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Preface

Three-dimensional depth data have turned out to be a key information source
for solving a large number of challenging applications. In the past, substan-
tial advances have been demonstrated in acquiring, processing, analyzing, and
interpreting depth data. Today, depth data play a vital role in a variety of appli-
cation areas including biometrics, cultural heritage applications, human action
recognition, and 3DTV (e.g., depth-based image rendering). Through the recent
development in consumer depth cameras, in particular the low-cost Kinect, a
new era of depth data analysis emerged. Affordable depth cameras are changing
the landscape of computer vision and related research fields, with profound im-
pact far beyond consumer electronics. The primary objective of this book is to
address the challenges in advanced depth acquisition techniques, processing and
analyzing depth data, as well to consider novel and challenging applications.

The book comprises the proceedings of the International Workshop on Depth
Image Analysis (WDIA 2012):

http://cvpr.uni-muenster.de/WDIA2012/

held in conjunction with ICPR 2012, in Tsukuba, Japan. The workshop intended
to bring together researchers from multiple subfields to discuss the major re-
search problems and opportunities of the emerging RGB-D camera revolution.
A total of 27 papers were submitted to the workshop. After a careful review
by an international Program Committee, 16 submissions were selected for the
workshop program. The workshop attracted about 45 participants from 17 coun-
tries, including researchers working in the field of depth data processing/analysis
and researchers working on 3D vision applications. To put together this book,
authors of the accepted workshop papers were invited to submit their extended
versions that should take into account the discussion at the workshop. Several
other researchers were also invited to submit their papers covering additional
important aspects of depth image analysis that were not part of the workshop.
These submissions went through another round of reviews. Finally, a total of 19
papers are included in this book.

The collected papers are divided into four parts: Acquisition and Modeling
of Depth Data, Processing and Analysis of Depth Data, Applications, and ICPR
2012 Contests. The last part contains two papers that present a short summary
of two depth data-related contests run at ICPR 2012. Many of these articles
have strong practical relevance. For instance, one article deals with the impact
of thermal and environmental conditions on the Kinect sensor and another one
presents on-going work about an augmented reality system for training how to
play violin.



VI Preface

We thank Springer for giving us the opportunity to publish this book in the
LNCS series. Our gratitude goes to the members of the WDIA 2012 Program
Committee who participated in our stringent reviewing process.
Fabian Gigengack kindly supported us in the final editing phase.

Finally, to the readers of this book: Enjoy it!

April 2013 Xiaoyi Jiang
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Géraldine Morin, and Helman Stern

Results and Analysis of the ChaLearn Gesture Challenge 2012 . . . . . . . . . 186
Isabelle Guyon, V. Athitsos, P. Jangyodsuk, H.J. Escalante, and
B. Hamner

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



Optimal Decoding of Stripe Patterns

with Window Uniqueness Constraint

Shuntaro Yamazaki and Masaaki Mochimaru

Digital Human Research Center
National Institute of Advanced Industrial Science and Technology

{shun-yamazaki,m-mochimaru}@aist.go.jp

Abstract. We propose the optimal algorithm of decoding color stripe
patterns generated from a pseudo-random sequence (PRS). One-
dimensional correspondence is solved globally by a variant of dynamic
programming matching (DPM) that imposes the window uniqueness of
the PRS as a hard constraint. Our algorithm runs in linear time com-
plexity with respect to the size of projected pattern and acquired image,
which is as efficient as the conventional DPM. The performance of our
method is demonstrated qualitatively and quantitatively using simula-
tion data with known ground truth and real data.

1 Introduction

Rapid depth acquisition is the fundamental task for many applications includ-
ing recognition, tracking, and geometric modeling. Various approaches to this
problem have been proposed such as, real-time laser scanning [1], time-of-flight
camera [2], and stereo vision systems [3]. Coded light is a variant of active stereo
methods where one of cameras is replaced by a projector, and has been widely
adopted in many practical applications for its accuracy and capability of rapid
depth acquisition.

In this paper we propose a method of decoding spatially-coded light patterns
generated from pseudo-random sequence (PRS) for one-shot depth acquisition.
PRS has window uniqueness property: Each subsequence of a certain length oc-
curs at most once, and therefore the correspondences can be determined uniquely
from the partial observation. Surprisingly, however, conventional methods of de-
coding the PRS from acquired images do not consider the window uniqueness
property, and therefore suffer from the ambiguity in correspondence when the
projected stripes are partly missing due to occlusion or low reflectance. Our de-
coding algorithm is independent of the underlying PRS, and therefore can be
applied to different kinds of stripe patterns.

2 Color Stripes for One-Shot Depth Acquisition

The strategies of coded light are comprehensively surveyed and systematized by
Salvi et al [4]. Stripe-based approach has an advantage that spatial resolution

X. Jiang et al. (Eds.): WDIA 2012, LNCS 7854, pp. 1–8, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 S. Yamazaki and M. Mochimaru

is lost in only one dimension compared to other techniques of spatially-coded
light for one-shot depth acquisition. In this section, we review some existing
techniques of spatially-coded light using stripe patterns generated from PRS.

2.1 Pseudo-random Sequences

De Bruijn sequence is commonly used to generate color stripe patterns. Hügli
and Mâıtre propose sparse color stripes generated from the de Bruijn sequence of
3-bit alphabets [5]. Zhang et al. embed the sequence into the transition of colors
to localize the stripes with sub-pixel accuracy [6]. The recurrence of alphabets in
the de Bruijn sequence is solved by inserting dark separators [7] or eliminating
recurring alphabets [8]. The robustness to imaging error is improved by consid-
ering the partial blending of adjacent colors [9]. Our reconstruction algorithm is
independent of PRS from which color stripes are generated, and therefore can
be applied to these stripe patterns as shown in Section 4.

2.2 Decoding Algorithms

Global methods try to achieve the best reconstruction by maximizing the cost
function for decoding stripe codes. Belief propagation [10], graph cut [11], and
optimization via linear system [12] have been utilized in prior work. They have
high computational cost and typically take one to several seconds to reconstruct
a single depth frame, making it hard to integrate the scanning component into
interactive systems.

semi-global methods, on the other hand, solve the correspondence by iter-
atively applying local optimization. Many of existing techniques for one-shot
depth acquisition rely on one-dimensional pattern matching by dynamic pro-
gramming matching (DPM) [5,6,9]. Forster propagates the results of adjacent
reconstruction to improve the coherence between scanlines [13]. Christoph and
Angelopoulou propose an incremental method where local reconstructions are it-
eratively concatenated, and report that their semi-global method outperformed
a global method due to the high complexity of the problem [11].

In general, spatially-coded patterns have the fundamental tradeoff between
discriminability and robustness. Our method is the combination of color stripes
and reconstruction by a variant of DPM algorithm, aiming at the dense pattern
projection and efficient depth recovery. The goal of this paper is to propose a
novel algorithm of decoding color stripes to achieve accurate reconstruction in a
computationally efficient manner.

3 Solving Optimal Correspondence

In the rest of paper, we assume that the projector and camera are geometrically
and radiometrically calibrated. The images are rectified so that each line of
acquired images has one-to-one correspond to a one-dimensional color stripe
pattern.
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Fig. 1. DPM for a single image line: In conventional DPM, the optimal correspondence
at a grid point (a) is estimated from the score at (a), and the previous results obtained
at (b), (c), and (d). In our algorithm, the matching cost (b) is replaced with the optimal
consecutive matches indicated by (e), which is obtained by solving another DPM using
a table indicated by (g).

3.1 Dynamic Programming Matching — Review

When the projector and camera are geometrically calibrated, the depth recovery
is reduced to a one-dimensional matching along epipolar lines. The matching
between the projected patterns and acquired images can then be solved by DPM,
on the assumption of the monotonicity of observed stripes along epipolar lines.
The correspondence problem is solved independently for each line, using a two-
dimensional table illustrated in Fig. 1. Please refer to prior work [6] for the detail
of DPM.

DPM algorithm uses a two-dimensional table on which subproblems are solved
recursively. The horizontal and vertical axes respectively correspond pattern
coordinates i ∈ {1, . . . , p} and image line coordinates j ∈ {1, . . . , w}. Given
the score c(i, j) of the matching between the pattern at i and the image at j
is stored in a table, the correspondence is solved sequentially from left-top to
right-bottom, by estimating the best cumulative score M(i, j) according to the
following formula:

M(i, j)← max {M(i− 1, j − 1) + c(i, j),M(i, j − 1),M(i− 1, j)} (1)

where M(i, j) = 0 if i < 1 or j < 1. The three terms in the right side of
Equation (1) correspond to respectively (b), (c), and (d) in Fig. 1. The optimal
matching for the entire sequences is obtained by backtracking the matches that
yields M(p, w).

DPM has several advantages including linear complexity and global optimal-
ity. Näıve DPM algorithms, however, try to maximize the number of matches, re-
sulting in discontinuous correspondence which is likely incorrect. These incorrect
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correspondence may be suppressed by penalizing short matches. For instance,
Mei et al. propose an algorithm of a semi-global optimization suitable for the
implementation on parallel computer [14]. We propose a more structured way to
obtain reliable correspondences without introducing any parameters.

3.2 Two-Step Dynamic Programming Matching

Our optimization algorithm is a variant of the conventional DPM, and capable of
considering the window uniqueness property of color stripes as a hard constraint.
Specifically, the algorithm guarantees the following properties:

– The solution maximizes the sum of matching scores globally.
– The matching consists of consecutive subsequences of at least length n in

the pattern coordinates.

Here, n is the size of window uniqueness of the underlying PRS. The second
property is crucial because otherwise the algorithm tries to maximize the num-
ber of matching pairs, resulting in numerous isolated correspondences which is
usually incorrect.

To enforce the minimum length of consecutive matches, we solve the DPM
for each column (i.e. each pattern coordinate) in a two-step optimization. In the
first step, the score of n consecutive matches is calculated in an inner DPM of
size (n−1)×w indicated by a dark color in Fig. 1. The inner DPM is solved in a
similar way to the conventional DPM except that all pattern colors are matched
to image colors to enforce consecutive matching. The cumulative score of the
inner DPM, m(i′, j), is updated sequentially from left-top to right-bottom in
the inner table , according to the following formula:

m(i′, j)← max {m(i′ − 1, j − 1) + c(i′, j),m(i′, j − 1)} (2)

where max {0, i− n} < i′ < i, and m(i′, j) = M(i′, j) if i′ ≤ i−n. In the second
step, the cumulative score M(i, j) is updated by the formula in Equation (1),
replacing the cumulative scoreM(i−1, j−1) withm(i−1, j−1). The pseudo-code
of the two-step DPM algorithm is presented in Fig. 2.

The computational complexity of our DPM algorithm is O(npw) where n is
the size of window uniqueness, p is the length of a color pattern, and w is the
length of an epipolar line in the image. Because n is smaller than p and w by a
factor of two (e.g. n = 4, p ≈ 100, w ≈ 1000 in our experiments), our algorithm
is considered as efficient as the conventional DPM [6] in practice.

4 Results

We applied our method to four state-of-the-art techniques of color stripe patterns
based on the de Bruijn sequence B(k, n) where k is the number of alphabets and
n is the size of window uniqueness: Direct color pattern D(k, n) encodes each
alphabet into non-black 8-bit colors separated by black [5]. Color transition
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Input: c(i, j) for i ∈ {1, . . . , p} and j ∈ {1, . . . , w}
Output: M(i, j) = max

∑
c(i′k, j

′
k) s.t. x<y ⇒ ix<iy ≤ k ∧ jx<jy ≤ k

1: for all i = n to p do
2: for all i′ = i− n+ 1 to i− 1 do ; inner DPM
3: for all j = 1 to w do
4: m1 ← m(i′ − 1, j − 1) + c(i′, j)
5: m2 ← m(i′, j′ − 1)
6: m(i′, j′)← max{m1,m2}
7: end for
8: end for
9: for all j = 1 to w do ; outer DPM
10: M1 ← m(i− 1, j − 1) + c(i, j)
11: M2 ←M(i, j − 1)
12: M3 ←M(i− 1, j)
13: M(i, j)← max{M1,M2,M3}
14: end for
15: end for

Fig. 2. Pseudo-code of Two-step dynamic programming matching

D(7, 4) N(7, 4) H(4)

original

(a) shortened

(b) split

pattern D(7, 4) N(7, 4) H(4)

distortion (a) (b) (a) (b) (a) (b)

algorithm [5] ours [5] ours [8] ours [8] ours [9] ours [9] ours

miss % 1.2 2.7 0.5 1.2 0.6 3.1 0.8 3.0 0.2 0.5 0.8 0.9
error % 38.4 7.3 34.5 0.0 77.3 13.0 63.9 0.0 17.7 0.6 3.8 0.0
false % 0.0 0.0 19.7 19.5 0.0 0.0 0.4 0.2 0.0 0.0 0.2 0.1

Fig. 3. Error in the reconstruction by the conventional DPM and our algorithm: The
images of size 250×50 are generated using D(7, 4), N(7, 4), and H(4). The patterns are
(a) shortened or (b) split, and then damaged by random noise and blurring. The table
shows from top to bottom, the ratio of pixels that are not reconstructed, reconstructed
with more than one pixel error, and reconstructed wrongly at empty pixels.
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De Bruijn Sequence [5]: D(7, 4)

De Bruijn Sequence [6]: X(7, 4)

Non-recurring de Bruijn Sequence [8]: N(7, 4)

Hamming Color Sequence [9]: H(4)

(a) input (b) DPM (c) ours (d) close-up

Fig. 4. Results of correspondence recovery: (a) Images of coded light projection, (b)
correspondence recovered by conventional DPM, (c) our proposed algorithm encoded
in hue, and (d) close-up comparisons of the results obtained by conventional (top)
and proposed (bottom) algorithms. Please refer to the online version for the color
figures. The conventional DPM tends to yield erroneous reconstruction around depth
boundary, while our proposed algorithm can successfully eliminates spurious matching
by enforcing the window uniqueness constraint that the projected patterns maintain.

patternX(k, n) is generated by modulating colors by an exclusive-or operator [6].
Other two are the non-recurring de Bruijn sequence N(k, n) [8] and Hamming
color sequence H(n) [9]. We used k = 7 and n = 4 in our experiments. The
matching score c(i, j) is those proposed in the original work.
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4.1 Simulation Data

The performance of our method was evaluated using simulation data for D(7, 4),
N(7, 4), and H(4) as shown in Fig. 3. Two types of distortion, (a) pattern short-
ening and (b) pattern splitting, were applied to the original patterns to simulate
the coded light images in the practical situation of depth recovery. The short-
ening occurs when an illuminated surface is partly unobserved due to occlusion,
which is simulated by randomly deleting several stripes from an input pattern.
The splitting is observed when the illumination is partly occluded or object does
not exist, and is simulated by randomly inserting black stripes into the original
patterns. In both cases, we restricted the number and position of the deletion
or insertion so that the each consecutive pattern maintains the windows unique-
ness. Finally, the pattern is scaled, perturbed by random color noise, and then
blurred by a Gaussian filter.

The error of the reconstruction is compared between conventional and our
DPM, as presented in Fig. 3. The performance is evaluated by the ratio of erro-
neous pixels in the reconstructed correspondences of size 250× 50. The error is
calculated by the number of pixels that are not reconstructed (miss %), recon-
structed with more than one pixel error (error %), and wrongly reconstructed
at empty pixels (false %). Our algorithm successfully reduces the number of
erroneous reconstruction, and almost perfectly suppresses false reconstruction.

4.2 Real Data

Fig. 4 summarizes the results of experiments using real data. Acquired images
are presented in column (a). The correspondences recovered by conventional
and proposed DPM are presented in respectively column (b) and (c), where one-
dimensional coordinates are encoded in hue. Please refer to the online version
of the paper for the color. The close-up of the differences between two results
are presented in column (d). The acquired images do not contain significant
noise, and hence, the correspondence reconstructed by the conventional DPM
is accurate on the smooth surfaces. However, incorrect contiguous matches are
found in many places as it attempts to maximize the number of correspondence
with non-negative scores. This problem is successfully resolved by our algorithm.

5 Conclusion

We have proposed the optimal method of decoding for color stripe patterns gen-
erated from pseudo-random sequence that has window uniqueness property. We
extended a conventional DPM algorithm so that the window uniqueness is im-
posed as a hard constraint, and demonstrated the significant improvement in the
reconstruction quality using simulated and read data. The computational com-
plexity of the proposed algorithm is comparable to that of the conventional DPM.
The coherence across image epipolar lines are not considered in our current imple-
mentation, and can be improved by prior method of global or semi-global meth-
ods [6,10,11]. We are also interested in implementing the our proposed algorithm
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on graphics processing unit (GPU), based on our previous work on parallel DPM
on GPU [9] to accomplish robust one-shot shape recovery in real-time.

Acknowledgment. This work was supported by JSPS KAKENHI Grant No.
22700190. The first author also acknowledges support of JSPS Postdoctoral Fel-
lowships for Research Abroad.
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Abstract. This paper presents a method with which 3D images of tire track and
footprint impressions at crime scenes can be captured with high fidelity, while
capturing high resolution 2D color texture images simultaneously. The resulting
device is portable, easy to use, is non-destructive of the evidence, and saves time
at crime scenes. The same technique can also be used in the laboratory to create
3D depth images of suspect tires or shoe soles. Computer-based pattern matching
technology can be used to assist in matching and comparison tasks. The device
produces better quality data at a close range obtained in a larger field compared to
existing devices. It avoids problems related to occlusions by using two lasers and
can digitize long spans of impressions in one scan. The method includes a calibra-
tion method which is integrated into the scanning process on site, thus avoiding
problems with pre-calibrated configurations becoming stale during transportation
and setup.

1 Introduction

In crime scene investigations it is necessary to capture images of impression evidence
such as tire track or shoe impressions. Currently, such evidence is captured by taking
two-dimensional (2D) color photographs or making a physical cast of the impression
in order to capture the three-dimensional (3D) structure of the information [1,5,7]. The
2D photographs, under the right illumination conditions, may highlight feature details
in the evidence, but do not provide metric depth measurement information for such
features. Obtaining a 3D physical cast of the impression may destroy the evidence in
the process. Therefore, the use of a 3D imaging device which can capture the details
of such impression evidence can be a useful addition to the toolkit of the crime scene
investigators (CSI). In this paper, we present the design of such an impression imaging
device which includes a calibration method for obtaining the 3D image with the proper
metric information. The method can provide a depth resolution of around 0.5mm and
high resolution color image.

Related Work: The normal process of imaging impression evidence requires that the
camera’s optical axis be perpendicular to the ground at the site of the track. Also, there
is a requirement for proper oblique lighting in order to see details created by varying
depths of impression as intensity variations in the photographs. In the case of tire tracks,
where the impression may cover several linear feet, the ground may not be level and
camera distances may lead to confusing readings [1,5,7]. The requirements for imaging
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such evidence are specified by the Scientific Working Group for Shoe print and Tire
Tread Evidence (SWGTREAD) guidelines [8]. A device based on similar principles
has been built before in order to scan relics excavated from archeological sites and
construct their 3D computer models [10,11]. The current work modifies it to satisfy
the special requirements in the field of forensic imaging. Buck et al. present the use
of existing commercial 3D imaging devices for footwear impressions [2]. Khoshelham
et al. shows consumer-grade range camera such as Kinect sensor has random error of
depth measurement ranges from few millimeters to 4cm at the maximum range of the
sensor [6]. The existing devices do not satisfy some of the imaging requirements (e.g.,
resolution in depth) in forensics applications. They do not work very well outdoors on
long track impressions with a single scan. They usually require multiple short scans
which need to be stitched together.

2 Design of the 3D Imaging System

2.1 Hardware Setup

The device for digitizing the impression evidence consists of a motorized rail (actuator)
with a HD video camera and two line laser lights, each with a different color as shown
in Figure 1.

Fig. 1. The design for the device prototype built

A physical prototype of the device is shown in Figure 2. To build the device, we used
the following components:

1. Linear actuator rail.
2. Servo motor with a gearbox.
3. Power supply, USB interface cable, and programming interface.
4. Camcorder.
5. Two Laser stripe lights.

We designed and built a bracket and a leg assembly on the two sides of the actuator
rail that can be taken off in order to package and carry the device to the field. We also
designed and built a bracket to mount the camcorder and the laser lights onto the rail
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(a) (b)

Fig. 2. The prototype of the device built and a close-up of the laser and camcorder assembly

Fig. 3. Two lasers are used to eliminate the blind spots due to occlusion. The different laser colors
solve the correspondence problems for calculating the triangulation.

with a fixed geometric configuration. The final physical prototype of the device is shown
in Figure 2.

The two different colored lasers are used to eliminate the blind spots due to occluding
surfaces as shown in Figure 3. Also, the two different colored lasers are used in order to
distinguish the two different light sources, and, thus, solve the correspondence problem
more easily.

The device has a total weight of 11 lb. (about 5kg) excluding the legs so that it is
portable by one person and can be loaded into a normal van or a pick-up truck. Its
legs can also easily be dismantled for easy transportation. By setting the device at the
measuring site properly, a user can push one of the four buttons to operate the device: (a)
home, (b) stop, (c) short scan, or (d) long scan. Short scan and long scan buttons move
the laser-camera assembly by one of the preset distances (50cm, 170cm). This provides
an appropriate distance along the rail direction according to the user’s requirement. The
home button moves the laser-camera assembly to a preset home position and the stop
button allows for an emergency stop and/or selects a new starting position for scanning
short length ground scenes.

During an outdoor tire and footprint scan, the power can be drawn from a nearby
vehicle or from a charged portable battery unit. The camera focus and exposure are
set to manual mode and fixed after auto-focus and auto-exposure are obtained at the
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beginning of the scan. This eliminates possible changes to the optical parameters of the
camera during the scanning process due to changes in height in the scanned surface.

A user interface for controlling the device has also been developed on a PC as well
as on a mobile tablet using Android platform. This interface allows the field technician
to control an extended set of scan parameters such as rail speed, start and stop positions,
and/or run length in a more customized way than the preset buttons. A more advanced
user interface in the future may also allow the capability to change the preset values of
these buttons.

The video of two laser stripes are recorded onto a flash memory card. After the scan
of the entire site is done, the memory card is moved to a PC in the crime lab and the
video clips are copied to the hard disc of PC for image processing, 3D reconstruction,
and further analysis.

2.2 Robust Detection of Laser Stripes in Video Sequence and Texture
Acquisition

Laser stripe detection For robust laser stripe detection, we have implemented a slightly
modified method based on an adaptively constructed RGB lookup table [9]. This ap-
proach yielded better results compared to our previous method [4]. This approach con-
tains four image processing steps.

– Stripe edge detection: Edge detection is done using a Sobel filter. The red channel
of the image is used in edge detection for red laser. Similarly, green channel is used
for green laser image. The resultant image has pixels highlighting horizontal edges
of the laser stripe. This goes through another step with a high and low thresholds
to eliminate noise and low response edges. All pixels in between a negative and a
positive edge are considered as pixels belong to the laser stripe.

– RGB lookup table based color validation: To validate the pixels in a laser stripe,
two lookup tables — one for each of the green and red laser images — are gener-
ated from every 100th frame of the video. The lookup table consists of color values
belonging to the background color subspace. These values are generated from pix-
els ci outside the region of interest(ROI) in which laser stripe is searched in order to
capture the color characteristics of the background colors. Here ci = (R,G,B) ∈
([0, 255], [0, 255], [0, 255]), where the square brackets indicate ranges in the three
color bands. Let’s consider the lookup table: bcsred for red laser. First, we construct
a complement lookup table, bcsred(R,G,B) as follows:

bcsred(R,G,B) =

{
1 if ∃i : (R,G,B) ∈ ci or (R = 0)
0 otherwise

(1)

Then, we use this to construct the actual lookup table bcsred(R,G,B) that will be
used for detecting the laser pixels:

bcsred(R,G,B) =

{
1 if ∃R′ ≥ R : bcsred(R

′, G,B) = 1
0 otherwise

(2)

The lookup table bcs is constructed with the assumption that laser stripe color
values are suppose to have higher red components than the background (Figure 4).
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A given color pixel xi = (r, g, b) is classified as a red laser pixel, if bcsred(r, g, b) =
0. The lookup table bcsgreen(R,G,B) is constructed in a similar manner to the red
one and used in the same way for the green laser pixel detection. If a stripe from
the edge detection step contains more than 95% of laser pixels, it is considered a
laser stripe.

– Stripe width validation: Each stripe is validated again whether it is between a higher
and a lower threshold. The lower threshold is set to 2 pixels and higher threshold is
set to 20 pixels. These numbers provided more signal to noise ratio during testing.

– Peak estimation: To determine the peak position of stripe with sub-pixel accuracy,
we used center of mass method [3]:

ypeak =

∑m+w
i=m iI(i)∑m+w
i=m I(i)

(3)

where i is the starting row of the laser stripe and w is the width of the detected laser
stripe and I(i) is the intensity of that particular color channel at pixel i within each
column.

(a) (b)

Fig. 4. Visualization of RGB lookup tables for an indoor scan (a) Green lookup table. A 255x255
matrix, red and blue channels are represented by rows and columns respectively. Green channel is
represented by the element value. (b) Red lookup table. A 255x255 matrix, green and blue channels
are represented by rows and columns respectively. Red channel is represented by the element value.

Color texture image extraction: Simultaneously with the laser stripe detection, we also
extract a high resolution color image of the impression evidence. This is done by ex-
tracting the pixels along the y = 0 line of each video frame having the origin at the
center of the image. The color image captured by this process has the following proper-
ties: (i) The spatial resolution of the image along the scan direction is dependent on the
speed with which the linear actuator moves. The slower the actuator moves, the higher
the image resolution in the scan direction because the video is being captured at a fixed
30fps—the distance between the scan lines of successive video frames will be smaller
as the actuator moves more slowly; (ii) The image formed along the scan direction is
an orthographic projection determined by the scan motion.
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In the direction perpendicular to the scan motion, the resolution is a perspective
projection with the spatial resolution determined by the highest resolution of the HD
camcorder. The size of the highest resolution video frame is 1920×1080 pixels. In order
to maximize the resolution of the resulting image, the camcorder is oriented such that
the highest resolution dimension of the video frames (i.e., 1920 pixels) is perpendicular
to the actuator motion.

3 System Calibration

We have integrated the calibration of the geometry into the scanning and data collection
process. This eliminates the risk that a pre-calibrated configuration can be invalidated
during the transportation and set-up of the device. The only requirement in the field is
that the criminalist places the calibration object in the scene for at least one scan.

We use an L-shaped calibration object (shown in Figure 5) with known dimensions
to calibrate the geometric configuration of the laser beams and the camera in order to
compute the height map image. The system captures the calibration object in at least
one scan.

Fig. 5. Frames are captured when each laser scan over the calibration object at time t1 and t2

Currently, we operate the system in its slowest speed of 1.3138 mm/s in order to
obtain highest scan resolution along the y axis. We perform a calibration of the video
camera in order to correct for radial lens distortion at widest zoom settings, and we
computed a single focal length f for this setting to be 2110 in pixel units along both x
and y directions. We correct for this radial distortion in every captured frame and this
corrected image is used for all subsequent depth calculations.

We use a vanishing point method to find the pose of the camera with respect to the rail
and the rail motion direction. Then we use the calibration object (Figure 5) to calculate
the orientations of the red and green laser planes. Everything, including the points on
the evidence surface is eventually calculated in a single coordinate system which is
defined by the rail. The details of each of these calculations are described below.
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Coordinate System Definitions: We use three main coordinate systems (see Figure 6)

1. o-xyz: original camera coordinate system. Coordinates are measured in pixel units.
2. O-XYZ: ideal image coordinate system is still camera centered, but corrected for

the roll and tilt of the camera with respect to the rail coordinates. The Y axis is
parallel to the rail motion and the Z axis points downwards where the camera points.
Coordinates are in pixel units.

3. O-X ′Y ′Z ′: rail coordinate system. The coordinate system is aligned with the ideal
image coordinate system orientation and related to it with a translation. The coor-
dinates are in metric units.

The calibration procedure: Ideally, the camera should be connected to the rail, looking
downward and the y-axis of the image aligned perfectly with the rail’s direction of
motion. Achieving this physically, however, is not realistic. Therefore, we assume the
camera is put on the rail roughly as described above and the small misalignments are
accounted for via a calibration procedure. This calibration calculates the exact pose of
the camera with respect to the rail coordinate system. The calibration object is placed
in the scene roughly pointing in the direction of the rail motion. Assume the camera is
perfectly aligned with the rail coordinate system. If we translate the camera along the
rail and take two images, one before and one after the translation, corresponding points
on the calibration object in the two images will form parallel lines. This will result in
a vanishing point formed by the lines at infinity. In reality, the camera is not perfectly
aligned with the rail system resulting in the vanishing point to be finite. We use this
fact to estimate the camera pose with respect to the rail coordinate system from the
calculated vanishing point.

We capture two frames as seen in Figure 5, one at t = t1 when the green laser
is projected onto the calibration object and the second at t = t2 when the red laser
is projected onto the calibration object. We mark the corners of the calibration object
(Ai, Bi, Ci, Di, Ei, Fi, for i = 1, 2). This is done via an interactive interface developed
in the software that lets the person doing the computations in the crime lab pick these
points. The following are the steps for achieving this calibration.

First, we calculate the vanishing point from the corresponding points in two frames
as described above. Let this vanishing point be (xv, yv).

Second, we compute the pose of the camera with respect to the rail from this van-
ishing point (for O-XYZ transformation). The camera roll, θ, (around its optical axis) is
given by θ = tan−1(xv/yv).

The camera tilt, α, between the optical axis and the Z axis in the ideal coordinate

system O-XYZ is given by(yv/|yv|) tan−1
(
f/

√
x2
v + y2v

)
.

Next, the calculated roll and the tilt of the camera is used to obtain the transformation
from the image coordinates (o-xyz) to the ideal coordinates (O-XYZ). This transforma-
tion is given by T = Rx(α)Rz(θ), where the Rx(α) and Rz(θ) are the rotation trans-
formations around the x and z axes, respectively. Note that because the linear motion is
along the y axis, we do not need to calculate the third rotation angle, pan.

Computing rail coordinates of a point on the calibration object: After we apply the
roll and tilt correction, the transformed coordinates of the points Ai may not be parallel
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Fig. 6. Various 3D coordinate systems in our system

to the motion direction. Therefore, we project these points to a plane parallel to the
motion direction. We use the Z = f plane. This is done by projecting a ray from
the origin (camera’s optical center) via the point in the ideal image coordinate system.
Considering the first frame, i.e., when t = t1, we obtain Za1/f = Ya1/Y and Za1/f =
Xa1/X . Therefore, the projection of A1 onto the Z = f plane is obtained by A1f =
(Xa1f/Za1 , Ya1f/Za1 , f). Similarly, the projection of A2 onto the Z = f plane is
given by A2f = (Xa2f/Za2 , Ya2f/Za2, f).

Finding the Z value in rail coordinate system: Assume the distance traveled between
the first frame and the second frame is d (in metric units). Then by similar triangles, we
obtain

Z ′ =
d

(Ya2/Za2 − Ya1/Za1)
(4)

Finding the point A1 in rail coordinate system at time t = t1: Considering the edges of
a triangle, we obtain Za1/Z

′ = Xa1/X
′ andZa1/Z

′ = Ya1/Y
′. Therefore the ideal co-

ordinates of the pointA1 at time t = t1 is given byA′
1 = (Xa1Z

′/Za1 , Ya1Z
′/Za1 , Z

′).
Points corresponding to B1, C1, D1, E1, and F1 are similarly computed in the rail co-
ordinate system.

Finding the laser plane: Let’s consider the green laser plane. First, we transform the
pixel locations of L, M , and N (in Figure 5) to the ideal image coordinate system.
We project rays, starting from optical center, through all transformed points. Next we
compute the intersection of the ray and calibration object edges to find the points where
laser touches the calibration object. Since edges are in rail coordinate system, we are
getting laser points in rail coordinate system. Finally, using these points, green laser
plane is computed.

We find the red laser plane using the same method with the red laser points analogous
to L, M , and N . We perform all the steps above when t = t2 coordinates systems.

Assume a point on the laser plane is Pa, and its surface normal is N, using the
vectors

−−→
LM and

−−→
MN we have the equation of the laser plane normal given as the

cross-product:
N =

−−→
LM ×−−→MN (5)

And the equation of the laser plane, for any point P on it, is given by the dot-product:

N · (P−Pa) = 0 (6)
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4 Computing the 3D Impression Image

Each detected laser pixel (x, y) in a frame, is transformed to the ideal image coordinate
system. Through that point we project a ray starting from the optical center. The ideal
image coordinate system and the rail coordinate system share the same axes, but they
may be at a different scale. Therefore, finding the intersection of the ray and a laser
plane gives a rail coordinate of the laser pixel directly.

By applying the offset between red and green laser coordinate systems, i.e. the trans-
lation transformation is along y axis — d as in Eq 4, we bring the red laser plane to
t = t1 rail coordinate system. This way, a ray and laser plane intersections always pro-
vide registered results for both red and green lasers points. This makes the later fusion
of the two height maps easier.

For any point P on the laser plane (lit by the laser stripe), its 3D position satisfies:

N · (P−Pa) = 0

N ·
((

X(t)Z ′

f
,
Y (t)Z ′

f
, Z ′

)
−Pa

)
= 0 (7)

where Pa is a point on the laser plane. From this, Z ′ can be computed as

Z ′ = f
N ·Pa

N · (X(t), Y (t), f)
(8)

and

X ′ = X(t)
N ·Pa

N · (X(t), Y (t), f)
(9)

Y ′ = Y (t)
N ·Pa

N · (X(t), Y (t), f)
+ tV (10)

where V is the camera translation speed and t is time. The depth calculation is per-
formed in a lookup table so that the 3D transformation from the image coordinates can
be performed much faster.

Finally the height map is constructed by choosing the z value as the intensity. In the
results section, the z value is mapped into 0-255 range of 8-bit gray level intensity in
order to allow viewing the results in common image viewing software such as Adobe
Photoshop or Gimp. The depth map has a resolution of (7500× 7500) where each pixel
corresponds to 0.1mm in size. One intensity level in the depth map corresponds to 0.1mm,
and the coarsest level for looking at the global elevation changes starts from 10mm.

The prototype software, however, stores the real heights as real number for each
pixel (in double data type) in a binary data file. These data files can be used for further
processing, such as pattern matching, using the actual metric information.

The color texture map of the scanned part has also the same resolution, stored in
another image with points exactly corresponding to the ones in the depth map. The
user can compare depth map and the color texture map images to find the shapes of the
impression unrevealed in the texture map due to the color and lighting on the ground,
and confirm the depth on strange shapes by examining the color texture image.
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5 Experimental Results

We used following components in the device.

1. Linear actuator rail: Motion Dynamic belt drive linear actuator MSA-PSC, 1771mm
long.

2. Myostat Cool Muscle (CM1 Series) Integrated Servo motor with a planetary gear-
box 8:1.

3. 24VDC Power supply, USB interface cable, and programming interface.
4. Canon VIXIA HF M30, HD camcorder.
5. Laser stripe lights.

(a) 5mWatt, 532nm green module.
(b) 3mWatt, 650nm red module.

To test the system we have scanned tire and shoe impressions. Figure 7a shows the
computed impression image for one such scan. The scan video file consisted of a total of
11,146 frames captured in 371.533 seconds. The total size of the video is approximately
1.03 GB and each frame in the video has a resolution of 1920× 1088 pixels.

Figure 7a shows the fused result of the two independently processed images with the
red and green laser. Figure 7b shows the contributions of each laser to the final result
color coded. Over most of the image the two computed height maps from the two lasers
agree. Where one image has data and the other does not due to occlusions, the fusion
process fills in these pixels with the appropriate value. Figure 8a shows a longer scan of
shoe print impressions. Figure 8c and 8d show the fused depth image for a shoe print.

We also captured some impressions in different materials such as snow, mud and
sand. In mud and sand we got good results. However, in snow we had difficulties to
detect laser due to reflectivity properties. We also experienced difficulties to detect laser
in outdoor scanning due to strong lighting conditions. It was necessary to provide a
shade for controlled lighting.

We scanned some 3D images using range scanners that are commercially available
on the market. We scanned shoeprint impressions using the Kinect sensor, the Konica
Minolta Vivid 910fw 3D Laser Scanner and the 3dMD Scanner. In all cases, we found
that the resulting accuracy was not sufficient to detect sub-millimeter features in the
impression.

Accuracy and Resolution Measurements: We have determined the following accuracy
measurements for the system: (i) Rail speed = 1.3138 mm/s, fps = 30, f = 2110; (ii)
Resolution along Y ′ axis = 1.3138 / 30 = 0.0438mm; (iii) Resolution along X ′ axis
(at a Z ′ distance of 500mm) = Z ′/f = 500 / 2110 = 0.2369 mm; and (iv) Empirically,
we have observed that we can resolve 0.5mm in Z ′ values as reflected in detectable
differences of at least 1 pixel in the disparity image computed. (v) The device takes ap-
proximately 20 minutes to scan a 1.75m long surface. Note that even though 20 minutes
seems like a long time, this is a great improvement for the current practices of obtaining
impression evidence in the field. Currently, if the impression evidence is captured by
making physical casts, not only can the process take longer, but it could also destroy
the evidence in the process.
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(a) (b)

Fig. 7. Computed impression image results: (a) Fused height map for a tire impression; (b) Con-
tributions of each laser for this fusion

(a)

(b)

(c) (d)

Fig. 8. Computed impression image results: (a) A long scan of two shoe prints. (b) A long scan
of tire track. (c) & (d) Scans of shoe prints.
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6 Conclusion

In summary, we have developed an inexpensive high resolution 3D impression device
for digitizing shoe and tire impressions in crime scenes. The device can also be used for
many other objects such as ancient calligraphy on stones. We used two laser modules
to eliminate occlusions and improved performance. The calibration method we used is
integrated in the scanning process and eliminates the requirement of pre-calibrating the
system which can become stale in the field due to the pre-calibrated configuration being
changed during transportation and setup. Compared to current practices in forensics, the
device can greatly improve and speed up the process of collecting impression evidence
in the field. Moreover, currently, in order to scan long tire tracks, multiple photographs
need to be taken along the track and stitched together. Our device can capture a 3D
impression of such long tire tracks in one single scan.

Acknowledgements. This project was supported by Award No. 2010-DN-BX-K145,
awarded by the US National Institute of Justice, Office of Justice Programs, U.S. De-
partment of Justice. The opinions, findings, and conclusions or recommendations ex-
pressed in this publication/program/exhibition are those of the author(s) and do not
necessarily reflect those of the Department of Justice.

References

1. Bodziak, W.: Footwear impression evidence: detection, recovery, and examination. CRC
Press (1999)

2. Buck, U., Albertini, N., Naether, S., Thali, M.J.: 3D documentation of footwear impres-
sions and tyre tracks in snow with high resolution optical surface scanning. Forensic Sci-
ence International 171(2-3), 157–164 (2007), http://www.sciencedirect.com/
science/article/pii/S0379073806006712

3. Fisher, R.B., Naidu, D.K.: A comparison of algorithms for subpixel peak detection. In: Image
Technology, Advances in Image Processing, Multimedia and Machine Vision, pp. 385–404.
Springer (1996)

4. Gamage, R.E., Joshi, A., Zheng, J.Y., Tuceryan, M.: A High Resolution 3D Tire and Footprint
Impression Acquisition for Forensics Applications. In: Proceedings of IEEE Workshop on the
Applications of Computer Vision (WACV), Clearwater Beach, FL (in press, January 2013)

5. Houck, M., Siegel, J.: Fundamentals of forensic science, 2nd edn. Academic Press (2010)
6. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for in-

door mapping applications. Sensors 12(2), 1437–1454 (2012), http://www.mdpi.com/
1424-8220/12/2/1437

7. McDonald, P.: Tire imprint evidence. CRC Press (1992)
8. Scientific Working Group for Shoeprint and Tire Tread Evidence: SWGTREAD Guidelines,

http://www.swgtread.org/
9. Strobl, K., Sepp, W., Wahl, E., Bodenmuller, T., Suppa, M., Seara, J., Hirzinger, G.: The

DLR multisensory Hand-Guided Device: the Laser Stripe Profiler. In: Proceedings of the
2004 IEEE International Conference on Robotics and Automation, ICRA 2004, April 26-
May 1, vol. 2, pp. 1927–1932 (2004)

10. Zheng, J.: A flexible laser range sensor based on spatial-temporal analysis. In: Proceedings
of the 15th International Conference on Pattern Recognition, vol. 4, pp. 740–743 (2000)

11. Zheng, J., Zhang, Z.L.: Virtual recovery of excavated relics. IEEE Computer Graphics and
Applications 19(3), 6–11 (1999)

http://www.sciencedirect.com/science/article/pii/S0379073806006712
http://www.sciencedirect.com/science/article/pii/S0379073806006712
http://www.mdpi.com/1424-8220/12/2/1437
http://www.mdpi.com/1424-8220/12/2/1437
http://www.swgtread.org/


Impact of Thermal and Environmental

Conditions on the Kinect Sensor

David Fiedler and Heinrich Müller

Department of Computer Science VII, Technische Universität Dortmund,
Otto-Hahn-Straße 16, 44227 Dortmund, Germany
{fiedler,mueller}@ls7.cs.tu-dortmund.de

Abstract. Several approaches to calibration of the Kinect as a range
sensor have been presented in the past. Those approaches do not take into
account a possible influence of thermal and environmental conditions.
This paper shows that variations of the temperature and air draft have
a notable influence on Kinect’s images and range measurements. Based
on these findings, practical rules are stated to reduce calibration and
measurement errors caused by thermal conditions.

Keywords: Kinect Sensor, Calibration, Thermal Influence.

1 Introduction

Many applications utilize the Kinect [16], originally an input device of the Mi-
crosoft Xbox video game console, as a range sensor, e.g. [3,4,6]. Several compar-
isons of accuracy between Kinect’s depth data and other range systems, like laser
range scanners [5], Time-of-Flight cameras [1] or PMD cameras [7], have been
evaluated. All these works perform geometric (intrinsic and distortion parame-
ters) and depth (range) calibration to increase accuracy. Some works also involve
Kinect’s internal RGB camera within the depth calibration process [1,2,11] to
gain accuracy. But all of them do not consider thermal and environmental con-
ditions, neither during the calibration phase, nor during the measurement or
evaluation phase.

