

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 48–62, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic Multi-probe LSH: An I/O Efficient Index
Structure for Approximate Nearest Neighbor Search

Shaoyi Yin*, Mehdi Badr, and Dan Vodislav

ETIS, Univ. of Cergy-Pontoise / CNRS, France
yinshaoyi@gmail.com, {mehdi.badr,dan.vodislav}@u-cergy.fr

Abstract. Locality-Sensitive Hashing (LSH) is widely used to solve approxi-
mate nearest neighbor search problems in high-dimensional spaces. The basic
idea is to map the “nearby” objects into a same hash bucket with high probabil-
ity. A significant drawback is that LSH requires a large number of hash tables
to achieve good search quality. Multi-probe LSH was proposed to reduce the
number of hash tables by looking up multiple buckets in each table. While op-
timized for a main memory database, it is not optimal when multi-dimensional
vectors are stored in a secondary storage, because the probed buckets may be
randomly distributed in different physical pages. In order to optimize the I/O ef-
ficiency, we propose a new method called Dynamic Multi-probe LSH which
groups small hash buckets into a single bucket by dynamically increasing the
number of hash functions during the index construction. Experimental results
show that our method is significantly more I/O efficient.

Keywords: Locality sensitive hashing, indexing, high-dimensional database,
approximate nearest neighbor search.

1 Introduction

Nearest neighbor search (NNS), also known as similarity search, consists in finding,
for a given point in a high-dimensional space, the closest points from a given set. The
nearest neighbor search problem arises in many application fields, such as pattern
recognition, computer vision, multimedia databases (e.g. content-based image retriev-
al), recommendation systems and DNA sequencing. Various indexing structures have
been proposed to speed up the nearest neighbor search. Early proposed tree-based
indexing methods such as R-tree [10], K-D-tree [2], SR-tree [14], X-tree [3] and M-
tree [5] return exact query results, but they all suffer the “curse of dimensionality”: it
has been shown in [19] that they exhibit linear complexity at high dimensionality, and
that they are outperformed on average by a simple sequential scan of the database if
the number of dimensions exceeds even moderate values, e.g. around 10.

* Shaoyi YIN is currently an associate professor at IRIT Laboratory, Paul Sabatier University,

France.

Dynamic Multi-probe LSH 49

In fact, for most of the applications, exact nearest neighbors are not more meaning-
ful than the so-called ε-approximate nearest neighbors, because the feature vectors
used to represent the objects are usually already imprecise. This phenomenon, called
semantic gap is inherent e.g. in content-based image retrieval (CBIR), where feature
vectors expressing low-level image properties are used to answer high-level user que-
ries. Formally, the goal of the ε-approximate NNS is to find the data object within the
distance ε × R from a query object, where R is the distance from the query point to its
exact nearest neighbor. The most well-known methods for solving the ε-approximate
NNS problem in high-dimensional spaces are Locality Sensitive Hashing (LSH) [9],
[12] and its variants [1], [15].

The basic LSH method uses a family of locality-sensitive hash functions to hash
nearby objects into the same bucket with a high probability. Several hash functions
are combined to produce a compound hash signature corresponding to finer hash
buckets. For a given query object, the indexing method hashes this object into a buck-
et, takes the objects in the same bucket as ε-approximate NNS candidates, and then
ranks the candidates according to their distances to the query object. A side effect of
combining several hash functions is that some “nearby” points may be hashed into
different buckets. In order to increase the probability of finding all the nearest neigh-
bors, the LSH method usually creates multiple hash tables and each hash table is built
by using independent locality-sensitive hash functions. The number of hash tables is
usually over a hundred [9] and sometimes several hundred [4]. This becomes a prob-
lem in terms of space consumption. To reduce the number of hash tables needed, the
Multi-probe LSH method [15] has been proposed by Lv et al.

The main idea of Multi-probe LSH is to build on the basic LSH indexing method,
but to use a carefully derived probing sequence to look up multiple buckets that have
a high probability of containing the nearest neighbors of a query object. By probing
multiple buckets in each hash table, the method requires far fewer hash tables than the
previously proposed LSH methods. As an in-memory algorithm, Multi-probe LSH
method is very efficient; however, if the feature vectors cannot be stored in main
memory, the query cost becomes rather high, because the probed buckets may be
randomly distributed in different disk pages. In this paper, we consider the case where
the feature vectors are stored in a secondary storage, even though we suppose that the
index structure itself is still in main memory.

