
Effectively Delivering XML Information

in Periodic Broadcast Environments

Yongrui Qin1, Quan Z. Sheng1, Muntazir Mehdi2, Hua Wang3, and Dong Xie4

1 School of Computer Science,
The University of Adelaide, Adelaide, SA 5005, Australia

{yongrui,qsheng}@cs.adelaide.edu.au
2 Department of Computer Science,

TU Kaiserslautern, Gottlieb-Daimler-Strasse, Kaiserslautern 67663, Germany
muntazir.75@gmail.com

3 Department of Mathematics & Computing,
University of Southern Queensland, QLD 4350, Australia

hua.wang@usq.edu.au
4 Department of Computer Science and Technology,

Hunan University of Humanities, Science and Technology, Loudi 417000, China
dong.xie@hotmail.com

Abstract. Existing data placement algorithms for wireless data broad-
cast generally make assumptions that the clients’ queries are already
known and the distribution of access frequencies of their queries can be
obtained a priori. Unfortunately, these assumptions are not realistic in
most real life applications because new mobile clients may join in any-
time and clients may be reluctant to disclose their queries (due to privacy
concerns). In this paper, we study the data placement problem of peri-
odic XML data broadcast in mobile wireless environments. This is an
important issue, particularly when XML becomes prevalent in today’s
ubiquitous Web and mobile computing devices. Taking advantage of the
structured characteristics of XML data, we are able to generate effective
broadcast programs based purely on XML data on the server without
any knowledge of the clients’ access patterns. This not only makes our
work distinguished from previous studies, but also enables it to have
broader applicability. We discuss structural sharing in XML data which
forms the basis of our novel data placement algorithm. The proposed
placement algorithm is validated through a set of experiments and the
results show that our algorithm can effectively place XML data on air
and significantly improve the overall access efficiency.

1 Introduction

Wireless technology has become deeply embedded in everyday life. At the end of
2011, there were 6 billion mobile subscriptions, estimated by the International
Telecommunication Union (2011). That is equivalent to 87 percent of the world
population, and is a huge increase from 5.4 billion in 2010 and 4.7 billion mobile
subscriptions in 2009.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 165–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

166 Y. Qin et al.

Broadcast is one of the basic ways of information access via wireless technolo-
gies. In a wireless data broadcast system, the server broadcasts public informa-
tion to all mobile devices within its transmission range via a downlink broadcast
channel. Mobile clients “listen” to the downlink channel and access information
of their interest directly when related information arrives. Broadcast is band-
width efficient because all mobile clients can share the same downlink channel
and retrieve data from it simultaneously. Broadcast is also energy efficient at the
client ends because downloading data costs much less energy than sending data
[27].

Wireless data broadcast services have been available as commercial products
for many years, e.g. StarBand and Hughes Network. Recently, there has been a
push for such systems from the industry and various standard bodies. For ex-
ample, born out of the ITU “IMT-2000” initiative, the Third Generation Part-
nership Project 2 is developing Broadcast and Multicast Service in CDMA2000
Wireless IP network. Systems for Digital Audio Broadcast (DAB) and Digital
Video Broadcast (DVB) are capable of delivering wireless data services. Recent
news also reported that XM Satellite Radio (www.xmradio.com) and Raytheon
have jointly built a communication system, known as the Mobile Enhanced Sit-
uational Awareness Network (MESA), that would use XM satellites to relay
information to soldiers and emergency responders during a homeland security
crisis.

On the other hand, information expressed in semi-structured formats is wide-
spread over the past years. XML has rapidly gained popularity as a de facto stan-
dard to represent semi-structured information. Most Internet browsers provide
support for XML in their newer versions and nearly all the major IT compa-
nies (e.g., Microsoft, Oracle, and IBM) have integrated XML into the software
products. Delivering information in XML format is also popular in Web services
and in different kinds of Publish/Subscribe systems. Consequently, XML has at-
tracted attentions from database community recently and there has been a large
body of research work focusing on XML, such as XML filtering, querying and
indexing [17,26].

Combining both trends of the proliferation of mobile computing technologies
and XML data, broadcasting information in XML format in a wireless environ-
ment would be a preferable way of information delivering and sharing. Conse-
quently, the research of XML data broadcast is of great importance and in fact it
has been attracting more and more research interests [20,7,24,19,18]. To further
demonstrate practicability of XML data broadcast, we will present a potential
application of it by detailing a real life scenario in Section 2.