This paper experimentally demonstrates that variations of temperature as well
as air draft significantly affect the range measurement of the Kinect. Air draft
can cause changes of the depth values up to 21 mm at a total distance of 1.5 m,
and temperature variations cause changes up to 1.88 mm per 1◦C difference.
The necessary warm-up time to rule out temperature-induced errors is up to 60
minutes. Depending on its thermal state, Kinect’s RGB camera shows a shift of
projected objects up to 6.7 pixels measured with an optical flow approach. This
observation is also important for range calibration since, as mentioned before,
many approaches involve the RGB camera. The findings are transferred into
rules which help to reduce measurement errors.

The following section gives a brief survey of related work. Section 3 is devoted
to the influence of different thermal states to the optical lens system of both
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(a) RGB cold state (b) RGB warm state (c) IR cold state (d) IR warm state

Fig. 1. Close-up views of small regions that were cropped out from the image of the
texture-rich poster shown in Fig. 2(a)

internal cameras (RGB and IR). Section 4 presents several experiments based
on different approaches of distance measurements and different environmental
conditions. Conclusions are given in section 5.

2 Related Work

The influence of temperature in the context of imaging and range sensors has
been studied in the past. In the field of aerial mapping, lenses were put into large
refrigerators to simulate the temperature in high altitudes and to calibrate them
under these conditions [18]. The robustness of different calibration methods and
their influence to the calibration accuracy was tested under temperature varia-
tions in [20]. In [9] a method for temperature calibration of an infra-red camera
using warm water was proposed. The effect of temperature variations on intrin-
sic parameters of SLR-cameras has been studied in [19]. For the Swiss Ranger
SR-2 Time-of-Flight camera the offset drift caused by self-induced heating of
the sensor and the drift due to changes of the environmental temperature were
analyzed in [8]. However, the influence of temperature and other environmental
conditions has not been investigated for the Kinect sensor so far.

3 Thermal Influence on Kinect’s Optical Camera Systems

To determine the thermal influence on the optical systems of both internal cam-
eras, we tested the Kinect at two different thermal conditions (heat states). In
one case (called cold state) the Kinect was cooled down by an externally mounted
fan (cf. Fig. 3(c)) which slowly streams air through the Kinect’s body and cools
down its internal components to the environmental temperature of 27.6◦C. In
the other case (called warm state) the fan was deactivated and the Kinect was
warmed up just by processing the color and depth image-stream for 45 minutes.
The fan was always accelerated smoothly to prevent motion of the Kinect.

Image Based Comparison. A texture-rich poster (cf. Fig. 2(a)) was captured
by both cameras at both heat states. Comparing pictures taken in different heat
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(a) Poster (b) Color code (c) IR opt. flow (d) RGB opt. flow

Optical Flow Image resolution Maximal flow Horizontal Range Vertical Range

RGB 1280x1024 6.7338 -6.440 .. 4.897 -5.044 .. 3.678
IR 640x480 1.7853 -1.666 .. 1.581 -1.461 .. 1.115

Fig. 2. Texture-rich poster (a) observed by both cameras in both heat states. In the
color coding scheme (b), hue indicates direction and saturation indicates magnitude.
White color indicates no movement, strong colors indicate large movements. The results
of the dense optical flow from the cold to the warm state are shown in (c) for the IR
and in (d) for the RGB camera. The table summarizes quantitative details.

Table 1. Comparison of calibration parameters of the RGB camera (upper table) and
the IR camera (lower table) for the cold and warm state

Parameter fx fy cx cy p1 p2 p3 q1 q2 Error
RGB
Cold 1041.60 1043.29 656.70 520.56 0.18314 -0.51989 0.45196 0.00012 0.00122 0.07146

Warm 1046.25 1048.14 656.87 523.67 0.19178 -0.55455 0.50113 0.00069 0.00144 0.06770
Difference 4.65 4.85 0.17 3.10 0.00864 -0.03466 0.04917 0.00057 0.00022 -0.00376

IR
Cold 586.02 586.78 321.27 239.21 -0.10137 0.46481 -0.6413 -0.00112 -0.00009 0.02704

Warm 587.14 588.04 322.70 238.15 -0.11278 0.5179 -0.71455 -0.00213 -0.00013 0.02438
Difference 1.12 1.25 1.43 -1.06 -0.01141 0.05309 -0.07325 -0.00101 -0.00004 -0.00266

states, two changes could be observed for the warm state: the pictures were more
blurred and the poster appeared slightly magnified. Although the cropped areas
of the close-up views in Fig. 1 had the same size and pixel-position for both heat
states, a shift of the letters and a loss of sharpness can be noticed.

Comparison Based on Dense Optical Flow. A dense optical flow approach
[10] has been applied to image pairs of the poster taken in both heat states.
For visualization, the color-code proposed in [12] was used (cf. Fig. 2(b)). The
magnitude of the optical flow was small near the image center and large at
its margins (cf. Fig. 2(c) and 2(d)). The maximal flow was 6.7 pixels for the
RGB and 1.8 pixels (note the smaller IR image resolution) for the IR camera.
Regarding the color distribution and the magnitude, the observations can be
interpreted as a zoom-in effect.

Comparison Based on Calibration Parameters. If the previous observa-
tions are caused by a thermally dependent deformation or shift of the optical
lens system, we expect a change in the parameters of the camera model and the
lens distortion model. A calibration plane with checker pattern was placed in
front of the Kinect at 23 different orientations and captured simultaneously by
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(a) RGB image.

(b) Depth image. (c) Experimental setup in a static scene.

Fig. 3. The region of interest (red box) within the RGB camera image (converted to
grayscale) and the depth image are shown in (a) and (b). The experimental setup con-
sists of the following items: Kinect (1), mounted fan (2), large planar checkerboard (3),
fluorescent lamp (4), thermometer (5), table fan (6).

both cameras. Repeating this for both heat states, we got two sets of images
for each camera. The IR projector was blocked to prevent detection errors of
checkerboard corners by the structured light. Each set of images was used to
determine the parameters using the MATLAB camera calibration toolbox [15].
Table 1 shows the results. For both cameras the focal length increases in the
warm state, which is consistent with the zoom-in effect revealed by the optical
flow approach. No significant changes of the back-projection error [14] could be
observed. Thus we can assume that the employed camera model fits well for both
heat states. Note that both cameras are sensitive to thermal changes, especially
the RGB camera. This is important for calibration approaches that involve the
RGB camera within their range calibration like in [1]. We conclude the following
rule: Camera calibration and subsequent measurements should be performed at
the same thermal conditions.

4 Thermal Influence on Range Measurement

The experimental evaluation of thermal influences on range measurements used
mean distances to a checkerboard of size 0.75×1.0 m at a distance of 1.5 m placed
in front of a Kinect mounted with a fan, cf. Fig. 3(c). The mean distances were
determined in two ways. Both Kinect cameras were calibrated in advance, using
sets of images generated in the cold state, to obtain intrinsic as well as radial
and tangential distortion parameters. Furthermore, a stereo calibration of the
cameras was performed simultaneously as described in [13].
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(a) Evaluation after power-on.
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(b) Influence of temperature variations.

Power-On Start End Diff. 90%

Kinect Depth[mm] 1484.54 1504.03 19.49 41.0 min
Model Plane[mm] 1499.68 1492.71 -6.97 62.9 min

Temp. influence Min Max Diff. mm/◦C

Temperature [◦C] 22.8 26.2 3.40 -
Kinect Depth[mm] 1494.57 1500.96 6.39 1.88
Model Plane[mm] 1493.79 1495.69 1.90 -0.56

Fig. 4. Plots of DD (red) and DMP (blue) as well as the environmental temperature
(green) over time. The erratic change in (a) at minute 15.9 will be discussed in Sec.
4.5. Each table beneath the plots summarizes quantitative details.

Mean Distance Calculation Based on the Model Plane. The mean dis-
tance DMP from the RGB camera to the checkerboard is determined as follows:

– Detect the checkerboard within the current image (see the red box in Fig.
3(a) where the region of interest (ROIRGB) is marked).

– Construct a 3D-model of the checkerboard (denoted as model plane).
– Calculate the 3D rotation matrix Rm and the translation vector tm of the

model plane relatively to the camera, so that the back-projection error is
minimized (see [14] for details).

– Define 3D-rays from the camera center c0 to every pixel within the ROIRGB.
– Finally, calculate the mean of all single distances between c0 and the inter-

section point of each 3D-ray with the model plane.

Mean Distance Calculation Based on Depth. The checker pattern was not
visible in the depth image. Thus the checkerboard model, whose position in the
coordinate frame of the RGB camera was given by Rm and tm, was transformed
to the coordinate frame of the IR camera using the rotation matrix Rs and
the translation vector ts between the frames of both cameras available from the
stereo calibration. Then the checkerboard model was projected onto the image
plane of the IR camera to get the ROIIR. According to [1], there is a pure shift
between the IR and the depth image of three pixels in x- and y- direction. Thus,
we just shifted the ROIIR to get the ROID within the depth image (cf. Fig.
3(b)). For each pixel within the ROID we calculated the corresponding 3D-point
in space using the OpenNI framework [17]. Finally, the mean of all magnitudes
of these 3D-points is the desired mean distance DD based on depth data.

4.1 Tracking Distances After Power-On

The Kinect was disconnected for three hours to cool it down to the room temper-
ature of 27.7◦C before starting the tracking of both distances during the warm-up
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Fig. 5. Track of distances in alternating phases with and without cooling using a
mounted fan. Dot-dashed lines mark time points of fan activation, dashed lines indicate
deactivations. Arrows mark time points where erratic distance changes occurred.

phase. Fig. 4(a) shows the plots within 135 minutes. A decrease of -6.97 mm was
observed for DMP . 90% thereof took 60 minutes of warm-up time. We suppose
that this change is a direct consequence of the zoom-in effect (cf. Sec. 3): the
checkerboard appears to have moved towards the camera and thus the measure-
ment of DMP outputs a smaller checkerboard distance, although the scene was
not changed. The measured change in DD was an increase of 19.49 mm. 90%
thereof occurred within 41 minutes. Note that a similar behavior was reported
for the SR2 time-of-flight camera in [8], where the measured distance also in-
creased approx. 12 mm within the first minutes after the sensor activation. In a
second experiment at a room temperature of 22.5◦C we could observe compa-
rable results. The determined changes were 19.68 mm (90% within 42 minutes)
for DD and -6.12 mm (90% within 56 minutes) for DMP . Since the effect of
lens deformation of the IR camera was smaller compared to the RGB camera
(cf. Sec. 3), the change in DD is not explainable only by this effect. However,
for typical indoor scenarios we can state the rule: A warm-up time of up to 60
minutes is necessary to reach stable measurement conditions.

4.2 Distance Changes between Thermal States

The following experiment was performed at a constant room temperature of
27.5◦C. We used the mounted fan and alternated between phases with and
without fan cooling to change the heat state and tracked again the distances
(cf. Fig. 5). The experiment was repeated three times. The cool down was com-
pleted within 10 and 18 minutes for DD and DMP , respectively. The longest
warm-up period was finished after 61 minutes regarding DMP . This is compa-
rable to the results in Sec. 4.1. Regarding DD, the warm-up took 33 minutes.
The ventilation had a strong impact on the measurements, although the room
temperature was stable. DMP increased by 5.67 mm while DD decreased by
-22.76 mm during fan cooling.

The arrows in Fig. 5 mark the points in time where erratic changes between 2
and 4 mm occurred in the plot of DD. At the same time a rapid and global change
in the values of the corresponding depth image could be noticed. Erratic changes
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Table 2. Summary of the measured values and the noise by the standard deviation σ
of the distance measurements in both heat states in stable environmental conditions

Noise measurement (23.7◦C) Min Max Diff. σ

Cold state
Kinect Depth[mm] 1457.07 1457.58 0.51 0.103
Model Plane[mm] 1487.49 1487.81 0.32 0.058
Warm state
Kinect Depth[mm] 1474.12 1474.86 0.74 0.134
Model Plane[mm] 1482.50 1482.72 0.22 0.038

occurred in situations of rapid temperature variations of Kinect’s internal compo-
nents. In a decreasing phase they performed an upward correction and vice versa.

4.3 Noise in Distance Measurements

The noise in the distance measurements DD and DMP within the known static
scene was evaluated by investigating the standard deviation. The room tem-
perature was 23.7◦C during the complete experiment. The standard deviation
was calculated from over 660 measurement points within 15 minutes for each
thermal state. The evaluation of the cold state was performed after a cool-down
time of 30 minutes using the mounted fan. The warm state was evaluated after
60 minutes warm-up time without fan activity. Table 2 compiles the numerical
results. Regarding the transition from the cold to the warm state, noise reduc-
tion of 34.5% for DMP was determined. We suppose that this is due to the blur
observed in section 3, that is comparable to a low-pass filter and that reduces
the noise in the determination of the model plane within the RGB image. For
DD, the noise has increased by 30.1%.

4.4 Distance Changes Caused by Kinect’s Internal Fan

Within the Kinect’s body a small integrated fan (cf. Fig. 6(a)) is used to prevent
damage of internal components by overheating. There is no interface to control
the internal fan but it is activated automatically if the temperature exceed a
certain threshold. In our experiments the fan was activated if the environmental
temperature exceed 30.5◦C. This point in time was reached at minute 18 and is
marked by the dashed line in the plot shown in Fig. 6(b). During the experiment
the temperature increased from 30◦C to 31◦C. The impact on the measurements
after this activation was a change of -12.19 mm and 2.38 mm regarding DD and
DMP , respectively. Since the internal fan is less powerful, the impact is smaller
than in the experiment in section 4.2, but it is significant anyway. Thus we derive
the following rule: It is necessary to keep the fan activation in mind if operating
the Kinect at an environmental temperature near the activation threshold.
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(a) Internal fan (www.geek.com)
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(b) Measurements after fan activation

Fig. 6. The automatic activation of the internal fan (a) and its impact on distance
measurements (b) at minute 18 (dashed line). The erratic change at minute 22 is
discussed in Sec. 4.5.

4.5 Distance Changes Caused by Air Draft

During this experiment the room temperature was constantly 27.5◦C. To simu-
late air draft, we used a standard table fan (cf. Fig. 3(c)). It was blowing sideways
at the Kinect in the warm state at a distance of 30 cm for only 10 seconds. The
changes in DMP were insignificant. However, regarding DD, even this very short
period of time caused a change of -3.22, -3.14, and -3.18 mm for three repetitions
of this experiment. The necessary warm-up time to reach the initial distance
values took between 5 and 6 minutes in each repetition. Due to the described
high sensitivity, the following rule can be established: Try to avoid air draft while
using the Kinect in the warm state.

4.6 Tracking Temperature and Distance Changes

We demonstrate Kinect’s sensitivity to naturally occurring temperature changes
in an everyday scenario. The investigations took place in a room of size 5×3×3 m
with a digital thermometer mounted 10 cm beneath the Kinect (cf. Fig 3(c)).
The door and windows were closed before the experiment started. At the begin-
ning, the room temperature was 26.2◦C and we opened a window. Air draft was
prevented by blinding the window and keeping the door closed. Weather changes
(mix of sun and rain) caused indoor temperature variations. At minute 497 the
window was closed and the room temperature increased. In Fig. 4(b), a nega-
tive correlation between temperature (green) and DMP (blue) can be observed.
This conforms to the zoom-in effect (cf. Sec. 3). In contrast to that, a positive
correlation between temperature and DD (red) can be noticed. The maximal
temperature difference was 3.4◦C. This caused a maximal change of -1.9 mm in
DMP and 6.39 mm in DD, what means a change of -0.56 and 1.88 mm per 1◦C.
The latter compares well with an increase by 8 mm per 1◦C as reported for the
SR2 time-of-flight camera [8]. The table in Fig. 4(b) shows quantitative details.
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(a) Temperature sensor (left) attached
at Kinect’s ventilation slot.
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(b) Plot of temperature and distances be-
fore and after internal fan activation.

Temp. influence Min Max Diff. mm/◦C Correl. with Temp.
Temperature [◦C] 21.31 27.69 6.38
Kinect Depth[mm] 1461.60 1474.32 12.72 1.99 0.96852
Model Plane[mm] 1471.39 1474.56 3.17 -0.50 -0.99562

Fig. 7. The plot (b) illustrates the dependancy of the measured distances to the
temperature determined by the sensor mounted at Kinect’s ventilation slot (a). The
table summarizes quantitative results.

4.7 Correlation between Temperature and Measured Distances

In this experiment we confirm the results of Sec. 4.6 within more controlled
variations of the temperature. We used a small temperature sensor that was
mounted directly at Kinect’s ventilation slot, cf. Fig. 7(a). In contrast to the
measurements performed by the room temperature sensor (cf. Fig. 3(c)), the
measured temperature corresponds more to Kinect’s internal temperature, since
the warm air directly passes the sensor at the ventilation slot. Note, that there
was no fan activity. At the beginning of the experiment the Kinect was warmed
up, the environmental temperature was 22.0◦C and the temperature at the ven-
tilation slot was 27.1◦C. The outdoor temperature of 11.0◦C was significantly
lower. During minutes 5 to 75 the window was opened to cool down the room.
At minute 75 the window was closed and the room was warmed up again. Fig.
7(b) shows the plot of the temperature and the measured distances. The dashed
line indicates the point in time where the window was closed.

A strong correlation could be confirmed by a correlation coefficient of 0.96852
between temperature and DD, while a negative correlation of -0.99562 could be
determined between temperature and DMP . The maximal temperature variation
was 6.34◦C. A change of 1.99 mm and -0.5 mm per 1◦C could be observed for DD

andDMP , respectively. This is comparable to the results in Sec. 4.6. Quantitative
results are summarized in the table in Fig. 7.

4.8 Distance Changes after Stand-By and USB Disconnection

In these experiments the environmental conditions were constant (constant tem-
perature, no air draft, no fan, closed door and windows). Before starting, the
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Kinect was on-line (streaming depth and RGB images) to warm up. The amount
of changes caused by two types of working interruptions within a long-term use
of the Kinect will be examined in the following. This investigation has practical
relevance because such interruptions are typical while working with the Kinect
or developing software with interleaved testing phases.

Type 1: Disconnection from USB or Power. Some pretests revealed that
the power supply as well as the USB disconnection produced the same results. This
is traceable since the Kinect stopped power consumption if USBwas disconnected.
Thus, there was no heating of internal components in both cases. The Kinect was
disconnected for 2, 5, and 10 minutes resulting in a change of -6.12, -10.38, and
-14.66 mm inDD. RegardingDMP , 0.32, 1.21, and 2.36 mm were observed. These
small values are valid sinceDD andDMP base on mean distances with a low noise
level below σDD = 0.14 and σDMP = 0.06 mm in stable environmental conditions
in both heat states, cf. Sec. 4.3. After 10 minutes of disconnection, 18 and 57 min-
utes were needed to reach stable values again for DD and DMP , respectively.

Type 2: Stand-By Mode. If the Kinect was not streaming any data
(OpenNI XnSensorServer is shut down) but connected to USB and power, it
stayed in a stand-by mode (green LED was still flashing). Regarding an applica-
tion using the Kinect, this is the typical mode between the application’s termi-
nation and the next access to the Kinect. After warm-up, the stand-by mode was
entered for 15 minutes before returning to the on-line mode. The changes in DD

and DMP were -3.09 and 0.73 mm. To determine maximal changes, the stand-by
mode was entered for 10 hours. We determined -5.95 and 1.67 mm regarding DD

and DMP . This corresponds to approx. 25% of the changes compared to the
power-on and the fan cooling scenario (cf. Sec. 4.1 and 4.5). This smaller change
is due to Kinect’s power consumption, that was comparable in the stand-by
and the on-line mode. This prevented a cooling of Kinect’s internal components.
Thus the last rule is: Try to keep the Kinect always in the on-line mode. If this
is not possible, leaving it in the stand-by mode is the best alternative.

5 Conclusion

The analysis of several combinations of environmental and thermal conditions
(stable and varying temperature, air draft, usage of fans, power disconnection
etc.) has shown that they have a strong impact on the Kinect’s output. Based on
the findings temperature-related rules have been established which may help to
reduce errors in the calibration and measurement process of the Kinect. Future
work will include finding a model which describes the depth error in relation to
the temperature, and developing a correction function based on this model.
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Abstract. We present a system for 3D face reconstruction that is based
on live depth information combined with face priors. The system includes
a stereo matching method that employs prior information for limiting the
search space and introduces an offline scanned 3D model that is animated
by means of 2D morphing techniques in order to match the live facial
expressions. The resulting live- and synthetic depth images are combined
and a live 3D mesh is generated. Computational aspects are taken into
account for every part of the system, enabling a live face reconstruction
system with the potential for real-time execution.

Keywords: Depth image, 3D, Face reconstruction, Real-time.

1 Introduction

A live 3D face reconstruction system can offer new video communication solu-
tions by decoupling the capturing device from the visualized data. Virtual cam-
eras can be placed anywhere around the face, enabling a more compact and clear
depiction of the conversation dynamics or establishing better gaze alignment. In
addition, the reconstructed model can be visualized on 3D displays.

A system is presented that employs prior information, both generic and per-
sonalized, in order to create a 3D face reconstruction system that could be ap-
plied in a real-time video communication system. The system uses depth images
as an intermediary format for data aggregation. A prior-aided stereo matching
method is shown that uses a sparse set of correspondences in order to guide
the dense stereo matching process. This is followed by a method that employs
2D morphing techniques for generating an approximation of an animated, per-
sonalized 3D model that is represented by multiple depth images. A surface
reconstruction method is furthermore presented that produces a triangulated
model from an arbitrary number of depth images. These three components are
combined into a system that can produce a live 3D face mesh.

2 Related Work

3D face reconstruction is an active field in the domains of computer vision and
computer graphics. Reconstruction from a single image is in its most generic form
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an ill-posed problem. As such prior information is required in order to solve it.
A survey of this field is discussed in [8]. Prior information such as light sources
(shape from shading) and geometric/albedo models (analysis by synthesis) are
often used. Results are however rarely satisfactory for realistic rendering due to
the limited live information which poses a strict dependence on the priors.

A different approach involves the use of alternative inputs such as depth sen-
sors in order to fit geometric models to the live data. A Kinect sensor is used in
[7] for fitting a user-specific expression model to the data (their goal is expression
transfer however, and not face reconstruction). This can offer satisfying results,
however the approach is limited by the expressiveness of the model.

The use of more camera viewpoints can also increase the confidence of the
results. Sparse stereo information is used in [6] for fitting a generic 3D model to
the live data. Geometric details are limited due to the sparsity of the features
in combination with a generic model. Models that are reconstructed using a
multitude of cameras such as in [1] can offer excellent reconstruction quality
at the expense of applicability and computational performance. Such methods
generally require fewer priors and are thus less sensitive to relaxations of the
contextual assumptions.

The hybrid approach that is presented here attempts to find a compromise
between the convenient use of live data and flexible use of prior information.

3 Prior-Aided Stereo Matching

For the stereo matching process, prior information is ingested in the form of
AAM (Active Appearance Models [3]) features along with a linear interpolation
model on top of these features. AAM is applied to both rectified stereo images,
thus introducing a sparse correspondence set S of features between the two im-
ages. In total 68 correspondences are used. These are triangulated in accordance
with the face anatomy. The result is a lower- and upper bound (dmin; dmax) for
the disparity search range in each triangle. In order to facilitate for small errors
in the correspondence set, a fixed value δ is used to widen the search range.
The dense stereo matching algorithm is based on [9] and employs a locally adap-
tive window in order to accommodate to the local texture variations. Search
ranges are limited using the local lower- and upper bounds. Integral images are
used in order to accelerate the computation of the similarity score over variable
rectangular window shapes.

The traditional winner-takes-all approach for selecting the final disparity value
is replaced by an iterative approach where a per-pixel Gaussian Mixture Model
(GMM) is used for including temporal- and neighborhood influences. First of
all the temporal influence is modeled for each pixel by adding the correspond-
ing GMM from the previous time instance. A Gaussian that models the stereo
matching result is then added, and is followed by a number of iterations that
consist out of combining each GMM with those of its neighbors and reducing
these GMMs in order to limit the number of embedded Gaussians. This is illus-
trated in Figure 1. GMM reduction is done closed-form by means of least-squares
parabolic fitting in the log-domain.
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Fig. 1. Updating the per-pixel GMM

Figure 2 illustrates some of the results with varying stages of the method in
use. The effective resolution of the shown stereo-matched face is about 110x130
(bounding box around the AAM features). The method, which uses the stereo
images along with the accompanying AAM features as input, runs at 22 frames
per second for the shown results on an Intel Core i7 2820QM processor.

(a) (b) (c) (d)

Fig. 2. Incrementally improving stereo matching results by (a) restricting computation
to the facial region, (b) additionaly constraining the disparity domain based on the
sparse AAM correspondence set and increasing precision to 1/2 pixel resolution, (c)
adding the temporal factor and (d) also including the neighborhood influence.

4 3D Model Animation by 2D Morphing

The live stereo matched depth image from the previous section is not enough to
reconstruct the complete face due to occlusions and incomplete stereo matched
data. To this purpose, a personalized 3D scan is available as a prior and needs to
be adapted in order to reflect the actual facial expression state. The same AAM
features as used in the previous section are applied here in order to transfer the
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live expressions to the 3D model. The resulting animated model consists out of
a number of depth images rather than a mesh model. As will become clear in
the next section, this is not necessarily a disadvantage.

The model animation consists out of the following steps. First of all, the live
AAM features need to be transferred to the 3D model; in other words the 3D
coordinates of the AAM features are estimated. Once this is done, the 3D data
is adapted in order to adhere to these new AAM coordinates. This is done in the
2D domain by projecting the 3D model a number of times, and doing 2D depth
morphing from the original AAM coordinates to the new ones.

A common reference frame is constructed between the live- and offine data by
means of matching the virtual camera to the live camera. The intrinsic camera
parameters are directly transferred from the live camera whereas the extrinsic
camera parameters are estimated by aligning three selected AAM points. Now
the AAM features of the live data can be transferred by simply copying the 2D
coordinates. The 3D coordinates of these transferred AAM points are then found
by estimating the depth for the points, and back-projecting them back into 3D
space. In this case the depth of each AAM point is taken to be the same as that
of the relevant original AAM point.

Now that the new 3D coordinates of the AAM features are known, we can
transform the model by employing 2D morphing on an arbitrary number of
generated depth images. The generated images should cover the complete face.
The data is morphed by using a coarse mesh that spans the head and which
is a superset of the AAM-based mesh. The AAM points are placed at their
actual location, and the other points are linearly morphed in relation to the
mesh triangle they belong to.

Figure 3 shows an input frame that has been augmented by AAM features
and the triangular model, and a morphed 2D+depth map that has been back-
projected. Note the coarse animation of the mouth (the mouth is closed in the
source 3D model).

(a) AAM model on live data (b) Animated model (1 view)

Fig. 3. 3D model animation
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5 3D Surface Reconstruction

The previous two sections discussed ways of generating depth images of the
model that is to be reconstructed. These are essentially point clouds (the asso-
ciated calibration matrices are available), and can thus not be readily rendered
in a flexible manner. The generation of a 3D surface model will remedy this.

The approach is based on [4] where an implicit surface function called the
truncated signed distance function (TSDF) is constructed using a number of
range images. This TSDF contains a signed distance metric d and a reliability
value r for each sample. The distance metric indicates the nearest distance to
the surface that is reconstructed; the sign defining whether it is located inside
or outside of the object. In order to make the method scalable, an adaptive
octree is used for sampling the implicit function. An additional iterative filter
on the implicit surface function furthermore refines the results. This allows for
a high quality surface reconstruction combined with real-time computational
performance.

At first, the considered 3D space is uniformly sampled at a low sampling
rate. This sampling rate is chosen in function of the minimum object size one
wants to reconstruct. The diagonal of the cube in between samples cannot be
larger than the diagonal of the minimal inner sphere of the reconstructed object.
The sampling space is then refined in an adaptive manner by evaluating the
implicit surface function at each sample location. A cube is refined when it
contains an edge in which the TSDF of the endpoints have opposite signs. This
is done until the maximum octree depth is reached. As this process does not
necessarily produce a uniform sampling frequency along the surface boundaries,
an additional post-processing step is needed for refining the octree. Note that
the maximum octree depth introduces an implicit scalability parameter for the
method. By increasing the value one gets a higher detailed model at the expense
of computational resources.

The TSDF at a certain 3D point is estimated by projecting the point to each
depth image, and selecting the one with the best score. This score is based on
the distance and its reliability. Note that the reliability of the measurement
is decreased in relation with the distance inside the object. Indeed, when a
measurement indicates that a point is behind the surface, it does not necessarily
mean that the point is actually inside the object; the object can merely be
occluding a free point in space.

A filtering phase is introduced on the TSDF in order to reduce the influence
of noise or missing values in the depth images. The filter models the neighboring
sample influence on the assumption that the implicit surface is a plane:

D′(p) = R(p)αD(p) + (1−R(p)α)Dn(p) (1)

Dn(p) =

∑
(x,y)∈N(p)

(R(x) +R(y))
(D(x) +D(y))

2∑
(x,y)∈N(p)

(R(x) +R(y))
(2)
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(a) Textured (b) Wireframe

Fig. 4. 3D surface reconstruction

(a) Level 5 (b) Level 6

(c) Level 7 (d) Level 8

Fig. 5. Surface reconstruction error - ground truth annotation. Red: 0; blue: ≥ 2mm.

where D(x) and R(x) are the distance and reliability components of the TSDF,
α is a parameter to control the neighbor influence and N(x) is the set of valid
neighboring pairs in each dimension (max(‖N(x)‖) = 3). R′(p) is calculated in
a similar way with Rn(p) being the average reliability of the valid neighbors.

The last step involves the generation of an explicit surface from the implicit
model. This is done by generating a triangle mesh using the Marching Cubes
algorithm [5].
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(a) Original

(b) Filter missing data (3 it.)

(c) Filter Gaussian noise (10 it.)

Fig. 6. Implicit surface filter

Table 1. Surface reconstruction statistics

Model Triangle Average error RMS Frames per
count mm (% of diag.) mm (% of diag.) second

Reference 876069 - - -
Level 5 6720 0.74692 (0.147%) 1.31329 (0.258%) 20.78
Level 6 28212 0.25322 (0.050%) 0.42232 (0.083%) 9.15
Level 7 117024 0.11558 (0.023%) 0.17305 (0.034%) 3.02
Level 8 484072 0.08722 (0.017%) 0.11662 (0.023%) 0.93

Figure 4 shows a closed mesh model that was reconstructed using this method.
Five synthetically generated depth images have been used as an input and it
consists out of 27.3k triangles. Table 1 contains the reconstruction errors and
frame rate at 4 different maximum octree levels. No filtering was used for these
measurements. Figure 5 shows the spatial distribution of the errors over the
front of the model. Red indicates the smallest error; blue the largest (clipped to
2mm). The error statistics and images were created using Metro [2].

Filtering performance is illustrated in Figure 6 and considers two cases: gap
filling and noise reduction. Gap filling is illustrated by adding unknowns to the
depth values in the depth image. For demonstrating noise reduction, Gaussian
white noise has been added to the depth image (the reliability noise is also mod-
eled using Gaussian white noise on the reliability reduction that is proportional
to the introduced error). A single depth image was used for reconstruction.
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6 Live 3D Face Reconstruction

This final step brings the three previous sections together. As stated before, the
goal involves the aggregation of live data and offine scanned data in order to
produce a live 3D face mesh. The live depth images are produced by means of
prior-aided stereo matching, the synthetic depth images are generated by 3D
model animation using 2D morphing and all are aggregated using the 3D sur-
face reconstruction method. Registration between the live- and synthetic depth
images is done based on the 3D locations of the AAM points. One important
aspect for the aggregation is the choice of reliability metric for the depth im-
ages. The metric that is used for the stereo matched depth images is related to
the variance within each resulting GMM. A wide variance implies a less reliable
value. For the synthetic depth images this metric is statically determined.

(a) Source textures (b) Resulting render

Fig. 7. Projective texturing

(a) Live input (stereo pair) (b) Textured mesh (c) Wireframe mesh

Fig. 8. Live 3D face reconstruction
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Up to this point, the discussion has focused on the reconstruction of the model
geometry. In order to produce a convincing render, one also needs to address
the appearance however. With traditional texture mapping, one needs to assign
texture coordinates to every vertex of the mesh. Due to the implicit nature on
how the geometry is built, this can be quite a cumbersome process. Instead, a
technique called ’projective texturing’ is used. In projective texturing, one or
more textures are projected on an arbitrary geometry. Note that one needs to
know the camera (or projector) matrices in order to do this. Figure 7 illustrates
this concept. The source textures are shown to the left, whereas the render is
shown to the right. In the live 3D face reconstruction system, 5 textures are used
that are sourced from the animated model and 1 texture is used that represents
the live video feed.

A result that uses one live color- and depth image combined with 5 animated
color- and depth images is shown in Figure 8. Due to the unavailability of ground
truth data, only a qualitative assessment can be given. The method performs
well in regions where the animated depth images coarsely agree with the stereo
matched data. The linear model that is used for animating the 3D model has
some deficiencies however, especially in the region of the cheeks. Despite this,
the combination of a well chosen reliability metric and implicit surface filtering
allows for a high quality 3D reconstruction using live data.

Real-time rates are not fully achieved for the complete system at the time of
writing. This can be attributed to implementation details however, and not due
to inherent computational constraints.

7 Conclusions

A method was presented that employs depth images from different sources in
order to generate a live 3D mesh of a known face at potentially real-time rates.
Prior information is used at different stages of the method in order to enhance
quality and reinforce reliability. The generated mesh is the result of combining
information from live stereo matched data and an offline scanned animated mesh
in a way that is computationally tractable and resilient to errors.

Future work includes the replacement of the coarse animated mesh prior by a
more accurate model; e.g. by means of a 3D morphable model in a face/expression
space. We believe that the combination of such a model with real-time data could
relieve this model from the disadvantages thereof. In addition, dynamically pre-
dicting the model reliability according to the current circumstances will also be
investigated.
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iCocoon project. This project is funded by the Interdisciplinary Research Insti-
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Abstract. Two-dimensional optical strain maps have been shown to be a useful 
feature that describes a bio-mechanical property of facial skin tissue during the 
non-rigid motion that occurs during facial expressions. In this paper, we pro-
pose a method for accurately estimating and modeling the three-dimensional 
strain impacted onto the face and demonstrate its robustness at different depth 
resolutions and views. Experimental results are given for a publically available 
dataset that contains high depth resolutions of facial expressions, as well as a 
new dataset collected using the Microsoft Kinect synchronized with two HD 
webcams. 

Keywords: 3D, Optical Strain, Optical Flow. 

1 Introduction 

Optical strain has been shown to be an effective feature for several applications in 
expression spotting [1], biometrics [2], as well as medical analysis [3]. Due to the 
recent releases of several feasible solutions for real-time three-dimensional imaging, 
extending this method to take advantage of 3-D data has become practical and could 
potentially lead to improvements in each of these areas. In this work, we demonstrate 
a method for calculating the 3-D strain incurred on a subject’s face based on the non-
rigid facial motion observed during a facial expression.  

Some key advantages of this method over traditional two-dimensional strain me-
thods are the following: (i) horizontal motions that occur along the sides of the face 
are often projected as smaller displacements due to parallax projection. Our method of 
calculating three-dimensional strain has the advantage of reconstructing these vectors 
in order to represent a more accurate displacement; (ii) motion perpendicular to the 
camera axis is not factored in to two-dimensional strain maps, however this is cap-
tured with three-dimensional strain as an additional normal strain component. 

The method is based on the observation that the captured depth images of the sur-
face of the face exhibit 2-manifold qualities, i.e., local regions of the surface can be 
accurately estimated using two dimensional planar equations. Hence, we take advan-
tage of this by estimating the three-dimensional correspondences using established 
two-dimensional optical flow methods. 
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Methods for calculating non-rigid three-dimensional disparity has found extensive 
application in the entertainment industry, where they are used to animate faces of 
humanoid avatars in movies and games. Most current systems require special makeup 
or markers [4-6] due to low texture variability of the skin. Such markers, however, 
provide only a limited number of anchor points and are not sufficient to capture fine 
expression details at all points on the face. Other approaches [7] use direct intensity of 
the skin to track the displacements between the frames by imposing constraints on 
non-rigid motion.  Approaches for 3D reconstruction of the scene itself can be broad-
ly categorized into three groups.  The first group, motion stereo, requires a  
multi-view camera setup of a single scene, where 3D information is obtained through 
triangulation of 3D points from multiple view [7-10]. Most of the prior work for esti-
mation of non-rigid 3-D disparity falls into this category. The second category, called 
monocular sequence, uses a single-camera setups, but exploits a priori knowledge 
about the reconstructed scene by developing a model that constrains and develops the 
observed 2D motion [11]. The last category, referred to as a dynamic depth map ap-
proach [12,13], assumes a monocular setup for both depth and color information us-
ing inexpensive sensors such as Microsoft Kinect. Our approach for 3D optical strain 
estimation is based on the monocular setup with direct intensity skin tracking. 

2 3-D Optical Strain 

2.1 Optical Flow 

Optical Flow is a well-known motion estimation technique that has two constraints: 
(i) the smoothness constraint, i.e., points within a small region move at some level of 
uniformity, and (ii) the brightness constraint, i.e. the intensity of a point in the image 
does not change over time. Optical flow is typically represented by the following 
equation. I = 0,                           (1) 

where I(x,y,t) is the image intensity as a spatial and temporal function, x and y are the 
image coordinates and t is time.   and  are the spatial and temporal gradients of 

the intensity function. p = , denotes horizontal and vertical motion. 

After experimenting with several versions of optical flow, we decided to use an 
implementation of the Horn-Schunck [14] method found in the computer vision tool-
box for Matlab 2012.  The Horn-Schunk method consists of re-writing equation (1) 
as a global energy function that is constrained by a smoothness parameter 0,1 , 
and is optimized over k iterations. In general a lower alpha allows for less smooth 
flow fields (good for small motion), while a larger alpha restricts neighboring motions 
to be more uniform (good for large motions). For our experiments we used a low 
value for the smoothness constraint ( .05  to allow for the small, non-rigid mo-
tion inherent with facial expressions, and chose an iteration count of k=200.  
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2.2 Optical Strain 

Considering a three dimensional surface of a deformable object, its motion can be de-
scribed by a three-dimensional displacement vector   , , .  Next, if we as-
sume both a small region and small motion for a point P, we can define the strain tensor:  ,                               (2) 

or in an expanded form: 
                (3) 

where , ,, ) are normal strain components, , , ) are shear strain 
components, and u,v,w are the displacements in the x,y,z directions. 

 Since strain is defined with respect to the displacement vector (u,v,w) in con-
tinuous space, we make the following 2-D approximation from the optical flow data 
(p,q): 

   ∆∆ ∆ , ∆  ,                           (4) 

   ∆∆ ∆ , ∆  ,                           (5) 

 
 

∆∆ ∆ , ∆ .                          (6) 

 
where ∆  is the elapsed time between two image frames.  

If we compute the optical flow and strain using a fixed frame interval throughout a 
particular video sequence, we can treat ∆  as a constant and estimate the partial de-
rivatives as follows: ∆ , ∆ ,   ∆ ,                               (7) ∆ , ∆ ,   ∆ ,                               (8) ∆ , ∆ ,   ∆ ,                               (9) 

The above computation scheme can then be implemented by using any spatial deri-
vate over a finite number of points such as the forward difference method, central 
difference method, or the Richardson extrapolation method. We chose the central 
difference method due to its accuracy and efficiency. 
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 ∆ ∆∆  ∆ ∆∆                           (10) 

∆ ∆∆  ∆ ∆∆                           (11) 

∆ ∆∆  ∆ ∆∆                           (12) 

 

where (∆ , ∆ , ∆  are preset distances of 2-3 pixels. 
Under the uniform stress, large strain values correspond to low elastic moduli and 

vice versa. Therefore, elastograms based on the absolute strain value or relative strain 
ratio can be used to reveal underlying elastic property changes. For this purpose, we 
compute a strain magnitude as follows: 

   .                (13) 

3 Results 

3.1 Feasibility at Multiple Depth Resolutions 

In order to test the feasibility getting useful strain calculations at multiple depth reso-
lutions, we developed an experiment that subsamples high resolution depth data at 
different rates. This was done on a publically available 3D dataset released from 
Binghamton University [15]. Fig. 1 contains an example subject from this dataset.  

We selected 20 subjects performing two expressions (smile, surprise) for a total of 
40 sequences. The cropped face resolutions are approximately 700 x 700 pixels in 
dimension, with approximately every 3x3 pixel window containing a single depth 
value. We sampled the depth values at a 1:1, 1:2, 1:3, and 1:4 ratio and then used 
bilinear interpolation to scale the values back up to 700x700. Fig. 2 Contains some 
example strain maps calculated at each scale. 
 

 

 
 

   

Fig. 1. Example data from BU dataset showing face image and corresponding depth map. 
(red=closest, blue = farthest) 

 



46 M. Shreve et al. 

 

 

Fig. 2. Example normalized 3-D strain maps calculated for two subjects corresponding to the 
surprise and smile expressions (each row). Depths were sub-sampled at ratios of (a) 1:1, (b) 
1:2, (c) 1:3, and (d) 1:4 (each row) resulting in depth resolutions of approximately 200x200, 
100x100, 66x66 and 50x50.  

In order to measure the similarity between strain maps calculated at several differ-
ent depth resolutions, the correlation coefficient was used (Table 1). Several observa-
tions can be made. First, at least an 80% similarity is maintained for both expressions 
even when using approximately 70x70 of 200x200 (a third) of available depth points. 

