
On the Composition of Digital Licenses

in Collaborative Environments

Marco Mesiti, Paolo Perlasca, and Stefano Valtolina

DI, Department of Computer Science, University of Milano, Italy
{mesiti,perlasca,valtolina}@di.unimi.it

Abstract. In the era of Web 2.0, users are not any longer just consumers
of resources but they can actively produce, share and modify content, by
composing and enhancing digital resources and services. In this context,
the intellectual property of the users collaborating in authoring activities
should be preserved. Starting from a model for digital licences generation
and management useful in collaborative environments like the Web 2.0,
in this paper we propose the algorithms of a DRM component respon-
sible for the composition and modification of digital resources and the
generation of the related licenses. Then, the paper presents a compliant
architecture based on a composition of web services.

1 Introduction

The complexity and expanding scale of most collaborative projects being carried
out nowadays in the context of Web 2.0 require more cooperation among users
in the production of digital contents and services. We are also observing the
generation of communities of users (belonging to the same company or group of
interest) working together for the creation of new resources (like wikies, social
networks, and mashups). Users are not any longer just consumers of resources
but they can actively produce, share and modify content/services eventually
created by other users. In this context, the intellectual property of the users
collaborating in the authoring activities should be preserved.

Different Rights Expression Languages (like ccREL [6], ODRL [8], MPEG-21
REL [10]) have been develop for the specification of licenses to preserve the in-
tellectual property. These proposals differ from the scope and the granularity
according to which it is possible to specify and manage each aspect directly or
indirectly related to the license specification and management processes. Digi-
tal Rights Management (DRM) systems enable the creation, adaptation, distri-
bution and consumption of multimedia contents and services according to the
permissions and constraints specified by the content creators or rights issuers
[1, 13]. MPEG-21 REL [10] and ODRL [8] natively support the specification
of rights for the modification and composition of resources. Few approaches for
the specification of licenses of composed resources have been proposed in the
context of the creative common licences expressed by ODRL [3–5]. However,
these licences have a different purpose than those created by MPEG-21 REL

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 428–442, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Composition of Digital Licenses in Collaborative Environments 429

and current DRM systems are mainly tailored for the protection of resources
rather than for supporting users in the composition process.

This paper provides the building-blocks for the realization of a tool helping an
user to visualize his/her own resources (or the resources created by the commu-
nities she/he belongs to), to compose resources, and to generate related licenses.
We first introduce a formal model that is compliant with the MPEG-21 REL for
the representation of licenses as collection of grants. By abstracting many ver-
bose details of MPEG-21, we create the basis for reasoning on the composition
issues. Moreover, the model points out different approaches for specifying the
principal of a grant (either by specifying a single user identifier, a group of user
identifiers or a predicate to be evaluated by considering user certificates) that
can be very useful in our collaborative environments to reduce the number of
licenses to be generated and, at the same time, to make a broader usage of digi-
tal resources. Then, we provide an approach for evaluating the weak and strong
compatibility of two grants that is the basis for the composition and update of
resources. In the evaluation of weak compatibility, the user profile and the condi-
tions of grants are not considered. This is useful in the early stage of composition
design to quickly checking the basic conditions of composition without loosing
time in the evaluation of the user profile and also when external services needed
for their evaluation are unavailable. Afterward, to actually enable the user to
compose resources, and to generate the final license, user profile and conditions
of grants are taken into account in the evaluation of strong compatibility. We
finally propose an architecture supporting the composition of resources and the
generation of a new license based on the components’ licenses. Key features of
this architecture are the weak and strong compatibility service for the two-steps
evaluation of licenses compatibility and the process of resources aggregation and
generation of the corresponding license.

The paper is organized as follows. Section 2 presents the license data model
and how a license is evaluated. Section 3 deals with the issue of checking whether
two grants are compatible for composition and can be exercised at the current
time. Section 4 provides the basic algorithms for the generation of a new license
when resources are composed or updated, whereas Section 5 deals with the en-
abling architecture. Related work and concluding remarks are finally presented.

2 License Data Model

In this section we provide a formal model for the representation of licenses that
supports the specification of communities to whom a grant is released. Finally,
we discuss the mechanism for the evaluation of an access request.

