that are P/ log-computable. We will first assume
that PSPACE has a language that is hard on average, and then use a known
worst-case to average-case connection for PSPACE.

Theorem 3.4. Suppose there is a language L in LINSPACE such that for every
n, L is (2εn, 3/8)-hard for NP-oracle circuits, then PSPACE-complete sets are
complete via P/ log li-reductions.

Before we present the proof, we will mention the idea behind the proof. Our
goal is to proceed as in the proof of Theorem 3.1. Consider Tn—in the proof of
Theorem 3.1, we have shown that Tn is not empty. Suppose, we could show a
stronger claim and establish that Tn contains many (say > 3/4 fraction) strings.
Then a randomly chosen string will be a good advice with high probability. If
LINSPACE is hard on average, then E is also hard on average and pseudorandom
generators exist. Thus we can derandomize the process of “randomly picking a
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string from Tn” and instead generate a small list of strings such that at least
one string from this list belongs to Tn. Now, a small advices suffices to identify
the good string from Tn.

However, this idea does not work for two reasons. Note that every string in
Tn must be in L. Since L is in PSPACE, this places Tn in PSPACE. We would
like to derandomize the process of “randomly picking a string from a language in
PSPACE.” For this to work, we need a pseudorandom generator that is secure
against PSPACE-oracle circuits. For this, we need a language that is hard for
PSPACE-oracle circuits. However, the hard language L that is guaranteed by
our hypothesis is in linear space, and thus cannot be hard for PSPACE. The
second reason is that it is not clear that Tn will contain a 3/4 fraction of strings
from Σn. Since L is hard on average for circuits, L contains roughly 1/2-fraction
of strings from Σn (at every length n). Since Tn is a subset of L, we cannot hope
that the size of Tn will be bigger than 3

42n.
We overcome these difficulties by considering two intermediate sets S1 and S2

instead of one intermediate set S. Say f and g are many-one reductions from
S1 and S2 to the complete set A. Then we define Tn as the set of all strings x
from Σn such that for every y, the length of f(〈x, y〉) and g(〈x, y〉) are both large
enough. This will place Tn in coNP and we can pseudorandomly pick strings from
Tn provided we have a pseudorandom generator that is secure against NP-oracle
circuits. Depending on the string that we picked, we will either use reduction f
or reduction g. Now, we present the details.

Proof. Let A be a PSPACE-complete language that can be decided in time 2n
k

,
and let K be the standard complete language for PSPACE. Observe that K
can be decided in time 2cn for some constant c > 0. Let δ = ε/k. Consider the
following two languages

S1 =
{
〈x, y〉

∣∣∣ K(x) ⊕ L(y) = 1, |x| =
ε

2c
|y|

}
,

S2 =
{
〈x, y〉

∣∣∣ K(x) ⊕ L(y) = 0, |x| =
ε

2c
|y|

}
.

Both languages are in PSPACE, thus there is a many-one reduction f from S1 to
A and many-one reduction g from S2 to A. We first show that these reductions
must be honest for most strings.

Claim 3.5. Under our hardness assumption of L, there is a polynomial time
algorithm A such that for all but finitely many m, A(1m) outputs polynomially
many strings y1, y2, · · · yt of length n = 2cn

ε , such that for some yi 1 ≤ i ≤ t, and
for every x ∈ {0, 1}m, the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ.

Assuming that Claim 3.5 holds, we complete the proof of the theorem. We will
describe a honest reduction h from K to A. Given a length m, let y1, · · · , yt be
the strings output by the algorithm A. By the lemma, there is yi such that for
every x the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ. The reduction
gets i and L(yi) as advice. Note that the length is the advice is O(logm).



Length-Increasing Reductions for PSPACE-Completeness 547

Let x be a string of length m. The reduction first computes the list y1, · · · , yt.
If the L(yi) = 0, then h(x) = f(〈x, yi〉), else h(x) = g(〈x, yi〉).

Thus h is P/O(logn) computable. If yi /∈ L, then x ∈ K if and only if
〈x, yi〉 ∈ S1. Similarly if yi ∈ L, then x ∈ K if and only if 〈x, yi〉 ∈ S2. Since f is
a reduction from S1 to A and g is a reduction S2 to A, h is a valid reduction from
K to A. Since the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are at least nδ, h is an
honest reduction from K to A. Since K is paddable, there is a length-increasing
P/O(logn)-reduction from K to A. This, together with the forthcoming proofs
of Claims 3.6 and 3.5, complete the proof of Theorem 3.4. �

To prove Claim 3.5, we need the following result.

Claim 3.6. Let

Tn =
{
y ∈ {0, 1}n

∣∣ ∀x ∈ {0, 1} εn
2c , |f(〈x, y〉)| ≥ nδ, and |g(〈x, y〉)| ≥ nδ

}
.

For all but finitely many n, |Tn| ≥ 3
42n.

Proof. Suppose not. There exist infinitely many n for which Tn has at most 3
42n

strings. We will show that this implies L must be not be average-case hard at
infinitely many lengths. Consider the following algorithm for L.

1. Input y, |y| = n.
2. Cycle through all strings of length εn

2c to find a string x such that at least
one of f(〈x, y〉) or g(〈x, y〉) has length less than nδ.

3. If no such string is found output ⊥.
4. If |f(〈x, y〉)| ≤ nδ, then output A(f(〈x, y〉)) ⊕K(x).
5. If |g(〈x, y〉)| ≤ nδ, then output A(g(〈x, y〉)) ⊕K(x).

Consider a length n for which the cardinality of Tn is less than 3
42n. We will first

show that the above algorithm correctly solves L on 1/4 fraction of strings from
{0, 1}n.

A string y does not belong to Tn, if there is a string x of length εn
2c such that

at least one of the strings f(〈x, y〉) or g(〈x, y〉) has length less than nδ. For all
such string y the above algorithm halts in either Step 4 or in Step 5. It is clear
that the decision made by the algorithm in these steps is correct. Thus if y /∈ Tn,
then the above algorithm correctly decide the membership of y in L. Since the
size of Tn is at most 3

42n for many strings, the above algorithm correctly decides
L on at least 1/4 fraction of strings at length n.

The running time of the above algorithm can be bounded as follows. It takes
2

nε
2c time to search for x. Computing K(x) takes at most 2

nε
2 time. If |f(〈x, y〉)| <

nδ, computing A(f(〈x, y〉)) takes at most 2n
ε

time. Thus Step 4 take at most
O(2

εn
2 ) time. Similarly Step 5 also takes at most O(2

εn
2 ) time. Thus the running

time of the above algorithm is bounded by O(2
εn
2 ).

Observe that the above algorithm never errs. On any string y it either outputs
⊥ or correctly decides L, and for at least 1/4 fraction of the strings the algorithm
does not output ⊥. By providing one bit of advice, we can make the algorithm
to correctly decide L on at least 5/8 fraction of inputs from Σn.
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We can convert this modified algorithm into a family of circuits of size at
most 2εn. If the size of Tn is less than 3

42n for infinitely many n, then this circuit
family correctly computes L on at least 5/8 fraction of strings from {0, 1}n for
infinitely many n. This contradicts the hardness of L. �

Now we return to the proof of Claim 3.5.

Proof of Claim 3.5. In the following we fix m and so n. Recall that n = 2cm
ε .

There is a polynomial p such that the computation of both f and g on strings of
form 〈x, y〉, |y| = n, |x| = m is bounded by p(n). Let r = p2(n). Since LINSPACE
is hard on average for 2εn-size NP-oracle circuits, and LINSPACE ⊆ E, by
Theorem 2.2 there is a PRG family Gr that maps d log r bits to r bits. The
algorithm A on input 1m behaves as follows: For each d log r bit string u compute
Gr(u) and output its n-bit prefix. This generates at most rd strings. Since r is
a polynomial in m, the number of strings output are polynomial in m.

We have to show that there exists a string yi from the output of A(1m) such
that for every x ∈ {0, 1}m, the lengths of both f(〈x, yi〉) and g(〈x, yi〉) are bigger
than nδ. Suppose not. Consider the following algorithm B that has SAT as oracle.

Given a string of length r as input, let y be its n-bit prefix. By making queries
to the SAT find if there is a string x of length m such that one of f(〈x, y〉) or
g(〈x, y〉) have length less than nδ. If no such x is found accept, else reject.

This algorithm runs in time p(n), and so can be converted into a circuit C of
size at most r. By our assumption,

Pr
z∈{0,1}d log r

[C(Gr(z)) = 1] = 0

However, by Claim 3.6
Pr

z∈{0,1}r
[C(z) = 1] ≥ 3/4

This contradicts the fact that G is a pseudorandom generator against NP-oracle
circuits. � Claim 3.5

We can weaken the average-case hardness assumption in the above theorem to a
worst-case hardness assumption. It is known that if LINSPACE requires 2εn-size
NP-circuits at every length, there is a language in LINSPACE that is (2ε

′n, 3/8)
hard for NP-oracle circuits at all lengths of the form t2 [IW97, KvM02]. The proof
of Theorem 3.4 requires average-case hardness of a language L at all lengths.
However, the proof can be easily modified to work even when the language is
average-case hard only at lengths of the form t2. Thus we have the following
theorem.

Theorem 3.7. Suppose there is a language L in LINSPACE such that for every
n, the worst-case NP-oracle circuit complexity of L is 2εn. Then all PSPACE-
complete sets are complete via P/ log li-reductions.

We conclude with an improvement of Theorem 3.7. Consider the proof of Theo-
rem 3.4. The hardness assumption “LINSPACE is (2εn, 3/8) hard for NP-oracle
circuits” is used at two places. First in the proof of Claim 3.6. Note that the proof
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of this lemma only needs a weaker assumption, namely “PSPACE is (2εn, 3/8)
hard for circuits.” By a very slight modification of the proof, we can further
weaken the hypothesis needed to establish Claim 3.6. Consider the following
definitions of S1 and S2.

S1 =

{
〈x, y〉

∣∣∣∣ K(x) ⊕ L(y) = 1, |x| =
|y|ε
2c

}
,

S2 =

{
〈x, y〉

∣∣∣∣ K(x) ⊕ L(y) = 0, |x| =
|y|ε
2c

}
.

We define Tn as

Tn =
{
y ∈ {0, 1}n

∣∣∣ ∀x ∈ {0, 1}nε

2c , |f(〈x, y〉)| ≥ nδ, and |g(〈x, y〉)| ≥ nδ
}
.

With this definition of S1, S2, and Tn, the proof proceeds exactly as before,
except that to establish Claim 3.6, we only need that “PSPACE is (2n

ε

, 3/8)
hard for circuits”. Again, it is known that if PSPACE is does not have 2n

ε

-size
circuits, then PSPACE is (2n

ε

, 3/8)-hard for circuits.
The second place where the hardness of LINSPACE is used is in the proof

of Claim 3.5. Note that the proof of this claim goes through if we merely have
the assumption “E has a language with 2εn-size NP-oracle circuit complexity”.
These observations yield the following improvement.

Theorem 3.8. Suppose there is a language L in PSPACE such that for every
n, the worst-case circuit complexity of L is 2n

ε

for some ε > 0. Further assume
that E has a language whose worst-case NP-oracle circuit complexity is 2δn for
some δ > 0. All PSPACE-complete sets are complete via P/ log li-reductions.
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Abstract. A graph is H-free if it does not contain an induced subgraph
isomorphic to H . We denote by Pk the path on k vertices. In this paper,
we prove that 4-COLORING is NP-complete for P7-free graphs, and
that 5-COLORING is NP-complete for P6-free graphs. The second result
is the first NP-completeness shown for any k-COLORING of P6-free
graphs. These two results improve two previously best results and almost
complete the classification of complexity of k-COLORING Pt-free graphs
for k ≥ 4 and t ≥ 1, leaving as the only missing case 4-COLORING P6-
free graphs. Our NP-completeness results use a general framework, which
we show is not sufficient to prove the NP-completeness of 4-COLORING
P6-free graphs. We expect that 4-COLORING is polynomial solvable for
P6-free graphs.

1 Introduction

We consider computational complexity issues related to vertex coloring problems
restricted to Pk-free graphs. It is well known that the usual k-COLORING prob-
lem is NP-complete for any fixed k ≥ 3. Therefore, there has been considerable
interest in studying its complexity when restricted to certain graph classes. One
of the most remarkable results in this respect is that k-COLORING is polyno-
mially solvable for perfect graphs. More information on this classical result and
related work on coloring problems restricted to graph classes can be found in
several surveys, e.g, [24, 25].

We continue the study of k-COLORING problem for Pt-free graphs. This
problem has been given wide attention in recent years and much progress has
been made through substantial efforts by different groups of researchers [4–6, 9,
13, 16, 19–21, 23, 26]. We summarize these results and explain our new results
below.

We refer to [3] for standard graph theory terminology and [11] for terminology
on computational complexity. Let G = (V,E) be a graph and H be a set of
graphs. We say that G is H-free if G does not contain any graph H ∈ H as
an induced subgraph. In particular, if H = {H} or H = {H1, H2} , we simply
say that G is H-free or (H1, H2)-free. Given any positive integer t, let Pt and
Ct be the path and cycle on t vertices, respectively. A linear forest is a disjoint
union of paths. We denote by G+H the disjoint union of two graphs G and H .

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 551–558, 2013.
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We denote the complement of G by Ḡ. The neighborhood of a vertex x in G is
denoted by NG(x), or simply N(x) if the context is clear. The girth of a graph
G is the length of the shortest cycle.

A k-coloring of a graph G = (V,E) is a mapping φ : V → {1, 2, . . . , k}
such that φ(u) �= φ(v) whenever uv ∈ E. The value φ(u) is usually referred to
as the color of u under φ. We say G is k-colorable if G has a k-coloring. The
problem k-COLORING asks if an input graph admits an k-coloring. The k-LIST
COLORING problem asks if an input graph G with lists L(v) ⊆ {1, 2, . . . , k},
v ∈ V (G), has a coloring φ that respects the lists, i.e., φ(v) ∈ L(v) for each
v ∈ V (G).

In the pre-coloring extension of k-coloring we assume that (a possible empty)
subset W ⊆ V of G is pre-colored with φW : W → {1, 2, . . . , k} and the question
is whether we can extend φW to a k-coloring of G. We denote the problem of
pre-coloring extension of k-coloring by k-PrExt . Note that k-COLORING is a
special case of k-PrExt, which in turn is a special case of k-LIST COLORING.

Kamiński and Lozin [19] showed that, for any fixed k ≥ 3, the k-COLORING
problem is NP-complete for the class of graphs of girth at least g for any fixed
g ≥ 3. Their result has the following immediate consequence.

Theorem 1 ([19]). For any k ≥ 3, the k-COLORING problem is NP-complete
for the class of H-free graphs whenever H contains a cycle.

Holyer [17] showed that 3-COLORING is NP-complete for line graphs. Later,
Leven and Galil [22] extended this result by showing that k-COLORING is also
NP-complete for line graphs for k ≥ 4. Because line graphs are claw-free, these
two results together have the following consequence.

Theorem 2 ([17, 22]). For any k ≥ 3, the k-COLORING problem is NP-
complete for the class of H-free graphs whenever H is a forest with a vertex of
degree at least 3.

Due to Theorems 1 and 2, only the case in which H is a linear forest remains. In
this paper we focus on the case where H is a path. The k-COLORING problem
is trivial for Pt-free graphs when t ≤ 3. The first non-trivial case is P4-free
graphs. It is well known that P4-free graphs (also called cographs) are perfect
and therefore can be colored optimally in polynomial time by Grötschel et al.
[15]. Alternatively, one can color cographs using the cotree representation of a
cograph, see, e.g., [24]. Hoàng et al. [16] developed an elegant recursive algorithm
showing that the k-COLORING problem can be solved in polynomial time for
P5-free graphs for any fixed k.

Woeginger and Sgall [26] proved that 5-COLORING is NP-complete for P8-
free graphs and 4-COLORING is NP-complete for P12-free graphs. Later, Le
et al. [21] proved that 4-COLORING is NP-complete for P9-free graphs. The
sharpest results so far are due to Broersma et al. [4, 6].

Theorem 3 ([6]). 4-COLORING is NP-complete for P8-free graphs and 4-
PrExt is NP-complete for P7-free graphs.
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Theorem 4 ([4]). 6-COLORING is NP-complete for P7-free graphs and 5-
PrExt is NP-complete for P6-free graphs.

In this paper we strengthen these NP-completeness results. We prove that 5-
COLORING is NP-complete for P6-free graphs and that 4-COLORING is NP-
complete for P7-free graphs. We shall develop a novel general framework of
reduction and prove both results simultaneously in Section 2. This leaves the
k-COLORING problem for Pt-free graphs unsolved only for k = 4 and t = 6, ex-
cept for 3-COLORING. (The complexity status of 3-COLORING Pt-free graphs
for t ≥ 7 is open. It is even unknown whether there exists a fixed integer t ≥ 7
such that 3-COLORING Pt-free graphs is NP-complete.) We shall explain that
our use of the reduction framework is tight in the sense that the framework is
not sufficient to prove the NP-completeness of 4-COLORING for P6-free graphs.
Finally, we give some related remarks in Section 3.

2 The NP-Completeness Results

We begin this section by pointing out an error in the proof of NP-completeness
of 6-COLORING P7-free graphs [4]. In this paragraph we follow the notation
of Broersma et al. [4]. They used a reduction from 3-SAT to the problem of
6-COLORING for P7-free graphs. In [4], the authors constructed a graph GI for
an arbitrary instance I of 3-SAT in such a way that I is satisfiable if and only if
GI is 6-colorable. Furthermore, they claimed that GI is P7-free. Unfortunately,
the last claim is not true in general. Here is one counterexample. Suppose I is
an instance of 3-SAT which contains only one clause C1 = x1 ∨ x̄2 ∨ x3. Then
x̄1y1b11d1b13y3x̄3 is an induced P7 in the graph GI from [4].

Next we shall prove our main results.

Theorem 5. 5-COLORING is NP-complete for P6-free graphs.

Theorem 6. 4-COLORING is NP-complete for P7-free graphs.

Instead of giving two independent proofs for Theorems 5 and 6, we provide a
unified framework. The chromatic number of a graph G, denoted by χ(G), is
the minimum positive integer k such that G is k-colorable. The clique number
of a graph G, denoted by ω(G), is the maximum size of a clique in G. A graph
G is called k-critical if χ(G) = k and χ(G − v) < k for any vertex v in G. We
call a k-critical graph G nice if G contains three independent vertices {c1, c2, c3}
such that ω(G − {c1, c2, c3}) = ω(G) = k − 1. We point out that nice critical
graphs do exist. For instance, any odd cycle of length at least 7 with any its
three independent vertices is a nice 3-critical graph.

Let I be any 3-SAT instance with variables X = {x1, x2, . . . , xn} and clauses
C = {C1, C2, . . . , Cm}, and let H be a nice k-critical graph with three specified
independent vertices {c1, c2, c3}. We construct the graph GI as follows.

• Introduce for each variable xi a variable component Ti which is isomorphic
to K2, labeled by xix̄i. Call these vertices X-type.
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• Introduce for each variable xi a vertex di. Call these vertices D-type.
• Introduce for each clause Cj = yi1 ∨ yi2 ∨ yi3 a clause component Hj which

is isomorphic to H , where yit is either xit or x̄it . Denoted three specified inde-
pendent vertices in Hj by citj for t = 1, 2, 3. Call citj C-type and all remaining
vertices U -type.

For any C-type vertex cij we call xi or x̄i its corresponding literal vertex, de-
pending on whether xi ∈ Cj or x̄i ∈ Cj .

• Connect each U -type vertex to each D-type and each X-type vertices.
• Connect each C-type vertex cij to di and its corresponding literal vertex.

Lemma 1. Let H be a nice k-critical graph. Suppose GI is the graph constructed
from H and a 3-SAT instance I. Then I is satisfiable if and only if GI is (k+1)-
colorable.

Proof. We first assume that I is satisfiable and let σ be a truth assignment
satisfying each clause Cj . Then we define a mapping φ : V (G) → {1, 2, . . . , k+1}
as follows.

• Let φ(di) := k + 1 for each i.
• If σ(xi) is TRUE, then φ(xi) := k + 1 and φ(x̄i) := k. Otherwise, let

φ(xi) =: k and φ(x̄i) =: k + 1.
• Let Cj = yi1 ∨ yi2 ∨ yi3 be any clause in I. Since σ satisfies Cj , at least

one literal in Cj , say yit (t ∈ {1, 2, 3}), is TRUE. Then the corresponding literal
vertex of citj receives the same color as dit . Therefore, we are allowed to color
citj with color k. In other words, we let φ(citj) := k.

• Since Hj = H is k-critical,Hj−citj has a (k−1)-coloring φj : V (Hj−citj) →
{1, 2, . . . , k − 1}. Let φ =: φj on Hj − citj .

It is easy to check that φ is indeed a (k + 1)-coloring of GI .
Conversely, suppose φ is a (k + 1)-coloring of GI . Since H1 = H is a nice

k-critical graph, the largest clique of U -type vertices in H1 has size k−1. Let R1

be such a clique. Note that ω(GI) = k+1 and R = R1∪T1 is a clique of size k+1.
Therefore, any two vertices in R receive different colors in any (k + 1)-coloring
of GI . Without loss of generality, we may assume {φ(x1), φ(x̄1)} = {k, k + 1}.
Because every U -type vertex is adjacent to every X-type and D-type vertex, we
have the following three properties of φ.

(P1) {φ(xi), φ(x̄i)} = {k, k + 1} for each i.
(P2) φ(di) ∈ {k, k + 1} for each i.
(P3) φ(u) ∈ {1, 2, . . . , k − 1} for each U -type vertex.

Next we construct a truth assignment σ as follows.
• Set σ(xi) to be TRUE if φ(xi) = φ(di) and FALSE otherwise.

It follows from (P1) and (P2) that σ is a truth assignment. Suppose σ does not
satisfy Cj = yi1 ∨ yi2 ∨ yi3 . Equivalently, σ(yit) is FALSE for each t = 1, 2, 3.
It follows from our definition of σ that the corresponding literal vertex of citj
receives a different color from the color of dit under φ. Hence, φ(citj) /∈ {k, k+1}
for t = 1, 2, 3 and this implies that φ is a (k − 1)-coloring of Hj = H by (P3).
This contradicts the fact that χ(H) = k. ��



Improved Complexity Results on k-Coloring Pt-Free Graphs 555

Lemma 2. Let H be a nice k-critical graph. Suppose GI is the graph constructed
from H and a 3-SAT instance I. If H is Pt-free where t ≥ 6, then GI is Pt-free
as well.

Proof. Suppose P = Pt is an induced path with t ≥ 6 in GI . We first prove the
following claim.

Claim A. P contains no U -type vertex.

Proof of Claim A. Suppose that u is a U -type vertex on P that lies in some
clause component Hj . For any vertex x on P we denote by x− and x+ the left
and right neighbor of x on P , respectively. Let us first consider the case when u
is the left endvertex of P . If u+ belongs to Hj , then P ⊆ Hj , since u is adjacent
to all X-type and D-type vertices and P is induced. This contradicts the fact
that H is Pt-free. Hence, u+ is either X-type or D-type. Note that u++ must
be C-type or U -type. In the former case we conclude that u+++ is U -type since
C-type vertices are independent. Hence, |P | ≤ 3 and this is a contradiction. In
the latter case we have |P | ≤ 4 for the same reason. Note that |P | = 4 only if
P follows the pattern U(X ∪D)UC, namely the first vertex of P is U -type, the
second vertex of P is X-type or D-type, and so on. Next we consider the case
that u has two neighbors on P .

Case 1. Both u− and u+ belong to Hj . In this case P ⊆ Hj and this contradicts
the fact that H = Hj is Pt-free.

Case 2. u− ∈ Hj but u+ /∈ Hj . Then u+ is either X-type or D-type. Since each
U -type vertex is adjacent to each X-type and D-type vertex, u− is a C-type
vertex and hence it is an endvertex of P . Now |P | ≤ 2 + 4 − 1 = 5.

Case 3. Neither u− nor u+ belongs to Hj . Now both u− and u+ are X-type or
D-type. Since each U -type vertex is adjacent to each X-type and D-type vertex,
P ∩ U = {u} and P ∩ (X ∪D) = {u−, u+}. Hence, |P | ≤ 5. (|P | = 5 only if P
follows the pattern C(X ∪D)U(X ∪D)C). ��
Let Ci (resp. C̄i) be the set of C-type vertices that connect to xi (resp. x̄i).
Let Gi = G[{Ti ∪ {di} ∪ Ci ∪ C̄i}]. Note that G − U is disjoint union of Gi,
i = 1, 2, . . . , n. By Claim A, P ⊆ Gi for some i. Let P ′ be a sub-path of P of order
6 . Since Ci ∪ C̄i is independent, |P ′ ∩ (Ci ∪ C̄i)| ≤ 3. Hence, |P ′ ∩ (Ci ∪ C̄i)| = 3
and thus {di, xi, x̄i} ⊆ P ′. This contradicts the fact that P ′ is induced since di
has three C-type neighbors on P ′. ��

Due to Lemmas 1 and 2, the following theorem follows.

Theorem 7. Let t ≥ 6 be an fixed integer. Then k-COLORING is NP-complete
for Pt-free graphs whenever there exists a Pt-free nice (k− 1)-critical graph. ��

Proof of Theorems 5 and 6. Let H1 be the graph shown in Fig. 1 and let H2 = C7

be the 7-cycle. It is easy to check that H1 is a P6-free nice 4-critical graph and
that H2 is a P7-free nice 3-critical graph. Applying Theorem 7 with H = Hi

(i = 1, 2) will complete our proof. ��
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Fig. 1. H1

We remark that Theorem 7 is not sufficient to prove the NP-completeness of
4-COLORING P6-free graphs. In fact, there is no P6-free nice 3-critical graph.
Suppose H is P6-free nice 3-critical graphs with {c1, c2, c3} being independent.
Since the only 3-critical graphs are odd cycles and H is P6-free, H must be C5.
But this contradicts the fact that C5 contains at most two independent vertices.

3 Concluding Remarks

We have proved that 4-COLORING is NP-complete for P7-free graphs, and that
5-COLORING is NP-complete for P6-free graphs. These two results improve
Theorems 3 and 4 obtained by Broersma et al. [4, 6]. We have used a reduction
from 3-SAT and establish a general framework. The construction and the proof
are simpler than those in previous papers. As pointed out above, however, they
do not apply to 4-COLORING P6-free graphs.

For graph H with at most five vertices, Golovach et al. [12] completed the di-
chotomy classification for 4-COLORING H-free graphs. The classification states
that 4-COLORING is polynomially solvable for H-free graphs when H is a lin-
ear forest and is NP-complete otherwise. Note that linear forests on at most five
vertices are all induced subgraph of P6. Thus, all the polynomial cases from [12]
are for subclasses of P6-free graphs.

These results suggest the following conjecture.

Conjecture 1. 4-COLORING can be solved in polynomial time for P6-free graphs.

Golovach et al. [14] showed that 4-LIST COLORING is NP-complete for P6-
free graphs. So far, there is no jump in complexity known for any value of t for
the problems k-COLORING and its variants k-PrExt and k-LIST COLORING
restricted to Pt-free graphs. If Conjecture 1 were true, then this would give a
different picture.

In [18] we also prove that 4-COLORING (P6, C4)-free graphs is solvable in
polynomial time. This also follows from a more general result of Golovach, Paus-
lusma and Song who proved that for all fixed integers k, t, r, s, the k-COLORING
problem can be solved in polynomial time on (Kr,s, Pt)-free graphs. This result
will appear in the journal version of the conference paper Golovach et al. [13].



Improved Complexity Results on k-Coloring Pt-Free Graphs 557

Its proof follows from a recent result of Atminas et al. [1] who proved that for
any given integer r and t there exists an integer q(r, t) such that if a graph G
has treewidth at least q(r, t), then it either contains an induced Pt or a Kr,r

as a (not necessarily induced) subgraph. By an algorithm of Bodlaender [2] one
can test in linear time if the treewidth of a graph G is at most q(r, t). If so,
we can solve k-COLORING by using a theorem of Courcelle et al. [8]. Other-
wise, assuming that G is (Kr,s, Pt)-free, G must have a large balanced complete
bipartite graph B as a subgraph. Applying Ramsey theorem on both partition
classes of B then yields that G is not k-colorable. This produces a linear time
algorithm for k-COLORING (Kr,s, Pt)-free graphs; however the constants due
to tree decompositions and Ramsey’s theorem are huge, and our algorithm from
[18] which runs in O(n5) time may be more practical for up to a fairly large
input size n.

This also suggests a new research direction, namely classifying the complexity
of k-COLORING (Pt, Cl)-free graphs for every integer combination of k, l and
t. Since k-COLORING is NP-complete for Pt-free graphs for even small k and
t, say Theorems 5 and 6, it would be nice to know whether or not forbidding
short induced cycles makes problem easier. As pointed out above, forbidding C4

does make problem easier. In contrast, one recent result of Golovach et al. [13]
showed that 4-COLORING is NP-complete for (P164, C3)-free graphs.
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Abstract The Ramsey degree of an ordinal α is the least number n
such that any colouring of the edges of the complete graph on α using
finitely many colours contains an n-chromatic clique of order type α.
The Ramsey degree exists for any ordinal α < ωω. We provide an ex-
plicit expression for computing the Ramsey degree given α. We further
establish a version of this result for automatic structures. In this ver-
sion the ordinal and the colouring are presentable by finite automata
and the clique is additionally required to be regular. The corresponding
automatic Ramsey degree turns out to be greater than the set theoretic
Ramsey degree. Finally, we demonstrate that a version for computable
structures fails.

1 Introduction

The (countably) infinite Ramsey’s theorem states that any edge colouring of
a countably infinite complete graph admits a complete monochromatic infinite
clique. If we arrange the nodes in this graph into a well-ordering of order type ω,
Ramsey’s theorem guarantees the existence of a subordering of order type ω
such that all pairs of its elements have the same colour. More specifically, by a
standard partition of a set A we mean a partition of all 2-element subsets (or
edges) of A into a finite number k of classes, where k ≥ 1. A homogeneous set
with respect to a standard partition of A is a subset B ⊆ A such that all edges of
B belong to one class of the partition. If α and β are ordinals, one writes α → (β)
for the fact that whenever (A;≤) has order type α, any standard partition of
A admits a homogeneous subset B such that the suborder (B;≤� B) has order
type β. Ramsey’s theorem can thus be stated as ω → (ω).

A question then arises as to whether one can extend the above statement
to larger ordinals. Erdős and Rado gave a negative answer to this question for
countable ordinals: For any countable well-ordering L there is a partition of
edges of L such that any infinite homogeneous subset of L has order type ω [6].
Hence for any countable ordinal α, α �→ (ω + 1). This result is the start of a
vast amount of works on the partition relations of ordinals, which has become a
central notion of combinatorial set theory [5].

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 559–570, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



560 M. Huschenbett and J. Liu

Since the 1970s, there has been another well-established extension to the Ram-
sey’s theorem. The goal is to investigate the effective content of the homogeneous
sets in computable standard partitions. Recall that a structure is computable
if its domain as well as its atomic functions and predicates are decidable by
Turing machines. Specker showed that the original statement in Ramsey’s the-
orem cannot be made effective: there exists a computable standard partition
of a computable copy of ω such that no infinite homogeneous set is comput-
able [17]. Jockusch then showed that the infinite homogeneous sets of standard
partitions of ω do not even necessarily belong to Σ2. On the other hand, infinite
homogeneous sets are guaranteed to exist in Π2 [8].

More recently, attention has been given to automatic structures. These are
structures that are defined in a similar way as computable structures except
the “Turing machines” in the definition is replaced by “finite automata”. Hence
automatic structures form a subclass of computable structures. A main line of
research in the study of automatic structures is to understand automaticity in
classical theorems. Here, as opposed to computable structures for which numer-
ous classical results (such as Kőnig’s lemma and Ramsey’s theorem) fail in the
computable case, the automatic counterparts of these theorems hold. For ex-
ample, Rubin proved that in any automatic standard partition of an infinite
regular language there exists necessarily homogeneous sets that are recognis-
able by finite automata [15]. This result suggests that it makes sense to build a
Ramsey theory on automatic ordinals.

We mention here that a standard partition can be viewed as a colouring function
that maps the set of edges to a finite number of colours. The homogeneous sets
mentioned above are thus “monochromatic”. In this paper we consider colour-
ings that consist of more than two colours and “
-chromatic” subsets for some
bounded number 
, that is, subsets whose edges are coloured by no more than 

colours. It is natural to ask the following: Let α be an ordinal.

1. Is there a number 
 ∈ N such that any edge colouring of α contains an

-chromatic subset of order type α?

2. If such a number 
 in the above question exists, how large must it be?

We call the least number 
 that satisfies the first question the Ramsey degree of
the ordinal α. Williams in [19, Theorem 7.2.7] showed that the Ramsey degree
exists for any ordinal ωn where n ∈ N. Here we further provide a formula for
computing the Ramsey degree of an arbitrary α < ωω; see Theorem 3.3.

We then explore the same questions as above restricting to copies of ordin-
als and colourings that are finite-automata presentable, and regular 
-chromatic
sets. For any ordinal α < ωω, we show that the corresponding automatic Ram-
sey degree exists for α and give an explicit expression for computing it. The
automatic Ramsey degree of α turns out to be strictly greater than its Ramsey
degree if ω2 ≤ α < ωω. A by-product of our investigation is a similar result
on automatic complete bipartite graphs, where each bipartition is an ordinal.
Finally we briefly present a negative answer to the computable version of the
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above questions: For any k ≥ 1, there is a computable edge colouring of the nat-
ural numbers using k + 1 colours that does not admit any infinite k-chromatic
computably enumerable subsets.

Related works. The notion of Ramsey degrees used here has appeared in different
forms in the literature. The paper [18] contains several results discussing similar
notions. The result that motivated our study is F. Galvin’s unpublished theorem
on rationals: For any edge colouring of η, the order type of rationals, there must
be a 2-chromatic sub-copy of η [7]. Pouzet and Sauer obtained a very similar
result on the random graphs [12]. See [11] for an introduction on the automatic
version of Ramsey’s theorem.

Paper organisation. Section 2 introduces necessary background in Ramsey the-
ory and automatic structure. Section 3 and Section 4 discusses Ramsey degrees
in the general case and the automatic case respectively. Section 5 presents the
computable case. Finally Section 6 discusses open problems.

2 Preliminaries

Throughout the whole paper, N denotes the natural numbers 1, 2, 3, . . . and N0

denotes N ∪ {0}. We use the interval notation [i, j] for the set {i, i+ 1, . . . , j}.

Well-orderings and ordinals. A well-ordering is a linear ordering (V ;≤V ) with
no infinite descending chains. For details on basic notions and results on well-
orderings and ordinals the reader is referred to [14]. We view sets also as well-
ordered sets, i.e., a set V also denotes a well-ordering (V,≤V ). By “V has order
type α” we mean “(V ;≤V ) has order type α”. By U +V we mean the sum of the
well-orderings (U ;≤U ) + (V ;≤V ). If U ⊆ V then we assume the ordering on U
is the same as the ordering on V restricted to U .

Let n ≥ 0. We view Nn as a well-ordered set using the order defined by
(x0, . . . , xn−1) <Nn (y0, . . . , yn−1) if there is an i ∈ [0, n − 1] with xi �= yi and
the least such i satisfies xi < yi. Then Nn has order type ωn and is regarded as
the canonical representation of ωn. As we consider no other orders on Nn besides
≤Nn , we usually omit the subscript Nn from ≤Nn .

It is well-known that any ordinal α < ωω can be uniquely written in its Cantor
normal form α = ωn1 + ωn2 + · · ·+ωnr with r ≥ 0 and n1 ≥ n2 ≥ · · · ≥ nr ≥ 0.

Finite automata and semigroups. We assume some familiarity with the basic
concepts of (algebraic) automata theory (cf. [4]). Let Σ be an alphabet. (Non-
deterministic) finite automata (over Σ) and their languages are defined as usual.

A semigroup is a set S equipped with an associative binary multiplication. Ex-
amples include the set Σ∗ with concatenation and the direct product of finitely
many semigroups. A (semigroup) morphism is a map between two semigroups
which preserves multiplication. The Myhill-Nerode theorem states that a lan-
guage L ⊆ Σ∗ is regular if, and only if, there is a morphism h : Σ∗ → S into a
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finite semigroup S which recognises L, i.e., L = h−1(T ) for some T ⊆ S. This
theorem is effective in both directions, i.e., one can compute a morphism recog-
nising L from a finite automaton recognising L and vice versa. For any finite
number L1, . . . , Ln ⊆ Σ∗ of regular languages there exists a morphism into a
finite semigroup which simultaneously recognises all the Li.

An element s ∈ S of a semigroup S is idempotent if s2 = s. An idempotency
exponent of S is a number K ≥ 1 such that sK is idempotent for all s ∈ S.
Whenever S is finite, any multiple of |S|! is an idempotency exponent of S.

Automatic structures. To recognise n-ary relations onΣ∗, we use finite automata
which synchronously process n input tapes in parallel. Formally, let 6 �∈ Σ be an
additional padding symbol and Σ = Σ ∪ {6}. The convolution of a tuple ū =
(u0, . . . , un−1) ∈ (Σ∗)n is the word ⊗ū ∈ (Σn

 )∗ of length max{|u0|, . . . , |un−1|}
whose kth symbol is (σ0, . . . , σn−1), where σi is the kth symbol of ui if k ≤ |ui|,
and 6 otherwise. An n-ary relation R ⊆ (Σ∗)n is automatic if its convolution
⊗R = {⊗ū | ū ∈ R } is a regular subset of (Σn

 )∗.
A relational structure A = (A;R1, . . . , Rk) consists of a set A, its domain, and

relations R1, . . . , Rk on A. A structure A is automatic if A is a regular language
(over some alphabet Σ) and the relations Ri are automatic. In this situation, an
automatic presentation of A is a tuple of finite automata recognising A and the
⊗Ri, respectively. We denote by AUT the class of all automatic structures, which
actually includes all regular languages. The main motivation for investigating
automatic structures is the decidability of their first-order theories (cf. [9,1]).

Theorem 2.1 (Khoussainov, Nerode [9]). Every first-order definable rela-
tion R on an automatic structure A is automatic and one can compute a finite
automaton recognising R from an automatic presentation of A and a first-order
formula defining R. In particular, the first-order theory of A is decidable.

A well-ordering A is automatic in the sense above if A is a regular language and
≤A an automatic relation. Automatic well-orderings are a well studied subject.

Theorem 2.2 (Delhommé [3]). There is an automatic well-ordering of type
α if, and only if, α < ωω.

Theorem 2.3 (Khoussainov et. al [10]). Given an automatic presentation
of a well-ordering, one can compute the Cantor normal form of its order type.

3 Ramsey Relations and Ramsey Degrees

3.1 Ordinal Ramsey Relation

We use [V ]2 to denote the set of all 2-element subsets of a set V . For convenience
we view [V ]2 as the irreflexive and symmetrical relation { (x, y) ∈ V 2 | x �= y }. It
is customary to view standard partitions as colourings, which is the notion we ad-
opt in this paper. Let α be an ordinal. An α-colouring is a function C : [V ]2 → Q
where V is a set of order type α and Q is a finite set of colours. When α is clear
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from context we simply call C a colouring (on V ). Let X ⊆ V . We use C(X) to
denote the set {C(A) | A ∈ [X ]2 }. Let D ⊆ Q. The set X is D-chromatic w.r.t.
C if C(X) ⊆ D. In this case, we also say that X is |D|-chromatic.

Let α, β be two ordinals, k ∈ N, and 
 ∈ N0. The ordinal Ramsey relation is
written as α→ (β)k, and denotes the fact that any α-colouring C : [V ]2 → [1, k]
admits an 
-chromatic subset X ⊆ V of order type β. We are interested in the
Ramsey degrees of ordinals, which is defined below.

Definition 3.1. Let α < ωω be an ordinal. The least 
 ∈ N0 such that α → (α)k,
for all k ∈ N is called the Ramsey degree of α and denoted by dR(α).

The countably infinite case of Ramsey’s theorem states that dR(ω) = 1 [13].
Williams in his book [19, Theorem 7.2.7] proved the following result, which
extends Ramsey’s theorem to ordinals ωn where n ∈ N.

Theorem 3.2 ([19, Theorem 7.2.7]). For any n ∈ N there is an 
 ∈ N0 such
that

∀k ∈ N : ωn → (ωn)k, .

The proof of Theorem 3.2 from [19] does not provide us the value of dR(ωn),
which is presented in the following theorem.

Theorem 3.3. For all ordinals α < ωω, we have

dR(α) =
∑

1≤i≤r

∑
1≤j≤ni

(
2j − 1

j

)
+

∑
1≤i<j≤r

(
ni + nj
ni

)
,

where α = ωn1 + · · · + ωnr with r ≥ 0 and n1 ≥ · · · ≥ nr ≥ 0 is the Cantor
normal form of α.

Let C be a class of colourings and D a class of sets. We write

(α : C) → (β : D)k,

if any α-colouring C : [V ]2 → [1, k] in C admits an 
-chromatic set X ⊆ V of
order type β such that X ∈ D. We say that a colouring C : [A]2 → Q is automatic
if the well-ordering A is automatic and the relation C−1(q) is automatic for each
q ∈ Q. The following is an automatic version of Ramsey’s theorem.

Theorem 3.4 (Rubin [15]). Let k ∈ N be a number. We have

(ω : AUT) → (ω : AUT)k,1 .

This theorem is effective in the following sense: Given an automatic presenta-
tion of an ω-colouring on A, one can compute a finite automaton recognising a
monochromatic, regular set X ⊆ A of order type ω. A main goal of the paper is
to extend Theorem 3.4 by presenting an automatic version of Theorem 3.3.
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3.2 Bipartite Ordinal Ramsey Relation

As part of our investigation we also introduce a bipartite analogue of the Ramsey
relation on ordinals. Let α and β be ordinals. A bipartite (α, β)-colouring is a
function C : U × V → Q where U and V have respectively order types α and
β and Q is a finite set of colours. When α and β are clear we simply call C a
bipartite colouring (on (U, V )).

Let C : U × V → Q be a bipartite colouring. We write (X,Y ) ⊆ (U, V ) to
denote the fact that X ⊆ U and Y ⊆ V . Let 
 ∈ N0. A pair (X,Y ) ⊆ (U, V ) is

-chromatic w.r.t. C if |C(X × Y )| ≤ 
. We say that the pair (X,Y ) has order
type (γ, δ) if X and Y have order type γ and δ, respectively.

Let α, β, γ, δ be ordinals, k ∈ N, and 
 ∈ N0. The bipartite ordinal Ramsey
relation is written as (α, β) → (γ, δ)k, and denotes the fact that any (α, β)-
colouring C : U×V → [1, k] admits an 
-chromatic pair (X,Y ) ⊆ (U, V ) of order
type (γ, δ). The finite version of Ramsey theory on complete bipartite graphs
has been well studied; see [2] for example. Here we study the bipartite ordinal
Ramsey relation when the ordinals involved are ωn where n ∈ N. We define
bipartite Ramsey degrees as follows.

Definition 3.5. Let m,n ≥ 0. The least 
 ∈ N such that (ωm, ωn) → (ωm, ωn)k,
for all k ∈ N is called the Ramsey degree of (ωm, ωn) and denoted by dR(ωm, ωn).

The next theorem presents the value of the Ramsey degree in the bipartite case.

Theorem 3.6. For all m,n ≥ 0, we have

dR(ωm, ωn) =

(
m+ n

m

)
.

In the following we generalise the above notion to specific classes of bipartite
colourings. Let C be a class of colourings and D a class of sets. We write

(α, β : C) → (γ, δ : D)k,

for the fact that any (α, β)-colouring C : U × V → [1, k] in C admits an 
-chroma-
tic pair of sets (X,Y ) ⊆ (U, V ) of order type (γ, δ) and X,Y ∈ D.

4 The Automatic Case

In this section, we investigate an automatic analogue of the Ramsey degree from
the previous section. The highlight is Theorem 4.7 which states that this degree
exists for each ordinal α < ωω and provides a formula to compute its value.

Definition 4.1. Let α < ωω be an ordinal. If there exists an 
 ∈ N0 such that
(α : AUT) → (α : AUT)k, for all k ∈ N, the least such 
 is called the automatic
Ramsey degree of α and denoted by dR,AUT(α).

Similarly, we define the automatic (bipartite) Ramsey degree dR,AUT(α, β) for
ordinals α, β < ωω.
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4.1 Automatic Well-Orderings of Type ωn

Our main tool in the investigation of the automatic Ramsey degree is The-
orem 4.2 below which roughly states that every automatic well-ordering of type
ωn contains a simple automatic subordering of the same order type.

We call a map f : Nn → Σ∗ presentable if there are u0, . . . , un−1, un ∈ Σ∗ and
v0, . . . , vn−1 ∈ Σ+ such that

f(x0, . . . , xn−1) = u0v
x0−1
0 u1v

x1−1
1 · · ·un−1v

xn−1−1
n−1 un

for all x̄ ∈ Nn. The tuple (u0, v0, . . . , un−1, vn−1, un) is called presentation of f . If
there exists a K ≥ 1 such that |ui| = |vi| = K for 0 ≤ i < n and |un| ≤ K, we say
that f is (K-)uniformly presentable and speak of a (K-)uniform presentation.

Theorem 4.2. Let n ≥ 0. For every automatic well-ordering A of type ωn there
exists a uniformly presentable embedding f : Nn ↪→ A.

Proof. Let A ⊆ Σ∗ be an automatic well-ordering of type ωn. We first show the
existence of a (possibly non-uniformly) presentable embedding f ′ : Nn ↪→ A by
induction on n. The claim is trivial for n = 0. Therefore, we assume n ≥ 1.

We define an equivalence relation ∼ on A by u ∼ v if there is no (n− 1)-limit
point w ∈ A with u < w ≤ v. For any u ∈ A the ∼-class [u] of u is an
interval of A with order type ωn−1. The set P = {min [u] | u ∈ A } is a system
of representatives w.r.t. ∼ which has order type ω. Thus, A =

∑
u∈P [u] is the

unique representation of A as an ω-sum of copies of ωn−1. For each m ∈ N0 the
set of m-limit points of A is first-order definable in A. Thus, the relation ∼ and
the set P are also first-order definable in A and hence automatic by Theorem 2.1.

We further define a binary relation R on Σ∗ by

R =
{

(u, v) ∈ P ×Σ∗ ∣∣ |u| = |v| and [u] ∩ vΣ∗ has order type ωn−1
}
.

Since any finite partition of a well-ordering of type ωn−1 contains a part of order
type ωn−1, for every u ∈ P there exists a v ∈ Σ∗ such that (u, v) ∈ R. In
addition, R is automatic as it is first-order definable in the automatic structure
(Σ∗;A,≤A,∼, P,≡,�), where ≡ and � are the same-length and prefix relations,
respectively. Similarly, [u] ∩ vΣ∗ is regular for all (u, v) ∈ R.

Since ⊗R is an infinite regular set and due to a pumping argument, there
are words p, q, r, p̃, q̃, r̃ ∈ Σ∗ with |p| = |p̃| and |q| = |q̃| > |r| = |r̃| such that
(pqxr, p̃q̃xr̃) ∈ R for each x ≥ 0. Let η be a morphism into a finite semigroup
S which simultaneously recognises ≤A and ∼. Pick an idempotency exponent
M ≥ 1 of S. We define presentable maps g : N → P and g̃ : N → Σ∗ by

g(x) = pqM·(2x−1)r and g̃(x) = p̃q̃M·(2x−1)r̃ .

Using the idempotency property of M , we obtain η(g(x)⊗g(y)) = η(g(1)⊗g(2))
for all x, y ∈ N with x < y. This implies that g is an embedding g : N ↪→ P .

For every x ∈ N the regular set Bx = [g(x)] ∩ g̃(x)Σ∗ ⊆ A has order type
ωn−1. We turn the regular set Z ⊆ Σ∗ with B1 = g̃(1)Z into an automatic
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well-ordering of type ωn−1 by defining u ≤Z v if g̃(1)u ≤A g̃(1)v. Using the
idempotency property of M once more yields that for each x ∈ N the map
ix : Z → Bx with ix(u) = g̃(x)u is an isomorphism between well-orderings.

By the induction hypothesis, there is a presentable embedding h : Nn−1 ↪→ Z.
The map f ′ : Nn → Σ∗ defined by

f ′(x0, . . . , xn−1) = g̃(x0)h(x1, . . . , xn−1)

is a presentable embedding f ′ : Nn ↪→ A. This completes the induction.
Finally, let (u0, v0, . . . , un−1, vn−1, un) be a presentation of f ′. Pick a K ≥ 1

which is divisible by each |vi|, say K = Ki ·|vi|, and satisfies K ≥ |u0|+· · ·+|un|.
Then the map f : Nn → A defined by

f(x0, . . . , xn−1) = f ′(K0x0 + 1, . . . ,Kn−1xn−1 + 1)

can be shown to be a K-uniformly presentable embedding f : Nn ↪→ A. ��

4.2 The Automatic Ramsey Degree of ωn

In this section, we apply Theorem 4.2 to determine the exact value of dR,AUT(ωn)
for each n ≥ 0. In order to expresses these values, we need the following variation
of binomial coefficients.

Definition 4.3. For all n, k ∈ N0 with k ≤ n we define
〈
n
k

〉
∈ N as follows:

(1)
〈
n
k

〉
= 1 if k = 0 or k = n,

(2)
〈
n
k

〉
=

〈
n−1
k−1

〉
+

〈
n−1
k

〉
if 0 < k < n and 2k �= n, and

(3)
〈
n
k

〉
=

〈
n−1
k−1

〉
+

〈
n−1
k

〉
+

〈
n−2
k−1

〉
if 0 < k < n and 2k = n.

Notice that
(
n
k

)
≤

〈
n
k

〉
for all k ≤ n. This inequality is strict whenever 0 < k < n.

For the rest of this section, we fix some n ≥ 0 and consider the alphabet
[n] = {0, 1, . . . , n − 1}. The lexicographic order on [n]∗ w.r.t. the reverse order
on [n] is denoted by ≤lex. Whenever we use the alphabet [n] , we identify the
6-symbol with n. For x̄ ∈ Nn we define

〈x̄〉 = 0x01x1 · · · (n− 1)xn−1 ∈ [n]∗ .

The set
〈Nn〉 = { 〈x̄〉 | x̄ ∈ Nn } = 0+1+ · · · (n− 1)+ ⊆ [n]∗

ordered by (the restriction of) ≤lex is an automatic well-ordering of type ωn. The
map 〈 · 〉 is the unique isomorphism (of well-orderings) between Nn and 〈Nn〉.

For all x̄, ȳ ∈ Nn the convolution 〈x̄〉 ⊗ 〈ȳ〉 can be uniquely factorised as
σe11 · · ·σekk with k ≥ 0, σ1, . . . , σk ∈ [n]2 pairwise distinct, and e1, . . . , ek ≥ 1.
In this situation, the sequence p(x̄, ȳ) = σ1 . . . σk (n, n) is a path through the
2-dimensional grid from (0, 0) to (n, n) using only steps (0, 1), (1, 0), and (1, 1).
We call such sequences n-paths. We have x̄ < ȳ if, and only if, p(x̄, ȳ) contains
a step different from (1, 1) and the first such is a (1, 0)-step. We call n-paths
with this latter property lower n-paths. An n-path is restricted if the (1, 1)-step
is used only on the main diagonal of the grid. There are precisely

∑n
i=1

〈
2i−1
i

〉
restricted lower n-paths.
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Theorem 4.4. Let n ≥ 0. The automatic Ramsey degree dR,AUT(ωn) exists and
is given by

dR,AUT(ωn) =

n∑
i=1

〈
2i− 1

i

〉
.

Proof. We prove existence and upper bound separately from the lower bound.

Existence and upper bound. Let C : [A]2 → Q be an automatic ωn-colouring. By
Theorem 4.2, there exists a uniformly presentable embedding f : Nn ↪→ A. Con-
sider the ωn-colouring D : [〈Nn〉]2 → Q with D(〈x̄〉, 〈ȳ〉) = C(f(x̄), f(ȳ)). Due
to the uniform presentability of f , D is automatic as well. Let η be a morphism
into a finite semigroup S which simultaneously recognises all the D−1(q) and
pick an idempotency exponent M ≥ 1 of S. The set

XM = { x̄ ∈ Nn | ∀i ∈ [0, n− 1] : xi ≡ M (mod nM) }
has order type ωn and two useful properties for all x̄, ȳ ∈ XM with x̄ < ȳ:
(1) The n-path p(x̄, ȳ) = σ1 . . . σk (n, n) is a restricted lower n-path.
(2) In the definition of p(x̄, ȳ) above, each ei is divisible by M . Thus, the idem-

potency properties of M imply η(〈x̄〉 ⊗ 〈ȳ〉) = η(σM1 · · ·σMk ), i.e., p(x̄, ȳ) de-
termines η(〈x̄〉 ⊗ 〈ȳ〉) and in turn also C(f(x̄), f(ȳ)) = D(〈x̄〉, 〈ȳ〉).

Consequently, the regular set f(XM ) ⊆ A is
∑n

i=1

〈
2i−1
i

〉
-chromatic in C.

Lower bound. Let Q be the set of restricted lower n-paths. The sets

X1 = { x̄ ∈ Nn | ∀i ∈ [0, n− 1] : xi ≡ 1 (mod n) }
and 〈X1〉 ⊆ 〈Nn〉 have order type ωn. Like in property (1) of XM above, we have
p(x̄, ȳ) ∈ Q for all x̄, ȳ ∈ X1 with x̄ < ȳ. The ωn-colouring C : [〈X1〉]2 → Q with
C(〈x̄〉, 〈ȳ〉) = p(x̄, ȳ) for x̄ < ȳ is automatic. Since |Q| =

∑n
i=1

〈
2i−1
i

〉
, it remains

to show that for any regular subset B ⊆ 〈X1〉 of order type ωn and all π ∈ Q
there are u, v ∈ B with u < v and C(u, v) = π.

Therefore, consider such X and π. By Theorem 4.2, there exists a uniformly
presentable embedding f : Nn ↪→ B. Moreover, there are x̄, ȳ ∈ Nn with x̄ < ȳ
and π = (〈x̄〉 ⊗ 〈ȳ〉) (n, n). Finally, one can show that with 1̄ = (1, . . . , 1) ∈ Nn

we have C(f(n · x̄ + 1̄), f(n · ȳ + 1̄)) = π. ��
Remark 4.5. The remark after Definition 4.3 implies that dR(ωn) < dR,AUT(ωn)
for n ≥ 2. This is caused by the following reasons. In the proof of the lower
bound above, you can find a non-regular subset B ⊆ 〈X1〉 such that C(B) is the
set of restricted lower n-paths in which the (1, 1)-steps form an initial segment.
There are precisely dR(ωn) such n-paths. However, for regular sets B you cannot
avoid using (1, 1)-steps after other steps as they provide more structure.

Using the same techniques, one can show a bipartite analogue of Theorem 4.4.

Theorem 4.6. Let m,n ≥ 0. The automatic Ramsey degree dR,AUT(ωm, ωn)
exists and is given by

dR,AUT(ωm, ωn) =

(
m+ n

m

)
.
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4.3 The Automatic Ramsey Degree of Arbitrary Ordinals α < ωω

Theorem 4.7. Let α < ωω be an ordinal and α = ωn1 + · · · + ωnr with r ≥ 0
and n1 ≥ · · · ≥ nr ≥ 0 its Cantor normal form. The automatic Ramsey degree
dR,AUT(α) exists and is given by

dR,AUT(α) =
r∑

i=1

dR,AUT(ωni) +
r∑

i=1

r∑
j=i+1

dR,AUT(ωni , ωnj ) .

Proof. Let μ(α) denote the sum on RHS above. Again, we prove existence/upper
bound and lower bound separately.

Existence and upper bound. Let C be an automatic α-colouring on A. There is a
unique decomposition A = A1+. . .+Ar such that each Ai has order type ωni . All
the Ai are regular. We construct regular subsets Bi,r ⊆ · · · ⊆ Bi,1 ⊆ Ai of order
type ωni for i = 1, . . . , r in several stages. For i = 1, . . . , r choose Bi,1 ⊆ Ai

by Theorem 4.4 such that |C(Bi,1)| ≤ dR,AUT(ωni). For i = 1, . . . , r and j =
i + 1, . . . , r choose Bi,j ⊆ Bi,j−1 and Bj,i+1 ⊆ Bj,i by Theorem 4.6 such that
|C(Bi,j×Bj,i+1)| ≤ dR,AUT(ωni , ωnj ). Finally, the set B = B1,r + · · · + Br,r ⊆ A
is regular, has order type α, and satisfies

|C(B)| ≤
r∑

i=1

|C(Bi,r)| +
r∑

i=1

r∑
j=i+1

|C(Bi,r ×Bj,r)| ≤ μ(α) .

Lower bound. For 1 ≤ i ≤ r let Ci : [Ai]
2 → Qi be (a slight modification of)

the automatic ωni-colouring proving the lower bound on dR,AUT(ωni). Due to
(the actual proof of) Theorem 4.4, for 1 ≤ i < j ≤ r there exists an auto-
matic (ωni , ωnj )-colouring Ci,j : Ai × Aj → Qi,j which shows the lower bound
on dR,AUT(ωni , ωnj). W.l.o.g. all the sets Qi and Qi,j are mutually disjoint.
Thus, their union Q has size μ(α). The well-ordering A = A1 + . . . + Ar is
automatic and has type α. We define an automatic α-colouring C : [A]2 → Q by
C(u, v) = Ci(u, v) if there is an i such that u, v ∈ Ai and C(u, v) = Ci,j(u, v) if
there are i < j such that u ∈ Ai and v ∈ Aj . For every regular subset B ⊆ A
with order type α all the sets Ai ∩B are regular and have order type ωni . Thus,
C(B) = Q and hence |C(B)| = μ(α). ��

Since all constructions employed throughout this section are effective, we obtain
the following result which states that Theorem 4.7 is effective.

Theorem 4.8. Given an automatic presentation of a colouring C : [A]2 → Q,
one can compute the following:

(1) dR,AUT(α), where α is the order type of A,
(2) a subset D ⊆ Q of size at most dR,AUT(α), and
(3) a finite automaton recognising a D-chromatic subset B ⊆ A of order type α.
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5 The Computable Case

The reader can find the needed notions of computability theory in [16]. We call
a colouring C : [V ]2 → F computable if (V ;≤V ) is a computable ordinal and for
each i ∈ F , the preimage C−1(i) is a computable set. Let COMP be the class of
computable colourings.

Theorem 5.1 (Specker [17]). For any k ∈ N, (ω : COMP) �→ (ω : COMP)k,1 .

It is therefore a natural question whether the polychromatic version of Ramsey’s
theorem holds in the computable case. We remark in this section that polychro-
matic Ramsey’s theorem also fails for computable colourings. Recall that Σ1

denotes the class of computably enumerable sets.

Theorem 5.2. For any k ∈ N, we have (ω : COMP) �→ (ω : Σ1)k+1,k .

The proof is conceptually similar to Jockusch’s proof of Theorem 5.1 in [8]. For
this, one needs the following notion.

Definition 5.3. A set A ⊆ N is bi-immune if it is infinite and neither A nor
N \ A contains an infinite Σ1 subset. A k-immune set partition is a partition
N = A1 ∪ · · · ∪Ak of the natural numbers such that each Ai is bi-immune.

The proof of Proposition 5.4 uses a standard priority argument with finite injury.

Proposition 5.4. For every k ∈ N, there exists a k-immune set partition
A1 ∪ · · · ∪ Ak where each Ai is a Δ2 set.

Proof (of Theorem 5.2). Take a k-immune set partition A1 ∪ · · · ∪ Ak where
each Ai is Δ2 as stipulated by Proposition 5.4. By the limit lemma each set Ai

is limit computable. In other words there is a computable set Xi ⊆ N2 such that
∃t∀s ≥ t : Xi(x, s) = Ai(x) for all x ∈ N. We define a colouring C : [N]2 → [1, k]
such that

C(x, s) =

{
min{i | Xi(x, s)} if ∃i : Xi(x, s);
1 otherwise.

Take any (k − 1)-chromatic infinite set H ⊆ N. Assume there is x ∈ H ∩ Ai for
i ∈ [1, k]. There is some t > x such that ∀s ≥ t : Xi(x, s). In particular there is
some y ∈ H such that y > t. This means that C(x, y) = i ∈ C(H). We conclude
that for some i ∈ [1, k], H ∩ Ai = ∅. However this means that H ⊆ N \ Ai and
cannot be a Σ1 set. ��

6 Final Remarks

This paper presents an explicit expression for computing the Ramsey degree of
ordinals α < ωω and establishes the automatic version of this result. Below, we
present some questions that came up but remained unanswered.
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(1) Provided that an automatic α-colouring admits a regular, D-chromatic set
of order type α, can one compute a finite automaton recognising such a set?

(2) Extend Jockusch’s theorems [8, Corollary 3.2 and Theorem 4.2] to ordinals
α < ωω. In other words, does there exist an n such that Πn contains a
dR(α)-chromatic set of order type α in any computable α-colouring?

(3) Does Galvin’s result on the rationals mentioned in Section 1 hold in the
automatic case?
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Abstract. We solve the problems of detecting and counting various
forms of regularities in a string represented as a Straight Line Program
(SLP). Given an SLP of size n that represents a string s of length N ,
our algorithm computes all runs and squares in s in O(n3h) time and
O(n2) space, where h is the height of the derivation tree of the SLP. We
also show an algorithm to compute all gapped-palindromes in O(n3h +
gnh logN) time and O(n2) space, where g is the length of the gap. The
key technique of the above solution also allows us to compute the periods
and covers of the string in O(n2h) time and O(nh(n + log2 N)) time,
respectively.

1 Introduction

Finding regularities such as squares, runs, and palindromes in strings, is a fun-
damental and important problem in stringology with various applications, and
many efficient algorithms have been proposed (e.g., [13,6,1,7,14,2,10,9]). See
also [5] for a survey.

In this paper, we consider the problem of detecting regularities in a string
s of length N that is given in a compressed form, namely, as a straight line
program (SLP), which is essentially a context free grammar in the Chomsky
normal form that derives only s. Our model of computation is the word RAM:
We shall assume that the computer word size is at least �log2N�, and hence,
standard operations on values representing lengths and positions of string s can
be manipulated in constant time. Space complexities will be determined by the
number of computer words (not bits).

Given an SLP whose size is n and the height of its derivation tree is h, Ban-
nai et al. [3] showed how to test whether the string s is square-free or not,
in O(n3h logN) time and O(n2) space. Independently, Khvorost [8] presented
an algorithm for computing a compact representation of all squares in s in
O(n3h log2N) time and O(n2) space. Matsubara et al. [15] showed that a com-
pact representation of all maximal palindromes occurring in the string s can
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c© Springer-Verlag Berlin Heidelberg 2013
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be computed in O(n3h) time and O(n2) space. Note that the length N of the
decompressed string s can be as large as O(2n) in the worst case. Therefore, in
such cases these algorithms are more efficient than any algorithm that work on
uncompressed strings.

In this paper we present the following extension and improvements to the
above work, namely,

1. an O(n3h)-time O(n2)-space algorithm for computing a compact represen-
tation of squares and runs;

2. an O(n3h+gnh logN)-time O(n2)-space algorithm for computing a compact
representation of palindromes with a gap (spacer) of length g.

We remark that our algorithms can easily be extended to count the number of
squares, runs, and gapped palindromes in the same time and space complexities.

Note that Result 1 improves on the work by Khvorost [8] which requires
O(n3h log2N) time and O(n2) space. The key to the improvement is our new
technique of Section 3.3 called approximate doubling, which we believe is of
independent interest. In fact, using the approximate doubling technique, one
can improve the time complexity of the algorithms of Lifshits [11] to compute
the periods and covers of a string given as an SLP, in O(n2h) time and O(nh(n+
log2N)) time, respectively.

If we allow no gaps in palindromes (i.e., if we set g = 0), then Result 2 implies
that we can compute a compact representation of all maximal palindromes in
O(n3h) time and O(n2) space. Hence, Result 2 can be seen as a generalization
of the work by Matsubara et al. [15] with the same efficiency.

2 Preliminaries

2.1 Strings

Let Σ be the alphabet, so an element of Σ∗ is called a string. For string s = xyz,
x is called a prefix, y is called a substring, and z is called a suffix of s, respectively.
The length of string s is denoted by |s|. The empty string ε is a string of length
0, that is, |ε| = 0. For 1 ≤ i ≤ |s|, s[i] denotes the i-th character of s. For
1 ≤ i ≤ j ≤ |s|, s[i..j] denotes the substring of s that begins at position i and
ends at position j. For any string s, let sR denote the reversed string of s, that
is, sR = s[|s|] · · · s[2]s[1]. For any strings s and u, let lcp(s, u) (resp. lcs(s, u))
denote the length of the longest common prefix (resp. suffix) of s and u.

We say that string s has a period c (0 < c ≤ |s|) if s[i] = s[i + c] for any
1 ≤ i ≤ |s| − c. For a period c of s, we denote s = uq, where u is the prefix of

s of length c and q = |s|
c . For convenience, let u0 = ε. If q ≥ 2, s = uq is called

a repetition with root u and period |u|. Also, we say that s is primitive if there
is no string u and integer k > 1 such that s = uk. If s is primitive, then s2 is
called a square.

We denote a repetition in a string s by a triple 〈b, e, c〉 such that s[b..e] is a
repetition with period c. A repetition 〈b, e, c〉 in s is called a run (or maximal
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periodicity in [12]) if c is the smallest period of s[b..e] and the substring cannot
be extended to the left nor to the right with the same period, namely neither
s[b − 1..e] nor s[b..e + 1] has period c. Note that for any run 〈b, e, c〉 in s, every
substring of length 2c in s[b..e] is a square. Let Run(s) denote the set of all runs
in s.

A string s is said to be a palindrome if s = sR. A string s is said to be a
gapped palindrome if s = xuxR for some string u ∈ Σ∗. Note that u may or may
not be a palindrome. The prefix x (resp. suffix xR) of xuxR is called the left arm
(resp. right arm) of gapped palindrome xuuR. If |u| = g, then xuxR is said to be
a g-gapped palindrome. We denote a maximal g-gapped palindrome in a string s
by a pair 〈b, e〉g such that s[b..e] is a g-gapped palindrome and s[b− 1..e+ 1] is
not. Let gPals(s) denote the set of all maximal g-gapped palindromes in s.

Given a text string s ∈ Σ+ and a pattern string p ∈ Σ+, we say that p
occurs at position i (1 ≤ i ≤ |s| − |p| + 1) iff s[i..i + |p| − 1] = p. Let Occ(s, p)
denote the set of positions where p occurs in s. For a pair of integers 1 ≤ b ≤ e,
[b, e] = {b, b+ 1, . . . , e} is called an interval.

Lemma 1 ([16]). For any strings s, p ∈ Σ+ and any interval [b, e] with 1 ≤ b ≤
e ≤ b+ |p|, Occ(s, p) ∩ [b, e] forms a single arithmetic progression if Occ(s, p) ∩
[b, e] �= ∅.

2.2 Straight-Line Programs

A straight-line program (SLP) S of size n is a set of productions S = {Xi →
expr i}ni=1, where each Xi is a distinct variable and each expr i is either expri =
XXr (1 ≤ 
, r < i), or expri = a for some a ∈ Σ. Note that Xn derives only a
single string and, therefore, we view the SLP as a compressed representation of
the string s that is derived from the variable Xn. Recall that the length N of the
string s can be as large as O(2n). However, it is always the case that n ≥ logN .
For any variable Xi, let val (Xi) denote the string that is derived from variable
Xi. Therefore, val(Xn) = s. When it is not confusing, we identify Xi with the
string represented by Xi.

Let Ti denote the derivation tree of a variable Xi of an SLP S. The derivation
tree of S is Tn. Let height(Xi) denote the height of the derivation tree Ti of Xi

and height(S) = height(Xn). We associate each leaf of Ti with the corresponding
position of the string val (Xi). For any node z of the derivation tree Ti, let 
z be
the number of leaves to the left of the subtree rooted at z in Ti. The position of
the node z in Ti is 
z + 1.

Let [u, v] be any integer interval with 1 ≤ u ≤ v ≤ |val(Xi)|. We say that
the interval [u, v] crosses the boundary of node z in Ti, if the lowest common
ancestor of the leaves u and v in Ti is z. We also say that the interval [u, v]
touches the boundary of node z in Ti, if either [u − 1, v] or [u, v + 1] crosses the
boundary of z in Ti. Assume p = w[u..u + |p| − 1] and interval [u, u + |p| − 1]
crosses or touches the boundary of node z in Ti. When z is labeled by Xj , then
we also say that the occurrence of p starting at position u in val (Xi) crosses or
touches the boundary of Xj .
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Lemma 2 ([4]). Given an SLP S of size n describing string w of length N ,
we can pre-process S in O(n) time and space to answer the following queries in
O(logN) time:

– Given a position u with 1 ≤ u ≤ N , answer the character w[u].
– Given an interval [u, v] with 1 ≤ u ≤ v ≤ N , answer the node z the interval

[u, v] crosses, the label Xi of z, and the position of z in TS = Tn.

For any production Xi → XXr and a string p, let Occξ(Xi, p) be the set of
occurrences of p which begin in X and end in Xr. Let S and T be SLPs of
sizes n and m, respectively. Let the AP-table for S and T be an n × m ta-
ble such that for any pair of variables X ∈ S and Y ∈ T the table stores
Occξ(X,Y ) = Occξ(X, val(Y )). It follows from Lemma 1 that Occξ(X,Y ) forms
a single arithmetic progression which requires O(1) space, and hence the AP-
table can be represented in O(nm) space.

Lemma 3 ([11]). Given two SLPs S and T of sizes n and m, respectively, the
AP-table for S and T can be computed in O(nmh) time and O(nm) space, where
h = height (S).

Lemma 4 ([11], local search (LS)). Let S and T be SLPs that describe strings
s and p, respectively. Using AP-table for S and T , we can compute, given any
position b and constant α > 0, Occ(s, p) ∩ [b, b+ α|p|] as a form of at most �α�
arithmetic progressions in O(h) time, where h = height(S).

Note that, given any 1 ≤ i ≤ j ≤ |s|, we are able to build an SLP of size O(n)
that generates substring s[i..j] in O(n) time. Hence, by computing the AP-table
for S and the new SLP, we can conduct the local search LS operation on substring
s[i..j] in O(n2h) time.

For any variable Xi of S and positions 1 ≤ k1, k2 ≤ |Xi|, we define the
“right-right” longest common extension query by

LCE(Xi, k1, k2) = lcp(Xi[k1..|Xi|], Xi[k2..|Xi|]).

Using a technique of [16] in conjunction with Lemma 3, it is possible to answer
the query in O(n2h) time for each pair of positions, with no pre-processing.
We will later show our new algorithm which, after O(n2h)-time pre-processing,
answers to the LCE query for any pair of positions in O(h logN) time.

3 Finding Runs

In this section we propose an O(n3h)-time and O(n2)-space algorithm to com-
pute O(n logN)-size representation of all runs in a text s of length N represented
by SLP S = {Xi → expri}ni=1 of height h.

For each productionXi → X(i)Xr(i) with i ≤ n, we consider the setRunsξ(Xi)
of runs which touch or cross the boundary ofXi and are completed inXi, i.e., those
that are not prefixes nor suffixes of Xi. Formally,

Runsξ(Xi) = {〈b, e, c〉 ∈ Run(Xi) | 1 ≤ b− 1 ≤ |X(i)| < e + 1 ≤ |Xi|}.
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It is known that for any interval [b, e] with 1 ≤ b ≤ e ≤ |s|, there exists a unique
occurrence of a variable Xi in the derivation tree of SLP, such that the interval
[b, e] crosses the boundary of Xi. Also, wherever Xi appears in the derivation
tree, the runs in Runsξ(Xi) occur in s with some appropriate offset, and these
occurrences of the runs are never contained in Runsξ(Xj) with any other variable

Xj with j �= i. Hence, by computing Runsξ(Xi) for all variables Xi with i ≤ n,
we can essentially compute all runs of s that are not prefixes nor suffixes of s.
In order to detect prefix/suffix runs of s, it is sufficient to consider two auxiliary
variables Xn+1 → X$Xn and Xn+2 → Xn+1X$′ , where X$ and X$′ respectively
derive special characters $ and $′ that are not in s and $ �= $′. Hence, the problem
of computing the runs from an SLP S reduces to computing Runsξ(Xi) for all
variables Xi with i ≤ n+ 2.

Our algorithm is based on the divide-and-conquer method used in [3] and
also [8], which detect squares crossing the boundary of each variable Xi. Roughly
speaking, in order to detect such squares we take some substrings of val (Xi) as
seeds each of which is in charge of distinct squares, and for each seed we detect
squares by using LS and LCE constant times. There is a difference between [3]
and [8] in how the seeds are taken, and ours is rather based on that in [3].
In the next subsection, we briefly describe our basic algorithm which runs in
O(n3h logN) time.

3.1 Basic Algorithm

Consider runs in Runsξ(Xi) with Xi → XXr. Since a run in Runsξ(Xi) contains
a square which touches or crosses the boundary of Xi, our algorithm finds a run
by first finding such a square, and then computing the maximal extension of its
period to the left and right of its occurrence.

Each square ww that we want to find in Xi can be divided by its length and
how it relates to the boundary of Xi. When |w| > 1, there exists 1 ≤ t <
log |val(Xi)| such that 2t ≤ |w| < 2t+1 and there are four cases (see also Fig. 1);
(1) |w| ≥ 3

2 |w|, (2) 3
2 |w| > |w| ≥ |w|, (3) |w| > |w| ≥ 1

2 |w|, (4) 1
2 |w| > |w|,

where w is a prefix of ww which is also a suffix of val (X).
The point is that in any case we can take a substring p of length 2t−1 of s

which touches the boundary of Xi, and is completely contained in w. By using
p as a seed we can detect runs by the following steps:

Step 1: Conduct local search of p in an “appropriate range” of Xi, and find a
copy p′ (= p) of p.

Step 2: Compute the length plen of the longest common prefix to the right of
p and p′, and the length slen of the longest common suffix to the left of p
and p′, then check that plen + slen ≥ d−|p|, where d is the distance between
the beginning positions of p and p′.

Notice that Step 2 actually computes maximal extension of the repetition.
Since d = |w|, it is sufficient to conduct local search in the range satisfying

2t ≤ d < 2t+1, namely, the width of the interval for local search is smaller than
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case (2)

case (3)

case (4)

Fig. 1. The left arrows represent the longest common suffix between the left substrings
immediately to the left of p and p′. The right arrows represent the longest common
prefix between the substrings immediately to the right of p and p′.

2|p|, and all occurrences of p′ are represented by at most two arithmetic progres-
sions. Although exponentially many runs can be represented by an arithmetic
progression, its periodicity enables us to efficiently detect all of them, by using
LCE only constant times, and they are encoded in O(1) space. We omit the
details due to the lack of space but the employed techniques are essentially the
same as in [8].

By varying t from 1 to logN , we can obtain an O(logN)-size compact rep-
resentation of Runsξ(Xi) in O(n2h logN) time. More precisely, we get a list

of O(logN) quintuplets 〈δ1, δ2, δ3, c, k〉 such that the union of sets
⋃k−1
j=0 〈δ1 −

cj, δ2 + cj, δ3 + cj〉 for all elements of the list equals to Runsξ(Xi) without du-
plicates. By applying the above procedure to all the n variables, we can obtain
an O(n logN)-size compact representation of all runs in s in O(n3h logN) time.
The total space requirement is O(n2), since we need O(n2) space at each step of
the algorithm.

In order to improve the running time of the algorithm to O(n3h), we will use
new techniques of the two following subsections.

3.2 Longest Common Extension

In this subsection we propose a more efficient algorithm for LCE queries.

Lemma 5. We can pre-process an SLP S of size n and height h in O(n2h) time
and O(n2) space, so that given any variable Xi and positions 1 ≤ k1, k2 ≤ |Xi|,
LCE(Xi, k1, k2) is answered in O(h logN) time.
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To compute LCE(Xi, k1, k2) we will use the following function: For an SLP S =
{Xi → expri}ni=1, let Match be a function such that

Match(Xi, Xj , k) =

{
true if k ∈ Occ(Xi, Xj),

false if k /∈ Occ(Xi, Xj).

Lemma 6. We can pre-process a given SLP S of size n and height h in O(n2h)
time and O(n2) space so that the query Match(Xi, Xj , k) is answered in O(logN)
time.

Proof. We apply Lemma 2 to every variable Xi of S, so that the queries of
Lemma 2 are answered in O(logN) time on the derivation tree Ti of each variable
Xi of S. Since there are n variables in S, this takes a total of O(n2) time and
space. We also apply Lemma 3 to S, which takes O(n2h) time and O(n2) space.
Hence the pre-processing takes a total of O(n2h) time and O(n2) space.

To answer the query Match(Xi, Xj, k), we first find the node of Ti the interval
[k, k+ |Xj|−1] crosses, its label Xq, and its position r in Ti. This takes O(logN)
time using Lemma 2. Then we check in O(1) time if (k − r) ∈ Occξ(Xq, Xj) or
not, using the arithmetic progression stored in the AP-table. Thus the query is
answered in O(logN) time. ��

The following function will also be used in our algorithm: Let FirstMismatch be
a function such that

FirstMismatch(Xi, Xj , k) =

{
|lcp(Xi[k..|Xi|], Xj)| if |Xi| − k + 1 ≤ |Xj |,
undefined otherwise.

Using Lemma 6 we can establish the following lemma.

Lemma 7. We can pre-process a given SLP S of size n and height h in O(n2h)
time and O(n2) space so that the query FirstMismatch(Xi, Xj , k) is answered in
O(h logN) time.

We are ready to prove Lemma 5:

Proof. Consider to compute LCE(Xi, k1, k2). Without loss of generality, assume
k1 ≥ k2. Let z be the lca of the k2-th and (k2 − k1 + |Xi|)-th leaves of the
derivation tree Ti. Let P be the path from z to the k2-th leaf of the derivation
tree Ti, and let L be the list of the right child of the nodes in P sorted in
increasing order of their position in Ti. The number of nodes in L is at most
height(Xi) ≤ h, and L can be computed in O(height (Xi)) = O(h) time. Let
Pr be the path from z to the (k2 − k1 + |Xi|)-th leaf of the derivation tree Ti,
and let R be the list of the left child of the nodes in Pr sorted in increasing
order of their position in Ti. R can be computed in O(h) time as well. Let
U = L ∪ R = {Xu(1), Xu(2), . . . , Xu(m)} be the list obtained by concatenating
L and R. For each Xu(p) in increasing order of p = 1, 2, . . . ,m, we perform

query Match(Xi, Xu(p), k1 +
∑p−1

q=1 |Xu(q)|) until either finding the first variable
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Xu(p′) for which the query returns false, or all the queries for p = 1, . . . ,m
have returned true. In the latter case, clearly LCE(Xi, k1, k2) = |Xi| − k1 + 1.
In the former case, the first mismatch occurs between Xi and Xu(p′), and hence

LCE(Xi, k1, k2) =
∑p′−1

q′=1 |Xu(q′)|+FirstMismatch(Xi, Xu(p′), k1+
∑p′−1

q′=1 |Xu(q′)|).
Since U contains at most 2 · height(Xi) variables, we perform O(h) Match

queries. We perform at most one FirstMismatch query. Thus, using Lemmas 6
and 7, we can compute LCE(Xi, k1, k2) in O(h logN) time after O(n2h)-time
O(n2)-space pre-processing. ��
We can use Lemma 5 to also compute “left-left”, “left-right”, and “right-left”
longest common extensions on the uncompressed string s = val(S): We can
compute in O(n) time an SLP SR of size n which represents the reversed string
sR [15]. We then construct a new SLP S ′ of size 2n and height h+ 1 by concate-
nating the last variables of S and SR, and apply Lemma 5 to S ′.

3.3 Approximate Doubling

Here we show how to reduce the number of AP-table computation required in
Step 1 of the basic algorithm, from O(logN) to O(1) times per variable.

Consider any production Xi → XXr. If we build a new SLP which contains
variables that derive the prefixes of length 2t of Xr for each 0 ≤ t < log |Xr|,
we can obtain the AP-tables for Xi and all prefix seeds of Xr by computing the
AP-table for Xi and the new SLP. However, it is uncertain if we can build such
a new SLP of size O(n) in a reasonable time or not. Here we notice that the
lengths of the seeds do not have to be exactly doublings, i.e., the basic algorithm
of Section 3.1 works fine as long as the following properties are fulfilled: (a) the
ratio of the lengths for each pair of consecutive seeds is constant; (b) the whole
string is covered by the O(logN) seeds 1. We show in the next lemma that we
can build an approximate doubling SLP of size O(n) in O(n) time.

Lemma 8. Let S = {Xi → expr i}ni=1 be an SLP that derives a string s. We

can build in O(n) time a new SLP S ′ = {Yi → expr ′i}n
′

i=1 with n′ = O(n)
and height(S ′) = O(height (S)), which derives s and contains O(logN) variables
Ya1 , Ya2 , . . . , Yak

satisfying the following conditions:

– For any 1 ≤ j ≤ k, Yaj derives a prefix of s, |Ya1 | = 1 and |Yak
| = |s|.

– For any 1 ≤ j < k, |Yaj | < |Yaj+1 | ≤ 2|Yaj |.

Proof. First, we copy the productions of S into S ′. Next we add productions
needed for creating prefix variables Ya1 , Ya2 , . . . , Yak

in increasing order. When
creating Yaj+1 , we consider creating a variable Ybj that derives s[|Yaj |+1..|Yaj+1 |],
i.e., Yaj+1 → YajYbj , by traversing Tn and finding the sequence of nodes that
represents the substring. Note that we have some degrees of freedom for creating
Ybj since |Yaj+1 | is not fixed, and this helps us to keep the size of S ′ in O(n). Let vj
and vj+1 be the nodes where the traversal for Ybj+1 begin and end, respectively.

1 A minor modification is that we conduct local search for a seed p at Step 1 with the
range satisfying 2|p| ≤ d < 2|q|, where q is the next longer seed of p.



Detecting Regularities on Grammar-Compressed Strings 579

We start from v1 which is the leftmost node that derives s[1]. Suppose we
have built prefix variables up to Yaj and now creating Yaj+1 . At this moment we
are at vj . We move up to the node uj such that uj is the deepest node on the
path from the root to vj which contains position 2|Yaj |, and move down from
uj towards position 2|Yaj |. The traversal ends when we meet a node vj+1 which
satisfies one of the following conditions; (1) the rightmost position of vj+1 is
2|Yaj |, (2) vj+1 is labeled with Xi, and we have traversed another node labeled
with Xi before.

– If Condition (1) holds, we let |Yaj+1 | be the rightmost position of vj+1. It is
clear that |Yaj+1 | = 2|Yaj |.

– If Condition (1) does not hold but Condition (2) holds, we let |Yaj+1 | be
the leftmost position of vj+1 minus 1. Since vj+1 contains position 2|Yaj |,
|Yaj+1 | < 2|Yaj |. We remark that since Xi appears in Yaj+1 , then |Yaj+1 | +
|Xi| ≤ 2|Yaj+1 |, and therefore, we never move down vj+1 for creating prefix
variables to follow.

We iterate the above procedures until we obtain a prefix variable Yak−1
that

satisfies |s| ≤ 2|Yak−1
|. We let uk be the deepest node on the path from the root

to vk−1 which contains position |s|, and let vk be the right child of uk. Since
|Yaj | < 2|Yaj+2 | for any 1 ≤ j < k, k = O(logN) holds.

We note that val(Ybj ) can be represented by the concatenation of “inner”
nodes attached to the path from vj to vj+1, and hence, the number of new
variables needed for creating Ybj is bounded by the number of such nodes. Con-
sider all the edges we have traversed in the derivation tree Tn of Xn. Each edge
contributes to at most one new variable for Ybj for some 1 ≤ j < k. Since
each variable Xi in S is used constant times for moving down due to Con-
dition (2), the number of the traversed edges as well as n′ is O(n). Also, it
is easy to make the height of Ybj be O(height (S)) for any 1 ≤ j < k. Thus
O(height (S ′)) = O(logN + height(S)) = O(height (S)). ��

3.4 Improved Algorithm

Using Lemmas 5 and 8, we get the following theorem.

Theorem 1. Given an SLP S of size n and height h that describes string s
of length N , an O(n logN)-size compact representation of all runs in s can be
computed in O(n3h) time and O(n2) working space.

Proof. Using Lemma 5, we first pre-process S in O(n2h) time so that any “right-
right” or “left-left” LCE query can be answered in O(h logN) time. For each
variable Xi → XXr, using Lemma 8, we build two temporary SLPs which have
respectively approximately doubling suffix variables of X and prefix variables
of Xr, and compute two AP-tables for S and each of them in O(n2h) time.
For each of the O(logN) prefix/suffix variables, we use it as a seed and find
all corresponding runs by using LS and LCE queries constant times. Hence the
time complexity is O(n2h+ n(n2h+ (h+ h logN) logN)) = O(n3h). The space
requirement is O(n2), the same as the basic algorithm. ��
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Fig. 2. Three groups of g-gapped palindromes to be found in Xi

4 Finding g-Gapped Palindromes

A similar strategy to finding runs on SLPs can be used for computing a compact
representation of the set gPals(s) of g-gapped palindromes from an SLP S that
describes string s. As in the case of runs, we add two auxiliary variables Xn+1 →
X$Xn and Xn+2 → Xn+1X$′ . For each production Xi → XXr with i ≤ n + 2,
we consider the set gPalsξ(Xi) of g-gapped palindromes which touch or cross
the boundary of Xi and are completed in Xi, i.e., those that are not prefixes nor
suffixes of Xi. Formally,

gPalsξ(Xi) = {〈b, e〉g ∈ gPals(Xi) | 1 ≤ b− 1 ≤ |X| < e+ 1 ≤ |Xi|}.

Each g-gapped palindrome in Xi can be divided into three groups (see also
Fig. 2); (1) its right arm crosses or touches with its right end the boundary of
Xi, (2) its left arm crosses or touches with its left end the boundary of Xi, (3)
the others.

For Case (3), for every |X|−g+1 ≤ j < |X| we check if lcp(Xi[1..j]
R, Xi[j+

g + 1..|Xi|]) > 0 or not. From Lemma 5, it can be done in O(gh logN) time for
any variable by using “left-right” LCE (excluding pre-processing time for LCE).
Hence we can compute all such g-gapped palindromes for all productions in
O(n2h+ gnh logN) time, and clearly they can be stored in O(ng) space.

For Case (1), let w be the prefix of the right arm which is also a suffix of
val(X). We take approximately doubling suffixes of X as seeds. Let p be the
longest seed that is contained in w. We can find g-gapped palindromes by the
following steps:

Step 1: Conduct local search of p′ = pR in an “appropriate range” of Xi and
find it in the left arm of palindrome.

Step 2: Compute “right-left” LCE of p′ and p, then check that the gap can be g.
The outward maximal extension can be obtained by computing “left-right”
LCE queries on the occurrences of p′ and p.
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As in the case of runs, for each seed, the length of the range where the local
search is performed in Step 1 is only O(|p|). Hence, the occurrences of p′ can
be represented by a constant number of arithmetic progressions. Also, we can
obtain O(1)-space representation of g-gapped palindromes for each arithmetic
progression representing overlapping occurrences of p′, by using a constant num-
ber of LCE queries. Therefore, by processing O(logN) seeds for every variable
Xi, we can compute in O(n2h+n(n2h+ (h+h logN) logN)) = O(n3h) time an
O(n logN)-size representation of all g-gapped palindromes for Case (1) in s.

In a symmetric way of Case (1), we can find all g-gapped palindromes for
Case (2). Putting all together, we get the following theorem.

Theorem 2. Given an SLP of size n and height h that describes string s of
length N , and non-negative integer g, an O(n logN+ng)-size compact represen-
tation of all g-gapped palindromes in s can be computed in O(n3h + gnh logN)
time and O(n2) working space.

5 Discussions

Let R and G denote the output compact representations of the runs and g-gapped
palindromes of a given SLP S, respectively, and let |R| and |G| denote their size.
Here we show an application of R and G; given any interval [b, e] in s, we can
count the number of runs and gapped palindromes in s[b..e] in O(n + |R|) and
O(n+|G|) time, respectively. We will describe only the case of runs, but a similar
technique can be applied to gapped palindromes. As is described in Section 3.2,
s[b..e] can be represented by a sequence U = (Xu(1), Xu(2), . . . , Xu(m)) of O(h)
variables of S. Let T be the SLP obtained by concatenating the variables of U .
There are three different types of runs in R: (1) runs that are completely within
the subtree rooted at one of the nodes of U ; (2) runs that begin and end inside
[b, e] and cross or touch any border between consecutive nodes of U ; (3) runs
that begin and/or end outside [b, e]. Observe that the runs of types (2) and (3)
cross or touch the boundary of one of the nodes in the path from the root to
the b-th leaf of the derivation tree TS , or in the path from the root to the e-th
leaf of TS . A run that begins outside [b, e] is counted only if the suffix of the
run that intersects [b, e] has an exponent of at least 2. The symmetric variant
applies to a run that ends outside [b, e]. Thus, the number of runs of types (2)
and (3) can be counted in O(n+ 2|R|) time. Since we can compute in a total of
O(n) time the number of nodes in the derivation tree of T that are labeled by
Xi for all variables Xi, the number of runs of type (1) for all variables Xu(j) can
be counted in O(n + |R|) time. Noticing that runs are compact representation
of squares, we can also count the number of occurrences of all squares in s[b..e]
in O(n + |R|) time by simple arithmetic operations.

The approximate doubling and LCE algorithms of Section 3 can be used as
basis of other efficient algorithms on SLPs. For example, using approximate
doubling, we can reduce the number of pairs of variables for which the AP-table
has to be computed in the algorithms of Lifshits [11], which compute compact
representations of all periods and covers of a string given as an SLP. As a result,
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we improve the time complexities from O(n2h logN) to O(n2h) for periods, and
from O(n2h log2N) to O(nh(n + log2N)) for covers.
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Abstract. A proof system for a language L is a function f such that
Range(f) is exactly L. In this paper, we look at proof systems from
a circuit complexity point of view and study proof systems that are
computationally very restricted. The restriction we study is: they can
be computed by bounded fanin circuits of constant depth (NC0), or of
O(log log n) depth but with O(1) alternations (poly log AC0). Each out-
put bit depends on very few input bits; thus such proof systems corre-
spond to a kind of local error-correction on a theorem-proof pair.

We identify exactly how much power we need for proof systems to
capture all regular languages. We show that all regular language have
poly log AC0 proof systems, and from a previous result (Beyersdorff et
al, MFCS 2011, where NC0 proof systems were first introduced), this is
tight. Our technique also shows that Maj has poly log AC0 proof system.

We explore the question of whether Taut has NC0 proof systems. Ad-
dressing this question about 2TAUT, and since 2TAUT is closely related
to reachability in graphs, we ask the same question about Reachability.
We show that both Undirected Reachability and Directed UnReachabil-
ity have NC0 proof systems, but Directed Reachability is still open.

In the context of how much power is needed for proof systems for
languages in NP, we observe that proof systems for a good fraction of
languages in NP do not need the full power of AC0; they have SAC0 or
coSAC0 proof systems.

1 Introduction

Let f be any computable function mapping strings to strings. Then f can be
thought of as a proof system for the language L = range(f) in the following sense:
to prove that a word x belongs to L, provide a word y that f maps to x. That is,
view y as a proof of the statement “x ∈ L”, and computing f(y) is then tanta-
mount to verifying the proof. From the perspective of computational complexity,
interesting proof systems are those functions that are efficiently computable and
have succinct proofs for all words in their range. If we use polynomial-time
computable as the notion of efficiency, and polynomial-size as the notion of suc-
cinctness, then NP is exactly the class of languages that have efficient proof
systems with succinct proofs. For instance, the coNP-complete language Taut

has such proof systems if and only if NP equals coNP [1].
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Since we do not yet know whether or not NP equals co-NP, a reasonable
question to ask is how much more computational power and/or non-succinctness
is needed before we can show that Taut has a proof system. For instance,
allowing the verifier the power of randomized polynomial-time computation on
polynomial-sized proofs characterizes the class MA; allowing quantum power
characterizes the class QCMA; one could also allow the verifier access to some
advice, yielding non-uniform classes; see for instance [2–5].

An even more interesting, and equally reasonable, approach is to ask: how
much do we need to reduce the computational power of the verifier before we can
formally establish that Taut does not have a proof system within those bounds?
This approach has seen a rich body of results, starting from the pathbreaking
work of Cook and Reckhow [6]. The common theme in limiting the verifier’s
power is to limit the nature of proof verification, equivalently, the syntax of the
proof; for example, proof systems based on resolution, Frege systems, and so on.
See [7, 8] for excellent surveys on the topic.

Instead of restricting the proof syntax, if we only restrict the computational
power of the verifier, it is not immediately obvious that we get anywhere. This
is because it is already known that NP is characterised by succinct proof sys-
tems with extremely weak verifiers, namely AC0 verifiers. Recall that in AC0

we cannot even check if a binary string has an odd number of 1s [9, 10]. But
an AC0 computation can verify that a given assignment satisfies a Boolean for-
mula. Nonetheless, one can look for verifiers even weaker than AC0; this kind
of study was initiated in [11] where NC0 proof systems were investigated. In an
NC0 proof system, each output bit depends on just O(1) bits of the input, so
to enumerate L as the range of an NC0 function f , f must be able to do highly
local corrections to the alleged proof while maintaining the global property that
the output word belongs to L. Unlike with locally-decodable error-correcting
codes, the correction here must be deterministic and always correct. This be-
comes so restrictive that even some very simple languages, that are regular and
in AC0, do not have such proof systems, even allowing non-uniformity. And
yet there is an NP-complete language that has a uniform NC0 proof system
(See [12]). (This should not really be that surprising, because it is known that
in NC0 we can compute various cryptographic primitives.) So the class of lan-
guages with NC0 proof systems slices vertically across complexity classes. It is
still not known whether Taut has a (possibly non-uniform) NC0 proof system.
Figure 1 shows the relationships between classes of languages with proof systems
of the specified kind. (Solid arrows denote proper inclusion, dotted lines denotes
incomparability.)