Table 1. Correlation coefficients for 40 expression (20 smile, 20 surprise) after subsampling at 
the given ratios and compared with a 1:1 sampling ratio 

Exp. / Ratio 1:2 1:3 1:4 
Smile .90±.11 .80±.12 .69±.18 

Surprise .95±.02 .89±.05 .79±.15 
Both .93±.08 .85±.10 .74±.17 

3.2 View Invariance 

To demonstrate the view invariance of the method and give further evidence of the 
methods stability at low resolutions, we collected several subjects using the Microsoft 
Kinect sensor that was synchronized with an additional two additional HD webcams 
at approximately 30 degree angles to the face (see Fig. 3). We then registered each 
webcam to the automatically calibrated image provided by the Kinect using manually 

(a) (b) (c) (d)
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the method was demonstrated using a low-resolution Kinect that was synchronized 
with two HD webcams that were roughly 45 degrees apart. 
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Abstract. Three-dimensional simultaneous localization and mapping is a topic 
of significant interest in the research community, particularly so since the intro-
duction of cheap consumer RGB-D sensors such as the Microsoft Kinect.  
Current algorithms are able to create rich, visually appealing maps of indoor 
environments using such sensors. However, state-of-the-art systems are de-
signed for use in static environments, which severely limits the application 
space for such systems. We present an algorithm to explicitly detect and remove 
moving objects from multiple views of a scene. We do this by finding corres-
ponding objects in two views of a scene. If the position of an object with respect 
to the other objects changes between the two views, we conclude that the object 
is moving and should therefore be removed. After the algorithm is run, the two 
views can be merged using any existing registration algorithm. We present re-
sults on scenes collected around a university building. 

Keywords: SLAM, 3D Mapping, RGB-D sensors, Kinect. 

1 Introduction 

Although point clouds and sensors that provide point cloud data have been around for 
several decades, the introduction in 2010 of the Microsoft Kinect RGB-D (RGB color 
+ per-pixel depth) sensor reinvigorated the field. One popular area of research has 
been using RGB-D sensors for Simultaneous Localization and Mapping (SLAM) in 
primarily indoor environments. State of the art systems have achieved impressively 
accurate results, producing visually-appealing maps of moderately-sized indoor envi-
ronments [1]. Such algorithms typically rely on the Iterative Closest Point (ICP) for 
point cloud registration, and also incorporate loop-closing techniques to detect when 
an agent has returned to a previously visited area [2]. 

In published work on SLAM using RGB-D sensors in indoor environments, such 
as [1], [3], and [4], the maps are created in static environments: there are no moving 
objects, and, in particular, no people walking around. In more dynamic environments, 
not addressing moving objects can lead to maps that contain moving objects as per-
manent features, inconsistent maps, or even registration failure. Our work addresses 
this issue by introducing a novel preprocessing step to explicitly detect and remove 
moving objects from point cloud frames prior to registration. A sample result of our 
algorithm is in Fig. 1, and an overview of our approach is in Fig. 2. 
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To identify moving objects, we compare two frames with significant overlap (i.e. 
some camera motion is allowed). The viewpoint between the two frames can change, 
and some amount of time must elapse before the second frame is captured so that the 
position of moving objects changes between the frames. For each frame, we segment 
out individual clusters, and find which cluster from the first frame corresponds to 
each cluster from the second. We then analyze the spatial relationship of each cluster 
in a frame to all other clusters in the frame. If this relationship changes from one 
frame to the next, we conclude that the cluster in question must be moving and re-
move it. Having done this, we can apply any existing registration algorithm to regis-
ter, align, and merge the two clouds. 

 

Fig. 1. A sample result of our algorithm. The top row shows two input point clouds. Our algo-
rithm identified the person as a moving object and removed him from each point cloud. We 
then aligned and merged the clouds to produce the cloud in the bottom row. 

2 Related Work 

3D SLAM has been an area of immense research interest. Over the years, a number of 
approaches using different technologies have been developed, including range scans 
[3, 4], stereo cameras [7], monocular cameras [8], and recently also consumer RGB-D 
cameras [1][3][4]. However, explicitly identifying and removing moving objects from 
point cloud data has not been a topic of great interest in the research community.  

In their RGB-D mapping work, Henry et al. [1] do not address moving objects, and 
do not present any results from environments with moving objects. However, the use 
of a surfel representation [9] allows them to deal with some instances of moving ob-
jects. Because surfels have an area, they permit reasoning about occlusion. This ulti-
mately enables this representation to remove moving objects by eliminating surfels 
which occlude other surfels. However, this approach will fail to eliminate moving 
objects when these objects do not occlude other known objects. Furthermore, convert-
ing all data to surfels is computationally inefficient. 

Similarly, the Kinect Fusion work [10], which implements a real-time version of 
ICP that runs on CUDA-enabled GPUs, deals with moving objects implicitly by using 
a volumetric representation. Kinect Fusion is not primarily a SLAM algorithm; as a 
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result, the approach does not scale to larger environments. In particular, with current 
GPUs, the approach cannot be used for environments larger than a moderately small 
room (approximately a 5m x 5m x 5m volume).  

Other volumetric approaches, such as the Octree-based OctoMap [6], also identify 
moving objects only implicitly. The OctoMap’s probabilistic nature means that it may 
require a substantial amount of measurements until a moving object is discarded. 

Unlike previous work, which deals with moving objects in only an implicit and in-
complete way, this paper presents a focused and systematic approach for removing 
moving objects from point cloud scenes captured from a moving platform. An advan-
tage of our approach is that it deals directly with the point cloud data. This means that 
after eliminating moving objects with our approach, any existing algorithm for point 
cloud registration – or any other application – can be applied straightforwardly. 

3 Technical Approach 

A high-level overview of our approach is given in Fig. 2. For notational clarity, we 
will refer to the first point cloud we process as the “source” cloud, and to the second 
cloud we process as the “target” cloud. Our approach is symmetric, however, and 
which cloud is designated as “source” does not affect our results. For some of the 
point cloud manipulation tasks, we rely on the Point Cloud Library (PCL) [11]. 

 

Fig. 2. An overview of our system 

3.1 Preprocessing 

Before identifying moving clusters, we temporarily remove large planes, filter outlier 
points, and run segmentation to identify individual clusters.  

We identify planes using a Random Sample Consensus (RANSAC) algorithm. The 
reason for removing large planes is twofold: first, we can safely assume that large 
planes are not parts of moving objects, so we do not need to consider them in  
subsequent steps of the algorithm. Second, removing large planes – in particular, the 
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floor – improves the performance of our segmentation algorithm. Having completed 
this step, we filter out outlier points to remove artifacts due to sensor noise. 

We now use a Euclidean Cluster Extraction algorithm to get individual clusters. 
This algorithm places points that are less than the cluster tolerance apart in the same 
cluster. Since large planar objects as well as statistical outliers have already been 
removed from the clouds at this point, this is an acceptable approach. Due to quanti-
zation of the depth data, which is inevitable with consumer RGB-D sensors, we need 
to use a somewhat large cluster tolerance value. We settled on 15 cm, meaning two 
points will be in the same cluster if they are less than 15 cm apart. We use a k-d tree 
to speed up the cluster extraction process. 

Each point cloud can now be represented as a set of clusters. Let , , … ,  be the source point cloud, and , , … ,  be the target point 
cloud. Here,  is the set of points representing the  cluster in the source cloud, and 

 is the set of points representing the  cluster of the target cloud.  

3.2 Cluster Descriptors and Identifying Correspondences 

We use the Viewpoint Feature Histogram (VFH) proposed by Rusu et al. [12] as our 
feature descriptor. The VFH has good object classification performance, outperform-
ing spin images for these tasks [12]. The VFH stores the relationships between the 
pan, tilt, and yaw angles between pairs of normals in a cluster, as well as the relation-
ships between the viewpoint direction and the surface normals. 

We now find cluster correspondences, or which cluster from the target cloud corres-
ponds to each cluster from the source cloud. We calculate the distance between a pair of 
clusters in feature space in two ways and compare the performance in Section 4.  

The first distance measure is the sum of absolute differences between two clusters’ 
VFH descriptors, while the second distance measure comes from an insight on the 
ordering of the VFH: the bins for each angle “category” are consecutive. For example, 
if the yaw angle between two points changed slightly, the pair would move from one 
bin into a bin immediately next to it. As a result, small object deformations (such as a 
person’s pose changing as he walks) as well as changes in sensor position cause non-
linear local deformations to the object’s histogram. Fig. 3 illustrates the local defor-
mations of a part of the VFH due to sensor motion. 

Such issues have been addressed in the literature with Dynamic Time Warping 
[13]. Dynamic time warping finds a nonlinear, monotonic mapping from one se-
quence to the other, allowing for small shifts and deformations between the series. To 
limit the amount of warping, plausible values, we use the Sakoe-Chiba band [14] to 
limit warping to 2% of the total histogram length, corresponding to the shift in histo-
gram resulting from a camera pan of about 45 degrees. 

To identify correspondences, we iteratively take the closest pair of clusters ,  
in feature space as corresponding to each other, until there are no clusters left in at 
least one cloud. Due to sensor and/or object motion, there may be leftover objects, 
which we remove from their cloud. This may remove objects that could provide use-
ful data, but this is an acceptable tradeoff to ensure the removal of any moving objects 
that appear in only one frame. This step leaves min ,  clusters for each 
cloud. Before proceeding further, we reorder the clusters in  such that cluster  
corresponds to cluster   . 
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Fig. 3. Local deformations of the yaw component of the Viewpoint Feature Histogram of the 
mannequin cluster extracted from the two views above. The histogram for the mannequin clus-
ter extracted from the left frame is solid blue; the histogram for the mannequin cluster from the 
right frame is dashed red. Dynamic Time Warping addresses such local deformations. 

3.3 Identifying and Removing Moving Objects 

We now calculate the Euclidean distance in world-coordinate space between each pair 
of clusters for each cloud. Let ,  be the world-coordinate-space Euclidean distance 
between cluster  and cluster  in the source point cloud, and ,  be the world-
coordinate-space distance between the corresponding clusters in the target cloud. 

To get a measure of how the position of each cluster has changed from one cloud 
to the next, we calculate the displacement vector Δ , , … , , where  is the 
displacement of cluster , 

 , ,  (1)

In essence,  is the sum of how much the distance of cluster  to each other cluster 
has changed from one cloud to the other cloud. 

 

 

Fig. 4. Object removal threshold ROC curve. A true positive is a removed moving object, and a 
false positive is a removed static object. 
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We now iteratively remove the cluster which has the greatest displacement value 
as long as this value is above a threshold . After removing each cluster, we recalcu-
late Δ. In order to find the optimal value of , we generated a ROC curve (Fig. 4). For 
the ROC curve, a true positive is a moving object that was removed from the scene, 
and a false positive is a static object that was removed from the scene. See Section 4 
for details regarding the data used.  

We now iteratively remove the cluster which has the greatest displacement value 
as long as this value is above a threshold . After removing each cluster, we recalcu-
late Δ. In order to find the optimal value of , we generated a ROC curve (Fig. 4). For 
the ROC curve, a true positive is a moving object that was removed from the scene, 
and a false positive is a static object that was removed from the scene. See Section 4 
for details regarding the data used.  

We ran our algorithm for different thresholds for both the histogram difference and 
dynamic time warping distance measures, achieving better results with dynamic time 
warping. In particular, we were able to correctly remove all moving objects with 0.7 meters when using dynamic time warping. We therefore use this value in our 
experiments (Section 4). In future work, the value of value of  should be normalized 
with respect to the number of clusters detected in the scene. 

Having removed all of the moving objects from  and , we reconstruct each 
cloud from its remaining clusters as well as the planes that had been removed from it. 
After this, the clouds are in a standard point cloud format, and any existing registra-
tion, alignment, and merging algorithms can be used to concatenate the clouds. The 
result of this operation is a point cloud model of the environment with no moving 
objects in the point cloud, even though such objects might have been present in one or 
both of the original clouds. 

4 Experiments 

We tested our algorithm on 14 scenes collected around a university building. Each 
scene consists of two views, and each view has up to 2 moving people. Fig. 5 shows 
some results, demonstrating several different scenarios our algorithm can deal with. 

Fig. 5(a) shows a scene with multiple moving people, as well as significant camera 
motion between the two frames. As a result of this, we cannot find good correspon-
dences for some objects in the scene, such as the desk to the right of the second view. 
Note that there is a third person in the scene, sitting at a desk in the background. This 
person is put into the same cluster as the desk he is sitting at by our algorithm, and 
since he is not moving he is included in the recreated cloud. 

Fig. 5(b) shows scene where a person who is not present in one point cloud moves 
into view by the time the second point cloud is captured. Our algorithm correctly 
identifies that there is no equivalent object for the person in the other frame, and re-
moves the person from the point cloud. 

Fig. 5(c) shows a scene where a walking person completely changes direction from 
one frame to the next. Nevertheless, our algorithm matches the person in one frame to 
the person in the next frame and correctly removes him from both clouds. 
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Fig. 5. Example results. (a) office scene with three people (two walking, one sitting). The top 
two frames from columns (a) and (b) were merged together to produce the bottom point cloud. 
(b) corridor scene where the person just entered the corridor through a doors on the right. (c) a 
walking person changing direction.  

4.1 Quantitative Analysis 

Fig. 4 shows the ROC curve obtained by running our algorithm on the dataset, where 
a true positive is defined as a moving object that is removed from the scene and a 
false positive is defined as a static object that was removed from the scene. We get 
better results with the dynamic time warping distance measure than with the simple 
histogram difference. In particular, for the object removal threshold 0.7, we cor-
rectly remove all moving objects while also removing 47% of the static objects. In a 
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SLAM scenario, we would keep a greater fraction of static objects, since objects that 
are removed due to occlusion or sensor motion at first would likely be seen again at a 
later time and thus ultimately kept. 

We also evaluate what fraction of the total points that belong to stationary objects 
we keep in the recreated clouds. For each scene, we calculate this number separately 
for each of the two frames, and then report their mean and standard deviation. Fig. 6 
shows the results. On average, we keep 85% of the static points in a scene. 

 

 

Fig. 6. Fraction of static points kept for each of the 14 scenes on which we evaluated our algo-
rithm. Numbers along the x-axis indicate which figure corresponds to the particular scene, if 
applicable. The mean is 85% of static points retained. 

5 Conclusions and Future Work 

We introduce early work on an algorithm for identifying moving objects in point 
cloud scenes. We can eliminate moving objects from scenes while retaining most of 
the static objects. Thus, when used as a preprocessing step, our approach can com-
plement existing point cloud-based SLAM algorithms. This will allow existing SLAM 
approaches to create consistent maps even in the presence of moving objects, making 
the system applicable in more scenarios.  

Future work will include incorporating the approach presented here into an auto-
nomous SLAM system, and making any necessary adjustments necessary to make the 
system work properly in real-time. Considerations will include tuning plane removal 
as well as segmentation, and studying the temporal stability of the approach. 
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Abstract. In this paper, a new technique to generate high resolution depth  
image is proposed. First, a low resolution depth map is obtained by the time-of-
flight depth camera. Then a high resolution depth map for a given view is gen-
erated by depth warping followed by depth value refinement taking into account 
the color information at the given view. The edge in the final depth map is then 
processed by bilateral filtering for edge preserving. With the color image and 
the corresponding depth image, novel view synthesis can be carried out by 
depth image based rendering (DIBR). Experimental results show that the depth 
map generated by the proposed technique is able to ensure novel view images 
with high quality. 

Keywords: novel view synthesis, DIBR, depth camera. 

1 Introduction 

With the advance in acquisition and display technologies, entertainment ensuring 
higher perceptual realism is desired and becomes feasible recently. FTV (Free view-
point television) [1] is recognized as the next generation of TV. It offers human not 
only the stereoscopic perception, but also various interactions and possibilities. To 
provide the audience with arbitrary view on demand, novel views have to be rendered 
in the display. Novel view synthesis techniques have been developed for many years, 
where image based rendering (IBR) [2-3], depth image based rendering (DIBR) [4-5] 
and ray-space method [6-7] are the main technologies to be adopted. In IBR, no depth 
image is required and the challenge of IBR is to find out the correspondence points in 
given images pair. Then novel view images can be synthesized by proper interpola-
tion. However, the image quality of the novel view could be limited due to insuffi-
cient geometric information. Ray-space is the representation of light rays in  
three-dimensional space and virtual view rendering for arbitrary positions is per-
formed without any geometry information. However, it usually needs to capture the 
scene with dense cameras. DIBR attracts lots of attention recently. DIBR needs color 
images with corresponding depth information to render the novel view-point image. 
The image quality of novel view based on DIBR could be much improved, compared 
to IBR methods, under the assumption that the depth image is reliable. Although 
DIBR has the potential to offer novel views with high quality, several problems  
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during DIBR realization have to be managed, such as hole, disocclusion and occlu-
sion. To cope with these problems, many research works are presented [8-10]. 

The main functionality supported by FTV is the free navigation by seamless novel 
view generation, while stereoscopic perception is the main target of 3DTV. 3DTV 
offers human the stereoscopic experience and became available in the market since 
2010. There are several 3D representation formats, including stereo image pair, frame 
compatible stereo image format and video plus depth. There are two main advantages 
provided by video plus depth format. First, the depth image is represented as gray 
level and usually the required bitrate is much less than color video due to the homo-
geneous property. Second, a stereo image pairs with flexible disparity range can be 
generated in the receiver side by DIBR synthesis technique.   

Both 3DTV and FTV could be realized by DIBR and it is imperative to acquire ac-
curate depth maps for rendering stereo image pair and novel view-point image with 
satisfactory perception. Generally, the depth image can be captured directly or esti-
mated by stereo matching algorithm [11]. Usually, the estimated depth maps suffer 
from inaccurate results in the occlusion regions, as well as textureless regions. Al-
though the captured depth image ensures higher accuracy compared to estimated 
depth image, the resolution is usually too small to be coordinated with the color image 
directly for DIBR synthesis. There are several works concentrating on high resolution 
depth image generation under the scenario that a hybrid camera system (including 
both color camera and depth camera) is available [12-15]. In [12], an initial depth 
map for the left image is computed by a stereo matching algorithm. Then the ROI 
(region of interest) in the depth map is refined by warping the depth values obtained 
from the depth camera to the left image. 

In this paper, we propose a new technique to generate high resolution depth map 
from a low resolution depth image and a high resolution color image. Different from 
the work in [12] where the depth map is first estimated by stereo matching and the 
depth information provided by depth camera is used to refine the ROI, the stereo 
matching is not performed in the proposed scheme and one color image is required in 
the proposed method. Instead, the color image will be used to refine the depth infor-
mation obtained by the time-of-flight depth camera. 

The rest of this paper is organized as follows. Section 2 introduces the technique to 
generate the preliminary high resolution depth map using the low-resolution depth map. 
Section 3 details the method to refine the depth map considering the color information. 
The experimental results are presented in section 4 and section 5 draws the conclusion.  

2 Generation of a Preliminary High-Resolution Depth Maps 

In our image capture system, there are one color camera and one time-of-flight depth 
camera in parallel setting. The captured depth video and color video can be seen as 
the video plus depth pair for 3DTV application. Note that, the resolution of the depth 
image is smaller than the color image, and the challenge is to make the resolution of 
the depth image the same as the color image for rendering purpose. And the same 
time, how to ensure accurate depth map is also important in providing high-quality 
novel view image. To facilitate the following procedures, camera calibration has to be 
employed first for the two cameras to obtain the extrinsic parameters for each camera.   
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Fig. 1. Block diagram of preliminary high-resolution depth map generation 

2.1 Pre-processing of the Depth Map 

To realize the novel view synthesis, a color image and the associated depth map are 
needed. In our camera setting, the view capturing color image has no captured depth 
image. Thus, the depth image captured in the center view has to be warped into the 
reference view (i.e., left or right view). Figure 1 presents the procedures to generate 
high resolution depth map for the view with color image.  

Usually, the sensing results of the time-of-flight depth camera are not always relia-
ble. Optical noise, as well as the material of objects in the scene may cause incorrect 
depth information. To resolve this problem, the captured depth map is pre-processed 
with a 3×3 median filter. Furthermore, the lens distortion in the depth map has to be 
removed before warping to the reference view. 

2.2 Low Resolution to High Resolution Warping 

After removing the noise in the depth map, 3D warping is performed to get the depth 
map of the reference view. However, the resolutions for the depth camera and color 
camera are not the same, and the depth map in the reference view will be incomplete 
when the low resolution depth map is warped directly. It means many pixels in the 
reference map have no assigned depth value. To overcome this problem, each pixel in 
the source view will be warped into a block with size 5×5 in the reference view. It 
means that in the reference view, in addition to the pixel location determined by the 
warping procedure, the surrounding 24 pixels will have the same. Here, the depth 
value denotes the pixel intensity of the depth map. Besides, if a pixel in the reference 
view has more than one warped depth values, the maximum depth value is used to 
prevent the disocclusion.    

2.3 Post-processing by Morphological Operation 

After warping, the obtained high resolution depth image may have incorrect values, 
especially around the edges. To resolve this problem, morphological opening is per-
formed to get the preliminary high resolution depth image.  
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3 Generation of High Quality High-Resolution Depth Map 

The preliminary depth map may have some remaining errors after morphology opera-
tion. To enhance the quality of the depth image, the color image at the reference view 
will be used. Figure 2 illustrates the flowchart of color-image guided depth map re-
finement. 

First, a binary representation of the preliminary depth map D(x,y) is obtained, 
represented as Db(x,y) after comparing to a given threshold as following,  
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where D(x,y) = -1 denotes the situation that the location (x,y) has no depth value after 
warping and morphological opening (i.e., it can be seems as “hole”). Here, the depth 
map is represented in a way that closer objects have higher depth value. The fore-
ground objects have higher value in depth map, and correspond to Db=1.  
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Fig. 2. Flowchart of color-image guided high-resolution depth map refinement 

The segmentation results of the color image in the reference view are used to refine 
the depth map. Mean-shift algorithm [16] is adopted to segment the color image into 
several groups. The application scenario in this paper is a simple scene with two depth 
layers; one for the foreground and the other background. Thus, each segment n will be 
labeled as “foreground” or “background” according to the rule as below, 
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where Dn and Cn denote, respectively, the number of pixel with value Db=1 inside the 
segment n and the total pixel number inside the segment n. 
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After labeling each segment as foreground or background, the correctness of each 
depth value inside each segment will be verified. If Sn =1, the segment n is recognized 
as a foreground region and the depth value Db(x,y) for the pixel inside this segment 
should be equal to 1. If the depth value Db(x,y) is not equal to 1, it is treated as an 
incorrect depth value, and the depth value D(x,y) with Db(x,y)=1 inside the segment n 
is averaged and used as the updated depth value for this pixel. The verification of 
depth values correctness in the segment with Sn=0 is similar. There is no more hole in 
the depth map after this process. 

To preserve the object edges and enhance the quality of depth image, a bilateral fil-
ter combining domain and range filtering is performed on the depth map. The two 
filter coefficients are determined by the relative distance Δd and the intensity differ-
ence ΔI in the color image, as below: 
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where m and n denote the window size of filtering. Note that, to avoid the interference 
between different color segments, not all the image, but the edge and surrounding 
pixels are processed by the bilateral filter.  

4 Experimental Results 

To evaluate the performance of the proposed algorithm, we have carried out the algo-
rithm on the real captured images. The resolution of the captured depth image and 
color image are 176×144 and 640×480, respectively. Several scenes are captured and 
experimental results of one scene with different time slot images are presented here 
due to limited space. 

4.1 Depth Map Generation  

Figures 3 illustrates the results of preliminary depth map generation, where Figure 
3(a) is the color image in the reference view. It shows that many pixels in Figure 3(b) 
are represented as green due to no assignment during warping process. Figure 3(c) 
presents a more complete depth map by the proposed warping technique where one 
pixel in the source view will be mapping to a block in the target view. However, the 
depth values around the edge seem incorrect and can be resolved by morphological 
opening operation, as shown in Figure 3(d) & (f).  

The refined depth maps after considering the color image information in the same 
view is illustrated in Figure 4. The segmentation results on the color image are shown in 
Figure 4(a). Then each segment will be classified as foreground or background and used 
to judge the correctness of the depth value inside each segment. The pixel represented as 
red in Figure 4(b) is the incorrect pixel and will be updated, as shown in Figure 4(c). The 
depth image after bilateral filtering is shown in Figure 4(d), where the edge is more 
sharped. As highlighted in Figure 4(f), the profile of the edge is clearer than that in Figure 
4(e). Figure 5 shows a series of depth map generated by the proposed scheme.  
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Fig. 3. Illustration of preliminary depth map generation. (a) color image in the left view, (b) the 
warped depth image in the left view (pixel without intensity assignment is marked as green) (c) the 
depth map after applying one pixel to 5×5 block warping, (d) the depth  image after morphological 
opening, (e) region before morphological opening, (f) region after morphological opening. 

 
Fig. 4. Illustration of depth map refinement (a) color segmentation results,(b) the high resolution 
depth image after taking the color information into consideration (the pixel marked in red is labeled 
as incorrect pixel), (c) the depth image after correction, (d) the depth image after bilateral filtering 
on the edges, (e) region before bilateral filtering, (f) region after bilateral filtering 

4.2 Novel View Synthesis 

To evaluate the correctness of the depth image, a novel view synthesis is performed, 
which can be carried out by one color image and the associated depth map. Typically, 
the synthesis quality will be better for the scenario with multiple color images and 
depth maps. Note that, the proposed algorithm can be easily applied to the scenario 
with two or more color cameras. Then each color image will have a corresponding 
high resolution depth map for rendering purpose.  

              
             (a)                              (c)                       (e) 

               
(b)                             (d)                       (f) 

               
              (a)                             (c)                          (e) 

              
              (b)                            (d)                          (f) 
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Fig. 5. A series of the generated depth maps 

 

Fig. 6. Virtual view images using  (a) depth image with bilateral filtering on whole frame 
(without hole filling),(b) depth image with bilateral filtering (after hole filling), (c) depth image 
with bilateral filtering on edges (without hole filling), (d) depth image with bilateral filtering on 
edges (with hole filling), (e) depth image with bilateral filtering on edge, followed by Gaussian 
filtering (without hole filling), (f) depth image with bilateral filtering on edge, followed by 
Gaussian filtering (after hole filling) 

If the novel view synthesis relies on only one color image and the corresponding 
depth map, the difficulty to fill the disocclusion region is higher than the scenario 
with multiple color images and depth maps. To tackle this problem, the depth map 
generated by the proposed scheme can be post-processed by Gaussian filtering. In this 
way, the transition between foreground and background is smoother, and satisfactory 
image quality is revealed on the synthesized image after simple hole filling. Figure 6 
demonstrates the synthesized results using various depth maps. 

4.3 Execution Time Analysis 

Here, the execution time for each step for generating the final depth map is analyzed, 
as shown in Table 1. Intel Core 2 Duo Q6600 2.33 GHz, and DDR2 800 4GB are 
used for the simulation. Table 1 indicates that the color segmentation is the most time-
consuming part in the proposed scheme.  

            

           

         

       
(a)                              (c)                           (e) 

       
(b)                              (d)                           (f) 
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Table 1. Execution time for depth map generation 

 Procedure time(sec) 

Pre-processing 
Depth Warping 0.117 

Color segmentation 0.742 

Post-processing 
Bilateral filtering on edges 0.352 

Gaussian filtering 0.104 

Novel view synthesis by DIBR (including hole filling) 0.144 

5 Conclusion 

A hybrid camera system consisting of high-resolution color camera and low-
resolution depth camera is considered in this paper. The goal is to render a high quali-
ty novel view image and an algorithm for accurate depth map generation is proposed. 
A preliminary depth map is built using the depth image captured by the depth camera 
and refined after taking the color information into consideration. The color segmenta-
tion results will guide whether the depth value is correct and appropriate update is 
realized accordingly. Experimental results show that a high quality novel view mage 
can be rendered using the depth map generated by the proposed scheme. 
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Abstract. We present a novel enhancement method that addresses the
problem of corrupted edge information in depth maps. Corrupted depth
information manifests itself in zigzag edges instead of straight ones. We
extract the depth information from an associated color stream and use
this information to enhance the original depth map. Besides the visual
results, a quantitative analysis is conducted to prove the capabilities of
our approach. For this task, we introduce a new assessment technique
which is based on measuring clustering similarity using the Rand index.

1 Introduction

Video-plus-depth is an important 3D scene representation format [1]. It consists of
a color stream describing the texture of the scene and an associated depth stream
describing for each pixel its distance to the camera. From this representation,
arbitrary new views can be generated to enable stereo [1–3], multi view [4] or
free viewpoint video [5, 6].

An important presumption for high quality rendering is a high quality depth
map. However, there exists at the moment no depth map generation technique
that is able to produce a perfect depth map, i.e., a depth map that is free of
artifacts, holes, which is temporally stable and has video resolution all together.

Different depth map enhancement methods have evolved to address different
aspects of depth map corruption [7–11]. In this paper, we propose a novel en-
hancement algorithm that takes associated color information into account to
enhance the quality of edges in a depth map. We use depth maps generated by
the Microsoft Kinect depth camera for our approach, though our algorithm is
not restricted to depth maps generated with this camera. The Kinect camera is
a structured light depth sensor which suffers from quite poor edge reproduction.
Figure 1 shows an example. We use edge information found in the corresponding
color stream via a superpixel segmentation and compute a new representative
depth map Dr which stores robust edge information corresponding to the color
stream.Dr is then used to enhance the source depth map D. A quantitative anal-
ysis shows that our method outperforms common depth enhancement algorithms
in terms of edge restoration.

The rest of our paper is organized as follows. Section 2 discusses previous work
in this field. We describe our algorithm in Section 3. In Section 4 we propose a
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Example color image. (b) Associated depth map. (c) Magnification of (a).
(d) Magnification of (b). (e) The green line marks the edge from the color stream. (f)
Result of our approach.

new method to quantitatively assess edge restoration. We present some results
in Section 5 and conclude the paper with section 6.

2 Related Work

There exist several methods that enhance depth maps. In [7], depth maps are
filtered using a temporal median filter. Holes are filled using a spatial median.
The work reported in [8] addresses special issues of the Microsoft Kinect depth
camera. Holes that occur due to the offset between color and depth camera are
closed by background extraction and other holes by row-wise linear interpolation.
No temporal processing is applied.

In [9], the authors port simple filters like Gaussian-weighted hole filling and
temporal smoothing as well as edge-preserving denoising on the GPU and achieve
very high frame rates of 100fps. The framework is modal and not dependent on
a certain depth camera technology. The method looks promising and is said to
be applicable to dynamic scenes although no special evaluation was given in this
case.

3 Our Method

In our algorithm we address the common problem of corrupted edge information
in depth images. Figure 1 shows an example. In the color image, the edge of
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the foreground object (the shelf) is a straight line, whereas it is corrupted in
the depth stream. The corrupted edges in the depth image do not correspond
with the edges of actual objects. When using this depth map for view synthesis
(e.g. Depth Image Based Rendering [1]), artifacts will occur. Therefore, it is
important to have edges in the depth map that correspond closely to the edges
of the objects in the scene.

Our method works for scenes in the video-plus-depth format. We assume the
depth stream to have the same resolution as the video stream. Depth upsampling
[12], which is another field of depth video enhancement, can be applied as a
preprocessing step if necessary.

There are two kinds of possible edge defects in a depth map. First, the edge is
not straight but rather forms a zigzag line or consists of other visible steps. This
can happen through the nature of the sensor (like the Kinect sensor) or through
inadequate depth upsampling. The second defect is global misalignment, i.e. the
complete edge of the depth map is shifted with respect to the edge in the color
image. This defect can arise from insufficient registration between video camera
and depth camera.

Let I be a frame of the video sequence and D the corresponding depth map.
Our goal is to process D in a way that the edges in D align with the edges (of
objects) in I.

As a first step, we perform normalized convolution [11] to fill holes in the
depth map. A hole pixel x is filled with a weighted sum of the depth values of
its non-hole neighboring pixels:

Dnc(x) =

∑
x′∈N∗

x
D(x)g(x, x′)∑

x′∈N∗
x
g(x, x′)

(1)

where N∗
x is the set of neighboring pixels of x that have a valid depth value and

g(x, x′) a Gaussian function with parameter σ:

g(x, x′) = exp

(
−||x− x′||2

σ2

)
. (2)

In the next step, we identify edges in the color image. Instead of finding edges di-
rectly with common methods like the Canny operator, we use the implicit edge
information given by a segmentation, more precisely, an over-segmentation of
the color image. While a normal segmentation divides the image into “meaning-
ful” areas (usually guided by edges), an over-segmentation further divides these
areas. Those areas can nevertheless be recovered by combining areas of the over-
segmentation. Particularly, the over-segmentation respects the edges of objects
in the color image.

With an over-segmentation of the depth map, we can compute representative
depth values for each segment, for example by taking the median or the average
of all the depth values of pixels in this segment. These representative values are
more robust to noise than one single pixel. The representative depth map Dr will
be generated by filling each segment with its representative depth value. Since
the segmentation respects the color image edges, the edges in the representative
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(a) (b)

(c) (d)

Fig. 2. (a) An example over-segmentation. (b) A representative depth map Dr with
marked magnification region. (c) Cutout of original depth with projected segmentation.
(d) Cutout of our method with projected segmentation: Depth and color edges align.

depth map will respect these edges, too. Using Dr, we can later discard pixels
as corrupted that are too dissimilar to the representative depth value of their
segment. See Figure 2(c) for an example: In the upper part of the main light
region, the dark depth region overlaps into the light region which means that
the depth edge and the color edge (i.e., the segment border) do not correspond.
Figure 2(d) shows the corrected edge produced by our algorithm.

We tried different superpixel-segmentation methods including Mean-Shift and
the method of [13] but in the end we used a simple watershed segmentation [14]
because it delivers sufficient results for our purpose at a very high speed (more
than 30fps at 640× 480 resolution). We also tried different marker distributions
for the watershed segmentation: randomly, on a regular grid, and skewed on a
regular grid (which means that the markers of two consecutive rows do not lie in
the same column but are slightly shifted). We tested these distributions with the
additional constraint that markers are not placed on edges in the color image.
The best results where obtained with the regular, skewed grid and no additional
constraint.

Figure 2(a) shows an example segmentation. The quality of the segmentation
can be degraded by a high amount of image noise, so we first apply a bilateral
filter to reduce the noise while simultaneously protect edges in the color image.
The filtered color value I(p) of a pixel p is given by:
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(a) (b)

(c) (d)

Fig. 3. (a) Example frame of unfiltered depth data generated by the Kinect depth
sensor. (b) Frame filtered with method of Berdnikov et al. [8]. (c) Frame filtered with
method of Wasza et al. [9]. (d) Our method.

I(p) =

∑
q∈N Ks(||p− q||)Kc(||p− q||)I(q)∑

q∈N Ks(||p− q||)Kc(||p− q||) (3)

with Ks and Kc being Kernel functions, typically Gaussian distributions.
The obtained over-segmentation is then projected into the depth stream. In

an ideal depth map, the edges of the over-segmentation would coincide with the
edges in the depth map. Figure 2(c) shows what happens in real world depth
maps (taken from a Kinect): Some areas overlap into neighboring segments.

Using a sufficient segment size, though, we can ensure that at least half of
the depth pixels in a segment have correct depth (this is clearly the case in
Figure 2(c)). We build the representative depth map Dr from this segmentation
by computing for each segment the median depth value:

Dr(x, y) = {dk : (x, y) ∈ Sk, dk = median
(x′,y′)∈Sk

d(x′, y′)}

where Sk is a segment in the color image. Figure 2(b) shows an example rep-
resentative depth map. This depth map corresponds very well with the edges
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(a) (b)

(c) (d)

Fig. 4. (a) Example frame of unfiltered depth data generated by the Kinect depth
sensor. (b) Frame filtered with method of Brednikov et al. [8]. (c) Frame filtered with
method of Wasza et al. [9]. (d) Our method.

in the color image but suffers of course from the fact that it cannot represent
smooth depth transitions but rather consists of discrete patches.

The final filtered depth map Df uses the depth values ofDr only, if D exhibits
corrupted depth values. Df is obtained in the following way:

Df (x, y) =

{
Dr(x, y) if |D(x, y)−Dr(x, y)| > θ

D(x, y) otherwise
(4)

with θ being a threshold.

4 Quantitative Assessment Using Rand Index

It is difficult to obtain quantitative quality results for depth filtering algorithms.
This is due to the fact that usually no ground truth depth map is available to
compare the filtered depth map with. However, we designed a test method to
assess the ability of our algorithm to restore edges.

Recall Figure 1(e) for an example of a corrupted edge in the original depth
map. We see that the edge does not correspond very well with the edge in the
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Fig. 5. Sample color and depth frame from the edge test 1 sequence

color stream (green line). Our algorithm, see Figure 1(f), performs way better
and we want to quantify this result. To do this, we take a test sequence (color
and depth, see Figure 5 for an example) with very simple geometry: It depicts a
homogeneous (in terms of depth values) foreground object with a straight edge
in front of a homogeneous background. The foreground object also has different
color texture than the background.

In this situation, we can define two clusterings that divide the scene into
foreground and background: CD is a 2-means clustering of the depth map and
CC is a 2-means clustering of the color stream. If the depth map is aligned with
the color stream and does not exhibit cracks or other corruption, then clustering
CD and CC should be the same.

To determine how similar the clustering CD and CC are, we compute the
Rand index[15]. The Rand index R(·, ·) ∈ [0, . . . 1] is a very popular measure to
describes how similar two clusterings are. A Rand index of 1 means they are
the same whereas 0 means they are completely different. In our situation a high
Rand index indicates a very good correlation between the color stream and the
(filtered) depth stream.

5 Experimental Results

5.1 Qualitative Results

Figure 3 shows some results of our method compared with other methods. Berd-
nikov et al. [8] address special issues of the Microsoft Kinect depth camera. Holes
that occur due to the offset between color and depth camera are closed by back-
ground extraction and other holes by row-wise linear interpolation. The focus of
Wasza et al. [9] lies on porting simple filters like Gaussian-weighted hole filling
[11] and temporal smoothing as well as edge-preserving denoising on the GPU
to achieve very high frame rates. We used in our experiments a window size of
9 × 9 for hole filling and 10 frames for temporal smoothing. A second example
can be found in Figure 4.



Color Segmentation Based Depth Image Filtering 75

(a) (b)

Fig. 6. Problem of intermediate depth values: (a) Depth filtering method of Wasza et
al. [9] as a representative of smoothing methods. (b) Our method.

Fig. 7. Rand index values for different depth filtering algorithms. A value near to 1
means a very good correlation with the color stream.

Our method closes all holes and in contrast to other methods, it can restore
edges. This behavior can also be seen in Figure 2(c) and (d). In contrast to meth-
ods that apply Gaussian or average smoothing, our method does not introduce
undesired “intermediate” depth values which can lead to errors when perform-
ing 3D reconstruction. These intermediate depth values occur, when smoothing
methods interpolate between foreground and background depth values. The in-
terpolated depth values will not correspond with actual physical objects. See
Figure 6 for an example.
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Table 1. Average Rand Index Values for two different test sequences

Sequence 1 Sequence 2

Our method 0.9865 0.9778
Berdnikov[8] 0.9118 0.9129
Knutsson[11] 0.8952 0.9120
Wasza[9] 0.8899 0.9121

5.2 Quantitative Results

We measured the capability of our algorithm to restore edges with our proposed
method described in Section 4. We recorded two test sequences that met the
geometry constraint. Figure 7 shows the Rand index values for all frames of test
sequence 1. We can see that our algorithm clearly outperforms all other algo-
rithms. Table 1 shows the average rand values for both test sequences. Again we
can see that our method outperforms other methods in terms of edge restoration.

6 Conclusion

We have presented a method to increase the spatial accuracy of depth maps
using edge information of the associated color stream. Our method can reliably
enhance corrupted edges in the depth stream and outperforms common algo-
rithms. The second contribution is a new quantitative measuring technique to
asses the edge reconstruction capabilities of a depth filtering algorithm which is
based on measuring clustering similarities using the Rand Index.

Future work aims at the inclusion of inter-frame information to enforce time-
consistency and further reduce edge artifacts. Additionally, we want to investi-
gate how a temporally stable color segmentation can help improve the quality
of our results.
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Abstract. Recently, as 3D display devices become popular, automatic
editing methods for stereoscopic image become important. In this paper,
we propose an inpainting method for a stereoscopic image considering
the texture similarity. By extending the conventional image inpainting
method for an image considering the texture similarity to for a stereo-
scopic image by considering the consistency of two images, natural re-
sults are obtained by our method. As in the conventional methods for
a stereoscopic image inpainting, first the depth maps are recovered and
then the color images are inpainted based on the depth maps in our
method. Consistency of the depth maps is guaranteed in our method
which are important for the inpainting of color image. For color image
inpainting, similar textures are searched considering not only the depth
layer but also the depth values of respective pixels. Experimental results
demonstrate the efficiency of our method.

Keywords: stereoscopic image, inpainting, texture consistency, depth,
disparity, 3D warping.

1 Introduction

There has recently been a high demand for the development of techniques for the
automatic generation and efficiency editing of stereoscopic images, because 3D
displays are becoming increasingly popular. They allow users to feel the depth
of scene on a screen by showing different images to the left and right eye. A pair
of images shown to the left and right eyes is called a ’stereoscopic image’.

Image inpainting is one of the most important among the many existing edit-
ing techniques. It reconstructs an input image that contains ”hole(s)”, so that it
looks natural. In this paper, we denote an inpainting method for an (ordinary)
image as the ’2D inpainting method’ and an inpainting method for a stereoscopic
image as the ’3D inpainting method’.

