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Abstract. In recent years, many data-driven workflow modeling ap-
proaches has been developed, but none of them can insure data inte-
gration, process verification and automatic data-driven execution in a
comprehensive way. Based on these needs, we introduced, in previous
works, a data-driven approach for workflow modeling and execution. In
this paper, we extend our approach to ensure a correct definition and
execution of our workflow model, and we implement this extension in
our Framework Opus.
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1 Introduction

In a competitive environment continually evolving, companies are recognized the
need to manage their business processes in order to align their information sys-
tems, more and more quickly, in a process-oriented way. In this context, workflow
management systems (WMS) offer promising perspectives for modeling, process-
ing and controlling processes. In the most common WMS, only the control flow 1

is completely included [1]. In Fact, during process execution, a process-oriented
view (e.g. worklists) is provided to end-users. However, the behavior of an ac-
tivity during its execution is out of the control of the WMS [2]. As almost all
processes are related to data, such as the costs of the ordered products, the
addresses information for delivery, etc., the main goal from using a WMS is to
automate, as possible, the manipulation of data in business processes, and to
restrict as possible the manual tasks performed by human actors.

Regarding the existing literature, the need for modeling processes that com-
bine data and control flow has been widely studied. Most of them are inspired
from Petri nets (P-nets) formalism, such as the approaches proposed in [3–7].
Thus, to enhance earlier approaches that have mainly focused on process activi-
ties and largely overlooked the data, we previously extended, in [8,9], the P-nets

1 Control flow: is a set of synchronized activities representing the business process
functions, and a set of ordering constraints defining their execution sequence [1].
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formalism by data operations inspired from the relational algebra to model data-
driven workflows. This extension improves the generation of business functions
from the process definition, without the need for a programmer, and provides
advanced abilities for the information system (IS) and the users’ integration. In
this paper, we extend the modeling method of the proposed approach [8, 9] by
some rules, to ensure the consistency of the process model during runtime. We
also provide a technique to verify a released notion of the classical soundness
property.

The remainder of the paper is organized as follows: we present the related
work in Sect. 2 and we continue by introducing our workflow model in Sect. 3.
In Sect. 4, we present the definition of the firing rules that ensure a uniform
execution of all the process activities. Then we discuss, in Sect. 5, the technique
provided to ensure the analysis and the verification of our workflow model. In
Sect. 6, we present our Framework Opus. Section 7 concludes.

2 Related Work

The need for modeling processes integrating data has been recognized by sev-
eral authors [3–7, 10, 11]. The Case Handling Paradigm [11] aims to coordinate
activities which are presented as forms in relation to atomic data elements. The
problem here is that data may be omitted or activities are unwittingly ignored
or executed many times. In addition, more than one user can handle the same
case simultaneously, which damages the data coherence.

The PHILharmonicFlows system [2] provides a comprehensive approach that
combines object behavior based on states with data-driven process execution. In
fact, it allows the control of activities by presenting them as form-based 2 and
black-box activities 3. The proper execution as well as termination of processes
at runtime is further ensured by a set of correctness rules [12]. But, the execu-
tion of form-based activities increases the rate of errors that may be caused by
the manual seizure performed by human actors, even if the seized data values
respect the data types requested by the form’ input fields.

Many extensions of P-nets in which tokens carry data have been defined in the
literature. The workflow nets based on colored P-nets (WFCP-nets) [10] consider
a P-net color as an abstraction of data objects and flow control variants. The
execution of a WFCP-net depends on the interpretation of its arc expressions
and guard expressions, which describe the business rules. Besides, the verifica-
tion methods of workflow nets [13] are adapted to WFCP-nets. The weakness of
this approach is that the process specification consists of a graphical part and
a WF script part. The latter is a hard-coding process logic that describes the
data elements and the behavior of activities. So, resulting applications are both
complex to design and costly to deploy, and even simple process changes require

2 Form-based activities: provide input fields for writing and data fields for reading
selected attributes of data object instances [2].

3 Black-box activities: allow the integration of advanced functionalities (e.g. sending
e-mails) [2].
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costly code adaptations and testing efforts. Another extension of P-nets is the
workflow nets with data (WFD-nets) [7], in which transitions can read from
or write to some data elements. This extension does not provide a support for
executing process models. However, it defines algorithms to verify a soundness
property that guarantees the proper termination of a WFD-net and that only
certain transitions are not dead.

None of the existent approaches considers data integration, process verifica-
tion and data-driven execution issues in a comprehensive way. Thus, in this area
a comprehensive approach for supporting these three issues is still missing.