Principals and Issuers. The principals to whom rights are granted can be
specified through the user identifiers or relying on the possession of a given
certificate. For the sake of simplicity, in our model the fact that users hold
certificates are represented through predicates. Such predicates are verified on
a given user, if and only if she/he holds the corresponding certificate released

430 M. Mesiti, P. Perlasca, and S. Valtolina

u ↓ p iif

⎧
⎪⎨

⎪⎩

p = u p ∈ U
u ∈ p p is a set

p(u) isPred(p)

(a)

p1 � p2 iif

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1 = p2 p1, p2 ∈ U
p1 ∩ p2 �= ∅ p1, p2 are sets

p1 ∈ p2 p1 ∈ U and p2 is a set

p2 ∈ p1 p2 ∈ U and p1 is a set

isPred(p1) ∨ isPred(p2)

(b)

Fig. 1. Predicates on Principal specifications

by a Credential Authority. A predicate can also be evaluated on a set of users
and, in this case, it is verified when each user in the set holds the corresponding
certificate. The use of certificates in our collaborative environment is particularly
useful to specify with a single license the community of users that can exercise
a given right. In the remainder, U denotes the set of user identifiers.

Definition 1 (Principal). The principal of a license can be: a unique identifier
associated with a user, a set of user identifiers, or a predicate m. A user i satisfies
the predicate m, if and only if the user i holds the corresponding certificate m.

Example 1. Let {i1, ..., i10} ⊆ U be a set of user identifiers. The principal of
a license can be: i1, the set {i3, i5, i7}, or uniMi, where uniMi is a predicate
assessing the employment at the University of Milan. In the paper we will use
the user identifiers Alice, Bob, and Tom. Alice and Tom are uniMi employees. �

The user issuing a license is named issuer. The issuer of a license is always a single
user identifier. With I we denote the set of issuers, I ⊆ U . Given a principal
specification p, we might need to establish whether a user u is a principal. The
predicate ↓ is satisfied in the cases reported in Figure 1(a) (function isPred is
true when the argument is a predicate). Moreover, the predicate � in Figure 1(b)
is used to weakly identify when two principal specifications p1 and p2 can have
non empty intersection. Since the evaluation of predicates requires to access the
user profile, when p1 or p2 is a predicate, � is considered verified, and its actual
evaluation deferred when the strong conditions are taken into account.

Resources. A Resource can be a digital work (such as an e-book, an audio
file, or an image), a service (such as an email service or a transaction service),
or even a fragment of information characterizing a principal (such as a name or
an email address). Resources can be the aggregation of different ones. In order
to allow the specification of digital licenses at different granularities (from the
entire resource to one of its component), resources can be represented through
a tree. Internal nodes are labeled by resource identifiers, whereas leaves are the
resources. Resource identifiers are exploited as references in digital licenses. We
denote with O the set of resources, and with Ô the corresponding identifiers.

Example 2. Suppose that otxt and oimg are resources representing a text and a
picture. The resource oc obtained by their concatenation is denoted, by adopting
a JSON notation [12], as {ôc : {ôtxt : otxt, ôimg : oimg}}. �

On the Composition of Digital Licenses in Collaborative Environments 431

Rights. A principal can be granted to exercise a right against a resource. Typi-
cally, a right specifies an action (or activity) or a class of actions that a principal
may perform on or using the associated resource. Rights can be classified in 3
types: use, through which the principal can play, print, execute a resource;
manage, through which the principal can install, uninstall, move or delete
a resource; transformation, through which the principal is authorized to manipu-
late the resource. The MPEG-21 transformation rights we deal with are: reduce,
enlarge, modify, diminish, enhance, adapt and embed. These rights present a
subsumption relationship existing among them: the modify right subsumes the
reduce and enlarge rights. Another subsumption exists between the transfor-
mation rights and the play right because, in order to transform a resource, the
user should be able to access/play the resource itself. The modify right allows
one to apply any modification to a given resource, whereas reduce and enlarge

allow a specific kind of modification. The rights adapt, diminish, and enhance

present the same semantics and subsumption relationships of the previous three
rights but their application produces a new modified resource, and leave the
original ones unaltered. The embed right allows one to attach or include another
resourse in a given resource. This right is important in order to correctly operate
a composition among resources. With R we denote the set of rights.

Conditions. MPEG-21 provides a set of conditions for the verification of terms
and obligations under which rights can be exercised by a given principal. Let
NC be the set of name of MPEG-21 conditions we consider.

Example 3. ExerciseLimit, ValidityInterval, and FeeFlat are samples of
names of conditions available in MPEG-21, representing: the number of times a
given right can be exercised, temporal interval of right validity, and the obligation
of the payment of a fee, respectively. �

Each condition name can be associated with a set of basic constraints represent-
ing limitations (like temporal and spatial constraints) that need to be verified
to consider the condition satisfied. Let NPc be the set of property names associ-
ated with the condition identified by the condition name c ∈ NC, a constraint is
npc op v, where: npc ∈ NPc is the name of a property, op ∈ OP = {<,>,≤,≥,=,
�=,∈, �∈} is a comparison operator, and v is a valid value for the property name
npc (the set of legal values for a property name npc is denoted Vnpc).