There have been a lot of 2D inpainting methods proposed in the literature.
There are basically two categories for 2D inpainting methods: one is to inpaint
from around the hole(s) while taking the color continuity into account [1–3], and
the other is to inpaint using the texture(In this paper, ’texture’ represents the in-
tensity pattern.) of the other parts in the same image [4–8]. The latter has recently
been considered to be better because it can be used for an image with a big hole.
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For 3D inpainting, even if we apply the best 2D inpainting methods to the re-
spective images, the results will be unnatural because there seems to be incon-
sistent intensity between two images consisting of a stereoscopic image and the
unnatural depth in the hole. Therefore, 3D inpainting methods have been pro-
posed [9–11]. In these methods, not only color images but also the depth maps
of two images are inpainted. In Wang’s method [9], both color images and depth
maps are iteratively inpainted. However, the unnatural artifacts occur because
this method does not ensure a convergence of the iteration. Furthermore, it al-
lows for corresponding pixels to have slightly different intensity values from each
other. One method proposed by Hervieu [10] ensures a convergence and the color
consistency by using a two steps algorithm. In the first step, the depth maps are
inpainted, and in the second step, the color images are inpainted under a con-
straint in which the corresponding pixels have the same intensity value using the
depth maps. However, this method can be applied only to images whose depth
maps are relatively smooth. Then, Hervieu [11] proposed another method that
is applicable to an image whose depth maps have various values by introducing
the assumption that the depth maps consist of some depth planes. However, the
depth map inpainting in this method does not guarantee consistency between cor-
responding pixels. This leads to an unnatural color image inpainting because the
depth maps are important for ensuring the color image consistency. In addition,
this method extended the 2D inpainting method [7] in color image inpainting, but
it has a drawback in that it tends to induce discontinuous textures when the im-
age contains complex ones. So, similar pixels are searched for without taking the
depth into consideration, and if two or more objects are contained in one depth
layer, the inpainted pixels will be unnatural. To prevent this, the user may tune
the parameter, but it is difficult for users to do this themselves.

In this paper, a 3D inpainting method is proposed that takes the texture
similarity into consideration to produce a consistent inpainting between two
images and natural inpainting when the input image has a complex texture. Our
method guarantees the consistency of color images and depth maps between two
images. The 2D inpainting method [8] is extended to a 3D one that is applicable
to an image with a complex texture and does not induce a discontinuous texture
by taking the texture similarity into account to obtain natural results for an
image with a complex texture. In this process, similar pixels are searched for in
the same depth layer while taking the depth of the pixel into consideration. By
using our method, similar textures are obtained that are supposed to belong to
the same object without needing any tuning parameters.

2 Overview of Proposed Method

An overview our 3D inpainting method is shown in Fig.1. A two step algorithm
is used in our method as in the conventional methods [10, 11]; depth maps are
inpainted in the first step, and the color images are inpainted to ensure conver-
gence in the second step. Our method guarantees there is consistency between
the corresponding pixels in both the color images and the depth maps of two
images that consist of a stereoscopic image.
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Fig. 1. Overview of proposed method

3 Estimation of Depth Map

First, we estimate the depth map of each image consisting of a stereoscopic
image. There are many methods for the estimation of depth maps. For example,
the graphcut algorithm [12] is applicable.

Two depth maps for the respective images are estimated by establishing a
correspondence between the two images for each pixel of each image. Note that
there are some holes in the depth map that correspond to the holes in the image
in this step.

4 Inpainting of Depth Map

The holes in the depth maps are inpainted by using the following two steps: the
initialization by 3D warping described in Sec.4.1 and inpainting by extension of
the depth layer described in Sec.4.2.

4.1 Initialization of Depth Map

We denote the pixels in the left and right images as (xl, y) and (xr, y) and the
depth maps of the respective images as Dl and Dr. The relation between the
corresponding pixels of the depth maps are as follows:

Dl(x
l, y) = Dr(x

l −Dl(x
l, y), y), Dr(x

r , y) = Dl(x
r +Dr(x

r, y), y). (1)

If pixel (xl, y) in the left image is in the hole and the corresponding pixel in the
right image is not, Dl(x

l, y) is obtained by Dr(x
l −Dl(x

l, y), y). This transfor-
mation is called 3D warping. If Dr(x

r, y) is in the hole and the corresponding
pixel is not, Dr(x

r, y) is obtained by using 3D warping in the same way. When
multiple pixels are warped into one pixel, the largest depth is selected since it
corresponds to the closest object to the camera.

However, sometimes the initialization by using 3D warping fails because the
object closest to the camera is occluded by the object in the hole and a smaller
depth than the true depth is recovered (Fig.2). The 3D warping property [13],
in which the width of a hole is the same as the difference in the depths between
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the pixels in both sides of the hole, is used to eliminate such a false depth value.
The pixel which does not satisfy this property is supposed to have a false depth
value and the depth value is eliminated. For the depth map of the image on the
left, the false pixel is searched for from the left side of the hole (Fig.3(a)). On
the other hand, for the depth map of the image on the right, the right side of
the hole is searched for (Fig.3(b)).

(a) (b)

Fig. 2. Error in depth map

(a) (b)

Fig. 3. (a) 3D warping of image on right. (b) 3D warping of image on left. The number
represents the depth for each pixel.

4.2 Inpainted by Extension of Depth Layer

Next, the rest of the hole in the depth map is inpainted. We assume that the
depth map consists of multiple depth planes, called depth layers [11]. The hole of
the depth map is inpainted by extending its neighboring depth layer, as shown
in [11].

However, the recovered depth values of each pixel do not guarantee to satisfy
Eqn. (1). Therefore, our method iteratively estimates the depth of the hole until
all the pixels satisfy Eqn.(1). Concretely, the depth that does not satisfy Eqn. (1
is eliminated and the neighboring depth layer is re-extended to the hole. These
processes are repeated. The hole of the depth will shrink when these processes
are repeated and the depth of the hole will converge to satisfy Eqn. (1).

5 Inpainting of Color Image

After completing inpainting the depth maps, the color images are inpainted by
using the following two steps: the initialization by using 3D warping described
in Sec.5.1 and the inpainting by minimizing the energy function while taking the
texture similarity describe in Sec.5.2 into account.
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5.1 Initialization of Color Image

We denote the intensities of the respective images as Il and Ir. The relation
between the corresponding pixels of the color images are as follows:

Il(x
l, y) = Ir(x

l −Dl(x
l, y), y), Ir(x

r , y) = Il(x
r +Dr(x

r, y), y). (2)

As for the depth map, 3D warping is used to initialize the hole of the color image
by using Eqn. (2). In this step, the pixels in the hole that are observed in one of
the stereoscopic images are recovered.

5.2 Inpainting of Color Image Taking Consistency of Corresponding
Pixels’ Intensity and Texture Similarity into Consideration

Next, the rest of the hole is inpainted by minimizing the energy function while
taking the texture similarity into consideration. Among the many 2D inpainting
methods currently proposed, a method by Kawai [8] is known to have the nec-
essary flexibility to texture a pattern and produce natural results by taking the
similarity in texture into consideration even when not exactly the same texture
in the non-missing region as in the hole exists. Therefore, we extend this method
to 3D inpainting.

Extension to 3D inpainting is done by adding some constraints in which the
corresponding pixels between the left and right images have the same intensities.
The energy function for 3D inpainting is as follows:

E = El + Er , s.t. g = Il(x
l
i, yi)− Ir(x

r
i , yi) = 0, (3)

where El and Er are the energies in left and right images, respectively, and they
are the same as the energy functions defined in 2D inpainting [8], and (xl

i, yi)
and (xr

i , yi) = (xl
i +Dl(x

l
i, yi), yi) are the i-th corresponding pixel pair.

The minimization of E is done by using a greedy algorithm as follows: (i)
update the similar texture patterns for respective pixels (xr

i , yi)and(x
l
i, yi), and

then (ii) update the intensity values in the hole. These two steps are repeated
until convergence occurs. In addition, we create an image pyramid and minimize
the energy from coarse to fine.

In Step (i), similar texture patterns are searched for in only the depth layer
that belong to each pixel in the hole. In this step, our method restricts the
search region of a similar pixel to the same depth layer while taking the depth
value of the pixel into account. By doing this, our method prevents searches for
a different object in the same layer. By searching for similar pixels for only the
pixels belonging to the same depth layer, unnatural inpainting is supposed to
prevented. In addition, the computational time will be reduced by restricting
the search region.

In Step (ii), energy E, which is the sum of both images’ energy, is minimized.
The relation between the E can be rewritten using energy elements El(x

l
i), and

theEr(x
r
i ) of the respective images’ respective pixels is as follows:

E =

NΩ∑
i=1

(El(x
l
i) + Er(x

r
i )) + C, (4)
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where xl
i = (xl

i, yi), x
r
i = (xr

i , yi) = (xl
i − d, yi), NΩ is the number of pixels

included in the hole, Ω′ is the region including hole Ω and the region adjacent
to Ω, and C is the energy in Ω∩Ω′. Note that C is a constant value in this step,
because a similar pattern is fixed. The Lagrange multiplier are used to minimize
E in Eqn. (4). We define J = E +λg using constraint g = 0 in Eqn. (3) and the
variables are Il(x

l
i, yi), Ir(x

r
i , yi). Then, the minimization of E is equivalent to

these partial differential equations as follows:

∂J

∂Il(xl
i, yi)

=
∂E

∂Il(xl
i, yi)

+ λ = 0, (5)

∂J

∂Ir(xr
i , yi)

=
∂E

∂Ir(xr
i , yi)

− λ = 0, (6)

Il(x
l
i, yi)− Ir(x

r
i , yi) = 0. (7)

Il(x
l
i, yi), Ir(x

r
i , yi) is analytically obtained from Eqn. (5), (6), (7) by eliminating

λ from Eqns.(5) and (6):

Il(x
l
i, yi) = Ir(x

r
i , yi) =∑

p∈W (wl(x
l
i+p)α(xl

i+p)f(xl
i+p)+wr(x

r
i+p)f(xr

i+p))Il(f(x
l
i+p)−p)∑

p∈W wl(xl
i+p)+wr(xr

i+p)
, (8)

where wr and wl are the weights for each pixel of the respective images, f(x) is
a similarity pattern of x, and α is a correction parameter, which allows for the
variation in intensity defined in [8].

6 Experiment Results

In the experimental results in this section, we used the images and depth maps
from theMiddleburry stereo datasets (http://vision.middlebury.edu/stereo/
data/).

6.1 Initialization of Depth Map

As mentioned in 4.1, this initialization process consists of two steps: (i) 3D
warping and (ii) elimination of the false inpainting. In this section, the depth
map created by using our method is compared with the depth maps when using
a method without these steps to show the effectiveness of our initialization of
the depth map.

A depth map without the initialization of the depth map from Fig.4(c) and
its inpainted depth map is shown in Fig.4(f). The depth map by using only 3D
warping without elimination of the false inpainting in Fig.4(e) and its inpainted
depth map are shown in Fig.4(g). The depth map initialized by our method in
Fig.4(e) and its inpainted depth map are shown in Fig.4(h). The effectiveness
of our depth initialization is proven from these results, especially in the region
around the round-arched object.

http://vision.middlebury.edu/stereo/data/
http://vision.middlebury.edu/stereo/data/
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 4. Results of initialization of depth map: (a)(b)input image and corresponding
depth map (white region is missing.) (c) (d) shows the results in the box with dash line
(c) without initialization, (d) only by using 3D warping, (e) without using a method,
and (f), (g), and (h) are the respective results by our method.

6.2 Consistency of Corresponding Pixels’ Depth Values

In our method, the depth inpainting is repeated until the corresponding pixels
have the same depth values, as described in Sec.4.2. The depth map without a
consistency check of the corresponding pixels is shown in Fig.5(c). In contrast,
Fig.5(d) shows the results by using our method. Better results are obtained by
using our method.

6.3 Comparison with Our Method and the Conventional Method

The results when using our method and those when using the conventional
method are shown in Fig.6. In Fig.6(c), the bottom of a red cone is not natural.
In contrast, the results by using our method shown in Fig.6(d), looks natural.
One of the reasons for this is that our method initializes the color images by
using 3D warping based on the consistent depth maps.
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(a) (b)

(c) (d)

Fig. 5. Results when taking consistency of corresponding pixels’ depths into consid-
eration (a)(b)input image and corresponding depth map (white region is missing.)
(c)without a consistency check of the corresponding pixels (d)by using our method.
White dash line shows the border of the depth value.

(a) (b)

(c) (d)

Fig. 6. Comparison of 3D inpainting: (a)(b)input image and corresponding depth map
(white region is missing.) (c) conventional method [11] and (d) proposed method.

7 Conclusion

We proposed an inpainting method for a stereoscopic image that takes the tex-
ture similarity based on the consistency of the corresponding pixels between two
images consisting of a stereoscopic image into consideration. Just like for con-
ventional methods for stereoscopic image inpainting, our method consists of two
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steps to guarantee convergence: the first step involves inpainting the depth maps
and the second step the inpainting of the color images based on the depth maps.

In the depth map inpainting, our method guarantees the consistency of the
depth maps, which plays an important role in the second step. In the color image
inpainting, the conventional inpainting method [8], which causes discontinuous
and unclear textures even for an input image with a complex texture, was ex-
tended to a 3D inpainting method that takes the consistency of corresponding
pixels between two images into consideration. In addition, similar textures are
searched for by taking not only the depth layer but also the depth values of the
respective pixels into consideration.

We confirmed that more natural results for a stereoscopic image were obtained
by using our method than by the conventional method. To extend our method
for stereoscopic video by taking into account that the depth varies smoothly
along a timeline will be one of our future works.
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Abstract. In this paper, we propose a probabilistic approach for fore-
ground segmentation in 360◦-view-angle range data sequences, recorded
by a rotating multi-beam Lidar sensor, which monitors the scene from
a fixed position. To ensure real-time operation, we project the irregu-
lar point cloud obtained by the Lidar, to a cylinder surface yielding a
depth image on a regular lattice, and perform the segmentation in the 2D
image domain. Spurious effects resulted by quantification error of the dis-
cretized view angle, non-linear position corrections of sensor calibration,
and background flickering, in particularly due to motion of vegetation,
are significantly decreased by a dynamic MRF model, which describes
the background and foreground classes by both spatial and temporal fea-
tures. Evaluation is performed on real Lidar sequences concerning both
video surveillance and traffic monitoring scenarios.

Keywords: rotating multi-beam Lidar, MRF, motion segmentation.

1 Introduction

Foreground detection and segmentation are a key issues in automatic visual
surveillance. Foreground areas usually contain the regions of interest, moreover,
an accurate object-silhouette mask can directly provide useful information for,
among others, people or vehicle detection, tracking or activity analysis.

Range image sequences offer significant advantages versus conventional video
flows for scene segmentation, since geometrical information is directly available
[1], which can provide more reliable features than intensity, color or texture val-
ues [2,3]. Using Time-of-Light (ToF) cameras [1] or scanning Lidar sensors [4]
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enable recording range images independently of the outside illumination con-
ditions and we can also avoid artifacts of stereo vision techniques. From the
point of view of data analysis, ToF cameras record depth image sequences over
a regular 2D pixel lattice, where established image processing approaches, such
as Markov Random Fields (MRFs) can be adopted for smooth and observation
consistent segmentation [3]. However, such cameras have a limited Field of View
(FoV), which can be a drawback for surveillance and monitoring applications.

Rotating multi-beam Lidar systems (RMB-Lidar) provide a 360◦ FoV of the
scene, with a vertical resolution equal to the number of the sensors, while the
horizontal angle resolution depends on the speed of rotation (see Fig. 1). For
efficient data processing, the 3-D RMB-Lidar points are often projected onto a
cylinder shaped range image [4,5]. However, this mapping is usually ambiguous:
On one hand, several laser beams with slight orientation differences are assigned
to the same pixel, although they may return from different surfaces. As a con-
sequence, a given pixel of the range image may represent different background
objects at the consecutive time steps. This ambiguity can be moderately handled
by applying multi-modal distributions in each pixel for the observed background-
range values [4], but the errors quickly aggregate in case of dense background
motion, which can be caused e.g. by moving vegetation. On the other hand, due
to physical considerations, the raw data of distance, pitch and angle provided
by the RMB-Lidar sensor must undergo a strongly non-linear calibration step to
obtain the Euclidean point coordinates [6], therefore, the density of the points
mapped to the regular lattice of the cylinder surface may be inhomogeneous. To
avoid the above artifacts of background modeling, [5] has directly extracted the
foreground objects from the range image by mean-shift segmentation and blob
detection. However, we have experienced that if the scene has simultaneously
several moving and static objects in a wide distance range, the moving pedestri-
ans are often merged into the same blob with neighboring scene elements.

Instead of projecting the points to a range image, another way is to solve
the foreground detection problem in the spatial 3D domain. However, 3D object
level techniques principally aim to extract the bounding boxes of the pedestrians
[7], instead of labeling each foreground point of the input cloud, which may be
necessary for activity recognition by e.g. skeleton fitting to the silhouettes. MRF
techniques based on 3D spatial point neighborhoods are frequently applied in
remote sensing [8], however the accuracy is low in case of small neighborhoods,
otherwise the computational complexity rapidly increases.

In this paper, we propose a hybrid approach for dense foreground-background
point labeling in a point cloud obtained by a RMB-Lidar system, which monitors
the scene from a fixed position. Our method solves the computationally critical
spatial filtering steps in the 2D range image domain by an MRF model, how-
ever, ambiguities of discretization are handled by joint consideration of true 3D
positions and back projection of 2D labels. By developing a spatial foreground
model, we significantly decrease the spurious effects of irrelevant background
motion, which principally caused by moving tree crowns and bushes. For quan-
titative evaluation, we have developed a 3D point cloud Ground Truth (GT)
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Fig. 1. Point cloud recording and range image formation with a Velodyne HDL 64E
RMB-Lidar sensor

annotation tool, and compared the detection results of the proposed model to
three reference methods.

2 Problem Formulation and Data Mapping

Assume that the RMB-Lidar system contains R vertically aligned sensors, and
rotates around a fixed axis with a possibly varying speed1. The output of the Li-
dar within a time frame t is a point cloud of lt = R ·ct points: Lt = {pt1, . . . , ptlt}.
Here ct is the number of point columns obtained at t, where a given column con-
tains R concurrent measurements of the R sensors, thus ct depends on the rota-
tion speed. Each point, p ∈ Lt, is associated to sensor distance d(p) ∈ [0, Dmax],

pitch index ϑ̂(p) ∈ {1, . . . , R} and yaw angle ϕ(p) ∈ [0, 360◦] parameters. d(p)

and ϑ̂(p) are directly obtained from the Lidar’s data flow, by taking the mea-
sured distance and sensor index values corresponding to p. Yaw angle ϕ(p) is
calculated from the Euclidean coordinates of p projected to the ground plane,
since the R sensors have different horizontal view angles, and the angle correction
of calibration may also be significant [6].

The goal of the proposed method is at a given time frame t to assign each
point p ∈ Lt to a label ω(p) ∈ {fg, bg} corresponding to the moving object (i.e.
foreground, fg) or background classes (bg), respectively.

For efficient data manipulation, we also introduce a range image mapping of
the obtained 3D data. We project the point cloud to a cylinder, whose central
basis point is the ground position of the RMB-Lidar and the axis is prependicular
to the ground plane. Note that slightly differently from [5], this mapping is also
efficiently suited to configurations, where the Lidar axis is tilted do increase the
vertical Field of View. Then we stretch a SH × SW sized 2D pixel lattice S on
the cylinder surface, whose height SH is equal to the R sensor number, and

1 The speed of rotation can often be controlled by software, but even in case of constant
control signal, we must expect minor fluctuations in the measured angle-velocity,
which may result in different number of points for different 360◦ scans in time.
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the width SW determines the fineness of discretization of the yaw angle. Let us
denote by s a given pixel of S, with [ys, xs] coordinates. Finally, we define the
P : Lt → S point mapping operator, so that ys is equal to the pitch index of the
point and xs is set by dividing the [0, 360◦] domain of the yaw angle into SW

bins:

s
def
= P(p) iff ys = ϑ̂(p), xs = round

(
ϕ(p) · SW

360◦

)
(1)

3 Background Model

The background modeling step assigns a fitness term fbg(p) to each p ∈ Lt point
of the cloud, which evaluates the hypothesis that p belongs to the background.
The process starts with a cylinder mapping of the points based on (1), where we

use a R×Sbg
W pixel lattice Sbg (R is the sensor number). Similarly to [4], for each

s cell of Sbg, we maintain a Mixture of Gaussians (MoG) approximation of the
d(p) distance histogram of p points being projected to s. Following the approach
of [9], we use a fixed K number of components (here K = 5) with weight wi

s,
mean μi

s and standard deviation σi
s parameters, i = 1 . . .K. Then we sort the

weights in decreasing order, and determine the minimal ks integer which satisfies∑ks

i=1 w
i
s > Tbg(we used here Tbg = 0.89). We consider the components with the

ks largest weights as the background components. Thereafter, denoting by η() a
Gaussian density function, and by Pbg the projection transform onto Sbg, the
fbg(p) background evidence term is obtained as:

fbg(p) =

ks∑
i=1

wi
s · η

(
d(p), μi

s, σ
i
s

)
, where s = Pbg(p). (2)

The Gaussian mixture parameters are set and updated based on [9], while we

used Sbg
W = 2000 angle resolution, which provided the most efficient detection

rates in our experiments. By thresholding fbg(p), we can get a dense fore-
ground/background labeling of the point cloud [4,9] (referred later as Basic
MoG method), but as shown in Fig. 5(a),(c), this classification is notably noisy
in scenarios recorded in large outdoor scenes.

4 DMRF Approach on Foreground Segmentation

In this section, we propose a Dynamic Markov Random Field (DMRF) model to
obtain smooth, noiseless and observation consistent segmentation of the point
cloud sequence. Markov Random Fields (MRFs) [10] are widely used for image
segmentation or image restoration task since the early eighties, due to their
ability to simultaneously embed a data model, reflecting the knowledge on the
image, and some prior constraint about the solution given by some expertise of
the problem. MRFs model the searched image (restored or segmented image) as
a realization of a random field. The solution is then obtained by maximizing the
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(a) Range image part (90◦ horiz. view) (b) Basic MoG [4,9]

(c) uniMRF [2] (d) Proposed DMRF segmentation

Fig. 2. Foreground segmentation in a range image part with three different methods

density of this field. Prior information embedded in such models usually concern
spatial smoothness of the solution.

Since MRF optimization is computationally intensive [10], we define our
DMRF model in the range image space, and 2D image segmentation is followed
by a point classification step to handle ambiguities of the mapping. As defined
by (1) in Sec. 2, we use a P cylinder projection transform to obtain the range

image, with a SW = ĉ < Sbg
W grid with, where ĉ denotes the expected number

of point columns of the point sequence in a time frame. By assuming that the
rotation speed is slightly fluctuating, this selected resolution provides a dense
range image, where the average number of points projected to a given pixel is
around 1. Let us denote by Ps ⊂ Lt the set of points projected to pixel s. For a
given direction, foreground points are expected being closer to the sensor than
the estimated mean background range value. Thus, for each pixel s we select
the closest projected point pts = argminp∈Ps

d(p), and assign to pixel s of the
range image the dts = d(pts) distance value. For ‘undefined’ pixels (Ps = ∅), we
interpolate the distance from the neighborhood. For spatial filtering, we use an
eight-neighborhood system in S, and denote by Ns ⊂ S the neighbors of pixel s.

Our proposed DMRF segmentation model uses the following definitions:

– S - set of pixels of the range image lattice
– Xt = {dts|∀s ∈ S} - set of image data at time t (dts is the range value assigned

to pixel s).
– Q = {fg, bg} - class labels
– Ωt = {ωt

s|∀s ∈ S} - global labeling of the range image at time t (ωs ∈ Q is
the label of pixel s at time t)

We aim to find the labeling which maximizes a P (Ωt|Xt, Ωt−1) ∝ P (Xt|Ωt) ·
P (Ωt|Ωt−1) probability, so it will minimize the energy:

E = − logP (Ωt|Xt, Ωt−1) = − logP (Xt|Ωt)− logP (Ωt|Ωt−1) + const (3)
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Fig. 3. Demonstrating the different local range value distributions in the neighborhood
of a given foreground and background pixel, respectively

where the − logP (Xt|Ωt) part is called the data energy and − logP (Ωt|Ωt−1)
is the prior energy.

Next, we assign to each s ∈ S foreground and background data energy (i.e.
negative fitness) terms, which describe the class memberships based on the ob-
served d(s) values. The background energies are directly derived from the para-
metric MoG probabilities using (2):

εtbg(s) = − log
(
fbg(p

t
s)
)
.

For description of the foreground, using a constant εfg could be a straightforward
choice [2] (we call this approach uniMRF ), but this uniform model results in
several false alarms due to backgroundmotion and quantization artifacts. Instead
of temporal statistics, we use spatial distance similarity information to overcome
this problem by using the following assumption: whenever s is a foreground pixel,
we should find foreground pixels with similar range values in the neighborhood
(Fig. 3). For this reason, we use a non-parametric kernel density model for the
foreground class:

εtfg(s) =
∑
r∈Ns

ζ(εtbg(r), τfg,m�) · k
(
dts − dtr

h

)
,

where h is the kernel bandwidth and ζ : R→ [0, 1] is a sigmoid function:

ζ(x, τ,m) =
1

1 + exp(−m · (x− τ))
.

We use here a uniform kernel: k(x) = 1{|x| ≤ 1}, where 1{.} ∈ {0, 1} is the
binary indicator function of a given event.

To formally define the range image segmentation task, to each pixel s ∈ S,
we assign a ωt

s ∈ {fg, bg} class label so that we aim to minimize the following
form of the (3) energy function:

E =
∑
s∈S

VD(dts|ωt
s) +

∑
s∈S

∑
r∈Ns

α · 1{ωt
s �= ωt−1

r }

︸ ︷︷ ︸
ξts

+
∑
s∈S

∑
r∈Ns

β · 1{ωt
s �= ωt

r}︸ ︷︷ ︸
χt
s

, (4)

where VD(dts|ωt
s) denotes the data term, while ξts and χt

s are the temporal and
spatial smoothness terms, respectively, with α > 0 and β > 0 constants. Let us
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Fig. 4. Backprojection of the range image labels to the point cloud

observe, that although the model is dynamic due to dependencies between dif-
ferent time frames (see the ξts term), to enable real time operation, we develop a
causal system, i.e. labels from the past are not updated based on labels from the
future.

The data terms are derived from the data energies by sigmoid mapping:

VD(dts|ωt
s = bg) = ζ(εtbg(s), τbg,mbg)

VD(dts|ωt
s = fg) =

{
1 if dts > max{i=1...ks} μ

i,t
s + ε

ζ(εtfg(s), τfg,mfg) otherwise.

The sigmoid parameters τfg, τbg,mfg,mbg andm� can be estimated by Maximum
Likelihood strategies based on a few manually annotated training images. As for
the smoothing factors, we use α = 0.2 and β = 1.0 (i.e. the spatial constraint
is much stronger), while the kernel bandwidth is set to h = 30cm. The MRF
energy (4) is minimized via the fast graph-cut based optimization algorithm [10].

The result of the DMRF optimization is a binary foreground mask on the
discrete S lattice. As shown in Fig. 4, the final step of the method is the clas-
sification of the points of the original L cloud, considering that the projection
may be ambiguous, i.e. multiple points with different true class labels can be
projected to the same pixel of the segmented range image. With denoting by
s = P(p) for time frame t:

• ω(p) = fg, iff one of the following two conditions holds:
◦ ωt

s = fg and d(p) < dts + 2 · h (a)
◦ ωt

s = bg and ∃r ∈ Nr : {ωt
r = fg, |dtr − d(p)| < h} (b)

• ω(p) = bg: otherwise.

The above constraints eliminate several (a) false positive and (b) false negative
foreground points, projected to pixels of the range image near the object edges.

5 Evaluation

We have tested our method in real Lidar sequences concerning both video surveil-
lance (Courtyard) and traffic monitoring (Traffic) scenarios (see Fig. 5). The
data flows have been recorded by a Velodyne HDL 64E S2 camera, which op-
erates with R = 64 vertically aligned beams. The Courtyard sequence contains
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Table 1. Numerical evaluation on the Courtyard and Traffic sequences: detection
accuracy (F-rate in %) and processing speed (fps, measured in a desktop computer)

Aspect Sequence Seq. prop. Bas. MoG uniMRF 3D-MRF DMRF

Detection rate Courtyard 4 obj/fr. 55.7 81.0 88.1 95.1
(F-mes in %) Traffic 20 obj/fr. 70.4 68.3 76.2 74.0

Proc. speed Courtyard 65K pts/fr. 120 fps 18 fps 7 fps 16 fps
(fr per sec) Traffic 260K pts/fr. 120 fps 18 fps 2 fps 16 fps

2500 frames with four people walking in a 25m2 area in 1-5m distances from
the Lidar, with crossing trajectories. The rotation speed was set to 20Hz. In
the background, heavy motion of the vegetations make the accurate classifica-
tion challenging. The Traffic sequence was recorded with 5Hz from the top of a
car waiting at a traffic light in a crowded crossroad. The adaptive background
model was automatically built up within a few seconds, then 160 time frames
were available for traffic flow analysis. We have compared our DMRF model to
three reference solutions:

1. Basic MoG, introduced in Sec. 3, which is based on [4] with using on-line
K-means parameter update [9].

2. uniMRF, introduced in Sec. 4, which partially adopts the uniform foreground
model of [2] for range image segmentation in the DMRF framework.

3. 3D-MRF, which implements a MRF model in 3D, similarly to [8]. We define
here point neighborhoods in the original Lt clouds based on Euclidean dis-
tance, and use the background fitness values of (2) in the data model. The
graph-cut algorithm [10] is adopted again for MRF energy optimization.

Qualitative results on two sample frames are shown in Fig. 5. For Ground Truth
(GT) generation, we have developed a 3D point cloud annotation tool, which
enables labeling the scene regions manually as foreground or background. Next,
we manually annotated 700 relevant frames of the Courtyard and 50 frames of
the Traffic sequence. For quantitative evaluation metric, we have chosen the
point level F-rate of foreground detection [3], which can be calculated as the
harmonic mean of precision and recall. We have also measured the processing
speed in frames per seconds (fps). The numerical performance analysis is given
in Table 1. The results confirm that the proposed model surpasses the Basic
MoG and uniMRF techniques in F-rate for both scenes, and the differences are
especially notable at the Courtyard. Compared to the 3D-MRF method, our
model provides similar detection accuracy, but the proposed DMRF method is
significantly quicker. Observe that differently from 3D-MRF, our range image
based technique is less influenced by the size of the point cloud. In the Traffic
sequence, which contains around 260000 points within a time frame, we measured
2fps processing speed with 3D-MRF and 16fps with the proposed DMRF model.
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(a) Basic MoG, Courtyard sequence (b) Proposed DMRF, Courtyard sequence

(c) Basic MoG, Traffic sequence (d) Proposed DMRF, Traffic sequence

Fig. 5. Point cloud classification result on sample frames with the Basic MoG and the
proposed DMRF model: foreground points are displayed in blue (dark in gray print)

6 Conclusions

We have proposed a Dynamic MRF model for foreground segmentation in point
clouds obtained by a rotating multi-beam Lidar system. We have introduced
an efficient spatial foreground filter to decrease artifacts of angle quantization
and background motion. The model has been quantitatively validated based on
Ground Truth data, and the advantages of the proposed solution versus three
reference methods have been demonstrated. The authors thank Miklós Homolya
for help in MRF code integration [10].
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Abstract. World Health Organization estimates that 80% of the world popula-
tion is affected of back pain during his life. Current practices to analyze back
problems are expensive, subjective, and invasive. In this work, we propose a novel
tool for posture and range of movement estimation based on the analysis of 3D
information from depth maps. Given a set of keypoints defined by the user, RGB
and depth data are aligned, depth surface is reconstructed, keypoints are match-
ing using a novel point-to-point fitting procedure, and accurate measurements
about posture, spinal curvature, and range of movement are computed. The sys-
tem shows high precision and reliable measurements, being useful for posture
reeducation purposes to prevent musculoskeletal disorders, such as back pain, as
well as tracking the posture evolution of patients in rehabilitation treatments.

Keywords: Depth maps, Physiotherapy, Posture Analysis, Range of Movement
Estimation, Rehabilitation, Statistical Pattern Recognition.

1 Introduction

World Health Organization has categorized disorders of the musculoskeletal system as
the main cause for absence from occupational work and one of the most important causes
of disability in elders in the form of rheumatoid arthritis or osteoporosis. It is estimated
that 80% of world population will suffer from musculoskeletal disorders during their
life.

The body posture evaluation of a subject manifests, in different degrees, his level of
physic-anatomical health given the behavior of bone structures, and especially of the
dorsal spine. For instance, common musculoskeletal dysfunctions or disorders (MSDs)
such as scoliosis, kyphosis, lordosis, arthropathy, or spinal pain show some of their
symptoms through body posture. This requires the use of reliable, noninvasive, auto-
matic, and easy to use tools for supporting diagnostic. However, given the articulated
nature of the human body, the development of this kind of systems is still an open issue.

The solution more frequently applied to measure body posture consists of the syn-
chronization of multiple cameras, applying stereo vision techniques [3,5]. This kind of
systems use to be expensive and invasive. Moreover, it uses to require specific and re-
stricted illumination conditions. The main alternative is accelerometers. These systems
also use to be expensive, invasive, and inaccurate because of the spatial measurements

X. Jiang et al. (Eds.): WDIA 2012, LNCS 7854, pp. 97–105, 2013.
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of multi-axial articulations. Most of these systems only treat specific areas of the body
with little configurability, which implies that therapists cannot use their own methods
of analysis. A recent alternative is the use of the depth maps provided by the Microsoft
Kinect device [1]. The Kinect camera uses a structured light technique to generate real-
time depth maps containing discrete range measurements of the physical scene [2].

In this work, we present a novel semi-automatic system that uses RGB-Depth infor-
mation to elaborate a clinical postural analysis through the examination of anthropomet-
ric values. Given a set of keypoints defined by the user, our proposed method performs
the following steps: a) RGB and depth data are aligned, b) noise is removed and depth
surface is reconstructed, c) user keypoints and predefined protocols are matched using a
novel point-to-point fitting procedure, d) static measurements about posture and spinal
curvature are accurately computed, and d) dynamic range of movement is robustly esti-
mated. Compared to standard alternatives and supported by clinical specialists, the sys-
tem shows high precision and reliable measurements to be include in the clinical routine.

The paper is organized as follows: Section 2 present the system for posture analysis
and range of movement estimation. Section 3 presents the validation of the proposal,
and finally, Section 4 concludes the paper.

2 Posture Analysis System

We designed a full functional system devoted to help in the posture reeducation task
with the aim of preventing and correcting musculoskeletal disorders. The system is
composed by three main functionalities: a) static posture analysis (SPA), b) spine cur-
vature analysis (SCA), and c) range of movement analysis (RMA). The architecture
of the system is shown in Figure 1. First, a pre-processing step to remove noise and
reconstruct surfaces is performed. Next, we describe each of these stages.

Fig. 1. Posture analysis system
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2.1 Noise Removal and Surface Reconstruction

After aligning RGB and depth data [7,11], and even though the used depth information
is compelling it is still inherently noisy. Depth measurements often fluctuate and depth
maps contain numerous holes where no readings are obtained. In order to obtain a valid
and accurate depth map, we perform a depth preprocessing step to eliminate erroneous
information caused by noise and to reconstruct surfaces not well defined. We perform
the following methodology:

Noise removal: For each point we compute the mean distance from it to all its neigh-
bors. By assuming that the resulted distribution is Gaussian with a mean and a standard
deviation, all points whose mean distances are outside an interval defined by the global
distances mean and standard deviation are considered as outliers.

Surface reconstruction: We use a resampling algorithm [10], which attempts to recreate
the missing parts of the surface by higher order polynomial interpolation between the
surrounding data points. By performing resampling, these small errors can be corrected.
Figure 2 shows an example of this process 1.

(a) (b)

Fig. 2. (a) Original depth map. (b) Filtered and resampled.

Once the system is calibrated, data is aligned, and depth maps are filtered, the user
can access to the three posture facilities.

2.2 Static Posture Analysis (SPA)

This module computes and associates a set of three-dimensional angles and distances
to keypoints defined by the user. These keypoints correspond to manual interactions of
the user with the RGB data displayed in the screen (which internally is aligned with
the corresponding depth data). The module also allows the therapist the possibility of
designing a protocol of analysis. That is, a predefined set of angular-distance measure-
ments among a set of body keypoints, all of them defined and saved by the user for

1 We experimentally found that our approach for noise removal and background reconstruction
obtained better results than standard approaches based on accumulating temporal images (e.g.
30 frames of a stationary subject) for noise reduction and hole filling.
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Fig. 3. Static posture analysis example

posterior automatic matching. Figure 3 shows an example of a predefined protocol (the
set of manual annotated keypoints together with the list of distance and angle relations
to be computed).

In order to obtain an intelligent and automatic estimation of posture measurements,
we define a correspondence procedure among manually placed virtual markers and
protocol markers. We formulate markers matching as an optimization problem. Sup-
pose a protocol analysis (template) T composed by N markers, T = {T1, T2, ..., TN},
Ti = (xi, yi, zi), and the current analysis C composed by the same number of mark-
ers, C = {C1, C2, ..., CN} (predefined template and current set of keypoints defined
by the user, respectively). Our goal is to make a one-to-one correspondence so that we
minimize the sum of least square distances among assignments as follows:

argminC′

N∑
i=1

‖C′
i − Ti‖2 , (1)

where C′ is evaluated as each of the possible permutations of the elements of C. For
this task, first, we perform a soft pre-alignment between C and T using Iterative Closest
Point (ICP) [8], and then, we propose a sub-optimal approximation to the least-squares
minimization problem. ICP is based on the application of rigid transformations (transla-
tion and rotation) in order to align both sequences C and T . This attempts to minimize
the error of alignment E(.) between the two marker sequences as follows:

E(R, T ) =
N∑
i=1

N∑
j=1

wi,j‖Ti −R(Cj)− T ‖2, (2)

where R and T are the rotation and translation 3D vectors, respectively. It is assigned
1 to wi,j if the i-th point of T described the same point in space as the j-th point of
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C. Otherwise wi,j = 0. Two things have to be calculated: First, the corresponding
points, and second, the transformation (R, T ) that minimizes E(R, T ) on the base of
the corresponding points. For this task, we apply Singular Value decomposition (SVD).
At the end of the optimization, the new projection of the elements of C is considered
for final correspondence. Then, Eq. 1 is approximated as follows: Given the symmetric
matrix of distances M of size N ×N which codifies the set of N · (N − 1)/2 possible
distances among all assignments between the elements of C and T , we set a distance
threshold θM to define the adjacency matrix A:

A(i, j) =

{
1 if M(i, j) < θM

0, otherwise.
(3)

Then, instead of looking for the set of N ! possible assignments of elements of C and T
that minimizes Eq. 1, only the possible assignments (Ci, Tj) that satisfies A(i, j) = 1
are considered, dramatically reducing the complexity of the correspondence procedure2.

2.3 Spine Curvature Analysis (SCA)

The objective of this task is to evaluate sagittal spine curvatures (curves of the spine
projected on the sagittal plane) by noninvasive graphic estimations in kyphotic and lor-
dotic patients. Kyphosis and lordosis are, respectively, conditions of over-curvature of
the thoracic spine (upper back) and the lumbar spine (lower back). The methodology
proposed by Leroux et al [4] offers a three-dimensional analysis valid for clinical ex-
aminations of those conditions. In order to perform this analysis we proceed as follows.
First, the therapist places the markers on the spine. Then, a few markers are selected
and the 3D curve that represents the spine is reconstructed by linear interpolation (Fig-
ure 4(c)). Finally, the anthropometric kyphosis Ka and lordosis La are obtained.

The geometric model to compute Ka is represented in the Figure 4(a). F divides
the curve representing the thoracic spine in two asymmetric arcs with different radius.
Note that the F component begins at the farthest marker (apex, corresponding to T5)
and it ends at the intersection with the T2-to-T12 line. h1 and h2 are the distances from
manual annotation of T2 to the intersection and the distance from the intersection to
annotated landmark T12 (as shown in Figure 4), respectively. Then, the summation of
two angles, ϕ1 and ϕ2, represents the kyphosis curve value, where:

ϕ1 = 180− 2 · arctan
(
h1

F

)
,

ϕ2 = 180− 2 · arctan
(
h2

F

)
.

(4)

La is calculated in a similar way, though the therapist should note the markers in
the lumbar spine region. The capacity analysis of the spine is reinforced by a three-
dimensional environment for a thorough examination by the therapist (Figure 4(d)).
An example of spine interaction and computation are shown in Figure 4(a) and (b),
respectively.

2 We experimentally found that high values of θM obtain optimal results and reduces the com-
putational cost in comparison to other approaches, such as Shape Context [6].
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2.4 Range of Movement Analysis (RMA)

In order to complement the posture analysis procedure, we compute the range of move-
ment of different body articulations. This means, for a particular articulation (joint), we
detect and track its movement, and then we compute which is the range of angles that
this joint performs for a particular period of time. For this purpose, we perform user
detection using the Random Forest approach with depth features of Shotton et al [9]
and compute the skeletal model. This process is performed computing random offsets
of depth features as follows:

fθ(D,x) = D(
x+ u

Dx

) −D(
x+ v

Dx

), (5)

where θ = (u,v), and u,v ∈ R
2 is a pair of offsets, depth invariant. Thus, each θ

determines two new pixels relative to x, the depth difference of which accounts for the
value of fθ(D,x). Using this set of random depth features, Random Forest is trained
for a set of trees, where each tree consists of split and leaf nodes (the root is also a
split node). Finally, we obtain a final pixel probability of body part membership li as
follows:

P (li|D,x) =
1

τ

τ∑

j=1

Pj (li|D,x) , (6)

where P (li|D,x) is the PDF stored at the leaf, reached by the pixel for classifica-
tion (D,x) and traced through the tree j, j ∈ τ . Computing the intersection borders
among mean shift clusters estimated after Random Forest procedure, we obtain a three-
dimensional skeletal model composed by nineteen joints. The physician then selects
joint articulations and automatically obtains their maximum opening and minimum
closing values measured in degrees for a certain period of time (Figure 4(e)).

3 Results

3.1 Software Details

The video data uses a 8 bits VGA resolution at 30Hz, and we capture frames at 640×480
pixels, like the infrared camera. Regarding the implementation we used the Kinect SDK

Table 1. Pose and range of movement precision

Distance subject-device (m) 1,3 1,9 2,2
AAV (◦ movement) 2,2 3,8 5,2
AAV (mm) 0,98 1,42 2,1
AAV (◦ angles) 0,51 1,04 1,24
AAV (%) 0,46 0,77 1,3
Standard Error (%) 1,01 1,18 1,71

Table 2. Validation of spinal analysis

Khyposis range Lordosis range
AAV (◦) 5 6
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(a) (b) (c)

(d)

(e)

Fig. 4. (a) Geometric model to obtain anthropometric kyphosis, and lordosis value. (b) Sample
of analysis. (c) Automatically reconstructed 3D spinal cloud. (d) Three-dimensional examination
environment. (e) Skeletal model and example of selected articulations with computed dynamic
range of movement.
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framework. We also used the PCL-Library to treat cloud points, and to support a free
and three-dimensional visualization we used the VTK library. The user interface has
been developed in multi-platform Nokia Qt technology.