3 Our Data-Driven Workflow Model

As described by the most modeling approaches, a process is defined, in a higher
level of abstraction, as a set of synchronized activities performed by roles ac-
cording to the available data. If we stop at this level, we will not be able to
generate the process functions from the process model definition, and activities
will behave as a black box in which data are managed by invoked application
components. To attempt the lowest level of abstraction, we propose to split each
activity, in a process, to tasks applied on data. Each task consumes data to pro-
duce others. Thus, each activity is presented as a set of data-driven tasks. Each
task consumed data provenance can be either the IS, or data produced by other
tasks. But, in some cases, to complete the processing of a task, data can be seized
by a role. Accordingly, to enable tasks to generate new data from old ones and
import data from the IS, data have to be well structured. We introduced this
approach in [8,9], in a formal way, as a data-driven modeling approach based on
combination between structured tokens P-nets and relational algebra.

3.1 Data Structure

According to [8, 9], we define each handled data as a data structure; i.e, a pair
s = (C, D), where C is a list of attributes and D is a list of data tuples.
Each tuple is an ordered list of attributes values, formally defined by:

C =(c1, c2 . . . cn), D ={(d11 , d12 . . . d1n), (d21 , d22 . . . d2n) . . . (dm1 , dm2 . . . dmn)} .

Where n (resp. m) is the number of attributes (resp. tuples) in s.
Each attribute cj = (αj , βj) is a pair characterized by an attribute identifier

αj and an attribute type βj , such as: ∀j ∈ {1, 2 . . . n}, βj ∈ {Int, F loat, Char,
String, Date, Boolean . . .}, and ∀i ∈ {1,2 . . .m}, an attribute value dij is a
specific valid value for the type βj of the attribute cj .

At modeling step, the designer has just to define the data structure attributes
and the values types put up with each one. At runtime, the different data struc-
ture tuples comprise varying values according to each attribute type.

3.2 Process Structure

The workflow process is defined as a P-net representing the work, where a
place corresponds to a data structure that contains structured tokens (tuples)
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and a transition corresponds to a task. A workflow is then a quadruplet [8, 9]
WF = (S, T, Pre, Post), where:

S = {s1, s2 . . . s∣S∣} is a finite set of data structures,
T = {t1, t2 . . . t∣T ∣} is a finite set of tasks inspired from the relational algebra,
Pre ∶ S × T → N is the pre-incidence matrix, such as, ∀i ∈ {1, 2 . . . ∣S∣} and

j ∈ {1, 2 . . . ∣T ∣}, P re(si, tj), is the edge between a data structure si and a
task tj weight, representing the number of tokens consumed by tj in order to be
firable, i.e. executable.

Post ∶ T × S → N is the post-incidence matrix. Due to the dynamic of the
relational algebra, we cannot be limited to a static post-incidence matrix thus,
∀i ∈ {1, 2 . . . ∣S∣} and j ∈ {1, 2 . . . ∣T ∣}, Post(tj , si) ∈ [PostMin(tj , si),
PostMax(tj , si)]. Where: PostMin(tj , si) (resp. PostMax(tj , si)), is the edge
between a task tj and a data structure si minimal (resp. maximal) weight, rep-
resenting the minimal (resp. maximal) number of tj produced tokens.

3.3 Data Operations

A task can be viewed as a data operation applied on data structure tokens to
produce others. Therefore, we have inspired from the relational algebra to define
the behavior of operations. We presented these operations in [9]. So, in this
paper, we detail in Appendix A, only operations that we will use to demonstrate
the new extensions of the model. Noting that the definition of the Add Tuples
operation, presented in Table 1, is an extended version of its definition in [9]. In
fact, in this version, we allow to inserts all a data structure tuples in another
data structure, instead of inserting only a single tuple [9].

3.4 Workflow Example

The customer solvency check role (SCRole) evaluates the received orders, and
sends them to the inventory check. After the evaluation, either an order is re-
jected, or sent to shipping and billing. As illustrated by Fig. 1, considering that
s8, s13, and s19 present tables from the IS, we restrict our example to the inven-
tory check role (ICRole) sub-process, which performs the following activities:

Select the ordered products: t7 extends s8 (which contains all the products
data) by the ord qtity attribute, in order to allow the ICRole to enter the or-
dered quantities. Then, t8 selects from s9 only tuples having an ordered quantity
value higher than zero and lower than the stocked product quantity.

Verify the products availability: t9 checks s10 content. If it contains one or
more tokens, t9 will reproduce s11 token in s12, otherwise, it will end the pro-
cess.

Create a new order: according to the decision of t9, if there are available
products, t10 will add a new order in s13.

Create the new order lines: the ICRole enters the new order identifier and t13
saves it in s17. Then, t14 will create the new order lines and finally, t15 will save
the resulting structured s18 tokens in s19.
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Fig. 1. The inventory check role sub-process [9] (modified version)

We deduce the Pre and Post matrix of the example in Fig. 1.