In order to improve the query efficiency of the Multi-probe LSH, we present in this
paper a new method called Dynamic Multi-probe LSH (DMLSH). The main modifi-
cation to Multi-probe LSH is that we dynamically adapt the number of hash functions
for each bucket in order to produce buckets whose size fits a disk page. With the same
parameter setting, our method always requires less I/O cost and provides higher query
accuracy than Multi-probe LSH. The experimental results have shown that the gain is
significant.

The rest of this paper is organized as follows. We first review the background
knowledge and the related work in Section 2, and then present our DMLSH method in
Section 3. We describe experimental studies in Section 4 and conclude in Section 5.

50 S. Yin, M. Badr, and D. Vodislav

2 Background and Related Work

Approximate Nearest Neighbor Search. Definition (ε-Nearest Neighbor Search
(ε-NNS)) [9]. Let us consider the normed space ݈௣ௗ representing the d-dimensional
Euclidian space Rd with the lp norm and the distance D(·,·) induced by this norm. Giv-
en a set P of points in ݈௣ௗ, solving the ε-NNS problem in P consists in preprocessing P
so as to efficiently return a point p ϵ P for any given query point q, such that D(p,q) ≤
(1+ ε) D(q,P), where D(q,P) is the distance of q to its closest point in P.

Note that the above definition generalizes to any metric space. It also generalizes
naturally to finding K>1 approximate nearest neighbors. In the approximate K-NNS
problem, we wish to find K points p1, … , pk, such that the distance of pi to the query
point q is at most (1+ ε) times the distance from q to the i-th nearest point in P.

Locality Sensitive Hashing. The basic idea of LSH is to use hash functions that map
similar objects into the same hash bucket with high probability. Performing a similari-
ty search query on an LSH index consists of two steps: 1) using LSH functions to
select “candidate” objects for a given query q, and 2) ranking the candidate objects
according to their distance to q.

Definition (Locality-Sensitive Hash Family) [9], [12]. A family H = {h: S  U} is
called (r, ε, p1, p2)-sensitive, with p1 > p2 > 0, ε > 0, if for any p, q ∈ S, the following
conditions hold:

• If D(p, q) ≤ r then PrH[h(p)=h(q)] ≥ p1;

• If D(p, q) > (1+ ε)r then PrH[h(p)=h(q)] ≤ p2.

Here S is a set of objects and D(·,·) is the distance function of elements in the set S.
Different LSH families can be used for different distance functions. Families for

Jaccard distance, Hamming distance, l1 and l2 distances are known. The most widely
used one is the LSH family for Euclidean distance proposed by Datar et al.[7]. Each
function is defined on Rd as follows: ha,b(v) = ⌊(a · v +b)/W⌋, where a is a random
d-dimensional vector and b is a real number chosen uniformly from the range [0, W].
a · v is the dot product of vectors a and v. Each hash function maps a d-dimensional
vector v onto into an integer value.

Given a locality-sensitive hash family H = {h: S  U}, an LSH index is construct-
ed as follows. (1) For an integer M > 0, define a family G = {g: S  UM} of com-
pound hash functions; for any g ∈ G, g(v) = (h1(v), h2(v), … , hM(v)), where hj ∈ H for
1 ≤ j ≤ M. (2) For an integer L>0, choose g1, g2, … gL from G, independently and uni-
formly at random. Each of the L functions gi (1 ≤ i ≤ L) is used to construct one hash
table, resulting in L hash tables. (3) Insert each vector v into the hash bucket to which
gi(v) points to, for i = 1, …, L. A K-NNS query for vector q is processed in two steps.
(1) Compute the hash value gi(q) and retrieve all the vectors in bucket gi(q) for i = 1,
…, L as candidates. (2) Rank the candidates according to their distances to the query
object q, and then return the top K objects. Note that compound hash functions reduce
the probability that distant vectors belong to a same bucket, but increase the risk of
nearby points separated into different buckets. Merging candidates from several hash
tables reduces the risk of missing close objects.

Fig. 1 presents an examp
ed into three hash tables co
q, by checking the three buc
By ranking their distances t

The main drawback of th
ber of hash tables to cover
are needed to achieve 1.1-a
used in [4]. Thus, the whol
the number of hash tables
LSH [15] was proposed.

Multi-probe LSH. The ma
ly derived probing sequenc
nearest neighbors of a quer
the number of needed hash

Fig. 2. Distan

Multi-probe LSH is bas
et al.[7] described above, r
the authors first define a ha
and M is the number of h
basic LSH method checks

Dynamic Multi-probe LSH

ple of 2-NNS, where L = 3. Objects p1, p2, …, p5 are ins
orresponding to hash functions g1, g2, g3. For a given qu
ckets g1(q), g2(q), g3(q), we get the candidates p1, p3, p4,
to q, we return p1 and p3 as the 2-NN objects.

