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Abstract. In this paper, we propose an effective indexing and search algorithms
for approximate K-NN based on an enhanced implementation of the Metric Suffix
Array and Permutation-Based Indexing. Our main contribution is to propose a
sound scalable strategy to prune objects based on the location of the reference
objects in the query ordered lists. We study the performance and efficiency of our
algorithms on large-scale dataset of millions of documents. Experimental results
show a decrease of computational time while preserving the quality of the results.

Keywords: Metric Suffix Array (MSA), Permutation-Based Indexing, Approxi-
mate Similarity Search, Large-Scale Multimedia Indexing.

1 Introduction

Searching for similar objects in a database is a fundamental problem for many applica-
tions, such as information retrieval, visualization, machine learning and data mining.

In metric spaces [1], several techniques have been developed for improving the per-
formance of searching, by decreasing the number of direct distance calculations [1].
One of the recent techniques is the permutation-based indexing [2,3]. The idea behind
it is to represent each object by a list of permutations of selected neighboring items (ref-
erence points). The similarity between any two objects is then derived by comparing the
two corresponding permutation lists. In this work, we propose an enhanced implemen-
tation of the Metric Suffix Array (MSA) proposed in [4] which is one of the recent data
structure for permutation based-indexing. In [4], regardless of the number of permuta-
tions, the number of objects, and the number of K-NN which need to be retrieved, the
complete MSA has to be scanned in order to retrieve the most promising results. Here,
we propose an enhanced implementation of the MSA to avoid scanning the complete
MSA. The main idea is to prune cells representing objects that have a high difference
in their permutations ordering. Hence, only a small part of the array is scanned, which
improves the running time. In addition, we propose different strategies for selecting the
reference points. To validate our claims, we test the enhanced MSA and the selection
strategies on a high dimensional large dataset containing several millions of objects.

The rest of the paper is organized as follows. Section 2 proposes a review of the
related work. In sections 3 and 4, we introduce our modeling for permutation-based
indexing and a formal justification for our proposed indexing and searching procedures.
Finally, we present our results in section 5 and conclude in section 6.
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2 Prior Work

The idea of permutation-based indexing was first proposed in [3,2]. Amato and Savino
[3] introduced the metric inverted files (MIF) to store the permutations in an inverted
file. Then, Mohamed and Marchand-Maillet [5] proposed three distributed implemen-
tation of the MIF. In [6], authors proposed the brief permutation index. The main idea
is to encode the permutation as a binary vector and to compare these vectors using the
Hamming distance. In [7], authors proposed the prefix permutation index (PP-Index).
PP-Index stores the prefix of the permutations only and the similarity between objects is
measured based on the length of its shared prefix. Furthermore, in [4] authors proposed
the MSA, which is a fast and an effective data structure for storing the permutations, by
saving half of the processing memory which is needed in [3,5,7]. The work presented in
this paper is based on [4] considered as current state of the art. We provide an enhanced
implementation of the MSA for fast and effective retrieval and we test it against [4].

3 Indexing Model

Permutation-based indexes aim to predict the proximity between elements according to
how they order their distances towards a set of reference objects [2,3].

Definition 1. Given a set of N objects oi, D = {o1, . . . , oN}, a set of reference objects
R = {r1, . . . , rn} ⊂ D, and a distance function which follows the metric space postu-
lates, we define the ordered list of R relative to o ∈ D, Lo, as the ordering of elements
in R with respect to their increasing distance from o:

Lo = {ri1 , . . . , rin} such that d(o, rij ) ≤ d(o, rij+1 ) ∀j = 1, . . . , n− 1

Then, for any r ∈ R, P (Lo, r) indicates the position of r in Lo. In other words,
P (Lo, r) = j such that rij = r. Further, given n̄ > 0, L̄o is the pruned ordered
list of the n̄ first elements of Lo.