There are two typical data broadcast modes: (i) Periodic Broadcast Mode
and (ii) On-Demand Broadcast Mode [27]. In the periodic broadcast mode, data
are periodically broadcasted on a downlink channel via which the server sends
data to clients. Clients only “listen” to that channel and download data they
are interested in. In the on-demand broadcast mode, clients send their queries
to the server via an uplink channel and then the server considers all submit-
ted requests and decides the contents of next broadcast cycle. In this work, we

Effectively Delivering XML Information 167

focus on the periodic broadcast mode since it has many benefits such as saving
uplink bandwidth and power at the client ends by avoiding uplink transmissions
and effectively delivering information to an unlimited number of clients
simultaneously.

Data placement algorithms determine what data items to be broadcasted by
the server and the order of data items on wireless channels, aiming to reduce
average waiting time for mobile clients. To a large extent, the data placement
problem of XML data is similar to that in multi-item contexts [25,4] where mobile
clients may request multiple items each time. However, there are drawbacks of
existing data placement approaches in traditional data broadcast.

Firstly, previous work on multi-item placement problems generally makes as-
sumptions that the clients’ queries are already known and the distribution of
access frequencies of these queries can be obtained in advance [1,2,25,4]. For
example, it is proposed to allow the clients to provide a profile of their interests
to the servers [1,2], but this can lead to privacy concerns. These assumptions
significantly limit the practicability of the proposed placement algorithms in real
situations because: (i) new mobile clients may join in the network at anytime;
and (ii) mobile users may be reluctant to disclose their queries to the server via
uplink channel due to expensive communication cost and privacy concerns.

Secondly, in traditional data broadcast systems, appropriate placement can
hardly be generated based only on information of data items themselves on
the server. Hence, the above assumptions are inevitable for the design of data
placement algorithms. Alternatively, some work applies data mining techniques
to discover association rules from the history access patterns of a set of data [3].
This avoids to obtain access patterns of mobile clients on-the-fly. However, the
availability of such history access patterns of mobile clients is a necessity.

By contrast, in XML data broadcast, data items (or XML documents) usu-
ally share parts of their structure. Taking structural sharing between XML doc-
uments into consideration, we are able to analyze and estimate clients’ access
patterns via the analysis of this structural sharing. Then we can effectively place
XML data on wireless channels based purely on XML data on the server, which
is important for practical usage. In summary, the main contributions of this
paper can be described as follows:

– By taking advantage of the structural characteristics of XML data, we are
able to generate appropriate data placement results based only on XML data
on the server.

– A novel data placement algorithm which organizes XML data on air is pre-
sented.

– Extensive experiments are conducted to show the effectiveness of our pro-
posed data placement algorithm.

The remainder of this paper is organized as follows. Section 2 describes back-
ground knowledge of this work, including an application scenario, the system
model and XML similarity background. Section 3 discusses the structural sharing
property of XML data and proposes a novel data placement algorithm. Section 4

168 Y. Qin et al.

presents our experimental study for evaluating the performance of the proposed
data placement algorithm. Finally, Section 5 discusses related work and Section
6 gives some concluding remarks.

2 Application Scenario, System Model and XML
Similarity

In this section, we first describe an application scenario. Then we show the sys-
tem model of this work and introduce background knowledge of XML similarity.

2.1 Application Scenario

We use the following scenario to show potential applications of XML data broad-
cast in real life.

Consider a live basketball game. Information about the game and the players
on the court is usually the interest of a large number of audience. In this con-
text, data broadcast is a preferable way of delivering latest information to the
audience. Meanwhile, some audience could be outside of the stadium, such as
basketball fans who are watching live text information about the game via the
Internet at their homes. Therefore, the game information could also be delivered
via the Internet to online audience and other Web service providers who have
subscribed this basketball game. Using XML format to represent game informa-
tion can satisfy all these needs and realize simplicity, generality, and usability of
game information at the same time.

2.2 Periodic XML Data Broadcast System Model

Fig. 1 shows the model of our wireless XML data broadcast system. The sys-
tem includes an XML Data Center (the broadcast server), a broadcast program
scheduler, broadcast listeners (mobile clients) and a downlink channel (the server
sends information to mobile clients via it). The downlink channel can be shared
by all mobile clients. But mobile clients can not send their individual queries to
the server in this model as no uplink channel is available.