The work in [11] shows that languages of varying complexity (complete for
NC1, P, NP) have uniform NC0 proof systems, while the languages Exact-Or,
Maj amongst others do not have even non-uniform NC0 proof systems. It then
focuses on regular languages, and shows that a large subclass of regular languages
has uniform NC0 proof systems. This work takes off from that point.
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uniform AC0 proof
systems = NP
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= NP/poly

uniform NC0 proof
systems

��

�������������

NC0 proof systems
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Fig. 1. Some constant-depth proof systems

Our Results
We address the question of exactly how much computational power is required
to capture all regular languages via proof systems, and answer this question
exactly. One of our main results (Theorem 3) is that every regular language
has a proof system computable by a circuit with bounded fanin gates, depth
O(log logn), and O(1) alternations. Equivalently, the proof system is computable
by an AC0 circuit where each gate has fanin (logn)O(1); we refer to the class of
such circuits as poly log AC0 circuits. By the result of [11], Exact-Or requires
depth Ω(log logn), so (upto constant multiplicative factors) this is tight. Our
proof technique also generalises to show that Maj has poly log AC0 proof systems
(Theorem 4).

The most intriguing question here, posed in [11], is to characterize the regular
languages that have NC0 proof systems. We state a conjecture for this character-
ization; the conjecture throws up more questions regarding decidability of some
properties of regular languages.

We believe that Taut does not have AC0 proof systems because otherwise
NP = coNP (See [1]). As a weaker step, can we at least prove that it does not
have NC0 proof systems? Although it seems that this should be possible, we have
not yet succeeded. So we ask the same question about 2TAUT, which is in NL,
and hence may well have an NC0 proof system. The standard NL algorithm for
2TAUT is via a reduction to Reach. So it is interesting to ask – does Reach

have an NC0 proof system? We do not know yet. However in our other main
result, we show that undirected Reach, a language complete for L, has an NC0

proof system (Theorem 5). Our construction relies on a careful decomposition of
even-degrees-only graphs (established in the proof of Theorem 6) that may be
of independent interest. We also show that directed unreachability has an NC0

proof system (Theorem 7).
Finally, we observe that Graph Isomorphism does not have NC0 proof systems.

We also note that for every language L in NP, the language ({1}·L ·{0})∪0∗∪1∗

has both SAC0 and coSAC0 proof systems (Theorem 8).

2 Preliminaries

Unless otherwise stated, we consider only bounded fanin circuits over ∨,∧,¬.
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Definition 1 ([11]). A circuit family {Cn}n>0 is a proof system for a language
L if there is a function m : N −→ N such that for each n where L=n �= ∅,

1. Cn has m(n) inputs and n outputs,
2. for each y ∈ L=n, there is an x ∈ {0, 1}m(n) such that Cn(x) = y (complete-

ness),
3. for each x ∈ {0, 1}m(n), Cn(x) ∈ L=n (soundness).

Note that the parameter n for Cn is the number of output bits, not input bits.
NC0 proof systems are proof systems as above where the circuit has O(1) depth.
The definition implies that the circuits are of linear size. AC0 proof systems
are proof systems as above where the circuit Cn has O(log n) depth but O(1)
alternations between gate types. Equivalently, they are proof systems as above
of nO(1) size with unbounded fanin gates and depth O(1).

Proposition 1 ([11]). A regular language L satisfying any of the following has
an NC0 proof system:

1. L has a strict star-free expression (built from ε, a, and Σ∗, using concate-
nation and union).

2. L is accepted by an automaton with a universally reachable absorbing final
state.

3. L is accepted by a strongly connected automaton.

Proposition 2 ([11])

1. Proof systems for Maj need ω(1) depth.
2. Proof systems for Exact-Count

n
k and ¬Th

n
k+1 need Ω(log(logn − log k))

depth. In particular, proof systems for Exact-Or and for Exact-Or ∪ 0∗

need Ω(log logn) depth.

3 Proof Systems for Regular Languages

We first explore the extent to which the structure of regular languages can be
used to construct NC0 proof systems. At the base level, we know that all finite
languages have NC0 proof systems. Building regular expressions involves unions,
concatenation, and Kleene closure. And the resulting class of regular languages
is also closed under many more operations. A natural idea is to somehow use
the structure of the syntactic monoid (equivalently, the unique minimal deter-
ministic automaton) to decide whether or not a regular language has an NC0

proof system, and if so, to build one. Unfortunately, this idea collapses at once:
the languages Exact-Or and Th2 have the same syntactic monoid; by Propo-
sition 2, Exact-Or has no NC0 proof system; and by Proposition 1 Th2 has
such a proof system.

The next idea is to use the structure of a well-chosen (nondeterministic) au-
tomaton for the language to build a proof system; Proposition 1 does exactly
this. It describes two possible structures that can be used. However, one is sub-
sumed in the other; see Observation 1 below.
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Observation 1. Let L be accepted by an automaton with a universally reachable
absorbing final state. Then L is accepted by a strongly connected automaton.

The above observation can be seen by adding ε moves from a universally reach-
able absorbing final state to every other state in the automaton accepting L to
get a new automaton that accepts the same language and is strongly connected.

A small generalisation beyond strongly connected automata is automata with
exactly two strongly connected components. However, the automaton for
Exact-Or is like this, so even with this small extension, we can no longer
construct NC0 proof systems. (In fact, we need as much as Ω(log logn) depth.)

Finite languages do not have strongly connected automata. But they are strict
star-free and hence have NC0 proof systems. Strict star-free expressions lack non-
trivial Kleene closure. What can we say about their Kleene closure? It turns out
that for any regular language, not just a strict-star-free one, the Kleene closure
has an NC0 proof system.

Theorem 2. If L is regular, then L∗ has an NC0 proof system.

Proof. Let M be an automaton accepting L, with no useless states. Adding ε
moves from every final state to the start state q0, and adding q0 to the set of
final states, gives an automaton M ′ for L∗. Now M ′ is strongly connected, so
Proposition 1 gives the NC0 proof system. ��
Based on the above discussion and known (counter-) examples, we conjecture
the following characterization. The structure implies the proof system, but the
converse seems hard to prove.

Conjecture 1. Let L be a regular language. The following are equivalent:

1. L has an NC0 proof system.
2. For some finite k, L =

⋃k
i=1 ui ·Li · vi, where each ui, vi is a finite word, and

each Li is a regular language accepted by some strongly connected automa-
ton.

An interesting question arising from this is whether the following languages are
decidable:

Reg-SCC =

{
M |M is a finite-state automaton; L(M) is accepted

by some strongly connected finite automaton

}
Reg-NC0

-PS =

{
M |M is a finite-state automaton; L(M) has an NC0

proof system

}
(Instead of a finite-state automaton, the input language could be described in
any form that guarantees that it is a regular language. )

We now establish one of our main results. NC0 is the restriction of AC0

where the fanin of each gate is bounded by a constant. By putting a fanin
bound that is ω(1) but o(nc) for every constant c (“sub-polynomial”), we obtain
intermediate classes. In particular, restricting the fanin of each gate to be at most
poly logn gives the class that we call poly log AC0 lying between NC0 and AC0.
We show that it is large enough to have proof systems for all regular languages.
As mentioned earlier, Proposition 2 implies that this upper bound is tight.
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Theorem 3. Every regular language has a poly log AC0 proof system.

Proof (Sketch). We give a high-level description of the proof idea. A complete
formal proof can be found in the full version of this article.

Consider a regular language L, and fix any automaton A for it. Assume for
simplicity that A has a single accepting state. For a word a = a1 . . . an, a proof of
a ∈ L is a sequence of states q0, q1, . . . , qn that is allegedly encountered on some
accepting run ρ of A on x. Suppose we are given a and such a sequence. We can
check local consistency (δ(qi−1, ai) = qi) and output a if all checks succeed. But
this requires checking all n positions, implying Ω(log n) depth. To circumvent
this, we provide additional information in the proof. Represent the interval (0, n]
as a binary tree T where

1. the root corresponds to the interval (0, n] = {1, 2, . . . , n},
2. a node corresponding to interval (i, j] has children corresponding to intervals

(i, � i+j2 �] (left child) and (� i+j2 �, j] (right child), and
3. a node corresponding to interval (k − 1, k] for k ∈ [n] is a leaf.

We call this the interval tree. For each interval (i, j] in T , we provide a pair of
states 〈u, v〉; these are intended to be the states qi and qj in the alleged accepting
run ρ. (Note that the state sequence on ρ itself is now supposed to be specified
at the leaves of T .)

We use this additional information to self-correct the proof. Each leaf (k−1, k]
has θ(logn) ancestors in T . To decide the bit at the kth position of the output,
the proof system will look at all ancestors of (k− 1, k] in the interval tree. It will
find the lowest ancestor – some (i, j] with i < k ≤ j – such that (i, j] and all its
ancestors are locally consistent (in a sense that we define precisely). It then uses
information at this ancestor (which could be the node (k− 1, k] itself) to decide
whether to output ak or some other bit at position k. A complete formal proof
can be found in the full version of this article. ��

The above proof also works for branching programs (BPs) which have width
O(log nO(1)) and are “structured” in the following sense:

Definition 2. A BP for length-n inputs is structured if it satisfies the follow-
ing:

1. It is layered: vertices are partitioned into n+1 layers V0, . . . , Vn and all edges
are between adjacent layers E ⊆ ∪i(Vi−1 × Vi).

2. Each layer has the same size w = |Vi|, the width of the BP. (This is not
critical; we can let w = max |Vi|.)

3. There is a permutation σ ∈ Sn such that for i ∈ [n], all edges in Vi−1 × Vi
read xσ(i) or xσ(i).

Potentially, this is much bigger than the class of languages accepted by non-
uniform finite-state automata. The proof of Theorem 3, as given in the full
version of this article, is stated in a way that clearly extends to polylog width
structured BPs.
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The language Maj has constant-width branching programs, but these are
not structured in the sense above. It can be shown that a structured BP for
Maj must have width Ω(n) (a family of growing automata Mn for Maj, where
Mn is guaranteed to be correct only on {0, 1}n, must have 1 + n/2 states in
Mn). Nonetheless, the idea from the proof of Theorem 3 can be used to give
a poly log AC0 proof system for Maj and for all threshold languages Th

n
k of

strings with at least k 1s.

Theorem 4. The threshold languages Th
n
k have poly log AC0 proof systems.

4 2TAUT, Reachability and NC0 Proof Systems

In this section, we first look at the language Undirected Reachability, which is
known to be in (and complete for) L ([13]). Intuitively, the property of connec-
tivity is a global one. However, viewing it from a different angle gives us a way
to construct an NC0 proof system for it under the standard adjacency matrix
encoding (i.e., our proof system will output adjacency matrices of all graphs that
have a path between s and t, and of no other graphs). In the process, we give
an NC0 proof system for the set of all undirected graphs that are a union of
edge-disjoint cycles.

Define the following languages:

uSTConn =

⎧⎨⎩A ∈ {0, 1}n×n|
A is the adjacency matrix of an undirected graph G
where vertices s = 1, t = n are in the same con-
nected component.

⎫⎬⎭

Cycles =

{
A ∈ {0, 1}n×n|

A is the adjacency matrix of an undirected graph
G = (V,E) where E is the union of edge-disjoint
simple cycles.

}

(For simplicity, we will say G ∈ uSTConn or G ∈ Cycles instead of referring
to the adjacency matrices. )

Theorem 5. The language uSTConn has an NC0 proof system.

Proof. We will need an addition operation on graphs: G1⊕G2 denotes the graph
obtained by adding the corresponding adjacency matrices modulo 2. We also
need a notion of upward closure: For any language A, UpClose(A) is the lan-
guage B = {y : ∃x ∈ A, |x| = |y|, ∀i, xi = 1 =⇒ yi = 1}. In particular, if
A is a collection of graphs, then B is the collection of super-graphs obtained
by adding edges. Note that (undirected) reachability is monotone and hence
UpClose(uSTConn) = uSTConn.

Let L1 = {G = G1 ⊕ (s, t)|G1 ∈ Cycles} and L2 = UpClose(L1). We show:

1. L2 = uSTConn.

2. If L1 has an NC0 proof system, then L2 has an NC0 proof system.
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3. If Cycles has an NC0 proof system, then L1 has an NC0 proof system.
4. Cycles has an NC0 proof system.

Proof of 1: We show that L1 ⊆ uSTConn ⊆ L2. Then applying upward closure,
L2 = UpClose(L1) ⊆ UpClose(uSTConn) = uSTConn ⊆ UpClose(L2) = L2.
L1 ⊆ uSTConn: Any graph G ∈ L1 looks like G = H ⊕ (s, t), where H ∈

Cycles. If (s, t) /∈ H , then (s, t) ∈ G and we are done. If (s, t) ∈ H , then s
and t lie on a cycle C and hence removing the (s, t) edge will still leave s and t
connected by a path C \ {(s, t)}.

uSTConn ⊆ L2: Let G ∈ uSTConn. Let ρ be an s-t path in G. Let H =
(V,E) be a graph such that E = edges in ρ. Then, G ∈ UpClose({H}). We can
write H as H ′ ⊕ (s, t) where H ′ = H ⊕ (s, t) = ρ ∪ (s, t); hence H ′ ∈ Cycles.
Hence H ∈ L1, and so G ∈ L2.

Proof of 2: We show a more general construction for monotone properties, and
then use it for uSTConn. The following lemma states that for any monotone
function f , constructing a proof system for a language that sits in between
Minterms(f) and f−1(1) suffices to get a proof system for f−1(1).

Lemma 1. Let f : {0, 1}∗ −→ {0, 1} be a monotone boolean function and let
L = f−1(1). Let L′ be a subset of L that contains all the minterms of f . If L′ has
a proof system of depth d, size s and a alternations, then L has a proof system
of depth d + 1, size s+ n and at most a + 1 alternations.

Proof. Let C be a proof circuit for L′ that takes input string x. We construct
a proof system for L using C and asking another input string y ∈ {0, 1}n. The
i’th output bit of our proof system is C(x)i ∨ yi. ��

Now note that Minterms(uSTConn) is exactly the set of graphs where the edge
set is a simple s-t path. We have seen that L1 ⊆ uSTConn. As above, we can
see that H ∈ Minterms(uSTConn) =⇒ H ⊕ (s, t) ∈ Cycles =⇒ H ∈ L1.
Statement 2 now follows from Lemma 1.

Proof of 3: Let A be the adjacency matrix output by the the NC0 proof system
for Cycles. The proof system for L1 outputs A′ such that A′[s, t] = A[s, t] and
rest of A′ is same as A.

Proof of 4: This is of independent interest, and is proved in theorem 6 below.
This completes the proof of theorem 5. ��

We now construct NC0 proof systems for the language Cycles.

Theorem 6. The language Cycles has an NC0 proof system.

Proof. The idea is to find a set of triangles T ⊆ Cycles such that:

1. Every graph in Cycles can be generated using triangles from T . i.e.,

Cycles ⊆ Span(T ) 

⎧⎨⎩
|T |∑
i=1

aiti | ∀i, ai ∈ {0, 1}, ti ∈ T

⎫⎬⎭
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2. Every graph generated from triangles in T is in Cycles; Span(T ) ⊆ Cycles.
3. ∀u, v ∈ [n], the edge (u, v) is contained in at most 6 triangles in T .

Once we find such a set T , then our proof system asks as input the coefficients
ai which indicate the linear combination needed to generate a graph in Cycles.
An edge e is present in the output if, among the triangles that contain e, an
odd number of them have coefficient set to 1 in the input. By property 3, each
output edge needs to see only constant many input bits and hence the circuit
we build is NC0. We will now find and describe T in detail.

Let the vertices of the graph be numbered from 1 to n. Define the length of
an edge (i, j) as |i − j|. A triple 〈i, j, k〉 denotes the set of triangles on vertices
(u, v, w) where |u− v| = i, |v − w| = j, and |u− w| = k. We now define the set

T =

n/2⋃
i=1

〈i, i, 2i〉 ∪ 〈i, i+ 1, 2i+ 1〉

Observation It can be seen that |T | ≤ 3
2n

2. This is linear in the length of the
output, which has

(
n
2

)
independent bits.

We now show that T satisfies all properties listed earlier.

T satisfies property 3: Take any edge e = (u, v). Let its length be l = |u− v|.
e can either be the longest edge in a triangle or one of the two shorter ones. If l is
even, then e can be the longest edge for only 1 triangle in T and can be a shorter
edge in at most 4 triangles in T . If l is odd, then e can be the longest edge for
at most 2 triangles in T and can be a shorter edge in at most 4 triangles. Hence,
any edge is contained in at most 6 triangles. T satisfies property 2: To see
this, note first that T ⊆ Cycles. Next, observe the following closure property
of cycles:

Lemma 2. For any G1, G2 ∈ Cycles, the graph G1 ⊕G2 ∈ Cycles.

Proof. A well-known fact about connected graphs is that they are Eulerian if and
only if every vertex has even degree. The analogue for general (not necessarily
connected) graphs is Veblen’s theorem [14], which states that G ∈ Cycles if
and only if every vertex in G has even degree.

Using this, we see that if for i ∈ [2], Gi ∈ Cycles and if we add the adjacency
matrices modulo 2, then degrees of vertices remain even and so the resulting
graph is also in Cycles. ��

It follows that Span(T ) ⊆ Cycles.

T satisfies property 1: We will show that any graph G ∈ Cycles can be
written as a linear combination of triangles in T . Define, for a graph G, the
parameter d(G) = (l,m) where l is the length of the longest edge in G and m is
the number of edges in G that have length l. For graphs G1, G2 ∈ Cycles, with
d(G1) = (l1,m1) and d(G2) = (l2,m2), we say d(G1) < d(G2) if and only if either
l1 < l2 holds or l1 = l2 and m1 < m2. Note that for any graph G ∈ Cycles

with d(G) = (l,m), l ≥ 2.
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Claim. Let G ∈ Cycles. If d(G) = (2, 1), then G ∈ T .

Proof. It is easy to see that G has to be a triangle with edge lengths 1, 1 and 2.
All such triangles are contained in T by definition. ��
Lemma 3. For every G ∈ Cycles with d(G) = (l,m), either G ∈ T or there is
a t ∈ T , and H ∈ Cycles such that G = H ⊕ t and d(H) < d(G).

Proof. If G ∈ T , then we are done. So now consider the case when G /∈ T :
Let e be a longest edge in G. Let C be the cycle which contains e. Pick t ∈ T

such that e is the longest edge in t. G can be written as H ⊕ t where H = G⊕ t.
From Lemma 2 and since T ⊆ Cycles, we know that H ∈ Cycles. Let t have
the edges e, e1, e2. Any edge present in both G and t will not be present in H .
Since e ∈ G ∩ t, e /∈ H . Length of e1 and e2 are both less than l since e was the
longest edge in t. Hence the number of times an edge of length l appears in H
is reduced by 1 and the new edges added(if any) to H (namely e1 and e2) have
length less then l. Hence if m > 1, then d(H) = (l,m − 1) < d(G). If m = 1,
then d(H) = (l′,m′) for some m′ and l′ < l, and hence d(H) < d(G). ��
By repeatedly applying Lemma 3, we can obtain the exact combination of trian-
gles from T that can be used to give any G ∈ Cycles. A more formal proof will
proceed by induction on the parameter d(G) and each application of Lemma 3
gives a graph H with a d(H) < d(G) and hence allows for the induction hypoth-
esis to be applied. The base case of the induction is given by Lemma 4. Hence
T satisifes property 1.

Since T satisfies all three properties, we obtain an NC0 proof system for
Cycles, proving the theorem. ��
The above proof does not work for directed Reach. However, we can show that
directed un-reachability can be captured by NC0 proof systems.

Theorem 7. The language UnReach defined below has an NC0 proof system
under the standard adjacency matrix encoding.

UnReach =

{
A ∈ {0, 1}n×n| A is the adjacency matrix of a directed graph G

with no path from s = 1 to t = n.

}
Proof. As proof, we take as input an adjacency matrix A and an n-bit vector
X with X(s) = 1 and X(t) = 0 hardwired. Intuitively, X is like a characteristic
vector that represents all vertices that can be reached by s.

The adjacency matrix B output by our proof system is:

B[i, j] =

{
1 if A[i, j] = 1 and it is not the case that X(i) = 1 and X(j) = 0,
0 otherwise

Soundness: No matter what A is, X describes an s, t cut since X(s) = 1 and
X(t) = 0. So any gaph output by the proof system will not have a path from s
to t.
Completeness: For any G ∈ UnReach, use the adjacency matrix of G as A and
give input X such that X(v) = 1 for a vertex v if and only if v is reachable from
s. ��
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5 Discussion

In this section, we discuss certain observations that we have made and remark
on related problems.

We know that any language in NP has AC0 proof systems. Srikanth Srinivasan
recently showed why proof system for characteristic functions of constant rate,
linear distance binary error correcting codes require Ω(logn) depth. Codes that
can be computed efficiently and achieve these parameters are known (See for eg
Justesen Code [15]). Thus AC0 seems necessary. However, we note that proof
systems for a big fragment of NP do not require the full power of AC0:

Theorem 8. Let L be any language in NP.

1. If L contains 0∗, then L has a proof system where negations appear only at
leaf level, ∧ gates have unbounded fanin, ∨ gates have O(1) fanin, and the
depth is O(1). That is, L has a coSAC0 proof system.

2. If L contains 1∗, then L has a proof system where negations appear only at
leaf level, ∨ gates have unbounded fanin, ∧ gates have O(1) fanin, and the
depth is O(1). That is, L has an SAC0 proof system.

3. The language ({1}·L·{0})∪0∗∪1∗ has both SAC0 and coSAC0 proof systems.

Using Lemma 1 and the known lower bound for Maj from [11], we can show
that the following languages have no NC0 proof systems:

Lemma 4. The following languages do not have NC0 proof systems.

1. ExMaj, consisting of strings x with exactly �|x|/2� 1s.
2. L = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x|1 = |y|1}.
3. GI = {G1, G2 | Graph G1 is isomorphic to graph G2}.

Here we assume that G1 and G2 are specified via their 0-1 adjacency matri-
ces, and that 1s on the diagonal are allowed (the graphs may have self-loops).

For Maj, we have given a proof system with O(log logn) depth (and O(1) al-
ternations), and it is known from [11] that ω(1) depth is needed. Can this gap
between the upper and lower bounds be closed?

Can we generalize the idea we use in Theorem 5 and apply it to other lan-
guages? In particular, can we obtain good upper bounds using this technique
for the language of s-t connected directed graphs? From the results of [11] and
this paper, we know languages complete for NC1, L, P and NP with NC0 proof
systems. A proof system for Reach would bring NL into this list.

Our construction from Theorem 3 can be generalized to work for languages
accepted by growing-monoids or growing-non-uniform-automata with poly-log
growth rate (see eg [16]). Can we obtain good upper bounds for linearly growing
automata?

In [17], proof systems computable in DLOGTIME are investigated. The tech-
niques used there seem quite different from those that work for small-depth
circuits, especially poly log AC0. Though in both cases each output bit can de-
pend on at most poly logn input bits, the circuit can pick an arbitrary set of
poly logn bits whereas a DLOGTIME proof system needs to write the index of
each bit on the index tape using up logn time.
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Abstract. The paper proposes a general notation for deterministic
automata traversing finite undirected structures: the graph-walking au-
tomata. This abstract notion covers such models as two-way finite au-
tomata, including their multi-tape and multi-head variants, tree-walking
automata and their extension with pebbles, picture-walking automata,
space-bounded Turing machines, etc. It is then demonstrated that every
graph-walking automaton can be transformed to an equivalent reversible
graph-walking automaton, so that every step of its computation is log-
ically reversible. This is done with a linear blow-up in the number of
states, where the linear factor depends on the degree of graphs being
traversed. The construction directly applies to all basic models covered
by this abstract notion.

1 Introduction

Logical reversibility of computations is an important property of computational
devices in general, which can be regarded as a stronger form of determinism.
Informally, a machine is reversible, if, given its configuration, one can always
uniquely determine its configuration at the previous step. This property is par-
ticularly relevant to the physics of computation, as irreversible computations
incur energy dissipation [18]. It is known from Lecerf [20] and Bennett [3] that
every Turing machine can be simulated by a reversible Turing machine. Later,
the time and space cost of reversibility was analyzed in the works of Bennett [4],
Crescenzi and Papadimitriou [10], Lange et al. [19] and Buhrman et al. [8]. A line
of research on reversibility in high-level programming languages was initiated by
Abramsky [1]. Reversibility in cellular automata also has a long history of re-
search, presented in surveys by Toffoli and Margolus [26] and by Kari [15]. In
the domain of finite automata, the reversible subclass of one-way deterministic
finite automata (1DFAs) defines a proper subfamily of regular languages [23].
On the other hand, every regular language is accepted by a reversible two-way
finite automaton (2DFA): as shown by Kondacs and Watrous [16], every n-state
1DFA can be simulated by a 2n-state reversible 2DFA.
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One of the most evident consequences of reversibility is that a reversible au-
tomaton halts on every input (provided that the state-space is bounded). The
property of halting on all inputs has received attention on its own. For time-
bounded and space-bounded Turing machines, halting can be ensured by ex-
plicitly counting the number of steps, as done by Hopcroft and Ullman [14]. A
different method for transforming a space-bounded Turing machine to an equiv-
alent halting machine operating within the same space bounds was proposed
by Sipser [24], and his approach essentially means constructing a reversible ma-
chine, though reversibility was not considered as such. In particular, Sipser [24]
sketched a transformation of an n-state 2DFA to an O(n2)-state halting 2DFA
(which is actually reversible), and also mentioned the possibility of an improved
transformation that yields O(n) states, where the multiplicative factor depends
upon the size of the alphabet. The fact that Sipser’s idea produces reversible
automata was noticed and used by Lange et al. [19] to establish the equivalence
of deterministic space s(n) to reversible space s(n). Next, Kondacs and Wa-
trous [16] distilled the construction of Lange et al. [19] into the mathematical
essence of constructing reversible 2DFAs. A similar construction for making a
2DFA halt on any input was later devised by Geffert et al. [13], who have amalga-
mated an independently discovered method of Kondacs and Watrous [16] with a
pre-processing step. For tree-walking automata (TWA), a variant of Sipser’s [24]
construction was used by Muscholl et al. [22] to transform an n-state automaton
to an O(n2)-state halting automaton.

The above results apply to various models that recognize input structures by
traversing them: such are the 2DFAs that walk over input strings, and the TWAs
walking over input trees. More generally, these results apply to such models
as deterministic space-bounded Turing machines, which have extra memory at
their disposal, but the amount of memory is bounded by a function of the size
of the input. What do these models have in common? They are equipped with a
fixed finite-state control, as well as with a finite space of memory configurations
determined by the input data, and with a fixed finite set of operations on this
memory. A machine of such a type is defined by a transition table, which instructs
it to apply a memory operation and to change its internal state, depending on
the current state and the currently observed data stored in the memory.

This paper proposes a general notation for such computational models: the
graph-walking automata (GWA). In this setting, the space of memory configura-
tions is regarded as an input graph, where each node is a memory configuration,
labelled by the data observed by the machine in this position, and the operations
on the memory become labels of the edges. Then a graph-walking automaton tra-
verses an input graph using a finite-state control and a transition function with
a finite domain, that is, at any moment the automaton observes one of finitely
many possibilities. The definitions assume the following conditions on the orig-
inal models, which accordingly translate to graph-walking automata; these as-
sumptions are necessary to transform deterministic machines to reversible ones:

1. Every elementary operation on the memory has an opposite elementary oper-
ation that undoes its effect. For instance, in a 2DFA, the operation of moving
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the head to the left can be undone by moving the head to the right. In terms
of graphs, this means that input graphs are undirected, and each edge has its
end-points labelled by two opposite direction symbols, representing traversal
of this edge in both directions.

2. The space of memory configurations on each given input object is finite, and
it functionally depends on the input data. For graph-walking automata, this
means that input graphs are finite. Though, in general, reversible computa-
tion is possible in devices with unbounded memory, the methods investigated
in this paper depend upon this restriction.

3. The automaton can test whether the current memory configuration is the
initial configuration. In a graph-walking automaton, this means that the
initial node, where the computation begins, has a distinguished label.

Besides the aforementioned 2DFAs, TWAs and space-bounded Turing machines,
graph-walking automata cover such generalizations as multi-head automata, au-
tomata with pebbles, etc.

The goal of this paper is to deal with the reversibility of computations on
the general level, as represented by the model of graph-walking automata. The
main results of this paper are transformations from automata of the general form
to the returning automata, which may accept only in the initial node, and from
returning to reversible automata. Both transformations rely on the same effective
construction, which generalizes the method of Kondacs and Watrous [16], while
the origins of the latter can be traced to the general idea due to Sipser [24]. The
constructions involve only a linear blow-up in the number of states. Both results
apply to every concrete model of computation representable as GWAs.

Investigating further properties of graph-walking automata is proposed as a
worthy subject for future research. Models of this kind date back to automata
in labyrinths, introduced by Shannon and later studied by numerous authors as
a model of graph exploration by an agent following the edges of an undirected
graph. This line of research has evolved into a thriving field of algorithms for
searching and automatic mapping of graphs, which is surveyed in the recent
paper by Fraigniaud et al. [12]. Other important models defining families of
graphs are graph-rewriting systems and monadic second-order logic on graphs
researched by Courcelle [9], and graph tilings studied by Thomas [25].

2 Graph-Walking Automata

The automata studied in this paper walk over finite undirected graphs, in which
every edge can be traversed in both directions. The directions are identified by
labels attached to both ends of an edge. These labels belong to a finite set of
directions D, with a bijective operation − : D → D representing opposite direc-
tions. If a graph models the memory, the directions represent elementary opera-
tions on this memory, and the existence of opposite directions means that every
elementary operation on the memory can be reversed by applying its opposite.

Definition 1. A signature S consists of
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– a finite set of directions D;
– a bijective operation − : D → D, satisfying −(−d) = d for all d ∈ D;
– a finite set Σ of possible labels of nodes of the graph;
– a non-empty subset Σ0 ⊆ Σ of labels allowed in the initial node;
– a set Da ⊆ D of directions for every a ∈ Σ.

In each graph over S, every node labelled with a ∈ Σ must be of degree |Da|,
with the incident edges corresponding to the elements of Da.

Definition 2. A graph over the signature S is a quadruple (V, v0,+, λ), where

– V is a finite set of nodes;
– v0 ∈ V is the initial node;
– +: V × D → V is a partial mapping, satisfying the following condition of

invertibility by opposite directions: for every v ∈ V and d ∈ D, if v + d is
defined, then (v + d) + (−d) is defined too and (v + d) + (−d) = v. In the
following, v − d denotes v + (−d);

– the total mapping λ : V → Σ is a labelling of nodes, such that for all v ∈ V ,
(i) d ∈ Dλ(v) if and only if v + d is defined,
(ii) λ(v) ∈ Σ0 if and only if v = v0.

Definition 3. A deterministic graph-walking automaton (GWA) over a signa-
ture S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, δ, F ), where

– Q is a finite set of internal states,
– q0 ∈ Q is the initial state,
– F ⊆ Q×Σ is a set of acceptance conditions, and
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where it is defined.

Given a graph (V, v0,+, λ), the automaton begins its computation in the state
q0, observing the node v0. At each step of the computation, with the automaton
in a state q ∈ Q observing a node v, the automaton looks up the transition table
δ for q and the label of v. If δ(q, λ(v)) is defined as (q′, d), the automaton enters
the state q′ and moves to the node v + d. If δ(q, λ(v)) is undefined, then the
automaton accepts the graph if (q, λ(v)) ∈ F and rejects otherwise.

The two most well-known special cases of GWAs are the 2DFAs, which walk
over path graphs, and TWAs operating on trees.

Example 1. A two-way deterministic finite automaton (2DFA) operating on a
tape delimited by a left-end marker 1 and a right-end marker 8, with the tape
alphabet Γ , is a graph-walking automaton operating on graphs over the signature
S with D = {+1,−1}, Σ = Γ ∪ {1,8}, Σ0 = {1}, D! = {+1}, D" = {−1} and
Da = {+1,−1} for all a ∈ Γ .

All connected graphs over this signature are path graphs, containing one instance
of each end-marker and an arbitrary number of symbols from Γ in between.
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For an input string w = a1 . . . an, with n � 0, the corresponding graph has the
set of nodes V = {0, 1, . . . , n, n + 1} representing positions on the tape, with
v0 = 0 and with v + d defined as the sum of integers. These nodes are labelled
as follows: λ(0) = 1, λ(n + 1) = 8 and λ(i) = ai for all i ∈ {1, . . . , n}.

Consider tree-walking automata, defined by Aho and Ullman [2, Sect. VI] and
later studied by Bojańczyk and Colcombet [6,7]. Given an input binary tree, a
tree-walking automaton moves over it, scanning one node at a time. At each step
of its computation, it may either go down to any of the sons of the current node
or up to its father. Furthermore, in any node except the root, the automaton is
invested with the knowledge of whether this node is the first son or the second
son [6]. Traversal of trees by these automata can be described using directions
of the form “go down to the i-th son” and the opposite “go up from the i-th son
to its father”.

In the notation of graph-walking automata, the knowledge of the number of
the current node among its siblings is given in its label: for each label a, the set
of valid directions Da contains exactly one upward direction and all downward
directions. Furthermore, by analogy with 2DFAs, the input trees of tree-walking
automata shall have end-markers attached to the root and to all leaves; in both
cases, these markers allow a better readable definition.

Example 2. A tree-walking automaton on k-ary trees uses the set of directions
D = {+1,+2, . . . ,+k,−1,−2, . . . ,−k}, with −(+i) = −i, where positive di-
rections point to children and negative ones to fathers. Trees are graphs la-
belled with symbols in Σ = {%,⊥1, . . . ,⊥k} ∪ Γ , where the top marker % with
D# = {+1} is the label of the root v0 (and accordingly, Σ0 = {%}), while each
i-th bottom marker ⊥i with D⊥i = {−i} is a label for leaves. Elements of the
set Γ are used to label internal nodes of the tree, so that for each a ∈ Γ there
exists i ∈ {1, . . . , k} with Da = {−i,+1, . . . ,+k}, which means that every node
labelled by a is the i-th child of its father.

In general, consider any computational device recognizing input objects of any
kind, which has a fixed number of internal states and employs auxiliary mem-
ory holding such data as the positions of reading heads and the contents of any
additional data structures. Assume that for each fixed input, the total space of
possible memory configurations of the device and the structure of admissible
transitions between these configurations are known in advance. The set of mem-
ory configurations with the structure of transitions forms a graph of memory
configurations, which can be presented in the notation assumed in this paper by
taking elementary operations on the memory as directions. The label attached
to the currently observed node represents the information on the memory con-
figuration available to the original device, such as the contents of cells observed
by heads; along with its internal state, this is all the data it can use to determine
its next move. Thus the device is represented as a graph-walking automaton.

As an example of such a representation, consider 2DFAs equipped with mul-
tiple reading heads, which can independently move over the same input tape:
the multi-head automata.
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Example 3. A k-head 2DFA with a tape alphabet Γ is described by a graph-
walking automaton as follows. Its memory configuration contains the positions
of all k heads on the tape. The set of directions is D = {−1, 0,+1}k\{0}k, where
a direction (s1, . . . , sk) with si ∈ {−1, 0,+1} indicates that each i-th head is to

be moved in the direction si. Each label in Σ =
(
Γ∪{1,8}

)k
contains all the data

observed by the automaton in a given memory configuration: this is a k-tuple
of symbols scanned by all heads. There is a unique initial label corresponding
to all heads parked at the left-end marker, that is, Σ0 = {(1, . . . ,1)}. For each
node label (s1, . . . , sk) ∈ Σ, the set of directions D(s1,...,sk) contains all k-tuples

(d1, . . . , dk) ∈ {−1, 0,+1}k, where di �= −1 if si = 1 and di �= +1 if si = 8; the
latter conditions disallow moving any heads beyond either end-marker.

The automaton operates on graphs of the following form. For each input string
a1 . . . an ∈ Γ ∗, let a0 = 1 and an+1 = 8 for uniformity. Then the set of nodes
of the graph is a discrete k-dimensional cube V = {0, 1, . . . , n, n + 1}k, with
each node (i1, . . . , ik) ∈ V labelled with (ai1 , . . . , aik) ∈ Σ. The initial node is
v0 = (0, . . . , 0), labelled with (1, . . . ,1).

The graphs representing memory configurations of k-head 2DFAs, as described
in Example 3, are not all connected graphs over the given signature. If edges are
connected differently than in a grid of the form given above, the resulting graph
no longer corresponds to the space of configurations of a k-head 2DFA on any
input. However, on the subset of graphs of the intended form, a GWA defined
in Example 3 correctly represents the behaviour of a k-head 2DFA.

Several other models of computation can be described by GWAs in a similar
way. Consider two-way finite automata with pebbles, introduced by Blum and
Hewitt [5]: these are 2DFAs equipped with a fixed number of pebbles, which
may be dispensed at or collected from the currently visited cell. When such
automata are represented as GWAs, the currently visited node of a graph repre-
sents the positions of the head and pebbles, while the label encodes the symbol
observed by the head, together with the information on which pebbles are cur-
rently placed, and which of them are placed at the observed cell. This model can
be extended to tree-walking automata with pebbles, first considered by Engel-
friet and Hoogeboom [11] and subsequently studied by Muscholl et al. [22]. All
these models can be further extended to have multiple reading heads, to work
over multidimensional arrays (such as the 4DFAs of Blum and Hewitt [5]), etc.,
and each case can be described by an appropriate kind of GWAs operating over
graphs that encode the space of memory configurations of the desired automata.

Typical models that cannot be described as automata walking on undirected
graphs are those, which cannot immediately return to the previous configuration
after any operation. Such are the 1DFAs [23] or pushdown automata [17].

3 Reversibility and Related Notions

The definition of logical reversibility for graph-walking automata is comprised
of several conditions, and the first condition is that each state is accessed from
a unique direction.
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Definition 4. A graph-walking automaton is called direction-determinate, if ev-
ery state is reachable from a unique direction, that is, there exists a partial func-
tion d : Q → D, such that δ(q, a) = (q′, d′) implies d′ = d(q′). As the direction
is always known, the notation for the transition function can be simplified as
follows: for each a ∈ Σ, let δa : Q → Q be a partial function defined by δa(p) = q
if δ(p, a) = (q, d(q)).

A GWA can be made direction-determinate by storing the last used direction in
its state.

Lemma 1. For every graph-walking automaton with a set of states Q and a set
of directions D, there exists a direction-determinate automaton with the set of
states Q×D, which recognizes the same set of graphs.

Another subclass of automata requires returning to the initial node after accep-
tance.

Definition 5. A graph-walking automaton is called returning, if it has F ⊆
Q×Σ0, that is, if it accepts only at the initial node.

For each computational model mentioned in Section 2, returning after acceptance
is straightforward: a 2DFA moves its head to the left, a 2DFA with pebbles picks
up all its pebbles, a space-bounded Turing machine erases its work tape, etc.
However, for graphs of the general form, finding a way back to the initial node
from the place where the acceptance decision was reached is not a trivial task.
This paper defines a transformation to a returning automaton, which finds the
initial node by backtracking the accepting computation.

Theorem 1. For every direction-determinate graph-walking automaton with n
states, there exists a direction-determinate returning graph-walking automaton
with 3n states recognizing the same set of graphs.

For every direction-determinate graph-walking automaton, consider the inverses
of transition functions by all labels, δ−1

a : Q → 2Q for a ∈ Σ, defined by
δ−1
a (q) = { p | δa(p) = q }. Given a configuration of a direction-determinate

automaton, one can always determine the direction d, from which the automa-
ton came to the current node v at the previous step; and if the function δλ(v−d)
is furthermore injective, then the state at the previous step is also known, and
hence the configuration at the previous step is uniquely determined. This leads
to the following definition of automata, whose computations can be uniquely
reconstructed from their final configurations:

Definition 6. A direction-determinate graph-walking automaton is reversible,
if

i. every partial function δa is injective, that is, |δ−1
a (q)| � 1 for all a ∈ Σ and

q ∈ Q, and
ii. the automaton is returning, and for each a0 ∈ Σ0, there exists at most one

state q, such that (q, a0) ∈ F (this state is denoted by qa0
acc).
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The second condition ensures that if an input graph (V, v0,+, λ) is accepted,

then it is accepted in the configuration (q
λ(v0)
acc , v0). Therefore, this assumed ac-

cepting computation can be traced back, beginning from its final configuration,
until either the initial configuration (q0, v0) is reached (which means that the au-
tomaton accepts), or a configuration without predecessors is encountered (then
the automaton does not accept this graph). This reverse computation can be
carried out by another reversible GWA.

Lemma 2. On each finite input graph (V, v0,+, λ), a reversible graph-walking
automaton beginning in an arbitrary configuration (q̂, v̂) either halts after finitely
many steps, or returns to the configuration (q̂, v̂) and loops indefinitely.

The second case in Lemma 2 allows a reversible automaton to be non-halting,
if its initial configuration can be re-entered. This possibility may be ruled out
by disallowing any transitions leading to the initial state. Another imperfection
of reversible automata is that while they may accept only in a single designated
configuration, there are no limitations on where they may reject. Thus, back-
tracking a rejecting computation is not possible, because it is not known where
it ends. The below strengthened definition additionally requires rejection to take
place in a unique configuration, analogous to the accepting configuration.

Definition 7. A strongly reversible automaton is a reversible automaton A =
(Q, q0, δ, F ) with non-reenterable initial state, which additionally satisfies the
following conditions:

iii. for every non-initial label a ∈ Σ \ Σ0, the partial function δa is a bijection
from { p ∈ Q | −d(p) ∈ Da } to { q ∈ Q | d(q) ∈ Da },

iv. for each initial label a0 ∈ Σ0, there is at most one designated rejecting state
qa0

rej ∈ Q, for which neither δa0(qa0

rej) is defined, nor (qa0

rej, a0) is in F ,
v. for all a0 ∈ Σ0 and for all states q ∈ Q \ {qa0

acc, q
a0

rej}, δa0(q) is defined if and
only if −d(q) ∈ Da0 or q = q0.

The requirement on the range of δa, with a /∈ Σ0, in condition (iii) means that
if a-labelled nodes have a direction d ∈ Da for reaching a state q ∈ Q, then
there is a state p ∈ Q, in which this direction d can be used to get to q. The
requirement on the domain of δa means that this function is defined precisely
for those states p, which can be possibly entered in a-labelled nodes, that is, for
such states p, that the direction for entering p leads to these nodes. This in par-
ticular implies that whenever a computation of a strongly reversible automaton
enters a configuration (p, v) with λ(v) /∈ Σ0 (that is, v �= v0), the next step of
the computation is defined and the automaton cannot halt in this configuration.
Similarly, condition (v) ensures that the computation cannot halt in the initial
node, unless it reaches either the corresponding accepting state qa0

acc or the cor-
responding rejecting state qa0

rej. Because the initial state of a strongly reversible
automaton is not re-enterable, Lemma 2 guarantees that its computation begin-
ning in the initial configuration always halts, with its head scanning the initial
node, and either in the accepting state or in the rejecting state.
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Lemma 3. For every finite input graph (V, v0,+, λ), a strongly reversible graph-
walking automaton, starting in the initial configuration, either accepts in the

configuration (q
λ(v0)
acc , v0) or rejects in the configuration (q

λ(v0)
rej , v0).

The transformation of a deterministic automaton to a reversible one developed
in this paper ensures this strongest form of reversibility.

Theorem 2. For every direction-determinate returning graph-walking automa-
ton with n states, there exists a strongly reversible graph-walking automaton with
2n+ 1 states recognizing the same set of graphs.

Theorems 1–2 and Lemma 1 together imply the following transformation:

Corollary 1. For every graph-walking automaton with n states and d directions,
there exists a strongly reversible automaton with 6dn + 1 states recognizing the
same set of graphs.

4 Reversible Simulation of Irreversible Automata

The fundamental construction behind all results of this paper is the following
reversible simulation of an arbitrary deterministic graph-walking automaton.

Lemma 4. For every direction-determinate automaton A = (Q, q0, δ, F ) there

exists a reversible automaton B = (
−→
Q ∪ [Q], δ′, F ′) without an initial state, where

−→
Q = {−→q | q ∈ Q } and [Q] = { [q] | q ∈ Q } are disjoint copies of Q, with the
corresponding directions d′(−→q ) = d(q) and d′([q]) = −d(q), and with acceptance
conditions F ′ =

{
([δa0(q0)], a0)

∣∣ a0 ∈ Σ0, δa0(q0) is defined
}
, which has the

following property: For every graph (V, v0,+, λ), its node v̂ ∈ V and a state
q̂ ∈ Q of the original automaton, for which (q̂, λ(v̂)) ∈ F and −d(q̂) ∈ Dλ(v̂), the
computation of B beginning in the configuration ([q̂], v̂ − d(q̂)),

– accepts in the configuration ([δλ(v0)(q0)], v0), if (q̂, v̂) �= (q0, v0) and A accepts
this graph in the configuration (q̂, v̂), as shown in Figure 1 (case 1).

– rejects in (
−→
q̂ , v̂), otherwise (see Figure 1, case 2).

Proof (the overall idea). As per Sipser’s [24] general approach, the automaton B
searches through the tree of the computations of A leading to the configuration
(q̂, v̂), until it finds the initial configuration of A or until it verifies that the
initial configuration is not in the tree. While searching, it remembers a single
state of A, as well as one bit of information indicating the current direction of
search: a state [q] ∈ [Q] means tracing the computation in reverse, while in a

state −→q ∈ −→
Q the computation of A is simulated forward1.

1 To compare, Sipser [24], followed by Muscholl et al. [22], has the simulating au-
tomaton remember two states of the original automaton, leading to a quadratic size
blowup, while Morita’s [21] simulation remembers a state and a symbol.
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Fig. 1. Reversible GWA B in Lemma 4 checking whether A accepts in (q̂, v̂):

(1) if so, accept in ([q], v0), where q = δa0(q0); (2) otherwise, reject in (
−→
q̂ , v̂)

Whenever B reaches a state [q] in a node v, this means that the computation
of A, beginning in the state q with the head in the neighbouring node v + d(q),
eventually leads to the configuration (q̂, v̂). In this way, the backward compu-
tation traces the state and the position of the head in a forward computation,
but the state and the position are always out of synchronization by one step.
When the automaton switches to forward simulation, and reaches a state −→q ,
its head position is synchronized with the state, and this represents the original
automaton’s being in the state q, observing the same node.

The proofs of both theorems follow from this lemma. In the proof of Theo-
rem 1, an arbitrary direction-determinate GWA A is transformed to a returning
direction-determinate GWA, which operates as follows: first it simulates A until
it accepts, and then backtracks the accepting computation of A to its initial
configuration, using the reversible automaton constructed from A according to
Lemma 4. If A rejects or loops, the constructed automaton will reject or loop in
the same way, as it will never reach the backtracking stage.

In the proof of Theorem 2, a given returning direction-determinate automaton
A is simulated by a reversible automaton B of Lemma 4.

5 Application to Various Types of Automata

The aim of this section is to revisit several models of computation represented
as GWAs in Section 2, and apply the results of this paper to each of them.

Proposition 1. Each n-state 2DFA has an equivalent (4n + 3)-state strongly
reversible 2DFA.

Indeed, for 2DFAs, the set of directions D = {−1,+1} is a two-element set,
and hence the transformation to direction-determinate duplicates the number of
states. In order to make a direction-determinate 2DFA returning, it is sufficient
to add one extra state, in which the automaton will move the head to the left-
end marker after it decides to accept. Applying Theorem 2 to the resulting
automaton gives a strongly reversible 2DFA with 4n+ 3 states.
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In the case of 2DFAs, Theorem 2 is essentially a generalization of the construc-
tion by Kondacs and Watrous [16] from 1DFAs to direction-determinate 2DFAs.
The transformation of an n-state 2DFA to a 2DFA with 4n + const states that
halts on every input, presented by Geffert et al. [13], most likely results in the
same reversible automaton as constructed in Proposition 1, but both main steps
of the construction are amalgamated into one. Thus, the two-step transformation
proving Proposition 1 explains the construction given by Geffert et al. [13].

Turning to tree-walking automata, Muscholl et al. [22] proved that an n-state
TWA can be transformed to a halting TWA with O(n2) states, using another
implementation of Sipser’s method [24]. This can be now improved as follows.

Proposition 2. Any n-state TWA over k-ary trees can be transformed to a
(4kn+ 2k + 1)-state strongly reversible TWA.

Here the transformation to direction-determinate multiplies the number of states
by |D| = 2k. Parking the head after acceptance generally requires only one extra
state, in which the automaton will go up to the root. However, in order to keep
the resulting automaton direction-determinate, one has to use k extra states
q1return, . . . , qkreturn with d(qireturn) = −i. Reversibility is ensured by Theorem 2,
which produces 2(2kn+ k) + 1 states, as stated.

The next model are the multi-head automata, for which Morita [21] proved
that an n-state k-head 2DFA can be transformed to a reversible k-head 2DFA
with O(n) states, where the constant factor depends both on k and on the
alphabet. The general results of this paper imply a transformation with the
constant factor independent of the alphabet.

Proposition 3. Any n-state k-head 2DFA can be transformed to a (2(3k−1)n+
2k + 1)-state strongly reversible k-head 2DFA.

Since there are 3k − 1 directions, the transformation to direction-determinate
automaton incurs a (3k − 1)-times blowup. Adding k extra states to park all
k heads after acceptance produces an automaton with (3k − 1)n + k states, to
which Theorem 2 is applied.

In the full paper, it is similarly shown how to transform an n-state Turing
machine operating in marked space s(
), with an m-symbol work alphabet, to a
(6(m2 −m+ 4)n + 6m + 16)-state reversible Turing machine of the same kind.
There are also transformations of an n-state 4DFA to a (8n+ 9)-state strongly
reversible 4DFA, and of an n-state k-pebble 2DFA to a ((4k+4)n+2k+5)-state
strongly reversible k-pebble 2DFA. The list of such results can be continued
further, by representing various models of computation with a bounded graph
of memory configurations as graph-walking automata, and then applying the
general theorems of this paper.
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6. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
Theoretical Computer Science 350(2-3), 164–173 (2006)
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Abstract. We say that a deterministic finite automaton (DFA) A is composite
if there are DFAs A1, . . . ,At such that L(A) =

⋂t
i=1 L(Ai) and the index of

every Ai is strictly smaller than the index of A. Otherwise, A is prime. We study
the problem of deciding whether a given DFA is composite, the number of DFAs
required in a decomposition, methods to prove primality, and structural properties
of DFAs that make the problem simpler or are retained in a decomposition.

1 Introduction

Compositionality is a well motivated and studied notion in computer science [2]. By
decomposing a problem into several smaller problems, it is possible not only to increase
parallelism, but also to sometimes handle inputs that are otherwise intractable. A major
challenge is to identify problems and instances that can be decomposed.

Consider for example the LTL model-checking problem [9]. Given a system S and
a specification ψ, checking whether all the computations of S satisfy ψ can be done in
time linear in S and exponential in ψ. If ψ is a conjunction of smaller specifications,
say ψ = ϕ1 ∧ · · · ∧ ϕt, then it is possible to check instead whether S satisfies each
of the ϕi’s.1 Not all problems allow for easy decomposition. For example, if we wish
to synthesize a transducer that realizes the specification ψ above, it is not clear how
to use the decomposition of ψ into its conjuncts. In particular, it is not clear how to
compose a transducer that realizes ψ from t transducers that realize ϕ1, . . . , ϕt [6].
In the automata-theoretic approach to formal verification, we use automata in order
to model systems and their specifications. A natural question then is whether we can
decompose a given automaton A into smaller automata A1, . . . ,At such that L(A) =⋂t
i=1 L(Ai). Then, for example, we can reduce checking L(S) ⊆ L(A) to checking

whether L(S) ⊆ L(Ai) for all 1 ≤ i ≤ t.
The automata used for reasoning about systems and their specifications are typically

nondeterministic automata on infinite words [11]. As it turns out, however, the ques-
tion of automata decomposition is open already for the basic model of deterministic
automata on finite words (DFAs). Studying DFAs also suggests a very clean mathe-
matical approach, as each regular language has a canonical minimal DFA recognizing
it. Researchers have developed a helpful algebraic approach for DFAs that offers some
very interesting results on DFAs and their decomposition. To the best of our knowledge,
however, the basic question of decomposing a DFA into smaller DFAs is still open.

1 The ability to decompose the specification causes the systems, which are much bigger than the
sub-specifications, to be the computational bottleneck in the model-checking problem. Thus,
a different big challenge is to decompose the system [10].

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 607–618, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In the algebraic approach, a DFA A is matched with a monoid M(A). The members
of M(A) are the actions of words in Σ∗ on the states of A. That is, each member
is associated with a word and corresponds to the states-to-states transition function
induced by the word. In particular, ε corresponds to the identity element. A DFA is
called a permutation DFA if its monoid consists of permutations. A DFA is called a
reset DFA if its monoid consists of constant functions and the identity function. The
algebraic approach is used in [5] in order to show that every DFA A can be presented
as a wreath product of reset DFAs and permutation DFAs, whose algebraic structure is
simpler than that of A. A wreath product of a sequence A1,A2 . . . ,At of DFAs is a
cascade in which the transition function of each DFA Ai may depend on the state of Ai

as well as the states of the DFAs preceding Ai in the sequence.
The algebraic approach is based on a syntactic congruence between words in Σ∗:

given a regular language L ⊆ Σ∗, we have that x ∼L y, for x, y ∈ Σ∗, if for every
w, z ∈ Σ∗, it holds that w · x · z ∈ L iff w · y · z ∈ L. Thus, the congruence refers
to extensions of words from both right and left. In the context of minimization, which
motivates the practical study of decomposition, one is interested in right congruence.
There, x ∼L y iff for all words z ∈ Σ∗, we have that x · z ∈ L iff y · z ∈ L. By the
Myhill-Nerode theorem [7,8], the equivalence classes of ∼L constitute the state space
of a minimal canonical DFA for L. The number of equivalence classes is referred to
as the index of L. We say that a language L ⊆ Σ∗ is composite if there are languages
L1, . . . , Lt such that L =

⋂t
i=1 Lt and the index of Li, for all 1 ≤ i ≤ t, is strictly

smaller than the index of L. Otherwise, we say that L is prime. The definitions applies
also to DFAs, referring to the languages they recognize.

For example, for Σ with |Σ| > 1 and w ∈ Σ∗, let Lw = {w}. Clearly, the index
of Lw is |w| + 2. We claim that if w contains at least two different letters, then Lw is
composite. To see this, we show we can express Lw as the intersection of two DFAs of
index at most |w|+1. Let σ be some letter in w, and let m be its number of occurrences
in w. By the condition on w, we have that 1 ≤ m < |w|. It is easy to see that Lw is the
intersection of the language w∗, whose index is |w| + 1, and the language of all words
in which σ appears exactly m times, whose index is m + 2 ≤ |w| + 1. On the other
hand, if w consists of a single letter, then Lw is prime. One of our goals in this work is
to develop techniques for proving primality.

The decomposition of Lw described above is of width 2; that is, it has two factors.
The case of decompositions of width 2 was studied in [3], where the question of whether
one may need wider decompositions was left open. We answer the question positively;
that is, we present a language that does not have a decomposition of width 2 but has
one of width 3. For compositions of width 2, the question of deciding whether a given
DFA is composite is clearly in NP, as one can guess the two factors. In the general case,
the only bound we have on the width is exponential, which follows from the bound
on the size of the underlying DFAs. This bound suggests an EXPSPACE algorithm for
deciding whether a given DFA is composite.

Consider a DFA A. We define the roof of A as the intersection of all languages
L(B), where B is a DFA such that L(A) ⊆ L(B) and the index of B is smaller than
that of A. Thus, the roof of A is the minimal (with respect to containment) language
that can be defined as an intersection of DFAs whose language contain the language
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of A and whose index is smaller than the index of A. Accordingly, A is composite iff
L(A) = roof (A). We use roofs in order to study primality further. In particular, if A is
prime then there exists a word w ∈ roof (A) \ L(A). The word w is called a primality
witness for A. Indeed, A is prime iff it has a primality witness.

Let us go back to the language Lw from the example above. We wish to prove that
when w = σn for some letter σ, then Lw is prime. Let l > n be a natural number such
that for every p ≤ n+ 1 it holds that n ≡ l mod p. The existence of l is guaranteed by
the Chinese remainder theorem. In the paper, we prove that σl is a primality witness for
Lw and conclude that Lw is prime. We use the notion of a primality witness to prove
the primality of additional, more involved, families of languages.

We then turn to study structural properties of composite and prime DFAs. Each DFA
A induces a directed graph GA. We study the relation between the structure of GA
and the primality of A. We identify cases, for example co-safety languages whose DFA
contains one rejecting strongly connected component from which an accepting sink is
reachable, where primality (with a short primality witness) is guaranteed. We also study
structural properties that can be retained in a decomposition and prove, for example,
that a composite strongly connected DFA can be decomposed into strongly connected
DFAs.

Recall that a decomposition of a DFA A consists of DFAs that contain the language
of A and are still of a smaller index. A simple way to get a DFA with the above prop-
erties is by merging states of A. A simple decomposition of A is a decomposition in
which each of the underlying DFAs is a result of merging states of A. Simple decom-
positions have also been studied in [4] in the context of sequential machines. It follows
from [3] that some DFAs have a decomposition of width 2 yet do not have a simple
decomposition. We characterize simple decompositions and show that the problem of
deciding whether a given DFA has a simple decomposition is in PTIME.

Finally, we develop an algebraic view of DFA primality. As [5], our approach is
based on the transition monoid of A. First, we show that once we fix the set of accepting
states, the question of primality of a DFA A depends only on A’s transition monoid,
rather than its transition function or alphabet. We then focus on permutation DFAs.
Given a permutation DFA A we construct a new DFA, termed the monoid DFA, such
that compositionally of A can be reduced to simple-compositionality of its monoid
DFA. Driven by observations about monoid DFAs, we show a PSPACE algorithm for
deciding the primality of A. We also show that composite permutation DFAs can be
decomposed into permutation DFAs.

Due to lack of space, many examples and proofs are omitted. They can be found in
the full version, in the authors’ URLs.

2 Preliminaries

A deterministic finite automaton (DFA) is a 5-tuple A = 〈Q,Σ, q0, δ, F 〉, where Q is
a finite set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → Q is a transition
function, q0 ∈ Q is an initial state, and F ⊆ Q is a set of accepting states. For q ∈ Q,
we use Aq to denote the DFA A with q as the initial state. That is, Aq = 〈Q,Σ, q, δ, F 〉.
We extend δ to words in the expected way, thus δ : Q×Σ∗ → Q is defined recursively
by δ(q, ε) = q and δ(q, w1w2 · · ·wn) = δ(δ(q, w1w2 · · ·wn−1), wn).
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The run of A on a word w = w1 . . . wn is the sequence of states s0, s1 . . . sn such
that s0 = q0 and for each 1 ≤ i ≤ n it holds that δ(si−1, wi) = si. Note that sn =
δ(q0, w). The DFA A accepts w iff δ(q0, w) ∈ F . Otherwise, A rejects w. The set of
words accepted by A is denoted L(A) and is called the language of A. We say that A
recognizes L(A). A language recognized by some DFA is called a regular language.

A DFA A is minimal if every DFA B that has less states than A satisfies L(B) �=
L(A). Every regular language L has a single (up to DFA isomorphism) minimal DFA
A such that L(A) = L. The index of L, denoted ind(L), is the size of the minimal
DFA recognizing L.

Consider a languageL ⊆ Σ∗. The Myhill-Nerode relation relative to L, denoted ∼L,
is a binary relation on Σ∗ defined as follows: For x, y ∈ Σ∗, we say that x ∼L y if for
every z ∈ Σ∗ it holds that x · z ∈ Σ∗ iff y · z ∈ Σ∗. Note that ∼L is an equivalence
relation. It is known that L is regular iff ∼L has a finite number of equivalence classes.
The number of these equivalence classes is equal to ind(L).

Definition 1. [DFA decomposition] Consider a DFA A. For k ∈ N, we say that A is
k-decomposable if there exist DFAs A1, . . . ,At such that for all 1 ≤ i ≤ t it holds that
ind(Ai) ≤ k and

⋂t
i=1 L(Ai) = L(A). The DFAs are then a k-decomposition of A.

The depth of A, denoted depth(A), is the minimal k such that A is k-decomposable.

Obviously, every DFA A is ind(A)-decomposable. The question is whether a decom-
position of A can involve DFAs of a strictly smaller index. Formally, we have the fol-
lowing.

Definition 2. [Composite and Prime DFAs] A DFA A is composite if depth(A) <
ind(A). Otherwise, A is prime.

We identify a regular language with its minimal DFA. Thus, we talk also about a regular
language being k-decomposable or composite, referring to its minimal DFA. Similarly,
for a DFA A, we refer to ind(L(A)) as ind(A).

Example 1. Let Σ = {a} and Lk = (ak)∗. We show that if k is not a prime power,
then Lk is composite. Clearly, ind(Lk) = k. If k is not a prime power, there exist
2 ≤ p, q < k such that p and q are coprime and p·q = k. It then holds thatLk = Lp∩Lq .
Since ind(Lp) < k and ind(Lq) < k, it follows that Lk is composite.

Let A be a DFA. We define α(A) = {B : B is a minimal DFA such that L(A) ⊆
L(B) and ind(B) < ind(A)}. That is, α(A) is the set of DFAs that contain A and have
an index smaller than the index of A. The roof of A is the intersection of the languages
of all DFAs in α(A). Thus, roof (A) =

⋂
B∈α(A) L(B). Clearly, L(A) ⊆ roof (A).

Also, if A is composite, then α(L) is an (ind(A) − 1)-decomposition of A. We thus
have the following.

Theorem 1. A DFA A is prime iff L(A) �= roof (A), unless L(A) = Σ∗.

The PRIME-DFA problem is to decide, given a DFA A, whether A is prime. A more
general problem is, given a DFA A, to compute depth(A). We now prove an upper
bound on the complexity of PRIME-DFA. We first need the following lemma.
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Lemma 1. Let A be a DFA and let n = ind(A). Then, |α(A)| = 2O(n·|Σ|·logn) and

ind(roof (A)) ≤ 22
O(n·|Σ|·log n)

.

Combining Theorem 1 and Lemma 1, we have the following.

Theorem 2. The PRIME-DFA problem is in EXPSPACE.

We note that the only lower bound for the problem is NLOGSPACE, by a reduction
from reachability.

3 Primality Witnesses

Recall that a minimal DFA A is prime iff roof (A) � L(A). We define a primality
witness for A as a word in roof (A) \ L(A). Clearly, a DFA A is prime iff A has a
primality witness.

Let A be a DFA. By the above, we can prove that A is prime by pointing to a pri-
mality witness for L. Recall the language Lk = (ak)∗ from Example 1. We show that
the condition given there is necessary, thus if k is a prime power, then Lk is prime. Let
p, r ∈ N ∪ {0} be such that p is a prime and k = pr. Since wk = a(p+1)pr−1

is a
primality witness for Lk, we can conclude that Lk is prime.

The bound on the size of roof (A) from Lemma 1 implies the following.

Proposition 1. A prime DFA has a primality witness of length doubly exponential.

Proposition 1 implies a naive algorithm for PRIME-DFA: Given an input DFA A, the
algorithm proceeds by going over all words w ∈ Σ∗ of length at most 22

O(n·|Σ|·log n)

,
and checking, for each B ∈ α(A), whether w ∈ L(B). While the algorithm is naive, it
suggests that if we strengthen Proposition 1 to give a polynomial bound on the length
of minimal primality witnesses, we would have a PSPACE algorithm for PRIME-DFA.
The question of whether such a polynomial bound exists is currently open.

The following examples introduce more involved families of prime languages.

Example 2. For n ∈ N, let Kn = {ww : w ∈ Σn} and Ln = comp(K∗
n); that is,

Ln = Σ∗ \K∗
n. Let wn be a concatenation of all words of the form ss for s ∈ Σn in

some arbitrary order. Note that wn /∈ Ln. It can be shown that wn is a primality witness
for Ln. Hence, Ln is prime and a witness of length polynomial in ind(Ln) exists.

Example 3. Consider words s = s1 · · · sm and w = w1 · · ·wt, both over Σ. If there
exists an increasing sequence of indices 1 ≤ i1 < i2 < · < it ≤ m such that for
each 1 ≤ j ≤ t it holds that wj = sij , we say that w is a subsequence of s. If w is a
subsequence of s and w �= s, then we say that w is a proper subsequence of s.

For, w ∈ Σ∗, let Lw = {s ∈ Σ∗ : w is a subsequence of s}. In the full version, we
show that Lw is prime via a primality witness of length 2 · ind(Lw).

4 The Width of a Decomposition

Languages that can be decomposed into two factors have been studied in [3], where the
question of whether one may need more than two factors was left open. In this section
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we answer the question positively. Formally, we have the following. Let A be a DFA.
If there exist DFAs A1,A2 . . .Am ∈ α(A) such that A =

⋂m
i=1 L(Ai), we say that A

is m-factors composite. Assume that A is composite. Then, width(L) is defined as the
minimalm such that A is m-factors composite. Clearly, for every composite A, it holds
that width(A) ≥ 2. The question left open in [3] is whether there exists a composite A
such that width(L) > 2. Such a language is presented in the following example.

Example 4. Let Σ = {a, b, c} and let L be the language of prefixes of words in
c∗.(a+.b+.c+)∗. In the full version we show that L is composite with width(L) = 3.
Also, it can be verified by a case-by-case analysis that L is not 2-factor composite.

Example 4 motivates us to conjecture that the width of composite languages is un-
bounded. That is, that width induces a strong hierarchy on the set of composite lan-
guages.

Given a composite L ⊆ Σ∗, we wish to provide an upper bound on width(L). We
conjecture that there exists a polynomial f such that width(L) ≤ f(ind(L)) for some
polynomial f . If this is true, the algorithm given in the proof of Theorem 2 can be
improved to a PSPACE algorithm by going over all subsets of D ⊆ α(A) such that
|D| ≤ f(ind(A)), and checking for each such D whether

⋂
B∈D L(B) = L(A).

5 Structural Properties

Consider a minimal DFA A and a DFA B ∈ α(A). Recall that L(A) ⊆ L(B) and
ind(B) < ind(A). Thus, intuitively, in B, fewer states have to accept more words. In
this section we examine whether this requirement on B can be of help in reasoning
about possible decompositions.

The DFA A = 〈Q,Σ, q0, δ, F 〉 induces a directed graph GA = 〈Q,E〉, where E =
{(q, q′) : ∃σ ∈ Σ such that δ(q, σ) = q′}. The strongly connected components (SCCs)
of GA are called the SCCs of A. We refer to the directed acyclic graph (DAG) induced
by the SCCs of GA as the SCC DAG of A. A leaf in GA is a SCC that is a sink in this
DAG. A DFA A is said to be strongly connected if it consists of a single SCC.

Let A = 〈Q,Σ, q0, δ, F 〉 and B = 〈S,Σ, s0, η, G〉 be DFAs. Let q ∈ Q and s ∈ S.
If there exists a word w ∈ Σ∗ such that δ(q0, w) = q and η(s0, w) = s, then we say
that q touches s, denoted q ∼ s. Obviously, this is a symmetric relation.

Lemma 2. Let A and B be DFAs such that L(A) ⊆ L(B) and let q and s be states of
A and B, respectively, such that q ∼ s. Then, L(Aq) ⊆ L(Bs).

For each s ∈ S, consider the subset of Q consisting of the states that touch s. Recall
that |S| < |Q|. Intuitively, if one attempts to design B so that L(B) over-approximates
L(A) as tightly as possible, one would try to avoid, as much as possible, having states
in S that touch more than one state in Q. However, by the pigeonhole principle, there
must be a state s ∈ S that touches more than one state in Q. The following lemma
provides a stronger statement: There must exist a non-empty set Q′ ⊆ Q relative to
which the DFA B is “confused” when attempting to imitate A.

Lemma 3. Let A = 〈Q,Σ, q0, δ, F 〉 and B = 〈S,Σ, s0, η, G〉 be minimal DFAs such
that B ∈ α(A). Then, there exists a non empty set Q′ ⊆ Q such that for every q1 ∈ Q′

and s ∈ S with q1 ∼ s, there exists q2 ∈ Q′ such that q1 �= q2 and q2 ∼ s.



Prime Languages 613

We are going to use Lemma 3 in our study of primality of classes of DFAs. We start
with safe and co-safe DFAs.

Let A = 〈Q,Σ, q0, δ, F 〉 be a minimal DFA such that L(A) �= Σ∗. It is easy to see
that L(A) is co-safety [1] iff A has a single accepting state s, which is an accepting
sink. Obviously, the singleton {s} is a SCC of A. If Q\{s} is a SCC, we say that A is a
simple co-safety DFA. For example, it is not hard to see that for all w ∈ Σ∗, if |Σ| > 2,
then the language Lw of all words that have w as a subword is such that the minimal
DFA for Lw is simple co-safe.

Theorem 3. Every simple co-safe DFA is prime with a primality witness of polynomial
length.

Our main result about the structural properties of composite DFAs shows that strong
connectivity can be carried over to the DFAs in the decomposition. Intuitively, let Ai

be a member of a decomposition of A, and let Bi be a DFA induced by a leaf of the
SCC graph of Ai. We can replace Ai by Bi and still get a valid decomposition of A.
Formally, we have the following.

Theorem 4. Let A be a strongly connected composite DFA. Then, A can be decom-
posed using only strongly connected DFAs as factors.

We find the result surprising, as strong connectivity significantly restricts the over-
approximating DFAs in the decomposition.

6 Simple Decompositions

Consider the task of decomposing a DFA A. A natural approach is to build the factors
of A by merging states of A into equivalence classes in such a manner that the transition
function of A respects the partition of its states into equivalence classes. The result of
such a construction is a DFA B that contains A and still has fewer states. If A has
a decomposition into factors constructed by this approach, we say that A is simply-
composite. In this section, we formally define the concept of a simple decomposition
and investigate its properties. In particular, we show that it is computationally easy to
check whether a given DFA is simply-composite.

Consider DFAs A = 〈Q,Σ, q0, δ, F 〉 and B = 〈S,Σ, s0, η, G〉. We say that B is an
abstraction of A if for every q ∈ Q there exists a single s ∈ S such that q ∼ s. An
abstraction B of A is called a miser abstraction of A if L(A) ⊆ L(B), and the set G of
B’s accepting states cannot be reduced retaining the containment. That is, for all s ∈ G,
the DFA Bs = 〈S,Σ, s0, η, G \ {s}〉 is such that L(A) �⊆ L(Bs). It is not hard to see
that L(A) ⊆ L(B) iff for every q ∈ F and s ∈ S such that q ∼ s, it holds that s ∈ G.
The above suggests a simple criterion for fixing the set of accepting states required for
an abstraction to be miser.

Simple decompositions of a DFA consists of miser abstractions. LetL ⊆ Σ∗. Clearly,
if L is simply-composite, then it is composite. The opposite is not necessarily true. For
example, while the singleton language {ab} is composite, one can go over all the ab-
stractions of its 4-state DFA and verify that A is not simply-composite. Consider a DFA
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A = 〈Q,Σ, q0, δ, F 〉 and t ∈ N. We use γt(A) to denote the set of all miser abstrac-
tions of A with index at most t. Let ceiling t(A) =

⋂
B∈γt(A) L(B). Note that A is

simply-decomposable iff L(A) = ceiling t(A) for t = ind(A) − 1.
Our next goal is an algorithm that decides whether a given DFA is simply-composite.

For t ∈ N, a t-partition of Q is a set P = {Q1, . . . , Qt′} of t′ ≤ t nonempty and
pairwise disjoint subsets of Q whose union is Q. For q ∈ Q, we use [q]P to refer to the
set Qi such that q ∈ Qi.

Definition 3. Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA. A t-partition P of Q is a good t-
partition of A if δ respects P . That is, for every q ∈ Q, σ ∈ Σ, and q′ ∈ [q]P , we have
that δ(q′, σ) ∈ [δ(q, σ)]P .

A good t-partition of A induces a miser abstraction of it. In the other direction, each
abstraction of A with index at most t induces a t-partition of A. Formally, we have the
following.

Lemma 4. There is a one-to-one correspondence between the DFAs in γt(A) and the
good t-partitions of A.

Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA and let q ∈ Q \ F . Let P be a good partition of A.
If [q]P ∩ F = ∅, we say that P is a q-excluding partition.

Lemma 5. Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA such that every state of A is reachable
and F �= Q. Then, the DFA A is t-simply-decomposable iff for every state q ∈ Q \ F
there exists a q-excluding t-partition.

For two partitions P and P ′ of Q, we say that P ′ is a refinement of P if for every
R ∈ P there exist sets R′

1 . . . R
′
s ∈ P ′ such that R =

⋃s
i=1R

′
i. Let q, q′ ∈ Q be such

that q �= q′. Let P be a good partition of A. If [q]P = [q′]P , we say that P joins q and
q′.

It is not hard to see that good partitions are closed under intersection. That is, if P
and P ′ are good partitions, so is the partition that contains the intersections of their
members. Thus, there exists a unique good partition of A, denoted Pq,q′ such that if P
is a good partition of A that joins q and q′, then Pq,q′ is a refinement of P . The partition
Pq,q′ can be found by merging the two states q and q′ and then merging only the pairs
of states that must be merged in order for the generated partition to be good. Hence, the
following holds.

Lemma 6. Given a DFA A = 〈Q,Σ, q0, δ, F 〉 and q, q′ ∈ Q such that q �= q′, the
partition Pq,q′ can be computed in polynomial time.

By Lemma 5, we can decide whether A is simply-composite, by deciding, for every
rejecting state q of A, whether there exists a q-excluding (ind(A) − 1)-partition. This
can be checked by going over all partitions of the form Ps,s′ for some states s and s′.
By Lemma 6, the latter can be done in polynomial time. We can thus conclude with the
following.

Theorem 5. Given a DFA A, it is possible to decide in polynomial time whether A is
simply-composite.
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7 Algebraic Approach

In this section we use and develop concepts from the algebraic approach to automata in
order to study the DFA primality problem.

Definitions and Notations. A semigroup is a set S together with an associative binary
operation · : S × S → S. A monoid is a semigroup S with an identity element e ∈ S
such that for every x ∈ S it holds that e · x = x · e = x. Let S be a monoid with an
identity element e ∈ S and let A ⊆ S. LetA∗ be the smallest monoid such thatA ⊆ A∗

and e ∈ A∗. If A∗ = S we say that A generates S.
Consider a DFA A = 〈Q,Σ, q0, δ, F 〉. For w ∈ Σ∗, let δw : Q → Q be such that for

every q ∈ Q, we have δw(q) = δ(q, w). For w1, w2 ∈ Σ∗, the composition of δw1 and
δw2 is, as expected, the operation δw2·w1 : Q → Q with δw2·w1(q) = δ(q, w2 · w1) =
δw1(δw2(q)). The set {δw : w ∈ Σ∗}, equipped with the composition binary operation,
is a monoid called the transition monoid of A, denoted M(A). Its identity element is
δε, denoted id . Note that M(A) is generated by {δσ : σ ∈ Σ}.

A Monoid-Driven Characterization of Primality. The following theorem and its
corollary show that in order to decide whether a DFA is composite, we only need to
know its state set, set of accepting states, and transition monoid. Thus, interestingly,
changing the transition function or even the alphabet does not affect the composability
of a DFA as long as the transition monoid remains the same.

Theorem 6. Let A and A′ be two DFAs with the same set of states, initial state, and
set of accepting states. If M(A) = M(A′), then depth(A) = depth(A′).

Let Σ and Σ′ be the alphabets of A and A′, respectively. The fact M(A) ⊆ M(A′)
enables us to “encode” every letter in Σ by a word in Σ′ that acts the same way on the
set of states. By expanding this encoding, we can encode every word over Σ by a word
over Σ′. In particular, a primality witness for A is encoded into a primality witness for
A′.

Theorem 6 suggests that we can relate the properties of a DFAs transition monoid to
the question of its primality. In the next section we do so for the family of permutation
DFAs.

Permutation DFAs. Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA. If for every σ ∈ Σ, it
holds that δσ is a permutation, then A is called a permutation DFA. Equivalently, A is
a permutation DFA if the monoid M(A) is a group. It is easy to verify that the two
definitions are indeed equivalent.

Note that a permutation DFA is strongly connected, unless it has unreachable states.
From here on, we assume that all permutation DFAs we refer to are strongly connected.

Example 5. [The discrete cube DFA]: Let n ∈ N. Recall that Zn
2 = (0, 1)n. Consider

the DFA An = 〈Zn
2 ,Z

n
2 , 0, δ,Z

n
2 \ {0}〉, where δ(x, y) = x + y. The language of An

is the set of all words w1 . . . wm with wi ∈ Zn
2 and

∑m
i=1 wi �= 0. It is easy to see that

An is a permutation DFA of index 2n and that it is minimal. In the full version we show
that An is prime.
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We start working towards an analogue of Theorem 4 for permutation DFAs. Thus, our
goal is to show that a composite permutation DFA can be decomposed using only per-
mutation DFAs as factors. We first need some notations.

Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA and let f ∈ M(A). The degree of f , denoted
deg(f), is |f(Q)|. The degree of A is deg(A) = min{deg(f) : f ∈ M(A)}. Let Ai

be a factor in a decomposition of A and let w ∈ Σ∗ be a word such that deg(δw) =
deg(Ai). Using simple observations about degrees, we can define a DFA Bi that is
similar to Ai except that each letter σ acts in Bi as the word σ ·w acts in Ai. It can then
be shown that Bi is a permutation DFA, and that it can replace Ai in the decomposition
of A. Hence the following theorem.

Theorem 7. LetA be a permutation minimal DFA and let t ∈ N. IfA is t-decomposable
then it can be t-decomposed using only permutation DFAs as factors.

Beyond its theoretical interest, Theorem 7 implies that when checking the primality
of a permutation DFA, we may consider only permutation DFAs as candidate factors.
We now use this result in order to develop a more efficient algorithm for deciding the
primality of permutation DFAs. We first need some observations on permutation DFAs.

Let A = 〈Q,Σ, q0, δ, F 〉 be a permutation DFA. We say that A is inverse-closed
if for every σ ∈ Σ there exists a letter, denoted σ−1 ∈ Σ, such that δσ−1 = (δσ)−1.
When A is not inverse-closed, we can consider the inverse-closure of A, which is the
DFA A′ = 〈Q,Σ′, q0, δ

′, F 〉, where Σ′ = Σ ∪ {σ−1 : σ ∈ Σ} and δ′(q, τ) is δ(q, τ)
if τ ∈ Σ, and is (δσ)−1(q) if τ = σ−1 for some σ ∈ Σ.

Recall that A is a permutation DFA, and thus (δσ)−1 is well-defined.

Lemma 7. Let A be a permutation DFA and let A′ be the inverse-closure of A. Then,
depth(A) = depth(A′).

From now on we assume that the permutation DFAs that we need to decompose are
inverse-closed. By Lemma 7 we do not lose generality doing so.

Given an alphabet Σ, we use FΣ to denote the group generated by Σ ∪ {σ−1 : σ ∈
Σ} with the only relations being σ · σ−1 = σ−1 · σ = ε for every σ ∈ Σ. We note that
the group FΣ is also known as the free group over Σ.

Given a permutation DFA A = 〈Q,Σ, q0, δ, F 〉, we can think of FΣ as a group
acting on Q. Let τ ∈ Σ ∪ {σ−1 : σ ∈ Σ}. We describe the action of τ on Q by means
of a function δτ : Q → Q defined as follows. If τ = σ ∈ Σ, then δτ (q) = δσ(q). If
τ = σ−1 with σ ∈ Σ, then δτ (q) = δ−1

σ (q). Let w ∈ FΣ be such that w = τ1 · · · τm.
The action of w on Q is then δw = δτm · · · δτ1 .

The stabilizer subgroup of q is the group G(q) = {w ∈ FΣ : δw(q0) = q0}. Let
w ∈ FΣ . The set G(q) · w is called a right coset of G(q). The index of G(q) in FΣ ,
denoted [FΣ : G(q)], is defined as the number of right cosets of G(q).

FixΣ and letG be a subgroup ofFΣ such that [FΣ : G] = n. LetC be the set of right
cosets of G and let D ⊆ C. The pair 〈G,D〉 induces the DFA A = 〈C,Σ,G, δ,D〉,
where δ(σ,G ·w) = G ·w ·σ. Note that A is well defined, that it is a permutation DFA,
and that ind(A) = n. Consider a word w ∈ Σ∗. Note that w ∈ L(A) iff the cosetG ·w
is a member of D. Finally, note that the stabilizer set of the initial state of A is equal to
G. Accordingly, we have the following.
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Lemma 8. There is a one to one correspondence between permutation DFAs and pairs
〈G,D〉, where G is a subgroup of FΣ of the DFA’s index and D is a set of right cosets
of G in FΣ .

Let G be a group and let H be a subgroup of G. The subgroupH is said to be a normal
subgroup of G if for every g ∈ G it holds that g ·H · g−1 = H .

Let A = 〈Q,Σ, q0, δ, F 〉 be a permutation DFA. Consider the subgroup G(q0). If
G(q0) is a normal subgroup of FΣ , we say that A is a normal DFA. It can be shown
that A is normal iff for every q, q′ ∈ Q, it holds that G(q) = G(q′). Equivalently, A
is normal iff for every w ∈ FΣ such that δw has a fixed point, it holds that δw is the
identity function on Q.

Lemma 9. Let A = 〈Q,Σ, q0, δ, F 〉 be a normal permutation DFA and let B =
〈S,Σ, s0, η, G〉 be a permutation DFA. Let q1, q2 ∈ Q and s1, s2 ∈ S be such that
q1 ∼ s1, q1 ∼ s2, and q2 ∼ s1. Then, q2 ∼ s2.

Lemma 10. Let A be a normal permutation DFA and B be a permutation DFA such
that L(A) ⊆ L(B). Then, there exists a permutation DFA C such that L(A) ⊆ L(C) ⊆
L(B), C is an abstraction of A, and ind(C) ≤ ind(B).

Theorem 8. Let A be a normal t-decomposable permutation DFA. Then A is t-simply-
decomposable.

Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA. We denote the monoid DFA of A by AM =
〈M(A), Σ, id , δM , FM 〉, with δM (f, w) = δw · f and FM = {f ∈ M(A) : f(q0) ∈
F}. Simple observations about the monoid DFA show that AM is normal and has the
same depth as A, meeting our goal

Let A = 〈Q,Σ, q0, δ, F 〉 be a permutation DFA. For each q ∈ Q, let G(q) be the
stabilizer subgroup of q in A. Let π ∈M(A) and let GM (π) be the stabilizer subgroup
of π in AM . It holds that GM (π) =

⋂
q∈QG (q).

The following theorem shows an immediate use of the transition monoid to prove the
primality of a family of languages. Note that Example 5 is a special case of this more
general theorem.

Theorem 9. Let A = 〈Q,Σ, q0, δ, F 〉 be a permutation DFA. If |F | = ind(A) − 1,
then A is prime.

Consider a permutation DFA A of index n. Let AM be its monoid DFA. By the above,
instead of checking whether A is prime, we can check whether AM is (n − 1)-
decomposable. Since AM is normal, this is equivalent to asking whether AM is (n−1)-
simply-decomposable. As AM is of size at most exponential in n, this check can be
done in PSPACE. We thus have the following.

Theorem 10. Deciding the primality of permutation DFA can be done in PSPACE.

8 Discussion

The motivation for this work has been compositional methods for LTL model checking
and synthesis. Much to our surprise, we have realized that even the basic problem of
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DFA decomposition was still open. Not less surprising has been the big gap between
the EXPSPACE and NLOGSPACE upper and lower bounds for the primality problem.
This work described our struggle and partial success with the problem and this gap.
While the general case is still open, we managed to develop some intuitions and tools
that we believe to be interesting and useful, to develop helpful primality-related theory,
to identify easy cases, and to develop an algebraic approach to the problem.

Our future work involves both further investigations of the theory and tools devel-
oped here and a study of richer settings of decomposition. In the first front, we seek
results that bound (from both below and above) the length of a primality witness or
bound the width of decompositions. In the second front, we study richer types of au-
tomata, mainly automata on infinite words (as with nondeterministic automata, an addi-
tional challenge in this setting is the lack of a canonical minimal automaton), as well as
richer definitions of decomposition. In particular, we are interested in union-intersection
decompositions, where one may apply not only intersection but also take the union of
the underlying automata. While it is easy to dualize our results for the case of union-
only decomposition, mixing union and intersection results is a strictly stronger notion.
Some of our results, for example the decomposition of permutation DFAs, apply also
in this stronger notion.
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Logical Aspects of the Lexicographic Order

on 1-Counter Languages

Dietrich Kuske

TU Ilmenau, Germany

Abstract. We prove two results to the effect that 1-counter languages
give rise to the full complexity of context-free and even recursively enu-
merable languages: (1) There are pairs of disjoint deterministic one-
counter languages whose union, ordered lexicographically, has an un-
decidable Σ3-theory and, alternatively, true arithmetic can be reduced
to its first-order theory. (2) It is undecidable whether the union of two
disjoint deterministic 1-counter languages, ordered lexicographically, is
dense.

In several aspects, these results cannot be sharpened any further: (a)
theydonothold for singledeterministic 1-counter languages [Cau02,Cau03],
(b) they do not hold for the Σ2-theory (Corollary 1.2), and (c) the first-
order theory can always be reduced to true arithmetic (since these linear
orders are computable structures).

1 Introduction

A natural structure on a language is provided by its lexicographic order �lex

(provided the alphabet is linearly ordered). Up to isomorphism, every countable
linear order arises this way, although the language has to be arbitrarily compli-
cated. There has been quite some work on the structure of these linear orders
depending on the complexity of the language (measured, e.g., in the Chomsky
hierarchy). We mention a few of these results:

For every regular language L, the first-order theory of (L,�lex) is decidable -
this can be derived from Rabin’s theorem [Rab69], from Büchi’s theorem [Büc62,
Theorem 4], or from the fact that (L,�lex) is an automatic structure [KN95].
Since the decision procedure is even uniform in the regular language, the set
of regular languages L with (L,�lex) ∼= (Q,�) is decidable (alternatively, this
follows from the fact that the isomorphism problem for regular languages is
decidable [Tho86, LM13]). For every ordinal α < ωω, there exists a regular
language L with (L,�lex) ∼= α and no larger ordinals can be presented this
way [Del04].

For context-free languages, the following has been shown: There is a context-
free language L such that the first-order theory of (L,�lex) is undecidable
(this language is even the disjoint union of three deterministic context-free lan-
guages) [CÉ12a]. For a deterministic context-free language K, the monadic sec-
ond order theory of (K,�lex) is decidable [Cau02, Cau03]; hence there is no

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 619–630, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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such language K with (L,�lex) ∼= (K,�lex). Furthermore, the set of context-
free languages L with (L,�lex) ∼= (Q,�) is undecidable [Ési11]. Consequently,
the isomorphism problem is undecidable and, as shown in [KLL11], even Σ1

1 -
complete for deterministic context-free languages. For every ordinal α < ωω

ω

,
there exists a deterministic context-free language L with (L,�lex) ∼= α and no
larger ordinals can be presented this way [BÉ10].

It follows that the undecidability results also hold for recursively enumerable
languages, the representable ordinals are those properly below ωCK1 (by the
definition of ωCK1 ).

In this paper, we study similar problems for 1-counter languages, i.e., a class
of languages in between regular and context-free languages. Interest in these
languages revived recently in particular in the verification community (see, e.g.,
[GHW12, BGc13]).

First, we present some ordinals by 1-counter languages:

Theorem 1.1. For every ordinal α < ωω
2

, there is a deterministic real-time
1-counter language L such that (L,�lex) ∼= α.

Already from this result it follows that 1-counter languages generate more linear
orders than regular languages. I conjecture that no ordinal � ωω

2

can be repre-
sented by 1-counter languages. Recall that the bound for context-free languages
is precisely ωω

ω

. Hence, if the conjecture is true, the class of linear orders of
1-counter languages is properly in between those of regular and of context-free
languages.

Then we turn to the main concern of this paper: the first-order theory of these
linear orders. To set the scene, we show that, for every linear order L, there exists
a regular language L such that L and (L,�lex) cannot be distinguished by ∃∗ ∀∗-
sentences (Theorem 4.3). By the decidability for regular languages mentioned
above, we obtain the following:

Corollary 1.2. Let L be a linear order. Then the ∃∗∀∗-theory of L is decidable.

It is not difficult to construct a computable linear order whose ∃∗∀∃-theory is
undecidable. Somewhat surprisingly, there is even a 1-counter language with
(almost) this property:

Theorem 1.3. There are two disjoint deterministic real-time 1-counter lan-
guages L1 and L2 such that the ∃∗ ∀3 ∃-theory of (L1 ∪ L2,�lex) is undecidable.

As a byproduct of the proof of this theorem, we obtain that the isomorphism
problem is undecidable. More precisely, we show the following.

Theorem 1.4. There is no algorithm that, given two disjoint deterministic real-
time 1-counter languages L1 and L2, decides whether (L1 ∪ L2,�lex) ∼= (Q,�).

Note that isomorphism to (Q,�) is expressible by a ∀∗∃-formula. Hence, the
decidability from Cor. 1.2 is not uniform for 1-counter languages.

The very basic idea of the proof of this and all the other undecidability results
regarding 1-counter languages is the well known fact that the set of halting
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computations of a two-counter machineM is the intersection of two deterministic
1-counter languages. The language L1∪L2 from the theorem then is the union of
these two 1-counter languages and a regular language. The regular language is,
basically, chosen in such a way that the computations of the two-counter machine
correspond to the intervals of length 2 in the linear order L = (L1 ∪ L2,�lex)
– hence, L ∼= (Q,�) if and only if the two-counter machine M has no halting
computation.

For a 1-counter language L, the linear order L = (L,�lex) is a computable
structure. Therefore, the first-order theory of L can be reduced to that of
(N,+, ·), i.e., to true arithmetic. We construct a 1-counter language L such that
also true arithmetic can be reduced to the first-order theory of (L,�lex):

Theorem 1.5. There are two disjoint deterministic real-time 1-counter lan-
guages L1 and L2 such that true arithmetic can be reduced to the first-order
theory of (L1 ∪ L2,�lex).

The proof of this theorem starts with the construction of a decidable language L
such that true arithmetic can be reduced to the first-order theory of (L,�lex)
(this linear order is even scattered, cf. Theorem 7.1). In a second step, we build L1

and L2 as in the theorem and interpret (L,�lex) in the linear order (L1∪L2,�lex).

Summary. This study demonstrates that 1-counter languages realize the full
complexity of computable languages when ordered lexicographically. This sharp-
ens recent results by Ésik [Ési11] and Carayol and Ésik [CÉ12a] considerably.
These undecidability results are pushed to the limit since they neither hold for de-
terministic 1-counter languages [Cau02, Cau03] nor for the Σ2-theory (Cor. 1.2)
nor can their first-order theory be harder than true arithmetic.

2 Preliminaries

2.1 Notions for the Main Results

Languages and Automata. A deterministic 1-counter automaton is a de-
terministic pushdown automaton with a single stack symbol (apart from the
bottom-of-stack symbol) whose acceptance condition is given by a set of accept-
ing states. It is real-time if it does not have any ε-transitions, i.e., consumes a
letter of the input with every transition. A language L is a deterministic real-
time 1-counter language if it can be accepted by some deterministic real-time
1-counter automaton.

Let Σ be some set and � a linear order on Σ. Then �lex denotes the lexico-
graphic order on Σ∗: u �lex v if u is a prefix of v or u = xay and v = xbz with
x, z, y ∈ Σ∗ and a, b ∈ Σ such that a < b.

Logic. Fix the set {vi | i � 0} of elementary variables. If x and y are elementary
variables, then x � y, x < y, and x = y are atomic formulas. Complex formulas
can be built as usual using Boolean connectives and the quantifiers ∃ and ∀. A
formula without free variables is a sentence. Let L be some linear order and ϕ a
sentence. Then L |= ϕ denotes that L satisfies ϕ.
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Example 2.1. The formula x � y abbreviates x < y ∧ ¬∃z(x < z ∧ z < y). It
expresses that y is the direct successor of x.

A formula ϕ is in prenex normal form if it is of the form

Q1x1Q2x2 . . . Qmxm α

where α is a Boolean combination of atomic formulas and Q1, . . . , Qm ∈ {∃, ∀}.
If H ⊆ {∃, ∀}∗, then we say “ϕ belongs to the class H” if Q1Q2 . . .Qn ∈ H . In
particular, Σ2 arises from the language H = ∃∗∀∗ and Σ3 from ∃∗∀∗∃∗.

For a linear order L, the theory of L is the set of sentences that are satisfied
in L. The H-theory is the set of sentences from the class H that hold true in L.

2.2 Notions for the Proofs

2-Counter Machines. Let Δ be some alphabet. A 2-counter machine is a
tuple M = (I1, I2, . . . , Im) where every Ij is of one of the following forms:

(1) halt
(2) xc := xc + 1; goto 

(3) if xc = 0 then goto 
1 else xc := xc − 1; goto 
2 endif
(4) read((
σ)σ∈Δ)

where c ∈ {1, 2} and 1 � 
, 
1, 
2, 
σ � m for σ ∈ Δ. A 2-counter machine is
inputless if all its instructions are of the form (1), (2), or (3).