Fig. 1. LSH index structure

he above index structure is that it may require a large nu
most nearest neighbors. For example, over 100 hash tab
approximation in [9], and as many as 583 hash tables
le data structure takes too much space. In order to red

s while keeping a good approximation ratio, Multi-pr

ain idea of the Multi-probe LSH method is to use a care
ce to check multiple buckets that are likely to contain
ry object. Since each hash table provides more candida
tables could be reduced.

nce from q to the boundary of its neighbor bucket

sed on the family of locality-sensitive functions of Da
returning integer values. To derive the probing sequen
sh perturbation vector Δ = {δ1, …, δM} where δi ϵ {-1, 0

hash functions for each hash table. Given a query q,
the hash bucket g(q) = (h1(q), h2(q), … , hM(q)), wh

 51

sert-
uery
, p5.

um-
bles
are

duce
robe

eful-
the

ates,

atar
nce,
, 1}
the

hile

52 S. Yin, M. Badr, and D. Vodislav

Multi-probe LSH checks also the buckets g(q) + Δ1, g(q) + Δ2, …, g(q) + ΔT. These
buckets are ordered according to their “success probability” which is a score estimat-
ed using formula score(Δ) = ∑ ௜ெ௜ୀଵݔ is the distance from q to the (௜ߜ)௜ݔ ଶ, where(௜ߜ)
boundary of the bucket hi(q) + δi. For example, in Fig. 2, xi(1) is the distance from
q to the boundary of the bucket hi(q) + 1, where hi(q) = (ai · q +bi)/W and fi(q) = ai ·
q +bi.

Multi-probe LSH is originally designed as an in-memory algorithm. In this paper,
however, we consider that the multidimensional vectors are stored in a secondary
storage such as hard disk. The problem with Multi-probe LSH in this new context is
that many probes are needed for each hash table and the probed buckets are randomly
stored in the disk, so a lot of I/Os are required for each query. Our objective in this
paper is to reduce the number of I/Os for a K-NN search.

Other Related Work. LSH Forest indexing method [1] represents each hash table by
a prefix tree to eliminate the need of finding the optimal number of hash functions per
table. However, this method does not help reduce the number of hash tables, so the
space consumption and query time are not improved. There exists some other work
which tends to estimate optimal parameters with sample datasets [8], use improved
hash functions [11], [13], [17], [18] or divide the dataset into clusters before building
LSH indexes [16]. All these methods are complementary to the Multi-probe LSH and
our improved structure and could be combined with our method in order to achieve
better performance and quality.

3 Dynamic Multi-probe LSH

3.1 Overview

The main idea of DMLSH is to dynamically vary the granularity of buckets in order
to adapt the number of objects they contain to the size of a disk page. We use the
same locality-sensitive hash functions and the same probing sequence as Multi-probe
LSH. More precisely: 1) Instead of directly building a hash table by using all M func-
tions, we first build a hash table by using only one LSH function. If a bucket contains
more than l objects (where l is the number of objects contained in a disk page), we
add a second LSH function to this bucket in order to split it into several small buckets.
If some small bucket still contains more than l objects, we continue adding LSH func-
tions until each bucket contains less than l objects or the number of functions used
becomes to be M. We store the signatures of all these buckets in to a B+ tree. Note
that these signatures have different lengths, so the keys in the B+ tree have variable
size. 2) We use the sequence probing algorithm of Multi-probe LSH to generate the
signatures of the buckets to be probed. If the bucket signature exists in the B+ tree
index, we will take the objects in the corresponding bucket as candidates; otherwise,
we will check the bucket whose signature is a prefix of the generated signature.

Let us explain these principles through an example. In Fig. 3(a), a basic LSH table
has been built using 2 hash functions h1 and h2. For a given query q, if we use Multi-
probe algorithm to generate 6 probes, the buckets chosen are those of signatures 11,

01, 10, 00, 21 and 20. It m
candidates. In Fig. 3(b), in
function h1 first, then only
(in this example l=2), we a
query q, we use the algorit
sequence, i.e. 11, 01, 10, 00
(e.g. 11), we take the buck
11). Thus, the probing sequ
be accessed.

 (a) Basic LSH

Fig.

3.2 Index Construction

As in the Multi-probe LSH
ly generate M LSH functio
LSH is that not every insert
the hash results are stored i
search that we do in the B+
of the searched key, for exa
result. Thus, we have slight
Note that signatures (keys)
digit is an integer value re
only consider binary digits.