From the figure, we can see that the XML Data Center could be connected
to the Internet and deliver information to online users, Web service providers
and Publish/Subscribe systems, etc. With the use of XML format data, these
different applications can be integrated seamlessly with our wireless XML data
broadcast system for the purpose of sharing and delivering same information to
different kinds of users.

2.3 XML Similarity

Our goal is to place XML documents on the broadcast channel based only on the
information at the server side. We propose to explore relatedness between differ-
ent XML documents and place documents according to the relatedness results.

Effectively Delivering XML Information 169

Fig. 1. A wireless XML data broadcast system

For XML documents, structural similarity is well studied and can be applied in
our broadcast system as a way to calculate relatedness between documents.

Some existing work on measuring structural similarity between XML docu-
ments can be found in [23,11]. The main idea of their work is based on the con-
cept of path sets. Here, a path set of an XML document contains all full paths
(paths that are from root element to leaves) and their subpaths. A simple ex-
ample is presented in Fig. 2. The path set of this example is: {/player/name,
/player/position, /player/nationality, /player/college, /player,

/name, /position, /nationality,/college}.We denote a path set of an XML
document d as PS(d).

Fig. 2. An XML structure tree

Different types of measure can be adopted, such as Jaccard measure [16,10],
Dice’s coefficient [9] and Lian’s measure [15], to measure the similarity between
two XML documents di and dj . The exact forms of these measures based on PS
are as follows (Jaccard measure denoted as J(di, dj), Dice’s coefficient denoted
as D(di, dj) and Lian’s measure denoted as L(di, dj)):

J(di, dj) =
|PS(di)

⋂
PS(dj)|

|PS(di)
⋃
PS(dj)| (1)

170 Y. Qin et al.

D(di, dj) =
2 · |PS(di)

⋂
PS(dj)|

|PS(di)|+ |PS(dj)| (2)

L(di, dj) =
|PS(di)

⋂
PS(dj)|

max{|PS(di)|, |PS(dj)|} (3)

From the above definitions, we can see that both Jaccard measure and Dice’s
coefficient give more weights on the total structural information of two comparing
documents while Lian’s measure emphasizes more on the difference of these
documents. All three measures vary in interval [0, 1]. If PS(di) = PS(dj), we
have J(di, dj) = D(di, dj) = L(di, dj) = 1. Clearly, the larger the values of these
measures are, the more structural sharing the two XML documents have.

3 Data Placement Algorithm

In this section, we introduce our data placement algorithm for periodic XML
data broadcast. We first discuss the structural sharing property of XML data
which we use to estimate the potential access patterns of mobile clients, i.e., the
probability of accessing a small set of similar XML documents simultaneously.
Then we put forward a novel data placement algorithm based on it.

3.1 Structural Sharing in XML Data

In the literature, two critical metrics, namely access time and tuning time, are
used to measure the system’s performance [12]. Data placement mainly affects
access time because tuning time depends on the total content downloaded by
mobile clients but not on the order of data. Hence, we use access time as our
metric in this analysis. In periodic broadcast, queries are used to describe the
interests of mobile clients and help mobile clients to skip irrelevant data on air,
but they are not actually submitted to the broadcast server.

Intuitively, for any two given XML documents, we can utilize one of the three
similarity measures described in Section 2.3 to calculate the similarity between
them and the similarity results can be used to approximate the probability that
a specific query is matched with both documents at the same time. For example,
if two XML elements are under structurally similar paths, then it is more likely
that either both elements or none satisfy a given query [23]. In fact, query is-
suers hardly have thorough knowledge about the broadcasted content and XPath
queries usually contain * and // which would match similar structure. Therefore,
if two XML documents are with larger structural similarity, i.e. d1 and d2, then
they would have a higher probability to be required simultaneously. However,
there are still three other cases to be considered, such as requiring d1 but not
d2, requiring d2 but not d1 and requiring neither of d1 and d2. Therefore, the

Effectively Delivering XML Information 171

Table 1. Matching Cases for Document d1 and d2 in a document set D

Case Probability Effect on ATexp

Matched both d1, d2 Pr(d1
⋂

d2) Positive

Matched none of d1, d2 1− Pr(d1
⋃

d2) Positive

Matched d1, but not d2 Pr(d1 − d2) Negative

Matched d2, but not d1 Pr(d2 − d1) Negative

above similarity measures consider only successful match probabilities of both
XML documents but do not consider unsuccessful match probabilities of them.