3.2 Data and Validation

In order to measure the precision of the proposed methodology in the different modules
of the system, a battery of 500 simple tests has been labeled by three different observers,
with an inter observer correlation superior to 99% for all planes (X,Y, Z). Each test
contains a set of angles and distances in order to simulate an analysis protocol for the
study of posture, placing twelve infrared led markers on the body of the subject. A total
of 20 subjects participated in the validation of the method. In order to perform automatic
validation of the tests, infrared markers are detected by means of thresholding a HSV
infrared-filtered image.

Results for different distance of the device to the scene are shown in Table 1. AAV
and ’◦’ correspond to the average absolute value and degree, respectively. This analysis
validates the accuracy of the SPA and RMA in millimeters and degrees, respectively.
Note the high precision in both tests. In addition, in order to validate the curvature
analysis of the spine (SCA), we used a group of 10 patients and performed the Ler-
oux protocol [4], placing nine markers over the spine. The relationship between lateral
radiographic and anthropometric measures was assessed with the mean difference. It
has used Cobb technique on the lateral radiograph in order to obtain the coefficients of
kyphosis and lordosis. The results of the SPA validation are shown in Table 2.4. More-
over, after discussing with specialists in physiotherapy they agreed that the accuracy of
the results is more than sufficient for diagnostic purposes.

4 Conclusion

We presented a system for semi-automatic posture analysis and range of movement
estimation using depth maps. The aim of the system is to assist in the posture reed-
ucation task to prevent and treat musculoskeletal disorders. Given a set of keypoints
defined by the user, RGB and depth data are aligned, depth surface is reconstructed,
keypoints are matching using a novel point-to-point fitting procedure, and accurate
measurements about posture, spinal curvature, and range of movement are obtained.
The system showed high precision in terms of distance, degree, and range of move-
ment estimation. Supported by clinical specialists, the system shows high precision and
reliable measurements to be include in the clinical routine.

Acknowledgements. This work is partly supported by projects TIN2009-14404-C02,
IMSERSO-Ministerio de Sanidad 2011 Ref. MEDIMINDER and RECERCAIXA 2011
Ref. REMEDI.
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Fast 3D Keypoints Detector and Descriptor  
for View-Based 3D Objects Recognition 

Ayet Shaiek and Fabien Moutarde 
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Abstract. In this paper, we propose a new 3D object recognition method that 
employs a set of 3D keypoints extracted from point cloud representation of 3D 
views. The method makes use of the 2D organization of range data produced by 
3D sensor. Our novel 3D interest points approach relies on surface type classifi-
cation and combines the Shape Index (SI) - curvedness(C) map with the Gaus-
sian (H) - Mean (K) map. For each extracted keypoint, a local description using 
the point and its neighbors is computed by joining the Shape Index histogram 
and the normalized histogram of angles between normals. This new proposed 
descriptor IndSHOT stems from the descriptor CSHOT (Color Signature of 
Histograms of OrienTations) which is based on the definition of a local, robust 
and invariant Reference Frame RF. This surface patch descriptor is used to find 
the correspondences between query-model view pairs in effective and robust 
way. Experimental results on Kinect based datasets are presented to validate the 
proposed approach in view based 3D object recognition. 

Keywords: Depth Image, 3D Keypoints detector, Mean Curvature, Gaussian 
Curvature, Shape Index, HK Map, SC Map, SHOT Descriptor, IndSHOT. 

1 Introduction 

There has been strong research interest in 3D object recognition over the last decade, 
due to the promising reliability of the new 3D acquisition techniques. 3D recognition, 
however, conveys several issues related to the amount of information, class variabili-
ty, partial information, as well as scales and viewpoints differences are encountered. 
As previous works in the 2D case have shown, local methods perform better than 
global features to partially overcome those problems. Global features need the com-
plete, isolated shape for their extraction. Examples of global 3D features are volume-
tric part-based descriptions [1]. These methods are less successful when dealing with 
partial shape and intra-class variations while remaining partially robust to noise, clut-
ter and inter-class variations. The field of 2D Point-of-interest (POI) feature has been 
the source of inspiration for the 3D interest-points detectors. For example, the Harris 
detector has been extended to three dimensions, first in [2] with two spatial dimen-
sions plus the time dimension, then in [3] which discusses variants of the  
Harris measure and recently in [4] where a 3D-SURF adaptation is proposed. The 3D 
shape of a given object can be described by a set of local features extracted from 
patches around salient interest points. Regarding efficient 3D descriptors, the SHOT 
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descriptor [5] achieves both state-of-the-art robustness and descriptiveness. Results 
demonstrate the higher descriptiveness embedded in SHOT with respect to Spin Im-
ages [6], Exponential Mapping (EM) and Point Signatures (PS). Given the local RF, 
an isotropic spherical grid is defined to encode spatially well localized information. 
For each sector of the grid a histogram of normals is defined and the overall descrip-
tor SHOT results from the juxtaposition of these histograms. 

Our proposed new method aims to detect salient keypoints that are repeatable un-
der moderate viewpoint variations. We propose to use a measure of curvature in the 
line of Chen and Bhanu’s work [7] and construct a patch labeling to classify different 
surface shapes [7, 8] using both mean-Gaussian curvatures (HK) and shape index-
curvedness (SC) couples. Thus, we select keypoints according to their local surface 
saliency. Furthermore, we suggest a novel descriptor, dubbed IndSHOT, that empha-
sizes the shape description by merging the SHOT descriptor with the Shape Index 
histogram. The complete recognition system with detection, description and matching 
phases is introduced in section 2. The proposed method is then evaluated in section 3. 

2 Methodology 

2.1 Resampling of the 3D Points Cloud  

As we address a recognition scenario wherein only 2.5 views are matched, we deal with 
some views of the models from specific viewpoints. In the work presented here, we 
exploit the lattice structure provided by the range image. First, we search the coordi-
nates of the maximum and minimum points at x-axis and y-axis in the sample, and build 
a bounding box based on the two limit points. Using the (i ,j) coordinates of each point 
in this box, we smooth the initial 3D point cloud by resampling down to 1/span of its 
original point density in order to avoid noise perturbation. The smoothing process gen-
erates new points corresponding to the average of points belonging to a rectangular 
region with a span in the x and y direction. Then, we construct a mesh using the new 
vertices. The x and y spans are proportional to the density of points and to a fraction r1 
of the bounding box dimensions, so as to make our method robust to different spatial 
samplings and to scaling. In our approach, neighbour points are given by a spherical 
region around the point, with a support radius R proportional to a fraction r2 of bounding 
box diagonal. In practice, we adjust a local polynomial surface to the selected neighbor-
hood. CGAL1 library is used for curvature computation. An advantage of subdividing 
the point cloud in local regions is to avoid mutual impact between them. 

2.2 Keypoint Detectors 

The aim of this step is to pick out a repeatable and salient set of 3D points. Principal 
curvatures correspond to the eigenvalues of the Hessian matrix and are invariant un-
der rotation and translation. Hence, we propose to use local curvatures which can be 
calculated either directly from first and second derivatives, or indirectly as the rate of 
change of normal orientations in a local context region. The usual pair of Gaussian 

                                                           
1 http://www.cgal.org/ 
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curvature K and mean curvature H only provides a poor representation, since the  
values are strongly correlated. Instead, we use them in composed form with curvature 
based quantities. In the following, we first introduce state-of-the-art detector methods 
based on shape index, HK and SC classification; then we present the principle of our 
new detector.  

Shape Index. This detector type was proposed in [7], and uses the shape index (SIp) 
for feature point extraction. It is a quantitative measure of the surface shape at a point 
p, and is defined by (1),  12  1  arctg                                               1  

where k1
p and k2

p are maximum and minimum principal curvatures, respectively and 
arctg = arctangent. With this definition, all shapes are mapped into the interval [0, 1] 
where every distinct surface shape corresponds to a unique value of SI (except for 
planar surfaces, which will be mapped to the value 0.5, together with saddle shapes). 
Larger shape index values represent convex surfaces and smaller shape index values 
represent concave surfaces. The main advantage of this measure is the invariance to 
orientation and scale. A point is marked as a feature point if its shape index SIp satis-
fies (2) within point neighbors, ;      1;      1                     2  
where μ is the mean of shape index over the SI point neighbors values and  0 , 1. In above expression (2), parameter  and   control the selection of feature 
points. We denote this detector by SID. 

HK and SC Classification. The idea here is to build shape classification space using 
the pair mean-Gaussian curvatures (HK) or the pair shape index-curvedness (SC). 
Typically, for HK classification, we use the type function Tp used in LSP descriptor 
[7] that associates to each couple of H and K values a unique type value (4), 

T  1 3 1 sgn
εH 1 sgn

ε
 ; sgn

ε
 1         ε  ,  0        | |  ε  ,1         ε      3   

where ε  and ε  are two thresholds over the H and K. Nine region types are defined.  
In the shape index-curvedness (SC) space, S defines the shape type and C defines 

the degree of curvature and is the square-root of the deviation from flatness. Similarly 
to HK representation, the continuous graduation of S subdivides surface shapes into 9 
types. Planar surfaces are classified using the C value. We define a type function S  
(5) that associates a unique type value to each couple of SI and C values (i.e values 
between 0.8125 and 0.9375 correspond to dome and  S 7 ), 

              S 0 if C  εCelse           S 1,8   ;   SI 0,1  .                                                     4  
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For both classifications, salient regions are selected as those of one of the 5 following 
types: dome, trough, spherical, saddle rut and saddle ridge regions. More details are 
given in [9, 10].  

Combination of Criteria. Theoretically, the two classifications HK and SC should 
provide the same result; therefore we suggest combining the two criteria to increase 
reliability. In fact, our result will be validated with two measures of keypoints detec-
tion. After labeling points with a pair of value ( , ), points with salient type pair 
are selected, in other words, if the two labels correspond to the same of the 5 salient 
region types previously mentioned. Moreover, in this paradigm, plane surfaces aren’t 
taken in account. So, we chose to select, in addition to those 5 surface types, planar 
regions.  We note this detector « SC_HK ». Then, points with the same pair value are 
grouped using the connected component labeling. Connectivity is carried out by 
checking the 8-connectivity of each point. Finally, the centers of the connected com-
ponents are selected as keypoints. We also propose further combination by ranking 
the selected keypoints according to their curvedness value. The point with the maxi-
mum value of curvedness over the selected keypoints is chosen to represent each con-
nected component. In the case of planar regions, a big number of points are chosen 
and are not all really representative of the saliency. In order to have a good distribu-
tion of interest points in the object surface, the proposed idea here is to cluster prese-
lected points according to their relative distance and we threshold the distance  
between final keypoints (as a fraction of the bounding box’s diagonal). We call the 
detector combining the two criteria  SC_HK_connex. 

2.3 Keypoint Descriptors 

After keypoints detection step, a 3D descriptor is computed around each selected 
interest point. In the case of range data, the dominant orientation at a point is the di-
rection of the surface normal at that point. Histogram-based methods are typically 
based on the feature point normals. For example, Local Surface Patches [7] computes 
histograms of normals and shape indexes of the points belonging to the keypoint sup-
port. The recently proposed SHOT descriptor achieves computational efficiency, de-
scriptive power and robustness by defining 3D repeatable local Reference Frame 
(RF). We briefly summarize here the structure of the SHOT descriptor. The reader is 
referred to [5] for details on the descriptor. The introduction of geometric information 
concerning the location of the points within the support is performed by first calculat-
ing a set of local histograms of normals over the 3D volumes defined by a 3D grid 
superimposed on the support and then grouping together all local histograms to form 
the final descriptor. The normal estimation is based on the Eigenvalue Decomposition 
of a novel scatter matrix defined by a weighted linear combination of neighbour point 
distances to the feature point, lying within the spherical support. The eigenvectors of 
this matrix define repeatable, orthogonal directions in presence of noise and clutter. 
Furthermore, the CSHOT descriptor [11] is proposed as an amelioration of the SHOT 
descriptor and makes profits from the 3D data enriched with texture.  The process of 
combination succeeds to form more robust and descriptive signature. 

Inspired by these state-of-the-art descriptors, we compute the histograms of shape in-
dex values and angle values between the reference surface normals at the feature point 
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and the neighbour’s ones and join the two histograms similarly to the design of CSHOT 
descriptor. First of all, we accumulate point counts into bins according to a cosine func-
tion of the angle between the normal at each point within the corresponding part of the 
grid and the normal at the feature point. For each of the local histograms, a coarser bin-
ning is created for directions close to the reference normal direction and a finer one for 
orthogonal directions. In this way, small differences in orthogonal directions to the 
normal, which are the most informative ones, cause a point to be accumulated in differ-
ent bins. Secondly, shape index values of the feature point and those of its neighbours 
relying in the spherical support are grouped into bins. Finally, we merge the shape index 
values and the cosine values into one descriptor that we call IndSHOT. We perform the 
same process as in the CSHOT to juxtapose the two histograms, where index shape 
histogram replaces the color histogram (shown in figure 1). In addition, the mean and 
standard deviation of shape index of the neighbors around the feature point are com-
puted. The final descriptors, composed of (model ID, index shape + cosines histograms, 
surface type, the 3D coordinates of keypoint, mean and standard deviation of shape 
index), are saved to be used in the matching process.  

 

Fig. 1. IndSHOT representation 

2.4 Matching and Recognition  

We validate the proposed detector and descriptor using a view matching approach. 
Here, we focus on solving the surface matching problem based on local features, by 
point-to-point correspondences obtained by matching local invariant descriptors of 
feature points. Given a test object, we compute a measure of similarity between de-
scriptors extracted on the test view and those of the models in database. The informa-
tion (model ID, histogram, surface type, the centroïd, mean and standard deviation of 
SI) are used for matching process. Hence, for each histogram from test view, we find 
the best matching histogram from database view using the Euclidian distance. To 
speed up the comparison process, we use a KD-tree structure. Two keypoints are 
matched according to their histogram distance and their types of surface. For a test 
object, a set of nearest neighbors is returned after histogram matching. In the case of 
multiple correspondences, the potential corresponding pairs are filtered based on  
the geometric constraint: Euclidean distance between features coordinates of the  
two matched surface patches. The closest couple of features in term of coordinates 
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distance is the more likely to form a consistent correspondence. A system of incre-
mental votes for each class gives the final matched class. 

3 Experimental Results 

3.1 Data and Parameters 

We performed our experiments on two real range data sets. The first one is our own 
dataset (Lab-Dataset) captured with the Kinect sensor and composed of 20 objects 
(Ex. prism, ball, fan, trash can, etc) with 3 to 10 different angle views per object (fig-
ure 3). The second data set is the public RGB-D Object Dataset2 (figure 2). There are 
51 common household object categories. In our experimentation, we use 46 objects 
with 25 views per object for only one object per category, which constitute a dataset 
of 1150 views. The list of the following objects are labelled from 1 to 46 respectively: 
apple_1, ball_1, banana_1, bell_peper_1, binder_1, calculator_1, camera_1, cap_1, 
cell_phone_1, cereal_box_3, coffee_mug_1, comb_1, flashlight_1, food_bag_1, 
food_box_1, food_can_1, food_cup_1, garlic_1, greens_1, hand_towel_1, in-
stant_noodles_1, keyboard_1, Kleenex_1, lemon_1, lightbulb_1, lime_1, marker_1, 
mushroom_1, notebook_1, onion_1, orange_1, peach_1, pear_1, pitcher_1, plate_1, 
potato_1, rubber_eraser_1, scissors_1, shampoo_1, soda_can_1, sponge_1, stapler_1, 
tomato_1, toothbrush_1 and watter_bottle_1. The numbers of feature points detected 
from these range images vary from 4 to 250, depending on the viewpoint and the 
complexity of input shape. In our experimentations, we have tried several values of 
our parameters and here we give the values achieving the best performance: r1= 2, r2 

= 0.04, span = 5,  =0.05, = 0.05, εH 0.009, εK 0.0001 , εC 0.01. 

 

Fig. 2. Examples of objects from the RGB-D Object Dataset2  

1 2 3 4 5 6 7 8 9 10  

11 12 13 14 15 16 17 18 19 20  

Fig. 3. The 20 objects of the lab-Dataset 

                                                           
2 http://www.cs.washington.edu/rgbd-dataset/ 
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3.2 Keypoint Stability 

To evaluate detector performance, we illustrate a visual comparison of keypoint posi-
tions detected with SC_HK, SC_HK_connex, and SID detectors as shown on figure 4. It 
reveals that the final selected points are quite well localized. The combining process 
allows a better feature point filtering than SC or HK alone, as false detected points in 
both are eliminated, and points with correct surface type remain. Figure 5 illustrates 
the relative stability of keypoint’s positions detected with SC_HK_connex detector 
when varying viewpoints for the same object. Clearly, we recover almost same key-
point positions in the different views. For a quantitative analysis showing the superior 
repeatability of our keypoints, we refer the reader to our previous publication [12]. 

     
 

Fig. 4. Detected keypoints on trash can, fan  and storage cupboard models with:  SID in first 
column, SC_HK in second column and SC_HK_connex in third column 

 

Fig. 5. Detected keypoint on fan model with SC_HK_connex, in view angle variation 

3.3 Matching Result 

The test protocol for object recognition from different angle views is the following: 
for the RGBD dataset, we select one test view from the N total number of views in the 
dataset, and the N-1 views are used as the training set; this process is repeated for the 
N views of the whole database. For the Lab-Dataset, we select one to four random 
views per object as the query and use the remaining views for training. We carry out 
three experiments using the three descriptors SHOT, CSHOT and IndSHOT. The 
same evaluation is done for the two detectors SID and SC_HK_connex. The overall 
recognition rates, which correspond to the mean recognition rate over the objects, are 
given in table 1 for respectively our Lab-Dataset and the RGBD dataset. In figure 6, 
the cross recognition rates between models are displayed in the confusion matrix. 
Gray level determines the rate of the recognition. Black is for high and white is for 
low recognition rate. The overall recognition rate is quite promising for our 
SC_HK_connex method in comparison to the SID results, with 91.12% on the RGBD 
dataset. This rate is achieved using the new proposed descriptor IndSHOT, which 
suggests that it is more descriptive than the CSHOT and SHOT versions. The recogni-
tion rate in the Lab-Dataset is about 82%. The reason behind this lower result is the 
high similarity between object shapes included in this dataset (two boots objects, pa-
rallelepipedic shapes, cylindrical shapes, etc). In another hand, the recognition rate 
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Table 1. Recognition rates for our Lab-Dataset (on left) and RGB-D object dataset (on right) 

 IndSHOT SHOT CSHOT   IndSHOT SHOT CSHOT 

 
SC_HK 

 
82.5% 

 
67,5% 

 
65% 

 SID 89.06% 70,75% 77.77% 

 SC_HK 91.12% 75,28% 82.14% 

4 Conclusions and Perspectives 

We have presented two main complementary contributions: 1/ an original 3D key-
point detector, SC_HK_connex, based on the idea of combining criteria; 2/ a new 3D 
keypoint descriptor, IndSHOT, based solely on shape characteristics.  

The proposed detector combines SC (shape curvedness) and HK criteria with the 
principle of connected components. It was already shown in our previous work that 
the selected 3D keypoints are more repeatable than for alternative detectors, and this 
is confirmed here by the good inter-view matching reached in our experiments. The 
proposed IndSHOT descriptor encodes the occurrence frequency of shape index val-
ues vs. the cosine of the angle between the normal of reference feature point and that 
of its neighbours. It seems to be significantly more descriptive than original SHOT 
and CSHOT from which we have crafted it. 

Finally, our new combination of SC_HK_connex detector + IndSHOT descriptor is 
evaluated in challenging 3D object recognition scenarios characterized by the pres-
ence of viewpoint variations and a few number of views on real-world depth data. The 
outcome is very promising results, with 92% correct recognition on 46 objects from a 
public dataset, and 82% on our own Lab-Dataset containing 20 “everyday” objects, 
some of which are rather similar one to another.  

For the moment, measures of curvatures in our process are calculated at a constant 
scale level, so the feature’s scale is still ambiguous. To overcome this fact, we plan, as 
a future work, to search for features at different scale levels.  
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Abstract. For decades scene reconstruction from multiple images is a topic in
computer vision and photogrammetry communities. Typical applications require
very precise reconstructions and are not bound to a limited computation time.
Techniques for these applications are based on complete sets of images to com-
pute the scene geometry. They require a huge amount of resources and computa-
tion time before delivering results for visualization or further processing.

In the application of disaster management these approaches are not an option
since the reconstructed data has to be available as soon as possible. Especially,
when it comes to Miniature Unmanned Aerial Vehicles (MUAVs) sending aerial
images to a ground station wirelessly while flying, operators can use the 3D data
to explore the virtual world and to control the MUAVs.

In this paper an incremental approach for dense reconstructions from sparse
datasets is presented. Instead of focussing on complete datasets and delivering
results at the end of the computation process, our incremental approach delivers
reasonable results while computing, for instance, to quickly visualize the virtual
world or to create obstacle maps.

1 Introduction

Scene reconstruction from multiple images is still a hot topic in the computer vision
and photogrammetry community. Current approaches are focussing on accuracy while
requiring a lot of computation resources and computation time and delivering results at
the end of the computation process.

Since the 3D information is only available after complete computation there are some
use cases which are not suitable to use these approaches, e. g. disaster management
with a swarm of Miniature Unmanned Aerial Vehicles (MUAVs) delivering still images
over the air while flying. A quick visualization would help operators to get a better
view of the scene and to control the MUAVs (see Fig. 1). For that purpose, one can
show reconstructed 3D points directly [1] or build up a 3D mesh from these points
[2]. Another example is the creation of obstacle maps for autonomous flights of those
MUAVs. Therefore, the denser the map of 3D points, the better obstacles are known
and collisions can be prevented.

A taxonomy of 3D reconstruction is given in Table 1. In the following we discuss the
different cases with focus on the incremental cases.

A lot of research has been done on sparse 3D reconstruction from wide-baseline
image data. Whereas there are some non-incremental algorithms to compute the sparse
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Fig. 1. Operators controlling MUAVs in a simulated environment and exploring the scene at a
multi-touch wall

Table 1. Different cases of reconstruction types pointing out which cases have been extensively
studied in the literature

non-
incremental incremental

narrow-baseline yes yes
wide-baseline yes yes

(a) sparse reconstruction

non-
incremental incremental

narrow-baseline yes yes
wide-baseline no yes

(b) dense reconstruction

scene geometry and the camera positions at once [3], a lot of methods compute this data
incrementally one or a few images after another [4].

For dense reconstruction of wide-baseline images current methods focus on com-
puting very accurate 3D information but at the cost of long computation times [5]. At
the downside the current dense reconstruction approaches are not designed to work
incrementally and thus, they are not suitable for all applications, e. g. the previously
mentioned disaster management.

However, incremental dense reconstruction for videos or narrow-baseline image data,
respectively, has been covered in literature, even for live video streams [6]. Since these
methods are focussing on small baseline image data they are not suitable for wide base-
line dense reconstructions.

In this paper we present an approach to incremental wide baseline dense reconstruc-
tion from sparse 3D dataset computed from multiple still images. The main contribu-
tions are (1) the reconstruction of reasonable points to get a quick denser overview of
the scene within a few seconds, (2) to get incremental supply of denser 3D data while
the data is further refined incrementally in the background and furthermore, (3) the
approach we present integrates a level-of-detail concept.

Our incremental dense reconstruction approach is presented in Section 2. In Section
3 we show some experiments and results to evaluate our algorithm. On that account we
use a ground truth dataset to get a reliable quality measure. We conclude this work in
Section 4.
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Iterations

(a)

Iterations

(b)

Fig. 2. Comparison of dense reconstruction methods. (a) Traditional approaches reconstruct
points in the neighborhood of already known points. (b) Our incremental approach firstly re-
constructs the midpoints of given triangles.

2 Incremental Dense Reconstruction

For traditional approaches it does not matter in which order the 3D points of a scene
are computed as long as the final reconstruction is correct. In general, these approaches
compute dense reconstructions by searching point matches in the neighborhood around
already known scene points [5]. This technique has the advantage to get a consistency
between neighbored matches since they are very close to each other. Furthermore, this
consistency measure also detects larger discontinuities in the depth data, e. g. at the
borders of objects. As a downside, these algorithms are not designed to work incremen-
tally. Even if they may be adapted to work incrementally delivering results throughout
the computation the reconstructed information will not be reasonable due to the low
visual entropy. There is a very high density around the previously known points but
the major areas between these points would not contain any information up to a later
computation progress.

Especially in disaster management with flying MUAVs the operator does not gain
much more information from a bunch of neighbored points as they may appear as one
point in the virtual world which the operator explores and in which he has to control the
MUAVs.

In our approach we focus on creating information in those major areas between
known points instead of only in their neighborhood. To get a reasonable incremental
result we reconstruct the midpoints of each triangle in a given 2D triangulation of the
already known 2D points, at the beginning the sparse feature matches. These midpoints
have the maximum distance to the points building up the triangles. A reconstructed
point therefore gives at once more information than only neighbored points (see Fig.
2). Furthermore, instead of computing the dense reconstruction from all images at once
using a lot of computation time before returning a result, our approach computes the
dense reconstruction incrementally from two images at a time.

On the one hand the results can be visualized very quickly with good visual entropy
and can be used for further computations, e.g. incremental mesh computation. On the
other hand we have to deal with the problem of matching feature points without relying
on the consistency of neighbored points. These matchings are much more computa-
tionally expensive due to a wider search range, even with guided matching along the
epipolar line. For that purpose, we will introduce a method to limit the search range and
therefore, decrease the computation time.
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Fig. 3. Outline of the computation steps of our algorithm

In Figure 3 the outline of our algorithm is shown. It consists of 6 steps which have
to be done for each image or each iteration. Due to the structure of our algorithm it
is possible to change the quality of parts of the reconstruction very dynamically. For
instance, it is possible to compute the reconstructions of some images toward a specified
level of detail by computing more iterations for one image or a few images, respectively.
Furthermore, it is possible to get all images toward the same level of detail, e. g. when
image 1 has been processed for 3 iterations and image 2 has been processed for 1
iteration it is possible to compute the 2 remaining iterations of image 2 to get image 1
and 2 toward the same level of detail. The total number of iterations required to compute
the complete dense reconstruction of a set of images depends on the requested density,
i. e. the best level of detail.

At the beginning of the whole process and the beginning of each iteration a 2D
triangulation (see Sec. 2.1) has to be computed from the known 2D feature points in
one image that have corresponding matches in another image. For each triangle of the
triangulation we do a consistency check (see Sec. 2.2), i. e. it is checked if a triangle
is good enough to try the reconstruction of its midpoint. To match the midpoints in a
further step we have to compute their descriptors (see Sec. 2.3). A successfully matched
midpoint (see Sec. 2.4) can then be reconstructed to get the 3D location (see Sec. 2.5).
Finally, a verification step (see Sec. 2.6) using other images ensures that the match is
correct.

2.1 2D Triangulation

A triangulation method of the sparse 2D points is used to determine reasonable points
to reconstruct. The reconstruction is done for the midpoint of each triangle since it is
the point that has the maximum distance to the triangle points and thus, that is the one
with maximum visual entropy for our purpose.

The triangulation is computed from the set of known 2D feature points of one image
that have corresponding matches in another image. At the beginning the set is equal to
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the sparse matched feature points. After each iteration the successfully reconstructed
midpoints are added to this set.

Due to the fact that our algorithm is optimized for GPU computation and the structure
of our algorithm is focussing on short computation time we cannot currently use trian-
gulation algorithms that may insert additional points to compute a good triangulation.

One of the best triangulation algorithms without the requirement to insert additional
points is the Delaunay triangulation due to its ability to maximize the minimum angle.
It guarantees that the minimum angle is at least as large as in any other triangulation
method. In the next section (see Sec. 2.2) we will use a filter rule to reject triangles with
interior angles that are smaller than a specified threshold.

2.2 Triangle Consistency

Traditional non-incremental approaches search the features within a small area around
a previously known sparse feature point. For these approaches it is more likely to find
the correct match requiring less computation time [5].

In our approach the feature matching is the most computation time-consuming part
due to missing constraints that limit the search region. The only valid constraint is the
epipolar constraint. Although the search for matches has to be done only on the epipolar
line, it would be a very computation time-consuming task.

To save computation time, we have to bound the search region as much as possible.
We propose to search for feature matches only in the corresponding triangle in the
second image which is given by the previously known feature point matches of the first
image. This boundary combined with the epipolar constraint significantly limits the
search region.

This type of boundary has advantages and disadvantages. On the one hand, it reduces
the number of points to match and thus, reduces the computation time. Furthermore,
as long as the correct point match is inside the triangle the uncertainties of the point
matching are reduced since there may be a better match on the remaining region of
the epipolar line. On the other hand, the point may be outside the triangle and thus it
cannot be matched correctly using this triangle constraint. This problem can be handled
in the same way other algorithms handle occluded points or points which lie outside the
normal image boundary, e. g. a thresholding operation in the matching quality (see Sec.
2.4).

There is no guarantee that the correct feature point is really within such a triangle.
In fact, some of the triangles are more likely to contain the correct point and others are
more unlikely. We propose to filter out the triangles in the latter case. On that account
we use the following four filter rules.

1. Level of detail
Our level-of-detail concept is covered by this filter rule. A triangle which has a
smaller surface area than the specified threshold will be marked to be completed.
This threshold is given by the best level of detail that is requested.

2. Interior angle limitation
A triangle that contains an interior angle less than 10 degrees will be rejected. This
rule is applied to both triangles, the one in the first image and the corresponding
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one in the second image which is deformed by another perspective, i. e. another
camera position.

3. Surface area ratio
The ratio between the surface area of the triangle in one image to the surface area
of the corresponding triangle in the other image has to be between 2

3 and 3
2 , i. e. if

the surface area of one triangle is larger than 1.5 times the surface area of the other
triangle it will be rejected.

4. Orientation test of the triangle points
A triangle is rejected if the rotation of the triangle points in the one image do make
a left turn and in the other a right turn or vice versa, i. e. it is rejected if the sign
of the signed areas of the triangles differ between the first image and the second
image.

If a triangle is rejected the corresponding triangle in the other image is rejected as
well, since they are linked through the feature matches. The given thresholds have been
determined by experiments.

There are two ways to handle rejected triangles. Firstly, the search region of a re-
jected triangle is extended, for instance to the whole epipolar line. Secondly, a rejected
triangle will not be handled further. Since our goal is to compute the first denser recon-
struction as fast as possible we have chosen the second way. Triangles that have been
marked to be completed are not handled further since they already reached the finest
level of detail.

2.3 Computation of Feature Descriptors

To match feature points we are in need for a reliable feature descriptor, especially due
to the task of wide baseline matching. A further requirement for the feature descriptor
is the fast computation since we have to compute a lot of descriptors. For each triangle
one descriptor in the first image and up to a few thousand descriptors in the other image
have to be computed.

One popular feature descriptor for dense feature matching is DAISY [7] which has
been improved by Wan et. al. [8]. Although this descriptor shows good performance in
these early works we could not achieve a good matching rate in our case.

Instead of using a dense feature descriptor our approach uses Fast Retinal Keypoints
(FREAK) [9] which has been designed for sparse features but also shows very good
performance for dense matching. Furthermore, its computation process is simple and
could be implemented very efficiently on the GPU.

2.4 Point Matching

Given the feature descriptor of the midpoint of a triangle we have to find the correct
match in the bounded search region given by the intersection of the epipolar line and the
corresponding triangle in the second image. Therefore, we have to compute a descriptor
for every pixel on this line segment and compare it to the descriptor of the midpoint.
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If the given descriptor matches one of the descriptors in the search region with a
certain quality and if there is not any other descriptor in that region matching with a
similar quality we will mark the corresponding pixel location as the correct match. If
none of the features in the search region matched the midpoint with a certain quality we
would reject the triangle.

To decide if a feature matches with a certain quality we check whether the quality q is
smaller than a given threshold tbest = 80, so q < tbest. To accept this match every other
potential descriptor i in the search region should match with a worse quality qi > 1.2·q.

2.5 3D Triangulation

To triangulate the matched points and therefore retrieve the reconstructed 3D point a
lot of methods are available [10]. These methods are almost all based on non-linear
refinements either in the 3D space or in the image space.

In our approach we use an algorithm which is a good trade off between computation
expense, accuracy, and simplicity. The normalized direct linear transform for two-view
reconstructions [10] can be implemented efficiently on the GPU while delivering good
results.

Similar to other reconstruction algorithms the angle of the two rays between the
3D point and the camera centers should be at least 2◦ to prevent numerically unstable
points.

2.6 Point Verification

To verify a reconstructed point we project it onto at most two other image planes which
also contain the three matched points of the triangle and search for the feature point in
a small region around the projection.

A feature point is rejected if none of the images is confirming the feature point at
the projected position. The verification step is very important since there a two different
cases outliers could occur: (1) The correct match is inside the triangle but another match
has been found. Thus, the false match has to be rejected by this verification step. (2) The
correct match is occluded or outside the triangle so that it is impossible to find the
correct match inside the triangle. Thus, a false match inside the triangle may be detected
which has to be rejected by this verification.

A rejected point will not occur in the final reconstruction based on this image com-
bination but the point or a point close to it is likely to be reconstructed in another image
combination.

3 Experiments and Results

To evaluate our approach we have generated a ground truth dataset from the City of
Sights model [11] containing seven images (see Fig. 4). We have done that by ren-
dering the scene twice. Firstly, the model has been rendered photorealistically. Sec-
ondly, for each photorealistic rendering we extracted a depth image which represents the
ground truth data. Furthermore, we stored the precise camera position and orientation
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Fig. 4. Three example photorealistic renderings of the ground truth dataset. The image at the right
shows a depth image corresponding to the third image.
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Fig. 5. Evaluation: (a) Relative histogram of reprojection errors with additional standard deviation
(gray area), (b) total computation time per iteration and (c) mean computation time for each image
and each iteration from the ground truth dataset

Fig. 6. Example aerial images of a testing sequence with 7 images showing the front of the castle
of Münster

(a) sparse data (b) iteration 2 (c) iteration 6

(d) sparse data (e) iteration 2 (f) iteration 6

Fig. 7. (a) - (c) Incremental dense reconstruction, (d) - (f) mesh reconstruction from the incre-
mental dense reconstructions
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for each image. Since the created images are synthetic we also know the intrinsic camera
calibration.

For the evaluation the black areas around the scene are ignored since there is neither
correct image data nor depth data. We measure the accuracy, namely the reprojection
error, i.e. the Euclidean distance between the reprojected point and correct point which
is the projection of the ground truth 3D point onto the same image plane.

In comparison to the ground truth data we reach a mean accuracy of 1.499 pixels
and a median accuracy of 1.220 pixels. The histogram of reprojection errors related to
ground truth is shown in Figure 5(a). The standard deviation is presented by the gray
area and describes the deviation of single iterations.

Further results are given by a second scene which consists of 7 real aerial images
(see Fig. 6). The quality of our incremental dense reconstruction approach is shown in
Figure 7(a) - (c). There, the quality of different iterations are presented. Some areas
cannot be reconstructed more densely due to the triangle filters. In Figure 7(d) - (f) the
process of mesh reconstruction is shown on the incrementally dense reconstructed point
clouds. The result shown there are created with a further development of [2].

Besides the accuracy we measured the computation time for each iteration. The com-
putation has been done on a computer with an Intel Core i7 930 processor with 2.8 GHz,
12 GB of RAM and a nVidia GTX 470 graphics device.

The first incremental update of the 3D points is delivered in less than 4 seconds.
For the ground truth dataset the computation time for all images and one iteration is
decreasing over time (see Fig. 5(b)). Whereas in iteration 2 the number of triangles
has increased the number of triangles in each iteration afterwards is decreased mainly
due to the level-of-detail triangle filter, i.e. more and more triangles have reached the
best level of detail. Furthermore, some images have reached the best level of detail
and do not need further computations. In Figure 5(c) one can see a similar result for
single images, except the difference at the end of the reconstruction process. At the last
iterations there is only one image left which did not have reached the best level of detail.

4 Conclusion

In this paper we have presented an approach to computing a dense reconstruction in-
crementally from wide baseline images and previously known sparse geometry. There
are several applications for which our approach is applicable, especially, computation
of obstacle maps and quick 3D visualization of the captured scene. While other algo-
rithms require a lot of time to present the first result, our approach retrieves first results
within a few seconds.

Furthermore, our approach reconstructs the points in a reasonable order. Instead of
reconstructing neighbored points of already known scene points, the points which have
the maximum distance to its neighbors are reconstructed. Thus, the major empty areas
of the 3D scene gets filled earlier with information.

The feature descriptor is the most critical part in our approach since it decides
whether the midpoint of a triangle could be matched correctly or not. Thus, we will
concentrate on improving the used feature descriptor or on designing a new feature
descriptor with better matching performance and lower computation expense.
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One of the problems with this approach concerns the borders of objects which are
unlikely to be reconstructed in general. Especially, with very wide baseline and thin
objects the borders of these objects are not be reconstructed very well. On that account
we will study a hybrid approach combining the proposed method and another method
for reconstructing the scene points near the borders.
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Abstract. Dynamic Time Warping (DTW) is commonly used in gesture recog-
nition tasks in order to tackle the temporal length variability of gestures. In the
DTW framework, a set of gesture patterns are compared one by one to a maybe
infinite test sequence, and a query gesture category is recognized if a warping cost
below a certain threshold is found within the test sequence. Nevertheless, either
taking one single sample per gesture category or a set of isolated samples may not
encode the variability of such gesture category. In this paper, a probability-based
DTW for gesture recognition is proposed. Different samples of the same ges-
ture pattern obtained from RGB-Depth data are used to build a Gaussian-based
probabilistic model of the gesture. Finally, the cost of DTW has been adapted
accordingly to the new model. The proposed approach is tested in a challenging
scenario, showing better performance of the probability-based DTW in compari-
son to state-of-the-art approaches for gesture recognition on RGB-D data.

Keywords: Depth maps, Gesture Recognition, Dynamic Time Warping, Statis-
tical Pattern Recognition.

1 Introduction

Nowadays, human gesture recognition is one of the most challenging tasks in computer
vision. Current methodologies have shown preliminary results on very simple scenarios,
but they are still far from human performance. Due to the large number of potential
applications involving human gesture recognition in fields like surveillance [8], sign
language recognition [10], or in clinical assistance [9] among others, there is a large
and active research community devoted to deal with this problem.

The release of the Microsoft KinectTM sensor in late 2010 has allowed an easy
and inexpensive access to synchronized range imaging with standard video data. This
data combines both sources into what is commonly named RGB-D images (RGB plus
Depth). This very welcomed addition by the computer vision community has reduced
the burden of the first steps in many pipelines devoted to image or object segmenta-
tion and opened new questions such as how these data can be effectively fused and
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described. This depth information has been particularly exploited for human body seg-
mentation and tracking. Shotton et. al [11] presented one of the greatest advances in
the extraction of the human body pose using RGB-D, which is provided as part of
the KinectTM human recognition framework. The extraction of body pose information
opens the door to one of the most challenging problems nowadays, i.e. human gesture
recognition. This fact has enabled researchers to apply new techniques to obtain more
discriminative features. As a consequence, new methodologies on gesture recognition
can improve their performance by using RGB-D data.

From a learning point of view, the problem of human gesture recognition is an ex-
ample of sequential learning. The main problem in this scenario comes from the fact
that data sequences may have different temporal duration and even be composed of
intrinsically a different set of component elements. There are two main approaches
for this problem: On the one hand, methods such as Hidden Markov Models (HMM)
or Conditional Random Fields (CRF) are commonly used to tackle the problem from
a probabilistic point of view [10], especially for classification purposes. Furthermore,
methods based on key poses for gesture recognition have been proposed [6]. On the
other hand, dynamic programming inspired algorithms can be used for both alignment
and clustering of temporal series [5]. One of the most common dynamic programming
methods used for gesture recognition is Dynamic Time Warping (DTW) [3,4].

However, the application of such methods to gesture recognition in complex sce-
narios becomes a hard task due to the high variability of environmental conditions.
Common problems are: the wide range of human pose configurations, influence of
background, continuity of human movements, spontaneity of humans actions, speed,
appearance of unexpected objects, illumination changes, partial occlusions, or differ-
ent points of view, just to mention a few. These effects can cause dramatic changes
in the description of a certain gesture, generating a great intra-class variability. In this
sense, since usual DTW is applied to compare a sequence and a single pattern, it fails
when such variability is taken into account. We propose a probability-based extension
of DTW method, able to perform an alignment between a sequence and a set of N
pattern samples from the same gesture category. The variance caused by environmental
factors is modelled using a Gaussian Mixture Model (GMM) [7]. Consequently, the dis-
tance metric used in the DTW framework is redefined in order to provide a probability-
based measure. Results on a public and challenging computer vision dataset show a
better performance of the proposed probability-based DTW in comparison to standard
approaches.

The remaining of this paper is organized as follows: Section 2presents the probability-
based DTW method for gesture recognition, Section 4 presents the results and, finally,
Section 5 concludes the paper.

2 Standard DTW for Begin-End Gesture Recognition

In this section we first describe the original DTW and its common extension to detect
a certain pattern sequence given a continuous and maybe infinite data stream. Then, we
extend the DTW in order to align several patterns, taking into account the variance of
the training sequence by means of a Gaussian mixture model.
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2.1 Dynamic Time Warping

The original DTW algorithm was defined to match temporal distortions between two
models, finding an alignment/warping path between the two time series Q = {q1, .., qn}
and C = {c1, .., cm}. In order to align these two sequences, a Mm×n matrix is de-
signed, where the position (i, j) of the matrix contains the alignment cost between
ci and qj . Then, a warping path of length τ is defined as a set of contiguous matrix
elements, defining a mapping between C and Q: W = {w1, .., wτ}, where wi in-
dexes a position in the cost matrix. This warping path is typically subjected to several
constraints:

Boundary conditions: w1 = (1, 1) and wτ = (m,n).
Continuity and monotonicity: Given wτ ′−1 = (a′, b′), then wτ ′ = (a, b), a− a′ ≤ 1

and b − b′ ≤ 1, this condition forces the points in W to be monotonically spaced in
time.