These machines accept a word if the machine reaches the instruction halt after
reading the whole input from left to right. The meaning of the instructions (1),
(2) and (3) should be clear, in particular, they do not consume any letter of the
input. Differently, when executing the instruction from (4), the machine reads
the next input symbol σ and the computation continues with instruction Iσ .

Usually, the semantics of a 2-counter machine is defined in terms of sequences
of configurations. In the context of this paper, it is more convenient to define it in
terms of sequences of atomic actions. These atomic actions are: incrementation
of counter c denoted +++c, decrementation of counter c denoted −−−c, successful test
for emptiness of counter c denoted 0c, and reading of a letter a ∈ Δ denoted a.
Therefore, computations of a 2-counter machine will be words over the alphabet
Δ2 = Δ ∪ {+++1,+++2,−−−1,−−−2,01,02}.

To qualify as computation, a word over Δ2 has to satisfy three conditions that
we define next.

A word w = a0a1 . . . an−1 with a0, a1, . . . , an−1 ∈ Δ2 conforms to the control
flow of M if there are 
0, 
1, . . . , 
n ∈ {1, 2, . . . ,m} such that, for all 1 � i < n
and c ∈ {1, 2}, the following hold

– 
0 = 1
– If ai = +++c, then Ii = (xc := xc + 1; goto 
i+1).
– If ai = −−−c, then Ii = (if xc = 0 then goto 
 else xc := xc−1; goto 
i+1 endif)

for some 1 � 
 � m.
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– If ai = 0c, then Ii = (if xc = 0 then goto 
i+1 else xc := xc− 1; goto 
 endif)
for some 1 � 
 � m.

– If ai ∈ Δ, then Ii = read((
′σ)σ∈Δ) with 
′ai
= 
i+1.

– In = halt.

Note that the set of words that conform to the control flow of M form a regular
language and that a deterministic finite automaton accepting this language can
be computed from M .

A wordw ∈ Δ∗
2 conforms to the counter conditions of counter c from (n1, n2) ∈

N2 if

– nc + |u|+++c
� |u|−−−c

for all prefixes u of w and
– nc + |u|+++c

= |u|−−−c
for all prefixes u0c of w

where |u|a denotes the number of occurrences of the letter a in the word u. The
idea is that, when started with value nc in counter c, the value of the counter
after executing the sequence of atomic actions u equals nc + |u|+++c

−|u|−−−c
. Hence

the first condition expresses that the counters will always hold non-negative
integers. The second condition expresses that the emptiness test of counter c is
successful whenever it is claimed to be successful.

The set of words that conform to the counter conditions of counter c from
(n1, n2) ∈ N2 form a deterministic real-time 1-counter language (that only de-
pends on Δ, but not on M).

A word w ∈ Δ∗
2 is a halting or accepting computation of M from (n1, n2) ∈ N2

if it conforms to the control flow and to both counter conditions from (n1, n2).
The following easy observation is central to the proofs of this paper:

The set of accepting computations of a 2-counter machine M
is the intersection of two deterministic real-time 1-counter lan-
guages that can be computed from M .

(But our results are concerned with disjoint unions as opposed to intersections.)
A word w ∈ Δ∗ is accepted by M if it is the projection to Δ of an accepting

computation of M from (0, 0). We denote the language of M , i.e., the set of all
words accepted by M , by L(M). For an inputless 2-counter machine, we also
define the halting set : H(M) is the set of pairs (n1, n2) ∈ N2 such that there is
an accepting computation of M from (n1, n2).

Theorem 2.2 (Minsky [Min61])

(1) From a Turing machine accepting the language L ⊆ Σ∗ and a letter $ /∈ Σ,
one can compute a 2-counter machine M with L(M) = L$.

(2) From a Turing machine accepting a set A ⊆ N, one can compute an inputless
2-counter machine M with H(M) = {(2n ·m, 0) | n ∈ A,m ∈ N odd}.

Recall that the function n  → 2n cannot be computed by any inputless 2-counter
machine [Sch72].
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Linear Orders. We write ω for (N,�), ζ for (Z,�), η for (Q,�), and (for
n ∈ N), n stands for ({1, 2, . . . , n},�).

Let (I,�I) be a linear order and, for i ∈ I, let (Li,�i) be linear orders. Set
L =

⋃
i∈I Li × {i} and, for (x, i), (y, j) ∈ L, set (x, i) � (y, j) if i <I j or i = j

and x �i y. Then (L,�) is a linear order denoted
∑

i∈(I,�I)
(Li,�i) = (L,�).

Intuitively, one obtains
∑

i∈(I,�I)
(Li,�i) by replacing every element i of (I,�I)

by a copy of the linear order (Li,�i).
If (I,�I) = 2, we write (L1,�1) + (L2,�2) for

∑
i∈2(Li,�i), i.e., for the

concatenation of the two linear orders. Furthermore, if (K,�K) = (Li,�i) for
all i, j ∈ I, then we write

(K,�K) · (I,�I) =
∑

i∈(I,�I)

(Li,�i) .

Since every countable dense linear order without endpoints is isomorphic to η
[Can97] (see also [Ros82]), one gets the following:

(A) η + η ∼= η ∼= η + 1 + η, but η + 2 + η �∼= η.
(B) η · L ∼= η for all non-empty countable linear orders L.

Below we will refer to these statements as (A) and (B), resp.

3 Ordinals (Proof of Theorem 1.1)

First consider the ordinal ωω which is the set of all tuples of natural numbers
with the length-lexicographic order �llex. We use the deterministic real-time 1-
counter language L1 =

⋃
n�1 c

n(b∗a)n (note that the number of occurrences of
c is arbitrary and equals that of a). With a < b < c, the mapping

(n1, n2, . . . , nm)  → cmbn1abn2 . . . bnma

proves (L1,�lex) ∼= (N+,�llex) ∼= ωω.
Next, (ωω)k is the set of k-tuples of elements of ωω ordered lexicographically.

Hence (Lk,�lex) ∼= (ωω)k for the deterministic real-time 1-counter language

Lk = Lk1 =

⎛⎝⋃
n�1

cn(b∗a)n

⎞⎠k

.

Finally, let α < ωω
2

. Then there exists k � 1 with α < (ωω)k. Therefore,
we find u ∈ Lk with α ∼= ({v ∈ Lk | v <lex u},�lex). Since the language
{v ∈ {a, b, c}∗ | v <lex u} is regular, the intersection L of this language with Lk
is a deterministic real-time 1-counter language with α ∼= (L,�lex). This finishes
the proof of Theorem 1.1.
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Comments and Open Questions

Let L be a context-free language. Then the Hausdorff rank of (L,�lex) (see
[Ros82] for the definition) is properly below ωω [CÉ12b]. Hence, context-free lan-
guages can only represent ordinals properly below ωω

ω

[BÉ10]. Furthermore, any
such ordinal can be represented by a deterministic context-free language [BÉ10].

In view of these results, I pose the following two questions:

1. Is there a 1-counter language L such that (L,�lex) ∼= ωω
2

?
2. Is there a 1-counter language L such that the Hausdorff rank of (L,�lex) is

at least ω2?

4 Σ2-Theories of Arbitrary Linear Orders (Proof of
Cor. 1.2)

The central concept here is that of the FC-class1 of an element x of a linear
order L: this is the set of elements y of L such that the interval with endpoints
x and y is finite. Typical properties expressible in Σ2 concern the relative order
of FC-classes of size at least k. One such example is “there is an FC-class of
size � 3 followed by some FC-class of size � 2”:

∃x1, x2, x3, y1, y2 ∀z

⎛⎝ x1 < x2 < x3 < y1 < y2
∧

∧
1�i�2 ¬(xi < z < xi+1)

∧ ¬(y1 < z < y2)

⎞⎠
Having this in mind, the following two lemmas are natural. (L1 ≡Σ2 L2 expresses
that L1 and L2 cannot be distinguished by Σ2-formulas.)

Lemma 4.1. Let L1 and L2 be infinite linear orders. Then L1 ≡Σ2 L2 if one
of the statements (1), (2), or (3) holds:

(1) L1 and L2 have no endpoints and the size of FC-classes in L1 and in L2 is
not finitely bounded.

(2) L1 and L2 have minimal elements, the FC-classes of these minimal elements
are infinite, and L1 and L2 do not have maximal elements.

(3) L1 and L2 have infinitely many FC-classes of size N and no FC-classes of
size > N . Furthermore, L1 and L2 do not have endpoints.

Proof. We only consider the case (1). Note that every Σ2-sentence is a disjunc-
tion of sentences of the form

Φ = ∃x1, . . . , xk (x1 < x2 < · · · < xk ∧ ∀xk+1, . . . , xk+ Ψ) (1)

where Ψ is quantifier-free. Hence it suffices to show that L1 and L2 cannot
be distinguished by sentences of this form. So assume L1 |= Φ, i.e., there are
a1 < a2 < · · · < ak in L1 such that

(L1, a1, . . . , ak) |= ∀xk+1, . . . , xk+ Ψ . (2)

1 “FC” stands for “finite condensation”, see [Ros82].
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Since the size of FC-classes in L2 is not bounded, there are elements b1 � b2 �
· · ·� bk in L2.

Now let bk+1, . . . , bk+ ∈ L2 be arbitrary. Then, for all 1 � i � 
, we have
bk+i ∈ {b1, . . . , bk}, bk+i < b1, or bk+i > bk. Since L1 has no endpoints, there
are elements ak+1, . . . , ak+ ∈ L such that

ai < aj ⇐⇒ bi < bj for all i, j ∈ {1, 2, . . . , k + 
} . (3)

From (2), we infer

(L1, a1, . . . , ak, ak+1, . . . , ak+) |= Ψ . (4)

Since Ψ is quantifier-free, (3) and (4) imply

(L2, b1, . . . , bk, bk+1, . . . , bk+) |= Ψ .

Since bk+1, . . . , bk+ ∈ L2 are arbitrary and since b1 < b2 < · · · < bk, we have
L2 |= Φ. ��

Applying a similar proof (or analysing the proof of the Theorem by Feferman-
Vaught [Hod93, Thm. 9.6.2]), one also obtains

Lemma 4.2. Let L′
i and L′′

i be linear orders with L′
1 ≡Σ2 L′

2 and L′′
1 ≡Σ2 L′′

2 .
Then L′

1 + L′
2 ≡Σ2 L′′

1 + L′′
2 .

Using these two lemmas, we next prove that every linear order is Σ2-equivalent
to a regular language ordered lexicographically.

Theorem 4.3. Let L be an infinite linear order. There exists a regular lan-
guage L such that L ≡Σ2 (L,�lex).

Proof. In this sketch of proof, we only consider the case of linear orders without
endpoints.

If there is no finite upper bound for the size of FC-classes in L, Lemma 4.1(1)
ensures L ≡Σ2 ζ

∼= (0+ 1 ∪ 1+,�lex).
Now let N ∈ N be the maximal size of an FC-class in L. We prove the claim

by induction on N . If N = 1, then L ∼= η ∼= ({0, 1}∗ 1,�lex).
In case N > 1, we distinguish two cases. If there are infinitely many FC-classes

of size N , then Lemma 4.1(3) implies

L ≡Σ2 N · η ∼= ({N,N + 1}∗ (N + 1) {0, . . . , N − 1},�lex) .

Now suppose there are n ∈ N FC-classes of size N . Then there are infinite linear
orders Li for i ∈ {0, 1, . . . , n} such that L = L0 +

∑
1�i�n(N + Li) and the

induction hypothesis is applicable to the linear orders Li. ��

Now Cor. 1.2 follows immediately since the first-order theory of (L,�lex) is
decidable for every regular language L [Rab69].
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5 An Undecidable Theory (Proof of Theorem 1.3)

The plan is as follows: By Theorem 2.2(2), there is an inputless 2-counter ma-
chine U with an undecidable halting set H(U) ⊆ N × {0}. Let A = {n ∈ N |
(n, 0) ∈ H(U)}. We will construct, from U , two disjoint deterministic real-time 1-
counter languages L1 and L2 and reduce A to the ∃∗∀3∃-theory of (L1∪L2,�lex).

5.1 Encoding of A in a Linear Order L
For n ∈ A let λn = η + 2 + η and, for a ∈ N \ A, set λn = η. Note that
λn |= ∃x, y : x� y if and only if n ∈ A. Furthermore, set

L =
∑
n∈ω

(3 + λn) .

Note that n ∈ A if and only if, in L, there is an interval of length 2 between the
intervals of length 3 number n+ 1 and n+ 2. In other words, n ∈ A if and only
if the linear order L satisfies the following formula:

∃0�i�n+1xi, yi, zi

⎛⎜⎜⎝
∧

0�i�n+1 xi � yi � zi
∧

∧
0�i<n+1 zi < xi+1

∧ ∀x, y, z (x � y � z →
∨

0�i�n+1 y = yi ∨ yn+1 < y

∧ ∃x, y (zn < x� y < xn+1)

⎞⎟⎟⎠
The subformula x�y�z in the premise of the third line hides an existential quan-
tifier; whence the whole formula is logically equivalent to a ∃∗ ∀3 ∃-formula ϕn.
Since ϕn can be computed from n, we reduced A to the ∃∗ ∀3 ∃-theory of the
linear order L. In particular, the ∃∗ ∀3 ∃-theory of L is undecidable.

5.2 Representation of L by 1-Counter Languages

We consider the base language BL = +++∗
1#Δ+

2 #. Let +++n
1#v# ∈ BL. The idea is

that +++n
1 “preloads” the first counter to n and that then v is a computation of

the 2-counter machine U that starts in (n, 0).
On the language BL, we define unary relations R1 and R2. Let c ∈ {1, 2} and

u = +++n
1 # v# ∈ BL. Then u ∈ Rc if and only if

– v conforms to the control flow of the 2-counter machine U and
– u conforms to the counter conditions of counter c.

Later, we will use that R1 and R2 both are deterministic real-time 1-counter
languages. We have the following:

1. Suppose u = +++n
1 # v# ∈ BL belongs to R1 ∩ R2. Then v conforms to the

control flow of U and u satisfies all counter conditions. Hence v is a halting
computation from (n, 0) implying n ∈ A.

2. Conversely, let n ∈ A. Then there exists a (uniquely determined) halting
computation v from (n, 0). Hence +++n

1 # v# ∈ R1 ∩R2.



628 D. Kuske

We now define a new language

K = +++∗
1#{s1, s2, s3} ∪ BL({0, 1}∗1 ∪ {2, 3}∗3) ∪R1 m1 ∪R2 m2 .

We order the alphabet Γ of this language in such a way that

# < s1 < s2 < s3 < 0 < 1 < m1 <m2 < 2 < 3 < Δ2 .

For a word x ∈ Γ ∗, let K(x) = K ∩ xΓ ∗ denote the set of extensions of x
that belong to the language K. Then (K(x),�lex) is an interval in (K,�lex) (or
empty). Since # <lex +++1# <lex +++2

1# <lex . . . and K ⊆ +++∗
1#Γ ∗, we get

(K,�lex) ∼=
∑
n∈ω

(K(+++n
1#),�lex) .

Let u = +++n
1#. Then us1 �lex us2 �lex us3 are the three minimal elements of

(K(u),�lex), i.e., we have (K(u),�lex) ∼= 3+(K ′(u),�lex) where K ′(u) = K(u)\
{us1, us2, us3}. Next let v ∈ Δ+

2 #. Then

K(uv) = uv{0, 1}∗1 ∪ {uvmi | uv ∈ Ri, i ∈ {1, 2}} ∪ uv{2, 3}∗3 .

With h ∈ {0, 1, 2} the number of sets R1 and R2 that uv belongs to, we get

(K(uv),�lex) ∼= (uv{0, 1}∗1,�lex) + h + (uv{2, 3}∗3,�lex) ∼= η + h + η

by (A)∼=
{
η + 2 + η if h = 2, i.e., uv ∈ R1 ∩R2 and

η otherwise.

Since there is at most one word v ∈ Δ+
2 # such that uv ∈ R1 ∩R2, we get

(K ′(u),�lex) ∼=
∑

v∈(Δ+
2 #,�lex)

(K(uv),�lex)
by (B)∼=

{
η + 2 + η if n ∈ A and

η otherwise.

In other words, (K(u),�lex) ∼= 3 + (K ′(u),�lex) ∼= 3 + λn for all n ∈ N. Thus,

L =
∑
n∈ω

(3 + λn) ∼=
∑
n∈ω

(K(+++n
1#),�lex) ∼= (K,�lex) .

Finally note that L1 = R1m1 and

L2 = +++∗
1#{s1, s2, s3} ∪ BL({0, 1}∗1 ∪ {2, 3}∗3) ∪R2m2

are deterministic real-time 1-counter languages. Since K = L1∪L2, this finishes
the proof of Theorem 1.3 from the introduction.

6 The Density Problem (Proof of Theorem 1.4)

Theorem 1.4 is a consequence of the following result that we demonstrate by an
adaptation of the above proof.
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Theorem 6.1. There are two disjoint deterministic real-time 1-counter lan-
guages L1 and L2 such that the set of regular languages L with ((L1 ∩ L) ∪
(L2 ∩ L),�lex) ∼= η is undecidable.

Proof. Let L1 and L2 be the languages from the previous section. For n ∈ N,
the language L(n) = {x ∈ Γ ∗ | +++n

1#s3 <lex x <lex +++n+1
1 #} is regular. Since

(L1 ∪ L2) ∩ L(n) = K ′(+++n
1#), we have ((L1 ∪ L2) ∩ L(n),�lex) ∼= η if and only

if n /∈ A. Since A is undecidable, this proves Theorem 6.1. ��

Now Theorem 1.4 follows from Theorem 6.1 since the set of deterministic real-
time 1-counter languages over Γ is effectively closed under the intersection with
regular languages.

7 A Non-arithmetical Theory (Proof of Theorem 1.5)

While the official definition of arithmetical properties is a bit technical, here we
can use a result by Tarski [Tar36] saying that a set is non-arithmetical provided
true arithmetic can be reduced to it.

The starting point of this proof is the following result:

Theorem 7.1. There exists a decidable language L ⊆ {01, 11}00 such that the
first-order theory of (L,�lex) is not arithmetical. Even more, η does not embed
into (L,�lex) (i.e., (L,�lex) is scattered).

It remains to encode the computable linear order (L,�lex) into a 1-counter lan-
guage. By Theorem 2.2(1), there exists a 2-counter machine M with L(M) = L$.
For c ∈ {1, 2}, let Rc denote the set of words over

Δ2 = {0, 1, $,+++1,+++2,−−−1,−−−2,01,02}

that conform to the control flow of M and to the counter condition of counter c.
Then R1 ∩R2 is the set of accepting computations of the 2-counter machine M .

Now observe the following:

1. If w ∈ R1 ∩R2, then the projection to {0, 1, $} belongs to L$.
2. If u ∈ L, then there exists a uniquely determined word in R1 ∩ R2 whose

projection to {0, 1, $} equals u$.
3. Due to the determinism of the 2-counter machine M , the above correspon-

dence of words from L$ and R1 ∩ R2 is order-preserving, i.e., (L,�lex) ∼=
(L$,�lex) ∼= (R1 ∩ R2,�lex) (the first isomorphism holds since L is prefix-
free).

Now let K = Δ∗
2$ ∪ R1$m1 ∪ R2$m2 and order the letters of the alphabet of

K by m1 < m2 < 0 < 1 < +++1 < +++2 < −−−1 < −−−2 < 01 < 02 < $. Then
the elements of R1 ∩ R2 correspond to the intervals of length 3 in (K,�lex).
Therefore, (L,�lex) ∼= (R1 ∩ R2,�lex) can be interpreted in (K,�lex). Hence
the first-order theory of (L,�lex) can be reduced to that of (K,�lex) which is
therefore non-arithmetical. Since K is the disjoint union of the two deterministic
real-time 1-counter languages R1$m1 and Δ∗

2$∪R2$m2, this finishes the proof
of Theorem 1.5.
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Helly Circular-Arc Graph Isomorphism
Is in Logspace
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Abstract. We present logspace algorithms for the canonical labeling prob-
lem and the representation problem of Helly circular-arc (HCA) graphs.
The first step is a reduction to canonical labeling and representation of
interval intersection matrices. In a second step, the � trees employed in
McConnell’s linear time representation algorithm for interval matrices are
adapted to the logspace setting and endowed with additional information
to allow canonization. As a consequence, the isomorphism and recognition
problems for HCA graphs turn out to be logspace complete.

1 Introduction

A graph G is circular-arc if each vertex v ∈ V (G) can be assigned an arc ρ(v)
on a circle such that two vertices are adjacent if and only if their arcs inter-
sect. We call any such assignment ρ a circular-arc representation of G and the
arc system ρ(G) = {ρ(v) | v ∈ V (G)} a circular-arc model of G. G is Helly
circular-arc (HCA) if G has a representation ρ such that the arcs of the ver-
tices in every clique C of G have non-empty intersection. We call such a ρ an
HCA representation and ρ(G) an HCA model of G. In this article, we solve the
canonical representation problem for HCA graphs in logspace. That is, we give
a logspace algorithm that computes for any given HCA graph G an HCA rep-
resentation ρG such that isomorphic HCA graphs G and H receive identical
HCA models ρG(G) = ρH(H). If the input graph G is not HCA, the algorithm
will detect this.

Previous results. HCA graphs were introduced by Gavril under the name of
Θ circular-arc graphs [Gav74]. Gavril gave an O(n3) time representation algo-
rithm for HCA graphs. Hsu improved this to O(nm) [Hsu95]. Recently, Joeris
et al. gave a linear time algorithm [JLM+11]. Chen gave a parallel AC2 algo-
rithm [Che96]. The fastest known isomorphism algorithm for HCA graphs is due
to Curtis et al. and works in linear time [CLM+13]. Note that, though a logspace
algorithm can take time bounded by a polynomial of high degree, the logspace
solvability implies that the problem can be solved even in logarithmic time by a
CRCW PRAM with polynomially many processors.

For the special case of interval graphs (which are easily seen to be HCA),
the linear time algorithms by Booth and Lueker for recognition [BL76] and
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isomorphism [LB79] have been known for many decades. Recently, these have
been supplemented with a logspace algorithm for canonical representation of
interval graphs [KKL+11].

Generalizing these results to the class of all circular-arc graphs remains a
challenging problem. While the representation problem for this class is solved
in linear time by McConnell [McC03], no polynomial-time isomorphism test for
circular-arc graphs is currently known (see the discussion in [CLM+13], where
a counterexample to the correctness of Hsu’s O(nm) time isomorphism algo-
rithm [Hsu95] is given). The history of the isomorphism problem for circular-arc
graphs is surveyed in more detail by Uehara [Ueh13].

This motivates the persistent interest in isomorphism algorithms for sub-
classes of circular-arc graphs. Besides HCA graphs, mainly proper circular-arc
graphs and concave-round graphs have been studied. The isomorphism prob-
lem for these two classes can be solved in linear time [LSS08, CLM+13] and in
logspace [KKV12].

Overview of our results. Our logspace algorithm for canonical representation
of HCA graphs proceeds in several steps; see Fig. 1.

Hsu observed that the structure of certain circular-arc graphs G allows to
prescribe the intersection structure of each pair of arcs in a circular-arc represen-
tation of G as di (disjoint), cd (contained), cs (contains), cc (circle cover), and
ov (overlap) [Hsu95]. We store this information in the neighborhood matrix λG

of G (for more details see Section 2).
The motivation for switching to the matrix λG is that flipping the arc of a

vertex (i.e., exchanging its two start and end points) can be mimicked in λG by
substituting some of its entries (details are given in Section 3). We show how
to identify a subset X ⊆ V (G) such that flipping the arcs of all vertices in X

results in a matrix λ
(X)
G that can be realized by an interval system. We choose X

as an inclusion-maximal clique of G that is the common neighborhood of two
vertices, and prove that at least one such clique can be found in logspace.

This gives a Turing reduction of the (canonical) representation problem of
Helly circular-arc graphs to that of interval matrices: Flipped vertices are marked
with a color, and in the representation returned by the oracle their intervals are
flipped back to give a Helly circular-arc representation of both λG and G.

Our logspace algorithm for computing a representation of a given interval
matrix is described in Section 4. McConnell gave a linear time algorithm for this
problem as part of his representation algorithm for circular-arc graphs [McC03].

GHCA graph

λGHCA matrix

λinterval matrix

�(λ)colored � tree �̂(λ) canonical � treetree
canonization

I
λ̂

interval model

A
λ̂G

HCA model

A
Ĝ

HCA model

=

Fig. 1. Overview of the canonical representation algorithm for HCA graphs
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He introduced the Δ tree of an interval matrix to capture all possible interval
representations. Our key contribution here is to compute the Δ tree in logspace.

In Section 5, we show how to compute canonical representations of interval
matrices. This is a significant extension of McConnell’s algorithm, which only
deals with representation. We implement this step as a reduction to colored tree
canonization, which can be solved in logspace using Lindell’s algorithm [Lin92].

To save space, some proofs have been omitted; they can be found in [KKV13].

2 Preliminaries

A circular-arc system A is a set of non-empty arcs on a circle. An interval
system I is a set of non-empty intervals on a line. Equivalently, we can define
an interval system as a circular-arc system I having the special property that
there is at least one point on the circle that is not covered by any arc of I. A
set system S has the Helly property if every subsystem S′ ⊆ S with non-empty
pairwise intersections has a non-empty overall intersection, i.e., (∀A, B ∈ S′ :
A ∩ B �= ∅) ⇒ ⋂

A∈S′ A �= ∅. It is easy to see that every interval system has the
Helly property, but that there are non-Helly circular-arc systems; see Figure 2 (a)
for an example. To keep notation concise, we use CA as a shorthand for circular-
arc and HCA as an abbreviation of Helly circular-arc.

Two sets A and B intersect if A ∩ B �= ∅. They overlap (written A � B) if
additionally A \ B �= ∅ and B \ A �= ∅.

Given a set system S, its intersection graph I(S) has one vertex for each
set A ∈ S, and two nodes A, B ∈ S are adjacent if and only if A ∩ B �= ∅.
A graph G is a CA graph if there is a CA system A such that G ∼= I(A). In this
case, A is called a CA model of G, and an isomorphism ρ : V (G) → A from G
to I(A) is called a CA representation of G. HCA graphs and interval graphs are
defined analogously, and so are their respective models and representations.

Given a graph G and v ∈ V (G), let NG[v] denote the closed neighborhood of v,
i.e., the set of vertices with distance at most 1 from v. The common neighborhood of
two vertices u, v ∈ V (G) is NG[u, v] = NG[u]∩NG[v]. If G is understood from the
context, the index will be omitted. A vertex v ∈ V (G) is universal if N [v] = V (G).
Two vertices u, v ∈ V (G) are twins if N [u] = N [v]. A twin class is an inclusion-
maximal set U ⊆ V (G) such that all pairs of vertices in U are twins.

Let μ = (μi,j)i�=j∈V be a quadratic matrix. We call the elements of V the
vertices of μ and we assume that V is linearly ordered. Another quadratic matrix
λ = (λi,j)i�=j∈U is isomorphic to μ (written λ ∼= μ) if there is a bijection σ : U →
V such that λi,j = μσ(i),σ(j) for all i �= j ∈ U . Note that two graphs are
isomorphic if and only if their adjacency matrices are isomorphic.

An intersection matrix is a matrix μ = (μu,v)u�=v∈V with entries μu,v ∈
{di, cs, cd, cc, ov} that satisfies (a) μu,v = cd ⇔ μv,u = cs and (b) μu,v = μv,u

in all other cases. Our interest is in intersection matrices that describe the in-
tersection types between the arcs of a CA system. The following notation was
introduced in [LS09].
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(a) (b) (c)

Fig. 2. (a) A non-HCA model of the HCA graph K3. (b) Let Gn denote the split graph
on n + n vertices consisting of an n-clique C and a set S of n independent vertices,
which are connected by the bipartite complement of a perfect matching between C
and S. Every Gn is HCA; the figure shows an HCA model of G4. Note that Gn has
exactly n + 1 maxcliques, each of size n, and the maxclique C cannot be described as
intersection or difference of less than n neighborhoods. (c) The complement graph Hn

of n independent edges is CA. It has 2n maxcliques Ci, each containing exactly one
endpoint of each edge in Hn. Since the common neighborhood of fewer than n vertices
of Hn contains both endpoints of at least one edge in Hn, no maxclique Ci can be
described in this way. The figure shows a CA model of H4.

Definition 2.1. Let A be a CA system such that no single arc C ∈ A covers
the whole circle and the endpoints of all arcs C ∈ A are pairwise distinct. The
intersection matrix μA = (μA,B)A �=B∈A of A is defined by the entries

μA,B :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

di if A ∩ B = ∅;
cd if A � B;
cs if A 	 B;
cc if A � B and A and B jointly cover the circle;
ov if A � B but A and B do not jointly cover the circle.

The intersection matrix μI of an interval system I with pairwise distinct end-
points is defined similarly, using only the entries di, cd, cs and ov (for A � B).
A matrix μ is a CA matrix if there is a CA system A such that μ ∼= μA. HCA ma-
trices and interval matrices are defined analogously.

Definition 2.2. Given a graph G, its neighborhood matrix λG = (λu,v)u�=v∈V (G)
is defined by the entries

λu,v :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di if {u, v} /∈ E(G);
cd if N [u] � N [v];
cs if N [u] 	 N [v];
cc if N [u] � N [v], N [u] ∪ N [v] = V,

and ∀w ∈ N [u] \ N [v] : N [w] ⊂ N [u],
and ∀w ∈ N [v] \ N [u] : N [w] ⊂ N [v];

ov otherwise.

Note that λG can be viewed as an augmented adjacency matrix, as 0 entries
correspond to di and 1 entries are subdivided into four different categories.
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The underlying graph of an intersection matrix μ = (μu,v)u�=v∈V is denoted
by Gμ and consists of the vertices V and the edges

{{u, v} ∣∣ μu,v �= di
}

.
Following [Hsu95], we call a CA representation ρ : V (G) → A of G normalized

if ρ is an isomorphism between the neighborhood matrix λG and the CA ma-
trix μA. Hsu provides an algorithm that transforms any CA representation of
a CA graph with certain properties into a normalized representation, obtaining
the following.

Lemma 2.3 ([Hsu95]). Any CA graph G without twins and universal vertices
has a normalized CA representation.

All normalized CA representations have a property that is called stable by Joeris
et al. who prove that every stable CA representation of an HCA graph G yields
an HCA model [JLM+11, Theorem 4.1]. This implies the following.

Lemma 2.4. Any normalized CA representation of an HCA graph G without
twins and universal vertices provides an HCA model for G.

Lemma 2.5. There is a logspace reduction from the (canonical) HCA represen-
tation problem for HCA graphs G to the (canonical) CA representation problem
of vertex-colored HCA matrices.

Proof sketch. First consider the case that G is twin-free and has no universal
vertex. Compute the neighborhood matrix λG. By Lemma 2.3, λG admits a
normalized CA representation ρ. Any such ρ is Helly by Lemma 2.4, and easily
seen to be also a HCA representation of G. If ρ is canonical for (colored) matrices,
it is also canonical for (colored) graphs, as G ∼= H is equivalent to λG

∼= λH .
It remains to observe that each twin class can be represented by a single vertex

that is colored with the size of the twin class, and that universal vertices can be
ignored if arcs covering the circle are added for them in the end. ��

3 Transforming HCA Matrices into Interval Matrices

In this section we describe a logspace reduction of the (canonical) CA repre-
sentation problem for HCA matrices to the (canonical) representation problem
of interval matrices. Note that it suffices for our purposes to obtain any (not
necessarily Helly) representation: Lemma 2.4 implies that the representation is
Helly if the HCA matrix is the neighborhood matrix of some HCA graph G.

Following McConnell, we can transform a CA system A into an interval system
A(X) = {C ∈ A | x �∈ C} ∪ {C̃ | C ∈ A, x ∈ C} by choosing any point x on the
circle that is different from all endpoints of A and flipping all the arcs in the set
X = {C ∈ A | x ∈ C}. Flipping an arc C just means that we replace it with the
arc C̃ having the same endpoints as C but covering the opposite part of the circle.
McConnell observed that flipping arcs of A corresponds to the replacements in the
CA matrix μA (cf. Definition 2.1) that are given in Table 1. Denote the result of
flipping a subset X of the vertices of a CA matrix λ as λ(X). Note that λ(X) will
become an interval matrix if exactly the arcs that contain a point x are flipped.
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Table 1. The effect of flipping arcs of a CA system A on the entries of its CA matrix
μA = (μA,B)A�=B∈A

μA,B di cd cs cc ov
μA,B̃ cs cc di cd ov
μÃ,B cd di cc cs ov
μÃ,B̃ cc cs cd di ov

The rules described in Table 1 can be applied to any CA matrix μ = (μi,j)i�=j∈V .
To ensure that the resulting matrix μ(X) is interval, a suitable vertex set X ⊆ V
has to be used. If we don’t have a CA representation of μ, the set X has to be
identified only from the structure of μ. If μ is HCA, the underlying graph Gμ is
also HCA. The following fact implies that any inclusion-maximal clique (max-
clique for short) C of Gμ can be used as X in this case.

Fact 3.1 Let ρ : V (G) → A be any HCA representation of a graph G and let C
be any maxclique of G. Then there is a point x in the HCA model A such that
no arc has x as its endpoint and {ρ(v) | v ∈ C} = {A ∈ A | x ∈ A}.

Proof. As C is a clique, the arcs in ρ(C) = {ρ(v) | v ∈ C} intersect pairwise.
As A is Helly,

⋂
v∈C ρ(v) is non-empty. By maximality of C, no further arc can

contain any point x in this intersection. ��
In an interval graph, all maxcliques can be characterized as the common neigh-
borhood of two vertices. This property was used in [KKL+11] to reduce the
canonical representation problem of interval graphs to that of interval hyper-
graphs. The same approach is not possible for HCA graphs, as they may contain
maxcliques that cannot be characterized as the intersection or difference of con-
stantly many neighborhoods; see Fig. 2 (b) for an example. However, at least
one maxclique can be found in this way.

Theorem 3.2. Let G be an HCA graph. Then there are u, v ∈ V (G) (possibly
u = v) such that N [u, v] is a maxclique.

We remark that general CA graphs do not necessarily have such a maxclique,
see Fig. 2 (c) for an example.

Proof. Let λG = (λu,v)u�=v∈V (G) be the neighborhood matrix and ρ : V (G) → A
a normalized HCA representation of G. In order to find two vertices u, v ∈ V (G)
such that N [u, v] is a maxclique, we start with an arbitrary vertex v such that
there is no vertex w with λv,w = cs (i.e., � ∃w : N [w] � N [v]). Note that there
cannot be a vertex w′ with λv,w′ = cc, since this would imply that there is a
vertex w ∈ N [v] \ N [w′] (because N [w′] � N [v]) with N [w] � N [v] (we can rule
out equality because w′ ∈ N [v] \ N [u′]).

In case there is no vertex w with λv,w = ov, N [v] is a maxclique. This follows
since λv,w = cd for all w ∈ N(v) and hence, for all w, w′ ∈ N [v] it holds that
w ∈ N [v] ⊆ N [w′].

Otherwise, we choose a vertex u ∈ N [v] with λv,u = ov, such that N [u, v] is
minimal w.r.t. inclusion and claim that N [u, v] is a maxclique. In order to derive
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a contradiction assume that there exist w, w′ ∈ N [u, v] such that w /∈ N [w′]. If
λv,w = cd (or λv,w′ = cd) then it follows that w′ ∈ N [v] ⊆ N [w] (or w ∈ N [v] ⊆
N [w′]), a contradiction.

If λv,w = λv,w′ = ov then ρ(w) ∩ ρ(w′) = ∅ and ρ(w) � ρ(v) � ρ(w′). Since
ρ(u) � ρ(v) it follows that ρ(u) overlaps ρ(v) from the same side as one of
ρ(w) and ρ(w′), say ρ(w). Because of w′ ∈ N [u, v]\N [w] and the Helly property,
it follows that ρ(u) ∩ ρ(v) ∩ ρ(w′) �= ∅ but ρ(w) ∩ ρ(v) ∩ ρ(w′) = ∅, implying
that ρ(v)∩ρ(w) ⊆ ρ(v)∩ρ(u). Using again the Helly property, it now follows for
any x ∈ N [w, v] that ρ(v) ∩ ρ(w) ∩ ρ(x) �= ∅ which in turn implies that ρ(v) ∩
ρ(u) ∩ ρ(x) �= ∅. Hence, we get the inclusion N [w, v] ⊆ N [u, v], contradicting
the choice of u, since w′ ∈ N [u, v] \ N [w, v]. ��
Theorem 3.3. The (canonical) CA representation problem for vertex-colored
HCA matrices can be reduced in logspace to the (canonical) representation prob-
lem for vertex-colored interval matrices.

Proof sketch. Given an HCA matrix μ = (μu,v)u,v∈V , the algorithm works as
follows.

1. Find all pairs u, v ∈ V such that N [u, v] is a maxclique in Gμ (allowing
u = v). By Theorem 3.2 at least one such pair exists. Denote the set of all
maxcliques that are found in this way by M.

2. For each M ∈ M: Compute the interval matrix μ(M) and mark the flipped
vertices with a new color. Compute a (canonical) interval representation
of μ(M) and flip back all colored arcs, obtaining a CA representation ρμ,M

of μ.
3. Among the ρμ,M computed in the previous step, choose ρμ as one that results

in a lexicographically least CA model ρμ,M (μ). Output ρμ.

It is not hard to see that ρμ is canonical if the interval representation of μ(M) is
canonical. ��

4 Finding Representations of Interval Matrices in
Logspace

McConnell [McC03] showed how to find interval representations of interval ma-
trices in linear time. In this section, we apply some of his techniques to solve
this task in logspace.

Given an intersection matrix λ = (λu,v)u�=v∈V , define Gov,di as the undirected
graph on the vertex set V with edges {u, v} for each pair with λu,v ∈ {ov, di}.
Similarly, define Dcd (resp. Dcs) as the directed graph on V with arrows (u, v)
for each pair with λu,v = cd (resp. λu,v = cs).

A transitive orientation of an undirected graph is an assignment of directions
to all edges such that the resulting set of arrows is transitive. An interval orien-
tation of an intersection matrix λ is a transitive orientation Dov,di of Gov,di that
remains transitive when restricted to Gdi and that satisfies

λu,v = di ∧ λu,w = λv,w = ov ⇒ either (u, w) ∈ Dov,di or (v, w) ∈ Dov,di (1)
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(a)
ρ(u)

ρ(v)

ρ(w)

(b)
ρ(u)

ρ(v)

ρ(w)

(c)
ρ(u)

ρ(v)

ρ(w)
Fig. 3. In all three cases of Definition 4.2 there is no way to place ρ(u) between ρ(v)
and ρ(w)

The last condition requires that if w stays in overlap relation with two disjoint
vertices u, v, then w has to be arranged in between u and v. Any interval repre-
sentation ρ of λ induces an interval orientation of λ: An edge {u, v} of Gov,di is
oriented as (u, v) if and only if ρ(u) < ρ(v), i.e., if the interval ρ(u) starts left of
the interval ρ(v). The following lemma shows the converse, implying that inter-
val orientations are in 1-1 correspondence with interval representations (provided
that we fix the set of endpoints as {0, . . . , 2n − 1}).

Lemma 4.1. Let λ be an interval matrix, and let Dov,di be an interval orien-
tation of λ. Then there exists an interval representation ρ of λ that induces the
interval orientation Dov,di. Moreover, ρ is computable in logspace on input λ and
Dov,di.

Proof sketch. Let λ = (λu,v)u�=v∈V . To obtain ρ, order the left endpoints accord-
ing to Dov,di ∪ Dcs and the right endpoints according to Dov,di ∪ Dcd. Interleave
these two linear orders such that the relationships in λ are obeyed. ��
By Lemma 4.1 it suffices to compute an interval orientation Dov,di of a given
interval matrix λ to get an interval representation of λ.
Definition 4.2 (cf. [McC03, Definition 6.3]). Let λ be an intersection ma-
trix, and let {u, v} and {u, w} be edges in Gov,di. The binary relation Δ contains
the entries (u, v)Δ(u, w) and (v, u)Δ(w, u) if one of the following holds:
(a) λu,v = λu,w = di and λv,w �= di
(b) λu,v, λu,w ∈ {ov, di} and λv,w ∈ {cd, cs}
(c) λu,v = di and λu,w = λv,w = ov

If any of these three condition holds true, then in any interval representation ρ
of λ, the intervals ρ(v) and ρ(w) must be on the same side of ρ(u); see Fig. 3. In
other words, any interval orientation Dov,di of λ must contain (u, v) if and only if
it contains (u, w). This is the rationale for the following definition: Δ implication
classes are the equivalence classes of the symmetric transitive closure of Δ. The
union of a Δ implication class and its transpose is called Δ color class and can
be viewed as a set of (undirected) edges in Gov,di.
Lemma 4.3 ([McC03, Theorem 6.4]). Each interval orientation of λ con-
tains exactly one Δ implication class from each Δ color class.
This implies that (u, v) and (v, u) cannot be in the same Δ implication class.
However, not any selection of one Δ implication class from each Δ color class
yields an interval orientation of λ. To find a valid selection, we need to consider
the Δ tree of λ.
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A module of a matrix λ = (λu,v)u�=v∈V is a subset U ⊆ V that is not dis-
tinguished by any vertex outside U , i.e., for any u �= v ∈ U and w ∈ V \ U it
holds λu,w = λv,w and λw,u = λw,v. McConnell [McC03] calls a module U of an
intersection matrix λ a Δ module, if it is a clique in the corresponding intersec-
tion graph (i.e., λu,v �= di for all u �= v ∈ U) or if there is no v ∈ V \ U such
that λv,u = ov for all u ∈ U . The Δ modules of an intersection matrix form a
tree decomposable family [McC03, Definition 6.7 and Theorem 6.9]. The result-
ing decomposition tree, i.e., the transitive reduction of the containment relation
among strong Δ modules U (i.e., U does not overlap any other Δ module), is
called Δ tree of λ. The leaves of the Δ tree are trivial modules consisting of
single vertices. An inner node in the Δ tree is called degenerate if taking the
union of any of its children gives a Δ module, and prime otherwise. If U is an
inner node in the Δ tree and W1, . . . , Wk are its children, the quotient of λ at U
is the submatrix λ[U ] of λ on the vertices W = {w1, . . . , wk} with wi ∈ Wi. As
the Wi are disjoint modules, λ[U ] does not depend on the actual choice of the wi.
In the quotient matrix of a degenerate node, its children are either in pairwise
ov, in pairwise di, or in pairwise cd/cs relation [McC03, 110]. Hence, the inner
nodes of the Δ tree can be classified as prime, disjoint, overlap or containment
nodes.

The following results from [McC03] show that the Δ tree provides a compact
representation of all possible interval orientations of λ.

Lemma 4.4 ([McC03, Lemma 6.14]). The set of vertices spanned by aΔ color
class in an interval intersection matrix λ is a Δ module of λ.

Lemma 4.5 ([McC03, Theorem 6.15]). A set of edges of Gov,di is a Δ color
class if and only if it is the set of edges of Gov,di connecting all children of a
prime node or a pair of children of a degenerate node in the Δ tree.

Lemma 4.6 ([McC03, Theorem 6.19]). Any acyclic union of Δ implication
classes gives an interval orientation of λ.

The next lemma reduces the problem of computing an interval orientation of λ
to the problem of computing interval orientations of the quotient matrices of the
inner nodes of the Δ tree.

Lemma 4.7. Let λ be an intersection matrix, and let U1, . . . , Uc be the inner
nodes of its Δ tree. Any sequence of interval orientations D1, . . . , Dc for the
quotient matrices λ[U1], . . . , λ[Uc] induces an interval orientation D of λ, which
can be computed in logspace.

As soon as we have the Δ tree, it’s very easy to compute interval orientations
for the quotient matrices corresponding to its inner nodes U . If U is prime, we
can take any of the two implication classes of the color class connecting all its
children. If U is degenerate of type overlap or disjoint, any linear ordering of its
children provides an interval orientation for its quotient matrix. Finally, if U is
of type containment, no edges have to be oriented.
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Theorem 4.8. The Δ implication classes, the Δ color classes, and the Δ tree
of a given intersection matrix λ can be computed in logspace.

By combining Theorem 4.8 with Lemma 4.1 we obtain the following result.

Corollary 4.9. Given an intersection matrix λ, an interval representation for
it can be computed in logspace.

5 Finding Canonical Representations for Interval
Matrices

In this section, we describe a logspace algorithm for computing a canonical rep-
resentation of a given interval matrix λ. The main task is to choose between
the different possible interval orientations of the quotient matrices correspond-
ing to the inner nodes of the Δ tree. By providing the Δ tree with additional
information we can reduce this task to (colored) tree canonization.

Lemma 5.1. Given an interval matrix λ and its Δ tree T ′, for each inner
node U of T ′ the following can be computed in logspace:

– The quotient λ[U ] of λ at U .
– All possible interval models of λ[U ] (either only one, or two that are the

reverse of each other).
– For each interval model MU of λ[U ], the possible correspondences of the

children of U to the intervals in MU . This can either be arbitrary, a fixed
mapping or one of two fixed mappings.

Definition 5.2. Given an intersection matrix λ, the colored Δ tree T(λ) has
the same nodes as the Δ tree (i.e., the strong Δ modules of λ that are not
overlapped by another Δ module), plus three additional nodes loU , miU , hiU for
each inner node U that admits exactly two assignments of its children to the
interval model of its quotient matrix (cf. Lemma 5.1); these nodes are inserted
between U and its children. Each Δ tree node U receives a tuple (pU , MU ) as
color, where MU is the interval model of the quotient λ[U ] given by Lemma 5.1
(if there are two different models, take the smaller one), and pU is the position
of U among the children of its parent: If U is the root or if the parent of U
admits an arbitrary mapping of its children to its quotient intervals, let pU = 0.
If the parent of U has a fixed assignment of its children to its intervals, let pU

be the position of the interval corresponding to U among the other intervals. If
the parent of U allows two assignments of its children, let pU,1 and pU,2 be the
positions of U under the two assignments, respectively. If pU,1 < pU,2, make U a
child of loU and define pU = (pU,1, pU,2); if pU,1 = pU,2, make U a child of miU
and define pU = (pU,1, pU,2); if pU,1 > pU,2, make U a child of hiU and define
pU = (pU,2, pU,1). Finally, color all loU and hiU nodes with 0 and all miU nodes
with 1.

By Theorem 4.8 and Lemma 5.1, T(λ) can be computed in logspace.

Lemma 5.3. If λ and λ′ are isomorphic interval matrices, then T(λ) ∼= T(λ′).
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Lemma 5.4. Let λ be an interval matrix. Given an isomorphic copy T ′ of T(λ),
an isomorphic copy λ′ of λ (that depends only on T ′) can be computed in logspace.
When also given an isomorphism � : T(λ) → T ′, an isomorphism ϕ : λ → λ′ can
be computed within the same space bound.

Theorem 5.5. The canonical representation problem for interval matrices can
be solved in logspace.

Proof. The algorithm works as follows:
1. Compute the Δ tree of λ (see Theorem 4.8).
2. Compute interval models of the quotient matrices at the nodes of the Δ tree

to obtain the colored Δ tree T(λ) (see Lemma 5.1 and Definition 5.2).
3. Compute a canonical labeling of T(λ) and use the algorithm of Lemma 5.4

to compute a canonical copy λ′ of λ and a canonical labeling ϕ of λ.
4. Compute the Δ tree of λ′ and interval orderings for the quotient matrices at

its inner nodes (in fact, the information from T(λ) can be reused; only the
assignment of children needs to be revisited). Combine these orientations
into one for the whole matrix (see Lemma 4.7) and convert it into an inter-
val representation ρ′ of λ′ (see Lemma 4.1). Combined with the canonical
labeling ϕ of λ, this results in an interval representation ρ = ρ′ ◦ ϕ of λ.

Note that λ′ depends only on the canon of T(λ), so λ1 ∼= λ2 implies λ′
1 = λ′

2.
As ρ′ depends only on λ′, the resulting interval model ρ(λ) = ρ′(λ′) is canonical.

��

6 Conclusion

Our algorithms also allow recognition of HCA graphs: If the input graph does
not belong to this class, either one of the steps will fail (e.g. finding a suitable
maxclique M), or the resulting arcs will not be a representation of G (which can
easily be checked), or the resulting arcs are not Helly. The latter can be checked
in logspace using [JLM+11, Theorem 3.1].

We remark that by combining Theorem 3.3 and Corollary 4.9 we already get a
logspace algorithm that computes for any given HCA graph G an HCA represen-
tation of G. Since any HCA representation of G allows to compute all maxcliques
in logspace, we can reduce the canonical representation problem of HCA graphs
to that of CA hypergraphs HG: the vertex set of HG consists of all maxcliques
of G and for each vertex v ∈ V (G), HG contains a hyperedge consisting of all
maxcliques that contain v. It is known that a graph G is HCA if and only if HG

is a CA hypergraph [Gav74]. Moreover, the hypergraph HG provides a canonical
HCA model for G, if we order its maxcliques by a canonical circular ordering.
Hence an alternative canonical representation algorithm for HCA graphs can be
obtained by using the algorithm for computing a canonical CA model of HG

given in [KKV12]. However, we believe that finding canonical representations of
interval matrices is of independent interest, as these allow additional constraints
on the structure of the intervals compared to interval graphs. For a different
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kind of constraint, namely prescribing the lengths of pairwise intersections (and
optionally interval lengths), both logspace and O(nm) time (resp. linear time)
algorithms are known [KKW12].
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Abstract. Metric temporal logic (MTL) is one of the most prominent
specification formalisms for real-time systems. Over infinite timed words,
full MTL is undecidable, but satisfiability for its safety fragment was
proved decidable several years ago [18]. The problem is also known to be
equivalent to a fair termination problem for a class of channel machines
with insertion errors. However, the complexity has remained elusive, ex-
cept for a non-elementary lower bound. Via another equivalent problem,
namely termination for a class of rational relations, we show that satis-
fiability for safety MTL is not primitive recursive, yet is Ackermannian,
i.e., among the simplest non-primitive recursive problems. This is surpris-
ing since decidability was originally established using Higman’s Lemma,
suggesting a much higher non-multiply recursive complexity.

1 Introduction

Metric temporal logic (MTL) is one of the most popular approaches for extending
temporal logic to the real-time setting. MTL extends linear temporal logic by
constraining the temporal operators with intervals of real numbers. For example,
the formula ♦[3,4]ϕ means that ϕ will hold within 3 to 4 time units in the future.
There are two main semantic paradigms for MTL: continuous (state-based) and
pointwise (event-based)—cf. [3,12]. In the former, an execution of a system is
modelled by a flow which maps each point in time to the state propositions that
are true at that moment. In the latter, one records only a countable sequence
of events, corresponding to instantaneous changes in the state of the system.
In this paper we interpret MTL over the pointwise semantics1 and assume that
time is dense (arbitrarily many events can happen in a single time unit) but
non-Zeno (only finitely many events can occur in a single time unit).

Over the past few years, the theory of well-structured transition systems has
been used to obtain decidability results for MTL. Well-structured transition sys-
tems are a general class of infinite-state systems for which certain verification
problems, such as reachability and termination, are decidable; see [9] for a com-
prehensive survey. In [19] satisfiability and model checking for MTL were shown
to be decidable by reduction to the reachability problem for a class of well-
structured transition systems. Likewise, for a syntactically defined fragment of

1 Note that it follows from the thesis work of Henzinger [11] that safety MTL satisfi-
ability is undecidable over the continuous semantics.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 643–654, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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MTL that expresses safety properties, called safety MTL, model checking and
satisfiability were shown decidable over infinite timed words by reduction to the
termination problem on well-structured transition systems [18].

Extracting well-structured systems from MTL formulas relies on Higman’s
Lemma, which states that over a finite alphabet the subword order is a well-
quasi order. Analysis of termination arguments that use Higman’s Lemma has
been applied to bound the complexity of reachability in lossy channel systems
and insertion (or gainy) channel systems: two classes of well-structured systems
that arise naturally in the modelling of communication over faulty media. For
the reachability and termination problem in lossy channel systems, an upper
bound in level Fωω of the fast-growing hierarchy was obtained in [7]. (Recall
that F<ω comprises the primitive recursive functions, Ackermann’s function lies
in Fω, while Fωω contains the first non-multiply recursive function.) The same
paper also shows that neither problem lies in a lower level of the hierarchy and
observes that both lower and upper bounds carry over to MTL satisfiability over
finite words and to reachability in insertion channel systems, among many other
problems.2 An upper bound in Fωω for safety MTL satisfiability has also been
sketched in [21] using related techniques.

Meanwhile, complexity lower bounds for safety MTL have been obtained util-
ising a correspondence with the termination problem for insertion channel sys-
tems. In [4] it is shown that termination for insertion channel machines with
emptiness tests is primitive recursive, though non-elementary.3 This result is
used to give a non-elementary lower bound in F3 for the satisfiability problem for
safety MTL. An improved lower bound in F4 is given in [13], again via insertion
channel machines, but still leaving a considerable gap with the above-mentioned
Fωω upper bound. This gap was highlighted recently in [14].

The key to determining the precise complexity of satisfiability for safety MTL
is to study a refined version of the termination problem for channel machines—
namely the fair termination problem. Roughly speaking, an infinite computation
of an insertion channel machine is fair if every message that is written to the
channel is eventually consumed—and not continuously preempted by insertion
errors. (In the translation between channel machines and MTL, fairness corre-
sponds in a precise sense to the non-Zenoness assumption.) We obtain lower
and upper complexity bounds for this problem that are Ackermannian, i.e., that
lie in level Fω of the fast-growing hierarchy. These bounds also apply to safety
MTL satisfiability, finally closing the above-mentioned complexity gap.

Unlike [4], we consider channel machines with a single channel. In [4], with-
out the hypothesis of fairness, the termination problem was shown to be non-
elementary in the number of channels. On the other hand, fair termination is
already undecidable if there are two channels. But with a single channel fair

2 Incidentally, the model-checking problem over infinite timed words for safety MTL
against timed automata can also be shown to have complexity precisely in Fωω ,
following arguments presented in [19] together with the results of [7].

3 In the presence of insertion errors, read-transitions can always be taken, so the
channel is redundant unless there is an extra hypothesis, such as emptiness tests.
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termination is non-primitive recursive in the size of the channel alphabet. In
common with [4] we find that termination for insertion channels has a lower
complexity than termination for lossy channel systems or reachability for either
type of system, neither of which is multiply recursive.

Our technical development is carried out in a slightly more abstract framework
than insertion channel systems. We study the termination problem for well-
structured transition systems whose states are words over a given alphabet, and
whose transition relation is a rational relation that is (downwards) compatible
with the subword order. (This is similar to the basic framework of regular model
checking [2], but with the additonal hypothesis of monotonicity.)

To obtain an Ackermannian upper bound, we associate a Hydra battle with
each finite computation of such a system. For our purposes, a Hydra battle is a
sequence of ‘flat’ regular expressions that express assertions about states in the
computation. Each regular expression can be seen as arising from its precedessor
by a process of truncation (by the sword of Hercules) and regeneration. Our
Hydra correspond to the classical tree Hydra of Kirby and Paris [15] via a natural
correspondence between flat regular expressions and trees of height 2.

The basic pattern for proving our lower bound result is a standard one, namely
to reduce from the halting problem for Ackermannianly bounded Turing ma-
chines by simulating their computations. However, in contrast to the common
approach in the literature, in which a large function and its inverse are com-
puted weakly before and after the simulation respectively (cf. e.g. [7,22,14]), we
bootstrap a counter that can count accurately to an Ackermannian bound even
in the presence of insertion errors. The bootstrapping involves extending Stock-
meyer’s yardstick construction, which reaches beyond the elementary functions,
to surpass all primitive recursive ones.

2 Preliminaries

2.1 Fast Growing Hierarchy

We define an initial segment of the fast growing hierarchy [16] of computable
functions by following the presentation of Figueira et al. [8].

For each k ∈ N, class Fk is the closure under substitution and limited recursion
of constant, sum and projection functions, and Fn functions for n ≤ k. The latter
are defined so that F0 is the successor function, and each Fn+1 is computed by
iterating Fn:

F0(x) = x + 1 Fn+1(x) = F x+1
n (x)

The following are a few simple observations:

– F0 = F1 contains all linear functions, like λx.x + 3 or λx.2x;
– F2 contains all elementary functions, like λx.22

x

;

– F3 contains all tetration functions, like λx. 22
. .

.
2

︸ ︷︷ ︸
x

.



646 R. Lazić, J. Ouaknine, and J. Worrell

The hierarchy is strict for k ≥ 1, i.e., Fk � Fk+1, because Fk+1 /∈ Fk. Also,
for each k ≥ 1 and f ∈ Fk, there exists p ≥ 1 such that F p

k majorises f , i.e.,
f(x1, . . . , xn) < F p

k (max(x1, . . . , xn)) for all x1, . . . , xn [16, Theorem 2.10].
The union

⋃
k Fk is the class of all primitive recursive functions, while Fω

defined by Fω(x) = Fx(x) is an Ackermann-like non-primitive recursive function;
we call Ackermannian such functions that lie in Fω \

⋃
k Fk.

We remark that, following this pattern for successor and limit ordinals, the
hierarchy can be continued up to level ωω. The union

⋃
α<ωω Fα is the class of

all multiply recursive functions, and the non-multiply recursive functions in Fωω

have been called ‘hyper-Ackermannian’.

2.2 Finite Transducers

We work with normalised transducers with ε-transitions, whose input and output
alphabets are the same. They are tuples of the form 〈Q,Σ, δ, I, F 〉, where Q is a
finite set of states, Σ is a finite alphabet, δ ⊆ Q× (Σ ∪{ε})× (Σ ∪{ε})×Q is a
transition relation, and I, F ⊆ Q are sets of initial and final states respectively.

We write transitions as q
a|a′
−−→ q′, which can be thought of as reading a from the

input word (if a ∈ Σ) and writing a′ to the output word (if a′ ∈ Σ).
For a transducer T as above, we say that τ is a transduction iff it is a path

q0
a1|a′

1−−−→ q1 · · ·
an|a′

n−−−−→ qn where q0 is initial and qn is final, and we write In(τ)
and Out(τ) for the words a1 . . . an and a′1 . . . a

′
n respectively. The relation of T

is then R(T ) = {〈In(τ),Out(τ)〉 : τ is a transduction of T }. The transducers
recognise exactly rational relations betweenΣ∗ andΣ∗ (cf. e.g. [20, Chapter IV]).

A computation of a transducer T from a word w1 is a finite or infinite sequence
of words w1, w2, . . . such that w1 R(T ) w2 R(T ) · · · .

If q and q′ are states of a transducer T , we write T (q, q′) for the transducer
obtained from T by making q the only initial state and q′ the only final state.

2.3 Composing Transducers

We write � for relational composition, as well as for its counterpart in terms of
transducers. Recalling a standard definition of the latter operation, given two
transducers T1 = 〈Q1, Σ, δ1, I1, F1〉 and T2 = 〈Q2, Σ, δ2, I2, F2〉, the transition
relation of their composition T1 � T2 = 〈Q1 ×Q2, Σ, δ, I1 × I2, F1 ×F2〉 is defined
so that every output of T1 must be consumed by an input of T2:

〈q1, q2〉
a|a′
−−→ 〈q′1, q′2〉 iff

⎧⎪⎪⎨⎪⎪⎩
q1

a|ε−−→ q′1 and a′ = ε and q2 = q′2, or

q1
a|a′′
−−−→ q′1 and q2

a′′|a′
−−−→ q′2 for some a′′ ∈ Σ, or

q1 = q′1 and a = ε and q2
ε|a′
−−→ q′2.

We then have R(T1 � T2) = R(T1) � R(T2).
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2.4 Downwards Monotone Transducers

Given an alphabet Σ, we write � for the subword ordering on Σ∗, i.e., w � w′

iff w′ can be obtained from w by a number of insertions of letters. The downward
closure of a subset L of Σ∗, i.e., {w | ∃w′. w � w′ ∧ w′ ∈ L}, is denoted by ↓L.

We say that a relation R on Σ∗ is downwards monotone iff, whenever w1 R w2,
every replacement of w1 by a subword w′

1 can be matched on the right-hand side
of R, i.e., ∀w1, w2, w

′
1. w1 R w2 ∧ w′

1 � w1 ⇒ ∃w′
2. w

′
1 R w′

2 ∧ w′
2 � w2. Note

that this is the same notion as downward compatibility of R with respect to �
in the theory of well-structured transition systems [9].

A transducer T is downwards monotone iff its relation R(T ) has the property.

Proposition 1. Composing transducers preserves downward monotonicity.

We leave open the decidability of whether a given transducer is downward mono-
tone. We note however that this problem is at least as hard as the regular Post
embedding problem (PEPreg) [6], and therefore not multiply recursive [7].

2.5 Downward Rational Termination

The principal problem we study is whether a given downwards monotone trans-
ducer terminates from a given word:

Given a downwards monotone transducer T and a word w1 over its
alphabet, is every computation of T from w1 finite?

We remark that the standard rational termination problem, i.e., without the
assumption of downward monotonicity, is undecidable. Indeed, it is straight-
forward to compute a transducer that recognises the one-step relation between
configurations of a given Turing machine.

Another closely related problem is gainy rational termination (also called
increasing rational termination [14]):

Given a transducer T and a word w1 over its alphabet, is every compu-
tation of T$ from w1 finite?

Here T$ = � �T ��, where � on the right-hand side denotes a transducer whose
relation is the subword ordering over the alphabet Σ of T :

0
a|a

for all a ∈ Σ
ε|a

for all a ∈ Σ

Thus, T$ can be thought of as a ‘faulty’ version of T that may gain arbitrary
letters in both input and output words, i.e., suffers from ‘insertion errors’.

By observing that T$ is downwards monotone for every transducer T , gainy
rational termination reduces to downward rational termination. Conversely, for
a downwards monotone transducer T , it is easy to see that T has an infinite
computation from w1 iff the same is true of T$.
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3 Upper Bound

We obtain an Ackermannian upper bound for downward rational termination by
proving that, given an instance T , w1 of the problem, there is an Ackermannianly
large positive integer N(T , w1) such that if T terminates from w1 then all its
computations from w1 have lengths bounded by N(T , w1).

At the heart of the proof, there is an analysis of computations of T from w1

in terms of how frequently they contain words that belong to certain regular
languages. A trivial case is when the regular language consists of all words over
the alphabet of T , for which the frequency is 1. More interestingly, our central
lemma (Lemma 6) shows that, assuming that the frequency of the language of
a regular expression E in a computation of length N is u−1 and that N is suf-
ficiently large in terms of u, either some segment of the computation can be
pumped to produce an infinite computation, or E can be refined to some E′

whose frequency is some smaller u′
−1

. The notion of refinement of the regular
expressions is such that only finitely many successive refinements are ever pos-
sible, and so if T terminates from w1 then repeated applications of the lemma
must stop because N is not sufficiently large. Moreover, the refinements of the
regular expressions and the decreases in their frequences observe certain bounds
(that depend on T , but not on w1 or N), which together with the preceding rea-
soning enables us to obtain a global bound on the lengths of all the computations
(provided that T terminates from w1).

Before the central lemma, we have two lemmas that are about pumpability
of computation segments, and its connection with the regular expressions and
their refinements. Leading to the main result, we have another two lemmas,
which are concerned with bounding the sequences of regular expressions and
frequences that can arise from repeated applications of the central lemma, and
consequences of those bounds for the lengths of computations. However, we first
introduce the class of regular expressions used and the notion of refinement, as
well as a useful class of auxiliary transducers.

3.1 Flat Regular Expressions (FRE)

A prominent role in the sequel is played by the following subclass of the sim-
ple regular expressions of Abdulla et al. [1]: we say that a regular expression
over an alphabet Σ is flat iff it is of the form Δ∗

1d1Δ
∗
2d2 · · ·Δ∗

K with K ≥ 1,
Δ1, . . . , ΔK ⊆ Σ and d1, . . . , dK−1 ∈ Σ ∪ {ε}.

For such a regular expression E, let: the length of E be K; the height of E be
maxKi=1 |Δi|. If l ∈ N+, let us say that E is l-refined by E′ iff E′ can be obtained
from E by replacing some Δ∗

i with an FRE E† over Δi such that:

– the length of E† is at most l, and
– the height of E† is strictly less than |Δi|, i.e., each set in E† is strictly in Δi.

In that case, E′ is also an FRE over Σ, of length at most K + l− 1. When each
set in E† has size |Δi| − 1, we call the refinement maximal.
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For E still as above, let IE denote an identity transducer on the downward
closure of the language of E as follows:

1

a|a
for all a ∈ Δ1

2
d1|d1

ε|ε

a|a
for all a ∈ Δ2

· · ·
d2|d2

ε|ε
K

a|a
for all a ∈ ΔK

Indeed, R(IE) = {〈w,w〉 : w ∈ ↓L(E)}, so IE is downwards monotone.

3.2 Pumpable Transductions

Since finite sequences of consecutive transductions can be seen as single trans-
ductions of composite transducers, it suffices to consider pumpability of trans-
ductions instead of considering it for computation segments. The notion we de-
fine applies to transductions between words in the language of an FRE E =
Δ∗

1d1 · · ·Δ∗
K , and essentially requires that, for all i, while reading the portion of

the input word in Δ∗
i , the transduction visits a part of the transducer that is

able to consume any word in Δ∗
i . The composition with the identity transducer

is a technical tool to ensure that traversing different paths in the state-transition
graph still produces words that conform to E.

Definition 2. If T is a downwards monotone transducer and E = Δ∗
1d1 · · ·Δ∗

K

is a FRE over an alphabet Σ, and τ is a transduction of composite transducer
T �IE such that In(τ) ∈ L(E), let us say that τ is pumpable iff it can be factored

as s1
τ1−→ s′1

d1|e1−−−→ s2
τ2−→ s′2

d2|e2−−−→ · · · sK
τK−−→ s′K , where, for each i ∈ {1, . . . ,K},

Δ∗
i ⊆ ↓dom(R((T � IE)(si, s

′
i))).

Lemma 3. If T is downwards monotone, and T � IE has a transduction τ such
that In(τ) ∈ L(E) and which is pumpable, then T has an infinite computation
from any word in ↓L(E).

The following is a ‘pumping lemma’: roughly, if a transduction from E to E is
such that its input word is not in the language of any ‘short’ refinement of E,
then it is pumpable. Here ‘short’ amounts to a bound which is the product of
the length of E and the size of the transducer’s state space.

Lemma 4. Suppose that: T is a downwards monotone transducer with set of
states Q and alphabet Σ; E is a FRE over Σ, of length K; τ is a transduction
of T � IE such that In(τ) ∈ L(E). Then either τ is pumpable, or In(τ) ∈ L(E′)
for some K|Q|-refinement E′ of E.
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3.3 Sword of Hercules

Our central lemma, assuming that γ is a computation of length N from w1 of
a downwards monotone T which terminates from w1, can be applied repeatedly
to γ to yield some sequence 〈E0, u0〉, 〈E1, u1〉, . . . of pairs of FREs and positive
integers, as long as N is sufficiently large. For each h, there are at least -N/uh.
occurrences in γ of words from the language of Eh. Moreover, each Eh+1 refines
Eh, and the length of Eh+1 as well as uh+1 are bounded by elementary functions
of: the number of states of T , the length and height of Eh, and uh. Recalling the
notion of refinement, each application of the lemma can be thought of as a strike
of Hercules on the FRE Eh, after which the latter has a Hydra-like response:
although some component of the form Δ∗

h is removed from Eh, it is replaced

in Eh+1 by some FRE E†
h. The height of E†

h, however, must be strictly smaller
than the size of Δh, but the bound on its length grows with every strike.

Definition 5. For α ∈ (0, 1], let us say that a regular expression E is α-frequent
in a sequence of words w1, . . . , wN iff there exists J ∈ {1, . . . , N} of size -Nα.
such that wj ∈ L(E) for all j ∈ J .

Lemma 6. Suppose that γ = w1, . . . , wN is a computation of a downwards
monotone transducer T with set of states Q and alphabet Σ, and that T termi-
nates from w1. If an FRE E over Σ and u ∈ N+ are such that N ≥ 16u2 and E is
u−1-frequent in γ, then there exists a K|Q|4u-refinement E′ of E which is u′

−1
-

frequent in γ, where K = len(E), H = hgt(E), and u′ = 16u2K(H + 1)2K|Q|4u .

3.4 Slaying the Hydra

The next two lemmas show that every sequence of pairs of FREs and positive
integers that can arise from repeated applications of Lemma 6 is finite, i.e.,
Hercules always defeats the Hydra eventually, and that if N ≥ 16u2 for every u
in such a sequence and T terminates from w1, then T cannot have a computation
from w1 of length N . Moreover, from the single-step bounds in Lemma 6, we
establish a bound for each pair in terms of |Q|, |Σ| and the distance from the
initial pair 〈Σ∗, 1〉, where Q and Σ are the state space and the alphabet of T .

We first define a directed graph which contains every sequence that Lemma 6
can yield. To show that every path that starts from 〈Σ∗, 1〉 is finite, we also
introduce a measure on FREs E overΣ in terms of |Σ|-tuples of natural numbers.
The latter records, for each s ∈ {1, . . . , |Σ|}, how many sets of size s occur in E.

We say that a sequence y0, y1, . . . of tuples in some Nk is bad iff there do not
exist i < j such that yi ≤ yj , where ≤ is the pointwise ordering. We recall that,
by Dickson’s Lemma, ≤ is a well-quasi ordering on Nk, i.e., there is no infinite
bad sequence. Hence, the finiteness of every path from 〈Σ∗, 1〉 follows once we
show that every corresponding sequence of measures in N|Σ| is bad.

Definition 7. Given a set of states Q and an alphabet Σ, let ΥQ,Σ be the graph:

– the vertices are pairs 〈E, u〉 where E is an FRE over Σ and u ∈ N+;
– there is an edge from 〈E, u〉 to 〈E′, u′〉 iff E′ is a K|Q|4u-refinement of E

and u′ = 16u2K(H + 1)2K|Q|4u , where K = len(E) and H = hgt(E).
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Definition 8. For E = Δ∗
1d1 · · ·Δ∗

K an FRE over Σ and s ∈ {0, . . . , |Σ|}, let
Ys(E) = |{i : i ∈ {1, . . . ,K} and |Δi| = s}|.

Lemma 9. Suppose that Q is a set of states, Σ is an alphabet, and 〈E0, u0〉 →
〈E1, u1〉 → . . . is a path from 〈Σ∗, 1〉 in ΥQ,Σ . Then 〈Y1(E0), . . . , Y|Σ|(E0)〉,
〈Y1(E1), . . . , Y|Σ|(E1)〉, . . . is a bad sequence, and letting f(u) = 16u3+2u1+4u

, we

have
∑|Σ|

s=0 Ys(Eh), uh < fh+max(|Q|,|Σ|)(2) for all h.

Lemma 10. Suppose that: T is a downwards monotone transducer with set of
states Q and alphabet Σ; T terminates from w1; N ≥ 16u2 for all vertices 〈E, u〉
that are reachable from 〈Σ∗, 1〉 in ΥQ,Σ. Then T does not have a computation
from w1 of length N .

3.5 Main Result

Given the preceding lemmas, it remains to do two things. The first is to show
that, in every graph ΥQ,Σ , the positive integers in all vertices that are reachable
from 〈Σ∗, 1〉 are bounded by an Ackermannian function of |Q| and |Σ|. Although
the vertices and edges of ΥQ,Σ can be encoded using the classical Hydra trees
of Kirby and Paris [15], we do not require the full generality of the latter, but
are able to obtain an Ackermannian bound using Lemma 9 and recent results of
Figueira et al. [8] on lengths of bad sequences of tuples of natural numbers.

Writing N(|Q|, |Σ|) for the obtained bound, it then remains to argue that a
computation of T from w1 can be non-deterministically guessed and checked in
Ackermannian time or space, but that can be done by a straightforward non-
deterministic algorithm that explores the state-transition graph of the iterated
transducer T N(|Q|,|Σ|)−1 on the fly.

Theorem 11. Termination for a downwards monotone transducer T with set
of states Q and alphabet Σ, from a word w1 over Σ, is decidable by an algorithm
whose complexity is bounded by an Ackermannian function. For fixed |Σ|, the
bound is in F|Σ|+2.

Proof. From Lemma 9, for every path 〈E0, u0〉 → 〈E1, u1〉 → . . . from ver-
tex 〈Σ∗, 1〉 in ΥQ,Σ , the sequence 〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉,
. . . in N|Σ| is bad, and for all h, max(Y1(Eh), . . . , Y|Σ|(Eh)) < fh+max(|Q|,|Σ|)(2),
i.e., in the terminology of Figueira et al. [8], the sequence is max(|Q|, |Σ|)-
controlled by the function g(h) = fh(2). Since f is in class F2 of the fast grow-
ing hierarchy, we have that g belongs to F3. Also, g is monotone and satisfies
g(h) ≥ max(1, h) for all h, and we can assume that |Σ| ≥ 1. Hence, [8, Proposi-
tion 5.2] applies and gives us a function Ms(t) such that Ms is in Fs+2 for each
s ≥ 1, and the length of 〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉, . . . is at
most M|Σ|(max(|Q|, |Σ|)).

Since the distance of each 〈E, u〉 reachable from 〈Σ∗, 1〉 in ΥQ,Σ is at most
M|Σ|(max(|Q|, |Σ|)) − 1, we have by Lemma 9 that N(|Q|, |Σ|) ≥ 16u2, where

N(k, s) = 16(g(Ms(max(k, s)) − 1 + max(k, s)))2.
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Therefore, by Lemma 10, T terminates from w1 iff it does not have a computation
from w1 of length N(|Q|, |Σ|).

We conclude that termination of T from w1 is decidable by guessing and
checking an N(|Q|, |Σ|)-long computation of T from w1, which is equivalent to
guessing and checking a transduction of the iterated transducer T N(|Q|,|Σ|)−1

from w1. It follows that space O(N(|Q|, |Σ|) × (log |Q| + log |Σ|) + log |w1|) is
sufficient for a non-deterministic algorithm.

Recalling that M|Σ| is in F|Σ|+2 and that g is in F3 ⊆ F|Σ|+2, we have that
N(|Q|, |Σ|) as a function of |Q| is also in F|Σ|+2. Therefore, as a function of
the combined size of T and w1, the non-deterministic space bound is in F|Σ|+2

when |Σ| is fixed, and in Fω in general. Since the classes involved of the fast
growing hierarchy are closed under squaring and exponentiation, the same coarse
classifications apply to consequent deterministic space and time bounds. ��

4 Lower Bound

We use the following variant of the fast growing functions Fk, which give rise to
the Ackermann hierarchy (cf. e.g. [10]):

A1(x) = 2x Ak+1(x) = Ax
k(1), for k ≥ 1.

For example, A2 is exactly exponentiation of 2, and A3 is exactly tetration of
2. One can check that, for all k, p ≥ 1, there exists xk,p ≥ 0 such that, for
all x ≥ xk,p, we have Ak(x) > F p

k−1(x); hence Ak /∈ Fk−1 if k ≥ 2 by [16,
Theorem 2.10]. Conversely, Ak(x) ≤ Fk(x) for all k ≥ 1 and x ≥ 0, so Ak ∈ Fk.

To obtain our lower bound result, we provide a construction of ‘dependent
counter programs’ D1, D2, . . . such that each Dk+1 is computable from Dk in
logarithmic space. For every k, Dk consists of routines for basic counter opera-
tions (initialisation, increment, decrement, zero testing, maximum testing), and
is dependent in the sense that it may operate on an as yet unspecified counter by
calling the latter’s operations as subroutines. Moreover, Dk is closely related to
the Ak function above: provided C is a counter program that reliably implements
a counter bounded by N (in the sense that transducers that correspond to its
routines compute correctly, even if insertion errors are possible), then Dk[C] re-
liably implements a counter bounded by Ak(N). Given a Turing machine of size
K, we then use DK [C] with C reliable up to K to build a transducer that reli-
ably simulates AK(K) steps of the machine (in the presence of insertion errors),
and diverges iff the machine halts.

Theorem 12. Given a deterministic Turing machine M of size K, we have
that a transducer T (M) and a word w1, over an alphabet of linear size, are com-
putable in elementary time, such that M halts within time AK(K) iff T (M)$
does not terminate from w1.

5 Safety MTL Satisfiability

We now show that the satisfiability problem for the safety fragment of MTL is
inter-reducible with the termination problem for gainy transducers (equivalently,
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for downwards monotone transducers, cf. Sect. 2.5), thus improving the best
known upper and lower bounds for the former. This reduction relies on results
in the literature concerning insertion channel machines (ICMs)—a model that
is very closely related to gainy transducers.

The formulas of MTL are built over a set of atomic events Σ using monotone
Boolean connectives and time-constrained versions of the next operator ©, until
operator U , and the dual until operator Ũ :

ϕ ::= % | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2,

where a ∈ Σ and I ⊆ R≥0 is an interval with endpoints in N ∪ {∞}.
A timed word over alphabet Σ is a pair ρ = 〈σ, τ〉, where σ is an infinite

word over Σ and τ is an infinite sequence of non-negative reals that is strictly
increasing and unbounded (i.e., non-Zeno). The satisfiability problem for MTL
asks whether a given formula is satisfied by some timed word. This problem was
shown undecidable in [17], motivating the introduction of the sub-logic safety
MTL in [18]. Safety MTL is the fragment of MTL obtained by requiring that the
interval I in each until operator UI have finite length. Thus safety MTL allows
bounded eventualities, such as ♦(0,1)ϕ, but not unbounded eventualites, such as
♦(0,∞)ϕ. The satisfiability problem for safety MTL was shown to be decidable
in [18] by an argument involving Higman’s Lemma. It was later observed that this
argument yields an upper bound in level Fωω of the fast-growing hierarchy [21].
A non-elementary lower bound (in F3) is given in [4] and an improved lower
bound in F4 is given in [13].

Theorems 11 and 12 yield upper and lower bounds for safety MTL satisfiability
that are both in Fω through four reductions:

ICM fair
termination

gainy rational
termination

safety MTL
satisfiability

(iii)

(iv)(i)

(ii)

where an ICM is a finite-state automaton acting on an unbounded channel that is
subject to insertion errors, and their fair termination problem ask whether there
is no infinite computation which is fair, i.e., in which every message written to
the channel is eventually read.

The reductions (i) and (ii) are almost immediate and require only logarithmic
space. Details for the reduction (iii), which can also be done in logarithmic
space, can be found in [4]. The most complex reduction is (iv): it is doubly
exponential, and its details are available in [13, Proposition 5.27], which builds
on a translation from MTL to channel machines in [5].
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Abstract. In this paper we present Hilbert-style axiomatizations for three log-
ics for reasoning about continuous-space Markov processes (MPs): (i) a logic for
MPs defined for probability distributions on measurable state spaces, (ii) a logic
for MPs defined for sub-probability distributions and (iii) a logic defined for ar-
bitrary distributions. These logics are not compact so one needs infinitary rules in
order to obtain strong completeness results.

We propose a new infinitary rule that replaces the so-called Countable Addi-
tivity Rule (CAR) currently used in the literature to address the problem of prov-
ing strong completeness for these and similar logics. Unlike the CAR, our rule
has a countable set of instances; consequently it allows us to apply the Rasiowa-
Sikorski lemma for establishing strong completeness. Our proof method is novel
and it can be used for other logics as well.

1 Introduction

Markov processes (MPs) are standard models used for abstracting and reasoning about
complex natural and man-made systems in order to handle either a lack of knowledge or
inherent randomness. There are various levels of abstraction that one can consider in the
definition of Markov processes: (i) the state space can be modeled by using particular
types of structures that can vary from discrete finite spaces to topological or measurable
spaces; (ii) the indeterminacy can be modeled by using probability or sub-probability
distributions over the state space to describe the probability of transitions or by as-
suming exponentially distributed random variables to characterize the time durations
between transitions.

To specify properties of Markov processes, the natural logic is a simple modal logic
in which bounds on probabilities enter into the modalities. This logic can be stripped
down to a very spartan core —just the modalities and finite conjunction— and still
characterize bisimulation for labeled Markov processes [5,6]. It is therefore tempting to
understand this logic from a proof theoretic perspective. Recent papers [4,11,19] have
established complete proof systems and prove finite model properties for similar logics.
Goldblatt in [11] presents a proof-theoretic analysis of the logic of T -coalgebras, where
T is any polynomial functor constructed from a standard monad on the category of mea-
surable spaces. He proves that the semantic consequence relation over T -coalgebras is
equal to the least deducibility relation that satisfies Lindenbaum’s lemma, which states
that any consistent set of formulas can be extended to a maximally consistent set. In
other words, this consequence relation is equal to the least of all deducibility relations

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 655–666, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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if and only if that least deducibility relation satisfies Lindenbaum’s lemma. These logics
are not compact and for proving the aforementioned results in [11] it is used a powerful
infinitary axiom scheme named the Countable Additivity Rule (CAR). In [21] Zhou and
Ying prove that such a logic is not strongly-complete in the absence of CAR.

A feature of CAR is that it has an uncountable set of instances. This fact makes it
difficult to prove that maximally consistent sets exist for such logics and consequently,
in the papers concerned with the strong completeness of the modal logics for Harsanyi
type spaces [19,21] or for Markov processes [4,15] it had to be assumed that consistent
sets can be extended to maximally consistent sets. The completeness theorems cited are
contingent on this assumption.

In this paper we reconsider the axiomatizations of the deducibility relations for three
modal logics for Markov processes. The first one refers to what we call probabilistic
Markov processes (PMPs), which are Markov processes defined by probability distribu-
tion over the state space. The second one is a modal logic for subprobabilistic Markov
processes (SMPs), which are Markov processes defined for sub-probability distribu-
tions, and the third one is defined for what we call general Markov processes (GMPs),
which are Markov processes defined for arbitrary distributions, usually these are inter-
preted as rates.

We propose a new infinitary axiom schema to replace CAR. Unlike CAR, our axiom
has a countable set of instances. This fact allows us to invoke the Rasiowa-Sikorski
Lemma and prove the strong completeness theorem via a canonical models construction
without needing to assume that consistent sets can be enlarged to maximal consistent
sets (Lindenbaum’s lemma). In fact Lindenbaum’s lemma can be directly proven from
the Rasiowa-Sikorski lemma.

The Rasiowa-Sikorski lemma is a model-theoretic result that exploits a topological
result known as Baire category theorem and the Stone duality for boolean algebras with
operators. Applied to logics, the Rasiowa-Sikorski lemma states that given a multimodal
logic (possibly involving an infinite set of modalities) for which the provability relation
admits an axiomatization such that the set of instances of the infinitary proof rules (if
any) is countable, then for any consistent formula ϕ, there exists a maximally-consistent
set of formulas containing ϕ. Since we manage to replace CAR with an infinitary rule
having a countable set of instances, we can apply this result and prove strong complete-
ness for each of the three logics.

The contribution of this paper consists in the novelty of the proof method for strong
completeness. We have used already these types of techniques in [13], where we proved
a Stone duality for PMPs. That result implies strong completeness for the logic for
PMPs but the logical aspects were not spelled out in that paper; there we concentrated
on the algebraic versions of the logic and proved a duality theorem. In this paper we
spell out the completeness theorem explicitly and, in addition, demonstrate that, in fact,
the proof method can be used for the other two logics as well. Though these logics are
superficially very similar, the axiomatizations are different and none of the complete-
ness theorems follow directly from the others.

We also show that the infinitary axiom needed to replace CAR can be obtained by
a lifting of the so-called archimedean axioms already present in the old versions of
these axiomatizations. We are confident that similar results can be obtained for the
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general case of the measurable polynomial functors on the category of measurable
spaces considered in [11], but we do not have such a result yet.

2 Background

Let Q0 = Q ∩ [0, 1], Q+ = Q ∩ [0,∞), R0 = R ∩ [0, 1], and R+ = R ∩ [0,∞).

2.1 Measurable Spaces and Measures

In this section we introduce a few concepts and results from measure theory that we
will find useful. For more details, we refer the reader to [3,8].

Let M be an arbitrary nonempty set.
A field (of sets) over M is a boolean algebra of subsets of M under the usual set-

theoretic boolean operations. A σ-algebra (also called a σ-field) over M is a field of
sets over M closed under countable union. The tuple (M, Σ) where Σ is a σ-algebra over
M, is called a measurable space and the elements of Σ measurable sets.

If Ω ⊆ 2M, the σ-algebra generated by Ω, denoted σ(Ω), is the smallest σ-algebra
containingΩ. Every topological space has a naturalσ-algebra associated with it, namely
the one generated by the open sets. This is called the Borel algebra of the space, and
the measurable sets are called Borel sets.

Given two measurable spaces (M, Σ) and (N, Ω), a function f : M → N is measur-
able if f −1(T ) ∈ Σ for all T ∈ Ω. We use �M → N� to denote the family of measurable
functions from (M, Σ) to (N, Ω).

A nonnegative real-valued set function μ is finitely additive if μ(A∪B) = μ(A)+μ(B)
whenever A∩B = ∅. We say that μ is countably subadditive if μ(

⋃
i Ai) ≤

∑
i μ(Ai) for a

countable family of measurable sets, and we say that μ is countably additive if μ(∪iAi) =∑
i μ(Ai) for a countable pairwise-disjoint family of measurable sets. Finite additivity

implies monotonicity and countable additivity implies certain continuity properties; see
the references for precise statements.

Given a measurable space (M, Σ), a countably additive set function μ : Σ → R+ is
a measure on (M, Σ). A measure μ : Σ → R0 is a subprobability measure. Thus, for
a subprobability measure μ(M) ≤ 1; if in addition μ(M) = 1, μ is a probability mea-
sure. We use Δ(M, Σ), Π(M, Σ) and Π∗(M, Σ) to denote the set of measures, probability
measures and subprobability measures on (M, Σ) respectively.

We view Δ(M, Σ) as a measurable space by defining the σ-algebra generated by the
sets {μ ∈ Δ(M, Σ) | μ(S ) ≥ r} for S ∈ Σ and r ∈ R+. This is the least σ-algebra on
Δ(M, Σ) such that all maps μ �→ μ(S ) : Δ(M, Σ)→ R+ for S ∈ Σ are measurable, where
the set of positive reals is endowed with theσ-algebra generated by all rational intervals,
i.e. the Borel σ-algebra. Similarly,Π(M, Σ) and Π∗(M, Σ) can be viewed as measurable
spaces by defining the σ-algebras generated by the sets {μ ∈ Π(M, Σ) | μ(S ) ≥ r} and
{μ ∈ Π∗(M, Σ) | μ(S ) ≥ r} respectively, defined for S ∈ Σ and r ∈ [0, 1].

The next theorem is a key tool in our constructions.

Theorem 1. [Theorem 11.3 of [3]] Let F ⊆ 2M be a field of sets. Let μ : F → R+ be
finitely additive and countably subadditive. Then μ extends uniquely to a measure on
σ(F ).
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2.2 Analytic Spaces

Recall that a topological space is said to be separable if it contains a countable dense
subset and second countable if its topology has a countable base. Second countability
implies separability, but not vice versa; however, the two concepts coincide for metric
spaces. A Polish space is the topological space underlying a complete separable metric
space. An analytic space is a continuous image of a Polish space in a Polish space.

Analytic spaces enjoy remarkable properties that were crucial in proving the logical
characterization of bisimulation [6,16]. We note that the completeness theorems proved
in [4,15,21] were established for Markov processes defined on analytic spaces.

2.3 The Baire Category Theorem

The Baire category theorem is a topological result with important applications in logic.
It is used to prove the Rasiowa-Sikorski lemma [17,10] which is crucial for this paper.

A subset D of a topological space X is dense if its closure D is all of X. Equivalently,
a dense set is one intersecting every nonempty open set. A set N ⊆ X is nowhere dense
if every nonempty open set contains a nonempty open subset disjoint from N. A set is
of the first category or meager if it is a countable union of nowhere dense sets.

A Baire space is one in which the intersection of countably many dense open sets
is dense. It follows from these definitions that the complement of a first category set
is dense in any Baire space. Baire originally proved that the real line is a Baire space.
More generally, every Polish space is Baire and every locally compact Hausdorff space
is Baire. For us, the relevant version is the following special case: every compact Haus-
dorff space is Baire.

Definition 2. Let B be a boolean algebra and let T ⊆ B be such that T has a greatest
lower bound

∧
T in B. An ultrafilter (maximal filter) U is said to respect T if T ⊆ U

implies that
∧

T ∈ U. If T is a family of subsets of B, we say that an ultrafilter U
respects T if it respects every member of T .

Theorem 3 (Rasiowa–Sikorski lemma [17]). For any boolean algebra B and any
countable family T of subsets of B, each member of which has a meet in B, and for
any nonzero x ∈ B, there exists an ultrafilter in B that contains x and respects T .

3 Markov Processes

In this section we introduce three classes of models of probabilistic systems with a
continuous state space: (i) probabilistic Markov processes (PMPs), (ii) subprobabilistic
Markov processes (SMPs) and (iii) general Markov processes (GMPs). The first two
classes contain the systems for which the transition from a state to a measurable set
of states is characterized by its probability. The third class represents the systems with
continuous-time transitions, i.e., the probability of a transition from a state to a measur-
able set of states depends on time. In earlier papers, they were called labeled Markov
processes to emphasize the fact that there were multiple possible actions, but here we
will suppress the labels, as they do not contribute any relevant structure for our results.



Strong Completeness for Markovian Logics 659

Definition 4 (Markov process). Given an analytic space (M, Σ),

– a probabilistic Markov process is a measurable mapping θ ∈ �M → Π(M, Σ)�;
– a subprobabilistic Markov process is a measurable mapping θ ∈ �M → Π∗(M, Σ)�;
– a general Markov process is a measurable mapping θ ∈ �M → Δ(M, Σ)�.

In what follows we identify a Markov process with the tupleM = (M, Σ, θ); M is called
the support set, denoted by supp(M), and θ is called the transition function.

IfM = (M, Σ, θ) is a (probabilistic/subprobabilistic/general) Markov process, then
for m ∈ M, θ(m) is a (probabilistic/subprobabilistic/general) measure on the state space
(M, Σ). IfM is a PMP or a SMP, the value θ(m)(N) for N ∈ Σ represents the probability
of a transition from m to a state in N; otherwise, ifM is a GMP, then θ(m) is a measure
on the state space and the value θ(m)(N) ∈ R+ represents the rate of an exponentially
distributed random variable that characterizes the transition from m to a state in N.

The condition that θ is measurable is equivalent to the condition that for fixed N ∈ Σ,
the function m �→ θ(m)(N) is measurable (see e.g. Proposition 2.9 of [7]).

4 Markovian Logics

Markovian logics are multi-modal logics for semantics based on the three classes of
Markov processes introduced in the previous section. They have been introduced and
studied in various contexts [1,2,14,12,19,9,4,15]. In addition to the boolean operators,
these logics are equipped with modal operators of type Lr for rational numbers r that
are used to approximate the numerical labels of the transitions. Intuitively, the formula
Lrϕ is satisfied by m ∈ M whenever the probability/rate of a transition from m to a state
satisfying the logical property ϕ is at least r.

In this paper we study three Markovian logics: the probabilistic Markovian logic
(PML), the subprobabilistic Markovian logic (SML) and the general Markovian logic
(GML); they are interpreted on PMPs, SMPs and GMPs respectively. Despite their
apparent similarities, we have found it necessary to treat these logics separately because
of subtle technical differences that make a uniform treatment difficult.

4.1 Syntax and Semantics

Definition 5. Given a countable set P of atomic propositions, the grammars below
define the sets of formulas L(Π) of probabilistic and subprobabilistic Markovian logic
and L(Δ) of general Markovian logic

L(Π) : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Lrϕ, for arbitrary p ∈ P and r ∈ Q0

L(Δ) : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Lrϕ, for arbitrary p ∈ P and r ∈ Q+

For each of these logics we assume that the usual boolean operators �,⊥,∨,→ are
available as derived constructs as well as the additional derived operator

Lr1···rnϕ = Lr1 · · · Lrnϕ

defined for r1, . . . , rn ∈ Q0 for L(Π) and for r1, . . . , rn ∈ R+ for L(Δ).
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To differentiate the probabilistic and the subprobabilistic logics, which have the same
syntax but different semantics, we denote in what follows byL(Π∗) the logic interpreted
on subprobabilistic distributions and we use L(Π) to refer to the logic interpreted on
probabilistic distributions.

In what follows we define en masse the semantics for three logics using a generic L
that ranges over the set {L(Π),L(Π∗),L(Δ)}. However, each of the following concepts
has to be properly interpreted in each case. Let M = (M, Σ, θ) be a PMP when we
consider L = L(Π), an SMP when we consider L = L(Π∗) and an GMP when we
consider L = L(Δ). Let m ∈ M be an arbitrary state and i : M → 2P an arbitrary
interpretation function for the atomic propositions. The semantics of the three logics is
defined as follows.

– M,m, i � p iff p ∈ i(m),
– M,m, i � ϕ ∧ ψ iffM,m, i � ϕ andM,m, i � ψ,
– M,m, i � ¬ϕ iff notM,m, i � ϕ.
– M,m, i � Lrϕ iff θ(m)(�ϕ�i

M) ≥ r,
where �ϕ�i

M = {m ∈ M | M,m, i � ϕ}.

For the last clause to make sense, �ϕ�i
M must be measurable. This is guaranteed, for

each of the three types of Markov process, by the fact that θ is a measurable map-
ping between the measurable space of states and the measurable space of probabilis-
tic/subprobabilistic/general distributions (see e.g. [4] for a complete proof).

