
Hendrik Decker
Lenka Lhotská
Sebastian Link
Josef Basl
A Min Tjoa (Eds.)

 123

LN
CS

 8
05

5

24th International Conference, DEXA 2013
Prague, Czech Republic, August 2013
Proceedings, Part I

Database and Expert
Systems Applications

Lecture Notes in Computer Science 8055
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hendrik Decker Lenka Lhotská
Sebastian Link Josef Basl A Min Tjoa (Eds.)

Database and Expert
Systems Applications
24th International Conference, DEXA 2013
Prague, Czech Republic, August 26-29, 2013
Proceedings, Part I

13

Volume Editors

Hendrik Decker
Instituto Tecnológico de Informática, Valencia, Spain
E-mail: hendrik@iti.es

Lenka Lhotská
Czech Technical University in Prague, Czech Republic
E-mail: lhotska@fel.cvut.cz

Sebastian Link
The University of Auckland, New Zealand
E-mail: s.link@auckland.ac.nz

Josef Basl
University of Economics, Prague, Czech Republic
E-mail: basl@vse.cz

A Min Tjoa
Vienna University of Technology, Austria
E-mail: amin@ifs.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40284-5 e-ISBN 978-3-642-40285-2
DOI 10.1007/978-3-642-40285-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944804

CR Subject Classification (1998): H.2, H.3, H.4, I.2, H.5, J.1, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The book you are reading comprises the research articles as well as the abstracts
of invited talks presented at DEXA 2013, the 24th International Conference on
Database and Expert Systems Applications. The conference was held in Prague,
the lovely Czech capital, where DEXA already took place in 1993 and 2003.
The presented papers show that DEXA has successfully stayed true to a core
of themes in the areas of databases, intelligent systems, and related applica-
tions, but also that DEXA promotes changing paradigms, new developments,
and emerging trends. For the 2013 edition, we had called for novel results or
qualified surveys in a wide range of topics, including:

* Acquisition, Modeling, Management and Processing of Knowledge
* Authenticity, Consistency, Integrity, Privacy, Quality, Security of Data
* Availability
* Constraint Modeling and Processing
* Database Federation and Integration, Interoperability, Multi-Databases
* Data and Information Networks
* Data and Information Semantics
* Data and Information Streams
* Data Provenance
* Data Structures and Data Management Algorithms
* Database and Information System Architecture and Performance
* Data Mining and Data Warehousing
* Datalog 2.0
* Decision Support Systems and Their Applications
* Dependability, Reliability and Fault Tolerance
* Digital Libraries
* Distributed, Parallel, P2P, Grid, and Cloud Databases
* Incomplete and Uncertain Data
* Inconsistency Tolerance
* Information Retrieval
* Information and Database Systems and Their Applications
* Metadata Management
* Mobile, Pervasive and Ubiquitous Data
* Modeling, Automation and Optimization of Processes
* Multimedia Databases
* NoSQL and NewSQL Databases
* Object, Object-Relational, and Deductive Databases
* Provenance of Data and Information
* Replicated Databases
* Semantic Web and Ontologies
* Sensor Data Management

VI Preface

* Statistical and Scientific Databases
* Temporal, Spatial, and High-Dimensional Databases
* User Interfaces to Databases and Information Systems
* WWW and Databases, Web Services
* Workflow Management and Databases
* XML and Semi-structured Data

In response to this call, we received 174 submissions from all over the world, of
which 43 are included in these proceedings as accepted full papers, and 33 as
short papers. We are grateful to the many authors who submitted their work
to DEXA. Decisions on acceptance or rejection were based on at least three
reviews for each submission. Most of the reviews were detailed and provided
constructive feedback to the authors. We owe our deepest thanks to all members
of the Program Committee and to the external reviewers who invested their
expertise, interest, and time in their reviews.

The program of DEXA 2013 was enriched by three exceptional invited keynote
speeches, presented by distinguished colleagues:

• Trevor Bench-Capon: “Structuring E-Participation in Policy Making Through
Argumentation”

• Tova Milo: “Making Collective Wisdom Wiser”
• Klaus-Dieter Schewe: “Horizontal and Vertical (Business Process) Model

Integration”

In addition to the main conference track, DEXA 2013 also featured seven work-
shops that explored a wide spectrum of specialized topics of growing general
importance. The organization of the workshops was chaired by Franck Morvan,
A. Min Tjoa, and Roland R. Wagner, to whom we say “many thanks indeed”
for their smooth and effective work.

Special thanks go to the host of DEXA 2013, the Prague University of Eco-
nomics, where, under the admirable guidance of the DEXA 2013 General Chairs
Josef Basl and A. Min Tjoa, an excellent working atmosphere was provided.

Last, but not at all least, we express our heartfelt gratitude to Gabriela Wag-
ner. Her professional attention to detail, skillful management of the DEXA event
as well as her preparation of the proceedings volumes are greatly appreciated.

August 2013 Hendrik Decker
Lenka Lhotská
Sebastian Link

Organization

Honorary Chair

Makoto Takizawa Seikei University, Japan

General Chairs

Josef Basl University of Economics, Prague,
Czech Republic

A. Min Tjoa Technical University of Vienna, Austria

Conference Program Chairs

Hendrik Decker Instituto Tecnológico de Informática, Valencia,
Spain

Lenka Lhotská Czech Technical University, Czech Republic
Sebastian Link The University of Auckland, New Zealand

Publication Chair

Vladimir Marik Czech Technical University, Czech Republic

Workshop Chairs

Franck Morvan IRIT, Paul Sabatier University, Toulouse,
France

A. Min Tjoa Technical University of Vienna, Austria
Roland R. Wagner FAW, University of Linz, Austria

Program Committee

Slim Abdennadher German University, Cairo, Egypt
Witold Abramowicz The Poznan University of Economics, Poland
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Riccardo Albertoni Italian National Council of Research, Italy
Rachid Anane Coventry University, UK
Annalisa Appice Università degli Studi di Bari, Italy
Mustafa Atay Winston-Salem State University, USA
Spiridon Bakiras City University of New York, USA

VIII Organization

Zhifeng Bao National University of Singapore, Singapore
Ladjel Bellatreche ENSMA, France
Nadia Bennani INSA Lyon, France
Morad Benyoucef University of Ottawa, Canada
Catherine Berrut Grenoble University, France
Debmalya Biswas Nokia Research, Switzerland
Athman Bouguettaya RMIT, Australia
Danielle Boulanger MODEME, University of Lyon, France
Omar Boussaid University of Lyon, France
Stephane Bressan National University of Singapore, Singapore
Patrick Brezillon University Paris VI (UPMC), France
Yingyi Bu University of California, Irvine, USA
Luis M. Camarinha-Matos Universidade Nova de Lisboa + Uninova,

Portugal
Yiwei Cao RWTH Aachen University, Germany
Silvana Castano Università degli Studi di Milano, Italy
Barbara Catania Università di Genova, Italy
Michelangelo Ceci University of Bari, Italy
Wojciech Cellary Poznan University of Economics, Poland
Cindy Chen University of Massachusetts Lowell, USA
Phoebe Chen La Trobe University, Australia
Shu-Ching Chen Florida International University, USA
Hao Cheng Yahoo
Reynold Cheng The University of Hong Kong, Hong Kong
Max Chevalier IRIT - SIG, Université de Toulouse, France
Byron Choi Hong Kong Baptist University, Hong Kong
Henning Christiansen Roskilde University, Denmark
Soon Ae Chun City University of New York, USA
Eliseo Clementini University of L’Aquila, Italy
Gao Cong Microsoft Research Asia, UK
Oscar Corcho Universidad Politécnica de Madrid, Spain
Bin Cui Peking University, China
Deborah Dahl Conversational Technologies
Jérôme Darmont Université de Lyon (ERIC Lyon 2), France
Andre de Carvalho University of Sao Paulo, Brazil
Guy De Tré Ghent University, Belgium
Olga De Troyer Vrije Universiteit Brussel, Belgium
Roberto De Virgilio Università Roma Tre, Italy
John Debenham University of Technology, Sydney, Australia
Hendrik Decker Instituto Tecnológico de Informática, Valencia,

Spain
Zhi-Hong Deng Peking University, China
Vincenzo Deufemia Università degli Studi di Salerno, Italy
Claudia Diamantini Università Politecnica delle Marche, Italy
Juliette Dibie-Barthélemy AgroParisTech, France

Organization IX

Ying Ding Indiana University, USA
Zhiming Ding Institute of Software, Chinese Academy of

Sciences, China
Gillian Dobbie University of Auckland, New Zealand
Peter Dolog Aalborg University, Denmark
Dejing Dou University of Oregon, USA
Cedric du Mouza CNAM, France
Johann Eder University of Klagenfurt, Austria
Suzanne Embury The University of Manchester, UK
Bettina Fazzinga University of Calabria, Italy
Leonidas Fegaras The University of Texas at Arlington, USA
Victor Felea “Al.I. Cuza” University of Iasi, Romania
Stefano Ferilli University of Bari, Italy
Flavio Ferrarotti Victoria University of Wellington, New Zealand
Filomena Ferrucci Università di Salerno, Italy
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Bernhard Freudenthaler Software Competence Center Hagenberg

GmbH, Austria
Hiroaki Fukuda Shibaura Institute of Technology, Japan
Steven Furnell Plymouth University, UK
Aryya Gangopadhyay University of Maryland Baltimore County,

USA
Yunjun Gao Zhejiang University, China
Manolis Gergatsoulis Ionian University, Greece
Bernard Grabot LGP-ENIT, France
Fabio Grandi University of Bologna, Italy
Carmine Gravino University of Salerno, Italy
Sven Groppe Lübeck University, Germany
William Grosky University of Michigan, USA
Jerzy Grzymala-Busse University of Kansas, USA
Francesco Guerra Università degli Studi Di Modena e Reggio

Emilia, Italy
Giovanna Guerrini University of Genova, Italy
Antonella Guzzo University of Calabria, Italy
Abdelkader Hameurlain Paul Sabatier University, France
Ibrahim Hamidah Universiti Putra Malaysia, Malaysia
Wook-Shin Han Kyungpook National University, Republic

of Korea
Takahiro Hara Osaka University, Japan
André Hernich Humboldt-Universität zu Berlin, Germany
Francisco Herrera University of Granada, Spain
Steven Hoi Nanyang Technological University, Singapore
Estevam Rafael Hruschka Jr. Federal University of Sao Carlos, Brazil
Wynne Hsu National University of Singapore, Singapore

X Organization

Yu Hua Huazhong University of Science and
Technology, China

Jimmy Huang York University, Canada
Xiaoyu Huang South China University of Technology, China
Michal Huptych Czech Technical University in Prague,

Czech Republic
San-Yih Hwang National Sun Yat-Sen University, China

(Taiwan Province)
Theo Härder TU Kaiserslautern, Germany
Ionut Emil Iacob Georgia Southern University, USA
Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine University of Nancy, France
Yasunori Ishihara Osaka University, Japan
Adam Jatowt Kyoto University, Japan
Peiquan Jin University of Science and Technology of China,

China
Anne Kao Boeing, USA
Dimitris Karagiannis University of Vienna, Austria
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Sang-Wook Kim Hanyang University, Republic of Korea
Benny Kimelfeld IBM Almaden, USA
Hiroyuki Kitagawa University of Tsukuba, Japan
Carsten Kleiner University of Applied Sciences and Arts

Hannover, Germany
Solmaz Kolahi Oracle, USA
Ibrahim Korpeoglu Bilkent University, Turkey
Harald Kosch University of Passau, Germany
Michal Krátký Technical University of Ostrava,

Czech Republic
Petr Kremen Czech Technical University in Prague,

Czech Republic
Arun Kumar IBM Research - India, India
Ashish Kundu IBM T J Watson Research Center, Yorktown

Heights, USA
Josef Küng University of Linz, Austria
Kwok-Wa Lam University of Hong Kong, Hong Kong
Nadira Lammari CNAM, France
Gianfranco Lamperti University of Brescia, Italy
Anne Laurent LIRMM, University of Montpellier 2, France
Mong Li Lee National University of Singapore, Singapore
Alain Léger FT R&D Orange Labs Rennes, France
Daniel Lemire LICEF, Université du Québec, Canada
Lenka Lhotská Czech Technical University, Czech Republic
Wenxin Liang Dalian University of Technology, China
Stephen W. Liddle Brigham Young University, USA
Lipyeow Lim Unversity of Hawaii at Manoa, USA

Organization XI

Tok Wang Ling National University of Singapore, Singapore
Sebastian Link The University of Auckland, New Zealand
Volker Linnemann University of Lübeck, Germany
Chengfei Liu Swinburne University of Technology, Australia
Chuan-Ming Liu National Taipei University of Technology,

China (Taiwan Province)
Fuyu Liu Microsoft Corporation, USA
Hong-Cheu Liu University of South Australia, Australia
Hua Liu Xerox Research Labs at Webster, USA
Jorge Lloret Gazo University of Zaragoza, Spain
Peri Loucopoulos Harokopio University of Athens, Greece
Jiaheng Lu Renmin University of China, China
Jianguo Lu University of Windsor, Canada
Alessandra Lumini University of Bologna, Italy
Hui Ma Victoria University of Wellington, New Zealand
Qiang Ma Kyoto University, Japan
Stéphane Maag TELECOM SudParis, France
Elio Masciari ICAR-CNR, Università della Calabria, Italy
Norman May SAP AG, Germany
Jose-Norberto Mazón University of Alicante, Spain
Dennis McLeod University of Southern California, USA
Brahim Medjahed University of Michigan - Dearborn, USA
Alok Mishra Atilim University, Ankara, Turkey
Harekrishna Mishra Institute of Rural Management Anand, India
Sanjay Misra University of Technology, Minna, Nigeria
Jose Mocito INESC-ID/FCUL, Portugal
Lars Moench University of Hagen, Germany
Riad Mokadem IRIT, Paul Sabatier University, France
Anirban Mondal University of Tokyo, Japan
Yang-Sae Moon Kangwon National University, Republic

of Korea
Reagan Moore University of North Carolina at Chapel Hill,

USA
Franck Morvan IRIT, Paul Sabatier University, France
Mirco Musolesi University of Birmingham, UK
Tadashi Nakano University of California, Irvine, USA
Ullas Nambiar IBM Research
Ismael Navas-Delgado University of Málaga, Spain
Martin Necasky Charles University in Prague, Czech Republic
Wilfred Ng University of Science and Technology,

Hong Kong
Javier Nieves Acedo University of Deusto, Spain

XII Organization

Levent V. Orman Cornell University, Ithaca, New York, USA
Mourad Oussalah University of Nantes, France
Gultekin Ozsoyoglu Case Western Reserve University, USA
George Pallis University of Cyprus, Cyprus
Christos Papatheodorou Ionian University and “Athena” Research

Centre, Greece
Marcin Paprzycki Polish Academy of Sciences, Warsaw

Management Academy, Poland

Óscar Pastor López Universidad Politécnica de Valencia, Spain
Dhaval Patel National University of Singapore, Singapore,

Singapore
Jovan Pehcevski European University, Macedonia, Former

Yugoslav Republic
Jorge Perez Universidad de Chile, Chile
Reinhard Pichler Technische Universität Wien, Austria
Olivier Pivert Ecole Nationale Supérieure des Sciences

Appliquées et de Technologie, France
Clara Pizzuti Institute for High Performance Computing and

Networking (ICAR)-National Research
Council (CNR), Italy

Jaroslav Pokorny Charles University in Prague, Czech Republic
Pascal Poncelet LIRMM, France
Elaheh Pourabbas National Research Council, Italy
Xiaojun Qi Utah State University, USA
Fausto Rabitti ISTI, CNR Pisa, Italy
Claudia Raibulet Università degli Studi di Milano-Bicocca, Italy
Isidro Ramos Technical University of Valencia, Spain
Praveen Rao University of Missouri-Kansas City, USA
Rodolfo F. Resende Federal University of Minas Gerais, Brazil
Claudia Roncancio Grenoble University/LIG, France
Edna Ruckhaus Universidad Simon Bolivar, Venezuela
Massimo Ruffolo ICAR-CNR, Italy
Igor Ruiz-Agundez University of Deusto, Spain
Giovanni Maria Sacco University of Turin, Italy
Shazia Sadiq The University of Queensland, Australia
Simonas Saltenis Aalborg University, Denmark
Carlo Sansone Università di Napoli “Federico II”, Italy
Igor Santos Grueiro Deusto University, Spain
Ismael Sanz Universitat Jaume I, Spain
N.L. Sarda I.I.T. Bombay, India
Marinette Savonnet University of Burgundy, France
Raimondo Schettini Università degli Studi di Milano-Bicocca, Italy
Peter Scheuermann Northwestern University, USA

Organization XIII

Klaus-Dieter Schewe Software Competence Centre Hagenberg,
Austria

Erich Schweighofer University of Vienna, Austria
Florence Sedes IRIT, Paul Sabatier University, Toulouse,

France
Nazha Selmaoui University of New Caledonia, New Caledonia
Patrick Siarry Université Paris 12 (LiSSi), France
Gheorghe Cosmin Silaghi Babes-Bolyai University of Cluj-Napoca,

Romania
Leonid Sokolinsky South Ural State University, Russian

Federation
Bala Srinivasan Monash University, Australia
Umberto Straccia Italian National Research Council, Italy
Darijus Strasunskas DS Applied Science, Norway
Lena Strömbäck Swedish Meteorological and Hydrological

Institute, Sweden
Aixin Sun Nanyang Technological University, Singapore
Raj Sunderraman Georgia State University, USA
David Taniar Monash University, Australia
Cui Tao Mayo Clinic, USA
Maguelonne Teisseire Irstea - TETIS, France
Sergio Tessaris Free University of Bozen-Bolzano, Italy
Olivier Teste IRIT, University of Toulouse, France
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Taro Tezuka University of Tsukuba, Japan
Bernhard Thalheim Christian Albrechts Universität Kiel, Germany
Jean-Marc Thevenin University of Toulouse 1 Capitole, France
Helmut Thoma Thoma SW-Engineering, Basel, Switzerland
A Min Tjoa Vienna University of Technology, Austria
Vicenc Torra IIIA-CSIC, Spain
Traian Marius Truta Northern Kentucky University, USA
Vassileios Tsetsos National and Kapodistrian University of

Athens, Greece
Theodoros Tzouramanis University of the Aegean, Greece
Maria Vargas-Vera Universidad Adolfo Ibanez, Chile
Krishnamurthy Vidyasankar Memorial University of Newfoundland, Canada
Marco Vieira University of Coimbra, Portugal
Jianyong Wang Tsinghua University, China
Junhu Wang Griffith University, Brisbane, Australia
Qing Wang The Australian National University, Australia
Wei Wang University of New South Wales, Sydney,

Australia
Wendy Hui Wang Stevens Institute of Technology, USA
Gerald Weber The University of Auckland, New Zealand
Jef Wijsen Université de Mons, Belgium

XIV Organization

Andreas Wombacher University Twente, The Netherlands
Lai Xu Bournemouth University, UK
Ming Hour Yang Chung Yuan Christian University, China

(Taiwan Province)
Xiaochun Yang Northeastern University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Zhiwen Yu Northwestern Polytechnical University, China
Xiao-Jun Zeng University of Manchester, UK
Zhigang Zeng Huazhong University of Science and

Technology, China
Xiuzhen (Jenny) Zhang RMIT University, Australia
Yanchang Zhao RDataMining.com, Australia
Yu Zheng Microsoft Research Asia
Xiaofang Zhou University of Queensland, Australia
Qiang Zhu The University of Michigan, USA
Yan Zhu Southwest Jiaotong University, China

External Reviewers

Giuseppe Amato ISTI-CNR, Italy
Abdelkrim Amirat University of Nantes, France
Edimilson Batista dos Santos Federal University of Sao Joao Del Rei, Brazil
Souad Boukhadouma University of Nantes, France
Sahin Buyrukbilen City University of New York, USA
Changqing Chen Yahoo, USA
Jimmy Ka Ho Chiu La Trobe University, Australia
Camelia Constantin UPMC (university Pierre and Marie Curie),

Paris, France
Matthew Damigos NTUA, Greece
Andrea Esuli ISTI-CNR, Italy
Fabrizio Falchi ISTI-CNR, Italy
Ming Fang Georgia State University, USA
Nikolaos Fousteris Ionian University, Greece
Maria Jesús Garćıa Godoy Universidad de Málaga, Spain
Di Jiang Hong Kong University of Science and

Technology, Hong Kong
Christos Kalyvas University of the Aegean, Greece
Anas Katib University of Missouri-Kansas City, USA
Julius Köpke University of Klagenfurt, Austria
Christian Koncilia University of Klagenfurt, Austria
Janani Krishnamani Georgia State University, USA
Meriem Laifa University of Bordj Bouarreridj, Algeria
Szymon �Lazaruk Poznan University of Economics, Poland
Chien-Hsian Lee National Sun Yat-sen University, Taiwan
Fabio Leuzzi University of Bari, Italy
Dingcheng Li Mayo Clinic, USA

Organization XV

Mr. Sheng Li Griffith University, Australia
Lili Lin Hohai University, China
Esteban López-Camacho Universidad de Málaga, Spain
Dr. Luo Min NTT, Japan
Bin Mu City University of New York, USA
Emir Muñoz DERI NUI Galway, Ireland
Konstantinos Nikolopoulos City University of New York, USA
Christos Nomikos University of Ioannina, Greece
Ermelinda Oro ICAR-CNR, Italy
Nhat Hai Phan LIRMM, France
Maria del Pilar Villamil University Los Andes, Colombia
Gianvito Pio University of Bari, Italy
Jianbin Qin University of New South Wales, Australia
Laurence Rodrigues do

Amaral Federal University of Uberlandia, Brazil
Wei Shen Tsinghua University, China
Sebastian Skritek Vienna University of Technology, Austria
Vasil Slavov University of Missouri-Kansas City, USA
Alessandro Solimando Università di Genova, Italy
Bismita Srichandan Georgia State University, USA
Demetris Trihinas University of Cyprus, Cyprus
Raquel Trillo University of Zaragoza, Spain
Dr. Yousuke Watanabe Tokyo Institute of Technology, Japan
Alok Watve Google, USA
Beyza Yaman Università di Genova, Italy
Zhen Ye University of Queensland, Australia
Shaoyi Yin Paul Sabatier University, France
Jianhua Yin Tsinghua University, China
Qi Yu Rochester Institute of Technology, USA
Wei Zhang Tsinghua University, China
Chao Zhu The University of Michigan, Dearborn, USA

Table of Contents – Part I

Keynote Talks

Horizontal and Vertical Business Process Model Integration
(Abstract) . 1

Klaus-Dieter Schewe

Structuring E-Participation in Policy Making
through Argumentation . 4

Trevor Bench-Capon

Making Collective Wisdom Wiser . 7
Tova Milo

Search Queries

Preferences Chain Guided Search and Ranking Refinement 9
Yann Loyer, Isma Sadoun, and Karine Zeitouni

Efficient XML Keyword Search: From Graph Model to Tree Model 25
Yong Zeng, Zhifeng Bao, Tok Wang Ling, and Guoliang Li

Permutation-Based Pruning for Approximate K-NN Search 40
Hisham Mohamed and Stéphane Marchand-Maillet

Indexing

Dynamic Multi-probe LSH: An I/O Efficient Index Structure
for Approximate Nearest Neighbor Search . 48

Shaoyi Yin, Mehdi Badr, and Dan Vodislav

Revisiting the Term Frequency in Concept-Based IR Models 63
Karam Abdulahhad, Jean-Pierre Chevallet, and Catherine Berrut

BioDI: A New Approach to Improve Biomedical Documents Indexing . . . 78
Wiem Chebil, Lina Fatima Soualmia, and Stéfan Jacques Darmoni

Discovery of Semantics

Discovering Semantics from Data-Centric XML . 88
Luochen Li, Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, and
Stéphane Bressan

XVIII Table of Contents – Part I

Finding Image Semantics from a Hierarchical Image Database Based
on Adaptively Combined Visual Features . 103

Pritee Khanna, Shreelekha Pandey, and Haruo Yokota

Formalization and Discovery of Approximate Conditional Functional
Dependencies . 118

Hiroki Nakayama, Ayako Hoshino, Chihiro Ito, and Kyota Kanno

Parallel Processing

Parallel Partitioning and Mining Gene Expression Data with Butterfly
Network . 129

Tao Jiang, Zhanhuai Li, Qun Chen, Zhong Wang, Wei Pan, and
Zhuo Wang

Parallel and Distributed Mining of Probabilistic Frequent Itemsets
Using Multiple GPUs . 145

Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki Kitagawa

Taming Elephants, or How to Embed Parallelism into PostgreSQL 153
Constantin S. Pan and Mikhail L. Zymbler

XML and RDF

Effectively Delivering XML Information in Periodic Broadcast
Environments . 165

Yongrui Qin, Quan Z. Sheng, Muntazir Mehdi, Hua Wang, and
Dong Xie

GUN: An Efficient Execution Strategy for Querying the Web of Data . . . 180
Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli,
Pascal Molli, and Maria-Esther Vidal

Complex Matching of RDF Datatype Properties . 195
Bernardo Pereira Nunes, Alexander Mera,
Marco Antônio Casanova, Besnik Fetahu,
Luiz André P. Paes Leme, and Stefan Dietze

Enterprise Models

Coordination Issues in Artifact-Centric Business Process Models 209
Giorgio Bruno

Exploring Data Locality for Clustered Enterprise Applications 224
Stoyan Garbatov and João Cachopo

Table of Contents – Part I XIX

A Framework for Data-Driven Workflow Management: Modeling,
Verification and Execution . 239

Nahla Haddar, Mohamed Tmar, and Faiez Gargouri

Query Evaluation and Optimization

Generic Top-k Query Processing with Breadth-First Strategies 254
Mehdi Badr and Dan Vodislav

Evaluating Spatial Skyline Queries on Changing Data 270
Fabiola Di Bartolo and Marlene Goncalves

SONIC: Scalable Multi-query OptimizatioN through Integrated
Circuits . 278

Ahcène Boukorca, Ladjel Bellatreche,
Sid-Ahmed Benali Senouci, and Zoé Faget

Semantic Web

XML Schema Transformations: The ELaX Approach 293
Thomas Nösinger, Meike Klettke, and Andreas Heuer

StdTrip+K: Design Rationale in the RDB-to-RDF Process 303
Rita Berardi, Karin Breitman, Marco Antônio Casanova,
Giseli Rabello Lopes, and Adriana Pereira de Medeiros

Organizing Scientific Competitions on the Semantic Web 311
Sayoko Shimoyama, Robert Sidney Cox III, David Gifford, and
Tetsuro Toyoda

An Inductive Logic Programming-Based Approach for Ontology
Population from the Web . 319

Rinaldo Lima, Bernard Espinasse, Hilário Oliveira, Rafael Ferreira,
Luciano Cabral, Dimas Filho, Fred Freitas, and Renê Gadelha

Sampling

Incremental Algorithms for Sampling Dynamic Graphs 327
Xuesong Lu, Tuan Quang Phan, and Stéphane Bressan

CoDS: A Representative Sampling Method for Relational Databases 342
Teodora Sandra Buda, Thomas Cerqueus, John Murphy, and
Morten Kristiansen

Publishing Trajectory with Differential Privacy: A Priori
vs. A Posteriori Sampling Mechanisms . 357

Dongxu Shao, Kaifeng Jiang, Thomas Kister,
Stéphane Bressan, and Kian-Lee Tan

XX Table of Contents – Part I

Industrial Applications

Towards Automated Compliance Checking in the Construction
Industry . 366

Thomas H. Beach, Tala Kasim, Haijiang Li, Nicholas Nisbet, and
Yacine Rezgui

Quantifying Reviewer Credibility in Online Tourism 381
Yuanyuan Wang, Stephen Chi Fai Chan, Grace Ngai, and
Hong-Va Leong

Classifying Twitter Users Based on User Profile and Followers
Distribution . 396

Liang Yan, Qiang Ma, and Masatoshi Yoshikawa

Communities

Fast Community Detection . 404
Yi Song and Stéphane Bressan

Force-Directed Layout Community Detection . 419
Yi Song and Stéphane Bressan

On the Composition of Digital Licenses in Collaborative
Environments . 428

Marco Mesiti, Paolo Perlasca, and Stefano Valtolina

The Hints from the Crowd Project . 443
Paolo Fosci, Giuseppe Psaila, and Marcello Di Stefano

Database Technology: A World of Interaction . 454
Amira Kerkad, Ladjel Bellatreche, and Dominique Geniet

Author Index . 463

Table of Contents – Part II

AI and Databases

Establishing Relevance of Characteristic Features for Authorship
Attribution with ANN . 1

Urszula Stańczyk

Genetic Programming with Greedy Search for Web Service
Composition . 9

Anqi Wang, Hui Ma, and Mengjie Zhang

Multivariate Prediction Based on the Gamma Classifier: A Data Mining
Application to Petroleum Engineering . 18

Itzamá López-Yáñez, Leonid Sheremetov, and Oscar Camacho-Nieto

On Preference Order of DRSA Conditional Attributes for
Computational Stylistics . 26

Urszula Stańczyk

Entity Matching Technique for Bibliographic Database 34
Sumit Mishra, Samrat Mondal, and Sriparna Saha

Matching and Searching

On Efficient Map-Matching According to Intersections You Pass By 42
Yaguang Li, Chengfei Liu, Kuien Liu, Jiajie Xu,
Fengcheng He, and Zhiming Ding

A Linguistic Graph-Based Approach for Web News Sentence
Searching . 57

Kim Schouten and Flavius Frasincar

Composite Patterns for Web API Search in Agile Web Application
Development . 65

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Evaluating the Interest of Revamping Past Search Results 73
Claudio Gutiérrez-Soto and Gilles Hubert

Information Extraction

Main Content Extraction from Web Documents Using Text Block
Context . 81

Myungwon Kim, Youngjin Kim, Wonmoon Song, and Ara Khil

XXII Table of Contents – Part II

A Similarity-Based Approach for Financial Time Series Analysis and
Forecasting . 94

Marcos Vinicius Naves Bedo, Davi Pereira dos Santos,
Daniel S. Kaster, and Caetano Traina Jr.

Inferring Knowledge from Concise Representations of Both
Frequent and Rare Jaccard Itemsets . 109

Souad Bouasker and Sadok Ben Yahia

Queries, Streams, and Uncertainty

Comparison Queries for Uncertain Graphs . 124
Denis Dimitrov, Lisa Singh, and Janet Mann

Efficient Time Aggregation and Querying of Flashed Streams
in Constrained Motes . 141

Pedro Furtado

Approximate OLAP Query Processing over Uncertain and Imprecise
Multidimensional Data Streams . 156

Alfredo Cuzzocrea

Storage and Compression

Data Value Storage for Compressed Semi-structured Data 174
Brian G. Tripney, Isla Ross, Francis A. Wilson, and John N. Wilson

Implementing Efficient Updates in Compressed Big Text Databases 189
Stefan Böttcher, Alexander Bültmann, Rita Hartel, and
Jonathan Schlüßler

MXML Path-Based Storage and Ordered-Based Context
Manipulation . 203

Nikolaos Fousteris, Manolis Gergatsoulis, and Yannis Stavrakas

Query Processing

Processing k Nearest Neighbor Queries for Location-Dependent Data
in MANETs . 213

Yuka Komai, Yuya Sasaki, Takahiro Hara, and Shojiro Nishio

Continuous Predictive Line Queries under Road-Network Constraints . . . 228
Lasanthi Heendaliya, Dan Lin, and Ali Hurson

Sensitivity Analysis of Answer Ordering from Probabilistic
Databases . 243

Jianwen Chen, Yiping Li, and Ling Feng

Table of Contents – Part II XXIII

Security

User Location Anonymization Method for Wide Distribution
of Dummies . 259

Ryo Kato, Mayu Iwata, Takahiro Hara, Yuki Arase, Xing Xie, and
Shojiro Nishio

An XML-Based Policy Model for Access Control in Web
Applications . 274

Tania Basso, Nuno Antunes, Regina Moraes, and Marco Vieira

Behavioral Tendency Obfuscation Framework for Personalization
Services . 289

Ryo Furukawa, Takao Takenouchi, and Takuya Mori

Distributed Data Processing

A Framework for Data Processing at the Edges of Networks 304
Ichiro Satoh

STRING: Social-Transaction Routing over a Ring . 319
Idrissa Sarr, Hubert Naacke, and
Abderrahmane Ould Mohamed Moctar

FOPA: A Final Object Pruning Algorithm to Efficiently Produce
Skyline Points . 334

Ana Alvarado, Oriana Baldizan, Marlene Goncalves, and
Maria-Esther Vidal

Metadata Modeling and Maintenance

UMAP: A Universal Layer for Schema Mapping Languages 349
Florin Chertes and Ingo Feinerer

GCAPM: A Generic Context-Aware Model in Peer-to-Peer
Environment . 364

Saloua Zammali, Khedija Arour, and Amel Bouzeghoub

Metadata Anchoring for Source Code: Robust Location Descriptor
Definition, Building and Interpreting . 372

Karol Rástočný and Mária Bieliková

Pricing and Recommending

The Price Is Right: Models and Algorithms for Pricing Data 380
Ruiming Tang, Huayu Wu, Zhifeng Bao, Stéphane Bressan, and
Patrick Valduriez

XXIV Table of Contents – Part II

What You Pay for Is What You Get . 395
Ruiming Tang, Dongxu Shao, Stéphane Bressan, and
Patrick Valduriez

A File Recommendation Method Based on Task Workflow Patterns
Using File-Access Logs . 410

Qiang Song, Takayuki Kawabata, Fumiaki Itoh,
Yousuke Watanabe, and Haruo Yokota

Towards Addressing the Coverage Problem in Association Rule-Based
Recommender Systems . 418

R. Uday Kiran and Masaru Kitsuregawa

Opinion-Based Collaborative Filtering to Solve Popularity Bias
in Recommender Systems . 426

Xiangyu Zhao, Zhendong Niu, and Wei Chen

Security and Semantics

Exploring Trust to Rank Reputation in Microblogging 434
Leila Weitzel, José Palazzo Moreira de Oliveira, and Paulo Quaresma

Reverse Engineering of Database Security Policies . 442
Salvador Mart́ınez, Valerio Cosentino, Jordi Cabot, and
Frédéric Cuppens

Discovering Multi-stage Attacks Using Closed Multi-dimensional
Sequential Pattern Mining . 450

Hanen Brahmi and Sadok Ben Yahia

CiDHouse: Contextual SemantIc Data WareHouses 458
Selma Khouri, Lama El Saraj, Ladjel Bellatreche,
Bernard Espinasse, Nabila Berkani, Sophie Rodier, and
Thérèse Libourel

Analysis of Clinical Documents to Enable Semantic Interoperability 466
Barbara Franz, Andreas Schuler, and Emmanuel Helm

Author Index . 475

Horizontal and Vertical Business Process

Model Integration�

(Abstract)

Klaus-Dieter Schewe1,2

1 Software Competence Center Hagenberg, Austria
kd.schewe@scch.at

2 Johannes-Kepler-University Linz, Austria
kd.schewe@cdcc.faw.jku.at

Modelling information systems in general is a complex endeavour, as systems
comprise many different aspects such as the data, functionality, interaction, dis-
tribution, context, etc., which all require different models. In addition, models
are usually built on different levels of abstraction and the switch from one of
these levels to another one may cause mismatches. Horizontal model integration
refers to the creation of system models by successive enlargement, whereas ver-
tical model integration refers to the systematic, seamless refinement process of
high-level abstract (conceptual) models down to running systems. Our research
on horizontal and vertical model integration has concentated on business process
models. The results will be reported in the monograph [5].

With respect to horizontal model integration several submodels have to be
defined and integrated. The common model to start with addresses the control
flow model, i.e. a business process is decsribed in an abstract way by a set of ac-
tivities and gateways, the latter ones for splitting and synchronisation, plus start
and termination events. Depending on whether one, all or an arbitrary selection
of (outgoing) paths are enabled in splitting gateways, we adopt the common
distinction between XOR-, AND- and OR-gateways with an analogous distinc-
tion for the synchronisation gateways. However, this terminology is in a sense
misleading, as there need not be a well-nested structure, in which a splitting-
gateway corresponds to exactly one synchronisation gateway. This is one of the
reasons, why we formalise the semantics of each of the constructs by means of
Abstract State Machines (ASMs, [2]). As a state-based rigorous method, ASMs
support the unambiguous capture of the semantics of OR-synchronisation [1].
Furthermore, on grounds of ASMs necessary subtle distinctions and extensions
to the control flow model such as counters, priorities, freezing, etc. can be easily
integrated in a smooth way. All constructs found in a control flow model are
supposed to be exceuted in parallel for all process instances.

The control flow model is then extended by a message model and an event
model. For this refinement in ASMs – mainly conservative extensions – are

� The research reported in this paper was supported by the European Fund for
Regional Development as well as the State of Upper Austria for the project
Vertical Model Integration within the program “Regionale Wettbewerbsfähigkeit
Oberösterreich 2007-2013”.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 K.-D. Schewe

exploited. In particular, the ground specification of firing conditions that depend
on the state of the control flow, data, events and resources and actions that up-
date this state [3] requires that only conditions and actions are refined. While
messages are easily captured by means of specifications of sender and receiver,
it becomes more subtle to define details such as synchronised vs. asynchronised
messaging, delivery failure, rejection, message box overflows, etc. In H-BPM the
ASM-based specification of messaging from S-BPM [4] has been adopted. For
the event model it is necessary and sufficient to specify what kind of events are
to be observed, which can be captured on the grounds of monitored locations in
ASMs, and which event conditions are to be integrated into the model.

The next horizontal extensions concern the actor model, i.e. the specification
of responsibilities for the execution of activities (roles), as well as rues governing
rights and obligations. This leads to the integration of deontic constraints [6],
some of which can be exploited to simplify the control flow [7]. In this way subtle
distinctions regarding decision-making responsibilities in BPM can be captured.
Horizontal model integration through refinement is then extended towards an in-
teraction model and a data model. For this, an abstract dialogue model is adopted
[8] capturing interaction by means of operations on views that are defined on
top of a database schema. In this way the data model results from view inte-
gration, but global consistency has to be addressed, as a global database infers
dependencies between activities that are not visible on the control flow level.

Finally, an exception handling model has to be integrated to complete the
horizontal integration picture. This is still in a preliminary state in H-BPM.
Overall, the general idea is that an exception is a disruptive event that requires
partial rollback and depending on the state the continuation with a different
subprocess.

Vertical integration is achieved by further refining the involved ASMs in a
development process that is targeting the executable specification of a workflow
engine that is enriched with components for data and dialogue handling and ex-
ception processing. Throughout the process rigorous quality assurance methods
have to be applied.

References

1. Börger, E., Sörensen, O., Thalheim, B.: On defining the behavior of OR-joins in
business process models. Journal of Universal Computer Science 15(1), 3–32 (2009)

2. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
3. Börger, E., Thalheim, B.: Modeling workflows, interaction patterns, web services and

business processes: The ASM-based approach. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 24–38. Springer, Heidelberg
(2008)

4. Fleischmann, A., et al.: Subject-Oriented Business Process Management. Springer,
Heidelberg (2012)

5. Kossak, F., et al.: The Hagenberg Business Process Modelling Method H-BPM
(2014) (forthcoming)

Horizontal and Vertical Business Process Model Integration 3

6. Natschläger, C., Kossak, F., Schewe, K.D.: BPMN to Deontic BPMN: A trusted
model transformation. Journal of Software and Systems Modelling (to appear, 2013)

7. Natschläger, C., Schewe, K.D.: A flattening approach for attributed type graphs
with inheritance in algebraic graph transformation. Electronic Communications of
the EASST 47, 160–173 (2012)

8. Schewe, K.D., Schewe, B.: Integrating database and dialogue design. Knowledge and
Information Systems 2(1), 1–12 (2000)

Structuring E-Participation in Policy Making

through Argumentation

Trevor Bench-Capon

Department of Computer Science, University of Liverpool,
England

tbc@liverpool.ac.uk

An important feature of democracies is that citizens can engage their Govern-
ments in dialogues about policies. They tend to do so in one of three ways: they
may seek a justification of some policy or action; they may object to all or some
aspects of a policy; or they may make policy proposals of their own.

For the first, the reply need only to state a justification. For the second,
having offered the justification, the respondent needs first to understand what
the citizen objects to, and then to give an answer to the specific points. For
the third, first a well formulated proposal must be elicited from the citizen, and
then that proposal can then be critiqued from the standpoint of the government’s
own beliefs and values. Current e-participation systems too often lack structure.
Most commonly they take the form of petitions or threaded discussions. Petitions
allow the expression of general feelings, but they are unable to express objections
with precision. Too often they are ill expressed and conflate a variety of different
arguments, so that it is not clear what people are subscribing too. Threaded
discussions allow people to feel that they have expressed their views, but they
lack structure. Thus arguments are typically ill-formed, and the lack of structure
also makes comparison, aggregation and assimilation difficult. In consequence
Government replies are often general, bland and superficial and do not address
the particular objections of the citizens. To address these issues, we need tools
that are firrmly grounded on a well defined model of argument.

Common to all three scenarios is the notion of justifying an action. Justifying
actions is a form of practical reasoning, and has traditionally made use of the
practical syllogism of Aristotle. For the purposes of computational modelling,
the traditional syllogism has been re-expressed in the form of an argumentation
scheme. As stated in [1], the scheme brings together knowledge of the current
circumstances, the effects of actions, the goals being pursued and the values
which will be promoted if the goals are attained:

– In the current circumstances (R), action ac should be performed by agent
ag, since this will bring about a new set of circumstances (S), which will
realise a goal (G). Realising G in R will promote social value (V).

Following the notion of argumentation schemes in [3], an argument made using an
argumentation scheme can be challenged using characteristic critical questions.
Seventeen such critical questions are given in [1], covering the formulation of the

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 4–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Structuring E-Participation in Policy Making through Argumentation 5

problem (what is considered relevant, the causal relations in the domain etc),
current beliefs (what is true now, how will other agents respond if ag does ac)
and the evaluation of the actions (does realising G promote V , is there a better
way to promote V , etc). This scheme and the critical questions can be used to
structure justification of policy, and critiques of such justifications.

Note that this scheme requires knowledge of several sorts: knowledge of what
can be considered relevant to the question, knowledge of what actions are avail-
able, knowledge of what is the case, knowledge of the consequences of these
actions, knowledge of other agents who can influence the results of the actions,
knowledge of what is desirable, and knowledge of preferences between values.
Such knowledge can be captured in the form of an Action-based Alternating
Transition System (AATS) [4], augmented to label the transitions with the val-
ues promoted and demoted. The scheme and the critical questions are given in
terms of an AATS extended with such labels in [1].

This scheme, and its underlying AATS model, can be used as the basis of
tools to support e-participation. First the domain is modelled as an AATS.
An example of such a model can be found in [7], where the domain related to
the formulation of policy on the introduction of speed cameras to reduce traffic
accidents was modelled. Such a model can then be used to support several policy
related tasks. The task of selecting a policy from among the several available is
considered in [7]. We have also developed two interactive web tools to support
the second and third tasks mentioned above.

For the second task, where the policy-maker presents a policy to citizens and
solicits their points of agreement and disagreement, we provide the Structured
Consultation Tool (SCT), written in PhP and accessing a MySQL database. The
user is presented with five screens, one each for an introduction, circumstances,
consequences, values, and a summary page. These screens explore the various
elements of the argumentation scheme of [1], and ask the user a series of yes/no
questions, the responses to which can be interpreted by someone familiar with
the scheme as posing particular critical questions relating to the AATS model.
This structures the interaction in terms of the model and the scheme, but does
not require the user to be aware of this, and so the tool remains simple to use.
In this way a fine grained response can be obtained, and assimilated with other
responses: this is not possible with free text as found in threaded discussions,
which lack the required unifying structure. More details can be found in [5].

The third task is supported by the Critique Tool (CT), based on the same
database, argumentation scheme, and also implemented using MySQL and PHP.
Rather than the policy-maker presenting a policy for critique, the user is able
to create her own policy proposal interactively by selecting from a menu of
choices relating to circumstances, actions, consequences and values. Internally
this is structured using the argumentation scheme and then critiqued from the
basis of the AATS model and preferences of the Government. The justification is
again structured using the argumentation scheme, and the critique again takes
the form of a range of appropriate critical questions, which are generated auto-
matically from the model. Thus, the citizen can proactively engage with with

6 T. Bench-Capon

policy-making rather than simply reacting to a given policy proposal. Again the
structure is exploited without requiring the user to be aware of the structure,
allowing the arguments and the criticisms to be well formed and precise without
compromising usability. More details of this tool can be found in [6].

Both tools also provide access to additional supporting information through
links to other web sites, including external sites. These may offer independent
support for the views of the Government, or may set out the pros and cons for
the citizen to consider. The tools are (June 2013) available at

– http://impact.uid.com:8080/impact/ and
– http://cgi.csc.liv.ac.uk/ maya/ACT/

A major problem with current e-participation systems is organising the replies
for comparison, aggregation and assimilation. One answer to this is to make use
of a well defined argumentation structure to organise policy justifications and
critiques of these justifications. I have described:

– An argumentation scheme to structure justification and critiques;
– A semantical structure for models to underpin this scheme
– A tool to facilitate a precise critique of the scheme
– A tool to elicit a well frormed justification and generate an automatic cri-

tique.

Acknowledgements. This work was partially supported by the FP7-ICT-2009-
4 Programme, IMPACT Project, Grant Number 247228. The views are those of
the author. I would especially like to thank my colleagues Adam Wyner, Katie
Atkinson and Maya Wardeh. The work described here has its origins in [2], also
presented in Prague.

