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Abstract. Locality-Sensitive Hashing (LSH) is widely used to solve approxi-
mate nearest neighbor search problems in high-dimensional spaces. The basic 
idea is to map the “nearby” objects into a same hash bucket with high probabil-
ity. A significant drawback is that LSH requires a large number of hash tables 
to achieve good search quality. Multi-probe LSH was proposed to reduce the 
number of hash tables by looking up multiple buckets in each table. While op-
timized for a main memory database, it is not optimal when multi-dimensional 
vectors are stored in a secondary storage, because the probed buckets may be 
randomly distributed in different physical pages. In order to optimize the I/O ef-
ficiency, we propose a new method called Dynamic Multi-probe LSH which 
groups small hash buckets into a single bucket by dynamically increasing the 
number of hash functions during the index construction. Experimental results 
show that our method is significantly more I/O efficient.  

Keywords: Locality sensitive hashing, indexing, high-dimensional database, 
approximate nearest neighbor search. 

1 Introduction 

Nearest neighbor search (NNS), also known as similarity search, consists in finding, 
for a given point in a high-dimensional space, the closest points from a given set. The 
nearest neighbor search problem arises in many application fields, such as pattern 
recognition, computer vision, multimedia databases (e.g. content-based image retriev-
al), recommendation systems and DNA sequencing. Various indexing structures have 
been proposed to speed up the nearest neighbor search. Early proposed tree-based 
indexing methods such as R-tree [10], K-D-tree [2], SR-tree [14], X-tree [3] and M-
tree [5] return exact query results, but they all suffer the “curse of dimensionality”: it 
has been shown in [19] that they exhibit linear complexity at high dimensionality, and 
that they are outperformed on average by a simple sequential scan of the database if 
the number of dimensions exceeds even moderate values, e.g. around 10. 
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In fact, for most of the applications, exact nearest neighbors are not more meaning-
ful than the so-called ε-approximate nearest neighbors, because the feature vectors 
used to represent the objects are usually already imprecise. This phenomenon, called 
semantic gap is inherent e.g. in content-based image retrieval (CBIR), where feature 
vectors expressing low-level image properties are used to answer high-level user que-
ries. Formally, the goal of the ε-approximate NNS is to find the data object within the 
distance ε × R from a query object, where R is the distance from the query point to its 
exact nearest neighbor. The most well-known methods for solving the ε-approximate 
NNS problem in high-dimensional spaces are Locality Sensitive Hashing (LSH) [9], 
[12] and its variants [1], [15]. 

The basic LSH method uses a family of locality-sensitive hash functions to hash 
nearby objects into the same bucket with a high probability. Several hash functions 
are combined to produce a compound hash signature corresponding to finer hash 
buckets. For a given query object, the indexing method hashes this object into a buck-
et, takes the objects in the same bucket as ε-approximate NNS candidates, and then 
ranks the candidates according to their distances to the query object. A side effect of 
combining several hash functions is that some “nearby” points may be hashed into 
different buckets. In order to increase the probability of finding all the nearest neigh-
bors, the LSH method usually creates multiple hash tables and each hash table is built 
by using independent locality-sensitive hash functions. The number of hash tables is 
usually over a hundred [9] and sometimes several hundred [4]. This becomes a prob-
lem in terms of space consumption. To reduce the number of hash tables needed, the 
Multi-probe LSH method [15] has been proposed by Lv et al. 

The main idea of Multi-probe LSH is to build on the basic LSH indexing method, 
but to use a carefully derived probing sequence to look up multiple buckets that have 
a high probability of containing the nearest neighbors of a query object. By probing 
multiple buckets in each hash table, the method requires far fewer hash tables than the 
previously proposed LSH methods. As an in-memory algorithm, Multi-probe LSH 
method is very efficient; however, if the feature vectors cannot be stored in main 
memory, the query cost becomes rather high, because the probed buckets may be 
randomly distributed in different disk pages. In this paper, we consider the case where 
the feature vectors are stored in a secondary storage, even though we suppose that the 
index structure itself is still in main memory. 

In order to improve the query efficiency of the Multi-probe LSH, we present in this 
paper a new method called Dynamic Multi-probe LSH (DMLSH). The main modifi-
cation to Multi-probe LSH is that we dynamically adapt the number of hash functions 
for each bucket in order to produce buckets whose size fits a disk page. With the same 
parameter setting, our method always requires less I/O cost and provides higher query 
accuracy than Multi-probe LSH. The experimental results have shown that the gain is 
significant. 