We are generally interested in the final warping path that, satisfying these conditions,
minimizes the warping cost:

DTW (M) = min
w
{M(wτ )} , (1)

where τ compensates the different lengths of the warping paths. This path can be found
very efficiently using dynamic programming. The cost at a certain position M(i, j)
can be found as the composition of the Euclidean distance d(i, j) between the feature
vectors of the sequences ci and qj and the minimum cost of the adjacent elements of
the cost matrix up to that point, i.e.:

M(i, j) = d(i, j) + min{M(i− 1, j − 1),M(i− 1, j),M(i, j − 1)}. (2)

Given the streaming nature of our problem, the input vector Q has no definite length
and may contain several occurrences of the gesture pattern C. At that point the system
considers that there is correspondence between the current block k in Q and a gesture
if satisfying the following condition, M(m, k) < μ, k ∈ [1, ..,∞] for a given cost
threshold μ.

This threshold value is estimated in advance using leave-one-out cross-validation
strategy. This involves using a single observation from the original sample as the vali-
dation data, and the remaining observations as the training data. This is repeated such
that each observation in the sample is used once as the validation data. At each iteration,
we evaluate the similarity value between the candidate and the rest of the training set.
Finally we choose the threshold value which is associated with the largest number of
hits.

Once detected a possible end of pattern of gesture, the working path W can be found
through backtracking of the minimum path from M(m, k) to M(0, z), being z the
instant of time in Q where the gesture begins. Note that d(i, j) is the cost function
which measures the difference among our descriptors Vi and Vj .

An example of a begin-end gesture recognition together with the warping path esti-
mation is shown in Figure 2.
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3 Handling Variance with Probability-Based DTW

Consider a training set of N sequences {S1, S2, . . . , SN}, where each Sg represents
a sample of the same gesture class. Then, each sequence Sg composed by a set of
feature vectors at each time t, Sg = {sg1, . . . , s

g
Lg
} for a certain gesture category, where

Lg is the length in frames of sequence Sg . Let us assume that sequences are ordered
according to their length, so that Lg−1 ≤ Lg ≤ Lg+1, ∀g ∈ [2, .., N − 1], the median
length sequence is S̄ = S�N

2 �. This sequence S̄ is used as a reference, and the rest of
sequences are aligned with it using the classical Dynamic Time Warping with Euclidean
distance [3], in order to avoid the temporal deformations of different samples from the
same gesture category. Therefore, after the alignment process, all sequences have length
L�N

2 �. We define the set of warped sequences as S̃ = {S̃1, S̃2, . . . , S̃N}. Once all
samples are aligned, the features vectors corresponding to each sequence element at a
certain time t s̃t are modelled by means of an G−component Gaussian Mixture Model
(GMM) λt = {αk, μk, Σk}, k = 1, . . . , G, α is the mixing value and μ and Σ are
the parameters of each of the G Gaussian models in the mixture. The underlying reason
of choosing a GMM instead of a single Gaussian follows from the definition of the
problem, where an arbitrarily large number of samples {S1, S2, . . . , SN} is available.
In this sense, in order to accurately model the feature vectors a GMM seems a more
powerful way to model the variability than a single Gaussian. As a result, each one of
the GMMs that model each component of a gesture pattern s̃t is defined as follows:

p(s̃t) =

G∑
k=1

αk · e−
1
2 (x−μk)

T ·Σ−1
k

·(x−μk). (3)

The resulting model is composed by the set of GMMs that model each one of the com-
ponent elements among all warped sequences of a certain gesture class. An example of
the process is shown in Figure 1.

3.1 Distance Measures

In the classical DTW, a pattern and a sequence are aligned using a distance metric, such
as the Euclidean distance. Since our gesture pattern is modelled by means of probabilis-
tic models, if we want to use the principles of DTW, the distance needs to be redefined.
In this paper we consider a soft-distance based on the probability of a point belonging
to each one of the G components in the GMM, i.e., the posterior probability of x is

obtained according to (3). In addition, since
k∑
1
αk = 1, we can compute the probability

of an element q ∈ Q belonging to the whole GMM λ as the following:

P (q, λ) =
M∑
k=1

αk · P (q)k, (4)

P (q)k = e−
1
2 (q−μk)

T ·Σ−1
k ·(q−μk), (5)
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Fig. 1. (a) Different sample sequences of a certain gesture category and the mean length sample.
(b) Alignment of all samples with the mean length sample by means of Euclidean DTW. (c)
Warped sequences set S̃ from which each set of t-th elements among all sequences are modelled.
(d) Gaussian Mixture Model learning with 3 components.
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which is the sum of the weighted probability of each component. An additional step is
required since the standard DTW algorithm is conceived for distances instead of simi-
larity measures. In this sense, we use a soft-distance based measure of the probability,
which is defined as:

D(q, λ) = e−P (q,λ). (6)

In conclusion, possible temporal deformations of the gesture category are taken into
account by aligning the set of N gesture sample sequences. In addition, modelling with
a GMM each of the elements which compose the resulting warped sequences, we obtain
a methodology for gesture detection that is able to deal with multiple deformations in
data. The algorithm that summarizes the use of the probability-based DTW to detect
start-end of gesture categories is shown in Table 1. Figure 4 illustrates the application
of the algorithm in a toy problem.

λl

{ωl
i, μ

l
i,Σ

i
i}, i ∈ [1, 2, 3]

1 ∞

L
gesture start gesture end

Q

Fig. 2. Begin-end of gesture recognition of a gesture pattern in an infinite sequence Q using the
probability-based DTW. Note that different samples of the same gesture category are modelled
with a GMM and this model is used to provide a probability-based distance. In this sense, each
cell of M will contain the accumulative D distance.
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Table 1. Probability-based DTW algorithm

Input: A gesture model C = {c1, .., cm} with corresponding GMM models λ =
{λ1, .., λm}, its similarity threshold value μ, and the testing sequence Q =
{q1, .., qv}. Cost matrix Mm×v is defined, where N (x), x = (i, t) is the set of
three upper-left neighbor locations of x in M .

Output: Working path W of the detected gesture, if any.
// Initialization
for i = 1 : m do

for j = 1 :∞ do
M(i, j) = v

endend
for j = 1 : v do

M(0, j) = 0
end
for t = 0 : v do

for i = 1 : m do
x = (i, t)
M(x) = D(qt, λi) + minx′∈N (x)M(x′)

end
if M(m, t) < ε then

W = {argminx′∈N (x)M(x′)}
return

end
end

4 Experiments

In order to present the experiments, we discuss the data, methods and evaluation
measurements.

4.1 Data

The data source used is the ChaLearn [2]1 data set provided from the CVPR2012 Work-
shop challenge on Gesture Recognition. The data set consists of 50,000 gestures each
one portraying a single user in front of a fixed camera. The images are captured by the
KinectTM device providing both RGB and depth images. The data used (a subset of
the whole) are 20 development batches with a manually tagged gesture segmentation.
Each batch includes 100 recorded gestures, grouped in sequences of 1 to 5 gestures
performed by the same user. For each sequence the actor performs a resting gesture
between each gesture of the gestures to classify. For this data set, we performed back-
ground subtraction based on depth maps, and we defined a 10×10 grid approach to
extract HOG+HOF feature descriptors per cell, which are finally concatenated in a full

1 http://gesture.chalearn.org/data/data-examples

http://gesture.chalearn.org/data/data-examples
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(a) (b)

Fig. 3. Sample a) depth and b) RGB image for the ChaLearn database

image (posture) descriptor. In this data set we will test the recognition of the resting
gesture pattern, using 100 samples of the pattern in a ten-fold validation procedure. An
example of the ChaLearn dataset is shown in Figure 3.

4.2 Methods and Evaluation

We compare the usual DTW and Hidden Markov Model (HMM) algorithms with our
probability-based DTW approach using the proposed distance D shown in (6). The
evaluation measurements are the accuracy of the recognition and the overlapping for
the resting gesture (in percentage). We consider that a gesture is correctly detected if
the overlapping in the resting gesture sub-sequence is grater than 60% (a standard over-
lapping value). The cost-threshold for all experiments was obtained by cross-validation
on training data, using a 5-fold cross-validation, and the confidence interval was com-
puted with a two-tailed t-test. Each GMM in the probability-based DTW was fit with
k = 4 components, this value was obtained using a 2-fold cross-validation procedure on
training data. For HMM, it was trained using the Baum-Welch algorithm, and 3 states
were experimentally set for the resting gesture, using a vocabulary of 60 symbols com-
puted using K-means over the training data features. Final recognition is performed
with temporal sliding windows of different wide sizes, based on the training samples
length variability.

Table 2 shows the results of HMM and the classical DTW algorithm, in comparison
to our proposal on the ChaLearn dataset. We can see how the proposed probability-
based DTW outperforms the usual DTW and HMM algorithms in both experiments.
Moreover, confidence intervals of DTW and HMM do not intersect with the probability-
based DTW in any case. From this results we can observe how performing dynamic
programming increases the generalization capability of the HMM approach, as well as
a model defined by a set of GMMs outperforms the classical DTW [3] on RGB-Depth
data without increasing the computational complexity of the method.
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Fig. 4. Examples of resting gesture detection on the Chalearn dataset using the probability-based
DTW approach. The line below each pair of depth and RGB images represents the detection of a
resting gesture.

Table 2. Overlapping and Accuracy results of different gesture recognition approaches

Overlap. Acc.
Probability-based DTW 39.08± 2.11 67.81±2.39

Euclidean DTW 30.03±3.02 60.43± 3.21
HMM 28.51±4.32 53.28±5.19

5 Conclusions and Future Work

In this paper, we proposed a probability-based DTW for gesture recognition on RGB-
D data, where the pattern model is learned from several samples of the same gesture
category. Different sequences were used to build a Gaussian-based probabilistic model
of the gesture whose possible deformations are implicitly encoded. In addition, a soft-
distance based on the posterior probability of the GMM was defined. The novel ap-
proach has been successfully applied on a public RGB-D gestures dataset, being able to
deal with multiple deformations in data, and showing performance improvements com-
pared to the classical DTW and HMM approaches. In particular, the proposed method
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benefits from both the generalization capability from the probabilistic framework, when
several observations of the training data are available, and the temporal warping capa-
bility from dynamic programming.

Future work lines include, between others, the inclusion of samples with different
points of view of the same gesture class, the analysis of state-of-the-art one-class clas-
sifiers in order to obtain a performance improvement, and the definition of powerful
descriptors to obtain gesture-discriminative features.
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Abstract. The violin is one of the most beautiful but also one of the most diffi-
cult musical instruments for a beginner. This paper presents an on-going work 
about a new augmented reality system for training how to play violin. We pro-
pose to help the players by virtually guiding the movement of the bow and the 
correct position of their fingers for pressing the strings. Our system also recog-
nizes the musical note played and the correctness of its pitch. The main benefit 
of our system is that it does not require any specific marker since our real-time 
solution is based on a depth camera. 

Keywords: Augmented Reality, Marker-Less, Violin Pedagogy, Depth Camera. 

1 Introduction 

Learning how to play violin is very difficult for a novice player. Unlike the guitar, the 
violin has no frets or marks to help the finger placement. Violinists also have to main-
tain a good body posture for the bowing movement. Some studies state that a player 
needs approximately 700 hours to master the basics of violin bowing [1]. 

Some methods have been introduced to help this learning process. MusicJacket [2] 
is a wearable system with a vibrotactile feedback that guides the player’s movements. 
However, we consider that wearing such specific device limits the ease of the players 
since they will not practice under normal conditions. Moreover, this approach does 
not support the fingering teaching. 

Augmented reality technology has the benefit to be non-intrusive and has conse-
quently been applied to musical instrument learning. Motokawa and Saito [3] pro-
posed a guitar support system that displays a computer-generated model of a hand. It 
helps the player for finger placement and overlays lines where to press the strings. 
However this kind of approach is using markers [4] added onto the instrument which 
makes it not robust to occlusions. The limits of markers can be overcome by using 
feature point detectors such as SIFT [5]. Although, the surface of the violin is very 
reflective and uniform which will provide a small number of unstable features that is 
not adapted for our system. Moreover, feature point detectors are often not robust to 
illumination changes. 

In this on-going research, we proposed a marker-free system using augmented  
reality for violin pedagogy. It teaches the player where to correctly press the strings 
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on the fingerboard and how to perform the bowing movement by displaying virtual 
information on a screen. At the same time, our system analyses the musical note 
played and the correctness of its pitch (frequency of the sound). In this paper, we are 
aiming at presenting a technical description of our system and not yet focusing on the 
benefits of its pedagogic side. 

We removed the constraint of markers and detectors by including a depth camera 
that capture the depth information from a scene in real-time. We take advantage of the 
classic Iterative Closest Point (ICP) algorithm [6] for estimating the pose of the violin 
based on a pre-reconstructed 3-D model. We also use the human body tracking  
capability of the depth camera for teaching novice player how to correctly manipulate 
the bow. 

The remainder of the paper is structured as follows: Section 2 briefly gives an 
overview of our system. The detection and segmentation of the violin is presented in 
Section 3. In Section 4, we explain how we perform the real time tracking of the vio-
lin by taking advantage of several models stored in a database. Our approach for ana-
lysing and advising the bow movements is presented in Section 5. Section 6 details 
how we display the virtual information. Finally, in Section 7 and 8, we present  
quantitatively our results and our future extensions. Please note that we have not yet 
perform any user based studies, which will be organized in the future. 

 

Fig. 1. The violinist is captured by a depth camera located over the screen that is a suitable 
position for both tracking and feedback processing. Virtual advice is displayed on a screen. 

2 Overview of Our Learning System 

Our system is based on Kinect1, a depth camera that captures in real-time a colour 
image and its corresponding depth information. The depth information can easily be 
converted into a 3-D point cloud using internal parameters of the camera. The violin 
and the player are extracted from both of these images and analysed for estimating 
their pose in the 3-D space. Our learning approach is made of two parts: the first one 
focuses on the finger position, while the second tries to improve the bowing technique 
of the player. Virtual information for both approaches is displayed on a screen.  

In the first case, our system displays the captured violin from a constant viewpoint 
(even if the player moves, the violin is presented from always the same viewpoint on 

                                                           
1 www.kinectforwindows.org 
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the screen) with the virtual frets and emphasized strings. In the second case, we dis-
play a full view of the player with a virtual skeleton overlaid and containing specific 
tags located on the bowing arm bones. Meanwhile, a microphone captures the notes 
played by the violinist that are analysed for further virtual advice. An overview of our 
system is presented in Fig. 1.  

3 Detection and Extraction of the Violin 

To be able to display the virtual guides onto the violin, we need to detect and extract 
it from each input video frame. Based on this segmentation, we aim at computing the 
pose of the violin in the 3-D coordinate system, the same for which the virtual data 
have been defined. Our main constraint is to perform all those stages without the help 
of markers that give poor results with this setup. 

3.1 Colour-Based Segmentation of the Violin 

A common approach for detecting objects [7] like a violin is to segment the image 
based on the colour. Usually, a violin is characterized by its almost uniform brown 
surface. We base our segmentation on this fact. The segmentation is performed into 
the HSV colour space for avoiding miss-detection when the lighting condition slightly 
changes. The result presented in Fig. 2.a shows the limitations of this approach. This 
simple segmentation does not extract the fingerboard and other dark areas of the vio-
lin. Also, several parts of the surface are missing because of the specular reflections. 

However, adding these dark and bright colours as candidates for the detection will 
result in a very noisy segmentation. For all those reasons, we extended the colour 
segmentation to the 3-D space by using the depth data. 

                  (a)                                      (b) 

Fig. 2. (a) presents the rough segmentation of the violin based only on the colour information. 
(b) is the result of our segmentation using also the depth information. 
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3.2 Extension of the Segmentation with the Depth Information 

To obtain the missing parts of the violin, we propose to also consider the depth data. 
Our idea is to base our segmentation on the general dimensions of a violin (about 
600x155x30mm). Using the depth data from Kinect, we can get the 3-D coordinates 
corresponding to each of the pixels extracted during the colour segmentation. A vol-
ume with the same dimensions as a typical violin is then aligned with those points. 
The goal of this extended segmentation is to keep all the 3-D points inside of this 
volume as a result of our segmentation. 

The main problem is to find the correct alignment of the volume with the segmented 
3-D points. Firstly, we propose to compute the principal orientation describing the  
surface. It can also be represented as the plane that fits the maximum number of 3-D 
points. Second, we randomly select 3 points from which a planar equation is deduced and 
estimate the number of 3-D points resulting as inliers. This process is iteratively  
conducted as a RANSAC process until we found the maximum number of inliers. 

We use the resulting plane equation for orientating the 3-D segmentation volume. 
The position of the volume is defined by computing the centroid of the points from 
the colour based segmentation. The improvement of the segmentation based on the 
depth information is presented in Fig. 2.b. Several other results are depicted in Fig. 3.  

 

Fig. 3. Results of the colour plus depth based segmentation. Even specular and occluded parts 
are correctly segmented. 

4 Tracking of the Violin 

Displaying the virtual advice requires knowing where the violin is located according 
to a basis in which we defined the virtual objects, such as the frets. We then propose a 
method to robustly compute this rigid transformation in real time. 

4.1 Tracking of the Violin 

For the tracking, we estimate the pose that transforms the extracted violin to a pre-
computed 3-D model of this violin. This transformation is computed using the ICP [6] 
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algorithm. This algorithm iteratively searches for each point of an input point cloud 
the closest point in a target point cloud. The rigid transformation (rotation and transla-
tion) is then computed with least-squares methods like described in [8, 9]. Our experi-
ence of the ICP algorithm suggests that a 3-D model defined with too many points 
will lead to a high computational time. Conversely, a 3-D model described with not 
enough points will decrease the accuracy of the pose estimation. We decided to use 
multiple models stored into a database instead of a single one detailed for optimizing 
the effectiveness of the pose estimation during the tracking phase. 

During the tracking stage, we compute the plane equation from the current view of 
the violin. This information is compared with each of the models from the database 
and the closest solution is retained based on the difference of orientation. We then 
apply the ICP algorithm to evaluate the rigid transformation. The comparison with a 
specific model has also the advantage to provide a good initial guess of the transfor-
mation and, consequently, a faster convergence. Thanks to this approach, we are able 
to get the result of our tracking in real time. 

4.2 Creation of the Database 

As explained in the previous section, we are using a database to store the models used 
for the computation of the rigid transformation. During an offline stage, we capture 
the violin from multiple viewpoints. We tried mainly to capture the front face of the 
violin since it is the side that will be the mostly observed during the tracking. As  
explained in previous sections, we extract the violin and compute the plane equation 
corresponding to its surface. 

Based on this information, we search in the database for a similar view by compar-
ing the plane equations. If there is no result (difference of five degrees) then the can-
didate is added to the database. We follow this process to store up to 25 models, 
which is enough for capturing most of the surface and sides of the violin. 

This offline stage is also used to create a detailed model of the violin by using the 
models from the database. It is used to define manually the position of the fret and 
other virtual data on the violin. The transformation between this full model and the 
other models is also stored in the database to be able to easily display the virtual  
advices on the screen.  

5 Further Analysis for Bowing Advices 

Tracking the violin is necessary for advising the player about the position of the  
finger, but hardly helps about the bowing technique. We then propose to track the 
position of the bowing arm and to analyse the sound produced by the movement of 
the bow on the string for advising about the position of the bow. 

5.1 Tracking of the User 

Playing violin requires a prefect movement of the bow that is difficult skill difficult to 
acquire. We propose to advise the novice violinists about the movements of their bow 
by comparing their gesture with the one from an accomplished player. 
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Our approach uses the skeleton tracking [10] included in OpenNI2 to capture the 
movements from both the novice and the experimented players. It detects and tracks 
in real-time the different parts of the body and deduces from it a skeleton (joints and 
bones) defined in the 3-D space. The “skilled 3-D skeleton” movements are captured 
beforehand and replayed during the learning stage. However, the skeletons may not 
directly match since the novice and the skilled players probably do not have the same 
body morphology. Our solution is to align the skilled skeleton to the novice’s one by 
orienting and scaling the axis of shoulders. In that case, the shoulder of the bowing 
arm will correspond (position and orientation) for both of the skeletons. Finally, we 
scale the shoulder-elbow and elbow-hand bones from the skilled skeleton to match the 
size of the novice bones. 

5.2 Sound Analysis 

By visualizing the virtual frets and strings, the player can understand where to press to 
play the violin. However, it remains difficult to know if the bow was correctly placed 
on the string. Considering that the player correctly presses the string based on the 
virtual fret, our idea is to analyse the sound produced to modify the position of  
the bow. We use a spectrum analyser3 based on a wavelet transformation to analyse 
the violin’s sound and to evaluate the accuracy of the pitch in cent unit (1 cent unit 
represents a change of tone). By asking the user to play a given note and showing 
where to press the strings, we can compare the sound obtained with the expected one. 
The result of this comparison is then used to modify the position of the bow. 

6 Augmented Reality Based Learning Support 

6.1 Bowing Support 

The players start this learning stage by selecting the string on which they want to 
practice. Then they need to follow the movements of the skilled violinist that we pre-
viously recorded. The parts of the bowing arm (shoulder, elbow and hand) have been 
emphasized with big dots. The dots from the skilled movement are coloured in red 
while the dots from the novice player are in white. Fig. 4 shows a view of our bowing 
support system. 

We compare the position of the player’s hand and elbow with the one from the 
skilled skeleton in the 3-D. If the distance is correct then an “OK” mark is displayed. 
Otherwise a “NG” mark is displayed. Shoulders are not considered since they  
are supposed to be at the same position for both skeletons. By persevering at main-
taining the “OK” position, the player might be able to improve his skills when using 
the bow. 

                                                           
2 http://www.openni.org 
3 http://www.fmod.org/ 
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Fig. 4. The bowing support emphasized the elbow and the hang of the bowing arm. If the posi-
tion differs from the pre-recorded movement then a message is displayed. The white point 
represents the align shoulder point between both skeletons. Greens points are the skeleton the 
player should follow, while the red and blue dots define the current position of the elbow and 
hand of the player. 

6.2 Displaying the Frets 

Our proposed system can teach where to place the finger on the neck of the violin  
by adding virtual frets and emphasizing the strings. The string and the fret that the 
violinist needs to press are displayed using respectively a red line and a red dot. Fig. 5 
presents the virtual information overlaid onto the violin. 

 

Fig. 5. Left side: The string that the player needs to press is in red. Right side: The fret that has 
to be pressed is marked with a red dot. 

We decided to display the violin on the screen always from the same viewpoint. So 
even if the player moves the violin, it remains stable on the screen. This should allow 
the user to easily find the useful information on the screen since the virtual frets and 
strings will always be located at the same position.  
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6.3 Virtual Advice Based on Sound Analysis 

If we consider that the player is correctly pressing the strings based on information 
provided by the virtual fingerboard then the goal of the sound analysis is to give ad-
vices about the position of the bow. Examples of our learning stage using the pitch’s 
accuracy of the note played is depicted in Fig. 6. If the player applies the bow at the 
correct position then an “OK” mark is displayed. Otherwise, if the difference of pitch 
is too low or too high, then the corresponding “Low” or “High” marks are displayed. 
In this latest case, a green arrow is also shown to indicate to the player the direction 
where the bow has to be moved to get the correct pitch. 

 

Fig. 6. Information is displayed to advise the position of the bow on the strings depending on 
the correctness of the pitch 

7 Results 

Experiments were performed on an “Intel Core2 DUO 2.80GHz” PC. We measured 
an average computational time of 21ms (~45 frames per second) that is suitable for a 
real-time rendering. For this experiment, we first evaluated the accuracy of our track-
ing approach based on ICP. We compared it with the AR-Toolkit marker tracking 
while trying to avoid occlusions of the markers. We added four markers on the body 
of the violin and pre-computed the sub-models based with it. During the online phase, 
we compute the rigid transformation between the first sub-model and the segmented 
violin using our approach and using the marker-based approach. Considering the 
marker-based transformation as the ground truth, we had the results presented in Ta-
ble 1. Even if our results seem a little bit less accurate, our approach has still the bene-
fit to be robust against occlusions. 
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Table 1. Evaluation of our tracking compared to the ground truth. It shows the rigid 
transformation matrix decomposed in three rotations and one translation. 

 Rx(deg) Ry(deg) Rz(deg) T(mm) 

Minimum error 0.12 0.25 0.20 0.22 

Maximum error 13.29 8.27 7.89 32.1 

Average error 3.07 2.69 2.78 7.20 

We also evaluated the accuracy of the virtual frets’ position. Each fret has a corre-
sponding pitch, so by pressing the strings we expect to obtain a similar pitch. For this 
experiment, we measured the correctness of the pitch when a skilled player (to ensure 
a correct manipulation of the bow) was using the virtual frets. Table 2 presents the 
results of this experiment for each fret where a difference of pitch closes to zero 
means that the accuracy is good (knowing that a value of 100 means that the tone is 
changed). These results show that the position of the frets is almost correct since the 
tone of the played note will be the expected one. 

Table 2. Difference of pitch (in cent unit) 

Fret  
number 

1 2 3 4 5 6 7 8 9 Average 

Difference 
of pitch 

11.1 14.1 12.0 12.4 13.4 15.8 12.8 13.9 19.2 13.8 

8 Conclusions 

We have presented the technical part of our on-going work on a marker-free aug-
mented reality system for assisting the novice violinists during their learning. Thanks 
to a depth camera, we are able to advise the player on his fingering and bowing tech-
niques by displaying virtual information on a screen. 

Our next step is to perform a user based study with novice and skilled players to 
confirm our choices or improve it. We are also working on a see-through HMD ver-
sion of our system for a better view of the virtual information directly on the violin. 
Finally, we are thinking about applying our system on different musical instruments, 
like the Japanese shamisen, that also does not have frets.  
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Abstract. We propose a method to observe cardiac beat from 3D shape infor-
mation of body surface by using grid-based active stereo, and report prelimi-
nary experiments to evaluate validities of the proposed method. By comparing 
results of our proposed with those of electrocardiogram (ECG), we confirmed 
sufficient correspondences between peak intervals of inter-frame depth changes 
measured by the active stereo and R-R intervals measured by ECG. We tried 
the visualization of the spatial distribution of inter-frame depth change plotted 
on the 3D shape of chest region. And, the shape change by cardiac beat is main-
ly found on the left side of the chest region. 

Keywords: Active stereo, Cardiac beat measurement, Non-contact physiological 
measurement. 

1 Introduction 

Some researchers proposed cardiac beat measurement without contact by applying the 
thermal imaging [1] and the microwave reflectometry [2] in order to decrease the 
discomfort of examinees by attaching sensing devices on their body. These methods 
need expensive measurement devices. Novel measurement method by using webcam 
was proposed as feasible solution with low-cost devices [3]. However, in this method, 
it is considered that the cardiac rate can be measured, but the waveform of cardiac 
beat cannot be measured accurately.   

Hence, we propose a non-contact measurement of cardiac beat by applying a 3D 
measurement method based on active stereo. In the method, minim shape change of 
chest wall caused by cardiac movement. We consider that non-contact cardiac beat 
measurement by 3D image sensor has one advantage of obtaining spatial distribution 
of cardiac beat. We expect that the spatial distribution of cardiac beat change enable 
us to assess the cardiac function.  

The active stereo systems that consist of cameras and video projectors have been 
widely used for 3D measurements. However, determining correspondences between 
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the projected 2D pattern and the captured image is a difficult problem. A stable solu-
tion that produces precise results is projecting multiple patterns (e.g., Gray code  
patterns [8], or phase shift methods [9]).  

The active stereo using static-pattern light projection are suitable for capturing 
moving objects and have been widely researched [4, 5, 8, 12]. The methods are  
usually categorized into two types: temporal-encoding methods and spatial-encoding 
methods. Since a spatial-encoding method just requires a single input for reconstruc-
tion (a.k.a. one-shot scan), it is ideal to capture moving objects with high rate.  
Therefore, many researches have been involved in spatial-encoding methods [13]. 
However, since they require certain areas to encode information on object surfaces, 
the resolution tends to be low and reconstruction becomes unstable. 

One of the approaches to encode information in efficient ways is to use a color 
code. By using multiple colors, multiple bits of information can be assigned to each 
pixel of the camera image. A color-based coding is suitable for spatial encoding [5, 6, 
10, 14, 15]. However, it has some limitations and problems. The surface of the target 
objects must sufficiently reflect each color of the pattern. And, since the RGBs of off-
the-shelf video projectors have overlapped spectral distribution, errors in determining 
colors of pixels are inevitable. To avoid those problems, several methods are pro-
posed for efficient spatial encoding without using colors, such as dot patterns or grid 
patterns. Even though, there still remain several problems, i.e., ambiguities on corres-
pondences and sparse reconstruction.  

In this paper, we apply a new one-shot scanning method proposed by us [16] for 
making measurement of minute change in body surface caused by cardiac movement. 
The method uses an active stereo with a wave grid pattern that consists of vertical and 
horizontal sinusoidal lines. From each image captured by a high-frame-rate camera, 
3D shape is reconstructed using multiple epipolar constraints of a connected grid 
pattern [4]-[7]. By using multiple epipolar constraints and continuity of a grid  
patterns, these types of methods have sufficient stability and density of measurement 
points. 

We also made preliminary experiments about our proposed cardiac measurement 
and evaluated the validity of the measurement. 

2 System Configuration 

The 3D measurement system used in the present work consists of a camera and a 
projector (Fig. 1(a)). Parameters of the camera and the projector such as the focal 
length, aspect ratio, or angle of view are assumed to be known by calibration. The 
system uses a static pattern emitted from the projector, and no synchronization is 
required between the camera and the projector.  

The projector casts a static pattern, which is shown in Fig. 1(b), on the target sur-
face. The pattern is configured with vertical and horizontal sinusoidal curves to create 
grid shape (details are described in next section). And, it is captured as a series of 
images by the camera. By processing the images frame by frame, the dynamic shape 
of the target surface is reconstructed. Since the projected pattern is static with single 
color, no synchronization is required, high frame rate scanning is possible. 
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Fig. 2. Algorithm of 3D shape reconstruction 

explicitly encoding the positional information of a structured light, the proposed  
pattern implicitly gives information which can make the order on the candidates of 
corresponding points. 

To obtain unique correspondences between the camera and projector images by 
spatial encoding, a complicated pattern of large window size have been required in 
previous methods. Moreover, while the wider baseline is desirable to improve accura-
cy, the observed pattern will be more distorted, which makes it difficult to decode the 
pattern in practical cases. Therefore, we use a simple but informative pattern that is 
easy to detect and decode.  

In this paper, we apply a pattern that gives information which can make the order 
on the candidates of corresponding points rather than get the unique correspondence 
through decoding process. The proposed pattern consists of vertical and horizontal 
directions of wave lines, which forms a grid pattern. Because each wave line is sim-
ple, it is easy to detect curves, and the position of a curve can be calculated in sub-
pixel accuracy by detecting peaks of intensities of the curve. 

The wave line is a sinusoidal pattern, which is periodic and self-recurring. The grid 
of wave lines, however, can give information for finding correspondences. In the 
method the intersection points of vertical and horizontal wave lines are used as feature 
points. The arrangement of intersection points is determined by the intervals and the 
wavelength of the wave lines. In the method, we use the same interval and wave-
length for all the vertical and horizontal wave lines. However, as described in the 
following, because the interval of the vertical wave lines is not equal to the integral 
multiple of the horizontal wavelength, the intersection points appear at the different 
phases on the wave pattern; it means that the local pattern around an intersection point 
has local uniqueness, and it can be used as a discriminative feature. In this paper, we 
also use ‘wave patterns’ to refer to the wave lines. 

 
 

Capture image

Curve detection and construction
of graph from intersections

Calculation of data term for
candidates of intersection

Labeling of intersection 
using Belief Propagation

Interpolation all the pixels by 
minimizing re-projection error

3D shape reconstruction



150 H. Aoki et al. 

 

 

Fig. 3. Parameters of wave grid: Sx and Sy are the intervals between adjacent wave lines, Wx and 
Wy arethe wavelengths of a wave line, Ax and Ay are the amplitudes of waves with respect to 
vertical and horizontal lines, respectively 

 

               (a)                                (b) 

Fig. 4. (a) input image, (b) detected grid 

The local pattern around an intersection point is not globally-unique in the whole 
pattern and periodic. Therefore, the same pattern occurs at every Nx and Ny wave 
lines along the horizontal and vertical axes, where Nx = LCM(Sx, Wx) / Sx, Ny = 
LCM(Sy, Wy) / Sy where LCM(a, b) is the least common multiple of a and b. Hereaf-
ter, subscript letter x means the symbol describes values about horizontal axis, and y 
about vertical axis. Sx and Sy are the intervals between adjacent wave lines, and Wx 
and Wy are the wavelengths, as shown in Fig.3. The patterns, however, can be discri-
minative in each cycle.  

In stereo matching, the candidates of corresponding points are restricted to the 
points on the epipolar line, as shown in Fig. 5. If an intersection point is located with-
in a certain distance from the epipolar line, it is chosen as a candidate. The number of 
candidates depends on the position of intersection points in the camera image. Since 
the candidates are sparsely located in the projector image, the number of candidates is 
much smaller than the case of usual pixel-based stereo without restricting the search 
range. 
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Sy Wy

Wx

2Ay
2Ax
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Fig. 5. The rectangular patch around a grid point is re-projected onto the projector’s image 
plane to correspond the grid point with candidates by calculating matching costs 

To find the best combinations of correspondences, a new optimizing method using 
regularization with matching cost of local patterns is introduced. In the method, the 
grid of wave patterns is detected by curve detection shown in Fig.4. The 3D shape 
reconstruction can be understood as an extension of a pixel-based stereo method for a 
camera-pair system to a grid-based stereo for a projector-camera system. With this 
method, as long as connected curves are detected on captured image, global optimiza-
tion can be realized. And, to solve a sparse reconstruction because of grid pattern, we 
propose a (quasi-)pixel-wise interpolation and optimization technique based on image 
matching to estimate depth for all the pixels. 

First, we calculate the matching costs for all the candidates as the data term for 
energy minimization. The cost is computed by Sum of Squared Differences (SSD) 
between the captured image and the projector image. Though, since the position of a 
grid point has some error and the pattern observed by the camera is distorted by the 
surface geometries, the simple SSD with rectangular patch is unsuitable for the data 
term. Therefore, we use the tangent plane of patch around the grid point to calculate a 
better matching cost and determine the correspondence with each candidate in sub-
pixel accuracy.  

The correspondences for sparse grid points are obtained by the grid-based stereo. 
The next step is to obtain dense correspondences by using all the pixels. We first cal-
culate depth values of densely resampled pixels by interpolating the grid points using 
estimated local planes of surrounding grid points for each pixel. Then, the densely 
resampled depth values are optimized by minimizing the difference of intensity for all 
the pixels between camera image and projector image. In this work, independent 
depth estimation for each pixel is achieved by (quasi-)pixel-wise optimization based 
on photo-consistency. 
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Fig. 6. Extraction of vital sign: Cardiac beat component and respiration component is extracted 
by applying FFT filter 

3.2 Cardiac Beat Detection 

Cardiac beat is extracted from time-series change of the point cloud reconstructed by 
above mentioned method. Since the reconstructed shapes are consist of unorganized 
vertices, it is not a simple process to compute the inter-frame correspondences for 
obtaining the time sequence of shapes. To obtain inter-frame correspondences, the 
point cloud is re-sampled at fixed 2D grid points arranged in xy-coordinates, where 
the z-coordinate of the re-sampled points are the depth values from the camera (here, 
it is assumed that the front direction from the camera is the z-axis). Then, the vertices 
sampled at the same xy-coordinate are set to be a set of corresponding points. In the 
algorithm for re-sampling the point cloud, 3D shape interpolation at the fixed xy-
coordinates is required. In this work, Delaunay triangulation with linear interpolation 
was used to get the interpolated vertices [11]. 

Then, the time-series dataset of the depth change between frames in each re-sample 
vertices is computed. As shown in Fig. 6, the waveform of the time-series dataset is 
very noisy because of the camera image noise caused by image capture with high 
speed rate. However, by applying FFT band-pass filter which passes 0.4-5 Hz to the 
waveform of inter-frame depth change, the cardiac beat component is extracted. Here, 
the inter-frame depth change means the difference of depth between current frame (t) 
and previous frame (t-1). In a similar way, by applying the FFT low-pass filter which 
passes below 0.4 Hz to the inter-frame change of depth, respiration component is 
extracted. 

4 Experiment and Results 

Actual measurement by experimental system is executed to examine the validity of 
our proposed method. In experimental system, the SILICON VIDEO® monochrome  
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Fig. 8. Reconstructed point cloud and re-sampled point cloud 

 

Fig. 9. Reconstructed 3D shape of chest region 

 

Fig. 10. Raw waveform and the bandpass-filtered waveform 

Z [m]

X [m]

Y
 [

m
]

Z [m]

Reconstructed point cloud
Re-sampled point cloud

Close up

0 10 20 30

Time [sec]

-0.00012

-8E-005

-4E-005

0

4E-005

8E-005

0.00012

In
te

rf
ra

m
e 

ch
an

ge
 o

f 
de

pt
h 

[m
/f

ra
m

e]

Raw waveform
Low-pass filtered waveform (<0.4Hz)
Band-pass filtered waveform (0.4-5 Hz)

Breath holding Normal Breathing



 Extraction and Visualization of Cardiac Beat by Grid-Based Active Stereo 155 

 

 

Fig. 11. Simultaneous measurement by our proposed method and ECG 

We examine the relationship between the periodicity of the filtered waveform by si-
multaneous measurement with ECG. The compact-type wireless ECG logger manufac-
tured by LOGICAL PRODUCT CORPORATION is conducted in the simultaneous 
measurement. The electrodes of ECG are set on left breast region of the examinee.  
As shown in Fig. 10, the R peaks in the ECG waveform basically correspond the peaks 
of inter-frame depth change measured by our system. Especially, there is sufficient cor-
respondence during breath holding. Both peaks correspond during a large part of normal 
breathing, although unstable waveform appears in the inter-frame depth change during 
the early part.  

The relationship between R-R interval of ECG waveform and peak interval of in-
ter-frame depth change waveform is examined by the Bland-Altman plot, as shown in 
Fig. 12. Here, the R-R interval means the peak interval between continuing two R-
peaks. The 95% coefficient interval (95%CI) in normal breathing is 0.001236+/-
0.03830. And, 95%CI in breath holding is -0.005383+/-0.02561. This plot suggests 
that there is sufficient correspondence between both peak intervals, and is not severe 
systematic error. The value of difference in breath holding is smaller than in normal 
breathing. Therefore, we think that respiratory body movement influences the calcula-
tion of the depth change waveform. The reduction of influence by respiratory move-
ment is one of future subjects. 

Fig. 13 shows the spatial distribution of inter-frame depth change plotted on the 3D 
shape of chest region. The time-series variation corresponds to single cardiac beat. 
The shape change by cardiac beat is mainly found on the left side of the chest region. 
We expect that the visualization of minute shape change occurred by cardiac beat is 
realized by imaging the spatial distribution of inter-frame depth change with higher 
time resolution. 
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Fig. 12. Bland-Altman plot between R-R interval and peak interval of depth-change waveform 

 

Fig. 13. Spatial distribution of interframe change of depth plotted on 3D shape of chest region 

5 Conclusion 

We propose the extraction of cardiac beat from 3D shape information of body surface 
by using grid-based active stereo, and basically examine the validity of proposed 
measurement. By simultaneous measurement with our proposed measurement and 
ECG, there are sufficient correspondence between peak interval of inter-frame depth 
change measured by our method and R-R interval measured by ECG. This result sug-
gests that non-contact measurement of cardiac beat is realized by the active stereo. 
We tried the visualization of the spatial distribution of inter-frame depth change plot-
ted on the 3D shape of chest region. And, the shape change by cardiac beat is mainly 
found on the left side of the chest region. 

This work was supported in part by Strategic Information and Communications 
R&D Promotion Programme (SCOPE) No.101710002, KAKENHI No.21200002/No. 
23700576, and Funding Program for Next Generation World-Leading Researchers 
No. LR030 in Japan. 