References

1. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumen-
tation using action based alternating transition systems. Artif. Intell. 171(10-15),
855–874 (2007)

2. Greenwood, K., Bench-Capon, T.J.M., McBurney, P.: Structuring dialogue between
the people and their representatives. In: Traunmüller, R. (ed.) EGOV 2003. LNCS,
vol. 2739, pp. 55–62. Springer, Heidelberg (2003)

3. Walton, D.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum
Associates, Mahwah (1996)

4. Wooldridge, M., van der Hoek, W.: On obligations and normative ability: Towards
a logical analysis of the social contract. J. Applied Logic 3(3-4), 396–420 (2005)

5. Wyner, A., Atkinson, K., Bench-Capon, T.: Towards a structured online consulta-
tion tool. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS,
vol. 6847, pp. 286–297. Springer, Heidelberg (2011)

6. Wyner, A.Z., Atkinson, K., Bench-Capon, T.: Model based critique of policy propos-
als. In: Tambouris, E., Macintosh, A., Sæbø, Ø. (eds.) ePart 2012. LNCS, vol. 7444,
pp. 120–131. Springer, Heidelberg (2012)

7. Wyner, A.Z., Bench-Capon, T.J.M., Atkinson, K.: Towards formalising argumenta-
tion about legal cases. In: Ashley, K.D., van Engers, T.M. (eds.) ICAIL, pp. 1–10.
ACM (2011)

Making Collective Wisdom Wiser

Tova Milo

School of Computer Science,
Tel Aviv University, Israel
milo@post.tau.ac.il

Many popular sites, such as Wikipedia and Tripadvisor, rely on public participa-
tion to gather information – a process known as crowd data sourcing. While this
kind of collective intelligence is extremely valuable, it is also fallible, and policing
such sites for inaccuracies or missing material is a costly undertaking. In this talk
we will overview the MoDaS project that investigates how database technology
can be put to work to effectively gather information from the public, efficiently
moderate the process, and identify questionable input with minimal human in-
teraction [1–4, 7]. We will consider the logical, algorithmic, and methodological
foundations for the management of large scale crowd-sourced data as well as the
development of applications over such information.

The goal of the project is to develop solid scientific foundations for Web-
scale data sourcing. We believe that such a principled approach is essential to
obtain knowledge of superior quality, to realize the task more effectively and
automatically, be able to reuse solutions, and thereby to accelerate the pace
of the adoption of this new technology that is revolutionizing our life. This
requires the development of formal models capturing all the diverse facets of
crowd-sourced data. This also encompasses developing the necessary reasoning
capabilities for managing and controlling data sourcing, cleaning, verification,
integration, sharing, querying and updating, in a dynamic Web environment
[5, 6, 8–12]. Such a technological breakthrough will open the way for developing
a new and otherwise unattainable universe of knowledge in a wide range of
applications, from scientific fields to social and economical ones.

Acknowledgment. This work has been partially funded by the European Re-
search Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant MoDaS, agreement 291071, by the
Israel Ministry of Science, and by the US-Israel Bi national Science foundation.

References

1. Amsterdamer, Y., Grossman, Y., Milo, T., Senellart, P.: Crowd mining. In:
SIGMOD (2013)

2. Boim, R., Greenshpan, O., Milo, T., Novgorodov, S., Polyzotis, N., Tan, W.-C.:
Asking the right questions in crowd data sourcing. In: ICDE, pp. 1261–1264 (2012)

3. Davidson, S., Khanna, S., Milo, T., Roy, S.: Using the crowd for top-k and group-by
queries. In: ICDT (2013)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 7–8, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

8 T. Milo

4. Deutch, D., Greenshpan, O., Kostenko, B., Milo, T.: Declarative platform for data
sourcing games. In: WWW, pp. 779–788 (2012)

5. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: answer-
ing queries with crowdsourcing. In: SIGMOD (2011)

6. Guo, S., Parameswaran, A.G., Garcia-Molina, H.: So who won?: dynamic max
discovery with the crowd. In: SIGMOD Conference, pp. 385–396 (2012)

7. Kaplan, H., Lotosh, I., Milo, T., Novgorodov, S.: Answering planning queries with
the crowd. In: VLDB (2013)

8. Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: Cdas: A crowdsourcing
data analytics system. PVLDB 5(10), 1040–1051 (2012)

9. Marcus, A., Wu, E., Madden, S., Miller, R.C.: Crowdsourced databases: Query
processing with people. In: CIDR, pp. 211–214 (2011)

10. Park, H., Pang, R., Parameswaran, A.G., Garcia-Molina, H., Polyzotis, N., Widom,
J.: Deco: A system for declarative crowdsourcing. PVLDB 5(12), 1990–1993 (2012)

11. Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd-enabled
databases with query-driven schema expansion. PVLDB 5(6), 538–549 (2012)

12. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: Crowdsourcing entity
resolution. PVLDB 5(11), 1483–1494 (2012)

Preferences Chain Guided Search
and Ranking Refinement

Yann Loyer, Isma Sadoun, and Karine Zeitouni

PRiSM, CNRS UMR 8144
Université de Versailles Saint Quentin, France

Abstract. Preference queries aim at increasing personalized pertinence
of a selection. The most famous ones are the skyline queries based on
the concept of dominance introduced by Pareto. Many other dominances
have been proposed. In particular, many weaker forms of dominance aim
at reducing the size of the answer of the skyline query. In most cases,
applying just one dominance is not satisfying as it is hard to concili-
ate high pertinence, i.e. a strong dominance, and reasonable size of the
selection. We propose to allow the user to decide what dominances are
reliable, and what priorities between those dominances should be re-
spected. This can be done by defining a sequence, eventually transfinite,
of dominances. According to that sequence, we propose operators that
compute progressively the ranking of a dataset by successive application
of the dominances without introducing inconsistencies. The principle of
progressive refinement provides a great flexibility to the user that can
not only dynamically decide to stop the process whenever the results
satisfies his/her wishes, but can also navigates in the different levels of
ranking and be aware of the level of reliability of each successive refine-
ment. We also define maximal selection and top-k methods, and discuss
some experimentations of those operators.

1 Introduction

Considerable attention has recently been paid to preference queries. Those queries
aim to improve the pertinence of information retrieval that may be different from
one user to another. They take into account user’s preferences and have been
studied following two different ways [11]. The first approach personalizes a given
query by expanding it to include preferences. The second approach uses explicit
preference operators in the query, such that the skyline operator [2] which is
based on the concept of dominance or efficiency introduced by Pareto.

Considering a set of alternatives that can be compared with respect to a finite
set of criteria, Pareto defined an alternative A to be more efficient than another
one B (or to dominate B) if there is at least one criterion that suggests to prefer
A to B while there exists none that suggests the contrary. The set of optimal
alternative, i.e. those that are not dominated by any other one, is called the
frontier of Pareto. The skyline operator computes that frontier.

For example, consider a relational schema R of basketball players with five
attributes (points, rebounds, blocks, steals, played games). Suppose a coach wants
to recruit a player. He will search for the best player, i.e., according to the skyline

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 9–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

10 Y. Loyer, I. Sadoun, and K. Zeitouni

Table 1. Table of basket-ball players

points rebounds blocks steals games

t1 20 20 20 20 100
t2 22 20 19.5 15 80
t3 16 24 16 15 100
t4 15 10 18.5 10 105
t5 10 12 10 10 105
t6 10 8 10 12 105
t7 5 5 5 5 110
t8 10 10 0 0 110
t9 8 5 0 0 100

approach, the player who scores the most points, who makes the most rebounds,
blocks, steals and whose experience (number of played games) is the greatest. Of
course such a player may not exist! Consider the set of players given in table 1.
The player t1 scores more points, makes more rebounds, blocks and steals than
player t4. But player t4 has played more games than player t1. That means t1
is preferable to t4 with respect to some criteria, while t4 is preferable to t1 with
respect to others. It follows that those two points are incomparable with respect
to the traditional dominance. The reader will easily verify that, in this set, the
only player that is dominated is t9 (for instance by t1). All the other players are
in the answer of the skyline query. Obviously, that query will be useless for the
coach to select the best player.

In the context of high dimensional databases, skyline queries alone do not
provide an efficient decision support. It is therefore necessary to refine the selec-
tion. For example, the user may consider that the difference on the number of
played games is not big enough to refute the domination of t1 over t4. Making
such an assumption, one can assert that t1 dominates t4 with respect to a weaker
form of dominance. Different approaches have been proposed to overcome that
limitation. The main idea consists in introducing more comparability by defining
other, mostly weaker, dominance relations. To name a few : ε-dominance [13],
K-dominance [3], dominance-back [14] and quasi-dominance [6]. The problem of
selecting data points with some designated dominances has been investigated
in [4, 8–12]. The relevance of the different dominance relations is obviously dis-
putable and depends on the context and/or the user. More generally, the domi-
nance relation could even be defined by the user itself or be obtained from queries
to experts, communities of users or web services. The dominance could even be
obtained by the integration of information coming from different, eventually in-
consistent, sources, using different combinations relying on operators such as set
operators or other specific operators (e.g., see [11]). In fact, a dominance relation
should simply be defined as a binary relation over the set of tuples.

It follows that the user is confronted with the choice of a dominance relation.
Indeed, given a set of dominance relations, the user shall consider as more appro-
priate or relevant a dominance than another one. Once his choice done, he can
refine the skyline set with respect to the chosen dominance using the operator,

Preferences Chain Guided Search and Ranking Refinement 11

known as winnow [5] or Best [11], that returns the maximal elements – or their it-
erated versions that rank the whole dataset. We propose an alternative version of
Winnow that does not systematically remove tuples involved in cycles, contrarily
to usual approaches allowing cyclic dominance relations. We believe that elimi-
nating from the result the tuples belonging to a cycle, whatever their relations
to the other tuples, may cause some relevant results to be missed. However, the
result provided may still not satisfy the user as it may still contains too many in-
comparable tuples. Thus the user could decide to apply another dominance on the
previous result in order to refine it even more. Of course, the application of a sec-
ond dominance should not introduce inconsistencies with the first one, nor lead
to inverse the ranking of two tuples. Pushing that idea further, the user shall as-
sign some priorities to the dominance relationships. We propose to generalize that
reasoning to any given set of binary relations over a same set of tuples. The user
decides of (a) a selection, eventually transfinite, in the set of dominance relations
of those he wants to use, (b) values for the parameters of each dominance rela-
tion that requires some, and (c) a strict total order, called preferences chain, over
the set of relations he selected. Guided by that chain, we apply successively the
dominance relations to refine progressively the answer set. Each step may allow
new comparisons between tuples, but only between tuples that were considered
incomparable and ranked at the same level by the precedent step.

In this paper, we define an operator that computes preferences chain guided
rankings of a set of tuples (that can eventually be the skyline set). It applies
successive dominance relations in a way that each application of one more dom-
inance refines the ranking provided by the precedent one. We also define two
variants of that operator: an operator that computes preferences chains guided
searches, by reducing the answer set as much as possible to obtain only the very
best tuples according to user’s preferences, and a top-k operator. The principle
of progressive refinement provides a great flexibility to the user that can not
only determine priorities between dominances he decides to rely on, but can also
dynamically decide to stop the process whenever the results satisfies his wishes,
or even navigates in the different levels of ranking, being aware of the level of
reliability of each successive refinement. Finally, we provide experimental results
that show the effectiveness and the efficiency of our algorithms.

2 Preliminaries

Let R(d1, ..., dn) denotes a database relation schema with n attributes where each
attribute di takes values from a numerical domain dom(di). Let d = {d1,, dn}
be the set of attributes of R and dom(d) be the domain of d, defined by dom(d) =
dom(d1) × × dom(dn). We use t to denote a tuple (u1, u2, ..., un) ∈ dom(d)
of R, and r to denote a relation or dataset on R, i.e. a set of tuples in dom(d).
Let R∗ be the set of datasets on R.

Definition 1 (Dominance relation) A dominance relation over a dataset r
is a binary relation over r × r.

12 Y. Loyer, I. Sadoun, and K. Zeitouni

Dominance relations are also called qualitative preference relations. The domi-
nance relation that leads to the skyline set is called traditional dominance.

Definition 2 (Traditional dominance relation) Let t, t′ be two tuples in a
dataset r on R(d1, ..., dn). t dominates t′ for d′ ⊆ d, denoted by TDd′(t, t′), iff
∀di ∈ d′ (t[di] ≥ t′[di]) ∧ ∃dj ∈ d′ (t[dj] > t′[dj]).

Intuitively, a tuple t dominates another tuple t′, or is preferable to t′, if and
only if it is better on at least one dimension, and it is not worse on any other
dimension. A tuple t is maximal with respect to TD if and only if there exists
no tuple t′ in r such that TD(t′, t). The answer to the skyline query over a
dataset r is the set of maximal elements of r with respect to TD. Without loss
of generality, we will assume that d′ = d and use TD(t, t′) instead of TDd′(t, t′).
Note that we consider that a value is better than another one if it is greater.
We choose to privilege maximization. The definition can be obviously modified
to privilege minimisation by replacing > (resp. ≥) by < (resp. ≤).

Example 1 (running example) We have TD(t1, t9). As t9 is dominated, it
is not a skyline tuple, it shall be deleted. Note that if we remove t9, there is no
other possible comparison with respect to TD between the remaining players.

When the number of dimensions increases, the number of tuples that are not
comparable w.r.t. the traditional dominance relation increases in such propor-
tions that the result is often useless. A common approach to overcome that
limitation consists in ranking or shrinking the skyline set by relaxing the domi-
nance relation, i.e. in defining some weaker dominance relationships. Due to lack
of space, we recall formal definitions for just a few dominance relationsthat will
be used for illustrating and experimenting our approach.

Example 2 (running example) Let r be a dataset on R(d1, ..., dn). Let t and
t′ be two tuples in r. We can use the two dominance relation below.

Quasi-dominance QD [6]. Let q = (q1, ..., qn) ∈ Rn be the indifference thresh-
old on R. (t, t′) is in the quasi-dominance relation w.r.t. q, denoted QD(q)(QD
for short), iff
|{i | t′[di] − t[di] > qi}| = 0 ∧ |{i | t′[di] − t[di] > 0 }| < |{i|t[di] − t′[di] > 0}|.
A tuple t quasi-dominates a tuple t′ even if t′ is better than t on some dimen-
sions, but only with differences that do not exceed the indifference thresholds and
on a number of dimensions that is strictly smaller than the number of dimen-
sions where t is better than t′. Quasi-dominance can be seen as a relaxation of
the traditional dominance. Some pairs of tuples that were incomparable with re-
spect to TD may now be compared with respect to QD. Of course QD may be
considered as less reliable. However it provides us some useful information to
select – or to rank, tuples in a set such as the skyline set. But one can decide to
use an even weaker relation if QD returns too many tuples.

k-dominance relation [3]. Let k be an integer. (t, t′) is in the k-dominance
relation w.r.t. k, denoted KD(k), iff
∃d′ ⊆ d (|d′| = k ∧ ∀di ∈ d′ (t[di] ≥ t′[di]) ∧ ∃di ∈ d′ (t[di] > t′[di])).

Preferences Chain Guided Search and Ranking Refinement 13

In other words, t k-dominates t′ iff TDd′(t, t′) for at least one subset d′ of d such
that |d′| ≥ k.

The following table summarizes all the relationships between the remaining
players (Skylines) for five dominance relations. Each line gives the sets of play-
ers dominated by each player in the column w.r.t. a given dominance. The in-
difference threshold q is instantiated to q = (1, 1, 1, 1, 10).

dominance t1 t2 t3 t4 t5 t6 t7 t8

QD(q) t4,...,t8 t5,...,t8 t7,t8 t7,t8 t7
QD(q*2) t2,t4,...,t8 t5,...,t8 t5,...,t8 t7,t8 t7
QD(q*4) t2,...,t8 t4,...,t8 t4,...,t8 t5,...,t8 t7,t8 t7

KD(4) t2,...,t8 t4,...,t8 t5,...,t8 t5,...,t8 t6,t7,t8 t5,t7
KD(3) t2,...,t8 t3,...,t8 t2,t4,...,t8 t5,...,t8 t4,t6,t7,t8 t5,t7,t8 t8 t6,t7

Note that increasing the value of the indifference threshold (resp. decreasing the
value of k) used by QD (resp. KD) relaxes the dominance in the sense that more
comparisons between players can be done.

3 Maximality-Based Selection

For a given dominance relation θ, similarly to the skyline operator (equivalent
to Winnow and Best operators with respect to the TD), we propose to select as
"best" tuples with respect to θ those that are not dominated by any other tuple
with respect to θ. But we consider a different definition of maximality. The usual
definition asserts that a tuple is maximal if it is not dominated by any other one.
If this is acceptable for pre-orders such as TD, it is not appropriate anymore
for cyclic relations. For instance, suppose that a small subset s of r form a cycle
w.r.t. a dominance relation and that no tuples in s is dominated by a tuple in
r \ s while any tuple in r \ s is dominated by a tuple in r. In that case, there
is no maximal tuple. We believe that cycles should be seen as set of equivalent
tuples, i.e. elements that can not be preferred to each other (in our example, s
should be the set of maximal elements). To this end, we will use the classical
notion of transitive closure in order to derive a pre-order from each dominance
relationships. Note that we restrict the transitive closure to a subset of tuples.

Definition 3 (Partial transitive closure θ+) Let θ be a dominance relation
over a dataset r. The partial transitive closure of θ over s ⊂ r, denoted θ+s , is
the binary relation over s such that ∀(t, t′) ∈ s2, θ+s (t, t′) iff
∃(t1, . . . , tv) ∈ sv(t1 = t ∧ tv = t′ ∧ θ(t1, t2) ∧ . . . ∧ θ(tv−1, tv))).

Relying on the transitive closure of a relation, we propose the definition of a new
algebraic operator that can be seen as an alternative to the Winnow operator.

Definition 4 (maxθ: maximality-based selection) Let θ be a dominance re-
lation over a dataset r. An element t in r is said to be maximal w.r.t. θ iff
∀t′ ∈ r (¬(θ+r (t′, t)) ∨ θ+r (t, t′)). The maximality-based selection w.r.t. θ in r is
the set of maximal elements of r w.r.t. θ is denoted maxθ(r).

14 Y. Loyer, I. Sadoun, and K. Zeitouni

A tuple is maximal with respect to a dominance relation θ if and only if it
dominates all the tuples that dominate it, i.e. iff ∀t′ ∈ r (θ+r (t′, t) ⇒ θ+r (t, t′)).
Of course, if it is not dominated by any tuple, then it is maximal. It is immediate
that maxθ is a filter that selects some elements in r.

Theorem 1 Let θ be a dominance relation over a dataset r. maxθ(r) ⊆ r holds.

Now consider the relation �θ over r defined by: ∀t, t′ ∈ r, t �θ t′ iff (t =
t′) ∨ (θ+r (t′, t) ∧ θ+r (t, t′)). It is immediate that �θ is reflexive, symmetric and
transitive, thus an equivalence relation over r. Let r/ �θ be the quotient set
of r w.r.t. the equivalence relation �θ, and θ� be the dominance obtained by
replacing each tuple in θ by the representant of its equivalence class in r/ �θ.
The following property holds.

Theorem 2 maxθ(r) = Winnow�θ
(r/ �θ).

Example 3 Consider another set of players r′ that contains the players given
in the following table and q = (1, 1, 1, 1, 10).

points rebounds blocks steals games dominated players / QD(q)
t10 20 20 20 20 200 t11, t13, t14, t15
t11 19.5 19.5 20 20 202 t12, t13, t14, t15
t12 20.5 20.5 19.5 19.5 201 t10, t13, t14, t15
t13 1 1 1 1 203 t14, t15
t14 0.5 0.5 0.5 0.5 204 t15
t15 0 0 0 0 205

All the players are dominated so WinnowQD(q)(r
′) = ∅ while our approach does

not eliminate all the players. Players t10, t11 and t12 seem to be largely better than
the three other players. They form a cycle in the dominance relation. They are
only dominated by players that they also dominate via transitive closure. We con-
sider those three players are equivalent. We have maxQD(q)(r

′) = {t10, t11, t12}.

4 Preferences Chain Guided Selection

As explained above, there exist many dominance relations that one can choose
to reduce the size of the answer set. However, pairs of incomparable tuples may
still be too numerous. In such a case, the relaxation may be insufficient to satisfy
the user. In order to compare those tuples, one should have the possibility to
successively use some other forms of dominance to refine progressively the answer
set. Let recall that an ordinal i is said to be a successor ordinal if there exists an
ordinal j such that i = j + 1, whereas an ordinal α is said to be a limit ordinal
if there does not exist any ordinal j such that α = j + 1. Ordinals where defined
by Cantor in order to deal with transfinite sequence, i.e. infinite sequences that
are not limited to the first limit ordinal ω. The sequence of ordinals can be
represented by 0, 1, . . . , i− 1, i, . . . , ω, ω + 1, . . . , 2ω, 2ω + 1 . . . ωωω

, . . .

Preferences Chain Guided Search and Ranking Refinement 15

Definition 5 (Preferences chain) Let r be a dataset on R(d1, ..., dn). Let θi
be a dominance relation over a dataset r for all ordinal i. A preferences chain
Θ is defined as a transfinite sequence of dominance relations θ1, . . . , θi, θi+1,
. . . , θλ, . . . where i denotes a successor ordinal and λ a limit ordinal.

Note that with Θ, we denote a chain of dominance relations, whereas with θ, we
denote a dominance relation.

Example 4 (running example) The following sequences are examples of pref-
erences chains:
- 〈KD(n),KD(n− 1), . . . ,KD(1)〉 as a progressive filtering relying on KD;
- 〈TD,QD(q), QD(q∗2), QD(q∗3), . . . , QD(ω)〉 that could be used to recursively
refine the skyline set by applying the QD with infinitely increasing indifference
threshold until a fixed point. In the rest of the paper, we will refer to the first
chain as KDn, and to the second as QDn.

The intuition is that we first consider the more pertinent dominance and select
the tuples we consider to be the best with respect to that dominance. Then,
in (and only in) that selection, we apply the same process with respect to the
partial transitive closure of the next dominance relation. Then we continue to
apply iteratively the process with the next dominance relations.

Definition 6 (Preferences chain guided filtering) Let Θ be a preferences
chain over a dataset r. The preferences chain guided filtering of r w.r.t. Θ is
defined as the sequence 〈skyΘn 〉, where skyΘ0 = r, skyΘn = maxθn(skyn−1), for any
successor ordinal n, and skyΘλ =

⋂
i<λ skyi for any limit ordinal λ.

Relying on the lattice structure of P(r) and Theorem 1, we can assert that
preferences chain guided filtering is a well-defined concept.

Theorem 3 Let Θ be a preferences chain over a dataset r. The preferences
chain guided filtering 〈skyΘn 〉 of r w.r.t. Θ is a non-increasing sequence with
respect to set inclusion that reaches its limit in a finite number of steps.

We can now define a new operator that computes a progressive filtering.

Definition 7 (Preferences chain guided search operator SKYΘ) Let Θ
be a preferences chain over dom(d). The preferences chain guided search operator
SKYΘ : R∗ → R∗ associates to a dataset r the limit of the preferences chain
guided filtering 〈skyΘn 〉 of r w.r.t. Θ.

Note that our operator SKYθ can be used to refine the skyline set by simply rely-
ing on a sequence of relations that begins with θ1 = TD. If the sequence contains
only the dominance TD, then SKYTD returns the skyline set. Note also that our
approach is inspired by outranking methods proposed in ELECTRE IV [6] but
does not rely on the same selection of tuples. Given a dominance relation θ and
a tuple t, the qualification of t, denoted qualifθ(t) is defined as the difference be-
tween the number of tuples that t dominates and the number of tuples that dom-
inate t. More formally, qualifθ(t) = |{t′|t′ ∈ r ∧ θ(t, t′)}| − |{t′|t′ ∈ r ∧ θ(t′, t)}|.

16 Y. Loyer, I. Sadoun, and K. Zeitouni

We believe that the selection method w.r.t. qualification is not appropriate to
the context of skyline queries where the number of tuples may be very big and
the distribution may contain concentrated zones in the multi-dimensional space
that may give unexpected results. However, our approach captures the selec-
tion w.r.t. qualification as a particular case. Indeed, given a dominance rela-
tion θ, one can easily infer another dominance relation θq defined by θq(t, t′) iff
qualifθ(t) > qualifθ(t

′) and use that new relation instead of θ. Moreover, ELEC-
TRE IV applies successively a finite pre-defined relaxing sequence of dominance
relations, where a relaxing sequence is such that for all i, θi(t, t′) ⇒ θi+1(t, t′).,
i.e. that each relation θi is included into the next one θi+1 which weaken its con-
ditions of satisfaction. In our approach, we generalize the outranking concept to
any sequence of dominance relations.

Example 5 (running example) The following table shows the progressive fil-
tering of the chains QDn and KDn after each successive dominance θi, until
their respective limits SKYQDn and SKYKDn .

dominances QDn KDn

θ1 t1,t2,t3,t4,t5,t6,t7,t8 t1,t2,t3,t4,t5,t6,t7,t8
θ2 t1,t2,t3 t1
θ3 t1,t3
θ4 t1

Now suppose the computation does not provide enough answers for the user, we
propose an alternative approach that provides a ranking of the set. The user will
have the possibility to choose either a complete ranking or a partial one (as in a
top-k approach).

5 Preferences Chain Guided Ranking Refinement

First, we need to define the ranking with respect to a given dominance relation.
That ranking is defined as an ordered partition of a dataset r, i.e. a list of disjoint
subsets of r whose union is equal to r.

Definition 8 (θ-decomposition operator Γθ) Let θ be a dominance relation
over a dataset r. The decomposition of r w.r.t. θ, denoted Γθ(r), is defined as
the ordered partition 〈γ0, . . . , γp〉 of r, where

γ0 = maxθ(r), γi = maxθ(r \
i−1⋃
j=0

γj) for 1 ≤ i, and p = max{i | γi �= ∅}

That operator first computes the set γ0 of maximal tuples with respect to θ. That
set is the first set of the ordered partition. It represents the "first choice tuples"
with respect to θ. Then it removes those selected tuples from the original set r.
It computes the set γ1 of maximal tuples in the remaining set r with respect
to the partial transitive closure over that set. The resulting set is the second
set of the partition and represents the "second choice tuples". The computation

Preferences Chain Guided Search and Ranking Refinement 17

is iterated until there is no more tuples into the original set. Note that this
operator is similar to the successive iterations of the Winnow and Best operators
called respectively Winnow iterated and Best∗, but relies on a different notion
of maximality.

Theorem 4 Γθ(r) = iterated_Winnow�θ
(r/ �θ).

Example 6 (running example) The first step of the computation of ΓQD(r)
is γ0 = maxQD(r) = {t1, t2, t3}. Then we remove those players from r and
compute the maximal players with respect to QD in the remaining set. We obtain
γ1 = maxQD(r \ {t1, t2, t3}) = {t4, t5, t6}. Finally, the computation ends with
γ2 = maxQD(r \ {t1, t2, t3, t4, t5, t6}) = {t7, t8}. Thus ΓQD(r) = 〈{t1, t2, t3},
{t4, t5, t6}, {t7, t8}, {t9}〉. We consider that the best players are t1, t2 and t3. If
we need more players or can not afford one of those, then we will choose between
t4, t5 and t6. If necessary, we will choose between t7, t8. The worst choice of our
set is t9.

Similarly to the SKYθ operator, the idea is to refine progressively the ranking
of the set of skyline tuples by successively applying the relations of a preferences
chain. Thus, once the decomposition of r with respect to a dominance θi as been
computed, we need to apply the same method with the next dominance θi+1. As
the dataset r as already be pre-sorted, θi+1 should not be apply over the entire
set r but only inside the different subsets of r in order to refine the ranking, i.e.
to refine the ordered partition of r.

Definition 9 (generalized θ-decomposition operator Γ̂θ) Let 〈r0, . . . , rm〉
be an ordered partition of a dataset r. Let θ be a dominance relation over r.
The decomposition of 〈r0, . . . , rm〉 w.r.t. θ, denoted Γ̂θ(r0, . . . , rm), is the ordered
partition of r defined by Γ̂θ(r0, . . . , rm) = 〈Γθ(r0), . . . , Γθ(rm)〉.
Let O(S) be the set of lists of disjoint subsets of a set S. For instance, in our run-
ning example, 〈{t1, t2, t3}, {t4, t5, t6}〉 and 〈{t1, t2, t3}, {t4, t5, t6}, {t7, t8}, {t9}〉
are elements of O(r). Note that if 〈x1, . . . , xn〉 in O(S) is such that

⋃
1≤i≤n xi =

S, then 〈x1, . . . , xn〉 is an ordered partition of S. Let the order � over O(S) ×
O(S) be defined by 〈x1, . . . , xn〉 � 〈y1, . . . , ym〉, read 〈y1, . . . , ym〉 is finer than
〈x1, . . . , xn〉, iff for all yi, yj in 〈y1, . . . , ym〉 such that i ≤ j, there exist xj , xj′

in 〈x1, . . . , xn〉 such that yi ⊆ xj and yi′ ⊆ xj′ and i′ ≤ j′. The following re-
sult asserts that the application of the operator Γ̂θ on an ordered partition is a
refinement of that partition.

Theorem 5 Let 〈r0, . . . , rm〉 be an ordered partition of a dataset r. Let θ be a
dominance relation over r. Then 〈r0, . . . , rm〉 � Γ̂θ(r0, . . . , rm) holds.

Example 7 Let γ be the decomposition of r of example 5 and θ = QD(2 ∗ q).

Γ̂θ(γ) = Γ̂θ({t1, t2, t3}, {t4, t5, t6}, {t7, t8}, {t9})
= 〈Γθ({t1, t2, t3}), Γθ({t4, t5, t6}), Γθ({t7, t8}), Γθ({t9})〉
= 〈{t1, t3}, {t2}, {t4}, {t5, t6}, {t7, t8}, {t9}〉

18 Y. Loyer, I. Sadoun, and K. Zeitouni

In the set {t1, t2, t3}, the only possible comparison with respect to QD(q ∗ 2) is
QD(q ∗ 2)(t1, t2). Thus the decomposition of {t1, t2, t3} with respect to QD(q ∗ 2)
is ({t1, t3}, {t2}). Similarly, in {t4, t5, t6}, we have QD(q ∗ 2)(t4, t5) and QD(q ∗
2)(t4, t6) thus the decomposition is ({t4}, {t5, t6}). Finally t7 and t8 are incompa-
rable with respect to QD(q∗2). It appears clearly that the computed decomposition
preserves the dominance with respect to QD(q ∗ 2), but provides a finer ordered
partition of r by allowing less strict comparison conditions.

Finally, applying successively the decomposition operator will provide the user a
global ranking as refined as possible with respect to the sequence of dominance
relations that he selected and ordered.

Definition 10 (Preferences chain guided ranking) Let Θ be a preferences
chain over a dataset r. The preferences chain guided ranking of r w.r.t. Θ is
defined as the sequence 〈rankΘn 〉, where rankΘ0 = r, rankΘn+1 = Γ̂θn+1(rankΘn)

for any successor ordinal n, and rankΘα = max�{rankΘn , n < α} for any limit
ordinal α.

Relying on Theorem 5, the above ranking is a well-defined concept.

Theorem 6 Let Θ be a preference chain over a dataset r. The preferences chain
guided ranking 〈rankΘn 〉 of r w.r.t. Θ is a non-decreasing sequence w.r.t. � that
reaches its limit, which is an ordered partition of r, in a finite number of steps.

We can now define a new operator that computes an ordered partition by pro-
gressive refinement.

Definition 11 (Preferences chain guided ranking operator RankΘ) Let
Θ be a preferences chain over dom(d). The Θ-ranking operator RankΘ associates
to the relation r in R∗ the limit of the preferences chain guided ranking 〈rankΘn 〉
of r w.r.t. Θ.

Example 8 In example 7, we have computed Γ̂QD(q∗2)(Γ̂QD(r)). As far as the
only supplementary comparison provided by QD(q∗4) is QD(q∗4)(t1, t3), apply-
ing on that partition the decomposition with respect to QD(q ∗ 4) will lead to the
decompose {t1, t3} into 〈{t1}, {t3}〉. The following table presents rankings w.r.t.
the chains QDn and KDn. We obtain 〈{t1}, {t3}, {t2}, {t4}, {t5, t6}, {t7, t8}, {t9}〉
with QDn and 〈{t1}, {t2, t3}, {t4}, {t5, t6}, {t7, t8}, {t9}〉 with KDn.

θ QDn KDn

θ1 {t1, t2, t3, t4, t5, t6, t7, t8}, {t9} {t1, t2, t3, t4, t5, t6, t7, t8}, {t9}
θ2 {t1, t2, t3}, {t4, t5, t6}, {t7, t8}, {t9} {t1}, {t2, t3}, {t4}, {t5, t6}, {t7, t8}, {t9}
θ3 {t1, t3}, {t2}, {t4}, {t5, t6}, {t7, t8}, {t9} {t1}, {t2, t3}, {t4}, {t5, t6}, {t7, t8}, {t9}
θ4 {t1}, {t3}, {t2}, {t4}, {t5, t6}, {t7, t8}, {t9} {t1}, {t2, t3}, {t4}, {t5, t6}, {t7, t8}, {t9}

6 Preferences Chain Guided Top-k Approximation

Now suppose the user does not desire a complete ranking but a sub-selection of
the k "best" skyline tuples. We propose an alternative approach that provides a

Preferences Chain Guided Search and Ranking Refinement 19

top-k selection into the relation. The approach is very similar as it can be seen as
a particular case of global ranking. Of course, one could directly use the global
ranking to get a top-k selection. However we propose a variation of the above
definition to compute more efficiently the top-k query by renouncing to a result
as refined as possible.

Definition 12 (top-k θ-decomposition operator Γ k
θ) Let k be an integer

such that k < |r|. Let θ be a dominance dataset over r. The k-decomposition
of r w.r.t. θ, denoted Γ k

θ (r), is defined as the list 〈γk
0 , . . . , γ

k
p 〉 of subsets of r,

where

γk
0 = maxθ(r), γk

i = maxθ(r \
i−1⋃
j=0

γj) for 1 ≤ i and p = min{i | |
p⋃

j=0

γk
j | ≥ k}.

That operator is very similar to the θ-decomposition operator Γ k
θ of definition 8,

but instead of computing a complete partition of r, we stop the computation as
soon as the number of selected tuples exceeds k.

Example 9 (running example) Consider k = 4. Then

Γ k
QD(r) = 〈{t1, t2, t3}, {t4, t5, t6}〉

The first subset is not sufficient to get four tuples. Adding the second one already
gives too many answers. We stop the computation. The remaining tuples are
removed.

In that list of subsets, if we have to remove some more tuples, then we apply
the next relaxing dominance, but only on the last subset of the sequence which
contains the least preferable tuples of the selection.

Definition 13 (generalized top-k θ-decomposition Γ̂ k
θ) Let 〈r0, . . . , rm〉 be

a list of disjoint subsets of a dataset r. Let θ be a dominance relation over r. The
top-k decomposition of 〈r0, . . . , rm〉 w.r.t. θ, denoted Γ̂ k

θ (〈r0, . . . , rm〉), is the list
of subsets of r defined as follows:

Γ̂ k
θ (〈r0, . . . , rm〉) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈r0, . . . , rm〉 if k ≥ |

m⋃
j=0

rj |

〈r0, . . . , rm′〉 if ∃m′(m′ < m ∧ k = |
m′⋃
j=0

rj |)
〈r0, . . . , rm′′ , Γ k′

θ (rm′′+1)〉 otherwise

where m′′ = max{i | |
i−1⋃
j=0

rj | < k} and k′ = k − |
m′′⋃
j=0

rj |.

Theorem 7 Let 〈r0, . . . , rm〉 be a list of subsets of a dataset r. Let θ be a dom-
inance relation over r. Then 〈r0, . . . , rm〉 � Γ̂θ(r0, . . . , rm) holds.

Definition 14 (Preferences chain guided top-k approximation) Let Θ
be a preferences chain over a dataset r. The preferences chain guided top-k
approximation of r w.r.t. Θ is defined as the sequence 〈topkΘn 〉, where topkΘ0 = r,
topkΘn+1 = Γ̂θn+1(topkΘn) for any successor ordinal n, and topkΘα = max�{topkΘn ,
n < α} for any limit ordinal α.

20 Y. Loyer, I. Sadoun, and K. Zeitouni

Relying on Theorem 7, we can assert that preferences chain guided top-k ap-
proximation is a well-defined concept.

Theorem 8 Let Θ be a preferences chain over a dataset r. The preferences
chain guided top-k approximation 〈topkΘn 〉 of r w.r.t. Θ is a non-decreasing se-
quence w.r.t. � that reaches its limit in a finite number of steps.

We can now define a new operator that computes an partially ranked top-k
approximation.

Definition 15 (Preferences chain guided top-k operator TopkΘ) Let Θ
be a preferences chain over dom(d). The preferences chain guided top-k operator
TopkΘ associates to the dataset r in R∗ the limit of the preferences chain guided
top-k approximation 〈topkΘn 〉 of r w.r.t. Θ.

Example 10 Suppose k = 2. The chain QDn leads us to a selection of exactly
2 players, while the chain KDn provides an approximation of k. Note also that
the TopkΘ result is not as finely ranked as as the result of RankΘ.

dominances QDn KDn

θ1 {t1, t2, t3, t4, t5, t6, t7, t8}, {t9} {t1, t2, t3, t4, t5, t6, t7, t8}, {t9}
θ2 {t1, t2, t3} {t1}, {t2, t3}
θ3 {t1, t3} {t1}, {t2, t3}

Note that if we apply the TopkΘ operator with k = 1, then we obtain the set of
SKYθ of definition 7.

7 Experiments

Algorithms. Due to lack of space in the short version of this paper, we omitted
the algorithms that are direct implementations of the definitions given in the
precedent sections. The algorithms are provided in [7]. We only explain here how
maximality with respect to the partial transitive closure of a given dominance
θ over a relation r can be tested. As already suggested above by Theorem 2,
we compute the quotient set r/ �θ of r w.r.t. the equivalence relation �θ.
Algorithm 1 contracts all the cycles in the dominance θ and returns an acyclic
dominance denoted θ_contraction. Each contracted cycle is represented by one
of its elements, and the equivalence classes are stored in the structure C(S). To
avoid the complete computation of the transitive cloture of r, we first transfer
recursively to θ_contraction all the lines in θ that do obviously not belong to any
cycle (lines such that the first tuple is never dominated or such that the second
one does not dominate any tuple). In the remaining lines, we select one, (t, t′),
and search all the tuples that can be dominated by t through transitve closure,
contracting cycles on the fly. Once t has been completely processed and all cycles
containing t contracted, we transfer all the lines containing t in θ_contraction.
Then we repeat recursively the whole process until θ is empty.

Preferences Chain Guided Search and Ranking Refinement 21

Data: a dominance relation θ Result: θ_contraction
while θ �= ∅ do

move recursively to θ_contraction all lines in θ with a point /*not in
cycle*/ in (Πdominant(θ) \Πdominated(θ)) ∪ (Πdominated(θ) \Πdominant(θ)) ;
(t,t’):= first(θ);
foreach (t1, t2) in θ do

if t1 = t then
if (t2, t1) exists in θ then // cycle

remove (t1, t2) and (t2, t1) from θ;
replace t2 by t1 in θ;
add contents(t2) to contents(t1) in C(S);
remove from C(S) the line identified by t2;
(t1,t2):= first(θ);

else
foreach (t3, t4) in θ do

if t3 = t2 then insert (t1, t4) into θ ; // transit.

move to θ_contraction all lines in θ containing t;

update θ_contraction w.r.t. C(S);

Algorithm 1. Contractθ

Experimental Settings. Experimentations were carried out in Java under
Windows 7 with a capacity of 1GB memory, an Intel Core 2 Duo and an Oracle
11g DBMS, on real and data. This data set is the NBA data set [1] that contains
21671 records of players’ season statistics over 17 attributes from the first season
of NBA in 1946 to the season 2009. We evaluate and compare the quality and
cost of different operators SKYΘ, RankΘ, TopKθ. In our test, the indifference
threshold q used in QD(q) is the tuple (0.1 ∗ σ(d1), . . . , 0.1 ∗ σ(dn)) where σ(di)
is the standard deviation of Πdi(r). We will use the two preferences chains KDn

and QDn used in our running example.
Progressive Filtering and Ranking Capacity. Figure 1(a) and (b) show
the size of the selection after each step, until the limit SKYΘ(r), of the filtering
of the NBA data set guided respectively by the preferences chains KDn and
QDn. The result illustrates the progressive nature of the preferences chain guided
filtering. Similarly, Figure 1(c) represents the decomposition of r after each step
of the ranking guided by the preferences chain QDn of a set of 28 skyline tuples
computed on a sample of 100 tuples in the NBA database. We can observe the
progressive refinement of the ordered partitioning of the data set. Each line, from
TD to QD(q*8), shows the more refined partition of the set obtained after the
application of one more dominance relation. The user can stop at any step or
continue the ranking. In this figure, we chose to stop at QD(q*8) only for the
space capacity and the clarity of the ranking representation.

22 Y. Loyer, I. Sadoun, and K. Zeitouni

(a) Max(KDn) Vs |DB| (b) Max(QDn) Vs |DB| (c) Pre-chain refinement

(d) Operators Vs |DB| (e) Over cost Vs |DB| (f) Ranking Vs θ

Fig. 1. Experiments: Results size (Top), Runtime (bottom)

Performance. Figure 1(d) compares the performance of the three mains al-
gorithms or operators SKYΘ, RankΘ, TopKθ (for K = 10 and K = 100) for
Θ = QDn. As expected, the complete ranking of the set is very more expensive
than the selection and topK which refine, at each step, only one subset of tuples
obtained at the precedent step, while the ranking apply the computation in all
the subsets. Note that the topK computation may be, in particular cases, more
efficient then SKYΘ computation, e.g. when the cardinality of the union of n
first sets provided by the QD is equal to k (in that case, the algorithm stops
without computing the other relations, while the SKYΘ algorithm will continue
the decomposition until there remains one tuples or the limit is reached). Fig-
ure 1(e) represents the over cost of each step of the computation of the selection
guided by the preferences chain QDn. Theorem 3 asserts that each step takes in
input a smaller set than the precedent step, thus there are less tuples to compare.
Effectively the runtime of each successive dominance of the chain is smaller than
the precedent one. Figure 1(f) concerns the ranking guided by the preferences
chain KDn. The highest curve represents the cost of the total runtime of com-
putation of each dominance in all subsets of the ordered partition. Similarly, the
lowest curve represents the cost of the total runtime for ranking all the subsets
once the dominance is computed. As expected from Theorem 6, the over cost of
each supplementary dominance converges to 0 as the ordered partition becomes
progressively finer and the number of comparisons to be tested smaller. Note
that the most expensive part of the computation is for the first dominances of
the chain. Consequently, a guideline for the user, from a performance point of

Preferences Chain Guided Search and Ranking Refinement 23

view, is to begin its chain with dominances that can be optimized. This is the
case of those satisfying transitivity or anti-monotonicity properties among which
Pareto dominance.

8 Conclusion
We propose a formal framework for progressive filtering of skylines sets with
respect to users’ preferences. Our approach, inspired by multi-criteria analysis
methods, is very flexible as it allows the user (a) to define different thresholds of
preference that represent different levels of relaxation of dominance conditions,
(b) to choose between a global ranking, a (partially or totally ranked) top-k query
and a restricted set of "best" elements, and (c) to decide to stop the progressive
filtering as soon as the result satisfies him (or to navigate between the results
of the different steps of filtering in order to choose the one that fits his will).
We provide not only the formal framework but also algorithms and experiments.
Generalization and optimization will be topics for future research.

References

1. NBA basketball statistic, http://databasebasketball.com/stats.download
2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings

of the IEEE 17th International Conference on Data Engineering (ICDE 2001), pp.
421–430 (2001)

3. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD 2006), pp. 503–514
(2006)

4. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High Di-
mensional Skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

5. Chomicki, J.: Preference formulas in relational queries, vol. 28, pp. 427–466. ACM,
New York (2003)

6. Figueira, J., Mousseau, V., Roy, B.: Electre methods. In: Figueira, J., Greco, S.,
Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 133–162. Springer (2005)

7. Pre-Chain, http://www.prism.uvsq.fr/users/zeitouni/papers/DEXA2903.pdf
8. Lee, J., You, G.-W., Hwang, S.-W.: Telescope: Zooming to interesting skylines.

In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.)
DASFAA 2007. LNCS, vol. 4443, pp. 539–550. Springer, Heidelberg (2007)

9. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative
skyline operator. In: Proceedings of the 23rd International Conference on Data
Engineering (ICDE 2007), pp. 86–95 (2007)

10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2003, pp. 467–478. ACM, New York
(2003)

http://databasebasketball.com/stats.download
http://www.prism.uvsq.fr/users/zeitouni/papers/DEXA2903.pdf

24 Y. Loyer, I. Sadoun, and K. Zeitouni

11. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems, vol. 36, pp. 19:1–19:45. ACM,
New York (2011)

12. Vlachou, A., Vazirgiannis, M.: Ranking the sky: Discovering the importance of
skyline points through subspace dominance relationships, vol. 69, pp. 943–964.
Elsevier Science Publishers B. V., Amsterdam (2010)

13. Xia, T., Zhang, D., Tao, Y.: On skylining with flexible dominance relation. In: Pro-
ceedings of the IEEE 24th International Conference on Data Engineering (ICDE
2008), pp. 1397–1399 (2008)

14. Yang, J., Fung, G.P., Lu, W., Zhou, X., Chen, H., Du, X.: Finding superior sky-
line points for multidimensional recommendation applications, vol. 15, pp. 33–60.
Kluwer Academic Publishers, Hingham

Efficient XML Keyword Search:

From Graph Model to Tree Model

Yong Zeng1, Zhifeng Bao1, Tok Wang Ling1, and Guoliang Li2

1 National University of Singapore
2 Tsinghua University

Abstract. Keyword search, as opposed to traditional structured query,
has been becoming more and more popular on querying XML data in re-
cent years. XML documents usually contain some ID nodes and IDREF
nodes to represent reference relationships among the data. An XML doc-
ument with ID/IDREF is modeled as a graph by existing works, where
the keyword query results are computed by graph traversal. As a compar-
ison, if ID/IDREF is not considered, an XML document can be modeled
as a tree. Keyword search on XML tree can be much more efficient using
tree-based labeling techniques. A nature question is whether we need to
abandon the efficient XML tree search methods and invent new, but less
efficient search methods for XML graph. To address this problem, we
propose a novel method to transform an XML graph to a tree model
such that we can exploit existing XML tree search methods. The exper-
imental results show that our solution can outperform the traditional
XML graph search methods by orders of magnitude in efficiency while
generating a similar set of results as existing XML graph search methods.