Nonetheless, unsuccessful match cases have effects on the expected access time
as well (but the query may still be satisfied by other documents). In order to
have better access efficiency, the distance between any two documents required
by the same query should be as less uniform as possible on air. Based on this,
we can infer that in the above example, cases of required d1 but not d2 and
required d2 but not d1 are likely to generate more uniform distances while other
two cases (required both documents or neither) are likely to have less uniform
distances. Observing this, we define a new similarity measure called Cohesion
to give a more accurate estimation of access patterns of mobile clients in the
following.

Note that, for any query q requiring at least one of the documents in D, q

must match some paths in PS(D) and it has a probability of |PS(d)|
|PS(D)| to match

d. If a query q fails to match any document in D, the issuer of q will not be
waiting the result to be broadcasted. Hence, we only consider satisfied queries
(this means at least one document is matched) in this work.

Now suppose we have a set of n XML documents D = {d1, d2, . . . , dn} on
the server, we can approximate access probability of any document d for queries
which successfully match at least one document in set D as follows:

Pr(d) =
|PS(d)|
|PS(D)| (4)

and for any i, j (1 ≤ i, j ≤ n)

Pr(di − dj) =
|PS(di)− PS(dj)|

|PS(D)| (5)

Here, PS(D) =
⋃n

i=1 PS(di).
There would be many different matching cases for a given set D. Take two

XML documents d1 and d2 in D as an example. As mentioned previously, there
would be four cases of matching of them and the probability of each case is
shown in Table 1. In this table, we also include positive and negative effects on
the expected access time (ATexp) for each case.

172 Y. Qin et al.

Based on Table 1, we define Cohesion C(di, dj) of XML documents di and dj
as follows:

C(di, dj) =
Pr(di

⋂
dj) · (1− Pr(di

⋃
dj))

max{Pr(di − dj), P r(dj − di)} (6)

Here di and dj are both in set D. It is easy to see that C(di, dj) = C(dj , di).
According to Equation (4), Equation (5) and Equation (6), we can calculate
C(di, dj) after finding path sets of di, dj and D. Cohesion values can vary in
a wide range which exceeds interval [0, 1]. Strictly speaking, Cohesion values

only vary in interval [0, |PS(D)|
4] given that C(di, dj) =

|PS(D)|
4 when PS(di) =

PS(dj). The lower bound 0 is trivial. In order to obtain the upper bound, we
only consider cases that have PS(di) �= PS(dj), from which we can infer that
max{|PS(di−dj)|, |PS(dj−di)|} ≥ 1. Without loss of generality, let |PS(di)| ≥
|PS(dj)|, according to Equation (4) and Equation (5), we can rewrite Equation
(6) as follows:

C(di, dj) ≤
|PS(di

⋂
dj)|

|PS(D)| · (1− |PS(di

⋃
dj)|

|PS(D)|)

1
|PS(D)|

<
−(|PS(di)| − |PS(D)|

2)2 + |PS(D)|2
4

|PS(D)|
≤ |PS(D)|

4

Then the above result gives the upper bound of Cohesion C(di, dj). Now we can
normalize Cohesion values to interval [0, 1] in the following:

C′(di, dj) =

{
4·C(di,dj)
|PS(D)| PS(di) �= PS(dj)

1 PS(di) = PS(dj)
(7)

We can also infer that C′(di, dj) = 1 if and only if PS(di) = PS(dj). Similar
to other three similarity measures, the larger the value of Cohesion is, the more
structural sharing the two comparing XML documents have.

3.2 The Data Placement Algorithm

Based on the discussion of structural sharing in XML data, we can generate a
broadcast program for periodic data broadcast in a greedy way. From previous
discussions, we can see that the more the structural sharing of two XML doc-
uments is, the larger probability of matching both XML documents simultane-
ously. As a result, our Greedy Data Placement Algorithm (GDPA) places XML
documents with most structural sharing together first as an initial broadcast
program. Then it progressively appends other XML documents to the broadcast
program in a descendant order of structural sharing. Detailed steps of GDPA
are shown in Algorithm 1 and Algorithm 2.