The rest of this paper is organized as follows. We first review the background 
knowledge and the related work in Section 2, and then present our DMLSH method in 
Section 3. We describe experimental studies in Section 4 and conclude in Section 5. 
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2 Background and Related Work 

Approximate Nearest Neighbor Search. Definition (ε-Nearest Neighbor Search  
(ε-NNS)) [9]. Let us consider the normed space ݈௣ௗ  representing the d-dimensional 
Euclidian space Rd with the lp norm and the distance D(·,·) induced by this norm. Giv-
en a set P of points in ݈௣ௗ, solving the ε-NNS problem in P consists in preprocessing P 
so as to efficiently return a point p ϵ P for any given query point q, such that D(p,q) ≤ 
(1+ ε) D(q,P), where D(q,P) is the distance of q to its closest point in P. 

Note that the above definition generalizes to any metric space. It also generalizes 
naturally to finding K>1 approximate nearest neighbors. In the approximate K-NNS 
problem, we wish to find K points p1, … , pk, such that the distance of pi to the query 
point q is at most (1+ ε) times the distance from q to the i-th nearest point in P. 

Locality Sensitive Hashing. The basic idea of LSH is to use hash functions that map 
similar objects into the same hash bucket with high probability. Performing a similari-
ty search query on an LSH index consists of two steps: 1) using LSH functions to 
select “candidate” objects for a given query q, and 2) ranking the candidate objects 
according to their distance to q. 

Definition (Locality-Sensitive Hash Family) [9], [12]. A family H = {h: S  U} is 
called (r, ε, p1, p2)-sensitive, with p1 > p2 > 0, ε > 0, if for any p, q ∈ S, the following 
conditions hold: 

• If D(p, q) ≤ r then PrH[h(p)=h(q)] ≥ p1; 

• If D(p, q) > (1+ ε)r then PrH[h(p)=h(q)] ≤ p2. 

Here S is a set of objects and D(·,·) is the distance function of elements in the set S. 
Different LSH families can be used for different distance functions. Families for 

Jaccard distance, Hamming distance, l1 and l2 distances are known. The most widely 
used one is the LSH family for Euclidean distance proposed by Datar et al.[7]. Each 
function is defined on Rd as follows: ha,b(v) = ⌊(a · v +b)/W⌋, where a is a random  
d-dimensional vector and b is a real number chosen uniformly from the range [0, W]. 
a · v is the dot product of vectors a and v. Each hash function maps a d-dimensional 
vector v onto into an integer value. 

Given a locality-sensitive hash family H = {h: S  U}, an LSH index is construct-
ed as follows. (1) For an integer M > 0, define a  family G = {g: S  UM} of com-
pound hash functions; for any g ∈ G, g(v) = (h1(v), h2(v), … , hM(v)), where hj ∈ H for 
1 ≤ j ≤ M. (2) For an integer L>0, choose g1, g2, … gL from G, independently and uni-
formly at random. Each of the L functions gi (1 ≤ i ≤ L) is used to construct one hash 
table, resulting in L hash tables. (3) Insert each vector v into the hash bucket to which 
gi(v) points to, for i = 1, …, L. A K-NNS query for vector q is processed in two steps. 
(1) Compute the hash value gi(q) and retrieve all the vectors in bucket gi(q) for i = 1, 
…, L as candidates. (2) Rank the candidates according to their distances to the query 
object q, and then return the top K objects. Note that compound hash functions reduce 
the probability that distant vectors belong to a same bucket, but increase the risk of 
nearby points separated into different buckets. Merging candidates from several hash 
tables reduces the risk of missing close objects. 
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Multi-probe LSH checks also the buckets g(q) + Δ1, g(q) + Δ2, …, g(q) + ΔT. These 
buckets are ordered according to their “success probability” which is a score estimat-
ed using formula score(Δ) = ∑ ௜ெ௜ୀଵݔ  is the distance from q to the (௜ߜ)௜ݔ ଶ, where(௜ߜ)
boundary of the bucket hi(q) + δi. For example, in Fig. 2, xi(1) is the distance from  
q to the boundary of the bucket  hi(q) + 1, where hi(q) = (ai · q +bi)/W and fi(q) = ai · 
q +bi. 