Pre =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t7 t8 t9 t10 t11 t12 t13 t14 t15

s8 x8 0 0 0 0 0 0 0 0
s9 0 x10 0 0 0 0 0 0 0
s10 0 0 x12 0 x12 0 0 0 0
s11 0 0 1 0 0 0 0 0 0
s12 0 0 0 x6 0 0 0 0 0
s13 0 0 0 0 0 0 0 0 0
s14 0 0 0 0 0 x14 0 0 0
s15 0 0 0 0 0 0 0 x16 0
s16 0 0 0 0 0 0 1 0 0
s17 0 0 0 0 0 0 0 x18 0
s18 0 0 0 0 0 0 0 0 x20

s19 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Following the definition of tasks in Appendix A, the number of tokens produced
by each task in Fig. 1, are defined as follows: x5 ∈ [0, 1], x6 = 1 (i.e. there
is only a single customer identifier), x7 = ∣D13∣ + x6, x9 = x8, x11 ∈ [0, x10],
x13 ∈ [0, x12], x15 ∈ [0, x14], x17 = ∣D17∣+1 = 1 (because D17 = ∅), x19 = x16×x18,
x21 = ∣D19∣ + x20. Accordingly, the Post matrix is defined by:

Post =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t7 t8 t9 t10 t11 t12 t13 t14 t15

s8 0 0 0 0 0 0 0 0 0
s9 x8 0 0 0 0 0 0 0 0
s10 0 [0, x10] 0 0 0 0 0 0 0
s11 0 0 0 0 0 0 0 0 0
s12 0 0 [0, 1] 0 0 0 0 0 0
s13 0 0 0 ∣D13 ∣ + x6 0 0 0 0 0
s14 0 0 0 0 [0, x12] 0 0 0 0
s15 0 0 0 0 0 [0, x14] 0 0 0
s16 0 0 0 0 0 0 0 0 0
s17 0 0 0 0 0 0 1 0 0
s18 0 0 0 0 0 0 0 x16 × x18 0
s19 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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3.5 Marking

The marking M [θ] defines the state of the process described by WF at a given

time θ ∈ {0, 1, 2 . . .}. Thus, ∀i ∈ {1, 2 . . . ∣S∣} ∶ M [θ]
= (m

[θ]
1 m

[θ]
2 . . . m

[θ]
∣S∣ ),

where m
[θ]
i ∈ IN is the number of tuples in si.

The initial marking M [0] defines the state of WF at time θ = 0, in which only
root nodes of a WF process can be initiated by a finite number of tokens. The
evolution of the markings, in the other nodes, results due to the firing of WF
tasks. A valid initial marking must follow (1) [8, 9].

∀j ∈ {1,2 . . . ∣S∣},m
[0]
j =

⎧

⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪

⎩

max
k∈{1, 2...∣T ∣}Pre(sj , tk)

if ∀l ∈ {1,2 . . . ∣T ∣}PostMax(sj , tl) = 0,
0 otherwise.

(1)

3.6 Synthesis

Our proposed data-driven approach allows for a comprehensive integration be-
tween data flow and control flow, which ensures a successful data driven execu-
tion of the workflow. Indeed, data integration is granted through data structures
that can handle various data elements types. Furthermore, data manipulation
is enable through data operations that can read, write and generate new data
elements without any risk of simulating a WF process in which data can be lost.
This is granted through the dynamic behavior of the relational data operations,
which entails a generalization of the static post-incidence matrix of the classical
P-nets. In the next section, we present how we improve our approach by the
application of some firing rules. These latter grant a uniform definition of a WF
process and introduce the basic notions of our verification method, that ensures
a valid WF process execution.

4 Firing Rules

To ensure the process consistency during runtime, we improve the modeling
approach described in [8, 9] by adding some firing rules. The latter indicate
under which conditions a task may fire, and what the effect of the firing on the
marking is.

1. Assuming that ti, tj ∈ T , are two successive tasks in a WF , and s ∈ S is an
output data structure of ti and an input data structure to tj . Thus, tokens
produced by ti will be automatically consumed by tj :

∀ti, tj ∈ T,∃ s ∈ S ∣ < ti, tj > ⇒ pre(tj , s) = post(ti, s) . (2)

2. Assuming that δ is the function calculating the possible markings resulting of
the firing of a task ti ∈ T from a marking M . So, ∀M ∈ N∣S∣, t1, t2 . . . tk ∈ T ∶

δ({M1, M2 . . .Mn}, t1 t2 . . . tk) = ⋃

M∈{M1, M2...Mn}
δ({M}, t1 t2 . . . tk)

(3)
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Where: δ({M}, t1 t2 . . . tk) = δ(δ({M}, t1), t2 . . . tk)
= δ(δ(δ({M}, t1), t2), t3 . . . tk)
= . . .