0 0.5 1
Average [sec]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
if

fe
re

nc
e 

[s
ec

]

Normal breathing

Breath holding

Mean

+1.96SD

-1.96SD

     
            t=4.2 [sec]              t=4.3 [sec]              t=4.4 [sec]              t=4.5 [sec]             t=4.6 [sec] 

     
    t=4.7 [sec]             t=4.8 [sec]               t=4.9 [sec]             t=5.0 [sec]              t=5.1 [sec][m/frame] 

-1.0E-005

-8.0E-006

-6.0E-006

-4.0E-006

-2.0E-006

0.0E-006

2.0E-006

4.0E-006

6.0E-006

8.0E-006

1.0E-005



 Extraction and Visualization of Cardiac Beat by Grid-Based Active Stereo 157 

 

References 

1. Garbey, M., Nanfei, S., Merla, A., Pavlidis, I.: Contact-Free Measurement of Cardiac 
Pulse Based on the Analysis of Thermal Imagery. IEEE Transactions on BME 54(8), 
1418–1426 (2007) 

2. Nagae, D., Mase, A.: Measurement of vital signal by microwave reflectometry and appli-
cation to stress evaluation. In: APMC 2009, Asia Pacific, pp. 477–480 (2009) 

3. Poh, M., McDuff, D.J., Picard, R.W.: Advancements in Noncontact, Multiparameter Phy-
siological Measurements Using a Webcam. IEEE Transactions on BME 58(1), 7–11 
(2011) 

4. Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction 
using a single structured light pattern. In: CVPR, pp. 1–8 (2008) 

5. Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N., Kawasaki, H.: Dense 3D recon-
struction method using a single pattern for fast moving object. In: ICCV (2009) 

6. Sagawa, R., Kawasaki, H., Furukawa, R., Kiyota, S.: Dense One-shot 3D Reconstruction 
by Detecting Continuous Regions with Parallel Line Projection. In: ICCV (2011) 

7. Ulusoy, A.O., Calakli, F., Taubin, G.: One-Shot Scanning using De Bruijn Spaced Grids. 
In: The 7th IEEE Conf. 3DIM (2009) 

8. Sato, K., Inokuchi, S.: Range-Imaging System Utilizing Nematic Liquid Crystal Mask. In: 
Proc. Int. Conf. on Computer Vision, pp. 657–661 (1987) 

9. Zhao, H., Chen, W., Tan, Y.: Phase-unwrapping algorithm for the measurement of three-
dimensional object shapes. Applied Optics 33(20), 4497–4500 (1994) 

10. Zhang, L., Curless, B., Seitz, S.: Rapid Shape Acquisition Using Color Structured Light 
and Multi-Pass Dynamic Programming. In: 3DPVT, pp. 24–36 (2002) 

11. Lee, D.T., Schachter, B.J.: Two Algorithms for Constructing a Delaunay Triangulation. In-
ternational Journal of Computer and Information Sciences 9(3), 219–242 (1980) 

12. Microsoft. Xbox 360 Kinect (2010), http://www.xbox.com/en-US/kinect 
13. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pat-

tern Recognition 37(4), 827–849 (2004) 
14. Salvi, J., Batlle, J., Mouaddib, E.M.: A robust-coded pattern projection for dynamic 3D 

scene measurement. Pattern Recognition 19(11), 1055–1065 (1998) 
15. Je, C., Lee, S.W., Park, R.-H.: High-contrast color-stripe pattern for rapid structured-light range 

imaging. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 95–107. 
Springer, Heidelberg (2004) 

16. Sagawa, R., Sakashita, K., Kasuya, N., Furukawa, R., Yagi, Y.: Grid based Active Stereo 
with Single-colored Wave Pattern for Dense One-shot 3D Scan. In: 3DIM/3DPVT 2012, 
pp. 363–370 (2012) 



An Accurate and Efficient Pile Driver Positioning
System Using Laser Range Finder

Xiangqi Huang1, Takeshi Sasaki2, Hideki Hashimoto3, Fumihiro Inoue4, Bo Zheng1,
Takeshi Masuda5, and Katsushi Ikeuchi1

1 Institute of Industrial Science, the University of Tokyo
2 Shibaura Institute of Technology

3 Chuo University
4 Technical Research Institute, Obayashi Corporation

5 The National Institute of Advanced Industrial Science and Technology

Abstract. Real-time positioning a pile for accurate pile driving is desirable for
modern construction foundation work, but it suffers from the deficiency of the
traditional systems because surveying instruments are manually used to mark the
pile positions in which the accuracy heavily depends on the worker’s experience.
The paper confronts this problem by proposing a highly efficient positioning sys-
tem using a Laser Range Finder (LRF). Over the traditional systems ours is su-
perior to automatically detect the position of the pile or pile driver in real time
with high accuracy. To this end, we first develop LRF based surveying system to
scan the construction site in real time and gather the 2D laser point data. Then we
detect target object such as pile or pile driver by fast fitting a circle-like geometric
model to the data based on Maximum Likelihood Estimation (MLE) inference.
The performance of the algorithm is validated by both synthesized and real data
set. The results demonstrate the potentials on feasibility of our method in future
construction field.

1 Introduction

1.1 Motivation

Nowadays, various pile drivers are widely used in the construction sites. The piles are
one of most crucial parts that provide foundation support for a building once they are
driven into soil at correct positions. Thus an accurate and efficient method for pile driv-
ing is always desirable for a modern construction yard.

The most common method of pile driving is based on the beforehand positioning
using survey instruments. However, it is deficient due to a manual procedure: 1) placing
a marker on the designed pile position using survey instruments, 2) digging a hole with
certain radius tolerance at the marked position, and 3) driving the pile into the hole. The
main disadvantages of this procedure are: i) at least 3 workers and 1 operator are needed
for measuring and adjusting the pile position; ii) they are required to be well trained
for collaboration to increase the work efficiency; iii) long operation time is commonly
needed which may degrade the accuracy and safety for workers.

In this paper, we propose a highly efficient and accurate pile driver positioning sys-
tem. Instead of measuring the preset markers using traditional instruments, we propose

X. Jiang et al. (Eds.): WDIA 2012, LNCS 7854, pp. 158–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. (a) System sketch: LRS scans the construction workspace and transfers data to processor.
Then the estimated current pile position which is relative to a construction map is displayed on
a monitor to help the operator for adjustment. The red points are static background. The dark
points are measured data points of the pile driver and yellow circle stands for the estimated pile.
Green cross is the estimated center position of pile. The blue circles stand for the designed pile
positions. (b) The LRF rotates under the drive of the pan unit. (c) The bold red lines stand for an
original scan of the LRF. The thin red lines stand for the increased measurements.

to utilize highly accurate Laser Range Finder (LRF) to scan the whole construction field
in real time, and simultaneously detect the moving pile position from the range scans.
Fig. 1 illustrates our system in which only one operator is required to operate the pile
driver to adjust pile position, navigated by a display which shows the moving pile po-
sition on a construction field map. This system provides a more convenient way that
helps the operator to evaluate the errors on constriction map globally without any help
of additional workers. Therefore our system dramatically increases the efficiency and
accuracy for pile driving.

1.2 Related Work

On one hand, in a construction site, the survey technology and its instrument have pro-
gressed rapidly in a very short time period. With advanced measurement instruments
including an automated transit and a total station which use light wave distance method,
the measurement time is significantly shortened and positioning accuracy can achieve
to millimeter level [1]. Moreover, in civil engineering work where the work area is very
wide and there are few buildings around the area, the Global Positioning System (GPS)
is frequently employed for sufficient survey accuracy and efficient work [2]. However
they suffer from the disadvantages: i) these instruments are expensive, ii) these instru-
ments might be unavailable in some places due to environmental conditions, iii) mul-
tiple objects cannot be tracked simultaneously, vi) it is impossible to track a target in
real-time, and v) at least two workers are needed for the measurement.
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On the other hand, the recent development of consumer-grade sensors has attracted
increasing attention due to their applicable potentials for positioning system. Many real-
time positioning systems using distributed devices including cameras [3–5], ultrasound
sensors [6, 7] and Laser Range Finders (LRF) [8, 9] have been proposed. Among these
measuring devices, LRFs are superior in the areas such as real-time scan, high accuracy,
large covering area, robustness against poor illuminations, low noise-to-signal ratio and
simple installation [10–12]. For instance, LRFs have already been used for real-time
position measurement in large outdoor areas [13].

Laser scanners have been widely used in engineering surveys since the mid-1990s,
such as terrestrial survey in high way constructions [14]. Recently in construction sites,
some researchers are making effort to use LRFs in real-time to improve the working
safety and efficiency. [15, 16] build laser scanner based tracking systems for rope shov-
els. Those systems work in short distance and give locally relative positions between
the machine and objects. [17] uses a LRF for surveying task.

1.3 Overview and Contribution

Our system consists of three main processes: 1) data acquisition from LRF, 2) position
estimation process and 3) visualization of results. It first gathers 2D LRF data from a
construction site in real time; then simultaneously the pile position is estimated based
on the obtained data; finally the estimated pile position is visualized in construction map
together with the designed one to assist workers making decision for pile operation.

After data acquisition, our challenge is the difficulty of real-time position estimation
for the moving pile from the range scans. To overcome this, the position estimation pro-
cess includes two main sub-steps: 1) Target Detection based on circle model clustering;
2) Center position refinement using Maximum Likelihood Estimation (MLE).

Over the traditional positioning method, the main contributions of our system are:
1) instead of surveying in advance using the traditional instruments, we develop real-
time surveying system using the highly accurate LRF; 2) we propose a fast detection
algorithm for real-time and accurate pile positioning from range data; 3) our system
simultaneously tracking and navigating of the pile driver provides the more efficient,
safer, cheaper and easier way to the task of pile driving.

This paper is organized as: we present the system configuration in Section 2 and the
detailed algorithms of position estimation in Section 3. Section 4 shows experimental
results on both simulation and real data, followed by the conclusion in Section 5.

2 Configuration of LRF Sensing System

We first design a sensing system using LRF for positioning the pile in high accuracy. To
this end, we employ UMT-30LX LRF [18] with high accuracy in depth direction (see
Table 1) which horizontally scans a specific area in construction yard. However our
challenge is that accuracy is difficult to achieve due to sparsity of the range scans. As
shown in Fig. 1 (c), the original scan lines (shown in bold red arrow from left to right)
are too sparse that only one point can return back when it reached a cylinder object.
Such a sparse point cloud data is difficult to be used for accurate position estimation.
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Table 1. Specification of UTM-30LX

Model Number UTM-30LX

Measurable area 0.1[m] ∼ 30[m], 270[deg]

Measurement accuracy
0.1[m] ∼ 10[m]: ± 30[mm]
10[m] ∼ 30[m]: ± 50[mm]

Angular resolution 0.25[deg]
Scan time 25[msec]/scan

To overcome this problem, we propose to mount UMT-30LX LRF to a pan unit for
densely scanning [17]. As shown in Fig. 1 (b), we mount the LRF on a SPU-01 pan
unit [19] which can drive the LRF to rotate in a very small angle (e.g. 0,015 degree in
this case) after each scan of LRF. Therefore, dense points can be obtained by combining
the scans captured at different angles of rotation of the unit pan. As shown in Fig. 1 (c),
the resulted data points can be viewed as sampled in each 0.015 degree, where the
density is much improved (at most 17 fold) compared to the original scan in each 0.25
degree. The system works in a data acquisition frequency between 2Hz − 40Hz. The
working speed of pile driver is between 0 − 2 × 103mm/s. The speed in the final stage
of the piling procedure, which especially needs high positioning precision, is around
0− 50mm/s. For this slow movement, the system data acquisition frequency is satisfied
for the real-time requirement of the application of assistance of pile driver.

3 Pile Position Detection

Given the dense point data captured by above sensing system, our next task is how
to track the pile position accurately and efficiently. This position estimation method
consists of two major steps: 1) pile position detection, 2) center refinement. The former
fast and coarsely detects circle-like models in range scans by a voting algorithm. The
later accurately estimates the circle center by a refinement using MLE algorithm. We
describe these two major steps in the following subsections respectively.

3.1 Pile Detection

Since the pile is always perpendicular to ground and scanned by LRF horizontally,
the intersection by scan plane is always a circle. We design a circle model clustering
algorithm for fast but coarsely detecting the pile position (see Algorithm 1).

Since the reference target is pile, from the viewpoint of LRF, the contour of the
pile is convex, which means the center of object should not be observed. Under this
observation, the constraint for rejecting the non-convex samples in Algorithm 1 can be
described as:

(ki · xLRF + ti − yLRF )(ki · xnew + ti − ynew) < 0, (1)

where li:y = ki · x + ti, i = 1, 2, 3 are lines determined by two points from the current
subset of data. (xLRF , yLRF ) is the position of LRF and Pnew = (xnew, ynew) is the currently
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Algorithm 1. Pile detection
1) Input: range data S , radius r of pile.
2) Output: a set of pointsA = {xi, yi} on pile boundary.
3) Initialization: null clusters {C j} each of them stores the circles in one cluster;

null array V whose element v j stores number of votes for cluster C j.
4) Loop
5) Randomly sample a triangle by selecting three non-collinear points from S ;
6) Calculate circumscribed circle Ai of the triangle (with radius Ri);
7) Reject a too big or small circle by radius thresholding:

if |Ri − r| > Tr, Go to 4);
8) Reject a non-convex sample by Eq. (1);
9) if the center of Ai is close to an averaged center of cluster C j,

then v j ← v j + 1; otherwise create new cluster for Ai;
10) if v j < Tv, then Go to 4);
11) Calculate inlier points {xk, yk} which are near to the boundary of averaged circle of C j

12) if enough inliers, then stop;
13) End

calculated center position. Eq. (1) means that the LRF and center of target should be on
a different side of the line determined by points from the data subset. In Algorithm 1,
the thresholding parameters are set according to the specification of LRF.

3.2 Refinement for Accurate Position Estimation

Since Algorithm 1 only provides a cluster of proposals of pile boundary points, we need
to accurately estimate the pile position according to these proposals. Therefore the next
task can be viewed as: given the proposals of boundary pointsA = {xi, yi}K1 and a circle
model (x − a)2 + (y − b)2 = r2, how we can accurately estimate parameters a and b.
To this end, a common but effective selection is to use Maximum likelihood estimation
(MLE) algorithm that estimates the parameters which can maximize the likelihood for
each proposal. The likelihood can be expressed as

p(A) =
exp
[
−∑K

i=1
[
(xi − x̄i)2 + (yi − ȳi)2]/2σ2

]

√
(2πσ2)2K

, (2)

where (x̄i, ȳi) is the true position of (xi, yi), and the sensor noise is assumed as Gaussian
noise with variance σ2. To maximize this likelihood p(A), we minimize − log[p(A)].
We first take a logarithm of both sides of Eq.2 and then remove a constant term which
does not contribute to minimization.

Here we fulfill circle model as a constraint of xi and yi. We remove the restraint con-
dition by using Lagrange’s method of undetermined multipliers. Finally the MLE for a
circle is equal to estimate parameters a, b, and r which will minimize JML expressed as:

JML =

K∑

i=1

(
x2

i + y
2
i − 2axi − 2byi + a2 + b2 − r2

)2

x2
i + y

2
i − 2axi − 2byi + a2 + b2

. (3)
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In our system, parameters which should be estimated are only a and b, since the radius
of the reference target is given in advance. In this case, however, the MLE becomes a
non-linear problem. To solve this non-linear equation, we apply the Newton-Raphson
method since it is known to have a faster convergence rate than other Gradient methods,
such as Conjugate gradient or Levenberg-Marquardt, if its initial value is close to the
true value of a and b [17]. Here we use the detected center position from the previous
detection result as the initial value of the Newton-Raphson method.

It is worth noticing that for further speeding up two simple pre-processes are adopted
in our method: 1) Assuming the background scene is static, moving parts of data are
extracted as foreground objects using a background subtraction algorithm, and then 2)
all the foreground data points are clustered using a neighborhood verification method.

4 Experiment Results

To verify our proposed circle detection and fitting algorithm, we first test it by sim-
ulation experiments. Before the experiment at actual construction site, we conduct an
indoor experiment on a small scale model of pile driver to test the proposed positioning
system. At last, an outdoor experiment at the actual construction site is performed.

4.1 Simulation Experiment

In this simulation, we simulate the scene and devices of previous experiment at an actual
construction site [20] by combining circles and lines. We assume that with the cylindri-
cal reference target there are other objects with cross-sections shaped like rectangle and
trapezoid in the scenario whose contour is similar to arc especially with large sensor
noise.

The noise of LRF data is assumed to be independent Gaussian noise with the standard
deviation σ = 50mm in the range of distance dmax = 30 × 103mm. The angle resolution
of LRF is θreso = 0.05◦. The radius of cylindrical reference target is R = 1350mm. The
distance from LRF to the center of cylinder is d = 9000mm. Values of thresholds used
in Algorithm 1 (line 7, 9, 11) are empirically determined as σ.

All results are average values of 1000 times simulations. To make the system work in
real time and always process the latest data, the algorithm will abort and be considered
as a failed detection if it cannot establish an acceptable model until maximum iteration
time.

Evaluation of the Circle Detection Algorithm. To evaluate the algorithm, the detec-
tion rate, false detection rate, iteration times of random sampling and error of estimated
center are used here. Fig.2 (a) shows that when votes are 2 and 3 the detection rate is
almost 100%. But the value decreases when more votes are required. The main reason
is the maximum iteration time limits the performance. Fig.2 (b) shows that the false
positive rate is almost zero if Tv is set larger than one.

Results with Tn = 0.1N and Tn = 0.6N are compared in figures, where N is the
roughly estimated number of inliers as shown in:N = 2

θreso
· (arccos R

D ), where D is the
distance from LRF to the center of the data cluster. Parameter Tn is the number of data
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Fig. 2. (a) Detection rate. (b) False detection rate. (c)Iteration times of random sampling. (d)Error
of estimated position and detected position (Tn = 0.1N).

points required to claim that the hypothetical model can be accepted. It means that the
voting procedure makes the proposed algorithm still work well even when occlusion or
significant noise degrades the data.

The average iteration times of random sampling increase while the number of votes
becomes larger, as shown in Fig.2 (c). It also shows that choosing a small Tn would not
increase the computation cost.

Position Estimation Precision. We evaluate estimation errors of the aforementioned
two methods: the non-linear MLE and the proposed detection algorithm with known
radius. Estimation error E is defined as E =

√
(XL − a)2 + (YL − b)2, where (a, b) is

the estimated center position of the cylindrical reference bar and (XL, YL) is a position
where we put the cylindrical reference bar.

Fig.2 (d) gives us the error of estimated center position using MLE and the error of
detected center position. It shows that the number of votes Tv doesn’t have a significant
effect on the estimation result while the number of iterations increases dramatically with
more votes. So a small Tv would be a good trade off between estimation accuracy and
computation cost.

Considering the detection rate, iteration time of random sampling, error of estimated
center position and the flexibility of algorithm, Tv = 2 is the best choice of votes under
the given conditions.

4.2 Indoor Experiment

To verify the feasibility and estimation error of our proposed system, before imple-
menting it in the actual construction field, we made the indoor experiment. As shown in
Fig.3 (a), a cylinder with radius of 250mm is used as the reference bar. Two cardboard
boxes are used to simulate the pile driver in the application scene. Fig.3 (b) shows an
example of the scanned data from LRF of the experiment scene.

We firstly put the reference bar at a known position and estimate the center position
only using MLE method. While keeping the cylinder at the same place, we put the other
shaped objects near to it and estimate the position of cylinder again with the proposed po-
sitioning algorithm, to see if we can achieve the same estimation accuracy or not. Exper-
iment with this set up is repeated at every 500mm from the distance 1000mm to 7500mm.

As shown in Fig.3 (c), the two curves of estimation error are almost the same, with
the maximum difference of 3.4mm. The experiment result proved that our proposed
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Fig. 3. (a) Indoor experiment scene. (b) An example of measuring the center position of the
cylindrical reference bar. (c) Estimation error of MLE and the proposed positioning algorithm of
indoor experiment. (d) Detection Rate of indoor experiment.

circle detection algorithm can effectively extract data points of circle from the scene
with other shaped objects.

We vary the parameter Tv from 1 to 10 to see the effect on detection rate. When
votes are Tv ≥ 3, as Fig.3 (d) shows, the detection rate exceeds 90% even with small
value of Tn. If there is no voting procedure, meaning Tv = 1, the detection rate is
barely acceptable. This low detection rate is caused by the junction of triangle and
rectangle boxes, whose contour is similar to an arc. This result proves the feasibility
of the proposed pile detection algorithm and shows the possibility that it can still work
well with occlusion or large noise present.

4.3 Experiment in the Construction Field

We tested the proposed system in an actual construction field. Our purpose is to measure
the position of the pile which is being put into the drill hole. Tracking the position of pile
can help to position it at the expected place, which requires an accuracy of 100mm. As
shown in Fig.1 (a), the pile was lifted by the pile driver and being slowly put down into
the hole. Currently in most construction fields, the pile is kept to the expected position
by manual work. It needs three well trained workers using sticks to measure whether
the pile is in right place or not.

As shown in Fig. 4 (a), LRF and pan unit are placed on the tripod which can be
adjusted to keep the scan plane of LRF horizontal. The height of tripod also helps to
keep other moving objects, like humans, from the scan range. The object to be mea-
sured is the pile shown in Fig.1 (a), with a radius of 200mm. Limited by the arrange-
ment of construction field, the distance between the measured object and LRF is about
15 × 103mm.

To calibrate the LRF, a thin metal stick (cross section: 30mm × 1mm) which has a
highly reflectable surface is used. We first use total station to position several points with
a precision around 2mm/km. We then put the calibration stick at those points and obtain
the scan data of stick from LRF. We use an average value of scan data of stick to estimate
its position. Transformation matrix between world coordinate and LRF coordinate can
be calculated using least square estimation method.

Result of the Construction Field Experiment. The procedure of pile driving was
recorded by the LRF. It started when the pile was moved near to the expected position



166 X. Huang et al.

Fig. 4. (a) Scene of position measurement of pile driver. (b) Errors at XL and YL(LRF coordinate
system) of construction field experiment. (c) Error to the expected pile position.

about 1m. After arriving the top of the hole, the pile was kept going down at a position
with error around 50mm. The placement of pile was adjusted to be more accurate at the
final 10sec. The position adjustment by workers can be seen in Fig.4 (b). Here error at
XL is defined as (XL − a) and error at YL as (YL − b). The errors between the measured
center position and the expected design position of pile are shown in Fig.4 (c). The final
position error given by proposed system is around 25mm.

Currently there is no other direct way to measure the center position of pile while
it moves. The accuracy of the traditional surveying system is 10mm. In addition, from
this experiment, it is certain that the pile was driven within the allowable range. We can
estimate that the construction error is within the range of 15 − 35mm. Considering the
manual adjustment process, the result of our system is considered reasonable. The pro-
posed system can measure the pile driving position directly which cannot be measured
by conventional surveying instruments.

5 Conclusion and Future Work

In this paper, based on pile detection and fitting, we propose an novel real-time pile
driver positioning system using laser range finder. Taking advantages of LRF’s strengths,
such as high accuracy, fast data acquisition and large covering area, and utilizing the
orientation-invariant property of the cylindrical target, a new surveying technique is
presented. To extract the pile target from pile driver, we propose a pile detection algo-
rithm based on circle model clustering. Then the MLE method is adopted to accurately
estimate the pile position.

The simulation and indoor experiment prove the reliability and flexibility of the pro-
posed detection algorithm. The experiment on the actual construction field shows that
the proposed system can keep tracking the pile position in real-time while the pile driver
works, which is impossible for the conventional surveying methods.

For the purpose of verifying the feasibility of proposed system, we only use data from
a single LRF currently. Since multiple sensors could increase the amount of informa-
tion and enlarge the positioning range, multiple sensor system will be investigated and
implemented. In the current implementation, the number of needed votes is empirically
determined. The robustness of this parameter should be investigated.
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Abstract. This paper introduces a new open dataset “Actions for Cook-
ing Eggs (ACE) Dataset” and summarizes results of the contest on
“Kitchen Scene Context based Gesture Recognition”, in conjunction
with ICPR2012. The dataset consists of naturally performed actions in
a kitchen environment. Five kinds of cooking menus were actually per-
formed by five different actors, and the cooking actions were recorded by
a Kinect Sensor. Color image sequences and depth image sequences are
both available. Besides, action label was given to each frame. To esti-
mate the action label, action recognition method has to analyze not only
actor’s action, but also scene contexts such as ingredients and cooking
utensils. We compare the submitted algorithms and the results in this
paper.

1 Introduction

An action has a strong relationship not only with an actor’s motion, but also
with the situation surrounding the actor. Traditionally, most action recognition
methods focus on motion features only, and assign the action label based on
the discriminative analysis[1,2]. There are, however, many actions which cannot
always be uniquely determined by using motion features alone. For instance,
considering actions in a kitchen, “mixing something” and “baking something”
would be done by similar motion sequences of a hand, which moves around in
a circular motion. If he/she uses a bowl, the action label should be “mixing
something in a bowl”. Likewise, if he/she takes a frying pan, the label would be
regarded as “baking something in a frying pan”. Thus, the action label should be
estimated by consideration of both the motion features and the context situation
in which the action is performed.

Scene context based action recognition can be applied for various uses in
daily life: real-time analysis of a cooking scene or other types of scenes will

X. Jiang et al. (Eds.): WDIA 2012, LNCS 7854, pp. 168–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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enable to advise a beginner what he/she should do at the next step including
recovery of mistakes. Scene analysis and classification of recorded videos can also
provide context-based segmentation of image sequences, and facilitate automated
scene annotations for video databases. Moreover, the context-based approach is
applicable to other domains, for example; hospital operating rooms in medical
practices, agricultural and manufacturing operations, etc.

To encourage and evaluate such a context-based approach, we created the Ac-
tions for Cooking Eggs (ACE) Dataset1 and decided to hold a contest “Kitchen
Scene Context based Gesture Recognition”, in conjunction with ICPR20122. The
dataset consists of cooking actions in a natural kitchen environment. It includes
25 video sequences from five kinds of cooking menus. Each menu was performed
by five actors. The video sequence was recorded by a Kinect sensor. Both of
color image and depth image were captured. More details of the dataset will be
explained in section 3. We also provide labeling results on the sequences of the
dataset.

The remainder of this paper is organized as follows. Section 2 reviews open
datasets related to action recognition. The detailed explanation of our dataset
will be explained in section 3. Section 4 explains how the dataset was acquired.
The contest tasks and evaluation criteria will be described in section 5 followed
by contest results in section 6. Section 7 introduces two submitted algorithms in
more detail. Finally, we conclude the report of contest with an outlook.

2 Related Action Datasets

There are several public datasets released for evaluating action recognition
methods. The KTH dataset[3] and the Weizmann dataset[4] are often used for
evaluation. These datasets consist of simple actions like “walking”, “jogging”,
“running”, “waving with the arms” or “jumping”, captured by a single camera.
The IXMAS dataset is similar to these datasets, but the scene was captured
by multiple cameras. The characteristics of these three datasets are of limited
relevance to practical applications.

The UT dataset[5] was used for the human activity recognition contest and
it has been tested by several state-of-the-art methods. The UT dataset con-
tains six interaction activities: “hand shake”, “hug”, “kick”, “point”, “push”
and “punch”, which are more complex than simple actions mentioned above.
However, available motions are not natural activities in daily life.

From the viewpoint of natural actions in daily life, the CMU Multi-Modal
Activity Database3 contains multi-modal measures of the human activity of
subjects performing the tasks involved in cooking and food preparation. Five
kinds of modalities were recorded: “video”, “audio”, “motion capture”, “internal
measurement units” and “wearable devices”. The TUM kitchen Data Set[6] also
contains activity sequences recorded in a kitchen environment. The recorded

1 http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
2 http://www.icpr2012.org/
3 http://kitchen.cs.cmu.edu/

http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
http://www.icpr2012.org/
http://kitchen.cs.cmu.edu/
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data consists of observation of naturally performed manipulation tasks. These
kitchen datasets observed whole of the kitchen: the kitchen sink, the kitchen
table, stove, etc., by using multiple sensors including video sequences, full-body
motion capture data, or other reading sensors.

In contrast to the CMUMulti-Modal Activity Database and the TUM kitchen
Data Set, our dataset focused on cooking activities just around the kitchen sink
and the counter. Cooking actions of five different actors were captured by a single
Kinect sensor mounted above the kitchen(see Fig. 2), which is more simple and
realizable kitchen environment than above two kitchen datasets.

3 Actions for Cooking Eggs (ACE) Dataset

3.1 Concept

Our dataset would like to provide actions which cannot be determined by motion
analysis alone. Additional information such as “what kind of cooking utensil the
actor is using” and “what ingredient is being cooked” should be considered to
perform final decision of action recognition. Let’s consider the following exam-
ples. If the actor repeatedly moves the hand from side to side, there are some
candidates of action label such as “cutting”, “baking”, “boiling” or so on. If the
actor is using the knife on the cutting board, the action label should be “cut-
ting”. The “boiling” label comes from the combination of saucepan and eggs.
Therefore, it is important to focus not only on the motions but also on context
information of ingredients and cooking utensils. Actually, there are five menus
of cooking eggs in our ACE dataset. In the following subsections, brief recipe
of each menu, the list of ingredients and cooking utensils used in the dataset
are introduced. Then, eight kinds of cooking actions performed by actors will be
defined.

3.2 Menus

Following five menus are selected. The first four menus are very popular served
as a breakfast meal. The fifth menu is often used to decorate food in Japan. The
basic recipe of each menu is briefly introduced as follows.

ham and eggs Brown some slices of ham, then break eggs on the ham. Season
with salt if necessary.

omelet Break eggs into a bowl and mix together. Add salt, milk if necessary,
and beat again. Pour the egg mixture into the pan and cook for a while until
egg mixture is set. Shape the egg with a spatula.

scrambled egg Break eggs into a bowl and beat them until they turn a pale
yellow color. Add the ham, salt and/or milk if necessary, and mix them
again. Pour in egg mixture. As eggs begin to set, gently pull the eggs across
the pan with a spatula until thickened and no visible liquid egg remains.

boiled egg Place the raw egg in a saucepan. Run cold water into the saucepan.
Boil the water for several minutes. Peel the egg shells.
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Kinshi-tamago shredded egg crepes, one of Japanese egg recipes. Break eggs
into a bowl and mix together. Pour in egg mixture and make a crepe on the
pan. With a sharp knife, cut the crepe into thin strips.

3.3 Ingredients

Ingredients used in the dataset are summarized as follows.

egg used by all menus. Some actors use an egg, the other use two eggs for
cooking.

ham used by ham and eggs. Some actors use the ham in omelet and scrambled
egg.

milk used by omelet and scrambled egg if an actor chooses it.
oil used by menus with a pan (except for boiled egg), if necessary.
salt used by menus with a pan (except for boiled egg), if an actor chooses it.

3.4 Cooking Utensils

Following cooking utensils are used in ACE dataset.

frying pan used by menus of ham and eggs, omelet, scrambled egg and Kinshi-
tamago.

saucepan used by the menu of boiled egg.
bowl basically used by all menus, but some actors don’t use it in the menu of

ham and eggs. Besides, some actors put egg shells in the bowl in the menu
of boiled egg.

cup used to pour water into a pan.
plate used by all menus when finishing the cooking.
chopsticks used to mix something in the bowl, the frying pan and the saucepan.
spatula used to turn something in the frying pan. Some actors use it to cut

omelet.
knife used by all menus.
cutting board used by all menus.

3.5 Cooking Actions

The labels of cooking actions defined in the dataset are as follows. Strictly speak-
ing, the labels can be divided more precisely. Besides, some labels are not neces-
sarily relevant to the ones called in recipe books. However, we are sure that the
following labels support essential actions in cooking above menus.

breaking used when an egg is cracked
mixing used when mixing something in the bowl or in the pan.
baking used when cooking something on the pan.
turning used when turning something in the pan.
cutting used when cutting something on the cutting board.
boiling used when boiling water.
seasoning used when seasoning with salt.
peeling used when peeling egg shells.



172 A. Shimada et al.

1 - breaking 2 - mixing 3 - baking 4 - turning

5 - cutting 6 - boiling 7 - seasoning 8 - pealing

Fig. 1. Example shot of each action

4 Data Acquisition

Each menu was cooked by five different actors; that is, five cooking scenes for
training are available for each menu. Besides, two cooking scenes were also cap-
tured as testing video for each menu. The scene was captured by a Kinect sensor
providing synchronized color and depth image sequences. Each of the videos was
from 5 to 10 minutes long containing 2,000 to 12,000 frames. A cooking motion
label was assigned to each frame, indicating the type of action performed by the
actors. In the following subsections, more details will be explained.

4.1 Kitchen Sensing Environment

A Kinect sensor was mounted above the Kitchen as shown in Fig. 2. The sensor
recorded both color images and depth images at 30fps, and the image size was
320 × 240 pixels. The depth image consists of 8-bit gray scale information (256
levels). The depth unit of each level is 8mm. Therefore, the depth is available
up to 2048mm (8mm x 256level). An example shot is also shown in Fig. 2. All
ingredients and cooking utensils are visible within the field of view. All of them
were arranged on the initial positions like as Fig. 3. Such information is helpful
to initialize a tracking procedure of ingredients and cooking utensils.

The Kinect sensor also captured the hand area of an actor. Not only color
images but also depth images are available to acquire hand positions and/or
hand motions. For example, combination of skin color detection and restriction
by distance from the sensor is one of the seasonable ways to find the hand area.

4.2 Cooking Scenarios

Five different actors followed the recipes roughly written by us, but the detailed
procedure of cooking depended on each actor. Fig. 4 shows the actual recipes.
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Fig. 2. Top: A Kinect sensor mounted above the kitchen. Bottom: An example frame.

Fig. 3. Initial arrangement of ingredients and cooking utensils
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ham and eggs

omelet

scrambled egg

boiled egg

Kinshi-tamago

Label ID
1 = breaking 
2 = mixing
3 = baking
4 = turning

5 = cutting
6 = boiling
7 = seasoning
8 = peeling

1

5

2 3

54

1

5

2

7

3

4

1

5

2

7

2

3

6

2
8 5

1 2 3 5

Fig. 4. Rough flow of each cooking menu

The number in circular shapes and triangular shapes corresponds to each action
label written in the bottom right column. The circular shape means that the
action was performed by all actors. Meanwhile, the triangular shape means that
the action was performed by some actors (not all). The large ellipse surrounding
two or four shapes represents unordered actions, i.e., the order of actions depends
on each actor. For example, an actor performed “breaking an egg” followed by
“cutting hams”, and another actor was first to do “cutting hams”.

4.3 Labeling

The labeling was achieved by the manner listed in Table 1. Actually, the label
in each video frame was decided by a majority voting. Three people assigned a
label to each video frame according to the rule. Then, the label with the most
votes was regarded as the majority.

5 Description of Contest

5.1 Competition Tasks

The contestants are expected to evaluate the human gestures in a kitchen from
continuous video sequences. The candidates of the cooking menus are “ham
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Table 1. Labeling manner to video sequences

Label Start End

breaking An actor starts to break an egg. An actor puts the shell on some-
where.

mixing An actor starts to mix something
(in a bowl, in a frying pan, etc.).

An actor stops mixing.

baking An actor starts to put something in
a frying pan to bake it.

An actor removes the target from
the pan.

turning An actor starts to turn a target
with a cooking utensil

An actor finishes turning the target.

cutting An actor starts to cut something
with a cooking utensil

An actor finishes cutting.

boiling An actor puts an egg in a pan. An actor removes the egg from the
pan.

seasoning An actor picks up seasonings. An actor brings back it.

peeling An actor picks up an egg to peel the
shell.

An actor finishes peeling.

* The label ”baking” is overwritten with other labels (mixing, turning, cutting, and
seasoning)
* Milk is not included in the category of seasoning.

and eggs”, “omelet”, “scrambled egg”, “boiled egg” and “Kinshi-tamago”. An
actor cooks one of cooking menus. Each video contains several cooking motions
including eight actions, i.e. breaking, mixing, baking, turning, cutting, boiling,
seasoning and peeling. Using the testing videos, contestants have to establish the
relationships between motion features and scene features (i.e. scene contexts) and
achieve scene context based cooking motion recognition by assigning a correct
cooking motion label to each video frame.

Using the scene context is not an indispensable condition, but the organizers
strongly recommended utilizing it. The following figure shows a brief example of
cooking an “omelet”. The task of the contest is to recognize the “cooking motion
label” in the middle layer of cooking hierarchy. Note that the contestants have
to estimate the action label located in the middle layer in Fig. 5 (Not the label
of cooking menu in the top layer).

5.2 Evaluation Criteria

The cooking action labels assigned into the testing video is evaluated by the
accuracy score calculated from precision and recall manner. The precision and
recall are given by

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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Fig. 5. Hierarchy relation among scene context, cooking action and cooking menu

where TP , FP and FN denote the number of labels assigned correctly, as-
signed wrongly, unassigned wrongly respectively. Then, their harmonic mean
(F −measure) is calculated by following formula.

F = 2/

(
1

Precision
+

1

Recall

)
(3)

Actually, the F-measure is calculated for each cooking motion label. Suppose the
result is composed of N kinds of cooking motion labels, the final score is given
by averaging all F-measures,

FinalScore =
1

N

N∑
i=1

Fi (4)

where Fi is a F-measure for each cooking motion label.

6 Summary of Results

6.1 Participation

The contest web-site attracted more than 3,000 visitors by the end of contest.
The training dataset has been downloaded more than 340 times during the period
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of 13 Dec. 2011 to contest date. The test dataset was open to public 15 Aug.
2012, and has been downloaded about 40 times. Finally, 6 teams submitted their
results.

6.2 Submitted Algorithms

The submitted algorithms are summarized into two types: training based ap-
proaches and heuristic approaches. The training based approaches consist of
preprocessing, feature extraction, classification and post-processing.

Preprocessing finds table and/or floor using depth information. Some contes-
tants use the plane information in order to judge if a cooking utensil is on
the plane or not.

Preprocessing finds table and/or floor using depth information. Some contes-
tants use the plane information in order to judge a cooking utensil is on the
plane or not.

Feature extraction is achieved by finding hand region, cooking utensils and
ingredients. The position of object or state of object (i.e. in Use or not
in Use) is used for feature representation. Some other contestants extract
spatio-temporal features or local features from video sequence.

Classification is performed by SVM(Support Vector Machine) and/or HMM
based approach. Subspace learning method is also used by one of contestants.

Post-processing is applied for smoothing the label estimation result. Majority,
rule-based smoothing or Markov Random Field based smoothing is used.

On the other hand, heuristic approach makes some rules to classify the features
into eight action labels. Position relationship among hand, cooking utensils and
ingredients are carefully explored by the contestant in advance. The order of
label assignment is also reflected to the rule.

6.3 Results

The total performance (i.e. the final score) is shown in Fig 6. There are six results
named “Team-01” to “Team-06”. The scores are widely distributed from 0.2 to
0.8. The approach of each team could be divided into three groups based on
training based approach with object detection and tracking, training based ap-
proach with local features, and heuristic approach. The correspondence between
the approach and the team ID is as follows.

Group-1 “Team-01” and “Team-02” belong to the training based approach
with object detection and tracking.

Group-2 “Team-03” and “Team-04” belong to the training based approach
with local features.

Group-3 “Team-05” and “Team-06” belong to the heuristic approach.
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Fig. 6. Final Score of each team

Interestingly, heuristic approaches outperformed the training based ones. Gen-
erally speaking, heuristic approach is discussed that it would not ensure the
generality so that it has been avoided by most academic studies. However, we
have no option but to accept that the heuristics is effective from the viewpoint
of the practical use.

With regard to the results of training based approaches, the final scores are
definitely different between “Group-1” and “Group-2”. Local features are di-
rectly extracted from spatio-temporal domain in the video sequence without any
object detection processing. Meanwhile, object detection and tracking based ap-
proach can capture the spatio-temporal features of each object more precisely
than the local feature based approach. We guess that’s why the Group-1 got
better results than Group-2.

Finally, F-measures of each action label are shown in Fig. 7. We can see the
similar tendency with the final scores, i.e. heuristic approach provides better
results than others. There is difficulty to recognize the action of “mixing” and
“turning”. The “mixing” action was performed in the bowl, in the frying pan
and in the saucepan. Each cooking utensil was located at different position. One
of the strategies to enhance the result is to use the location information of each
utensil. However, it still has difficulty to recognize the action by using location
information alone since the utensils are used for another purpose(e.g. the frying
pan is used for the action of “baking” and “turning”). On the other hand, the
“turning” action has another aspect of difficulty that the action is performed
in short period of time during another action. Therefore, the action “turning”
might be overridden by another action label by the post-processing.
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Fig. 7. Recognition ratio of each action

7 Introduction of Submitted Algorithms

In this section, we introduce two algorithms submitted to the contest. One is
the training based approach, and the other is the heuristic approach.

7.1 Training Based Approach with Object Detection and Tracking

Traditional action recognition frameworks extract features from motion in the
videos and perform discriminative analysis for action classification. However, in
ACE dataset, it is argued that many actions concerned cannot always be uniquely
determined by using motion features alone, such as action “boiling egg”. Their
work hence proposes to analyze the cooking video by separately modeling the
human motion and the context.

Most cooking actions can be characterized by certain motion pattern of the
arms of the actors, for example, mixing or cutting. Thus the motions of the
actors’ arms are first modeled. As observed from the videos, the skin area of the
actors’ arms can be detected. Using the prior of the human skin area location,
more accurate motion description and modeling can be obtained.

As analysis to the kitchen scene video dataset, the five cooking menus “ham
and eggs”, “omelet”, “scrambled egg”, “boiled egg” and “Kinshi-tamago” use
three kinds of ingredients: egg, milk, and ham, which is directly related to ac-
tion “breaking”, “peeling” and “seasoning”. Also cooking tools chopstick, and
saucepan are used, which can be used to identify action “mixing”, “turning”.
All the aforementioned items are placed on the kitchen table initially. Therefore
they propose to 1) obtain the geometry of the kitchen table from the depth
image, which is feasible since the table can fit well to a plane, 2) locate the
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Fig. 8. The proposed framework of cooking action recognition system

objects placed on the kitchen table by their depth information and model their
appearance using the color image.

In practice, they implement the cooking action recognition system as shown
in Fig. 8.

Preprocessing. The depth and color images are aligned following the work[7].
Then, they apply RANSAC to find the geometry of the kitchen table and floor
and label every pixel of the image whether it is on the table/floor or not by the
its depth. Skin area is also obtained by classification on the color of each pixel.

Feature Extraction. In order to handle multiple actions in one video, they
split the video into small clips. The label of each clip is decided by the major
voting of labels of frames.

Motion History Image Motion History Image (MHI)[8] uses a sin-
gle image to represent the information of how an object has moved
(spatially and temporally) in an image sequence. They extract MHI
from the video clips and resize the MHI image to 40×30 pixels image
which thus forms a 1200- dimensional feature vector.
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Spatio-Temporal Interest Point Description Spatio-temporal inter-
est point (STIP) description is widely used for action recognition.
They employ the most representative versions of STIP, which uses
the Harris 3D detector for the interest point detection[9]. Histogram
of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF)
descriptors are then extracted to form STIP descriptor and are en-
coded using Vector Quantization (VQ). A 1000-word codebook is
learned from the training set, thus each clip forms a 1000- dimen-
sional feature vector.

Trajectories They adopt a simplified version of the trajectory represen-
tation scheme proposed in[10]. First note that they only extract the
trajectories related to the detected skin area and is not on the kitchen
table and floor. Then for each video clip, they quantize all motion
trajectories (short trajectories are discarded) into 45 histogram bins
according to both depth (5 quantization levels) and orientation (9
quantization levels). The 45-dimensional representation for the tra-
jectories are similarly encoded using VQ and a learned 1000-word
codebook for the feature representation.