Definition 2 (Condition). Let c∈NC be a condition name, {npc1 ,. . . ,npcm}⊆
NPc. A condition c is a pair (c, {〈npc1op1v1〉, . . . 〈npcmopmvm〉}), where vi ∈
Vnpci

, opi ∈ OP , 1 ≤ i ≤ m

Example 4. Consider the condition names presented in Example 3. A property,
named count, can be specified for ExerciseLimit, representing the
number of times a right can be exercised. Therefore, the following condition
c1 = (ExerciseLimit, {〈count = 5〉}) states that the associated right can be
exercised up to five times. The condition c2 = (ValidityInterval, {〈time >
”2012-01-01T 00:00:00”,time < ”2013-01-01T 00:00:00”〉}) represents a validity

432 M. Mesiti, P. Perlasca, and S. Valtolina

time interval between midnight of January 1, 2012 and, midnight of January 1
2013. The condition c3 = (FeeFlat, {〈amount = 5〉}) is satisfied whenever the
principal has paid the amount of 5. �

Grants and Licenses. A grant describes the terms of a license. In the following
to identify the ith component of a tuple t, we use the notation t[i].

Definition 3 (Grant). A grant g is a 4-tuple 〈p, r, ô, C〉 where p is a principal,
r ∈ R is a right, ô ∈ Ô is a resource identifier, and C is a set of conditions.

Example 5. Suppose that otxt, oimg and ompg are resources representing a text, a
picture and a piece of music. Moreover, c1, c2, c3 are the conditions specified in
Example 4. The following grants specify that user Alice can play oimg without
restrictions, she can adapt, play and print otxt under the satisfaction of condition
c1 and c2. Moreover Tom, Bob and users belonging to uniMi can embed ompg under
the satisfaction of condition c3. Tom can reduce and print, like Alice, otxt under
the satisfaction of condition c1 and c2.

g1 = < Alice, play, ôimg, {} > g2 = < Alice, adapt, ôtxt, {c1, c2} >

g3 = < Alice, play, ôtxt, {c1, c2} > g4 = < Alice, print, ôtxt, {c1, c2} >

g5 = < uniMi, embed, ômpg, {c3} > g6 = < {Tom, Bob}, embed, ômpg, {c3} >

g7 = < Tom, print, ôtxt, {c1, c2} > g8 = < Tom, reduce, ôtxt, {c1, c2} > �

With G we denote the set of grants. A License is conceptually a container of
grants expressing the rights that can be exercised on the identified resources.

Definition 4 (License). A license l is a pair < i,G >, where: l [1] = i ∈ I is
the party issuing the license, and l [2] = G = {g1, . . . , gn} ⊂ G is a set of grants.

In the following, L denotes the set of licenses, Lu is the set of licenses of user
u, Gu = {g ∈ ⋃

l[2]∈Lu
| u ↓ g[1]} is the set of grants issued to the user u,

Go
u = {g ∈ Gu | g [3] = ô} denotes the set of grants of user u that refers

to resource o, and Gr,o
u = {g ∈ Go

u | g[2] = r} is the subset of Go
u referring to

the right r. These sets contain all the grants referring the resource o and the
resources that o aggregates.

Example 6. Consider the grants of Example 5. Bob can issue the following li-
censes to Alice, Tom and to himself respectively.

– l1= < Bob, {g1, g2, g3, g4, g5} > ∈ LAlice

– l2=< Bob, {g5, g6, g7, g8} > ∈ LTom

– l3=< Bob, {g6} > ∈ LBob

Relying on these licenses, we can compute the following sets.

– L = {l1, l2, l3}, LAlice = {l1}, LTom = {l2}, LBob = {l3}
– GAlice = {g1, g2, g3, g4, g5}, GTom = {g5, g6, g7, g8}, GBob = {g6}
– G

ômpg
Alice = {g5}, Gômpg

Tom = {g5, g6}, Gômpg
Bob = {g6} �

On the Composition of Digital Licenses in Collaborative Environments 433

License Evaluation. The user profile is used to store the information of con-
text (for example, her/his location and time of execution), the state of given
constraints, and the certificates he/she holds. This information is used when
granting the access to resources The profile management will be presented when
discussing the system architecture.

Definition 5 (User Profile). Let u ∈ U be an user. The profile of user u,
denoted Pro(u), is a set of tuples (c, npcjwj), where c ∈ NC, npc ∈ NPc and
wj ∈ Vnpcj

, and a set of certificates asserting the partecipation to a community

whose validity are certified by a Credential Authority.