The function δ({M}, ti) is defined as follows:

δ({M}, ti) = {
∅ if M < Pre(., ti),
{M − Pre(., ti) + x} otherwise.

(4)

Where x ∈ [PostMin(., ti), PostMax(., ti)], and δ(∅, ti) = ∅ .
We apply (3) and (4) on the example illustrated in Fig. 1, and we cal-
culate the possible markings resulting from the firing sequence of tasks
< t7 t8 t11 t12 t13 t14 t15 >:
{M[0]} = {(x8 0 0 0 0 0 0 0 0 0 0 0), (x8 0 0 1 0 0 0 0 0 0 0 0), (x8 0 0 0 0 0 0 0 1 0 0 0),

(x8 0 0 1 0 0 0 0 1 0 0 0), (0 0 0 1 0 0 0 0 0 0 0 0), (0 0 0 1 0 0 0 0 1 0 0 0),
(0 0 0 0 0 0 0 0 1 0 0 0), (0 0 0 0 0 0 0 0 0 0 0 0)}

δ({M[0]}, t7 t8 t11 t12 t13 t14 t15) = δ(δ({M[0]}, t7), t8 t11 t12 t13 t14 t15)
= δ({{(0 x8 0 0 0 0 0 0 0 0 0 0), (0 x8 0 1 0 0 0 0 0 0 0 0), (0 x8 0 0 0 0 0 0 1 0 0 0),
(0 x8 0 1 0 0 0 0 1 0 0 0)}, ∅, ∅, ∅, ∅}, t8 t11 t12 t13 t14 t15)

= δ(δ({{(0 x8 0 0 0 0 0 0 0 0 0 0), (0 x8 0 1 0 0 0 0 0 0 0 0), (0 x8 0 0 0 0 0 0 1 0 0 0),
(0 x8 0 1 0 0 0 0 1 0 0 0)}, ∅}, t8), t11 t12 t13 t14 t15)

= δ({{(0 0 [0, x10] 0 0 0 0 0 0 0 0 0), (0 0 [0, x10] 1 0 0 0 0 0 0 0 0),
(0 0 [0, x10] 0 0 0 0 0 1 0 0 0), (0 0 [0, x10] 1 0 0 0 0 1 0 0 0)}, ∅}, t11 t12 t13 t14 t15)
= . . . = {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}

3. According to (1), any loop in a WF model will cause a blocking state. In
fact, if a task tj is waiting for a data structure s tuples, and if these tuples are
produced by a task ti, which will never be executed in certain conditions: if
his input data structures are not root nodes, and if tj ∈ < t1 t2 . . . ti >, i.e. the
firing sequence leading to execute ti, this case is identified as a deadlock. In
addition, even if the input data structures of tj are root nodes, the occured
cycle may cause a livelock (i.e. a loop without progress). Thus, we require
that each task t ∈ T is fired, at most once, in a sequence of tasks starting
from a marking M .

∀i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣}, δ({M}, t ti1 ti2 . . . tik t) = ∅ . (5)

We explain this rule through the example illustrated through Fig. 3.
4. To keep the coherency of a WF process at runtime, whatever the firing

sequence, starting from a marking M , the final marking has to be the same.
Formally: ∀i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣} and ∀j1, j2 . . . jk ∈ {1, 2 . . . ∣T ∣}, if
δ({M}, ti1 ti2 . . . tik) = ∅ (resp. δ({M}, tj1 tj2 . . . tjk) = ∅) then:
δ({M}, ti1 ti2 . . . tik−1) ≠ ∅ (resp. δ({M}, tj1 tj2 . . . tjk−1) ≠ ∅) is the final
marking. In such case we have to get:

δ({M}, ti1 ti2 . . . tik−1) = δ({M}, tj1 tj2 . . . tjk−1) . (6)

We elucidate this rule through the example illustrated in Fig. 1.
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{M[0]} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
0
0
0

⎞⎟⎠ ,
⎛⎜⎝
x1

0
0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

δ({M[0]}, t1 t2 t2)
= δ(δ({M[0]}, t1), t2 t2)
= δ

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

0
x2

0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, t2 t2

⎞⎟⎠

= δ
⎛⎜⎝δ

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

0
x2

0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, t2

⎞⎟⎠ , t2
⎞⎟⎠

= δ(∅, t2) = ∅ .

Fig. 2. Process model (a) with deadlock

So, we calculate the possible markings resulting from the firing sequence of
tasks < t7 t8 t11 t12 t13 t14 t15 t. >, such as t. refers to any task ∈ T that is
not in the above firing sequence:
δ({M[0]}, t7 t8 t11 t12 t13 t14 t15 t.) = δ(δ({M[0]}, t7), t8 t11 t12 t13 t14 t15 t.)