Multi-probe LSH is originally designed as an in-memory algorithm. In this paper, 
however, we consider that the multidimensional vectors are stored in a secondary 
storage such as hard disk. The problem with Multi-probe LSH in this new context is 
that many probes are needed for each hash table and the probed buckets are randomly 
stored in the disk, so a lot of I/Os are required for each query. Our objective in this 
paper is to reduce the number of I/Os for a K-NN search.  

Other Related Work. LSH Forest indexing method [1] represents each hash table by 
a prefix tree to eliminate the need of finding the optimal number of hash functions per 
table. However, this method does not help reduce the number of hash tables, so the 
space consumption and query time are not improved. There exists some other work 
which tends to estimate optimal parameters with sample datasets [8], use improved 
hash functions [11], [13], [17], [18] or divide the dataset into clusters before building 
LSH indexes [16]. All these methods are complementary to the Multi-probe LSH and 
our improved structure and could be combined with our method in order to achieve 
better performance and quality. 

3 Dynamic Multi-probe LSH 

3.1 Overview 

The main idea of DMLSH is to dynamically vary the granularity of buckets in order 
to adapt the number of objects they contain to the size of a disk page. We use the 
same locality-sensitive hash functions and the same probing sequence as Multi-probe 
LSH. More precisely: 1) Instead of directly building a hash table by using all M func-
tions, we first build a hash table by using only one LSH function. If a bucket contains 
more than l objects (where l is the number of objects contained in a disk page), we 
add a second LSH function to this bucket in order to split it into several small buckets. 
If some small bucket still contains more than l objects, we continue adding LSH func-
tions until each bucket contains less than l objects or the number of functions used 
becomes to be M. We store the signatures of all these buckets in to a B+ tree. Note 
that these signatures have different lengths, so the keys in the B+ tree have variable 
size. 2) We use the sequence probing algorithm of Multi-probe LSH to generate the 
signatures of the buckets to be probed. If the bucket signature exists in the B+ tree 
index, we will take the objects in the corresponding bucket as candidates; otherwise, 
we will check the bucket whose signature is a prefix of the generated signature. 

Let us explain these principles through an example. In Fig. 3(a), a basic LSH table 
has been built using 2 hash functions h1 and h2. For a given query q, if we use Multi-
probe algorithm to generate 6 probes, the buckets chosen are those of signatures 11, 
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As shown below, vector insertion respects the DMLSH strategy to generate new 
buckets that use as few hash functions as possible. Only when the size of a bucket 
exceeds a threshold, we add a new hash function for this bucket and distribute the 
objects into smaller buckets. When the number of hash functions used becomes to be 
M, we stop adding new hash functions and we will store the newly inserted objects in 
the overflow pages of the full bucket. 

Object Insertion. As shown in Algorithm 2, when inserting a new vector v, we insert 
it into each of the L hash tables.  For each hash table, we compute the hash value g(v) 
of vector v, using the M functions, and search the key g(v) in the corresponding B+ 
tree. If a prefix of g(v) exists in the tree, the function Treei.find(g(v)) will return the 
item in the leaf node which corresponds to the prefix key. Note that a prefix may not 
exist in the tree, because empty buckets are not stored in the B+ tree. If there is no 
prefix of the searched key, item is NULL and we will add into the tree a new item 
with the shortest prefix of g(v) which is not a prefix of any other existing key. This is 
done by function Treei.insert(g’(v), item). The length of this prefix is computed by 
function Nb_hash (Algorithm 3). Finally, we insert the vector into the bucket page 
linked to the found (or inserted) prefix key and update the other fields of the leaf item 
with AddVectorToItem (see Algorithm 4). 

Algorithm 2. InsertVector(v): insert a vector v 

for i = 1 to L do 
      g(v) = (hi,1(v), hi,2(v), …, hi,M(v)) 
      item = Treei.find(g(v)) 
      if item == NULL then 
            item = New_leaf_item() 
            nb_hashes_used = Nb_hash(v, i) (Algorithm 3) 
            g’(v) = (hi,1(v), hi,2(v), …, hi,nb_hashes_used(v)) 
            Treei.insert(g’(v), item) 
      AddVectorToItem(v, item, i) (Algorithm 4) 
end for 

 

Algorithm 3. Nb_hash(v, i): determine nb_hashes_used for vector v 
in Treei 

g(v) = (hi,1(v), hi,2(v), …, hi,M(v)) 
pred = Treei.find_pred(g(v)) 
succ = Treei.find_succ(g(v)) 
lcc_pred = length(longest_common_prefix(pred, g(v))) 
lcc_succ = length(longest_common_prefix(succ, g(v))) 
lcc = max(lcc_pred, lcc_succ) 
return lcc+1; 

 

Algorithm 3 shows how to determine the number of hash functions to use for a 
newly inserted vector whose complete hash value does not have a prefix key in the 
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tree. We first compute the key g(v) using all M hash functions, then we search in the 
tree for pred which is the greatest key smaller than g(v) and succ which is the smallest 
key larger than g(v). The next step is to compute lcc which is the maximum length of 
the longest common prefix between g(v) and pred/succ. Note that if pred or succ do 
not exist, the corresponding length of the common prefix is 0. At the end, we return 
lcc+1 as the number of hash functions to be used.  