1 Introduction

Keyword search, as opposed to traditional structured query, has been becom-
ing more and more popular on querying XML data in recent years. Users are
free from learning the query language and XML schema by simply using some
keywords to query the XML data. It attracts a lot of research efforts recently
[9,7,13,14,2]. For example, Figure 1 shows an XML document about a company
with project, part and supplier. Each node is assigned a unique Dewey label [12].
To know the price of a part p1, users can simply issue a keyword query Q=“p1
price” without knowing the schema or any query language (e.g., XPath).

XML documents usually contain some ID nodes and IDREF nodes to rep-
resent reference relationships among the data. For example, in Figure 1, every
part used by each project has a reference indicating its supplier. An XML docu-
ment with ID/IDREF is usually modeled as a digraph, where the keyword query
results are usually computed by graph traversal [9,5,10,8]. Then the problem is
reduced to the problem of finding Minimal Steiner Tree (MST) or its variants
in a graph, where an MST is defined as a minimal subtree containing all query
keywords in either its leaves or root. Since this problem is NP-complete [6], a lot
of works are interested in finding the “best” answers of all possible MSTs, i.e.
finding top-K results according to some criteria, like subtree size, etc.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 25–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 Y. Zeng et al.

project
0.0

company
0

supplier
0.12

s id
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
R ef

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
R ef

0.0.2.3

...

...

phone
0.12.2

62358

...

containment edge

reference edge

Fig. 1. An Example XML Document (with Dewey Labels)

As a comparison, if we do not consider ID/IDREF, an XML document can be
modeled as a tree. Keyword search on an XML tree can be much more efficient
based on the tree structure. The results are defined as minimal subtrees contain-
ing all query keywords, which is actually a variant of MST adapted to XML tree.
Because in a tree, finding an MST for a set of nodes reduces to finding the lowest
common ancestor (LCA) of that set of nodes, which can be efficiently addressed
by node label computation. For example, if we do not consider the ID/IDREF
in Figure 1, given a query Q=“p1 price”, a node labeled 0.0.1.0 matches key-
word “p1” and another node labeled 0.0.1.2 matches keyword “price”, then the
MST connecting these two nodes is actually the subtree rooted at their lowest
common ancestor (LCA), i.e. node 0.0.1. Calculating the LCA simply requires
calculating the common label prefix of those two nodes, i.e. 0.0.1 is the prefix of
0.0.1.0 and 0.0.1.2. It is very efficient and does not need any graph traversal.

There are abundant efficient XML tree search methods available, which ef-
ficiently calculate the query results based on node labels rather than graph
traversal. They build inverted lists of query keywords, in the form of (keyword :
dewey1, dewey2, dewey3, ...), where deweyi represents the label of a node con-
taining the keyword.

XML graph is indeed a tree with a portion of reference edges. This observation
offers a great opportunity to accelerate keyword search on XML graph. In this
paper, instead of adopting traditional graph search methods, we propose a novel
approach to transform an XML graph to a tree model, such that we can exploit
XML tree search methods to accelerate query evaluation. The rest of the paper is
organized as follows. We present the related work in Sec. 2. Preliminaries are in
Sec. 3. We discuss how to transform an XML graph to a tree model for efficient
query evaluation in Sec. 4 and how it works on complex reference patterns in
Sec. 5. Further extension of our approach is in Sec. 6. The algorithm is presented
in Sec. 7. Experiments are in Sec. 8 and we conclude in Sec. 9.

2 Related Work

XML Graph Keyword Search. An XML graph can be modeled as a digraph
[9]. Keyword search on a graph is usually reduced to the Steiner Tree problem or
its variants: given a graph G = (V,E), where V is a set of nodes and E is a set of

Efficient XML Keyword Search: From Graph Model to Tree Model 27

edges, a keyword query result is defined as a minimal subtree T in G such that
the leaves or the root of T contain all keywords in the query. The Steiner tree
problem is NP-complete [6], and many works are interested in finding the “best”
answers of all possible Steiner trees, i.e. finding top-K results according to some
criteria, like subtree size, etc. Backward expanding strategy is used by BANKS
[4] to search for Steiner trees in a graph. To improve the efficiency, BANKS-II
[10] proposed a bidirectional search strategy to reduce the search space, which
searches as small portion of graph as possible. Later [5] designed a dynamic
programming approach (DPBF) to identify the optimal Steiner trees containing
all query keywords. BLINKS [8] proposes a bi-level index and a partition-based
method to prune and accelerate searching for top-k results in graphs. XKeyword
[9] presented a method to optimized the query evaluation by making use of the
graph’s schema in XML. [3] proposed an object-level matching semantics on
XML graph based on the assumption that the object information is given.

XML Tree Keyword Search. In XML tree, LCA (lowest common ancestor)
semantics is first proposed and studied in [7] to find XML nodes, each of which
contains all query keywords within its subtree. For a given query Q = {k1,...,kn}
and an XML document D, Li denotes the inverted list of ki. Then the LCAs of
Q on D are defined as LCA(Q)={v | v = lca(m1, ...,mn), vi ∈ Li(1 ≤ i ≤ n)}.
Subsequently, SLCA (smallest LCA [13]) is proposed, which is indeed a subset
of LCA(Q), of which no LCA in the subset is the ancestor of any other LCA.
ELCA [7,14], which is also a widely adopted subset of LCA(Q), is defined as: a
node v is an ELCA node of Q if the subtree Tv rooted at v contains at least one
occurrence of all query keywords, after excluding the occurrences of keywords in
each subtree Tv′ rooted at v’s descendant node v′ and already contains all query
keywords. [2] proposed a statistical way to identify the search target candidates.
Recently, more efficient algorithms have been proposed for SLCA and ELCA
computation based on hash index [16] and set intersection operation[15].

3 Preliminaries

3.1 Data Model

We model an XML graph as a digraph, where each node of the graph corresponds
to an element of the XML data, with a tag name and (optionally) some value.
Each containment relationship between a parent node a and a child node b in
the XML data corresponds to a containment edge in the digraph, represented as
a → b. Each ID/IDREF reference in the XML data corresponds to a reference
edge in the digraph, represented as a ��� b, where a is the IDREF node and b is
the ID node. Thus an XML graph is denoted as G = (V,E,R), where V is a set
of nodes, E is a set of containment edges and R is a set of reference edges.

We use Tn to denote the query result rooted at node n. A node n is usually
represented by its label or tag:label, where tag is the tag name of n. To accelerate
the keyword query processing on XML tree model, existing works adopt the
dewey labeling scheme [12], as shown in Figure 1.

28 Y. Zeng et al.

3.2 Reference Types

If the reference edges are not considered, an XML graph will reduce to an XML
tree. There are three types of reference edges in an XML graph: basic references
(as mentioned in our data model), sequential references and cyclic references.
When an object a references an object b, while b also references a third object
c, sequential references occur. Cyclic references happen when containment edges
and reference edges form a cycle in an XML graph.

4 Transforming Query Processing over XML Graph to
XML Tree

In order to fully exploit the power of tree search methods over the XML digraph,
we realize two challenges to tackle: (1) how to transform an XML graph to a
proper tree model, which can work with different reference patterns; (2) how to
apply existing tree search techniques onto such a tree model. We start addressing
these challenges by focusing on the case of basic references first, then discuss how
the proposed solution can handle sequential and cyclic cases in Sec. 5.

4.1 Real Replication

As shown in Figure 1, every IDREF node in an XML graph points to a particular
object with a unique ID value. An object is in the form of a subtree. Therefore, a
straightforward yet naive transformation is to just to make a real replication of
all such subtrees being referenced. For every reference edge a ��� b in the XML
graph, we make a replication of the subtree Tb rooted at b and put it under a.
Figure 2 shows a transformed XML tree based on the XML graph in Figure 1,
where the subtrees in dotted circles are the replication of the subtree T0.12.

The transformed XML tree is identical to the original XML graph in the sense
that they can infer each other. As a result, any existing keyword search method
designed for XML tree can be applied on it without any change.

However, even though the real replication approach can work well for the case
of basic references, it is not usable in practice because:

project
0.0

company
0

supplier
0.12

s id
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
R ef

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
R ef

0.0.2.3

...

...

phone
0.12.2

62358

...

s id
0.0.1.3.0

name
0.0.1.3.1

s001 Alps

phone
0.0.1.3.2

62358

sid
0.0.2.3.0

name
0.0.2.3.1

s001 Alps

phone
0.0.2.3.2

62358

Fig. 2. Naive Method: Real Replication

Efficient XML Keyword Search: From Graph Model to Tree Model 29

– The number of nodes will increase due to the replication of subtrees. We
will show in Sec. 5 that, in the worse case, the number of nodes will increase
exponentially for the case of sequential references and cyclic references. The
space cost is unacceptable in practice.

– Some duplicate results may be generated (as shown in Example 1).

Example 1. If we issue a query Q=“Alps phone” to find the phone number of
supplier Alps in Figure 1, the real replication method will get the transformed
XML tree in Figure 2 and do the keyword search on it. By ELCA search method,
we get three results: Tsupplier:0.12, TsupplierRef :0.0.1.3 and TsupplierRef :0.0.2.3 re-
spectively. The last two results, which are the same as the first one, are actually
redundant. Because they are found within the replicated subtrees, while the same
results should have already been found in the original subtree. �

4.2 Virtual Replication

As discussed in the previous section, real replication is not usable in practice.
From Example 1 we observe that, a result is redundant if it is found within
the replicated subtrees, because it must have been found in the original subtree
as well. Thus, a result is non-redundant only if the root of the result is not
within any replicated subtree. Based on this observation, we find that the cost
of replicating the subtrees is not necessary because we do not need to search
within any replicated subtree.

Instead, we propose to use a special node, i.e. the IDREF node, to virtually
represent the whole replicated subtree (without inducing any new node), which is
able to find the same set of non-redundant results as the real replication method.
This is what we call virtual replication. For instance, Figure 3(a) shows the
idea of using one node to represent the whole replicated subtree. As compared
to Figure 2 of real replication, here we use node supplierRef:0.0.1.3 in Figure
3(a) to represent the whole replicated subtree under it.

project
0.0

company
0

supplier
0.12

s id
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
R ef

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
R ef

0.0.2.3

...

...

phone
0.12.2

62358

...

represent the same
subtree rooted at

0.12

represent the same
subtree rooted at

0.12

(a) Part 1: XML tree (b) Part 2:
Reachability Table

Fig. 3. Advanced Method: Virtual Replication (Two Parts)

30 Y. Zeng et al.

Example 2. For a query Q=“Alps part” in Figure 2, the real replication method
will get the following results: Tpart:0.0.1 and Tpart:0.0.2. These two results are
non-redundant because their roots, part:0.0.1 and part:0.0.2, are not within any
replicated subtree.

Now by virtual replication, keyword “Alps” will no longer match the node
0.0.1.3.1 and 0.0.2.3.1 in Figure 2. Instead, it will match two IDREF nodes
0.0.1.3 and node 0.0.2.3 in Figure 3(a), because we use these two IDREF nodes
to represent the whole replicated subtrees. But the final results are still the same:
(1) Tpart:0.0.1, which is computed from node 0.0.1.3 (matching keyword “Alps”)
and node 0.0.1 (matching keyword “part”) in Figure 3(a); (2) Tpart:0.0.2, which
is computed from node 0.0.2.3 (matching keyword “Alps”) and 0.0.2 (matching
keyword “part”). �

In this manner, we do not induce any new node while it is able to get the same
set of non-redundant results as the real replication method. A proof can be seen
at Appendix (section 10).

In order to know which IDREF node represents which subtree, we need a
data structure to keep track of the information that which subtree will be repli-
cated under which IDREF node. For such a purpose, we maintain a table called
reachability table, as shown in Figure 3(b). The table is based on a concept
called reachable.

Definition 1. Reachable. Given an IDREF node n, if there is a directed path
from n to a node m in the XML graph, where the last edge of the path is an
reference edge, then we say m is a reachable ID node of n.

Example 3. Given the XML graph in Figure 1, we can find that from the IDREF
node 0.0.1.3, there is a directed path from it to node 0.12, where the path ends
with a reference edge. So node 0.12 is a reachable ID node for node 0.0.1.3.
Similarly, node 0.12 is a reachable ID node for node 0.0.2.3. �

For every pair of (IDREF node, reachable ID node), we store it as a tuple into
a table called reachability table, indexed by the attribute “reachable ID node”.
Every pair of (IDREF node, reachable ID node) means the subtree rooted at the
reachable ID node will be replicated under the IDREF node. E.g., the reachability
table inferred from the XML graph in Figure 1 is shown in Figure 3(b). The
reachability table can be computed offline by a breadth-first search based on
each node and the algorithm is presented in Sec. 7.

4.3 Query Evaluation

So far we have completed the transformation from an XML graph to an advanced
tree model. Given an XML graph G = (V,E,R), we transform G to a novel tree
model consisting of two parts:

1. An XML tree GT = (V,E, ∅), which is exactly the same as G with all the
reference edges dropped.

Efficient XML Keyword Search: From Graph Model to Tree Model 31

2. A reachability table table, which maintains the information of which subtree
will be virtually replicated under which IDREF node.

Now, we will present how to make an efficient keyword query evaluation based
on our transformed tree model.

As discussed in Sec. 1, existing keyword search methods on XML tree do not
traverse the tree to search query results. Instead, they compute results based
on nodes’ labels, e.g., the dewey label. Such labels are stored in an inverted list
index in form of keyword : dewey1, dewey2, dewey3, ..., where deweyi represents
a node containing the keyword. Any LCA-based keyword search method for XML
tree will build such an index. Given a keyword query Q = {k1, k2, ..., kn}, they
will retrieve an inverted list for each keyword ki, and then compute the results
based on the inverted lists.

Similarly, after we transform an XML graph to tree model in virtual replica-
tion, we will also build such an inverted list index. Our tree model consists of
an XML tree and a reachability table. The inverted list index will be built on
the XML tree, while later the reachability table will help to expand the inverted
lists to handle ID/IDREF.

With the index ready, we exploit the existing XML tree keyword search meth-
ods and evaluate a keyword query on our tree model in three steps:

1. Retrieve the inverted lists for each keyword in a query.
2. Expand the inverted lists retrieved in step 1.
3. Apply an existing XML tree keyword search method to the expanded in-

verted lists.

Step 1. Given a query Q = “k1k2...kn”, one inverted list will be retrieved
from the index for each keyword. E.g., given a query Q=“Alps part”, based on
our tree model in Figure 3, we will first retrieve the inverted lists as follows:
“Alps” : 0.12.1
“part” : 0.0.1, 0.0.2, ...

Take note that the keyword “Alps” only matches one node, i.e. 0.12.1, because
the inverted list is built on the XML tree in Figure 3(a). So in this step, we only
find out the nodes in the XML tree matching the keywords before replication.

Step 2. With the help of the reachability table, we will try to find out whether
there is any node in the replicated subtree matching the keywords as well. We
can do it in the following way: for each dewey label retrieved in step 1, we check
each of its ancestors to see whether the ancestor appears in the reachable ID
node column of the reachability table. If yes, we add the corresponding IDREF
nodes to the inverted list.

E.g., for the dewey label 0.12.1 retrieved in step 1 in the above example,
0.12.1 has two ancestor (prefix): 0.12 and 0. We can find that its ancestor 0.12
appears in the Reachable ID node column of the reachability table in Figure
3(b). This means the subtree T0.12 is reachable by some IDREF nodes and it
should be replicated under those IDREF nodes. So the keyword should match
those IDREF nodes as well. Then we add the corresponding IDREF nodes to
the inverted list. But its ancestor 0 does not appear in the Reachable ID node

32 Y. Zeng et al.

column. After that, the expanded inverted list will be:
“Alps” : 0.0.1.3, 0.0.2.3, 0.12.1

After we do the same thing to the “part” inverted list, it will become:
“part” : 0.0.1, 0.0.2, ...

The reachability table is organized in a B+ tree and indexed by the column
Reachable ID node. So given the dewey label of a reachable ID node, the corre-
sponding IDREF nodes can be retrieved efficiently.

Step 3. After step 2, the final inverted lists are ready. Now we can apply
any existing keyword search methods designed for XML tree, like SLCA, ELCA,
etc., as all of them operate on the inverted lists for result computation.

5 Sequential References and Cyclic References

Section 4 presents our solution on transformation and query evaluation to basic
references case, and in this section we would like to discuss how they are capable
of handling the cases of sequential references and cyclic references as well.

5.1 Sequential References

In this case, e.g. in Figure 4(a), to make a complete replication, the subtree
rooted at employee:0.88 should be replicated not only under managerRef:0.12.2,
but also supplierRef:0.0.1.3. Therefore, if we adopt the real replication approach
in Sec. 4.1, the number of nodes may increase exponentially because each object
in the sequential references could have multiple references to some other objects.

For the virtual replication in Sec. 4.2, we do not need to induce any new nodes
into the XML graph. For the XML graph in Figure 4(a), according to Definition
1, we just construct a reachability table as shown in Figure 4(b). E.g., there is a
directed path from supplier:0.0.1.3 to employee:0.88, where the path ends with
a reference edge. So node 0.88 is a reachable ID node for node 0.0.1.3.

5.2 Cyclic References

In the case of cyclic references, our reachability concept in Definition 1 is still
able to handle it. E.g., in Figure 5(a), there is a directed path from node au-
thorRef:0.0.3 to node author:0.12, where the path ends with a reference edge.

project
0.0

company
0

supplier
0.12

sid
0.12.0

name
0.12.1

s001

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

name
0.0.0

sunfire
0.0.0.0

...

...

Manager
R ef

0.12.2

...

supplierRef
0.0.1.3

employee
0.88

eid
0.88.0

age
0.88.1

e009 34Alps

(a) XML Graph with Sequential References (b) Its Reachability
Table

Fig. 4. Constructing Reachability Table for Sequential References

Efficient XML Keyword Search: From Graph Model to Tree Model 33

book_club
0

author
0.12

name
0.12.0

gender
0.12.1

Bill Gates male

book
0.0

title
0.0.0

The R oad
Ahead

year
0.0.1

1995

publisher
0.0.2

Viking
Books

authorR ef
0.0.3

...

genre
0.12.2

...

recommend
0.12.3

C omputer

(a) XML Graph with Cyclic References (b) Its Reachability
Table

Fig. 5. Constructing Reachability Table for Cyclic References

So node 0.12 is a reachable ID node for node 0.0.3. There is also a path from
node authorRef:0.0.3 to node book:0.0, where the path ends with a reference
edge. So node 0.0 is also a reachable ID node for node 0.0.3. So we will have a
reachability table shown in Figure 5(b), and we can find that every ID node in
a cycle is reachable by all the IDREF nodes in that cycle.

5.3 Reachability Table Space Complexity

Let the number of IDREF nodes in an XML graph be L, where each IDREF
node corresponds to one reference edge, then there could be at most L different
ID nodes which are referenced by a reference edge. In the worst case, if every
IDREF node can reach all these L ID nodes, then the space complexity is O(L2)
in the worst case. The worst case only happens when all the ID/IDREF nodes
forms a big cycle. Furthermore, the L IDREF nodes only occupy a small portion
of all nodes in an XML graph in practice (around 5% in real-life data set in
our experiments in Sec. 8). This is because every IDREF node must belong to
a particular object in the XML, and the attribute information of an object, like
ID, name, etc., can only be described by non-IDREF nodes.

6 Further Extension and Optimization

6.1 Removing Unnecessary Checking of the Reachability Table

For query evaluation on our transformed XML tree model, we need to expand
the inverted lists by checking the reachability table. However, we find that many
of the checking is unnecessary. E.g., given the reachability table in Figure 3(b)
and the following inverted lists to be expanded: “Alps” : 0.12.1 and “part” :
0.0.1, 0.0.2,

As discussed in Sec. 4.3, in step 2 we need to check the ancestor of each dewey
label to see whether their ancestors appear in the Reachable ID node column of
the reachability table. But the ancestors of 0.0.1, 0.0.2, ... do not appear in that
column, thus the checking is in vain. To avoid unnecessary checking, we can add
a check bit to each dewey label in the inverted list index, indicating whether we

34 Y. Zeng et al.

need to check such a dewey in the reachability table. E.g., the above inverted
lists will become “Alps” : 0.12.1(true) and “part” : 0.0.1(false), 0.0.2(false),

Now we only need to check those dewey labels with the check bit being true.
Only the ancestors of 0.12.1 will be checked in reachability table. Such a check
bit can be computed during offline by checking whether the ancestors of each
dewey label appear in the Reachable ID node column of the reachability table.

6.2 Adding Distance to Reachability Table

Some of the XML tree keyword search methods need to rank the query results by
some criteria. For example, one of the common criteria is the size of the results.
It is usually measured by the sum of path length from the result root to each
match node. To meet such a need, we can extend our virtual replication method
(in Sec. 4.2) by adding a column called distance to the reachability table. The
distance value records the distance from the IDREF node to the reachable ID
node. If an IDREF node can reach a reachable ID node by more than one paths,
we record the distance of the shortest one. Because substructure with minimal
size is in favor in both XML tree search and XML graph search.

Take the reachability table in Figure 4(b) as an example. We can extend
the table with a distance column and the distance values for the the three
tuples are 1, 3 and 1 respectively. For the second tuple, the distance value
is 3 because the IDREF node supplierRef:0.0.1.3 need to go through a path
0.0.1.3���0.12→0.12.2���0.88 to the reachable ID node employee:0.88. The
length of such a path is 3.

When we measure the path length from a result root to a match node of
a keyword, it consists of three parts: (1) distance from the result root to the
IDREF node; (2) distance from the IDREF node to the reachable ID node;
(3) distance from the reachable ID node to the match node. The first and the
third part can be found in the XML tree, the second part can be found in the
reachability table distance column. E.g., given a result root part:0.0.1 and a
match node eid:0.88.0, the distance from the result root to the match node is
the sum of three parts: (1) distance from part:0.0.1 to supplierRef:0.0.1.3 is 1;
(2) distance from supplierRef:0.0.1.3 to employee:0.88 is 3, which can be found
in the reachability table distance column; (3) distance from employee:0.88 to
eid:0.88.0 is 1. Therefore the total path length is 5.

7 Algorithms

In this section, we present Algorithm 1 to transform an XML graph to our tree
model, which consists of an XML tree and a reachability table.

Given an XML graph, the XML tree part can be easily generated by removing
all the reference edges (line 17). The main task here is to generate the reachability
table. We will first assign a dewey label to each node in the XML graph (line 3).
Then based on each IDREF node n in the XML graph (line 4), we do a breadth-
first search to explore the reachable ID nodes until no more new ID node can be

Efficient XML Keyword Search: From Graph Model to Tree Model 35

further explored (line 5-14). The first node to be explored is the ID node being
referenced by n and it will be pushed to a queue (line 5-6). The ID nodes which
have been visited will be stored in a set (line 7). Each time we will take a node
from the queue to explore until there is no more node in the queue (line 8-9).
If the node taken from the queue is not visited before (line 10), we will visit it
and mark it as explored (line 11). Then we will further explore within the node.
For each IDREF node within it (line 12), we will add the corresponding ID node
to the queue (line 13-14), which stores the nodes waiting to be explored. This
process will terminate until no more node to explore (line 8). Finally, it will add
all reachable ID nodes to the reachability table (line 15-16).

For the algorithm of doing query evaluation based on our tree model, it is
similar to the 3 steps discussed in Sec. 4.3 and existing XML tree search algo-
rithms can be easily found in the literature [13,14]. So the pseudo code will be
omitted here.

Algorithm 1. transformXMLGraphToTree(XT)

input : XML Graph XG
output: Transformed XML Tree XT and reachability table RT

1 // Construct reachability table
2 Table RT ;
3 assignDeweyLabel(XG); //regardless of reference edges
4 foreach IDREF node n ∈ XG do
5 np = the ID node which n references to;
6 Queue nodesToExplore={np};
7 Set exploredNodes = {∅};
8 while nodesToExplore �= ∅ do
9 v = nodesToExplore.removeFirst();

10 if exploredNodes.notContains(v) then
11 exploredNodes = exploredNodes ∪ v;
12 foreach IDREF node m ∈ the subtree rooted at v do
13 mp = the node which m references to;
14 nodesToExplore.add(mp);

15 foreach node r ∈ exploredNodes do
16 RT .addTuple(n.dewey, r.dewey);

17 XT = removeAllReferenceEdges(XG); // Generate the XML tree
18 return XT and RT ;

8 Experiments

In this section, we present the experimental results comparing our approach with
two graph-search-based methods. One is XKeyword [9], which is dedicated for
XML graph by making use of the XML schema. Another one is BLINKS [8],
which is one of the most efficient pure graph search method so far by building a
bi-level index.

Experimental Settings. All algorithms are implemented in Java. The exper-
iments were performed on a 2.83GHz Core 2 Quad machine with 3GB RAM

36 Y. Zeng et al.

running 32-bit windows 7. Berkeley DB Java Edition [1] is used to organize our
reachability table in a B+ tree and store the inverted lists. MySQL [11] is used
to support XKeyword. BLINKS does not need any database support since it is
an in-memory approach.

Data Set. To test the real impact of the keyword search methods, we use
a 200MB subset of real-life XML data set with ID/IDREF, ACMDL 1 , in
our experiments. It contains publications from 1990 to 2001 indexed by the
ACM Digital Library. There are 38K publications and 253K citation (as IDREF)
among the publications. Totally 4.5M XML nodes and 4.8M XML edges are
included. We can see that IDREF nodes (253K) are 5% of all XML nodes.

8.1 Comparing the Results

There are abundant search methods available designed for XML tree. Here we
adopt one of them, i.e. ELCA [14], to work on our transformed tree model. Most
of the XML tree methods focus on finding a meaningful subset of all possible
results with regard to users’ search intention. However, studying whether these
subset of results are meaningful regarding users’ search intention is not the main
focus of this paper. So here we study the similarity between the subset found by
tree methods and the subset found by graph methods in terms of result overlap
rather than users’ search intention.

We generate 100 random queries with two keywords, three keywords, four
keywords and five keywords respectively. For each group of queries, we compare
the top-20 results found by XKeyword and BLINKS on the original XML graph,
to the top-20 results found by ELCA on our transformed tree model. For a
fair comparison, all results are ranked by the size of the corresponding Minimal
Steiner Tree, i.e. the sum of the path length.

Table 1 shows the average result overlap between our approach and the graph
methods, which is calculated as (# of same results in top-20)/20. Two results
are the same only if the root and each match node are the same.

Table 1. Result Overlap Between Our Approach and Graph Methods

Graph Methods XKeyword BLINKS
keywords 2 3 4 5 2 3 4 5

Average Result Overlap 77.9% 83.0% 85.4% 82.9% 92.1% 89.0% 90.5% 91.2%

As we can tell from Table 1, averagely 16 out of top-20 results are the same
between our approach and XKeyword, while averagely 18 out of top-20 results
are the same between our approach and BLINKS. Because XKeyword sets a
maximum result size to constraint the search space, sometimes it finds less than
20 results. Therefore the result overlap is smaller.

1 Thanks to Craig Rodkin at ACM Headquarters for providing the ACMDL dataset.

Efficient XML Keyword Search: From Graph Model to Tree Model 37

8.2 Performance

Next we will study the performance of our approach with the transformed tree
model. XML tree search methods can be very efficient. E.g., ELCA can compute
the results by linearly scanning the inverted lists. Here we will compare our
approach with two graph search methods, XKeyword and BLINKS. However,
BLINKS is an in-memory approach, which throws out-of-memory errors when
handling the ACMDL date set. In order to be able to compare the performance
of these three approaches, we have to downgrade the data set size to 45MB,
which is the maximum data size BLINKS can handle on our machine. Later we
will compare on the full data set with only our approach and XKeyword.

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(a) keyword frequency 10

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(b) keyword frequency
100

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(c) keyword frequency
1000

Fig. 6. Query Execution Time (45MB data Size)

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(a) keyword frequency 10

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(b) keyword frequency
100

 1

 10

 100

 1000

 10000

 100000

 1e+006

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(c) keyword frequency
1000

Fig. 7. Query Execution Time (200MB Data Size)

Figure 6 shows the execution time of the three approaches. Our approach
performs a full ELCA computation while XKeyword and BLINKS perform a top-
20 results computation. We generate 100 random queries for each combination of
keyword frequency and # of keywords. We can see that our approach outperforms
XKeyword by orders of magnitude. This is because XKeyword stores the node
information in relational tables to accommodate very large graphs, then the
results computation is based on table join. Although schema information can
help prune some search space, it is still not efficient.

38 Y. Zeng et al.

For BLINKS, our approach is faster than it by an order of magnitude when
keyword frequency is 100 or 1000. But our approach runs neck and neck with
BLINKS when the frequency is around 10. We find that this is because BLINKS
is an in-memory approach, which loads the whole graph into memory and does
not need to access disk during the whole query evaluation. Yet it is not scalable
to large data set. With 1.5 GB heap size assigned to JVM on our machine,
45MB is the maximum data size it can handle without out of memory. For our
approach, we store the inverted lists and reachability table in database, so the
disk access dominates the query evaluation time when keyword frequency is low.

Now we will compare XKeyword and our approach on the full data set. Figure
7 shows the experiment results. As we can see, our approach is still orders of
maganitude faster than XKeyword on full data set. Comparing Figure 7 to Figure
6, we find that XKeyword consumes more time even the keyword frequency in
a query is the same. This is because XKeyword is based on table join. Larger
data set will lead to larger tables. Therefore XKeyword requires more time to
join the tables for results regardless of keyword frequency.

9 Conclusion

In this paper, we observed that an XML graph is mainly a tree structure with
a portion of reference edges. It motivated us to proposed a novel method to
transform an XML graph with ID/IDREF to a tree model, such that we can
exploit abundant efficient XML tree search methods. We transform an XML
graph to a tree model by virtually replicating the subtrees being referenced. Our
tree model consists of an XML tree and a reachability table, which is capable
of handling different kinds of reference patterns in an XML graph. We also
designed a query evaluation framework based on our tree model. It can work
with the existing XML tree search methods. The experimental results show that
our approach is orders of magnitude faster than the traditional search methods
on XML graph.

10 Appendix

We declare: Virtual Replication will find the same set of non-redundant results
as Real Replication.

Proof. (a ≺ b denotes that node a is an ancestor of b. a � b denotes that a ≺ b or
a = b.) Step 1: to prove that every non-redundant result found by real replication
can also be found by the virtual replication. Let any non-redundant result found
by the real replication be Tr, which is a subtree rooted at node r. It should be an
LCA of a set of nodes Mreal = {n1, n2, ..., nk, n̂1, , n̂2, ..., n̂l} matching the query
keywords, where n̂j is a match node appearing in a replicated subtree and ni is
a match node not in any replicated subtree. Each match node corresponds to a
keyword in the query. The LCA relationship can be represented as two properties:
① r � ni(1 ≤ i ≤ k), r � n̂j(1 ≤ j ≤ l); ② �r′ ≺ r s.t. r′ � ni(1 ≤ i ≤ k)

Efficient XML Keyword Search: From Graph Model to Tree Model 39

and r′ � n̂j(1 ≤ j ≤ l). In the virtual replication method, suppose we use an

IDREF node N̂j to represent the replicated subtree which n̂j is in, we have ③

N̂j � n̂j . Then we can prove that the same result Tr can also be calculated based

on the following set of match nodes Mvirtual = {n1, n2, ..., nk, N̂1, , N̂2, ..., N̂l}.
Formally, we need to prove r is the LCA of Mvirtual. Since Tr is a non-redundant
result, we have ④ r ≺ N̂j(1 ≤ j ≤ l). So from ① and ④, we have ⑤ r � ni(1 ≤ i ≤
k), r � N̂j(1 ≤ j ≤ l). Next we need to prove ⑥ �r′ ≺ r s.t. r′ � ni(1 ≤ i ≤ k)

and r′ � N̂j(1 ≤ j ≤ l) by contradiction. If ⑥ is not true, with ③ we can infer

that ∃r′ ≺ r s.t. r′ � ni(1 ≤ i ≤ k) and r′ � N̂j � n̂j(1 ≤ j ≤ l), which
contradicts with ②. So with ⑤ and ⑥ being true, r is the LCA of Mvirtual as
well. Step 1 is finished. Step 2: to prove that every non-redundant result found
by virtual replication can also be found by real replication. The proof is similar
to step 1, which is omitted here due to space limitation. �

References

1. Berkeley, D.B.: http://www.sleepycat.com
2. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective XML keyword search with relevance

oriented ranking. In: ICDE (2009)
3. Bao, Z., Lu, J., Ling, T.W., Xu, L., Wu, H.: An effective object-level XML keyword

search. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010.
LNCS, vol. 5981, pp. 93–109. Springer, Heidelberg (2010)

4. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE (2002)

5. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: ICDE (2007)

6. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks (1971)
7. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword

search over XML documents. In: SIGMOD (2003)
8. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs.

In: SIGMOD (2007)
9. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on

XML graphs. In: ICDE 2003 (2003)
10. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar,

H.: Bidirectional expansion for keyword search on graph databases. In: VLDB
(2005)

11. MySQL, http://www.mysql.com
12. Vesper, V., http://www.mtsu.edu/vvesper/dewey.html
13. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML

databases. In: SIGMOD (2005)
14. Xu, Y., Papakonstantinou, Y.: Efficient LCA based keyword search in XML data.

In: EDBT (2008)
15. Zhou, J., Bao, Z., Wang, W., Ling, T.W., Chen, Z., Lin, X., Guo, J.: Fast SLCA

and ELCA computation for XML keyword queries based on set intersection. In:
ICDE (2012)

16. Zhou, R., Liu, C., Li, J.: Fast ELCA computation for keyword queries on XML
data. In: EDBT (2010)

http://www.sleepycat.com
http://www.mysql.com
http://www.mtsu.edu/vvesper/dewey.html

Permutation-Based Pruning
for Approximate K-NN Search

Hisham Mohamed and Stéphane Marchand-Maillet

Université de Genève, Geneva, Switzerland
{hisham.mohamed,stephane.marchand-maillet}@unige.ch

Abstract. In this paper, we propose an effective indexing and search algorithms
for approximate K-NN based on an enhanced implementation of the Metric Suffix
Array and Permutation-Based Indexing. Our main contribution is to propose a
sound scalable strategy to prune objects based on the location of the reference
objects in the query ordered lists. We study the performance and efficiency of our
algorithms on large-scale dataset of millions of documents. Experimental results
show a decrease of computational time while preserving the quality of the results.

Keywords: Metric Suffix Array (MSA), Permutation-Based Indexing, Approxi-
mate Similarity Search, Large-Scale Multimedia Indexing.

1 Introduction

Searching for similar objects in a database is a fundamental problem for many applica-
tions, such as information retrieval, visualization, machine learning and data mining.

In metric spaces [1], several techniques have been developed for improving the per-
formance of searching, by decreasing the number of direct distance calculations [1].
One of the recent techniques is the permutation-based indexing [2,3]. The idea behind
it is to represent each object by a list of permutations of selected neighboring items (ref-
erence points). The similarity between any two objects is then derived by comparing the
two corresponding permutation lists. In this work, we propose an enhanced implemen-
tation of the Metric Suffix Array (MSA) proposed in [4] which is one of the recent data
structure for permutation based-indexing. In [4], regardless of the number of permuta-
tions, the number of objects, and the number of K-NN which need to be retrieved, the
complete MSA has to be scanned in order to retrieve the most promising results. Here,
we propose an enhanced implementation of the MSA to avoid scanning the complete
MSA. The main idea is to prune cells representing objects that have a high difference
in their permutations ordering. Hence, only a small part of the array is scanned, which
improves the running time. In addition, we propose different strategies for selecting the
reference points. To validate our claims, we test the enhanced MSA and the selection
strategies on a high dimensional large dataset containing several millions of objects.

The rest of the paper is organized as follows. Section 2 proposes a review of the
related work. In sections 3 and 4, we introduce our modeling for permutation-based
indexing and a formal justification for our proposed indexing and searching procedures.
Finally, we present our results in section 5 and conclude in section 6.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 40–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Permutation-Based Pruning for Approximate K-NN Search 41

2 Prior Work

The idea of permutation-based indexing was first proposed in [3,2]. Amato and Savino
[3] introduced the metric inverted files (MIF) to store the permutations in an inverted
file. Then, Mohamed and Marchand-Maillet [5] proposed three distributed implemen-
tation of the MIF. In [6], authors proposed the brief permutation index. The main idea
is to encode the permutation as a binary vector and to compare these vectors using the
Hamming distance. In [7], authors proposed the prefix permutation index (PP-Index).
PP-Index stores the prefix of the permutations only and the similarity between objects is
measured based on the length of its shared prefix. Furthermore, in [4] authors proposed
the MSA, which is a fast and an effective data structure for storing the permutations, by
saving half of the processing memory which is needed in [3,5,7]. The work presented in
this paper is based on [4] considered as current state of the art. We provide an enhanced
implementation of the MSA for fast and effective retrieval and we test it against [4].

3 Indexing Model

Permutation-based indexes aim to predict the proximity between elements according to
how they order their distances towards a set of reference objects [2,3].

Definition 1. Given a set of N objects oi, D = {o1, . . . , oN}, a set of reference objects
R = {r1, . . . , rn} ⊂ D, and a distance function which follows the metric space postu-
lates, we define the ordered list of R relative to o ∈ D, Lo, as the ordering of elements
in R with respect to their increasing distance from o:

Lo = {ri1 , . . . , rin} such that d(o, rij) ≤ d(o, rij+1) ∀j = 1, . . . , n− 1

Then, for any r ∈ R, P (Lo, r) indicates the position of r in Lo. In other words,
P (Lo, r) = j such that rij = r. Further, given n̄ > 0, L̄o is the pruned ordered
list of the n̄ first elements of Lo.

Figure 1(b) gives the pruned ordered lists L̄oi , where n̄ = 2, for D and R illustrated in
Figure 1(a).

(a) (b)

r3 r2 r3 r2 r3 r2 r2 r1 r1 r2 r2 r3 r1 r2 r1 r2S:
Index: 1 1615141312111098765432

MSA : 8 9 13 15 2 4 6 7 10 11 14 16 1 3 5 12

1 212121212121212
O1 O2 O3 O4 O5 O6 O7 O8

bukr1 bukr2 bukr3

(c)

r1

o2
r3

r2

o1 o3

o8 o7

o4

o5

q

o6

Fig. 1. a) White circles are data objects oi; black circles are reference objects rj ; the gray circle
is the query object q b) Pruned ordered lists L̄oi , n̄ = 2. c) Example of Metric Suffix Array and
buckets bj = bukrj

42 H. Mohamed and S. Marchand-Maillet

In K-NN similarity queries, we are interested in ranking objects (to extract the K
first elements) and not so much in the actual inter-object distance values. Permutation-
based indexing relaxes distance calculations by assuming that they will be approximated
in terms of their ordering when comparing the ordered lists of objects. Here, we consider
the Spearman Footrule Distance (dSFD) between ordered lists. Formally,

d(q, oi)
rank� dSFD(q, oi) =

∑
rj∈L̄q

rj∈L̄oi

|P (L̄q, rj) − P (L̄oi , rj)| (1)

To efficiently answer users queries, the Metric Suffix Array (MSA) was proposed in [4].
Independent of the number of reference points, objects or K-NN, the complete MSA
should be scanned in order to retrieve the most similar objects to the query. Here, we use
our rank-based approximation to postulate that objects having similar ordered lists as
the query (based on dSFD) are candidates similar objects, which we could filter by direct
distance calculation. Hence, as per Eq.(1), for a query q, if we organise the MSA cells
to characterise objects such that P (L̄q, rj) = P (L̄oi, rj), we can avoid accessing the
complete MSA to obtain the list C of candidate similar objects. We therefore propose
below an enhanced structure for the MSA to help reducing the searching time. We first
recall formally the construction of the MSA [4] .

Given all pruned ordered lists L̄oi , we construct S =
⋃N

i=1 L̄oi = {ri1 , . . . , riM },
where M = n̄.N . The set S can then be seen as a string of length M on the alphabet R.
A Metric Suffix Array Ψ acts like a Suffix Array [8,9,10] over S. More specifically, Ψ is
a set of M integers corresponding to the permutation induced by the lexical ordering of
all M suffixes in S ({rik , . . . , riM } ∀k ≤ M). In [4], the MSA is sorted into buckets.

Definition 2. A bucket for reference point rj is a subset of the MSA Ψ from position
bj . The bucket is identified to its position in Ψ so that bj ≡ Ψ[bj ,bj+1−1].

Bucket bj contains the positions of all the suffixes of S of the form {rj , . . . , riM }, i.e.
where reference point rj appears first.

For example, in Figure 1(c), the string S corresponding to the objects and reference
points shown in Figure 1(a) is given. The MSA Ψ is also shown. The bucket b2 for
reference point r2 (bukr2) contains the positions in S of suffixes starting by r2.

At query time, L̄q will be computed. From Eq.(1), we therefore need to characterise
the objects

{oi s.t rj ∈ L̄oi, ∀rj ∈ L̄q and P (L̄oi , rj) = P (L̄q, rj)}
The MSA along with buckets encodes enough information to recover the relationships
between an object oi and a given reference point rj . Given rj ∈ L̄q, we scan Ψ at
positions k ∈ [bj, bj+1 − 1] and determine i, and P (L̄oi , rj) from Ψk as follows:

i =

⌊
Ψk

n̄

⌋
+ 1 P (L̄oi , rj) = (Ψk mod n̄) + 1 (2)

Within each bucket bj , P (L̄oi , rj) ≤ n̄. In order to speed up further the scanning of

buckets, we sort them according to the value of P (L̄oi , rj). A sub-bucket b(l)j points to
objects oi such that P (L̄oi , rj) = l (see Figure 2(b)).

Permutation-Based Pruning for Approximate K-NN Search 43

4 Practical Setup

4.1 Indexing

Algorithm 1 details the indexing process. Line 1 builds the MSA using pruned lists
L̄oi . In lines 2-3, buckets are sorted based on P (L̄oi, rj) (Eq.(2)) using the quicksort
algorithm. All the suffixes representing the objects that have the same P (L̄oi , rj) are
located next to each other, which makes it easy to divide each bucket into n̄ sub-buckets
b
(l)
j (Line 4).

Algorithm 1
IN: Domain D of N , R of n ,n̄

OUT: The MSA Ψ with sub-buckets b(l)j

1. Build the MSA Ψ and buckets bj
2. For each rj ∈ R
3. quickSort(Ψ, bj , bj+1 − 1)

4. Define the sub-buckets b(l)j within each bucket bj

Theoretically, the indexing complexity is O(n̄η(1 + logη)), where η is the average size
of the sub-buckets (η ≤ N). The average memory usage is O(M + (n̄× n)).

4.2 Searching

Equation (1) measures the discrepancy in ranking from common reference objects be-
tween each object and the query. In practice, it can be simplified by counting the co-
occurrences of each object with the query in the same (or adjacent) sub-buckets. That
is, each object oi scores

si =
∣∣{rj ∈ L̄q such that (rj ∈ L̄oi and |P (L̄oi , rj) − P (L̄q, rj)) ≤ 1|}∣∣ (3)

Objects oi are then sorted according to their decreasing si scores. This sorted candidate
list provides an approximate ranking of the database objects relative to the submitted
query. This approximate ranking can be improved by direct distance calculation (DDC).
For a K-NN query, we apply DDC on the Kc = Δ × K first objects in our sorted
candidate list and call Δ > 1 the DDC factor. The effect of Δ is explored in our
performance evaluation (section 5). The search procedure is described in Algorithm 2.

Index: 1 1615141312111098765432
MSA : 8 9 13 15 2 4 6 7 10 11 14 16 1 3 5 12

121 21 21212 12 12 12
bukr1 bukr2 bukr3

1 1615141312111098765432
MSA : 9 13 15 8 7 11 2 4 6 10 14 16 1 3 5 12

subukr1 1 2 1 2 1 2subukr2 subukr3

Index:

(a)

(b)

Fig. 2. a) MSA sorted by bucket b) MSA sorted by sub-buckets

44 H. Mohamed and S. Marchand-Maillet

First L̄q is computed (line 1). For each rj ∈ L̄q, active sub-buckets are identified (line
3). For each object oi pointed, a count s[i] of co-occurrences is computed using (Eq.3)
(lines 4-5). Line 6 sorts the candidate list in decreasing order of their score (counters s).
Final DDC filtering is performed in lines 7-9.

Algorithm 2
IN: Query: q, R of n, MSA, b(l)j , s[0 . . . N]
OUT: Sorted Objects list: out
1. Create the query ordered list L̄q

2. For rj ∈ L̄q , l = P (L̄q, rj)

3. For k = b
(l)
j to b

(l+1)
j − 1

4. i =
⌊

Ψk
n̄

⌋
+ 1

5. s[i] = s[i] + 1
6. sort(s)
7. Kc = KNN ×Δ
8. C ← s[Kc]
9. out = calc distance(C,Kc, q)
10. sort(out)

Theoretically, the computational complexity to retrieve the Kc is O(2n̄η).