= . . .

= δ({{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}, t.) = ∅
⇒ {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅} is the final
marking. We also calculate the possible markings resulting from the firing
sequence of tasks < t7 t8 t11 t13 t12 t14 t15 t. >:
δ({M[0]}, t7 t8 t11 t13 t12 t14 t15 t.) = δ(δ({M[0]}, t7), t8 t11 t13 t12 t14 t15 t.)

= . . .

= δ({{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}, t.) = ∅
⇒ {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅} is the final
marking. So, as t12 and t13 are two parallel tasks:
δ({M [0]

}, t7 t8 t11 t12 t13 t14 t15) = δ({M
[0]
}, t7 t8 t11 t13 t12 t14 t15).

5. When the final marking has been reached, a WF process needs to be revived
in order to be executed again. In other words, we have to ensure that ∀M ∈
N
∣S∣, i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣} ∶

δ({M [0]
}, ti1 ti2 . . . tik ti1) = ∅ . (7)

To do so, we extend WF by a restitution task tr ∉ T , i.e. tr is not a data
operation, it is a simple transition used to return from all the final states to
the initial states. In such case:

δ(∅, tr) = {M
[0]
} . (8)

5 Workflow Analysis

As introduced in [13], the classical soundness property grants that a process
has always the possibility to terminate and all its tasks are coverable (i.e., can
potentially be executed). Termination ensures that the workflow can, during
its execution, neither get stuck (i.e., it is deadlock free) nor enter a loop that
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cannot be left (i.e., it is livelocks free), whereas coverable excludes dead tasks in
the workflow. But, to ensure these criteria, the soundness property needs, to be
verified, that the process has a single source place i and a single final place o.

Nevertheless, to reflect the reality of business processes, we allow aWF model
to present initial and final states as needed and accordingly, it is not possible
to detect this classical soundness property. So, we propose a released notion of
soundness which ensures that there are no livelocks, or deadlocks, or dead tasks
in a WF . In other words, we will verify the well-formedness property of a WF
process. According to [14], a P-net is well-formed if it is live and bounded. We
adopt this rule to WF , thus, the first step is to verify its liveness property.

5.1 Verification of the Liveness Property

We tackle this issue in [8,9], but by analyzing other process cases, we have been
aware that the proposed technique is not enough to ensure the liveness property
of a WF model. So, we improve it as follows:

Assuming that {M [0]
} is the set of the possible initial markings, a WF model

is live if and only if: ∀t ∈ T, ∃ t1, t2 . . . tn ∈ T ∣ δ(M
[0], t1 t2 . . . tn t) ≠ ∅ ⇒

t is live.
To ensure the verification of this property, we proposed in [8, 9] a simple

algorithm based on (9) and (10), which are defined as the following:

Firable(t) = ⋀

i ∈ {1, 2 . . . ∣S∣}
Pre(si, t) ≠ 0

Expectable(si) . (9)

Expectable(s) = {
true if ∀i ∈ {1, 2 . . . ∣T ∣}, PostMax(s, ti) = 0 .
Firable(ti) if ∃ i ∈ {1, 2 . . . ∣T ∣}, where PostMax(s, ti) ≠ 0 .

(10)
We elucidate (9) and (10) through the example illustrated in Fig. 1.

Firable(t15) = ⋀

i ∈ {8,9 . . . 19}
Pre(si, t15) ≠ 0

Expectable(si)= Expectable(s18)= Firable(t14)

= Expectable(s15) ∧ Expectable(s17)= Firable(t12) ∧ Firable(t13)= Expectable(s14)∧

Expectable(s16) = Firable(t11) ∧ true= Firable(t11)= Expectable(s10)

= Firable(t8)= Expectable(s9) = Firable(t7)= Expectable(s8) = true

By using (9) and (10), we can verify that every task in a WF process is firable if
its expected tokens can be provided by the evolution of the marking. However,
this is not sufficient to verify its liveness proverty. In fact, if aWF model contains
structural conflicts, there will be a part in the workflow that may not be executed.
So, before applying (9) and (10), we have to start by verifying that the workflow
does not contains structural conflicts.