DMLSH Tree. We call DM
signatures of the buckets pr
information about these bu
DMLSH tree.

The only modification th
is that we overloaded the co
operators “==”, “<” and “>”

• Given two keys k1
the other one (inclu

Dynamic Multi-probe LSH

means that, we need to access 6 pages on the disk to ge
nstead of using directly 2 hash functions, we use one h

if the number of objects in a bucket exceeds a thresho
add a second hash function for this bucket. For the sa
thm of the Multi-probe LSH to generate the same prob
0, 21 and 20. For a signature that corresponds to no buc

ket whose signature is its prefix (i.e. bucket 1 for signat
uence becomes 1, 01, 00 and 2. Only 4 disk pages need

 (b) DMLSH

. 3. Dynamically adding hash functions

n

, we use L hash tables, and for each hash table we rando
ons. The difference between our method and Multi-pr
ted object needs to be hashed with all the M functions,
in a B+ tree rather than a normal hash table. However,

+ tree is not an exact match. Instead, we may return a pre
ample, when searching for 001010, we may return 001 a
tly modified the search algorithm of the traditional B+ tr
) stored in the B+ tree are sequences of “digits”, wher
eturned by an LSH function. For simplicity, our examp

MLSH tree the specific (in memory) B+ tree that stores
roduced by the DMLSH method, together with some ex
uckets. Note that only non-empty buckets are stored i

hat we have made to the B+ tree algorithm described in
omparison operators of the keys. The new definitions of
” are as follows:

and k2, we say that k1 == k2 if one of k1 or k2 is a prefix
uding the case where k1 = k2 as sequences).

 53

et 7
hash
old l
ame
bing
cket
ture
d to

om-
robe
and
the

efix
as a
tree.
re a
ples

the
xtra
in a

n [6]
f the

x of

54 S. Yin, M. Badr, and

• If k1 == k2 is not t
d1 + s1 and k2 = k
empty) and d1, d2 a
tively k1 > k2) if d1

For example, we have 001 =
The following property h

signatures k1 and k2 produc
Proof. Let us suppose t

have k1 == k2 with e.g. k1 b
included into the one of si
buckets issued from DMLS
Since it is not possible to h
“<” and “>” operators pres
tures produced by DMLSH

Each hash table is main
(hash value) of each non-e
into the tree. Each key in th

1. a counter for the num
nb_hashes_used;

2. a counter for the number
3. the address of the page c
4. a set HV containing the

functions.

Fig. 4. D

Construction of the DML
construction. For each of th
an initial empty DMLSH tr
each of the DMLSH trees w

Algorithm 1. Con

for i = 1 to L do
 for j = 1 to M
 Genera
 end for
 Create an em
end for
for each v ϵ S do
 InsertVector
end for

d D. Vodislav

true, it is easy to show that k1 and k2 have the form k1 =
k + d2 + s2, where k, s1, s2 are digit sequences (possi
are single digits, with d1 != d2. We say that k1 < k2 (resp

1 < d2 (respectively d1 > d2).

== 00101, 0101 < 011 and 10110 > 100010, etc.
holds for DMLSH bucket signatures: For any two dist

ced by DMLSH, we have either k1 < k2 or k1 > k2.
that for two distinct signatures produced by DMLSH

being a prefix of k2. In this case, the bucket of signature k
ignature k1. But this is in contradiction with the fact t
SH produce a partitioning of the multidimensional spa

have k1 == k2, we deduce from the properties of the “=
sented above that k1 < k2 or k1 > k2. Consequently, sig
respect a strict total order induced by the “<” operator.

ntained as a DMLSH tree as follows: the bucket signat
empty bucket is treated as a key and the keys are inser
he leaf node is followed by (Fig. 4):

mber of hash functions used for getting this signatu

r of vectors in the corresponding hash bucket, nb_vector
containing these vectors, @;

hash values of these vectors computed by using all the

Data structure of each item in the leaf nodes

LSH Index. Algorithm 1 shows the process of the in
he L hash tables, we generate M random LSH functions
ree. Then, for each vector v in the database S, we insert v
with InsertVector (Algorithm 2).

nstruction of the index structure

M do
ate a random LSH function hi,j

mpty DMLSH tree Treei

r(v) (Algorithm 2)

k +
ibly
pec-

inct

we
k2 is
that
ace.