Figure 1(b) gives the pruned ordered lists L̄oi , where n̄ = 2, for D and R illustrated in
Figure 1(a).
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Fig. 1. a) White circles are data objects oi; black circles are reference objects rj ; the gray circle
is the query object q b) Pruned ordered lists L̄oi , n̄ = 2. c) Example of Metric Suffix Array and
buckets bj = bukrj
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In K-NN similarity queries, we are interested in ranking objects (to extract the K
first elements) and not so much in the actual inter-object distance values. Permutation-
based indexing relaxes distance calculations by assuming that they will be approximated
in terms of their ordering when comparing the ordered lists of objects. Here, we consider
the Spearman Footrule Distance (dSFD) between ordered lists. Formally,

d(q, oi)
rank� dSFD(q, oi) =

∑

rj∈L̄q

rj∈L̄oi

|P (L̄q, rj)− P (L̄oi , rj)| (1)

To efficiently answer users queries, the Metric Suffix Array (MSA) was proposed in [4].
Independent of the number of reference points, objects or K-NN, the complete MSA
should be scanned in order to retrieve the most similar objects to the query. Here, we use
our rank-based approximation to postulate that objects having similar ordered lists as
the query (based on dSFD) are candidates similar objects, which we could filter by direct
distance calculation. Hence, as per Eq.(1), for a query q, if we organise the MSA cells
to characterise objects such that P (L̄q, rj) = P (L̄oi, rj), we can avoid accessing the
complete MSA to obtain the list C of candidate similar objects. We therefore propose
below an enhanced structure for the MSA to help reducing the searching time. We first
recall formally the construction of the MSA [4] .

Given all pruned ordered lists L̄oi , we construct S =
⋃N

i=1 L̄oi = {ri1 , . . . , riM },
where M = n̄.N . The set S can then be seen as a string of length M on the alphabet R.
A Metric Suffix Array Ψ acts like a Suffix Array [8,9,10] over S. More specifically, Ψ is
a set of M integers corresponding to the permutation induced by the lexical ordering of
all M suffixes in S ({rik , . . . , riM } ∀k ≤ M ). In [4], the MSA is sorted into buckets.

Definition 2. A bucket for reference point rj is a subset of the MSA Ψ from position
bj . The bucket is identified to its position in Ψ so that bj ≡ Ψ[bj ,bj+1−1].

Bucket bj contains the positions of all the suffixes of S of the form {rj , . . . , riM }, i.e.
where reference point rj appears first.

For example, in Figure 1(c), the string S corresponding to the objects and reference
points shown in Figure 1(a) is given. The MSA Ψ is also shown. The bucket b2 for
reference point r2 (bukr2) contains the positions in S of suffixes starting by r2.

At query time, L̄q will be computed. From Eq.(1), we therefore need to characterise
the objects

{oi s.t rj ∈ L̄oi, ∀rj ∈ L̄q and P (L̄oi , rj) = P (L̄q, rj)}
The MSA along with buckets encodes enough information to recover the relationships
between an object oi and a given reference point rj . Given rj ∈ L̄q, we scan Ψ at
positions k ∈ [bj, bj+1 − 1] and determine i, and P (L̄oi , rj) from Ψk as follows:

i =

⌊
Ψk

n̄

⌋
+ 1 P (L̄oi , rj) = (Ψk mod n̄) + 1 (2)

Within each bucket bj , P (L̄oi , rj) ≤ n̄. In order to speed up further the scanning of

buckets, we sort them according to the value of P (L̄oi , rj). A sub-bucket b(l)j points to
objects oi such that P (L̄oi , rj) = l (see Figure 2(b)).
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4 Practical Setup

4.1 Indexing

Algorithm 1 details the indexing process. Line 1 builds the MSA using pruned lists
L̄oi . In lines 2-3, buckets are sorted based on P (L̄oi, rj) (Eq.(2)) using the quicksort
algorithm. All the suffixes representing the objects that have the same P (L̄oi , rj) are
located next to each other, which makes it easy to divide each bucket into n̄ sub-buckets
b
(l)
j (Line 4).

Algorithm 1
IN: Domain D of N , R of n ,n̄

OUT: The MSA Ψ with sub-buckets b(l)j

1. Build the MSA Ψ and buckets bj
2. For each rj ∈ R
3. quickSort(Ψ, bj , bj+1 − 1)

4. Define the sub-buckets b(l)j within each bucket bj

Theoretically, the indexing complexity is O(n̄η(1 + logη)), where η is the average size
of the sub-buckets (η ≤ N ). The average memory usage is O(M + (n̄× n)).