In the following, [[npcj]]Pro(u) = wj denotes that the current value for the
property npcj in the profile of u is wj , whereas evalu is a predicate for the
evaluation of a constraint/grant for a user u.

Definition 6 (Condition and Grant Evaluation). Consider u ∈ U and a
condition (c, {〈npc1op1v1〉, . . . 〈npcmopmvm〉}). c is satisfied wrt u if and only if:

evalu(c) =
m∧

i=1

evalu([[npci]]Pro(u) opi vi) = true

A grant g = 〈p, r, ô, C〉 is satisfied w.r.t. u if and only if:

evalu(g) = u ↓ p ∧∧
c∈C evalu(c) = true

Given an authorization request <u, r, ô>, representing the request of user u∈U
to exercise the right r∈R on the resource o∈O, we now present its evaluation.

Definition 7 (Authorization Request Evaluation). Let ar =< u, r, ô > be
an authorization request and Gu the set of grants issued for u. ar is granted to u,
denoted by [[ar]] , if and only if ∃ g = 〈p, r, ô, C〉 ∈ Gu such that evalu(g) = true.

3 Grant Compatibility

In this section, we first discuss whether two rights are compatible, that is,
whether they can be applied at the same time either on the same resource or on
a pair of resources. Then, we present the notion of grant compatibility. We dif-
ferentiate between weak and strong grant compatibility because of performance
issues, the latter notion is more complex to be evaluated (and it is useless to
compute if the licenses are not weak compatible). Without loss of generality, we
restrict ourselves to pairs of licenses.

The rights compatibility notion depends on the context (same resource or
different resources) on which the rights have been specified. In order to introduce
this notion, we first need to establish when two rights are in conflict, that is,
when they cannot be exercised at the same time by the same user. The pairs of
privileges (enlarge, reduce) and (enhance, diminish) are in conflict because it
does not make sense to apply at the same time, or within the same transaction,

434 M. Mesiti, P. Perlasca, and S. Valtolina

two opposite privileges on the same resource. Moreover, since these pairs of
privileges are subsumed by the corresponding modify/adapt privilege, the grant
issuer, wishing to grant a wider rights to the principal, can exploit this privilege
instead of the conflicting privileges. The pairs of privileges (embed, reduce) and
(embed, diminish) are in conflict when specified on different resources, because
it is not possible to embed the first resource into the second one if we are only
allowed to reduce/diminish the second resource.

We also need to introduce the notion of non comparable rights. Two rights
are non comparable on different resources, when the possibility to exercise the
first right does not influence the possibility to exercise the second one. The
rights RT = {reduce, enlarge, modify, diminish, enhance, adapt}, that is, the
transformation rights with the exception of embed, are non comparable among
each others. Formally, each pair in RT ×RT is not comparable.

Definition 8 (Rights Compatibility). Let (ri, rj) ∈ R×R be a pair of rights.
ri is compatible with rj, if and only if: when specified on the same resource, they
are not in conflict, i.e., (ri, rj) �∈ {(enlarge, reduce), (enhance, diminish)};
when specified on different resource, they are not in conflict and are comparable,
i.e. (ri, rj) �∈ {(embed, reduce), (embed, diminish)} ∪ RT ×RT .

Relying on the notion of rights compatibility, we can introduce the concept of
weak grants compatibility.

Definition 9 (Weak Grants Compatibility). Let gi = 〈pi, ri, ôi, Ci〉 and
gj = 〈pj , rj , ôj , Cj〉 ∈ G be two grants. gi is weak compatible with gj (gi � gj) if
and only if: pi � pj and ri is compatible with rj .

The fact that an user holds grants that are weak compatible does not mean that
she/he can exercise them on the resources. The user profile should be considered
and the grants that are weak compatible evaluated by taking the user profile
into account.

Definition 10 (Strong Grants Compatibility). Let gi and gj be two weak
compatible grants (gi � gj), Pro(u) the profile of user u. gi and gj are strong
compatible w.r.t. u (gi �u gj) if and only if evalu(gi) = evalu(gj) = true

Example 7. Consider the license l2 of Example 6. It follows that

g5 � g6, g5 � g7, g6 � g7, g7 � g8 and g5 �� g8, g6 �� g8

Suppose now that evalTom(c1) = evalTom(c3) = true whereas evalTom(c2) = false.
Consequently, only g5 �Tom g6 holds. �

4 License Composition

The creation of a new license for the composition of two resources or for a
modified resource can be realized by exploiting the License Generation Service
of our architecture (details in the next section). Therefore, a request of license