4.3 Reference Points Selection

In [3,7], the selection of R is done randomly, we name this strategy Random Selection
(RS). We propose three alternative strategies for selecting the reference points. The first
strategy is the distributed selection (DS). In DS, close reference points are neglected
based on a certain threshold value. Hence, if one of the new selected points is close to
an already selected point, the selection is ignored. Using this technique, we ensure that
the points are well-distributed over the database. That leads to a relevant encoding of
each object using the permutations. The second and the third strategies are based on the
k-mean algorithm for clustering. We call them post-clustering selection (PCS) and post-
clustering distributed selection (PCDS). The main idea behind the two strategies is that
the dataset is divided into a number of clusters to support the selection of the reference
points. For instance, if we need 1,000 reference points and we create 5 clusters, 200
reference points are selected from each cluster. We thus ensure that the objects located
in the same cluster have the same reference points as the primary items in their order
lists. This helps to improve the identification of the objects for eliminating unwanted
regions. The main difference between PCS and PCDS is that, PCDS, applies the DS
strategy inside each cluster. We ensure that even within each cluster the reference points
are not too close one to another. In section 5, we empirically compare the four strategies
(RS, DS, PCS, PCDS) and use the best strategy for the rest of our experiments.

5 Experimental Results

The average recall (RE), average position error (PE) [1], and average indexing and run-
ning time are measured and compared with that listed in [4]. All the experiments were

Permutation-Based Pruning for Approximate K-NN Search 45

done using 250 different queries that were selected randomly from the dataset. The sub-
bucket algorithm was implemented in C++. The experiments were done on a 2.70GHz
processor, with 128Gb of memory and 512GB storage capacity. Our conducted experi-
ments are based on a dataset of 5 millions visual shape features (21-dimensional), which
were extracted from the 12-million ImageNet corpus [11].

Selecting the reference points (R): Figures 3a and 3b show the average RE and PE for
the reference point selecting strategies (section 4.3) for 10 K-NN using MSA-Full [4].

The RS technique gives the lowest RE and the highest PE values. Using RS, there is a
high probability that some reference points are close one to another. That makes them at
the same distance from the objects, leading to inefficient encoding. DS gives a higher RE
and lower PE compared to the RS, as the objects are identified using equally distributed
reference points. For the PCS and the PCDS techniques, the dataset is clustered into 5
and 10 clusters. From the figures, we see that the RE and PE augment with the number
of clusters. This is based on the dataset and the number of clusters that we can get out
of the dataset. Also, we can see that the PCDS technique gives better RE and PE values
than the PCS. The reason is that the reference points which were selected from each
cluster are well-spread within the clusters.

Comparing the four strategies, when the number of reference points increases the RE
increases and PE decreases until a certain limit. The DS and the PCDS give the best RE
and PE because these techniques ensure a good distribution of the reference points. On
the other hand, DS is better than the PCDS in terms of time consumption. There is no
time used to cluster the data before selecting the reference points. We therefore apply
DS in the rest of our experiments.

Sub-buckets and DDC Factor: Figure 4a shows the average RE and PE for differ-
ent numbers of reference points using MSA-Full, MSA-NN [4] and the sub-bucket
implementations (Δ = 100) for 10 K-NN. From the figure, for the three algorithms,
when the number of reference points increases, RE increases and PE decreases. For
the sub-bucket algorithm, even with small number of reference points, we are able to
achieve higher RE and lower PE than scanning the completeMSA using high number of

(a) (b)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

100 1000 2000

RE

|R|

Average RE
(10 K-NN)

PC- 5Clusters PC- 10Clusters

PCDS- 5Clusters PCDS- 10Clusters

DS RS

0

0.01

0.02

0.03

0.04

0.05

100 1000 2000

PE

|R|

Average PE
(10 K-NN)

PC- 5Clusters PC- 10Clusters

PCDS- 5Clusters PCDS- 10Clusters

DS RS

Fig. 3. Average RE(a) and PE(b) (250 queries) for top 10-NN using MSA-Full [4]

46 H. Mohamed and S. Marchand-Maillet

reference points for MSA-Full and MSA-NN. For instance, using n = 100 and Δ =
100, for 10 K-NN, our algorithm is able to achieve higher RE than using n = 2000 for
MSA-Full and MSA-NN, with a faster response time (next paragraph).

Figure 4b shows the RE and PE for different numbers of reference points using dif-
ferent values of Δ for 10 K-NN. As a reminder, for 10 K-NN and Δ = 40, the algorithm
calculates the distance between the query and the top Kc = 400 candidates objects. As
we can see, when Δ increases, RE increases and PE decreases, as the number of the
objects that are compared to the query increases.

Comparing MSA-Full, MSA-NN and MSA-sub buckets Algorithms: Table 1 shows
the average indexing and searching time (in seconds) for the sub-bucket implementation
(including scanning the MSA and accessing the hard-disk) compared to MSA-Full and
MSA-NN proposed in [4]. For indexing, we can see that the indexing time for the three
algorithms increases with the increase in the number of reference points.

Table 1. Indexing and searching time(in seconds) for sub-bucket (Δ=100) compared to [4]

|R| Index-Full Search-Full Index-NN Search-NN Index-Subbuckets Search-Subbucket

100 45 4 86 1.5 113 0.35
1000 517 46 735 12 1622 0.45
2000 1081 94 1651 25 3523 0.76

In addition, the indexing time for the sub-buckets algorithm is higher than that of the
other algorithms. This is due to the sorting and definition of the sub-buckets after build-
ing the MSA. However, since the indexing process is an off-line process, this increase
is accepted.

For searching, for different n, using Δ = 100, it appears clearly from Table 1 that
the sub-bucket technique is faster than [4], as the algorithm does not need to scan all
the MSA cells nor all the database.

(a) (b)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.1

0.1

0.3

0.5

0.7

0.9

2 4 6 8 10 20 40 80 100

RE

DDC Factor ()

DDC Factor
(10 K-NN)

RE: 100R RE: 1000R RE: 2000R

PE: 1000R PE: 100R PE: 2000R

PE

0

0.001

0.002

0.003

0.004

0.005

0.006

0

0.2

0.4

0.6

0.8

1

100 1000 2000

RE

|R|

RE and PE for
(10 K-NN)

RE: Full RE: Subbuk

RE: Nearest PE: Full

PE: Subbuk PE: Nearest

PE

Fig. 4. Using 250 queries a) Comparing sub-bucket to [4]. b) Effect of Δ.

Permutation-Based Pruning for Approximate K-NN Search 47

6 Conclusion

We have presented an enhanced indexing technique based on the Metric Suffix Array
(MSA), representing the current state of the art implementation for permutation-based
indexing. Our main idea is to prune the MSA cells which represent objects that have
high difference in their permutations ordering. Hence, only a small part of the array
is scanned. With a combination of direct distance calculations, we showed through an
experimental analyses that our algorithm gives better results in terms of time and pre-
cision compared to that proposed in [4]. In addition, we empirically showed how the
selection of the reference points can affect the performance. There is much to improve
on this selection for permutation-based indexing. This is the subject of our future work.

Acknowledgment. This work is jointly supported by the Swiss National Science Foun-
dation (SNSF) via the Swiss National Center of Competence in Research (NCCR) on
Interactive Multimodal Information Management (IM2) and the European COST Ac-
tion on Multilingual and Multifaceted Interactive Information Access (MUMIA) via the
Swiss State Secretariat for Education and Research (SER).

References

1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach.
Advances in Database Systems, vol. 32. Springer (2006)

2. Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permu-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9) (September
2008)

3. Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files.
In: International Conference on Scalable Information Systems, pp. 28:1–28:10 (2008)

4. Mohamed, H., Marchand-Maillet, S.: Metric suffix array for large-scale similarity search.
In: ACM WSDM 2013 Workshop on Large Scale and Distributed Systems for Information
Retrieval, Rome, IT (February 2013)

5. Mohamed, H., Marchand-Maillet, S.: Parallel approaches to permutation-based indexing us-
ing inverted files. In: 5th International Conference on Similarity Search and Applications
(SISAP), Toronto, CA (August 2012)

6. Téllez, E.S., Chávez, E., Camarena-Ibarrola, A.: A brief index for proximity searching. In:
Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 529–536.
Springer, Heidelberg (2009)

7. Esuli, A.: Pp-index: Using permutation prefixes for efficient and scalable approximate simi-
larity search. In: Proceedings of LSDSIR 2009, vol. i, pp. 1–48 (July 2009)

8. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J.
Comput. 22(5), 935–948 (1993)

9. Schürmann, K.B., Stoye, J.: An incomplex algorithm for fast suffix array construction.
Softw., Pract. Exper. 37(3), 309–329 (2007)

10. Mohamed, H., Abouelhoda, M.: Parallel suffix sorting based on bucket pointer refinement.
In: 5th Cairo International Biomedical Engineering Conference (CIBEC), pp. 98–102 (2010)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hier-
archical Image Database. In: CVPR 2009 (2009)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 48–62, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic Multi-probe LSH: An I/O Efficient Index
Structure for Approximate Nearest Neighbor Search

Shaoyi Yin*, Mehdi Badr, and Dan Vodislav

ETIS, Univ. of Cergy-Pontoise / CNRS, France
yinshaoyi@gmail.com, {mehdi.badr,dan.vodislav}@u-cergy.fr

Abstract. Locality-Sensitive Hashing (LSH) is widely used to solve approxi-
mate nearest neighbor search problems in high-dimensional spaces. The basic
idea is to map the “nearby” objects into a same hash bucket with high probabil-
ity. A significant drawback is that LSH requires a large number of hash tables
to achieve good search quality. Multi-probe LSH was proposed to reduce the
number of hash tables by looking up multiple buckets in each table. While op-
timized for a main memory database, it is not optimal when multi-dimensional
vectors are stored in a secondary storage, because the probed buckets may be
randomly distributed in different physical pages. In order to optimize the I/O ef-
ficiency, we propose a new method called Dynamic Multi-probe LSH which
groups small hash buckets into a single bucket by dynamically increasing the
number of hash functions during the index construction. Experimental results
show that our method is significantly more I/O efficient.

Keywords: Locality sensitive hashing, indexing, high-dimensional database,
approximate nearest neighbor search.

1 Introduction

Nearest neighbor search (NNS), also known as similarity search, consists in finding,
for a given point in a high-dimensional space, the closest points from a given set. The
nearest neighbor search problem arises in many application fields, such as pattern
recognition, computer vision, multimedia databases (e.g. content-based image retriev-
al), recommendation systems and DNA sequencing. Various indexing structures have
been proposed to speed up the nearest neighbor search. Early proposed tree-based
indexing methods such as R-tree [10], K-D-tree [2], SR-tree [14], X-tree [3] and M-
tree [5] return exact query results, but they all suffer the “curse of dimensionality”: it
has been shown in [19] that they exhibit linear complexity at high dimensionality, and
that they are outperformed on average by a simple sequential scan of the database if
the number of dimensions exceeds even moderate values, e.g. around 10.

* Shaoyi YIN is currently an associate professor at IRIT Laboratory, Paul Sabatier University,

France.

Dynamic Multi-probe LSH 49

In fact, for most of the applications, exact nearest neighbors are not more meaning-
ful than the so-called ε-approximate nearest neighbors, because the feature vectors
used to represent the objects are usually already imprecise. This phenomenon, called
semantic gap is inherent e.g. in content-based image retrieval (CBIR), where feature
vectors expressing low-level image properties are used to answer high-level user que-
ries. Formally, the goal of the ε-approximate NNS is to find the data object within the
distance ε × R from a query object, where R is the distance from the query point to its
exact nearest neighbor. The most well-known methods for solving the ε-approximate
NNS problem in high-dimensional spaces are Locality Sensitive Hashing (LSH) [9],
[12] and its variants [1], [15].

The basic LSH method uses a family of locality-sensitive hash functions to hash
nearby objects into the same bucket with a high probability. Several hash functions
are combined to produce a compound hash signature corresponding to finer hash
buckets. For a given query object, the indexing method hashes this object into a buck-
et, takes the objects in the same bucket as ε-approximate NNS candidates, and then
ranks the candidates according to their distances to the query object. A side effect of
combining several hash functions is that some “nearby” points may be hashed into
different buckets. In order to increase the probability of finding all the nearest neigh-
bors, the LSH method usually creates multiple hash tables and each hash table is built
by using independent locality-sensitive hash functions. The number of hash tables is
usually over a hundred [9] and sometimes several hundred [4]. This becomes a prob-
lem in terms of space consumption. To reduce the number of hash tables needed, the
Multi-probe LSH method [15] has been proposed by Lv et al.

The main idea of Multi-probe LSH is to build on the basic LSH indexing method,
but to use a carefully derived probing sequence to look up multiple buckets that have
a high probability of containing the nearest neighbors of a query object. By probing
multiple buckets in each hash table, the method requires far fewer hash tables than the
previously proposed LSH methods. As an in-memory algorithm, Multi-probe LSH
method is very efficient; however, if the feature vectors cannot be stored in main
memory, the query cost becomes rather high, because the probed buckets may be
randomly distributed in different disk pages. In this paper, we consider the case where
the feature vectors are stored in a secondary storage, even though we suppose that the
index structure itself is still in main memory.

In order to improve the query efficiency of the Multi-probe LSH, we present in this
paper a new method called Dynamic Multi-probe LSH (DMLSH). The main modifi-
cation to Multi-probe LSH is that we dynamically adapt the number of hash functions
for each bucket in order to produce buckets whose size fits a disk page. With the same
parameter setting, our method always requires less I/O cost and provides higher query
accuracy than Multi-probe LSH. The experimental results have shown that the gain is
significant.

The rest of this paper is organized as follows. We first review the background
knowledge and the related work in Section 2, and then present our DMLSH method in
Section 3. We describe experimental studies in Section 4 and conclude in Section 5.

50 S. Yin, M. Badr, and D. Vodislav

2 Background and Related Work

Approximate Nearest Neighbor Search. Definition (ε-Nearest Neighbor Search
(ε-NNS)) [9]. Let us consider the normed space representing the d-dimensional
Euclidian space Rd with the lp norm and the distance D(·,·) induced by this norm. Giv-
en a set P of points in , solving the ε-NNS problem in P consists in preprocessing P
so as to efficiently return a point p ϵ P for any given query point q, such that D(p,q) ≤
(1+ ε) D(q,P), where D(q,P) is the distance of q to its closest point in P.

Note that the above definition generalizes to any metric space. It also generalizes
naturally to finding K>1 approximate nearest neighbors. In the approximate K-NNS
problem, we wish to find K points p1, … , pk, such that the distance of pi to the query
point q is at most (1+ ε) times the distance from q to the i-th nearest point in P.

Locality Sensitive Hashing. The basic idea of LSH is to use hash functions that map
similar objects into the same hash bucket with high probability. Performing a similari-
ty search query on an LSH index consists of two steps: 1) using LSH functions to
select “candidate” objects for a given query q, and 2) ranking the candidate objects
according to their distance to q.

Definition (Locality-Sensitive Hash Family) [9], [12]. A family H = {h: S U} is
called (r, ε, p1, p2)-sensitive, with p1 > p2 > 0, ε > 0, if for any p, q ∈ S, the following
conditions hold:

• If D(p, q) ≤ r then PrH[h(p)=h(q)] ≥ p1;

• If D(p, q) > (1+ ε)r then PrH[h(p)=h(q)] ≤ p2.

Here S is a set of objects and D(·,·) is the distance function of elements in the set S.
Different LSH families can be used for different distance functions. Families for

Jaccard distance, Hamming distance, l1 and l2 distances are known. The most widely
used one is the LSH family for Euclidean distance proposed by Datar et al.[7]. Each
function is defined on Rd as follows: ha,b(v) = ⌊(a · v +b)/W⌋, where a is a random
d-dimensional vector and b is a real number chosen uniformly from the range [0, W].
a · v is the dot product of vectors a and v. Each hash function maps a d-dimensional
vector v onto into an integer value.

Given a locality-sensitive hash family H = {h: S U}, an LSH index is construct-
ed as follows. (1) For an integer M > 0, define a family G = {g: S UM} of com-
pound hash functions; for any g ∈ G, g(v) = (h1(v), h2(v), … , hM(v)), where hj ∈ H for
1 ≤ j ≤ M. (2) For an integer L>0, choose g1, g2, … gL from G, independently and uni-
formly at random. Each of the L functions gi (1 ≤ i ≤ L) is used to construct one hash
table, resulting in L hash tables. (3) Insert each vector v into the hash bucket to which
gi(v) points to, for i = 1, …, L. A K-NNS query for vector q is processed in two steps.
(1) Compute the hash value gi(q) and retrieve all the vectors in bucket gi(q) for i = 1,
…, L as candidates. (2) Rank the candidates according to their distances to the query
object q, and then return the top K objects. Note that compound hash functions reduce
the probability that distant vectors belong to a same bucket, but increase the risk of
nearby points separated into different buckets. Merging candidates from several hash
tables reduces the risk of missing close objects.

Fig. 1 presents an examp
ed into three hash tables co
q, by checking the three buc
By ranking their distances t

The main drawback of th
ber of hash tables to cover
are needed to achieve 1.1-a
used in [4]. Thus, the whol
the number of hash tables
LSH [15] was proposed.

Multi-probe LSH. The ma
ly derived probing sequenc
nearest neighbors of a quer
the number of needed hash

Fig. 2. Distan

Multi-probe LSH is bas
et al.[7] described above, r
the authors first define a ha
and M is the number of h
basic LSH method checks

Dynamic Multi-probe LSH

ple of 2-NNS, where L = 3. Objects p1, p2, …, p5 are ins
orresponding to hash functions g1, g2, g3. For a given qu
ckets g1(q), g2(q), g3(q), we get the candidates p1, p3, p4,
to q, we return p1 and p3 as the 2-NN objects.

Fig. 1. LSH index structure

he above index structure is that it may require a large nu
most nearest neighbors. For example, over 100 hash tab
approximation in [9], and as many as 583 hash tables
le data structure takes too much space. In order to red

s while keeping a good approximation ratio, Multi-pr

ain idea of the Multi-probe LSH method is to use a care
ce to check multiple buckets that are likely to contain
ry object. Since each hash table provides more candida
tables could be reduced.

nce from q to the boundary of its neighbor bucket

sed on the family of locality-sensitive functions of Da
returning integer values. To derive the probing sequen
sh perturbation vector Δ = {δ1, …, δM} where δi ϵ {-1, 0

hash functions for each hash table. Given a query q,
the hash bucket g(q) = (h1(q), h2(q), … , hM(q)), wh

 51

sert-
uery
, p5.

um-
bles
are

duce
robe

eful-
the

ates,

atar
nce,
, 1}
the

hile

52 S. Yin, M. Badr, and D. Vodislav

Multi-probe LSH checks also the buckets g(q) + Δ1, g(q) + Δ2, …, g(q) + ΔT. These
buckets are ordered according to their “success probability” which is a score estimat-
ed using formula score(Δ) = ∑ () , where () is the distance from q to the
boundary of the bucket hi(q) + δi. For example, in Fig. 2, xi(1) is the distance from
q to the boundary of the bucket hi(q) + 1, where hi(q) = (ai · q +bi)/W and fi(q) = ai ·
q +bi.

Multi-probe LSH is originally designed as an in-memory algorithm. In this paper,
however, we consider that the multidimensional vectors are stored in a secondary
storage such as hard disk. The problem with Multi-probe LSH in this new context is
that many probes are needed for each hash table and the probed buckets are randomly
stored in the disk, so a lot of I/Os are required for each query. Our objective in this
paper is to reduce the number of I/Os for a K-NN search.

Other Related Work. LSH Forest indexing method [1] represents each hash table by
a prefix tree to eliminate the need of finding the optimal number of hash functions per
table. However, this method does not help reduce the number of hash tables, so the
space consumption and query time are not improved. There exists some other work
which tends to estimate optimal parameters with sample datasets [8], use improved
hash functions [11], [13], [17], [18] or divide the dataset into clusters before building
LSH indexes [16]. All these methods are complementary to the Multi-probe LSH and
our improved structure and could be combined with our method in order to achieve
better performance and quality.

3 Dynamic Multi-probe LSH

3.1 Overview

The main idea of DMLSH is to dynamically vary the granularity of buckets in order
to adapt the number of objects they contain to the size of a disk page. We use the
same locality-sensitive hash functions and the same probing sequence as Multi-probe
LSH. More precisely: 1) Instead of directly building a hash table by using all M func-
tions, we first build a hash table by using only one LSH function. If a bucket contains
more than l objects (where l is the number of objects contained in a disk page), we
add a second LSH function to this bucket in order to split it into several small buckets.
If some small bucket still contains more than l objects, we continue adding LSH func-
tions until each bucket contains less than l objects or the number of functions used
becomes to be M. We store the signatures of all these buckets in to a B+ tree. Note
that these signatures have different lengths, so the keys in the B+ tree have variable
size. 2) We use the sequence probing algorithm of Multi-probe LSH to generate the
signatures of the buckets to be probed. If the bucket signature exists in the B+ tree
index, we will take the objects in the corresponding bucket as candidates; otherwise,
we will check the bucket whose signature is a prefix of the generated signature.

Let us explain these principles through an example. In Fig. 3(a), a basic LSH table
has been built using 2 hash functions h1 and h2. For a given query q, if we use Multi-
probe algorithm to generate 6 probes, the buckets chosen are those of signatures 11,

01, 10, 00, 21 and 20. It m
candidates. In Fig. 3(b), in
function h1 first, then only
(in this example l=2), we a
query q, we use the algorit
sequence, i.e. 11, 01, 10, 00
(e.g. 11), we take the buck
11). Thus, the probing sequ
be accessed.

 (a) Basic LSH

Fig.

3.2 Index Construction

As in the Multi-probe LSH
ly generate M LSH functio
LSH is that not every insert
the hash results are stored i
search that we do in the B+
of the searched key, for exa
result. Thus, we have slight
Note that signatures (keys)
digit is an integer value re
only consider binary digits.

DMLSH Tree. We call DM
signatures of the buckets pr
information about these bu
DMLSH tree.

The only modification th
is that we overloaded the co
operators “==”, “<” and “>”

• Given two keys k1
the other one (inclu

Dynamic Multi-probe LSH

means that, we need to access 6 pages on the disk to ge
nstead of using directly 2 hash functions, we use one h

if the number of objects in a bucket exceeds a thresho
add a second hash function for this bucket. For the sa
thm of the Multi-probe LSH to generate the same prob
0, 21 and 20. For a signature that corresponds to no buc

ket whose signature is its prefix (i.e. bucket 1 for signat
uence becomes 1, 01, 00 and 2. Only 4 disk pages need

 (b) DMLSH

. 3. Dynamically adding hash functions

n

, we use L hash tables, and for each hash table we rando
ons. The difference between our method and Multi-pr
ted object needs to be hashed with all the M functions,
in a B+ tree rather than a normal hash table. However,

+ tree is not an exact match. Instead, we may return a pre
ample, when searching for 001010, we may return 001 a
tly modified the search algorithm of the traditional B+ tr
) stored in the B+ tree are sequences of “digits”, wher
eturned by an LSH function. For simplicity, our examp

MLSH tree the specific (in memory) B+ tree that stores
roduced by the DMLSH method, together with some ex
uckets. Note that only non-empty buckets are stored i

hat we have made to the B+ tree algorithm described in
omparison operators of the keys. The new definitions of
” are as follows:

and k2, we say that k1 == k2 if one of k1 or k2 is a prefix
uding the case where k1 = k2 as sequences).

 53

et 7
hash
old l
ame
bing
cket
ture
d to

om-
robe
and
the

efix
as a
tree.
re a
ples

the
xtra
in a

n [6]
f the

x of

54 S. Yin, M. Badr, and

• If k1 == k2 is not t
d1 + s1 and k2 = k
empty) and d1, d2 a
tively k1 > k2) if d1

For example, we have 001 =
The following property h

signatures k1 and k2 produc
Proof. Let us suppose t

have k1 == k2 with e.g. k1 b
included into the one of si
buckets issued from DMLS
Since it is not possible to h
“<” and “>” operators pres
tures produced by DMLSH

Each hash table is main
(hash value) of each non-e
into the tree. Each key in th

1. a counter for the num
nb_hashes_used;

2. a counter for the number
3. the address of the page c
4. a set HV containing the

functions.

Fig. 4. D

Construction of the DML
construction. For each of th
an initial empty DMLSH tr
each of the DMLSH trees w

Algorithm 1. Con

for i = 1 to L do
 for j = 1 to M
 Genera
 end for
 Create an em
end for
for each v ϵ S do
 InsertVector
end for

d D. Vodislav

true, it is easy to show that k1 and k2 have the form k1 =
k + d2 + s2, where k, s1, s2 are digit sequences (possi
are single digits, with d1 != d2. We say that k1 < k2 (resp

1 < d2 (respectively d1 > d2).

== 00101, 0101 < 011 and 10110 > 100010, etc.
holds for DMLSH bucket signatures: For any two dist

ced by DMLSH, we have either k1 < k2 or k1 > k2.
that for two distinct signatures produced by DMLSH

being a prefix of k2. In this case, the bucket of signature k
ignature k1. But this is in contradiction with the fact t
SH produce a partitioning of the multidimensional spa

have k1 == k2, we deduce from the properties of the “=
sented above that k1 < k2 or k1 > k2. Consequently, sig
respect a strict total order induced by the “<” operator.

ntained as a DMLSH tree as follows: the bucket signat
empty bucket is treated as a key and the keys are inser
he leaf node is followed by (Fig. 4):

mber of hash functions used for getting this signatu

r of vectors in the corresponding hash bucket, nb_vector
containing these vectors, @;

hash values of these vectors computed by using all the

Data structure of each item in the leaf nodes

LSH Index. Algorithm 1 shows the process of the in
he L hash tables, we generate M random LSH functions
ree. Then, for each vector v in the database S, we insert v
with InsertVector (Algorithm 2).

nstruction of the index structure

M do
ate a random LSH function hi,j

mpty DMLSH tree Treei

r(v) (Algorithm 2)

k +
ibly
pec-

inct

we
k2 is
that
ace.

==”,
gna-

ture
rted

ure,

rs;

e M

ndex
and
v in

Dynamic Multi-probe LSH 55

As shown below, vector insertion respects the DMLSH strategy to generate new
buckets that use as few hash functions as possible. Only when the size of a bucket
exceeds a threshold, we add a new hash function for this bucket and distribute the
objects into smaller buckets. When the number of hash functions used becomes to be
M, we stop adding new hash functions and we will store the newly inserted objects in
the overflow pages of the full bucket.

Object Insertion. As shown in Algorithm 2, when inserting a new vector v, we insert
it into each of the L hash tables. For each hash table, we compute the hash value g(v)
of vector v, using the M functions, and search the key g(v) in the corresponding B+
tree. If a prefix of g(v) exists in the tree, the function Treei.find(g(v)) will return the
item in the leaf node which corresponds to the prefix key. Note that a prefix may not
exist in the tree, because empty buckets are not stored in the B+ tree. If there is no
prefix of the searched key, item is NULL and we will add into the tree a new item
with the shortest prefix of g(v) which is not a prefix of any other existing key. This is
done by function Treei.insert(g’(v), item). The length of this prefix is computed by
function Nb_hash (Algorithm 3). Finally, we insert the vector into the bucket page
linked to the found (or inserted) prefix key and update the other fields of the leaf item
with AddVectorToItem (see Algorithm 4).

Algorithm 2. InsertVector(v): insert a vector v

for i = 1 to L do
 g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
 item = Treei.find(g(v))
 if item == NULL then
 item = New_leaf_item()
 nb_hashes_used = Nb_hash(v, i) (Algorithm 3)
 g’(v) = (hi,1(v), hi,2(v), …, hi,nb_hashes_used(v))
 Treei.insert(g’(v), item)
 AddVectorToItem(v, item, i) (Algorithm 4)
end for

Algorithm 3. Nb_hash(v, i): determine nb_hashes_used for vector v
in Treei

g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
pred = Treei.find_pred(g(v))
succ = Treei.find_succ(g(v))
lcc_pred = length(longest_common_prefix(pred, g(v)))
lcc_succ = length(longest_common_prefix(succ, g(v)))
lcc = max(lcc_pred, lcc_succ)
return lcc+1;

Algorithm 3 shows how to determine the number of hash functions to use for a
newly inserted vector whose complete hash value does not have a prefix key in the

56 S. Yin, M. Badr, and D. Vodislav

tree. We first compute the key g(v) using all M hash functions, then we search in the
tree for pred which is the greatest key smaller than g(v) and succ which is the smallest
key larger than g(v). The next step is to compute lcc which is the maximum length of
the longest common prefix between g(v) and pred/succ. Note that if pred or succ do
not exist, the corresponding length of the common prefix is 0. At the end, we return
lcc+1 as the number of hash functions to be used.

Algorithm 4 shows how to add a vector v into an item. Insertion is possible only if
the counter nb_vectors is below the threshold l (l = B/sizeof(v), where B is the size of
a disk page), or if the maximum number M of hash functions is reached. Insertion
adds v into the page @ (or into an overflow page) and the full signature g(v) to HV. If
insertion is not possible, the bucket is “split” as follows: its item is removed from the
B+ tree and all its vectors are reinserted in buckets using one more hash function
(Algorithm 5). If the bucket containing the reinserted vector already exists in the tree,
the vector is directly inserted; otherwise, a new bucket is created.

Algorithm 4. AddVectorToItem(v, item, i): add a vector v into a leaf
entry item of Treei

if item.nb_vectors < l or item.nb_hashes_used==M then
 item.nb_vectors++
 g(v) = (hi,1(v), hi,2(v), …, hi,M(v))
 Add g(v) into item.HV
 Add v into the page at address item.@ or into an overflow page
else
 Treei.remove(item)
 for each vj ϵ item do
 ReinsertVector(vj, item.nb_hashes_used+1, i)
 end for

Algorithm 5. ReinsertVector(v, k, i): reinsert vector v into Treei with
k hash functions

g(v) = (hi,1(v), hi,2(v), …, hi,k(v))
item = Treei.find(g(v))
if item == NULL then
 item = New_leaf_item()
 item.nb_hashes_used = k
 Treei.insert(g(v), item)
end if
AddVectorToItem(v, item, i) (Algorithm 4)

Example. Since the insertion algorithm is the same for all the hash tables, we only
consider one hash table as an example. For simplicity, we assume the threshold l = 2
and the maximum number of hash functions M = 2. Initially, we have four objects p1,
p2, p3 and p4, with h1(p1) = 0, h1(p2) = 1, h1(p3) = 1 and h1(p4) = 0. Their complete hash
values with function g = (h1, h2) are: g(p1) = 00, g(p4) = 01, g(p2) = g(p3) = 11. These

values are stored in the set
5(a). The format of the elem
object p5 with h1(p5) = 1, g(
3 which is larger than l, so
tion h2). We reinsert all the
with keys 10 and 11 are ins
for key 0, the bucket is not

F

3.3 Approximate K Ne

Algorithm. For a given que
tables. We build an empty
signatures of the accessed b
(Section 3.2.1), but its item
value of q using all M hash
probing sequence for g(q).
found in [15]. We note T th

For each probe, we searc
means that the bucket has a
search the probed key in th
in the set HV, this means th
into the “physical” bucket o
linked to pk into the candida

After retrieving all the ca
ry q, rank them in increasin

Example. Let us consider
10, T = 3 and the generated
find the signature in the tree
10 into Probed_Tree. For th
HV set (00 ϵ {00, 01}), we
0 into Probed_Tree. For
Probed_Tree, meaning that
extra I/O for this probe. In
buckets, we only loaded 2 p

Dynamic Multi-probe LSH

HV following the prefix keys. The index is shown in F
ment in the leaf nodes is defined by Fig. 4. When we in
(p5) = 10, the counter nb_vectors for the bucket 1 becom
 we need to split this hash bucket (i.e. add one hash fu
objects of bucket 1. Fig. 5(b) shows the result: new ent

serted in the B+ tree and the old entry with key 1 is delet
split.

Fig. 5. Example of a DMLSH index

arest Neighbor Search

ery q, we repeat the following process for each of the h
y B+ tree Probed_Tree in memory, used to memorize
buckets. This tree has the same properties as a DMLSH t
ms only contain a bucket signature. We compute the h
h functions, i.e. g(q) = (h1(q), …, hM(q)) and generate
The algorithm of generating the probing sequence can

he number of probes.
ch the probed key in Probed_Tree. If its prefix is found
already been checked, so we skip this probe. Otherwise,
he DMLSH tree. If a prefix key pk is found and g(q) ex
hat the bucket of signature g(q) is not empty and is inclu
of signature pk. Therefore, we add the vectors in the page
ate set and insert pk into Probed_Tree.
andidates, we compute the distances from them to the q

ng order of their distances and return the top-k results.

the example in Fig. 5(b). Suppose g(q) = (h1(q), h2(q)
d probing sequence is 10,00,01. For the first probe 10,
e, we load the linked page, add p5 as a candidate and in
he second probe 00, we find its prefix 0. Since 00 is in
load the linked page, add p1 and p4 as candidates and in

the last probe 01, we find its prefix 0 in the t
t the bucket has already been probed, so we don’t need
this example, instead of loading 3 pages for the 3 pro

pages.

 57

Fig.
nsert
mes
unc-
tries
ted;

hash
the

tree
hash

the
n be

d, it
 we

xists
uded
e(s)

que-

)) =
 we

nsert
the

nsert
tree

d an
obed

58 S. Yin, M. Badr, and D. Vodislav

Properties. The DMLSH method proposed in this paper has two important properties
compared to the original Multi-Probe LSH. P1: Under the same parameter setting,
the number of I/Os made by DMLSH for a given query q is no more than that made by
Multi-probe LSH. P2: Under the same parameter setting, the accuracy of the K-NN
search made by DMLSH for a given query q is not lower than that of Multi-probe
LSH. They could be easily proved theoretically, since in DMLSH, 1) several non-full
probed buckets may share the same prefix key and they are stored in a single disk
page; 2) the candidate set is a superset of that produced by MLSH.

4 Experimental Evaluation

4.1 Methods under Evaluation

DMLSH is an I/O efficient version of Multi-probe LSH, so we will compare these
two methods by varying the different parameters: the number of hash functions M, the
number of hash tables L and the number of probes T.

Our method could be also combined with basic LSH and its variants mentioned in
related work, by organizing each hash table as a DMLSH tree. However, the impact in
this case is less important than with Multi-probe LSH, because a single bucket is ac-
cessed in each table; also these methods have less practical utility because of the high
number of tables. Consequently, we limit our study to the more effective Multi-probe
LSH method.

4.2 Dataset

We choose two datasets for our experimental evaluation, widely used in the related
work. They are: Color Data. The Color dataset contains 68040 vectors of 32 dimen-
sions, which are the color histograms of images in the Corel collection1. The dimen-
sion values are real numbers with at most 6 decimal digits ranging from 0 to 1.We
randomly choose 100 vectors as query examples. Audio Data. The audio dataset
contains 54387 vectors of 192 dimensions. It is extracted from the LDC
SWITCHBOARD-1 collection2. The values are real numbers between -1 and 1. We
increase the size of both datasets to be 1 million by inserting noise vectors for the
following experiments. We randomly choose 100 vectors as query examples.

4.3 Evaluation Metrics

We adopt two metrics to measure our method: query efficiency and query accuracy.
Since the space consumption of our method is about the same with Multi-probe LSH,
we do not consider this metric.

Query Efficiency. Since the vectors are stored in the secondary storage, we evaluate
the query efficiency in terms of I/O cost. In the experiments, we set the page size as

1 http://kdd.ics.uci.edu/databases/CorelFeatures/
2 http://www.cs.princeton.edu/cass/audio.tar.gz

Dynamic Multi-probe LSH 59

the size of 100 vectors. Note that DMLSH introduces a CPU overhead for distance
computation, since the number of candidates it produces is larger than for MLSH.
However, the measures in this case indicate only a small difference (5%), not signifi-
cant compared with the I/O saving.

Query Accuracy. We measure the average recall ratio of the 100 K-NN queries for
K=20. Given a query object q, let E(q) be the set of exact K-NN objects, and F(q) the
set of found K-NN objects. Then the recall ratio is defined as follows:

 Recall =
| ()∩ ()|| ()| (1)

4.4 Experimental Results

In this section, we compare DMLSH and MLSH by varying the number of hash func-
tions M, the number of hash tables L, respectively the number of probes T.

Impact of the Number of Hash Functions M. We measured the I/O cost and the
recall ratio of the first two methods by varying the maximum number of hash func-
tions (M) used for each hash table. For both datasets, the number of hash tables L is
set to 3 and the number of probes T is set to 100. The results are shown in Fig. 6 and
Fig. 7.

 Color Audio

Fig. 6. Impact of M on the I/O cost

Color Audio

Fig. 7. Impact of M on the recall ratio

0

100

200

300

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0

200

400

600

800

10 15 20

N
um

be
r o

f I
/O

s

Number of hash functions

MLSH
DMLSH

0.5

0.7

0.9

1.1

10 15 20

Re
ca

ll

Number of hash functions

MLSH

DMLSH
0.8

0.9

1

10 15 20

Re
ca

ll

Number of hash functions

MLSH
DMLSH

60 S. Yin, M. Badr, and D. Vodislav

For the Color dataset, we set W = 0.6. DMLSH reduces the I/O cost by 39% - 67%
and increases the recall ratio by 3% - 23%. For the Audio dataset, we set W = 3.5.
DMLSH reduces the I/O cost by 13% - 25% and increases the recall ratio by 3% - 6%.

We can see that the overall trend is that, when the number of hash functions grows,
both the I/O cost and the recall ratio decrease. This is because when we add a new
hash function, 1) the average size of each bucket is decreased and 2) more empty
buckets are probed.

Impact of the Number of Hash Tables L. Fig. 8 and Fig. 9 show the impact of the
number of hash tables L on the I/O cost and on the recall ratio. The number of probes
T is set to 100.

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by
53% - 62% and increases the recall ratio by 3% - 10%. For the Audio dataset, we set
M = 18 and W = 3.5. DMLSH reduces the I/O cost by 16% - 33% and increases the
recall ratio by 1% - 9%.

 Color Audio

Fig. 8. Impact of L on the I/O cost

 Color Audio

Fig. 9. Impact of L on the recall ratio

When the number of hash tables grows, both the I/O cost and the recall ratio in-
crease. This is normal, because when we use L+1 hash tables, the set of candidates is
always a superset of that produced by using L hash tables. The choice of the number
of hash tables is a trade-off between query efficiency, query accuracy and space
consumption.

We observed that, to achieve the same recall ratio, our method DMLSH needs
fewer hash tables than MLSH, hence consumes less space.

0

200

400

0 2 4

N
um

be
r o

f I
/O

s

Number of hash tables

MLSH
DMLSH

0

200

400

600

800

0 2 4

N
um

be
r o

f I
/O

s

Number of hash tables

MLSH
DMLSH

0.6

0.8

1

0 2 4

Re
ca

ll

Number of hash tables

MLSH
DMLSH

0.6

0.7

0.8

0.9

1

0 2 4

Re
ca

ll

Number of hash tables

MLSH
DMLSH

Dynamic Multi-probe LSH 61

Impact of the Number of Probes T. In Fig. 10 and Fig. 11, we vary the number of
probes from 10 to 170. For both datasets, the number of hash tables L is set to 3.

For the Color dataset, we set M = 14 and W = 0.6. DMLSH reduces the I/O cost by
33% - 60%. The bigger the number of probes, the higher the reduction of I/O cost.
With the same number of probes, DMLSH increases the recall ratio by 4% - 16%. For
the Audio dataset, we set M = 18 and W = 3.5. DMLSH reduces the I/O cost by 2% -
24% and increases the recall ratio by 3% - 5%. To achieve the same recall ratio, our
method DMLSH needs fewer probes than MLSH.

 Color Audio

Fig. 10. Impact of T on the I/O cost

 Color Audio

Fig. 11. Impact of T on the recall ratio

5 Conclusion

This paper presents the Dynamic Multi-probe LSH indexing method, which is a more
I/O efficient version of the Multi-probe LSH. It dynamically varies the granularity of
buckets in order to adapt the number of objects they contain to the size of a disk page.
For the construction of the index, it uses initially one hash function and adds a new
hash function only when the bucket size exceeds the page size. In the final hash table,
the buckets are built by using a different number of hash functions; consequently they
have signatures of different length. Bucket signatures are indexed by a slightly modi-
fied B+ tree to accelerate the search speed.

0

100

200

300

0 100 200N
um

be
r o

f I
/O

s

Number of probes

MLSH
DMLSH

0

500

1000

0 100 200

N
um

be
r o

f I
/O

s

Number of hash probes

MLSH
DMLSH

0.6

0.8

1

0 100 200

Re
ca

ll

Number of probes

MLSH
DMLSH

0.6

0.8

1

0 100 200

Re
ca

ll

Number of hash probes

MLSH
DMLSH

62 S. Yin, M. Badr, and D. Vodislav

For a given query, we first generate the probing sequence and then we access the
probed buckets. Since several probed buckets may share the same prefix key and are
stored in the same physical page, we need only one single I/O to access these buckets.
Thus, the total number of disk accesses is reduced. In addition, since the candidate set
is a superset of that produced by Multi-probe LSH, the recall ratio of the approximate
K-NN query results is always higher than or equal to that of the Multi-probe LSH.

References

1. Bawa, M., Condie, T., Ganesan, P.: Lsh forest: self-tuning indexes for similarity search.
In: WWW, pp. 651–660 (2005)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

3. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: an index structure for high-
dimensional data. In: Proceedings of the 22nd VLDB Conference, pp. 28–39 (1996)

4. Buhler, J.: Efficient large scale sequence comparison by locality-sensitive hashing. Bioin-
formatics 17, 419–428 (2001)

5. Ciaccia, P., Patella, M., Zezula, P.: M-tree an efficient access method for similarity search
in metric spaces. In: Proceedings of the 23rd VLDB Conference, pp. 426–435 (1997)

6. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2), 121–137 (1979)
7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme

based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on
Computational Geometry, pp. 253–262 (2004)

8. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance
tuning. In: CIKM 2008, pp. 669–678 (2008)

9. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In:
Proceedings of the 25th Very Large Database (VLDB) Conference, pp. 518–529 (1999)

10. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

11. He, J., Liu, W., Chang, S.: Scalable similarity search with optimized kernel hashing. In:
ACM SIGKDD, pp. 1129–1138 (2010)

12. Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of di-
mensionality. In: Proceedings of STOC, pp. 604–613 (1998)

13. Jegou, H., Amsaleg, L., Schmid, C., Gros, P.: Query adaptative locality sensitive hashing.
In: ICASSP 2008, pp. 825–828 (2008)

14. Katayama, N., Satoh, S.: The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In: SIGMOD Conference, pp. 369–380 (1997)

15. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient index-
ing for high-dimensional similarity search. In: Proceedings of the 33rd International Con-
ference on Very Large Data Bases (VLDB), Vienna, Austria, pp. 950–961 (2007)

16. Pan, J., Manocha, D.: Bi-level locality sensitive hashing for k-Nearest Neighbor computa-
tion. In: ICDE, pp. 378–389 (2012)

17. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels.
In: Advances in Neural Information Processing Systems, pp. 1509–1517 (2009)

18. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similarity
search. PVLDB 5(5), 430–441 (2012)

19. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for similari-
ty-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)

Revisiting the Term Frequency

in Concept-Based IR Models

Karam Abdulahhad1, Jean-Pierre Chevallet2, and Catherine Berrut3

1 Université de Grenoble
2 UPMF-Grenoble 2
3 UJF-Grenoble 1

LIG Laboratory, MRIM Group, Grenoble, France
{karam.abdulahhad,jean-pierre.chevallet,catherine.berrut}@imag.fr

Abstract. Indexing documents and queries using concepts, instead of
word-based indexing, is an alternative approach, and it supposes to give
a more meaningful indexing. However, this way of indexing needs to
revisit some hypotheses of classical Information Retrieval. Therefore,
we propose a new concept weighting approach, namely Relative Weight,
which weights concepts with respect to their corresponding text in the
documents or queries. In other words, it assigns to each concept a rela-
tive weight with respect to the other concepts in the same context. We
explore interesting experimental results of our new weighting approach,
compared to the classical approaches, through studying the retrieval per-
formance of some classical IR models.

1 Introduction

Classical Information Retrieval (IR) systems are now well developed and experi-
mented. They all use the Luhn conjecture on word importance [11], and establish
that each word is weighted according to the importance it has in the corpus, and
inside the document. The goal of this paper is to study the side-effects of moving
from the word-space to the concept-space on classical IR models. In other words,
studying the side-effects of using concepts, instead of words as indexing terms,
on classical IR models.

When mapping text to concepts from knowledge bases, the way that the
weight is computed must be adapted to concepts for different reasons. The most
important one is based on the fact that a phrase is generally mapped to much
more concepts than words, due to the specificity of indexing that is produced by
mapping text to concepts process using a specific knowledge base. For example,
the word ‘x-ray’ is linked to six different UMLS’ concepts, and Table 1 shows the
different concepts linked to ‘lobar pneumonia x-ray’ phrase using the Metamap1

tool on UMLS2.

1 http://metamap.nlm.nih.gov/
2 Unified Medical Language System (www.nlm.nih.gov/research/umls/)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 63–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://metamap.nlm.nih.gov/
(www.nlm.nih.gov/research/umls/)

64 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

We claim in this paper, that classical IR models can be used, when using
concepts, if at least the concept weighting is revisited, but still based on Luhn
conjecture [11].