4.2 Searching

Equation (1) measures the discrepancy in ranking from common reference objects be-
tween each object and the query. In practice, it can be simplified by counting the co-
occurrences of each object with the query in the same (or adjacent) sub-buckets. That
is, each object oi scores

si =
∣∣{rj ∈ L̄q such that (rj ∈ L̄oi and |P (L̄oi , rj)− P (L̄q, rj)) ≤ 1|}∣∣ (3)

Objects oi are then sorted according to their decreasing si scores. This sorted candidate
list provides an approximate ranking of the database objects relative to the submitted
query. This approximate ranking can be improved by direct distance calculation (DDC).
For a K-NN query, we apply DDC on the Kc = Δ × K first objects in our sorted
candidate list and call Δ > 1 the DDC factor. The effect of Δ is explored in our
performance evaluation (section 5). The search procedure is described in Algorithm 2.

Index: 1 1615141312111098765432
MSA  : 8 9 13 15 2 4 6 7 10 11 14 16 1 3 5 12

121 21 21212 12 12 12
bukr1 bukr2 bukr3

1 1615141312111098765432
MSA  : 9 13 15 8 7 11 2 4 6 10 14 16 1 3 5 12

subukr1 1 2 1 2 1 2subukr2 subukr3 

Index:

(a)

(b)

Fig. 2. a) MSA sorted by bucket b) MSA sorted by sub-buckets
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First L̄q is computed (line 1). For each rj ∈ L̄q, active sub-buckets are identified (line
3). For each object oi pointed, a count s[i] of co-occurrences is computed using (Eq.3)
(lines 4-5). Line 6 sorts the candidate list in decreasing order of their score (counters s).
Final DDC filtering is performed in lines 7-9.

Algorithm 2
IN: Query: q, R of n, MSA, b(l)j , s[0 . . . N ]
OUT: Sorted Objects list: out
1. Create the query ordered list L̄q

2. For rj ∈ L̄q , l = P (L̄q, rj)

3. For k = b
(l)
j to b

(l+1)
j − 1

4. i =
⌊

Ψk
n̄

⌋
+ 1

5. s[i] = s[i] + 1
6. sort(s)
7. Kc = KNN ×Δ
8. C ← s[Kc]
9. out = calc distance(C,Kc, q)
10. sort(out)

Theoretically, the computational complexity to retrieve the Kc is O(2n̄η).

4.3 Reference Points Selection

In [3,7], the selection of R is done randomly, we name this strategy Random Selection
(RS). We propose three alternative strategies for selecting the reference points. The first
strategy is the distributed selection (DS). In DS, close reference points are neglected
based on a certain threshold value. Hence, if one of the new selected points is close to
an already selected point, the selection is ignored. Using this technique, we ensure that
the points are well-distributed over the database. That leads to a relevant encoding of
each object using the permutations. The second and the third strategies are based on the
k-mean algorithm for clustering. We call them post-clustering selection (PCS) and post-
clustering distributed selection (PCDS). The main idea behind the two strategies is that
the dataset is divided into a number of clusters to support the selection of the reference
points. For instance, if we need 1,000 reference points and we create 5 clusters, 200
reference points are selected from each cluster. We thus ensure that the objects located
in the same cluster have the same reference points as the primary items in their order
lists. This helps to improve the identification of the objects for eliminating unwanted
regions. The main difference between PCS and PCDS is that, PCDS, applies the DS
strategy inside each cluster. We ensure that even within each cluster the reference points
are not too close one to another. In section 5, we empirically compare the four strategies
(RS, DS, PCS, PCDS) and use the best strategy for the rest of our experiments.

5 Experimental Results

The average recall (RE), average position error (PE) [1], and average indexing and run-
ning time are measured and compared with that listed in [4]. All the experiments were
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done using 250 different queries that were selected randomly from the dataset. The sub-
bucket algorithm was implemented in C++. The experiments were done on a 2.70GHz
processor, with 128Gb of memory and 512GB storage capacity. Our conducted experi-
ments are based on a dataset of 5 millions visual shape features (21-dimensional), which
were extracted from the 12-million ImageNet corpus [11].