Effectively Delivering XML Information 173

Algorithm 1. Initialize structural sharing matrix S[n][n]

Input: A set of XML documents D : {d1, d2, ..., dn}
Output: Structural sharing matrix S[n][n]
1. create matrix S[n][n]
2. for each document d in D do
3. compute PS(d)
4. end for
5. for each pair of documents < di, dj > in D (i < j) do
6. S[i][j] ⇐ structural sharing between di and dj
7. S[j][i] ⇐ S[i][j]
8. end for

Algorithm 2. GDPA

Input: Structural sharing matrix S[n][n]
Output: A broadcast program σ for D
1. σ ⇐ empty sequence
2. select a pair of documents < di, dj > with maximum value S[i][j] in matrix S[n][n]

3. if Length of di <= Length of dj then
4. add < di, dj > into σ
5. else
6. add < dj , di > into σ
7. end if
8. D′ ⇐ D − di − dj
9. while D′ is not empty do
10. dhead ⇐ the first document in σ
11. select a pair of documents < dimax , dhead > with maximum value S[imax][head]

(dimax ∈ D′)
12. drear ⇐ the last document in σ
13. select a pair of documents < djmax , drear > with maximum value S[jmax][rear]

(djmax ∈ D′)
14. if S[imax][head] >= S[jmax][rear] then
15. append dimax into σ from head
16. D′ ⇐ D′ − dimax

17. else
18. append dimax into σ from rear
19. D′ ⇐ D′ − djmax

20. end if
21. end while

Algorithm 1 initializes a structural sharing matrix S[n][n] for n XML docu-
ments on the broadcast server. Note that, all four similarity measures defined in
subsection 2.3 and 3.1 can be used in Algorithm 1 to compute structural shar-
ing between two documents (Line 6). All of them are symmetric which means
for any one of these measures, we must have S[j][i] = S[i][j]. Also we have
J(di, dj) = D(di, dj) = L(di, dj) = C′(di, dj) = 1 if i = j. Therefore, we only
need to calculate matrix S for entries S[i][j] where i < j.

174 Y. Qin et al.

Based on matrix S, Algorithm 2 finds the pair of XML documents with maxi-
mum structural sharing and adds them into the initial empty broadcast program
σ (Line 2). The sequence of the first pair of XML documents are placed accord-
ing to the ascendant order of document lengths (Line 3 to 7). Then Algorithm
2 appends the XML document with maximum structural sharing to the head
document dhead or the rear document drear of σ. If the maximum structural
sharing is derived between document d and document dhead, d will be appended
into σ from head; otherwise, d will be appended into σ from rear. This process
will be repeated until all XML documents are placed into σ (Line 9 to 21).

Regarding the computing complexity of Algorithm 2, the main task of the
scheduling is performed from Line 9 to 21. The whole ‘while’ block has at most
n loops. Within this block, Line 11 takes O(n) time. It is similar at Line 13,
which also takes O(n) time. Hence the time complexity of the whole ‘while’
block is O(n2 + n2). Meanwhile, the complexity of Line 2 is O(n2). As a result,
the complexity of Algorithm 2 is O(3n2).

4 Experiments

Since this is the first work that determines broadcast schedules based only on
XML data on the server without any knowledge of the clients’ access patterns,
we compare our algorithm with a common random data placement algorithm
(RDPA) and show its efficiency in terms of access time, which is a common
measure of performance in data broadcasts. We have not compared tuning time
as the comparing data placement algorithms would not affect it.

4.1 Experimental Setup

The experiments are run on three data sets each with 250 XML documents
defined by News Industry Text Format (NITF) DTD [13], which is published for
news copy production, press releases, and Web-based news organizations. The
average depth of the three document sets is between 6 and 8 while the maximum
depth is 20.

There are three data sets in the experiments, which are DS1, DS2 and DS3.
Data in DS1 can be well clustered into 6 clusters. Moreover, for any two doc-
uments di, dj in two different clusters of DS1, the minimum similarity values,
the maximum similarity values and the average similarity values of all four mea-
sures (normalized Cohesion is adopted here) are shown in Table 2. We can see
that all clusters are quite different from each other and share very little struc-
tural information. Data in DS2 are miscellaneous. Documents in DS2 cannot
be classified into fine clusters. Data in DS3 are a mix of well-clustered data and
miscellaneous data, which include 125 XML documents from DS1 and 125 XML
documents from DS2.