In this study, a word is the smallest linguistic element that has a semantic
and can stand by itself, e.g. ‘information’. A phrase is a sequence of one or more
words, e.g. ‘information retrieval ’. A concept is an entry ID in a knowledge base
and it is associated to a set of phrases or words that describe it. For example, the
concept ‘C0004238 ’ in UMLS is associated to two synonymous phrases ‘Atrial
Fibrillation’ and ‘Auricular Fibrillation’. Sometimes, the word “concept” is used
for referring to words and phrases [4].

Table 1. Variants of ‘lobar pneumonia x-ray ’ generated by MetaMap, their related
candidate UMLS’ concepts, and the corresponding part of the original phrase

Variants Candidate Concepts Original Part

‘lobar pneumonia x-ray ’ - ‘lobar pneumonia x-ray ’

‘lobar pneumonia’ C0032300, C0155862 ‘lobar pneumonia’

‘lung x-ray ’ C0581647 ‘pneumonia x-ray ’

‘lung C0024109, C 1278908 ‘pneumonia’

‘pneumonia’ C0032285 ‘pneumonia’

‘pulmonary ’ C2707265, C2709248 ‘pneumonia’

‘lobar ’ C1522010 ‘lobar ’

‘lobe’ C1428707 ‘lobar ’

‘lobus’ C0796494 ‘lobar ’

‘x-ray ’
C0034571, C0043299, C0043309

‘x-ray ’
C1306645, C1714805, C1962945

This paper is organized as follow: In section 2, we present the motivations
behind using concepts instead of words. The general process of conceptual in-
dexing and some examples of concept-based IR models are depicted in Section 3.
Section 3 presents the motivations, hypotheses, and definitions of our proposed
weighting approach. We present, in Section 5, some experimental results, and
the paper is concluded in Section 6.

2 Why Concepts

Words have been used for a long time in IR, and this type of indexing terms
proved its effectiveness in most of IR applications, especially web search engine.
Using concepts is motivated by the following reasons:

• the availability of rich and large knowledge bases e.g. UMLS and WordNet3,
• the multilingualism and multi-modality of content [5] [13]. It is possible to

abandon the translation step in a multilingual context, because concepts sup-
pose to be language-independent, e.g. the English word ‘lung’ and the French

3 WordNet is a lexical database of English (http://wordnet.princeton.edu/)

(http://wordnet.princeton.edu/)

Revisiting the Term Frequency in Concept-Based IR Models 65

word ‘poumon’ correspond to the same concept ‘C0024109 ’ in a knowledge
base like UMLS,

• some new semantic-based IR applications e.g. Semantic Web [13] and song
indexing and retrieval [6],

• some well-known IR problems like the term-mismatch problem [7], where two
different words could express the same meaning, e.g. ‘atrial ’ vs. ‘auricular ’.
In the ideal case, each concept should be associated to all phrases that have
the same meaning in a specific context,

all reasons above lead to the emergence of a new IR field that uses concepts as
indexing terms instead of, or besides, words.

3 Conceptual Indexing and Concept-Based IR Models

Conceptual indexing first integrates the process of mapping text to concepts.
The main principle of conceptual mapping tools is to extract phrases from the
text of documents and queries, and then try to map them to one or more can-
didate concepts from a knowledge base. More precisely, the general process for
conceptual mapping consists of the following steps [5]:

1. Morphology and syntax : extracting noun phrases from text.
2. Variation: constructing a list of variants for each noun phrase. Variants could

be derivational variants, synonyms, acronyms, etc.
3. Identification: for each variant, all concepts that could correspond to it are

retrieved from the knowledge base. The retrieved concepts called candidate
concepts.

4. Evaluation: for each candidate concept, a measure is used for evaluating
the precision of mapping process, and then the set of candidate concepts is
ordered according to this measure. In other words, the measure computes
the degree of correctness of mapping a noun-phrase to a concept.

5. Disambiguation: choosing the most appropriate concepts, among the candi-
date concepts, that well correspond to the related noun-phrase. This opera-
tion normally depends on the context.

6. Weighting: like in word-based indexing, each concept has a weight reflecting
its indexing usefulness.

Actually, there are many examples of mapping tools. MetaMap [2], for exam-
ple, maps medical text to UMLS’ concepts. Fast Tagging [8] is a method of
tagging medical terms in legal, medical, and news text, and then mapping the
tagged terms to UMLS’ concepts. Baziz [3] and Maisonnasse [12] built their
own mapping tools. In general, concepts are a part of a knowledge base, it is
thus mandatory to link mapping tools to some knowledge bases, e.g. UMLS,
WordNet, DBpedia4, etc.

When the mapping is done, the indexing process must continue by first se-
lecting and sometimes weighting the concepts, and then representing documents

4 dbpedia.org

dbpedia.org

66 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

and queries. The system is then able to process the matching of a query and a
document.

Baziz [3] proposes a context-based disambiguation approach. This approach
maps each phrase to only one concept among the candidate concepts. According
to Baziz, concepts are WordNet’s synsets, and for a phrase he chooses the con-
cept, among the candidate concepts, that most fit the candidate concepts of the
other phrases in the same context. He uses a WordNet’s relation-based measure
to estimate the semantic similarity between concepts or synsets. He also pro-
poses to represent documents and queries as trees of concepts, and then using a
sort of fuzzy implication for matching.

Maisonnasse [12] proposes two ways to build a concept-based IR system. The
first one is to represent a document as a graph and a query as a graph, where
nodes are UMLS’ concepts and edges are the semantic relations between the
semantic types of UMLS. The matching between theses two graphs is a kind of
Conceptual Graph projection. The second one is to represent a document as a
set of graphs, one for each sentence, and a query as one graph, and then the
matching is a graph-based language model.

Diem [10] and Abdulahhad et al. [1] map documents and queries to UMLS’
concepts, and then they position documents and queries on a Bayesian Network.
They exploit the relations between concepts to link documents’ concepts and
queries’ concepts. The matching is the actual inference mechanism of Bayesian
Networks.

Though interesting, these systems are complex, due to the underlying repre-
sentation used for documents, queries, and matching. We propose here a simple
alternative to concept-based IR, by using classical information retrieval systems
for conceptual indexing, and re-thinking the way the weighting of the concepts.
The advantage of this proposal is to allow conceptual indexing in well-known IR
systems.

4 A New Weighting for Conceptual IR: Concepts
Relative Weight

4.1 Introduction

In classical IR models, documents and queries are bags of terms. In addition,
they compute the Relevance Status Value RSV (d, q) between a document d and
a query q, which depends, one way or another, on the coordination level between
d and q. In all classical IR models, the weight of a term t in a document d is a
consequence of Luhn conjecture and follows the two following rules:

– Rule 1: the weight of t is proportional to the frequency of t in d.
– Rule 2: the weight of t is inversely proportional to the frequency of t in the

corpus.

Therefore, the weight wd
t of an indexing term t in a document d consists of two

main parts local and global :

wd
t = f(wl

t, w
g
t)

Revisiting the Term Frequency in Concept-Based IR Models 67

where, f determines the way of combining wl
t and wg

t and it is model-dependent.
The local weight wl

t is the weight of t within a document d. It depends on the
frequency of t in d (tf t,d) and the length of d (|d|).

When moving from words to concepts, we need a new weighting mechanism,
because the general assumption in the word-based IR models is that if a doc-
ument d contains two words w1 and w2 then d should be represented by the
meaning of w1 and the meaning of w2. However, in our point of view, this is
not the case in the concept-based IR models, because a word w in a document
d is mapped to a set of concepts {c1, . . . , cn} where each concept represents a
possible meaning of w, then d should be represented by one of these meanings or
concepts that best corresponds to the context of d. In other words, d should be
represented by c1 or c2 or . . . or cn. Therefore, we need to revisit the classical
concept weighting mechanism.

4.2 General Description of Our Proposal

For each phrase of document, we generate its variants and map the variants to
sets of concepts (step 1 Figure 1). Depending on the output of step 1, we generate
a phrase-hierarchy which gives an overview of the concepts of the phrase (step
2 Figure 1). From the hierarchy of the concepts of a phrase, we compute the
relative weight of each concept (step 3 Figure 1). Globally, each phrase of each
document is processed as described above. The indexed document is computed
as the set of all concepts of its initial phrases. In the following sub-sections,
we present the definitions of the previous steps, and how to rebuild a classical
concept-based IR model depending on concepts relative weight.

Fig. 1. The general process of the phrase processing

4.3 Concept Weighting Hypotheses

It is possible to keep classical IR models using concepts, and suppose that a
document is a bag of concepts. However, when transforming text to concepts,
we know that the number of proposed concepts can be high (see the example in
Table 1), and still the set of concepts must represent the text of the document.

Our weighting method, namely Relative Weight, respects the three following
hypotheses:

– Hypothesis 1: Concepts that correspond to a longer text should receive
larger weight.

68 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

– Hypothesis 2: The weight of a concept should be inversely proportional to
the size of the set of concepts of the text that it belongs to. The bigger the
set of concepts is for a text, the less important weight its concepts receive.

– Hypothesis 3: As in classical IR, the length of documents correspond to
their text length and we propose a model which re-distribute the length of
the document on its concepts.

These three hypotheses validate rules 1 and 2.
In the rest of this paper and to illustrate the main idea, we will use the

same example of mapping the ‘lobar pneumonia x-ray’ to UMLS’ concepts using
MetaMap. Table 1 shows the variants of the phrase ‘lobar pneumonia x-ray’
that are generated by MetaMap, their related candidate UMLS’ concepts, and
the corresponding part of the original phrase. However, in this study, we regroup
all variants that correspond to the same part of the original phrase in only one
variant, or equivalently, we regroup rows 4-5-6, and rows 7-8-9.

4.4 Step 1

We start by describing our solution at the level of phrases, and then we will
generalize it to the level of documents, where a document d is a sequence of
phrases.

We define the set of words W , the set of phrases P , and the set of concepts
C. Each phrase p ∈ P is a sequence of words or equivalently a set of terms. We
define the set of terms T = W × N∗, which is a set of tuples, and each tuple
(w, i) ∈ T links a word w ∈ W with a number i ∈ N∗. We also define the set of
nodes N = 2T × 2C , which links a set of terms with a set of concepts, where 2T

is the power set of T and 2C is the power set of C.
We define two functions to link terms, phrases, and concepts. The function

trm returns the set of terms that appear in a phrase, where

trm : P → 2T

For example, assume p is the ‘lobar pneumonia x-ray’ phrase then:

trm(p) = {(lobar, 1), (pneumonia, 2), (x-ray, 3)}
where 1, 2, and 3 are the positions of the words in the phrase p, starting by 1.
We define |p|T = |trm(p)| as the length of a phrase p ∈ P in the word-space. For
example, a phrase p like ‘lobar pneumonia x-ray’ has a length |p|T = 3.

The function map maps a phrase p ∈ P to its variants and their concepts.
This function fits to be a representation of any mapping tool, where

map : P → 2N

map(p) is the set of all variants of p with their candidate concepts. Therefore,

– ∀p ∈ P, ∀(Ti, Ci) ∈ map(p), Ti ⊆ trm(p), or in other words, each variant is a
sub-phrase of the original phrase.

Revisiting the Term Frequency in Concept-Based IR Models 69

– ∀p ∈ P, ∀(Ti, Ci) ∈ map(p), Ci are the set of concepts that the variant Ti is
mapped to.

– ∀p ∈ P, ∀(Ti, Ci) ∈ map(p), Ci �= φ, or in other words, we only consider the
variants that have concepts.

–
⋂

(Ti,Ci)∈map(p) Ci = φ, a same concept does not appear more than one time
in a phrase.

Table 2. The output of applying the function map to the phrase ‘lobar pneumonia
x-ray ’, where map stand for MetaMap

Terms Candidate concepts

T1 = {(lobar, 1), (pneumonia, 2)} C1={C0032300, C0155862}
T2 = {(pneumonia, 2), (x-ray, 3)} C2={C0581647}

T3 = {(lobar, 1)} C3={C1522010, C1428707, C0796494}
T4 = {(pneumonia, 2)} C4={C0024109, C1278908, C0032285

C2707265, C2709248}
T5 = {(x-ray, 3)} C5={C0034571, C0043299, C0043309

C1306645, C1714805, C1962945}

For example, assume p is the ‘lobar pneumonia x-ray’ phrase then (Table 2):

map(p) = {(T1, C1), (T2, C2), (T3, C3), (T4, C4), (T5, C5)}

4.5 Steps 2 and 3: The Relative Weight Function

We define the Relative Weight function rw that weights each concept of a phrase.

rw : P → 2C×R+∗

where ∀p ∈ P, rw(p) = {(c1, β1), . . . , (cr, βr)}, ci is a concept, βi is the relative
weight of ci, and rw must respect the following points:

–
⋃

(ci,βi)∈rw(p){ci} =
⋃

(Ti,Ci)∈map(p) Ci, every concept of p must appear in

rw(p).
– ∀(ci, βi) ∈ rw(p) and suppose that (Tj , Cj) ∈ map(p) is the node that con-

tains the concept ci ∈ Cj , then:
• the relative weight βi of the concept ci must be proportional to |Tj |

(Hypothesis 1).
• the relative weight βi of the concept ci must be inversely proportional

to |Cj | (Hypothesis 2).
–
∑

(ci,βi)∈rw(p) βi = |p|T , we maintain the length in both word-space and
concept-space. Maintaining the length of phrases in both the word-space
and concept-space implicitly leads to maintaining the length of document
(Hypothesis 3).

In order to calculate rw , we need a global overview of the phrase, which is a
hierarchy, on which we can process the Relative Weight algorithm for rw . The
principle of rw is to build a hierarchy of the concepts of the phrase, and then
the length of the phrase is distributed on the concepts respecting the three
hypotheses, and the position of concepts within the hierarchy.

70 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

4.6 Step 2: A Hierarchy on Concepts Extracted from Text

We define a partial order relation < on the set N , as follow:

∀(Ti, Ci), (Tj , Cj) ∈ N, (Tj, Cj) < (Ti, Ci) iff Tj ⊂ Ti

Using the < partial order relation, two functions ch and pr could be defined.
However, we first define an abstract root node R = (TR, CR), where |TR| = 0,
|CR| = 0, and by definition ∀(Ti, Ci) ∈ N, (Ti, Ci) < R. The function ch returns
the direct children of any node n ∈ N ∪ {R}.

ch : N ∪ {R} → 2N

where, ∀(Ti, Ci), (Tj , Cj) ∈ N ∪ {R} then (Tj , Cj) ∈ ch((Ti, Ci)) iff

– (Tj , Cj) < (Ti, Ci) and

– � ∃(Tk, Ck) ∈ N ∪ {R} satisfying that (Tj , Cj) < (Tk, Ck) < (Ti, Ci)

Reversely, we define the function pr that returns the direct parents of any node
n ∈ N ∪ {R}.

pr : N ∪ {R} → 2N∪{R}

where, ∀(Ti, Ci), (Tj , Cj) ∈ N ∪ {R} then (Tj , Cj) ∈ pr((Ti, Ci)) iff

– (Ti, Ci) < (Tj , Cj) and

– � ∃(Tk, Ck) ∈ N ∪ {R} satisfying that (Ti, Ci) < (Tk, Ck) < (Tj , Cj)

It is possible to define a hierarchy on a phrase. The hierarchy of a phrase p ∈ P
is defined by applying the two functions ch and pr to each node in map(p)∪{R}.
For example, assume p is the ‘lobar pneumonia x-ray’ phrase, Figure 2 shows
the hierarchy that is defined on the set map(p) ∪ {R} (Table 2).

Fig. 2. The hierarchy of the phrase ‘lobar pneumonia xray ’, and the breadth-first scan-
ning order

Revisiting the Term Frequency in Concept-Based IR Models 71

4.7 Step 3: The Relative Weight (rw) Algorithm

Assume a phrase p ∈ P and the node n = (Tn, Cn) ∈ map(p)∪{R}. The node n
has |pr (n)| parents and |ch(n)| children. Each node n must distribute a certain
amount αn on its children. If n is the abstract root R then αn = |p|T by default.

We should remember that the relative weight of a concept c in a node n must
be proportional to |Tn| and inversely proportional to |Cn| (Hypotheses 1 and 2).
Therefore, for distributing the amount αn on the concepts of n and its children,
we first compute the portion δn of αn for one single term, where this step takes
the number of terms in n and in its direct children ch(n) into account. Each child
n′ ∈ ch(n) will receive an amount equals the portion of one term δn multiplied
by the number of terms in n′ (δn×|Tn′ |). The portion of αn for the current node
n is the portion of one single term δn multiplied by the number of terms in n
(δn × |Tn|). In a particular node, concepts are equally important, therefore, the
relative weight of a concept equals the portion of αn of the current node divided

by the number of its concepts |Cn| or equivalently δn×|Tn|
|Cn| (see Algorithm 1).

Algorithm 1. RelativeWeight

input : map(p), |p|T
output: rw(p) ⊆ C × R∗+

1 Initialize rw (p) = {};
2 Construct the hierarchy of the set map(p) ∪ {R};
3 Attach to each node n in map(p) ∪ {R} a value αn, where αn is the total

amount that the node n receives from its parents pr(n), and then distributes on
its own concepts and its children ch(n);

4 Initializing ∀n ∈ map(p), αn = 0 and set αR = |p|T ;
5 Scan the hierarchy of map(p) ∪ {R} in a breadth-first way, starting from the

current node n = R;
6 Compute the portion δn of αn for one single term: δn = αn

|Tn|+∑
n′∈ch(n) |Tn′ | ;

7 begin
8 for each child n′ ∈ ch(n) do
9 Compute the amount αn′ that must be transferred from n to n′:

αn′ = αn′ + (δn × |Tn′ |);
10 end
11 if n �= R then
12 for each candidate concept ci ∈ Cn do

13 Compute the relative importance: βi =
δn×|Tn|

|Cn| (We suppose that in

a given node all concepts are equally important);
14 rw(p) = rw(p) ∪ {(ci, βi)};
15 end

16 end
17 Change n to the next node according to the breadth-first scan order and go

to line 6;

18 end

72 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

The algorithm starts from the abstract root n = R with αn = |p|T . The
algorithm must achieve a breadth-first search on the hierarchy that is defined on
map(p) ∪ {R} (Figure 2).

Finally, the length of a phrase p in the concept-space |p|C is equal to the sum
of the relative weights of all concepts of p:

∀p ∈ P, |p|C =
∑

(ci,βi)∈rw(p)

βi

Knowing that the algorithm always starts at the abstract root and the input
amount for the abstract root is the length of the phrase in the word-space.
Knowing that at any node, we do not produce any new amount, we just distribute
the received amount on concepts and children. Knowing that at any node, we do
not lose any amount, or in other words, the whole received amount is distributed
on concepts and children, and for leaves the whole amount is distributed on
concepts. It is easy to verify that we maintain the length of phrases in both
word-space and concept-space. In other words, we know that ∀p ∈ P, |p|C =∑

(ci,βi)∈rw(p) βi = |trm(p)| = |p|T .
Returning to our previous example in Figure 2, the process starts in R with the

input amount αR = |p|T = 3. The scanning order will be 〈R, n1, n2, n3, n4, n5〉:
– (n = R) and (αn = αR = 3): We compute the portion δn of αn for one

single term δn = αn

|TR|+|T1|+|T2| = 3
4 . Now, compute the amount that must

be transferred to each child: αn1 = δn × |Tn1 | = 3
2 and αn2 = 3

2 . The root R
does not contain any concept.

– (n = n1) and (αn = αn1 = 3
2): In the same way, δn = αn

|T1|+|T3|+|T4| = 3
8 ,

and also, αn3 = δn × |Tn3 | = 3
8 and αn4 = 3

8 . Each concept ci ∈ C1 in n1

will have the relative weight βi = δn×|Tn|
|Cn| =

3
8×2

2 = 3
8 . In other words, the

relative weight of the concept C0032300 is 3
8 .

– By continuing in this way, the final output of our algorithm will be:
rw(p) = {(C0032300, 38), (C0155862, 38), (C0581647, 34),

(C1428707, 18), (C1522101, 18), (C0796494, 18),
(C0024109, 3

20), (C1278908, 3
20), (C2707265, 3

20),
(C2709248, 3

20), (C0032285, 3
20), (C0034571, 1

16),
(C0043299, 1

16), (C0043309, 1
16), (C1306645, 1

16),
(C1714805, 1

16), (C1962945, 1
16)}

We can verify that:
∑

(ci,βi)∈rw(p) βi = 3 = |ph|T

4.8 Indexing a Document with Concepts

A document d is a sequence of phrases Pd = 〈p1, . . . , pnd
〉. We represent the

indexed document d as a set of concepts with their relative weight, where the
relative weight of a concept c in a document d, noted tf c,d, is the sum of its
relative weights within all phrases of d.

d = {(c, tf c,d)|tf c,d =
∑

pi∈Pd,(c,βi)∈rw(pi)

βi}

Revisiting the Term Frequency in Concept-Based IR Models 73

Queries are indexed as documents, like in all classical IR models.
In view of our document and query representation, the other components of

classical IR models become:

– The term frequency of a concept c in a corpus D is the sum of the relative
weights of c in all documents of D, tf c,D =

∑
di∈D tf c,di

.
– Document length is |d| =

∑
(c,tf c,d)∈d tf c,d = |trm(d)|.

– Query length is |q| =
∑

(c,tf c,q)∈q tf c,q = |trm(q)|.
– Corpus length is |D| =

∑
di∈D |di|.

5 Experiments

The main goal of our experiments is to show the validity of our new way of
weighting (Relative Weight). We check this validity through comparing the re-
trieval performance of some classical IR models using classical concept weighting
method, namely tf.idf, to their performance using our new way of weighting. In
order to achieve this goal we apply four classical IR models to seven corpora of
medical contents.

More precisely, we apply four classical IR models belonging to different math-
ematical frameworks, e.g. probabilistic, vector space, language models. Concern-
ing the weighting approach, we use, besides our proposed approach, the classical
approach (tf.idf). For moving from words to concepts, there are many tools
[3,2,8,12], which essentially map text to concepts of a knowledge base. Each tool
proposes some concepts for a certain piece of text, and some of these tools also
achieve a supplementary step to filter or disambiguate the proposed concepts
for providing more precise list of concepts [3]. In this study, we use MetaMap
that provides the basic mapping functionality, and instead of the supplementary
filtering or disambiguation step, we keep all concepts proposed by MetaMap,
but we give to each concept a relative weight reflecting its importance in the
original text.

In order to compare the retrieval performance of IR models, we use the Mean
Average Precision (MAP) metric, which is both recall and precision metric, and
also the precision at the first ten documents (P@10) metric, which is a pure
precision metric. As statistical significance test, we use Fisher’s Randomization
test at the 0.05 level [17].

5.1 Experimental Setup

We apply four different IR models to seven medical-content corpora form
ImageCLEF5.

Retrieval Models. In order to obtain more valuable and reliable results, we choose
models belonging to different mathematical frameworks:

5 www.imageclef.org/2012/medical

www.imageclef.org/2012/medical

74 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

– From probabilistic framework: we choose (bm25) [14] with the following
parameter values k1 = 1.2, b = 0.75, and k3 = 1000 [9].

– From language models framework: we choose Dirichlet model (dir) with
μ = 2000, and Jelinek-Mercer model (jm) with λ = 0.1 for short queries
or λ = 0.7 for long queries [18].

– From vector space framework: we choose Pivoted Normalization Method
(piv) with s = 0.2 [16]. As our counting approach could produce term fre-
quencies less than 1, we thus make a small modification to the piv model
through adding 1 to the term frequency component. The retrieval perfor-
mance of this modified version of piv is equivalent to the original one.

Data. Table 3 shows some statistics about the seven corpora that we use. We
have four corpora with short queries : image09, image10, image11, and image12.
We also have three corpora with long queries : case11, case12(T+A), and case12,
where case12(T+A) is the same corpus as case12 but we only use the title and
abstract parts of each document.

As we mentioned the indexing terms are concepts. We use MetaMap to map
the text of documents and queries to UMLS’ concepts. Table 3 clearly shows a
difference in the length of documents between the word-space and the concept-
space.

Table 3. Corpora statistics. avdl and avql are the average length of documents and
queries. (#d) number of documents and (#q) number of queries

image09 image10 image11 image12 case11 case12(T+A) case12

#d 74901 77497 230088 306530 55634 74654 74654

#q 25 16 30 22 10 26 26

avdl
Words 62.16 62.12 44.83 47.16 2594.5 160.51 2731.24

Concepts 157.48 157.27 101.92 104.26 5752.38 376.14 5971.21

avql
Words 3.36 3.81 4.0 3.55 19.7 24.35 24.35

Concepts 10.84 12.0 12.73 9.41 57.5 63.73 63.73

5.2 Results and Discussion

We separate our discussion according to the length of queries, in order to study
the effects of our concept weighting approach on both long and short queries.
In general, we show the validity of our method of weighting, namely Relative
Weight, through comparing the retrieval performance of IR models using, or
without using, the Relative Weight. More precisely, we weight concepts in two
ways: the classical way tf.idf and the relative way (Algorithm 1).

Short Queries. Table 4 shows the retrieval performance of some IR models using,
and without using, our weighting approach. IR models are applied to corpora of
short queries. The table shows that using the concepts Relative Weight approach
with classical IR models generally improves their performance. In addition, some-
times the improvements are statistically significant.

Revisiting the Term Frequency in Concept-Based IR Models 75

Table 4. (c) refers to classical weight and (r) refers to relative weight. The ‘Gain’
column shows the gain in MAP, and † refers to statistically significant improvement.

image09 image10 image11 image12
MAP P@10 Gain MAP P@10 Gain MAP P@10 Gain MAP P@10 Gain

piv
c 0.288 0.536

+36%
0.242 0.381

+20%
0.159 0.320

+12%
0.107 0.164

+27%
r 0.391† 0.616 0.290† 0.394 0.178 0.333 0.136 0.246†

bm25
c 0.267 0.460

+26%
0.213 0.294

+20%
0.155 0.310

-3%
0.103 0.150

+11%
r 0.336 0.540 0.256 0.356 0.150 0.290 0.114 0.159

dir
c 0.268 0.464

+26%
0.246 0.363

+12%
0.123 0.233

+2%
0.086 0.136

+13%
r 0.338 0.576 0.275 0.438 0.126 0.237 0.097 0.146

jm
c 0.306 0.528

+31%
0.245 0.375

+14%
0.158 0.280

+15%
0.102 0.160

+29%
r 0.401† 0.612 0.280 0.450† 0.182† 0.337† 0.132† 0.241†

Long Queries. Table 5 shows the retrieval performance of some IR models using,
and without using, our weighting approach. IR models are applied to corpora of
long queries. The table shows that using the concepts Relative Weight approach
with classical IR models does not make a big difference, where the performance
of most of models is equivalent in both approaches of concept weighting.

Table 5. (c) refers to classical weight and (r) refers to relative weight. The ‘Gain’
column shows the gain in MAP, and † refers to statistically significant improvement.

case11 case12(T+A) case12
MAP P@10 Gain MAP P@10 Gain MAP P@10 Gain

piv
c 0.096 0.140

-10%
0.079 0.115

+10%
0.190 0.219

+4%
r 0.087 0.150 0.087 0.119 0.198 0.204

bm25
c 0.096 0.140

+11%
0.085 0.119

+6%
0.178 0.189

-6%
r 0.106 0.190 0.090 0.123 0.167 0.185

dir
c 0.104 0.150

-3%
0.083 0.112

+8%
0.189 0.181

-1%
r 0.101 0.170 0.089 0.119 0.188 0.192

jm
c 0.120 0.160

-2%
0.086 0.115

+5%
0.184 0.181

+6%
r 0.118 0.180 0.091 0.131 0.194 0.189

Discussion. In general, the obtained results, concerning short and long queries,
is compatible with the main conclusion of applying disambiguation to concept-
based indexing, where the gain of disambiguation with short queries is clearer
and more considerable [15]. This is logically correct because long queries are less
ambiguous than short ones.

We should also clarify that in general, the experimental results of any concept
based IR model are highly depended on:

76 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

• The quality and the completeness of the knowledge base that contains con-
cepts (UMLS in our case).

• The accuracy of the text-concepts mapping tool (MetaMap in our case).
• The amount of information that is used beside concepts, such as the relations

between concepts. In other words, to which limit we profit from the content
of the knowledge base.

Accordingly, we should, in future, make in-depth study of MetaMap accuracy,
and also try using other tools.

6 Conclusion

In this study, we revisit weight approaches of classical IR models when using
concepts. The main motivation of this revisit is that in the word-space when
a document d contains two words then d should contain the meaning of both
words. Whereas, in the concept-space when a piece of text of d is mapped to a set
of concepts, then d should, in our point of view, contain one of these meanings
or concepts.

Disambiguation could be one possible solution to this problem, but, in this
paper, we propose another solution depending on maintaining the document and
query length in both the word-space and concept-space.

The main idea of Relative Weight, is to distribute the length of a phrase on its
candidate concepts. The Relative Weight approach assigns a relative weight to
each concept, where the distribution (or assignation) process must respect three
hypotheses.

We integrate our new weighting approach into classical IR models. Then,
we compare the performance of these models when using the classical weighing
approach (tf.idf), with their performance when using the Relative Weight ap-
proach. To achieve this goal, we apply four IR models to seven medical-content
corpora already annotated by UMLS’ concepts using the MetaMap tool.

In general, the experimental results are promising, especially in the case of
very short queries. However, in the case of long queries, our approach produces
equivalent performance with respect to the classical weighting approach. Any-
way, the performance of any concept-based approach highly depends on the
accuracy of the mapping tools (MetaMap in our case).

The next step in this study is to test our weighting approach with other
mapping tools, in order to study the effects of tools accuracy on the retrieval
performance.

Acknowledgments. This work was partly realized as part of the Quaero Pro-
gram funded by OSEO, French State agency for innovation. This work was sup-
ported in part by the french project VideoSense ANR-09-CORD-026 of the ANR.

Revisiting the Term Frequency in Concept-Based IR Models 77

References

1. Abdulahhad, K., Chevallet, J.-P., Berrut, C.: Solving Concept mismatch through
Bayesian Framework by Extending UMLS Meta-Thesaurus. In: CORIA 2011, Avi-
gnon, France, pp. 311–326 (March 2011)

2. Aronson, A.R.: Metamap: Mapping text to the umls metathesaurus (2006)
3. Baziz, M.: Indexation conceptuelle guidée par ontologie pour la recherche

d’information. Thèse de doctorat, Université Paul Sabatier, Toulouse, France
(Décembre 2005)

4. Bendersky, M., Metzler, D., Bruce Croft, W.: Parameterized concept weighting in
verbose queries. In: SIGIR 2011, Beijing, China, pp. 605–614 (2011)

5. Chevallet, J.-P., Lim, J.-H., Le., D.T.H.: Domain knowledge conceptual inter-media
indexing: application to multilingual multimedia medical reports. In: CIKM 2007,
Lisbon, Portugal, pp. 495–504 (2007)

6. Codocedo, V., Lykourentzou, I., Napoli, A.: Semantic Indexing and Retrieval based
on Formal Concept Analysis. Technical report (June 2012)

7. Crestani, F.: Exploiting the similarity of non-matching terms at retrieval time. Inf.
Retr. 2(1), 27–47 (2000)

8. Dozier, C., Kondadadi, R., Al-Kofahi, K., Chaudhary, M., Guo, X.S.: Fast tagging
of medical terms in legal text. In: ICAIL, pp. 253–260 (2007)

9. Fang, H., Tao, T., Zhai, C.: A formal study of information retrieval heuristics. In:
SIGIR 2004, Sheffield, United Kingdom, pp. 49–56 (2004)

10. Le., T.H.D.: Utilisation de ressources externes dans un modèle Bayésien de
Recherche d’Information. Application à la recherche d’information multilingue avec
UMLS. These, Université Joseph-Fourier - Grenoble I (May 2009)

11. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2),
159–165 (1958)

12. Maisonnasse, L.: Les supports de vocabulaires pour les systèmes de recherche
d’information orientés précision: application aux graphes pour la recherche
d’information médicale. These, Université Joseph-Fourier - Grenoble I (May 2008)

13. Ren, F., Bracewell, D.B.: Advanced information retrieval. Electron. Notes Theor.
Comput. Sci. 225, 303–317 (2009)

14. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In: SIGIR 1994, Dublin, Ireland, pp.
232–241 (1994)

15. Sanderson, M.: Word sense disambiguation and information retrieval. In: SIGIR
1994, Dublin, Ireland, pp. 142–151 (1994)

16. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
SIGIR 1996, Zurich, Switzerland, pp. 21–29 (1996)

17. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance
tests for information retrieval evaluation. In: CIKM 2007, Lisbon, Portugal, pp.
623–632 (2007)

18. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to ad hoc information retrieval. In: SIGIR 2001, New Orleans, Louisiana, United
States, pp. 334–342 (2001)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 78–87, 2013.
© Springer-Verlag Berlin Heidelberg 2013

BioDI: A New Approach to Improve Biomedical
Documents Indexing

Wiem Chebil1,2, Lina Fatima Soualmia1, and Stéfan Jacques Darmoni1

1 Normandie Univ, CISMeF Team, LITIS-TIBS EA 4108,
Rouen University and Hospital, France

2 Research Unit MARS, Monastir University, Tunisia
wiem.chebil@yahoo.fr,

{Lina.Soualmia,Stefan.Darmoni}@chu-rouen.fr

Abstract. The partial match between biomedical documents and controlled
vocabularies allows to find in the documents more terms variants than those ex-
isting in the dictionaries. However, it generates irrelevant information. We
propose a new approach for indexing biomedical documents with the Medical
Subject Headings (MeSH) thesaurus that aims to overcome the limitation of the
partial match. In fact, our indexing approach proposes to restrict the stemming
process in the step of pretreatment. The step of the descriptors extraction is
based essentially on the vector space model and combines semantic and statistic
methods to compute a score to estimate the relevance of a descriptor given a
document. The knowledge provided by the Unified Medical Language System
(UMLS) is used then for filtering. The filtering method aims to keep only rele-
vant descriptors. The experiments of our approach that have been carried out on
the OHSUMED collection, showed very encouraging results.

Keywords: Partial match, biomedical documents, stemming, MeSH term, term
weight, UMLS.

1 Introduction

The permanent increase of biomedical documents in the internet makes the task of
their manual indexing with the biomedical controlled vocabularies become more dif-
ficult. To replace the tedious task of the human indexers, several approaches of bio-
medical documents indexing were proposed. Some of these approaches were based on
an exact match [1-3] between the controlled vocabularies and documents which al-
lows to find in the document only terms in the dictionaries. Other approaches were
based on a partial (or approximate) match [4-7] which allows to (i) find in the docu-
ment other terms variants than those existing in the dictionaries by applying the
stemming, which reduces words (in the document and in the controlled resource) to
their stems (or roots) (e.g. reacts, reacting, reacted, are reduced to react), or lemmati-
zation, which reduces words to their based form (e.g. operation, operated are reduced
to operate) (ii) extract multi-word terms that share a subset of their words with the
document. The terms extracted in the two cases (i) and (ii) may be relevant which

 BioDI: A New Approach to Improve Biomedical Documents Indexing 79

leads to improve the recall. But also they may be irrelevant which leads to decrease
the precision. For examples: in the case of (i) a short stem may be confused with an
acronym such as “kid” which is an acronym of term “Keratitis, Ichthyosis, and Deaf-
ness” and also a stem of term “kidding”. In addition, the existing tools for the lemma-
tization may don’t recognize the exact grammatical classes (verb, noun..) of the
biomedical vocabulary. In the case of (ii) the term “breast cancer” in a document
may yield the Medical Subject Headings (MeSH) [8] terms “testicular cancer” and
“stomach cancer” because the three terms share the word “cancer” [9].

In this paper, we propose a new approach for indexing biomedical documents us-
ing MeSH thesaurus denoted Biomedical Document Indexing (BioDI) that aims to
overcome the limitation of partial match based approaches. Our first contribution is to
restrict the stemming process. In addition, to enhance the relevance estimation of a
term1, we compute a semantic, statistic and structure based score that gives an im-
portance to the position of a word in the document as well as to the occurrence of the
terms words in the same phrase. Another main contribution of our approach is to ex-
ploit the knowledge provided by the Unified Medical Language System (UMLS) [10]
to filter the extracted descriptors. The filtering allows to keep relevant descriptors
among those extracted in the case (ii).

The paper is organized as follow: the second section presents the related work. The
section 3 details the steps of our indexing approach. In the section 4, we describe the
experiments and the generated results that are discussed in the section 5. Finally, in
the section 6 we conclude and present our future work.

2 Related Work

Several research approaches for indexing biomedical documents have been proposed.
We focus on some of them. Pouliquen et al. [1] computed a statistic weight based on
TF-IDF for each term automatically extracted from the document using a method
based on NLP (Natural Language Processing). These terms are then matched to the
terms of the ADM (assistance with the medical diagnosis) dictionary. Jonquet et al.
[2] applied the Mgrep tool for extracting concepts from 200 biomedical ontologies,
and computed a score for each generated annotation according to its origin (preferred
term, non-preferred term, synonym term …etc.). Mukherjea et al. [3] developed
BioAnnotator a new tool for indexing biomedical documents. It uses a parser to iden-
tify noun phrases from a document and then matches them to the UMLS concepts
using a rule engine. Zhou et al. [4] proposed to annotate documents with only the
most significant words in the UMLS Meta-thesaurus. Ruch [5] proposed an indexing
approach denoted by Eagl that combined two models: the Vector Space Model (VSM)
and a regular expression pattern matcher. The indexing technique of Aronson et al.
[6] is based on three methods: the first uses MetaMap (software tool for English that
allows mapping document to the UMLS concepts), the second is the tri-gram method
and the last one is the KNN (the k-Nearest Neighbors). Majdoubi et al. [7] used the
VSM to extract MeSH terms and then computed a statistic and semantic weight for
ranking these terms.

1 In this paper we denoted by terms all preferred and no preferred terms in MeSH thesaurus.

80 W. Chebil, L.F. Soualmia, and S.J. Darmoni

3 The Steps of Our Proposed Approach

Our approach BioDI is based on VSM [11] which was initially applied in Information
Retrieval (IR) to compute a similarity between user’s query and the document. In our
approach, as in [5] and [7] the query is replaced by a term. Our method is composed
of 4 steps: pretreatment, descriptors extraction, filtering and final ranking.

3.1 Step 1: Pretreatment

The step of pretreatment consists of 4 tasks: (i) dividing the document into phrases (ii)
removing punctuation (iii) pruning stop words (iv) stemming. The last three tasks are
applied also on MeSH terms. Let “The binding of acetaldehyde to the active site of
ribonuclease: alterations in catalytic activity and effects of phosphate.” a title of a
document, after the pretreatment this title become “bind acetaldehyd activ site
ribonucleas alter catalyt activ effect phosphat”. For the stemming, we chose to use
PORTER Algorithm [12]. During the stemming process a short stem can be confused
with an acronym. Thus, we propose to restrict the applying of the stemming process
only on words that the length of their stems is equal or upper than a threshold Ts
which is fixed experimentally (see section 4).

3.2 Step 2: Descriptors Extraction

The step of descriptors extraction begins with extracting all the preferred and no pre-
ferred terms. To do, we compute a similarity between each term and the document
using cosine similarity. The terms candidates are those having a similarity upper or
equal than a tuned Threshold Tcos. Then, we compute a weight for each extracted
term. The final score of each selected term is the sum of its similarity with the docu-
ment and its weight. After, the corresponding descriptors are assigned to the terms.
The score of a descriptor is the score of its term. As in [13], if a descriptor corre-
sponds to more than one term among the terms candidates, it will have the highest
score. The term that gives its score to the descriptor is denoted the Representative
Term (RT).

Similarity between a Term and a Document
 Let {T1… Ti… Tz} the set of MeSH terms. Each term Ti is composed of a set of
words Ti { wdt1.. wdtk... wdtt } with t the number of words in a term. Ti is represented
by the vector VT (WWT1… WWTk.. . WWTt), WWTk is the weight of word wdtk in
the MeSH. The document DOC is represented by the vector VDOC (WWDoc1…
WWDock… WWDoct), WWDock is the weight of the word wdtk in the DOC. The
cosine similarity is computed then between VT and VDOC (1) and denoted Sim(Ti,
DOC). We consider that WWT-WWDoc is the weight combination of wdtk.

 (1)

 () ()
=

×

=

×

t

k kWWDockWWT

t

k kWWDockWWT

1

22
1 =DOC) ,iT Sim(

 BioDI: A New Approach to Improve Biomedical Documents Indexing 81

Weight of Word in the Document (WWDoc)
For computing WWDoc, we use a weight based on the frequency of a word in the
document that takes into consideration the position of the word in the document (in
the title, in the abstract or in the paragraphs). This weight is denoted Word Average
Frequency in the Document (WAFDoc) (2). We consider that the key words are more
dissipate in the paragraphs and mixed with non relevant words (comparing to the
abstract and title), while key words are more condensed in the title (comparing to
abstract and paragraphs). Thus, we assign the following coefficients to each position
in document: Position Coefficient (PC) =8 to the title, PC=4 to the abstract, PC=2 to
the paragraphs.

 (2)

─ FQ(wdtk , P): Frequency of wdtk in the position P
─ P=1:Title; P=2: Abstract; P=3: Paragraph
─ PCp: The coefficient of the position P.
─ r: The number of the positions coefficients

Weight Word in Term (WWT). We consider WFk-IDFk

2(Word frequency – Inverse
document frequency) [11] is the weight of the word wdtk in the term.

 kIDFkWFkWWT ×= (3)

 ()
te

FWT

FWT

>−1:
emax

k =
k

WF (4)

─ t: is the number of words in a term
─ FWTk: Frequency of wdtk in a term

We consider that the normalized frequency of a word wdtk in the term is equal to its
frequency in the descriptor containing this term because this term may be the RT of
the descriptor. The frequency of a word in a descriptor is its frequency in all the terms
of the descriptor. We consider also that the IDF of wdtk is equal to the logarithm of
the number of the descriptors containing in their terms at least one occurrence of wdtk
divided by the total number of the descriptors in MeSH.

−

ND

FWDM
klog =

k
 IDF (5)

2 Instead of using “TF” (term frequency) we used “WF” (word frequency) because we consider

that a term can be composed of one word or can be a multi-word term.

()

=

=

×

r

p
pPC

r

p p
PCP,

k
wdtFQ

1

1
=

k
WAFDoc=

k
WWDoc

82 W. Chebil, L.F. Soualmia, and S.J. Darmoni

─ ND: The total Number of Descriptors in MeSH
─ FWMk : The Frequency of the Word wdtk in MeSH (the number of descriptors

having at least one occurrence of wdtk).

Weight of a Term in the Document (WTDoc)
We propose a new weight of a term Ti in the document denoted TAFDoc. This weight
is based on WAFDoc and it is equal to the sum of the weights WAFDoc of all the
words of Ti (the t words) divided by t. The results is majored by a coefficient cof>1 if
all the t words of Ti are at least one time in the same phrase in the document. In fact,
we hypothesize that words in the same phrase are more likely to cover the same
meaning. The coefficient cof is experimentally tuned.

()

cof
t

t

=k k
wdt

∗

= 1
WAFDoc

=
i

TAFT
i

WTDoc (6)

-cof >1 if the term words are in the same phrase at least one time in the document.
-cof= 1 if the term words are not in the same phrase

The Score of a Descriptor
The score of a descriptor is the maximum score of its terms (7). The term having the
maximum score is the Representative Term (RT). The score of a term is the sum of its
similarity with the document and its weight in the document (8).

))
1:

(max()(
nj

jTScoreDScore
>−

= (7)

)(
i

WTDoc =)
i

(T Score DOC,iTSim+ (8)

n: The number of terms of a descriptor D

3.3 Step 3: Filtering

The aim of this step is to keep only the relevant descriptors among those having a
multi-word RT that at least one of its words doesn’t occur in the document. In fact,
we classified the no extraction of these relevant descriptors as a category of indexing
errors in [14]. This step consists of dividing the set of MeSH descriptors generated in
the previous step into two sets of descriptors: the first set is denoted Principal Index
(PI) and the second is denoted Secondary Index (SI). The PI contains the descriptors
that their RT terms have all their words in the document. These Descriptors are denot-
ed Principal Descriptors (PD). The SI contains the descriptors that their RT terms
have a subset of their words in the document. These descriptors are denoted Second-
ary Descriptors (SD). We separate the PD and SD because we are based on the
assumption that MeSH terms having all their words in the document are more likely
to be correct. Then the relevant descriptors in SI are added from the SI to the PI. To
do this task, first of all, the PD in PI are ranked using the score (7). Thus we have

 BioDI: A New Approach to Improve Biomedical Documents Indexing 83

PI= {PD1,…PDi …PDv}, PDi is a principal descriptor having the rank i and v is the
number of PD in PI. Then, we propose to compute a score S for each SD (9). This
score S is based on the co-occurrences of MeSH descriptors in MEDLINE and the
semantic relations between MeSH descriptors provided by the semantic work of
UMLS [10]. In fact, our assumption is that the SD is more likely to be correct if it is
more co-occurrent or/and have more semantic relations with exactly the L first PD in
PI that are considered the most relevant. L is the length of a window that contains the
L first PD. For example, according to the proposed formula of S (9) if we fix L=1,
that means S(SD) is equal to the sum of the number of co-occurrences and relations
between the SD and the PD having the rank 1(PD1). If L=2, that means S(SD) is equal
to the sum of the number of the co-occurrences and the semantic relations between
the SD and the two PD having the rank 1 and 2(PD1 and PD2). If SD doesn’t co-occur
or doesn’t have any semantic relation with one of the L PD, or if the SD has a score S
lower than a tuned threshold T, it isn’t be added to PI. The threshold T was tuned
according to the value of L.