On the Composition of Digital Licenses in Collaborative Environments 435

Algorithm 1. The compose licenses request
Input: oa a resource, ob a resource, r ∈ {enlarge, modify, enhance, adapt, embed} a right, oc the

composed resourse, u a user
1: if ∃ga ∈ Gembed,oa

u and ∃gb ∈ G
r,ob
u s.t. ga �u gb then

2: if r ∈ {enhance, adapt} then
3: Generate the license lc = <u,Goa

u ∪ G
ob
u [

oc/ob
]>

4: else
5: if r = embed then
6: Generate the license lc = <u,Goa

u ∪ G
ob
u ∪ {(u, play, ôc, {})}>

7: else
8: Generate the license lc = <u,Goa

u ∪ G
ob
u >

9: end if
10: end if
11: end if
Output: The generated license (or denial to generate a license)

generation should be sent to this service. We consider the following kinds of basic
license generation requests: compose, update, add, remove. The first two are used
when the user wishes to automatically generate a license for the composition of
two resources, or the modification of a single resource. By contrast, the last two
are used to specify extra grants for new added resources, or to remove grants
that do not apply any longer to the modified resource.

For the sake of understandability we present the algorithms for the evaluation
of the basic licenses generation requests. However, the approach can be easily
extended to consider more sophisticated sequences of combinations and mod-
ifications of resources. In these cases, the actual generation of the license can
be postponed at the end of the sequence of basic modification operations. We
also remark that analogous algorithms have been developed for simply check-
ing whether there are the conditions for the generation of a new license. These
checking algorithms simply exploit the weak compatibility notions instead of the
strong compatibility notions discussed in the previous section. In the remainder
with the notation G[o

′
/o] we mean that in the licenses contained in G, all the

references to the resource o are substituted with the reference o′.
Algorithm 1 generates the new license when there is a compose licenses re-

quest. Whenever an user u wishes to compose a resource oa with a resource ob,
she/he should at least hold an embed right on oa and a right r that allows to
update (or append information to) the resource ob. If r ∈ {enhance, adapt},
the resource ob should be left unchanged and a new resource, named oc, should
be generated. Otherwise, oc is ob itself. Whenever user u holds the grants for
performing the composition operation, a new license is generated containing the
union of the grants user u holds on the original resources. In case a new resource
is generated, the references to ob occurring in the grants should be substituted
with the references to oc (line 3 in Algorithm 1). If r = embed, the resource
oc contains the concatenation of ob and oa. In this case we need to introduce a
grant that allows the user u to access the container oc, otherwise the access to
the components would be forbidden.

Algorithm 2 is used to generate a new license when a resource is modified
through a enhance/adapt/diminish right. For the other transformation rights

436 M. Mesiti, P. Perlasca, and S. Valtolina

Algorithm 2. The update licenses request
Input: o a resource, r ∈ {enhance, adapt, diminish} a right, oc the modified resourse, u a user
1: if ∃g ∈ Gr,o

u s.t. [[< u, r, o >]] then
2: Generate the license lc = <u,Go

u[
oc/o]>

3: end if
Output: The generated license (or denial to generate a license)

there is no need to generate a new license (the original license is still valid).
Since a new resource oc is generated, we need to substitute the references to ob
occurring in the grants with the references to oc.

Example 8. Let otxt = {ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2}} and otxt3 = {ôtxt3 :
{ôtxt4 : otxt4 , ôtxt5 : otxt5}} be two resources, l4=< Bob, {g9, g10, g11, g12} > ∈ LTom

be another license issued from Bob to Tom consisting of the following grants:

g9 = < Tom, enlarge, ôtxt, {c1, c2} > g10 = < Tom, embed, ôtxt3 , {c1, c2} >

g11 = < Tom, embed, ôtxt, {} > g12 = < Tom, enhance, ôtxt, {} >

Suppose that Tom wishes to compose otxt3 into otxt by enhancing, enlarging
or embedding the latter. At the time of the request, we have that: LTom =

{l2, l4}, G
embed,ôtxt3
Tom = {g10}, Genlarge,ôtxt

Tom = {g9}, Gmodify,ôtxt
Tom = Gadapt,ôtxt

Tom =

∅, Genhance,ôtxt
Tom = {g12}, Gembed,ôtxt

Tom = {g11}. Finally, suppose that evalTom(c1)
= evalTom(c2) = true. Consequently, g10 �Tom g9, g10 �Tom g11 and g10 �Tom g12
are valid and thus, in all cases, the Tom’s requests can be satisfied. Referring to
Algorithm 1, if Tom requires to compose otxt3 into otxt

by enlarging otxt. The structure of the resulting updated resource otxt is otxt =

{ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2 , ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}} whereas the
generated license is l5=< Tom, {g7, g8, g9, g10, g11, g12} > ∈ LTom.

by embedding otxt. A new resource otxt6 is generated and its structure is otxt6 =

{ôtxt6 : {ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2}, ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}}. A
new license is generated for otxt6 : l6=< Tom, {g7, g8, g9, g10, g11, g12, g13} > ∈ LTom,

where g13 = < Tom, play, ôtxt6 , {} > is a new grant that allow Tom to access
to the concatenated resources.

by enhancing otxt. A new resource otxt7 is generated and its structure is otxt7 =
{ôtxt7 : {ôtxt1 : otxt1 , ôtxt2 : otxt2 , ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}}. A new license
is generated for otxt7 : l7=< Tom, {g′7, g′8, g′9, g10, g′11, g′12} > ∈ LTom where the
grants are updates as follows in order to refer to the new resource identifier:

g′7 = < Tom, print, ôtxt7 , {c1, c2} > g′8 = < Tom, reduce, ôtxt7 , {c1, c2} >

g′9 = < Tom, enlarge, ôtxt7 , {c1, c2} > g′11 = < Tom, embed, ôtxt7 , {} >

g′12 = < Tom, enhance, ôtxt7 , {} > �

The two presented algorithms allow the automatic generation of a new license
when resources are composed and modified. However, the user might decide to
introduce further grants (e.g. on new introduced resources) or to remove useless
grants (e.g. grants that refer resource components that have been removed).
These operations are performed through the add and remove algorithms that we
do not report for space constraints. The add algorithm checks the consistency of

On the Composition of Digital Licenses in Collaborative Environments 437

Fig. 2. A simplified DRM scenario

the new inserted grants with respect to the other grants occurring in the license,
whereas the remove algorithm compacts the license by removing grants that
cannot any longer be evaluated on the modified resource.

5 Enhanced DRM Architecture

This section presents a DRM architecture enabling a set of services and tech-
nologies to govern the authorized use of digital resources and to manage any
consequences of that use throughout their entire life cycle. The architecture is
approached by identifying the main involved entities: the resource provider, the
users and the issuer. A DRM system is a set of DRM related services offered
by the issuer to users and resource providers to enable the consumption of re-
sources. In a typical simplified scenario, illustrated in Figure 2, a user exploits
its DRM client to contact a Resource Service (1). This service enables the access
to the protected resources (2). After an authorization has been requested (3)
and evaluated according to the user profile (4) through a set of services, the
resources can be consumed. For evaluating the user-request and for issuing the
corresponding license, the architecture relies on a workflow of service-requests.
In the reminder of the section, we first report a set of high level services that are
needed for enabling such composition, and then we describe the correct sequence
of service-requests used to compose a new resource and to generate its proper
license. For the lack of space we concentrate only on the issue of composition,
the update of a single resource is handled analogously.

Service-Oriented Architecture. The architecture in [14] is extended for sup-
porting the license generation when a new resource is created by a user (hence-
forward the producer) through the composition of different resources. For the

438 M. Mesiti, P. Perlasca, and S. Valtolina

sake of clarity, we avoid to present the external tracking and payment services
focusing only on services devoted to check the composition compatibility.

1. Resource Service. This service is in charge of the management of the resources
and answers to the access/composition requests posed by an user through a
DRM compliant client.

2. License Service. This service is in charge of the management of the licenses
and of issuing new licenses upon users request.

3. Authorization Service. The Authorization Service is responsible for the eval-
uation of licenses upon an access/composition request is received by the Re-
source Service. For its activity the Authorization Service gets in touch with
the License Service for obtaining the licenses, with the Compatibility Service
for checking compatibility issues in case of composition/update of resources,
with the Identification Service for the evaluation of principal specification
on licenses’ grants, and for acquiring the user profile for the evaluation of
grants, and with External Services for checking specific constraints (like for
example the external Payment Service in case the principal has to pay for
consuming the resources) occurring in licenses.

4. Identification Service. This service is responsible for the authentication of
the users and for checking the users’ certificates. Moreover, it gets in tough
with the DRM client to obtain temporal, geographical and context of use
information to be included in the user profile. Finally, the Identification
Service is in charge of storing and keep updated the users profiles.

5. Compatibility Service. This service is responsible to check the weak and
strong compatibility conditions discussed in Section 3. The Compatibility
Service, like the Authorization Service, can get in tough with External Ser-
vices for the strong verification of conditions of grants.