==”,
gna-

ture
rted

ure,

rs;

e M

ndex
and
v in

Dynamic Multi-probe LSH 55

As shown below, vector insertion respects the DMLSH strategy to generate new
buckets that use as few hash functions as possible. Only when the size of a bucket
exceeds a threshold, we add a new hash function for this bucket and distribute the
objects into smaller buckets. When the number of hash functions used becomes to be
M, we stop adding new hash functions and we will store the newly inserted objects in
the overflow pages of the full bucket.

Object Insertion. As shown in Algorithm 2, when inserting a new vector v, we insert
it into each of the L hash tables. For each hash table, we compute the hash value g(v)
of vector v, using the M functions, and search the key g(v) in the corresponding B+
tree. If a prefix of g(v) exists in the tree, the function Treei.find(g(v)) will return the
item in the leaf node which corresponds to the prefix key. Note that a prefix may not
exist in the tree, because empty buckets are not stored in the B+ tree. If there is no
prefix of the searched key, item is NULL and we will add into the tree a new item
with the shortest prefix of g(v) which is not a prefix of any other existing key. This is
done by function Treei.insert(g’(v), item). The length of this prefix is computed by
function Nb_hash (Algorithm 3). Finally, we insert the vector into the bucket page
linked to the found (or inserted) prefix key and update the other fields of the leaf item
with AddVectorToItem (see Algorithm 4).

Algorithm 2. InsertVector(v): insert a vector v

for i = 1 to L do
 g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
 item = Treei.find(g(v))
 if item == NULL then
 item = New_leaf_item()
 nb_hashes_used = Nb_hash(v, i) (Algorithm 3)
 g’(v) = (hi,1(v), hi,2(v), …, hi,nb_hashes_used(v))
 Treei.insert(g’(v), item)
 AddVectorToItem(v, item, i) (Algorithm 4)
end for

Algorithm 3. Nb_hash(v, i): determine nb_hashes_used for vector v
in Treei

g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
pred = Treei.find_pred(g(v))
succ = Treei.find_succ(g(v))
lcc_pred = length(longest_common_prefix(pred, g(v)))
lcc_succ = length(longest_common_prefix(succ, g(v)))
lcc = max(lcc_pred, lcc_succ)
return lcc+1;

Algorithm 3 shows how to determine the number of hash functions to use for a
newly inserted vector whose complete hash value does not have a prefix key in the

56 S. Yin, M. Badr, and D. Vodislav

tree. We first compute the key g(v) using all M hash functions, then we search in the
tree for pred which is the greatest key smaller than g(v) and succ which is the smallest
key larger than g(v). The next step is to compute lcc which is the maximum length of
the longest common prefix between g(v) and pred/succ. Note that if pred or succ do
not exist, the corresponding length of the common prefix is 0. At the end, we return
lcc+1 as the number of hash functions to be used.

Algorithm 4 shows how to add a vector v into an item. Insertion is possible only if
the counter nb_vectors is below the threshold l (l = B/sizeof(v), where B is the size of
a disk page), or if the maximum number M of hash functions is reached. Insertion
adds v into the page @ (or into an overflow page) and the full signature g(v) to HV. If
insertion is not possible, the bucket is “split” as follows: its item is removed from the
B+ tree and all its vectors are reinserted in buckets using one more hash function
(Algorithm 5). If the bucket containing the reinserted vector already exists in the tree,
the vector is directly inserted; otherwise, a new bucket is created.

Algorithm 4. AddVectorToItem(v, item, i): add a vector v into a leaf
entry item of Treei

if item.nb_vectors < l or item.nb_hashes_used==M then
 item.nb_vectors++
 g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
 Add g(v) into item.HV
 Add v into the page at address item.@ or into an overflow page
else
 Treei.remove(item)
 for each vj ϵ item do
 ReinsertVector(vj, item.nb_hashes_used+1, i)
 end for

Algorithm 5. ReinsertVector(v, k, i): reinsert vector v into Treei with
k hash functions

g(v) = (hi,1(v), hi,2(v), …, hi,k(v))
item = Treei.find(g(v))
if item == NULL then
 item = New_leaf_item()
 item.nb_hashes_used = k
 Treei.insert(g(v), item)
end if
AddVectorToItem(v, item, i) (Algorithm 4)

Example. Since the insertion algorithm is the same for all the hash tables, we only
consider one hash table as an example. For simplicity, we assume the threshold l = 2
and the maximum number of hash functions M = 2. Initially, we have four objects p1,
p2, p3 and p4, with h1(p1) = 0, h1(p2) = 1, h1(p3) = 1 and h1(p4) = 0. Their complete hash
values with function g = (h1, h2) are: g(p1) = 00, g(p4) = 01, g(p2) = g(p3) = 11. These

values are stored in the set
5(a). The format of the elem
object p5 with h1(p5) = 1, g(
3 which is larger than l, so
tion h2). We reinsert all the
with keys 10 and 11 are ins
for key 0, the bucket is not