Selecting the reference points (R): Figures 3a and 3b show the average RE and PE for
the reference point selecting strategies (section 4.3) for 10 K-NN using MSA-Full [4].

The RS technique gives the lowest RE and the highest PE values. Using RS, there is a
high probability that some reference points are close one to another. That makes them at
the same distance from the objects, leading to inefficient encoding. DS gives a higher RE
and lower PE compared to the RS, as the objects are identified using equally distributed
reference points. For the PCS and the PCDS techniques, the dataset is clustered into 5
and 10 clusters. From the figures, we see that the RE and PE augment with the number
of clusters. This is based on the dataset and the number of clusters that we can get out
of the dataset. Also, we can see that the PCDS technique gives better RE and PE values
than the PCS. The reason is that the reference points which were selected from each
cluster are well-spread within the clusters.

Comparing the four strategies, when the number of reference points increases the RE
increases and PE decreases until a certain limit. The DS and the PCDS give the best RE
and PE because these techniques ensure a good distribution of the reference points. On
the other hand, DS is better than the PCDS in terms of time consumption. There is no
time used to cluster the data before selecting the reference points. We therefore apply
DS in the rest of our experiments.

Sub-buckets and DDC Factor: Figure 4a shows the average RE and PE for differ-
ent numbers of reference points using MSA-Full, MSA-NN [4] and the sub-bucket
implementations (Δ = 100) for 10 K-NN. From the figure, for the three algorithms,
when the number of reference points increases, RE increases and PE decreases. For
the sub-bucket algorithm, even with small number of reference points, we are able to
achieve higher RE and lower PE than scanning the completeMSA using high number of

(a) (b)
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Fig. 3. Average RE(a) and PE(b) (250 queries) for top 10-NN using MSA-Full [4]
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reference points for MSA-Full and MSA-NN. For instance, using n = 100 and Δ =
100, for 10 K-NN, our algorithm is able to achieve higher RE than using n = 2000 for
MSA-Full and MSA-NN, with a faster response time (next paragraph).

Figure 4b shows the RE and PE for different numbers of reference points using dif-
ferent values of Δ for 10 K-NN. As a reminder, for 10 K-NN and Δ = 40, the algorithm
calculates the distance between the query and the top Kc = 400 candidates objects. As
we can see, when Δ increases, RE increases and PE decreases, as the number of the
objects that are compared to the query increases.

Comparing MSA-Full, MSA-NN and MSA-sub buckets Algorithms: Table 1 shows
the average indexing and searching time (in seconds) for the sub-bucket implementation
(including scanning the MSA and accessing the hard-disk) compared to MSA-Full and
MSA-NN proposed in [4]. For indexing, we can see that the indexing time for the three
algorithms increases with the increase in the number of reference points.

Table 1. Indexing and searching time(in seconds) for sub-bucket (Δ=100) compared to [4]

|R| Index-Full Search-Full Index-NN Search-NN Index-Subbuckets Search-Subbucket

100 45 4 86 1.5 113 0.35
1000 517 46 735 12 1622 0.45
2000 1081 94 1651 25 3523 0.76

In addition, the indexing time for the sub-buckets algorithm is higher than that of the
other algorithms. This is due to the sorting and definition of the sub-buckets after build-
ing the MSA. However, since the indexing process is an off-line process, this increase
is accepted.

For searching, for different n, using Δ = 100, it appears clearly from Table 1 that
the sub-bucket technique is faster than [4], as the algorithm does not need to scan all
the MSA cells nor all the database.
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6 Conclusion

We have presented an enhanced indexing technique based on the Metric Suffix Array
(MSA), representing the current state of the art implementation for permutation-based
indexing. Our main idea is to prune the MSA cells which represent objects that have
high difference in their permutations ordering. Hence, only a small part of the array
is scanned. With a combination of direct distance calculations, we showed through an
experimental analyses that our algorithm gives better results in terms of time and pre-
cision compared to that proposed in [4]. In addition, we empirically showed how the
selection of the reference points can affect the performance. There is much to improve
on this selection for permutation-based indexing. This is the subject of our future work.
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