GivenM = (M, Σ, θ) and i, we say that m ∈ M satisfies ϕ ifM,m, i � ϕ. We write
M,m, i �� ϕ if it is not the case thatM,m, i � ϕ; and we writeM,m, i � Φ ifM,m, i � ϕ
for all ϕ ∈ Φ. We write Φ � ϕ if M,m, i � ϕ whenever M,m, i � Φ. A formula or
set of formulas is satisfiable if there exist an MPM, an interpretation function i forM
and m ∈ supp(M) that satisfies it. We say that ϕ is valid and write � ϕ, if ¬ϕ is not
satisfiable.

In what follows, when we have to differentiate between the three semantics, we will
use indexes: �Π will be used for PML, �Π∗ for SML and �Δ for GML.

4.2 Hilbert-Style Axiomatizations

We now present Hilbert-style axiomatic systems for the three logics. These axiomatic
systems are meant to include the axioms of propositional logic; we do not write propo-
sitional axioms explicitly. In the next section we prove that these system are strongly
complete for their semantics, meaning that an arbitrary formula ϕ can be proven from
an arbitrary set Φ of formulae if and only if the models of Φ are also models of ϕ.

As we did for the semantics, we introduce the concepts related to the provability en
masse. However, they have a specific meaning for each logic and depend directly of
each particular provability relation.

As usual, for an arbitrary formula ϕ, � ϕ denotes the fact that ϕ is an axiom or a
theorem in the system. If Φ is a set of formulas, we write Φ � ϕ and say that Φ derives
ϕ if ϕ is provable from the axioms and the extra assumptions Φ; we implicitly assume
that the provability relation is adapted for the infinitary proofs allowed by the axiomatic
systems. A formula or set of formulas is consistent if it cannot derive ⊥. We say that Φ
is maximally consistent if it is consistent and it has no proper consistent extensions.



Strong Completeness for Markovian Logics 661

When we have to differentiate between the three provability relations, we will use
indexes: �Π will be used for PML, �Π∗ for SML and �Δ for GML.

The axiomatic system of PML is listed in Table 1. The axioms and the rules are stated
for arbitrary ϕ, ψ ∈ L and arbitrary r, s, r1, .., rk ∈ Q0 for k ≥ 0.

Table 1. The axioms of L(Π)

(A1): �Π L0ϕ
(A2): �Π Lr�
(A3): �Π Lrϕ→ ¬Ls¬ϕ, r + s > 1
(A4): �Π Lr(ϕ ∧ ψ) ∧ Ls(ϕ ∧ ¬ψ)→ Lr+sϕ, r + s ≤ 1
(A5): �Π ¬Lr(ϕ ∧ ψ) ∧ ¬Ls(ϕ ∧ ¬ψ)→ ¬Lr+sϕ, r + s ≤ 1

(R1):
�Π ϕ→ ψ

�Π Lrϕ→ Lrψ
(R2): {Lr1···rkrψ | r < s} �Π Lr1 ···rk sψ

A similar axiomatic system was studied in [19,20]. The novelty of our axiomatization
is the rule (R2). In [19], for proving the strongly completeness of the axiomatic system,
Lindenbaum’s lemma is assumed as a meta-axiom and instead of (R2), the rules in
Table 2 are used, stated for arbitrary ϕ ∈ L(Π) and arbitrary setΦ ⊆ L(Π) closed under
conjunction, where LrΦ = {Lrψ | ψ ∈ Φ}.

Table 2. Zhou’s rules of L(Π)

(R2’): {Lrψ | r < s} �Π Lsψ

(R2”):
Φ �Π ϕ

LrΦ �Π Lrϕ

While (R2’) is an instance of (R2), (R2”) is much stronger and it has an uncountable
set of instances. This makes the proof of the existence of the maximally consistent sets
difficult. In our case that fact that (R2) has countably many instances means that the
existence of maximally consistent sets is guaranteed by the Rasiowa-Sikorski lemma.

Before introducing the axiomatization of SML, notice that (A3) guarantees that the
semantics must use distributions bounded by 1 while (A2) guarantees that these are
probability distributions.

The axiomatic system of SML is listed in Table 3. The axioms and the rules are stated
for arbitrary ϕ, ψ ∈ L and arbitrary r, s, r1, .., rk ∈ Q0 for k ≥ 0.

Notice the difference between this system and the previous one. For SML the axiom
(A2) is not sound anymore, since for a subprobability distribution the measure of the
entire space can be smaller than 1. However, (A2’) which replaces (A2) is also sound
for PML.

The axiomatic system of GML is listed in Table 4. The axioms and the rules are
stated for arbitrary ϕ, ψ ∈ L and arbitrary r, s, r1, .., rk ∈ Q+ for k ≥ 0.

The difference with respect to the axiomatic system of SML is that the axiom (A3)
is not sound anymore. Moreover, the indexes of the modal operator can be any positive
rational, meaning that these axioms have more instances than the corresponding ones in
the other two systems. Since the semantics does not allow infinite measures, rule (R3)
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Table 3. The axioms of L(Π∗)

(A1): �Π∗ L0ϕ

(A2’): �Π∗ Lr⊥ → ⊥
(A3): �Π∗ Lrϕ→ ¬Ls¬ϕ, r + s > 1
(A4): �Π∗ Lr(ϕ ∧ ψ) ∧ Ls(ϕ ∧ ¬ψ)→ Lr+sϕ, r + s ≤ 1
(A5): �Π∗ ¬Lr(ϕ ∧ ψ) ∧ ¬Ls(ϕ ∧ ¬ψ)→ ¬Lr+sϕ, r + s ≤ 1

(R1):
�Π∗ ϕ→ ψ

�Π∗ Lrϕ→ Lrψ
(R2): {Lr1···rkrψ | r < s} �Π∗ Lr1···rk sψ

Table 4. The axioms of L(Δ)

(A1): �Δ L0ϕ

(A2’): �Δ Lr⊥ → ⊥
(A4): �Δ Lr(ϕ ∧ ψ) ∧ Ls(ϕ ∧ ¬ψ)→ Lr+sϕ, r + s ≤ 1
(A5): �Δ ¬Lr(ϕ ∧ ψ) ∧ ¬Ls(ϕ ∧ ¬ψ)→ ¬Lr+sϕ, r + s ≤ 1

(R1):
�Δ ϕ→ ψ

�Δ Lrϕ→ Lrψ
(R2): {Lr1···rkrψ | r < s} �Δ Lr1 ···rk sψ
(R3): {Lr1···rkrψ | r ∈ Q+} �Δ Lr1···rk⊥

guarantees that divergent sequences of modalities prefixing some formula generates an
inconsistent set of formulas.

Strong completeness for this logic was proven in [15] where, as in the case of Zhou’s
completeness for PML, Lindenbaum’s lemma is postulated and the rules (R2’) and
(R2”) are involved.

The next theorem states the soundness of the axioms of the three logics for their
corresponding semantics

Theorem 6. [Soundness]

1. The axiomatization of PML is sound for the PMPs semantics, i.e.,

for any ϕ ∈ L(Π), �Π ϕ implies �Π ϕ.

2. The axiomatization of SML is sound for the SMPs semantics, i.e.,

for any ϕ ∈ L(Π∗), �Π∗ ϕ implies �Π∗ ϕ.

3. The axiomatization of GML is sound for the GMPs semantics, i.e.,

for any ϕ ∈ L(Δ), �Δ ϕ implies �Δ ϕ.

4.3 Canonical Models

In this section we construct canonical models for the three logics. The canonical model
for a logic L ∈ {L(Π),L(Π∗),L(Δ)} is a Markov processesML = (UL, ΣL, θL) having
the setUL of L-maximally consistent sets of formulas as the state space and satisfying
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the property that for any ϕ ∈ L and u ∈ UL, ML, u, iL � ϕ iff ϕ ∈ u, where iL is an
appropriate interpretation function.

In order to complete such a construction, we have to:

– prove thatUL � ∅ for each L ∈ {L(Π),L(Π∗),L(Δ)};
– define ΣL such that (UL, ΣL) is an analytic space;
– define a measure θL on (UL, ΣL);
– define an interpretation function iL such that for any ϕ ∈ L, �ϕ�iL

ML ∈ ΣL;
– and prove the Truth Lemma stating thatML, u, iL � ϕ iff ϕ ∈ u.

Lemma 7. For L ∈ {L(Π),L(Π∗),L(Δ)} with the proof systems previously defined, the
setUL of L-maximally consistent sets is nonempty.

Proof. Note that in each case L forms a boolean algebra and the instances of all the
axioms and rules define a countable family of subsets of L, each member of which has
the meet in L; in particular the instances of (R2) define the subsets {Lr1···rkrψ | r < s} of
L each having the meet Lr1···rk sψ ∈ L. Observe also that a set u ⊆ L is a L-maximally
consistent set iff it is a boolean ultrafilter that respects all the instances of the axioms of
L. Consequently, the Rasiowa-Sikorski Lemma guarantees thatUL � ∅.

Let �L� = {�ϕ� | ϕ ∈ L}, where �ϕ� = {u ∈ UL | ϕ ∈ u}. Using this, we define ΣL =
σ(�L�). The space (UL, ΣL) is an analytic space for each L ∈ {L(Π),L(Π∗),L(Δ)}.
The proof for the probabilistic case —which is decidedly non-trivial— can be found
in [13] and works similarly for the other two cases.

The next step in our construction is to define an appropriate measure θL on (UL, ΣL).
To do this we prove the following lemma.

Lemma 8. 1. For arbitrary u ∈ UL(Π) and ϕ ∈ L(Π), or u ∈ UL(Π∗) and ϕ ∈ L(Π∗),

xϕu = sup{r ∈ Q0 | Lrϕ ∈ u} = inf{r ∈ Q0 | ¬Lrϕ ∈ u}.

Moreover, if xϕu ∈ Q, then Lxϕuϕ ∈ u.
2. For arbitrary u ∈ UL(Δ) and ϕ ∈ L(Δ),

xϕu = sup{r ∈ Q+ | Lrϕ ∈ u} = inf{r ∈ Q+ | ¬Lrϕ ∈ u} ∈ R+.

Moreover, if xϕu ∈ Q, then Lxϕuϕ ∈ u.

The previous lemma allows us to define, for each L ∈ {L(Π),L(Π∗),L(Δ)} and arbi-
trary u ∈ UL, ϕ ∈ L,

θL(u)(�ϕ�) = sup{r ∈ Q+ | Lrϕ ∈ u}.

Obviously, θL(u) is a set function defined on the field �L� and Theorem 1 ensures us that
it can be uniquely extended to a measure on ΣL if it is finitely additive and countable
subadditive on �L�. This is what we prove next.
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Lemma 9. For all u ∈ UL, the function θL(u) is finitely additive.

Now we prove that the function is also countable subadditive and this is a central result
of the paper where we make use of (R2). In related papers, to prove a similar result
a so-called countable additivity axiom was used. This is an infinitary axiom with un-
countable instances [11,21,15].

The main technical lemma that lies at the heart of the construction is proved in our
previous paper on Stone duality [13] for the probabilistic case. The proof can be simi-
larly done for the other two cases.

Lemma 10. For u ∈ UL, the function θL(u) is countably subadditive.

The previous lemmas guarantees that θL can be extended to a measure on (UL, ΣL).
From the construction we also obtain that θL(Π) is a probabilistic measure and θL(Π∗) is
a subprobabilistic measure.

Theorem 11 (Canonical models)

1. ML(Π) = (UL(Π), ΣL(Π)) is a probabilistic Markov process;
2. ML(Π∗) = (UL(Π∗), ΣL(Π∗)) is a subprobabilistic Markov process;
3. ML(Δ) = (UL(Δ), ΣL(Δ)) is a general Markov process.

Proof. In the generic case we only need to verify that θL is a measurable function. Let
ϕ ∈ L, and r ∈ [0, 1] for L(Π) and L(Π∗) and r ∈ R+ for L(Δ). Consider (ri)i ⊆ Q
an increasing sequence with supremum r. Let X = {μ ∈ Π(UL(Π), ΣL(Π)) | μ(�ϕ�) ≥
r} for L(Π), X = {μ ∈ Π∗(UL(Π∗), ΣL(Π∗)) | μ(�ϕ�) ≥ r} for L(Π∗) and X = {μ ∈
Δ(UL(Δ), ΣL(Δ)) | μ(�ϕ�) ≥ r} for L(Δ). It suffices to prove, in each case, that θ−1

L (X) ∈
ΣL. But

θ−1
L (X) = {u ∈ UL | θ(u)(�ϕ�) ≥ r} =

⋂

i

{u ∈ UL | θL(u)(�ϕ�) ≥ ri} =
⋂

i

�Lriϕ� ∈ ΣL.

We define an interpretation function iL for arbitrary u ∈ UL by iL(u) = u ∩P. Now we
are ready to prove the Truth Lemma.

Lemma 12 (Truth Lemma). For L ∈ {L(Π),L(Π∗),L(Δ)}, Φ ⊆ L and u ∈ UL,

ML, u, iL � Φ iff Φ ⊆ u.

Proof. It is sufficient to prove inductively that for any ϕ ∈ L,ML, u, iL � ϕ iff ϕ ∈ u.
The case ϕ ∈ P and the boolean cases are trivial.
The case ϕ = Lrψ: (=⇒) Suppose that ML, u, iL � ϕ and ϕ � u. Hence ¬ϕ ∈ u.
Let xϕu = in f {r ∈ Q | ¬Lrψ ∈ u}. Then, from ¬Lrψ ∈ u, we obtain r ≥ xϕu . But
ML, u, iL � Lrψ is equivalent with θL(u)(�ψ�) ≥ r, i.e. xϕu ≥ r. Hence, xϕu = r ∈ Q and
Lemma 8 implies Lxψu

ϕ ∈ u, i.e., ϕ ∈ u - contradiction.
(⇐=) If Lrψ ∈ u, then r ≤ xϕu , i.e., r ≤ θL(u)(�ψ�). Hence,ML, u, iL � Lrψ.

The Truth Lemma allows us to prove strong completeness for all three logics.
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Theorem 13 (Completeness). For L ∈ {L(Π),L(Π∗),L(Δ)}, Φ ⊆ L and ϕ ∈ L

Φ � ϕ iff Φ � ϕ.

Proof. (⇐=) This is a consequence of soundness, Theorem 6.
(=⇒) If Φ is inconsistent, the statement is trivially true. Suppose that Φ is consistent,
and let u ∈ UL be an arbitrary maximally consistent set. We have that Φ ⊆ u iff
UL, u, iL � Φ (from Truth Lemma). But if UL, u, iL � Φ, since Φ � ϕ, we obtain that
UL, u, iL � ϕ. Applying again the truth lemma we get ϕ ∈ u. Consequently, for an
arbitrary maximally-consistent set u ∈ UL, Φ ⊆ u implies ϕ ∈ u. Hence, Φ � ϕ.

5 Conclusions and Related Work

The most closely related work to ours is the work of Goldblatt [10] on the role of the
Baire category theorem in completeness proofs, and his work on deduction systems
for coalgebras [11]. The main difference between his work and ours is that we have
replaced the Countable additivity Rule (CAR) that he uses, with a different infinitary
axiom that has only countably many instances. Goldblatt uses CAR in order to show
countable additivity of the measures that he defines; this is where we have been able to
use of the Rasiowa–Sikorski lemma. As far as we know this is a new idea. Furthermore,
Goldblatt’s results are contingent on the assumption that consistent sets can be expanded
to maximally consistent sets; we have essentially proved this fact for our logics.

Regarding the completeness proofs for Markovian logics, the results for probabilistic
case were proved by Zhou in [19] and for the general case by Mardare-Cardelli-Larsen
in [15]. In these papers the strong completeness is solved using CAR.

In this paper, we have used some of the results of our earlier paper [13] to show that
we can obtain strong completeness theorems for three types of Markov processes and
their related logics. The main technical lemmas about measure theory are in [13] but the
canonical model constructions which use those facts are in the present paper. That paper
focussed on algebra and duality whereas the present paper is primarily about logic and
can be read independently.

A very tempting future research project is to extend these completeness theorems
to the entire class of systems described as coalgebras of polynomial functors described
by Goldblatt [11]. It is possible that the results of Pattinson and Schröder [18] will be
useful for this.

Though the focus of the present paper has been on probabilistic systems and Marko-
vian logics, the techniques may well apply to any non-compact modal logic. We are
investigating whether there is a general way of introducing an infinitary axiom that will
allow us to mimic the techniques of the present paper.
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Abstract. We extend the well known characterization of the arithmetic
circuit class VPws as the class of polynomials computed by polynomial
size arithmetic branching programs to other complexity classes. In order
to do so we add additional memory to the computation of branching
programs to make them more expressive. We show that allowing differ-
ent types of memory in branching programs increases the computational
power even for constant width programs. In particular, this leads to very
natural and robust characterizations of VP and VNP by branching pro-
grams with memory.

1 Introduction

Arithmetic Branching Programs (ABPs) are a well studied model of computa-
tion in algebraic complexity: They were already used in the VNP-completeness
proof of the permanent by Valiant [14] and have since then contributed to the un-
derstanding of arithmetic circuit complexity (see e.g. [10,7]). The computational
power of ABPs is well understood: They are equivalent to both skew and weakly
skew arithmetic circuits and thus capture the determinant, matrix power and
other natural problems from linear algebra [12,8]. The complexity of bounded
width ABPs is also well understood: In analogy to Barrington’s Theorem [1],
Ben-Or and Cleve [2] proved that polynomial size ABPs of bounded width are
equivalent to arithmetic formulas.

We modify ABPs by giving them memory during their computations and ask
how this changes their computational power. There are several different motiva-
tions for doing this: We define branching programs with stacks, that are an adap-
tion of the nondeterministic auxiliary pushdown automaton (NAuxPDA) model
to the arithmetic circuit model. The NAuxPDA-characterization of LOGCFL has
been very successful in the study of this class and has contributed greatly to its
understanding. We give a characterization of VP—a class that is well known for
its apparent lack of natural non-circuit characterizations. Our characterization
also has some similarity to results in the Boolean setting in which graph connec-
tivity problems on edge-labeled graphs that are similar to our ABPs with stacks
were shown to be complete for LOGCFL [11,15]. One motivation for adapting
these results to the arithmetic circuit setting is the hope that one can apply
techniques from the NAuxPDA setting to arithmetic circuits.
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Another motivation is that our modified branching programs in different set-
tings give various very similar characterizations of different arithmetic circuit
classes. This allows us to give a new perspective on problems like VP vs. VPws,
VP vs. VNP that are classical question from arithmetic circuit complexity. This
is similar to the motivation that Kintali [6] had for studying similar graph con-
nectivity problems for the Boolean setting.

Finally, all modifications we make to ABPs are straightforward and natural.
The basic question is the following: ABPs are in a certain sense a memoryless
model of computation. At each point of time during the computation we do not
have any information about the history of the computation sofar apart from the
state we are in. So what happens if we allow memory during the computation?
Intuitively, the computational power should increase, and we will see that it
indeed does (under standard complexity assumptions of course). How do differ-
ent types of memory compare? What is the role of the width of the branching
programs if we allow memory? In this paper we will answer several of these
questions.

The structure of the paper is a follows: After some preliminaries we start off
with ABPs that may use a stack during their computation. We show that they
characterize VP even when restricted to bounded width. Next we consider ABPs
with random access memory and show that they characterize VNP. Due to lack
of space, several proofs are omitted and can be found in the full version of this
paper [9].

2 Preliminaries

2.1 Arithmetic Circuits

We briefly recall the relevant definitions from arithmetic circuit complexity.
A more thorough introduction into arithmetic circuit classes can be found in
the book by Bürgisser [5]. Newer insights into the nature of VP and especially
of VPws are presented in the excellent paper of Malod and Portier [8].

An arithmetic circuit over a field F is a labeled directed acyclic graph (DAG)
consisting of vertices or gates with indegree or fanin 0 or 2. The gates with
fanin 0 are called input gates and are labeled with constants from F or variables
X1, X2, . . .. The gates with fanin 2 are called computation gates and are labeled
with × or +.

The polynomial computed by an arithmetic circuit is defined in the obvious
way: An input gates computes the value of its label, a computation gate computes
the product or the sum of its childrens’ values, respectively. We assume that
a circuit has only one sink which we call the output gate. We say that the
polynomial computed by the circuit is the polynomial computed by the output
gate. The size of an arithmetic circuit is the number of gates. The depth of a
circuit is the length of the longest path from an input gate to the output gate
in the circuit.

We also consider circuits in which the +-gates may have unbounded fanin.
We call these circuits semi-unbounded circuits. Observe that in semi-unbounded
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circuits ×-gates still have fanin 2. A circuit is called multiplicatively disjoint if
for each ×-gate v the subcircuits that have the children of v as output-gates are
disjoint. A circuit is called skew, if for all of its ×-gates one of the children is an
input gate.

We call a sequence (fn) of multivariate polynomials a family of polynomials
or polynomial family. We say that a polynomial family is of polynomial degree,
if there is a univariate polynomial p such that deg(fn) ≤ p(n) for each n. VP is
defined as the class of polynomial families of polynomial degree computed by
families of polynomial size arithmetic circuits. We will use the following well
known characterizations of VP.

Theorem 1. ([13,8]) Let (fn) be a family of polynomials. The following state-
ments are equivalent:

1. (fn) ∈ VP

2. (fn) is computed by a family of multiplicatively disjoint polynomial size cir-
cuits.

3. (fn) is computed by a family of semi-unbounded circuits of logarithmic depth
and polynomial size.

VPe is defined analogously to VP with the circuits restricted to trees. By a classi-
cal result of Brent [3], VPe can equivalently be defined as the class of polynomial
families computed by arithmetic circuits of depth O(log(n)). VPws is defined
as the class of families of polynomials computed by families of skew circuits
of polynomial size1. Finally, a family (fn) of polynomials is defined to be in
VNP, if there is a family (gn) ∈ VP and a polynomial p such that fn(X) =∑

e∈{0,1}p(n) gn(e,X) for all n where X denotes the vector (X1, . . . , Xq(n)) for
some polynomial q.

A polynomial f is called a projection of g (symbol: f ≤ g), if there are
values ai ∈ F ∪ {X1, X2, . . .} such that f(X) = g(a1, . . . , aq). A family (fn) of
polynomials is called a p-projection of (gn) (symbol: (fn) ≤p (gn)), if there is a
polynomial r such that fn ≤ gr(n) for all n. As usual we say that (gn) is hard
for an arithmetic circuit class C if for every (fn) ∈ C we have (fn) ≤p (gn). If
further (gn) ∈ C we say that (gn) is C-complete.

The following criterion by Valiant [14] (see also [5, Prop. 2.20]) for containment
in VNP is often helpful:

Lemma 1 (Valiant’s criterion). Let φ : {0, 1}∗ → N be a function in #P/poly.
Then the family (fn) of polynomials defined by fn =

∑
e∈{0,1}n φ(e)

∏n
i=1X

ei
i is

in VNP.

1 The “ws” in VPws stands for “weakly skew”. The reason for this notation is that
VPws can also be defined by weakly skew circuits which, in contrast to what their
name suggests, are equivalent to skew circuits [12,8]. Since we will not consider
weakly skew circuits in this paper, we will not introduce them but nevertheless stick
to the usual notation VPws for the complexity class.
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2.2 Arithmetic Branching Programs

The second common model of computation in arithmetic circuit complexity are
arithmetic branching programs.

Definition 1. An arithmetic branching program (ABP) G is a DAG with two
vertices s and t and an edge labeling w : E → F ∪ {X1, X2, . . .}. A path P =

v1v2 . . . vr in G has the weight w(P ) :=
∏r−1

i=1 w(vivi+1). Let v and u be two
vertices in G, then we define fv,u =

∑
P w(P ), where the sum is over all v-u-

paths P . The ABP G computes the polynomial fG = fs,t. The size of G is the
number of vertices of G.

Toda and Malod and Portier proved the following theorem:

Theorem 2. ([12,8]) We have (fn) ∈ VPws, iff (fn) is computed by a family of
polynomial size ABPs.

Definition 2. An ABP of width k is an ABP in which all vertices are organized
into layers Li, i ∈ N, there are only edges from layer Li to Li+1 and the number
of vertices in each layer Li is at most k.

The computational power of ABPs of constant width was settled by Ben-Or
and Cleve:

Theorem 3. ([2]) (fn) ∈ VPe, iff (fn) is computed by a family of polynomial
size ABPs of constant width.

3 Stack Branching Programs

3.1 Definition

Let S be a set called symbol set. For a symbol s ∈ S we define two stack op-
erations : push(s) and pop(s). Additionally we define the stack operation nop
without any arguments. A sequence of stack operations on S is a sequence
op1 op2 . . . opr, where either opi = ōpi(si) for ōpi ∈ {push, pop} and si ∈ S
or opi = nop. Realizable sequences of stack operations are defined inductively:

– The empty sequence is realizable.
– If P is a realizable sequence of stack operations, then the sequence push(s)
P pop(s) is realizable for all s ∈ S. Furthermore, nopP and P nop are real-
izable sequences.

– If P and Q are realizable sequences of stack operations, then PQ is a real-
izable sequence.

Definition 3. A stack branching program (SBP) G is an ABP with an ad-
ditional edge labeling σ : E → {op(s) | op ∈ {push, pop}, s ∈ S} ∪ {nop}.
A path P = v1v2 . . . vr in G has the sequence of stack operations σ(P ) :=
σ(v1v2)σ(v2v3) . . . σ(vr−1vr). If σ(P ) is realizable we call P a stack-realizable
path. The SBP G computes the polynomial fG =

∑
P w(P ), where the sum is

over all stack-realizable s-t-paths P .
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It is helpful to interpret the stack operations as operations on a real stack that
happen along a path through G. On an edge uv with the stack operation σ(uv) =
push(s) we simply push s onto the stack. If uv has the stack operation σ(uv) =
pop(s) we pop the top symbol of the stack. If it is s we continue the path, but if
it is different from s the path is not stack realizable and we abort it. nop stands
for “no operation” and thus as this name suggests the stack is not changed on
edges labelled with nop. Realizable paths are exactly the paths on which we can
go from s to t in this way without aborting while starting and ending with an
empty stack.

To ease notation we sometimes call edges e with σ(e) = push(s) for an s ∈ S
simply push-edges. pop-edges and nop-edges are defined in the obvious analogous
way.

It will sometimes be convenient to consider only SBPs that have no nop-edges.
The following easy proposition shows that this is not a restriction.

Proposition 1. Let G be an SBP of size s. There is an SBP G′ of size O(s2)
such that fG = fG′ and G′ does not contain any nop-edges. If G is layered with
width k, then G′ is layered, too, and has width at most k2.

3.2 Characterizing VP

In this section we show that stack branching programs of polynomial size char-
acterize VP.

Theorem 4. (fn) ∈ VP, iff (fn) is computed by a family of polynomial size SBPs.

We prove the two directions of Theorem 4 in two steps.

Lemma 2. If (fn) is computed by a family of polynomial size SBPs, then (fn) ∈
VP.

Proof. Let (Gn) be a family of SBPs computing (fn), of size at most p(n) for
a polynomial p. Observe that deg(fn) ≤ p(n), so we only have to show that we
can compute the fn by polynomial size circuits Cn.

Let G = Gn be an SBP with m vertices, source s and sink t. The construction
of C = Cn uses the following basic observation: Every stack-realizable path P
of length i between two vertices v and u can be uniquely decomposed in the
following way. There are vertices a, b, c ∈ V (G) and a symbol s ∈ S such that
there are edges va and bc with σ(va) = push(s) and σ(bc) = pop(s). Furthermore
there are stack-realizable paths Pab from a to b and Pcu from c to u such that
length(Pab) + length(Pcu) = i − 2 and P = vaPabbcPcu. The paths Pab and
Pcu may be empty. We define w(u, v, i) :=

∑
P w(P ) where the sum is over all

stack-realizable s-t-paths of length i.
We now show that the values w(v, u, i) can be computed efficiently with a

straightforward dynamic programming approach. First observe that w(v, u, i) =
0 for odd i. For i = 0 we set w(v, u, 0) = 0 for v �= u and w(v, v, 0) = 1. For even
i > 0 we get

w(v, u, i) =
∑

a,b,c,j,s

w(v, a)w(a, b, j)w(b, c)w(c, u, i − j − 2),
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where the sum is over all s ∈ S, all j ≤ i − 2 and all a, b, c such that σ(va) =
push(s) and σ(bc) = pop(s). With this recursion formula we can compute all
w(v, u, i) with a polynomial number of arithmetic operations. Having computed
all w(v, u, i) we get fG =

∑
i∈[m]w(s, t, i). ��

The more involved direction of the proof of Theorem 4 will be the reverse direc-
tion. To prove it it will be convenient to slightly relax our model of computation.
A relaxed SBP G is an SBP where the underlying directed graph is not neces-
sarily acyclic. To make use of cyclicity, in a relaxed SBP G, we do not consider
paths but walks, i.e., vertices and edges of G may be visited several times. Re-
alizable walks are defined completely analogously to realizable paths. Also the
weight w(P ) of a walk is defined in the obvious way. Clearly, we cannot define
the polynomial computed by a relaxed ABP by summing over the weight of all
realizable walks, because there may be infinitely many of them since they may
be arbitrarily long. Hence, we define for each pair u,w of vertices and for each
integer m the polynomial fu,v,m :=

∑
P w(P ), where the sum is over all stack-

realizable u-v-walks P in G that have length m. Furthermore, we say that for
each m the relaxed SBP G computes the polynomial fG,m := fs,t,m.

The connection to SBPs is given by the following straight-forward lemma.

Lemma 3. Let G be a relaxed SBP and m ∈ N. Then for each m there is an
SBP G′

m of size m|G| that computes fG,m.

Proof. The idea is to unwind the computation of the relaxed SBP into m layers.
Let G = (V,E,w, σ), then for each v ∈ V the SBP G′ has m copies {v1, . . . , vm}.
For each uv ∈ E the SBP G′ had the edges uivi+1 for i ∈ [m − 1] with weight
w(uivi+1) := w(uv) and stack operation σ(uivi+1) := σ(uv). This completes the
construction of G′.

Clearly, G′ indeed computes fG,m and has size m|G|. ��
Proposition 2. Let C be a multiplicatively disjoint arithmetic circuit. For each
v ∈ V we denote by Cv the subcircuit of C with output v and we denote by fv
the polynomial computed by Cv. Then there is a relaxed SBP G = (V,E,w, σ)
of size at most 2|C|(|C| + 1) + 3(|C|) such that for each v ∈ V there is a pair
v−, v+ ∈ V and an integer mv ≤ 4|Cv| with
– fv = fv−,v+,mv , and
– there is no stack-realizable walk from v− to v+ in G that is shorter than mv.

Proof. We construct G iteratively along a topological order of C by adding new
vertices and edges, starting from the relaxed SBP with empty vertex set. We
distinguish three cases:

Case 1: Let first v be an input of C with label X . We add two new vertices
v−, v+ to G and the edge v−v+ with weigth w(v−v+) := X and stack-operation
σ(v−v+) := nop. Furthermore, mv := 1. Clearly, none of the polynomials com-
puted before change and the size of the relaxed SBP grows only by 2. Thus all
statements of the proposition are fulfilled.

Case 2: Let now v be an addition gate with children u,w. By induction G
contains vertices u−, u+, w−, w+ and there are mu,mv such that fu−,u+,mu = fu
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and fw−,w+,mw = fw. Assume w.l.o.g. mu ≥ mw. We add the new vertices
v−, v+, vs, vt to G. We further add the edges v−u−, v−vs, vtw−, u+v+ and w+v+.
Moreover, we connect vs an vt by a path of length mu−mw whose inner vertices
are also new. All edges we add get weight 1. Furthermore, we set the stack symbol
operations σ(v−u−) := push(vu), σ(u+v+) := pop(vu), σ(v−vs) := push(vw)
and σ(w+v+) := pop(vw) for new stack symbols vu and vw. All other edges we
added are nop-edges. Finally, set mv := mu + 2.

Let us check that G computes the correct polynomials. First observe that the
edges we added do not allow any new walks between old vertices, so we still
compute all old polynomials by induction. Thus we only have to consider the
realizable v−-v+-walks of length mv. Each of these either starts with the edge
v−u− or the edge v−vs. In the first case, because of the stack symbols the walk
must end with the edge u+v+. Thus the realizable v−v+-walks of length mv

that start with v−u− contribute exactly the same weight as the realizable u−-
u+-walks of length mu. Hence, these weights add up to fu by induction. Every
v−v+-walks of length mv that start with v−vs first makes mu −mw unweighted
steps to w− and ends with the edge w+v+. Thus, these walks contribute exactly
the same as the stackrealizable w−-w+ walks of length mv−2−(mu−mw) = mw,
so they contribute fw. Combining all walks we get fv−,v+,mv = fu + fw = fv as
desired.

We have that every realizable walk from u+ to u− has length at least mu, and
thus there is no realizable v−-v+-walk starting with v−u− that is shorter than
mu + 2 = mv. Moreover, since the realizable w−-w+-walks have length at least
mw, the realizable paths starting with v−w− have length at least mw + (mu −
mw) + 2 = mu + 2 = mw. Thus there is no realizable v−-v+-walk of length less
that mv.

We have mv = mu + 2 ≤ 4|Cu| + 2 ≤ 4|Cv| where the first inequality is by
induction and the second inequality follows from the fact that v is not contained
in Cu and thus |Cv| > |Cu|. To see the bound on |G| let s be the size of G before
adding the new edges and vertices. By induction s ≤ 2(|Cv| − 1)(|Cv| − 1 + 1) +
3(|Cv| − 1). We have added 2 + mu −mv + 1 vertices and thus G has now size
s + 3 + mu −mv ≤ s + 3 + mu. But we have mu ≤ 4|Cu| ≤ 4|Cv| and thus the
number of vertices in G is at most 2(|Cv| − 1)|Cv| + 3(|Cv| − 1) + 3 + 4|Cv| ≤
2|Cv|(|Cv| + 1) + 3|Cv|. This completes the case that v is an addition gate.

Case 3: Let now v be a multiplication gate with children u,w. As before, G al-
ready contains u−, u+, w−, w+ and there are mu,mv with the desired properties.
We add three vertices v−, v+ and v∗ and the edges v−u−, u+v∗, v∗w− and w+v+
all with weight 1. The new edges have the stack symbols σ(v−u−) := push(vu),
σ(u+v∗) := pop(vu), σ(v∗w−) := push(vw) and σ(w+v+) := pop(vw) for new
stack symbols vu and vw. Finally, set mv := mu + mw + 4.

Clearly, no stack-realizable walk between any pair of old vertices can traverse
v−, v+ or v∗ and thus these walks still compute the same polynomials as before.
Thus we only have to analyse the v−-v+-walks of length mv in G. Let P be such a
walk. Because of the stack symbols vu and vw the walk P must have the structure
P = v−u−P1u+v∗w−P2w+v+ where P1 and P2 are a stack-realizable u−-u+-walk
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and a stack-realizable w−-w+-walk, respectively. The walk P is of length mv and
thus P1 and P2 must have the combined length mu + mw. But by induction P1

must at least have length mu and P2 must have at least length mw, so it follows
that P1 has length exactly mu and P2 has length exactly mw. The walks P1 and
P2 are independent and thus we have fv−,v+,mv = fu−,u+,mufw−,w+,mw = fufw
as desired.

The circuit C is multiplicatively disjoint and thus we have |Cv| = |Cu|+|Cw|+
1. It follows that mv = mu + mw + 4 ≤ 4|Cu| + 4|Cw| + 4 = 4|Cv| where we
get the inequality by induction. The relaxed SBP has grown only by 3 vertices
which gives the bound on the size of G. This completes the proof for the case
that v is an addition gate and hence the proof of the lemma. ��

Now the second direction of Theorem 4 is a straightforward combination of
Lemma 3 and Proposition 2.

Lemma 4. Every family (fn) ∈ VP can be computed by a family of SBPs of
polynomial size.

3.3 Width Reduction

In this section we show that, unlike for ordinary ABPs, bounding the width of
SBPs does not decrease the computational power.

Lemma 5. Every family (fn) ∈ VP can be computed by a SBP of width 2 with
the stack symbol set {0, 1}.

Proof. The idea of the proof is to start from the characterization of VP by SBPs
from Theorem 4. We use the stack to remember which edge will be used next
on a realizable path through the branching program. We will show how this can
be done with width 2 SBPs with a bigger stack symbol size. In a second step we
will seee how to reduce the stack symbol set to {0, 1}.

So let (Gn) be a family of SBPs. Fix n and let G := Gn with vertex set V
and edge set E. Furthermore, let w be the weight function, σ the stack opera-
tion labeling and S the stack symbol of G. Let s and t be the source and the
sink of the SBP G. We assume without loss of generality that s has one sin-
gle outgoing edge es. Furthermore t is only entered by one nop-edge et with
weight 1. We will construct a new SBP G′ with weight function w′ and stack
operation labeling σ′. G′ will have stack symbol set S ∪ E. For each edge
e with a successor edge e′ the SBP G′ contains a gadget Ge,e′ . The vertex
set of Ge,e′ is {v1e,e′ , v2e,e′ , v3e,e′ , v4e,e′ , v5e,e′ , v6e,e′}. These vertices are connected to

a DAG by the edges {v1e,e′v2e,e′ , v1e,e′v3e,e′ , v2e,e′v4e,e′ , v3e,e′v5e,e′ , v4e,e′v6e,e′ , v5e,e′v6e,e′}.

All these edges have weight 1 except for v2e,e′v
4
e,e′ which we give the weight

w′(v2e,e′v
4
e,e′) := w(e). We call v2e,e′v

4
e,e′ the weighted edge of Ge,e′ . Furthermore

we set σ(v1e,e′v
2
e,e′) := pop(e), σ(v2e,e′v

4
e,e′) := σ(e), σ(v4e,e′v

6
e,e′ ) := push(e′). All

other edges are nop-edges.
Now choose an order ≤E of E such that for each pair uv, vw ∈ E, the edge uv

comes before vw. This order can be iteratively constructed from a topological
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order ≤V of V : For each vertex v along ≤V iteratively add the edges entering v
to ≤E as the new maximum. From ≤E we construct an order ≤G of the gadgets
Ge,e′ by defining

Ge1,e2 ≤G Ge3,e4 ↔ e1 < e3 ∨ (e1 = e3 ∧ e2 < e4).

We now connect the gadgets along the order ≤G in the following way: Let Ge1,e2

and Ge3,e4 be two successors in ≤G. We connect v6e1,e2 to v1e3,e4 by a nop-edge of
weight 1. Let Ge,e′ be the minimum of ≤G. We add a new vertex s and the edge
sv1e,e′ with weigth 1 and stack operation σ(sv1e,e′ ) := push(es) where es is the
single outgoing edge of s in G. Let now Ge,e′ be the maximum gadget in ≤G.
We add a new vertex t and the edge ve,e′ t with weight 1 and stack operation
pop(et). This concludes the construction of G′.

It is easy to see that G′ has indeed width 2. Thus we only need to show
that G and G′ compute the same polynomial. This will follow directly from the
following claim:

Claim 1. There is a bijection π between the stack-realizable paths in G and G′.
Furthermore w(P ) := w′(π(P )) for each stack-realizable path in G.

In a final step we now reduce the stack symbol size to {0, 1} in a straightforward
way. Let 
 := �log(|S ∪ E|)�, then each stack symbol s can be encoded into a
{0, 1}-string μ(s) of length 
. Now we substitute each edge e of G′ by a path Pe
of length 
. If σ′(e) = push(s) we the edges along Pe are push-edges, too, that
push μ(e) onto the stack. If σ′(e) = pop(s) we pop μ(s) in reverse order along
Pe. If e is a nop-edge, all edges of Pe are nop-edges, too. Finally, we give one
of the edges in Pe the weight w′(e), while all other edges get weight 1. Doing
this for all edges, it is easy to see that the resulting SBP computes the same
polynomial as G′. Furthermore, its width is 2. ��

4 Random Access Memory

4.1 Definition

We change the model of computation by allowing random access memory instead
of a stack. We still work over a symbol set S like for SBPs but we introduce three
random access memory operations : The operation write and delete take an argu-
ment s ∈ S while the operation nop again takes no argument. Let op(s) be a ran-
dom access memory operation with op ∈ {write, delete} and P = op1 op2 . . . opr
a sequence of memory operations. By occ(P, op(s)) we denote the number of
occurences of op(s) in P . We call a sequence P realizable if for all symbols s ∈ S
we have that occ(P,write(s)) = occ(P, delete(s)) and for all prefixes P ′ of P we
have occ(P ′, write(s)) ≥ occ(P ′, delete(s)) for all s ∈ S.

Intuitively, the random access memory operations do the following: write(s)
writes the symbol s into the random access memory. If s is already there it adds
it another time. The operation delete(s) deletes one occurence of the symbol
s from the memory if there is one. Otherwise an error occurs. nop is the “no
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operation” operation again like for SBPs. A sequence of operations is realizable if
no error occurs during the deletions, and moreover starting from empty memory
the memory is empty again after the sequence of operations.

Definition 4. A random access branching program (RABP) G is an ABP with
an additional edge labeling σ : E → {op(s) | op ∈ {write, delete}, s ∈ S} ∪
{nop}. A path P = v1v2 . . . vr in G has the sequence of random access memory
operations σ(P ) := σ(v1v2)σ(v2v3) . . . σ(vr−1vr). If σ(P ) is realizable we call P
a random-access-realizable path. The RABP G computes the polynomial fG =∑

P w(P ), where the sum is over all random-access-realizable s-t-paths P .

Proposition 3. Let G be an RABP of size s. There is an SBP G′ of size O(s2)
such that fG = fG′ and G′ does not contain any nop-edges. If G is layered with
width k, then G′ is layered, too, and has width at most k2.

4.2 Characterizing VNP

Intuitively random access on the memory allows us more fine-grained control
over the paths in the branching program that contribute to the computation.
While in SBPs nearly all of the memory content is hidden, in RABPs we have
access to the complete memory at all times. This makes RABPs more expressive
than SBPs which is formalized in the following theorem.

Theorem 5. If (fn) is computed by a family of polynomial size RABPs, then
(fn) ∈ VNP. Moreover, for every family (fn) ∈ VNP there is a family of width 2
RABPs of polynomial size computing (fn).

Proof. The upper bound is easy to see with Valiant’s criterion (Lemma 1) and
the fact that checking if a path through a RABP is realizable is certainly in P.

To show the lower bound we consider the dominating-set polynomial for a
graph G = (V,E) defined as DSPG(X1, . . . , Xn) :=

∑
D

∏
v∈DXv, where the

sum is over all dominating sets D in G.

Proposition 4. There is a family (Gn) of graphs such that the resulting family
(DSPGn) of polynomials is VNP-complete.

We will show that for a graph G = (V,E) with n vertices there is a RABP of
size nO(1) and width 2 that computes DSPG(X1, . . . , Xn). The RABP works in
two stages. The symbol set of the RABP will be V . In a first stage it iteratively
selects vertices v and writes v and all of its neightbors into the memory. In a
second stage it checks that each vertex v was written at least once into the
memory, i.e., either v or one of its neighbors was chosen in the first phase. Thus
the set of chosen vertices must have been a dominating set.

So fix a graph G and set w(v) = Xv for each v ∈ V . For each vertex v with
neighbors v1, . . . , vd we construct a gadget Gv as shown in Figure 1. We call
the path through Gv with the edges that have memory operations the choosing
path. Now for each vertex v we construct a second gadget G′

v that is shown in
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x0
v x1,1

v

x1,0
v x2,0

v

x2,1
v

xd,0
v

xd,1
v

xd+1
v

write(v)/Xv

write(v1) write(vd)

Fig. 1. The gadget Gv. Let v be a vertex with neighbors v1, . . . , vd. The weight of
x0
vx

1,0
v is Xv while all other edges have weight 1. Gv has two paths. Every realizable

path that traverses Gv on the upper path writes v and all of its neightbors into the
memory. This path has weight Xv. Realizable paths through the upper path do not
change the memory in Gv and have a weight weight contribution of 1 in Gv .

x0
v x1

v x2,1
v

x2,0
v x3,0

v

x3,1
v

xd+1,0
v

xd+1,1
v

xd+2
v

delete(v) delete(v) delete(v)

Fig. 2. The gadget G′
v. Let d be the degree of v, then G′

v has d + 3 layers. All edges
have weight 1. The edges connecting vertices in the lower level have operation delete(v)
while all other edges have no memory operation. Every realizable path through G′

v has
weight 1 and deletes between 1 and d+ 1 occurences of the symbol v from memory.

Figure 2. Choose an order on the vertices. For each non-maximal vertex v in the
order with successor u, we connect the sink of Gv to the source of Gu and the
sink of G′

v to the source of G′
u with a nop-edge of weight 1. Finally, let x be the

maximal vertex in the order and y the minimal vertex. Connect the sink of Gx

to the source of G′
y again by a nop-edge of weight 1.

We claim that G′ computes DSPG. To see this, define the weight of a vertex
set D in G to be w(S) :=

∏
v∈S Xv. The following claim and the observation

that G′ has width 2, complete the proof.

Claim 2. There is a bijection π between dominating sets in G and random-
access-realizable paths in G′ such that for each dominating set D in G we have
w(D) := w(π(D)). ��
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Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 187–198.
Springer, Heidelberg (2009)

5. Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Springer
(2000)

6. Kintali, S.: Realizable paths and the NL vs L problem. Electronic Colloquium on
Computational Complexity (ECCC) 17, 158 (2010)

7. Koiran, P.: Arithmetic circuits: The chasm at depth four gets wider. Theor. Com-
put. Sci. 448, 56–65 (2012)

8. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. J.
Complexity 24(1), 16–38 (2008)

9. Mengel, S.: Arithmetic Branching Programs with Memory, arXiv:1303.1969 (2013)
10. Nisan, N.: Lower bounds for non-commutative computation. In: Proceedings of the

Twenty-Third Annual ACM Symposium on Theory of Computing, p. 418. ACM
(1991)

11. Skyum, S., Valiant, L.G.: A complexity theory based on boolean algebra. J.
ACM 32(2), 484–502 (1985)

12. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing
the determinant. IEICE Transactions on Information and Systems 75(1), 116–124
(1992)

13. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of
polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

14. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing, pp. 249–261. ACM (1979)

15. Weber, V., Schwentick, T.: Dynamic complexity theory revisited. Theory Comput.
Syst. 40(4), 355–377 (2007)



Subexponential Algorithm for d-Cluster Edge

Deletion: Exception or Rule?

Neeldhara Misra1, Fahad Panolan2, and Saket Saurabh2

1 Indian Institute of Science, Bangalore, India
neeldhara@csa.iisc.ernet.in

2 The Institute of Mathematical Sciences, Chennai, India
{fahad,saket}@imsc.res.in

Abstract. The correlation clustering problem is a fundamental problem
in both theory and practice, and it involves identifying clusters of objects
in a data set based on their similarity. A traditional modeling of this ques-
tion as a graph theoretic problem involves associating vertices with data
points and indicating similarity by adjacency. Clusters then correspond
to cliques in the graph. The resulting optimization problem, Cluster

Editing (and several variants) are very well-studied algorithmically. In
many situations, however, translating clusters to cliques can be some-
what restrictive. A more flexible notion would be that of a structure
where the vertices are mutually “not too far apart”, without necessarily
being adjacent.

One such generalization is realized by structures called s-clubs, which
are graphs of diameter at most s. In this work, we study the question of
finding a set of at most k edges whose removal leaves us with a graph
whose components are s-clubs. Recently, it has been shown that un-
less Exponential Time Hypothesis fail (ETH) fails Cluster Editing

(whose components are 1-clubs) does not admit sub-exponential time
algorithm [STACS, 2013]. That is, there is no algorithm solving the
problem in time 2o(k)nO(1). However, surprisingly they show that when
the number of cliques in the output graph is restricted to d, then the

problem can be solved in time O(2O(
√

dk) + m + n). We show that this
sub-exponential time algorithm for the fixed number of cliques is rather
an exception than a rule. Our first result shows that assuming the ETH,
there is no algorithm solving the s-Club Cluster Edge Deletion

problem in time 2o(k)nO(1). We show, further, that even the problem of
deleting edges to obtain a graph with d s-clubs cannot be solved in time
2o(k)nO(1) for any fixed s, d ≥ 2. This is a radical contrast from the
situation established for cliques, where sub-exponential algorithms are
known.

Keywords: subexponential algorithms, s-clubs, cluster edge deletion,
ETH-hardness.

1 Introduction

The correlation clustering problem involves identifying clusters of objects in a
data set based on their similarity. A traditional way of posing this as a graph

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 679–690, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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theoretic question involves associating vertices with data points and indicating
similarity by adjacency. In this setting, the natural notion of a cluster would
correspond to a clique, a set of mutually adjacent vertices. Thus, we call a graph
G a cluster graph if every connected component of G is a complete graph. The
task of identifying clusters can now be viewed as an optimization problem. In
particular, a subset F ⊆ E is called a cluster edge deletion set if G\F = (V,E\F )
is a cluster. On the other hand, if for some F ⊂ V × V , GΔF = (V,EΔF ) is
a cluster, then F is called cluster editing set. (Here EΔF is the symmetric
difference between E and F .) In the Cluster Edge Deletion (Cluster

Editing) problem, we are given a graph G and an integer k, and we want to
check whether there exists a cluster edge deletion set (cluster editing set), F of
size at most k.

The complexity of Cluster Edge Deletion and Cluster Editing is well-
understood. The problems are NP-complete and admit constant-factor approx-
imation algorithms. On the other hand, they are also known to be APX-hard.
Further, it has been recently shown that Cluster Editing cannot be solved in
time 2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) fails [7,3]. This
led the authors of [3] to consider the question of editing at most k edges to
obtain a graph with at most d clusters. This variant continues to be well moti-
vated in several practical settings, where the number of clusters corresponds to
an external constraint. With the restriction on the number of clusters in place,
there is good news, as [3] describes an algorithm that solves the problem in time

O(2O(
√
dk) + m+ n).

So far, we have considered the clustering problem in the graph theoretic con-
text using cliques as a natural means for modeling the notion of a cluster. This
effectively restricts us to a binary notion of similarity, in that a pair of data points
are either similar or not, and we would like to maximize similarities within a clus-
ter and minimize non-similarities across clusters. In many situations, however,
this translation can be somewhat severe. A more flexible notion would be that
of a structure where the vertices are mutually “not too far apart”, without nec-
essarily being adjacent. Additionally, note that cliques are also a popular choice
for modeling highly correlated or connected substructures in applications. Given
that cliques impose a very strict connectivity requirement, this modeling suffers
from being overly restrictive.

A natural generalization of the notion of cliques would be along the lines of
small-diameter graphs. These structures are called clubs and have been proposed
as a more reasonable measure of connectivity and correlation. Formally, note that
the complete graphs can be thought of as graphs of diameter one. A s-club is
a graph of diameter at most s, and note that cliques are exactly 1-clubs. The
notion of s-clubs was introduced in [1]. The s-club concept was defined in the
context of social sciences [1], and it has recently been used in the analysis of
social [11] and biological networks. In [5,6,12] parameterized studies of finding
s-clubs were undertaken. It is worth to mention that several other generalizations
of cliques such as s-cliques and s-plexes [4] and the related notion of clustering
into these graphs have been studied in literature before.
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The immediate question that arises in the context of clustering is the s-Club

Cluster Edge Deletion problem: is there a set of at most k edges whose
removal leaves us with a graph whose components are s-clubs? It is known that
the problem is NP-complete for s = 2, and there is an algorithm that solves
the problem in O(2.74knO(1)) [8]. It is natural to ask if the problem admits a
sub-exponential algorithm. Our first result shows that assuming the ETH, the
answer is in the negative:

Theorem 1. 2-Club Cluster Edge Deletion cannot be solved in time
2o(k)nO(1), unless ETH fails.

In the setting of cliques, it was useful to consider the question with the additional
dimension of the number of clusters: if we demanded deletion into at most d
clusters, then the problem turned out to admit a sub-exponential algorithm. It
is therefore natural to consider the corresponding question in the s-club setting:
can we identify at most k edges whose removal leaves us with at most d s-clubs?
It turns out that the slightest generalization of the cluster editing problem makes
the problem significantly harder in the context of sub-exponential algorithms.
In particular, we show:

Theorem 2. s-Club d-Cluster Edge Deletion for s ≥ 2 and d ≥ 2 cannot
be solved in time 2o(k)nO(1), unless ETH fails.

Our Theorem 2 shows that the sub-exponential algorithm in the case of 1-Club

d-Cluster Edge Deletion is rather an exception. All our results are obtained
by reductions from 3-CNFSAT. The Exponential Time Hypothesis states that
there is no algorithm that solves 3-CNFSAT in time 2o(m+n) time (via sparsifica-
tion). Our reductions produce instances where the size of the solution depends
linearly on (m + n). We refer to recent survey of Lokshtanov et al. [9] for a
detailed discussions on ETH and to the books [2,10] for an introduction to the
area of parameterized complexity.

Organization of the paper. In Section 2 we establish the notation and state the
problems formally. In Sections 3 and 4, we prove Theorems 1 and 2, respectively.
The proof of Theorem 2 is split into three cases, namely s = 2, s = 3, and s ≥ 4.

2 Preliminaries

Graphs. For a finite set V , a pair G = (V,E) such that E ⊆ V 2 is a graph on
V . The elements of V are called vertices, while pairs of vertices (u, v) such that
(u, v) ∈ E are called edges. In the following, let G = (V,E) and G′ = (V ′, E′) be
graphs, and U ⊆ V some subset of vertices of G. Let G′ be a subgraph of G. If E′

contains all the edges {u, v} ∈ E with u, v ∈ V ′, then G′ is an induced subgraph
of G, induced by V ′. For any set of vertices U ⊆ V , G [U ] denotes the subgraph
of G induced by U . For v ∈ V , N(v) = {u | (u, v) ∈ E} and N [v] = N(v) ∪ {v}.
For U ⊆ V , N(U) =

(⋃
u∈U N(u)

)
\ U .
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The distance between vertices u, v of G is the length of a shortest path from
u to v in G; if no such path exists, the distance is defined to be ∞. The diameter
of G is the greatest distance between any two vertices in G. A graph G is said to
be connected if there is a path in G from every vertex of G to every other vertex
of G. If U ⊆ V and G [U ] is connected, then U itself is said to be connected in
G. A subset of vertices U is said to induce a s-club if G[U ] has diameter at most
s, or in other words, the distance between every pair of vertices in U is at most
s in G[U ]. A graph is said to be a s-club cluster if every connected component
of the graph induces a s-club.

Satisfiability. Let P be an arbitrary set, whose elements we shall refer to as
variables. It will be convenient to assume that P is a countably infinite set. The
set of formulas over P is inductively defined to be the smallest set of expressions
such that: (a) Each variable in the set P is a formula, (b) (¬α) is a formula
whenever α is, and (c) (α � β) is a formula whenever α and β are formulas and
� is one of the binary connectives ∧, ∨.

We denote by F(P ) the set of all formulas over P . An valuation or an as-
signment of P is a function v : P → {0, 1}, which may be extended to a
function v̄ : F(P ) → {0, 1}, as follows. For each variable x in the set P ,
v̄(x) = v(x). Further, v̄(¬α) = 1 − v̄(α), v̄(α ∧ β) = min{v̄(α), v̄(β)}, and
v̄(α ∨ β) = max{v̄(α), v̄(β)}.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where a clause is a disjunction of literals. Every propositional formula can be
converted into an equivalent formula that is in CNF. The question of satisfiability
is whether, given a formula α, there exists a valuation v such that v(α) = 1. This
is one of the most well-studied NP-complete problems. The problem continues
to be NP-complete if the formula is offered in CNF even when every clause has
no more than three variables.

Notice that given a 3-SAT formula, we may preprocess it effectively to en-
sure that each variable appears at least twice: at least once in a positive literal
and at least once in a negative one. This is because any variable that appears
only positively (respectively, negatively) can be assigned 1 (respectively, 0) by a
satisfying assignment without loss of generality. Similarly, we assume that any
variable will not appear both positively and negatively in a clause, because such
a clause can be removed from the formula without affecting the satisfiability of
the formula. Finally, we may assume that each clause of φ consists of exactly
three literals by a standard padding argument using dummy variables. We say
that a 3-CNF formula is standardized if it satisfies all three properties above. In
our discussions, we work with standardized formulas.

The problems we study in this work are the following:

s-Club Cluster Edge Deletion

Instance: An undirected graph G = (V,E) and a positive integer k.
Problem: Does there exist E′ ⊆ E with |E′| ≤ k such that G \ E′ is an

s-club cluster?
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s-Club d-Cluster Edge Deletion

Instance: An undirected graph G = (V,E) and a positive integer k.
Problem: Does there exist E′ ⊆ E with |E′| ≤ k such that G \ E′ is an

s-club cluster containing d components?

3 2-Club Cluster Edge Deletion

In this section we will show that 2-Club Cluster Edge Deletion cannot
be solved in 2o(k)nO(1) unless ETH fails. To show this result we will give a
reduction from 3-Sat to 2-Club Cluster Edge Deletion. More precisely,
from an instance φ with m clauses and n variables, of 3-Sat, we will construct
an instance (G, k) of 2-Club Cluster Edge Deletion with the property that
φ is satisfiable iff (G, k) is an Yes instance, where k = O(m + n).

Lemma 1. (�)1 Let G = (V,E) be an undirected graph. Let X ⊆ V such that
G[X ] is a clique, ∀x, y ∈ X,N [x] = N [y] and G[N(X)] is a clique. Then there
exist an optimum solution F to 2-Club Cluster Edge Deletion such that
X is contained in a single component in G \ F .

Lemma 2. (�) There exists a polynomial-time algorithm that, given a 3-CNF
formula φ with n variables and m clauses, constructs a 2-Club Cluster Edge

Deletion instance (G, k) such that (i) φ is satisfiable if and only if (G, k) is a
Yes-instance, and (ii) k = O(n + m).

Theorem 3. 2-Club Cluster Edge Deletion cannot be solved in time
2o(k)nO(1), unless ETH fails.

4 s-Club d-Cluster Edge Deletion

In this section, we show the hardness of s-Club d-Cluster Edge Deletion

for all s ≥ 2. The results are divided into three parts. First, we demonstrate
a reduction from 3-Sat to 2-Club 2-Cluster Edge Deletion. With minor
modifications, we show that this reduction works for the problem of edge deletion
into two 3-clubs. For s ≥ 4, we show a general reduction from 3-Sat to s-Club

2-Cluster Edge Deletion. The construction in the first reduction serves as a
basis for the general reduction, but we note that the finer details involve several
nuances. We also note that the problem of deleting into two s-clubs easily reduces
to the problem of deleting into d s-clubs.

4.1 2-Club 2-Cluster Edge Deletion

In this section we will show that 2-Club 2-Cluster Edge Deletion cannot
be solved in 2o(k)nO(1) unless ETH fails. To this end, we will give a reduction

1 The proofs of Lemmas marked with a � will appear in the full version of the paper.
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from 3-Sat to 2-Club 2-Cluster Edge Deletion. More precisely, based on
an instance φ of 3-Sat with m clauses and n variables, we will construct an
instance (G, k) of 2-Club 2-Cluster Edge Deletion with the property that
φ is satisfiable if and only if (G, k) is an Yes instance, where k = O(m + n).

Lemma 3. There exists a polynomial-time algorithm that, given a 3-CNF for-
mula φ with n variables and m clauses, constructs a 2-Club 2-Cluster Edge

Deletion instance (G, k) such that (i) φ is satisfiable iff (G, k) is a Yes in-
stance, and (ii) k = O(m + n).

Proof. Let φ be a standardized 3-CNF formula with m clauses and n variables.
Let C1, C2, . . . , Cm be the clauses and x1, x2, . . . , xn be the variables.

Construction. We construct a graph G = (V,E) based on φ as follows. The
graph G contains two clause gadgets C1 and C2, two connection gadgets K1

and K2, two selection gadgets S1 and S2, one variable gadget V and four global
vertices {p, p′, g1, g2}. The clause gadget C1 contains m vertices c1, c2, . . . , cm and
there are no edges within C1. Similarly, C2 contains m vertices c′1, c

′
2, . . . , c

′
m and

there are no edges within C2. The variable gadget V contains 2n vertices, one for
each literal. Let these vertices be named x1, x2, . . . , xn and x1, x2, . . . , xn. The
connection gadgets K1 and K2 are cliques of size k+ 2. The selection gadget S1

contains n vertices a1, a2, . . . , an and no edges within S1. Similarly, S2 contains
n vertices b1, b2, . . . , bn and no edges within S2.

For each 1 ≤ i, j ≤ m we add an edge (ci, c
′
j) if i �= j. For any literal l = xi

or l = xi, and for every clause Ci that contains l, we add the edges (ci, l) and
(c′i, l). For each 1 ≤ i, j ≤ n we add an edge (ai, bj) if i �= j. For every pair of
literals xi and xi, add the edges (xi, ai), (xi, bi), (xi, ai) and (xi, bi). Also, add
all possible edges between: K1 and g2; K2 and g2; K1 and S1; K2 and S2; g1
and V ; g2 and V ; p and C1; p′ and C2. Finally, add the edges (g1, p) and (g1, p

′).
(See Fig. 1.) We set k = 4(m+ n).

Completeness. Let φ be satisfiable, and f : {x1, . . . , xn} → {0, 1} be a satis-
fying assignment. Now we construct the edge deletion set F ⊆ E(G) as follows.
For each 1 ≤ i ≤ n, if f(xi) = 1, then include in F the edges between xi
and Sb (b = 1, 2), the edges between xi and Cb (for b = 1, 2), and the edges
(xi, g1), (xi, g2). On the other hand, if f(xi) = 0, the we include in F the edges
between xi and Sb (b = 1, 2), edges between xi and Cb (for b = 1, 2), and the
edges (xi, g2), (xi, g1).

Note that the number of edges in F which are between Cb (for b = 1, 2) and
V is at most 4m. This is because every vertex c ∈ C1 ∪C2 has three neighbors in
V , of which F picks at most two (since the choice of F is based on a satisfying
assignment f). The number of edges in F which are between Si (for i = 1, 2)
and V , is clearly 2n and the number of edges in F which are between V and
{g1, g2}, is also 2n. So we have that |F | ≤ 4(m+ n), as desired.

Now, we need to show that G[E \ F ] consists of two components which are
2-clubs. For b = 0, 1, let Vb denote the set of vertices corresponding to literals
that evaluate to b under the assignment f . It is easy to see that K1,K2, S1, S2, g2
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Fig. 1. Graph G constructed from φ. Vertices in a gadget which colored gray are
completely connected. Edges between the clause gadgets and the variable gadget are
not drawn in the figure. Thick lines are used to represent all possible edges between
two sets of vertices.
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and V0 form a connected component (call it G0). Also C1, C2, p, p′, g1 and V1 form
a connected component (call it G1). We now argue that G0 and G1 are 2-clubs.

Any pair of vertices except (ai, bi) for all 1 ≤ i ≤ n, in the graph induced on
S1, S2,K1,K2, g2 are at a distance at most two. Since either xi or xi is in G0, the
distance between ai and bi is 2. Since each vertex y ∈ G0 that corresponds to a
literal is adjacent to g2, the distance between y and vertices in Kb (for b = 1, 2)
is two in G0. Finally, since y is adjacent to one vertex from S1 and one vertex
from S2 (say ai, bi), y is at a distance at most two from any vertex in S1, S2

(recall that ai is adjacent to bj for all i �= j). Since all the vertices in V ∩G0 has
a common neighbor g2 in G0, these vertices are also at a distance two from each
other in G0. Hence G0 is a 2-club (see Table 1).

Table 1. G0 is a 2-club

S1 S2 K1 K2 V0 g2
S1 2 (S2) 2 (V0) 1 2 (S2) 2 (S2) 2 (K1)
S2 2 (S1) 2 (S1) 1 2 (S1) 2 (K2)
K1 1 2 (g2) 2 (S1) 1
K2 1 2 (S2) 1
V0 2 (g2) 1
g2 0

Table 2. G1 is a 2-club

C1 C2 p p′ V1 g1
C1 2 (C2) 2 (V1) 1 2 (C2) 2 (C2) 2 (p)
C2 2 (C1) 2 (C1) 1 2 (C1) 2 (p′)
p 0 2 (g1) 2 (C1) 1
p′ 0 2 (C2) 1
V1 2 (g1) 1
g1 0

Now consider G1. Again any pair of vertices except (ci, c
′
i) for all 1 ≤ i ≤ m,

in the graph induced on C1, C2, p, p′, g1 are at a distance at most two. Since f is
a satisfying assignment, for all 1 ≤ i ≤ m there exists a literal from the clause
Ci that is set to 1. Therefore, for each 1 ≤ i ≤ m, vertices ci, c

′
i has a common

neighbor in G1. Using arguments similar to the case of G0, we can show that all
vertices V ∩ G1 are at a distance of at most two from all other vertices in G1.
Hence G1 is a 2-club (see Table 2 for details).

Soundness. Suppose (G, k) is an Yes instance of 2-Club 2-Cluster Edge

Deletion. Let F ⊆ E(G) is the edge deletion set. Let Ga, Gb be the two con-
nected components in G \ F . We first claim that, without loss of generality,
(K1 ∪K2 ∪ S1 ∪ S2 ∪ g2) ⊂ Ga. Since K1 induces a clique of size k + 2, no set
of at most k edges will disconnect K1. Thus, the vertices of K1 will belong to
one of the two connected components in G \ F . Without loss of generality, let
K1 ⊆ Ga. Since the number of edges between g2 and K1, between any vertex in
S1 and K1 is k + 2, {g2} ∪ S1 ⊂ Ga. By similar arguments {K2 ∪ S2 ∪ g2} will
belong to the same component. Hence {K1 ∪ S1 ∪ g2 ∪K2 ∪ S2} ⊂ Ga.

Notice that N(K1) = {a1, . . . , an, g2}. Consider any v ∈ C1∪C2∪{p, p′, g1}. It
is easily checked that for all 1 ≤ i ≤ n, ai /∈ N(v), and therefore, N(v)∩N(K1) =
∅. This implies that in G, the vertices of C1 ∪ C2 ∪ {p, p′, g1} are at a distance
more than two from K1, and therefore, C1 ∪ C2 ∪ {p, p′, g1} ⊂ Gb.
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Observe that for each 1 ≤ i ≤ m ci and c′i are at a distance more than two
in the graph induced on C1 ∪ C2 ∪ {p, p′, g1}. Also, for each 1 ≤ i ≤ n, ai, bi are
at a distance more than 2 in the graph induced on K1,K2, S1, S2, g2. Therefore,
these vertices can be made closer only via vertices in V . In particular, for each
1 ≤ i ≤ n, ai, bi are at a distance of at most two in Ga, at least one of xi
or xi belongs to Ga, or equivalently, at most one of xi and xi belongs to Gb.
Whenever either literal associated with xi belongs to Gb, we define f(xi) as
follows: f(xi) = 1 if xi ∈ Gb and f(xi) = 0 if xi ∈ Gb. If xi, xi ∈ Ga, then let
f(xi) = 1 (the setting is arbitrary). Now we show that the f thus defined is a
satisfying assignment. Consider any clause Cj . Since Gb is a 2-club, there exists
a vertex y from V which is a common neighbor of cj and c′j . By the definition
of f , we have that f(ly) = 1, where ly is the literal corresponding to the vertex
y. So f is a satisfying assignment for φ. ��

It is now easy to see that 2-Club d-Cluster Edge Deletion cannot be solved
in time 2o(k)nO(1) unless ETH fails, for any d ≥ 2. We would reduce from 3-CNF
SAT as described in the proof of Lemma 3, and add d − 2 disjoint cliques of
size k + 2 each to the reduced graph. With this, we have shown the following
theorem.

Theorem 4. 2-Club d-Cluster Edge Deletion for d ≥ 2, cannot be solved
in time 2o(k)nO(1), unless ETH fails.

4.2 3-Club 2-Cluster Edge Deletion

In this section we will show that 3-Club 2-Cluster Edge Deletion cannot
be solved in 2o(k)nO(1) unless ETH fails. The proof is a slight modification of
the construction described in the proof of Lemma 3.

Lemma 4. (�) There exists a polynomial-time algorithm that, given a 3-CNF
formula φ with n variables and m clauses, constructs a 3-Club 2-Cluster

Edge Deletion instance (G, k) such that (i) φ is satisfiable iff (G, k) is a Yes

instance, and (ii) k = O(m + n).

Theorem 5. 3-Club d-Cluster Edge Deletion for d ≥ 2, cannot be solved
in time 2o(k)nO(1), unless ETH fails.

4.3 s-Club d-Cluster Edge Deletion

We now present a general reduction: for all s ≥ 4, we show that s-Club d-
Cluster Edge Deletion cannot be solved in time 2o(k)nO(1) unless the ETH
fails.

Lemma 5. There exists a polynomial-time algorithm that, given a 3-CNF for-
mula φ with n variables and m clauses, constructs a s-Club 2-Cluster Edge

Deletion instance (G, k) for s ≥ 4 such that (i) φ is satisfiable iff (G, k) is a
Yes instance, and (ii) k = O(m + n).
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Fig. 2. Example of connection within clause gadget and between clause gadget and
variable gadget with Ci = x1 ∨ xl ∨ xn

Proof. Let φ be a standardized 3-CNF formula with m clauses and n variables.
Let C1, C2, . . . , Cm be the clauses and x1, x2, . . . , xn be the variables.

Construction. We construct a graph G = (V,E) based on φ as follows. The
graph G contains two clause gadgets C1 and C2, s connection gadgets K1, . . . ,Ks,
two selection gadgets S1 and S2, one variable gadget V and vertices {k1, . . . , ks−2}.
The clause gadget C1 contains m vertices c1, c2, . . . , cm and there are no edges
within C1. Similarly, C2 contains m vertices c′1, c

′
2, . . . , c

′
m and there are no edges

within C2. The variable gadget V contains 2n vertices, one for each literal. Let
these vertices be named x1, x2, . . . , xn and x1, x2, . . . , xn. The connection gad-
gets {Ki}si=0 are cliques of size k + 2. The selection gadget S1 contains n ver-
tices a1, a2, . . . , an and no edges within S1. Similarly, S2 contains n vertices
b1, b2, . . . , bn and no edges within S2.

For each 1 ≤ i, j ≤ m we add an edge (ci, c
′
j). For each 1 ≤ i, j ≤ m subdivide

the edge (ci, c
′
j) s−2 times and let the new vertices be named tij(1), . . . , tij(s−2).

Let T denote the set of these newly introduced subdivision vertices. For each
1 ≤ i ≤ m delete the edge (tii(� s−2

2 �), tii(� s−2
2 � + 1)). Further, add the edges

(kl, tij(l)) for all 1 ≤ i, j ≤ m, 1 ≤ l ≤ s− 2.
If a clause Ci contains a literal xj then we add two edges (tii(� s−2

2 �), xj) and
(tii(� s−2

2 �+1), xj). See Fig 2 for a sketch of the clause gadgets and its connection
with the variable gadget as described so far.
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Fig. 3. Example of connection within selection gadget and between selection gadget
and variable gadget. Thick lines are used to represent all possible edges between two
sets of vertices.

We now perform an analogous construction between the selection gadgets. For
each 1 ≤ i, j ≤ n we add an edge (ai, bj). For each 1 ≤ i, j ≤ n subdivide the
edge (ai, bj) s − 2 times and let the new vertices be named uij(1), . . . , uij(s −
2). In this case, let U denote the set of these newly introduced subdivision
vertices. For each 1 ≤ i ≤ n delete the edge (uii(� s−2

2 �), uii(� s−2
2 � + 1)). For

each 1 ≤ j ≤ n add edges (ujj(� s−2
2 �), xj), (ujj(� s−2

2 � + 1), xj), (ujj(� s−2
2 �), xj)

and (ujj(� s−2
2 �), xj). We add all possible edges between Kl and tij(l) for all

1 ≤ i, j ≤ n, 1 ≤ l ≤ s − 2. Finally, we add all possible edges between Ki and
Ki+1 for all 1 ≤ i ≤ s − 3. We add all possible edges between Ks−2 and Ks,
between Ks−1 and K1, between Ks−1 and S1, between Ks and S2. Fig. 3 shows
the selection gadget and its connection with variable gadget. We set k = 4m+2n.
This concludes the description of the construction. Due to space constraints, we
defer the proof of correctness to the full version of the paper. ��

Theorem 6. s-Club d-Cluster Edge Deletion for s ≥ 4 and d ≥ 2 cannot
be solved in time 2o(k)nO(1), unless ETH fails.
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5 Conclusions

In this work, we established that assuming the ETH, there is no algorithm solving
the s-Club Cluster Edge Deletion question in time 2o(k)nO(1). We also
showed that even the problem of deleting edges to obtain a graph with d s-
clusters cannot be solved in time 2o(k)nO(1) for any s ≥ 2.

In the context of cluster editing, the exact and approximation results are
consistent, in that the general Cluster Editing problem is APX-hard, and does
not admit a sub-exponential algorithm unless the ETH fails. On the other hand,
the problem of deleting into a sub-linear number of cliques allows for both a sub-
exponential algorithm and a PTAS. A natural direction would be to pursue the
approximation of these problems so as to either establish or disprove a similar
connection in the context of s-clubs.
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Abstract. We study the problem of controller synthesis for distributed systems
modelled by Zielonka automata. While the decidability of this problem in full
generality remains open and challenging, we suggest here to seek controllers
from a parametrised family: we are interested in controllers that ensure frequent
communication between the processes, where frequency is determined by the pa-
rameter. We show that this restricted controller synthesis version is affordable for
synthesis standards: fixing the parameter, the problem is EXPTIME-complete.

1 Introduction

The synthesis problem has a long tradition that goes back to Church’s solvability prob-
lem [4], which asks for devices that generate output streams from input streams, such
that a given specification is met. Synthesis of sequential systems has been thoroughly
studied and driven various results for infinite 2-player games (see [15] for a survey).

Synthesis of distributed systems has a bad reputation. Many possible variants of
distributed synthesis could be considered. But in the best known and most studied
one, initiated by Pnueli and Rosner [26], the problem is undecidable in general – cf.
also variations [18] and generalisations [22,9] thereof. These models extend Church’s
formulation to a fixed architecture of synchronously communicating processes that
exchange messages through one-slot communication channels. Undecidability in this
setting comes mainly from partial information: architectures (the communication topol-
ogy) restrict the flow of information about the global system state. Synthesis in a
given architecture is decidable, iff this partial knowledge defines a preorder on the pro-
cesses [9]. The complexity of the decision problem is non-elementary in the number
of quotients. When extended to asynchronous communication with one-slot channels,
only systems where a single process needs to be synthesised remain decidable [30].

We use here a different synchronisation model, based on shared variables and known
as Zielonka automata [31]. In this model, processes that execute shared actions get
full information about the states of the processes with whom they synchronise. There-
fore, partial information is reduced to concurrency: the only missing knowledge that
a process might have concerns those events that happen concurrently. Partial informa-
tion in this model is therefore minimalistic, in the sense that it is not driven by the
specification or the architecture. As a consequence, establishing the (un)decidability of
distributed synthesis in this setting has proven to be challenging and remains open. We
know, however, of some non-trivial cases where the problem is decidable. The first one
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[23] imposes a bound on the missing knowledge of a process concerning the evolution
of other processes. This restriction mainly says that every event in the system may have
only a bounded number of concurrent events. In this setting, the distributed game can be
reduced to a 2-player game with complete information. The proof of [23] actually uses
Rabin’s theorem about decidability of monadic second-order logic over infinite trees.
The second decidability result is based on a restriction on the distributed alphabet of ac-
tions [11], which needs to be a co-graph, and it applies to global reachability conditions.
More recently, it has been shown that distributed synthesis with local reachability con-
ditions is decidable under the assumption that the synchronisation graph is acyclic [13].
The exact complexity is non-elementary in the depth of the synchronisation tree. For
instance, it is EXPTIME for trees of depth 1, as for architectures involving one server
and several clients. The decidability proof also involves a reduction to a 2-player game.

The complexity of distributed synthesis with shared variables is therefore forbid-
dingly high, unless the class of strategies under consideration is restricted. The reason
for this high complexity is, once again, the partial knowledge a process has about other
processes. In the acyclic case studied in [13], partial knowledge is hierarchical. This
resembles the situation from Pnueli and Rosner’s setting [26,18,22,9], and similarly
increases the complexity by one exponent for each additional level of the hierarchy.

With this observation in mind, we reconsider the result of [23] and restrict the class of
strategies in such a way, that missing knowledge is uniformly limited. The restriction on
strategies is very similar to the notion of N -communicating plants used in [23] to show
decidability of monadic second-order logic over the event structure associated with the
plant. The main differences are that (1) we do not require that the N -communicating re-
striction is made explicit in the plant, but more liberally look for strategies that impose
N -communication on the controlled system, (2) the bound N applies only to synchro-
nisation events: there is no limitation of local actions, and (3) the winning condition is
local on each process. The first condition above is reminiscent of the bounded-context
restriction used in model-checking [27], where local computations are unrestricted and
only context-switches are limited. To keep the presentation simple, we do not con-
sider divergent infinite plays, where two disjoint groups of processes can synchronise
infinitely often in parallel (our result can be adapted to include this case).

Our main result is that the existence of distributed strategies for a system described
by a Zielonka automaton A and a fixed bound N is exponential in the size of A and
doubly exponential in N . If N is fixed, then the problem is EXPTIME-complete.

Related Work. The restriction to solutions that obey various bounds in synthesis
[10,17,8,6,2] has been inspired by similar restrictions in model-checking, e.g., in boun-
ded model-checking [3] and model-checking with bounded context switches [27,1].

The first two bounds used in synthesis were bounds on the size of the model [10,17]
and bounds on the number of rejecting states [19,10] in emptiness equivalent determin-
isation procedures from universal Co-Büchi automata to deterministic Büchi [19] and
safety [10] automata. The latter approach has been implemented by different groups
[8,6], while the first has been extended to quantitative specification languages [2], as
well as to restrictions on the size of symbolic representations of implementations [7,20].
The implementations of genetic synthesis algorithms in [16] is of the same kind, as the
fitness functions used effectively restrict the size of the synthesised programs.
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2 Zielonka Automata

Informally, Zielonka automata are parallel compositions of finite-state processes that
synchronise on shared actions. There is no global clock, so between two synchro-
nisations, two processes can perform a different number of actions. Because of this,
Zielonka automata are also called asynchronous automata.

A Zielonka automaton has a (fixed) assignment of actions to sets of processes. A
distributed action alphabet on a finite set P of processes is a pair (Σ, dom), where Σ is
the finite set of actions and dom : Σ → (2P \ ∅) is the location function. The location
dom(a) of an action a ∈ Σ comprises all processes that synchronise in order to perform
a. Similar to other classical synchronisation mechanisms, e.g., CCS-like rendez-vous
or Petri net transitions, executing a shared action is only possible if the states of all
processes in dom(a) allow to execute a. In addition, the execution of a shared action
allows to “broadcast” some information between its processes: for instance, an action
shared between processes p and q may produce a swap between the states of p and q.
Related concepts are used in multithreaded programming, where atomic instructions
like compare-and-swap (CAS) allow to exchange values between two processes.

A (deterministic) Zielonka automaton A = 〈{Sp}p∈P, sin, {δa}a∈Σ, F 〉 is given by

– a finite set Sp of (local) states for every process p,
– the initial state sin ∈

∏
p∈P

Sp, a set F ⊆
∏

p∈P
Sp of accepting states, and

– a partial transition function δa :
∏

p∈dom(a) Sp
·→

∏
p∈dom(a) Sp for every action

a ∈ Σ, acting on tuples of states of processes in dom(a).

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where P ⊆ P.
We also refer to Sp as the set of p-states and of

∏
p∈P

Sp as global states.
A Zielonka automaton can be seen as a sequential automaton with the state set

S =
∏

p∈P
Sp and transitions s

a−→ s′ if (sdom(a), s
′
dom(a)) ∈ δa, and sP\dom(a) =

s′
P\dom(a). By L(A) we denote the language of this sequential automaton.

This definition has an important consequence. The location mapping dom defines
in a natural way an independence relation I ⊆ Σ × Σ: two actions a, b ∈ Σ are
independent (written as (a, b) ∈ I) if the processes they involve are disjoint, that is, if
dom(a) ∩ dom(b) = ∅. Note that the order of execution of two independent actions
(a, b) ∈ I in a Zielonka automaton is irrelevant, they can be executed as a, b, or b, a
– or even concurrently. More generally, we can consider the congruence ∼I on Σ∗

generated by I , and observe that, whenever u ∼I v, the state reached from the initial
state on u and v, respectively, is the same. Hence, u ∈ L(A) if, and only if, v ∈ L(A).
We denote u, v as trace-equivalent whenever u ∼I v (and write u ∼ v for simplicity).

The idea of describing concurrency by an independence relation on actions was in-
troduced in the late seventies by Mazurkiewicz [24] (see also [5]). An equivalence class
[w] of ∼ is called a Mazurkiewicz trace, it can be viewed as a labelled pomset. We will
often refer to a trace using just a word w instead of writing [w]. As we have observed
L(A) is a sum of such equivalence classes. In other words, the language of a Zielonka
automaton is trace-closed.

Actions a with |dom(a)| = 1 are called local, and Σloc is the set of local actions.
If |dom(a)| > 1 then a is called synchronisation action, and Σsync is the set of such
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actions. Actions from Σp = {a ∈ Σ | p ∈ dom(a)} are denoted as p-actions. We write
Σsync
p = Σsync ∩ Σp and Σloc

p = Σloc ∩ Σp. For u ∈ Σ∗ we write statep(u) for the
p-state reached by A on u.

Example 1. Consider the example automaton with processes P1, . . . , Pn, S1, . . . , Sm
as shown in Figure 1. Here, processes S1, . . . , Sm are backup servers and each of the
processes Pi loops on a sequence of internal actions, followed by backup actions on
some server. We abstract this by the following distributed alphabet: 
i, bi are local ac-
tions of Pi (i.e., dom(
i) = dom(bi) = {Pi}), where bi denotes a backup request
on Pi, and si,k is a shared (backup) action with dom(si,k) = {Pi, Sk}. Action si,k
is enabled if Pi is in state 1i. Actions 
i, bi, si,k (k = 1, . . . ,m) are Pi-actions, and
Σsync = {si,k | i, k}. Note also that si1,k1 , si2,k2 are independent iff i1 �= i2 and
k1 �= k2.

0i 1i

�i
bi

si,1, . . . , si,m

0

s1,k

sn,k

si,k

Fig. 1. Example Zielonka automaton; Process Pi on the left and server Sk on the right

A major result about Zielonka automata is stated in the theorem below. Note that it
is one of the few examples of synthesis of (closed) distributed systems.

Theorem 1. [31] Let dom : Σ → (2P \ {∅}) be a distribution of letters. If a language
L ⊆ Σ∗ is regular and trace-closed, then there is a deterministic Zielonka automaton
recognising L. Its size is exponential in the number of processes and polynomial in the
size of the minimal automaton for L [12].

3 Distributed Control and Games

The synthesis problem considered here was proposed in [23]. It can be viewed as
a distributed instantiation of supervisory control, as considered in the framework of
Ramadge and Wonham [28]. In supervisory control, one is given a plant A, together
with a partition Σ = Σsys ∪̇Σenv of Σ into controllable actions Σsys and uncontrol-
lable actions Σenv . As in [23,13] we assume that all uncontrollable actions are local,
Σenv ⊆ Σloc. The goal is to synthesise a controller C, which is a device that never
blocks uncontrollable actions. The controlled plant is then the product of A and C, and
it needs to satisfy additional conditions like safety, reachability, or parity conditions.

We will work with the game description of the controller problem, and start by illus-
trating it on an example.

Example 2. Reconsider the automaton from Figure 1 and assume that local actions are
uncontrollable, whereas synchronisation actions are controllable. In this model, the en-
vironment decides whether a process Pi continues to use local transitions or needs
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backup, while the system is in charge of deciding each time, on which server(s) the
backup is made. One possible objective of the control strategy could be to achieve a
balanced use of the servers, which avoids using certain servers more often than others.
A round-robin strategy on each process Pi, e.g., that asks each time for backup on the
next server, guarantees that a server Sk can be “behind” the other servers by at most
O(nm) backup actions.

The game formulation refers to a game between the distributed system and local envi-
ronments, one for each process. A Zielonka automaton A defines a game arena, with
plays corresponding to initial runs. Since A is deterministic, we can view a play x as a
word from L(A) – or a trace, since L(A) is trace-closed. Let Plays(A) denote the set
of traces associated with words from L(A).

A strategy for the system will be a collection of individual strategies for each process.
The important notion here is the view each process has of the global state of the system.
Intuitively, this is the part of the current play that the process could see or learn about
from other processes by synchronising with them. Formally, the p-view of a play x,
denoted viewp(u), is the smallest trace [v] such that u ∼ vy and y contains no action
from Σp. We write Playsp(A) for the set of plays that are p-views: Playsp(A) =
{viewp(u) | u ∈ Plays(A)}.

A strategy for a process p is a function σp : Playsp(A) → 2Σ
sys
p , where Σsys

p =
{a ∈ Σsys | p ∈ dom(a)}. We require in addition, for every u ∈ Playsp(A), that
σp(u) is a subset of the set enabled(sp) of actions that are enabled in sp = statep(u).
A strategy is a family of strategies {σp}p∈P, one for each process.

The set of plays respecting a strategy σ = {σp}p∈P, denoted Plays(A, σ), is the
smallest set that contains the empty play ε and that satisfies, for every u ∈ Plays(A, σ),
the following two conditions: (1) if a ∈ Σenv and ua ∈ Plays(A), then ua is in
Plays(A, σ), and (2) if a ∈ Σsys and ua ∈ Plays(A), then ua ∈ Plays(A, σ) provided
that a ∈ σp(viewp(u)) for all p ∈ dom(a). So this definition says that actions of the
environment are always possible / enabled, whereas actions of the system are possible
only if they are allowed by the strategies of all involved processes.

Before defining winning (control) strategies, we need to introduce infinite plays that
are consistent with a given strategy σ. Such plays can be viewed as (infinite) traces
associated with infinite initial runs of A that satisfy both conditions of the definition of
Plays(A, σ). The precise definition is very intuitive when using pomsets, here we just
give an example: the infinite play aωbω is the set of all ω-words with infinitely many
as and infinitely many bs. We write Plays∞(A, σ) for the set of such finite or infinite
plays. A play from Plays∞(A, σ) is also denoted as σ-play. A play u ∈ Plays∞(A, σ)
is called maximal, if there is no action c such that uc ∈ Plays∞(A, σ).

Winning conditions. In analogy to regular 2-player games, winning conditions in
these games can be provided by regular, trace-closed languages [23]. In this paper, we
consider simpler conditions, namely local parity conditions, because we are interested
in the game complexity and do not want to add the specification as an extra parameter.

Our system A is thus a deterministic Zielonka automaton with local states, coloured
by integers from [k] = {0, . . . , k − 1}: let A = 〈(Sp)p∈P, (δa)a∈Σ , s

0, χ〉, χ :⋃
p∈P

Sp → [k]. A maximal play u ∈ Plays∞(A, σ) is winning, if the following holds
for every process p. Write viewp(u) as u0u1 . . ., for u0, u1, . . . such that, for every n,



696 A. Muscholl and S. Schewe

we have that viewp(u0 · · ·un) = u0 · · ·un and either un is empty or it has only one
p-action (which is the last one). Then we require that lim infn→∞ χ(statep(u0 · · ·un))
is even. Equivalently, if viewp(u) is infinite, then the local parity condition should hold,
and if viewp(u) is finite, then the colour of the last state reached by p needs to be even.
A strategy σ is winning, if every maximal play in Plays∞(A, σ) is winning. Maximal-
ity is a sort of fairness condition for such automata. Requiring infinite plays as in [23] is
also possible, but it does not guarantee fairness for each process. A more refined notion
of fairness can be found in [14].

Remark 1. The decidability of the existence of a winning distributed control strategy
for systems modelled by Zielonka automata is an open problem. It is worth noting that
slight modifications of the problem statement lead to undecidability. First, if one uses
regular, but not trace-closed specifications, then the problem is known to be undecid-
able (see e.g. [21]). Second, if the individual strategy σp only depends only on the local
history of process p (i.e., σp : (Σp)∗ → 2Σ

sys
p ), then the problem is again undecid-

able [21]. In both cases, undecidability stems from the restricted partial knowledge of
the processes.

4 Resuming Local Behaviour

Recall that Σenv ⊆ Σloc, i.e., environment actions are local. As shown in this section,
this allows to summarise local behaviour, such that one can reason about distributed
strategies only w.r.t. synchronisation actions.

Lemma 1. Let A be a Zielonka automaton. If there is a winning control strategy σ =
(σp)p∈P for A, then there also exists a winning one that satisfies, for every process
p ∈ P and every play t ∈ Playsp(A, σ), either σp(t) = {a} for some a ∈ Σloc

p ∩Σsys,
or σp(t) ⊆ Σsync

p . In addition, σp(t) = ∅ if enabled(statep(t)) ∩Σenv
p �= ∅.

The proof exploits that, when both local and synchronisation actions are enabled, dis-
abling the synchronisation actions reduces the set of plays, but they are still winning.

Definition 1. Fix some process p. A local p-play is a word from (Σloc
p )∗. A p-context is

a play from Playsp(A) that ends with an action from Σsync
p (unless it is empty).

Given a distributed strategy (σp)p∈P, we associate with a p-context u a local strategy
from u: this is the mapping σp[u] : (Σloc

p )∗ → 2Σp defined as

σp[u](x) := σp(ux) for all x ∈ (Σloc
p )∗.

We assume in the following that σ = (σp)p∈P satisfies Lemma 1, thus σp[u] :

(Σloc
p )∗ → (Σloc

p ∩ Σsys) ∪ 2Σ
sync
p . We are interested in the configurations that result

after a maximal local run of process p from a given p-context u with sp = statep(u).
We define:

Syncσ(p, u) = {(s′p, A, c) | ∃x ∈ (Σloc
p )∗ : s′p = statep(ux), A = σp(ux) ⊆ Σsync

p ,

enabled(s′p) ∩Σenv
p = ∅, and the minimal colour seen on sp

x−→ s′p is c} .
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A local strategy σp[u] is called simple if, for every (s′p, A, c), (s
′′
p , A

′, c′) ∈
Syncσ(p, u), we have that s′p = s′′p implies A = A′. In this case Syncσ(p, u) is a

partial mapping Syncσ(p, u) : Sp
·→ 2Σ

sync
p × 2[k].

A local strategy σp[u] from context u is computable with memoryM if σp[u](x) can
be computed from statep(ux) using an additional finite memory M . In this case, σp[u]

is a mapping from Sp ×M to (Σloc
p ∩Σsys) ∪ 2Σ

sys
p .

Lemma 2. If there is a winning control strategy σ = (σp)p∈P for A with a local parity
condition with k colours, then there is also a winning one, say τ = (τp)p∈P, where,
for each process p and every p-context u, the local strategy τp[u] is simple, computable
with memory of size k, and such that every infinite (and thus local) τp[u]-play satisfies
the parity condition for process p.

The proof exploits that, for every s′p that can occur at the end of a run, one can select a
triple (s′p, A, c) with worst color among the elements of Syncσ(p, u) and then change
the decision for each such end-point s′p to A. It is then easy to turn the resulting simple
local strategy into one, where the decision is only based on the state and the minimal
colour that occurred so far.

We denote local strategies τp[u] as in Lemma 2, as good strategies. In Section 6 we
will compose good strategies, and we therefore define their outcomes.

Definition 2. Let u be a p-context. The outcome of a simple strategy τp[u] is a partial
mapping f : Sp

·→ 2Σ
sync
p × [k] that satisfies the following side constraints:

1. f and Syncτ (p, u) have the same domain, and
2. for each state sp in the domain of f : if Syncτ (p, u)(sp) = (A,C) for some A ⊆

Σsync
p and C ⊆ [k] then f(sp) = (A, c) where:
– either C �⊆ 2N, c is odd and c ≤ d for every odd colour d ∈ C, or
– C ⊆ 2N, c is even, and c ≥ max(C).

Remark 2. Note that we can test, for given sp ∈ Sp and partial mapping f : Sp
·→

2Σ
sync
p × [k], whether f is the outcome of a good local strategy from state sp. The test

amounts to solving a 2-player game with parity condition on infinite plays. Finite plays
are won if the last state, say tp, is in the domain of f . In addition, if f(tp) = (A, c) for
some A, then tp can be reached only with even minimal colours d ≤ c if c is even. If
c is odd, and tp is reached with odd minimal colour d, then d ≥ c. The condition on
colours can be checked using additional memory k.

5 Well-Informed Strategies

We start by defining the distributed strategies we are interested in. They are very similar
to the notion of N -communicating plants used in [23], with two exceptions. First, our
boundN applies only to synchronisation actions. That is, there is no limitation on local
actions. Second, our definition implies that infinite plays are non-divergent, which is a
restriction that we impose only for simplifying the presentation (see also Remark 4).
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Definition 3. Let N > 0 be an integer. A strategy σ = (σp)p∈P is called N -informed
if, for every play u ∈ Plays∞(A, σ) such that u = u′av with a ∈ Σsync, v ∈ Σ∞ and
dom(a) ∩ dom(v) = ∅, it holds that v has at most N actions from Σsync.

The round-robin strategy mentioned in Example 2 is N -informed with N ∈ O(nm).
Note that Lemma 2 preserves N -informedness, since only local strategies are modified
and Def. 3 refers only to synchronisation actions. By abuse of notations, we will call a
sequence from (Σsync)∞ N -informed, if it satisfies the above definition.