F

3.3 Approximate K Ne

Algorithm. For a given que
tables. We build an empty
signatures of the accessed b
(Section 3.2.1), but its item
value of q using all M hash
probing sequence for g(q).
found in [15]. We note T th

For each probe, we searc
means that the bucket has a
search the probed key in th
in the set HV, this means th
into the “physical” bucket o
linked to pk into the candida

After retrieving all the ca
ry q, rank them in increasin

Example. Let us consider
10, T = 3 and the generated
find the signature in the tree
10 into Probed_Tree. For th
HV set (00 ϵ {00, 01}), we
0 into Probed_Tree. For
Probed_Tree, meaning that
extra I/O for this probe. In
buckets, we only loaded 2 p

Dynamic Multi-probe LSH

HV following the prefix keys. The index is shown in F
ment in the leaf nodes is defined by Fig. 4. When we in
(p5) = 10, the counter nb_vectors for the bucket 1 becom
 we need to split this hash bucket (i.e. add one hash fu
objects of bucket 1. Fig. 5(b) shows the result: new ent

serted in the B+ tree and the old entry with key 1 is delet
split.

Fig. 5. Example of a DMLSH index

arest Neighbor Search

ery q, we repeat the following process for each of the h
y B+ tree Probed_Tree in memory, used to memorize
buckets. This tree has the same properties as a DMLSH t
ms only contain a bucket signature. We compute the h
h functions, i.e. g(q) = (h1(q), …, hM(q)) and generate
The algorithm of generating the probing sequence can

he number of probes.
ch the probed key in Probed_Tree. If its prefix is found
already been checked, so we skip this probe. Otherwise,
he DMLSH tree. If a prefix key pk is found and g(q) ex
hat the bucket of signature g(q) is not empty and is inclu
of signature pk. Therefore, we add the vectors in the page
ate set and insert pk into Probed_Tree.
andidates, we compute the distances from them to the q

ng order of their distances and return the top-k results.

the example in Fig. 5(b). Suppose g(q) = (h1(q), h2(q)
d probing sequence is 10,00,01. For the first probe 10,
e, we load the linked page, add p5 as a candidate and in
he second probe 00, we find its prefix 0. Since 00 is in
load the linked page, add p1 and p4 as candidates and in

the last probe 01, we find its prefix 0 in the t
t the bucket has already been probed, so we don’t need
this example, instead of loading 3 pages for the 3 pro

pages.

 57

Fig.
nsert
mes
unc-
tries
ted;

hash
the

tree
hash

the
n be

d, it
 we

xists
uded
e(s)

que-

)) =
 we

nsert
the

nsert
tree

d an
obed

58 S. Yin, M. Badr, and D. Vodislav

Properties. The DMLSH method proposed in this paper has two important properties
compared to the original Multi-Probe LSH. P1: Under the same parameter setting,
the number of I/Os made by DMLSH for a given query q is no more than that made by
Multi-probe LSH. P2: Under the same parameter setting, the accuracy of the K-NN
search made by DMLSH for a given query q is not lower than that of Multi-probe
LSH. They could be easily proved theoretically, since in DMLSH, 1) several non-full
probed buckets may share the same prefix key and they are stored in a single disk
page; 2) the candidate set is a superset of that produced by MLSH.

4 Experimental Evaluation

4.1 Methods under Evaluation

DMLSH is an I/O efficient version of Multi-probe LSH, so we will compare these
two methods by varying the different parameters: the number of hash functions M, the
number of hash tables L and the number of probes T.

Our method could be also combined with basic LSH and its variants mentioned in
related work, by organizing each hash table as a DMLSH tree. However, the impact in
this case is less important than with Multi-probe LSH, because a single bucket is ac-
cessed in each table; also these methods have less practical utility because of the high
number of tables. Consequently, we limit our study to the more effective Multi-probe
LSH method.

4.2 Dataset

We choose two datasets for our experimental evaluation, widely used in the related
work. They are: Color Data. The Color dataset contains 68040 vectors of 32 dimen-
sions, which are the color histograms of images in the Corel collection1. The dimen-
sion values are real numbers with at most 6 decimal digits ranging from 0 to 1.We
randomly choose 100 vectors as query examples. Audio Data. The audio dataset
contains 54387 vectors of 192 dimensions. It is extracted from the LDC
SWITCHBOARD-1 collection2. The values are real numbers between -1 and 1. We
increase the size of both datasets to be 1 million by inserting noise vectors for the
following experiments. We randomly choose 100 vectors as query examples.