Algorithm 4 shows how to add a vector v into an item. Insertion is possible only if 
the counter nb_vectors is below the threshold l (l = B/sizeof(v), where B is the size of 
a disk page), or if the maximum number M of hash functions is reached. Insertion 
adds v into the page @ (or into an overflow page) and the full signature g(v) to HV. If 
insertion is not possible, the bucket is “split” as follows: its item is removed from the 
B+ tree and all its vectors are reinserted in buckets using one more hash function  
(Algorithm 5). If the bucket containing the reinserted vector already exists in the tree, 
the vector is directly inserted; otherwise, a new bucket is created. 

 
Algorithm 4. AddVectorToItem(v, item, i): add a vector v into a leaf 
entry item of Treei 

if item.nb_vectors < l or item.nb_hashes_used==M then  
      item.nb_vectors++ 
      g(v) = (hi,1(v), hi,2(v), …, hi,M(v)) 
      Add g(v) into item.HV 
      Add v into the page at address item.@ or into an overflow page 
else 
      Treei.remove(item) 
      for each vj ϵ item do 
            ReinsertVector(vj, item.nb_hashes_used+1, i) 
      end for 

 

Algorithm 5. ReinsertVector(v, k, i): reinsert vector v into Treei with 
k hash functions 

g(v) = (hi,1(v), hi,2(v), …, hi,k(v)) 
item = Treei.find(g(v)) 
if item == NULL then 
     item = New_leaf_item() 
     item.nb_hashes_used = k 
     Treei.insert(g(v), item) 
end if 
AddVectorToItem(v, item, i)  (Algorithm 4) 

Example. Since the insertion algorithm is the same for all the hash tables, we only 
consider one hash table as an example. For simplicity, we assume the threshold l = 2 
and the maximum number of hash functions M = 2. Initially, we have four objects p1, 
p2, p3 and p4, with h1(p1) = 0, h1(p2) = 1, h1(p3) = 1 and h1(p4) = 0. Their complete hash 
values with function g = (h1, h2) are: g(p1) = 00, g(p4) = 01, g(p2) = g(p3) = 11. These 
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Properties. The DMLSH method proposed in this paper has two important properties 
compared to the original Multi-Probe LSH. P1: Under the same parameter setting, 
the number of I/Os made by DMLSH for a given query q is no more than that made by 
Multi-probe LSH. P2: Under the same parameter setting, the accuracy of the K-NN 
search made by DMLSH for a given query q is not lower than that of Multi-probe 
LSH. They could be easily proved theoretically, since in DMLSH, 1) several non-full 
probed buckets may share the same prefix key and they are stored in a single disk 
page; 2) the candidate set is a superset of that produced by MLSH. 

4 Experimental Evaluation 

4.1 Methods under Evaluation 

DMLSH is an I/O efficient version of Multi-probe LSH, so we will compare these 
two methods by varying the different parameters: the number of hash functions M, the 
number of hash tables L and the number of probes T. 

Our method could be also combined with basic LSH and its variants mentioned in 
related work, by organizing each hash table as a DMLSH tree. However, the impact in 
this case is less important than with Multi-probe LSH, because a single bucket is ac-
cessed in each table; also these methods have less practical utility because of the high 
number of tables. Consequently, we limit our study to the more effective Multi-probe 
LSH method. 

4.2 Dataset 

We choose two datasets for our experimental evaluation, widely used in the related 
work. They are: Color Data. The Color dataset contains 68040 vectors of 32 dimen-
sions, which are the color histograms of images in the Corel collection1. The dimen-
sion values are real numbers with at most 6 decimal digits ranging from 0 to 1.We 
randomly choose 100 vectors as query examples. Audio Data. The audio dataset 
contains 54387 vectors of 192 dimensions. It is extracted from the LDC 
SWITCHBOARD-1 collection2. The values are real numbers between -1 and 1. We 
increase the size of both datasets to be 1 million by inserting noise vectors for the 
following experiments. We randomly choose 100 vectors as query examples. 