6. License Generation Service. This service is in charge of executing the algo-
rithms discussed in Section 4, and of creating the new licence of the composed
resource by interacting with the License Service to retrieve licenses and to
store the generated ones.

DRM Services Composition in Collaborative Environment. In a col-
laborative environment, we should define a workflow of service-requests able to
support the generation of a license of a new resource created by composing dif-
ferent ones. Specifically, our proposal relies on a workflow consisting of two main
activities: the composition of different resources and the definition of the license
on the resulting resource. To support these activities, our architecture should
adopt specific composition and integration management services (see Figure 3).

For composing different resources, the DRM client forwards the composition
request obtained by the producer to the Resource Service. In order to autho-
rize the operation, the Resource Service gets in touch with the Authorization
Service. This service collects the licenses of the involved resources from the Li-
cense Service. By considering the grants contained in the obtained licenses, the
Authorization Service evaluates the composition request by means of the Com-
patibility Service. The first check concerns the validity of the weak compatibility

On the Composition of Digital Licenses in Collaborative Environments 439

Fig. 3. Sequence of service-requests for composing a set of resources in the DRM system

conditions of the resources to compose and leads to the identification of a set of
operations that the producer can carry out on the original resources according to
her/his licenses. Once the Compatibility Service has checked the weak compati-
bility conditions, the Authorization Service has to authenticate the producer and
control the grant conditions according to the producer profile. Authentication
is realized in the following way. The Authorization Services asks to the Identi-
fication Service to authenticate the producer by providing the producer profile.
The Identification Service, in turn, needs to query the DRM client for gathering
information about the producer’s context of use and for the evaluation of predi-
cates relying on the producer certificates. The evaluation of the grant conditions
is realized through the Compatibility Service by considering the producer profile
and External Services. After carrying out these two activities, the Authorization
Service can authorize or refuse the access to resources. In case the compatibility
check comes to a satisfactory reply, it will provide the set of operations that the
producer can carry out for composing the new resource.

Once the resources have been composed, the producer requests the genera-
tion of a new license. First of all, the DRM client has to contact the License
Generation Service that takes care of all steps needed to create the new license
and to send it to the License Service for its storage (see Figure 4). The License
Generation Service requires to the License Service the producer’s licenses of the

440 M. Mesiti, P. Perlasca, and S. Valtolina

Fig. 4. Sequence of service-requests for the generation and storage of a new license

component resources and exploits the information to compose a set of grants to
assign to the license of the new resource according to the operations carried out
by the producer. To complete these operations, the License Generation Service
has to ask to the Identification Service to generate new identifiers for resources
enhanced and adapted during the composition process. By exploiting the iden-
tifiers generated by the Identification Service, the License Generation Service
generates the license of the new resource, if it is possible. If the process is posi-
tively concluded, the License Generation Service sends the new resource to the
Resource Service for its storage and sends the new license to the License Service.

6 Related Work

Different Rights Expression Languages (like ccREL [6], ODRL [8], MPEG-21
REL [10]) have been proposed for expressing digital licenses, terms and con-
ditions. These proposals differ from the scope and the granularity according to
which it is possible to specify and manage each aspect of the license specification
and management processes. Although some of them support the necessary rights
to compose resources, none of them explicitly defines how to create and assign
a new license to the result of the composition.

The issue of license composition and compatibility analysis is difficult to ad-
dress in a systematic way since license terms and conditions can be expressed
in different ways, including the natural language, by using terms whose mean-
ing would be ambiguous or not interpretable uniquely. This aspect makes obvi-
ously more difficult to determine which correct result should be returned from the
composition process. In [3–5] the authors address the problem of service

On the Composition of Digital Licenses in Collaborative Environments 441

license1 composition and compatibility analysis by using the ODRL-s language
[2], an extension of ODRL [7, 8] to implement the clauses of service licensing. A
similar approach is used in [19] where the authors present a framework to asso-
ciate licensing terms to web data in order to combine licenses for the data resulting
from queries; the resulting composite license is still expressed as licensing terms.
Finally, in [1] the authors address the issue of identifying the kind of licenses, ex-
pressed through MPEG-21 REL [10, 11], a user should hold in order to compose
or transform resources and present use-cases for the main operations.

Our approach differs from them from several points of view. First, our ap-
plication scenario is different from that of service and web data licensing. In
their case, the focus is on the management of the business and legal contractual
information expressed as CC terms, with respect to the ODRL CC profile [9]
and the CC license schema [6] respectively. This is used to establish if different
services are compatible and composable among them and to verify wether users
can access to web data provided by different data sets and released under dif-
ferent licensed terms. Conversely, our formal model, compliant with MPEG-21
REL [10], is mainly focused on the issue of determining the conditions under
which the transformation/composition of resources can be performed in a sys-
tematic way and to provide a license for the transformed/composed resource.
Finally, the weak/strong evaluation strategy we propose allows the evaluation
of the authorization conditions only when strictly required.