4.3 Evaluation Metrics

We adopt two metrics to measure our method: query efficiency and query accuracy.
Since the space consumption of our method is about the same with Multi-probe LSH,
we do not consider this metric.

Query Efficiency. Since the vectors are stored in the secondary storage, we evaluate
the query efficiency in terms of I/O cost. In the experiments, we set the page size as

1 http://kdd.ics.uci.edu/databases/CorelFeatures/
2 http://www.cs.princeton.edu/cass/audio.tar.gz

Dynamic Multi-probe LSH 59

the size of 100 vectors. Note that DMLSH introduces a CPU overhead for distance
computation, since the number of candidates it produces is larger than for MLSH.
However, the measures in this case indicate only a small difference (5%), not signifi-
cant compared with the I/O saving.

Query Accuracy. We measure the average recall ratio of the 100 K-NN queries for
K=20. Given a query object q, let E(q) be the set of exact K-NN objects, and F(q) the
set of found K-NN objects. Then the recall ratio is defined as follows:

 Recall =
| ா(௤)∩ி(௤)||ா(௤)| (1)

4.4 Experimental Results

In this section, we compare DMLSH and MLSH by varying the number of hash func-
tions M, the number of hash tables L, respectively the number of probes T.

Impact of the Number of Hash Functions M. We measured the I/O cost and the
recall ratio of the first two methods by varying the maximum number of hash func-
tions (M) used for each hash table. For both datasets, the number of hash tables L is
set to 3 and the number of probes T is set to 100. The results are shown in Fig. 6 and
Fig. 7.

 Color Audio

Fig. 6. Impact of M on the I/O cost

Color Audio

Fig. 7. Impact of M on the recall ratio

0

100

200

300

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0

200

400

600

800

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0.5

0.7

0.9

1.1

10 15 20

Re
ca

ll

Number of hash functions

MLSH

DMLSH
0.8

0.9

1

10 15 20

Re
ca

ll

Number of hash functions

MLSH
DMLSH

60 S. Yin, M. Badr, and D. Vodislav

For the Color dataset, we set W = 0.6. DMLSH reduces the I/O cost by 39% - 67%
and increases the recall ratio by 3% - 23%. For the Audio dataset, we set W = 3.5.
DMLSH reduces the I/O cost by 13% - 25% and increases the recall ratio by 3% - 6%.

We can see that the overall trend is that, when the number of hash functions grows,
both the I/O cost and the recall ratio decrease. This is because when we add a new
hash function, 1) the average size of each bucket is decreased and 2) more empty
buckets are probed.

Impact of the Number of Hash Tables L. Fig. 8 and Fig. 9 show the impact of the
number of hash tables L on the I/O cost and on the recall ratio. The number of probes
T is set to 100.

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by
53% - 62% and increases the recall ratio by 3% - 10%. For the Audio dataset, we set
M = 18 and W = 3.5. DMLSH reduces the I/O cost by 16% - 33% and increases the
recall ratio by 1% - 9%.

 Color Audio

Fig. 8. Impact of L on the I/O cost

 Color Audio

Fig. 9. Impact of L on the recall ratio

When the number of hash tables grows, both the I/O cost and the recall ratio in-
crease. This is normal, because when we use L+1 hash tables, the set of candidates is
always a superset of that produced by using L hash tables. The choice of the number
of hash tables is a trade-off between query efficiency, query accuracy and space
consumption.

We observed that, to achieve the same recall ratio, our method DMLSH needs
fewer hash tables than MLSH, hence consumes less space.

0

200

400

0 2 4

N
um

be
r o

f I
/O

s

Number of hash tables

MLSH
DMLSH

0

200

400

600

800

0 2 4

N
um

be
r o

f I
/O

s

Number of hash tables

MLSH
DMLSH

0.6

0.8

1

0 2 4

Re
ca

ll

Number of hash tables

MLSH
DMLSH

0.6

0.7

0.8

0.9

1

0 2 4

Re
ca

ll

Number of hash tables

MLSH
DMLSH

Dynamic Multi-probe LSH 61

Impact of the Number of Probes T. In Fig. 10 and Fig. 11, we vary the number of
probes from 10 to 170. For both datasets, the number of hash tables L is set to 3.