Conflict Resolution: we assume that a WF model has a structural conflict,
if it contains at least two tasks ti and tj having the same input data structure
sk, e.g., t2 and t5 sharing s2 in the Role 1 sub-process, t9 and t11 sharing s10
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in the Role 2 sub-process. To resolve such conflicts [8, 9], we extend the model
by adding extra tasks T ∗

= {tclone1 , tclone2 . . . tclonel} such as l is the number of
conflict tasks, and tclone is a clone operation formally defined as follows: whether
sk = (Ck, Dk), tclone(sk, l) = {sk1 , sk2 . . . skl

} .
The extended model WF+ = (S+, T+, P re+, Post+) such as: S+ = S,

T+ = T ∪ T ∗, Pre+ = S × T+, and Post+ = T+ × S.
Blocking State Resolution: after extendingWF , the process has to be verified
to ensure that there are no deadlocks or livelocks. In fact, if we apply (9) and
(10) directly on a WF+, which contains deadlocks or livelocks, the equations will
enter in an infinite loop, as the case of model (a) presented in Fig. 2:
Firable(t2) = ⋀

i ∈ {1, 2, 3}
Pre(si, t2) ≠ 0

Expectable(si)=Expectable(s2) ∧ Expectable(s3)

= Firable(t1) ∧ Firable(t2)= Expectable(s1) ∧ Expectable(s2) ∧ Expectable(s3)

= true ∧ Firable(t1) ∧ Firable(t2)= Firable(t1) ∧ Firable(t2)= Expectable(s1) ∧

Expectable(s2) ∧ Expectable(s3)= true ∧ Firable(t1) ∧ Firable(t2)= . . .

The verification of deadlocks or livelocks is ensured by (5) defined by the firing
rule 3, which prohibits the existence of loops in a WF model. If this rule is not
verified, it means that the model contains deadlocks or livelocks and accordingly,
it is not live.

5.2 Verification of the Boundedness Property

As we extended WF to WF+, the boundedness property will be verified rela-
tively to the extended model. If WF+ is not bounded, it means that the workflow
will contain at least one data structure having a number of tokens increasing
infinitely with the evolution of the marking. To verify the boundedness prop-
erty of a WF , we assume that if its WF+ has no loop, it will be bounded. We
prove this idea as follows: According to (2): ∀ti, tj ∈ T, ∃s ∈ S ∣ < ti, tj >,
pre(tj , s) = post(ti, s), which ensures that the number of tokens produced
by a task, in its output data structure, will be automatically consumed by
the next task having, as input, the same data structure. Besides, according to
(5): ∀i ∈ {1, 2 . . . ∣T ∣}, M ∈ {M1,M2 . . .Mn}, δ({M}, t ti1 ti2 . . . tik t) = ∅,
which means that, there is no cycle in a WF model.

Consequently, {i ∈ {1, 2 . . . ∣T ∣}, M > Pre(., ti)} = ∅, and accordingly,
in any case, the marking of a data structure will never be higher then the
number of tuples requested by the task consuming this data structure tuples.

Thus, ∣
+∞
⋃

θ=0
δ(M [θ], ti)∣ < +∞, which means that, the set of possible markings

δ({M [θ]
}, ti) is a finite set ∀ti ∈ T , and consequently, WF+ is bounded.

6 Opus Framework

Opus Framework is implemented using Java Swing language with a set of Java
library, namely, JGraph, UMLGraph, JTable. . . It consists of a number of compo-
nents including a modeling editor, a workflow engine, and a verification module.
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6.1 Opus Editor

The graphical modeling of workflow processes is ensured using Opus editor. The
latter is equipped with a set of graphical interfaces to create profiles of roles
performing the work, define data flow interactions between roles and the IS
(e.g. ICRole receives the data structure Customer Inf from SCRole and saves
Order Table and Order Line Table tokens in the IS), and finally, define the
sub-process model related to each role work. It also provides to the designer a
customized assistant for each operation in the process model, in order to help
him to model the process structure.

6.2 Verification of the Workflow Model

Opus system is equipped with a verification module which ensures the analyses
and the verification of the conceived workflow models, as described in Sect. 5.
The verification result of the ICRole sub-process is illustrated in Fig. 3. We
illustrate also the verification of model (a) (defined in Fig. 2), through Fig. 4.

Fig. 3. ICRole sub-process verifi-
cation (processing time 1.37 sec)

Fig. 4. Model (a) verification (processing
time 0.24 sec)

6.3 Opus Engine

Opus engine follows up the data flow routing, simulates the processing of tasks
according to its formal definition, considering the firing rules defined in Sect. 4,
and invites each role to perform its tasks according to its feasibility and ur-
gency. Furthermore, tokens of workflow initial states may be imported from the
IS. And in the same way, tokens of final states may be stored in. For this pur-
pose, Opus engine is equipped with the IS Integration Module that provides
the Import tool (which imports tuples from a definite IS table to a definite data
structure [9]), the ImportId tool (which imports the identifier of the last tuple
inserted in a definite IS table, instead of being entered by a role), and the Insert
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tool (which stores a data structure tuples in a definite IS table. It is considered
as an Add Tuples operation such as t10 and t15 in Fig 1). We detail all the ac-
tions, performed either by the ICRole or by Opus engine, through Fig. 5.
A1. Starting the ICRole sub-process: when the ICRole launches his process,
the engine will present to him the data structure Customer Inf received from
SCRole and will ask him to instantiate the data structure Product Table.