 . (9)

 CF: Co-occurrence Frequency; NR: Number of the semantic Relations

3.4 Step 4: Final Ranking

The SD selected in the previous step will be added to PI, the final index (FI) is thus
constructed. The descriptors of FI are re-ranked using the score (7).

4 Experiments and Results

To test our approach we selected randomly 6,000 citations among the OHSUMED
collection3 composed of 4,591,015 MEDLINE citations. Each selected citation is
composed of title and an abstract. The content of the title is merged with the content
of the abstract when indexing the citations. We don’t consider the sub-headings in our
approach. To evaluate BioDI, we used the classical measures of Precision (P), Recall
(R) and F-score (Fs). The precision is the number of correct descriptors divided by the
total number of descriptors automatically generated. The recall is the number of cor-
rect descriptors divided by the number of descriptors manually extracted. F-score
combines precision and recall with an equal weight [15].

4.1 Evaluation of the Terms Extraction

The different cases experimented in order to fix the adequate value of Ts are: Ts>=3,
Ts >=4, Ts>=5 and Ts>=6. We experimented also the stemming without considering
the stem length and the case where we didn’t stem the words. For each of these cases,
we applied the cosine similarity between the MeSH terms and the document and we

3 http://trec.nist.gov/data/t9_filtering.html

() () ()
L

=i

L

=i
ii PDSD,NR+PDSD,CF

1 1

 =SDS

84 W. Chebil, L.F. Soualmia, and S.J. Darmoni

tested the performance of the proposed weight combination WFIDF-WAFDoc as well
as others combinations: 1-1 (assigning 1 to the weight of word in the document if the
word exist in the document, 0 else), IDF-WFIDF, WFIDF-WFIDF. When computing
the cosine similarity a big number of terms are extracted, thus, only those having a
similarity upper than a tuned threshold Tcos equal to 0.8 were selected as candidates
for indexing the document. In order to generate the results of these experiments we
affected for each extracted term its correspondent descriptor because the manual in-
dexing has been carried out using descriptors. The table 1 illustrates the obtained
results of the experiments described above.

Table 1. Results of terms extraction4

 1-1 (or 0) IDF-WFIDF WFIDF-WFIDF WFIDF -WF WFIDF-WAFDoc

P-R-

Fs

P-R-

Fs

P-R-

Fs

P-R-

Fs

P-R-

Fs

A 0.180-0.30-

0.225

0.174-0.310-

0.199

0.175-0.330-

0.228

0.177-0.340-

0.232

0.179-0.360

-0.239

B 0.170-0.32-

0.222

0.161-0.320-

0.214

0.163-0.350-

0.222

0.165-0.400-

0.233

0.168-0.410-

0.238

C 0.159-0.48-

0.238

0.148-0.520-

0.223

0.150-0.521-

0.230

0.155-0.535-

0.240

0.158-0.570-

0.246

D 0.121-0.520-

0.196

0.113-0.550-

0.187

0.115-0.560-

0.190

0.117-0.580-

0.194

0.119-0.600-

0.198

E 0.112-0.57-

0.187

0.106-0.605-

0.180

0.107-0.610-

0.182

0.109-0.620-

0.185

0.110-0.630-

0.187

F 0.100-0.60-

0.171

0.090-0.615-

0.157

0.092-0.620-

0.160

0.094-0.630-

0.164

0.099-0.650-

0.172

A: Without stemming, B: Ts>= 6, C: Ts>=5, D: Ts>=4, E: Ts >=3, F: Stemming
without considering the length of word stem.

4.2 Experiments and Results of Generating the PI

The aim of these experiments is to compute the precision, recall and f-score of the PI
where descriptors are ranked using the score (7) that takes into account the similarity
between the MeSH terms and the document and also the weight of the terms in the
document. In the first experiment (section 5.2) we evaluated the performance of pro-
posed similarity. In this experiment we tested the performance of the proposed weight
TAFDoc through two experiments. First of all, we varied the value of the coefficient
cof and we compute the TAFDoc. We carried out this test, in order to find the best
value of the coefficient cof. Then, we evaluated the performance of BM25 term
weighting model used in [16] to compute the weight of concepts, which is compared

4 We kept three numbers after the point because the results are very close to each other.

 BioDI: A New Approach to Improve Biomedical Documents Indexing 85

Table 2. Results of generating PI with varying cof and comparing TAFDoc to BM25

 BM25 TAFDoc

cof=1 cof=1.5 cof=1.6

P-R-Fs(rank1) 0.61-0.17-0.26 0.68-0.19-0.28 0.71-0.21-0.31 0.70-0.18-0.28
P-R-Fs(rank10) 0.17-0.43-0.23 0.23-0.43-0.28 0.29-0.40-0.33 0.28-0.37-0.23
P-R-Fs(rank15) 0.19-0.47-0.25 0.21-0.45-0.27 0.25-0.43-0.30 0.24-0.40-0.29

to the performance of TAFDoc. For each one of the two experiments, a new score (7)
was computed with keeping always the proposed similarity, and PI is re-generated.

Table 2 presents the results of these experiments at ranks1, 10 and 155.

4.3 Evaluation of the Filtering Step and Final Ranking

In order to evaluate the step of filtering we generate final results for different values
of L. For each value of L a new value of T is experimentally tuned. These results are
shown in table 3.

Table 3. Results after filtering and final ranking at rank 1, 10 and 15

 L=1/T=70 L=2/T=50 L=3/T=10 L=4/T=4 L=5/T=5 L=6/T=6

P-R-
Fs(rank1)

0.71-0.21-
0.31

0.71-0.21-
0.31

0.71-0.21-
 0.31

0.71-0.21-
0.31

0.71-0.21-
0.31

0.71-0.21-
0.31

P-R-
Fs(rank10)

0.31-0.52-
0.38

0.35-0.51-
0.40

0.41-0.50-
0.45

0.37-0.48-
0.42

0.35-0.45-
0.38

0.30-0.40-
0.34

P-R-
Fs(rank15)

0.26-0.55-
0.34

0.32-0.54-
0.39

0.36-0.52-
0.42

0.34-0.49-
0.39

0.30-0.48-
0.35

0.27-0.45-
0.33

4.4 Evaluation of Some Other Approaches

To highlight the effectiveness of our indexing approach, we compared the perfor-
mance of BioDI to the performance of some other approaches. In fact, we evaluated
MaxMatcher [4], and Eagl [5] which are partial match based approaches and
BioAnnotator [3] which is an exact match based approach. The results of this evalua-
tion are detailed in table 4.

Table 4. Evaluation of MaxMatcher, Eagl and BioAnnotator at ranks 1, 10 and 15

 MaxMatcher Eagl BioAnnotator BioDI
P-R-Fs(rank1) 0.69-0.18-0.27 0.62--0.18-0.27 0.70-0.14-0.22 0.71-0.19-0.29
P-R-Fs(rank10) 0.32-0.46-0.37 0.25-0.40-0.30 0.33-0.24-0.26 0.41-0.50-0.45
P-R-Fs(rank15) 0.27-0.50-0.35 0.17-0.54-0.25 0.29-0.27-0.26 0.36-0.52-0.42

5 We didn’t test other ranks upper than 15 because the average number of keywords in

MEDLINE citations is 15 [5].

86 W. Chebil, L.F. Soualmia, and S.J. Darmoni

5 Discussion

The table 1 shows that, for all the weights combinations, the precision of terms
extraction is higher without stemming, and then it decreases when the stemming is
applied with considering Ts. The more Ts decrease the more the precision also de-
creases. In addition, we can observe that the recall is very low without applying
stemming and its value is significantly higher when Ts>=6. Moreover, according to
the values of f-score we can deduce that the stemming process performs well when
Ts>=5. When analyzing table 2, we can see that the performance of the VSM is better
(according to the f-score value) when applying the weight combination WFIDF-
WAFDoc than the 4 others weights combinations though 1-1(or 0) gives a slightly
higher precision. We can deduce also that WAFT when combined with WF-IDF per-
forms well than WF and WF-IDF. The table 2 shows that the best results of generat-
ing PI when applying the weight TAFDoc are scored when cof=1.5. We can conclude
also according to table 2 that TAFDoc is more effective than BM25. These results
show the well interest of: (i) taking into account the word position in the document
(ii) giving more importance to terms having their words in the same phrase. Accord-
ing to the table 3 (final results), we can observe that there is no change in the
performance of BioDI after PI’s expansion when the first descriptor is retrieved.
Nonetheless, at rank 10 and 15 an improvement of results can be seen. Obviously,
descriptors having a part of the words of their RT doesn’t occur in the document don’t
have the best weight. We can see also, that the expansion method performs better at
L=3 than at the other values of L. In addition, when L=6 we have a remarkable de-
crease of results. Indeed, at L>5 it’s less possible to find a SD which is co-occurent or
have semantic relations with exactly the L first PD. The evaluation of Maxmatcher,
Eagle and BioAnnotator (table 4) confirms the effectiveness of BioDI which out per-
forms the three other approaches in the different ranks and in term of precision, recall
and F-score when L is equal to 3, 4 and 5. Thus, we can deduce that the performance
of our approach is closely dependent on the parameters L, cof and Tcos that must be
well tuned to allow BioDI to outperform the other approaches.

6 Conclusion and Future Work

We presented in this paper our indexing approach that proposes to improve the partial
match between biomedical documents and the controlled vocabularies. Our main
contributions are: (i) restricting the stemming process to the words that their stem
length is equal or upper than 5 (ii) computing a new score to estimate the relevance of
a MeSH descriptor given a document. This score takes into account the position of a
word in the document and gives more importance to terms having all their words in
the same phrase (iii) filtering the index using the semantic and statistic resources
of UMLS in the aim of keeping only relevant descriptors among those having a subset
of their RT in the document. The several experiments carried out on the OHUMED
corpus showed that BioDI allows improving partial match as well as exact match
between biomedical documents and biomedical terminologies. We aim after these
encouraged results to test the proposed approach with computing the score (9) be-
tween SD and all possible combinations of the first PD. In addition, we aim to

 BioDI: A New Approach to Improve Biomedical Documents Indexing 87

compare our approach to more others approaches. We are working also on applying
our approach on the corpus of the catalog and index of french-language health internet
resources (CISMeF)6.

References

1. Happe, A., Pouliquen, B., Burgun, A., Cuggia, M., Beux, P.L.: Automatic concept extrac-
tion from spoken medical reports. I. J. Medical Informatics 70(2-3), 255–263 (2003)

2. Jonquet, C., LePendu, P., Falconer, S.M., Coulet, A., Noy, N.F., Musen, M.A., Shah, N.H.:
NCBO Resource Index: Ontology-based search and mining of biomedical resources. J.
Web Sem. 9(3), 316–324 (2011)

3. Mukherjea, et al.: Enhancing a biomedical information extraction system with dictionary
mining and context Disambiguation. IBM Journal of Research and Development 48(5/6),
693–701 (2004)

4. Zhou, X., Zhang, X., Hu, X.: MaxMatcher: Biological concept extraction using approxi-
mate dictionary lookup. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI),
vol. 4099, pp. 1145–1149. Springer, Heidelberg (2006)

5. Ruch, P.: Automatic assignment of biomedical categories: toward a generic approach.
Bioinform. J. 22(6), 658–664 (2006)

6. Aronson, A.R., Mork, J.G., Gay, C.W., Humphrey, S.M., Rogers, W.J.: The NLM index-
ing initiative’s medical text indexer. Med. Health Info. 11(1), 268–272 (2004)

7. Majdoubi, J., Tmar, M., Gargouri, F.: Using the MeSH thesaurus to index a medical arti-
cle: combination of content, structure and semantics. In: International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems, KES, vol. (1), pp.
277–284 (2009)

8. Nelson, S.J., Johnson, W.D., Humphreys, B.L.: Relationships in Medical Subject Heading.
In: Relationships in the Organization of Knowledge, pp. 171–184. Kluwer Academic Pub-
lishers (2001)

9. Trieschnigg, D., Pezik, P., Lee, V., et al.: MeSH Up: effective MeSH text classification for
improved document retrieval. Bioinformatics 25(11), 1412–1418 (2009)

10. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical
terminology. Nucleic Acids Research 32(4), 267–270 (2004)

11. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4),
35–43 (2001)

12. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1981)
13. Couto, F.M., Silva, M.J., Coutinho: Finding genomic ontology terms in text using evi-

dence content. BMC Bioinformatic 6, (S-1) (2005)
14. Chebil, W., Soualmia, L.F., Dahamna, B., Darmoni, S.J.: Automatic indexing of health

documents in French: Evaluating and analysing errors. IRBM BioMedical Engineering and
Research 33(2), 129–136 (2012)

15. Manning, C.D., Schütze, H.: Fondations of statistical natural language processing, pp.
534–536. MIT Press, Cambridge (1999)

16. Dinh, D., Tamine, L.: Towards a context sensitive approach to searching information
based on domain specific knowledge sources. Web Semantics: Science, Services and
Agents on the World Wide Web 12-13, 41–52 (2012)

6 http://www.chu-rouen.fr/cismef/

Discovering Semantics from Data-Centric XML

Luochen Li1, Thuy Ngoc Le1, Huayu Wu2,
Tok Wang Ling1, and Stéphane Bressan1

1 School of Computing, National University of Singapore
{luochen,ltngoc,lingtw,step}@comp.nus.edu.sg

2 Institute for Infocomm Research, Singapore
huwu@i2r.a-star.edu.sg

Abstract. In database applications, the availability of a conceptual
schema and semantics constitute invaluable leverage for improving the ef-
fectiveness, and sometimes the efficiency, of many tasks including query
processing, keyword search and schema/data integration. The Object-
Relationship-Attribute model for Semi-Structured data (ORA-SS) model
is a conceptual model intended to capture the semantics of object classes,
object identifiers, relationship types, etc., underlying XML schemas and
data. We refer to the set of these semantic concepts as the ORA-semantics.
In this work, we present a novel approach to automatically discover the
ORA-semantics from data-centric XML. We also empirically and com-
paratively evaluate the effectiveness of the approach.

1 Introduction

To improve the conceptual quality, we needs to discover the intended seman-
tics in the logical XML schemas and data. This requires finding such seman-
tic information as object classes, relationship types, object identifiers (OIDs),
etc., as present in conceptual models for semi-structured data such as Object-
Relationship-Attribute for Semi-Structured data (ORA-SS) [6]. We refer to this
semantics as the ORA-semantics. Once discovered, the ORA-semantics is useful
not only for users to understand the data and schemas but also for improving
both the effectiveness and efficiency of processing. Let us use the XML document
in Fig. 1 to illustrate how the availability of such semantics help applications.

XML Query Processing
To process an XPath query, e.g. //Student[Matric# =‘HT001’]/Name, most
approaches match the query pattern to the data to find all occurrences.
However, if we have the semantics that Matric# is the OID of student, after
getting an answer, we can stop searching the rest of data.

XML Keyword Search
The use of semantics in current keyword search approaches [7] is still on
object level. For a query {CS5201, CS5208} to find common information of
two courses, only by knowing there is a relationship type between object
classes Student and Course, one can infer the meaningful answer should
be all students taking these two courses. Otherwise, the root node will be
returned by most LCA-based XML keyword search approaches [12].

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 88–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Discovering Semantics from Data-Centric XML 89

Schema/Data Integration
Most existing approaches [1] integrate elements based on their structural and
linguistic similarities. Grade is an attribute of the relationship type between
Course and Student. Without this semantics, when we integrate this schema
with another, in which Student has an object attribute Grade which means
the year of his study in school, we may wrongly integrate these two different
attributes with the same attribute name Grade and the same parent node
Student, because of their high structural and linguistic similarities.

Lecturer

Course

University

Student

Matric#

Code

Grade

AddressName

Name

‘NUS’ ‘ Kent Ridge’

‘CS5201’
‘John’

‘HT001’ ‘Bill’ ‘A’

Student

Matric# Grade
Name

‘HT002’ ‘Bob’ ‘C’

Lecturer

Course

Student

Matric#

Code

GradeName

‘CS5208’
‘Tan’

‘HT001’ ‘Bill’ ‘B’

...

...

...

Fig. 1. An XML data tree

However, most practical applications are semantics-less, as most existing XML
schema languages, e.g., DTD and XSD, cannot fully represent the semantics
such as object class, relationship type, OID, etc. Despite the existence of se-
mantically rich XML models, e.g., ORA-SS, they still requires manual provision
of semantics from the initial design or model transformation. We believe only
if the automatic semantics discovery technique is developed to a satisfactory
level, the achievements in semantics-based query optimization, keyword search,
schema/data integration, etc., will be widely adopted by different applications.

In this paper we present a novel approach to automatically discover the ORA-
semantics from data-centric XML schemas and data. Different from the existing
approaches that only focus on object identification, we consider a comprehensive
set of ORA-semantics, including OID, relationship type as well as the distinction
between object attribute and relationship attribute.

2 Preliminary

We refer the tree structure derived from XML schemas as XML schema trees.
For ease of description, all following concepts are defined on XML schema trees.

In XML schema tree, object class is an internal node representing a real
world entity or concept. An object class has a set of object attributes to
describe its properties. Each object class has an object identifier (OID) to
uniquely identify its instance. Several object classes may be connected through a
relationship type which may or may not explicitly appear in the XML schema
tree. We call them explicit relationship type and implicit relationship

90 L. Li et al.

type. A relationship type may have a set of relationship attributes. Ag-
gregational node aggregates its child nodes with identical/similar meaning.
Composite attribute is an object/relationship attribute containing multiple
components, each of which can be a single attribute or a composite attribute.

Based on the semantic concepts mentioned above, we define the ORA-
Semantics, which is the scope of the semantic concepts we consider in this paper.

Concept 1. ORA-semantics (Object-Relationship-Attribute-semantics)
In an XML schema tree, the ORA-semantics is the identification of object class,
OID, object attribute, aggregational node, composite attribute and explicit/implicit
relationship type with relationship attributes. Each particular semantic concept in
ORA-semantics is called an ORA-semantic concept.

Name

Supplier*

Project *

Part*

Part #

Quantity

Supplier #

Price

Location
Project #

(ID) Funding

Color

Employee

Name
Phone*

ContactWith
(IDREF)

Qualification*

DataDegree University

Qualifications
Contact #

E#

Borrow

Book*

ISBN
Title

Date

Author*

Paper*

PaperID

Name Author*

Year

Has

Child*

Social
Security # Name Age

Fig. 2. An XML schema Tree

Example 1. In Fig. 2, we can infer the internal nodes Project, Supplier, Part,
Employee, Book, Paper and Child are object classes, with their OIDs Project#,
Supplier#, Part#, E#, ISBN, PaperID and SocialSecurity#. The internal node
Borrow is an explicit relationship type between Employee and Book with a
relationship attribute Date; the internal node Has is an explicit relationship
type between Employee and Child without any relationship attribute. The leaf
node Price is a relationship attribute of the binary relationship type between
Supplier and Part, and the leaf node Quantity is a relationship attribute of the
ternary relationship type among Project, Supplier and Part. The internal node
Qualifications is an aggregational node, aggregating its child node Qualification,
which is a composite attribute. All other leaf nodes are object attributes.

3 ORA-Semantics Discovery

We use properties of ORA-semantics, heuristics and data mining techniques to
discover the ORA-semantics in data-centric XML schema/XML data. The prop-
erties used in our approach conform to the design of the corresponding ORA-SS
model or ER model, and the heuristics are summarized based on the characteris-
tics and our observations of different ORA-semantics concepts. In case an XML
schema is not available with XML data, XML schema summarization/extraction
has been studied in [3]. Fig. 3 shows the road map of our approach.

Discovering Semantics from Data-Centric XML 91

Input

XML
Schema
(Optional)

XML
Data

Step
1:Pre-processing

Step by Step Processes
Output

Fig. 3. General process of our automatic semantics discovery approach

3.1 Step 1: Pre-processing

We summarize properties of ORA-semantics concepts. Properties of an ORA-
semantics concept are its necessary conditions, which means given an ORA-
semantics concept, it must satisfy its properties. E.g, object class has property
‘Having more than one child node in its XML schema tree’, which also conforms
to its design in ORA-SS model. We also identify sufficient conditions, by which
we can identify a particular ORA-semantics concept, e.g. ‘Having an ID attribute
in its XML schema as its child node.’ is a sufficient condition for object class. We
also proposed heuristics related to ORA-semantics concepts. Some are abstracted
from XML schema based on the common way of schema design, and some are
discovered from XML data using data mining techniques. We list the properties,
sufficient conditions and heuristics for each ORA-semantics concept in Table 1.

In an XML schema tree, a node must be either an internal node or a leaf node.
Based on the properties of each ORA-semantics concept in Table 1, internal
nodes can be object class, role name, composite attribute, aggregational node
and explicit relationship type; while leaf nodes can be OID, object attribute and
relationship attribute. We will identify them in 3.2 and 3.3 respectively. There is
another ORA-semantics concept, implicit relationship type, which is not explicit
shown in the XML schema or XML schema tree. We will identify it in 3.4.

3.2 Step 2: Internal Node Classification

To classify internal nodes, we build a decision tree, Fig. 4, with the properties,
sufficient conditions and heuristics in Table 1. We use bottom-up approach so
that the category of an internal node can help to identify the category of its
parent node. We will explain the decision tree using following rules:

92 L. Li et al.

Table 1. Properties, sufficient conditions and heuristics of ORA-semantics concepts

ORA-semantics Properties (Necessary Conditions) Sufficient Conditions Heuristics / Observations Examples
O1) It is an internal node; Supplier
O2) It has more than one child node; Employee
O3) It has at least one FD/MVD among its EDLNs; Part

O4) Not all nodes in the LHS of each of its FDs/MVDs are IDREF attribute; etc.
E1) It is an internal node; Borrow

E2) It has at least one object class, IDREF(S) attribute or role name as descendant node. Has
RentBy

Buy

E4) Its EDLN(s) should be relationship attribute;

A1) It is an internal node;

A2) It has only one child node;

A3) Its child node is a repeatable node;

C1) It is an internal node;

C2) It has more than one child node;

C3) It does not have FD/MVD among its EDLNs;

C4) It hasn't any object class, IDREF(s) attribute or role name as its descendant node;

OID1) It is a leaf node; Project#
ISBN
etc.

OA1) It is a leaf node; Location
Address
Author

OA3) Its lowest ancestor object class is the object class it belongs to; etc.
RA1) It is a leaf node; Quantity

Price

R1) It is an internal node; Landlord

R2) It has only one child node; Tenant
R3) Its child node is not a repeatable node;

R4) Its child node is an IDREF(S) attribute;

H1) Its tag name can be a verb form.

Object Class
A) It has ID attribute in its

XML schema;(E.g.

Project)

Role Name

H3) Its tag name shares high

linguistic similarity with or being a

specialization of the tag name of the

object class which the IDREF(S)

attribute references;

RA4) It is an EDLN of an explicit relationship type or EDLN of the lowest object class

that involves in an implicit relationhsip type to which the relationship attribute belongs;

H2) Its tag name is the plural form of

the tag name of its only child node;

Qualifica-
tions

Composite
Attribute

Qualification

RA2) It cannot be functionally/multi-valued determined by the OID of its lowest

ancestor object class;

OID of object
class

B) It is specified as ID

attribute in XML schema;

(E.g. Project #)

Object
Attribute

OA2) It can be functionally/multi-valued determined by the OID of its lowest ancestor

object class;

E3) If it has at least one FDs/MVDs among its EDLN(s), then all nodes in the LHS of

each of its FDs/MVDs are IDREF attributes;

OID2) Together with OID(s) of some(zero or more) of its ancestor object class(es), they

can functionally multi-valued determine all EDLN(s) of the object class;

RA3) It can be functionally/multi-valued determined by OIDs of all object classes

involved in the relationship type to which the relationship attribute belongs;

Relationship
Attribute

Aggregational
Node

Explicit
Relationship

Type

Rule 1. [Object Class vs. OID] Given an XML schema tree, if an internal
node has an ID attribute1 specified in its XML schema as its child, then this in-
ternal node is an object class, and the ID attribute is the OID of the object class.

Rule 1 is obvious. However, some OIDs may not or cannot be specified as ID
attribute in the corresponding XML schema because of the limitation of XML
schema language. In XML data, the value of an ID attribute is required to be
unique for the corresponding object in the whole document, which makes it
impossible for some object classes to have ID attribute being specified in their
XML schemas. E.g, in Fig. 2, Project# is specified as OID for object class Project
by ID attribute, but Supplier# and Part# cannot. Otherwise, a supplier can only
supply one project and a part can only be supplied by one supplier. Because of
this, we use following rules to classify the rest of the internal nodes.

Concept 2. Exclusive Descendant Leaf Node (EDLN) In XML schema
tree, an exclusive descendant leaf node of an internal node i is a leaf node, which
is also a descendant node of i, but not a descendant node of any other object
class which is also a descendant node of i.

1 ID attribute is specified in DTD. In XSD there is a similar concept, key element,
which can also be used to identify object class and its OID. For simpleness, Rule 1
is illustrated using ID attribute, but key element also applies. Detail of key element
in XSD is given in our technical report [5].

Discovering Semantics from Data-Centric XML 93

It has ID Attribute as it child node.

T F

T

It has more than one child nodes.
FObject Class

(Rule 1)

T

Its only child node is a
repeatable node.

T

Its tag name is the plural
form of the tag name of

its only child node.

Aggregational
Node

(Rule 4)

F

Its tag name shares high linguistic
similarity with the tag name of its only
child node, or being a specialization of

the tag name of its only child node.

T

Role Name
(Rule 5)

F

Its tag name can be
a verb form.

FT

Explicit
Relationship Type

(Rule 4)

Aggregational
Node

(Rule 4)

T

It has at least one FD/MVD among its
exclusive descendent leaf nodes.

F

FT

Composite
Attribute
(Rule 3)

T

Object Class
(Rule 2)

F

It has no object class, role
name or IDREF(S) attribute

as its child node.

Not all nodes in the LHS of each
of its FD/MVD are IDREF(S)
attributes or role names.

Explicit
Relationship Type

(Rule 2)

Explicit
Relationship Type

(Rule 3)

F

F

Its tag name can be
a verb form.

Role Name
(Rule 5)

Explicit
Relationship Type

(Rule 5)

T

Properties/
Sufficient Condition

Heuristics

Fig. 4. Decision Tree for Internal Node Classification

The intuitive meaning of EDLN is: given an internal node i, each EDLN of i is
a leaf node under i, but there is no other object class between the EDLN and i.
E.g, in Fig. 2, the EDLNs of object class Project are: Location and Funding.

Rule 2. [Object Class vs.ExplicitRelationshipType] Given anXML schema
tree, let i be an internal node withmore than one child nodes and there is at least one
Functional/Multi-valued Dependency(FD/MVD) among its EDLNs. If for each
FD/MVD, there is a left hand side (LHS) node which is not an IDREF attribute
or role name then i is an object class, else i is an explicit relationship type.

An object class must have more than one child node (O2 in Table 1), which con-
flicts with the properties of aggregation node (A2) and role name (R2), and at
least one FD/MVD among its EDLNs (O3) that conflict with composite attribute
(C3). However, explicit relationship type also has these characteristics. To dis-
tinguish object class from explicit relationship type, we check whether there is a
LHS node in FD/MVD which is not an IDREF attribute or role name (O4, E3).
This is because the FD/MVD among the EDLNs of an explicit relationship type
must involve a relationship attribute, which is functionally/multi-valued deter-
mined by the OIDs of all involved object classes, and these OIDs can only be
represented as IDREF attributes or role names if it is an EDLN of the explicit
relationship type. On the other hand, for FD/MVD among the EDLNs of an
object class, its LHS should contain the OID of this object class, which is not
an IDREF attribute or role name. FDs/MVDs in XML can be identified in [13].

Rule 3. [Composite Attribute vs. Explicit Relationship Type] Given an
XML schema tree, let i be an internal node with more than one child node and
there is no FD/MVD among its exclusive descendant leaf nodes. If i does not

94 L. Li et al.

House

Landlord

Person
(IDREF)

Address

(a) Role Name

Person

Tenant

Person
(IDREF)

NRIC Age

Root

Sex

Customer

Root

Product

Buy
P_id
(ID)Name …...C_ID

(ID)
…... Name

P_ID
(IDREF)

C_ID
(IDREF) Price

(C) Relationship type with FD among its child nodes

House

RentBy

Person
(IDREF)

Address Postal
Code

(b) Relationship type with IDREFS as its child node

...

Fig. 5. Internal nodes with IDREF(S) in XML schema tree

have object class, role name or IDREF(S) attribute as its child node, then i is a
composite attribute, else i is an explicit relationship type.

Composite attributes have more than one child node (C2), which distinguishes it
from aggregation nodes (A2) and role names (R2). As discussed before, compos-
ite attribute has been distinguished from object class. To distinguish composite
attribute from explicit relationship type (e.g., composite attribute Qualification
and explicit relationship type Borrow in Fig.2), we check whether it has object
class, role name or IDREF(S) attribute as its child node (C4, E2). This is be-
cause explicit relationship types should have at least one object class, IDREF(S)
attribute or role name as its descendant nodes to represent the involved object
class, while composite attributes should not.

Because of the space limit, we leave the rules to identify aggregational node
and role name in our technical report [5]. In the following section, we aim to
classify them into OID, object attribute and relationship attribute.

3.3 Leaf Node Classification

OID Discovery. As stated in Rule 1, OID can be explicitly specified in the
XML schema with ID attribute, which is a sufficient condition to identify OID.
Here we only consider the case that the single-attributed OID is not specified in
the XML schema (e.g., ISBN in Fig. 2), or the OID contains multiple attributes.
Before we explain our approach, we first introduce a concept named Super OID.

Concept 3. Super OID The super OID of an object class o is a minimal set of
nodes which contains a subset of the exclusive descendant leaf nodes of o and the
OIDs of some ancestor object classes of o. Super OID of o can functionally/multi-
valued determine all exclusive descendant leaf nodes of o.

In an XML schema tree, given an object class o, its EDLNs may be object at-
tributes of o, or attributes of a relationship type in which o participates. Based
on the definition of super OID, the properties of OID and object/relationship
attribute (i.e. OID2, OA2, RA2 and RA3 in Table.1), the super OID of o can
functionally/multi-valued determine both object attributes and relationship at-
tribute of o, while the OID of o can only functionally/multi-valued determine
the object attributes of o. The rationale of our approach to identify OIDs is that
given an object class o, there is a minimal attribute set S formed by the OID of

Discovering Semantics from Data-Centric XML 95

o and the OIDs of some ancestor object classes of o, which functionally/multi-
valued determine all EDLNs of o. If there is no relationship attribute being
EDLN of o, no OID of ancestor object class of o will be included in S. Thus,
from the super OID of object class o, its corresponding OID can be derived by
excluding all OID(s) of the ancestors object class(es) of o.

We proposed a top-down approach (the OID of an ancestor object class may be
needed to identify the OIDs of its descendant object classes) shown in Algorithm
1 to identify the OID of each identified object class without ID attribute being
specified in its XML schema. Given an object class o, we create a set SupEDLNo,
which is a superset of its exclusive descendant leaf nodes, denoted as EDLN(o),
and include OIDs of all its ancestor object classes. In SupEDLNo, we identify the
super OID of o. There may be more than one super OID for o. For each super
OID, we can get an OID candidate for o by excluding all OID(s) of ancestor
object class(es) of o. (Details about choosing which OID candidate as the OID
will be discussed later.) For the object class without ancestor object class, its
only super OID will be the same as its OID.

Algorithm 1. Candidate OID Discovery
Input: Identified object classes O; EDLN(o) for each identified object class o ∈ O;
Output: Candidate OID ido for each identified object class o ∈ O

1 foreach identified object class o ∈ O do
2 SupEDLNo=EDLN(o);
3 foreach oi ∈ O, which is ancestor object class of o do
4 SupEDLNo = SupEDLNo ∪ idoi; //idoi is the OID of object class

oi
5 foreach SIDo ⊂ SupEDLNo do
6 if ∀e ∈ EDLN(o), such that SIDo → e or SIDo � e then
7 if �S ⊂ SIDo, such that ∀e ∈ EDLN(o), such that S → e or S � e then
8 if ∀oj ∈ O with its OID idoj ∈ EIDo, such that ∃ok ∈ O with its OID

idok, AD(oj, ok) and AD(ok, o), then idok ∈ SIDo then
9 foreach e ∈ SIDo do

10 if e ∈ EDLN(o) then
11 e ∈ ido;
12 return ido as a candidate OID of o.

Example 2. In Fig. 2, considering 3 identified object classes Project, Supplier
and Part with their EDLNs, suppose we get the following full FDs from the
XML data: {Project#}→{Location,Funding}, {Supplier#}→{Contact#,Name},
{Part#}→{Color}, {Supplier#,Part#}→{Price}, {Project#,Supplier#,Part#}
→{Quantity}. For object class Project, we can identify Project# as its OID
by Rule 1, as it is an ID attribute. For object class Supplier, as the attribute
Supplier# functionally determines all its EDLNs, we identify Supplier# as its
OID, the same as its super OID. For object class Part, we combine its EDLNs and
OIDs of its ancestor object classes Supplier and Project, and use the above given
FDs to discover the minimal subsets that functionally determine all its EDLNs
to be its super OID, which are {Project#, Supplier#, Part#}, {Supplier#,
Part#, Quantity} and {Part#, Quantity, Price}. Then we get {Part#}, {Part#,
Quantity} and {Part#, Quantity, Price} as OID candidates of object class Part.

We use the following heuristics summarized from our observations to choose the
best OID from all OID candidates returned by Algorithm 1.

96 L. Li et al.

Observation 1. [OID] In XML schema tree, given an object class o, its OID
ido is likely to be designed with some of the following features: (1) ido is a single
attribute of o; (2) The first child node of o is (part of) ido; (3) ido contains
substring ’Identifier’, ’Number’, ’Key’ or their abbreviations in its tag name; (4)
ido has numeric as (part of) its value, and the numerical part is in sequence.

Observation 1 is based on structural/linguistic characteristics of OIDs designed
in real world. Besides, we have two more observations: (1) the number of ob-
ject classes without relationship attribute is more than the number of object
classes with relationship attributes; (2) the number of relationship attributes of
binary relationship type is more than the number of relationship attributes of
ternary relationship type, and so on. Based on these observations, we collect 204
object classes with their OIDs being manually specified in XML schemas and ex-
tract the statistics mentioned above. Using such statistics, we train a Bayesian
Network to rank all OID candidates, and choose the best one as its OID. In
Example 2, for the object class Part, among all its OID candidates, {Project#,
Supplier#,Part#} get the highest ranking using our Bayesian Network ranking
model. Thus, {Part#} is identified as the OID of object class Part. More details
of our Bayesian Network ranking model can be found in our technical report [5].

Object Attribute and Relationship Attribute Discovery. For an explicit
relationship type, we identify its EDLNs that are not role names, as its relation-
ship attributes based on its property (i.e. E4 and RA4 in Table 1). For implicit
relationship type, its relationship attributes should appear as EDLNs of the low-
est object class participating in the relationship type (RA4 in Table 1), together
with the object attributes of that object class. Based on these, we propose Rule 4
to distinguish object attributes and relationship attributes among the EDLNs of
each identified object class with OID identified. We use the properties that object
attribute can be functionally/multi-valued determined by OID of the object class
it belongs to, while relationship attribute can not, to differentiate them.

Rule 4. [Object Attribute vs. Relationship Attribute] Given an object class
o and its OID, if an exclusive descendant leaf node e of o can be functionally/
multi-valued determined by the OID of o, then e is an attribute of o, otherwise
it is an attribute of an implicit relationship type which o involves in.

Example 3. In Figure 2, given the object class Part with its OID Part#, its child
node Color is functionally dependent on its OID, while Quantity and Price are
not. Thus, we identify Color as an object attribute of Part, while Quantity, Price
as relationship attributes of some relationship types that Part involves in. The
corresponding relationship types will be discovered in the following Step 4.

3.4 Step 4: Implicit Relationship Type Discovery

Recall that explicit relationship type can be identified by Rule 2, 3 in Step 2 in
Section 3.2. However, there are some implicit relationship types which are not

Discovering Semantics from Data-Centric XML 97

explicitly represented as any node in its XML schema tree. In this section, we
classify implicit relationship type into four categories: (1) Implicit relationship
type with at least one relationship attribute; (2) Implicit relationship type with
IDREF(S) attribute; (3) Implicit relationship type with no relationship attribute
and no IDREF(S) attribute, and (4) Identifier Dependency (IDD) Relationship
Type [6]. Because of the space limit, we only discuss the first two categories in
this paper. The other two categories are discussed in our technical report [5].

Implicit Relationship Type with at Least One Relationship Attribute.
For each relationship attribute discovered in Section 3.3 (except those being
EDLNs of explicit relationship type), there must be an implicit relationship
type it belongs to. Based on the property that relationship attribute should be
functionally/multi-valued determined by the OIDs of all object classes involved
in the implicit relationship type, to which the relationship attribute belongs (i.e.
RA4 in Table 1), we proposed a bottom-up approach, Algorithm 2, to identify
the implicit relationship type with its degree, and all involved object classes.

Example 4. In Fig. 2, given a relationship attribute Price, object classes Project,
Supplier,Part, and their OIDs. By Algorithm 2, we find out {Supplier#,Part#}→
{Price}. Then, there is an implicit binary relationship type between Supplier and
Part, with relationship attribute Price. For another relationship attribute Quan-
tity, {Supplier#,Part#} cannot functionally/multi-valued determine it. Then we
add in the OID of object class Project, and get {Project#, Supplier#,Part#}→
{Quantity}. Then there is an implicit ternary relationship type among Project,
Supplier and Part, with relationship attribute Quantity.

Algorithm 2. Implicit Relationship Type with Relationship Attribute
Input: Relationship attribute A; Object classes O, with OIDs; XML schema tree; XML data
Output: Relationship type r(C) with its involved object classes C and degree |C|, for each

identified relationship attribute in A
1 foreach identified relationship attribute ra ∈ A do
2 oi = the lowest ancestor object class of ra.
3 C = {oi};
4 SemIDra = idoi; //idoi is the OID of object class oi;
5 foreach identified object class oj ∈ O, along the path from oi to the root in its XML

schema tree in bottom-up order do
6 SemIDra = SemIDra ∪ idoj ; //idoj is the OID of object class oj;
7 C = C ∪ {oj};
8 if SemIDra → ra or SemIDra � ra; then break;

9 return implicit relationship type r(C) to which ra belongs, object classes in C as its
involved object classes and |C| as its degree;

Implicit Relationship Type with IDREF(S) Attribute. In XML schema,
some designers may design an implicit relationship type by specifying an IDREF(S)
attribute under an object class, which references other object class(es). Thus, if
an object class has a child node specified as an IDREF(S) attribute, we identify
an implicit relationship type between the object class and the object class(es) the
IDREF(S) attribute refers to. For some XML schema language (e.g.,DTD), we do

98 L. Li et al.

not know to which object class(es) the IDREF(S) attribute refer. Based on the
property and the heuristic of IDREF(S) attribute listed in Table 1, there are two
ways to identify the object classes involved in implicit relationship type: (1) [H3]
Tag name of the IDREF(S) attribute may share high linguistic similarity with the
tag name of the object class(es) to which it refers, or the corresponding OID(s).
We can identify them by research work [9] comparing linguistic similarity. E.g.,
given two object classes Department and Staff with their OIDs Dept# and Staff#
respectively, if there is an IDREF(S) attribute under Staff with its tag name as
Dept#, we identify an implicit relationship type between Department and Staff ;
(2) If we cannot find high linguistic similarity between the IDREF(S) attribute
and any object class or OID, we can use the XML data to identify which object
class(es) the IDREF(S) attribute references. A property of IDREF(S) attribute
is that [I1] the value range of the IDREF(S) attribute in its XML data must
be a subset of the value range of the OID of the object class(es) which it ref-
erences. E.g., in Fig. 2, if we know that every value of the IDREFS attribute
ContactWith is also found as a value of OID of object class Supplier, there is
a high possibility that there is an implicit relationship type between Employee
and Supplier. Furthermore, as the property of IDREF(S) attribute, I1 is also
used to verify H3. Although neither of the two ways can 100% guarantee that the
object class we discover is the corresponding object class which the IDREF(S)
references, we will show the accuracy in our experiments.

4 Experiment

We evaluate the proposed approach for discovering the ORA-semantics in the
given XML schemas. The experimental data includes 15 real world data-centric
XML schemas, e.g., mondial2 and XMark3, etc. For all XML schemas used in our
experiments, the average number of internal node is 11 and the average maximal
depth is 5. To evaluate the accuracy of our approach, we measure precision, recall
and F-measure4 against a gold standard provided by 8 evaluators. Divergence in
their opinions is accounted for by means of an uncertainty factor weighting the
results. Further details are given in [5].

4.1 Accuracy of Internal Node Classification

There are totally 512 internal nodes in our input XML schema trees, with their
ORA-semantics being labelled (i.e., object class, role name, explicit relationship
type, aggregational node or composite attribute). Table 2 shows that the overall
accuracy of our rules achieves almost 95% of precision, recall and F-measure. The
low precision and recall for explicit relationship type as well as low precision for
role name and aggregational node are because the related heuristics used are
not as accurate as the properties used in our rules. In Table 3, we show the

2 http://www.cs.washington.edu/research/xmldatasets/www/repository.html
3 http://www.xml-benchmark.org/
4 F-measure = 2 * precision * recall/(precision + recall)

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.xml-benchmark.org/

Discovering Semantics from Data-Centric XML 99

Table 2. Precision, recall and F-measure of internal node classification

Object
Class

Role
Name

Explicit Rela-
tionship Type

Aggregational
Node

Composite
Attribute

Overall

Precision 99.4% 85.0% 82.9% 81.0% 96.3% 94.7%

Recall 98.4% 94.4% 69.4% 94.4% 96.3% 94.7%

F-measure 98.9% 89.7% 76.2% 87.7% 96.3% 94.7%

Table 3. Statistic information of the internal node in experiment data

Object
Class

Role
Name

Explicit Rela-
tionship Type

Aggregational
Node

Composite
Attribute

Total

of nodes 311 18 49 54 80 512

Percentage 60.7% 3.5% 9.6% 10.5% 15.6% 100%

number and percentage of each ORA-semantics concept in all our collected data
sets. Object class is one of the most important ORA-semantics concepts, and
its identification helps many XML applications to increase their efficiency and
effectiveness as introduced in Section 1. There are 311 object classes among
all 512 internal nodes, which take up around 60% of all internal nodes. Other
ORA-semantics concepts only take up a small percentage of the internal nodes,
especially for role name, which takes up less than 5% of the internal nodes.

We also used a machine learning approach to classify the internal nodes for
comparison purpose. We use the properties listed in Table 1 with all our ex-
perimental data to train a classification model to classify the internal nodes.
In order to avoid bias because the selection of training data, we use 3 folds
cross-verification with all the input internal nodes. In 3 folds cross-validation,
the original input data is randomly partitioned into 3 portions. Of the 3 por-
tions, a single portion is retained as the validation data for testing the trained
classification model, and the remaining 2 portions are used as training data.
The cross-validation process is then repeated 3 times, with each of the 3 por-
tions used exactly once as the validation data. The 3 results of precision, recall
and F-measure then can be averaged to get the overall accuracy of the trained
classification model. We compare the accuracy of our rules with the trained clas-
sification model in Fig. 6. We choose the frequently used decision tree algorithm
C4.5 [10] to build the classification models. The results show our rules work bet-
ter than the trained classification models, especially for discovering the explicit
relationship types. This is because the explicit relationship type can be designed
with different structures in XML schema tree; the classification of a descendent
node also cannot help classifying ancestor node as in our approach using rules.
Furthermore, the decision trees trained from different training data sets are quite
different from each other and most of their branches are not as meaningful as
our rules, which shows that they are heavily dependent on the training data.
More details about the internal node classification test can be found in [5].

100 L. Li et al.

 60

 80

 100

OC RN ERT AN CA Overall

P
re

ci
si

on
 (

%
)

Internal Node Classification

99%
97%

85%

77%

83%
83% 81%

76%

96%

89%

95%
91%

Our Approach
Machine Learning Approach

(a) Precision

 40

 60

 80

 100

OC RN ERT AN CA Overall

R
ec

al
l (

%
)

Internal Node Classification

98%
98% 94%

94%

69%

51%

94%
98%

96%
96%

95%
91%

Our Approach
Machine Learning Approach

(b) Recall

 40

 60

 80

 100

OC RN ERT AN CA Overall

F
-m

ea
su

re
 (

%
)

Internal Node Classification

99%
98%

90%
86%

76%

67%

88%
87%

96%
92%

95%
91%

Our Approach
Machine Learning Approach

(c) F-measure

Fig. 6. Comparison of internal node identification (OC: Object Class; RN: Role Name;
ERT: Explicit Relationship Type; AN: Aggregational node; CA: Composite Attribute)

4.2 Accuracy of Leaf Node Classification

Recall that our approach may return more than one OID candidates for each
object class, thus we build a Bayesian Network to rank all its OID candidates,
and choose the highest ranked candidate as its OID. There are 311 object classes
with their OIDs in our experimental data. We randomly choose 2/3 of them for
training and the rest for testing. From the training data, we collect the statistics
of the features mentioned in Observation 1, and build a Bayesian Network, which
returns us the probability of an OID candidate being the correct OID based on
the statistics. More details of building the Bayesian Network are discussed in [5].

In our step-by-step approach, outputs of the previous step will work as the
inputs for a latter step. The accuracy of the latter step is affected by the accuracy
of its previous steps. To show the accuracy of each step, we conduct two groups
of experiments to evaluate the precision, recall and F-measure of our approach
for leaf node classification, one with user verification, which means all object
classes have been correctly labelled in XML schema trees, and the other one
based on the results of our internal node classification without user verification.