In the experiments, XPath queries are generated using the generator devel-
oped by [8]. Queries are allowed to repeat. The generator provides several pa-
rameters to generate different types of XPath queries, such as query depth,

Effectively Delivering XML Information 175

Table 2. Similarity between clusters in DS1

Measure
Similarity

Minimum Maximum Average

Jaccard 0.0097 0.1102 0.0435

Dice 0.0049 0.0583 0.0225

Lian 0.0057 0.1039 0.0345

Cohesion 0.0229 0.4620 0.1457

Table 3. Workload Parameters for the Experiments

Parameter Range Default Description

PROB 5% to 30% 10% probability(* and //)

QIR 0.1 to 5 1 query incoming rate

MQD 5 to 8 7 maximum query depth

probability of * and // and the maximum depth of generated XPath queries.
The probability of * and // appearing in each query’s step is between 5% and
30% (denoted PROB, and the default value is 10%). Note that, Query Incom-
ing Rate (denoted QIR) means the number of newly issued queries from mobile
clients in a unit of time (these queries are only locally issued for data retrieval
purpose and are not sent to the broadcast server). We measure this unit of time
by the time that mobile wireless system takes to broadcast a block of 1024-byte
XML data. The maximum depth of generated XPath queries (denoted MQD)
is between 5 and 8. Table 3 shows details of the parameters in the experiments.

The random data placement algorithm (RDPA) is compared with GDPA (us-
ing all four similarity measures defined in Equations (1), (2), (3) and (7)). In
RDPA, the server broadcasts XML documents in a random order.

We implement both RDPA and GDPA on Java Platform Standard Edition 6
running on Windows 7 Enterprise, 64-bit Operating System. All our experiments
are obtained by running 30 consecutive broadcast cycles. When we vary PROB,
we set QIR and MQD to their default values. When we vary QIR, we set
PROB and MQD to their default values. Similarly, when we vary MQD, we
set PROB and QIR to their default values.

Regarding air indexing and index distribution strategy, in our experiments, we
adopt Compact Index (CI) [24] as our index structure and (1,m) index scheme
[12] as our index distribution strategy. This is because CI is the state-of-the-art
indexing technique for XML data broadcast and (1,m) index scheme is the most
popular index distribution strategy for traditional periodic data broadcast. More
details can be found in [24] and [12].

4.2 Performance of GDPA

Our experimental results are shown in Fig. 3, Fig. 4 and Fig. 5. Average ac-
cess time (AAT) is our performance metric. Also we only consider AAT for

176 Y. Qin et al.

5 10 15 20 25 30
800

900

1000

1100

1200

1300

1400

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
800

900

1000

1100

1200

1300

1400

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 10 15 20 25 30
800

900

1000

1100

1200

1300

1400

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 3. Evaluating AAT Performance on DS1: well-clustered data set

5 10 15 20 25 30
3000

3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 5.5 6 6.5 7 7.5 8
3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

3220

MQD

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 4. Evaluating AAT Performance on DS2: miscellaneous data set

5 10 15 20 25 30
2300

2350

2400

2450

2500

2550

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 5.5 6 6.5 7 7.5 8
2320

2340

2360

2380

2400

2420

2440

2460

2480

2500

2520

MQD

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 5. Evaluating AAT Performance on DS3: a mixed set of well-clustered data and
miscellaneous data

all successful matched queries and abandon unsuccessful matched queries. The
main reason for this is that, AAT of unsuccessful queries is determined by index
distribution but not by data placement results (more details about this can be
found in [12]). Note that, GDPA can be implemented with four different similar-
ity measures defined in Section 3, which are Jaccard measure, Dice’s coefficient,
Lian’s measure and our proposed Cohesion. Through our experiments, Jaccard
measure and Dice’s coefficient always yield the same results. Therefore, we de-
note GDPA implemented with them as J/D method in all figures. Meanwhile,
we denote GDPA implemented with Lian’s measure as Lian method and denote
GDPA implemented with Cohesion as Cohesion method.

Fig. 3 shows the results on DS1. From the figure we can see that all GDPA
methods outperform RDPA significantly. Specifically, J/D method achieves the

Effectively Delivering XML Information 177

best results while Lian method and Cohesion method provides similar results.
This indicates that J/D method better fits well-clustered data. In Fig. 3(a),
GDPA methods become slightly worse when PROB increases. SinceDS1 is well-
clustered, most queries only require documents in the same clusters. Thus PROB
has less effect on AAT . In Fig. 3(b), when QIR increases, J/D method becomes
slightly better. This indicates that J/D method can achieve better scalability
than other methods when accessing well-clustered data. Fig. 3(c) shows that all
GDPA methods remain stable as MQD increases. It is interesting to note that
for RDPA, AAT always remains stable.