Context Information They only consider the pixel which is not on
the kitchen table and floor for the context feature extraction. Also,
only areas with motion is considered. They then split the pixels into
skin region and non-skin region using the skin detection information.
For both skin and non-skin region, they compute a 128-dimensional
HSV color histogram of the pixels on 1×1 and 2×2 spatial pyramids
as the feature descriptor. Thus a 1280-dimensional feature vector are
used to represent the context information in total.

Action Model Learning. They train classifiers on the feature representation
and labels extracted in the previous sections. For each action class, they train
a one-vs-all linear SVM classifier as the action model. For testing, all classifiers
are applied on the test sample, the label of the test sample is determined by the
largest scored classifier.

Post-processing. In order to utilize the temporal information, they apply the
post-processing step. They apply 1D Markov Random Field on the predicted
class labels. Denote yi is the label of the subsequence i, xi is the corresponding
extracted feature. The formulation is as follows.

min
y
{E(y) =

∑
i∈V

Ed(yi) + λ
∑

i,j∈N(i)

Es(yi, yj)} (5)

The data term Ed(yi) = 1 − ((p(yi|xi) + p(yi+1|xi+1))/2, where p(yi|xi) is re-
turned from the aforementioned one-vs-all linear SVM classifier. Meanwhile, the
smooth term Es follows Potts model Es(yi, yj) = {0, yi = yj ; 1, yi �= yj . λ is
set as 0.1 in their experiment. They finally utilize graph cuts to solve above
equation.
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Table 2. Image features for cooking gesture recognition

Feature Definition

x in pot Whether something is in a pot or not

x on pan Whether something is on a frying pan or not

x on board Whether something is on a board or not

x moved in pot Whether something is moving in a pot or not

x moved on pan Whether something is moving on a frying pan or not

x moved on board Whether something is moving on a board or not

x moved in bowl Whether something is moving in a bowl or not

ham on board Whether a ham is on a board or not

hand above bowl Whether cook’s hand is above/on a bowl or not

hand above pan Whether cook’s hand is above/on a frying pan or not

hand above board Whether cook’s hand is above/on a board or not

hand around dispenser Whether cook’s hand is around a dispenser or not

egg yolk in bowl Whether egg yolks is in a bowl or not

egg yolk on pan Whether egg yolks is on a frying pan or not

egg yolk on board Whether egg yolks is on a board or not

work on bowl side Whether the center of cook’s hands is closer to that
of a bowl or not

mixed egg on pan Whether mixed-egg is spread on a frying pan or not

7.2 Heuristic Approach

Theirmethod recognizes cooking gestures in combinationwith simple and straight-
forward image features under the state transition constraint depending on each
cooking menu.

Feature Definition. The image features used in their method are shown in
Table 2. Note that each feature value is binarized (0 or 1) with several kinds
of thresholds trained with training datasets. The process flow of the method is
described below.

Pre-processing. The label for each frame is set to NONE. Also, the kitchen
table region in an input video is extracted by thresholding the initial input depth
image.

Cooking Menu Recognition. The cooking menu in the video is sequentially
recognized in the following steps.

Step 1 “Boiled-egg” if the number of frames where x in pot = 1 is larger than
that of frames where x on pan = 1 in the whole video.

Step 2 “Kinshi-tamago” if the number of frames where x on board = 1 and
work on bowl side = 0 after a BAKING scene is significantly large.

Step 3 “Ham-egg” if the number of frames where mixed egg on pan = 1 is
significantly small in the whole video.

Step 4 “Omelette” or “Scramble-egg” if all the above conditions are not
satisfied.
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Table 3. Scheme for cooking gesture recognition

Gesture Definition

BREAKING
(bowl)

Scene from the first frame with hand above bowl = 1
and work on bowlside = 1 to the subsequent frame with
egg yolk in bowl = 1

BREAKING
(frying pan)

Scene from the first frame with hand above pan = 1
and work on bowlside = 1 to the subsequent frame with
egg yolk on pan = 1

MIXING
(pot)

Scene from the first frame with x moved in pot = 1 to the first
frame with x moved in pot = 0

MIXING
(bowl)

Scene where egg yolk in bowl or x moved in bowl changes fre-
quently

MIXING
(frying pan)

Scene where x moved on pan keeps 1

BAKING Scene from the first frame with x on pan = 1 to the last frame with
x on pan = 1

TURNING
(ham)

Scene where x moved on pan keeps 1

TURNING
(egg)

Scene where the variance of the original (not binarized) value of
mixed egg on pan is significantly large

CUTTING
(pot)

Scene from the first frame with hand above board = 1 to the first
frame with egg yolk on board = 1

CUTTING
(ham)

Scene from the first frame with ham on board = 1 and
work on bowl side = 0 to the first frame with x moved on board =
0

CUTTING
(board)

Scene where hand above board and x on board keeps 1, and
work on bowl side keeps 0

BOILING Scene from the first frame with x in pot = 1 to the last frame with
x in pot = 1

SEASONING Scene from the first frame with hand around dispenser = 1 to the
subsequent frame with hand around dispenser = 1

PEELING Scene where hand above bowl keeps 1

NONE Scene where all the other gestures are not specified

Cooking Gesture Recognition. The cooking menus can be separated into
two categories: 1) pot-based menu (“Boiled-egg”) and 2) frying pan-based menu
(“Ham-egg”, “Kinshi-tamago”, “Omelette”, and “Scramble-egg”). There must
include BOILING scenes in an input video of a pot-based menu. On the other
hand, there must include BAKING scenes in an input video of a frying pan-based
menu. Their method at first detects and fixes BOILING scenes for a pot-based
menu or BAKING scenes for a frying pan based menu. Then, their method
detects the other cooking gestures considering the necessity of 1) the time spent
on each cooking gesture and 2) the transition of the cooking gestures expected
in the estimated cooking menu. Here, the transition of the cooking gestures in
each cooking menu is constrained as follows.
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Boiled-egg BOILING [⇔ MIXING] ⇒ PEELING [ ⇒ CUTTING]
Ham-egg (BREAKING ⇒ CUTTING) or (CUTTING [⇒ BAKING] ⇒

BREAKING)⇒ BAKING [⇒MIXING] [⇔ TURNING]⇔ SEASONING
Kinshi-tamago BREAKING⇒MIXING⇒BAKING [⇔TURNING]⇒CUT-

TING
Omelette or Scramble-egg BREAKING [⇒ MIXING] [⇒ CUTTING] or

(CUTTING ⇒ BREAKING) ⇒ SEASONING ⇒ MIXING ⇒ BAKING ⇔
MIXING or TURNING

The cooking gestures are recognized according to the scheme shown in Table 3
under the gesture transition constraint.

Post-processing. To avoid unnatural labeling results, their method performs
several kinds of label modification. For example, a short NONE section is inserted
into the turn of the label, and successive short sections with the same label are
merged.

8 Conclusion

This paper introduced a new action dataset “Actions for Cooking Eggs (ACE)
Dataset” for evaluating action recognition methods, and reported a contest with
using the dataset. Unlike the previous related action datasets, our dataset em-
phasizes a scene context which supports the determination of action. We hope
that ACE dataset will be used by many researchers to discuss the importance
of considering the scene context in gesture recognition.
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Keisuke Yasuzawa, Kenta Matsui and Yusa Ko (Kyoto University in Japan) for
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Abstract. The KinectTM camera has revolutionized the field of computer vision
by making available low cost 3D cameras recording both RGB and depth data,
using a structured light infrared sensor. We recorded and made available a large
database of 50,000 hand and arm gestures. With these data, we organized a chal-
lenge emphasizing the problem of learning from very few examples. The data are
split into subtasks, each using a small vocabulary of 8 to 12 gestures, related to
a particular application domain: hand signals used by divers, finger codes to rep-
resent numerals, signals used by referees, Marshalling signals to guide vehicles
or aircrafts, etc. We limited the problem to single users for each task and to the
recognition of short sequences of gestures punctuated by returning the hands to a
resting position. This situation is encountered in computer interface applications,
including robotics, education, and gaming. The challenge setting fosters progress
in transfer learning by providing for training a large number of subtasks related
to, but different from the tasks on which the competitors are tested.

1 Introduction

Gesture recognition is an important sub-problem in many computer vision applications,
including image/video indexing, robot navigation, video surveillance, computer inter-
faces, and gaming. With simple gestures such as hand waving, gesture recognition could
enable controlling the lights or thermostat in your home or changing TV channels. The
same technology may even make it possible to automatically detect more complex hu-
man behaviors, to allow surveillance systems to sound an alarm when someone is acting
suspiciously, for example, or to send help whenever a bedridden patient shows signs of
distress.

Gesture recognition also provides excellent benchmarks for Adaptive and Intelligent
Systems (AIS) and computer vision algorithms. The recognition of continuous, natural
gestures is very challenging due to the multi-modal nature of the visual cues (e.g., move-
ments of fingers and lips, facial expressions, body pose), as well as technical limitations

X. Jiang et al. (Eds.): WDIA 2012, LNCS 7854, pp. 186–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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such as spatial and temporal resolution and unreliable depth cues. Technical difficulties
include tracking reliably hand, head and body parts, and achieving 3D invariance. The
competition we organized helped improve the accuracy of gesture recognition using
Microsoft KinectTMmotion sensor technology, a low cost 3D depth-sensing camera.
Examples of depth images are shown in Figure 1.

Much of the recent research in machine learning and data mining has sacrificed the
grand goal of designing systems ever approaching human intelligence for solving tasks
of practical interest with more immediate reward. Humans can recognize new gestures
after seeing just one example (one-shot-learning). With computers though, recognizing
even well-defined gestures, such as sign language, is much more challenging and has
traditionally required thousands of training examples to teach the software. One of our
goals was to evaluate whether transfer learning algorithms, which can exploit miscel-
laneous data resources, can improve the performance of systems designed to work on
new similar tasks (e.g. recognize a new vocabulary of gestures). To see what the ma-
chines are capable of, ChaLearn launched in 2012 a competition with prizes donated by
Microsoft.

Fig. 1. KinectTMdata. Color rendering of depth images from the gesture challenge database
were recorded with a KinectTM camera. Regular RGB images are recorded simultaneously (not
shown). KinectTM can record videos with up to 30 frames per second.

2 Problem Setting and Data

We are portraying a single user in front of a fixed camera, interacting with a computer
by performing gestures to play a game, remotely control appliances or robots, or learn
to perform gestures from an educational software. We have collected a large dataset
of gestures using the Microsoft Software Development Kit (SKD) interfaced to Matlab
(Figure 2), which includes:

– over 50,000 gestures recorded with the KinectTMcamera, including RGB and depth
videos,

– with image sizes 240 x 320 pixels,
– at 10 frames per second,
– recorded by 20 different users,
– grouped in 500 batches of 100 gestures,
– each batch including 47 sequences of 1 to 5 gestures drawn from various small

gesture vocabularies of 8 to 12 gestures,
– from 85 different gesture vocabularies.
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Fig. 2. Data collection. We recorded a large database of hand and arm gestures using the
RGB+Depth camera KinectTM , which was made freely available. The figure shows some of
the gesture lexicons and the user interface.

The data are available from in 2 formats1: A lossy compressed AVI format (5 GB) and
a quasi-lossless AVI format (30 GB). It presents various features of interest (Table 1).

To get a sufficient spacial resolution, we framed only the upper body. Although Mi-
crosoft provided a full body skeleton tracker with the SDK used for data collection,
at the time of data collection, it could not handle partial body occlusion and was not
usable for our data. Rather, we provided manual annotations:

– all temporal segmentation for the devel01-20 batches into individual gestures;
– the position of the head, shoulders, elbows and hands for 400 frames sampled from

the devel01-20 batches (Figure 3);
– image alignment between RGB and depth modalities.

We also provided code to browse though the data, a library of computer vision and ma-
chine learning techniques written in Matlab featuring examples drawn from the chal-
lenge datasets, and an end-to-end baseline system capable of processing challenge data
and producing a sample submission. The dataset is described in details in a companion
paper [9].

3 Task of the Challenge: One-Shot-Learning

The data are organized in batches: development batches devel01-480, validation batches
valid01-20, and final evaluation batches final01-20 (for round 1) and final21-40 (for
round 2). For the devel batches, we provided all the labels. To evaluate the perfor-
mances on “one-shot-learning” tasks, the valid and final batches were provided with

1 http://gesture.chalearn.org/data

http://gesture.chalearn.org/data
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Table 1. Easy and challenging aspects of the data

Easy aspects
Fixed camera
Availability of depth data
Within a batch: single user, homogeneous recording condi-
tions, small vocabulary
Gestures separated by returning to a resting position
Gestures performed mostly by arms and hands
Camera framing upper body (some exceptions)

Challenging aspects
Within a batch: only one labeled example of each gesture
Skeleton tracking data not provided
Between batches: variations in background, clothing, skin
color, lighting, temperature, resolution
Some errors or omissions in performing gestures
Some users are less skilled than others
Some parts of the body may be occluded

(a) (b)

Fig. 3. Body part annotations. We provided body part annotations for development data, includ-
ing head, shoulder, elbow and hand positions. Occluded parts are indicated by circles.

labels only for one example of each gesture class in each batch (training examples).
The goal was to automatically predict the gesture labels for the remaining unlabeled
gesture sequences (test examples).

Each batch includes 100 recorded gestures grouped in sequences of 1 to 5 gestures
performed by the same user. The gestures are drawn from a small vocabulary of 8 to
12 unique gestures, which we call a “lexicon”. For instance a gesture vocabulary may
consist of the signs to referee volleyball games or the signs to represent small animals in
the sign language for the deaf. We selected lexicons from nine categories corresponding
to various settings or application domains (Figure 4):
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Fig. 4. Types of gestures. We created a classification of gesture types according to purpose de-
fined by three complementary axes: communication, expression and action. We selected 85 ges-
ture vocabularies, including Italian gestures, Indian Mudras, Sign language for the deaf, diving
signals, pantomimes, and body language.

1. Body language gestures (like scratching your head, crossing your arms).
2. Gesticulations performed to accompany speech.
3. Illustrators (like Italian gestures).
4. Emblems (like Indian Mudras).
5. Signs (from sign languages for the deaf).
6. Signals (like referee signals, diving signals, or Marshalling signals to guide ma-

chinery or vehicle).
7. Actions (like drinking or writing).
8. Pantomimes (gestures made to mimic actions).
9. Dance postures.

During the challenge, we did not disclose the identity of the lexicons and of the users.

4 Protocol and Evaluation

Both rounds of the challenge consisted of two main components: a development phase
(Dec. 7, 2011 to Apr. 6, 2012 for round 1 and May 7 to Sep. 6, 2012 for round 2) and
a final evaluation phase (Apr. 7 to Apr. 10. 2012 for round 1 and Sep. 7 to Sep. 10 for
round 2):
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During the development phase (lasting approximately 4 months), the participants
were asked to build a learning system capable of learning from a single training example
a gesture classification problem. To that end, they received the development data to train
and self-evaluate their systems. To monitor their progress they could use the validation
data for which the test labels were withheld. The prediction results on validation data
could be submitted on-line to get immediate feed-back. A real-time leaderboard showed
to the participants their current standing based on their validation set predictions.

During the final evaluation phase (lasting four days), the participants performed sim-
ilar tasks as those of the validation data on new final evaluation data revealed at the end
of the development phase. The participants had only a few days to train their systems
and upload their predictions. Prior to the end of the development phase, and BEFORE
the final evaluation data was revealed, a software vault was made available so the partic-
ipants could upload executable code for their best learning system, which they then used
to train their models and make predictions on the final evaluation test data. This allowed
the competition organizers to check their results and ensure the fairness of the compe-
tition. Note that participation was NOT conditioned on submitting code or disclosing
methods. If any of the top ranking participants had opted not to submit their learning
system for verification, an alternative verification method would have been offered. All
top ranking participants submitted their code in round 1. In round 2, one top ranking
participant did not submit himself to the validation procedure and forfeited his prize.

The submission and evaluation of the challenge entries was via the Kaggle platform.
Post challenge submissions can still be made as an ever lasting benchmark. The official
rules are provided on the website of the challenge2.

In both rounds, participation was encouraged by donating free KinectTM sensors to
the first ten entrants who outperformed the baseline method on the leaderboard and by
offering prizes of $5000, $3000 and $2000 to the top three ranking participants, donated
by Microsoft. The participants had the opportunity to present their results at the CVPR
2012 and ICPR 2012 conferences.

Metric of Evaluation

For each unlabeled video, the participants were instructed to provide an ordered list of
labels R corresponding to the recognized gestures. We compared this list to the cor-
responding list of truth labels T i.e.the prescribed list of gestures that the user had to
play during data collection. We computed the Levenshtein distance L(R, T ), that is the
minimum number of edit operations (substitution, insertion, or deletion) that one has to
perform to go from R to T (or vice versa). The Levenhstein distance is also known as
“edit distance”. For example: L([124], [32]) = 2.

The overall score is the sum of the Levenshtein distances for all the lines of the
result file compared to the corresponding lines in the truth value file, divided by the
total number of gestures in the truth value file. This score is analogous to an error rate.
For simplicity, in what follows, we call it “error rate”. However, it can exceed one.

Public score means the score that appears on the leaderboard during the develop-
ment period and is based on the validation data. Private score means the score that was

2 http://gesture.chalearn.org/

http://gesture.chalearn.org/
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computed on the final evaluation data released at the end of the development period,
which was not revealed until the challenge was over. The private score was used to rank
the participants and determine the prizes.

5 Results

The first round of the challenge attracted 50 teams and the second round 35 teams. In to-
tal, 935 entries were made. This an unprecedented level of participation for a computer
vision challenge requiring very specialized skills. For comparison, the popular Pascal2
VOC challenges attracted in 2011 between and 1 and 19 participants.

The results of the top ranking participants were checked by the organizers who re-
produced their results using the code provided by the participants BEFORE they had
access to the final evaluation data. All of them passed successfully the verification pro-
cess. These results are shown in Tables 2 and 3.

Table 2. Results of round 1. In round 1 the baseline method was a simple template matching
method (see text). For comparison, we show the results on the final set number 2 not available in
round 1.

Team Public score Private score For comparison score
on validation set on final set #1 on final set #2

Alfnie 0.1426 0.0996 0.0915
Pennect 0.1797 0.1652 0.1231
OneMillionMonkeys 0.2697 0.1685 0.1819
Immortals 0.2543 0.1846 0.1853
Zonga 0.2714 0.2303 0.2190
Balazs Godeny 0.2637 0.2314 0.2679
SkyNet 0.2825 0.2330 0.1841
XiaoZhuwWudi 0.2930 0.2564 0.2607
Baseline method 1 0.5976 0.6251 0.5646

Table 3. Results of round 2. In round 2, the baseline method was the “Principal Motion” method
(see text).

Team Public score For comparison score Private score
on validation set on final set #1 on final set #2

alfnie 0.0951 0.0734 0.0710
Turtle Tamers 0.2001 0.1702 0.1098
Joewan 0.1669 0.1680 0.1448
Wayne Zhang 0.2814 0.2303 0.1846
Manavender 0.2310 0.2163 0.1608
HIT CS 0.1763 0.2825 0.2008
Vigilant 0.3090 0.2809 0.2235
Baseline method 2 0.3814 0.2997 0.3172
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Statistics on the Results

We show in Figure 5 the distribution of results. The figure represents the histograms of
performance of all the entries made on validation data in rounds 1 and 2. The distribu-
tion was widely spread in round 1, indicating that the tasks of the challenge separated
well the participants: they were challenging enough to require some effort to achieve
good results, yet they were doable. The two top ranking participants and several others
made no entry on the validation set until the very last days of the challenge, possibly in
an attempt to avoid that other competitors would put additional effort to try to beat them.
Their entries ended up cutting the error rate by almost a factor of two, reaching 10%
error, narrowing down considerably the gap to human performance (which is under 2%
error). The achievements of the top ranking participants are noteworthy considering that
several participants did not succeed in outperforming the very trivial baseline method
provided by the organizers. In round 1, the participants received sample code with the
simple following method: The videos were first temporally segmented using equally
spaced segmentation points estimated from the average isolated gesture duration. The
video segments were then simply averaged to form a 2d representation, which was then
“flattened” as a vector. The one-nearest-neighbor algorithm was then used for classifi-
cation using the Euclidean distance. It is interesting to note that the experiments that we
performed using methods that track hand position and describe the gestures as a hand
trajectory perform worse then the baseline method, due to the difficulty of tracking the
hand position.

In the second round, the organizers provided additional library functions as part of
the samples. In particular, they provided code for dynamic time warping allowing eas-
ily the implementation of Hidden Markov models [19], which proved to work well in
round 1 (See Appendix A). They also provided a better baseline end-to-end system than
in round 1: the “Principal motion” method [4] based on principal components of low
resolution motion histograms. The whole distribution of scores for the second round
participants is therefore shifted upwards. The error rate of the winner further reduces
the gap to human performance (7% error on the final evaluation set of round 2).

Figure 6 shows the correlation between the validation set error and the final evalu-
ation data error in both rounds. We purposely made the final evaluation data slightly
easier so the entrants would not eventually feel frustrated. Hence we expected that the
entry points would be under the diagonal. This is confirmed for the top ranking partic-
ipants. However, some lower ranking participants have entry points over the diagonal,
which indicates a possible overfitting of the validation data.

Further analysis of the data batch by batch revealed that for three batches all the
participants performed poorly, including the winner. Those are data batches for which
details of the finger position is important (e.g. counting with fingers).

Survey of Methods Employed by the Participants

We asked the participants to fill out a survey about the methods employed. Twenty eight
groups replied, among the top ranking participants. We briefly summarize the answers
of the top ranking participants. More details including slides of the presentations are
found on the website of the challenge.



194 I. Guyon et al.

(a)

(b)

Fig. 5. Result distribution in both rounds. The figure shows histograms of score values on vali-
dation data.

(a) (b)

Fig. 6. Correlation between validation results and final evaluation. (a) Round 1. (b) Round2.
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Preprocessing and Data Representation: Most of the participants employed image en-
hancement and filtering techniques, in majority denoising or outlier removal and back-
ground removal. Some reduced the image resolution for faster processing. Notably, some
of the top ranking participants did not do any such low level preprocessing. The major-
ity of the top ranking participants used HOG/HOF features [3,15] and/or ad-hoc hand
crafted features, edge/corner detectors or SIFT/STIP features [14]. The latter use a bag-
of-feature strategy, which ignores exact location of features and therefore provides some
robustness against translations. The winner of both rounds of the challenge claims that
his features are inspired by the human visual system. Very few participants resorted to
using body parts or trained features. Most participants used the depth image only, but
about one third used both RGB and depth images. Interestingly, the second place win-
ner in round 1 used the RGB image only. About one third of the participants did no
dimensionality reduction at all and one third resorted to feature selection. Other popular
techniques included linear transforms (such as PCA, see e.g. [10]) and clustering.

Recognition: For temporal segmentation, most participants used candidate cuts based
on similarities with the resting position or based on amount of motion. All the top rank-
ing participants used recognition-based segmentation techniques (in which recognition
and segmentation are integrated). As gesture representation, all highest ranking partic-
ipants used a variable length sequence of feature vectors (sometimes in combination
with other representations). To handle such variable length representations, the highest
ranking participants used Hidden Markov Models (HMM), Conditional Random Fields
(CRF) or other similar graphical models, see e.g. [12]. This is a state machine includ-
ing skips and self-loops to allow for variation in the speed of the gesture execution. The
most likely sequence of gestures is determined by a Viterbi search. Some highly ranked,
but not top ranking, participants used a bag-of-word representation or image templates,
including motion energy or motion history representations [1]. The corresponding clas-
sifiers were usually nearest neighbors (using as metric the Euclidean distance or corre-
lation). One participant used a linear SVM, see e.g. [10]. Many participants made use
of the development data to either learn features or gesture representations in the spirit
of “transfer learning”, see e.g. [18].

Implementation: Most participants claimed that the algorithmic complexity of their
methods was linear in image size, number of frames per video, and number of training
examples. The median execution time on the 20 batches of the final evaluation set was
2.5 hours, which is very reasonable and close to real time performance. However, there
were a few outliers and it took up to 50 hours for the slowest code. Most participants,
including the top ranking ones, claimed that their methods were simple and easy to
implement. Several top ranking participants claimed that they had made novel contri-
butions. Most participants developed their own code and may be willing to share it when
it matures. Matlab was the most popular platform and was used by the 2 top ranking
participants. “C” and derived languages were often used and sometimes in combina-
tion with Matlab, in particular making use of OpenCV libraries [2]. A few participants
used Java. The majority of the participants developed under the Windows operating sys-
tem (65%), the rest divided about evenly between MacOS and Linux. Two third of the
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systems required less than 2GB of memory and all less than 8 GB. Parallelism was
usually exploited via the use of multi-processor machines.

Development Effort: Two-third of the survey respondents spent more than 2 man-
weeks of development effort. This is a lot of effort in comparison to the computer time
generally estimated to a few hours of a few days. Half of the participants estimated that
the challenge duration was sufficient to achieve their goals. One third declared that they
will spend more time during the second round.

Algorithms Employed by the Top Ranking Participants

We summarize the descriptions provided by the top ranking participants in their fact
sheets. Interestingly, all top ranking methods are based on techniques making no ex-
plicit detection and tracking of humans or individual body parts. This departs from the
methods based on skeleton-tracking used in early applications of KinectTM to computer
interfaces.

The winner of both rounds (Alfonso Nieto Castañon of Spain, a.k.a. alfnie) used
a novel technique called “Motion Signature analyses”, inspired by the neural mecha-
nisms underlying information processing in the visual system. This is an unpublished
method using a sliding window to perform simultaneously recognition and temporal
segmentation, based solely on depth images. The method, described by the authors as a
“Bayesian network”, is similar to a Hidden Markov Model (HMM). It performs simul-
taneous recognition and segmentation using the Viterbi algorithm. The preprocessing
steps include Wavelet filtering replacement of missing values and outlier detection. No-
tably, this method is one of the fastest despite the fact that he implemented it in Matlab
(close to real time on a regular laptop). The author claims that it is linear complexity in
image size, number of frames, and number of training examples.

The second best ranked participants (team Pennect of Universit of Pennsylvania,
USA, in round 1 and team Turtle Tamers of Slovakia, in round 2) used very similar
methods and performed similarly. Their methods are based on an HMM-style model
using HOG/HOF features to represent movie frames. They differ in that Pennect used
RGB images only while Turtle Tamers used both RGB and depth. Another difference is
that Pennect used HOG/HOF features at 3 different scales while Turtle Tamers created
a bag of features using K-means clustering from only 40x40 resolution and 16 orien-
tation bins. Pennect trained a one-vs-all linear classifier for each frame in every model
and used the discriminant value as a local state score for the HMM while Turtle Tamers
used a quadratic-chi kernel metric for comparing pairs of frames in the training and
test movie. As preprocessing, Pennect uses mean subtraction and compensates for body
translations while Turtle Tamers replaces the missing values by the median of neigh-
boring values. Both teams claim a linear complexity in number of frames, number of
training examples, and image size. They both provided Matlab software that processes
all the batches of the final test set on a regular laptop in a few hours.

The next best ranked participants (who won third place in round 2), the Joewan
team [21], used a slightly different approach. They relied on the motion segmentation
method provided by the organizers to pre-segment videos. They then represented each
video as a bag of 3D MOSIFT features (integrating RGB and depth data) then used a
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nearest neighbor classifier. Their algorithm is super-quadratic in image size, linear in
number of frames per video, and linear in number of training examples. The method
is rather slow and takes over a day to process all the batches of the final test set on a
regular laptop.

The third best ranked team in round 1 (OneMillionMonkeys) also used an HMM in
which a state is created for each frame of the gesture exemplars. His data representation
is based on edge detection in each frame. Edges are associated with several attributes in-
cluding the X/Y coordinates, their orientation, their sharpness, their depth and location
in an area of change. To provide a local state score to the HMM for test frames, One-
MillionMonkeys calculated the joint probability of all the nearest neighbors in training
frames using a Gaussian model. The system works exclusively from the depth images.
The system is one of the slowest proposed. Its processing speed is linear in number
of training examples but quadratic in image size and number of frames per video. The
method is rather slow and takes over a day to process all the batches of the final test set
on a regular laptop.

Robustness to Translation and Scale

This section reports post-challenge experiments we conducted, using the code provided
by the participants, to test the robustness of recognition to body translation and image
scaling. In a variety of tasks, the user sits in a fixed position relative to a camera. Such
is the setup that we used to collect the challenge data. However, it can happen that the
user shifts his position or moves forward or backward. We emulated this situation by
transforming a number of challenge batches as follows:

– We went back to the original data and selected batches including a large background
area in which no gesture was taking place. This constitutes the utran data.

– We visually inspected the training videos to identify a cropping area including ev-
ery important gesture parts. Once selected, the cropping size was fixed for the given
batch. The aspect ratio was always always 4:3 (width:height), similar to the chal-
lenge data.

– For every test video in the batch, using the same cropping size, a different hori-
zontal translation was applied. This was done by visual inspection to make sure
no important gesture part was occluded. No vertical translation was applied. This
constitutes the tran data.

– Similarly, we applied various scaling factors to generate the scaled data.

We selected 20 batches for these experiments, not coinciding with the sets of batches
used for validation, and final testing because most of those batches included dynamic
gestures covering the entire image area, therefore not leaving room for translations. The
batches used are harder on average than those used for the challenge final evaluation,
in particular because they include more static posture recognition. We ran experiments
with the un-translated batches (utran) and with the translated batches (tran) and the
scaled batches (scaled).
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The results are summarized in Table 4.3 We notice that the methods of the winner of
both rounds (Alfnie) are robust against translation and scale while the second ranking
methods (Pennect and Turtle Tamers) exhibit important performance degradation be-
tween utran and tran and scaled. This is not so surprising considering that both Pennect
and Turtle Tamers use features rigidly positioned on image feature maps.

Methods robust against translation include those of Joewan [21] and Immortals/
Manavender (this is the same author under two different pseudonyms for round 1 and
round 2) [16]. Their representations are based on a bag of visual words, inspired by
techniques used in action recognition [14]. Such representations are inherently shift in-
variant. The slight performance loss in translated data may be due to partial occlusions.

Table 4. Comparisons of results for the top ranking methods in both rounds, on the validation
set and final evaluation sets of each round, and on the untranslated (utran) and translated (tran)
batches used in the translation experiments, and on the scaled data. We also indicate the time
spent executing one batch in seconds on an Intel Core 2 Duo 2 GHz (desktop) with 4 GB of
memory.

Name valid final1 final2 utran trans scaled time (s/batch)

Alfnie1 0.1426 0.0996 0.0915 0.2316 0.2255 0.2573 71
Alfnie2 0.0995 0.0734 0.0710 0.1635 0.2310 0.2566 55
BalazsGodeny 0.2714 0.2314 0.2679 0.4347 0.5636 0.5526 93
HITCS 0.3245 0.2825 0.2008 0.4743 0.6640 0.6066 96
Immortals 0.2488 0.1847 0.1853 0.3594 0.3962 0.4152 925
Joewan 0.1824 0.1680 0.1448 0.2623 0.2612 0.2913 4099
Manavender 0.2559 0.2164 0.1925 0.3644 0.4252 0.4358 384
OneMillionMonkeys 0.2875 0.1685 0.1819 0.3633 0.4961 0.5552 21600
Pennect 0.1797 0.1652 0.1231 0.2589 0.4888 0.4068 287
SkyNet 0.2825 0.2330 0.1841 0.3901 0.4693 0.4771 120
TurtleTamers 0.2084 0.1702 0.1098 0.2896 0.5993 0.5296 383
Vigilant 0.3090 0.2809 0.2235 0.3817 0.5173 0.5067 294
WayneZhang 0.2819 0.2303 0.1608 0.3387 0.6278 0.5843 NA
XiaoZhuWudi 0.2930 0.2564 0.2607 0.3962 0.6986 0.6897 320
Zonga 0.2714 0.2303 0.2191 0.4163 0.4905 0.5776 159

6 Demonstration Competitions

We also hosted two demonstration competitions, one in June 2012 at the CVPR con-
ference, and one in November 2012 at the ICPR conference. The goal in these demon-
stration competitions was to address qualitative factors of gesture recognition systems
that were not addressed in the quantitative part of the gesture challenge. In particular,
these qualitative factors included relevance and importance of the target application,
user friendliness, quality of system design, and real time performance.

3 Some results in Tables 2 or 3 may be slightly different from the results of Table 4 because the
former comes from the participants entries on the submission website while the latter come
from running the participants’ submitted code on our computers. The differences did not affect
the final ranking.
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At CVPR 2012 we had eight participants. We summarize the methods of the winners:

– The winning entry was by a team from Turkey [11], and entailed a system per-
forming articulated hand pose estimation, hand shape classification, and gesture
recognition. The method uses randomized classification forests to assign class la-
bels to each pixel on a depth image, and the final class label is determined by voting.
The authors report in their paper experiments on American sign language and on a
subset of the ChaLearn gesture challenge data, with very high success rates (larger
than 90%).

– The entry winning second place was by a team from Italy [8]. Their system allowed
a user to play a memory game against a robot. In the game, each player has to
remember and repeat a sequence of gestures performed by the other player, and
then add one more gesture to that sequence. The team also made a honorable entry
in the ChaLearn gesture challenge (ranking 9 of 50 in the first round). The method
uses features based on 3D HOG and HOF, followed by sparse coding and SVM
classification.

– The third place system was by a team from Switzerland that performed real-time
head pose estimation [6], for the purpose of improving the realism of sound simu-
lation. The user wearing headphones received a 3D reconstruction of sound auto-
matically adjusted to changes in head orientation, such that the apparent location
of sources of sound remains accurate. The approach is based on discriminative ran-
dom regression forests, which simultaneously classify image regions into whether
they belong to the head region or not and cast probabilistic votes in a continuous
space of head poses, defined as the 3D position of the nose and the Euler rotation
angles.

All three winning systems demonstrated real time performance on standard hardware.
Other entries included a system for gesture-based interfaces in operating rooms, two
general-purpose systems allowing non-technical users to define gestures that the system
should recognize, and two systems focusing on minimizing processing time and CPU
load, so as to produce lightweight gesture recognition modules.

At the second demonstration contest, hosted at ICPR 2012, we had six participants.
We summarize the winning entries:

– The winning entry was by a team from Greece, performing real-time articulated
hand pose tracking [17]. The method used employs a hand model that produces
hypotheses of hand postures that are matched with RGB-D image features. The
matching scores drive an iterative an optimization process using Particle Swarm
Optimization (PSO), carried out on a parallel processor. Although the topic is sim-
ilar to that of the winning entry in the first round, the method is radically different
because it is model-based.

– The system winning second place was by a team from Italy [7], and allowed users
to navigate and visualize 3D medical images using gestures. They perform view-
independent hand shape classification for a number of shapes used to drive the user
interface (open and closed fist, L shape and finger pointing). From the depth image
only, they represent the hand as a point cloud summarized by the Flusser moments
of its 2 first principal component projections. Classification is performed by a SVM
and hand velocity is used to translate gesture into action.
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– Third place was won by a team from Spain [5], whose system also allows users to
manipulate medical image data with hand gestures. The authors proposed a novel
3D hand point cloud description using a Spherical Blurred Shape Model (SBSM)
descriptor. They also used a SVM for classification of 8 different hand poses. The
overall system incorporates hand trajectory features to map gesture to action.

Except for the top ranking entry, the winning methods ran in real time on standard hard-
ware. The other entries included a system allowing non-technical users to customize
gesture recognition algorithms, a system allowing members of the general public to in-
teract with a storefront display and view information about products on that display,
and a system for monitoring the execution of recipes in a kitchen environment.

Importantly, the methods proposed in the demonstration competitions are comple-
mentary to those of the quantitative evaluation. They provided real time methods capa-
ble of recognizing subtle hand postures, which can be used to drive computer interfaces.
In the quantitative evaluation, most gesture lexicons included dynamic gestures. This
prompted the participants to de-emphasize the recognition of finger postures, which is
important for gestures in which hand posture has an important semantic role. As previ-
ously mentioned, the participants of the quantitative evaluation all performed poorly on
batches including static hand postures. The hope is that by using the methods proposed
in the demonstration competition, performances on the quantitative evaluation could be
boosted and approach human performance.

7 Conclusion

The ChaLearn gesture challenge helped narrow down the gap between machine and
human performance on the task of one-shot gesture learning from 3D video data. In
two rounds each lasting four months, the challenge attracted a total of 85 teams mak-
ing 935 entries. They lowered the error rate, starting from a baseline method making
more than 50% error to 7% error. The winner of the challenge, Alfonso Nieto Castañón,
used a method he invented, which is inspired by the human vision system. His method
is robust against user horizontal translation and image scaling, a feature exhibited in
post-challenge tests we conducted. ChaLearn also organized demonstration competi-
tions of gesture recognition systems using KinectTM in conjunction with those events.
Novel data representations were proposed to tackle with success, in real time, the prob-
lem of hand and finger posture recognition. The demonstration competition winners
showed systems capable of accurately tracking in real time hand postures in application
to touch free exploration of 3D medical images for surgeons in the operating room,
finger spelling (sign language for the deaf), virtual shopping, and game controlling.
Combining the methods proposed in the demonstration competition tackling the prob-
lem of hand postures and those of the quantitative evaluation focusing on the dynamics
of hand and arm movements is a promising direction of future research. For a long
lasting impact, the challenge platform, the data and software repositories will remain
available beyond the term of the project.
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A HMM Implementation in the Sample Code

Since Hidden Markov Models (HMM) [19] were so prominently used by the top rank-
ing participants in round 1, we provided an implementation in the distributed sample
code4 for round 2. Several top ranking participants in round 2 made use of it. We give a
brief description.

The models we are interested in possess a finite number of states. States and state
transitions are represented by a graph. In their original formulation, HMMs are data
generating models implementing a double random process: there are probabilities of
transition from state to state and probabilities of emission of a visible observation in
every state. In application to gesture recognition, each state represents an archetypal
body posture and visible observations are movie frames. Sub-models of sequences of
postures representing individual gestures can be chained. When a test video is observed,
it is matched to an optimum sequence of states using the Viterbi algorithm [20]. Other
algorithms that are close cousins to Hidden Markov Models such as Conditional ran-
dom Fields (CRF) perform a very similar function without a data generating interpreta-
tion [13].

Generally, transitions between states have a weight (transition probability or tran-
sition score), which is learned by example. However, since we have only one training
gesture per class in this challenge, all transition scores in our models are set to the same
value (one). Similarly, when a large number of training examples is available, each node
is usually associated with a trained emission model or a trained discriminant function
recognizing whether a given observation belongs to a given state. Such emission models
or discriminant functions allow us to compute matching scores of test frames to model
states. But, since we have only one example of gesture per class in this challenge, we
obtain matching scores by simply computing the distance of the test observation (test
movie frame) with the reference template (training example movie frame).

We remind the reader that the subjects who recorded the videos were instructed to
return their hands to a resting position between gestures (arms along the body). Hence,
we provide the option to force the model to return to a resting position between gestures.

We now describe more specifically our implementation. Let L(i), i = 1 : P be the
length of the P example videos in which training gestures are performed. We begin
by calling the Matlab function parents = simple_forward_model(L, N),

4 http://gesture.chalearn.org/data/sample-code

http://gesture.chalearn.org/data/sample-code
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Fig. 7. Example of graph matching. Top: The graphical model for two gestures having 2 and 3
states respectively. Gesture 1 is the orange model and gesture 2 the yellow model. The blue state
is the resting position. Bottom: The matrix of matching scores between the 6 states of the model
associated each with a training example frame and 14 frames of a test movie. Lighter gray levels
represent better scores. The best path is shown in green. The sequence identified is: gesture 2,
gesture 1, gesture 2. The path goes through the resting position between every gesture.

where N is the length of the optional rest position model. The function returns an array
“parents” containing the lists of the parent nodes of every node. For instance, if L =
[2, 3] and N = 1, the model returns the following lists of parents for every node:

1: 1 6
2: 2 1
3: 3 6
4: 4 3
5: 5 4 3
6: 6 2 5

This corresponds to a simple forward model (Fig. 7) in which the first training video
has only 2 frames and the second one three frames, thus they are mapped with gesture
models of 2 and 3 states respectively. The last node represents the resting position.
Every state has a self loop to generate durations. Within a gesture model there are
forward transitions to the immediate next state and to the following one. Skipping states
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permits time compression. Hence, the model architecture allows us to perform an elastic
matching of frame sequences.

We then need to compute the matching scores between all pairs of training frames
and test frames. We use the function local_scores=euclid_simil(TR, TE),
which computes simply the negative Euclidean distance between preprocessed data
frames. TR is the concatenation of the movies of all training videos plus a frame il-
lustrating the resting position. TE is the test movie.

Finally, we compute the best matching path using the Viterbi algorithm with the
function best_score=viterbi(local_scores, parents). The algorithm
computes global scores from the local scores as follows:

global_score = local_score + max(global_score_parents)

where max(global_score_parents) is the maximum global score of the parents
of a given node. The algorithm also keeps track of which parent provided the maximum
global score. The computation is initialized at the first frame of the test sequence and
propagates until the last frame. The largest global score is then selected and using the
pointers to the best parent node, the best path is back-tracked.
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using optical flow accumulated local histograms. In: Araujo, H., Mendonça, A.M., Pinho, A.J.,
Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 32–39. Springer, Heidelberg (2009)

16. Malgireddy, M., Nwogu, I., Govindaraju, V.: Language-motivated approaches to action
recognition. Submitted to JMLR (2013)

17. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly
interacting hands. In: CVPR, pp. 1862–1869 (2012)

18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knoweledge and
Data Engineering 22(10), 1345–1359 (2010)

19. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 257–286 (1989)

20. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory IT-13(2), 260–269 (1967)

21. Wan, J., Ruan, Q., Li, W.: One-shot learning gesture recognition from rgb-d data using
bag-of-features. JMLR (in press, 2013)



Author Index

Abe, Ayako 78
Angulo, Cecilio 126
Aoki, Hirooki 146
Aoyama, Masahito 146
Athitsos, V. 186
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