Let us fix some total order < on Σsync. A sequence u ∈ (Σsync)∗ is said to be in
lexicographic normal form (w.r.t. <) if there is no trace-equivalent sequence u′ ∼ u
such that u = vbw, u′ = vaw′ with a < b. We denote by lnf(u) the trace-equivalent se-
quence v ∼ u that is in lexicographic normal form. Sequences in lexicographic normal
form build a regular set: a sequence u ∈ (Σsync)∗ is not in lexicographic normal form
iff, for some x, y, z ∈ (Σsync)∗:

u = xbyaz with dom(a) ∩ dom(by) = ∅ and a < b . (1)

Let s = maxp∈P |Sp|, c = maxp∈P |Σsync
p |, p = |P|, and recall that k is the number of

colours. A deterministic safety automaton of size O(c · 2p) exists that accepts the set of
sequences in lexicographic normal form. This automaton records, for every a ∈ Σsync,
the set of processes in whose view the last a occurs.

The next lemma considers how the lexicographic normal form changes when ex-
tending a sequence from (Σsync)∗, showing that only a bounded suffix is modified.
The lemma is essentially the same as Lemma 3 in [23]:

Lemma 3. [23] Let u ∈ (Σsync)∗ be an N -informed sequence and a ∈ Σsync. Then
lnf(u) = zx and lnf(u · a) = zy for some x, y, z with |x| ≤ N .

The next lemma makes the statement of Lemma 3 more precise:

Lemma 4. Let u, v ∈ (Σsync)∗ be N -informed and p ∈ P such that u = viewp(v)
and both u, v are in lexicographic normal form. Then we can write u = zx and v = zy,
with y = y0x1y1x2 · · · ym−1xmym for some m ≤ c · p, such that (1) |x| ≤ N , (2)
x = x1 · · ·xm, and (3) dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m hold.

6 Strategy Trees

Let Ω =
∏

p∈P
Ωp, where Ωp is a set of tuples (sp, f, b), where f is outcome of some

good local p-strategy τ from state sp and b ∈ {0, 1} says whether τ allows infinite
(local) plays from sp. Let Δ =

⋃
a∈Σsync δa. A strategy tree is an infinite tree with

directions Γ = Σsync × Δ and nodes labelled by elements of Ω ∪ {⊥}. Note that
|Γ | ≤ c · |A|. A node in the tree is identified with the sequence from Γ ∗ labelling the
path from the root to that node. We require for every pair of nodes u, u · 〈a, d〉 ∈ Γ ∗:

1. d ∈ δa, and
2. if the labels of u and u ·〈a, d〉 are ω′ and ω, resp., then ω′q = ωq for all q /∈ dom(a).
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For u ∈ Γ ∗, we denote by statep(u) the state of process p after u. This is namely the
state that occurs in the transition d of the last pair 〈a, d〉 with p ∈ dom(a).

Nodes in a strategy tree that do not correspond to realisable summarised plays, are
called sink nodes and are labelled by ⊥. A node u · 〈a, d〉 with label ω′ is a sink, but u
is not, if, and only if, (1) either the action a is not allowed by ωdom(a), where ω is the
label of u, (2) or the a-transition d does not result from ωdom(a), (3) or ω′p �= (tp, ∗, ∗)
for some p ∈ dom(a) with tp = statep(u · 〈a, d〉).

Remark 3. If we fix local good strategies for every pair of local states and outcomes
from Sp×Ωp, then every initial path ω0, 〈a0, d0〉, ω1, 〈a1, d1〉 . . . in a strategy tree such
that all ωi �= ⊥ can be “expanded” in a natural way to a set of plays from Plays(A).

Lemma 5. A deterministic safety automaton with O(sp) states can check that the label
⊥ correctly identifies sink nodes.

A strategy tree is winning if all plays that are expansions of maximal initial paths of
the tree, are winning. Checking consistency of the labels ω requires to include in the
label of each node u ∈ Γ ∗ a bit that reflects whether or not the projection of u on
Σsync is in lexicographic normal form. As mentioned in Section 5, a deterministic
safety automaton with O(c · 2p) states can check that this labelling is correct. In the
following we will focus on non-sink nodes in lexicographic normal form. We will refer
to them as normalised nodes.

We will need to ensure that a strategy tree has a consistent node labelling. The next
definition tells when two nodes u, u′ ∈ Γ ∗ correspond to the same summarised play.

Definition 4. Two nodes u, u′ ∈ Γ ∗ are called play-equivalent if the following hold:

1. The projections of u, u′ onto Σsync are trace-equivalent.
2. For all a ∈ Σsync and k ≥ 0: suppose that u = u1〈a, d〉u2 and u′ = u′1〈a, d′〉u′2,

with 〈a, d〉, 〈a, d′〉 being the k-th occurrence of a in u and u′, respectively. Assume
also that u1 and u′1 is labelled by ω and ω′, respectively. Then we require that

d = d′ and ωdom(a) = ω′dom(a) .

We ensure that the strategy tree is labelled consistently by local strategies by comparing
normalised nodes that are play-equivalent. By abuse of notation, we write viewp(u) for
the p-view of u ∈ Γ ∗.

Definition 5. A strategy tree is labelled consistently if, for all normalised non-sink
nodes u, v ∈ Γ ∗ and every process p such that u and viewp(v) are play-equivalent,
it holds that ωp = ω′p, where ω and ω′ are the labels of u and v, respectively.

Informally, the strategy tree is labelled consistently if the choice of the next outcomes
ωdom(a) after some synchronisation a ∈ Σsync depends only on the history associated
with the views of processes p ∈ dom(a) after a.

Lemma 6. Every good control strategy (cf. Lemma 2) maps to a consistently labelled
strategy tree. Conversely, from every consistently labelled strategy tree we can construct
a good control strategy.
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Lemma 7. An alternating safety automaton with O(|Γ |N ·N · s · c ·k) states can check
that a strategy tree associated with an N -informed strategy is labelled consistently.

Proof. Let u, v ∈ Γ ∗ be as in Definition 5, so in particular normalised, non-sink,
and such that u and viewp(v) are play-equivalent. We can apply Lemma 4 to (the
projections on Σsync of) u, v. Thus, we can write u = zx, v = zy with y =
y0x1y1x2 · · · ym−1xmym for some m ≤ c ·p, such that (1) |x| ≤ N , (2) x = x1 · · ·xm,
and (3) dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m hold.

An alternating (reachability) tree automaton can check that some u, v ∈ Γ ∗ as above
do not satisfy ωp = ω′p, with ω, ω′ the labels of u, v. The automaton first guesses (and
moves to) node z. It then guesses x ∈ Γ≤N and two directions where to proceed; it
also guesses the difference between the labels of zx and zy, e.g., a state from Sp, an
action from Σsync

p , and some colour. In the first direction it checks that a path labelled
by x ends with a p-label consistent with the guessed difference. In the second direction,
it checks that the path is of the form y0x1y1x2 · · · ym−1xm, with x = x1 · · ·xm and
dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m, and that it ends with a p-label
consistent with the guessed difference.

Note that we do not need to remember the intermediate labels ω on the path x,
because we can look for a shortest u that witnesses the inconsistency. Then we can
assume that u and viewp(v) are play-equivalent (and not only trace-equivalent). The
alternating automaton has O(|Γ |N ·N · s · c · k) states, |Γ |N ·N for matching x inside
y0x1y1x2 · · · ym−1xm and s · c · k for the guessed difference between node labels.

Lemma 8. A deterministic safety automaton with O(c · p! · 2p · (N + 1)p) states can
check that a strategy tree corresponds to an N -informed control strategy.

Proof. The state records, at each node u and for each u = u1〈a, d〉u2, how many
synchronisation actions in u are concurrent to this a (up to N ), and the set of processes
in the causal future of a in u. Note that, if u = u1〈a, d〉u2 = u′1〈a, d′〉u′2 with |u1| <
|u′1|, then the set of processes in the causal future of 〈a, d〉 is a superset of the set of
processes in the future of 〈a, d′〉. In addition, we need to count, for each a ∈ Σsync, the
length of u \ viewdom(a)(u) (up to N + 1). Thus, O(c · p! · 2p · (N + 1)p) states suffice.

Lemma 9. For a given consistently labelled strategy tree for anN -informed strategy, a
universal Co-Büchi automaton with 1+p(k+2) states can check that each run satisfies
the parity condition.

The proof idea is to construct an automaton that rejects if it can guess, for some process
p, a path where the minimal colour occurring infinitely often is an odd colour o. It can
guess a point where no lower colour than o occurs and verify (1) this (safety) and (2)
that o occurs infinitely often (Co-Büchi). To test the corner case of a process p being
scheduled finitely often, the automaton can guess a point where p is not scheduled again
and verify (1) this and (2) that it might end in a state with odd colour (both safety).

Remark 4. As mentioned, we consider strategies that produce only non-divergent plays.
A divergent play is a play where, whenever a synchronisation event a has more than N
synchronisation events b1, . . . , bM in parallel, then the processes of a and those of the
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bi are henceforth separated. It is easy to extend Lemma 8 to the divergent case, we
merely need to check N -informedness on non-divergent plays. Extending the winning
condition (Lemma 9) requires more care, since we need to consider processes that are
scheduled finitely often and to show that a play is maximal for them.

Summing up, we showed how to check the following properties of strategy trees:

1. Sink nodes are identified correctly: deterministic safety automaton B1 with
O(|S|) = O(sp) states.

2. Normalised nodes are identified correctly: deterministic safety automaton B2 with
O(c · 2p) states.

3. Strategy tree is labelled consistently: alternating safety automaton B3 with
O((c · |A|)N ·N · s · c · k) states (Lemma 7).

4. Control strategy is N -informed: deterministic safety automaton B4 with
O(c · p! · 2p · (N + 1)p) states (Lemma 8).

5. The parity condition is satisfied: universal Co-Büchi automaton B5 with O(p · k)
states (Lemma 9).

Theorem 2. Given a Zielonka automaton A with local parity condition and an inte-
ger N , the existence of a winning N -informed control strategy can be decided in time
doubly exponential in N and exponential in A. For fixed N , the problem is EXPTIME-
complete. The same bounds apply to the construction of a winning strategy (if it exists).

The proof exploits the correspondence betweenN -informed control strategies and trees
accepted by the intersection of B1 through B5. We intersect them in two steps. Invoking
the simulation theorem [25], we first construct a nondeterministic parity automaton B′

5,
which is language equivalent to B5, with polynomially many colours and exponentially
many states in the states of B5. We likewise construct a nondeterministic safety automa-
ton B′

3, which is language equivalent to and exponential in B3. We can then intersect
B1, B2, B′

3, B4, and B′
5 to a nondeterministic parity automaton B with the same colours

as B′
5, whose states are the product states of these five automata.

The emptiness of B can be checked (and a control strategy constructed) by solving
the resulting emptiness parity game, which is polynomial in the number of states, and
exponential only in the number of colours [29]. This provides the claimed complexity.
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15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

16. Katz, G., Peled, D.: Model checking-based genetic programming with an application to mu-
tual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
141–156. Springer, Heidelberg (2008)

17. Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for bounded
systems and environments. In: Proc. of STACS 2011, pp. 615–626 (2011)

18. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. of LICS 2001, pp.
389–398 (2001)

19. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. of FOCS 2005, pp.
531–540 (2005)

20. Madhusudan, P.: Synthesizing Reactive Programs. In: Proc. of CSL, pp. 428–442 (2011)
21. Madhusudan, P., Thiagarajan, P.S.: A decidable class of asynchronous distributed controllers.
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Abstract. So-called ordered variants of the classical notions of pathwidth and
treewidth are introduced and proposed as proof theoretically meaningful com-
plexity measures for the directed acyclic graphs underlying proofs. The ordered
pathwidth of a proof is shown to be roughly the same as its formula space. Length-
space lower bounds for R(k)-refutations are generalized to arbitrary infinity ax-
ioms and strengthened in that the space measure is relaxed to ordered treewidth.

1 Introduction

Proof complexity seeks to show that certain propositional contradictions do not admit
short refutations in certain propositional refutation systems; here, short means polyno-
mial in the size of the contradiction refuted. It is well-known and easy to see [7] that NP
�= coNP if and only no propositional refutation system (in a sufficiently abstract sense)
has short refutations of all contradictions. The so-called program of Cook-Reckhow
asks to establish superpolynomial lower bounds for natural refutation systems. This can
be interpreted as a bottom-up approach to the hypothesis NP �= coNP.

Of special interest are Resolution-based refutation systems and meaningful contra-
dictions expressing combinatorial principles in some natural way. Common instances of
the latter are given by propositional translations of first-order formulas, and in particular
of infinity axioms (cf. Section 7).

By a Resolution-based refutation system we mean Krajı́ček’s systems R(k) [15]
for k a constant or log, and their treelike versions R∗(k). R(1) is the same as Resolu-
tion and R(k) is a straightforward generalization of Resolution operating with k-DNFs
instead of clauses, i.e., cutting on conjunctions of k literals instead of single literals.
From a practical perspective this special interest derives from the fact that SAT solvers
are based on such systems. From a more theoretical perspective the special interest de-
rives from the fact that lower bounds for these systems are prerequisite for understand-
ing independence from bounded arithmetic [14]. The systems line up in a hierarchy
with respect to p-simulation [7], denoted ≤p:

R∗(1) ≤p R
∗(2) ≤p · · ·R∗(log) ≤p R(1) ≤p R(2) ≤p · · ·R(log). (R)

Besides proof length the most popular complexity measure of proofs is proof space
(formula-space or clause-space) as introduced by Esteban and Toran [10]. Intuitively, a
space 100 refutation of a set Γ of clauses, say in Resolution, is one that can be presented
as follows.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 704–716, 2013.
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A teacher is in class equipped with a blackboard containing up to 100 formulas.
The teacher starts from the empty blackboard and finally arrives at one contain-
ing the empty clause. The blackboard can be altered by either writing down an
axiom from Γ , or by wiping out some formula, or by deriving a new clause
from clauses currently written on the blackboard by means of the Resolution
rule.

A motivation for studying the space of refutations is to understand memory require-
ments for SAT solvers [5]. The hierarchy (R) of Resolution-based proof systems is not
only strict with respect to length (indeed, no ≤p can be reversed; see [23] for a survey)
but it is also strict with respect to space [9,5]. A sequence of work established lower
bounds on space for R(k) refutations, and especially for translations of infinity axioms
[10,1,9]. Resolution lower bounds on space follow from lower bounds on width [10,2]
but not the other way around [19].

Ben-Sasson showed that size and space cannot in general be simultaneously opti-
mized [4], laying the ground for various so-called length-space trade-off results. An
exponential length-space trade-off states that there exists a sequence of contradictions
that have short Resolution refutations in small space while refutations in somewhat
smaller space require exponential length (length-space lower bound). Ben-Sasson and
Nordström found such sequences for various settings for the qualifications “small” and
“somewhat smaller”, e.g., for O(n) versus o(n/ logn). Moreover, they managed to ex-
tend the length-space lower bound toR(k) for constant k when taking the (k+1)th root
of the qualification “somewhat smaller.” The contradictions are substitution instances
of pebbling contradictions. What Nordström and Ben-Sasson showed is how to transfer
trade-off results for pebbling games to Resolution proofs. We refer to the survey [5]
for more information. The wording trade-off has to be taken with some care in that the
upper bounds are claimed only for the very special contradictions constructed. In this
paper we shall focus on the lower bound part of trade-offs.

This paper. We revisit refutation space by means of natural invariants of the refutation
DAG, using variants of the notions of pathwidth and treewidth which play an impor-
tant role in Robertson and Seymour’s graph minors project and have evolved as very
successful and ubiquitously used complexity measures (see, for instance, Bodlaender’s
survey [6]). We introduce ordered variants of these graph width measures that, in con-
trast to earlier adaptions of the width notions to digraphs [3], allow us to distinguish
between DAGs. Our notions are well-motivated from a graph theoretic point of view;
for example on DAGs, ordered pathwidth coincides with a straightforward variant of
the vertex separation number [6] adapted to DAGs (Proposition 1). We show that the
notions have proof theoretic sense: Resolution refutations of minimal ordered path-
width are just input Resolution refutations (Theorem 1), and those of minimal ordered
treewidth are just the treelike ones. More importantly, we show that ordered pathwidth
is roughly the same as refutation space (Theorem 2). Conceptually, these results allow
to rethink space as a measure of how far a Resolution proof is from being an input
Resolution refutation.
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This gives interest to ordered treewidth, a notion that relaxes ordered pathwidth in
much the same way as treewidth relaxes pathwidth. Ordered treewidth of a refutation
can be interpreted as measuring how far a refutation is from being treelike . We also
propose an interpretation of ordered treewidth in terms of space, using the following
two player game, that continues the metaphor above.

Imagine a student visits the teacher in her office asking her to explain the proof.
The teacher has a blackboard potentially containing up to 100 formulas and
writes the empty clause on it. The student asks how to prove it. The teacher
produces a length ≤ 100 proof from Γ plus some additional axioms. The stu-
dent chooses one of these additional axioms and asks how to prove it. And so
on. The game ends when the teacher comes up with a proof using no additional
axioms.

The new graph invariants also provide the means for making progress with respect to
the already mentioned length-space lower bounds from Ben-Sasson and Nordström [5].
Our main technical result (Theorem 4) is a lower bound on length and ordered treewidth
for R(k)-refutations of infinity axioms in general. This makes progress with respect to
the known length-space lower bounds in that it applies to infinity axioms in general, and
thereby to a large class of formulas having a natural meaning. It relaxes the refutation
space measure (i.e., ordered pathwidth) to ordered treewidth, and it gives nontrivial
lower bounds for all R(k) simultaneously, and forR(log). The latter feature overcomes
a bottleneck in constructions from [5] which give good lower bounds for R(k) with
constant k but become trivial for R(log).

Proof idea. The proof for our general lower bound follows the adversary type argument
of [16] against treelike R(log) refutations of translations of infinity axioms. One uses
restrictions that describe finite parts of some infinite model of the infinity axiom. Start-
ing with the empty restriction, first choose a node as in Spira’s theorem, namely one
that splits the refutation tree into two subtrees of size at most 2/3 of total. In case no ex-
tension of the current restriction satisfies the formula at the chosen node, recurse to the
subtree rooted at this node and stick with the current restriction. Otherwise, delete this
subtree and recurse with a “small” restriction satisfying the formula at the chosen node.
The invariant maintained is a proof of a formula “forced false” from axioms plus some
formulas “forced true.” If the proof has length S, this process reaches a constant size
proof after O(log S) steps. If S is not too large, it is argued that the final restriction can
be further extended to force all remaining axioms true and a contradiction is reached.
The proof of our lower bound proceeds similarly but by recursion on a tree decompo-
sition of the refutation. To make sense of this idea we show that we can always find a
tree decomposition whose underlying tree is binary (to find a Spira type split node) and
whose size is linear in the size of the refutation (Lemma 3). Further care is needed to
ensure that the partial tree decompositions during the recursion are decompositions of
refutations with similar properties as the invariant described above (Lemma 4).

Carrying this out requires some work. This extended abstract sketches the proof and
states the main lemmas needed.
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2 Preliminaries

Digraphs. We consider directed graphs (digraphs, for short) without self-loops and
denote the set of vertices and the set of directed edges of a digraph D by V (D) and
E(D), respectively. If (u, v) ∈ E(D), then u is a predecessor of v and v a successor
of u. An ancestor of v ∈ V (D) is a vertex w such that there is a directed path from w
to v in D; we understand that there is a directed path of length 0 from any vertex
to itself. The in-degree (out-degree) of v is the number of its predecessors (successors).
The in-degree (out-degree) of D is the maximal in-degree (out-degree) over all vertices.
Vertices of in-degree 0 are sources, vertices of out-degree 0 are sinks. An (induced)
subdigraph of D is a digraphD[X ] induced on a nonemptyX ⊆ V (D); if V (D)\X is
nonempty, we write D−X forD[V (D)\X ]. The graphD underlying a digraphD has
the sane vertices as D and as edges the symmetric closure of E(D). In general, a graph
is a digraphD with symmetricE(D). A DAG is a directed acyclic graph (i.e., a digraph
without directed cycles), and a tree is a DAG T with a unique sink rT called root such
that for every v ∈ V (T ) there is exactly one directed path from v to rT . We shall refer
to vertices in a tree as nodes. The subtree Tt rooted at t ∈ V (T ) is the subtree of T
induced on the set of ancestors of t in T ; it has root rTt = t.

Propositional Logic. A literal is a propositional variable X or its negation ¬X ; for a
literal 
 we let ¬
 denote ¬X , if 
 = X , and X , if 
 = ¬X . A (k-)term is a set of
(at most k) literals. A (k-)DNF is a set of (k-)terms. The empty DNF is denoted by 0
and the empty term by 1. A clause is a 1-DNF. An assignment is a function from the
propositional variables into {0, 1}. A restriction ρ is a finite partial assignment. For a
restriction or assignment ρ and a term t we let t � ρ be 0 if t contains a literal falsified
by ρ (in the usual sense) and otherwise the subterm obtained by deleting all literals
satisfied by ρ. For a DNF D we let D � ρ :=

⋃
t∈D{t � ρ} if this DNF does not

contain 1, and otherwise D � ρ := 1. Note, if ρ is defined on all variables appearing
in D then D � ρ equals the truth value of D under ρ.

Definition 1. A (k-)DNF proof is a pair (D, (Fv)v∈V (D)) where D is a DAG with
a unique sink and in which every vertex has at most two predecessors, and Fv is a
(k-)DNF for every v ∈ V (D). The proof is said to be of F if F = Fv for v the sink of
D, and from Γ if Fv ∈ Γ for all sources v of D. It is said to be treelike if D is a tree.
Proofs of 0 are refutations. The length of the proof is |V (D)|. A refutation system is a
set of refutations.

Usually one requires refutation systems to satisfy certain further properties like sound-
ness or completeness or being polynomial time decidable (cf. [7]).

Definition 2. A proof (D, (Fv)v∈V (D)) is sound (strongly sound) if for every inner
vertex v ∈ V (D) and every assignment (respectively, every restriction) ρ we have
Fv � ρ = 1 whenever Fu � ρ = 1 for all predecessors u of v in D.
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One easily checks that this definitions of strong soundness generalizes the one given
in [24] for DNF proofs. We consider the following rules of inference, namely weaken-
ing, introduction of conjunction and cut:

D
D ∪ {t}

D ∪ {t} D′ ∪ {t′}
D ∪D′ ∪ {t ∪ t′}

D ∪ {t} D′ ∪D′′

D ∪D′ ,

where D,D′, D′′ are DNFs, t, t′ are terms and in the cut rule we assume ∅ �= D′′ ⊆
{{¬
} | 
 ∈ t}. A k-DNF proof (D, (Fv)v∈V (D)) is an R(k)-proof if for every inner
vertex v with predecessors u,w the formula Fv is obtained from Fu and Fw by one
of the three rules above. An R(k)-proof is an R(log)-proof if its length is at least 2k.
An R(1)-proof is a Resolution proof. The refutation system consisting of all R(k)-
refutations (R(log)-refutations) is denoted R(k) (R(log)).

Remark 1. R(k) is strongly sound. We have completeness in the sense that for every
k-DNF F implied by some set Γ of k-DNFs, there is an R(k)-proof of F from Γ plus
some additional ‘axioms’ of the form (X∨¬X), i.e., {{X}, {¬X}}.R(k) is refutation-
complete in the sense that no such axioms are needed in case F = 0. If one adds a new
rule allowing to infer such an axiom from any formula, then the system ceases to be
strongly sound.

First-Order Logic and Propositional Translation. A vocabulary is a finite set τ of rela-
tion and function symbols, each with an associated arity; function symbols of arity 0 are
constants. The arity of τ is the maximum arity of one of its symbols. τ -terms are first-
order variables x, y, z . . . or of the form ft1 · · · tr where t1, . . . , tr are again τ -terms
and f ∈ τ is a function symbol of arity r. τ -atoms are of the form t1 = t2 or Rt1 · · · tr
where t1, t2, . . . , tr are τ -terms and R ∈ τ is a relation symbol of arity r. τ -formulas
are built from τ -atoms using ∧,∨,¬ and existential and universal quantifiers ∃x, ∀x.
For a tuple of first-order variables x̄ we write ϕ(x̄) for a τ -formula ϕ to indicate that
the free variables of ϕ are among the components of x̄. A τ -sentence is a τ -formula
without free variables. A τ -structure M consists of a nonempty set, its universe, that
we also denote by M and for every, say, r-ary relation symbol R ∈ τ (function symbol
f ∈ τ ) an interpretation RM ⊆ M r (fM : M r → M ); we identify the interpretation
of a constant with its unique value.

Recall that the spectrum of a first-order sentence ϕ is the set of those naturals n ≥ 1
such that ϕ has a model of cardinality n. Skolemization and elementary formula ma-
nipulation allows to compute from every first-order sentence ψ a sentence ϕ with the
same spectrum of the form

∀x̄
∧
i∈I Ci(x̄), (1)

where I is a nonempty finite set, the Cis are first-order clauses (disjunctions of atoms
and negated atoms) whose atoms have the form Rȳ or f ȳ = z.

Following Paris and Wilkie [20] we define for every natural n ≥ 1 a set 〈ϕ〉n of
clauses that is satisfied exactly by those assignments that describe a model of ϕ with
universe [n] := {0, 1 . . . , n− 1}.

Let τ denote the vocabulary of ϕ. We use as propositional variables Rā, f ā = b
where r ∈ N, ā ∈ [n]r, b ∈ [n], R is an r-ary relation symbol in τ and f is an r-
ary function symbol in τ . For i ∈ I and ā ∈ [n]|x̄| substitute ā for x̄ in Ci(x̄); this



Revisiting Space in Proof Complexity: Treewidth and Pathwidth 709

transforms every literal into a propositional literal or into an expression of the form
a = a′ or ¬a = a′ where a, a′ are components of ā; the propositional clause 〈Ci(ā)〉 is
{1} if one of these expressions is “true” in the obvious sense; otherwise 〈Ci(ā)〉 is the
set of propositional literals (of the form Rā, f ā = b) obtained by the substitution. Then
〈ϕ〉n is the set of the clauses 〈Ci(ā)〉 obtained this way plus the functionality clauses
{{f ā = b} | b ∈ [n]}, {{¬f ā = b}, {¬f ā = b′}} for f ∈ τ an r-ary function symbol,
ā ∈ [n]r and distinct b, b′ ∈ [n].

It should be clear that the assignments that satisfy the functional clauses bijectively
correspond to τ -structures on [n]; moreover, such an assignment satisfies 〈ϕ〉n if and
only if the corresponding τ -structure models ϕ. In particular, 〈ϕ〉n is unsatisfiable if
and only if n is not in the spectrum of ϕ.

3 Width Notions for DAGs

3.1 Treewidth and Pathwidth

Let G be graph. A tree decomposition of G is a pair (T, χ) where T is a tree and
χ : V (T ) → 2V (G) is a mapping such that the following three conditions hold:

(a) V (G) ⊆
⋃
t∈V (T ) χ(t);

(b) E(G) ⊆
⋃
t∈V (T )(χ(t) × χ(t));

(c) for every v ∈ V (G) the set {t ∈ V (T ) | v ∈ χ(t)} is connected in T .

Recall, T is the graph underlying T . The width of a tree decomposition (T, χ) is the
maximum |χ(t)| − 1 over all t ∈ V (T ). The treewidth tw(G) of G is the minimum
width over all its tree decompositions. A path decomposition is a tree decomposition
(T, χ) where T is a (directed) path. The pathwidth pw(G) of a graphG is the minimum
width over all its path decompositions.

Let (T, χ) be a tree decomposition of a graph G. We say that a vertex v ∈ V (G) is
introduced at t ∈ V (T ) if v ∈ χ(t) but v /∈ χ(t′) for any predecessor t′ of t. Similarly,
we say that v is forgotten at t ∈ V (T ) if v ∈ χ(t) and either t = rT or v /∈ χ(t′) for
the successor t′ of t. Note that every vertex v ∈ V (G) is introduced at at least one tree
node (by condition (a)) and forgotten at exactly one tree node (by condition (c)). In a
path decomposition every vertex is introduced at exactly one tree node.

The same definitions apply literally to digraphs, so we can also speak of tree and path
decompositions of digraphs. Consequently, treewidth and pathwidth of a digraph equal
the treewidth and pathwidth of the digraph’s underlying graph, respectively. Thus the
direction of edges is completely irrelevant for the treewidth or pathwidth of a digraph.
For some considerations, however, one needs the direction of edges to be reflected in
the decomposition and the associated width measure. For example [11] introduces the
notion of directed treewidth, and it is known that every DAG has directed treewidth 1.
We introduce new width measures that can distinguish between DAGs.

3.2 Ordered Treewidth and Ordered Pathwidth

Although we shall be mainly interested in DAGs, we give the definitions and some first
observations generally for digraphs.
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Definition 3. A tree decomposition (T, χ) of a digraph D is ordered if the following
condition holds:

(d) for every directed edge (u, v) ∈ E(D) and every t ∈ V (t) where v is introduced,
u ∈ χ(t).

As above, we define the ordered treewidth otw(D) of D as the minimum width over
all ordered tree decompositions of D, and the ordered pathwidth opw (D) of D as the
minimum width over all ordered path decompositions of D.

The ordered width measures are different from their classical counterparts:

Remark 2. For every digraph D, otw(D) is at least the in-degree of D.

We say that a class C of digraphs has bounded ordered pathwidth if there is a constant
w ∈ N such that every digraph in C has ordered pathwidth at most w; we say C has
unbounded ordered pathwidth if it does not have bounded ordered pathwidth. We use a
similar mode of speech for the other width notions.

Example 1. 1. The ordered treewidth of a tree is its in-degree.
2. A directed path with at least one edge has ordered pathwidth 1.
3. The class of full binary trees (with edges directed towards the root) has unbounded

ordered pathwidth and bounded ordered treewidth.
4. The class of full binary trees with all edges reversed (edges directed away from the

root) has unbounded ordered treewidth and bounded treewidth.

We have the following analogues of well-known results.

Definition 4. (T, χ) is succinct if every node forgets some vertex.

Lemma 1. Every digraphDhas a succinct ordered tree decomposition of widthotw(D),
and a succinct ordered path decomposition of width opw(D).

Lemma 2. A succinct ordered tree decomposition of a digraph D has at most |V (D)|
many nodes.

Based on these lemmas we get the first of two lemmas, key to carry out the proof sketch
from the Introduction.

Lemma 3. For every digraph D there exists an ordered tree decomposition (T, χ) of
width otw(D) where T has in-degree at most 2 and |V (T )| < 2|V (D)|.

The second key lemma is the following.

Definition 5. A subtree T ′ of a tree T is complete in T if for every node of T ′ either
all or none of its predecessors in T are in V (T ′).

Lemma 4. Let (T, χ) be an ordered tree decomposition of a digraph D, let T ′ be a
subtree of T and set χ′ := χ � V (T ′). Assume

⋃
t′∈V (T ′) χ(t′) �= ∅ and set D′ :=

D[
⋃
t′∈V (T ′) χ(t′)]. Then

1. (T ′, χ′) is an ordered tree decomposition of D′;
2. if T ′ is complete in T , then there exists for every edge (u, v) ∈ E(D) with u /∈

V (D′) and v ∈ V (D′) a leaf t of T ′ which is not a leaf of T such that v ∈ χ(t).



Revisiting Space in Proof Complexity: Treewidth and Pathwidth 711

3.3 Vertex Separation Numbers

Recall, the vertex separation number vsn of a graphG is defined as the minimum s ∈ N
taken over all linear orders ≤ of V (G) such that for all v ∈ V (G) there are at most s
many vertices ≤ v with an edge to some vertex > v. It is known [12] that vsn(G) =
pw(G) for all graphs G.

For a DAG D it seems natural to take the minimum not over all linear orders on
V (D) but only over those embedding D. We call the resulting number ovsn(D) the
ordered vertex separation number of D and show the following result.

Proposition 1. opw (D) = ovsn(D) for every DAG D.

4 Resolution Proofs of Minimal Width

Recall, the ordered treewidth of a proof containing an application of the cut rule is
at least 2 (Remark 2). Clearly, when talking about the ordered pathwidth or ordered
treewidth of a proof we mean the ordered pathwidth or ordered treewidth of its under-
lying DAG. Recall that a Resolution refutation of Γ is called input if it contains only
applications of the cut rule and each such application has at least one premiss in Γ .

Theorem 1. Let 
 be a natural and Γ a set of clauses.

1. There is a Resolution refutation of Γ of ordered pathwidth at most 2 and length at
most 
 if and only if there is an input Resolution refutation of Γ of length at most 
.

2. If there is a Resolution refutation of Γ of ordered treewidth at most 2 and length at
most 
, then there is a treelike Resolution refutation of Γ of length at most 3
.

This result allows us to think of ordered pathwidth (ordered treewidth) as a measure of
how far a refutation is from being input (treelike). Concerning a converse of (2), recall
that treelike refutations have ordered treewidth 2 (cf. Example 1 (1)).

5 Proof Space

Let k, w, 
 > 0 be naturals, F a k-DNF and Γ a set of k-DNFs.

5.1 Ordered Pathwidth Is Proof Space

In the Introduction we informally explained a bounded space proof by a sequence of
blackboards. Formally, we follow [10] and define a space w R(k)-proof of F from Γ to
be a finite sequence (B0, . . . ,B−1) of sets Bi of k-DNFs each of cardinality at most w
such that B0 = ∅ and F ∈ B−1 and for all 0 < i < 
 there is a formula G such that

(B1) Bi = Bi−1 ∪ {G} and G ∈ Γ , or
(B2) Bi = Bi−1 ∪ {G} and G is derived from at most two formulas in Bi−1 by

one application of some inference rule of R(k), or
(B3) Bi = Bi−1 \ {G}.
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The space measure above is known as “formula space” or, in case k = 1, as “clause
space.” This is roughly the same as ordered pathwidth:

Theorem 2. 1. If there is a space w R(k)-proof of F from Γ of length 
, then there is
an R(k)-proof of F from Γ of length < 
 and ordered pathwidth < w.

2. If there is a R(k)-proof of F from Γ of length < 
 and ordered pathwidth < w,
then there is a space w R(k)-proof of F from Γ of length at most 2w
.

Combining with Theorem 1 (1) this result allows to think of the space of a Resolution
refutation as a measure of how far it is from being input.

5.2 Ordered Treewidth as Interactive Proof Space

The conversation of a teacher with her student described informally in the Introduction
is described more formally by a game Πk

w(Γ, F ) between two players called Student
and Teacher on the following game graph.

Its vertices are partitioned into Student positions and Teacher positions, the former
are R(k)-proofs of length at most w and the latter are k-DNFs. Its directed edges are
from a k-DNF to a length ≤ w proof of it, and from a proof to a label of one of its
sources which is outside Γ . In particular, precisely the proofs from Γ are sinks. The
initial position is the Teacher position F . Paths starting at the initial position are plays.

A strategy for Teacher (in Πk
w(Γ, F )) is a function that maps plays ending in a

Teacher position to a successor of this position; it is positional in case this value de-
pends only on the Teacher position reached by the play. A play is conform to the strat-
egy if every Student position in it is the value of the strategy on the initial segment of
the play up to it. The strategy is (
-)winning if all plays conform to it are finite (of length
at most 2
− 1, i.e., Teacher wins making ≤ 
 moves).

Remark 3. The game Πk
w(Γ, F ) can be seen as a parity game, so it is memory-less de-

termined; in particular, if a winning strategy for Teacher exists, then so does a positional
one [18].

Proposition 2. If there is an 
-winning strategy for Teacher in Πk
w(Γ, F ), then there is

also a positional one.

This is verified by standard arguments (cf. [18]) and eases the proof of the next theorem.

Theorem 3. There is an 
-winning strategy for Teacher inΠk
w(Γ, F ) if and only if there

is an R(k)-proof of F from Γ with an ordered tree-decomposition of width at < w and
height < 
.

Remark 4. Assume Γ is a set of clauses. By Theorem 3 Teacher wins Πk
w(Γ, 0) if and

only if there is an R(k)-refutation of Γ . This is equivalent to there being a treelike
Resolution refutation, so equivalent to Teacher winning Π1

3 (Γ, 0) (Theorem 1) . Thus,
the parameters k and w only matter when taking into account how fast the Teacher can
win, that is, when considering 
-winning strategies.
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6 Lower Bounds

Theorem 4. Let ϕ be a first-order τ -sentence of the form (1) that has an infinite model.
Let r be the maximal arity of some function symbol in τ and assume r ≥ 1. Then there
exists a real cϕ > 0 such that for every natural n ≥ 1 and every natural k ≥ 1, every
strongly sound k-DNF refutation (D, (Fv)v∈V (D)) of 〈ϕ〉n satisfies

k · otw(D) · log |V (D)| > cϕ · n1/r.

Remark 5. The assumption that r ≥ 1 does not exclude interesting cases. If r = 0,
all function symbols of τ are constants. In an infinite model of ϕ every nonempty set
containing the interpretations of these constants carries a submodel which too mod-
els ϕ (being universal). Hence, the spectrum of ϕ is co-finite, so all but finitely many
translations 〈ϕ〉n are satisfiable and have no sound refutations at all.

Proof (sketch). Let M be an infinite model of ϕ. Define a condition to be a pair (κ, λ)
of partial injections κ ⊆ λ from [n] into M such that the image of λ contains all values
of functions fM , f ∈ τ, taken on the image of κ. A restriction ρ = ρ(κ, λ) associated
with such a condition evaluates a propositional variable Rā or f ā = b according to the
truth value of κ(ā) ∈ RM or λ−1(fM (κ(ā))) = b. An extension of such a restriction
is one associated with a condition (κ′, λ′) such that κ ⊆ κ′, λ ⊆ λ′. Given a refutation
(D, (Fv)v∈V (D)) of 〈ϕ〉n, choose a tree decomposition (T0, χ) of width w := otw(D)
according Lemma 3. Iteratively move to subtrees T complete in T0 and restrictions ρ as
sketched in the introduction: choose a split node t and distinguish cases as to whether
ρ can be extended to some ρ′ so that Fv � ρ′ = 1 for all v ∈ χ(t) or not. The invariant
maintained is that for every extension ρ′′ of ρ there exists v ∈ χ(rT ), the current root
bag, such that Fv � ρ′′ �= 1; further, Lemma 4 ensures that (T, χ � V (T )) decomposes
a proof from axioms 〈ϕ〉n plus some formulas restricting to 1 under ρ.

In the first case the extension ρ′ of the current ρ = ρ(κ, λ) needs to force true at
most one k-term per k-DNF Fv, v ∈ χ(t). To find such ρ′ one needs to extend κ to at
most O(k ·w) new elements from [n]. Such a “small” extension can be found provided
sufficiently many elements from [n] are left, i.e., still outside the domain of λ. After
O(log |V (T )|) ≤ O(log |V (D)|) iterations a constant size subtree is found and one
needs sufficiently many elements still left to extend the current ρ once more to some
ρ′′ evaluating all O(w) many still appearing clauses from 〈ϕ〉n. These then restrict
to 1 because our restrictions cannot falsify them. By the invariant above one reaches a
contradiction to strong soundness. ��

This proof has the following corollary. It generalizes lower bounds on space (recall
Theorem 2) known for particular infinity axioms (cf. Introduction).

Corollary 1. Let ϕ be a first-order τ -sentence of the form (1) that has an infinite model.
Let r be the maximal arity of some function symbol in τ and assume r ≥ 1. Then there
exists a real cϕ > 0 such that for every natural n ≥ 1 and every natural k ≥ 1, every
strongly sound k-DNF refutation (D, (Fv)v∈V (D)) of 〈ϕ〉n satisfies

k · opw(D) > cϕ · n1/r.
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7 Infinity Axioms

An infinity axiom is a first-order sentence ϕ of the form (1) that does not have finite
models but does have an infinite model. Note that in this case all propositional transla-
tions 〈ϕ〉n, n ≥ 1, are contradictory. Strong lower bounds on the length of refutations of
these principles are known for the treelike systems [16,22,8]. One also knows, however,
some few short DAG-like refutations:

Example 2. The least number principle is formulated using a unary function symbol f
and a binary relation symbol <:

lnp := ∀xyz(¬x < x ∧ (¬x < y ∨ ¬y < z ∨ x < z) ∧ f(x) < x).

Stålmarck [25] gave polynomial length Resolution refutations of 〈lnp〉n.

Example 3. The very weak pigeonhole principle states that n2 pigeons cannot fly injec-
tively into n holes. This principle can be formulated as a first-order infinity axiom wphp
using a binary function symbol f :

∀xx′yy′z
(
(¬fxx′ = z∨¬fyy′ = z∨x = y)∧ (¬fxx′ = z∨¬fyy′ = z∨x′ = y′)

)
.

For 〈wphp〉n one knows a 2Ω(n/(logn)2) lower bound in Resolution [21] and a quasipoly-
nomial upper bound in R(log) [17].

We note that short DAG-like refutations of translations of infinity axioms need to be far
from being treelike in that they require unbounded ordered treewidth.

Corollary 2. Let ϕ be as in Theorem 4.

1. Length ≤ 2n
o(1)

R(log)-refutations of 〈ϕ〉n have ordered treewidth ≥ nΩ(1).

2. Ordered treewidth ≤ no(1) R(log)-refutations of 〈ϕ〉n have length ≥ 2n
Ω(1)

.

Specifically for the above two examples we can say the following.

Corollary 3. 1. Polynomial length R(100)-refutations of 〈lnp〉n have ordered tree-
width at least Ω(n/ logn).

2. Quasipolynomial length R(log)-refutations of 〈wphp〉n have ordered treewidth at
least Ω(n0.4).

8 Conclusion

In this paper we have revisited proof complexity using the graph invariants ordered
treewidth and ordered pathwidth. Whereas the first corresponds to ordinary proof space,
the latter gives rise to a notion of interactive proof space, which can be described in
terms of a student-teacher game. These graph invariants provide the means for length-
space lower bounds forR(k)-refutations that apply to a large class of formulas having a
natural meaning (infinity axioms). It relaxes the refutation space measure (i.e., ordered
pathwidth) to ordered treewidth and applies to R(log).
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25. Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informat-

ica 33(3), 277–280 (1996)



Space-Efficient Parallel Algorithms

for Combinatorial Search Problems�

Andrea Pietracaprina1, Geppino Pucci1,
Francesco Silvestri1, and Fabio Vandin2

1 University of Padova, Dip. Ingegneria dell’Informazione, Padova, Italy
{capri,geppo,silvest1}@dei.unipd.it

2 Brown University, Computer Science Dept., Providence, RI, USA
vandinfa@cs.brown.edu

Abstract. We present space-efficient parallel strategies for two fun-
damental combinatorial search problems, namely, backtrack search and
branch-and-bound, both involving the visit of an n-node tree of height h
under the assumption that a node can be accessed only through its father
or its children. For both problems we propose efficient algorithms that
run on a distributed-memory machine with p processors. For backtrack
search, we give a deterministic algorithm running in O (n/p+ h log p)
time, and a Las Vegas algorithm requiring optimal O (n/p+ h) time,
with high probability. Building on the backtrack search algorithm, we
also derive a Las Vegas algorithm for branch-and-bound which runs in
O ((n/p + h log p log n)h log n) time, with high probability. A remarkable
feature of our algorithms is the use of only constant space per proces-
sor, which constitutes a significant improvement upon previously known
algorithms whose space requirements per processor depend on the (pos-
sibly huge) tree to be explored (Ω (h) for backtrack search and Ω (n/p)
for branch-and-bound).

1 Introduction

The exact solution of a combinatorial (optimization) problem is often computed
through the systematic exploration of a tree-structured solution space, where in-
ternal nodes correspond to partial solutions (growing progressively more refined
as the depth increases) and leaves correspond to feasible solutions. A suitable
algorithmic template used to study this type of problems (originally proposed
in [1]) is the exploration of a tree T under the constraints that: (i) only the
tree root is initially known; (ii) the structure, size and height of the tree are
unknown; and (iii) a tree node can be accessed if it is the root of the tree or if
either its father or one of its children is available.

In the paper, we focus on two important instantiations of the above template.
The backtrack search problem [2] requires to explore the entire tree T start-
ing from its root r, so to enumerate all solutions corresponding to the leaves.
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In the branch-and-bound problem, each tree node is associated to a cost, and
costs satisfy the min-heap order property, so that the cost of an internal node
is a lower bound to the cost of the solutions corresponding to the leaves of its
subtree. The objective here is to determine the leaf associated with the solution
of minimum cost. We define n and h to be, respectively, the number of nodes
and the height of the tree to be explored. It is important to remark that in
the branch-and-bound problem, the nodes that must necessarily be explored are
only those whose cost is less than or equal to the cost of the solution to be
determined. These nodes form a subtree T ∗ of T and in this case n and h refer
to T ∗. Assuming that a node is explored in constant time, it is easy to see that
the solution to the above problems requires Ω (n) time, on a sequential machine,
and Ω (n/p+ h) time on a p-processor parallel machine.

Due to the elevated computational requirements of search problems, many
parallel algorithms have been proposed in literature that speed-up the execution
by evenly distributing the computation among the available processing units. All
these studies have focused mainly on reducing the running time while the result-
ing memory requirements (expressed as a function of the number of nodes to be
stored locally at each processor) may depend on the tree parameters. However,
the search space of combinatorial problems can be huge, hence it is fundamen-
tal to design algorithms which exploit parallelism to speed up execution and
yet need a small amount of memory per processor, possibly independent of the
tree parameters. Reducing space requirements allows for a better exploitation of
the memory hierarchy and enables the use of cheap distributed-memory parallel
platforms where each processing units is endowed with limited memory.

Previous Work. Parallel algorithms for backtrack search have been studied in a
number of different parallel models. Randomized algorithms have been developed
for the complete network [2,3] and the butterfly network [4], which require opti-
mal Θ (n/p+ h) node explorations (ignoring the overhead due to manipulations
of local data structures). The work of Herley et al. [5] gives a deterministic algo-
rithm running in O

(
(n/p+ h)(log log log p)2

)
time on a p-processor COMMON

CRCW PRAM. While the algorithm in [2] performs depth-first explorations of
subtrees locally at each processor requiring Ω (h) space per processor, the other
algorithms mostly concentrate on balancing the load of node explorations among
the available processors but may require Ω (n/p) space per processor.

In [2] an Θ (n/p+ h)-time randomized algorithm for branch-and-bound is also
provided for the complete network. In [6,7] Herley et al. show that a paralleliza-
tion of the heap-selection algorithm of [8] gives, respectively, a deterministic
algorithm running in time O

(
n/p+ h log2(np)

)
on an EREW-PRAM, and one

running in time O
(
(n/p+ h log4 p) log log p

)
on the Optically Connected Par-

allel Computer (OCPC), a weak variant of the complete network [9]. All of
these works adopt a best-first like strategy, hence they may need Ω (n/p) space
per processor. In [10] deterministic algorithms for both backtrack search and

branch-and-bound are given which run in O
(√

nh logn
)

time on an n-node

mesh with constant space per processor. However, any straightforward imple-
mentation of these algorithms on a p-processor machine, with p < n, would still
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requireΩ (n/p) space per processor. Karp et al. [1] describe sequential algorithms
for the branch-and-bound problem featuring a range of space-time tradeoffs. The

minimum space they attain is O
(√

log n
)

in time O
(
n2O(

√
logn)

)
1. Some papers

(see [11] and references therein) describe sequential and parallel algorithms for
branch-and-bound with limited space, which interleave depth-first and breadth-
first strategies, but provide no analytical guarantee on the running time.

Our Contribution. In this paper, we present space-efficient parallel algorithms
for the backtrack search and branch-and-bound problems. The algorithms are
designed for a p-processor distributed-memory message-passing system similar
to the one employed in [2], where in one time step each processor can perform
O (1) local operations and send/receive a message ofO (1) words to/from another
arbitrary processor. In case x > 1 messages are sent to the same processor in
one step, we make the restrictive assumption that none of these messages is
delivered (as in the OCPC model [9,12]). Consistently with most previous works,
we assume that a memory word is sufficient to store a tree node, and, as in [1],
we also assume that, given a tree node, a processor can generate any one of
its children or its father in O (1) steps and O (1) space. We let P0, P1, . . . , Pp−1

denote the processors in our system.
For the backtrack search problem we develop a deterministic algorithm which

runs in O (n/p+ h log p) time, and a Las Vegas randomized algorithm which
runs in optimal Θ (n/p+ h) time with high probability, if p = O (n/ logn).
Both algorithms require only constant space per processor and are based on a
nontrivial lazy implementation of the work-distribution strategy featured in the
backtrack search algorithm by [2], whose exact implementation requires Ω (h)
space per processor. By using the deterministic backtrack search algorithm as
a subroutine, we develop a Las Vegas randomized algorithm for the branch-
and-bound problem which runs in O ((n/p+ h log p logn)h logn) time with high
probability, using again constant space per processor.

To the best of our knowledge, our backtrack search algorithms are the first to
achieve (quasi) optimal time using constant space per processor, which consti-
tutes a significant improvement upon the aforementioned previous works. As for
the branch-and-bound algorithm, while its running time may deviate substan-
tially from the trivial lower bound, for search spaces not too deep and sufficiently
high parallelism, it achieves sublinear time using constant space per processor.
For instance, if h = O (nε) and p = Θ

(
n1−ε), with 0 < ε < 1/2, the algorithm

runs in O
(
n2εpolylog(n)

)
time, with high probability, using Θ

(
n1−ε) aggregate

space. Again, to the best of our knowledge, ours is the first algorithm achiev-
ing sublinear running time using sublinear (aggregate) space, thus providing
evidence that branch-and-bound can be parallelized in a space-efficient way.

For simplicity, our results are presented assuming that the tree T to be ex-
plored is binary and that each internal node has both left and right children.
The same results extend to the case of d-ary trees, with d = Θ (1), and to trees

1 The authors claim a constant-space randomized algorithm running in O
(
n1+ε

)
time

which, however, disregards the nonconstant space required by the recursion stack.
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that allow an internal node to have only one child. (The details will be provided
in the full version of this extended abstract.)

The rest of the paper is organized as follows. In Sec. 2 we first present a
generic strategy for parallel backtrack search and then instantiate this strategy
to derive our deterministic and randomized algorithms. In Sec. 3 we describe
the randomized parallel algorithm for branch-and-bound. Sec. 4 concludes with
some final remarks and open problems. Due to space constraints, we refer to [13]
for omitted proofs.

2 Space-Efficient Backtrack Search

In this section we describe two parallel algorithms, a deterministic algorithm
and a Las Vegas randomized algorithm, for the backtrack search problem. Both
algorithms implement the same generic strategy described in Sec. 2.1 and require
constant space per processor. The deterministic implementation of the generic
strategy (Sec. 2.2) requires global synchronization, while the randomized one
(Sec. 2.3) avoids explicit global synchronization.

2.1 Generic Strategy

The main idea behind our generic strategy moves along the same lines as the
backtrack search algorithm of [2], where at each time a processor is either idle or
busy exploring a certain subtree of T in a depth-first fashion. The computation
evolves as a sequence of epochs, where each epoch consists of three consecu-
tive phases of fixed durations: (1) a traversal phase, where each busy processor
continues the depth-first exploration of its assigned subtree; (2) a pairing phase,
where busy processors are matched with distinct idle processors; and (3) a dona-
tion phase, where each busy processor Pi that was paired with an idle processor
Pj in the preceding phase, attempts to entrust a portion of its assigned subtree
to Pj which becomes in charge of the exploration of this portion.

In [2] it is shown that the best progress towards completion is achieved by
letting a busy processor donate the topmost unexplored right subtree of the sub-
tree it is currently exploring. A straightforward implementation of this donation
rule requires that a busy processor either stores a list of up to Θ (h) nodes, or, at
each donation, traverses up to Θ (h) nodes in order to retrieve the subtree to be
donated, thus incurring a large overhead. As anticipated in the introduction, our
algorithm features a lazy implementation of this strategy which uses constant
space per processor and incurs only a small time overhead.

We now describe in more detail how the three phases of an epoch are per-
formed. At any time, a busy processor Pi maintains the following information,
which can be stored in constant space:

– ri: the root of its assigned subtree;
– vi: the last node reached by the processor in the depth-first exploration of

its assigned subtree;
– di ∈ {left, right, parent}: a direction flag identifying the next node (left

child, right child, or parent node, respectively) to be touched after vi;
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– (ti, qi): a pair of nodes that are used to identify a portion of the subtree to
donate to an idle processor; in particular, ti is a node on the path from ri to
vi (ri and vi included), while qi is either the right child of ri or is undefined.
We refer to the path from ti up to ri as the tail associated with processor
Pi, and define the tail’s length as the number of edges it comprises.

At the beginning of the first epoch, only processor P0 is busy and its variables
are initialized as follows: r0 is set to the root of the tree T to be explored;
v0 = t0 = r0; q0 is set to the right child of r0; and d0 = left. Consider now
an arbitrary epoch. (In the description below, Δt, Δp, and Δd denote suitable
values which will be fixed by the analysis.)

Traversal Phase. Each busy processor Pi advances of at most Δt steps in
the depth-first exploration of the subtree rooted at ri, starting from vi and
proceeding in the direction indicated by di. Variables vi and di are suitably
updated at each step. During the exploration, if the processor touches ri and
moves to its right child w, it sets ri to w and qi to w’s right child. Also, ti is
updated when either the processor touches ti and moves to its father u, or when
ti = ri and ri is updated. Variable ti is set to u in the former case, and to the
new value of ri in the latter. Pi finishes the exploration of its assigned subtree
and becomes idle when vi = ri and di = parent.

Pairing Phase. Busy and idle processors are paired in preparation of the subse-
quent donation phase. The phase runs for Δp steps. Different pairing mechanisms
are employed by the deterministic and the randomized algorithm, as described
in detail in the respective sections.

Donation Phase. Consider a busy processor Pi that has been paired to an idle
processor Pj . Two types of donations from Pi to Pj are possible, namely a quick
donation or a slow donation, depending on the status of qi. As we will see, a
quick donation always starts and terminates within the same epoch, assigning
a subtree to explore to Pj , while a slow donation may span several epochs and
may even fail to assign a subtree to Pj .

If qi is defined (i.e., it is the right child of ri) a quick donation occurs. In this
case, Pi donates to Pj the subtree rooted in qi and Pi keeps the subtree rooted
at the left child of ri for exploration. Then, Pj sets rj , vj and tj all equal to qi,
dj to left, and qj to the right child of qi. Instead, Pi sets ri and ti to the left
child of ri, qi to undefined, and keeps vi, di to their current values. Note that
quick donation coincides with the donation strategy in [2].

If qi is undefined, a slow donation is performed where the tail associated with
Pi is climbed upwards to identify an unexplored subtree of the one rooted at ri,
which is then donated to Pj . To amortize the cost of tail climbing, Pi attempts
to donate a subtree rooted at the right child of a node located in the middle of
the tail, so to halve the length of the residual tail that Pi has to climb in future
slow donations. This halving is crucial for reducing the running time.

Let us see in more detail how a slow donation is accomplished. Initially Pi
verifies if a new tail must be created. This happens if ti = ri and vi �= ri. In this
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case, a tail creation is performed by setting ti = vi. Then, two cases are possible
depending on the tail length.

Case 1: tail length ≤ 1. If ti is the left child of ri, then Pi donates to Pj
the subtree rooted at the right child of ri, performing the same steps of a quick
donation. Otherwise, if ti = ri (i.e., the tail length is 0) or ti is the right child
of ri, then Pi must have already explored the left subtree of ri. In this case, no
donation is performed and, since the current root is no longer needed, Pi sets
ri, vi and ti to the right child of ri, and di to left. Note that in all cases, the
level of the root of the subtree assigned to Pi increases by 1.

Case 2: tail length > 1. First, processor Pi identifies the middle node mi of
the tail by backtracking twice from ti to ri. Let 
i be the parent of mi: Pi seeks
the node ui along the path from 
i to ri which is closest to ri and is the left
child of its parent zi. If ui is found, all nodes in the path from zi (excluded) to
ri (included) are unnecessary to complete the exploration of the subtree rooted
at ri, since they and their left subtrees have already been explored. Therefore ri
is set to zi and qi to the right child of zi. If instead, no such ui is found, then
all nodes in the path from 
i (excluded) to ri (included) are discarded, ri is set
to 
i and qi is left undefined. Finally, Pi donates to Pj the (partially explored)
subtree rooted at mi. Namely, Pj sets rj = mi, vj = vi, dj = di, tj = ti, and
sets qj as undefined. Instead, Pi continues exploring the tree rooted at ri setting
both vi and ti to 
i and di to right, if mi is the left child of 
i, or to parent if
mi is the right child of 
i. Note that the level of the root of the subtree assigned
to Pj is always greater than the level of the root of the subtree assigned to Pi.
Moreover, the level of the root of the subtree assigned to Pi either increases or
remains unchanged. In this latter case, however, qi can be set during the tail
traversal so that the next donation of Pi will be a quick donation.

The donation phase runs for Δd steps, where we assume Δd to be greater
than or equal to the maximum between the time for a quick donation and the
time for Case 1 of a slow donation. However, for efficiency reasons, Δd cannot
be chosen large enough to perform entirely Case 2 of a slow donation, since its
duration is proportional to the tail length, which may be rather large. In this
case, if Pi does not conclude the donation in Δd steps, it saves its state (requiring
constant space) at the end of the donation phase and resumes the computation
in the donation phase of the subsequent epoch, in which it maintains the pairing
with Pj and refuses any novel pairing. If ti changes in the subsequent traversal
phase, the state is updated accordingly: namely, if ti is set to its father, the tail
length is updated and, if needed, mi is moved to its father. Also, if the tail length
becomes at most one, the slow donation switches from Case 2 to Case 1.

It is easy to check that the above algorithms touches all the nodes in the tree
T , therefore solving the backtrack search problem.

2.2 Deterministic Algorithm

In the deterministic algorithm each pairing phase is performed through a prefix-
like computation that finds a maximal matching between idle processors and
busy processors; such computation requires Θ (log p) parallel time. For this
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algorithm we set Δp, Δd = Θ (log p), and Δt = Δd/κ, for a suitable constant
κ defined in the proof. We call an epoch full if at the last step of its traversal
phase at least p/2 processors are busy, and we call it non-full otherwise.

Lemma 1. The total number of parallel steps in full epochs is O (n/p).

Proof. Since each node is touched at most 3 times in a traversal phase (after
descending from the parent, after exploring the left subtree, and after exploring
the right subtree), the total number of times nodes are touched is O (n). The
lemma follows by observing that in a full epoch Θ (p) processors touch Θ (log p)
nodes each, and that the epoch runs in O (log p) parallel steps. ��

Consider an arbitrary leaf q of T . Now, we bound the number of parallel steps
before q is touched. Observe that after all leaves have been touched, the algorithm
terminates in O (h+ log p) additional parallel steps, when all busy processors
have gone back to the roots of their assigned subtrees. In each epoch, we define
the special processor of q as the processor exploring the subtree containing q
with the deepest root; note that there is a unique special processor in any epoch.
When the special processor S performs a donation to a processor Pj , then for
the subsequent epoch either S remains the special processor or Pj becomes the
special processor.

We refer to non-full epochs as donating or preparing depending on the status
of the special processor of q. Namely, a non-full epoch is donating if the special
processor S completes a donation in the epoch, while it is preparing if S is
involved in Case 2 of a slow donation and, at the end of the epoch, it has not
finished to execute all operations prescribed by this type of donation. Note that,
before q is touched, any non-full epoch is always either donating or preparing.

Lemma 2. The total number of parallel steps in donating epochs before leaf q
is touched is O (h log p).

Proof. We claim that the level of the root of the subtree explored by special
processor S increases by at least one after at most two donating epochs. If a
quick donation, or Case 1 of slow donation is performed by S, then the claim
is verified. Suppose S is involved in Case 2 of a slow donation. Let S = Pi
and let Pj be the processor paired to Pi. If after the donation Pi remains the
special processor and the root ri of its subtree is unchanged, then during the slow
donation qi has been set and hence the next donation of the special processor
is a quick donation. In all other cases, the level root of the special processor is
increased after the donation. Thus, the claim is proved. Since the height of the
tree to be explored is h, there are O (h) donating epochs and the total number
of parallel steps in donating epochs is O (h log p). ��
We now bound the total number of parallel steps in preparing epochs.

Lemma 3. The total number of parallel steps in preparing epochs before leaf q
is touched is O (n/p+ h log p).

Proof. Consider the time interval from the beginning of the algorithm until leaf
q is explored. Clearly, at any time within this interval a special processor is
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defined. We partition this interval into eras delimited by subsequent donation
phases in which tail creations are performed by the special processor. (Recall
that a processor Pi creates a tail in the donation phase of an epoch whenever
qi is undefined, ti = ri and vi �= ri: then the tail is created by setting ti = vi.)
More precisely, for i ≥ 1, the i-th era begins at the donation phase of the i-th tail
creation, and ends right before the donation phase of the (i+ 1)-st tail creation
(or the end of the interval if there is no such tail creation). Observe that the
beginning of the interval does not coincide with the beginning of the first era,
however no preparing epochs occur before the first tail creation. Note that an
era may involve more than one donation from the special processor, and that all
preparing epochs in the same era work on segments of the tail whose creation
defines the beginning of the era. We denote with Φ the number of eras and with
φi ≥ 1 the number of slow donations in the i-th era, for each 1 ≤ i ≤ Φ .

Let T j
i be the number of distinct nodes that the special processor touches

by walking up a subtree to prepare the j-th slow donation of the i-th era, with
1 ≤ i ≤ Φ and 1 ≤ j ≤ φi (nodes can be touched in both donating and preparing
epochs). Since a slow donation splits the tail in half, we have that T j+1

i ≤ T j
i /2

for all 1 ≤ j ≤ φi. Since the number of steps in preparing epochs for one slow
donation is at most a constant factor the tail length, the total time spent in
preparing epochs is

∑Φ
i=1

∑φi

j=1 cT
j
i ≤ 2c

∑Φ
i=1 T

1
i , where c ≥ 1 is a suitable

constant. Clearly, we have T 1
1 ≤ h.

Consider an arbitrary era i ≥ 2. A node u in the tail of the era has been touched
for the first time in a traversal phase of an era 
 < i. Note that 
 = i − 1 since if
it was 
 < i− 1, u would have been part of a tail created in an era before the i-th
one and it is easy to verify that tails of different eras are disjoint. Therefore the
number of nodes touched (walking upward in the tree) in the preparing epochs for
the first donation of era i is bounded by the node touched in the traversal phases
of era i− 1, which can be partitioned in three (disjoint) sets:

– the nodes touched for the first time in traversal phases of full epochs in era
i− 1; we denote the number of such nodes as Ei;

– the nodes touched for the first time in the traversal phases of donating epochs
in era i − 1; we denote the number of such nodes as Di;

– the nodes touched for the first time in the traversal phases of preparing
epochs in era i− 1; we denote the number of such nodes as Ci.

Thus we have
∑Φ

i=2 T
1
i ≤

∑Φ
i=2Ei +

∑Φ
i=2Di +

∑Φ
i=2 Ci. By Lemma 1 we have∑Φ

i=2Ei = O (n/p), while by Lemma 2 it follows that
∑Φ

i=2Di = O (h log p).

We now only need to bound
∑Φ

i=2 Ci. Remember that Ci is the number of
nodes touched in the preparing epochs of the i-th era that have been touched
for the first time in the traversal phases of preparing epochs of the (i − 1)-
st era. Consider the second era: in order to bound C2, we need to bound the
number of nodes that have been touched in the traversal phases of epochs in
the first era. Since cT j

1 is an upper bound to the time required for preparing
the j-th donation in the first era, and since the number of nodes visited in the
traversal phase of a preparing epoch is at most a factor 1/κ the time of the
respective donation phase, for a suitable constant κ (i.e., Δt = Δd/κ), we have
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C2 ≤
∑φi

j=1 cT
j
1/κ ≤ T 1

1 /2 ≤ h/2 by setting κ = 2c. In general, for era i > 2

we have: Ci ≤
∑φi

j=1 cT
j
i−1/κ ≤ T 1

i−1/2 ≤ (Ei−1 + Di−1 + Ci−1)/2. Then, by
unrolling the above inequality, we get

Ci ≤
1

2
Ei−1 +

1

4
Ei−2 + . . .+

1

2i−2
E2 +

1

2
Di−1 +

1

4
Di−2 + . . .+

1

2i−2
D2 +

1

2i−1
h.

Therefore, by summing up among all eras, we have

Φ∑
i=1

Ci ≤
Φ∑
i=1

⎡⎣ h

2i
+

∞∑
j=1

Ei

2j
+

∞∑
j=1

Di

2j

⎤⎦ ≤ h+

Φ∑
i=1

(Ei + Di) = O

(
n

p
+ h log p

)
.

As already noticed, the number of steps in preparing epochs is proportional to
the number of nodes touched in such epochs, and this establishes the result. ��

By combining the above three lemmas, we obtain the following theorem.

Theorem 1. The deterministic algorithm for backtrack search completes in
O (n/p+ h log p) parallel steps and constant space per processor.

2.3 Randomized Algorithm

In the randomized algorithm, the durations of the traversal and of the pairing
phase are set to a constant (i.e., Δd, Δp = O (1)), and the duration of a donation
phase is set to Δt = Δd/κ, for a suitable constant κ. While the traversal phase
and the donation phase are as described in Sec. 2.1 and are the same as in the
deterministic algorithm, the pairing phase is implemented differently as follows.
In a first step, each idle processor sends a pairing request to a random processor;
in a second step, a busy processor Pi that has received a pairing request from
(idle) processor Pj , sends a message to Pj to establish the pairing. Note that the
communication model described in Sec. 1 guarantees that each busy processor
receives at most one pairing request in the first step. The analysis of the ran-
domized algorithm combines elements of the analysis of the above deterministic
algorithm and the one for the randomized backtrack search algorithm in [2].

Theorem 2. The randomized algorithm completes in O (n/p+ h) parallel steps
with probability at least 1−ne−n/(4p), and requires constant space per processor.
In particular, if n/ lnn ≥ 4(1 + c)p for a constant c > 0, then the probability is
at least 1 − n−c.

3 Space-Efficient Branch-and-Bound

In this section we present a Las Vegas algorithm for the branch-and-bound prob-
lem, which requires to explore a heap-ordered (binary) tree T starting from the
root to find the minimum-cost leaf. For simplicity, we assume that all node costs
are distinct. The algorithm implements, in a parallel setting, a simplified ver-
sion of the sequential space-efficient strategy proposed in [1] which is based on
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the solution of a suitable selection problem. Specifically, the strategy reduces
the branch-and-bound problem to the problem of finding the node with the n-th
smallest cost, for exponentially increasing values of n. We first give the algorithm
for this latter selection problem, using the deterministic backtrack algorithm of
the previous section as a subroutine; then we describe the Las-Vegas branch-
and-bound algorithm.

Selection. Let T be an infinite binary tree whose nodes are associated with
distinct costs satisfying the min-heap order property, and let c(u) denote the
cost associated with a node u. Consider the following selection problem: given
an integer n and the root r of T , find the node un with the n-th smallest cost
c(un). We denote by Tc the subtree of T containing all nodes of cost less than or
equal to a value c. Clearly, Tc(un) contains exactly n nodes, and we let h denote
its height. We say that a node is good if its cost is not larger than c(un).

Suppose we want to determine whether a node u is good. We explore Tc(u)
using the deterministic backtrack algorithm and counting, at the end of each
epoch, how many nodes have been touched for the first time. The visit finishes
as soon as the subtree Tc(u) is completely visited or the count becomes larger
than n. Node u is flagged good only in the former case. We have:

Lemma 4. Determining whether a node u is good can be accomplished in time
O (n/p+ h log p) using constant space per processor.

Consider a subtree T ′ of T with n nodes and height h, and suppose that some
nodes of T ′ are marked as distinguished. Our selection algorithm makes use of
a subroutine to efficiently pick a node uniformly at random among the distin-
guished ones of T ′. To this purpose, we use reservoir sampling [14], which allows
to sample an element uniformly at random from a data stream of unknown size
in constant space. Specifically, T ′ is explored using backtrack search. During the
exploration, each processor counts the number of distinguished nodes it touches
for the first time, and picks one of them uniformly at random through reservoir
sampling. The final random node is obtained from the p selected ones in log p
rounds, by discarding half of the nodes at each round, as follows. For 0 ≤ k < p,
let q0k be the number of nodes counted by processor Pk in the backtrack search.
In the i-th round, processor P2ij , with 0 ≤ i < log p and 0 ≤ j < p/2i, re-
places its selected node with the node selected by P2i(j+1)−1 with probability

qi2i(j+1)/(qi2ij + qi2i(j+1)), and sets qi+1
2ij to qi2ij + qi2i(j+1). After the last round,

the distinguished node held by P0 is returned. We have:

Lemma 5. Selecting a node uniformly at random from a set of distinguished
nodes in a subtree T ′ of T with n nodes and height h can be accomplished in
time O (n/p+ h log p), with high probability, using constant space per processor.

We are now ready to describe the parallel selection algorithm, which works in
epochs. In the i-th epoch, the algorithm starts with a lower bound Li (initially
L1 = −∞) on the n-th smallest cost c(un) and ends with a new lower bound
Li+1 > Li computed by exploring the set Fi consisting of the children in T of
the leaves in TLi . More in details, Li+1 is set to the largest cost of a good node
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in Fi (note that there exists at least one good node otherwise TLi would contain
n nodes). The algorithm ends when there are exactly n nodes in TLi , and the
one we seek, namely un, is the node with the largest cost among these. The
largest good node in Fi is computed by a binary search using random splitters
as suggested in [1]. The algorithm iteratively updates two values X i

L and X i
U ,

which represent lower and upper bounds on the largest cost of a good node in
Fi, until X i

L = X i
U . Initially, we set X i

L = Li and X i
U = +∞. The two values are

updated as follows: by using the strategy analyzed in Lemma 5, the algorithm
selects a node u, called random splitter, uniformly at random among those in Fi
with cost in the range [X i

L, X
i
U ] (which are the distinguished nodes). Then, by

using the strategy analyzed in Lemma 4, the algorithm verifies if u is good: if
this is the case, then X i

L is set to c(u), otherwise X i
U is set to c(u).

Theorem 3. The n-th smallest element in a heap-ordered binary tree T can
be selected in time O((n/p + h log p)h logn), with high probability, and constant
space per processor.

We note that by using the randomized backtrack search algorithm, the complex-
ity of the selection algorithm can be slightly improved. However, this complicates
the analysis and we postpone such an improvement to the full version.

Branch-and-Bound. The algorithm we propose for this problem consists of
a number of iterations. In the i-th iteration, with i ≥ 1, the above selection
algorithm is employed to determine the node with the 2i-th smallest cost in the
tree. Let ci be the cost of such a node. Then, backtrack search is performed on
Tci to assess whether its nodes include a leaf of the original tree and, if so, return
the one with minimum cost. If no leaf of the original tree belongs to Tci then
the algorithm proceeds to the next iteration. Clearly, the algorithm terminates
after O (logn) iterations. The following corollary is easily established.

Corollary 1. The branch-and-bound algorithm requires O((n/p + h log p logn)
h logn) parallel steps, with high probability, and constant space per processor.

4 Conclusions

We presented the first time-efficient combinatorial parallel search strategies which
work in constant space per processor. For backtrack search, the time of our deter-
ministic algorithm comes within a factor O (log p) from optimal, while our ran-
domized algorithm is time-optimal. Building on backtrack search, we provided a
randomized algorithm for the more difficult branch-and-bound problem, which
requires constant space per processor and whose time is an O (h polylog(n))
factor away from optimal.

While our results for backtrack search show that the nonconstant space per
processor required by previous algorithms is not necessary to achieve optimal
running time, our result for branch-and-bound still leaves a gap open, and more
work is needed to ascertain whether better space-time tradeoffs can be estab-
lished. However, the reduction in space obtained by our branch-and-bound strat-
egy could be crucial for enabling the solution of large instances, where n is huge
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but Ω (n/p) space per processor cannot be tolerated. The study of space-time
tradeoffs is crucial for novel computational models such as MapReduce, suitable
for cluster and cloud computing [15]. However, algorithms for combinatorial
search strategies on such new models deserve further investigations.

As in [1], our algorithms assume that the father of a tree node can be ac-
cessed in constant time, but this feature may be hard to implement in certain
application contexts, especially for branch-and-bound. However, our algorithm
can be adapted so to avoid the use of this feature by increasing the space re-
quirements of each processor to Θ (h). We remark that even with this additional
overhead, the space required by our branch-and-bound algorithm is still con-
siderably smaller, for most parameter values, than that of the state-of-the-art
algorithm of [2], where Θ (n/p) space per processor may be needed.
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Abstract. Separation is a classical problem asking whether, given two
sets belonging to some class, it is possible to separate them by a set from
another class. We discuss the separation problem for regular languages.
We give a Ptime algorithm to check whether two given regular languages
are separable by a piecewise testable language, that is, whether a BΣ1(<)
sentence can witness that the languages are disjoint. The proof refines an
algebraic argument from Almeida and the third author. When separation
is possible, we also express a separator by saturating one of the original
languages by a suitable congruence. Following the same line, we show that
one can as well decide whether two regular languages can be separated
by an unambiguous language, albeit with a higher complexity.

1 Introduction

Separation is a classical notion in mathematics and computer science. In general,
one says that two structures L1, L2 from a class C are separable by a structure
L if L1 ⊆ L and L2 ∩ L = ∅. In this case, L is called a separator. In separation
problems, the separator L is required to belong to a given class Sep. The problem
asks whether two disjoint elements L1, L2 of C can always be separated by an
element of the class Sep. In the case that disjoint elements of C cannot always
be separated by an element of Sep, several natural questions arise:

(1) given elements L1, L2 in C, can we decide whether a separator exists in Sep?
(2) if so, what is the complexity of this decision problem?
(3) can we, in addition, compute a separator, and what is the complexity?

In this context, it is known for example that separation of two context-free
languages by a regular one is undecidable [9].

Separating Regular Languages. This paper looks at separation problems for
the class C of regular languages, and for classes Sep closed under complement.
Under this last condition, a separation algorithm for Sep entails an algorithm
for deciding membership in Sep, i.e., membership reduces to separability. Indeed,
membership in Sep can be checked by testing whether the input language is Sep-
separable from its complement.
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Conversely, while finding a decidable characterization for Sep already requires
a deep understanding of the subclass, the search for separation algorithms is in-
trinsically more difficult. Indeed, powerful tools are available to decide member-
ship in Sep: one normally makes use of a recognizing device of the input language,
viz. its syntactic monoid. A famous result along these lines is Schützenberger’s
Theorem [14], which states that a language is definable in first-order logic if and
only if its syntactic monoid is aperiodic, a property one can easily decide.

Now for a separation algorithm, the question is whether the input languages
are sufficiently different, from the point of view of the subclass Sep, to allow this
to be witnessed by an element of Sep. Note that we cannot use standard methods
on the recognizing devices, as was the case for the membership problem. We now
have to decide whether there exists a recognition device of the given type that
separates the input: we do not have it in hand, nor its syntactic monoid. An
even harder question then is to actually construct the so-called separator in Sep.

Contributions. In this paper, we study this problem for two subclasses of the
regular languages: piecewise testable languages and unambiguous languages.

Piecewise testable languages are languages that can be described by the pres-
ence or absence of scattered subwords up to a certain size within the words.
Equivalently, these are the languages definable using BΣ1(<) formulas, i.e., first-
order logic formulas that are boolean combinations of Σ1(<) formulas. A Σ1(<
) formula is a first-order formula with a quantifier prefix ∃∗, followed by a
quantifier-free formula. A well-known result about piecewise testable languages is
Simon’s Theorem [16], which states that a regular language is piecewise testable
if and only if its syntactic monoid is J-trivial. This property yields a decision
procedure to check whether a language is piecewise testable, refined by Stern
into a Ptime algorithm [18], of which the complexity has been improved by
Trahtman [21].

The second class that we consider is the class of unambiguous languages, i.e.,
languages defined by unambiguous products. This class has been given many
equivalent characterizations [19]. For example, these are the FO2(<)-definable
languages, that is, languages that can be defined in first-order logic using only
two variables. Equivalently, this is the class Δ2(<) of languages that are definable
by a first-order formula with a quantifier prefix ∃∗∀∗ and simultaneously by a
first-order formula with a quantifier prefix ∀∗∃∗. Note that consequently, all
piecewise testable languages are FO2(<)-definable. It has been shown in [10]
for Δ2(<), and in [20] for FO2(<) that these are exactly the languages whose
syntactic monoid belongs to the decidable class DA.

There is a common difficulty in the separation problems for these two classes.
A priori, it is not known up to which level one should proceed in refining the
candidate separators to be able to answer the question of separability. For piece-
wise testable languages, this refinement basically means increasing the size of
the considered subwords. For unambiguous languages, it means increasing the
size of the unambiguous products. For both of these classes, we are able to com-
pute, from the two input languages, a number that suffices for this purpose. This
entails decidability of the separability problem for both classes.
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In both cases, we obtain a better complexity bound to answer the decision
problem starting from NFAs: we show that two languages are separable if and
only if the corresponding automata contain certain forbidden patterns of the
same type. We prove that for piecewise testable languages this property can be
decided in polynomial time wrt. the size of the automata and of the alphabet.
For unambiguous languages this can be done in exponential space.

Related Work. The classes of piecewise testable and unambiguous languages
are varieties of regular languages. For such varieties, there is a generic connection
found by Almeida [1] between profinite semigroup theory and the separation
problem: Almeida has shown that two regular languages over A are separable by
a language of a variety A∗V if and only if the topological closures of these two
languages inside a profinite semigroup, depending only on A∗V, intersect. Note
that this theory does not give any information about how to actually construct
the separator, in case two languages are separable. To turn Almeida’s result into
an algorithm deciding separability, we should compute representations of these
topological closures, and test for emptiness of intersections of such closures.

So far, these problems have no generic answer and have been studied in an
algebraic context for a small number of specific varieties. Deciding whether the
closures of two regular languages intersect is equivalent to computing the so-
called 2-pointlike sets of a finite semigroup wrt. the considered variety, see [1].
This question has been answered positively for the varieties of finite group lan-
guages [4,12], piecewise testable languages [3,2], star-free languages [8,7], and a
few other varieties, but it was left open for unambiguous languages.

A general issue is that the topological closures may not be describable by a fi-
nite device. However, for piecewise testable languages, the approach of [3] builds
an automaton over an extended alphabet, of exponential size wrt. the original al-
phabet, recognizing the closure of a regular language. The algorithm is polynomial
wrt. the size of the original automaton (the construction was presented for deter-
ministic automata but also works for nondeterministic ones). These automata ad-
mit the usual construction for intersection and can be checked for emptiness in
Nlogspace. This yields an algorithm which, from two NFAs, decides separabil-
ity by a piecewise testable language in time polynomial in the number of states of
the NFAs, and exponential in the size of the original alphabet.

Our proof for separability by piecewise testable languages follows the same pat-
tern as the method described above. A significant improvement is that we show
that non-separability is witnessed by paths of the same shape in both automata,
which yields an algorithm providing better complexity: it runs in polynomial time
in both the size of the automata and in the size of the alphabet. Also, we do not
make use of the theory of profinite semigroups: we work only with elementary con-
cepts. We have described this algorithm in [13]. Furthermore, we show how to com-
pute from the input languages an index that suffices to separate them. We use the
same technique for unambiguous languages. Recently, Czerwinski et. al. [6] also
provided a Ptime algorithm for deciding separability by piecewise testable lan-
guages, but do not provide the computation of such an index.

Due to space constraints, some proofs only appear in the full version of this paper.
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2 Preliminaries

We fix a finite alphabet A = {a1, . . . , am}. We denote by A∗ the free monoid
over A. The empty word is denoted by ε. For a word u ∈ A∗, the smallest B ⊆ A
such that u ∈ B∗ is called the alphabet of u and is denoted by alph(u).

Separability. Given languages L,L1, L2, we say that L separates L1 from L2 if

L1 ⊆ L and L2 ∩ L = ∅.

Given a class Sep of languages, we say that the pair (L1, L2) is Sep-separable if
some language L ∈ Sep separates L1 from L2. Since all classes we consider are
closed under complement, (L1, L2) is Sep-separable if and only if (L2, L1) is, in
which case we simply say that L1 and L2 are Sep-separable.

We are interested in two classes Sep of separators: the class of piecewise
testable languages, and the class of unambiguous languages.

Piecewise Testable Languages. We say that a word u is a piece of v, if

u = b1 · · · bk, where b1, . . . , bk ∈ A, and v ∈ A∗b1A
∗ · · ·A∗bkA

∗.

For instance, ab is a piece of bbaccba. The size of a piece is its number of letters. A
language L ⊆ A∗ is piecewise testable if there exists κ ∈ N such that membership
of w in L only depends on the pieces of size up to κ occurring in w. We write
w ∼κ w

′ when w and w′ have the same pieces of size up to κ. Clearly, ∼κ is a
congruence of finite index. Therefore, a language is piecewise testable if and only
if it is a union of ∼κ-classes for some κ ∈ N. In this case, the language is said to
be of index κ. It is easy to see that a language is piecewise testable if and only
if it is a finite boolean combination of languages of the form A∗b1A

∗ · · ·A∗bkA
∗.

Piecewise testable languages are languages definable by BΣ1(<) formulas,
that is, boolean combinations of first-order formulas of the form:

∃x1 . . .∃xn ϕ(x1, . . . , xn),

where ϕ is quantifier-free. For instance, A∗b1A
∗ · · ·A∗bkA

∗ is defined by the for-
mula ∃x1 . . .∃xk

[∧
i<k(xi < xi+1) ∧

∧
i�k bi(xi)

]
, where the first-order variables

x1, . . . , xk are interpreted as positions, and where b(x) is the predicate testing
that position x carries letter b.

We denote by PT[κ] the class of all piecewise testable languages of index κ or
less, and by PT =

⋃
κ PT[κ] the class of all piecewise testable languages. Given

L ⊆ A∗ and κ ∈ N, the smallest PT[κ]-language containing L is

[L]∼κ = {w ∈ A∗ | ∃u ∈ L and u ∼κ w}.

In general however, there is no smallest PT-language containing a given language.

Unambiguous Languages. A product L = B∗
0a1B

∗
1 · · ·B∗

k−1akB
∗
k is called un-

ambiguous if every word of L admits exactly one factorization witnessing its mem-
bership in L. The number k is called the size of the product. An unambiguous
language is a finite disjoint union of unambiguous products. Observe that unam-
biguous languages are connected to piecewise testable languages. Indeed, it was
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proved in [15] that the class of unambiguous languages is closed under boolean op-
erations. Moreover, languages of the form A∗b1A

∗ · · ·A∗bkA
∗ are unambiguous,

witnessed by the product (A \ {b1})∗b1(A \ {b2})∗ · · · (A \ {bk})∗bkA
∗. Therefore,

piecewise testable languages form a subclass of the unambiguous languages.
Many equivalent characterizations for unambiguous languages have been

found [19]. From a logical point of view, unambiguous languages are exactly the
languages definable by an FO2(<) formula [20]. Here, FO2(<) denotes the two-
variable restriction of first-order logic. Another logical characterization which fur-
ther illustrates the link with piecewise testable languages (i.e., BΣ1(<)-definable
languages) is Δ2(<). A Σ2(<) formula is a first-order formula of the form:

∃x1 . . . ∃xn ∀y1 . . . ∀ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is quantifier-free. A language is Δ2(<)-definable if it can be defined both
by a Σ2(<) formula and the negation of a Σ2(<) formula. It has been proven
in [10] that a language is unambiguous if and only if it is Δ2(<)-definable.

For two wordsw,w′, we write,w ∼=κ w
′ ifw,w′ belong to the same unambiguous

products of size κ or less. We denote by UL[κ] the class of all languages that are
unions of ∼=κ-classes, and we let UL =

⋃
κUL[κ]. Since unambiguous languages

are closed under boolean operations, UL is the class of all unambiguous languages.
Given L ⊆ A∗ and κ ∈ N, the smallest UL[κ]-language containing L is

[L]∼=κ = {w ∈ A∗ | ∃u ∈ L and u ∼=κ w}.

Again, in general there is no smallest UL-language containing a given language.

Automata. A nondeterministic finite automaton (NFA) over A is denoted by a
tuple A = (Q,A, I, F, δ), where Q is the set of states, I ⊆ Q the set of initial
states, F ⊆ Q the set of final states and δ ⊆ Q ×A ×Q the transition relation.
The size of an automaton is its number of states plus its number of transitions.
We denote by L(A) the language of words accepted by A. Given a word u ∈ A∗,
a subset B of A and two states p, q of A, we denote

− by p
u−−→ q a path from state p to state q labeled u,

− by p
⊆B−−→ q a path from p to q of which all transitions are labeled over B,

− by p
=B−−→ q a path from p to q of which all transitions are labeled over

B, with the additional demand that every letter of B occurs at least once
along it.

Given a state p, we denote by scc(p,A) the strongly connected component of p
in A (that is, the set of states that are reachable from p and from which p can
be reached), and by alph scc(p,A) the set of labels of all transitions occurring
in this strongly connected component. Finally, we define the restriction of A to

a subalphabet B ⊆ A by A �B def
= (Q,B, I, F, δ ∩ (Q ×B ×Q)).

3 Separation by Piecewise Testable Languages

Since PT[κ] ⊂ PT, PT[κ]-separability implies PT-separability. Furthermore, for
a fixed κ, it is obviously decidable whether two languages L1 and L2 are PT[κ]-
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separable: there is a finite number of PT [κ] languages over A, and for each of
them, one can test whether it separates L1 and L2. The difficulty for decid-
ing whether L1 and L2 are PT-separable is to effectively compute a witness
κ = κ(L1, L2), i.e., such that L1 and L2 are PT-separable if and only if they
are PT [κ]-separable. Actually, we show that PT-separability is decidable, by
different arguments:

(1.a) We give a necessary and sufficient condition on NFAs recognizing L1 and
L2, in terms of forbidden patterns, to test whether L1 and L2 are PT-
separable.

(1.b) We give a polynomial time algorithm to check this condition.
(2) We compute κ ∈ N from L1, L2, such that PT-separability and PT [κ]-

separability are equivalent for L1 and L2. Hence, if the Ptime algorithm an-
swers that L1 and L2 are PT-separable, then [L1]∼κ is a valid PT-separator.

Let us first introduce some terminology to explain the necessary and sufficient
condition on NFAs. Let A be an NFA over A. For u0, . . . , up ∈ A∗ and nonempty
subalphabets B1, . . . , Bp ⊆ A, let u = (u0, . . . , up) and B = (B1, . . . , Bp). A
(u,B)-path in A is a successful path (leading from the initial state to a final
state of A), of the form shown in Fig. 1.

u0 ⊆ B1 ⊆ B1 u1 up−1 ⊆ Bp ⊆ Bp up

= B1 = Bp

Fig. 1. A (u,B)-path

Recall that edges denote sequences of transitions (see section Automata, p. 733).
Therefore, if A has a (u,B)-path, then L(A) contains a language of the form
u0(x1y

∗
1z1)u1 · · ·up−1(xpy

∗
pzp)up, where alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi.

Given NFAs A1 and A2, a pair (u,B) is a witness of non PT-separability for
(A1,A2) if there is a (u,B)-path in both A1 and A2. For instance in Fig. 2,
u = (ε, c, ε) and B = ({a, b}, {a}) define such a witness of non PT-separability.

A1

a

b
c a

a
b

a
b c

A2

a

Fig. 2. A witness of non PT-separability for (A1,A2): u = (ε, c, ε), B = ({a, b}, {a})

We are now ready to state our main result regarding PT-separability.

Theorem 1. Let A1 and A2 be two NFAs over A. Let L1 = L(A1) and L2 =
L(A2). Let k1, k2 be the number of states of A1 resp. A2. Define p = max(k1, k2)+

1 and κ = p|A|22|A||A|(p|A|+1). Then the following conditions are equivalent:
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(1) L1 and L2 are PT-separable.
(2) L1 and L2 are PT[κ]-separable.
(3) The language [L1]∼κ separates L1 from L2.
(4) There is no witness of non PT-separability in (A1,A2).

Condition (2) yields an algorithm to test PT-separability of regular languages.
Indeed, one can effectively compute all piecewise testable languages of index κ
(of which there are finitely many), and for each of them, one can test whether it
separates L1 and L2. Before proving Theorem 1, we show that Condition (4) can
be tested in polynomial time (and hence, PT-separability is Ptime decidable).

Proposition 2. Given two NFAs A1 and A2, one can determine whether there
exists a witness of non PT-separability in (A1,A2) in polynomial time wrt. the
sizes of A1 and A2, and the size of the alphabet.

Proof. Let us first show that the following problem is in Ptime: given states
p1, q1, r1 of A1 and p2, q2, r2 of A2, determine whether there exist a nonempty

B ⊆ A and paths pi
⊆B−−→ qi

(=B)−−−→ qi
⊆B−−→ ri in Ai for both i = 1, 2.

To do so, we compute a decreasing sequence (Ci)i of alphabets overapproxi-
mating the greatest alphabet B that can be chosen for labeling the loops around
q1 and q2. Note that if there exists such an alphabet B, it should be contained
in

C1
def
= alph scc(q1,A1) ∩ alph scc(q2,A2).

Using Tarjan’s algorithm to compute strongly connected components in linear
time, one can compute C1 in linear time as well. Then, we restrict the automata
to alphabet C1, and we repeat the process to obtain the sequence (Ci)i:

Ci+1
def
= alph scc(q1,A1 �Ci) ∩ alph scc(q2,A2 �Ci).

After a finite number n of iterations, we obtain Cn = Cn+1. Note that n �
|alph(A1) ∩ alph(A2)| � |A|. If Cn = ∅, then there exists no nonempty B for
which there is an (= B)-loop around both q1 and q2. If Cn �= ∅, then it is
the maximal nonempty alphabet B such that there are (= B)-loops around q1
in A1 and q2 in A2. It then remains to determine whether there exist paths

p1
⊆B−−→ q1

⊆B−−→ r1 and p2
⊆B−−→ q2

⊆B−−→ r2, which can be performed in linear time.
To sum up, since the number n of iterations such that Cn = Cn+1 is bounded

by |A|, and since each computation is linear wrt. the size of A1 and A2, one
can decide in Ptime wrt. to both |A| and these sizes whether such a pair of
paths occurs.

Now we build from A1 and A2 two new automata Ã1 and Ã2 as follows. The
procedure first initializes Ãi as a copy of Ai. Denote by Qi the state set of Ai. For
each 4-uple τ = (p1, r1, p2, r2) ∈ Q2

1×Q2
2 such that there exist B �= ∅, two states

q1 ∈ Q1, q2 ∈ Q2 and paths pi
⊆B−−→ qi

=B−−→ qi
⊆B−−→ ri in Ai both for i = 1 and

i = 2, we add in both Ã1 and Ã2 a new letter aτ to the alphabet, and “summary”
transitions p1

aτ−→ r1 and p2
aτ−→ r2. Since there is a polynomial number of tuples
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(p1, q1, r1, p2, q2, r2), the above shows that computing these new transitions can
be performed in Ptime. So, computing Ã1 and Ã2 can be done in Ptime.

By construction, there exists some pair (u,B) such that A1 and A2 both have
a (u,B)-path if and only if L(Ã1) ∩ L(Ã2) �= ∅. Since both Ã1 and Ã2 can be
built in Ptime, this can be decided in polynomial time as well. ��

The following is an immediate consequence of Theorem 1 and Proposition 2.

Corollary 3. Given two NFAs, one can determine in polynomial time, with
respect to the number of states and the size of the alphabet, whether the languages
recognized by these NFAs are PT-separable. ��

In the rest of the section, we sketch the proof of Theorem 1. The implications
(3)⇐⇒(2) =⇒ (1) are obvious. To show (1) =⇒ (2), we introduce some termi-
nology. Let us fix an arbitrary order a1 < · · · < am on A.

(p,B)-patterns. Let B = {b1, . . . , br} ⊆ A with b1 < · · · < br, and let p ∈ N. We
say that a word w ∈ A∗ is a (p,B)-pattern if w ∈ (B∗b1B

∗ · · ·B∗brB
∗)p. The

number p is called the power of w. For example, set B = {a, b, c} with a < b < c.
The word bbaababccacbabaca is a (2, B)-pattern but not a (3, B)-pattern.


-templates. An 
-template is a sequence T = t1, . . . , t of length 
, such
that every ti is either a letter or a nonempty subset of the alphabet A. The
main idea behind 
-templates is that they yield decompositions of words that
can be detected using pieces and provide a suitable decomposition for pumping.
Unfortunately, not all 
-templates are actually detectable. Because of this we
restrict ourselves to a special case of 
-templates. An 
-template is said to be
unambiguous if all pairs ti, ti+1 are either two letters, two incomparable sets or a
set and a letter that is not included in the set. For example, T = a, {b, c}, d, {a}
is unambiguous, while T ′ = b, {b, c}, d, {a} and T ′′ = a, {b, c}, {c}, {a} are not.

p-implementations. A word w ∈ A∗ is a p-implementation of an 
-template
T = t1, . . . , t if w = w1 · · ·w and for all i either ti = wi ∈ A or ti =
B ⊆ A, wi ∈ B∗ and wi is a (p,B)-pattern. For example, abccbbcbdaaaa =
a.(bccbbcb).d.(aaaa) is a 2-implementation of the 4-template T = a, {b, c}, d, {a},
since bccbbcb is a (2, {b, c})-pattern and aaaa is a (2, {a})-pattern.

We now prove (1) =⇒ (2) by contraposition: we show that if w1 ∈ L1, w2 ∈ L2

are such that w1 ∼κ w2, then for any h, one can build v1 ∈ L1 and v2 ∈ L2 such
that v1 ∼h v2. Therefore, non-PT[κ]-separability entails non-PT-separability.