A2. Alimentation of the data structure Product Table from the IS: the ICRole
imports tuples to Product Table from the IS using the Import tool, and vali-
dates its tokens in order to execute t7 (see Step 1).

A3. Seizure of the ordered quantities: the ICRole seizes the ordered quanti-
ties relatively to the ordered products (OrdPs), in the resulting data structure
of t7, and validates his seizures (see Step 2).

A4. Select the OrdPs: during the execution of t8, the engine invites the ICRole
to enter the selection property in order to select the OrdPs (see Step 3). Then,
the ICRole saves the selection property for the next executions of t8.

A5. Verify the availability of the OrdPs: in this runtime example, s10 ≠ ∅, so,
t11 decides to send s14 to t12, also t9 decides to send s11 to t10.

A6. Insert a new order: t10 uses the Insert tool to insert a new order in the
IS Orders Table (see Steps 5, 5.1, 5.2).

A7. Create the new order lines: in parallel with t9, t11 then t12 will be auto-
matically executed to produce s15 (see Step 4-2). Then, t14 will be waiting for
s17 to be executed. In this case, the ICRole has to launch the execution of t13.

A8. Import the identifier of the last inserted order from the IS: the ICRole
launches the execution of t13 (see Step 6-1). The latter receives the empty data
structure S16 Order Id as an input, and instead of seizing the new order iden-
tifier, t13 will import its value using the ImportId tool (see Step 6-2).

A9. Wake a waiting task: at this level, the ICRole can turn to wake t14 by
validating s15 tokens, and the engine will launch its execution (see Step 7).

A10. Complete the creation of the new order lines: the engine executes t14 to
produce s18 tokens (see Step 8).

A11. Insert the new order lines: the engine executes t15 and asks the ICRole
to choose the suitable IS table for the insertion (see Step 9-1), and to perform
the matching between the data structure s18 and the chosen table (see Step 9-2).
If these two steps are well done, the engine will properly end the workflow.

We can deduce, from the execution details, the presence of four types of ac-
tions: 9.1% of actions are based on manual tasks (i.e. tasks that are performed
only by a role without the intervention of the engine, such as A3), 27.27% of
actions are based on automatic tasks (i.e. tasks that are performed only by the
engine without the intervention of a role, such as A5, A7 and A10), 18.18% of
actions are based on semi-automatic tasks (i.e. tasks that are performed by the
engine under control of a role, such as A1 and A9), and 45.45% of actions are
based on semi-automatic tasks only in the first execution (SA-FE) (i.e. tasks
that are semi-automatic tasks only in their first executions, but during their
next executions, they will migrate to be automatic tasks, such as A2, A4, A6,
A8 and A11).
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Fig. 5. Executing the ICRole sub-process
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7 Conclusions and Future Work

According to the execution of the ICRole sub-process, manual tasks are ex-
tremely reduced. Other tasks are either purely executed by the engine, or ex-
ecuted by the engine under supervising of a human actor. That demonstrates
the success of the modeling approach in execution issue. In fact, thanks to the
detailed definition of the workflow model, Opus engine can interpret, automat-
ically, the process operational functions and perform a data-driven execution
based on the firing rules defined in Sect. 4. These latter ensure the consistency
of data, during runtime, and grant, together with the verification method, pre-
sented in Sect. 5, the proper termination of the workflow process. However, this
Framework must be completed by a module for documents generation (invoice,
purchase order. . . ): the system can manage the content but not the container.
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Appendix A: Data Operations Definition

Table 1. Operations definition

Operation Formal definition

Inner Product: performs the combination
of a data structure tuples with those of
another data structure.
Noted: ×

∀ sj = (Cj , Dj), sk = (Ck, Dk), Cj = (cj1 , cj2 . . . cjnj
),

Ck = (ck1
, ck2

. . . cknk
), si = sj × sk = ((cj1 . . . cjnj

, ck1
. . . cknk

),Di)
Where: Di = ⋃

l ∈ {1 . . . nj}
p ∈ {1 . . . nk}

{(djl
1 . . . d

jl
nj , dkp1 . . . dkp

nk )}

Resulted tokens number:∣Di∣ = ∣Dj ∣ × ∣Dk ∣
Selection: selects the tuples of a data
structure that meet the desired criteria.
Noted: σ

Whether P is the selection property, ∀ sj = (Cj , Dj), si = σP sj⇔ si = (Cj , ⋃
e ∈Dj

P (e)
{e})