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by
33% - 60%. The bigger the number of probes, the higher the reduction of I/O cost.
With the same number of probes, DMLSH increases the recall ratio by 4% - 16%. For
the Audio dataset, we set M = 18 and W = 3.5. DMLSH reduces the I/O cost by 2% -
24% and increases the recall ratio by 3% - 5%. To achieve the same recall ratio, our
method DMLSH needs fewer probes than MLSH.

 Color Audio

Fig. 10. Impact of T on the I/O cost

 Color Audio

Fig. 11. Impact of T on the recall ratio

5 Conclusion

This paper presents the Dynamic Multi-probe LSH indexing method, which is a more
I/O efficient version of the Multi-probe LSH. It dynamically varies the granularity of
buckets in order to adapt the number of objects they contain to the size of a disk page.
For the construction of the index, it uses initially one hash function and adds a new
hash function only when the bucket size exceeds the page size. In the final hash table,
the buckets are built by using a different number of hash functions; consequently they
have signatures of different length. Bucket signatures are indexed by a slightly modi-
fied B+ tree to accelerate the search speed.

0

100

200

300

0 100 200N
um

be
r o

f I
/O

s

Number of probes

MLSH
DMLSH

0

500

1000

0 100 200

N
um

be
r o

f I
/O

s

Number of hash probes

MLSH
DMLSH

0.6

0.8

1

0 100 200

Re
ca

ll

Number of probes

MLSH
DMLSH

0.6

0.8

1

0 100 200

Re
ca

ll

Number of hash probes

MLSH
DMLSH

62 S. Yin, M. Badr, and D. Vodislav

For a given query, we first generate the probing sequence and then we access the
probed buckets. Since several probed buckets may share the same prefix key and are
stored in the same physical page, we need only one single I/O to access these buckets.
Thus, the total number of disk accesses is reduced. In addition, since the candidate set
is a superset of that produced by Multi-probe LSH, the recall ratio of the approximate
K-NN query results is always higher than or equal to that of the Multi-probe LSH.

References

1. Bawa, M., Condie, T., Ganesan, P.: Lsh forest: self-tuning indexes for similarity search.
In: WWW, pp. 651–660 (2005)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

3. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: an index structure for high-
dimensional data. In: Proceedings of the 22nd VLDB Conference, pp. 28–39 (1996)

4. Buhler, J.: Efficient large scale sequence comparison by locality-sensitive hashing. Bioin-
formatics 17, 419–428 (2001)

5. Ciaccia, P., Patella, M., Zezula, P.: M-tree an efficient access method for similarity search
in metric spaces. In: Proceedings of the 23rd VLDB Conference, pp. 426–435 (1997)

6. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2), 121–137 (1979)
7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme

based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on
Computational Geometry, pp. 253–262 (2004)

8. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance
tuning. In: CIKM 2008, pp. 669–678 (2008)

9. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In:
Proceedings of the 25th Very Large Database (VLDB) Conference, pp. 518–529 (1999)

10. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

11. He, J., Liu, W., Chang, S.: Scalable similarity search with optimized kernel hashing. In:
ACM SIGKDD, pp. 1129–1138 (2010)

12. Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of di-
mensionality. In: Proceedings of STOC, pp. 604–613 (1998)

13. Jegou, H., Amsaleg, L., Schmid, C., Gros, P.: Query adaptative locality sensitive hashing.
In: ICASSP 2008, pp. 825–828 (2008)

14. Katayama, N., Satoh, S.: The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In: SIGMOD Conference, pp. 369–380 (1997)

15. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient index-
ing for high-dimensional similarity search. In: Proceedings of the 33rd International Con-
ference on Very Large Data Bases (VLDB), Vienna, Austria, pp. 950–961 (2007)

16. Pan, J., Manocha, D.: Bi-level locality sensitive hashing for k-Nearest Neighbor computa-
tion. In: ICDE, pp. 378–389 (2012)

17. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels.
In: Advances in Neural Information Processing Systems, pp. 1509–1517 (2009)

18. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similarity
search. PVLDB 5(5), 430–441 (2012)

19. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for similari-
ty-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)

	Dynamic Multi-probe LSH: An I/O Efficient Index Structure for Approximate Nearest Neighbor Search
	1 Introduction
	2 Background and Related Work
	3 Dynamic Multi-probe LSH
	3.1 Overview
	3.2 Index n Construction
	3.3 Approximate K Ne arest Neighbor Search

	4 Experimental Evaluation

	4.1 Methods under Evaluation
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Experimental Results

	5 Conclusion
	References