Lemma 4. From regular languages L1, L2, we can compute p ∈ N such that
whenever L1 and L2 both contain p-implementations of the same 
-template T ,
then L1 and L2 are not PT-separable.

Proof. Let p be greater than the number of states of NFAs recognizing L1, L2.
Let w1, w2 be p-implementations of an 
-template T = t1, . . . , t. Fix h ∈ N.
Whenever ti is a set B, the corresponding factors in w1, w2 are (p,B)-patterns.
By choice of p, these factors can be pumped into (h,B)-patterns in v1 ∈ L1 and
v2 ∈ L2, respectively. It is then easy to check that v1 ∼h v2. Hence, L1 and L2

are not PT[h]-separable. Since h is arbitrary, L1, L2 are not PT-separable. ��
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It remains to prove that if two words contain the same pieces of a large enough
size κ, they are both p-implementations of a common unambiguous 
-template,
where p is the number introduced in Lemma 4. We split the proof in two parts.
We begin by proving that it is enough to look for 
-templates for a bounded 
.

Lemma 5. Let p ∈ N. Every word is the p-implementation of some unambiguous

NA-template, for NA = 22
|A||A|(p|A|+1).

Proof. We first get rid of the unambiguity condition. Any ambiguous 
-template T
can be reduced to an unambiguous 
′-template T ′ with 
′ < 
 by merging the
ambiguities. It is then straightforward to reduce any p-implementation of T into
a p-implementation of T ′. Therefore, it suffices to prove that every word is the
p-implementation of some (possibly ambiguous) NA-template.

The choice of NA comes from Erdös-Szekeres’ upper bound of Ramsey num-
bers. Indeed, a complete graph with edges labeled over c = 2|A| colors, there
exists a complete monochromatic subgraph of size m = p|A| + 1 provided the
graph has at least 2mc vertices (see [5] for a short proof that this bound suffices).

Observe that a word is always the p-implementation of the 
-template which
is just the sequence of its letters. Therefore, in order to complete our proof, it
suffices to prove that if a word is the p-implementation of some 
-template T
with 
 > NA, then it is also the p-implementation of an 
′-template with 
′ < 
.

Fix a word w, and assume that w is the p-implementation of some 
-template
T = t1, . . . , t with 
 > NA. By definition, we get a decomposition w = w1 · · ·w.
We construct a complete graph Γ with vertices {0, . . . , 
} and edges labeled by
subsets of A. For all i < j, we set alph(wi+1 · · ·wj) as the label of the edge
(i, j). Since Γ has more than 
 > NA vertices, by definition of NA there ex-
ists a complete monochromatic subgraph with p|A|+ 1 vertices {i1, . . . , ip|A|+1}.
Let B be the color of the edges of this monochromatic subgraph. Let w′ =
wi1+1 · · ·wip|A|+1

. By construction, w′ is the concatenation of p|A| � p words
with alphabet exactly B. Hence w′ is a (p,B)-pattern. It follows that w is
a p-implementation of the 
′-template t1, . . . , ti1 , B, tip|A|+2

, . . . , t with 
′ =

− p|A| + 1. Hence 
′ < 
 (except for the trivial case p = |A| = 1). ��

The next lemma proves that once 
 and p are fixed, givenw it is possible to describe
by pieces 
-templates that w p-implements, as long as they are unambiguous.

Lemma 6. Let 
, p ∈ N. From p and 
, we can compute κ such that for every pair
of words w ∼κ w

′ and every unambiguous 
-template T , w′ is a p-implementation
of T whenever w is a (p+ 1)-implementation of T . ��

We finish the proof of the implication (1) =⇒ (2) by assembling the results.
Let p be greater than the number of states of NFAs recognizing L1 and L2, as
introduced in the proof of Lemma 4. Let NA be as introduced in Lemma 5 for
p + 1, and let κ = |A|(p + 1)NA be as introduced in Lemma 6. Fix h > κ and
assume that we have w1 ∈ L1 and w2 ∈ L2 such that w1 ∼κ w2. By Lemma 5, w1

is the (p + 1)-implementation of some unambiguous NA-template T . Moreover,
it follows from Lemma 6 that w2 is a p-implementation of T . By Lemma 4, we
finally obtain that L1 and L2 are not PT-separable.
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The implication (1) =⇒ (4) of Theorem 1 is easy to show by contraposition,
see [13, Lemma 2]. The remaining implication (4) =⇒ (1) can be shown using
Lemma 6. For a direct proof, see [13, Lemma 3], where the key for getting a
forbidden pattern out of two non-separable languages is to extract a suitable
p-implementation using Simon’s Factorization Forest Theorem [17].

4 Separation by Unambiguous Languages

This section is devoted to proving that UL-separability is a decidable property.
Again, the result is twofold. Using an argument that is analogous to property (2)
of Theorem 1 in Section 3, we prove that given L1, L2, it is possible to compute
a number κ such that L1, L2 are UL-separable if and only if they are UL[κ]-
separable. It is then possible to test separability by using a brute-force approach
that tests all languages in UL[κ].

The second part of our theorem is an algorithm providing only a ‘yes/no’
answer, but running in exponential space. This algorithm is more complicated
than the one of Section 3. In this case, we cannot search for a witness of non-
separability directly on the NFAs of the languages. A precomputation is needed.
We present the algorithm before stating our main theorem.

UL-intersection. Let A1 = (Q1, A, I1, F1, δ1), A2 = (Q2, A, I2, F2, δ2) be NFAs.
The purpose of our precomputation is to associate to all 4-uples (q1, r1, q2, r2) ∈
Q2

1 ×Q2
2 a set α(q1, r1, q2, r2) of subalphabets. Intuitively, B ∈ α(q1, r1, q2, r2) if,

for all κ ∈ N, there are two words w1, w2 such that

(1) B = alph(w1) = alph(w2),

(2) q1
w1−−→ r1, and q2

w2−−→ r2,
(3) w1

∼=κ w2.

The precomputation of α : Q2
1×Q2

2 → 22
A

is performed via a fixpoint algorithm.

For all (q1, r1, q2, r2) ∈ Q2
1 × Q2

2, we initially set α(q1, r1, q2, r2) = {{a} | q1 a−→
r1 and q2

a−→ r2}. The sets are then saturated with the following two operations:

(1) When α(p1, q1, p2, q2) = B and α(q1, r1, q2, r2) = C, then add B ∪ C to
α(p1, r1, p2, r2).

(2) When B ∈ α(q1, q1, q2, q2)∩α(r1, r1, r2, r2) and there exist words w1, w2 ∈ B∗

such that q1
w1−−→ r1 and q2

w2−−→ r2 then add B to α(q1, r1, q2, r2).

Since every setα(q1, r1, q2, r2) only grows with respect to inclusion, and is bounded
from above by 2A, the computation terminates. It is straightforward to see that
α can be computed in EXPspace using a fixpoint algorithm. Finally, we say that
L1, L2 have emptyUL-intersection if α(q1, r1, q2, r2) = ∅ for all q1, q2 ∈ I1, I2 and
r1, r2 ∈ F1, F2. We now state the main theorem of this section.

Theorem 7. Let A1 and A2 be two NFAs over alphabet A. Let L1 = L(A1)
and L2 = L(A2). Let k1, k2 be the number of states of A1, resp. A2. Define
κ = (2k1k2 + 1)(|A| + 1)2. Then the following conditions are equivalent:
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(1) L1 and L2 are UL-separable.
(2) L1 and L2 are UL[κ]-separable.
(3) The language [L1]∼=κ separates L1 from L2.
(4) L1, L2 have empty UL-intersection.

As in the previous section, Conditions (2) and (4) yield algorithms for testing
whether two languages are separable. Moreover, it can be shown that empty
UL-intersection can be tested in Pspace from α. Therefore, we get the following
corollary.

Corollary 8. It is decidable whether two regular languages can be separated by
an unambiguous language. Moreover, this can be done in EXPspace in the size
of the NFAs recognizing the languages.

Observe that by definition of UL[κ], the bound κ is defined in terms of unam-
biguous products. A rephrasing of the theorem would be: there exists a separator
iff there exists one defined by a boolean combination of unambiguous products
of size κ. It turns out that the same κ also works for FO2(<), i.e., there exists
a separator iff there exists one defined by an FO2(<)-formula of quantifier rank
κ. This can be proved by minor adjustements to the proof of Theorem 7.

The proof of Theorem 7 is inspired from techniques used in [11] and relies
heavily on the notion of (p,B)-patterns. It works by induction on the size of the
alphabet. There are two non-trivial implications: (1) =⇒ (4) and (4) =⇒ (3).
We now provide an insight into the most difficult one, i.e., (4) =⇒ (3). The
following proposition is used to prove this.

Proposition 9. Let B ⊆ A and κ = (2k1k2+1)(|B|+1)2. For all pairs of words
w1

∼=κ w2 such that B = alph(w1) = alph(w2) and all pairs of states (q1, r1) ∈ Q2
1

and (q2, r2) ∈ Q2
2 such that q1

w1−−→ r1 and q2
w2−−→ r2, we have B ∈ α(q1, r1, q2, r2).

Observe that a consequence of Proposition 9 is that as soon as there exists
w1 ∈ L1,w2 ∈ L2 such that w1

∼=κ w2 (i.e., [L1]∼=κ is not a separator), there exists
a witness of nonempty UL-intersection. This is the contrapositive of (4) =⇒ (3).

5 Conclusion

We proved separation results for both piecewise testable and unambiguous lan-
guages. Both results provide a means to decide separability. In the PT case, we
even prove that this can be done in Ptime. Moreover, in both cases we give an
insight on the actual separator by providing a bound on its size, should it exist.

There remain several interesting questions in this field. First, one could con-
sider other subclasses of regular languages, the most interesting one being full
first-order logic. Separability by first-order logic has already been proven to be
decidable using semigroup theory [7]. However, this approach is difficult to un-
derstand, and it yields a costly algorithm that only provides a yes/no answer,
without insight about a possible separator. Another question is to get tight com-
plexity bounds. For unambiguous languages for instance, it is likely that our
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EXPspace upper bound can be improved, and even for piecewise testable lan-
guages, we do not know any tight bounds.

A final observation is that right now, we have no general approach and are
bound to use ad-hoc techniques for each subclass. An interesting direction would
be to invent a general framework that is suitable for this problem in the same
way that monoids are a suitable framework for decidable characterizations.

References

1. Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen
54(suppl.), 531–552 (1999); Automata and formal languages, VIII (Salgótarján,
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The Blavatnik School of Computer Science, Tel Aviv University

Abstract. Kamp’s theorem states that the temporal logic with modal-
ities Until and Since has the same expressive power as the First-Order
Monadic Logic of Order (FOMLO) over Real and Natural time flows.
Kamp notes that there are expressions which deserve to be regarded
as tense operators but are not representable within FOMLO. The words
‘mostly’ and ‘usually’ are examples of such expressions. We propose a for-
malization of ‘usually’ as a generalized Mostowski quantifier and prove
an analog of Kamp’s theorem.

1 Introduction

Temporal Logic (TL), introduced to Computer Science by Pnueli in [5], is a
convenient framework for reasoning about “reactive” systems. This has made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research in the past 40 years. In TL we describe basic system properties
by atomic propositions that hold at some points in time, but not at others.
More complex properties are expressed by formulas built from the atoms using
Boolean connectives and Modalities (temporal connectives): A k-place modality
M transforms statements ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a
statement M(ϕ1, . . . , ϕk) on the ‘present’ point t0. The rule to determine the
truth of a statement M(ϕ1, . . . , ϕk) at t0 is called a truth table of M . The choice
of particular modalities with their truth tables yields different temporal logics.
A temporal logic with modalities M1, . . . ,Mk is denoted by TL(M1, . . . ,Mk).

The simplest example is the one place modality ♦P saying: “P holds some time
in the future.” Its truth table is formalized by ϕ♦(x0, X) := ∃x(x > x0 ∧ P (x)).
This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a funda-
mental formalism in Mathematical Logic where formulas are built using atomic
propositions P (x), atomic relations between elements x1 = x2, x1 < x2, Boolean
connectives and first-order quantifiers ∃x and ∀x. Two more natural modalities
are the modalities Until (“Until”) and Since (“Since”). XUntilY means that X
will hold from now until a time in the future when Y will hold. XSinceY means
that Y was true at some point of time in the past and since that point X was
true until (not necessarily including) now.

The main canonical , linear time intended models are the non-negative integers
ω := 〈N, <〉 for discrete time and the reals 〈R, <〉 for continuous time.
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c© Springer-Verlag Berlin Heidelberg 2013



742 A. Rabinovich

Kamp’s theorem [3] states that the temporal logic with modalities Until and
Since and FOMLO have the same expressive power over the above two linear
time canonical1 models. After explaining his main theorem, Kamp writes:

This still leaves open the question whether all English tense operators are
representable in a language like TL. . . . One easily verifies that indeed a
very large number of expressions which are naturally classified as tense
operators because of their function have first order definable tenses as
their meanings. Yet there are expressions which deserve to be regarded
as tense operators but which are nonetheless not representable within
TL. The words ‘mostly’ and ‘usually’ are examples of such expressions.
The impossibility of representing these particular expressions stems from
the fact that their meanings involve a measure on time in an essential
manner.

In this paper we suggest a formalization of “usually” over the standard discrete
time ω := (N, <) and prove a generalization of Kamp’s theorem.

Here are three natural possibilities to formalize “P is unusual.”

1. If P is finite.

2. If lim supn→∞
the cardinality of P∩[0,n]

n = 0.

3. If
∑ 1

pi+1 finite, where p0 < p1 < · · · < pi < · · · is the enumeration of the
elements of P .

P ⊆ N is usual if its complement is unusual. Note that “P is finite” is definable
in FOMLO (over ω); however, formalizations (2)-(3) of “P is unusual” are not
first-order definable.

A. Mostowski [4] initiated a study of so-called generalized quantifiers. Gener-
alized quantifiers are now standard equipment in the toolboxes of both logicians
and linguists.

The first-order logic with a (unary) generalized quantifier Q is obtained by
extending the syntax of first-order logic by the rule if ϕ is a formula then (Qx)ϕ
is a formula. A (unary) generalized quantifier Q in a structure M is defined as
a set Q of subsets of the domain of M. The corresponding semantical clause for
(Qx)ϕ is M |= (Qx)ϕ(x, b) if {a | M |= ϕ(a, b)} is in Q.

For a family of subsets Q of N, we define a temporal modality 〈Q〉 as follows:
〈Q〉ϕ holds iff the set of points where ϕ holds is in Q.

Each of the above formalizations of unusual has the following properties:

1. If P1 ∈ Q and P2 ⊆ P1 then P2 ∈ Q, i.e., if P1 is unusual and P2 ⊆ P1, then
so is P2.

2. If P1, P2 ∈ Q then P1 ∪ P2 ∈ Q, i.e., if both Pi are unusual then their union
is also unusual.

3. If P1 ∈ Q and P2 is finite then P1 ∪ P2 ∈ Q, i.e., if a finite set is added to
an unusual event then the new set is still unusual.

1 The technical notion which unifies 〈N, <〉 and 〈R, <〉 is Dedekind completeness.
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Our main theorem states that for every family Q of subsets of N with properties
(1)-(3) the temporal logic with modalities Until and Since and 〈Q〉 is expressively
equivalent over ω := (N, <) to the extension of FOMLO by the generalized
quantifier Q. Moreover, our meaning preserving translations between these logics
are computable and independent of Q.

The rest of the paper is organized as follows. In Section 2 we recall the def-
initions of the monadic logic, the temporal logics and state Kamp’s theorem.
In Section 3 we provide a formalization of unusual as a Mostowski generalized
quantifier and state our main result. In Section 4 we prove the main theorem.
This proof is based on our simple proof of Kamp’s theorem [6]. The proof of one
proposition is postponed to Section 5. Section 6 states further results and open
questions.

2 Kamp’s Theorem

In this section we recall the definitions of the first-order monadic logic of order,
the temporal logics and state Kamp’s theorem.

Fix a set Σ of atoms. We use P,R, S . . . to denote members of Σ. The syntax
and semantics of both logics are defined below with respect to such Σ.

First-Order Monadic Logic of Order. In the context of FOMLO, the atoms
of Σ are referred to (and used) as unary predicate symbols. Formulas are built
using these symbols, plus two binary relation symbols: < and =, and a set of
first-order variables (denoted: x, y, z, . . . ). Formulas are defined by the grammar:

ϕ ::= x < y | x = y | P (x) | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

where P ∈ Σ. We will also use the standard abbreviated notation for bounded
quantifiers, e.g., (∃x)>z(. . . ) denotes ∃x((x > z) ∧ (. . . )), and (∀x)<z(. . . )
denotes ∀x((x < z) → (. . . )), and ((∀x)<z2>z1(. . . ) denotes ∀x((z1 < x < z2) →
(. . . )), etc.

Semantics. Formulas are interpreted over labeled linear orders which are called
chains. A Σ-chain is a triplet M = (T , <, I) where T is a set - the domain
of the chain, < is a linear order relation on T , and I : Σ → P(T ) is the
interpretation of Σ (where P is the powerset notation). We use the standard
notation M, t1, t2, . . . , tn |= ϕ(x1, x2, . . . , xn) to indicate that the formula ϕ with
free variables among x1, . . . , xn is satisfiable in M when xi are interpreted as
elements ti of M. For atomic P (x) this is defined by: M, t |= P (x) iff t ∈ I(P );
the semantics of <,=,¬,∧,∨, ∃ and ∀ is defined in a standard way.

Temporal Logics. In the context of temporal logics the atoms of Σ are used as
atomic propositions (also called propositional atoms). Formulas are built using
these atoms, and a set (finite or infinite) B of modality names, where a non-
negative integer arity is associated with each M ∈ B. The syntax of TL with the
basis B over the signature Σ, denoted by TL(B), is defined by the grammar:

F ::= P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn)
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where P ∈ Σ and M ∈ B is an n-place modality. As usual, True denotes P ∨¬P
and False denotes P ∧ ¬P .

Semantics. The semantics defines when a temporal formula holds at a time-
point (or moment or element of the domain) in a chain.

The semantics of each n-place modality M ∈ B is defined by a ‘rule’ specifying
how the set of moments where M(F1, . . . , Fn) holds (in a given structure) is
determined by the n sets of moments where each of the formulas Fi holds. Such
a ‘rule’ for M is formally specified (over time flow (T , <)), by an operator OM :
(P(T ))n −→ P(T ), which assigns to each n tuples of subsets of T a subset of
T .

The semantics of TL(B) formulas is then defined inductively: Given a struc-
ture M = (T , <, I) and a moment t ∈ M (read t ∈ M as t ∈ T ), define when a
formula F holds in M at t - notation: M, t |= F - as follows:
– M, t |= P iff t ∈ I(P ) for any propositional atom P .
– M, t |= F ∨G iff M, t |= F or M, t |= G; similarly (“pointwise”) for ∧, ¬.
– M, t |= M(F1, . . . , Fn) iff t ∈ OM(T1, . . . , Tn) where M ∈ B is an n-place

modality, F1, . . . , Fn are formulas and Ti := {s ∈ T : M, s |= Fi}.

Truth tables. Practically, most standard modalities studied in the literature
can be specified in FOMLO : A FOMLO formula ϕ(x, P1, . . . , Pn) (with a single
free first-order variable x and with n predicate symbols Pi) is called an n-place
first-order truth table. Such a truth table ϕ defines an n-ary modality M
whose semantics is given by an operator OM such that for any time flow (T , <),
for any T1, . . . , Tn ⊆ T and for any structure M = (T , <, I) where I(Pi) = Ti:

OM (T1, . . . , Tn) = {t ∈ T : M, t |= ϕ(x, P1, . . . , Pn)}

Example 2.1. Below are truth-table definitions for the well known “Eventu-
ally”, the (binary) strict-Until and strict-Since of [3,1].

– � (“Eventually”) is defined by: ϕ
�

(x, P ) := (∃x′)>xP (x′)

– Until is defined by : ϕ
Until

(x, P1, P2) := (∃x′)>x(P2(x′) ∧ (∀y)<x
′

>x P1(y))
– Since is defined by: ϕ

Since
(x, P1, P2) := (∃x′)<x(P2(x′) ∧ (∀y)<x>x′P1(y))

Example 2.2 (Modality 〈Q〉). Let Q be a family of subsets of the domain T of
a structure M. We can define a unary modality 〈Q〉 by the operator

– O(T1) :=

{
T if T1 ∈ Q
∅ otherwise.

In the next section we will formalize “usually” by special families of subsets of
N. It is clear that there are Q such that the corresponding modality 〈Q〉 has no
first-order truth table.

Kamp’s Theorem. Equivalence between temporal and monadic formulas is
naturally defined: F is equivalent to ϕ(x) over a class C of structures iff for any
M ∈ C and t ∈ M: M, t |= F ⇔ M, t |= ϕ(x). If C is the class of all chains, we
will say that F is equivalent to ϕ.
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A linear order (T,<) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. The canonical
linear time models ω := (N, <) and (R, <) are Dedekind complete, while the
order of the rationals is not Dedekind complete. A chain is Dedekind complete
if its underlying linear order is Dedekind complete.

The fundamental theorem of Kamp’s states that TL(Until, Since) is expres-
sively equivalent to FOMLO over Dedekind complete chains.

Theorem 2.3 (Kamp [3]). 1. Given any TL(Until, Since) formula A there is a
FOMLO formula ϕA(x) which is equivalent to A over all chains.

2. Given any FOMLO formula ϕ(x) with one free variable, there is a TL(Until,
Since) formula which is equivalent to ϕ over Dedekind complete chains.

3 An Unusual Quantifier and Modality

3.1 Generalized Quantifier

The syntax of the first-order logic with a unary generalized quantifier Q (nota-
tion FO[Q]) is obtained by extending the usual first-order syntax by the new
quantifier.

The formulas of FO[Q] are built by the usual formation rules and the following
new (variable-binding) formation rule:
– if x is a variable and ϕ is a formula of FO[Q], then so is (Qx)ϕ, and Qx

binds all free occurrences of x in ϕ.
The semantics of FO[Q] is provided by enriching the domain of first-order struc-
tures with a set Q of subsets of its domain and extending the usual definition of
satisfaction by a clause for (Qx)ϕ:

M, b1, . . . , bn |= (Qx)ϕ(x, y1, . . . , yn) if {a | M, a, b1, . . . , bn |= ϕ(x, y1, . . . , yn)} is in Q.

FOMLO[Q] denotes the extension of FOMLO by a generalized quantifier Q.
For a generalized quantifier Q we also introduce modality 〈Q〉, defined by

M, t |= 〈Q〉ϕ iff {a | M, a |= ϕ} ∈ Q. Note that if M, t |= 〈Q〉ϕ, then M, t′ |=
〈Q〉ϕ for every t′.

3.2 Usual and Unusual over N

Let us start with some intuitive requirements on unusual sets. If P never happens
(respectively, always holds) then P is unusual (respectively, is not unusual). If
P1 is unusual and P2 ⊆ P1, then P2 is unusual. If both P1 and P2 are unusual,
then their union is also unusual. It is also natural to require that a finite subset
of an infinite set is unusual. These lead to the following definition.

Given a set X , an unusual family on X is a set Q consisting of subsets of X
such that

1. ∅ ∈ Q and X /∈ Q.
2. If A and B are subsets of X , A is a subset of B, and B is an element of Q,

then A is also an element of Q.
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3. If A and B are elements of Q, then so is the union of A and B.
4. If A is finite then A is in Q.

In model theory, an ideal Q on a set X is a family of subsets of X which satisfies
(1)-(3). A filter is a dual notion to an ideal. Hence, a family Q of subsets of
X is a filter, if it is a non-empty proper subset of P(X) and it is closed under
superset and finite intersection. In model theory ideals (respectively, filters) are
considered as families of small (respectively, big) subsets of X .

Several collections of “small” subsets of N are presented below:
1. Q1 := {P | P is finite}.

2. Q2 := {P | lim supn→∞
the cardinality of P∩[0,n]

n = 0}.
3. Van der Waerden ideal is the family {P | P does not contain an arithmetic

progression of arbitrary length}.

Let p0 < p1 < · · · < pi < · · · be the enumeration of the elements of P .

4. Q4 := {P |
∑ 1

pi+1 is finite }.

5. P is 1-sparse if for every n there is N such that [m,m+n] contains at most
one element from P for every m > N .

6. P is 1-thin if limn→∞
pn

pn+1
= 0.

7. P is almost 1-thin if lim supn→∞
pn
pn+1

< 1.

Note that 1-sparse (respectively, 1-thin, or almost 1-thin) sets are not closed
under union. Hence, these families of sets are not ideals.

A set is sparse (respectively, thin or almost thin) if it is finite or a finite union
of 1-sparse (respectively, 1-thin, or almost 1-thin) sets. The family of sparse
(respectively, thin or almost thin) is an ideal.

The families defined in examples (1)-(4), as well as the families of sparse, thin
and almost thin sets are unusual. The family {P | the set of even elements of P
is finite} is also unusual.

A generalized quantifier Q is unusual if its corresponding family of subsets
of N is unusual. Dually, we say that a family Q of sets is usual if {N \ P | P ∈
Q} is unusual. The corresponding quantifier and modality are usual. The next
Lemma states some immediate equivalences:

Lemma 3.1. If Q is an unusual quantifier. Then:

1. (Qx)(ϕ1 ∨ ϕ2) is equivalent to ((Qx)ϕ1) ∧ (Qx)ϕ2.
2. (Qx)(ϕ ∧ x < z) is equivalent to True.
3. If x does not occur free in ϕ, then (Qx)(ϕ∧ψ) is equivalent to ¬ϕ∨ (Qx)ψ,
4. Assume that x does not occur free in ϕ. Then (Qx)ϕ is equivalent to ¬ϕ.

3.3 Expressive Equivalence

Theorem 3.2 (Main). Let Q be an unusual family of subsets of N. Let Q and
〈Q〉 be the corresponding generalized quantifier and modality. Then

1. Given any TL(Until, Since, 〈Q〉) formula A there is a FOMLO[Q] formula
ϕA(x) which is equivalent (over ω-chains) to A.
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2. Given any FOMLO[Q] formula ϕ(x) with one free variable, there is a
TL(Until, Since, 〈Q〉) formula Aϕ which is equivalent (over ω-chains) to ϕ.

Moreover, ϕA and Aϕ are computable from ϕ and A and independent of Q.

The meaning preserving translation from TL(Until, Since, 〈Q〉) to FOMLO[Q] is
easily obtained by structural induction. The main technical contribution of our
paper is a proof of Theorem 3.2 (2). The proof is constructive. An algorithm
which for every FOMLO [Q] formula ϕ(x) constructs a TL(Until, Since, 〈Q〉) for-
mula which is equivalent to ϕ is easily extracted from our proof.

4 Proof of the Main Theorem

First, we introduce
−→∃ ∀ formulas which are instances of the Decomposition for-

mulas of [2,6].

Definition 4.1 (
−→∃ ∀-formulas). Let Σ be a set of monadic predicate names. An−→∃ ∀-formula over Σ is a formula of the form:

ψ(z0, . . . , zm) := ∃xn . . . ∃x1∃x0(
m∧
k=0

zk = xik

)
∧ (xn > xn−1 > · · · > x1 > x0) “ordering of xi and zj”

∧
n∧

j=0

αj(xj) “Each αj holds at xj”

∧
n∧

j=1

[(∀y)
<xj

>xj−1
βj(y)] “Each βj holds along (xj−1, xj)”

∧ (∀y)>xnβn+1(y) “βn+1 holds everywhere after xn”

∧ (∀y)<x0β0(y) “β0 holds everywhere before x0”

with a prefix of n + 1 existential quantifiers and with all αj, βj quantifier free
formulas with one variable over Σ. (ψ has m + 1 free variables z0, . . . , zm and
m+ 1 ≤ n+ 1 existential quantifiers are dummy and are introduced just in order
to simplify notations.)

Definition 4.2 (∨−→∃ ∀-formulas). A formula is a ∨−→∃ ∀ formula if it is equivalent

to a disjunction of
−→∃ ∀-formulas.

The set of ∨−→∃ ∀ formulas is closed under disjunction, conjunction and existential

quantification. The set of ∨−→∃ ∀ formulas is not closed under negation. However,

the negation of a ∨−→∃ ∀ formula is equivalent to a ∨−→∃ ∀ formula in the expansion
of chains by all TL(Until, Since) definable predicates (see Proposition 4.7).

The next definition plays a major role in the proof of Kamp’s theorem [2,6].
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Definition 4.3. Let M be a Σ chain and L be a temporal logic. We denote by
L[Σ] the set of unary predicate names Σ ∪ {A | A is an L-formula over Σ }.
The canonical L-expansion of M is an expansion of M to an L[Σ]-chain, where
each predicate name A ∈ L[Σ] is interpreted as {a ∈ M | M, a |= A}2. We
say that first-order formulas in the signature L[Σ]∪ {<} are equivalent over M
(respectively, over a class of Σ-chains C) if they are equivalent in the canonical
expansion of M (in the canonical expansion of every M ∈ C).
Note that if A is a L formula over L[Σ] predicates, then it is equivalent to a L
formula over Σ, and hence to an atomic formula in the canonical L-expansions.

The
−→∃ ∀ and ∨−→∃ ∀ formulas are defined as previously, but now they can use

as atoms L definable predicates.
The next Proposition was proved in [6].

Proposition 4.4. Let L be a temporal logic which contains modalities Until and
Since. Every FOMLO formula is equivalent (over the canonical L expansions of

ω-chains) to a disjunction of
−→∃ ∀-formulas.

The ∨−→∃ ∀ formulas with one free variable can be easily translated to temporal
formulas.

Proposition 4.5 (From ∨−→∃ ∀-formulas to L formulas). If L contains modalities

Until and Since, then every ∨−→∃ ∀ formula with one free variable is equivalent
(over the canonical L-expansions) to an L formula.

The proof of the next proposition is postponed to Sect. 5.

Proposition 4.6. (Closure under unusual quantifier) Let Q be an unusual quan-
tifier on N and L be a temporal logic which contains modalities Until, Since and

〈Q〉. If ψ is an
−→∃ ∀-formula, then (Qx)ψ is equivalent (over the canonical L

expansions of ω-chains) to a disjunction of
−→∃ ∀-formulas.

As a consequence we obtain:

Proposition 4.7. Let Q be an unusual quantifier on N and L be a temporal logic
which contains modalities Until, Since and 〈Q〉. Every FOMLO[Q] is equivalent

(over the canonical L expansions of ω-chains) to a disjunction of
−→∃ ∀-formulas.

Now, we are ready to prove the unusual version of Kamp’s Theorem:

Theorem 4.8. Let Q be an unusual quantifier on N. For every FOMLO[Q]
formula ϕ(x) with a single free variable, there is a TL(Until, Since, 〈Q〉) formula
which is equivalent (on ω-chains) to ϕ.

Proof. By Proposition 4.7, ϕ(x) is equivalent to a disjunction of
−→∃ ∀ formulas. By

Proposition 4.5, an
−→∃ ∀ formula is equivalent to a TL(Until, Since, 〈Q〉) formula.

Hence, ϕ(x) is equivalent to a TL(Until, Since, 〈Q〉) formula.

This completes the proof of our main theorem, except for Proposition 4.6 which
is proved in the next section.

2 We often use “a ∈ M” instead of “a is an element of the domain of M”
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5 Proof of Proposition 4.6

In this section we say that “formulas are equivalent in a chain M” instead of
“formulas are equivalent in the canonical L-expansion of M.” We also say that
“formulas are equivalent” instead of “formulas are equivalent in the canonical
L-expansions of chains over ω.”

If ψ has at most one free variable then, by Proposition 4.5, ψ is equivalent
to a TL(Until, Since, 〈Q〉) formula A. Hence, (Qx)ψ is equivalent to a temporal
logic formula 〈Q〉A.

Let ψ(z0, . . . , zm) be an
−→∃ ∀-formula as in Definition 4.1 with m ≥ 1. W.l.o.g.

assume that ψ → ∧m−1
i=0 zi < zi+1.

If x is not free in ψ then, by Lemma 3.1, (Qx)ψ is equivalent to a ¬ψ and

hence to a ∨−→∃ ∀ formula by Proposition 4.4.
If x ∈ {z0, . . . , zm−1}, then there are at most finitely many x which satisfy ψ,

therefore (Qx)ψ is equivalent to True.

If x is zm then ψ is equivalent to the conjunction of an
−→∃ ∀-formula ψ1(z0, . . . ,

zm−1) and an
−→∃ ∀-formula ψ2(zm−1, zm) with two free variables zm−1 and zm. By

Lemma 3.1, (Qzm)ψ is equivalent to ¬ψ1 ∨ (Qzm)ψ2(zm−1, zm). By Proposition

4.4, it is sufficient to show that (Qzm)ψ2(zm−1, zm) is equivalent to a ∨−→∃ ∀
formula.

It is easy to show that any
−→∃ ∀ formula with the free variables z0, z1 is equiv-

alent to a formula of the following form:

∃x0 . . . ∃xn[(z0 = x0 < · · · < xn = z1) ∧
n∧

j=0

αj(xj) ∧
n∧

j=1

(∀y)
<xj

>xj−1
βj(y)] (1)

where αi, βi are quantifier free.
Therefore, to complete our proof it is sufficient to prove the following lemma:

Lemma 5.1. Let ψ(z0, z1) be a formula as in (1). Then (Qz1)ψ is equivalent to

a ∨−→∃ ∀ formula.

In the rest of this section we prove Lemma 5.1. Our proof is organized as follows.
In Lemma 5.3 we prove an instance of Lemma 5.1 where all βi are equivalent to
True. Then we derive a more general instance (Corollary 5.5) where β1(x) holds
for all x > z0. Finally, in Lemma 5.6(2) we prove the full version of Lemma 5.1.
First, we introduce some helpful notations.

Notation 5.2. We use the abbreviated notation [α0, β1 . . . , αn−1, βnαn](z0, z1)

for the
−→∃ ∀-formula as in (1).

In this notation Lemma 5.1 can be rephrased as (Qz1)[α0, β1 . . . , αn−1, βnαn]

(z0, z1) is equivalent to a ∨−→∃ ∀ formula.
We start with the instance of Lemma 5.1 where all βi are True.
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Lemma 5.3. (Qz1)∃x0∃x1 . . . ∃xn (z0 = x0 < x1 < · · · < xn = z1)∧
∧n
i=0 Pi(xi)

is equivalent to a ∨−→∃ ∀ formula.

Proof. This formula is equivalent to the disjunction of (Qz1)Pn(z1) and

¬∃x0∃x1 . . .∃xn−1 (z0 = x0 < x1 < · · · < xn−1)∧
∧n−1
i=0 Pi(xi). The first disjunct

is equivalent to 〈Q〉Pn. The second disjunct is equivalent to a ∨−→∃ ∀ formula by

Proposition 4.4. Hence, this formula is equivalent to a ∨−→∃ ∀ formula.

The next Lemma does not deal with generalized quantifiers.

Lemma 5.4. ((∀y)>z0β1)∧ [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z1) is equivalent
to ((∀y)>z0β1) ∧ ∃x0∃x1 . . . ∃xn (z0 = x0 < x1 < · · · < xn = z1) ∧

∧n
i=0 α

′
i(xi),

where α′i are atoms.

As a consequence we obtain:

Corollary 5.5.

Let ψ(z0, z1) be ((∀y)>z0β1(y)) ∧ [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z1). Then

(Qz1)ψ is equivalent to a ∨−→∃ ∀ formula.

Proof. Immediately by Lemmas 3.1(3), 5.3, and 5.4.

Now we are ready to prove Lemma 5.1, i.e., (Qz1)[α0, β1 . . . , βn−1, αn−1, βn, αn]

(z0, z1) is equivalent to a ∨−→∃ ∀ formula.

Lemma 5.6.

1. Let ψ(z0, z1) be ((∃y)>z0¬β1(y)) ∧ [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z1).

Then (Qz1)ψ is equivalent to a ∨−→∃ ∀ formula.

2. (Qz1)[α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z1) is equivalent to a ∨−→∃ ∀ formula..

Proof. We prove (1) and (2) simultaneously by induction on n. Observe that A
is equivalent to (((∃y)>z0¬β1(y))∧A)∨ (((∀y)>z0β1(y))∧A). Hence, if (1) holds

for n, then by Corollary 5.5, Lemma 3.1(1) and the closure of ∨−→∃ ∀ formulas
under conjunction we obtain that (2) holds for n. Therefore, for the inductive
step it is sufficient to prove that if (1) and (2) hold for n then (2) holds for n+1.

Note that (∃y)>z0¬β1(y) implies that there is at most one z such that [α0, β1,
α1](z0, z) and ¬(∃y)>z [α0, β1, α1](z0, y).

If there is no such z, then (Qz1)ψ is equivalent to True.
So, we assume that there is a unique such z. It is definable by the formula

def (z0, z) := [α0, β1, α1](z0, z) ∧ ¬(∃y)>z [α0, β1, α1](z0, y). (2)

It is sufficient to show that (∃z)>z0def (z)∧(Qz1)[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to a ∨−→∃ ∀ formula ψ′. Then (Qz1)ψ is equivalent to (∀y)>z0β1(y) ∨
(¬∃zdef ) ∨ (∃zdef ∧ ψ′), and by Proposition 4.4, to a ∨−→∃ ∀ formula.

We prove this by induction on n. The basis is trivial.
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Inductive step n  → n+ 1. Define:

A−
i (z0, z) :=[α0, β1, . . . , βi, αi](z0, z) i = 1, . . . , n

A+
i (z, z1) :=[αi, βi+1, . . . βn+1αn+1](z, z1) i = 1, . . . , n

Ai(z0, z, z1) :=A−
i (z0, z) ∧A+

i (z, z1) i = 1, . . . , n

B−
i (z0, z) :=[α0β1, . . . , βi−1, αi−1, βi, βi](z0, z) i = 1, . . . , n+ 1

B+
i (z, z1) :=[βi, βi, αiβi+1αi+1, . . . , βn+1, αn+1](z, z1) i = 1, . . . , n+ 1

Bi(z0, z, z1) :=B−
i (z0, z) ∧B+

i (z, z1) i = 1, . . . , n+ 1

If the interval (z0, z1) is non-empty, these definitions imply

[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) ⇔ (∀z)<z1>z0

( n∨
i=1

Ai ∨
n+1∨
i=1

Bi

)
[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) ⇔ (∃z)<z1>z0

( n∨
i=1

Ai ∨
n+1∨
i=1

Bi

)
Hence, for every ϕ(z0, z):

((∃z)<z1>z0ϕ(z0, z)) ∧ [α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to (∃z)<z1>z0

(
ϕ(z0, z) ∧ (

∨n
i=1Ai ∨

∨n+1
i=1 Bi)

)
. In particular,

(∃z)<z1>z0def (z0, z) ∧ [α0, β1, α1, . . . , βn+1, αn+1](z0, z1)
is equivalent to

(∃z)<z1>z0

(
def (z0, z) ∧ (

∨n
i=1Ai ∨

∨n+1
i=1 Bi)

)
,

(3)

where def was defined in equation (2). To proceed we use the following simple
properties of the unusual quantifier:

Lemma 5.7. Assume that z1 does not occur free in ϕ, and ∃!zϕ. Then

1. (Qz1)(∃z)<z1(ϕ ∧ C) is equivalent to (∃z)(ϕ ∧ (Qz1)C)
2. (Qz1)∃z(ϕ ∧

∨
Ci) is equivalent to

∧
∃z(ϕ ∧ (Qz1)Ci)

Now (∃z)>z0def (z0, z)∧(Qz1)[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is equivalent (by
Lemma 5.7(1)) to (Qz1)(∃z)<z1>z0def (z0, z) ∧ [α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is

equivalent, by (3), to (Qz1)
(
(∃z)<z1>z0def (z0, z)∧(

∨n
i=1Ai∨

∨n+1
i=1 Bi)

)
is equivalent

(by Lemma 5.7(2)) to( n∧
i=1

(∃z)<z1>z0def (z0, z) ∧ (Qz1)Ai

)
∧
( n+1∧
i=1

(∃z)<z1>z0def (z0, z) ∧ (Qz1)Bi

)
(4)

We are going to show that (Qz1)Ai (i = 1, . . . , n) and (Qz1)Bi (i = 2, . . . , n+1),

and (∃z)<z1>z0def (z0, z)∧ (Qz1)B1 are equivalent to ∨−→∃ ∀ formulas and therefore,

by Proposition 4.4, we obtain that (4) is equivalent to a ∨−→∃ ∀ formula.
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Recall that Ai := A−
i (z0, z) ∧ A+

i (z, z1) and Bi := B−
i (z0, z) ∧ B+

i (z, z1). By
Lemma 3.1(3), we obtain that (Qz1)Ai is equivalent to ¬A−

i ∨ (Qz1)A+
i . By the

inductive assumption (Qz1)A+
i is equivalent to a ∨−→∃ ∀ formula for i = 1, . . . , n.

Hence, by Proposition 4.4, (Qz1)Ai is equivalent to a ∨−→∃ ∀ formula. Similar

arguments show that (Qz1)Bi is equivalent to a ∨−→∃ ∀ formula for i = 2, . . . , n+1.
Finally, def (z0, z) implies that there is no x > z such that α1(x) and βi

holds on [z, x). Therefore, B+
1 is equivalent to False and (Qz1)B+

1 is equivalent

to True. Hence, (∃z)<z1>z0def (z0, z) ∧ (Qz1)B1 is equivalent to a ∨−→∃ ∀ formula
(∃z)<z1>z0def (z0, z).

This completes our proof of Lemma 5.1 and of Proposition 4.6.

6 Further Results and Open Questions

We provided a natural interpretation of usual/unusual over N and proved an ana-
log of Kamp’s theorem. We can consider several unusual quantifiers Q1, . . .Qk

and prove that FOMLO[Q1, . . . , Qk] and TL(Until, Since, 〈Q1〉, . . . , 〈Qk〉) have
the same expressive power over ω. Our result can be easily extended to the time
domain of integers; however, in this case we have to require that if Q is a family
of unusual sets over integers and P ∈ Q, then neither (−∞, k] nor [k,∞) is a
subset of P . It is open how to formalize “usually/unusually” over the reals.

Standard notions of “fairness” are based on the ideal of finite sets. For ex-
ample, strong fairness is formalized as: if P1 occurs infinitely often, then P2

occurs infinitely often. It is natural to base fairness on an unusual modality 〈Q〉,
and define Q-fairness as FairQ(P1, P2) := 〈Q〉P2 → 〈Q〉P1. More general no-
tions of “fairness” can be introduced by using several unusual quantifiers; e.g.,
FairQ1,Q2(P1, P2) := 〈Q2〉P2 → 〈Q1〉P1.

Unfortunately, in our extension a phrase like “It is unusual that the weather
is sunny when it rains” is not expressible, and further extensions are needed to
express such a binary unusual modality.

We can show that under each of the seven interpretations of unusual described
in Section 3.2, the problem whether a TL(Until, Since, 〈Q〉) formula is satisfiable
is PSPACE-complete. Moreover, the interpretations (2)-(7) of unusual give the
same set of satisfiable TL(Until, Since, 〈Q〉) formulas.
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A More Efficient Simulation Algorithm
on Kripke Structures

Francesco Ranzato

Dipartimento di Matematica, University of Padova, Italy

Abstract. A number of algorithms for computing the simulation preorder (and
equivalence) on Kripke structures are available. Let Σ denote the state space, �

the transition relation and Psim the partition of Σ induced by simulation equiva-
lence. While some algorithms are designed to reach the best space bounds, whose
dominating additive term is |Psim|2, other algorithms are devised to attain the best
time complexity O(|Psim||�|). We present a novel simulation algorithm which
is both space and time efficient: it runs in O(|Psim|2 log |Psim| + |Σ| log |Σ|)
space and O(|Psim||�| log |Σ|) time. Our simulation algorithm thus reaches the
best space bounds while closely approaching the best time complexity.

1 Introduction

The simulation preorder is a fundamental behavioral relation widely used in process
algebra for establishing system correctness and in model checking as a suitable abstrac-
tion for reducing the size of state spaces. The problem of efficiently computing the sim-
ulation preorder (and consequently simulation equivalence) on finite Kripke structures
has been thoroughly investigated and generated a number of simulation algorithms.
Both time and space complexities play an important role in simulation algorithms, since
in several applications, especially in model checking, memory requirements may be-
come a serious bottleneck as the input transition system grows.

Consider a finite Kripke structure where Σ denotes the state space, � the transi-
tion relation and Psim the partition of Σ induced by simulation equivalence. The best
simulation algorithms are those by, in chronological order, Gentilini, Piazza and Poli-
criti (GPP) [3] (subsequently corrected in [4]), Ranzato and Tapparo (RT) [10,12],
Markovski (Mar) [8], Cécé (Space-Céc and Time-Céc) [2]. The simulation algorithms
GPP and RT are designed for Kripke structures, while Space-Céc, Time-Céc and Mar
are for more general labeled transition systems. Their space and time complexities are
summarized in the following table.

Algorithm Space complexity Time complexity

Space-Céc [2] O(|Psim|2 + |�| log |�|) O(|Psim|2|�|)

Time-Céc [2] O(|Psim||Σ| log |Σ|+ |�| log |�|) O(|Psim||�|)

GPP [3] O(|Psim|2 log |Psim|+ |Σ| log |Σ|) O(|Psim|2|�|)

Mar [8] O((|Σ|+ |Psim|2) log |Psim|) O(|�|+ |Psim||Σ|+ |Psim|3)

RT [12] O(|Psim||Σ| log |Σ|) O(|Psim||�|)

ESim (this paper) O(|Psim|2 log |Psim|+ |Σ| log |Σ|) O(|Psim||�| log |Σ|)

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 753–764, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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We remark that all the above space bounds are bit space complexities, i.e., the word
size is a single bit. Let us also remark that both articles [3,4] state that the bit space
complexity of GPP is in O(|Psim|2 + |Σ| log |Psim|). However, as observed also in [2],
this is not precise. In fact, the algorithm GPP [3, Section 4, p. 98] assumes that the
states belonging to some block are stored as a doubly linked list, and this entails a bit
space complexity in O(|Σ| log |Σ|). Furthermore, GPP uses Henzinger, Henzinger and
Kopke [5] simulation algorithm (HKK) as a subroutine, whose bit space complexity is
in O(|Σ|2 log |Σ|), which is called on a Kripke structure where states are blocks of the
current partition. The bit space complexity of GPP must therefore include an additive
term |Psim|2 log |Psim| and therefore results to be O(|Psim|2 log |Psim| + |Σ| log |Σ|).
It is worth observing that a space complexity in O(|Psim|2 + |Σ| log |Psim|) can be
considered optimal for a simulation algorithm, since this is of the same order as the
size of the output, which needs |Psim|2 space for storing the simulation preorder as a
partial order on simulation equivalence classes and |Σ| log |Psim| space for storing the
simulation equivalence class for any state. Hence, the bit space complexities of GPP and
Space-Céc can be considered quasi-optimal. As far as time complexity is concerned, the
algorithms RT and Time-Céc both feature the best time bound O(|Psim||�|).

We present here a novel space and time Efficient Simulation algorithm, called ESim,
which features a time complexity in O(|Psim||�| log |Σ|) and a bit space complex-
ity in O(|Psim|2 log |Psim| + |Σ| log |Σ|). Thus, ESim reaches the best space bound
of GPP and significantly improves the GPP time bound O(|Psim|2|�|) by replacing
a multiplicative factor |Psim| with log |Σ|. Furthermore, ESim significantly improves
the RT space bound O(|Psim||Σ| log |Σ|) and closely approaches the best time bound
O(|Psim||�|) of RT and Time-Céc.

ESim is a partition refinement algorithm, meaning that it maintains and iteratively
refines a so-called partition-relation pair 〈P,�〉, where P is a partition of Σ that over-
approximates the final simulation partition Psim, while � is a binary relation over P
which overapproximates the final simulation preorder. ESim relies on the following
three main points, which in particular allow to attain the above complexity bounds.

(1) Two distinct notions of partition and relation stability for a partition-relation pair
are introduced. Accordingly, at a logical level, ESim is designed as a partition re-
finement algorithm which iteratively performs two clearly distinct refinement steps:
the refinement of the current partition P which splits some blocks of P and the re-
finement of the relation � which removes some pairs of blocks from �.

(2) ESim exploits a logical characterization of partition refiners, i.e. blocks of P that
allow to split the current partition P , which admits an efficient implementation.

(3) ESim only relies on data structures, like lists and matrices, that are indexed on
and contain blocks of the current partition P . The hard task here is to devise effi-
cient ways to keep updated these partition-based data structures along the iterations
of ESim. We show that this can be done efficiently, in particular by resorting to
Hopcroft’s “process the smaller half” principle [7] when updating a crucial data
structure after a partition split.

Due to lack of space, some auxiliary algorithms and the proofs of all the results are
omitted.
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2 Background

Notation. If R ⊆ Σ × Σ is any relation and X ⊆ Σ then R(X) {x′ ∈ Σ | ∃x ∈
X. (x, x′) ∈ R}. Recall that R is a preorder relation when it is reflexive and transitive.
If f is a function defined on ℘(Σ) and x ∈ Σ then we often write f(x) to mean f({x}).
Part(Σ) denotes the set of partitions of Σ. If P ∈ Part(Σ), s ∈ Σ and S ⊆ Σ then
P (s) denotes the block of P that contains s while P (S) = ∪s∈SP (s). Part(Σ) is
endowed with the standard partial order �: P1 � P2, i.e. P2 is coarser than P1, iff for
any s ∈ Σ, P1(s) ⊆ P2(s). If P1 � P2 and B ∈ P1 then P2(B) is a block of P2 which
is also denoted by parentP2

(B). For a given nonempty subset S ⊆ Σ called splitter,
we denote by Split(P, S) the partition obtained from P by replacing each blockB ∈ P
with B ∩S and B�S, where we also allow no splitting, namely Split(P, S) = P (this
happens exactly when P (S) = S).

Simulation Preorder and Equivalence. A transition system (Σ,�) consists of a set
Σ of states and of a transition relation � ⊆ Σ ×Σ. Given a set AP of atoms (of some
specification language), a Kripke structure (KS) K = (Σ,�, 
) over AP consists of a
transition system (Σ,�) together with a state labeling function 
 : Σ → ℘(AP). The
state partition induced by 
 is denoted by P {{s′ ∈ Σ | 
(s) = 
(s′)} | s ∈ Σ}. The
predecessor/successor transformers pre, post : ℘(Σ) → ℘(Σ) are defined as usual:
pre(T )  {s ∈ Σ | ∃t ∈ T. s�t} and post(S)  {t ∈ Σ | ∃s ∈ S. s�t}. If
S1, S2 ⊆ Σ then S1�∃S2 iff there exist s1 ∈ S1 and s2 ∈ S2 such that s1�s2.

A relation R ⊆ Σ × Σ is a simulation on a Kripke structure (Σ,�, 
) if for any
s, s′ ∈ Σ, if s′ ∈ R(s) then:

(A) 
(s) = 
(s′);
(B) for any t ∈ Σ such that s�t, there exists t′ ∈ Σ such that s′�t′ and t′ ∈ R(t).

Given s, t ∈ Σ, t simulates s, denoted by s ≤ t, if there exists a simulation relation
R such that t ∈ R(s). It turns out that the largest simulation on a given KS exists, is
a preorder relation called simulation preorder and is denoted by Rsim. Thus, for any
s, t ∈ Σ, s ≤ t iff (s, t) ∈ Rsim. Simulation equivalence Rsimeq is the symmetric
reduction of Rsim, namely RsimeqRsim ∩ R−1

sim, so that (s, t) ∈ Rsimeq iff s ≤ t and
t ≤ s. Psim ∈ Part(Σ) denotes the partition corresponding to the equivalence Rsimeq

and is called the simulation partition.

3 Logical Simulation Algorithm

A partition-relation pair P = 〈P,�〉, PR for short, is a state partition P ∈ Part(Σ)
together with a binary relation � ⊆ P × P between blocks of P . We write B � C
when B � C and B �= C and (B′, C′) � (B,C) when B′ � B and C′ � C. When �
is a preorder/partial order then P is called, respectively, a preorder/partial order PR.

PRs allow to represent symbolically, i.e. through state partitions, a relation between
states. A relation R ⊆ Σ ×Σ induces a PR PR(R) = 〈P,�〉 defined as follows:

∀s ∈ Σ.P (s)  {t ∈ Σ | R(s) = R(t)}; ∀s, t ∈ Σ.P (s) � P (t) iff t ∈ R(s).
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It is easy to note that if R is a preorder then PR(R) is a partial order PR. On the other
hand, a PR P = 〈P,�〉 induces the following relation Rel(P) ⊆ Σ ×Σ:

(s, t) ∈ Rel(P) ⇔ P (s) � P (t).

Here, if P is a preorder PR then Rel(P) is clearly a preorder.
A PR P = 〈P,�〉 is defined to be a simulation PR on a KS K when Rel(P) is

a simulation on K, namely when P represents a simulation relation between states.
Hence, if P is a simulation PR and P (s) = P (t) then s and t are simulation equivalent,
while if P (s) � P (t) then t simulates s.

Given a PR P = 〈P,�〉, the map μP : ℘(Σ) → ℘(Σ) is defined as follows:

for any X ∈ ℘(Σ), μP(X)  Rel(P)(X) = ∪{C ∈ P | ∃s ∈ X. P (s) � C}.

Note that, for any s ∈ Σ, μP(s) = μP(P (s)) = ∪{C ∈ P | P (s) � C}. For preorder
PRs, this map allows us to characterize the property of being a simulation PR as follows.

Theorem 3.1. Let P = 〈P,�〉 be a preorder PR. Then, P is a simulation iff

(i) if B � C, b ∈ B and c ∈ C then 
(b) = 
(c);
(ii) if B�∃C and B � D then D�∃μP(C);

(iii) for any C ∈ P , P = Split(P, pre(μP(C))).

By Theorem 3.1, assuming that condition (i) holds, there are two possible reasons for a
PR P = 〈P,�〉 for not being a simulation:

(1) There exist B,C,D ∈ P such that B�∃C, B � D, but D ��∃μP(C); in this case
we say that the block C is a relation refiner for P.

(2) There exist B,C ∈ P such that B ∩ pre(μP(C)) �= ∅ and B � pre(μP(C)) �= ∅;
in this case we say that the block C is a partition refiner for P.

We therefore define RRefiner(P) and PRefiner(P) as the sets of blocks of P that are,
respectively, relation and partition refiners for P. Accordingly,P is defined to be relation
or partition stable when, respectively, RRefiner(P) = ∅ or PRefiner(P) = ∅. Then,
Theorem 3.1 can be read as follows: P is a simulation iff P satisfies condition (i) and is
both relation and partition stable.

If C ∈ PRefiner(P) then P is first refined to P ′  Split(P, pre(μP(C))), i.e. P is
split w.r.t. the splitter S = pre(μP(C)). Accordingly, the relation� onP is transformed
into the following relation �′ defined on P ′:

�′  {(D,E) ∈ P ′ × P ′ | parentP (D) � parentP (E)} (†)

Hence, two blocks D and E of the refined partition P ′ are related by �′ if their parent
blocks parentP (D) and parentP (E) in P were related by �. Hence, if P′ = 〈P ′,�′〉
then for all D ∈ P ′, we have that μP′(D) = μP(parentP (D)). We will show that this
refinement of 〈P,�〉 is correct because if B ∈ P is split into B � S and B ∩ S then
all the states in B � S are not simulation equivalent to all the states in B ∩ S. Note
that if B ∈ P has been split into B ∩ S and B � S then both B ∩ S �′ B � S and
B � S �′ B ∩ S hold, and consequently P′ becomes relation unstable.
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1 ESim(PR 〈P,�〉)
2 Initialize(); PStabilize(); boolPStable := RStabilize(); boolRStable := tt;
3 while ¬(PStable & RStable) do
4 if ¬PStable then {RStable := PStabilize(); PStable := tt;}
5 if ¬RStable then {PStable := RStabilize(); RStable := tt;}

6 bool PStabilize()
7 Pold := P ;
8 while ∃C ∈ PRefiner(P) do
9 S := pre(μP(C)); P := Split(S);

10 forall (D,E) ∈ P × P do D � E := parentP (D) � parentP (E);

11 return (P = Pold);

12 bool RStabilize()
13 // Precondition: PStable = tt
14 �old := �; Delete := ∅;
15 while ∃C ∈ RRefiner(P) do
16 Delete := Delete ∪ {(B,D) ∈ P × P | B � D, B�

∃C, D ��∃μP(C)};

17 � := � � Delete;
18 return (� = �old);

Fig. 1. Logical Simulation Algorithm

On the other hand, if P is partition stable and C ∈ RRefiner(P) then we will show
that � can be safely refined to the following relation �′:

�′  � �{(B,D) ∈ P × P | B�∃C, B � D, D ��∃μP(C)}
= {(B,D) ∈ P × P | B � D,

(
B�∃C ⇒ D�∃μP(C)

)
}

(‡)

because if (B,D) ∈ ���′ then all the states in D cannot simulate all the states in B.
The above facts lead us to design a basic simulation algorithm ESim described in

Figure 1. ESim maintains a PR P = 〈P,�〉, which initially is 〈P, id〉 and is iteratively
refined as follows:

PStabilize(): If 〈P,�〉 is not partition stable then the partitionP is split for pre(μP(C))
as long as a partition refiner C for P exists, and when this happens the relation � is
transformed to �′ as defined by (†); at the end of this process, we obtain a PR P′ =
〈P ′,�′〉 which is partition stable and if P has been actually refined, i.e. P ′ ≺ P then
the current PR P′ becomes relation unstable.

RStabilize(): If 〈P,�〉 is not relation stable then the relation � is refined to �′ as
described by (‡) as long as a relation refiner for P exists; hence, at the end of this
refinement process 〈P,�′〉 becomes relation stable but possibly partition unstable.

Moreover, the following properties of the current PR of ESim hold.

Lemma 3.2. In any run of ESim, the following two conditions hold:
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(i) If PStabilize() is called on a partial order PR 〈P,�〉 then at the exit we obtain a
PR 〈P ′,�′〉 which is a preorder.

(ii) If RStabilize() is called on a preorder PR 〈P,�〉 then at the exit we obtain a PR
〈P,�′〉 which is a partial order.

The main loop of ESim terminates when the current PR 〈P,�〉 becomes both partition
and relation stable. By the above Lemma 3.2, the output PR P of ESim is a partial order,
and hence a preorder, so that Theorem 3.1 can be applied to P which then results to be
a simulation PR. It turns out that this algorithm is correct, meaning that the output PR
P actually represents the simulation preorder.

Theorem 3.3 (Correctness). Let Σ be finite. ESim is correct, i.e., ESim terminates on
any input and if 〈P,�〉 is the output PR of ESim on input 〈P, id〉 then for any s, t ∈ Σ,
s ≤ t ⇔ P (s) � P (t).

4 Efficient Implementation

4.1 Data Structures

ESim is implemented by relying on the following data structures.

States: A state s is represented by a record that contains the list post(s) of its succes-
sors, a pointer s.block to the block P (s) that contains s and a boolean flag used for
marking purposes. The whole state space Σ is represented as a doubly linked list of
states. {post(s)}s∈Σ therefore represents the input transition system.

Partition: The states of any blockB of the current partition P are consecutive in the list
Σ, so thatB is represented by two pointers begin and end:B.begin is the first state ofB
in Σ and B.end is the successor of the last state of B in Σ, i.e., B = [B.begin, B.end[.
Moreover, B stores a boolean flag B.intersection and a block pointer B.brother whose
meanings are as follows: after a call to Split(P, S) for splitting P w.r.t. a set of states
S, if B1 = B ∩ S and B2 = B � S, for some B ∈ P that has been split by S
then B1.intersection = tt and B2.intersection = ff, while B1.brother points to B2 and
B2.brother points to B1. If instead B has not been split by S thenB.intersection = null
and B.brother = null. Also, any block B stores in Rem(B) a list of blocks of P ,
which is used by RStabilize(), and in B.preE the list of blocks C ∈ P such that
C�∃B. Finally, any block B stores in B.size the size of B, in B.count an integer
counter bounded by |P | which is used by PStabilize() and a pair of boolean flags used
for marking purposes. The current partition P is stored as a doubly linked list of blocks.

Relation: The current relation � on P is stored as a resizable |P |× |P | boolean matrix.
Recall that insert operations in a resizable array (whose capacity is doubled as needed)
take amortized constant time and that a resizable matrix (or table) can be implemented
as a resizable array of resizable arrays. The boolean matrix � is resized by adding a
new entry to �, namely a new row and a new column, for any block B that is split into
two new blocksB�S and B∩S. The old entry B becomes the entry for the new block
B � S while the new entry is used for the new block B ∩ S.
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1 bool PStabilize()
2 list〈Block〉 split := ∅;
3 while (C := FindPRefiner()) �= null) do
4 list〈State〉 S := preμ(C); split := Split(S); updateRel(split);
5 updateBCount(split); updatePreE(); updateCount(split); updateRem(split);

6 return (split = ∅);

7 Block FindPRefiner()
8 forall B ∈ P do
9 list〈Block〉 p := Post(B);

10 forall C ∈ p do if (Count(B,C) = 1) then return C;

11 return null;

12 list〈Block〉 Post(Block B)
13 list〈Block〉 p := ∅;
14 forall b ∈ B, do
15 forall c ∈ post(b) do
16 Block C := c.block;
17 if unmarked1(C) then {mark1(C); C.count = 0; p.append(C);}
18 if unmarked2(C) then {mark2(C); C.count++;}
19 forall C ∈ p do unmark2(C);

20 forall C ∈ p do {unmark1(C); if (C.count = B.size) then p.remove(C);}
21 return p;

Fig. 2. PStabilize() Algorithm

Auxiliary Data Structures: We store and maintain a resizable boolean matrix BCount
and a resizable integer matrix Count, both indexed over P , whose meanings are as
follows:

BCount(B,C) 
{

1 if B�∃C
0 if B ��∃C

Count(B,C) 
∑

E�CBCount(B,E).

Hence, Count(B,C) stores the number of blocks E such that C � E and B�∃E.
The table Count allows to implement the test B ��∃ pre(μP(C)) in constant time as
Count(B,C) = 0.

The data structures BCount, preE, Count and Rem are initialized by a function
Initialize() at line 2 of ESim, which is here omitted.

4.2 Partition Stability

Our implementation of ESim will exploit the following logical characterization of par-
tition refiners.

Theorem 4.1. Let 〈P,�〉 be a partial order PR. Then, PRefiner(〈P,�〉) �= ∅ iff there
exist B,C ∈ P such that the following three conditions hold:
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(i) B�∃C;
(ii) for any C′ ∈ P , if C � C′ then B ��∃C′;

(iii) B �⊆ pre(C).

Notice that this characterization of partition refiners requires that the current PR is a
partial order relation and, by Lemma 3.2, for any call to PStabilize(), this is actually
guaranteed by the ESim algorithm.

The algorithm in Figure 2 is an implementation of the PStabilize() function that
relies on Theorem 4.1 and on the above data structures. The function FindPRefiner()
implements the conditions of Theorem 4.1: it returns a partition refiner for the current
PR P = 〈P,�〉 when this exists, otherwise it returns a null pointer. Given a block
B ∈ P , the function Post(B) returns a list of blocks C ∈ P that satisfy conditions (i)
and (iii) of Theorem 4.1, i.e., those blocksC such that B�∃C and B �⊆ pre(C). This is
accomplished through the counter C.count that at the exit of the for-loop at lines 14-19
in Figure 2 stores the number of states in B having (at least) an outgoing transition to
C, i.e., C.count = |B ∩ pre(C)|. Hence, we have that:

B�∃C and B �⊆ pre(C) ⇔ 1 ≤ C.count < B.size.

Then, for any candidate partition refiner C ∈ Post(B), it remains to check con-
dition (ii) of Theorem 4.1. This condition is checked in FindPRefiner() by testing
whether Count(B,C) = 1: this is correct because Count(B,C) ≥ 1 holds since
C ∈ Post(B) and therefore B�∃C, so that

Count(B,C) = 1 iff ∀C′ ∈ P.C � C′ ⇒ B ��∃C′.

Hence, if Count(B,C) = 1 holds at line 10 of FindPRefiner (), by Theorem 4.1, C is a
partition refiner. Once a partition refinerC has been returned by Post(B), PStabilize()
splits the current partition P w.r.t. the splitter S = pre(μP(C)) by calling the func-
tion Split(S), updates the relation � as defined by equation (†) in Section 3 by call-
ing updateRel(), updates the data structures BCount, preE, Count and Rem, and then
check again whether a partition refiner exists. At the exit of the main while-loop of
PStabilize(), the current PR 〈P,�〉 is partition stable.

PStabilize() calls the functions preμ() and Split() that are here omitted. Recall that
the states of a block B of P are consecutive in the list of states Σ, so that B is repre-
sented as B = [B.begin, B.end[. The implementation of Split(S) is quite standard (see
e.g. [12]): this is based on a linear scan of the states in S and for each state in S performs
some constant time operations. Hence, Split(S) takes O(|S|) time. Also, Split(S) re-
turns the list split of blocks B � S such that ∅ � B � S � B (i.e., B.intersection
= ff). Let us remark that a call Split(S) may affect the ordering of the states in the list
Σ because states are moved from old blocks to newly generated blocks.

We will show that the overall time complexity of PStabilize() along a whole run of
ESim is in O(|Psim||�|).

4.3 Updating Data Structures

In the functionPStabilize(), after calling Split(S), firstly we need to update the boolean
matrix that stores the relation � in accordance with definition (†) in Section 3. After
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that, since both P and � are changed we need to update the data structures BCount,
preE, Count and Rem. We omit the implementations of the functions updateRel(),
updateBCount(), updatePreE() and updateRem(), which are quite straightforward.

The function updateCount() is in Figure 3 and deserves special care in order to
design a time efficient implementation. The core of the updateCount() algorithm fol-
lows Hopcroft’s “process the smaller half” principle [7] for updating the integer matrix
Count. Let P ′ be the partition which is obtained by splitting the partition P w.r.t. the
splitter S. Let B be a block of P that has been split into B ∩ S and B � S. Thus, we
need to update Count(B ∩ S,C) and Count(B � S,C) for any C ∈ P ′ by knowing
Count(B, parentP (C)). Let us first observe that after lines 4-6 of updateCount(), we
have that for any B,C ∈ P ′, Count(B,C) = Count(parentP (B), parentP (C)). Let
X be the block in {B∩S,B�S} with the smaller size, and let Z be the other block, so
that |X | ≤ |B|/2 and |X |+ |Z| = |B|. Let C be any block in P ′. We set Count(X,C)
to 0, while Count(Z,C) is left unchanged, namely Count(Z,C) = Count(B,C). We
can correctly update both Count(Z,C) and Count(X,C) by just scanning all the out-
going transitions from X . In fact, if x ∈ X , x�y and the block P (y) is scanned for the
first time then for all C � P (y), Count(X,C) is incremented by 1, while if Z ��∃P (y),
i.e. BCount(Z, P (y)) = 0, then Count(Z,C) is decremented by 1. The correctness of
this procedure goes as follows:

(1) At the end, Count(X,C) is clearly correct because its value has been re-computed
from scratch.

(2) At the end, Count(Z,C) is correct because Count(Z,C) initially stores the value
Count(B,C), and if there exists some block D such that C � D, B�∃D whereas
Z ��∃D — this is correctly implemented at line 19 as BCount(Z,D) = 0, since
the date structure BCount is up to date — then necessarily X�∃D, because B has
been split into X and Z , so that D = P (y) for some y ∈ post(X), namely D
has been taken into account by some increment Count(X,C)++ and consequently
Count(Z,C) is decremented by 1 at line 19.

Moreover, if some block D ∈ P ′ � {B ∩ S,B � S} is such that both D�∃X and
D�∃Z hold then for all the blocks C ∈ P such that C � X (or, equivalently, C � Z),
we need to increment Count(D,C) by 1. This is done at lines 21-22 by relying on the
updated date structures preE and BCount.

Let us observe that the time complexity of a single call of updateCount(split) is

|P |
(
|split |+

∑
X∈split

(
|{(x, y) | x ∈ X, y ∈ Σ, x�y}|+|{(X,D) |D ∈ P,X�∃D}|

))
.

Hence, let us calculate the overall time complexity of updateCount(). If X and X ′ are
two blocks that are scanned in two different calls of updateCount and X ′ ⊆ X then
|X ′| ≤ |X |/2. Consequently, any transition x�y at line 16 and D�∃X at line 21 can
be scanned in some call of updateCount() at most log2 |Σ| times. Thus, the overall time
complexity of updateCount() is in O(|Psim||�| log |Σ|).

4.4 Relation Stability

The basic procedure RStabilize() in Figure 1 is implemented by the algorithm in
Figure 4. Let Pin = 〈P,�in〉 be the current PR when calling RStabilize(). For each
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1 // Precondition: BCount and preE are updated with the current PR
2 updateCount(list〈Block〉 split)
3 forall B ∈ split do addNewEntry(B) in matrix Count;
4 forall B ∈ P, C ∈ split do
5 if (B.intersection = tt) then Count(B,C) := Count(B.brother, C.brother);
6 else Count(B,C) := Count(B,C.brother);

7 forall C ∈ P, B ∈ split do
8 if (C.intersection = ff) then Count(B,C) := Count(B.brother, C);

9 forall C ∈ P do unmark(C);
10 forall B ∈ split do
11 // Update Count(B, ·) and Count(B.brother, ·)
12 Block X , Z;
13 if (B.size ≤ B.brother.size) then {X := B; Z := B.brother;}
14 else {X := B.brother; Z := B;}
15 forall C ∈ P do {Count(X,C) := 0; /* Count(Z,C) := Count(B,C); */}
16 forall x ∈ X, y ∈ post(x) such that unmarked(y.block) do
17 mark(y.block);
18 forall C∈P such that C � y.block do
19 Count(X ,C)++; if (BCount(Z, y.block)=0) then Count(Z,C) – –;

20 // For all D �∈{B,B.brother}, updateCount(D, ·)
21 forall D ∈ X .preE such that (D �=X&D �=Z&BCount(D,Z)=1) do
22 forall C ∈ P such that C � X do Count(D,C)++;

Fig. 3. updateCount() function

relation refiner C ∈ P , RStabilize() must iteratively refine the initial relation �in in
accordance with equation (‡) in Section 3. Hence, if B�∃C, B � D andD ��∃μPin(C),
the entry B � D of the boolean matrix that represents the relation � must be set
to ff. Thus, the idea is to store and incrementally maintain for each block C ∈ P
a list Rem(C) of blocks D ∈ P such that: (A) If C is a relation refiner for Pin then
Rem(C) �= ∅; (B) IfD ∈ Rem(C) then necessarilyD ��∃μin

P (C). It turns out thatC is
a relation refiner for Pin iff there exist blocksB and D such that B�∃C, D ∈ Rem(C)
and B � D. Hence, the set of blocks Rem(C) is reminiscent of the set of states
remove(s) used in Henzinger et al.’s [5] simulation algorithm, since each pair (B,D)
which must be removed from the relation � is such that D ∈ Rem(C), for some block
C.

Initially, namely at the first call of RStabilize() by ESim, Rem(C) is set by the
function Initialize() to {D ∈ P | D�∃Σ, D ��∃μP(C)}. Hence, RStabilize() scans all
the blocks in the current partition P and selects those blocksC such that Rem(C) �= ∅,
which are therefore candidate to be relation refiners. Then, by scanning all the blocks
B ∈ C.preE and D ∈ Rem(C), if B � D holds then the entry B � D must be
set to ff. However, the removal of the pair (B,D) from the current relation � may af-
fect the functionμP. This is avoided by making a copy oldRem(C) of all the Rem(C)’s
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1 bool RStabilize()

2 // μin
P := μP;

3 forall C ∈ P do {oldRem(C) := Rem(C); Rem(C) = ∅; }
4 bool Removed := ff;
5 forall C ∈ P such that oldRem(C) �= ∅ do
6 // Invariant (Inv): ∀C ∈ P.Rem(C) = {D ∈ P | D�

∃μin
P (C), D ��∃μP(C)}

7 forall B ∈ C.preE, D ∈ oldRem(C) such that (B � D) do
8 B � D := ff; Removed := tt;
9 // update Count and Rem

10 forall F ∈ D.preE do
11 Count(F,B) := Count(F,B)−1;
12 if (Count(F,B) = 0 &Rem(B) = ∅) then Rem(B).append(F );

13 return ¬Removed;

Fig. 4. RStabilize() Algorithm

at the beginning of RStabilize() and then using this copy. During the main for-loop of
RStabilize(), Rem(C) must satisfy the following invariant property:

(Inv): ∀C ∈ P.Rem(C) = {D ∈ P | D�∃μin
P (C), D ��∃μP(C)}.

This means that at the beginning of RStabilize(), any Rem(C) is set to empty, and after
the removal of a pair (B,D) from �, since μP(B) has changed, we need: (i) to update
the matrix Count, for all the entries (F,B) where F�∃D, and (ii) to check if there is
some block F such that F ��∃μP(B), because any such F must be added to Rem(B)
in order to maintain the invariant property (Inv).

4.5 Complexity

The time complexity of the algorithm ESim relies on the following key properties:

(1) The overall number of partition refiners found by ESim is in O(|Psim|). Moreover,
the overall number of newly generated blocks by the splitting operations performed
by calling Split(S) at line 4 of PStabilize() is in O(|Psim|). In fact, let {Pi}i∈[0,n]

be the sequence of different partitions computed by ESim where P0 is the initial
partition P, Pn is the final partition Psim and for all i ∈ [1, n], Pi is the partition
after the i-th call to Split(S), so that Pi ≺ Pi−1. The number of new blocks which
are produced by a call Split(S) that refines Pi to Pi+1 is 2(|Pi+1|−|Pi|). Thus, the
overall number of newly generated blocks is

∑n
i=1 2(|Pi| − |Pi−1|) = 2(|Psim| −

|P|) ∈ O(|Psim|).
(2) The invariant (Inv) of the sets Rem(C) guarantees the following property: if C1

and C2 are two blocks that are selected by the for-loop at line 5 of RStabilize()
in two different calls of RStabilize(), and C2 ⊆ C1 (possibly C1 = C2) then
(∪Rem(C1)) ∩ (∪Rem(C2)) = ∅.

Theorem 4.2 (Complexity). ESim runs in O(|Psim|2 log |Psim| + |Σ| log |Σ|)-space
and O(|Psim||�| log |Σ|)-time.
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5 Further Work

We see a couple of interesting avenues for further work. A first natural question arises:
can the time complexity of ESim be further improved and reaches the time complex-
ity of RT? This would require to eliminate the multiplicative factor log |Σ| from the
time complexity of ESim and, presently, this seems to us quite hard to achieve. More
in general, it would be interesting to investigate whether some lower space and time
bounds can be stated for the simulation preorder problem. Secondly, ESim is designed
for Kripke structures. While an adaptation of a simulation algorithm from Kripke struc-
tures to labeled transition systems (LTSs) can be conceptually simple, unfortunately
such a shift may lead to some loss in both space and time complexities, as argued
in [2]. We mention the works [1,6] and [8] that provide simulation algorithms for LTSs
by adapting, respectively, RT and GPP. It is thus worth investigating whether and how
ESim can be efficiently adapted to work with LTSs.
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partially supported by Microsoft Research SEIF 2013 Award and by the University of
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A Planarity Test via Construction Sequences

Jens M. Schmidt
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Abstract. Linear-time algorithms for testing the planarity of a graph
are well known for over 35 years. However, these algorithms are quite in-
volved and recent publications still try to give simpler linear-time tests.
We give a conceptually simple reduction from planarity testing to the
problem of computing a certain construction of a 3-connected graph.
This implies a linear-time planarity test. Our approach is radically dif-
ferent from all previous linear-time planarity tests; as key concept, we
maintain a planar embedding that is 3-connected at each point in time.
The algorithm computes a planar embedding if the input graph is planar
and a Kuratowski-subdivision otherwise.

1 Introduction

Testing the planarity of a graph is a fundamental algorithmic problem that has
initiated significant contributions to data structures and the design of algorithms
in the past. Although optimal linear-time algorithms for this problem are known
for over 35 years [13,3], they are involved and recent publications still try to give
simpler linear-time algorithms [4,6,9,11,25].

We give a linear-time planarity test that is based on a conceptually very simple
reduction to the problem of computing a certain construction C of a 3-connected
graph G (we will give a precise definition of C in Section 3). The existence of
a similar construction has also been used by Kelmans [14] and Thomassen [27]
to give a short proof of Kuratowski’s Theorem. Although their proof itself is
constructive (in the sense that it gives a polynomial-time planarity test) and
received much attention in graph theory due to its simplicity, it has not been
utilized algorithmically. We give the first linear-time planarity test that cap-
tures this proof scheme. Our hope is that this new approach will lead to simple
planarity tests, just as the same concept led to simple proofs of Kuratowski’s
Theorem.

Currently, the fastest algorithm known for computing C achieves a linear
running time [24], but is quite involved. For that reason, our reduction does not
qualify to be regarded as a simple planarity test yet. However, every simplifi-
cation made for computing C will immediately result in a simpler linear-time
planarity test. In fact, much less is needed, as our reduction relies only on the
part of the construction C until a first non-planar graph occurs; thus, one may
assume planarity for computing the necessary part of C. In the case that a
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quadratic running time is allowed, a very simple algorithm that computes C
(and, thus, planarity) is known [23].

Recent planarity tests like [4,6,9,11,25] maintain a planar embedding at each
step, where all steps either add paths/edges (path addition method) or vertices
(vertex addition method) to the embedding; for a thorough survey on planarity
tests, we refer to Patrignani [22]. In our algorithm, each step will essentially
add an edge, possibly after subdividing one or two edges in advance. Unlike
all previous linear-time planarity tests, we maintain a planar embedding that
is always 3-connected. This is a key concept for the following reason. The 3-
connectivity constraint fixes the planar embedding (up to flipping), which will
allow to test efficiently whether the addition of a next edge e preserves planarity.

A well-known connection between 3-connectivity and planarity is that both
can be characterized by conditions on segments (or components) of cycles [30].
In fact, the first linear-time tests on planarity and 3-connectivity [12,13] due to
Hopcroft and Tarjan use such conditions. A detailed exposition of the connection
was given later by Vo and Williamson [29,30,33], respectively, with an emphasis
on explaining the algorithms in [12,13]. Nevertheless, the precise interplay be-
tween 3-connectivity and planarity and its algorithmic consequences are still far
from understood; e. g., the known connection suggests to ask whether there is a
general approach that combines linear-time 3-connectivity and planarity tests.
Our reduction makes a first step towards such a general approach. The combin-
ing element is C; on the one hand, C proves a graph to be 3-connected, on the
other hand, C provides a unique embedding as long as the constructed graphs
are planar, which allows to check planarity efficiently.

A planarity test is certifying in the sense of [16] if its yes/no-output is aug-
mented with a planar embedding if the input graph is planar and a Kuratowski-
subdivision otherwise. The first two linear-time planarity tests of Hopcroft and
Tarjan [13] and Booth and Lueker [3] did not give a planar embedding for pla-
nar input graphs. Mehlhorn and Mutzel [18] and Chiba, Nishizeki, Abe and
Ozawa [7] extended these tests to compute a planar embedding in the same
asymptotic running time. The algorithm presented here is certifying.

2 Preliminaries

We use standard graph-theoretic terminology from [2]. Let G = (V,E) be a
simple finite graph with n := |V | and m := |E|. Multiedges do not matter for
planarity and can be removed in advance by performing two bucket sorts on the
endpoints of edges in E.

A vertex whose deletion increases the number of connected components is
called a cut vertex. A graph G is biconnected if it is connected and contains
no cut vertex. A biconnected component of a graph G is a maximal biconnected
subgraph of G. A pair of vertices whose deletion disconnects a biconnected graph
is called a separation pair. A biconnected graph is triconnected if it contains no
separation pair.
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A (straight-line) planar embedding of a graph G = (V,E) is an injective
function π: V → R2 such that for any two distinct edges ab and cd the straight
line segments π(a)π(b) and π(c)π(d) are internally disjoint (i. e., they may only
intersect at their endpoints). Two embeddings Emb1 and Emb2 of the same
planar graph are (combinatorially) different if there is a vertex v such that the
cyclic order of edges around v in Emb1 and Emb2 is different.

A subdivision of a graph G (a G-subdivision) is a graph obtained by replacing
the edges of G with internally disjoint paths of length at least one. Triconnected
graphs and their subdivisions have the following property, which we will use
throughout this paper.

Lemma 1 (Whitney [32], Thm. 1.1 in [20]). Every subdivision of a tricon-
nected graph has a unique planar embedding (up to flipping).

The triconnected components of a graphG are obtained by the following recursive
process on every biconnected component H of G: As long as there is a separation
pair {x, y} in H , we split H into two subgraphs H1 and H2 that partition E(H)
and have only x and y in common, followed by adding the edge e = xy to both
H1 and H2. We refer to [10] for a precise definition of this process. The edge e
that was added to H1 (respectively, H2) is called the virtual edge of H1 (H2)
and can be seen as a replacement of the graph H2 (H1) in this decomposition.

The graphs resulting from this process are either sets of three parallel edges
(triple-bonds), triangles or simple triconnected graphs. To obtain the tricon-
nected components of G, triple-bonds containing a common virtual edge are
successively merged to maximal sets of parallel edges (bonds); similarly, trian-
gles containing a common virtual edge are successively merged to maximal cycles
(polygons). Thus, a triconnected component of G is either a bond, a polygon, or
a simple triconnected graph. The triconnected components form a tree, which is
called SPQR-tree of G [10].

It is well-known that a graph G is planar if and only if all its biconnected
components are planar [13]. A similar result holds for the triconnected compo-
nents of G: If G is planar, all triconnected components of G are planar, as every
triconnected component is a minor of G. Conversely, if all triconnected compo-
nents of a graph G are planar, we can successively merge the planar embeddings
of two triconnected components containing the same virtual edge to a bigger
planar embedding [31, Lemma 6.2.6], and obtain a planar embedding for G in
linear time. This gives the following result.

Lemma 2 ([17]). A graph is planar if and only if all its triconnected compo-
nents are planar.

As bonds and cycles are planar, planarity has only to be checked for simple
triconnected graphs. The triconnected components can be computed in linear
time [10,12]. Although this is not a trivial task, reliable implementations are
publicly available [21] and future steps will benefit greatly from this.
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3 Constructions of Triconnected Graphs

With the above arguments we can assume that the input graph G is simple and
triconnected. We will make use of a special construction of triconnected graphs
due to Barnette and Grünbaum [1].

Definition 1. Let G be a simple triconnected graph with n ≥ 4. We define the
following operations on G (all vertices and edges are assumed to be distinct; see
Figure 1).

(a) Add an edge xy between two non-adjacent vertices x and y.
(b) Subdivide an edge ab by a vertex x and add the edge xy for a vertex y /∈ {a, b}.
(c) Subdivide two non-parallel edges e and f by vertices x and y, respectively,

and add the edge xy (note that e and f may intersect in one vertex).
(d) Add a new vertex x and join it to exactly three old vertices a, b and c.

(a) x and y
non-adjacent

(b) y /∈ {a, b} (c) e and f are not parallel edges

(d) adding a claw with center x

Fig. 1. Operations on triconnected graphs

Operations 1a-c correspond to adding edges (the added edge is xy) while
Operation 1d corresponds to adding a claw (i. e., K1,3) with a designated center
vertex x. The attachments of an operation O on G are the vertices and edges
in G involved in the operation, i. e., the attachments of Operations 1a–d are
{x, y}, {ab, y}, {ab, vw} and {a, b, c}, respectively. Let suppressing a vertex x
with exactly two non-adjacent neighbors y and z be the operation of deleting x
and adding the edge yz.

Applying any of the Operations 1a–d to G generates a graph that is sim-
ple and triconnected again. A classical result of Barnette and Grünbaum [1]
and Tutte [28] characterizes the triconnected graphs in terms of the first three
operations.

Theorem 1 ([1,28]). A simple graph G with n ≥ 4 is triconnected if and only
if G can be constructed from K4 using only operations of Types 1a–c.
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For testing planarity, we will use the following slightly modified construction. It
restricts operations of Type 1a to be at the end of the construction; in order to
achieve this, we allow to use additional operations of Type 1d. Having all Type 1a
operations at the end of the construction will allow for an easier efficient data
structure in the planarity test.

Theorem 2 ([23]). A simple graph G with n ≥ 4 is triconnected if and only if
G can be constructed from K4 using only operations of Types 1a–d such that all
operations of Type 1a are applied last.

A construction sequence C of G is a sequence of operations that constructs G
from K4 precisely as stated in Theorem 2. Note that any edge that was added
by an Operation 1a in C will not be subdivided by later operations.

A construction sequence has a space complexity that is linear in the size of G
by using a labeling scheme on vertices and edges that essentially assigns a new
label to one half of an edge e after e was subdivided by an operation [23]. The
labeling scheme allows additionally for a constant-time access to the edges and
vertices that are involved in an operation O, i. e., to the edge e that is added by
O and to the vertices and edges on which the endpoints of e lie.

Recently, it was shown that a construction C′ of G as stated in Theorem 1 can
be computed in linear time [24]. The algorithm is certifying and hence a reliable
implementation has already been made publicly available [19]. A construction
sequence C can be obtained from C′ by a simple linear-time transformation as
pointed out in [23].

4 The Planarity Test

We can assume that the input graph G is simple and triconnected. Observe that
if n ≤ 3, G is planar. Assume n ≥ 4. Let C be a construction sequence of G.

The planarity test starts with the (unique) planar embedding of K4 and com-
putes iteratively a planar embedding for the graph that is obtained from the
next operation O in C if possible. The following lemma characterizes under
which conditions an operation O in C preserves planarity.

Lemma 3. Let H be a planar embedding of a simple triconnected graph on at
least 4 vertices and let H ′ be the graph that is obtained from H by applying an
operation O of Type 1a–d. Then H ′ is planar if and only if the attachments of
O are part of one face f of H.

Proof. ⇐: Clearly, subdividing edges in the facial cycle of f preserves planarity
and so does the addition of an edge or a claw inside f .

⇒: Assume to the contrary that not all attachments of O are contained in
one face of H . Note that when O is of Type 1d it is possible that every two of
the three attachments are contained in a face of H , respectively. We will show a
contradiction to the unique embedding of H . Let Emb be the planar embedding
that is obtained from the planar embedding of H ′ by reversing Operation O,
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i. e., by deleting the added edge in H ′ and suppressing all vertices of degree two
if O is of Type 1a–c, and by deleting the center vertex of the added claw in H ′ if
O is of Type 1d. Then Emb and H embed the same simple triconnected graph,
but are combinatorially different, as Emb has a face containing all attachments
of O, while H has no such face by assumption. This contradicts Lemma 1. ��

If all attachments of O are in one face f , applying O gives a planar embedding.
If all operations in C satisfy this condition, we obtain a planar embedding of G.
Otherwise, let H be the graph obtained from the first operation in C that does
not satisfy the condition of Lemma 3. Then H is non-planar and G must be
non-planar, as G contains a subdivision of H as a subgraph. We will show how
to extract this subdivision in linear time in the next section. Lemma 3 suggests
the following Algorithm 1.

Algorithm 1. PlanarityTest(G) $ G simple and triconnected with n ≥ 4

1: compute a construction sequence C = O1, . . . , Ok of G
2: initialize the (unique) planar embedding H of K4

3: for i = 1 to k do
4: if all attachments of Oi are in one face f of H then � planar
5: apply Oi to H by adding the edge or claw inside f
6: else � non-planar
7: compute a Kuratowski-subdivision

It remains to discuss how the condition in Lemma 3 can be checked efficiently
for every operation in C.

A plane st-graph is an embedding of a planar directed acyclic graph with
exactly one source s and exactly one sink t such that s and t are contained in the
external face of the embedding. It is well-known that every biconnected planar
graph can be oriented and drawn as plane st-graph (see, e. g., [5, Lemmas 1+2]).
In every step of Algorithm 1, the planar embedding H is triconnected and thus
biconnected. To check the condition in Lemma 3 efficiently, we will maintain H
as plane st-graph and use a data structure that is able to answer queries whether
edges and vertices are contained in the same face of H in amortized constant
time.

We modify a data structure due to Djidjev [8, Lemma 3.1], which runs on a
standard word-RAM. The original data structure maintains a plane st-graph H
in which the incoming and the outgoing edges for any vertex x appear consecu-
tively around x; hence, the boundary of each face f in H consists of two oriented
paths from a common start vertex (the source of f) to a common end vertex (the
sink of f); see [26]. Note that every vertex is source or sink of at least one face,
as H has minimum degree 3. Additionally, every vertex x /∈ {s, t} is contained
in exactly two faces for which x is neither source nor sink; we call these faces
the left and the right face of x, respectively (see Figure 2). The data structure
maintains pointers to the source and sink for each face in H and a pointer from
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(a) left and right face of a vertex (b) source and sink vertex of a face

Fig. 2. Plane st-graphs

each vertex x /∈ {s, t} to its left and right face. The following two queries for
triconnected graphs H are supported by performing simple tests along the above
pointer structure.

(1) Given a vertex a and an edge b of H , output a face of H that contains a and
b or report that there is none.

(2) Given two vertices a and b of H such that a is a source or sink of at most 11
faces, output a face of H that contains a and b or report that there is none.

Each of these queries takes worst-case time O(1). Note that the only query
for which we cannot expect a constant running time using the above pointer
structure would be a query where a and b are source or sink vertices of an
unbounded number of faces. That is why query (2) assumes only a constant
number of such faces. We augment the data structure by the following query
type and show that each such query can be computed in worst-case time O(1).

(3) Given three vertices a, b and c of H , output a face of H that contains a, b
and c or report that there is none.

We can compute the set F of all left and right faces of the vertices a, b and c
in constant time; note that F contains at most 6 faces. If there is a face f in H
containing a, b and c, at least one vertex in {a, b, c} is neither source nor sink of
f , which implies that f must be in F . For a query (3), it therefore suffices to test
each face f ∈ F for containing a, b and c, respectively. A vertex v is contained
in f if and only if v is either source or sink of f , which can be checked in time
O(1), or one of the remaining vertices in f , which can be checked in time O(1)
by testing whether f is the left or right face of v.

The data structure additionally supports each of the following modifications
to H in amortized time O(1) and maintains a plane st-graph after every modi-
fication.

(4) Subdivide an edge.
(5) Given two non-adjacent vertices a and b and a face f of H that contains a

and b, add the edge ab inside f .
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Clearly, K4 can be embedded as a plane st-graph and we initialize H with this
embedding. Every operation O of Type 1a–d can be converted into at most three
of the modifications (4) and (5). E. g., we can add a claw having its attachments
{a, b, c} in a common face by consecutively inserting the edge ab, subdividing ab
with a new vertex x and adding the edge xc. For operations O of Type 1b–d,
the condition in Lemma 3 can be checked in constant time by one query (1) or
one query (3).

It only remains to show how we can check the condition in Lemma 3 if O is of
Type 1a. According to Theorem 2, all operations in C that follow O will be of
Type 1a, which implies that H is a spanning subgraph of G. In other words, each
of the remaining operations in C adds only an edge that will not be subdivided
afterwards. Hence, the order in which these remaining edges E′ are added does
not matter.

We use a trick similar as in [8, Lemma 3.2] and add the remaining edges E′

in an order such that each added edge has an endpoint that is the sink or source
of at most 11 faces. If we know this order, we can use query (2) to ensure that
every step can be computed in constant time.

In order to compute this order, we maintain an auxiliary graph HA whose
vertex set consists of all vertices in V (H) that are incident to an edge in E′.
There is an edge between two vertices a and b in HA if a and b are source and sink
vertices of the same face. Note that HA may have parallel edges. We construct
HA in linear time when the first operation of Type 1a in C is encountered; after
every modification (5), HA can be updated in time O(1), as each face f stores
a pointer to its source and sink.

As HA is planar and has at most two parallel edges between every two vertices
(as H is simple and triconnected), it contains at most 6|V (HA)| − 12 edges.
Hence, there is at least one vertex of degree at most 11 in HA. We note that the
degree bound 6 proposed in [8, Lemma 3.2] should also be 11, as the auxiliary
graph used there is not necessarily simple.

Before the first operation of Type 1a in C is applied to H , we construct a
list Small of all vertices in HA having degree at most 11 in linear time; again,
this list is easy to maintain under modifications (5) in time O(1). Now we just
choose successively a vertex v ∈ Small and an edge e = vw in E′ and perform
modification (5) with v and w if v and w have been reported to be in the same
face. This allows to check the condition in Lemma 3 for each of the remaining
edges in E′ in constant time using query (2). We conclude the following theorem.

Theorem 3. The planarity test Algorithm 1 can be implemented in linear time.

5 Extensions

A Kuratowski-subdivision is a subdivision of either a K3,3 or of a K5 and proves
every graph that contains it to be non-planar. We show how a Kuratowski-
subdivision can be computed if an operation O is encountered that has not
all attachment vertices on one face in H . The computation follows in parts the
arguments given in the short proof of Kuratowski’s Theorem in [27]. The fact that
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the Kuratowski-subdivision is computed in a triconnected component does not
matter; it is straight-forward to get a corresponding Kuratowski-subdivision in
the input graph by reversing the splits that were done to obtain the triconnected
components.

We first recall planarity-related terminology.

Definition 2. For a cycle C in a graph G, let a C-component be either an edge
e /∈ C with both endpoints in C or a connected component of G \ V (C) together
with all edges that join the component to C and all endpoints of these edges. The
vertices of attachment of a C-component H are the vertices in H ∩ C.

Two C-components H1 and H2 avoid each other if C contains two vertices u
and v such that H1 has all vertices of attachment on one path in C from u to v
and H2 has all vertices of attachment on the other path in C from u to v.