Fig. 7 shows our approach for leaf node classification get above 90% of preci-
sion, recall and F-measure. Even without user verification, the precision/recall
only drop slightly, as our approach for discovering object class also gets high pre-
cision and recall. The low precision of implicit relationship attribute is because

Fig. 7. Precision, Recall and F-measure of Leaf Node Classification (OA: Object At-
tribute, ERA: Explicit Relationship Attribute, IRA: Implicit Relationship Attribute)

Discovering Semantics from Data-Centric XML 101

its identification is heavily depended on FDs/MVDs among the corresponding
XML data, which may not be large enough to return all the correct FDs/MVDs.

4.3 Accuracy of Implicit Relationship Type Discovery

We also conduct experiments on our approach for implicit relationship type
discovery. Similar to the leaf node classification, we conduct two groups of ex-
periments to evaluate its accuracy, one with user verification, and the other one
without user verification. Fig. 8 shows that our approach to discover implicit re-
lationship types has high precision, recall and F-measure. Because of the space
limit, more detailed breakdown is given in [5].

 60

 80

 100

Precision Recall F-measure

P
er

ce
nt

ag
e(

%
)

97%
97%

89%
88%

93%
92%

97%
97%

89%
88%

93%
92%

With user versification
Without user versification

Fig. 8. Precision, Recall, F-measure of Implicit Relationship Type Discovery

5 Related Work

To the best of our knowledge, only a few research works have frontally addressed
the problem of automatically discovering the implicit semantics embedded in
XML schema and XML data. Most existing works in semantics discovery in
XML data only focus on objects. In [2], in the context of view design, all internal
nodes in an XML schema tree are considered as object classes. In the context of
keyword search, XSeek [7] also infers semantics from XML schemas to identify
return nodes. This work infers semantics of objects by using the repeatable node.
In [11], the authors build a data graph from an XML document. However, they
just focus on objects and properties, still missing lots of meaningful semantics.
Compared to our work, the existing works have two major drawbacks. First,
they only consider the semantics of object, ignoring many other important ORA-
semantics concepts which may play an important role in XML applications, as
illustrated. Second, even for object, the inference accuracy of the existing works
is quite low. For example, most of them will treat relationship attribute as object
attribute when the relationship is implicit. In contrast, our work focuses on a
comprehensive set of ORA-semantics concepts, and has high inference accuracy.

Semantics are also captured in other domains. In [8] authors proposed a form-
driven approach, which firstly transforms the relational database to a set of form
model schemas, each of which is essential a view on the underlying database, and
then extracts the corresponding ER schema from them; [4] resolves the reference
ambiguation problem, which means an attribute is actually referencing another

102 L. Li et al.

attribute but cannot be detected due to the inconsistent name issue, by also
considering their neighbor attributes. However, as the underlying data is flat
in relational database, and these approaches only try to identify relationships
between relations through key-foreign key constraints, they still cannot identify
ternary or n-nary relationships as well as the relationship attributes.

6 Conclusion and Future Work

ORA-semantics is important for many XML applications. Existing works in se-
mantics discovery only focus on object, ignoring many other important concepts
such as relationships. In this paper we present a novel approach to identify a com-
prehensive set of ORA-semantics, including object, object ID, explicit/implicit
relationship, relationship attribute, etc. We analyze the properties of each seman-
tics concepts, and propose rules and apply data mining techniques to discover
them in XML schema and data. We conduct experiments to demonstrate our
approach can achieve almost 95% overall precision, recall and F-measure.

We are now investigating those cases that still defeat our proposed approach
and consider its combination with additional domain knowledge and ontologies.

References

1. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. In: SIGMOD Conference, pp. 906–908 (2005)

2. Chen, Y.B., Ling, T.W., Lee, M.L.: Designing valid XML views. In: Spaccapietra,
S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 463–477.
Springer, Heidelberg (2002)

3. Hegewald, J., Naumann, F., Weis, M.: Xstruct: Efficient schema extraction from
multiple and large XML documents. In: ICDE Workshops, p. 81 (2006)

4. Kalashnikov, D.V., Mehrotra, S.: Domain-independent data cleaning via analysis
of entity-relationship graph. ACM Trans. Database Syst. 31(2), 716–767 (2006)

5. Li, L., Le, T.N., Wu, H., Ling, T.W., Bressan, S.: Discovering semantics from
data-centric XML. Technical Report TRA6/13, National University of Singapore

6. Ling, T.W., Lee, M.L., Dobbie, G.: Semistructured database design (2005)
7. Liu, Z., Chen, Y.: Identifying meaningful return information for XML keyword

search. In: SIGMOD Conference, pp. 329–340 (2007)
8. Mfourga, N.: Extracting entity-relationship schemas from relational databases: A

form-driven approach. In: WCRE, pp. 184–193 (1997)
9. Mizuta, S., Hanya, K.: Specifications of word set in linguistic approach for similarity

estimation. In: BICoB, pp. 25–29 (2010)
10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
11. Y.S.: A personal perspective on keyword search over data graphs. In: ICDT (2013)
12. Xu, Y., Papakonstantinou, Y.: Efficient lca based keyword search in XML data.

In: EDBT, pp. 535–546 (2008)
13. Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection

and normalization. VLDB J. 17(2), 203–223 (2008)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 103–117, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Finding Image Semantics from a Hierarchical Image
Database Based on Adaptively Combined Visual Features

Pritee Khanna1, Shreelekha Pandey1, and Haruo Yokota2

1 PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur,
Dumna Airport Road, Jabalpur 482-005 M.P. India
{pkhanna,shreelekha}@iiitdmj.ac.in

2 Graduate School of Information Science and Engineering, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-kuTokyo, 152-8552 Japan

yokota@cs.titech.ac.jp

Abstract. Correlating image semantics with its low level features is a
challenging task. Although, humans are adept in distinguishing object
categories, both in visual as well as in semantic space, but to accomplish this
computationally is yet to be fully explored. The learning based techniques do
minimize the semantic gap, but unlimited possible categorization of objects in
real world is a major challenge to these techniques. This work analyzes and
utilizes the strength of a semantically categorized image database to assign
semantics to query images. Semantics based categorization of images would
result in image hierarchy. The algorithms proposed in this work exploit visual
image descriptors and similarity measures in the context of a semantically
categorized image database. A novel ‘Branch Selection Algorithm’ is
developed for a highly categorized and dense image database, which drastically
reduces the search space. The search space so obtained is further reduced by
applying any one of the four proposed ‘Pruning Algorithms’. Pruning
algorithms maintain accuracy while reducing the search space. These
algorithms use an adaptive combination of multiple visual features of an image
database to find semantics of query images. Branch Selection Algorithm tested
on a subset of ‘ImageNet’ database reduces search space by 75%. The best
pruning algorithm further reduces this search space by 26% while maintaining
95% accuracy.

1 Introduction

Cognitive psychology defines categories by grouping “similar objects” and super-
categories by grouping “similar categories”. Semantic categories form clusters in
visual space, and visual similarity is correlated to semantic similarity [1]. Humans can
easily correlate these similarities which gives them enormous power to distinguish a
large number of objects. Content Based Image Retrieval (CBIR) systems use only
visual similarity obtained in terms of low level image features to interpret images [2-
4]. The lack of coincidence between the high level semantic and the low-level
features of an image is known as semantic gap [5]. In an attempt to reduce semantic
gap, proposed work aims to correlate visual similarity and semantics of images in a

104 P. Khanna, S. Pandey, and H. Yokota

semantically categorized large image database. Semantic based categorization of an
image database would result in categories and subcategories of images. Visual
features of images in such a database forms a semantics based hierarchical search
space. This tree is searched to assign semantics to query images. For efficient search,
it is not advisable to traverse the entire tree or even an entire branch. A novel ‘Branch
Selection Algorithm’ effectively traverses this hierarchical search space and selects a
few subtrees to search. Pruning Algorithm further reduces this search space, while
maintaining the accuracy. An adaptive combination of multiple visual features and
similarity measures are used to design branch selection and pruning algorithms. To
ensure the applicability of the proposed algorithms, their performance has been tested
on a subset of ImageNet database.

The paper is organized as follows. A review of the related research is given in
Section 2. Section 3 emphasizes on correlating visual and semantic similarity. Section
4 gives an insight of related databases. Proposed system is explained in Section 5.
Experimental setup is given in Section 6. Section 7 summarizes results and discussion
on related issues. Finally, Section 8 concludes the work.

2 Related Work

Computer Vision and Machine Learning approaches use learning based systems to
reduce semantic gap [6-7]. It has already been recognized that learning accompanied
by object extraction produces good results [8]. In [9], semantic templates are
automatically generated during the process of relevance feedback. WordNet is used to
construct a network of such semantic templates, which helps in retrieving images
based on semantic. The system works on 500 images from categories like human,
animal, car, etc. A statistical modeling approach for automatic linguistic indexing of
pictures is introduced in [6]. Each of the 600 concepts is represented by a two-
dimensional multi-resolution hidden Markov model and is trained using categorized
images. A likelihood function measures the extent of the association between an
image and the textual description of a concept. The model given in [10] learns visual
recognition from semantic segmentation of photographs. For efficient labeling of
object classes, a combination of integral image processing and feature sharing is
employed. The developed classifier reports 70.5% region-based recognition accuracy
on a 21-class database. The work presented in [7] focuses on using a few training
images for quick learning. Generative probabilistic models of object categories are
learned using a Bayesian incremental algorithm. The system quoted a feasible real-
time learning rate for 101 object categories. A region-based image retrieval system
with high-level semantic learning is given in [11]. The system uses a decision tree
based image semantic learning algorithm but learns natural scenery image semantics
only.

Besides in literature, one can find a few more learning based techniques to
minimize the semantic gap [5]. Unlimited number of concepts in the real world is a
major hindrance for learning based approaches. Most of the works have considered
non-hierarchical image database with thousands of images. The proposed work uses a

 Finding Image Semantics from a Hierarchical Image Database 105

hierarchical image database to correlate visual similarity with semantic similarity.
Such a correlation would be an asset to people working in image processing and
computer vision. The main aim of this study is to efficiently assign semantics to
images through such correlations. Instead of using any of the available learning
techniques, this work exploits the inherited features of a hierarchical image database.

3 Correlating Visual Similarity with Semantics of Images

Humans have natural instinct in distinguishing object categories, both in visual as
well as in semantic space, but to accomplish this computationally is yet to be fully
explored. The semantic based categorization of images would give a hierarchical tree
structure having images of different categories at various levels. The focus of this
work is to explore whether semantic categories (e.g. dog, flower, mountains etc.) can
also be visually segregated.

A semantically categorized database may contain images belonging to a domain or
spread over multiple domains. It becomes difficult for a common user to search such
database if the nature of its classification or the exact semantics required for the
search is unknown. For example, medical terminology is an obvious choice for
categorizing medical images but it is very difficult for a common user to understand
semantics of these categories and hence finding proper keywords to search the
database. In another scenario, a categorized database may have ten categories
corresponding to dog based on their breeds, tail, coat etc. Looking at the image of a
white dog with black spots, a user may not exactly know its breed name i.e.
‘Dalmatian’. The user can derive such knowledge (semantics) by our approach.

Proposed approach utilizes visual features of a categorized image database of any
depth and height to determine semantics of images. Huge size of the search space
demands algorithms which keep only the desired categories/subcategories in
consideration during search. A novel ‘Branch Selection Algorithm’ has been designed
and tested on a large hierarchical image database.

4 Related Databases and Database Used for Experimentation

The nature and scope of image data influences the performance of retrieval
algorithms. For decades, in the absence of standard test data, researchers used self-
collected images to show their results. Many domain specific and uncategorized
databases came into existence lately for example, WANG, UW, IRMA 10000,
ZuBuD, and UCID [3]. Some more challenging datasets are Caltech 101/256 [7],
Coral Image, Tiny Image, ESP, LabelMe, Lotus Hill, and ImageNet [12].

A publicly available, densely populated, and semantically organized hierarchical
image database covering a wide range of domains was required for experimentation.
With large number of images for nearly all object classes, ImageNet serves the
purpose. Built upon the backbone of the WordNet structure, a subset of ImageNet
2011 Winter Release given in Table 1 is used for experimentation. A category in
ImageNet corresponds to a synonym set (synset) in WordNet. Fig. 1 shows some
representative images of ImageNet.

106 P. Khanna, S. Pandey, and H. Yokota

Fig. 1. A snapshot of Flower and Tree subtrees of ImageNet 2011 Winter Release

Table 1. Subset of ImageNet database used for experimentation

Subtree Width Depth # of Synsets # of Images (K)
Animal 9 9 32 38
Appliance 4 4 29 32
Fabric 2 5 12 11.5
Flower 9 3 24 26
Fruit 6 5 42 30.5
Geological Formation 5 5 50 55
Person 12 4 34 16.5
Sport, Athletic 5 4 23 30.5
Structure 6 6 36 33
Tree 7 6 42 24
Vegetable 6 5 41 35

Total (on an average 910 images per synset) 365 332 K

5 Methodology

The work visualizes categories/subcategories of a semantically categorized image
database as nodes in the image tree. The flow of execution shown in Fig. 2 starts with
an offline extraction of visual features of images. Visual features of images belonging
to a node form visual signatures of that node. On the basis of the distance between
query image and visual signatures of nodes, the Branch Selection Algorithm selects
some subtrees to search. This search space is further reduced by pruning algorithms.
Retrieval module assigns semantics of the nodes at lower distances to the query
image. The proposed system supports both types of searches, i.e. aimed search to get
a specific semantic; and category search to find a group of similar semantics.

 Finding Image Semantics from a Hierarchical Image Database 107

Fig. 2. Work flow of the proposed system

5.1 Feature Extraction Techniques

Conventionally, color, texture, and shape features are used to measure visual
similarity of images. The combination of these features gives better results [13].

Color Features. Color is one of the most widely used low-level visual features. It is
invariant to size and orientation of image [2]. It shows the strongest similarity to
human eye [14]. Color histogram is the most commonly used representation. Various
versions of histogram e.g. cumulative histograms, quantized color space histograms
have been proposed [3, 15-16].

This work uses a histogram with perceptually smooth color transition in HSV color
space [17]. When applied on an image as a whole, the Global Color Histogram (GCH)
feature is obtained. Five color histograms corresponding to five regions (central
ellipsoidal region and four surrounding regions) are concatenated to form a Local
Color Histogram (LCH) feature. In general, GCH and LCH are represented as (1). = (ℎ , ℎ , … , ℎ , , … ,); ℎ, ℎ . = (ℎ , ℎ , … , ℎ , , , … , , … ℎ , ℎ , … , ℎ , , , … ,) .

(1)

Another popular color feature is a statistical model of color representation [18-19].
Color distribution of each channel of an image is uniquely characterized by its three
central moments i.e. average (Ei), variance (σi) and skewness (si) as given in (2).

= ∑ , = ∑ (−) = ∑ (−) . (2)

pij = value of ith color channel at jth image pixel and N = number of image pixels.
Images are compared by taking a weighted sum of differences of corresponding color

108 P. Khanna, S. Pandey, and H. Yokota

moments. Similarity between two images with r color channels and color moments
(Ei1, σi1, si1) and (Ei2, σi2, si2) is given in (3). = ∑ | − | + | − | + | − | . where, w ≥ 0 is specified by the user [19]. (3)

Similar to histogram, Global Color Moment (GCM) and Local Color Moment (LCM)
features of an image in HSV color space are obtained as shown in (4). = (, , , , , , , ,); = (, … , , … , , … ,) . (4)

Texture Features. Texture captures the information of patterns lying in an image. An
image may contain textures of different degrees of detail. Grey level co-occurrence
matrices (GLCM) and Tamura Features are popular single scale texture features.
Multi-resolution texture features include Pyramidal Wavelet Transform (PWT), Tree-
Structured Wavelet Transform (TSWT), Discrete Cosine Transform (DCT), Gabor
filters, and ICA Filters [14]. The most frequently used Gabor filter is given by (5).

(,) = − + + 2 . (,) = (,); , = , = 0,1, … , − 1, = (θ + y sinθ), = (− θ + y cosθ) .

(5)

Suitable dilations and rotations of the Gabor function g(x,y) through the generating
function gmn give a self-similar filter dictionary. Here θ = nπ/K, K = total number of
orientations, S = number of scale, a = (Uh/Ul)-1/(S-1). Uh and Ul are upper and lower
centre frequencies of interest [20]. This work uses Gabor filter with four scales and
six orientations. For retrieval purposes the most commonly used measures are mean
µmn and standard deviation σmn of the magnitude of the wavelet transform coefficients.
The resulting Gabor Texture (GT) feature vector is given in (6). = (,), = 1,2,3, … ,24 (6)

Shape Features. Shape features are powerful descriptors in image retrieval. Generic
Fourier Descriptors, Zernike and Pseudo Zernike Moments, and Wavelet Descriptors
are some popular representations [14]. Recent researches focus on computationally
efficient local image descriptors. Scale Invariant Feature Transform (SIFT) extract
large number of keypoints from image that leads to robustness in extracting small
objects among clutter [8, 21]. This work uses SIFT with 4 octaves and 5 levels. K-
means clustering forms 32 clusters per image [3]. For each cluster, count, mean and
variance form a SIFT Shape (SS) feature vector given in (7).

 Finding Image Semantics from a Hierarchical Image Database 109

= (, , … ,), , , , , … , , (, , , , … ,) . (7)

5.2 Construction of Visual Signature of a Node/Category

To correlate low-level visual features and high level semantics of images belonging to
a node, a visual signature is attached to each node. Feature vector of an image is a
combination of GCH, LCH, GCM, LCM, GT and SS. Mean feature vectors of all the
images in a node, GCHmean, LCHmean, GCMmean, and LCMmean, GTmean, and
SSmean form its visual signature. To get the semantics of an image, Branch Selection
and Pruning algorithms make use of the similarity measures summarized in Table 2.

Table 2. Visual signatures and similarity measures

Visual Signature Similarity Measure

GCHmean, LCHmean Vector Cosine Distance
GCMmean, LCMmean City Block Distance
GTmean Euclidean Distance
SSmean Earth Mover’s Distance

5.3 Branch Selection Algorithm

The work proposes a novel Branch Selection Algorithm given in Fig. 3.

Fig. 3. Branch Selection Algorithm

Steps to find the subtrees, semantically similar to query image, at each level are as follows:
Step 1: Calculate feature vector of the query image.
Step 2: Let there are N nodes at this level. Calculate the distance of query image with N

nodes. For each feature, select n subtrees (n ≤ N) having minimum distance from
the query image. This results in three lists, one corresponding to each feature,
containing n entries. It gives rise to any of the three possibilities:
a. If subtree X is 1st choice in all the three lists, then select only this subtree for

search. As root of this subtree X has the closest distance with query image with
respect to all the feature vectors considered. Go to Step 3.

b. If subtree X is 1st choice for any two lists, then select this subtree X for search.
In addition,
i. Select (n-1) more subtrees having maximum frequency of appearance in the

two lists where X is 1st choice, and go to Step 3. In case, subtrees have same
frequency then go to Step (ii).

ii. Select one/more subtrees which have minimum sum of distances based on
all 3 features.

iii. Go to Step 3, if (n-1) subtrees are selected by now, otherwise go to Step (i).
c. If 1st choice of subtrees for all 3 lists is different, then select top n subtrees

based on the maximum frequency of their appearance in these 3 lists. In case of
a tie, select one/more subtrees which have minimum sum of distances based on
all 3 features.

Step 3: Repeat Step 2 for subtrees at every level.

110 P. Khanna, S. Pandey, and H. Yokota

Branch Selection Algorithm selects a few subtrees (n) out of ‘N’ available at the
first level of the image tree. Only limited nodes that belong to these n subtrees are
searched to find semantics of the query image. The algorithm aims to reduce the
search space as much as possible, without compromising the accuracy of the system.
The sum of distances based on GCH, LCH, GCM, and LCM is color distance.
Distance based on GT is texture distance, and sum of distances based on SIFT Mean
and Variance is shape distance. The algorithm prepares three lists corresponding to
these distances and ‘adaptively’ selects a branch.

Performance of the system greatly depends on the value of n chosen. Experimental
results for n=N/4, allows 75% pruning of the actual search space in terms of subtrees.
Initial pruning for more than this results in rejection of the target subtree most of the
time and therefore it is not fruitful to generate further results on its output.

An output of this algorithm for n=3 is shown in Fig. 4, where query image
“n00450866_898” has been taken from “pony-trekking” synset. At the first level 11
subtrees are used for experimentation. The algorithm selects 3 subtrees (concepts) i.e.
Geological Formation, Tree, and Sport, Athletic. At the subsequent levels, synsets of
these three high level semantics are chosen to get the complete search space for this
query image. In this case, algorithm selects only 51 synsets out of the total 365
synsets in the image tree. Thus search space is reduced by 86% w.r.t. number of
synsets to be searched, still keeping the desired subtree in consideration.

Fig. 4. Output of the Branch Selection Algorithm (n=3) for query image “n00450866_898”

5.4 Pruning Algorithms

Branch Selection Algorithm applied on an image database results in any number of
nodes depending on the height and width of the n subtrees chosen in its step 2.
Pruning of this search space would further improve the performance. This pruning

 Finding Image Semantics from a Hierarchical Image Database 111

helps in retaining good nodes while discarding the bad nodes of a selected subtree. A
good node is the one that lies on the path leading to the node containing images
semantically similar to the query image, while a bad node leads to either a different
path in the same subtree or a different subtree. Ideally, bad nodes and their subtrees
are to be pruned.

Goodness of a node is tested in terms of distances explained later in this section. In
“strict pruning”, the whole subtree is pruned if its root fails to prove itself good.
While developing pruning approaches, it is observed that often a particular node on
the path does not fulfills the criteria of being good one but the query image belongs to
some lower level node of that path. Based on this observation, a “soft pruning” is
proposed, which removes only the so-called bad node from the path and not the entire
subtree following it. The children of this bad node become the children of its parent.

Fig. 5 explains these approaches with the same query image n00450866_898. Strict
pruning shown in Fig. 5(a) loses the target synset “pony-trekking” because its parent
“riding” fails to prove itself good. A less restricted soft pruning approach shown in
Fig. 5(b) preserves the target synset even if its parent is being neglected. This less
restrictive approach for pruning is followed in this work.

Fig. 5. (a) Strict Pruning. (b) Soft Pruning Approaches (gray nodes are the pruned ones).

Fig. 6 shows proposed pruning algorithms working on the distances corresponding
to the dominant visual feature. Dominant feature of a subtree is the feature which
gives top rank to this subtree. Dqsi is the distance (already calculated) between query
image and ith node of the subtree (having Ns nodes) w.r.t. dominant feature. Dmean
and Dmed are mean and median of Dqs. If a subtree having 10 nodes is given top
ranking by texture feature, then mean and median of the GT based distances between
query image and each of these 10 nodes are calculated. Additionally, extended mean
distance (Dmeanx) and extended median distance (Dmedx) are calculated as shown in
(8). Dmeanx is the sum of Average Absolute Deviation (AAD) in Dmean. Dmedx is
the sum of Median Absolute Deviation (MAD) in Dmed. AAD and MAD are less
affected by extreme observations than are variance and standard deviation [22]. = + ∑ (| − |⁄) . = + (| − |)

(8)

112 P. Khanna, S. Pandey, and H. Yokota

Fig. 6. Pruning Algorithms

In the quest of good pruning algorithms, the four possible combinations shown in
Fig. 6 are exhaustively tested. The performance of pruning algorithms is judged on
two parameters: The number of nodes retained to be searched in retrieval module and
the ability to preserve the nodes appearing in the path ending at the target synset. The
nodes retained by pruning algorithm are used to assign semantics to the query image.

6 Experimental Setup

The most common computing facility consisting of a PC with Intel Core 2 Quad
processor, 8GB RAM and 500GB hard disk is used to get a fair idea about the
performance of proposed algorithms. All experiments are performed on a subset of
ImageNet shown in the Table 1. A set of query images is formed by automatically and
randomly selecting 5% of images from each synset. Query images are taken from
ImageNet database only because the attached semantic hierarchy with images helps to
automate performance analysis of the branch selection and pruning algorithms. No
manual intervention is required as human subjectivity may affect the understanding of
correlation between visual and semantic similarity.

Feature vector of images and visual signatures of nodes in the database are
generated through an offline procedure. During experimentation new images are not
inserted in the database. In real life scenario, database may be kept in the updated
mode. This insertion intensiveness can be easily handled in the online version.
Insertion of an image requires its feature extraction and re-computation of the visual
signature of the node to which this image is added.

7 Results and Discussion

The following discussion establishes a correspondence between visual similarities and
semantic similarity in a semantically categorized hierarchical image database.

7.1 Performance of Branch Selection Algorithm

Branch Selection Algorithm prunes the search space but the precise selection of target
subtree based on the query image is to be ensured. This selection is expressed in terms

 Finding Image Semantics from a Hierarchical Image Database 113

of ‘Precision’ that denotes the selection of target subtree in terms of percentage. The
graph in Fig. 7(a) shows the performance of Branch Selection Algorithm on 11
subtrees of ImageNet (Table 1) for n=3. This prunes the search space by 75%. Out of
11 hierarchies tested, 9 give more than 50% precision, while precision of 70% or
more is achieved for 6 hierarchies. The algorithm out-performs if a query image is
from ‘Appliance’ (94%), but opposite is the case if it is ‘Fabric’ or ‘Sports, Athletic’
(30%). This happens due to the nature of the images that constitutes these categories.
Fig. 8 gives a glimpse of some of the images at the top level categories for these
synsets. Appliance synset contains visually as well as semantically closer images,
while ‘Fabric’ or ‘Sports, Athletic’ consist of images poorly related on the semantics.
Visual signatures of nodes having dissimilar images do not represent these nodes
well. This greatly affects the performance of the algorithm. Average precision @ 3
over all 11 branches is 65.36%, but on removing the two outliers i.e. ‘Fabric’ and
‘Sports, Athletic’, it becomes 73.22%, which is fairly acceptable. The target subtree is
selected for approximately 75%, while pruning the search space by the same amount.

Fig. 7. Performance of (a) Branch Selection Algorithm. (b) Pruning Algorithm.

Fig. 8. Some representative images of three categories

114 P. Khanna, S. Pandey, and H. Yokota

The execution time of the algorithm is significantly affected by the width and
depth of the subtrees selected at level 1. If the width of subtrees is more, then it would
lead to selection of more subtrees and searching of; while higher depth means more
iteration. On an average, execution time of the algorithm is 70 sec. For an online
search this time is high but considering the computational facility used and the
absence of an appropriate indexing of image features with this size of database,
results are encouraging. In the real time environment algorithm would be executed at
the server end with indexed feature vectors, which will significantly reduce the time.

7.2 Performance of Pruning Algorithms

It is desirable to have pruning algorithms with high pruning percentage and high
precision. It is difficult to achieve high precision with high pruning percentage as they
are inversely proportional to each other. The best algorithm would be the one that
gives the highest pruning percentage with the desired precision. Performance of only
three pruning algorithms is shown in Fig. 7(b) as they maintain good precision. AND
operator is more restrictive and reduces search space significantly but results in poor
precision. OR operator is less restrictive but improves precision. Ext AND algorithm
seems to be the best with 95% precision and 26% pruning. The time required for
Pruning Algorithms depend totally on the output of the Branch Selection Algorithm.

7.3 Semantics Assigned to Query Images

The query image is given the semantic of the nodes that are closer to it. Table 3 shows
the output of branch selection and Ext AND pruning algorithm on query images.

Table 3. Images along with the semantics assigned to them by proposed approach

ImageNet
Semantic

Query
Image

Proposed Semantics Query
Image

Proposed Semantics

General Specific General Specific

Animal

Animal
Vegetable
Geological
Formation

Live stock,
Ravine,
Insectivore,
Draw

Animal
Tree
Sports

Ungulate,
Pachyderm,
Animal, Ming
tree

Appliance

Appliance
Structure
Person

Clothes dryer,
Refrigerator,
Coffee maker,
Electric range

Appliance

Deep freeze,
Clothes dryer,
Oven, Wringer

Fabric

Fabric
Fruit
Structure

Hand towel,
Viscos rayon,
Towel,
Honeydew

Fabric
Appliance
Sports

Rayon, Fabric,
Towel, Pony-
trekking

Person

Person
Appliance
Vegetable

Optimist,
Personification,
Neutral,
Refrigerator

Person
Fruit
Sports

Neutral, Master
of ceremonies,
Entertainer,
Person

 Finding Image Semantics from a Hierarchical Image Database 115

The output shows the top four semantics assigned to the query image. A query
image from any category; say Person, retrieves not only a general semantic ‘Person’
but also a number of specific semantics like ‘Optimist, Personification, Neutral’, etc.
Presence of misclassified images in the database adversely affects the performance of
proposed algorithms.

Table 4 lists some conflicting images in ImageNet. For example, the first image in
the Table 4 belongs to ‘animal’ category while visually it seems to be a ‘structure’.
Proposed approach keeps it closer to the ‘structure’ semantics. The proposed
approach also helps to identify such cases and reclassification of these images will
further improve the performance.

Table 4. Some misclassified images and their correct classification by the proposed approach

Image
ImageNet
Semantic

Proposed Semantics

General Specific

Animal Structure, Animal, Vegetable
Parapet, Otter shrew, Support,

Elephant

Fruit Tree, Sports, Flower
Gum tree, Gymnospermous,

Conifer, Eucalyptus

Fruit Tree

Gymnospermous, Gum tree,
Rose gum, Tree

Flower

Tree, Geological Formation,
Vegetable

Ravine, Forest red gum, Rose
gum, Eucalyptus

7.4 Other Issues

Size of the Visual Signature of a Node. The size of the visual signature of a node
although large for an online application, but the algorithms assign efficient semantics
to the images. In future, efforts would be made to obtain compact visual signatures.

Lack of Comparative Evaluations. As most of the available image databases are flat
in nature, the performance of proposed algorithms cannot be compared. Due to lack of
hierarchy, subtrees selected by the Branch Selection Algorithm contain only a single
node, which serves as both the root and the leaf. Pruning algorithms are also
insignificant for flat structures. Further, most of the work done in this field is based on
the personal databases and thus, it is not possible to get the results of the proposed
algorithms on those databases.

In the present work, for the purpose of comparison, WANG database is categorized
at the top level. Table 5 shows the performance of the proposed Branch Selection
Algorithm on WANG and compares it with other related work. It gives an overall
precision of 94.2% with 75% reduction in the search space. As a result the retrieval
process is much faster in comparison to other approaches.

116 P. Khanna, S. Pandey, and H. Yokota

Table 5. A comparison on WANG database using average precision values

Category
Proposed
Approach

F. Malik et al.
[23]

R. Gali et al.
[24]

P. Kinnaree
et al. [25]

Reduction in
search space

75% 0% 0% 0%

Africa 0.93 1 0.76 1
Beach 0.9 0.58 0.587 1
Bus 0.96 0.61 0.963 1
Dinosaur 1 0.71 1 1
Elephant 0.96 0.49 0.741 1
Flower 0.97 0.58 0.945 1
Food 0.9 0.48 0.733 1
Horse 0.95 0.72 0.941 1
Monument 0.9 0.57 0.714 1
Mountain 0.95 0.47 0.457 1

Average 0.942 0.621 0.7841 1

8 Conclusion and Future Scope

The paper discusses an open ended problem of semantic gap and proposes some
algorithms to correlate visual and semantic similarity. The algorithms are developed
for semantically categorized image database. The experiments show that visual
features based on the adaptive combination of multiple low level features of image
may serve well for a semantically categorized large image database. It shows that if
categorized properly, low level features of the images can be combined with their
semantics. The selection of good nodes by proposed algorithms ensures better
performance of the system. Derived semantics can be used for effective image
retrieval as a future research. Proper indexing of visual signatures can significantly
reduce the time required for Branch Selection Algorithm. Inclusion of user feedback
will also enhance the performance of retrieval system.

Acknowledgements. The authors acknowledge the support provided by JSPS to carry
out this work under JSPS Invitation Fellowship for Research in Japan (Long-Term).

References

1. Sternberg, R.J.: Cognitive Psychology, 5th edn. Wadsworth Cencage Learning, Belmont
(2008)

2. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of
the New Age. ACM Comput. Surv. 40(2), 5–60 (2008)

3. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: An Experimental
Comparison. Inf. Retr. 11(2), 77–107 (2008)

4. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with
high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

5. Wang, H.H., Mohamad, D., Ismail, N.A.: Semantic Gap in CBIR: Automatic Objects
Spatial Relationships Semantic Extraction and Representation. IJIP International Journal of
Image Processing 4(3), 192–204 (2010)

 Finding Image Semantics from a Hierarchical Image Database 117

6. Li, J., Wang, J.Z.: Automatic Linguistic Indexing of Pictures by a Statistical Modeling
Approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1075–1088 (2003)

7. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training
examples: An incremental Bayesian approach tested on 101 object categories. Comput.
Vis. Image Underst. 106(1), 59–70 (2007)

8. Lowe, D.G.: Object recognition from local scale-invariant features. In: International
Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157 (1999)

9. Zhuang, Y., Liu, X., Pan, Y.: Apply Semantic Template to Support Content-based Image
Retrieval. In: Proceeding of IS&T and SPIE Storage and Retrieval for Media Databases,
San Jose, California, USA, January 23-28, pp. 442–449 (2000)

10. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint appearance, shape and
context modeling for multi-class object recognition and segmentation. In: Leonardis, A.,
Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 1–15. Springer,
Heidelberg (2006)

11. Liu, Y., Zhang, D., Lu, G.: Region-based image retrieval with high-level semantics using
decision tree learning. Pattern Recogn. 41(8), 2554–2570 (2008)

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255 (June 2009)

13. Wang, X.Y., Yu, Y.J., Yang, H.Y.: An effective image retrieval scheme using color,
texture and shape features. Computer Standards & Interfaces 33(1), 59–68 (2011)

14. Vassilieva, N.S.: Content-based Image Retrieval Methods. Program. Comput.
Softw. 35(3), 158–180 (2009)

15. Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram.
Pattern Recogn. 46(1), 188–198 (2013)

16. Pandey, K.K., Mishra, N., Sharma, H.K.: Enhanced of color matching algorithm for image
retrieval. International Journal of Computer Science Issues 8(3), 529–532 (2011)

17. Sural, S., Qian, G., Pramanik, S.: A Histogram with Perceptually Smooth Color Transition
for Image Retrieval. In: 4th International Conference on Computer Vision, Pattern
Recognition and Image Processing, Durham, North Carolina, pp. 664–667 (2002)

18. Shih, J.L., Chen, L.H.: Colour image retrieval based on primitives of colour moments.
IEEE Proceedings on Vision, Image and Signal Processing 149(6), 370–376 (2002)

19. Stricker, M., Orengo, M.: Similarity of Color Images. In: SPIE Conference on Storage and
Retrieval for Image and Video Databases III, San Jose, CA, USA, vol. 2420, pp. 381–392
(1995)

20. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data.
IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision 60(2), 91–110 (2004)

22. NIST/SEMATECH: e-handbook of statistical methods (2012),
http://www.itl.nist.gov/div898/handbook/eda/
section3/eda356.htm

23. Malik, F., Baharudin, B.: Quantized histogram color features analysis for image retrieval
based on median and Laplacian filters in DCT domain. In: International Conference on
Innovation Management and Technology Research (ICIMTR), Malacca, Malaysia, May
21-22, pp. 624–629 (2012)

24. Gali, R., Dewal, M.L., Anand, R.S.: Genetic Algorithm for Content Based Image
Retrieval. In: International Conference on Computational Intelligence, Communication
Systems and Networks (CICSyN), Phuket, Thailand, July 24-26, pp. 243–247 (2012)

25. Kinnaree, P., Pattanasethanon, S., Thanaputtiwirot, S., Boontho, S.: RGB Color
Correlation Index for Image Retrieval. Procedia Engineering (8), 36–41 (2011)

Formalization and Discovery of Approximate

Conditional Functional Dependencies

Hiroki Nakayama1, Ayako Hoshino2, Chihiro Ito2, and Kyota Kanno2

1 NEC Informatec Systems, Ltd., 2-6-1 Kitamikata, Takatsu-ku, Kawasaki-shi, Japan
2 NEC Knowledge Discovery Research Labs., 1753 Shimonumabe, Nakahara-ku,

Kawasaki-shi, Japan
{h-nakayama@cj,a-hoshino@cj,c-ito@az,k-kanno@ah}.jp.nec.com

Abstract. We propose efficient and precise discoveries of approximate
Conditional Functional Dependencies (CFDs), by providing a precise for-
malization of approximate CFDs and presenting three discovery algo-
rithms approxCFDMiner, approxCTANE and approxFastCFD as extensions
of existing algorithms with renewed techniques. First, approxCFDMiner
introduces a global FP-tree traversal for finding Right-hand Side items.
Second, approxCTANE uses a modified pruning strategy. Third, approx-
FastCFD adopts a minimal coverset that is used to exclude non-minimal
approximate CFDs. For these algorithms, we theoretically proved the
correctness and experimentally evaluated the performances.

Keywords: Conditional Functional Dependency, Approximate CFD,
Discovery Algorithms.

1 Introduction

Several rules with different degrees of specificity have been studied to express
regularity among attributes in a database. Functional Dependency (FD) X → A,
stating that the values of attributes X uniquely determine the value of an
attribute A, ranges over all tuples in the dataset. Association Rule (AR) [1]
(X, x) ⇒ (A, a), stating that for every tuple satisfying X = x, the value of A
should be a, is relevant only with part of the dataset where X = x. Moreover,
Conditional FD (CFD) [6] ([Xc, Xv] → A, tp), stating that for the tuples satis-
fying Xc = tp[Xc], an FD Xv → A holds, can express types of regularity that
include not only FDs and ARs but also their intermediates [11].

Although such rules are useful in themselves for data profiling and cleans-
ing [2], allowing some exceptions against data makes it possible to apply more
intensive investigations to the data [3,4,6,8]. Such approximated rules in terms of
data profiling can highlight implicit essences in databases, and for data cleans-
ing, exceptions to rules may inform us of errors in data with their revised value
candidates [6]. An approximate FD (AFD) [9] is for such a purpose.

The discoveries of such rules are not trivial and several algorithms have been
proposed. In the 1990’s, Agrawal et al. proposed Apriori [1] for discovery of
ARs. Subsequently, TANE [9] and FastFD [12], which are level-wise and depth-
first approaches, respectively, were proposed for discovering FDs. In 2007, Fan

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 118–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Approximate CFDs Discovery 119

Table 1. Instance r of purchase log

FLG FN LN PAYMENT COMMODITY DATE SHOP
t1 1 Mike Scott card bread 20120428 XXX
t2 1 Mike Scott cash egg 20120429 YYY
t3 1 Mike Scott cash bread 20120430 ZZZ
t4 1 Mike Scot cash milk 20120501 ZZZ
t5 1 Emmy Smith cash bread 20120410 YYY
t6 0 Lisa Davis card cheese 20120410 XXX

et al. [7] proposed the three algorithms, CFDMiner, CTANE and FastCFD, of
which the latter two extend TANE and FastFD. Constant CFD inference [5] also
works for finding constant CFDs. However, the discovery of approximate CFDs
has lately gained attention [3,8] and there are no established algorithms with a
sufficient theoretical foundation.

Example 1. Let us consider three rules, an FD ϕ1 = (SHOP → PAYMENT); an
AR ϕ2 = ((FN, Mike) ⇒ (LN, Scott)); and a CFD ϕ3 = ((FN, PAYMENT) →
COMMODITY, (, card ‖)), for instance r in Table 1.

Rule ϕ1 means that the value of SHOP determines that of PAYMENT. As ev-
ery tuple is under the effect of ϕ1, no violations occur. Rule ϕ2 means that if
FN=Mike then LN=Scott. Tuples from t1 to t4 are the target, where t4 violates
against ϕ2. This implies that Scot should be modified to Scott. The ϕ3 states
that for tuples such that PAYMENT=card, the value of FN determines that of
COMMODITY. No violations occur for its target tuples t1 and t6.

1.1 Our Contributions and Organization of This Paper

Our contributions consist of (1) the first precise formalization of approximate
CFDs, (2-4) the three algorithms for discovering approximate CFDs, and (5)
experimental studies. We have assigned one section to each contribution.

(1, Section 2) Formalization of approximate CFDs and their discovery prob-
lem: We consider sufficiently confident CFDs called approximate CFDs that hold
with high confidence. With the definition of the minimality, the problems are
stated as enumerations of minimal, frequent and confident CFDs.

(2, Section 3) approxCFDMiner: This is for constant approximate CFD discov-
ery. It finds Right-hand Side (RHS) of each Left-hand Side (LHS) using FP-trees.

(3, Section 4) approxCTANE: This explores a level-wise approach to both con-
stant and variable approximate CFD discovery. We adopt a relaxed strategy that
allows non-exact patterns.

(4, Section 5) approxFastCFD: It uses a depth-first approach for finding both
constant and variable approximate CFDs. We adopt a minimal coverset to ex-
clude non-minimal CFDs.

(5, Section 6) Experiments: We describe the performance of each algorithm
using a synthetic dataset and real-life datasets. The synthetic one is used to

120 H. Nakayama et al.

show the time scalability of algorithms. The real-life ones are used to inspect the
computation time and number of CFDs when the threshold confidence varies.

Finally, we conclude the paper in Section 7.

2 Statement of Discovery Problem

Let attr(R) be a set of all attributes in a relation schema R and dom(A) be
the domain of an attribute A ∈ attr(R). We introduce variable ’ ’ as a symbol
matching every value in an instance r of R, and we call every non-variable symbol
a constant. For attribute A and attribute set X ⊆ attr(R), tp[A] ∈ dom(A)∪{ }
and its set tp[X] are called pattern tuples over A and X , respectively.

Definition 1. (Items and Itemsets) For attribute A and value tp[A], we call the
pair (A, tp[A]) an item. An itemset (X, tp[X]), or simply (X, tp), is defined as
a set of items where attributes in X are different. We can call an item with
tp[A] ∈ dom(A) a constant item and one with tp[A] = ’ ’ a variable item.

Definition 2. (Order between itemsets [7]) A partial order ≤ on one attribute
A is defined as follows: if (1) t′p[A] is a variable, or (2) tp[A] = t′p[A], we have
tp[A] ≤ t′p[A]. We write tp[A] � t′p[A] if tp[A] ≤ t′p[A] but tp[A] �= t′p[A]. Its
extension on multiple attributes X is trivial.

Definition 3. (Support of itemsets) For instance r and an itemset (X, tp), the
support supp(X, tp, r), or simply supp(X, tp), is defined as the number of tuples
in r that match tp on X, i.e., |{t ∈ r | t[X] ≤ tp[X]}|.

2.1 Approximate CFDs

To provide a notion of approximate CFDs, we introduce the confidence of CFDs
which was referred to in [7].

Definition 4. (CFDs) A CFD ϕ is given as a rule (X → A, (tp[X] ‖ tp[A]))
where the LHS is an itemset (X, tp[X]) and RHS is an item (A, tp[A]). If no
misleading occurs, we abbreviate it to (X → A, (tp ‖ a)) or simply (X → A, tp).

ϕ = (X → A, tp) is called a constant CFD if every value in tp is constant, else is
called a variable CFD. If we need to distinguish between constant and variable
items, we also write it as ([Xc, Xv] → A, tp). An instance r satisfies ϕ, denoted
as r |= ϕ, iff “for each pair of tuples t1, t2 in r, if t1[X] = t2[X] ≤ tp[X] then
t1[A] = t2[A] ≤ tp[A]”.

Based on notions of support and confidence for instance r and CFD ϕ, we
introduce approximate CFDs. Support represents how many tuples are relevant
to the CFD, and confidence indicates the rate of tuples satisfying the CFD.

Definition 5. (Support of CFDs) The support supp(ϕ, r) is the number of tuples
in r matching both tp[X] and tp[A], which is equal to supp(X ∪ A, tp, r).

1

1 X ∪ {A} is abbreviate to X ∪A, likewise X \ {A} to X \A.

Approximate CFDs Discovery 121

Definition 6. (Confidence) The confidence conf(ϕ, r) is the ratio maxr′ |r′|/|r|
such that r′ |= ϕ for some r′ ⊆ r. We can say that conf(ϕ, r) = 1 is equivalent
to r |= ϕ.

Definition 7. (Approximate CFDs) We say that an approximate CFD ϕ holds
in a relation r w.r.t. a threshold value p iff conf(ϕ, r) ≥ p. This is said that r
approximately satisfies ϕ and denoted as r |=approx ϕ.

2.2 Discovery Problem for Approximate CFDs

To avoid a large amount of unnecessary rules, we focus on minimal CFDs, i.e.,
those containing no redundant items and covering most tuples. Minimal exact
CFDs have been defined by Fan et al. [7], and we extend it to approximate ones.

Definition 8. (Minimal approximate CFDs) An approximate CFD (X →
A, (tp[X] ‖ tp[A])) is minimal if the following three conditions are satisfied;
(1, Non-triviality) A �∈ X, (2, LHS minimality) for any Y ⊂ X, r �|=approx

(Y → A, (tp[Y] ‖ tp[A])), and (3, Most generality) for any t′p with tp � t′p,
r �|=approx (X → A, (t′p[X] ‖)).

We introduce two parameters k and p, as inputs of discovery algorithms, where
k means minsup, which is the threshold of support, and p means minconf, which
is that of confidence. For a given instance r, a CFD ϕ = (X → A, tp), k and p,
ϕ is called k-frequent if supp(ϕ, r) ≥ k and called p-confident if conf(ϕ, r) ≥ p.
Moreover, we call ϕ valid if ϕ is both k-frequent and p-confident.

We now can give a statement on the discovery problem of approximate CFDs.
Afterward, the word “approximate” is omitted as long as no misleading occurs.

Problem 1. (Approximate CFD Discovery Problem) For a given instance r of
R, minsup k, and minconf p, enumerate all minimal and valid CFDs.