Resulted tokens number:∣Di∣ ∈ [0, ∣Dj ∣]

Projection: selects the values of specific
attributes in a data structure.
Noted: �

sj = (Cj ,Dj),∀(b1 . . . bn) ∈ {0,1}n, si = (Ci,Di) = �(b1...bn)sj
Where ci is a selected (resp. not selected) attribute, if bi = 1 (resp bi = 0).
⇔ Ci = (cj

j′
1

, cj
j′
2

. . . cjj′q
), Di = {(dj1

j′
1

, dj1
j′
2

. . . dj1j′q

),
(dj2

j′
1

, dj2
j′
2

. . . dj2j′q

) . . . (djmjj′
1

, djmjj′
2

. . . djmjj′q

)} .

Such as: q = ∑n
k=1 bk: is the number of attributes in the structure result,

j′k =min l = {1,2 . . . n}
∑l

p=1 bp = k

l: refers to the projection attributes indices.

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dj ∣]
Substitution: changes the name of
an attribute in a data structure.
Noted: ⧄

∀sj = (Cj , Dj), si = ⧄(cjk , c, sj) = ((cj1 . . . cjk−1, c, cjk+1 . . . cjn), Dj)
Resulted tokens number: ∣Di∣ = ∣Dj ∣

Permutation: allows to permute two
columns in a data structure.

Noted:
↷
�

∀si = (Ci, Di), sj = ↷
�(si, k, l), such as: k, l ∈ {1,2 . . . n}, k < l,

Cj = (ci1 . . . cik−1 , cil , cik+1 . . . cil−1 , cik , cil+1 . . . cin)
Dj = {(d1i1

. . . d1ik−1
, d1il

, d1ik+1
. . . d1il−1

, d1ik
, d1il+1

. . . d1in),(dmi1
. . . dmik−1

, dmil
, dmik+1

. . . dmil−1
, dmik

, dmil+1
. . . dmin)}.

Resulted tokens number:∣Di∣ = ∣Dj ∣
Extension: Extends a structure scheme
by adding an attribute c =(n, t) and
applying a function f.
Noted: �

∀sj = (Cj , Dj), si = �(sj , c, f), such as:
Ci = ((cj1 , cj2 . . . cjn , c),Di = {(dj11

, dj12
. . . dj1n

, f(dj11
, dj12

. . . dj1n
,

Dj)) . . . (djm1
, djm2

. . . djmn
, f(djm1

, djm2
. . . djmn

, Dj))})
Resulted tokens number:∣Di∣ = ∣Dj ∣

Add Tuples: inserts the tuples of a data
structure in another one.
Noted: +

∀sj = (Cj , Dj), , sk = (Ck, Dk),
Dj = {(dj11

, dj12
. . . dj1n

), (dj21
, dj22

. . . dj2n
) . . . (djm1

, djm2
. . . djmn

)}
Dk = {(dk11

, dk12
. . . dk1h

), (dk21
, dk22

. . . dk2h
) . . . (dkl1

, dk22
. . . dklh

)},
b1, b2 . . . bh) ∈ {1, 2 . . . n}: refers to the positions of the added values in the
resulting data structure. sj = +(sk, (b1, b2 . . . bh))
if h < n then: sj = ((c1, c2 . . . cn),{(dj11

, dj12
. . . dj1n

), (dj21
, dj22

. . . dj2n
)

. . . (djm1
, djm2

. . . djmn
), (dk1b1

, dk1b2
. . . dk1bh

. . . dk1n
),

(dk2b1
, dk2b2

. . . dk2bh
. . . dk2n

) . . . (dklb1
, dklb2

. . . dklbh

. . . dkln
)})

if h = n then: sj = ((c1, c2 . . . cn),{(dj11
, dj12

. . . dj1n
), (dj21

, dj22
. . . dj2n

)
. . . (djm1

, djm2
. . . djmn

), (dk1b1
, dk1b2

. . . dk1n
),

(dk2b1
, dk2b2

. . . dk2n
) . . . (dklb1

, dklb2
. . . dkln

)}) .

Resulted tokens number:∣Dj ∣ = ∣Dj ∣ + ∣Dk ∣
Control 1: Decides to continue or not
the information flow routing, according to
condition1. Noted: ±

Condition 1: if si is the data structure expected by the next task,

and sj is the controlled data structure, then: si = sk ± sj = { sk if sj = ∅ ,
∅ otherwise .

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dk ∣]
Control 2: Decides to continue or not
the information flow routing, according to
condition 2. Noted: ∓

Condition 2: if si is the data structure expected by the next task,

and sj is the controlled data structure, then: si = sk ∓ sj = { sk if sj ≠ ∅ ,
∅ otherwise .

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dk ∣]
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