Two C-components overlap if they do not avoid each other. Let two C-
components H1 and H2 be C-equivalent if H1∩C = H2∩C and this set contains
exactly three vertices. Let H1 and H2 be skew if C contains four distinct vertices
x1, x2, x3 and x4 in cyclic order such that x1 and x3 are in H1 and x2 and x4
are in H2. We will need the following basic fact about C-components.

Lemma 4 ([27]). Two C-components overlap if and only if they are either skew
or C-equivalent.

Now we are prepared to compute a Kuratowski-subdivision.

Lemma 5. Let H be a planar embedding of a simple triconnected graph on at
least 4 vertices and let O be an operation of Type 1a–d on H whose attachments
are not all contained in one face of H. Then the graph H ′ that is obtained from
H by applying O contains a subdivision of K5 or K3,3, and this subdivision can
be computed in linear time.

Proof. First assume that O adds a claw and every two of the three attachments
{a, b, c} of O are contained in a face of H , respectively; we call these three faces
f1, f2 and f3. Let J be a closed Jordan curve in f1 ∪ f2 ∪ f3 that intersects H
exactly at a, b and c. Since a, b and c are not all contained in a face of H , there are
vertices vin and vout strictly inside and strictly outside J , respectively. Since H
is 3-connected, we can compute from vin and vout three internally vertex-disjoint
paths to {a, b, c}, respectively, by performing one depth first search. Adding the
claw of O to these paths gives a K3,3-subdivision in H ′.

The only remaining case is that O has at least two attachments a and b that
are not contained in one face of H ; note that a and b may be edges. As H \a is 2-
connected, it contains a cycle C that is the boundary of the face which contains a
in its interior. By assumption, b /∈ C. Let Ha and Hb be the C-components of H
containing a and b, respectively. By definition of C, Ha is the only C-component
in the interior of C.

We show that Ha and Hb overlap. Assume the contrary. Then Hb has two
vertices of attachment u and v such that Ha has all vertices of attachment on
one path Pa ⊂ C from u to v and Hb has all vertices of attachment on the other
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path Pb ⊂ C from u to v. If a is a vertex, a and b are in different components of
H \{u, v}, since H is a planar embedding. This contradicts H to be triconnected.
Otherwise, a is an edge (which will be subdivided by O) and Ha = a. Then, as
H is simple, Pa has length at least two, which implies that an inner vertex in
Pa is in a different component of H \ {u, v} than b. This contradicts H to be
triconnected. Thus, Ha and Hb overlap.

According to Lemma 4, Ha and Hb are either skew or C-equivalent. The cycle
C, Ha and Hb can be easily computed in linear time. Deciding whether Ha

and Hb are skew and computing the vertices x1, x2, x3 and x4 on C, whose
existence defines this property amounts to one traversal along C. If a is an edge,
subdivide a and let a′ be the new vertex of degree two; otherwise let a′ = a.
Define b′ accordingly. Due to Menger’s Theorem, there are either two or three
internally disjoint paths from a′ to C in Ha (and from b′ to C in Hb), depending
on whether Ha (Hb) is an edge. These paths can be computed by a depth-first
search that starts with the desired vertex.

If Ha and Hb are skew, we compute two of these paths in Ha that end at x1
and x3, respectively, and two in Hb that end at x2 and x4, respectively. Taking
the union of these four paths, C and T forms a K3,3-subdivision, where T is
either the added edge of O or the path of length two from a to b if O adds a
claw. If Ha and Hb are C-equivalent, the union of the three paths in Ha and Hb,
respectively, C and T gives a K5-subdivision. ��

We remark that our algorithm can be easily extended to output always a K3,3-
subdivision in linear time when the input graph G is 3-connected, non-planar
and G �= K5. This is based on the following variant of Kuratowski’s Theorem
for triconnected graphs.

Lemma 6 ([15]). A simple triconnected graph G �= K5 is planar if and only if
G does not contain a K3,3-subdivision.

Note that we get a K5-subdivision K only in the case that O adds a claw. The
desired K3,3-subdivision can then be obtained from K by rerouting one of the
paths of K that ends at a to the center vertex of the claw.

Open Questions. The most immediate question is whether there is a simple
linear-time algorithm that computes the construction sequence C of a tricon-
nected graph. This would immediately imply a simple linear-time planarity test.
As argued before, one may even assume planarity to find such a sequence. Fur-
ther, it seems possible that such an algorithm, or the existing one in [24], can be
extended to compute the triconnected components of the input graph, similarly
as in the triconnectivity test of Hopcroft and Tarjan [12]. This would subsume
the computation of C and the preprocessing of the graph into triconnected com-
ponents. The proposed new algorithmic approach to planarity testing might
also allow to recognize other subclasses of planar graphs efficiently (e.g., planar
graphs that contain no subdivision of K5 − e or of W4).
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Abstract. We give the first, as far as we know, feasible proof of König’s
Min-Max Theorem (KMM), a fundamental result in combinatorial ma-
trix theory, and we show the equivalence of KMM to various Min-Max
principles, with proofs of low complexity.
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1 Introduction

König’s Mini-Max Theorem (KMM) is a cornerstone result in Combinatorial
Matrix Theory. We give the first, as far as we know, feasible proof of KMM, and
we show that it is equivalent to a host of other theorems: Menger’s, Hall’s, and
Dilworth’s, with the equivalence provable in low complexity.

The standard textbook proof of KMM given in [BR91], can be formalized
with ΠB

2 reasoning. On the other hand, our approach yields a ΣB
1 proof. We use

the theory of Bounded Arithmetic LA, introduced by [SC04].
Let A be an n×m 0-1 matrix, i.e., a matrix with entries in {0, 1}. A line is a

row or column of A; given an entry Aij of A, we say that a line covers that entry
if this line is either row i or column j. KMM states that the minimum number
of lines that cover all of the 1s in A is equal to the maximum number of 1s in A
with no two of the 1s on the same line.

LA is a first-order theory, of three sorts: indices, ring elements, and matrices.
It formalizes basic index manipulations, as well as ring properties, and has a
matrix constructor. The details can be found in [SC04]. While LA allows for
bounded index quantification and arbitrary matrix quantification, its induction
is restricted to be over formulas without matrix quantifiers, i.e., over ΣB

0 = ΠB
0

formulas. On the other hand, ∃LA allows ΣB
1 induction. When the underlying

ring is Z, the theorems of LA translate into TC0-Frege while the theorems of
∃LA translate into extended Frege, [SC04, §6.5].

It follows more or less directly that our LA results can also be formalized
in the theory VTC0 (and vice versa), defined in [CN10, pg. 283]. The reason is
that the function ΣA is exactly Buss’ function Numones(A) ([Bus86] and [Bus90,
pg. 6]), i.e., the function that counts the number of 1s in A, and TC0 is the AC0

closure of Numones, [CN10, Proposition IX.3.1]. On the other hand, our ∃LA
results can also be formalized in V1, defined in [CN10, pg. 133].

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 777–788, 2013.
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Recently [LC12] formalized the proof of correctness of the Hungarian algo-
rithm, which is an algorithm based on KMM.

The language of LA is well suited to express concepts in combinatorial matrix
theory. For example, we say that the matrix α is a cover of a matrix A with the
predicate:

Cover(A,α) := ∀i, j ≤ r(A)(A(i, j) = 1 → α(1, i) = 1 ∨ α(2, j) = 1) (1)

We use r(A) and c(A) to denote the rows and columns of a matrix A. We
abbreviate r(A) ≤ n ∧ c(A) ≤ n with |A| ≤ n. The matrix α keeps track of
the lines that cover A; it does so with two rows: the top row keeps track of
the horizontal lines, and the bottom row keeps track of the vertical line. The
condition ensures that any 1 in A is covered by some line stipulated in α.

We say that β is a selection of A with the predicate Select(A, β) defined as
the conjunction of

∀i, j ≤ r(A)(β(i, j) = 1 → A(i, j) = 1),

which asserts that β is a selection of 1s from A, and

∀k ≤ r(A)(β(i, j) = 1 → β(i, k) = 0 ∧ β(k, j) = 0)),

which asserts that no two of those 1s are in the same row or column.
We are interested in a minimum cover (as few 1s in α as possible) and a

maximum selection (as many 1s in β as possible). The following two predicates
express that α is a minimum cover and β a maximum selection.

MinCover(A,α) := Cover(A,α) ∧ ∀α′ ≤ c(α)(Cover(A,α′) → Σα′ ≥ Σα)

MaxSelect(A, β) := Select(A, β) ∧ ∀β′ ≤ r(β)(Select(A, β′) → Σβ′ ≤ Σβ)

Clearly MinCover and MaxSelect are ΠB
1 formulas. We can now state KMM:

MinCover(A,α) ∧ MaxSelect(A, β) → Σα = Σβ (2)

Note that (2) is a ΣB
1 formula. The reason is that in prenex form, the universal

matrix quantifiers in MinCover and MaxSelect become existential as we pull
them out of the implication; they are also bounded.

Given a matrix A, its n-th principal minor consists of A with the first r(A)−n
rows deleted, and the first c(A) − n columns deleted. For instance, for a square
matrix A, when n = |A|, the n-th submatrix is just A, and when n = 1, then n-th
submatrix is just [A|A|,|A|], i.e., the matrix consisting of just the lower-right entry.
Let A[n] denote the n-th principal minor, and note that A[n] can be expressed
as follows in the language of LA: λij〈n, n, e(A, r(A) − n+ i, c(A) − n+ j)〉.

Let KMM(A, n) assert that formula (2) holds for the n-th submatrix of A.
More precisely, KMM(A, n) is the prenex form of (2) with A replaced by A[n].
Thus, KMM(A, n) is a ΣB

1 formula. Let lA = Σα where MinCover(A,α), and
oA = Σβ where MaxSelect(A, β). It can be stated with a ΣB

0 predicate that a
matrix P is a permutation matrix. That is,

Perm(P ) := (∀i ≤ |P |∃j ≤ |P |Pij = 1) ∧ (∀i, j �= k ≤ |P |(Pij = 0 ∨ Pik = 0)).
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2 Feasible Proof of KMM

We prove the main theorem with a sequence of Lemmas.

Theorem 1. ∃LA proves König’s Min-Max (KMM) Theorem.

We prove KMM for any matrix A by induction on the principal minors of A.

Lemma 2. ∃LA 1 ∀nKMM(A, n).

Recall that the predicate KMM(A, n) has been defined in the last paragraph
of the previous section. Showing ∀nKMM(A, n) is enough to prove KMM for A
since letting n = |A| we obtain A[n] = A.

We start by showing the following technical Lemma which states that lA and
oA are invariant under permutations of rows and columns.

Lemma 3. Given a matrix A, and given any permutation matrix P , we have
that LA 1 lPA = lAP = lA and LA 1 oPA = oAP = oA.

Proof. LA shows that if we reorder the rows or columns (or both) of a given
matrix A, then the new matrix, call it A′, where A′ = PA or A′ = AP , has the
same size minimum cover and the same size maximum selection. Of course, we
can reorder both rows and columns by applying the statement twice: A′ = PA
and A′′ = A′Q = PAQ.

LA proves Cover(A,α) → Cover(A′, α′) and Select(A, β) → Select(A′, β′),
where A′ is defined as in the above paragraph, and α′ is the same as α, except
the first row of α is now reordered by the same permutation P that multiplied A
on the left (and the second row of α is reordered if P multiplied A on the right).
The matrix β is even easier to compute, as β′ = Pβ if A′ = PA, and β′ = βP
if A′ = AP . It follows from P being a permutation matrix that Σα = Σα′ and
Σβ = Σβ′: we can show by LA induction on the size of matrices that if X ′

is the result of rearranging X (i.e., X ′ = PXQ, where P,Q are permutation
matrices), then ΣX = ΣX ′. We do so first on X consisting of a single row, by
induction on the length of the row. Then we take the single row as the basis case
for induction over the number of rows of a general X .

It is clear that given A′, the cover α′ has been adjusted appropriately; same
for the selection β′. We can prove it formally in LA by contradiction: suppose
some 1 in A′ is not covered in α′; then the same 1 in A would not be covered
by α. For the selections, note that reordering rows and/or columns we maintain
the property of being a selection: we can again prove this formally in LA by
contradiction: if β′ has two 1s on the same line, then so would β.

The last thing to show is that LA proves MinCover(A,α) → MinCover(A′, α′)
MaxSelect(A, β) → MaxSelect(A′, β′). If the right-hand side does not hold, we
would get that the left-hand side does not hold by applying the inverse of the
permutation matrix. ��

We are going to prove Lemma 2 by induction on n, breaking it down into Claims 4
and 7.
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Claim 4. LA 1 oA ≤ lA.

Proof. Given a covering of A consisting of lA lines, we know that every 1 we pick
for a maximal selection of 1s has to be on one of the lines of the covering. We also
know that we cannot pick more than one 1 from each line. Thus, the number of
lines in the covering provide an upper bound on the size of such selection, giving
us oA ≤ lA.

We can formalize this argument in LA as follows: let A be an lA× oA matrix
whose rows represent the lines of the covering, and whose columns represent the
1s no two on the same line. Let A(i, j) = 1 ⇐⇒ the line labeled with i covers
the 1 labeled with j. Then,

oA = c(A) ≤ ΣA (a)

= Σi(Σλpq〈1, c(A),A(i, q)〉) (b)

≤ Σi1 = r(A) = lA, (c)

where (a) can be shown by induction on the number of columns of A which has
the condition that each column contains at least one 1 (i.e., each 1 from the
selection must be covered by some line); (b) follows from the fact that we can
add all the entries in a matrix by rows; and (c) can be shown by induction on
the number of rows of A which has the condition that each row contains at most
one 1 (i.e., no two 1s from the selection can be on the same line). ��

Note that in the proof of Claim 4 we implicitly show the Pigeonhole Principle
(PHP). We showed that if we have a set of n items {i1, i2, . . . , in} and a second
set of m items {j1, j2, . . . , jm}, and we represent the matching by A as follows:
A(p, q) = 1 ⇐⇒ ip  → jq, then injectivity means that each column of A has at
most one 1. Thus:

n ≤ ΣA = Σi(col i of A) ≤ Σi1 ≤ m.

This is to be expected as we already mentioned that LA over Z corresponds to
VTC0, which proves PHP.

Bondy’s Theorem states that for any n×n 0-1 matrix whose rows are distinct,
we can always delete a column so that the remaining n × (n − 1) matrix still
has n distinct rows. [CN10, §IX.3.8] investigate the connection between Bondy’s
Theorem (BONDY) and PHP, and they show that V0 1 BONDY ↔ PHP. It
would be interesting to know if V0 1 KMM ↔ PHP.

As Claim 4 shows, LA is sufficient to prove oA ≤ lA; on the other hand, we
seem to require the stronger theory ∃LA (which is LA with induction over ΣB

1

formulas) in order to prove the other direction of the inequality. We start with
the following definition.

Definition 5. We say that an n×n 0-1 matrix has the diagonal property if for
each diagonal entry (i, i) of A, either Aii = 1, or ∀j ≥ i[Aij = 0 ∧ Aji = 0].

Claim 6. Given any matrix A, LA proves that there exist permutation matrices
P,Q such that PAQ has the diagonal property.



Feasible Combinatorial Matrix Theory 781

Proof. We construct P,Q inductively on n = |A|. Let the i-th layer of A consist
of the following entries of A: Aij , for j = i, . . . , n and Aji for j = i + 1, . . . , n.
Thus, the first layer consists of the first row and column of A, and the n-th layer
(also the last layer), is just Ann. We transform A by layers, i = 1, 2, 3, . . .. At
step i, let A′ be the result of having dealt already with the first i − 1 layers. If
A′
ii = 1 move to the next layer, i+1. Otherwise, find a 1 in layer i of A′. If there

is no 1, also move on to the next layer, i + 1. If there is a 1, permute it from
position Aij′ , j

′ ∈ {i, . . . , n} to A′
ii, or from position Aj′i, j

′ ∈ {i + 1, . . . , n}.
Note that such a permutation does not disturb the work done in the previous
layers; that is, if A′

kk, k < i, was a 1, it continues being a 1, and if it was not
a 1, then there are no 1s in layer k of A′. Note that each layer can be computed
independently of the others. ��

Claim 7. ∃LA 1 oA ≥ lA.

Proof. Let

A =

[
a R
S M

]
, (3)

where a is the top-left entry, and M the principal sub-matrix of A, and R
(resp. S) is 1 × (n− 1) (resp. (n− 1) × 1).

By Claim 6 we can ensure that A has the diagonal property, which simplifies
the analysis of the cases. Indeed, from the diagonal property we know that one
of the following two cases is true:

Case 1. a = 1

Case 2. a,R, S consist entirely of zeros
In the second case, oA ≥ lA follows directly from the induction hypothesis,

oM ≥ lM , as oA = oM ≥ lM = lA. Thus, it is the first case, a = 1, that is
interesting. The first case, in turn, can be broken up into two subcases: lM = n−1
and lM < n− 1.

Subcase (1-a) lM = n− 1
By induction hypothesis, oM ≥ lM = n − 1. We also have that a = 1, and a

is in position (1, 1), and hence no matter what subset of 1s is selected from M ,
none of them lie on the same line as a. Therefore, oA ≥ oM +1. Since oM ≥ n−1,
oA ≥ n, and since we can always cover A with n lines, we have that n ≥ lA, and
so oA ≥ lA.

Subcase (1-b) lM < n− 1
Let A and M be as in (3), and let αM be a set of lines of M , i.e., αM consists of

rows i1, i2, . . . , ik, and columns j1, j2, . . . , j. The extension of αM to A, denoted
α̂M , is simply the set of rows i1 + 1, i2 + 1, . . . , ik + 1, and the set of columns
j1 + 1, j2 + 1, . . . , j + 1.

We say that a minimal cover αA is proper if it does not consists entirely of
all the rows or of all the columns of A; that is, αA is proper if it is minimal, i.e.,
|αA| = lA, and each row of αA has at least one zero. If lM < n − 1, then we
know that αA has a proper cover, as we can always cover A with α̂M plus the
first row and column of A.
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Let αA be a proper minimal cover of A, and let P,Q be two permutations that
place all the rows of the cover in the initial position, and place all the columns
of the cover in the initial position—Figure 1 illustrates this.

0

Fig. 1. Permuting the rows and columns of the cover to be in initial positions

Now suppose that αA consists of e rows and f columns (in the diagram, e
horizontal lines and f vertical lines). Clearly lA = e + f . The rearranging of A
produces four quadrants; the lower-right quadrant, of size (|A| − f) × (|A| − e),
consists entirely of zeros (since no lines cross it), and since αA is proper, we
know that it is not empty. The upper-right quadrant is of size e × (|A| − f),
and it cannot be covered by fewer than e lines. The lower-left quadrant is of size
(|A| − e) × f and cannot be covered by fewer than f lines.

Claim 8. ∃LA shows that if X is an e× h matrix, and lX = e, then oX ≥ e.

Proof. We state the claim formally as follows:

[∀α ≤ r(A)Cover(A,α) → Σα ≥ r(A)] → [∃β ≤ r(A)Select(A, β) ∧Σβ ≥ r(A)]

and we prove it by induction on the number of rows of A. To this end, let An

denote the first n rows of A, so that Ar(A) = A. We now prove the ΣB
1 formula:

∃α, β ≤ n [(Cover(An, α) ∧Σα < n) ∨ (Select(An, β) ∧Σβ ≥ n)] ,

which is equivalent to the formula above it for n = r(A). The claim holds for
n = 1, as in that case we have a single row, which is either zero and hence has
a cover of size 0, or the row has a 1, in which case we can select it. For the
induction step, suppose the claim holds for n = k. Suppose that any cover for
Ak+1 requires k + 1 rows. Then, Ak requires k rows (for otherwise, a cover of
Ak of size < k plus row k + 1 would give a cover of size ≤ k of Ak+1, which is a
contradiction). By IH, Ak has a selection of size at least k.

Let S = {(1, 
1), (2, 
2), . . . , (k, 
k)} be a selection from Ak. Let CS be the set
of k vertical lines going through S. Consider row k + 1; we know that this row
cannot be empty. If there is a 1 in row k+1 not covered by CS, then select that 1.
Otherwise, suppose that there are p > 0 1s in row k + 1; label their columns as
c1, c2, . . . , cp. Let ri be the row with the unique 1 in S such that 
ri = ci.

Let ρi = {(k + 1, ci), (ri, ci), (ri, x1), (y1, x1), (y1, x2), . . . , (a, b)}, so that each
position has a 1 in Ak+1, and in particular (a, b) corresponds to a 1 not covered
by CS. Then, ρi describes a re-arrangement of the selection. A ρi with (a, b) not
covered by CS must exist. See Figure 2 for an illustration. ��
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1

1 1 1

1

1 1

Fig. 2. ρ1 consisting of five positions

Since the size of selections is invariant under permutations, it follows that
oA ≥ e+ f = lA. ��

As an aside, we present a recursive algorithm for computing minimal covers.
It would be interesting to know if it has a polytime proof of correctness. First
convert A into diagonal form.

Case 1. If a = 0 (so R = S = 0, by the diagonal form of A), then lA = lM , and
proceed to compute αM ; output α̂A.

Case 2. If a �= 0, we first examine R to see if the matrix M ′, consisting of the
columns of M minus those columns of M which correspond to 1s in R, has a
cover of size lM −ΣR (of course, if lM < ΣR, then the answer is “no”).

If the answer is “yes”, compute the minimal cover of M ′, αM ′ . Then let αM
be the cover of M consisting of the lines in αM ′ properly renamed to account
for the deletion of columns that transformed M into M ′, plus the columns of M
corresponding the 1s in R. Let αA = α̂A ∪ {1st column of A}.

If the answer is “no”, repeat the same with S: check whether M ′ has a cover
of size lM −ΣS. If the answer is “yes” then αA = α̂A ∪ {1st row of A}.

If the answer is “no”, then compute any minimal cover for M , extend it to A,
and add the first row and column of A; this results in a cover for A.

3 Equivalence of Various Min-Max Principles

Theorem 9. The theory LA proves the equivalence of KMM, Menger’s, Hall’s
and Dilworth’s Theorems.

3.1 Menger’s Theorem

Given a graph G = (V,E), an x, y-path in G is a sequence of distinct vertices
v1, v2, . . . , vn such that x = v1 and y = vn and for all 1 ≤ i < n, (vi, vi+1) ∈ E.
The vertices {v2, . . . , vn−1} are called internal vertices; we say that two x, y-
paths are internally disjoint if they do not have internal vertices in common. We
also say that S ⊆ V is an x, y-cut if there is no path from x to y in the graph
G′ = (V − S,E′), where E′ is the subset of those edges in E which have no
end-point in S.
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Let κ(x, y) represent the size of the smallest x, y-cut, and let λ(x, y) represent
the size of the largest set of pairwise internally disjoint x, y-paths. Menger’s
theorem states that for any graph G = (V,E), if x, y ∈ V and (x, y) /∈ E,
then the minimum size of an x, y-cut equals the maximum number of pairwise
internally disjoint x, y-paths. That is, κ(x, y) = λ(x, y). Menger’s Theorem is of
course the familiar Min-Cut Max-Flow Theorem where all edges have capacity 1.
For more details on Menger’s Theorem turn to [Men27, Gör00, Pym69].

Let β be a matrix that encodes disjoint paths; the rows of β correspond to the
paths, and the columns to the vertices of G, where β(i, j) = 1 if path i contains
vertex j. The disjointness can be stated by insisting that each column has at
most one 1. Let γ be a 1 × |V | matrix that encodes a cut in the natural way.
Maximality and minimality can be expressed as in the KMM Theorem. We leave
the details to the reader:

Menger(A) := MaxDisj(A, x, y, β) ∧ MinCut(A, x, y, γ) → Σβ = Σγ (4)

Lemma 10. LA ∪ Menger 1 KMM.

Proof. Consider a bipartite graph G = (V0 ∪ V1, E), where E ⊆ V0 × V1. Let
A be the adjacency matrix for G where A(i, j) = 1 iff i ∈ V0 and j ∈ V1 and
(i, j) ∈ E. We now extend G to Gx,y by adding two new vertices, x and y, and
edges {(x, v) : v ∈ V1}, denoted “red edges”, and edges {(y, v) : y ∈ V0}, denoted
“green edges.”

The adjacency matrix Ax,y of Gx,y is of size (|A| + 1) × (|A| + 1) and:

Ax,y(i, j) =

⎧⎪⎨⎪⎩
A(i, j) for 1 ≤ i, j ≤ |A|
1 one {i, j} equals |A| + 1

0 both {i, j} equal |A| + 1

yx

i.e., λij〈r(A) + 1, c(A) + 1, cond(1 ≤ i, j ≤ |A|, A(i, j), cond(i = j = |A|+ 1, 0, 1))〉.
As the graphs related to Menger’s Theorem are not bipartite, we convert Ax,y

to a non-bipartite graph A′ as follows:

A′ =

[
0 Ax,y

AT
x,y 0

]
,

Let G′ be the non-bipartite graph represented by A′. We now finish the proof of
the Lemma with a sequence of claims.

Claim 11. LA proves that if there is a cut in G′ of size k, then there is a cut
in G′ if size k that only cuts the red/green edges, i.e., only those edges that are
adjacent to either x or y.

Proof. Suppose that a black edge is part of a cut. Every x, y-path crosses from
V0 to V1, and taking off one black edge can only block one x, y-path; the same
path is blocked by taking off the corresponding red or green edge. ��
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Claim 12. LA proves the following two:

1. G has a matching of size k ⇐⇒ G′ has k disjoint x, y-paths.
2. G has a vertex cover of size k ⇐⇒ G′ has an x, y-cut of size k.

Claim 12 follows directly from Claim 11. On the other hand, the direct conse-
quence of Claim 12 is that the size of a maximum matching in G equals the size
of a maximum set of disjoint x, y-paths in G′; and the size of the minimum vertex
cover in G equals the size of the minimum x, y-cut in G′. All this is provable in
LA. This ends the proof of Lemma 10 because by Menger’s Theorem, the size
of the maximum set of disjoint x, y-paths in G′ equals the size of the minimum
x, y-cut in G′. Therefore, the size of the maximum matching in G equals the size
of the minimum vertex cover in G. ��

Lemma 13. LA ∪ KMM 1 Menger.

Proof. Each path in β must have at least one vertex in the cut γ and no vertex of
γ can be in more than one path in β, hence λ ≤ κ. The proof of this is identical
to the proof of Claim 4.

Thus, it remains to show, using KMM, that λ ≥ κ. The proof of this is
inspired by [Aha83]; we assume that G is directed, but a simple construction
gives us the undirected case as well. Let A = {u ∈ V : (x, u) ∈ E} and let
B = {v ∈ V : (v, y) ∈ E}. Let X = V − (A ∪ B), and also split every vertex
v ∈ V into two vertices v′, v′′. We now construct a new bipartite graph Γ where
the two sides are given by A′ ∪ X ′ and B′′ ∪ X ′′, and where the edges are
given by {(u′, v′′) : (u, v) ∈ E} ∪ {(x′, x′′) : x ∈ X}. By KMM there is a
matching M and a cover C in Γ of the same size. We let P be the set of paths
{x1, x2, . . . , xk} such that (x′i, x

′′
i+1) ∈ M , and we let S be a cut consisting of

{v ∈ V : v′, v′′ ∈ C or v′ ∈ A′ ∩ C or v′′ ∈ B′′ ∩ C}. LA can prove that P is a
set of disjoint paths, and S is a cut, and |P| ≥ |S|. This is enough to prove the
lemma as: λ ≥ |P| ≥ |S| ≥ κ. ��

3.2 Hall’s Theorem

Let S1, S2, . . . , Sn be n subsets of a given set M . Let D be a set of n elements of
M , D = {a1, a2, . . . , an}, such that ai ∈ Si for each i = 1, 2, . . . , n. Then D is said
to be a system of distinct representative (SDR) for the subsets S1, S2, . . . , Sn.

If the subsets S1, S2, . . . , Sn have an SDR, then any k of the sets must contain
between them at least k elements. The converse proposition is the combinatorial
theorem of P. Hall: suppose that for any k = 1, 2, . . . , n, any Si1 ∪Si2 ∪ · · · ∪Sik
contains at least k elements of M ; we call this the union property. Then there
exists an SDR for these subsets. See [Hal87, EW49, HV50] for more on Hall’s
theorem.

We formalize Hall’s theorem in LA with an adjacency matrix A such that
the rows of A represent the sets Si, and the columns of A represent the indices
of the elements in M , i.e., the columns are labeled with [n] = {1, 2, . . . , n}, and
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A(i, j) = 1 ⇐⇒ j ∈ Si. Let SDR(A) be the following ΣB
1 formula which states

that A has a system of distinct representatives:

SDR(A) := (∃P ≤ n)(∀i ≤ n)(AP )ii = 1 (5)

The next predicate is a ΠB
2 formula stating the union property:

UnionProp(A) := (∀P ≤ n∀k ≤ n∃Q ≤ n)[Σλpq〈1, k, (PAQ)pp〉 = k] (6)

Therefore, we can state Hall’s theorem as a ΣB
2 formula:

Hall(A) := UnionProp(A) → SDR(A) (7)

Lemma 14. LA ∪ KMM 1 Hall.

Proof. Let A be a 0-1 sets/elements incidence matrix of size n×n. Assume that
we have UnionProp(A); our goal is to show in LA, using KMM, that SDR(A)
holds.

Since by Claim 6, every matrix can be put in a diagonal form, using the fact
that we have UnionProp(A), it follows that we can find P,Q ≤ n such that
∀k ≤ n(PAQ)kk = 1. Thus we need n lines to cover all the 1s, but by KMM
there exists a selection of n 1s no two on the same line, hence oA = n.

But this means that the maximal selection of 1s, no two on the same line,
constitutes a permutation matrix P (since A is n× n, and we have n 1s, no two
on the same line). Note that APT has all ones on the diagonal, and this in turn
implies SDR(A). ��
Lemma 15. LA ∪ Hall 1 KMM.

Proof. Suppose that we have MinCover(A,α) and MaxSelect(A, β); we want to
conclude that Σα = Σβ using Hall’s Theorem.

As usual, let lA = Σα and oA = Σβ, and by Claim 4 we already have that
LA 1 oA ≤ lA. We now show in LA that oA ≥ lA using Hall’s Theorem.

Suppose that the minimum number of lines that cover all the 1s of A consists
of e rows and f columns, so that lA = e+ f . Both lA and oA are invariant under
permutations of the rows and the columns of A (Lemma 3), and so we reorder
the rows and columns of A so that these e rows and f columns are the initial
rows and columns of A′,

A′ =

[
A1 A2

A3 A4

]
,

where A1 is of size e× f . Now, we shall work with the term rank of A2 and A3

in order to show that oA ≥ lA. More precisely, we will show that the maximum
number of 1s, no two on the same line, in A2 is e, while in A3 it is f .

Let us consider A2 as an incidence matrix for subsets S1, S2, . . . , Se of a uni-
verse of size |A| − f , and At

3 (which is the transpose of A3) as an incidence
matrix for subsets S′

1, S
′
2, . . . , S

′
f of a universe of size |A| − e. It is not difficult

to prove that UnionProp(A2) and UnionProp(At
3) holds (and can be proven in

LA; this is left to the reader), which in turn implies SDR(A2) and SDR(At
3),

resp., by Hall’s Theorem. But the system of distinct representative of A2 (resp.
At

3) implies that oA2 ≥ e (resp. oAt
3

= oA3 ≥ f), and since oA ≥ oA2 + oA3 , this
yields that oA ≥ e+ f = lA. ��
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3.3 Dilworth’s Theorem

Let P be a finite partially ordered set or poset (we use a “script P” in order to
distinguish it from permutation matrices, denoted with P ). We say that a, b ∈ P

are comparable elements if either a < b or b < a. A subset C of P is a chain if
any two distinct elements of C are comparable. A subset S of P is an anti-chain
(also called an independent set) if no two elements of S are comparable.

We want to partition a poset into chains; a poset with an anti-chain of size k
cannot be partitioned into fewer than k chains, because any two elements of the
anti-chain must be in a different partition. Dilworth’s Theorem states that the
maximum size of an anti-chain equals the minimum number of chains needed to
partition P. For more on Dilworth’s Theorem see [Dil50, Per63].

In order to formalize Dilworth’s theorem in LA, we represent finite posets
P = (X = {x1, x2, . . . , xn}, <) with an incidence matrix A = AP of size |X |×|X |,
which expresses the relation < as follows: A(i, j) = 1 ⇐⇒ xi < xj . For more
material regarding formalizing posets see [Sol11]. Let 1 × n α encode a chain:

Chain(A,α) := (∀i �= j ≤ n)[α(i) = α(j) = 1 → A(i, j) = 1 ∨ A(j, i) = 1]. (8)

In a similar fashion we define an anti-chain β; the only difference is that the
succedent of the implication expresses the opposite: A(i, j) = 0 ∧A(j, i) = 0.

Dilworth(A) can be stated as:

MinChain(A,α) ∧ MaxAntiChain(A, β) → Σα = Σβ, (9)

where MinChain and MaxAntiChain are defined in the same style as the pred-
icates expressing the other theorems. Note that (9) also requires a statement
that A encodes a poset, that is, A(i, i) = 1, A(i, j) = 1 → A(j, i) = 1, and
A(i, j) ∧A(j, k) → A(i, k).

Lemma 16. LA ∪ KMM 1 Dilworth

Proof. Suppose that MinChain(A,α) and MaxAntiChain(A, β); we want to use
LA reasoning and KMM in order to show that Σα = Σβ.

As usual we define a matrix A′ whose rows are labeled by the chains in β,
and whose columns are labeled by the elements of the poset. As there cannot be
more chains than elements in the poset, it follows that the number of rows of
A′ is bounded by |A| (while the number of columns is exactly |A|). The proof of
this is similar to the proof of Claim 4.

We have that A′(i, j) = 1 ⇐⇒ chain i contains element j. Clearly each
column contains at least one 1, as β is a partition of the poset. On the other
hand, rows may contain more than one 1, as in general chains may have more
than one element.

Note that a maximal selection of 1s, no two on the same line, corresponds
naturally to a maximal anti-chain; such a selection picks one 1 from each line, and
so its size is the number of rows of A′. By KMM, Σα = oA′ = lA′ = r(A′) = Σβ,
where r(A′) is the number of rows of A′. ��
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Lemma 17. LA ∪ Dilworth 1 KMM

Proof. It is in fact easier to show that that LA ∪ Dilworth 1 Hall, and since by
Lemma 15 we have that LA ∪ Hall 1 KMM, we will be done.

Assume that we have 0-1 sets/elements n × n matrix A, and that we have
UnionProp(A); our goal is to show in LA, using Dilworth, that SDR(A) holds.

Let S1, S2, . . . , Sn be subsets of [n] where n = |A|. We define a partial order
P based on A; the universe of P is X = {S1, S2, . . . , Sn} ∪ [n]. The relation <P

is defined as follows: i <P Sj ⇐⇒ A(i, j) = 1. Note that the the maximum size
of an anti-chain in P is n. The [n] form an anti-chain of length n, and we cannot
add any of the Sj , as some i ∈ Sj , and hence i <P Sj .

By Dilworth we can partition P into n chains, where each of the chains
has two elements {i, Sj}, giving the set of distinct representatives, and hence
SDR(A). ��
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Approximation Algorithms for Generalized

Plant Location
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Abstract. We consider the following Generalized Plant Location

problem: There are m possible plant locations and n customers. Each
customer j has a demand dj of some utility. A plant i can be constructed
at cost ci. Serving a customer j with plant i incurs cost si,j and yields
that the plant produces ui,j units of the demanded utility. The goal is to
serve all demands at minimal total cost. In Budgeted Plant Location

each customer has a budget of bj and serving this customer with plant i
charges the budget an amount ai,j .

Wegive aunified randomized algorithmwhich is (4+ε)·lnn-approximate
for both versions of the problem for any ε > 0.This result is best possible up
to a constant factor. In the budgeted version, wewill violate the budgets by
factors of at most 2 · (4+ε) · ln n. Our approach is based on LP-relaxations
of the problems strengthened by additional Knapsack Cover inequali-
ties. This allows us to round the LP by rounding some “large” variables
deterministically and the other “small” ones randomly.

1 Introduction

In this paper, we consider generalizations of the classical the Plant Location

problem and give a unified approach for these. Generalized Plant Location

means the following problem: There are m possible plants and n customers.
Customer j, say, has a demand of dj units of some utility. Each plant i can be
constructed at cost ci. If a constructed plant i serves a customer j, it produces
ui,j units of the utility at service cost si,j . The goal is to serve the demand of each
customer at minimal total cost. In Budgeted Plant Location, each customer
j additionally has a budget bj . If a constructed plant i serves a customer j, the
budget is charged an amount of ai,j and we require that the total charge can
not be more than bj .

In the classical Plant Location problem we have dj = 1 and ui,j = 1 for all
i and j. That is, in this version it is only required that each customer is served by
at least one facility. In our version, we have demands dj and customer-dependent
utility production ui,j .

Plant Location is a prominent problem in operations research and has nu-
merous applications since many economic decisions involve selecting and placing
facilities to serve certain demands. Examples include manufacturing plants, stor-
age facilities, depots, warehouses, libraries, fire stations and so on. The budgeted
version reflects the willingness of customers to pay for some utility.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 789–800, 2013.
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The Plant Location problem is NP-hard and can thus not be solved op-
timally in polynomial time, unless P = NP. Instead, we are interested in ap-
proximation algorithms. Recall that an algorithm is called ρ-approximation if
the objective value of its returned solution is always within ρ times the optimal
value. A straightforward reduction from Set Cover shows that Plant Loca-

tion is inapproximable within (1− o (1)) · lnn, under mild complexity theoretic
assumptions, see Feige [9].

As explained below, we give a unified randomized algorithm which is O(log n)-
approximate for both versions of the problem. However, in the budgeted version,
we will violate the budget by a factor of at most O(log n). Our approach is based
on LP-relaxations of the problems strengthened by additional valid inequalities,
so-called Knapsack Cover inequalities introduced by Carr et al. [7].

Related Work. There is a large body of literature on the Plant Location

problem for practical models, exact methods, and approximation algorithms for
special cases, especially Set Cover and Facility Location. To the best of
our knowledge, there are no approximation algorithms known for General-

ized Plant Location and Budgeted Plant Location. For a survey of
approaches for “simple” versions of the Plant Location problem, spanning
from heuristics to exact methods, we refer to Krarup and Pruzan [13]. For an
extensive treatment we also refer to Mirchandani and Francis [15].

Observe that we obtain the Set Cover problem for dj = 1, si,j = 0 and ui,j ∈
{0, 1}. Chvatal [8] proved that there is anHn-approximate Greedy algorithm for
this problem. Here Hn =

∑n
k=1 1/k denotes the n-th Harmonic number and it is

well known that Hn = lnn+O(1). As stated already, since Set Cover can not
be approximated better than (1− o (1)) · lnn [9], this is essentially best possible,
unless P = NP. The Plant Location problem, i.e., with dj = 1 and ui,j = 1,
is also called the Discrete Median problem. Hochbaum [11] gave a (best-
possible) Hn-approximation algorithm with running time O(n2m) for this and
related problems. A version of Plant Location with demands dj in which the
constraints

∑m
i=1 yi,j ≥ dj hold for integer yi,j was treated by Bar-Ilan et al. [4].

They gave an O(log n+logwmax)-approximation algorithm (even for a budgeted
version), where wmax is the largest input parameter. The Plant Location

problem in which the si,j satisfy the triangle inequality si,j ≤ si,j′ + si′,j′ + si′,j
for all i, i′ and j, j′ is called the Facility Location problem. This problem
can be approximated within small constant factors. The currently best known
bound is 1.52 due to Mahdian et al. [14].

As described shortly, the Knapsack Cover inequalities [7] allow us to de-
rive a randomized algorithm for Generalized Plant Location. These valid
inequalities have earlier proved useful for strengthening LP-relaxations of cov-
ering problems. In specific, in the General Covering problem one is asked
to minimize c#x subject to Ax ≥ b and x ≤ d, where x ∈ Nm and the entries
of A ∈ Rn×m, b ∈ Rn, c ∈ Rm, and d ∈ Rm are non-negative. In a semi-
nal paper Carr et al. [7] introduced the Knapsack Cover valid inequalities,
which enabled them to prove strong bounds on the integrality gaps of this and
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related problems. Kolliopoulos and Young [12] gave a O(log n)-approximation
algorithm, by giving an LP-formulation with additional Knapsack Cover in-
equalities and a randomized algorithm, which is then derandomized with the
method of conditional probabilities.

Moreover, the inequalities were used for obtaining an O(1)-approximation
algorithm for the Generalized Min-Sum Set Cover problem by Bansal et
al. [2]. In this problem, there is a universe of elements and a collection of sets
given, where each set S has an associated covering requirement of k(S). The
goal is to output an ordering of the elements such that the total cover time of
all the sets is minimized, where the cover time of a set S is the first time when
k(S) elements from S have been output.

In the General Scheduling problem there is one machine and n jobs given,
where job j has a size pj and a time-dependent weight function wj(t). The objec-
tive is to schedule the jobs as to minimize the total weight. Special cases include
Total Weighted Tardiness Scheduling and Total Weighted Flow

Time Scheduling. Bansal and Pruhs [3] used Knapsack Cover inequalities
and a sophisticated rounding scheme to derive an approximation algorithm with
ratio O(log lognmaxj pj).

In the Generalized Caching problem, there is a cache with size k and pages
with arbitrary sizes and fetching cost given. The goal is to serve a sequence of
requests to pages that must be made available in cache at minimal total fetching
cost. Bansal et al. [1] used the inequalities [7] to give an O(log2 k)-approximate
algorithm.

Our Contribution. As explained above, to the best of our knowledge, there
is no approximation algorithm known for the Generalized Plant Location

problem. However, there are approximations for special cases and relaxations,
e.g., [8,11,14,4]. We close this gap by giving a randomized expected (4+ε) · lnn-
approximation algorithm for any ε > 0 for the general case. By inapproximability
of Set Cover [9] this is best possible up to a constant factor, unless P = NP.
The two main technical ingredients of our algorithm are:

(I) We give an LP-relaxation of the Generalized Plant Location prob-
lem strengthened by Knapsack Cover valid inequalities [7]. As stated
above, these valid inequalities have proved useful for several other (cover-
ing) problems, e.g., [12,2,3,1,6]. This strengthened formulation allows us to
round a fractional solution randomly thus yielding logarithmic integrality
gap.

(II) The second tool we use (for the analysis of the rounding) is Bernstein’s
inequality [5], which is a Chernoff-type bound on the concentration of mea-
sure of sums of independent random variables. A property of this bound
is that it depends on the variance of the random sum under investigation
and that the absolute values of the summands can be arbitrary constants.
The dependence on the variance is useful: We use the Knapsack Cover

inequalities to derive a rounding scheme in which some “large” variables
are rounded deterministically and the other “small” ones are rounded
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randomly. For the latter we can prove that the variance of the associated
sums is not “too large” and we derive a sufficiently strong bound on the
concentration of measure.

We obtain the algorithm as follows: In Section 2 we consider the case n = 1, in
which the Generalized Plant Location problem becomes the Knapsack

Cover problem. As a first step, we give a randomized rounding algorithm for
this special case. In Section 3, we observe that the Generalized Plant Lo-

cation problem can be seen as n simultaneous Knapsack Cover problems
with the additional requirement of constructing plants. By solving all of these
problems feasibly with high probability we obtain which plant shall serve which
customer. Having these decisions made, we construct a plant if it serves some
customer. With the help of the ingredients (I) and (II) we are able to prove that
the algorithm is expected (4 + ε) · lnn-approximate. In Section 4, we turn our
attention to Budgeted Plant Location. We find that the same rounding
algorithm, which simply uses an adjusted LP-relaxation, also produces an ex-
pected (4 + ε) · lnn-approximate solution, which violates the budgets by factors
of at most 2 · (4 + ε) · lnn with high probability.

Preliminaries. The possible plants are indexed by the set P = {1, . . . ,m} and
the customers are indexed by C = {1, . . . , n}. We are given a demand vector d =
(d1, . . . , dj , . . . , dn) with dj ≥ 0 for all j ∈ C. Furthermore, we are given a cost
vector c = (c1, . . . , ci, . . . , cm) and constructing a plant i ∈ P incurs cost ci ≥ 0.
For each plant i ∈ P there is a service cost vector si = (si,1, . . . , si,j , . . . , si,n).
A constructed plant i can serve a customer j at cost si,j . Each plant i ∈ P
is associated a utility vector ui = (ui,1, . . . , ui,j , . . . , ui,n) with ui,j ≥ 0 for all
j ∈ C. We may assume that

∑
i∈P ui,j ≥ dj for all j ∈ C, since the problem

is otherwise clearly infeasible. If plant i serves customer j, ui,j units of the
demanded utility are produced.

Our goal is to decide which plants to construct and which plants shall serve
which customer in order to cover the demand at minimal total cost. More pre-
cisely, introducing the variables xi ∈ {0, 1} of a vector x = (x1, . . . , xi, . . . , xm)
that indicate if plant i is constructed and the variables yi,j ∈ {0, 1} of a vector
y = (y1,1, . . . , yi,j , . . . , ym,n) that indicate if plant i serves customer j, we define
Generalized Plant Location:

minimize
m∑
i=1

cixi +
m∑
i=1

n∑
j=1

si,jyi,j (1)

subject to
m∑
i=1

ui,jyi,j ≥ dj j = 1, . . . , n, (2)

xi − yi,j ≥ 0 i = 1, . . . ,m, j = 1, . . . , n, (3)

xi ∈ {0, 1} i = 1, . . . ,m, (4)

yi,j ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n. (5)
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Furthermore, in the case of Budgeted Plant Location, each customer j ∈ C
has a budget bj ≥ 0 gathered in a vector b = (b1, . . . , bj, . . . , bn). For each plant
i ∈ P , there is a vector ai = (ai,1, . . . , ai,j , . . . , ai,n) given, where ai,j ≥ 0 for all
i ∈ P and j ∈ C. A plant i which serves customer j charges ai,j on the budget
bj. Now we have the additional constraints that

m∑
i=1

ai,jyi,j ≤ bj j = 1, . . . , n.

As a shorthand we write cost(x, y) =
∑m

i=1 cixi +
∑m

i=1

∑n
j=1 si,jyi,j .

2 Knapsack Cover

Using similar notation, in the Knapsack Cover problem we are given a knap-
sack with demand d ≥ 0 and items P = {1, . . . ,m}. Item i ∈ P has utility ui ≥ 0
and cost ci ≥ 0. Find a subset of items with total utility covering the demand
at minimal total cost. That is, Knapsack Cover is the problem:

minimize
m∑
i=1

cixi (6)

subject to

m∑
i=1

uixi ≥ d, (7)

xi ∈ {0, 1} i = 1, . . . ,m. (8)

We write cost(x) =
∑m

i=1 cixi. Using relaxed variables xi ∈ [0, 1] instead of the
xi ∈ {0, 1} yields an arbitrarily large integrality gap, see [7]. For any set Q ⊆ P
define

d(Q) = d−
∑
i∈Q

ui and ui(Q) = min{ui, d(Q)}

as the residual demand d(Q) and residual utility ui(Q), respectively. An alter-
native formulation with bounded integrality gap due to [7] is:

minimize

m∑
i=1

cixi (9)

subject to
∑

i∈P−Q
ui(Q)xi ≥ d(Q) for all Q ⊆ P, (10)

xi ∈ [0, 1] i = 1, . . . ,m. (11)

The constraint
∑

i∈P−Q ui(Q)xi ≥ d(Q) states that, even if we choose the items
in Q, the remaining items P − Q must still cover the residual demand d(Q).
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Carr et al. [7] proved that the integrality gap of this relaxation is 2. We are not
aware of an algorithm that solves this relaxation exactly. However, Carr et al. [7]
define the following type of solution, which is sufficient for our purpose and which
can be found in polynomial time with the Ellipsoid algorithm. For c > 0, call
a vector x̄ a c-relaxed solution for (9) if cost(x̄) ≤ cost(x), where x is an optimal
(fractional) solution for (9), and x̄ satisfies (11) and the Knapsack Cover

inequalities (10) for the set Q = {i ∈ P : x̄i ≥ c}. A c-relaxed solution can
be found in polynomial time, because the separation problem of the Ellipsoid

algorithm can be solved in polynomial time: Given a solution candidate x̄ already
satisfying (11), we can compute the set Q in linear time and check if (10) is also
satisfied for this particular set. If so, we can stop, if not, we have found a violated
constraint, as needed by the Ellipsoid algorithm.

Algorithm 2.1. RoundKC

Input. c ∈ (0, 1].
Output. X = (X1, . . . , Xm) ∈ {0, 1}m.

Step 1. Find a c-relaxed solution for (9) x̄ = (x̄1, . . . , x̄m) ∈ [0, 1]m.
Step 2. For i = 1, . . . , m let Ci ∼ Uni (0, c) and let

Xi =

{
1 if x̄i ≥ Ci,

0 otherwise.

Step 3. Return X = (X1, . . . , Xm).

Theorem 1. Let c ∈ (0, 1]. The algorithm RoundKC(c) runs in polynomial
time and returns an expected 1/c-approximate solution, which is feasible for
Knapsack Cover with probability at least 1 − 2 exp(−(1 − c)2/4c).

The proof of Theorem 1 can be found below and uses the following interme-
diate result.

Lemma 1. Let c ∈ (0, 1]. With probability at least 1 − 2 exp(−(1 − c)2/4c),
RoundKC(c) returns a feasible solution for Knapsack Cover.

Proof. The proof uses Bernstein’s inequality [5], which is stated in a version
taken from [10] below.

Theorem 2 (Bernstein [5]). Let Z1, . . . , Zm be independent random variables
with E [Zi] = 0 and |Zi| ≤ δ. For Z =

∑m
i=1 Zi and λ > 0 it holds that

Pr [|Z| > λ] ≤ 2 exp

(
−1

2

λ2

Var [Z] + λδ

)
.
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We have to show that U =
∑m

i=1 uiXi ≥ d with probability at least 1 −
2 exp(−(1− 1/c)2/4c), or equivalently Pr [U < d] ≤ 2 exp(−(1− 1/c)2/4c). First
observe that the items i ∈ Q ⊆ P with x̄i ≥ c are rounded to one determin-
istically, i.e., Xi = 1. Now, if

∑
i∈Q uiXi ≥ d, there is nothing to show as the

solution is already feasible. Thus we assume
∑

i∈Q uiXi < d. For the set Q, since
x̄ is c-relaxed, we have the constraint∑

i∈P−Q
ui(Q)x̄i ≥ d(Q).

For the items i ∈ P −Q with x̄i ≤ c we have

E [Xi] = Pr [Xi = 1] = Pr [x̄i ≥ Ci] = x̄i/c.

Therefore, by defining U(Q) =
∑

i∈P−Q ui(Q)Xi we have

E [U(Q)] =
∑

i∈P−Q
ui(Q)E [Xi] =

1

c
·

∑
i∈P−Q

ui(Q)x̄i ≥
1

c
· d(Q).

Define Zi = ui(Q)(Xi − E [Xi]) for all i ∈ P − Q and Z(Q) =
∑

i∈P−Q Zi =
U(Q) − E [U(Q)]. Observe that the Zi are independent, E [Zi] = 0, and |Zi| ≤
maxi∈P−Q ui(Q) =: δ. Furthermore, by independence, we have Var [Z(Q)] =
Var [U(Q)] =

∑
i∈P−Q u

2
i (Q)Var [Xi] ≤ δ ·E [U(Q)], since Var [Xi] = 1/c · x̄i(1−

1/c · x̄i) ≤ 1/c · x̄i = E [Xi]. Using E [U(Q)] ≥ 1/c ·d(Q) ≥ 1/c ·δ and Bernstein’s
inequality yields

Pr [U(Q) < d(Q)] ≤ Pr [U(Q) < c · E [U(Q)]]

= Pr [E [U(Q)] − U(Q) > E [U(Q)] (1 − c)]

≤ Pr [|Z(Q)| > E [U(Q)] (1 − c)]

≤ 2 exp

(
−1

2

E [U(Q)]2 (1 − c)2

Var [Z(Q)] + E [U(Q)] (1 − c)δ

)

≤ 2 exp

(
− (1 − c)2

4c

)
.

With Xi = 1 for i ∈ Q we find

Pr [U < d] = Pr

⎡⎣ ∑
i∈P−Q

uiXi < d−
∑
i∈Q

ui

⎤⎦
≤ Pr

⎡⎣ ∑
i∈P−Q

ui(Q)Xi < d−
∑
i∈Q

ui

⎤⎦
= Pr [U(Q) < d(Q)] ≤ 2 exp

(
− (1 − c)2

4c

)
completing the proof.
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Proof (Proof of Theorem 1). Using the Ellipsoid algorithm for solving the
fractional relaxation of Knapsack Cover, RoundKC(c) runs in polynomial
time. The probability that X is feasible is stated in Lemma 1. Let x̄ be the
c-relaxed solution found by the algorithm and let x∗ be an optimal solution for
Knapsack Cover. We clearly have cost(x̄) ≤ cost(x∗).

Let Q = {i ∈ P : x̄i ≥ c}. Recall that variables Xi with i ∈ Q are rounded
to one deterministically. Hence Xi = 1 = c/c ≤ x̄i/c. For the variables Xi with
i ∈ P −Q we have Xi = 1 with probability equal to x̄i/c. Therefore, for any X
found by the algorithm we have

E [cost(X)] = E

[
m∑
i=1

ciXi

]
=

∑
i∈Q

ciE [Xi] +
∑

i∈P−Q
ciE [Xi]

≤
∑
i∈Q

1

c
· cix̄i +

∑
i∈P−Q

1

c
· cix̄i

=
1

c
· cost(x̄) ≤ 1

c
· cost(x∗)

as claimed.

3 Generalized Plant Location

Here we give an LP relaxation of Generalized Plant Location, which also
uses Knapsack Cover inequalities. For any Q ⊆ P and customer j define

dj(Q) = dj −
∑
i∈Q

ui,j and ui,j(Q) = min{ui,j, dj(Q)}

as the residual demand dj(Q) and residual utility ui,j(Q) for customer j, respec-
tively. This yields the following relaxation for Generalized Plant Location:

minimize

m∑
i=1

cixi +

m∑
i=1

n∑
j=1

si,jyi,j (12)

subject to

m∑
i=1

ui,j(Q)yi,j ≥ dj(Q) for all Q ⊆ P, j = 1, . . . , n, (13)

xi − yi,j ≥ 0 i = 1, . . . ,m, j = 1, . . . , n, (14)

xi ∈ [0, 1] i = 1, . . . ,m, (15)

yi,j ∈ [0, 1] i = 1, . . . ,m, j = 1, . . . , n. (16)

Consider the algorithm RoundPL. It is important to note that it uses the ran-
dom variables C1, . . . , Cm, i.e., one variable per potential plant for the whole
set of customers. For c > 0, call a vector (x̄, ȳ) a c-relaxed solution for (12) if
cost(x̄, ȳ) ≤ cost(x, y), where (x, y) is a (fractional) optimum solution for (12),
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Algorithm 3.1. RoundPL

Input. c ∈ (0, 1].
Output. X = (X1, . . . , Xm) ∈ {0, 1}m, Y = (Y1,1, . . . , Ym,n) ∈ {0, 1}m×n.

Step 1. Find a c-relaxed solution for (12)

x̄ = (x̄1, . . . , x̄m) ∈ [0, 1]m, ȳ = (ȳ1,1, . . . , ȳm,n) ∈ [0, 1]m×n.

Step 2. For i = 1, . . . , m let Ci ∼ Uni (0, c).
Step 3. For i = 1, . . . , m and j = 1, . . . , n let

Yi,j =

{
1 if ȳi,j ≥ Ci,

0 otherwise.

Step 4. For i = 1, . . . , m let Xi = maxj=1,...,n Yi,j .
Step 5. Return X = (X1, . . . , Xm), Y = (Y1,1, . . . , Ym,n).

and (x̄, ȳ) satisfies (14), (15), (16), and for each j the Knapsack Cover in-
equalities (13) for the set Q = {i ∈ P : ȳi,j ≥ c}. A c-relaxed solution can be
found in polynomial time with the Ellipsoid algorithm, see Section 2.

Theorem 3. Let c ∈ (0, 1]. The algorithm RoundPL(c) runs in polynomial
time and returns an expected 1/c-approximate solution, which is feasible for
Generalized Plant Location with probability at least 1 − 2n exp(−(1 −
c)2/4c).

Proof. By ignoring the xi for the moment consider the following problem:

minimize
m∑
i=1

n∑
j=1

si,jyi,j (17)

subject to

m∑
i=1

ui,j(Q)yi,j ≥ dj(Q) for all Q ⊆ P, j = 1, . . . , n, (18)

yi,j ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n. (19)

Observe that this problem consists of n many Knapsack Cover problems – one
for each customer. Let ȳ be a c-relaxed solution over the variables ȳi,j ∈ [0, 1].
Let Ci ∼ Uni (0, c) and round the Yi,j as given in the algorithm.

Let the variable Ij ∈ {0, 1} indicate if the variables Yi,j with i ∈ P are
infeasible for the Knapsack Cover problem of customer j. Thus I =

∑n
j=1 Ij

counts the number of infeasibly solved problems. We have Pr [I > 0] ≤ E [I] =∑n
j=1 E [Ij ] =

∑n
j=1 Pr [Ij = 1] ≤ 2n exp(−(1 − c)2/4c).

For each fixed customer j, the Yi,j are independent by construction. Thus
Lemma 1 also applies to each individual Knapsack Cover problem and we
have the bound Pr [Ij = 1] ≤ 2 exp(−(1− c)2/4c). As there are n such problems,
the union bound gives that the vector Y is feasible for the whole problem with
probability at least 1 − 2n exp(−(1 − c)2/4c).
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For any fixed j let Q = {i ∈ P : ȳi,j ≥ c}. Thus the Yi,j = 1 = c/c ≤ ȳi,j/c
deterministically for i ∈ Q and Yi,j = 1 with probability ȳi,j/c for i ∈ P − Q.
Hence E [

∑m
i=1 si,jYi,j ] =

∑m
i=1 si,jE [Yi,j ] ≤ 1

c ·
∑m

i=1 si,j ȳi,j .
Now return to the formulation of the problem including the xi. Let (x̄, ȳ)

be the c-relaxed solution found by RoundPL(c). Let ȳi,max = maxj=1,...,n ȳi,j .
Since there is one random variable Ci per plant i, we have

E [Xi] = Pr [Xi = 1] = Pr [ȳi,max ≥ Ci] =

{
1 ≤ ȳi,max/c if ȳi,max > c,

ȳi,max/c if ȳi,max ≤ c.

By the constraints xi − yi,j ≥ 0 we have ȳi,max ≤ x̄i.
Let (x∗, y∗) be an optimum solution for the Generalized Plant Location

problem. We have that cost(x̄, ȳ) ≤ cost(x∗, y∗). Now we calculate and obtain

E [cost(X,Y )] = E

⎡⎣ m∑
i=1

ciXi +

m∑
i=1

n∑
j=1

si,jYi,j

⎤⎦
=

m∑
i=1

ciE [Xi] +

n∑
j=1

E

[
m∑
i=1

si,jYi,j

]

≤ 1

c
·

m∑
i=1

cix̄i +
1

c
·

n∑
j=1

m∑
i=1

si,j ȳi,j

=
1

c
· cost(x̄, ȳ) ≤ 1

c
· cost(x∗, y∗)

as claimed.

The notion high probability refers to probability converging to one as n tends to
infinity.

Corollary 1. Choose c = 1/((4 + ε) · lnn) for any ε > 0 and RoundPL(c) is
expected (4 + ε) · lnn-approximate and feasible with high probability.

4 Budgeted Plant Location

Here we add to the Generalized Plant Location problem the constraints
that

m∑
i=1

ai,jyi,j ≤ bj j = 1, . . . , n, (20)

where the ai,j ≥ 0 are arbitrary coefficients and bj is the budget of customer
j. The resulting problem is called Budgeted Plant Location and it is not
hard to see that it is already NP-complete to even decide if there exists a feasible
solution. To overcome this difficulty we will consider a relaxation and allow
that these constraints be violated somewhat. More precisely, a vector (x, y) is
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λ-feasible if
∑m

i=1 ai,jyi,j ≤ λbj for all j ∈ C and the remaining constraints are
satisfied. Define a c-relaxed solution analogously as above.

We define the algorithm RoundBPL by adjusting RoundPL in the following
manner: Firstly, we add the constraints (20) to the linear programming relax-
ation of the problem without budgets. Secondly, we introduce the constraint
yi,j = 0 for all i ∈ P and j ∈ C for which ai,j > bj . This requirement is valid
since we can clearly not have any such yi,j = 1 in any feasible integral solution.
In the sequel we will assume that this relaxation admits a feasible solution, since
there is clearly no integral feasible solution otherwise. The fractional solution is
then rounded as in the version without budgets by using the parameter c and
the random variables Ci ∼ Uni (0, c) for i = 1, . . . ,m.

Theorem 4. Let c ∈ (0, 1]. The algorithm RoundBPL(c) runs in polynomial
time and returns an expected 1/c-approximate solution, which is 2/c-feasible for
Budgeted Plant Location with probability at least 1−4n exp(−(1−c)2/4c).

Proof. Let j ∈ C and define Aj =
∑m

i=1 ai,jYi,j , where the Yi,j are the re-
spective random variables in the algorithm. We show that Pr [Aj > 2bj/c] ≤
2 exp (−1/4c).

Then, repeating the proof of Theorem 3 yields that the probability that the
returned solution is 1/c-approximate and 2/c-feasible is at least 1−4n exp(−(1−
c)2/4c) as claimed.

Let (x̄, ȳ) be the c-relaxed solution determined by RoundBPL(c). For any
i ∈ P and j ∈ C we have that ȳi,j > 0 implies ai,j ≤ bj by construction. This
property helps bounding the variance of Aj . Notice that for any fixed j ∈ C the
Yi,j are independent. Furthermore notice that E [Yi,j ] = Pr [Yi,j = 1] ≤ ȳi,j/c by
construction of the algorithm. Then we find

Var [Aj ] = Var

[
m∑
i=1

ai,jYi,j

]
=

m∑
i=1

a2i,jVar [Yi,j ]

≤ bj ·
m∑
i=1

ai,jE [Yi,j ] ≤ bj ·
m∑
i=1

ai,j
ȳi,j
c

≤
b2j
c
,

where we have used E [Aj ] ≤
∑m

i=1 ai,j ȳi,j/c ≤ bj/c by feasibility of (x̄, ȳ).
Now, using this property again and Bernstein’s inequality we have

Pr [Aj > 2bj/c] = Pr [Aj − E [Aj ] > 2bj/c− E [Aj ]] ≤ Pr [Aj − E [Aj ] > bj/c]

≤ 2 exp

(
−1

2

b2j
c2(Var [Aj ] + b2j/c)

)
≤ 2 exp

(
− 1

4c

)
and the result follows.

Corollary 2. Choose c = 1/((4 + ε) · lnn) for any ε > 0 and RoundBPL(c) is
expected (4+ε)· lnn-approximate and 2 ·(4+ε)· lnn-feasible with high probability.
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Abstract. We study the classical simulatability of constant-depth quan-
tum circuits followed by only one single-qubit measurement, where they
consist of universal gates on at most two qubits and additional gates on
an unbounded number of qubits. First, we consider unbounded Toffoli
gates as additional gates and deal with the weak simulation, i.e., sam-
pling the output probability distribution. We show that there exists a
constant-depth quantum circuit with only one unbounded Toffoli gate
that is not weakly simulatable, unless BQP ⊆ PostBPP ∩ AM. Then, we
consider unbounded fan-out gates as additional gates and deal with the
strong simulation, i.e., computing the output probability. We show that
there exists a constant-depth quantum circuit with only two unbounded
fan-out gates that is not strongly simulatable, unless P = PP. These re-
sults are in contrast to the fact that any constant-depth quantum circuit
without additional gates is strongly and weakly simulatable.

1 Introduction and Summary of Results

An important problem in quantum information processing is to understand the
difference between the computational power of a quantum computer and that
of a classical computer. For considering this problem, it is known to be useful
to study the classical simulatability of quantum computation processes. In this
context, the above difference can be found even in rather simple computation
processes [14,7,2,5,11], such as constant-depth polynomial-size quantum circuits.
There is great interest in studying the classical simulatability of such simple
computation processes since this is particularly useful for identifying the source
of the computational power of a quantum computer.

We study the classical simulatability of constant-depth polynomial-size
quantum circuits. In 2004, Terhal et al. provided evidence for the hardness of
classically simulating such circuits followed by polynomially many single-qubit
measurements, where they consist of universal gates on at most two qubits [14].
Subsequently, some authors provided (or mentioned) another evidence [7,2,5].
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An important assumption in these arguments is that the number of measure-
ments is polynomial in the length of the input [14,7,5]. In fact, for example, any
constant-depth quantum circuit followed by only one single-qubit measurement
is efficiently simulatable classically [14]. Even in this simplest output setting,
however, it has not been known how the use of gates on an unbounded number
of qubits affects the classical simulatability of constant-depth quantum circuits.

We focus on quantum circuits in the simplest output setting, where they
consist of universal gates on at most two qubits (Hadamard, π/8, and CNOT
gates [12]) and additional gates on an unbounded number of qubits, more con-
cretely, unbounded Toffoli and fan-out gates. An unbounded Toffoli gate on n+1
qubits computes the AND of n inputs. An unbounded fan-out gate on n+1 qubits
makes n copies of a classical source bit. When n = 1, the gate is a CNOT gate.
The main reason for adopting these gates as elementary gates is that they are a
generalization of the classical ones assumed to be elementary gates for studying
the computational power of small-depth classical circuits. Moreover, the study
of an unbounded fan-out gate in the context of the classical simulatability com-
plements previous studies of the gate showing that it is very powerful [13].

We deal with the strong and weak simulations [14,9,5,10,11]. The strong sim-
ulation of a quantum circuit means that, when an input to the circuit and its
output are specified, the probability of obtaining the output can be efficiently
computed classically. The weak simulation means that the output probability
distribution of the circuit can be efficiently sampled classically. The strong sim-
ulation implies the weak simulation [14,5,10]. The error setting in the weak
simulation is different from Terhal et al.’s efficient simulation [14] in that the
error in the weak simulation is not a multiple of the output probability. Our
setting seems more natural than the previous multiplicative one.

First, we consider constant-depth quantum circuits with unbounded Toffoli
gates and their weak simulatability. We provide evidence for the hardness of
weakly (and thus strongly) simulating a QNC0

t,1 circuit, which is a constant-
depth quantum circuit with only one unbounded Toffoli gate:

Theorem 1. There exists a QNC0
t,1 circuit that is not weakly simulatable, unless

BQP ⊆ PostBPP ∩ AM.

It is considered unlikely that BQP ⊆ PostBPP∩AM since this (or even a weaker
containment, such as BQP ⊆ PostBPP) would imply that BQP is contained in
the polynomial hierarchy, which is considered unlikely [1]. Theorem 1 shows
a boundary between classical and quantum computation: any constant-depth
quantum circuit without additional gates on an unbounded number of qubits is
strongly and weakly simulatable, but such a circuit with only one unbounded
Toffoli gate is not strongly or weakly simulatable (under a plausible assumption).

To prove Theorem 1, we first show that, if any QNC0
t,1 circuit is weakly

simulatable, then BQP ⊆ PostBPP. To do this, we parallelize a quantum cir-
cuit for L ∈ BQP by Fenner et al.’s method [7] and obtain a QNC0 circuit,
which is a constant-depth quantum circuit without gates on an unbounded num-
ber of qubits. The QNC0 circuit has polynomially many postselection qubits
that have to be measured to relate a measurement on the output qubit of the
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circuit to L. Using an unbounded Toffoli gate, we regard the postselection qubits
and the output qubit as “one” new output qubit in two ways and construct two
QNC0

t,1 circuits. Their weak simulations yield a PostBPP algorithm for L. We
then deal with the containment BQP ⊆ AM based on Terhal et al.’s argument in
terms of the efficient simulation [14]. Since the number of measurements in their
argument is polynomial and the efficient simulation is different from the weak
simulation as described above, the argument does not work directly. We modify
the argument and make an error analysis using one of the two QNC0

t,1 circuits.
As shown in [9], there exists a weakly simulatable polynomial-size quantum

circuit that is not strongly simulatable (under a plausible assumption). Based on
the idea of the proof of Theorem 1, we show the difference between the strong
and weak simulatability in a simpler setting: there exists a weakly simulatable
QNC0

t,1 circuit that is not strongly simulatable, unless P = PP. This contributes
to our understanding not only of the classical simulatability of a QNC0

t,1 circuit
but also of the notions of the strong and weak simulatability.

Then, we consider constant-depth quantum circuits with unbounded fan-out
gates and their strong simulatability. The OR circuit in [13] allows us to replace
an unbounded Toffoli gate in Theorem 1 with polynomially many unbounded
fan-out gates. Thus, there exists a constant-depth quantum circuit with poly-
nomially many unbounded fan-out gates that is not strongly (or weakly) simu-
latable (under a plausible assumption). We provide evidence for the hardness of
strongly simulating a simpler circuit, more concretely, a QNC0

f,2 circuit, which is
a constant-depth quantum circuit with only two unbounded fan-out gates:

Theorem 2. There exists a QNC0
f,2 circuit that is not strongly simulatable, un-

less P = PP.

It is considered unlikely that P = PP, which would imply the collapse of the
polynomial hierarchy. As in the case of Theorem 1, Theorem 2 shows a bound-
ary: any constant-depth quantum circuit without additional gates is strongly
simulatable, but such a circuit with only two unbounded fan-out gates is not
strongly simulatable (under a plausible assumption).

Our idea for showing Theorem 2 is to use the Hadamard test [11], more
precisely, to parallelize it by two unbounded fan-out gates. For a QNC0 circuit,
the parallelized Hadamard test is a QNC0

f,2 circuit and allows us to show that,

if any QNC0
f,2 circuit is strongly simulatable, there exists a polynomial-time

deterministic classical algorithm for computing a matrix element of a QNC0

circuit with exponential precision. This algorithm can be transformed into the
one for computing a matrix element of a polynomial-size quantum circuit with
exponential precision by Fenner et al.’s method [7] for parallelizing quantum
circuits. This implies that P = PP [11] and thus Theorem 2.

More generally, based on the idea of the proof, we characterize the relationship
P = PP using the strong simulatability of the parallelized Hadamard test for a
QNC0 circuit, which is a QNC0

f,2 circuit. This contributes to our understanding
of the strong simulatability of such a circuit in the sense that the hardness of its
strong simulation is exactly evaluated. Moreover, this is interesting in that the
simple quantum computation process characterizes the classical relationship.
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2 Preliminaries

We use the standard notation for quantum states and the standard diagrams
for quantum circuits [12]. A quantum circuit consists of elementary gates. Our
elementary gates are Hadamard gates H , π/8 gates T = Z(π/4), CNOT gates,
unbounded Toffoli gates, and unbounded fan-out gates, where

H =
1√
2

(
1 1
1 −1

)
, Z(θ) =

(
1 0
0 eiθ

)
for any θ ∈ R. We denote T 4 and HT 4H as Z and X , respectively. A Toffoli
gate on k + 1 qubits implements the quantum operation defined as⎛⎝k−1⊗

j=0

|xj〉

⎞⎠ |y〉  →

⎛⎝k−1⊗
j=0

|xj〉

⎞⎠ |y ⊕
k−1∧
j=0

xj〉,

where xj , y ∈ {0, 1}, k ≥ 2, and ⊕ denotes addition modulo 2. The first k input

qubits, i.e., the qubits in state
⊗k−1

j=0 |xj〉, are called the control qubits. A Toffoli
gate on three qubits is simply called a Toffoli gate. A fan-out gate on k+1 qubits
implements the quantum operation defined as

|y〉
k−1⊗
j=0

|xj〉  → |y〉
k−1⊗
j=0

|xj ⊕ y〉,

where y, xj ∈ {0, 1} and k ≥ 1. The first input qubit, i.e., the qubit in state |y〉,
is called the control qubit. When k = 1, a fan-out gate is a CNOT gate. When
a Toffoli gate or a fan-out gate is applied on an unbounded number of qubits, it
is called an unbounded Toffoli gate or an unbounded fan-out gate, respectively.

The complexity measures of a quantum circuit are its size and depth. The
size of a quantum circuit is defined as the total size of all elementary gates in it,
where the size of an elementary gate is defined as the number of qubits affected
by the gate. The depth of a quantum circuit is defined as follows. Input qubits
are considered to have depth 0. For each gate G, the depth of G is equal to 1
plus the maximum depth of a gate on which G depends. The depth of a quantum
circuit is defined as the maximum depth of a gate in it. Intuitively, the depth is
the number of layers in the circuit, where a layer consists of gates that can be
applied in parallel. A quantum circuit can use ancillary qubits initialized to |0〉.
It is not required to reset the states to |0〉 at the end of the computation.

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1.
Each Cn is a quantum circuit with n input qubits and poly(n) ancillary qubits.
A symbol denoting a quantum circuit, such as Cn, also denotes its matrix repre-
sentation. When a classical output is obtained from Cn, the circuit is followed by
only one measurement in the computational basis, i.e., a Z-measurement, on a
specified qubit called the output qubit. The output qubit in this paper is one of
the ancillary qubits. The uniformity means that there exists a polynomial-time
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deterministic classical algorithm for computing the function 1n  → Cn, where Cn

is the encoding of the description of Cn. For simplicity, we denote {Cn}n≥1 as
Cn (and thus call {Cn}n≥1 a circuit). Let Cn be a constant-depth polynomial-
size quantum circuit. In general, the number of gates on an unbounded number
of qubits in Cn is poly(n). In particular, when the number of such gates in Cn

is one and the gate is an unbounded Toffoli gate, we call Cn a QNC0
t,1 circuit.

When the number is two and the gates are unbounded fan-out gates, we call Cn

a QNC0
f,2 circuit. When Cn has no such gates, we call it a QNC0 circuit.

The strong and weak simulatability is defined as follows [9,5,10,11]:

Definition 1. Let Cn be a polynomial-size quantum circuit with n input qubits
and poly(n) ancillary qubits including the output qubit. For any x ∈ {0, 1}∗ of
length n and y ∈ {0, 1}, let Pr[Cn(x) = y] be the probability of obtaining y by a
Z-measurement on the output qubit of Cn with the input state |x〉.

– Cn is strongly simulatable if, for any polynomial p, there exists a polynomial-
time deterministic classical algorithm A such that, for any x ∈ {0, 1}∗ of
length n and y ∈ {0, 1}, |A(x, y) − Pr[Cn(x) = y]| ≤ 1/2p(n).

– Cn is weakly simulatable if, for any polynomial p, there exists a polynomial-
time probabilistic classical algorithm A such that, for any x ∈ {0, 1}∗ of
length n and y ∈ {0, 1}, |Pr[A(x) = y] − Pr[Cn(x) = y]| ≤ 1/2p(n).

A strongly simulatable quantum circuit is weakly simulatable [14,5,10]. The weak
simulation is different from Terhal et al.’s efficient simulation [14] in that the
error in the weak simulation, which is the right hand of the above inequality,
is not a multiple of Pr[Cn(x) = y]. In other words, the error in the weak sim-
ulation is an absolute one, but that in the efficient simulation is a one relative
to Pr[Cn(x) = y]. In this sense, the error setting in the weak simulation seems
more natural. We note that any QNC0 circuit followed by only one single-qubit
measurement is strongly (and thus weakly) simulatable [14].

The complexity classes we deal with are defined as follows [12,1,5]:

Definition 2. Let L ⊆ {0, 1}∗.

– L ∈ BQP if there exists a polynomial-size quantum circuit Cn with n input
qubits and poly(n) ancillary qubits including the output qubit such that, for
any x ∈ {0, 1}∗ of length n,
• if x ∈ L, Pr[Cn(x) = 1] ≥ 2/3,
• if x /∈ L, Pr[Cn(x) = 1] ≤ 1/3.

– L ∈ PostBPP if there exists a polynomial-time probabilistic classical algo-
rithm A that, for any x ∈ {0, 1}∗, outputs A(x), post(x) ∈ {0, 1} such that
• Pr[post(x) = 0] > 0,
• if x ∈ L, Pr[A(x) = 1|post(x) = 0] ≥ 2/3,
• if x /∈ L, Pr[A(x) = 1|post(x) = 0] ≤ 1/3.

We note that PostBPP is equal to BPPpath defined in [8]. The constants 2/3 and
1/3 in the definitions can be replaced with 1/2 + ε and 1/2− ε, respectively, for
any constant 0 < ε < 1/2 [12,5]. We also deal with the well-known complexity
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classes P, AM, and PP [3]. Moreover, we deal with the function classes FP and
#P [3]: FP is the class of functions for which there exists a polynomial-time
deterministic classical algorithm and #P is the class of functions counting the
number of solutions to polynomial-time decidable relations.

We frequently use a quantum circuit obtained by Fenner et al.’s method [7].
The existence of the circuit (combined with a constant-depth polynomial-size
quantum circuit for permuting qubits) can be described as follows:

Lemma 1. For any polynomial-size quantum circuit Cn with n input qubits and
a ancillary qubits, there exists a QNC0 circuit Dn with n input qubits and a+ b
ancillary qubits such that b is even, b = O(size(Cn)), and, for any x ∈ {0, 1}∗ of
length n,

Dn|x〉|0〉⊗(a+b) =
1√
2b

(Cn|x〉|0〉⊗a)|0〉⊗b +
∑

y∈{0,1}b\{0b}

αy|ψy〉|y〉,

where size(Cn) is the polynomial representing the size of Cn, αy ∈ C, and |ψy〉
is an (n+ a)-qubit state.

The b new ancillary qubits are called the postselection qubits.

3 Circuit with One Unbounded Toffoli Gate

3.1 Proof of Theorem 1

A Toffoli gate outputs 1 if and only if the states of the control qubits are |11〉.
Combining the gate with an X gate, we can obtain a circuit that outputs 1 if and
only if the states of the control qubits are |10〉. We call it a (1,0)-Toffoli gate. We
define a (0,0)-Toffoli gate similarly. Moreover, combining an unbounded Toffoli
gate with X gates, we can obtain (a reversible version of) an OR gate with
unbounded fan-in. Using these gates, we first show the following lemma:

Lemma 2. If any QNC0
t,1 circuit is weakly simulatable, then BQP ⊆ PostBPP.

Proof. We assume that any QNC0
t,1 circuit is weakly simulatable. Let L ∈ BQP.

There exists a polynomial-size quantum circuit Cn with n input qubits and a
ancillary qubits including the output qubit such that, for any x ∈ {0, 1}∗ of
length n, Pr[Cn(x) = 1] ≥ 2/3 if x ∈ L and Pr[Cn(x) = 1] ≤ 1/3 if x /∈ L. By
Lemma 1, there exists a QNC0 circuit Dn with n input qubits and a+b ancillary
qubits including the output qubit such that, for any x ∈ {0, 1}∗ of length n,
Pr[Dn(x) = 1|postn(x) = 0b] ≥ 2/3 if x ∈ L and Pr[Dn(x) = 1|postn(x) = 0b] ≤
1/3 if x /∈ L, where b = O(size(Cn)), “postn(x) = 0b” means that all results of Z-
measurements on the postselection qubits are 0, and Pr[postn(x) = 0b] = 1/2b.
This implies that, for any x ∈ {0, 1}∗ of length n,

– if x ∈ L, Pr[Dn(x) = 1&postn(x) = 0b] ≥ 2
3 · 1

2b
,

– if x /∈ L, Pr[Dn(x) = 1&postn(x) = 0b] ≤ 1
3 · 1

2b .
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Fig. 1. (a) The circuit En. (b) The circuit Fn.

We define a quantum circuit En as follows, where it has n input qubits, a + b
ancillary qubits for Dn, and two new ancillary qubits including the output qubit
for En:

1. Apply Dn on the n input qubits and a+ b ancillary qubits.
2. Apply the OR gate (with unbounded fan-in) on the b postselection qubits

and one of the two new ancillary qubits that is not the output qubit for En.
The output of the gate is written into the new ancillary qubit.

3. Apply the (1, 0)-Toffoli gate on the output qubit for Dn and the two new
ancillary qubits, where the output qubit for Dn is used as the control qubit
that is in state |1〉 when the gate outputs 1. The output of the gate is written
into the output qubit for En.

We also define a quantum circuit Fn similarly to En except that the (1, 0)-Toffoli
gate in En is replaced with the (0, 0)-Toffoli gate. The circuits En and Fn are
depicted in Fig. 1 (a) and (b), respectively, where the bottom qubits are the
output qubits. A Toffoli gate can be decomposed exactly into a constant-depth
constant-size quantum circuit consisting of H , T , and CNOT gates with no
ancillary qubits [12]. Since Dn is a QNC0 circuit, En and Fn are QNC0

t,1 circuits.
The OR gate in Step 2 reduces the b postselection qubits to one new postse-

lection qubit, which is the new ancillary qubit that is not the output qubit for
En. Moreover, the state of the output qubit for En is |1〉 if and only if the state of
the output qubit for Dn and that of the new postselection qubit are |1〉 and |0〉,
respectively. Thus, for any x ∈ {0, 1}∗ of length n, Pr[En(x) = 1] = Pr[Dn(x) =
1&postn(x) = 0b]. Similarly, Pr[Fn(x) = 1] = Pr[Dn(x) = 0&postn(x) = 0b].
Since Pr[postn(x) = 0b] = 1/2b, Pr[En(x) = 1] + Pr[Fn(x) = 1] = 1/2b.

As described above, En and Fn are QNC0
t,1 circuits. Thus, by the assump-

tion, there exist polynomial-time probabilistic classical algorithms A and B such
that, for any x ∈ {0, 1}∗ of length n, |Pr[A(x) = 1] − Pr[En(x) = 1]| ≤ 1/2b+6,
|Pr[B(x) = 1] − Pr[Fn(x) = 1]| ≤ 1/2b+6. We define a polynomial-time proba-
bilistic classical algorithm G as follows, where the input is x ∈ {0, 1}∗:
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1. Choose r ∈ {0, 1} uniformly at random.
2. (a) If r = 1, compute A(x).

i. If A(x) = 1, set post(x) = 0 and G(x) = 1.
ii. If A(x) = 0, set post(x) = 1 and G(x) = 1.

(b) If r = 0, compute B(x).
i. If B(x) = 1, set post(x) = 0 and G(x) = 0.

ii. If B(x) = 0, set post(x) = 1 and G(x) = 0.

Using the algorithm G, we can show that L ∈ PostBPP. �

We then deal with the containment BQP ⊆ AM based on Terhal et al.’s
argument [14]. The argument uses a set of results of internal coin tosses in the
classical simulation of (a parallelized version of) a quantum circuit for L ∈ BQP,
where the number of elements of the set on input x is large when x ∈ L and the
number is small when x /∈ L. Even if the difference of the numbers is somewhat
small, the Goldwasser-Sipser set lower bound protocol can decide whether the
number is large or small, which implies that L ∈ AM. More precisely, the key
part of the argument is to show that, under an assumption about the classical
simulatability of a QNC0 circuit, any L ∈ BQP has the following property, which
we call the property P : there exist a constant 0 < ε < 1/3, polynomials m, q
(m ≥ q), and a family of sets {Sx}x∈{0,1}∗ such that, for any x ∈ {0, 1}∗ of length

n, Sx ⊆ {0, 1}m(n), |Sx| ≥ (1− ε) · 23 · 2q(n) if x ∈ L and |Sx| ≤ (1 + ε) · 13 · 2q(n) if
x /∈ L, where the problem of deciding whether a bit string of length m(n) is in Sx
has a polynomial-time deterministic classical algorithm. If L has the property P ,
the Goldwasser-Sipser protocol implies that L ∈ AM [14,3] as described above.
Thus, to show Theorem 1, it suffices to show the following lemma:

Lemma 3. If any QNC0
t,1 circuit is weakly simulatable, then any L ∈ BQP has

the property P.

Proof. We assume that any QNC0
t,1 circuit is weakly simulatable. Let L ∈ BQP.

As in the proof of Lemma 2, there exists a QNC0 circuit Dn such that, for any
x ∈ {0, 1}∗ of length n,

– if x ∈ L, Pr[Dn(x) = 1&postn(x) = 0b] ≥ 2
3 · 1

2b
,

– if x /∈ L, Pr[Dn(x) = 1&postn(x) = 0b] ≤ 1
3 · 1

2b
.

We define a quantum circuit En as in the proof of Lemma 2. It holds that, for
any x ∈ {0, 1}∗ of length n, Pr[En(x) = 1] = Pr[Dn(x) = 1&postn(x) = 0b].

We fix a polynomial p satisfying (3·2b)/2p < 1/10. Since En is a QNC0
t,1 circuit,

by the assumption, there exists a polynomial-time probabilistic classical algo-
rithm A such that, for any x ∈ {0, 1}∗ of length n, |Pr[A(x) = 1] − Pr[En(x) =
1]| ≤ 1/2p(n). More concretely, there exist such an algorithm A and a polynomial
m such that, for any x ∈ {0, 1}∗ of length n, the above inequality holds, where
Pr[A(x) = 1] = |{r ∈ {0, 1}m(n)|Ar(x) = 1}|/2m(n) and Ar is A with the result
of its internal coin tosses r. We note that A with a fixed r can be regarded as
a polynomial-time deterministic classical algorithm. We can choose m satisfying
m ≥ b. Let ε = 1/4, q = m − b, and Sx = {r ∈ {0, 1}m(n)|Ar(x) = 1} for any
x ∈ {0, 1}∗ of length n. This implies that L has the property P . �
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3.2 Difference between the Strong and Weak Simulatability

We consider a polynomial-time computable function f = {fn}n≥1, where fn :
{0, 1}n → {0, 1}. That is, there exists a uniform family of polynomial-size clas-
sical circuits such that it computes f . For simplicity, we denote {fn}n≥1 as fn.
For any fn, there exists a polynomial-size quantum (in fact, classical reversible)
circuit Cf

n with n input qubits and a ≥ 1 ancillary qubits including the out-
put qubit such that Cf

n consists only of Toffoli and X gates and implements
the quantum operation |y〉|0〉⊗a  → |y〉|fn(y)〉|0〉⊗(a−1), where y ∈ {0, 1}n. The
Hadamard-Toffoli circuit for fn, which we call HTf

n, is defined as follows [9],
where it has n input qubits and a ancillary qubits including the output qubit:
apply H gates on the input qubits, then apply Cf

n on the n+ a qubits by using
the n input qubits as the input qubits for Cf

n . It can be shown that, for any fn,
HTf

n is weakly simulatable and that, unless FP = #P, that is, unless P = PP [3],
there exists an fn such that HTf

n is not strongly simulatable [9].
By Lemma 1, for any HTf

n with n input qubits and a ancillary qubits, there
exists a QNC0 circuit Df

n with n input qubits and a+b ancillary qubits. As in the
proof of Lemma 2, we consider a QNC0

t,1 circuit Ef
n , which is defined similarly

to En except that Dn in En is replaced with Df
n. By the construction of Ef

n

and Lemma 1, Pr[Ef
n(x) = 1] = #f

n(1)/2n+b and Pr[Ef
n(x) = 0] = (1 − 1/2b) +

#f
n(0)/2n+b, where #f

n(c) = |{y ∈ {0, 1}n|fn(y) = c}| for any c ∈ {0, 1}. Based
on this analysis, we can define a polynomial-time probabilistic classical algorithm
for weakly simulating Ef

n . On the other hand, we can show that a polynomial-
time deterministic classical algorithm for strongly simulating Ef

n yields such an
algorithm for computing #f

n(1) (and #f
n(0)). This implies the following lemma:

Lemma 4. The following statements hold:

(1). For any polynomial-time computable function fn, E
f
n is weakly simulatable.

(2). If, for any polynomial-time computable function fn, E
f
n is strongly simulat-

able, then P = PP.

Lemma 4 immediately implies that there exists a weakly simulatable QNC0
t,1

circuit that is not strongly simulatable, unless P = PP.

4 Circuit with Two Unbounded Fan-Out Gates

Let Cn be a polynomial-size quantum circuit with n input qubits and a ancil-
lary qubits. The Hadamard test for Cn is the well-known quantum circuit that
relates its output probability to the real or imaginary part of the matrix ele-
ment 〈0|⊗(n+a)Cn|0〉⊗(n+a) [11]. It has n input qubits and a+ 1 ancillary qubits
including the output qubit. The circuit is defined as follows: apply an H gate
on the output qubit, then apply the controlled version of Cn on the n + a + 1
qubits by using the output qubit as the control qubit, and then apply an H gate
on the output qubit. For example, let C3 be the quantum circuit depicted in
Fig. 2 (a). In this case, a = 0 and the Hadamard test for the circuit is depicted
in Fig. 2 (b), where the top qubit is the output qubit.
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Fig. 2. (a) An example of a quantum circuit C3 with a = 0. (b) The Hadamard test
for C3 in (a). (c) The parallelized Hadamard test for C3 in (a) and U1 = I . In this
case, m = 3. The gate next to H is an unbounded fan-out gate, where the top qubit is
the control qubit.

A key circuit for showing Theorem 2 is a parallelized version of the Hadamard
test. It relates its output probability to the matrix element as the standard
Hadamard test. Moreover, the depth of the parallelized version of the Hadamard
test for a QNC0 circuit is constant, in contrast to the fact that, in general, the
depth of the standard Hadamard test for a QNC0 circuit is polynomial in the
length of the input. To describe the parallelized version, let Cn be a polynomial-
size quantum circuit with n input qubits and a ancillary qubits, U1 be a single-
qubit unitary gate, and m be the maximum number of gates included in a layer
in Cn. We define a quantum circuit, which we call the parallelized Hadamard
test for Cn and U1, as follows, where it has n input qubits, a ancillary qubits for
Cn, and m new ancillary qubits including the output qubit:

1. Apply an H gate on the output qubit.
2. Apply an unbounded fan-out gate on the m new ancillary qubits, where the

output qubit is used as the control qubit.
3. Apply the controlled version of Cn, where the m new ancillary qubits are

used as the control qubits. The gates of the controlled version of Cn are
arranged so that, if the original gates in Cn are in a layer, their controlled
versions are also in a layer in this new circuit.

4. This step is the same as Step 2.
5. This step is the same as Step 1.
6. Apply the U1 gate on the output qubit.

The parallelized Hadamard test for the circuit in Fig. 2 (a) and U1 = I is depicted
in Fig. 2 (c), where the top qubit is the output qubit and m = 3.

The parallelized Hadamard test is described by the gates that are not our ele-
mentary gates. Fortunately, we can decompose such gates exactly into constant-
depth constant-size quantum circuits using our elementary gates as shown in [4].
Moreover, a direct calculation shows that the output probabilities of the par-
allelized Hadamard test for Cn are related to the real and imaginary parts of
〈x|〈0|⊗aCn|x〉|0〉⊗a as follows, where Re(z) and Im(z) are the real and imaginary
parts of z, respectively, for any z ∈ C:
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Lemma 5. For any QNC0 circuit Cn (with n input qubits and a ancillary qubits)
and single-qubit unitary gate U1 generated by a constant number of H and T ,
there exists a QNC0

f,2 circuit Dn that implements the same operation exactly as
the parallelized Hadamard test for Cn and U1. Moreover, for any x ∈ {0, 1}∗
of length n, when the input state is |x〉 and U1 = I, it holds that Pr[Dn(x) =
0] = (1 + Re(〈x|〈0|⊗aCn|x〉|0〉⊗a))/2. Similarly, when U1 = HT 2, it holds that
Pr[Dn(x) = 0] = (1 + Im(〈x|〈0|⊗aCn|x〉|0〉⊗a))/2.

In the following, the parallelized Hadamard test represents the QNC0
f,2 circuit

consisting only of our elementary gates. Roughly speaking, Lemma 5 means that
the existence of a polynomial-time deterministic classical algorithm for comput-
ing the output probability of the parallelized Hadamard test for Cn with expo-
nential precision is equivalent to that of a polynomial-time deterministic classi-
cal algorithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential precision. This
implies the following lemma:

Lemma 6. The following statements are equivalent:

(1). For any QNC0 circuit Cn and single-qubit unitary gate U1 ∈ {I,HT 2}, the
parallelized Hadamard test for Cn and U1 is strongly simulatable.

(2). For any QNC0 circuit Cn, there exists a polynomial-time deterministic clas-
sical algorithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential preci-
sion. More precisely, for any polynomial p, there exists a polynomial-time
deterministic classical algorithm A such that, for any x ∈ {0, 1}∗ of length
n, |A(x)−Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)| ≤ 1/2p(n). Moreover, such an algorithm
exists also for computing the imaginary part.

To show Theorem 2, we need the following lemma, which is a simple consequence
of Lemma 1 and the results in [6,11]:

Lemma 7. The following statements are equivalent:

(1). For any QNC0 circuit Cn, there exists a polynomial-time deterministic clas-
sical algorithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential preci-
sion.

(2). For any polynomial-size quantum circuit Cn, there exists a polynomial-time
deterministic classical algorithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with ex-
ponential precision.

(3). P = PP.

Lemmas 6 and 7 immediately imply the characterization of the relationship
P = PP. That is, the following statements are equivalent:

(1). For any QNC0 circuit Cn and single-qubit unitary gate U1 ∈ {I,HT 2}, the
parallelized Hadamard test for Cn and U1 is strongly simulatable.

(2). P = PP.