Fig. 4 shows the results on DS2. From the figure we can see that all GDPA
methods achieve better performance when compared with RDPA. Specifically,
Cohesion method achieves the best results while J/D method achieves the worst
results among GDPA methods. This indicates that Cohesion method better fits
miscellaneous data. In Fig. 4(a), both GDPA methods and RDPA become worse
when PROB increases. It is clear that PROB has more effect on AAT for miscel-
laneous data. In Fig. 4(b), when QIR increases from 0.1 to 0.5, GDPA methods
J/D and Lian together with RDPA become worse while Cohesion method still
becomes better. After that, when QIR increases, all methods become slightly
better. This shows that Cohesion method can achieve best scalability when ac-
cessing miscellaneous data.

Fig. 5 shows the results on DS3. Similarly, all GDPA methods achieve better
performance when compared with RDPA. Specifically, Lian method achieves the
best results while J/D method provides the worst results among GDPA methods.
This shows that Lian method better fits hybrid data. However, Cohesion method
achieves very similar performance of Lian method. In Fig. 5(a), both GDPA
methods and RDPA become worse when PROB increases. PROB has more
effect on AAT for hybrid data. In Fig. 5(b), when QIR increases, all GDPA
methods become slightly better and still Lian method provides the best results.

To sum up, GDPA methods always achieve better AAT when compared with
RDPA. When accessing well-clustered data, J/D method achieves the best per-
formance. When accessing miscellaneous data, Cohesion method provides the
best performance and finally when accessing hybrid data, Lian method shows
the best performance.

5 Related Work

Multi-item data placement problem is related to the data placement problem
of XML data which is the focus of our work. It is proved to be a NP-Complete
problem [6].

Existing data placement methods for processing multi-item queries in peri-
odic broadcast[5,14,3] generally makes assumptions that the clients’ queries are
already known and the distribution of access frequencies of these queries can be
obtained in advance. However, these assumptions are not true for most applica-
tions in real life because the demand is either not known or it may be costly to
collect the demand information.

178 Y. Qin et al.

Multi-item data placement problem in on-demand broadcast mode has also at-
tracted lots of interests [25,22]. These approaches are in pure on-demand broad-
cast mode and strictly require that mobile clients submit their queries to the
server for desired data. Otherwise, the server will not broadcast related data
on air. This is because the server filters and schedules data solely based on
submitted queries. However, frequent use of uplink channel leads to high com-
munication cost via uplink channel, which can shorten battery life of mobile
clients dramatically.

The most related work is proposed in [21] where the broadcast schedules are
generated based on clustering results of XML data on the server. However, when
finding the optimal clustering result, the clustering process requires manually
specifying the number of clusters and has to compare different clustering results
based on clients’ query distribution, which differs from our work in this paper.

6 Conclusion

In this paper, we have studied the data placement problem of periodic XML
data broadcast in mobile wireless environments. Taking advantage of the struc-
tured characteristics of XML data, we are able to generate effective broadcast
programs based only on XML data on the server without any knowledge of the
clients’ access patterns. This not only makes our work distinguished from previ-
ous studies, but also enables it to have broader applicability. Our experiments
demonstrated that the proposed algorithm could improve access efficiency and
achieve better scalability.

In the future, we plan to further improve system’s performance by investi-
gating the insights of structural sharing among XML documents. For example,
we may consider details on how to measure structural sharing distribution in
an XML document set, how the distribution affects the expected access time
of queries and how to choose a similarity measure based on structural sharing
distribution in a set of XML documents.

References

1. Acharya, S., Alonso, R., Franklin, M.J., Zdonik, S.B.: Broadcast Disks: Data Man-
agement for Asymmetric Communications Environments. In: SIGMOD, pp. 199–
210 (1995)

2. Acharya, S., Franklin, M.J., Zdonik, S.B.: Balancing Push and Pull for Data Broad-
cast. In: SIGMOD Conference, pp. 183–194 (1997)

3. Chang, Y.I., Hsieh, W.H.: An Efficient Scheduling Method for Query-Set-Based
Broadcasting in Mobile Environments. In: ICDCS Workshops, pp. 478–483 (2004)

4. Chen, J., Lee, V.C.S., Liu, K.: On the Performance of Real-time Multi-item Re-
quest Scheduling in Data Broadcast Environments. Journal of Systems and Soft-
ware 83(8), 1337–1345 (2010)