With the proliferation of Internet-based applications and the ready availabil-
ity of powerful file sharing and distribution tools, DRM has become a critical
concern in the Internet domain. The literature is rich of proposals exploiting
DRM platforms based on the distribution of digital content via Internet, like:
the Open and Secure Digital Rights Management Solution (OSDRM) [18]; the
Microsoft Windows Media DRM platform (MSDRM) [17]; the IBM Electronic
Media Management System (EMMS) [16]; and the Real Networks HelixDRM
[15]. These solutions aim at creating a secure framework for delivering multi-
media on the Internet, and caters for the creation of secure contents, payment
collection, distribution and rendering of multimedia. Most of this literature de-
scribes a DRM system as a platform containing several functionality, including
content registration and protection; it offers publication, content search, pur-
chase and licensing, authorization and access control. Nevertheless, these sys-
tems are not able to support users in the composition process by taking into
account the users’ licenses on the component resources.

7 Conclusions and Future Work

Starting from a formal model for the representation of licenses, in this paper we
provided algorithms for the evaluation of compatibility of license’s grants and
for the generation of a new license of composed/updated resources. Moreover,
we discussed an architecture that allows the composition and modification of

1 A service license describes the terms and conditions for the use and access of the
service in a machine readable way that services could be able to understand.

442 M. Mesiti, P. Perlasca, and S. Valtolina

resources. These results are the building blocks for the realization of a tool for
helping a user to compose resources in collaborative environments that we are
currently implementing. We remark that our licenses can be easily translated
into corresponding MPEG-21 REL licenses [10].

As future work we plan to enhance our approach by allowing the composition
of resources belonging to different users. In this scenario, a negotiation of users’
grants should take place in order to determine the grants to be assigned to the
generated resource. Moreover, we are considering the issue of distribution of
licenses to the users belonging to the user’s communities.

References

1. Delgado, J., et al.: Definition of mechanisms that enable the exploitation of gov-
erned content. In: AXMEDIS, pp. 136–142 (2006)

2. Gangadharan, G., et al.: ODRL service licensing profile (ODRL-s). In: Proc. 5th
Int’l Workshop for Technical, Economic and Legal Aspects of Business Models for
Virtual Goods, Germany (2007)

3. Gangadharan, G., D’Andrea, V.: Service licensing: conceptualization, formaliza-
tion, and expression. Service Oriented Computing and Applications 5(1), 37–59
(2011)

4. Gangadharan, G.R., et al.: Consumer-specified service license selection and com-
position. In: ICCBSS, pp. 194–203 (2008)

5. Gangadharan, G.R., Weiss, M., D’Andrea, V., Iannella, R.: Service license com-
position and compatibility analysis. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 257–269. Springer, Heidelberg (2007)

6. Abelson, H., et al.: ccREL: The Creative Commons Rights Expression Language.
Creative Commons Wiki (2008)

7. Iannella, R.: Open digital rights management. In: Workshop on Digital Rights
Management for the Web, France (2001)

8. Iannella, R.: Odrl specification 1.1 (2002)
9. Iannella, R.: Odrl creative commons profile specification (2005)

10. Information Technology-Multimedia Framework. Part 5: Rights expression lan-
guage, iso/iec 21000-5 (2004)

11. Information Technology-Multimedia Framework. Part 6: Rights data dictionary,
iso/iec 21000-6 (2004)

12. json. Javascript object notation
13. Ku, W., Chi, C.-H.: Survey on the technological aspects of digital rights manage-

ment. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 391–403.
Springer, Heidelberg (2004)

14. Michiels, S., et al.: Towards a software architecture for DRM. In: DRM, pp. 65–74
(2005)

15. RealNetworks. Helixcommunity-the foundation of great multimedia applications
(2013)

16. RealNetworks. The IBM electronic media management system (2013)
17. RealNetworks. Windows media digital rights management (2013)
18. Serrão, C., et al.: Open SDRM - An open and secure digital rights management

solution. In: Proc. Int. Association for Development of the Information Society,
Portugal (2003)

19. Villata, S., Gandon, F.: Licenses compatibility and composition in the web of data.
In: COLD (2012)

	On the Composition of Digital Licenses in Collaborative Environments
	1 Introduction
	2 License Data Model
	3 Grant Compatibility
	4 License Composition
	5 Enhanced DRM Architecture
	6 Related Work
	7 Conclusions and Future Work
	References