As shown in Lemma 5, the parallelized Hadamard test for any QNC0 circuit
Cn and U1 ∈ {I,HT 2} is a QNC0

f,2 circuit. Thus, this characterization implies
Theorem 2.
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5 Open Problems

Interesting challenges would be to further investigate the relationships between
the classical simulatability of constant-depth quantum circuits and complexity
classes. We give two examples of such problems:

– Can we provide stronger evidence? For example, can we show that, if any
QNC0

t,1 circuit (followed by only one single-qubit measurement) is weakly
simulatable, then P = PP?

– Can we provide evidence for the hardness as in Theorems 1 and 2 when we
consider the error 1/poly(n) in place of 1/2p(n) in the classical simulations?
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LIP�, École Normale Supérieure de Lyon
sebastien.tavenas@ens-lyon.fr

Abstract. Koiran [7] showed that if an n-variate polynomial of de-
gree d (with d = nO(1)) is computed by a circuit of size s, then it
is also computed by a homogeneous circuit of depth four and of size

2O(
√
d log(d) log(s)). Using this result, Gupta, Kamath, Kayal and Sapthar-

ishi [6] gave an exp
(
O
(√

d log(d) log(n) log(s)
))

upper bound for the

size of the smallest depth three circuit computing an n-variate polyno-
mial of degree d = nO(1) given by a circuit of size s.

We improve here Koiran’s bound. Indeed, we show that if we
reduce an arithmetic circuit to depth four, then the size becomes

exp
(
O
(√

d log(ds) log(n)
))

. Mimicking the proof in [6], it also implies

the same upper bound for depth three circuits.
This new bound is not far from optimal in the sense that Gupta,

Kamath, Kayal and Saptharishi [5] also showed a 2Ω(
√

d) lower bound
for the size of homogeneous depth four circuits such that gates at the
bottom have fan-in at most

√
d. Finally, we show that this last lower

bound also holds if the fan-in is at least
√
d.

1 Introduction

Agrawal and Vinay proved [1] that if an n-variate polynomial f of degree d =
O(n) has a circuit of size 2o(d+d log(

n
d )), then f can also be computed by a depth-

four circuit (
∑∏∑∏

) of size 2o(d+d log(
n
d )). This result shows that for proving

arithmetic circuit lower bounds or black-box derandomization of identity testing,
the case of depth four arithmetic circuit is the general case in a certain sense.
This result arose after other ones on parallelization. Valiant, Skyum, Berkowitz
and Rackoff [9] proved that if a size-s depth-d circuit computes a polynomial
of degree d, then this polynomial can also be computed by a circuit of depth
O(log(d) log(s)) and of size bounded by a polynomial in s. Some years later,
Allender, Jiao, Mahajan and Vinay [2] showed that this parallelization could be
done uniformly. Their method for parallelization is reused in [1] and will be the
basis for the parallelization in this paper.

Agrawal and Vinay’s result only deals with polynomials of sub-exponential
complexity. But if the hypothesis is strengthened, it is possible to get a stronger
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conclusion. Indeed, Koiran [7] showed that if the circuit at the beginning is of
size s, then it can be computed by a homogeneous depth-four circuit of size

2O(
√
d log(d) log(s)). For example, if the permanent family is computed by a poly-

nomial size circuit (i.e., of size nc), then it is computed by a depth-four circuit

of size 2O(
√
n log2(n)). These results appear as an interesting approach to lower

bounds: if one finds a 2ω(
√
n log2(n)) lower bound on the size of depth-4 circuits

computing the permanent, then it will imply that there are no polynomial size
circuits for the permanent. The interest of this approach is confirmed by Gupta,
Kamath, Kayal and Saptharishi’s recent result [5]. They showed that if a homo-
geneous

∑∏∑∏
circuit where the bottom fan-in is bounded by t computes

the permanent of a matrix of size n × n, then its size is 2Ω(n
t ). In a recent pa-

per [6], the same authors improve the upper bound by transforming n-variate
circuits of size s and depth d (with d = nO(1)) into depth-3 circuits of size
exp

(
O(

√
d log s logn log d)

)
, moreover if the input is a branching program (and

not a circuit), the upper bound becomes exp
(
O(

√
d log s logn)

)
. In particular,

this result gives a depth-3 circuit of size 2O(
√
n logn) computing the determinant

of a matrix n×n. Nevertheless, the depth-3 circuit they get is not homogeneous,
and uses intermediate gates which compute polynomials of very high degree.

In this paper we improve Koiran’s bound. We show that a circuit
of size s can be parallelized homogeneously in depth 4 and in size

exp
(
O

(√
d log(ds) log(n)

))
such that the fan-in of each multiplication gate

is bounded by O
(√

d log ds
logn

)
. We can notice that as n ≤ s, the result implies

Koiran’s bound and is generally better (in the case where d, s = nΘ(1), Koiran’s

bound is 2O(
√
n log2 n) while the new bound is 2O(

√
n log n)). It implies that a

2ω(
√
n log(n)) lower bound for depth-4 circuits computing the permanent gives

a super-polynomial lower bound for general circuits computing the permanent.
Moreover, using this result in Gupta, Kamath, Kayal and Saptharishi’s proof
instead of Koiran’s result slightly improves the depth-3 upper bound. An n-
variate circuit of size s and depth d is computed by a depth-3 circuit of size

exp
(
O(

√
d log(ds) log n)

)
. So, we get the same bound for the reduction at depth

3 starting from an arithmetic circuit as from an arithmetic branching program.
Finally in Section 6, we show, by a counting argument, that if a homogeneous∑∏∑∏

circuit where the bottom fan-in is lower-bounded by t computes the
permanent (or the determinant) of a matrix of size n×n, then its size is 2Ω(t log n).

2 Arithmetic Circuits

We give here a brief introduction to arithmetic circuits theory. The reader can
find more detailed information in [10,3,8,4]. In this theory, we measure the com-
plexity of polynomial functions using arithmetic circuits.

Definition 1. An arithmetic circuit is a finite acyclic directed graph with ver-
tices of in-degree 0 or more and exactly one vertex of out-degree 0. Vertices of
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in-degree 0 are called inputs and labeled by a constant or a variable. The other
vertices are labeled by × or + (or sometimes by 5 in this paper) and called com-
putation gates (the in-degree of these gates will be also called the fan-in). The
vertex of out-degree 0 is called the output. The vertices of a circuit are commonly
called gates and its edges arrows. Finally, we call a formula, an arithmetic circuit
such that the underlying graph is a tree.

Each gate of a circuit computes a polynomial (defined by induction). The poly-
nomial computed by a circuit corresponds to the polynomial computed by the
output of this circuit. For a gate α, we denote [α] the polynomial computed
by this gate. A circuit is called homogeneous is all its gates compute homoge-
neous polynomials. In fact, for some proofs, we will use circuits with several
outputs (each one corresponds to an out-degree 0 gate). A 5-gate corresponds
to a multiplication-by-a-scalar gate. The fan-in of such a gate will be always 2
and at least one of its inputs corresponds to a constant (We will give a syntactic
restriction just after the next definition).

Definition 2. The size of a circuit is its number of gates. The depth is the
maximal length of a directed path from an input to an output. The degree of a
gate is defined recursively: any variable input is of degree 1, constant inputs are
of degree 0, the degree of a + or 5-gate is the maximum of the incoming degrees
and the degree of a ×-gate is the sum of the incoming degrees.

We can now put a restriction for the 5-gates. For each one of these gates, one
of its child has to be of degree 0.

For a given circuit we will consider graphs called parse trees. A parse tree
corresponds, in the spirit, to the computation of one particular monomial.

Definition 3. The set of parse trees of a circuit C is defined by induction on
its size:

• If C is of size 1 it has only one parse tree, itself.
• If the output gate of C is a +-gate whose arguments are the gates α1, . . . , αk,
then the parse trees of C are obtained by taking, for an arbitrary i ≤ k, a
parse tree of the sub-circuit rooted in αi and the arrow from αi to the output.

• If the output gate of C is a ×-gate or an 5-gate whose arguments are the
gates α1, . . . , αk, the parse trees of C are obtained by taking disjoint copies
of parse tree of the sub-circuits rooted in αi for all i ≤ k and the arrows from
all αi to the output.

The polynomial computed by a circuit C becomes the sum of the monomials
computed by the parse trees of C.

We will use some convenient notations which are defined in [6]. A depth-4
circuit such that gates are multiplication gates at level one and three and addi-
tion gates at levels two and four are denoted

∑∏∑∏
circuits. Furthermore,

a
∑∏[α] ∑∏[β]

circuit is a
∑∏∑∏

circuit such that the fan-in of the mul-
tiplication gates at level 3 is bounded by α, and the fan-in of the multiplication
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gates at level 1 is bounded by β. For example, a
∑∏[α] ∑∏[β]

circuit computes
a polynomial of the form:

t∑
i=1

ai∏
j=1

ui,j∑
k=1

bi,j,k∏
l=1

xi,j,k,l

where ai ≤ α, bi,j,k ≤ β.

3 Upper Bounds

Here, we state the main theorem in this paper.

Theorem 1. Let f be an n-variate polynomial computed by a circuit of size
s and of degree d. Then f is computed by a

∑∏∑∏
circuit C of size

2
O
(√

d log(ds) logn
)
. Furthermore, if f is homogeneous, it will be also the case

for C.

The previous theorem can be directly applied for the permanent.

Theorem 2. If the n×n permanent is computed by a circuit of size polynomial

in n, then it is also computed by a
∑∏∑∏

circuit of size 2O(
√
n log(n)).

In their paper [6], Gupta, Kamath, Kayal and Saptharishi used the previous

2
√
d log2(s) bound [7] for parallelizing at depth 3. They showed that:

Proposition 1 (Theorem 1.1 in [6]). Let f(x) ∈ Q[x1, . . . , xn] be an n-
variate polynomial of degree d = nO(1) computed by an arithmetic circuit of size
s. Then it can also be computed by a

∑∏∑
circuit of size 2O(

√
d logn log s log d).

In fact, their proof is divided into three parts. First they transform circuits
into depth-4 circuits, then they transform depth-4 circuits into depth-5 circuits
using only sum and exponentiation gates. And finally they transform these last
circuits into depth-3 circuits. Using Theorem 1 instead of Theorem 4.1 in their
paper improves the first part of their proof. That implies a small improvement
of Theorem 1.1 in [6]:

Corollary 1. Let f(x) ∈ Q[x1, . . . , xn] be an n-variate polynomial of degree
d = nO(1) computed by an arithmetic circuit of size s. Then it can also be
computed by a

∑∏∑
circuit of size 2O(

√
d logn log s).

4 Useful Propositions

For proving Theorem 1, we will need the following propositions.
The next result is folklore. A proof can be found in [2].
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Proposition 2. If f is a degree-d polynomial computed by a {+,×}-circuit C
of size s such that the fan-in of each +-gate is unbounded and the fan-in of each
×-gate is bounded by 2, then there exists a circuit C̃ of size s(d+ 1)2 with d+ 1
outputs O0, O1, . . . , Od such that:

• the fan-in of each +-gate is unbounded,
• the fan-in of each ×-gate is bounded by 2,
• for each i, the gate Oi computes the homogeneous part of f of degree i,
• C̃ is homogeneous,
• the degree of each gate of C̃ equals the degree of the polynomial computed by
this gate.

We define ×-balanced {×,+,5}-circuits.

Definition 4. A {×,+,5}-circuit C is called ×-balanced if and only if all the
following properties are verified:

• the fan-in of each ×-gate is at most 5,
• the fan-in of each +-gate is unbounded,
• the fan-in of each 5-gate is at most 2,
• for each ×-gate α, each one of its arguments is of degree at most half of the
degree of α.

The last condition can not be true for the multiplication by a scalar. It is the
reason, we introduced the operator 5.

The next proposition which is implicitly a first result of parallelization is
almost the same result that we can find in Section 2 in [1] or in Theorem 2.7
in [8]. We give a proof in appendix.

Proposition 3. Let f be a homogeneous degree-d polynomial computed by a
size-s circuit C̃ defined as in the conclusion of Proposition 2. Then f is com-
puted by a homogeneous ×-balanced {×,+,5}-circuit of size s6 + s4 + 1 and of
degree d.

Agrawal and Vinay already noticed that Valiant, Skyum, Berkowitz and Rack-
off’s famous result [9] is a direct corollary of this proposition.

Corollary 2. Let f be a polynomial of degree d computed by a circuit of
size s. Then f is computed by a {+,×}-circuit of size (sd)O(1) and of depth
O(log(s) log(d)) where each + and ×-gate is of fan-in 2.

5 Proof of Theorem 1

For realizing the reduction to depth four, Koiran begins by transforming the
circuit into an equivalent arithmetic branching program. Then, he parallelizes
the branching program, and finally comes back to the circuits. The problem with
this strategy is that the transformation from circuits to branching programs
requires an increase in the size of our object. If the circuit is of size s, our new
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branching program is of size slog(d). Here, the approach is to directly parallelize
the circuit without using arithmetic branching programs in intermediate steps.

The idea is to split the circuit into two parts: gates of degree lower than√
d and gates of larger degree. Furthermore, a circuit such that the degree of

each gate is bounded by
√
d computes a degree-

√
d polynomial and so can be

written as a sum of at most sO(
√
d) monomials. Then, if each part of our circuit

computes polynomials of degrees bounded by
√
d, we just have to get the two

depth-2 circuits and connect them together. The main difficulty comes from the
fact it is not always true that the sub-circuit obtained by the gates of degree
larger than

√
d is of degree smaller than

√
d. For example, for the comb graph

with n− 1 ×-gates and n variable inputs:

x1 · (x2 · (x3 · (. . .)))

the degree of the first part is
√
n, but the degree of the second one is n−

√
n.

In fact, following ideas from [6], we are going to cut not exactly at level
√
d.

It will give a sharper result.

Lemma 1. Let f be a homogeneous n-variate polynomial of degree d computed
by a homogeneous ×-balanced {×,+,5}-circuit C of size σ. Then f is computed

by a homogeneous
∑∏[15a] ∑∏[ d

a ] circuit of size 1 +
(
σ+15a
15a

)
+ σ+ σ

(n+ d
a

d
a

)
+n

for any positive constant a smaller than d.

To get nicer expressions, we will use the following consequence of Stirling’s for-
mula: (A proof appears in [1])

Lemma 2. (
k + l

l

)
= 2O(l+l log k

l )

First, let us see how Lemma 1 implies Theorem 1.

Proof (Proof of Theorem 1). Let f be an n-variate polynomial computing by a
circuit of size s and degree d. Let C̃ be the homogeneous circuit for the poly-
nomial that we get by Proposition 2. The circuit C̃ is of size t = s(d + 1)2 and
computes all polynomials f0, . . . , fd where fi is the homogeneous part of f of
degree i. Then for each i ≤ d, there exists a homogeneous ×-balanced circuit C
of size σ = t6 + t4 + 1 computing fi. We apply Lemma 1 for the circuit C with

a =
√
d log n
log σ . Using Lemma 2 we get a homogeneous

∑∏∑∏
circuit of size

1 +
(
σ+15a
15a

)
+σ+σ

(n+ d
a

d
a

)
+n = 2O(

√
d log σ logn). At the end, we just have to add

together homogeneous parts fi. As σ = O(s6d12), it gives a 2
O
(√

d log(ds) logn
)

upper bound for the size.

Remark 1. Choosing the easier assignment a =
√
d gives a 2O(

√
d log(ds)) upper

bound.
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Proving Lemma 1 will complete the proof.

Proof (Proof of Lemma 1). We define circuits C1 and C2 as follows. C1 is the
circuit we get by keeping only gates of C of degree < d

a . Circuit C2 is made up of

the remaining gates (i.e., those of degree ≥ d
a ) and of the inputs of these gates.

These inputs are the only gates which belong both in C1 and in C2.
Each gate α of C1 has degree at most d

a , so computes a polynomial of degree

at most d
a . By homogeneity of C, the polynomial computed in α is homogeneous.

Consequently, α is a homogeneous sum of at most
(n+ d

a
d
a

)
monomials, and so, can

be computed by a homogeneous depth-2 circuit of size 1 +
(n+ d

a
d
a

)
+ n (The “1”

encodes the +-gate, the “n” encodes the input gates, and the remainder encodes
the ×-gates).

We are going to show now that the degree of C2 is bounded by 15a.
Let δ be the degree of C2. There exists a degree-δ monomial m in C2. Let T

be a parse tree computing m.
We partition the set of ×-gates of T into 3 sets:

• G0 = {α ∈ T |α is a × -gate and all children of α are leaves of T }
• G1 = {α ∈ T |α is a × -gate and exactly one child of α is not a leaf}
• G2 = {α ∈ T |α is a × -gate and at least two children of α are not leaves}.

Then, if we consider the sub-tree S of T with only gates of C2, then G0 are leaves
of S, G1 are internal vertices of fan-in 1 and G2 are internal vertices of fan-in at
least 2.

The proof is in two parts. First we upperbound the size of the sets G0, G1 and
G2. Then, we upperbound the degree of m.

In C, the degree of “m” is at least the sum of the degrees of the gates of G0

(since two of these gates can not appear on the same path). Each one of these
gates is in C2, so is of degree at least d

a in C. As m is of degree at most d in C,
it means that the number of gates in G0 is at most a.

In C, the degree of “m” is at least the sum of the degrees of the leaves directly
connected to a gate of G1. For each gate α of G1, exactly one of its inputs β is in
C2, hence of degree at least d

a in C. By Proposition 3, the degree of α is at least
two times the degree of β, it yields that the sum of degrees of inputs of α which
are in C1 is also at least d

a . Then, the number of vertices in G1 is at most a.
Finally, in a tree, the number of leaves is larger than the number of vertices

of fan-in at least 2. Then in S, we get that:

|G2| ≤ |G0| ≤ a.

In C2, the degree of the monomial m is the number of leaves labelled by a non-
constant leaf in T . We match each leaf with the first ×-gate which is connected
to it. As in T , the fan-in of the ×-gates is bounded by 5, the fan-in of the +-gates
is bounded by 1 and each 5-gates add only one constant input, then the number
of variable leaves connected to a particular ×-gate is at most 5. So the number
of leaves in T is at most:

5 × (|G0| + |G1| + |G2|) ≤ 15a.
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This proves that the degree of C2 is at most 15a. Then, the number of inputs of
C2 is bounded by the number of gates in C1 and so in C (which is σ). So, there
exists a depth-2 circuit which compute C2, of size 1 +

(
σ+15a
15a

)
+σ with as inputs

the gates of C1.
Consequently, each polynomial fi can be computed by a homogeneous∑∏[a] ∑∏[ d

a ] circuit of size at most 1 +
(
σ+15a
15a

)
+ σ + σ

(n+ d
a

d
a

)
+ n.

6 A Lower Bound

In [5], it was proved that if a homogeneous depth-four circuit computing Permn

has its bottom fan-in bounded by t, then the size of the circuit is at least 2Ω(n
t ).

But what happens if bottom multiplication gates all have a large fan-in? We
show that this implies a similar lower bound for the size of the circuit:

Theorem 3. If C is a homogeneous
∑∏∑∏

circuit which computes Permn

(or Detn) such that the fan-in of each bottom multiplication gate is at least t,
then the size of C is at least 2Ω(t log(n)).

Our approach is only based on counting the number of monomials. We begin by
some definitions.

Definition 5. For a multivariate polynomial f(x) =
∑mf

i=1 aixi, we will denote
Mf the set {xi | xi is a monomial of f }. If E is a set of polynomials, we also
define ME =

⋃
f∈E Mf .

We can notice MPermn
= { x1,σ(1) . . . xn,σ(n) | σ ∈ Sn }. So, |MPermn

| = n!.

Definition 6. Let E be a set of polynomials. Let us denote

E+ = { f1 + . . .+ fm | m ∈ N and ∀i ≤ m, fi ∈ E }
and E×k = { f1 × . . .× fm | m ≤ k and ∀i ≤ m, fi ∈ E }

Lemma 3. Let E be a set of polynomials. Then,

ME+ = ME and |ME×s | ≤ (|ME | + 1)s .

Proof. If x is a monomial in ME+ , it means there exist polynomials f1, . . . , fm
in E such that x is a monomial of f1 + . . . + fm. Then there exists i ≤ m such
that x is a monomial of fi and so x is an element of ME . Hence ME+ ⊆ ME .
Moreover, as E ⊆ E+, we get ME ⊆ ME+ .

Moreover, if x is a monomial in ME×s , it means there exist polynomials
f1, . . . , fm in E such that x is a monomial of f1 × . . . × fm with m ≤ s. It
implies that x ∈ {x1 × . . . × xm | m ≤ s and xi ∈ ME }. That is to say,
x ∈ {x1 × . . .× xs | and xi ∈ (ME ∪ {1}) }. It proves the lemma.

Let C be a
∑∏∑∏

circuit. The gates of the circuit are layered into five
levels. Inputs are at level 0, multiplication gates at levels 1 and 3 and addition
gates at levels 2 and 4. For each level i, let us denote si the number of gates
at this level, ti an upper bound on the fan-in of these gates and Ei the set of
polynomials computed at this level.
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Lemma 4. Any
∑∏∑∏

circuit that computes Permn (or Detn) such that
the fan-in of the multiplication gates at level 3 is bounded by v must have size
exp

[
Ω

(
n
v log(n)

)]
.

Proof. We notice that the hypothesis in the lemma about the bound of the fan-in
just states that t3 ≤ v.

The polynomials in E1 are just monomials. So, |ME1 | ≤ s1. We have:

E4 ⊆ E+
3 , E3 ⊆ E×t3

2 and E2 ⊆ E+
1 .

Then by Lemma 3,

|ME4 | ≤ (s1 + 1)t3 ≤ (s1 + 1)v.

However, as Permn is an element of E4, we also have:

|ME4 | ≥ |MPermn
| = n!.

So, s1 ≥ (n!)
1
v − 1 = 2Ω(n

v log(n))

The result of this lemma directly implies Theorem 3.

Proof (Proof of Theorem 3). Let C be a homogeneous
∑∏∑∏

circuit which
computes Permn (or Detn) such that the fan-in of each bottom gate is at least
t. It implies that the degree of each gate at level 1 and 2 is at least t. As the
circuit is homogeneous, the degree of a gate at level 3 is upperbounded by n and
lowerbounded by t times the number of inputs of this gate. Consequently, in C,
the fan-in of the multiplication gates at level 3 is bounded by n

t . Then Lemma 4
implies the theorem.

In fact, for computing the determinant, we can also notice that the fan-in of
multiplication gates in the depth-four circuits that we get either in [7] or here in
Section 5, is linear in

√
n. It implies that in this case, the bounds are tight.

Corollary 3. If C is a
∑∏∑∏

circuit which computes Detn such that the
fan-in of each bottom multiplication gate is Ω(

√
n) or such that the fan-in of

each multiplication gate of level 3 is O(
√
n), then the minimal size of C is

2Θ(
√
n log(n)).

Proof. Koiran’s result [7] implies that there exist depth-four circuits for Detn

of size 2O(
√
n logn) such that all multiplication gates have fan-in bounded by

O(
√
n). For the lowerbound, the case where the bottom fan-in is lowerbounded

by Ω(
√
n) is given by Theorem 3. The case where the fan-in of gates of level 3

is bounded by O(
√
n) is given by Lemma 4.

Consequently, it would be an interesting question to know the lower bound on
the size of an homogeneous circuit computing Detn. In [5] the authors show that
if the circuit is such that the fan-in of bottom gates is bounded by O(

√
n), then

the size is 2Ω(
√
n). Here, we show that if all bottom fan-in are lowerbounded

by Ω(
√
n), then the size is 2Ω(

√
n log n). What happens if in the circuit, there

are some bottom gates with a large fan-in and some bottom gates with a small
fan-in?
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Question 1. Is it true that if C is a homogeneous depth-four circuit which com-
putes Detn then the size of C is at least 2Ω(

√
n)?

Acknowledgments. The author thanks Pascal Koiran for helpful discussions and

comments on this work.
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Appendix: Proof of Proposition 3

Let f be a homogeneous polynomial computed by a circuit C̃ of size s like in
the proposition. First, we can delete the “calculus with constants”. To do that,
we just have to replace recursively each gate such that all entries are constants
by the constant value of this gate. Then, by homogeneity, constants can not be
entries of a +-gate. Then, for each ×-gate such that one entry is a constant, we
replace the ×-gate by a scalar 5-gate. We can notice that this transformation
does not increase the size of the circuit. Second, we can reorder the children of
the ×-gates and of the 5-gates so as to for each one of these gates, the degree
of the rightmost child is larger or equals the degree of the other child. We get a
circuit C1 of size s.

We define now a new circuit C2 which satisfies the criteria of the proposition.
For each pair of gates α and β in C1, we define the gate (α;β) in C2 as follows:
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• If β is a leaf, then [(α;β)] equals the sum of the parse trees rooted in α such
that β appears in the rightmost path (ie, β is the leaf of the rightmost path).

• If β is not a leaf, then [(α;β)] equals the sum of the parse trees rooted in α
such that β appears in the rightmost path and where the subcircuit rooted
in β is deleted. That is as if we replace the gate β by the input 1 in the
rightmost path and we compute [(α;β)] with β = 1 a leaf.

We notice here that it is easy to get the polynomial computed by the gate α:
[α] =

∑
l leaf[(α; l)].

Now, we show how one can compute the value of the gates (α;β).

• If β does not appear on the rightmost path of a parse tree rooted in α, then
(α;β) = 0.

• If α is a leaf, then (α;α) = α and else (α;α) = 1.
• Otherwise α and β are two different gates and α is not a leaf. If α is a +-gate,

then [(α;β)] is simply the sum of all [(α′, β)], where α′ is a child of α.
• If α is a 5-gate, then one child is a constant c and the other child is a gate
α′. Then (α;β) is simply the scalar operation [(α;β)] = [(c; c)] 5 [(α′;β)].

• If α is a ×-gate. There are two cases.
- First case: β is a leaf. Then deg(α) > deg(β) = 1. On each rightmost

path ending on β of a parse tree rooted in α, there exists exactly one
×-gate γ and its right child on this path γr such that:

deg(γ) > deg(α)/2 ≥ deg(γr). (1)

Conversely, we notice that for each gate γ satisfying (1), if [(α; γ)] and
[(γr;β)] are not zero, then γ is on a rightmost path from α to β. Then,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (1)

[(α; γ)][(γl; l)][(γr;β)].

One can notice that deg(α;β) = deg(α). Using (1):

deg(α; γ) = deg(α) − deg(γ) < deg(α)/2

deg(γr;β) = deg(γr) ≤ deg(α)/2

deg(γl; l) = deg(γl) ≤ deg(γr) ≤ deg(α)/2.

Consequently, [(α;β)] is computed by a depth-2 circuit of size at most
s2 + 1: a +-gate where each child is a ×-gate of fan-in 3. Each child of
these ×-gates is of degree at most the half of the degree of the ×-gate.

- Second case: β is not a leaf. Then there exists on every rightmost paths
rooted in α a ×-gate γ and its child on this path γr such that:

deg(γ) ≥ (deg(α) + deg(β))/2 > deg(γr). (2)

Then by the same argument,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (2)

[(α; γ)][(γl; l)][(γr;β)]. (3)
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We have this time with (2):

deg(α;β) = deg(α) − deg(β)

deg(α; γ) = deg(α) − deg(γ) ≤ (deg(α) − deg(β)) /2

deg(γr;β) = deg(γr) < (deg(α) − deg(β)) /2.

The problem here is that the degree of (γl; l) could be larger than the
average of the degrees of α and β. If γl is of degree at most 1 (and so
exactly 1) and if the degree of (α;β) is also 1, then γ = α (they are the
same gate) and (γr;β) is of degree 0 and computes a constant cγ . Hence,

[(α;β)] =
∑

l leaf, γ ×-gate verifying (2)

[cγ ] 5 [(γl; l)].

Now, if the degree of γl is again 1 but if (α;β) is of degree at least 2,
then the computation of the gate (α;β) by the formula (3) works (ie., the
degree of (γl; l) is smaller than half of the degree of (α;β)). Otherwise,
the degree of γl is at least 2 and at most deg(α;β). As l is a leaf, we
can apply the first case (even if γl is not a ×-gate). There exists also on
every rightmost paths rooted in γl a ×-gate μ and its child on this path
μr such that:

deg(μ) > deg(γl)/2 ≥ deg(μr). (4)

Then,

[(α;β)] =
∑

l1,l2,γ,μ

[(α; γ)][(γr ;β)][(γl;μ)][(μl; l2)][(μr; l1)] (5)

where the sum is taken over all l1, l2 leaves, γ ×-gate verifying (2) and
μ ×-gate verifying (4).
The degrees of the gates (γl;μ), (μl; l2) and (μr; l1) are bounded by half
of the degree of γl. Hence, [(α;β)] is computed by a depth-2 size-s4 + 1
circuit. The ×-gates are of fan-in bounded by 5 and the degree of their
children is bounded by half their degree.

Consequently, for each gates α and β in C1, the gate (α;β) is computed in C2

by a sub-circuit of size at most s4 +1. At the end we get a circuit of size at most
s6 + s2 which computes all gates (α;β). Finally, f is computed by a circuit of
size bounded by s6 + s2 + 1.

That proves the proposition.
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Abstract. Module Motif is a pattern matching problem that was intro-
duced in the context of biological networks. Informally, given a multiset
of colors P and a graph H whose nodes have sets of colors, it asks if P
occurs in a module of H (i.e. in a set of nodes that have the same neigh-
borhood outside the set). We present three parameterized algorithms for
this problem that measure similarity between matched colors and handle
deletions and insertions of colors to P . We observe that the running time
of two of them might be essentially tight and prove that the problem is
unlikely to admit a polynomial kernel.
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1 Introduction

Graph Motif is an important problem in the analysis of biological networks that
has received considerable attention since its introduction by Lacroix et al. [16]
(see [1, 2, 4, 5, 7, 10–13, 15, 19–21]). Informally, given a multiset of colors P and
a graph H whose nodes have sets of colors, it asks if P occurs in a subtree of H .

A module M of a graph H = (V,E) is a subset of V s.t. ∀u, v ∈ M, ∀x /∈
M : {v, x} ∈ E iff {u, x} ∈ E [8] (i.e. it is a set of nodes that have the same
neighborhood outside the set). Rizzi et al. [21] replace the connectivity constraint
of Graph Motif with modularity and thus define Module Motif. They present
biological justifications for considering this replacement.

Module Motif

– Input: A set of colors C, a multiset P of colors from C, a graph H = (V,E)
and Col : V → 2C .

– Decide if there is a module M of H and m : M → C s.t.
1. ∀v ∈M : m(v) ∈ Col(v).
2. ∀c ∈ C : c occurs in P exactly |{v ∈ M : m(v) = c}| times.

In the limited case of the problem we have that |Col(v)| = 1 for all v ∈ V . We
denote MaxCol = maxv∈V {|Col(v)|}.

We use the common O∗ and Õ notation to hide factors polynomial and poly-
logarithmic in the input size respectively. As in [21], we denote k = |P |.

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 825–836, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Rizzi et al. [21] prove that the limited case of the problem is NP-complete
even if P is a set and H is a collection of paths of size 3. They denote by c the
number of different colors in P and give an O∗((k(2c)k)k+1ck) time algorithm
for the problem, which is not satisfying for practical issues. They also give an
O∗(2k) time and space algorithm for the limited case. They use a modular tree
decomposition [24] and dynamic programming.

Rizzi et al. [21] leave the handling of deletions and insertions of colors to P
as an open problem. Several Graph Motif algorithms handle deletions and inser-
tions (see e.g. [19]), and we shall handle them in a similar manner. In biological
networks such as protein-protein interaction networks and metabolic networks,
we can measure the similarity between the elements that the colors represent (see
e.g. [18, 23]) and thus assess the relevance of a solution to Module Motif. This
approach is used in the alignment query problem [19], which is another pattern
matching problem that was introduced in the context of biological networks.
Thus we define the following generalization of Module Motif:

General Module Motif

– Input: A set of colors C, a multiset P of colors from C, a graph H = (V,E),
col : V → C, Col : V → 2C , Δ : C × C → R, D ∈ N0, I ∈ N0 and S ∈ R.

– Decide if there is a module M of H , U ⊆ M and m : U → C s.t.
1. ∀v ∈ U : m(v) ∈ Col(v).
2. ∀c ∈ C : c occurs in P at least |{v ∈ U : m(v) = c}| times.
3. |U | = k −D = |M | − I.
4.

∑
v∈U Δ(col(v),m(v)) ≥ S.

The function col assigns to each node a color that represents the element that
the node represents, and Col assigns to each node a set of colors that represent
elements that are similar to the element that the node represents. For example,
in protein-protein interaction networks col(v) is the color that represents the
protein that v represents, and Col(v) is the set of colors that represent proteins
that are homologous to the protein that v represents. Δ is symmetric, and D, I
and S stand for Deletions, Insertions and Score, respectively.

Conditions 1 and 2 are similar to those of Module Motif. Condition 3 states
that we delete D occurrences from P and add I occurrences to P . Condition 4
states that the score of the solution is at least S. We denote the occurrences of
colors in P by p1, p2, . . . , pk, the color of an occurrence pi by col(pi) and S+ =
max{S, 1}. We assume WLOG that D ≤ k, I ≤ |V | and MaxCol ≤ min{|C|, k}.

Module Motif is the special case of this problem in which (∀c, c′ ∈ C :
Δ(c, c′) = 0) and I = D = S = 0.

Fixed-parameter algorithms [17] are an approach to solve NP-hard problems
by confining the combinatorial explosion to a parameter t. More precisely, a
problem is fixed-parameter tractable with respect to a parameter t if an instance
of size n can be solved in O∗(f(t)) time for some function f . We shall consider
the parameters k and k −D.

Our algorithms use modular tree decompositions (see Section 2). Section 3
presents an O∗(2k) time General Module Motif algorithm that uses dynamic
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programming. In Section 4 we use it and improved color coding [14] to design
an O∗(4.314k−D) time General Module Motif algorithm. Section 5 presents an
O∗(2k−DS+) time algorithm for General Module Motif where S and Δ(c, c′) are
nonnegative integers ∀c, c′ ∈ C. It uses the algebraic framework of Björklund et
al. [3]. We get an O∗(2k) time and O∗(1) space Module Motif algorithm, which
improves the O∗((k(2c)k)k+1ck) time algorithm of Rizzi et al. [21]. In Section 6
we observe that some of our results might be essentially tight. Finally, in Section
7, we prove that Module Motif is unlikely to admit a polynomial kernel.

Due to space constraints, some of the proofs are omitted.

2 Sets of Disjoint Sets Instead of Modules

In this section we show that we can focus our attention on finding a certain
subset of a set of disjoint sets instead of a certain module of a graph.

A modular tree decomposition of a graph H = (V,E) is a linear-sized repre-
sentation of all its modules. It includes a rooted tree T = (VT , ET ), a function
f : VT → 2V and a function g : VT → {0, 1}. A formal definition appears in [24].
In this paper we are only interested in its following properties (which are also
used in [21]):

1. M is a module of H iff there is a node v ∈ VT s.t. M = f(v) or (g(v) = 1
and there is a subset U of the set of children of v s.t. M =

⋃
u∈U f(u)).

2. Every v, u ∈ VT that have the same father satisfy f(v) ∩ f(u) = ∅.
3. |VT | ≤ 2|V | − 1.

Now we define a problem whose algorithms (which we design in Sections 3 and
5) and modular tree decompositions will help us solve General Module Motif.

Set Motif

– Input: A set of colors C, a multiset P of colors from C, a set A of disjoint
sets, col :

⋃
A → C, Col :

⋃
A → 2C , Δ : C × C → R, D ∈ N0, I ∈ N0 and

S ∈ R.
– Decide if there is Ã ⊆ A, U ⊆

⋃
Ã and m : U → C s.t.

1. ∀a ∈ U : m(a) ∈ Col(a).
2. ∀c ∈ C : c occurs in P at least |{a ∈ U : m(a) = c}| times.

3. |U | = k −D = |
⋃
Ã| − I.

4.
∑

a∈U Δ(col(a),m(a)) ≥ S.

We denote the sets of A by A1, A2, . . . , A|A|. For each Ai ∈ A, we denote its
elements by ai1, a

i
2, . . . , a

i
|Ai|.

Let SetALG(C,P,A, col, Col,Δ,D, I, S) be a Set Motif algorithm that uses
t(MaxCol, k, |

⋃
A|, D, I, S) time and s(MaxCol, k, |

⋃
A|, D, I, S) space. Next

we present a procedure that solves General Module Motif by using a modular
tree decomposition and SetALG.
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ModuleALG(C,P,H = (V,E), col, Col,Δ,D, I, S)

1. Compute a modular tree decomposition (T = (VT , ET ), f, g) of H in O(|V |2)
time and O(|V |) space (e.g. use the algorithm of Tedder et al. [24]).

2. ∀v ∈ VT :
If SetALG(C,P, {f(v)}, col, Col,Δ,D, I, S) accepts or (g(v) = 1 and
SetALG(C,P, {f(u) : u is a child of v}, col, Col,Δ,D, I, S) accepts): Accept.

3. Reject.

Property 2 of a modular tree decomposition implies that ∀v ∈ VT , {f(u) : u is
a child of v} is a set of disjoint subsets of V . Thus each call of SetALG is legal
and uses O(t(MaxCol, k, |V |, D, I, S)) time and O(s(MaxCol, k, |V |, D, I, S))
space. By Property 3 of a modular tree decomposition, we get that Step 2 uses
O(|V |t(MaxCol, k, |V |, D, I, S)) time and O(s(MaxCol, k, |V |, D, I, S)) space.

Property 1 of a modular tree decomposition implies that if (M,U,m) is a
solution, then there is v ∈ VT s.t. ({f(v)}, U,m) is a solution to Set Mo-
tif whose input is (C,P, {f(v)}, col, Col,Δ,D, I, S) or (g(v) = 1 and ({f(u) :
u ∈ M}, U,m) is a solution to Set Motif whose input is (C,P, {f(u) : u is a

child of v}, col, Col,Δ,D, I, S)), and if there is v ∈ VT s.t. (Ã, U,m) is a solu-
tion to Set Motif whose input is (C,P, {f(v)}, col, Col,Δ,D, I, S) or (g(v) = 1
and it is a solution to Set Motif whose input is (C,P, {f(u) : u is a child of

v}, col, Col,Δ,D, I, S)), then (
⋃
Ã, U,m) is a solution.

We get the following lemma:

Lemma 1. ModuleALG solves General Module Motif in O(|V |t(MaxCol, k, |V |,
D, I, S) + |V |2) time and O(s(MaxCol, k, |V |, D, I, S) + |V |) space.

3 An O∗(2k)-Time Algorithm

We present an O∗(2k) time and space Set Motif algorithm that uses dynamic
programming. By Lemma 1, we thus get an O∗(2k) time and space General
Module Motif algorithm, which we denote by ALG3.

First we define the partial solutions that we consider in our computation.

Definition 1. Given a multiset P̃ ⊆ P s.t. |P̃ | ≤ k −D, 1 ≤ i ≤ |A|, 1 ≤ j ≤
|Ai| and 0 ≤ ins ≤ I, Sol(P̃ , i, j, ins) denotes the set of tuples (Ã, U,m) s.t.

Ã ⊆ {A1, A2, . . . , Ai−1, {ai1, ai2, . . . , aij}}, U ⊆
⋃
Ã, m : U → C and

1. ∀a ∈ U : m(a) ∈ Col(a).

2. ∀c ∈ C : c occurs in P̃ exactly |{a ∈ U : m(a) = c}| times.

3. |U | = |P̃ | = |
⋃
Ã| − ins.

We use two matrices:

1. M has a cell [P̃ , i, j, ins] for every multiset P̃ ⊆ P s.t. |P̃ | ≤ k −D, 1 ≤ i ≤
|A|, 1 ≤ j ≤ |Ai| and 0 ≤ ins ≤ I.

2. N has a cell [P̃ , i, ins] for every multiset P̃ ⊆ P s.t. |P̃ | ≤ k−D, 1 ≤ i ≤ |A|
and 0 ≤ ins ≤ I.
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The cells of the matrices hold the following scores:

1. M [P̃ , i, j, ins] =
max(Ã,U,m)∈Sol(P̃ ,i,j,ins) s.t. {ai

1,a
i
2,...,a

i
j}∈Ã

{
∑

a∈U Δ(col(a),m(a))}.

2. N [P̃ , i, ins] = max(Ã,U,m)∈Sol(P̃ ,i,|Ai|,ins){
∑

a∈U Δ(col(a),m(a))}.

Lemma 2. The cells of M and N can be computed in O(2kMaxCol|
⋃
A|I)

time and O(2kI) space by using dynamic programming.

After we compute the cells, we accept iff maxP̃⊆P s.t. |P̃ |=k−D{N [P̃ , |A|, I]}
≥ S, and the correctness immediately follows from the definition of Set Motif.
We get the following theorem:

Theorem 1. ALG3 solves General Module Motif in O(2kMaxCol|V |2I) time
and O(2kI + |V |) space.

4 An O∗(4.314k−D)-Time Algorithm

We use improved color coding [14] and ALG3 (see Section 3) to design an
O∗(4.314k−D) time and O∗(2.463k−D) space General Module Motif algorithm.

The idea of the algorithm is to introduce a new multiset of colors that repre-
sents P and whose size is a function of k −D. We reduce the size from k to a
function of k −D by allowing each occurrence in the new multiset to represent
several occurrences in P . Then we call ALG3 with the new multiset and get a
parameterized algorithm whose parameter is k −D.

Let P ∗ = {p∗1, p∗2, . . . , p∗1.3(k−D)} be a set of 1.3(k −D) new colors. For each

v ∈ V , define col∗(v) = c∗v, where c∗v is a new color. Define C∗ = P ∗∪{c∗v : v ∈ V }.
Given f : P → P ∗, we define Colf : V → 2C

∗
as follows ∀v ∈ V :

– Colf (v) = {f(pi) : pi ∈ P, col(pi) ∈ Col(v)}.

We also define a symmetric Δf : C∗ × C∗ → R as follows ∀c, d ∈ C∗:

1. If c = c∗v and d ∈ Colf (v) for a node v ∈ V :
Δf (c, d) = Δf (d, c) = maxpi∈P s.t. f(pi)=d∧col(pi)∈Col(v)Δ(col(v), col(pi)).

2. Else: Δf (c, d) = Δf (d, c) = 0.

Now we present the algorithm:

ALG4(C,P,H = (V,E), col, Col,Δ,D, I, S):

1. Repeat 1.752k−D times:
(a) ∀pi ∈ P , independently and uniformly at random assign a color from

P ∗. Denote the resulting function by f : P → P ∗.
(b) If ALG3(C∗, P ∗, H, col∗, Colf , Δf , 0.3(k −D), I, S) accepts: Accept.

2. Reject.

Next we prove the correctness of ALG4.
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Observation 1. If there is f : P → P ∗ s.t. (M,U,m∗) is a solution to (C∗, P ∗,
H, col∗, Colf , Δf , 0.3(k−D), I, S), then there is a solution to the input instance.

Proof. ∀v ∈ U , we define m(v) = col(pi) for some pi ∈ P s.t. f(pi) = m∗(v),
col(pi) ∈ Col(v) and Δf (col∗(v), f(pi)) = Δ(col(v), col(pi)) (our definitions of
Colf and Δf imply that such a pi exists). Clearly M is a module of H , U ⊆M
and m : U → C. Moreover, they fulfill the following conditions:

1. Let v ∈ U . We have that m(v) ∈ Col(v).
2. Let c ∈ C. If c does not occur in P , then |{v ∈ U : m(v) = c}| = 0. If there

are two different v, u ∈ U s.t. we defined both m(v) and m(u) as c because
of the same occurrence pi of c in P , then |{v ∈ U : m∗(v) = f(pi)}| ≥ 2,
which is a contradiction (since f(pi) occurs once in P ∗). Thus the number
of occurrences of c in P is at least |{v ∈ U : m(v) = c}|.

3. |U | = |P ∗| − 0.3(k −D) = k −D.
4. |U | = |M | − I.
5.

∑
v∈U Δ(col(v),m(v)) =

∑
v∈U Δf (col∗(v),m∗(v)) ≥ S.

Thus (M,U,m) is a solution to the input instance. ��

Observation 2. If there is a solution (M,U,m) to the input instance, then with
probability at least 1 − 1/e, there is an iteration where we choose f : P → P ∗

s.t. there is a solution to (C∗, P ∗, H, col∗, Colf , Δf , 0.3(k −D), I, S).

Proof. Each c ∈ C occurs in P at least |{v ∈ U : m(v) = c}| times. Thus ∀c ∈ C
we can denote some set of |{v ∈ U : m(v) = c}| occurrences of c in P by Occ(c).

We denote by F the set of functions f : P → P ∗ that satisfy ∀pi, pj ∈⋃
c∈C Occ(c) s.t. i �= j, f(pi) �= f(pj). Note that |

⋃
c∈C Occ(c)| = k −D.

Given sets A, B ⊆ A and C s.t. 1.3|B| = |C|, Hüffner et al. [14] prove that if
we repeat 1.752|B| times the step

– ∀a ∈ A, independently and uniformly at random assign an element from C.

then with probability at least 1 − 1/e, there is a step where we assign to each
element in B a different element from C.

We get that with probability at least 1 − 1/e, there is an iteration where we
choose f ∈ F . Next consider an iteration that corresponds to such a f .

For each v ∈ U , choose a different occurrence pi of m(v) in Occ(m(v)) and
denote m∗(v) = f(pi). Clearly M is a module of H , U ⊆ M and m∗ : U → C∗.
Moreover, they fulfill the following conditions:

1. Let v ∈ U . m(v) ∈ Col(v), and thus m∗(v) ∈ {f(pi) : pi ∈ P, col(pi) ∈
Col(v)}. Therefore m∗(v) ∈ Colf (v).

2. Let c ∈ C∗. If c /∈ P ∗, then |{v ∈ U : m∗(v) = c}| = 0, and if c ∈ P ∗, then
by our choice of f , |{v ∈ U : m∗(v) = c}| ≤ 1.

3. |U | = k −D = |P ∗| − 0.3(k −D).
4. |U | = |M | − I.
5.

∑
v∈U Δf (col∗(v),m∗(v)) ≥

∑
v∈U Δ(col(v),m(v)) ≥ S.
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Thus (M,U,m∗) is a solution to (C∗, P ∗, H, col∗, Colf , Δf , 0.3(k−D), I, S). ��

The time and space complexities of Step 1b are O(21.3(k−D)(k −D)|V |2I) and
O(21.3(k−D)I + |V |) respectively. Since we repeat it 1.752k−D times, we get that
ALG4 uses O(4.314k−Dk|V |2I) time and O(2.463k−DI + |V |) space.

We get the following theorem:

Theorem 2. ALG4 solves General Module Motif. It has one-sided error and
uses O(4.314k−Dk|V |2I) time and O(2.463k−DI + |V |) space.

5 An O∗(2k−DS+)-Time Algorithm

We present an O∗(2k−DS+) time and O∗(S+) space algorithm for Set Motif
where S and Δ(c, c′) are nonnegative integers ∀c, c′ ∈ C. By Lemma 1, we thus
get an O∗(2k−DS+) time and O∗(S+) space algorithm for General Module Motif
where S and Δ(c, c′) are nonnegative integers ∀c, c′ ∈ C, which we denote by
ALG5. Since in Module Motif, (∀c, c′ ∈ C : Δ(c, c′) = 0) and D = I = S = 0,
we get an O∗(2k) time and O∗(1) space Module Motif algorithm.

We use the algebraic framework of Björklund et al. [3]. We express our param-
eterized problem by associating monomials with potential solutions. A correct
solution is associated with a unique monomial, and a monomial which is not
associated with a correct solution is associated with an even number of potential
solutions. Having a polynomial which is the sum of such monomials, we need to
determine whether it has a monomial whose coefficient is odd.

Given i ∈ N, we denote [i] = {1, 2, . . . , i}.

5.1 Potential Solutions

First we define the potential solutions (PS stands for Potential Solutions).

Definition 2. Given 0 ≤ size ≤ k −D, 1 ≤ i ≤ |A|, 1 ≤ j ≤ |Ai|, 0 ≤ ins ≤ I

and sco ∈ N0, PS(size, i, j, ins, sco) is the set of tuples (Ã, U,m, l) s.t. Ã ⊆
{A1, A2, . . . , Ai−1, {ai1, ai2, . . . , aij}}, U ⊆

⋃
Ã, m : U → P , l : U → [k −D] and

1. ∀a ∈ U : col(m(a)) ∈ Col(a).

2. |U | = size = |
⋃
Ã| − ins.

3.
∑

a∈U Δ(col(a), col(m(a))) = sco.

We denote:

1. Bij =
⋃
s∈N0 s.t. s≥S{(Ã, U,m, l) ∈ PS(k−D, |A|, |A|A||, I, s) : l is bijective}.

2. BijM = {(Ã, U,m, l) ∈ Bij : m is injective}.

Observation 3. The input instance has a solution iff BijM �= ∅.
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5.2 Associating Monomials with Potential Solutions

We introduce an indeterminate x(Ai) for all Ai ∈ A, an indeterminate y(a, p) for
all a ∈

⋃
A and p ∈ P , and an indeterminate z(p, i) for all p ∈ P and i ∈ [k−D].

We order them arbitrarily as q1, q2, . . . , qr where r = |A| + k(|
⋃
A| + k −D).

Definition 3. Given (Ã, U,m, l) ∈ PS(size, i, j, ins, sco), its monomial is

mon(Ã, U,m, l) =
∏
Ai∈Ã

x(Ai)
∏
a∈U

y(a,m(a))z(m(a), l(a)).

Observation 4. If (Ã, U,m, l) ∈ BijM and (Ã′, U ′,m′, l′) ∈ Bij \ {(Ã, U,m,
l)}, then mon(Ã, U,m, l) �= mon(Ã′, U ′,m′, l′).

Observation 5. There is a fixed-point-free involution (i.e. a permutation that

is its own inverse) f : Bij \ BijM → Bij \ BijM s.t. mon(Ã, U,m, l) =

mon(f(Ã, U,m, l)) for all (Ã, U,m, l) ∈ Bij \BijM .

5.3 Evaluating the Sum of the Monomials

Denote POL(q1, q2, . . . , qr) =
∑

(Ã,U,m,l)∈Bijmon(Ã, U,m, l). Observations 3, 4

and 5 imply that the input instance has a solution iff POL has a monomial with
an odd coefficient. We evaluate the polynomial over the finite field Fq (i.e. the
finite field of order q), where q = 2�log2(e(3k+I))�. Since this field has characteristic
2, we get the following observation:

Observation 6. The input instance has a solution iff POL �≡ 0.

Denote the image of a function l : U → [k −D] by l(U).
Given L ⊆ [k −D], denote:

1. PSL = {(Ã, U,m, l) ∈
⋃
s∈N0 s.t. s≥S PS(k −D, |A|, |A|A||, I, s) : l(U) ⊆ L}.

2. POLL(q1, q2, . . . , qr) =
∑

(Ã,U,m,l)∈PSL
mon(Ã, U,m, l).

By the inclusion-exclusion principle and since Fq has characteristic 2, we get the
following observation:

Observation 7. POL(q1, q2, . . . , qr) =
∑

L⊆[k−D] POLL(q1, q2, . . . , qr).

Lemma 3. Given L ⊆ [k−D] and b1, b2, . . . , br ∈ Fq, POLL(b1, b2, . . . , br) can

be evaluated in Õ(S+ logS+k|
⋃
A|I) time and Õ(S+kI) space by using dynamic

programming.

5.4 The Algorithm

SetALG5(C,P,A, col, Col,Δ,D, I, S)

1. Select b1, b2, . . . , br ∈ Fq independently and uniformly at random.
2. SUM ⇐ 0.
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3. For all L ⊆ [k −D]: SUM ⇐ SUM + POLL(b1, b2, . . . , br).
4. Accept iff SUM �= 0.

The proof of the following lemma appears in [22]:

Lemma 4. Let p(x1, x2, . . . , xn) be a nonzero polynomial of total degree at most
d over the finite field F . Then, for b1, b2, . . . , bn ∈ F selected independently and
uniformly at random: Pr(p(b1, b2, . . . , bn) �= 0) ≥ 1 − d/|F |.

By Observations 6 and 7 and Lemmas 3 and 4 (note that the degree of POL is
at most 3k + I), we have that:

Lemma 5. SetALG5 solves Set Motif where S ∈ N0 and Δ(c, c′) ∈ N0 for all

c, c′ ∈ C. It has one-sided error and uses Õ(2k−DS+ logS+k|
⋃
A|I) time and

Õ(k(S+I + |
⋃
A|)) space.

We get the following theorem:

Theorem 3. ALG5 solves General Module Motif where S ∈ N0 and Δ(c, c′) ∈
N0 for all c, c′ ∈ C. It has one-sided error and uses Õ(2k−DS+ log S+k|V |2I)

time and Õ(k(S+I + |V |)) space.

6 The Tightness of the Results

In this section we observe that further improvement on the running time of the
algorithms we have presented in Sections 3 and 5 is substantially harder.

Set Cover

– Input: t ∈ N0, a set of sets S = {S1, S2, . . . , Sm} and A =
⋃
S where |A| = n.

– Decide if there is S̃ ⊆ S s.t. |S̃| = t and A =
⋃
S̃.

We assume WLOG that 2 ≤ t ≤ m.
We prove that for any ε > 0, there is ε′ > 0 s.t. the existence of an O∗((2−ε)k)

time algorithm for Module Motif even if P is a set and H is a collection of paths
implies an O∗((2 − ε′)n) time Set Cover algorithm. Thus the existence of an
O∗((2−ε)k) General Module Motif algorithm or an O∗((2−ε)k−DS+) algorithm
for General Module Motif where S ∈ N0 and Δ(c, c′) ∈ N0 for all c, c′ ∈ C implies
an O∗((2 − ε′)n) time Set Cover algorithm.

Björklund et al. [4] use this approach to claim that further improvement on the
running time of their Graph Motif algorithm is substantially harder. Set Cover
is a well-known problem researched for decades, what suggests that an O∗((2 −
ε)n) time algorithm for it, if possible at all, would be a major breakthrough in
the field. The nonexistence of such an algorithm has already been used as an
assumption for proving hardness results [9].

Theorem 4. Let ALG6 be an O∗((2 − ε)k) time algorithm for Module Motif
where P is a set and H is a collection of paths. Then there is ε′ > 0 s.t. there is
an O∗((2 − ε′)n) time Set Cover algorithm.



834 M. Zehavi

Proof. Consider the following algorithm:

SetCoverALG(t,S = {S1, S2, . . . , Sm}, A)

1. Construct an instance of Module Motif where P is a set and H is a collection
of paths as follows:

(a) C = P = A ∪ {c1, c2, . . . , ct}. Note that k = n+ t.
(b) V = {vi,r,j : 1 ≤ i ≤ m, 1 ≤ r ≤ |Si|, 1 ≤ j ≤ r}∪

{ui,r : 1 ≤ i ≤ m, 0 ≤ r ≤ |Si|}.
(c) E = {{vi,r,j, vi,r,j+1} : 1 ≤ i ≤ m, 1 ≤ r ≤ |Si|, 1 ≤ j ≤ r − 1}∪

{{vi,r,r, ui,r} : 1 ≤ i ≤ m, 1 ≤ r ≤ |Si|}.
(d) ∀vi,r,j ∈ V : Col(vi,r,j) = Si.
(e) ∀ui,r ∈ V : Col(ui,r) = {c1, c2, . . . , ct}.

2. Accept iff ALG6(C,P,H = (V,E), Col) accepts.

Lemma 6. SetCoverALG solves Set Cover.

Since ALG6 runs in O∗((2−ε)k) time, we get that SetCoverALG runs in O∗((2−
ε)n+t) time. Cygan et al. [9] prove that the existence of an O∗((2 − ε)n+t) time
Set Cover algorithm implies that there is ε′ > 0 s.t. there is an O∗((2 − ε′)n)
time Set Cover algorithm, and thus we get the theorem. ��

7 No Polynomial Kernel

We denote by LMMS the Limited case of Module Motif where P is a Set and
the parameter is k. We prove that even LMMS is unlikely to admit a polynomial
kernel (i.e. there is no O∗(1) time algorithm that for every input of this problem,
its output is an input of this problem that has a solution iff the original input
has a solution and whose size is polynomial in k).

Given an input IN of a parameterized problem, we denote by p(IN) the
parameter of IN (e.g. the parameter of the input (C,P,H, col, Col,D, I, S) of
General Module Motif that we have considered in Section 3 is k = |P |). The

unparameterized version of a parameterized problem L is L̃ = {x#p(x) : x is an
input of L that has a solution} where # is a symbol that does not appear in L
[6]. We also need the following definition of Bodlaender et al. [6]:

Definition 4. A parameterized problem L is compositional if it has a composi-
tional algorithm, which is an algorithm whose input is a tuple (x1, x2, . . . , xt)
of inputs of L s.t. p(x1) = p(x2) = . . . = p(xt), runs in time polynomial
in

∑
1≤i≤t |xi| + p(x1), and outputs an input y of L s.t. (y has a solution iff

∃1 ≤ i ≤ t s.t. xi has a solution) and p(y) is polynomial in p(x1).

The proof of the following theorem appears in [6]:

Theorem 5. If a compositional parameterized problem whose unparameterized
version is NP-complete has a polynomial kernel, then NP ⊆ coNP/Poly.
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Rizzi et al. [21] prove that LMMS is NP-complete. Assume that there is an
O∗(1) time algorithm ALG7 for the unparameterized version of LMMS. Given
an input x of LMMS, we can call ALG7 on x#p(x) and answer the same. Since
|x#p(x)| = O(|x|), we thus get an O∗(1) time LMMS algorithm and have a
contradiction. We get the following observation:

Observation 8. The unparameterized version of LMMS is NP-complete.

Consider the following algorithm:

CompALG((C1, P1, H1 = (V1, E1), Col1), . . . , (Ct, Pt, Ht = (Vt, Et), Colt)):

1. C ⇐ P1 ∪ {c∗} where c∗ is a new color.
2. V ⇐ V1 ∪ V2 ∪ . . . ∪ Vt ∪ {v∗1 , v∗2 , . . . , v∗t } where each v∗i is a new node.
3. E ⇐ E1 ∪ E2 ∪ . . . ∪ Et ∪ {{v∗i , v} : 1 ≤ i ≤ t, v ∈ Vi}.
4. For i = 1, 2, . . . , t, let fi be some bijective function fi : Pi → P1.
5. Define Col : V → C as follows for i = 1, 2, . . . , t:

(a) ∀v ∈ Vi s.t. Coli(v) = {c} for c ∈ Pi: Col(v) = {fi(c)}.
(b) ∀v ∈ Vi s.t. Coli(v) = {c} for c /∈ Pi: Col(v) = {c∗}.
(c) Col(v∗i ) = {c∗}.

6. Return (C,P1, H = (V,E), Col).

Lemma 7. CompALG is a compositional algorithm for LMMS.

Theorem 5, Observation 8 and Lemma 7 imply the following theorem, which
states that LMMs is unlikely to admit a polynomial kernel:

Theorem 6. If LMMS admits a polynomial kernel, then NP ⊆ coNP/Poly.
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7. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS,
vol. 5541, pp. 74–89. Springer, Heidelberg (2009)



836 M. Zehavi

8. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathemat-
ics 37(1), 35–50 (1981)

9. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi,
R., Saurabh, S., Wahlstrom, M.: On problems as hard as cnf-sat. In: Proc. CCC,
pp. 74–84 (2012)

10. Dondi, R., Fertin, G., Vialette, S.: Weak pattern matching in colored graphs: min-
imizing the number of connected components. In: Proc. ICTCS, pp. 27–38 (2007)

11. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs
in graphs. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp.
388–401. Springer, Heidelberg (2011)

12. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

13. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. In:
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Germany

Abstract. The dynamic complexity of the reachability query is stud-
ied in the dynamic complexity framework of Patnaik and Immerman,
restricted to quantifier-free update formulas.

It is shown that, with this restriction, the reachability query cannot be
dynamically maintained, neither with binary auxiliary relations nor with
unary auxiliary functions, and that ternary auxiliary relations are more
powerful with respect to graph queries than binary auxiliary relations.
Further results are obtained including more inexpressibility results for
reachability in a different setting, inexpressibility results for some other
queries and normal forms for quantifier-free update programs.

1 Introduction

In modern data management scenarios, data is subject to frequent changes.
In order to avoid costly re-computations from scratch after each small update,
one can try to (re-)use auxiliary data structures that has been already computed
before to keep the information about the data up-to-date. However, the auxiliary
data structures need to be updated dynamically whenever the data changes.

The descriptive dynamic complexity framework (short: dynamic complexity)
introduced by Patnaik and Immerman [1] models this setting. It was mainly
inspired by relational databases. For a relational database subject to change,
auxiliary relations are maintained with the intention to help answering a query
Q. When an update to the database, an insertion or deletion of a tuple, occurs,
every auxiliary relation is updated through a first-order query that can refer to
the database as well as to the auxiliary relations. A particular auxiliary relation
shall always represent the answer to Q. The class of all queries maintainable in
this way, and thus also in the core of SQL, is called DynFO.

Beyond query or view maintenance in databases we consider it an important
goal to understand the dynamic complexity of fundamental algorithmic prob-
lems. Reachability in directed graphs is the most intensely investigated problem
in dynamic complexity (and also much studied in dynamic algorithms and other
dynamic contexts) and the main query studied in this paper. It is one of the
simplest inherently recursive queries and thus serves as a kind of drosophila in
the study of the dynamic maintainability of recursive queries by non-recursive
means. It can be maintained with first-order update formulas supplemented by
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counting quantifiers on general graphs [2] and with plain first-order update for-
mulas on both acyclic graphs and undirected graphs [1]. However, it is not known
whether Reachability on general graphs is maintainable with first-order updates.
This is one of the major open questions in dynamic complexity.

All attempts to show that Reachability cannot be maintained in DynFO have
failed. In fact, there are no general inexpressibility results for DynFO at all.1

This seems to be due to a lack of understanding of the underlying mechanisms
of DynFO. To improve the understanding of dynamic complexity, mainly two
kinds of restrictions of DynFO have been studied: (1) limiting the information
content of the auxiliary data by restricting the arity of auxiliary relations and
functions and (2) reducing the amount of quantification in update formulas.

A study of bounded arity auxiliary relations was started in [3] and it was
shown that unary auxiliary relations are not sufficient to maintain the reacha-
bility query with first-order updates. Further inexpressibility results for unary
auxiliary relations were shown and an arity hierarchy for auxiliary relations was
established. However, to separate level k from higher levels, database relations
of arity larger than k were used. Thus the hierarchy has not yet been established
for queries on graphs. In [4] it was shown that unary auxiliary relations are not
sufficient to maintain Reachability for update formulas of any local logic. The
proofs strongly use the “static” weakness of local logics and do not fully exploit
the dynamic setting, as they only require update sequences of constant length.

The second line of research was initiated by Hesse [5]. He invented and studied
the class DynProp of queries maintainable with quantifier-free update formu-
las. He proved that Reachability on deterministic graphs (i.e. graphs of unary
functions) can be maintained with quantifier-free first-order update formulas.

There is still no proof that Reachability on general graphs cannot be main-
tained in DynProp. However, some inexpressibility results for DynProp have
been shown in [6]: the alternating reachability query (on graphs with ∧- and
∨-nodes) is not maintainable in DynProp. Furthermore, on strings, DynProp

exactly contains the regular languages (as Boolean queries on strings).

Contributions. The high-level goal of this paper is to achieve a better under-
standing of the dynamic maintainability of Reachability and dynamic complexity
in general. Our main result is that the reachability query cannot be dynamically
maintained by quantifier-free updates with binary auxiliary relations. This result
is weaker than that of [3] in terms of the logic (quantifier-free vs. general first-
order) but it is stronger with respect to the information content of the auxiliary
data (binary vs. unary). We establish a strict hierarchy between DynProp for
unary, binary and ternary auxiliary relations (this is still open for DynFO).

We further show that Reachability is not maintainable with unary auxiliary
functions (plus unary auxiliary relations). Although unary functions provide
less information content than binary relations, they offer a very weak form of

1 Of course, a query maintainable in DynFO can be evaluated in polynomial time and
thus queries that cannot be evaluated in polynomial time cannot be maintained in
DynFO either.
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quantification in the sense that more elements of the domain can be taken into
account by update formulas.

All these results hold in the setting of Patnaik and Immerman where up-
date sequences start from an empty database as well as in the setting that
starts from an arbitrary database, where the auxiliary data is initialized by an
arbitrary function. We show that if, in the latter setting, the initialization map-
ping is permutation-invariant, quantifier-free updates cannot maintain Reacha-
bility even with auxiliary functions and relations of arbitrary arity. Intuitively
a permutation-invariant initialization mapping maps isomorphic databases to
isomorphic auxiliary data. A particular case of permutation-invariant initializa-
tion mappings, studied in [7], is when the initialization is specified by logical
formulas. In this case, lower bounds for first-order update formulas have been
obtained for several problems [7].

We transfer many of our inexpressibility results to the k-Clique query for
fixed k ≥ 3 and the k-Col query for fixed k ≥ 2.

Finally, we show two normal form results: every query in DynProp is already
maintainable with negation-free quantifier-free formulas only as well as with
conjunctive quantifier-free formulas only. Thus, one approach to inexpressibility
proofs could be to use these syntactically restricted update formulas.

Related Work. We already mentioned the related work that is most closely
related to our results. As said before, the reachability query has been studied in
various dynamic frameworks, one of which is the Cell Probe model. In the Cell
Probe model, one aims for lower bounds for the number of memory accesses of a
RAM machine for static and dynamic problems. For dynamic reachability, lower
bounds of order logn have been proved [8].

Outline. In Section 2 we fix our notation and in Section 3 we define our dynamic
setting more precisely. The lower bound results for Reachability are presented
in Section 4 (for auxiliary relations) and in Section 5 (for auxiliary functions).
In Section 6 we transfer the lower bounds to other queries. Finally, we establish
the two normal forms for DynProp in Section 7. Due to the space limit, most
proofs are only available in the full version of the paper [9].

2 Preliminaries

A domain is a finite set. A schema (or signature) τ consists of a set τrel of
relation symbols and a set τconst of constant symbols together with an arity
function Ar : τrel  → N. A database D of schema τ with domain D is a mapping
that assigns to every relation symbol R ∈ τrel a relation of arity Ar(R) over D
and to every constant symbol c ∈ τconst an element (called constant) from D.

A τ -structure S is a pair (D,D) where D is a database with schema τ and
domain D. Sometimes we omit the schema when it is clear from the context. If S
is a structure over domain D and D′ is a subset of D that contains all constants
of S, then the substructure of S induced by D′ is denoted by S �D′. For two
structures S and T we write S �π T if S and T are isomorphic via π.
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The k-ary atomic type2 〈S,*a〉 of a tuple *a = (a1, . . . , ak) over D with respect
to a τ -structure S is the set of all atomic formulas ϕ(*x) with *x = (x1, . . . , xk)
for which ϕ(*a) holds in S, where ϕ(*a) is short for the substitution of *x by *a in
ϕ. We note that the atomic formulas can use constant symbols.

An s-t-graph is a graph G = (V,E) with two distinguished nodes s and
t. A k-layered s-t-graph G is a directed graph (V,E) in which V − {s, t} is
partitioned into k layers A1, . . . , Ak such that every edge is from s to A1, from
Ak to t or from Ai to Ai+1, for some i ∈ {1, . . . , k − 1}. The s-t-reachability
query s-t-Reach is a Boolean query that is true for an s-t-graph G, if and only
if t can be reached from s in G.

3 Dynamic Queries and Programs

The following presentation follows [10] and [11]. For a more formal introduction,
see [9].

A dynamic instance of the s-t-reachability query is a pair (G,α), where G
is an s-t-graph and α is a sequence of changes to G, i.e. a sequence of edge
insertions and deletions. The dynamic s-t-reachability query Dyn(s-t-Reach)

yields as result the relation that is obtained by first applying the updates from α
to G and then evaluating the s-t-reachability query on the resulting graph. This
setting extends to general databases and other queries in a straightforward way.

The database resulting from applying an update δ to a database D is denoted
by δ(D). The result α(D) of applying a sequence of updates α = δ1 . . . δm to a
database D is defined by α(D)

def
= δm(. . . (δ1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism
and an update program. The former yields, for every database D an initial state
of P with initial auxiliary data (and possibly with further built-in data). The
latter defines the new state, for each update in α. Built-in data never changes.
In general, built-in data can be “simulated” by auxiliary data yet this does not
(seem to) hold for all of the restricted kinds of auxiliary data studied in this
paper.

A dynamic schema is a triple (τin, τaux, τbi) of schemas of the input database,
the built-in database and the auxiliary database, respectively. We always let
τ

def
= τin ∪ τaux ∪ τbi.

Definition 1. (Update program) An update program P over dynamic schema
(τin, τaux, τbi) is a set of first-order formulas (called update formulas in the fol-
lowing) that contains, for every R ∈ τaux and every δ ∈ {insS ,delS} with
S ∈ τin, an update formula φRδ (x1, . . . , xl; y1, . . . , ym) over the schema τ where l
is the arity of S and m is the arity of R.

A program state S over dynamic schema (τin, τaux, τbi) is a structure (D, I,A,B)
where D is the domain, I is a database over the input schema (the current

2 As we only consider atomic types in this paper, we will often simply say type instead
of atomic type.
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database), A is a database over the auxiliary schema (the auxiliary database)
and B is a database over the built-in schema (the built-in database).

The semantics of update programs is as follows. For an update δ(*a) and pro-
gram state S = (D, I,A,B) we denote by Pδ(S) the state (D, δ(I),A′,B), where

A′ consists of relations R′ def
= {*b | S |= φRδ (*a;*b)}. The effect Pα(S) of an update

sequence α = δ1 . . . δm to a state S is the state Pδm(. . . (Pδ1 (S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where P is an update program over some dynamic schema (τin, τaux, τbi), the
tuple Init = (Initaux, Initbi) consists of a function Initaux that maps τin-
databases to τaux-databases and a function Initbi that maps domains to τbi-
databases, and Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(Q) if, for
every dynamic instance (D, α), the relation Q(α(D)) coincides with the query
relation QS in the state S = Pα(SInit(D)), where SInit(D) is the initial state, i.e.
SInit(D)

def
= (D,D, Initaux(D), Initbi(D)).

Several dynamic settings and restrictions of dynamic programs have been
studied in the literature [1, 12, 7, 11]. Possible parameters are, for instance:
– the logic in which update formulas are expressed;
– whether in dynamic instances (D, α), the initial database D is always empty;
– whether the initialization mapping Initaux is permutation-invariant (short:

invariant), that is, whether π(Initaux(D)) = Initaux(π(D)) holds, for every
database D and permutation π of the domain; and

– whether there are any built-in relations at all.

Definition 3. (DynFO, DynProp) DynFO is the class of all dynamic queries
maintainable by dynamic programs with first-order update formulas. DynProp

is the subclass of DynFO, where update formulas do not use quantifiers. A
dynamic program is k-ary if the arity of its auxiliary relation symbols3 is at
most k. By k-ary DynProp (resp. DynFO) we refer to dynamic queries that
can be maintained with k-ary dynamic programs.

Thus in our basic setting the initialization mappings can be arbitrary. We will
explicitly state when we relax this most general setting. Figure 1 illustrates the
relationships between the various settings for the initialization. From now on
we restrict our attention to quantifier-free update programs. Next, we give a
non-trivial example for such a program.

Example 1. We provide a DynProp-program P for the dynamic variant of the
Boolean query NonEmptySet, where, for a unary relation U subject to inser-
tions and deletions of elements, one asks whether U is empty. It illustrates a
technique to maintain lists with quantifier-free dynamic programs, introduced
in [11, Proposition 4.5], which is used in some of our upper bounds.

3 We note that this restriction does not apply to the built-in relations.
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Fig. 1. Initializations
considered in litera-
ture and lower bounds
obtained in this pa-
per for quantifier-free
updates.

empty initial database
with arbitrary initialization

empty initial database
with empty initialization

non-empty initial database
with arbitrary initialization

non-empty initial database
with invariant initialization

=

⊆

⊆⊆

General Lower Bounds Binary Lower Bounds

The program P is over auxiliary schema τaux = {Q,First,Last,List}, where
Q is the query bit (i.e. a 0-ary relation symbol), First and Last are unary
relation symbols, and List is a binary relation symbol. The idea is to store in a
program state S a list of all elements currently in U . The list structure is stored
in the binary relation List

S such that List
S(a, b) holds for all elements a and b

that are adjacent in the list. The first and last element of the list are stored in
First

S and Last
S , respectively. We note that the order in which the elements

of U are stored in the list depends on the order in which they are inserted into
the set.

For a given instance of NonEmptySet the initialization mapping initializes
the auxiliary relations accordingly.

The update formulas for insertions are as follows:

φFirst
ins

(a;x)
def
= (¬Q ∧ a = x) ∨ (Q ∧ First(x)) φLast

ins
(a;x)

def
= a = x

φList
ins

(a;x, y)
def
= List(x, y) ∨ (Last(x) ∧ a = y) φQins(a)

def
= %

For deletions we only exhibit the update formula for List, the others are similar.

φList
del

(a;x, y)
def
= x �= a ∧ y �= a ∧

(
List(x, y) ∨ (List(x, a) ∧ List(a, y))

)
4 Lower Bounds for Dynamic Reachability

In this section we prove lower bounds for the maintainability of the dynamic
s-t-reachability query Dyn(s-t-Reach).

The proofs use the following tool which is a slight variation of Lemma 1 from
[11]. The intuition is as follows. When updating an auxiliary tuple *c after an

insertion or deletion of a tuple *d, a quantifier-free update formula has access
to *c, *d, and the constants only. Thus, if a sequence of updates changes only
tuples from a substructure S ′ of S, the auxiliary data of S ′ is not affected by
information outside S ′. In particular, two isomorphic substructures S ′ and T ′

should remain isomorphic, when corresponding updates are applied to them.
We formalize the notion of corresponding updates as follows. Let π be an iso-

morphism from a structure S to a structure T . Two updates δ(*a) on S and δ(*b)

on T are said to be π-respecting if *b = π(*a). Two sequences α = δ1 · · · δm and
β = δ′1 · · · δ′m of updates respect π if, for every i ≤ m, δi and δ′i are π-respecting.
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Lemma 2 (Substructure Lemma). Let P be a DynProp program and S
and T states of P with domains S and T , respectively. Further, let S′ ⊆ S and
T ′ ⊆ T such that S � S′ and T � T ′ are isomorphic via π. Then Pα(S) � S′ and
Pβ(T )�T ′ are isomorphic via π for all π-respecting update sequences α, β on S′

and T ′.

The Substructure Lemma can be applied along the following lines to prove that
Dyn(s-t-Reach) cannot be maintained in some settings with quantifier-free
updates. Towards a contradiction, assume that there is a quantifier-free program
P = (P, Init, Q) that maintains Dyn(s-t-Reach). Then, find
– two states S and T occurring as states4 of P with current graphs GS and GT ;
– substructures S ′ and T ′ of S and T isomorphic via π; and
– two π-respecting update sequences α and β such that α(GS) is in s-t-Reach

and β(GT ) is not in s-t-Reach.
This yields the desired contradiction, since Q has the same value in Pα(S) and
Pβ(T ) by the Substructure Lemma.

How such states S and T can be obtained depends on the particular setting.
Yet, Ramsey’s Theorem and Higman’s Lemma often prove to be useful for this
task. Next, we present the variants of these theorems used in our proofs. We
refer to [9] and [13, Proposition 2.5, page 3] for proofs.

Theorem 3 (Ramsey’s Theorem for Structures). For every schema τ and
all natural numbers k and n there exists a number Rτ,k(n) such that, for every

τ-structure S with domain A of size Rτ,k(n), every *d ∈ Ak and every order ≺
on A, there is a subset B of A of size n with B ∩ *d = ∅, such that, for every l,
the type of (*a, *d) in S is the same, for all ≺-ordered l-tuples *a over B.

A word u is a subsequence of a word v, in symbols u � v, if u = u1 . . . uk and
v = v0u1v1 . . . vk−1ukvk for some words u1, . . . , uk and v0, . . . , vk.

Theorem 4 (Higman’s Lemma). For every alphabet of size c and function g :
N → N there is a natural number H(c) such that in every sequence (wi)1≤i≤H(c)

of H(c) many words with |wi| ≤ g(i) there are l and k with l < k and wl � wk.

Before turning towards lower bounds for arbitrary initialization, we state a
lower bound for the restricted setting of invariant initialization. Intuitively lower
bounds in this setting can be obtained easier because invariant initialization
cannot generate complex initial auxiliary structures such as lists from simple-
structured input databases.

Theorem 5. Dyn(s-t-Reach) cannot be maintained in DynProp with invari-
ant initialization mapping and empty built-in schema. This holds even for 1-
layered s-t-graphs.

4 I.e. S = Pδ(SInit(G)) for some s-t-graph G, and likewise for T .
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4.1 A Binary Lower Bound

As already mentioned in the introduction, the proof that Dyn(s-t-Reach) is
not in unary DynFO in [3] uses constant-length update sequences, and is mainly
an application of a locality-based static lower bound for monadic second order
logic. This technique does not seem to generalize to binary DynFO. We prove
the first unmaintainability result for Dyn(s-t-Reach) with respect to binary
auxiliary relations.

Theorem 6. Dyn(s-t-Reach) is not in binary DynProp.

The proof of Theorem 6 will actually show that binary DynProp cannot even
maintain Dyn(s-t-Reach) on 2-layered s-t-graphs. These restricted graphs will
then help us to separate binary DynProp from ternary DynProp. This sep-
aration shows that the lower bound technique for binary DynProp does not
immediately transfer to ternary DynProp. At the moment we do not know
whether it is possible to adapt the technique to full DynProp.

The following notion of homogeneous sets is used in the proof of Theorem 6.
Let S be a structure of some schema τ and A, B disjoint subsets of the domain
of S. We say that B is A-≺-homogeneous up to arity m, if for every l ≤ m, all
tuples (a,*b), where a ∈ A and *b is an ≺-ordered l-tuple over B, have the same
type. We may drop the order ≺ from the notation if it is clear from the context,
and we may drop A if A = ∅. We observe that if the maximal arity of τ is m
and B is A-homogeneous up to arity m, then B is A-homogeneous up to arity
m′ for every m′. In this case we simply say B is A-homogeneous.

Lemma 7. For every schema τ and natural number n, there is a natural number
Rhom
τ (n) such that for any two disjoint subsets A, B of the domain of a τ-

structure S with |A|, |B| ≥ Rhom
τ (n), there are subsets A′ ⊆ A and B′ ⊆ B such

that |A′|, |B′| = n and B′ is A′-homogeneous in S.

Proof (of Theorem 6). Let us assume, towards a contradiction, that the
dynamic program (P, Init, Q) over schema τ = (τin, τaux, τbi) with binary τaux
maintains the dynamic s-t-reachability query for 2-layered s-t-graphs. We choose
numbers n, n1, n2 and n3 such that n3 is sufficiently large with respect to τ , n2

is sufficiently large with respect to n3, n2 is sufficiently large with respect to n1

and n is sufficiently large with respect to n1.
Let G = (V,E) be a 2-layered s-t-graph with layers A, B, where A and B are

both of size n and E = {(b, t) | b ∈ B}. Further, let S = (V,E,A,B) be the state
obtained by applying Init to G.

We will first choose homogeneous subsets. By Lemma 7 and because n is
sufficiently large, there are subsets A1 and B1 such that |A1| = |B1| = n1 and B1

is A1-≺-homogeneous in S, for some order ≺. Next, let A2 and B2 be arbitrarily
chosen subsets of A1 and B1, respectively, of size |B2| = n2 and |A2| = 2|B2|,
respectively. We note that B2 is still A2-homogeneous. In particular, B2 is still
A2-homogeneous with respect to schema τbi. We associate with every subset
X ⊆ B2 a unique vertex aX from A2 in an arbitrary fashion.

Now,we define the update sequence α as follows.
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Tl: s

t

aX1 aXk
aXl

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bl

Tk: s

t

aX1
aXk

aXl

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bl

Fig. 2. The structure S ′ from the proof of Theorem 6. The isomorphic substructures
Tk and Tl are highlighted in blue.

(α) For every subset X of B2 and every b ∈ X insert an edge (aX , b), in some
arbitrarily chosen order.

Let S ′ def
= (V,E′,A′,B) be the state of P after applying α to S, i.e. S ′ = Pα(S).

We observe that the built-in data has not changed, but the auxiliary data might
have changed. In particular, B2 is not necessarily A2-homogeneous with respect
to schema τaux in state S ′.

Our plan is to exhibit two sets X,X ′ such that X � X ′ ⊆ B2 such that the
restriction of S ′ to {s, t, aX′}∪X ′ contains an isomorphic copy of S ′ restricted to
{s, t, aX}∪X . Then the Substructure Lemma will easily give us a contradiction.

By Ramsey’s Theorem and because |B2| is sufficiently large with respect to
n2, there is a subset B3 ⊆ B2 of size n3 such that B3 is ≺-homogeneous in S ′. Let
b1 ≺ . . . ≺ bn3 be an enumeration of the elements of B3 and let Xi

def
= {b1, . . . , bi},

for every i ∈ {1, . . . , n3}.
Let S ′

i denote the restriction of S ′ to Xi∪{s, t, aXi}. For every i, we construct
a word wi of length i, that has a letter for every node in Xi and captures all
relevant information about those nodes in S ′

i. More precisely, wi
def
= σ1

i · · ·σii ,
where for every i and j, σji is the binary type of (aXi , bj).

Since B3 is sufficiently large with respect to τaux, it follows, by Higman’s
Lemma, that there are k and l such that k < l and wk � wl, that is wk =
σ1
kσ

2
k . . . σ

k
k = σi1l σ

i2
l . . . σikl for suitable numbers i1 < . . . < ik. Let*b

def
= (b1, . . . , bk)

and *b′
def
= (bi1 , . . . , bik). Further, let Tk def

= S ′
k �Tk where Tk = {s, t, aXk

} ∪*b, and

Tl def
= S ′

l �Tl where Tl
def
= {s, t, aXl

} ∪*b′. We refer to Figure 2 for an illustration
of the substructures Tk and Tl of S ′.

It can be shown that Tk �π Tl, where π is the isomorphism that maps s and
t to themselves, aXk

to aXl
and bj to bij for every j ∈ {1, . . . , k}.

Thus, by the Substructure Lemma, application of the following two update
sequences to S ′ results in the same query result:

(β1) Deleting edges (aXk
, b1), . . . , (aXk

, bk) and adding an edge (s, aXk
).

(β2) Deleting edges (aXl
, bi1), . . . , (aXl

, bik) and adding an edge (s, aXl
).

However, applying β1 yields a graph in which t is not reachable from s, whereas
by applying β2 a graph is obtained in which t is reachable from s. This is the
desired contradiction. ��
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4.2 Separating Low Arities

An arity hierarchy for DynFO was established in [3]. The dynamic queries Qk+1

used to separate k-ary and (k + 1)-ary DynFO can already be maintained in
(k + 1)-ary DynProp, thus the hierarchy transfers to DynProp immediately.
However, Qk+1 is a k-ary query and has an input schema of arity 6k+1 (improved
to 3k+1 in [14]). Here we establish a strict arity hierarchy between unary, binary
and ternary DynProp for Boolean queries and binary input schemas.

We use the problems s-t-TwoPath, where one asks whether there is a path
of length two from s to t in a given s-t-graph G, and the problem s-TwoPath

where one asks whether there is any path of length 2 starting in s.

Proposition 8. The dynamic query Dyn(s-t-TwoPath) is in binary
DynProp, but not in unary DynProp.

Proposition 9. The dynamic query Dyn(s-TwoPath) is in ternaryDynProp,
but not in binary DynProp.

5 Lower Bounds with Auxiliary Functions

In this section we consider the extension of the quantifier-free update formalism
by auxiliary functions. Recall that DynProp-update formulas have access only
to the inserted or deleted tuple *a and the currently updated tuple of an auxiliary
relation *b. When auxiliary functions are allowed in update formulas, further
elements of the structure can be accessed by function application. This can
be seen as adding weak quantification to quantifier-free formulas. The class of
dynamic queries that can be maintained with quantifier-free update formulas
and auxiliary functions is denoted DynQF.

DynQF is strictly more expressive than DynProp. E.g., it contains all Dyck
languages, among other non-regular languages [6]. Further, undirected reacha-
bility can be maintained in DynQF with built-in relations [5].

Lists can be represented by unary functions in a straightforward way. There-
fore, it is not surprising that the upper bound of Proposition 8 already holds for
unary DynProp with unary built-in functions.

Proposition 10. Dyn(s-t-Reach) on 1-layered s-t-graphs can be maintained
in unary DynProp with unary built-in functions.

Yet, unary DynQF cannot maintain the reachability query. Also Theorem 5 can
be extended to quantifier-free programs with auxiliary functions.

Theorem 11. Dyn(s-t-Reach) is not in unary DynQF.

Theorem 12. Dyn(s-t-Reach) cannot be maintained in DynQF with invari-
ant initialization mapping and empty built-in schema. This holds even for 1-
layered s-t-graphs.
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6 Lower Bounds for Other Dynamic Queries

Lower bounds for the dynamic variants of the k-Clique and k-Col prob-
lems (where k is fixed) can be established via reductions to the dynamic s-t-
reachability query for shallow graphs.

Proposition 13. The dynamic query Dyn(k-Clique), for k ≥ 3, and the dy-
namic query Dyn(k-Col), for k ≥ 2, are not in binary DynProp.

Proposition 14. The dynamic query Dyn(k-Clique), for k ≥ 3, and the dy-
namic query Dyn(k-Col), for k ≥ 2, cannot be maintained in DynQF with
invariant initialization mapping.

7 Normal Forms for Dynamic Programs

In this section, we give normal forms for dynamic programs. The study of normal
forms has a long tradition in logics. Normal forms are often helpful in proofs
based on the structure of formulas and yield insights for the construction of
algorithms.

A formula is negation-free if it does not use negation at all. A formula is
conjunctive if it is a conjunction of (positive or negated) literals. A dynamic
program is negation-free (conjunctive, respectively) if all its update formulas
are negation-free (conjunctive, respectively). Two dynamic programs P and P ′

are equivalent, if they maintain the same query. The results in this section allow
arbitrary initialization but no auxiliary functions. The first theorem is a straight-
forward generalization of Theorem 6.6 from [5] which states this observation for
a subclass of DynProp.

Theorem 15. (a) Every DynFO-program has an equivalent negation-free
DynFO-program.

(b) EveryDynProp-programhas an equivalent negation-freeDynProp-program.

Theorem 16. Every DynProp-program has an equivalent conjunctive
DynProp-program.

8 Future Work

The question whether Reachability is maintainable with first-order updates re-
mains one of the major open questions in dynamic complexity. Proving that
Reachability cannot be maintained with quantifier-free updates with arbitrary
auxiliary data seems to be a worthwhile intermediate goal, but it appears non-
trivial as well.

We contributed to the intermediate goal by giving a first lower bound for
binary auxiliary relations. Whether the strictness of the arity hierarchy for
DynProp extends beyond arity three is another open question.
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For (full) first-order updates a major challenge is the development of lower
bound tools. Current techniques are in some sense not fully dynamic: either
results from static descriptive complexity are applied to constant-length update
sequences; or non-constant but very regular update sequences are used. In the
latter case, the updates do not depend on previous changes to the auxiliary data
(as, e.g., in [7] and in this paper). Finding techniques that adapt to changes
could be a good starting point.

The normal forms obtained for DynProp give hope that some fragments of
DynFO collapse. Therefore, we plan to study normal forms for DynFO ex-
tensively. One interesting question being which fragments of DynFO can be
captured by a conjunctive query normal form.

Acknowledgement. We thank Ahmet Kara and Martin Schuster for careful
proofreading. We acknowledge the financial support by the German DFG under
grant SCHW 678/6-1.

References

[1] Patnaik, S., Immerman, N.: Dyn-FO: A parallel, dynamic complexity class. In:
PODS, pp. 210–221. ACM Press (1994)

[2] Hesse, W.: The dynamic complexity of transitive closure is in DynTC0. In: Van
den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 234–247.
Springer, Heidelberg (2000)

[3] Dong, G., Su, J.: Arity bounds in first-order incremental evaluation and definition
of polynomial time database queries. J. Comput. Syst. Sci. 57(3), 289–308 (1998)

[4] Dong, G., Libkin, L., Wong, L.: Incremental recomputation in local languages.
Inf. Comput. 181(2), 88–98 (2003)

[5] Hesse, W.: Dynamic Computational Complexity. PhD thesis, University of Mas-
sachusetts Amherst (2003)

[6] Gelade, W., Marquardt, M., Schwentick, T.: The dynamic complexity of formal
languages. In: STACS, pp. 481–492 (2009)
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Abstract. We identify an error in the approximation algorithm for the
generalized assignment problem with minimum quantities and unit size
items in [1]. We show that the previously presented randomized algorithm
can be slightly modified in order to obtain, for every c ≥ 2, a randomized
approximation algorithm with approximation ratio ((2c− 1) · e

e−1
) that

outputs a feasible solution with probability at least 1−min
{

1
c
, ec−1

cc

}
.

In the analysis of the randomized approximation algorithm in [1], we implicitly
assumed that the expected profit after a clean-up step can be calculated as the
product of the expected profit before this step and the expected loss factor in
this step, which is not valid since the random variables are correlated. In this
note, we show how we can modify the algorithm slightly in order to obtain a
correct approximation result. We refer to the original paper for details about the
problem and the terminology.

Following the notation in [1], we denote by xIP the binary vector obtained
from the randomized rounding process. If we choose the scaling factor α = 1, we
have E(profit(xIP)) = optLP. In xIP, at most one feasible packing is chosen
for each bin, but it is possible that some items are assigned to multiple bins.
Therefore, we perform two clean-up steps on xIP as before. In the following,
c ≥ 2 is an arbitrary but fixed integer.

In the first step, we discard a subset of the bins opened in xIP in order to
ensure that the total number of places used in the bins is at most n. In the



second step, we then replace copies of multiply assigned items by unassigned
items in order to ensure that each item is packed into at most one bin.

When discarding a subset of the bins opened in xIP during the first clean-up
step, we distinguish two cases:

1. If #(places used in xIP) < cn, we can obtain a subset of the packings such
that the total number of places used is at most n and the remaining profit
is at least 1

2c−1 · profit(xIP). This can be achieved by the technique used
in the first clean-up step in [1] (choosing k := c− 1).

2. If #(places used in xIP) ≥ cn, we discard no packings and leave the solution
unchanged.

In both cases, the first clean-up step yields a solution with expected profit at
least 1

2c−1 · optLP.

After the first clean-up step, some items might still be assigned to multiple
bins. Therefore, in the second clean-up step, we remove each multiply assigned
item from all bins but the one where it yields the highest profit in the solution
obtained from the first step. The following well-known analysis shows that we
lose at most a factor of (1 − 1

e ) in the total profit by this removal process:

We fix an item i and denote by yij the probability that item i is assigned to
bin j after the first clean-up step. We assume without loss of generality that the
bins are sorted by nonincreasing profit of item i, i.e., pi1 ≥ pi2 ≥ . . . ≥ pim. The
expected profit obtained from item i in the solution obtained after the second
clean-up step is then given as

yi1pi1 + (1 − yi1)yi2pi2 + . . . +

m−1∏
j=1

(1 − yij)yimpim

≥
(

1 −
(

1 − 1

m

)m) m∑
j=1

pijyij

≥
(

1 − 1

e

) m∑
j=1

pijyij .

Here, we used the arithmetic-geometric mean inequality and the fact that
(1 − 1/m)m ≤ e−1 for all m ≥ 1. Since the total expected profit is the sum of
the expected profits obtained from each item, we can perform this procedure
separately for every item and, altogether, we obtain a solution with expected
profit at least

1

2c− 1
·
(

1 − 1

e

)
· optLP.

After the removal of multiply assigned items, some of the bins that are opened
may not be filled to their minimum quantities anymore.

E2



In case 1, the total number of places used in the bins after the first clean-up
step was no more than the total number n of items available. Hence, for each
item i that was assigned to l ≥ 2 bins, there must be l − 1 items that were
not assigned to any bin after the first step. Thus, we can refill the l − 1 places
vacated by deleting item i from all but one bin with items that were previously
unassigned, and doing so for all multiply assigned items yields a feasible integral
solution that respects the minimum quantities of the bins.

Although this is, in general, not possible in case 2 and our algorithm will end
up with an infeasible solution in this case, we can bound the probability of this
bad event. By definition of xIP, we know that the expected number of places
used in xIP is at most n. Hence, Markov’s inequality yields that

Pr
(
#(places used in xIP) ≥ cn

)
≤ n

cn
=

1

c
.

Alternatively, we can make use of the following Chernoff bound:

Pr
(
#(places used in xIP) ≥ cn

)
<

ec−1

cc

This yields sharper tail bounds for c ≥ 3.

In total, for every integer c ≥ 2, we obtain a randomized approximation
algorithm that achieves an approximation ratio of

(2c− 1) · e

e − 1

and outputs a feasible solution with probability at least

1 − min

{
1

c
,
ec−1

cc

}
.
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Schewe, Sven 691
Schmidt, Jens M. 765
Schmidt, Johannes 290
Schnoor, Henning 337
Schwentick, Thomas 171, 837
Shah, Rahul 325
Shimohira, Kouji 571
Shinohara, Ayumi 571
Silvestri, Francesco 717
Simaitis, Aistis 266
Sistla, A. Prasad 254
Skala, Matthew 325
Slivovsky, Friedrich 457
Soltys, Michael 777
Sorge, Manuel 445
Souza, Alexander 789
Sreenivasaiah, Karteek 583
Szeider, Stefan 457, 704

Takahashi, Yasuhiro 801
Takeda, Masayuki 571
Tanaka, Kazuyuki 801
Tavenas, Sébastien 813
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