5. Chung, Y.D., Kim, M.H.: QEM: A Scheduling Method for Wireless Broadcast
Data. In: DASFAA, pp. 135–142 (1999)

Effectively Delivering XML Information 179

6. Chung, Y.D., Kim, M.H.: Effective Data Placement for Wireless Broadcast. Dis-
tributed and Parallel Databases 9(2), 133–150 (2001)

7. Chung, Y.D., Lee, J.Y.: An Indexing Method for Wireless Broadcast XML Data.
Inf. Sci. 177(9), 1931–1953 (2007)

8. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path Sharing and
Predicate Evaluation for High-Performance XML Filtering. ACM Trans. Database
Syst. 28(4), 467–516 (2003)

9. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecol-
ogy 26(3), 297–302 (1945)

10. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting Hierarchical Domain Struc-
ture to Compute Similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)

11. Helmer, S.: Measuring the Structural Similarity of Semistructured Documents Us-
ing Entropy. In: VLDB, pp. 1022–1032 (2007)

12. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and
Access. IEEE Trans. Knowl. Data Eng. 9(3), 353–372 (1997)

13. IPTC: International Press Telecommunications Council, News Industry Text For-
mat (NITF), http://www.nitf.org

14. Lee, G., Yeh, M.S., Lo, S.C., Chen, A.L.P.: A Strategy for Efficient Access of
Multiple Data Items in Mobile Environments. In: MDM, pp. 71–78 (2002)

15. Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An Efficient and Scalable
Algorithm for Clustering XML Documents by Structure. IEEE Trans. Knowl. Data
Eng. 16(1), 82–96 (2004)

16. Lin, D.: An Information-Theoretic Definition of Similarity. In: ICML, pp. 296–304
(1998)

17. Miliaraki, I., Koubarakis, M.: FoXtrot: Distributed structural and value XML fil-
tering. TWEB 6(3), 12 (2012)

18. Park, C.S., Park, J.P., Chung, Y.D.: PrefixSummary: A Directory Structure for
Selective Probing on Wireless Stream of Heterogeneous XML Data. IEICE Trans-
actions 95-D(5), 1427–1435 (2012)

19. Park, J.P., Park, C.S., Chung, Y.D.: Energy and Latency Efficient Access of Wire-
less XML Stream. J. Database Manag. 21(1), 58–79 (2010)

20. Park, S.-H., Choi, J.-H., Lee, S.: An Effective, Efficient XML Data Broadcasting
Method in a Mobile Wireless Network. In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 358–367. Springer, Heidelberg (2006)

21. Qin, Y., Wang, H., Sun, L.: Cluster-Based Scheduling Algorithm for Periodic XML
Data Broadcast in Wireless Environments. In: AINA Workshops, pp. 855–860
(2011)

22. Qin, Y., Wang, H., Xiao, J.: Effective Scheduling Algorithm for On-Demand XML
Data Broadcasts in Wireless Environments. In: ADC, pp. 95–102 (2011)

23. Rafiei, D., Moise, D.L., Sun, D.: Finding Syntactic Similarities Between XML Doc-
uments. In: DEXA Workshops, pp. 512–516 (2006)

24. Sun, W., Yu, P., Qin, Y., Zhang, Z., Zheng, B.: Two-Tier Air Indexing for On-
Demand XML Data Broadcast. In: ICDCS, pp. 199–206 (2009)

25. Sun, W., Zhang, Z., Yu, P., Qin, Y.: Efficient Data Scheduling for Multi-item
Queries in On-Demand Broadcast. In: EUC (1), pp. 499–505 (2008)

26. Vagena, Z., Moro, M.M., Tsotras, V.J.: RoXSum: Leveraging Data Aggregation
and Batch Processing for XML Routing. In: ICDE, pp. 1466–1470 (2007)

27. Xu, J., Lee, D.L., Hu, Q., Lee, W.C.: Handbook of Wireless Networks and Mobile
Computing, pp. 243–265. John Wiley & Sons, Inc. (2002)

http://www.nitf.org

	Effectively Delivering XML Information in Periodic Broadcast Environments
	1 Introduction
	2 Application Scenario, System Model and XML Similarity
	2.1 Application Scenario
	2.2 Periodic XML Data Broadcast System Model
	2.3 XML Similarity

	3 Data Placement Algorithm
	3.1 Structural Sharing in XML Data
	3.2 The Data Placement Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance of GDPA

	5 Related Work
	6 Conclusion
	References