4.3 Evaluation Metrics  

We adopt two metrics to measure our method: query efficiency and query accuracy. 
Since the space consumption of our method is about the same with Multi-probe LSH, 
we do not consider this metric. 

Query Efficiency. Since the vectors are stored in the secondary storage, we evaluate 
the query efficiency in terms of I/O cost. In the experiments, we set the page size as 

                                                           
1 http://kdd.ics.uci.edu/databases/CorelFeatures/ 
2 http://www.cs.princeton.edu/cass/audio.tar.gz 
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the size of 100 vectors. Note that DMLSH introduces a CPU overhead for distance 
computation, since the number of candidates it produces is larger than for MLSH. 
However, the measures in this case indicate only a small difference (5%), not signifi-
cant compared with the I/O saving. 

Query Accuracy. We measure the average recall ratio of the 100 K-NN queries for 
K=20. Given a query object q, let E(q) be the set of exact K-NN objects, and F(q) the 
set of found K-NN objects. Then the recall ratio is defined as follows: 

 Recall = 
| ா(௤)∩ி(௤)||ா(௤)|  (1) 

4.4 Experimental Results 

In this section, we compare DMLSH and MLSH by varying the number of hash func-
tions M, the number of hash tables L, respectively the number of probes T.  

Impact of the Number of Hash Functions M. We measured the I/O cost and the 
recall ratio of the first two methods by varying the maximum number of hash func-
tions (M) used for each hash table. For both datasets, the number of hash tables L is 
set to 3 and the number of probes T is set to 100. The results are shown in Fig. 6 and 
Fig. 7. 
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Fig. 6. Impact of M on the I/O cost 
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Fig. 7. Impact of M on the recall ratio 

0

100

200

300

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0

200

400

600

800

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0.5

0.7

0.9

1.1

10 15 20

Re
ca

ll

Number of hash functions

MLSH

DMLSH
0.8

0.9

1

10 15 20

Re
ca

ll

Number of hash functions

MLSH
DMLSH



60 S. Yin, M. Badr, and D. Vodislav 

 

For the Color dataset, we set W = 0.6. DMLSH reduces the I/O cost by 39% - 67% 
and increases the recall ratio by 3% - 23%. For the Audio dataset, we set W = 3.5. 
DMLSH reduces the I/O cost by 13% - 25% and increases the recall ratio by 3% - 6%. 

We can see that the overall trend is that, when the number of hash functions grows, 
both the I/O cost and the recall ratio decrease. This is because when we add a new 
hash function, 1) the average size of each bucket is decreased and 2) more empty 
buckets are probed.  

Impact of the Number of Hash Tables L. Fig. 8 and Fig. 9 show the impact of the 
number of hash tables L on the I/O cost and on the recall ratio. The number of probes 
T is set to 100. 

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by 
53% - 62% and increases the recall ratio by 3% - 10%. For the Audio dataset, we set 
M = 18 and W = 3.5. DMLSH reduces the I/O cost by 16% - 33% and increases the 
recall ratio by 1% - 9%.  
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Fig. 8. Impact of L on the I/O cost 
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Fig. 9. Impact of L on the recall ratio 
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Impact of the Number of Probes T. In Fig. 10 and Fig. 11, we vary the number of 
probes from 10 to 170. For both datasets, the number of hash tables L is set to 3. 

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by 
33% - 60%. The bigger the number of probes, the higher the reduction of I/O cost. 
With the same number of probes, DMLSH increases the recall ratio by 4% - 16%. For 
the Audio dataset, we set M = 18 and W = 3.5. DMLSH reduces the I/O cost by 2% - 
24% and increases the recall ratio by 3% - 5%. To achieve the same recall ratio, our 
method DMLSH needs fewer probes than MLSH.  
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Fig. 10. Impact of T on the I/O cost 
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Fig. 11. Impact of T on the recall ratio 
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For a given query, we first generate the probing sequence and then we access the 
probed buckets. Since several probed buckets may share the same prefix key and are 
stored in the same physical page, we need only one single I/O to access these buckets. 
Thus, the total number of disk accesses is reduced. In addition, since the candidate set 
is a superset of that produced by Multi-probe LSH, the recall ratio of the approximate 
K-NN query results is always higher than or equal to that of the Multi-probe LSH. 
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