3 ApproxCFDMiner

approxCFDMiner discovers all constant CFDs. In contrast to the existing CFD-
Miner [7], the mapping approach between a closed itemset and free itemsets is
not available. To overcome this difficulty, FP-tree traversal approach is used.

3.1 Free Itemset and FP-Tree

First we introduce free itemsets, referred as generators in [10]. Since supports
are anti-monotonic, any removal of items keeps or increases its support. If the
support is unchanged, called not-free, such items can be regarded as redundant.

Definition 9. (Free itemsets [10]) An itemset (X, tp) is called free if the support
increases by removing any item from (X, tp). That is, there exists no sub-itemset
(Y, tp[Y]) ⊂ (X, tp) for which supp(X, tp) = supp(Y, tp[Y]).

GrGrowth [10] is an exhaustive enumeration algorithm of free itemsets for minsup
k. It uses FP-trees [10] for compactly storing comprehensive information on k-
frequent itemsets, which have supports being equal to or more than k.

122 H. Nakayama et al.

Algorithm 1. approxCFDMiner

Input: Instance r, minsup k, and minconf p
Output: All k-frequent and p-confident minimal constant CFDs for r
1: Enumerate all k-frequent free itemsets (X, tp) of r and store them in list L in

ascending order of the size |X|
2: for each free itemset (X, tp) ∈ L do
3: Find any item (A,a) such that A �∈ X, supp(X ∪A, (tp ∪ a)) ≥ k,

and supp(X ∪A, (tp ∪ a)) ≥ p · supp(X, tp)
4: Output ϕ = (X → A, (tp ‖ a))
5: For every free super-itemset such that (Y, sp) ⊃ (X, tp) in L, preclude (A, a)

from RHS candidates for (Y, sp)

3.2 approxCFDMiner Algorithm

We provide Proposition 1, which shows the correctness of the approxCFDMiner,
as a modification to that by Fan et al. [7].

Proposition 1. For instance r and any valid (i.e., k-frequent and p-confident)
minimal constant CFD ϕ = (X → A, (tp ‖ a)), r |=approx ϕ iff (1) the itemset
(X, tp) is free and does not contain the item (A, a), (2) the itemset (X∪A, (tp∪a))
is k-frequent, (3) supp(X ∪ A, (tp ∪ a)) ≥ p · supp(X, tp), and (4) (X, tp) does
not contain a smaller free set (Y, tp[Y]) with this property.

Proposition 1 ensures that every minimal constant CFD has a free itemset as
its LHS. Then, by traversing the global FP-tree, we sum up the appearance of
items in each path that contains every LHS item. Consequently, RHS candidates
are obtained as the co-occurrence of (X, tp) with each item (A, a).

Now we provide approxCFDMiner in Algorithm 1. The validity of the CFD
generated at Line 3 is ensured by Proposition 1. Furthermore, the minimality of
CFDs output at Line 4 is also assured by RHS candidate removals at Line 5.

4 ApproxCTANE

Based on the existing CTANE, we present approxCTANE, which is a level-wise
algorithm for discovering CFDs. Along with the modifications to the pruning
strategy for FDs indicated in TANE, we provide an explicit strategy for CFDs.

First, we introduce a generality relation to itemsets in the same way as [7].
We say that an itemset (Y, sp) is more general than another itemset (X, tp),
denoted as (X, tp) � (Y, sp), if Y ⊆ X and tp[Y] ≤ sp.

Similar to CTANE, approxCTANE generates each itemset (X, sp) accompanied
with an RHS candidate set C+(X, sp), which satisfies the following conditions:

(C1): If A ∈ X , then cA = sp[A].
(C2.1): For all B ∈ X \A, r �|= (X \ {A,B} → B, (sp[X \ {A,B}] ‖ sp[B])).
(C2.2): For all C ∈ X\A, r �|=approx (X\{A,C} → A, (sp[X\{A,C}] ‖ sp[A])).

Approximate CFDs Discovery 123

Algorithm 2. approxCTANE

Input: Instance r, minsup k, and minconf p
Output: All k-frequent and p-confident minimal CFDs for r
1: Initially let L1 = {(A,) | A ∈ attr(R)} ∪ {(A, a) | supp(A, a) ≥ k,A ∈ attr(R)}
2: Let C+(∅) = L1 and
 = 1
3: while L� �= ∅ do
4: Sort itemsets in L� in descending order of generality
5: for each (X, sp) ∈ L� do C+(X, sp) =

⋂
B∈X C+(X \B, sp[X \B])

6: for each (A, cA) ∈ C+(X, sp) of (X, sp) ∈ L� with A ∈ X and sp[A] = cA do
7: Generate CFD ϕ = (X \A → A, (sp[X \A] ‖ cA))
8: Let up be any tuple pattern such that up[A] = cA or , and up[X\A] ≤ sp[X\A]
9: if r |=approx ϕ then
10: Output ϕ, and remove (A, ∗) from C+(X,up) for every (X,up) ∈ L�

// ’∗’ consists of all values for A, including the variable

11: if r |= ϕ then
12: Remove (B, ∗) from C+(X,up) for every B ∈ attr(R) \X, (X,up) ∈ L�

// ’∗’ consists of all values for B, including the variable

13: for each (X, sp) ∈ L� do
14: if C+(X, sp) = ∅ then Remove (X, sp) from L�

15: Let L�+1 = ∅
16: for each pair of (X, sp), (Y, tp) ∈ L� that agrees on just
− 1 elements do
17: Let (Z, up) = (X ∪ Y, (sp, tp[Y \X]))
18: if (Z, up) is k-frequent and for all A ∈ Z, (Z \A, up[Z \ A]) ∈ L� then
19: Add (Z, up) to L�+1

20:
 =
+ 1

(C3): For all B ∈ X \ A, r �|=approx (X \ A → A, (sBp [X \ A] ‖ sp[A])), where

sBp [C] = sp[C] for all C �= B and sBp [B] = .

(C1) ensures the consistency; (C2.1) and (C2.2) ensure the minimality; and
(C3) ensures the most generality. Compared to the corresponding conditions for
CTANE given in [7], the second condition is separated into two cases, 2.1 (exactly
satisfied) and 2.2 (approximately satisfied).

We introduce the Lemma 1, as modifications of Lemma 2 by Fan et al. [7].

Lemma 1. Let X ⊆ attr(R), sp be a pattern over X, A ∈ X and assume that
r |=approx ϕ = (X \ A → A, (sp[X \ A] ‖ sp[A])). Then ϕ is minimal iff for all
B ∈ X we have (A, sp[A]) ∈ C+(X \B, sp[X \B]).

Lemma 1 implies that C+(X, sp) is anti-monotonic: if (X, sp) ⊇ (Y, tp), C+(X, sp)
⊆ C+(Y, tp) holds. In particular, if C+(Y, tp) = ∅, every (X, sp) that contains
(Y, tp) is pruned because no minimal CFDs are generated from (X, sp).

We now provide approxCTANE in Algorithm 2. At Line 5, C+(X, sp) for each
frequent itemset (X, sp) are initialized. From Line 6 to 12, generated CFDs
are tested for their validity. If valid, the CFDs are output, and RHS candidate
updates are conducted. In Lines 13 and 14, itemsets with no RHS candidates are

124 H. Nakayama et al.

removed. From Line 16 to 19, we generate larger itemsets. The major difference
from CTANE is Lines 11 and 12: only if r |= ϕ, the removal of (B, cB) is executed.

The Lemma 2, given as a modification of Lemma 3 in Fan et al. [7], shows that
Algorithm 2 accurately maintains C+(X, sp). From Lemmas 1 and 2, Proposi-
tion 2 is derived.

Lemma 2. Suppose that C+(Y, tp) is accurate for all (Y, tp) ∈ L	. Then Lines 5,
10, and 12 in approxCTANE correctly compute C+(X, sp) for all (X, sp) ∈ L	+1.

Proposition 2. approxCTANE enumerates all valid minimal CFDs.

5 ApproxFastCFD

Similar to the existing FastCFD, approxFastCFD finds CFDs ([Xc, Xv] → A, tp)
by two steps: (1) determine Xc and A, and (2) search Xv with depth-first search.

However, several properties used in FastCFD no longer available. First, differ-
ence sets, whose minimal covers correspond to the LHSs of minimal CFDs, is not
reasonably extendable. Second, since confidence is not anti-monotonic, validity
of immediate subsets of CFDs is not sufficient for minimality proof.

5.1 Minimal Coverset

To overcome above problems, we introduce a minimal coverset. Intuitively, it
works as a set cover of attributes Xv inducing non-minimality of CFDs, and
prevents the non-minimal CFD search.

Definition 10. (Minimal Coverset) For every pair of a free itemset (Xc, tp[Xc])
and an item (A, tp[A]), minimal coverset L stores a set of attributes, and is
updated each time a CFD is discovered as stated below.

1. If constant CFD (Xc → A, (tp[Xc] ‖ a)) is discovered, then for every free
itemset (Y c, sp[Y c]) ≺ (Xc, tp[Xc]), update L((Y c, sp[Y c]), (A, a)) =
L((Y c, sp[Y c]), (A,)) = {∅}.

2. If variable CFD ([Xc, Xv] → A, (tp[Xc], , . . . , ‖)) is discovered, then
for every free itemset (Y c, sp[Y c]) ≺ (Xc, tp[Xc]), add a set of attributes
Y = Xv \ (Y c \Xc) to L((Y c, sp[Y c]), (A,)).

As we verify the minimality of CFD ϕ′ = ([Y c, Y v] → A, (sp[Y c], , . . . , ‖
sp[A])), ϕ′ is found to be non-minimal iff Y ∈ L((Y c, sp[Y c]), (A, sp[A])) such
that Y ⊆ Y v, Then, no further searches from ϕ′ are done.

Proposition 3. When CFD ϕ = ([Xc, Xv] → A, tp) is found, the above update
of the minimal coverset avoids having to search every non-minimal CFD ϕ′ =
([Y c, Y v] → A, sp) against ϕ in which Xc ⊂ Y c.

Approximate CFDs Discovery 125

Algorithm 3. approxFastCFD

Input: Instance r, minsup k, and minconf p
Output: All k-frequent and p-confident minimal CFDs for r
1: Enumerate all k-frequent free itemsets of r and store them in list L in descending

order of generality
2: for each attribute A ∈ attr(R) do
3: for each free itemset(Xc, tp[X

c])where A �∈Xc do Recursive((Xc, tp[X
c]), A, ∅)

4: procedure Recursive(k-frequent free itemset (Xc, tp[X
c]), attribute A �∈ Xc, and

attributes Xv ⊆ attr(R) \ (Xc ∪A))
5: Φ = ∅ // Candidates of CFDs
6: if Xv = ∅ then
7: Generate all CFDs candidates ϕc = (Xc → A, (tp[X

c] ‖ a ∈ dom(A))),
and if ϕc is k-frequent and p-confident, add each ϕc to Φ

8: else
9: Generate the only CFD candidate ϕv = ([Xc, Xv] → A, (tp[X

c], , . . . , ‖)),
and if ϕv is (obviously k-frequent) p-confident, add ϕv to Φ

10: if Φ �= ∅ then
11: if Xv = ∅ then
12: for each candidate ϕc = (Xc → A, (tp[X

c] ‖ a)) in Φ do
13: if L((Xc, tp[X

c]), (A, a)) �= {∅} then
14: Output ϕc, and update the minimal coverset

15: else // ϕv = ([Xc, Xv] → A, (tp[X
c], , . . . , ‖)) is the only CFD candidate

16: if X ∈ L((Xc, tp[X
c]), (A,)) such that X ⊆ Xv then return �

non-minimal
17: else
18: for each attribute B ∈ Xv do
19: Let ϕ′

v = ([Xc, Xv \B] → A, (tp[X
c], , . . . , ‖))

20: if ϕ′
v is p-confident then return � non-minimal

21: Output ϕv, and update the minimal coverset

22: else
23: for every xv ∈ attr(R)\(Xc∪Xv∪A) do Recursive((Xc, tp[X

c]), A,Xv∪xv)

5.2 approxFastCFD Algorithm

Algorithm 3 describes approxFastCFD, where a sub-routine Recursive is called
for each pair of a free itemset (Xc, tp[Xc]) and attribute A.

Proposition 4. approxFastCFD finds all valid minimal CFDs.

6 Experiments

We discuss the performance of our three algorithms approxCFDMiner, approx-
CTANE, and approxFastCFD described in Sections 3, 4 and 5. Our experiments
were conducted from two points of view: (1) scalability on data size (i.e. number
of tuples) and arity (i.e. number of attributes), (2) response time and number
of CFDs for varied minconf p. Note that this paper is the first to discuss the
performance of a CFD discovery for varied p.

126 H. Nakayama et al.

Table 2. Experimental Datasets

Dataset Arity No. of tuples
synthetic datasets 6 to 20 1,000 to 1,000,000

Wisconsin Breast Cancer (WBC) 11 699
Chess 7 28,056

6.1 Settings

The experiments were conducted on both the synthetic and real-life datasets
summarized in Table 2. The synthetic datasets were generated by randomly
assigning a value that ranges in ten distinct values in each field. We adopted
the Wisconsin Breast Cancer (WBC) and Chess datasets from the UCI machine
learning repository (http://archive.ics.uci.edu/ml/) as the real-life data.

The CFD discovery algorithms and GrGrowth were implemented in Java and
run using a Quad Core Xeon E5420 (2.5 GHz) with 8 GB of memory. We called
GrGrowth to find the free itemsets used in approxCFDMiner and approxFastCFD.

6.2 Scalability on Synthetic Data

We evaluated the performance of our algorithms by varying the arity and number
of tuples of the synthetic data for fixed k = 0.05 × (No. of tuples) and p = 0.8.

Figures 1 and 2 indicate that the performance of approxCTANE greatly de-
pends on the arity. approxCFDMiner is much faster than the other two algorithms.
In comparing approxCTANE and approxFastCFD, the former causes an explosion
of computation time as the arity increases, while the latter is relatively durable
against the increase in the number of tuples, unlike the existing FastCFD.

6.3 Real Data Experiments

We used two datasets WBC and Chess, which are dissimilar with respect to the
arity and the number of tuples to inspect our algorithms more closely. We fixed
k and varied p from 0.5 to 1.

 0

 5000

 10000

 15000

 20000

 6 8 10 12 14 16 18 20

R
es

po
ns

e
tim

e
(s

ec
)

Arity (No. of tuples=10000)

approxCFDMiner
approxCTANE

approxFastCFD

Fig. 1. Scalability w.r.t.
Arity

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

R
es

po
ns

e
tim

e
(s

ec
)

No. of tuples (x 103, Arity=10)

approxCFDMiner
approxCTANE

approxFastCFD

Fig. 2. Scalability w.r.t.
#Tuples

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Minconf p (Minsup k=70)

approxCFDMiner
approxCTANE

approxFastCFD

Fig. 3. Time for WBC
w.r.t. p

Approximate CFDs Discovery 127

 0

 20

 40

 60

 80

 100

 120

 140

 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Minconf p (Minsup k=300)

approxCFDMiner
approxCTANE

approxFastCFD

Fig. 4. Time for Chess
w.r.t. p

 0

 500

 1000

 1500

 2000

 0.5 0.6 0.7 0.8 0.9 1

N
o.

 o
f C

F
D

s

Minconf p (Minsup k=70)

Const CFDs
Const+Var CFDs

Fig. 5. #CFDs for WBC
w.r.t p

 0

 200

 400

 600

 800

 1000

 0.5 0.6 0.7 0.8 0.9 1

N
o.

 o
f C

F
D

s

Minconf p (Minsup k=300)

Const CFDs
Const+Var CFDs

Fig. 6. #CFDs for Chess
w.r.t. p

The response time is plotted in Figure 3 for WBC and in Figure 4 for Chess.
As the value of p increases, the resulting CFDs tend to have more items; thus,
the response time becomes longer. With p = 1 in particular, approxFastCFD
takes longer than approxCTANE since exact CFDs in WBC have many variable
items and the minimal coverset does not work well.

The number of CFDs may decrease or increase as p varies for the following
reason: while high confidence reduces the number of valid CFDs, turning a CFD
invalid may cause other larger CFDs to be newly minimal. The behaviors in
response to different p values are in Figure 5 for WBC and in Figure 6 for Chess.

7 Conclusions

We have provided the first formalization of approximate CFDs and presented
three algorithms for their discovery: approxCFDMiner was quite useful if only
constant CFDs were needed. To obtain also variable CFDs, approxFastCFD out-
performed approxCTANE where the arity was large.

We expect to obtain useful approximate CFDs for efficient data profiling and
cleansing by using these three algorithms. Both time and space complexity anal-
yses of our algorithms should be conducted.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD, pp. 143–154
(2005)

3. Chiang, F., Miller, R.J.: Discovering data quality rules. PVLDB 1(1), 1166–1177
(2008)

4. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB, pp. 315–326 (2007)

5. Diallo, T., Novelli, N., Petit, J.M.: Discovering (frequent) constant conditional
functional dependencies. IJDMMM 4(3), 205–223 (2012)

128 H. Nakayama et al.

6. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2) (2008)

7. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. IEEE Trans. Knowl. Data Eng. 23(5), 683–698 (2011)

8. Golab, L., Karloff, H.J., Korn, F., Srivastava, D., Yu, B.: On generating near-
optimal tableaux for conditional functional dependencies. PVLDB 1(1), 376–390
(2008)

9. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2), 100–
111 (1999)

10. Liu, G., Li, J., Wong, L.: A new concise representation of frequent itemsets using
generators and a positive border. Knowl. Inf. Syst. 17(1), 35–56 (2008)

11. Medina, R., Nourine, L.: A unified hierarchy for functional dependencies, condi-
tional functional dependencies and association rules. In: Ferré, S., Rudolph, S.
(eds.) ICFCA 2009. LNCS, vol. 5548, pp. 98–113. Springer, Heidelberg (2009)

12. Wyss, C., Giannella, C., Robertson, E.: FastFDs: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances - extended
abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001.
LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 129–144, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Parallel Partitioning and Mining Gene Expression Data
with Butterfly Network

Tao Jiang, Zhanhuai Li, Qun Chen, Zhong Wang, Wei Pan, and Zhuo Wang

School of Computer Science and Technology,
Northwestern Polytechnical University, 710072, Xi’an, China
{jiangtao,zhongwang}@mail.nwpu.edu.cn,

{lizhh,chenbenben}@nwpu.edu.cn

Abstract. In the area of massive gene expression analysis, Order-Preserving
Sub-Matrices have been employed to find biological associations between
genes and experimental conditions from a large number of gene expression
datasets. While many techniques have been developed, few of them are parallel,
and they lack the capability to incorporate the large-scale datasets or are very
time-consuming. To help fill this critical void, we propose a Butterfly Network
based parallel partitioning and mining method (BNPP), which formalizes the
communication and data transfer among nodes. In the paper, we firstly give the
details of OPSM and the implementations of OPSM on MapReduce and Hama
BSP and their shortcomings. Then, we extend the Hama BSP framework using
Butterfly Network to reduce the communication time, workload of bandwidth
and duplicate results percent, and call the new framework as BNHB. Finally,
we implement a state-of-the-art OPSM mining method (OPSM) and our BNPP
method on top of the framework of naïve Hama BSP and our BNHB, and the
experimental results show that the computational speed of our methods are
nearly one order faster than that of the implementation on a single machine and
the proposed framework has better effectiveness and scalability.

Keywords: Gene Expression Data, Data Partitioning, Butterfly Network, BSP
model, MapReduce, Parallel Processing, OPSM, Hadoop, Hama.

1 Introduction

The rapid advances in high-throughput technologies, such as microarrays, enable
simultaneous measurement of the expression levels of all genes in a given organism,
which accumulates massive gene data [1-6]. These data can be viewed as an n×m
matrix with n gene (rows) and m experimental conditions (columns), in which each
entry denotes the expression level of a given gene under a given experimental
condition. Recently, Order-Preserving Sub-Matrices (OPSMs) [1-6], which plays
an important role in inferring gene regulatory networks, has been accepted as a
significant tool for gene expression data analysis. The objective is to discover a
subset of rows and columns in a data matrix where all the rows exhibit a similar
pattern of rises and falls in the values of entries. For example, Fig. 1 shows
the expression levels of the two sets of genes under four experimental conditions [6],

130 T. Jiang et al.

gal1RG1 gal2RG1 gal3RG1 gal4RG1

-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

E
xp

re
ss

io
n

le
ve

l

Experimental condition

 YDR073W
 YDR088C
 YDR240C
 YDR473C

(c)
2000 4000 6000 8000 10000

0
5000

10000
15000
20000
25000
30000
35000
40000

R
un

tim
e

(s
ec

)

Number of Rows (200 col., threshold is 0.2)

 Single Machine

(e)

gal1RG1 gal2RG1 gal3RG1 gal4RG1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

E
xp

re
ss

io
n

le
ve

l

Experimental condition

 YHR092C
 YHR094C
 YHR096C
 YJL214W

(d)
50 100 150 200

0
50

100
150
200
250
300
350
400
450
500

R
un

tim
e

(s
ec

)

Number of Col. (1000 rows, threshold is 0.6)

 Single Machine

(f)

Fig. 1. Example of OPSMs and Performance of OPSM on a single machine

where Fig. 1(c) and 1(d) are the graphical representations of two datasets plotted in
Fig. 1(a) and 1(b), respectively.

Recently, some approaches have been proposed to discover significant OPSMs. [1]
observes that small group genes are tightly co-regulated under many conditions, thus,
they propose the KiWi framework which substantially reduces the search space and
problem scale. To cope with the noise in datasets, [3] utilizes the measurements
collected from repeated experiments; [4] proposes a noise-tolerant model AOPC; [5]
employs bucket to relax OPSM model by considering linearity relaxation. However,
time-consuming of the methods on large-scale datasets is very long and cannot be
tolerated.

As the high-rate increasing of the numbers and sizes of gene expression datasets,
there is an increasing need for the fast mining techniques to handle the massive gene
datasets. However, rapidly mining OPSMs is a challenging task due to several reasons
below [1-6]. First, there are a large number of genes and physiological conditions
(experimental conditions) in species, and the computational complexity of OPSMs
mining with respect to the number of genes and experimental conditions is O(m2n2),
where m is the number of experimental conditions and n is the number of genes. For
example, there are thousands of genes in any complex organism, the organism
number of Homo sapiens is more than 90, thus the gene number of Homo sapiens is
tens of thousands (the accurate number is 27,000). As shown in Fig. 1(e), the running
time on one third of the number of Homo sapiens genes (10,000 genes) is more than
10 hours. As shown in Fig. 1(f), for 1,000 genes, the running time of 20 and 200
experimental conditions are 11 and 453 seconds, respectively. Second, to reduce the
impact of the inherent noise of microarray measurements, OPSM-RM method [3] is
proposed, time complexity of which is O(km2n2), where k is the number of replicates.
However, the memory of a single machine is not enough to incorporate large number
of replicates.

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 131

Although it is a hard problem to address, distributed and parallel processing
techniques [7] can be employed in the rapid analysis of gene expression data. For
example, Hadoop, an open source implementation of MapRduce (MR), is a
framework that allows for the distributed processing of large datasets across computer
clusters using a simple programming model. However, there are no communication
mechanisms among both Mappers and Reducers in MR [8], thus, it needs a lot of
iterations of MR to make the final results complete, which is very time-consuming.
Hama [11] is a pure Bulk Synchronous Parallel (BSP) [9, 10] computing framework
on top of Hadoop Distributed File System (HDFS) for massive scientific
computations. Although Hama is superior to MR, it has some disadvantages for gene
expression data mining. First one is each node exchanges data with all the rest nodes
in a super-step, which makes the nodes on Hama produce more duplicate results.
Second one is that although we can reduce the duplicate results by starting only one
node for reduce, the other nodes in the cluster are not employed sufficiently, and it
also needs one super-step which consumes a long time. Third one is that the node for
reduce receives all the data from other nodes, which may make the node has not
enough space to save these data and consumes more time and bandwidth. Thus, it is
necessary to transfer data moderately. Fortunately, Hama provides a flexible, simple,
and easy-to-use small APIs, we can use which to address these issues. To fill this
void, we extend the naïve Hama BSP framework using Butterfly Network to reduce
the communication time, workload of bandwidth and percent of duplicate results,
which makes nodes exchange data moderately in log2N steps and produce smaller
percent of duplicate results.

We conduct extensive experiments of our methods with java on a single machine
and Hama; the experimental results show that our methods are nearly one order faster
than the implementation on a single machine, and also show that our framework has
better effectiveness and scalability. The main contributions of the paper are as
follows:

1) We give the preliminaries, details of OPSM method, and the implementations of

OPSM on MapReduce and Hama BSP and their shortcomings. (Sec. 2).
2) To reduce communication time and workload of bandwidth, we extend Hama

BSP with Butterfly Network (BNHB) (Sec. 3.1). To reduce the percent of duplicate
results, we propose a deduplication method based on distributed hash tables (Sec.
3.3).

3) Based on BNHB framework, we propose a BNPP method (Sec. 3.3).
4) We implement one state-of-the-art OPSM mining method (OPSM) and our

method BNPP on top of the naïve Hama BSP and new framework BNHB (Sec. 4).

2 Preliminary and Analysis

2.1 Preliminary

In this subsection, we introduce some notations and definitions used throughout the
paper, which are illustrated in Table 1.

132 T. Jiang et al.

Definition 1. OPSM(order-preserving sub-matrix): Given a dataset (n×m matrix)
D(G, T), an OPSM is a pair (g, t), where g is a subset of the n rows and t is a permuta-
tion of a subset of the m columns which satisfies the condition: for each row in g, the
data values x are monotonically increasing/decreasing with respect to the permutation
of the indexes of columns, i.e., xi1<xi2< … <xij< … <xik (xi1>xi2> … >xij> … >xik),
where (i1,…, ij, …, ik) is the permutation of the indexes of columns (1, …, j, …, k).

Definition 2. Core of OPSM: Given an OPSM Mi(g, t), the core of OPSM, which is
denoted as Core(Mi), is defined as the longest common subsequence LCS(g, t).

Definition 3. Similarity: Consider a gene gi and an OPSM Mj(g, t), we define the
similarity of them as the ratio between the length of the intersection of LCS(gi∪g, t)
with Core(Mj) and the number of columns of dataset (m), which is denoted by S(gi,
Mj) =|LCS(gi∪g, t)∩Core(Mi)| / m. Similarly, similarity of OPSMs Mj(g', t') and Mk

(g'', t'') is defined by S(Mj, Mk) = |Core(Mj)∩Core(Mk) | / m. Throughout the paper, if
there are no specific notifications, we use terms similarity and threshold
interchangeably.

Table 1. Notations Used in This Paper

Notation Description Notation Description
G Set of genes x Set of gene expression values
g Subset of G xij An entry of gene expression value
gi A gene of G or g D(G, T) A given gene expression dataset
T Set of experi. conditions LCS(g, t) Longest common subsequence on g, t
t Subset of T Core(Mi) Core of OPSM of Mi(g, t)
ti An experi. condition S(gi, Mi) Similarity of gi and an OPSM Mi(g, t)
Mi(g, t) An OPSM Smin Threshold of Similarity

2.2 OPSM Mining on a Single Machine, MR and Hama BSP

Example 1. (OPSM mining on a single machine) There is a gene expression data
which has 16 rows and 4 columns illustrated in Fig. 2(a). And the threshold is 0.6.
The procedure and results on a single machine are illustrated in Fig. 2(b), and 2(c).

Example 1 shows the OPSM mining on a single machine, and Algorithm 1 gives the
details of OPSM. The machine firstly sorts the expression values of each row, the
permutation of which is represented by the indexes of related column (line 1), Then, it
finds LCSs between each pair of genes (lines 2-5). If the length of LCS is less than
m×ρ, where ρ is the threshold, we prune it. Due to LCS() (finding LCSs) is well-
known, we do not present it. Finally, it reduces LCSs (line 6). As we know, regardless
of how many nodes a gene expression data is partitioned onto, the mining results
should be the same as that produced by a single machine. Thus, we can use this
criterion to evaluate the performance of our methods.

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 133

Fig. 2. Gene expression data and OPSM results on a single machine

Algorithm 1. OPSM mining on a single machine
Input: n×m data matrix D(G, T), threshold ρ; Output: OPSMs Mi(g, t)
1. sort expression values in each row and denote with column No.
2. for i=0; i<n-1; i++
3. for j=i+1; j<n; j++
4. LCS(gi, gj, gi.length, gj.length, b[][], c[][]); lcs = PrintLCS(gi, gj);
5. if lcs.length<m×ρ then prune lcs; else LCSs.add(lcs);
6. summarize the LCSs;

g0
g4
g8
g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3
1 2 3 0
1 2 3 0
1 2 3 0

g1
g5
g6
g7

g2
g9
g10
g11

0 1 2 3
2 3 0 1
2 3 0 1
2 3 0 1

g3
g13
g14
g15

0 1 2 3
3 0 1 2
3 0 1 2
3 0 1 2

g0
g4
g8
g12

g0,g12
g0,g4
g4,g8

g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

0 1 2 3
1 2 3 0
1 2 3

g1
g5-g7

g1,g5-g7

g2
g9-g11

0 1 2 3
2 3 0 1

g3
g13-g15

g3,g13-g15

0 1 2 3
3 0 1 2
0 1 2

g0-g3
g4-g7
g8-g11
g12-g15

g0-g3,g12-g15
g0-g7
g4-g11
g8-g15

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g0,g1
g4-g7

g8
g12

g0,g1,g12
g0,g1,g4-g7

g4-g8
g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g2,g3
g9-g11
g13-g15

g2,g3,g13-g15
g2,g3

g9-g11,g13-g15

0 1 2 3
2 3 0 1
3 0 1 2
0 1 2
1 2 3
3 0 1

Iteration 1
Iteration 1

Iteration 1

(a) OPSM mining on Hadoop

(b) OPSM mining on naïve Hama

Fig. 3. OPSM mining on Hadoop and naïve Hama and Example

Example 2. (OPSM mining on Hadoop) The dataset and threshold are the same as that
used in Example 1. The procedure of OPSM mining and the final results on Hadoop are
illustrated in Fig. 3(a), and the true final results are presented in Fig. 2(c).

Fig. 3(a) shows the OPSM mining of Example 2 processing on Hadoop. In the 1st
iteration, it starts 4 nodes. And we only describe the procedure of the 2nd node; the
others are the same as that of the 2nd one. The 2nd node reads 4 rows of data, the
original data of g1, g5, g6, g7, which is illustrated in Fig. 2(a) and omitted in Fig.
3(a). Then, it generates the permutation of indexes of columns, which are “g1: 0, 1, 2,
3”, “g5-g7: 1, 2, 3, 0”. Further, it finds the LCSs among the 2 rows, the results of

134 T. Jiang et al.

which is shown in the 2nd rectangle in 2nd row, due to “g5-g7: 2, 3, 0” is contained
by “g5-g7: 1, 2, 3, 0”, we omit it. In the 2nd iteration, it starts 2 nodes, and we only
describe the procedure of the 2nd node. The 2nd node reads the files, i.e., the data
illustrated in the 3rd and 4th rectangles in the 2nd row. After pairwise comparison, it
outputs the results, which is illustrated in the 2nd rectangle in the 3rd row. In the 3rd
iteration, it only starts one node. And it reads the data in the two rectangles in the
3rd row, and outputs the final results, which is illustrated in the bottom rectangle in
Fig. 3(a).

In Example 2, we omit the results that can be derived from other results simply, and
retain the results that need many pairwise comparisons. For example, we omit “g13-
g15: 3, 0, 1”, but retain “g3, g13-g15: 0, 1, 2”, in the 4th rectangles in the 2nd row in
Fig. 3(a). Due to the former one can be easily derived from other results, but the latter
one needs pairwise comparison which is time-consuming in computational resource
constrained situation. If in IO constrained situation, we omit the two kinds of results.

Due to that there are no communication mechanisms in MR and using only one
iteration of MR cannot guarantee final results is complete, we run a flow of
customized map() and reduce(). However, it spends a long time on the restart of MR.
Thus, it is urgent to extend the MapReduce framework or propose a novel one.

Example 3. (OPSM mining on naïve Hama) The dataset and threshold utilized are the
same as that used in Example 1. The rule of data transfer is that it transfers the
compressed original data to other nodes. The procedure of OPSM mining and the
final results on Hama are illustrated in Fig. 3(b). Although we reduce some duplicate
results, the problem that the reduce super-step spends a long time is still not solved.

From Example 3 shown in Fig. 3(b), we find several problems. The first one is the data
received by a node in a super-step is large, e.g., a node receives 10 rows of data plotted
in rounded rectangles with labels ①, ②, ③, and ④, on the communication phase. As
we know, the number of rows in each split is 4, and the number of rows to send / receive
is 10, which is two times more than that of initial splits. The second one is that although
we reduce some duplicate results plotted in dashed rectangles in the bottom of Fig. 3(b),
it still needs one long super-step for reduce, due to it only uses one node to do the final
step. Thus, we should consider these issues and give solutions.

In the condition that does not modify the naïve BSP framework, i.e., Example 3, we
only can reduce duplicate results described above, but the other nodes in the cluster
are not employed sufficiently, and it also needs a long time super-step.

From the above analysis, we get the idea that we should solve the problems based
on sufficiently use the nodes on the cluster, rather than use one node and stop other
nodes. Thus, the problem is changed to reduce the amount of data to transfer and
percent of duplicate results. And we extend the naïve Hama BSP in Section 3.

3 Parallel Partitioning Methods

In this section, we firstly introduce the BNHB framework. Then, we propose a BNPP
method to formalize the data transfer among nodes and a distributed hash tables
(DHT) based deduplication method. Finally, we give some theorems.

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 135

3.1 Butterfly Network Based Hama BSP Framework and Example

In order to guarantee the nodes on Hama have enough memory to save the transfer
data, have less workload of bandwidth, and produce less duplicate results, we propose
a BNHB framework illustrated in Fig. 4(a).

From Example 3 shown in Fig. 3(b), we find that if each node communicates and
transfers data with all of the rest nodes in the super-step for reduce, the results is
duplicate. If we use pairwise communication which guarantees the percent of duplicate
is smaller, some duplicate results can be avoided. Further, it sufficiently employs all the
nodes on the cluster. Thus, the new framework achieves the goal that we mentioned
earlier. Now what we are worried about is the completeness of final results after pair-
wise communication, and we will give the proof about the completeness in Theorem 1.

Fig. 4(a) illustrates the BNHB framework, which inherits the basic framework of
BSP model and utilizes HDFS to store the original data and final results. In BNHB,
the nodes play the same roles as the naïve Hama. In each super-step, each node firstly
receives the split from Master node, then does OPSM mining, further communicates
with the rest nodes, and goes into barrier synchronization in the final phase of a super-
step. Finally, each node outputs mining results to HDFS. Certainly, the new framework
has some differences with naive Hama. First one is that our new framework needs no
more than log2N super-steps instead of one or uncertain super-steps, where N is the
number of nodes. Second one is that each node only needs to communicate with one of
the rest nodes instead of all nodes in a super-step. Third one is that all the
communication nodes are not same for a node in no more than log2N super-steps. Fourth
one is that each node has no more than one communication node in a super-step.

In the following, we firstly present an example to describe how OPSM mining is
processed on the new framework and then summarize the data transfer rules.

D
ata splits

Super-step i
Super-step i+1

g4
g8

g12

1 2 3 0
2 3 0 1
3 0 1 2nullnull

g8
g12

2 3 0 1
3 0 1 2

g3 0 1 2 3 g2 0 1 2 3g1 0 1 2 3

g0
g4
g8

g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

g0,g1
g4
g8
g12

g0,g1,g12
g0,g1,g4

g4,g8
g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g0-g3
g4-g7

g8-g11
g12-g15

g0-g3,g12-g15
g0-g7

g4-g11
g8-g15

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g2,g3
g9-g11
g2,g3
g2,g3

0 1 2 3
2 3 0 1
0 1 2
1 2 3

g2,g3
g13-g15

g2,g3,g13-g15

0 1 2 3
3 0 1 2
0 1 2

g2,g3
g4

g8-g11
g12

g2,g3,g12
g8-g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
3 0 1

g2,g3
g8

g12-g15
g2,g3,g12-g15

g8-g15

0 1 2 3
2 3 0 1
3 0 1 2
0 1 2
3 0 1

g0,g1
g4-g7

g8
g12

g0,g1,g12
g0,g1,g4-g7

g4-g8
g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g0,g1
g4
g8

g12
g0,g1,g12
g0,g1,g4

g4,g8
g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g0,g1
g4-g7

g8
g12

g0,g1,g12
g0,g1,g4-g7

g4-g8
g8,g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
0 1 2
1 2 3
2 3 0
3 0 1

g0,g12
g0,g4
g4,g8
g8,g12

0 1 2
1 2 3
2 3 0
3 0 1

1 2 3 0
1 2 3

g5-g7
g1,g5-g7 g9-g11 2 3 0 1 g13-g15

g3,g13-g15
3 0 1 2
0 1 2

g0
g4
g8

g12

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3
1 2 3 0
1 2 3 0
1 2 3 0

g1
g5
g6
g7

g2
g9

g10
g11

0 1 2 3
2 3 0 1
2 3 0 1
2 3 0 1

g3
g13
g14
g15

0 1 2 3
3 0 1 2
3 0 1 2
3 0 1 2

(a) BNHB framework

(b) OPSM mining on BNHB

Fig. 4. Butterfly Network based Hama BSP framework

136 T. Jiang et al.

Example 4. (OPSM mining on BNHB) The dataset and threshold utilized are the same
as that used in Example 1. The rules of data transfer are given later. The procedure of
OPSM mining and the final results on BNHB are illustrated in Fig. 4(b). Obviously,
the mining results are the same as that in Fig. 2(c), which is complete.

Fig. 4(b) illustrates the procedures of Example 4. Firstly, each node reads 1 split as its
input, and then enters no more than log2N super-steps. In super-step 1, the four nodes
do pairwise comparison with local data illustrated in 1st row of rectangles, and then
generate intermediate results, which are presented in the 2nd row of rectangles.
Further the four nodes on the cluster are divided into 2 ((log24) /21-1=2) groups, and the
number in each group is 2, i.e., 4/2=2. Each group is divided into two sub-groups, i.e., in
1st group, node 0 and 1 are divided into node 0 and node 1 two sub-groups, and the
division of 2nd group is the same as the 1st one, the step length to communicate
between two sub-groups in each group is half group size 1, i.e., 2 / 2=1 (The division
method will be given in Algorithm 2). In the communication phase, node 0 sends “g0: 0,
1, 2, 3”, “g4: 1, 2, 3, 0”, “g8: 2, 3, 0, 1” and “g12: 3, 0, 1, 2” to node 1, node 1 sends
“g1: 0, 1, 2” to node 0, node 2 sends “g2: 0, 1, 2, 3” to node 3, and node 3 sends “g3: 0,
1, 2, 3” to node 2 (Rule 1, 2, 3, which is discussed later). To wait the nodes to finish
data transfer, it goes into barrier synchronization. In super-step 2, each node firstly does
pairwise comparison between received data and original data (Rule 4), then does
pairwise comparison between the received data and intermediate results (Rule 5). After
local computation, four nodes are divided into 1 (log24/22-1=1) group, and the group is
divided into 2 sub-groups, i.e., the 1st sub-group includes node 0 and node 1, the 2nd
sub-group contains node 2 and node 3. And the step length to communicate between
two sub-groups is half group size 2, i.e., 4 / 2 = 2. In the communication phase, node 0
sends “g4: 1, 2, 3, 0”, “g8: 2, 3, 0, 1” and “g12: 3, 0, 1, 2” to node 2, node 1 sends “g8:
2, 3, 0, 1” and “g12: 3, 0, 1, 2” to node 3, node 2 and node 3 does not send data to node
0 and node 1, due to each original data in both nodes has the longest length of LCSs
(Rule 2). Then, it goes into barrier synchronization. Finally, due to the number of super-
step reaches log2N (Rule 6), four nodes output the results.

In the following, we summarize the communication or data transfer rules.

Rule 1. The original data of one gene (permutation of indexes of columns with
ascending order of gene expression values), that does not have the longest length of
LCSs (if the number of columns of the original data is m, we say the longest length of
LCSs is m), will be sent to the next node to be communicated.

Rule 2. If one original data is used in a super-step, i.e., it has the longest length of
LCSs, it will not be sent to other node in the rest super-steps.

Rule 3. The intermediate results will not be sent to the next node communicated.
Rule 4. When the original data from node i is sent to other node j, it will compare

with the original data in node j to find LCSs.
Rule 5. Original data from node i will compare with intermediate results in node j.
Rule 6. If there are no original data in each node to be sent or the number of super-

step reaches log2N, the computational work of Hama can be stopped.

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 137

3.2 Distributed Hash Tables Based Deduplication Method and Algorithm

Before presenting the example of OPSM mining, we give the details about how to
partition data, reduce the amount of data transfer, and communicate among nodes.

BNHB uses the default hash partitioning function to partition data.
An example of summarizing LCSs and generating the count of each LCS by DHT is

given in Fig. 5(a). The data is the 4th split in Fig. 4(b). When it finds one LCS(aiai-

1…a1a0), it utilizes hash function hash(LCS, No.), where No. denotes the distinct
number of LCSs, to compute the hash address in Array[hash] which saves the address of
LCSs that has m elements in a List or Array1[hash] which saves the address of LCSs
that has less than m elements in a List, where m is the number of column in original
data. DHT tests whether each LCS already exists in the List. If yes, it increases the count
of this LCS by one with ArrayNo[hash]. For example, it reads the 1st row “g3: 0 1 2 3”
from the split in Fig. 5(a), and computes its hash address, which is 3 ((0*103 + 1*102 +
2*101 + 3) mod 4 = 3), then it saves “0 1 2 3” as the 1st element in List of LCSs that has
4 elements, and records address of “0 1 2 3” in the List into Array[3], i.e., it changes
Array[3] = -1 to Array[3] =0. And it increases the count of “0 1 2 3” by one in
ArrayNo[3], i.e., ArrayNo[3]=1. The procedure of other rows is the same as the 1st row.
Similarly, mining of LCSs that have less than 4 elements is the same as that of LCSs that
have 4 elements, illustrated in the bottom of Fig. 5(a).

An example to reduce the amount of data transfer is presented in Fig. 5(b). In the
framework of naïve Hama BSP, each node sends all the intermediate results to other
nodes, which is not applicable to gene expression datasets, this is because the amount
of intermediate results in this application is large. In Fig. 5(b), ArrayNo[hash] records
the counts of all of the largest length of LCSs (m), which is the implementation of
Rule 1. The usages of other five rules are presented in Fig. 4(b). If the number saved
in ArrayNo[hash] is 1, it records the row number in a row set rowSend. When it
finishes the local computation, it sends the original data saved in rowSend to one
node. For example, in Fig. 5(b), the row numbers recorded in the row set on both

Hash address

ArrayNo[hash]

g3 0 1 2 3 g2 0 1 2 3

g2
g9
g10
g11

0 1 2 3
2 3 0 1
2 3 0 1
2 3 0 1

g3
g13
g14
g15

0 1 2 3
3 0 1 2
3 0 1 2
3 0 1 2

g2,g3
g9-g11
g2,g3
g2,g3

g9-g11
g9-g11

0 1 2 3
2 3 0 1
0 1 2
1 2 3
2 3 0
3 0 1

g2,g3
g13-g15
g2,g3,

g13-g15
g2,g3

g13-g15

0 1 2 3
3 0 1 2
0 1 2

1 2 3
3 0 1

0 3 0 1 3 0 0 1

0 1 2 3
2 3 0 1

LCSsgeneNames
g2

g9-g11
0 1 2 3
3 0 1 2

LCSsgeneNames
g3

g13-g15

0
rowSend Rule. ArrayNo[i] = 1

0 1 2 3

2301 0123

0 1 2 3

3012 0123 LCSs

0
rowSend

Splits

Results

(a) Example of DHT on BNHB

(b) Example of Sending Data on BNHB

Fig. 5. Example of DHT and Sending Data on BNHB

138 T. Jiang et al.

Algorithm 2. Butterfly Network based Parallel Partitioning (BNPP)
1. geneName := Ф; LCSs := Ф; Array[] := -1; ArrayNo[] := 0;
2. opsmName := Ф; OPSMs := Ф; Array1[] := -1; LCS.getData();
3. compare between received data and original data; /*Local computation*/
4. if Array[hash(LCS)] == -1 do /*Rule 4*/
5.geneName.add(LCS.name); LCSs.add(LCS); Array[hash] := LCSs.size()-1; ArrayNo[hash]++;
6. else geneName.get(hash).add(LCS.name); ArrayNo[hash]++;
7. compare between received data and intermediate results;
8. if Array1[hash(LCS)] == -1 do /*Rule 5*/
9. opsmName.add(LCS.name); OPSMs.add(LCS); Array1[hash] := LCSs.size()-1;
10. else opsmName.get(hash).add(LCS.name);
11. if ArrayNo[i] == 1 do rowSend.add(Array[i]); /*Rule 1, 2, 3*/
12. if rowSend.getData()!=null then flag = true; else flag=false; /*Rule 6*/
13. step=1; while step≤log2N&&flag == true /*Process communication*/
14. grpSz := 2step, hfGrpSz := 2step-1; //size of whole & half group
15. for i=0; i<N; i=i+grpSz //divided into groups
16. grpLt := i, grpMid := i+hfGrpSz, grpRt := i+grpSz-1;
17. for j = grpLt; j < grpMid; j++ //left half group
18. node j sends data in rowSend to node j+hfGrpSz; and vice versa;
19. for k = grpRt; k ≥ grpMid; k-- //right half group
20. node k sends data in rowSend to node k-hfGrpSz; and vice versa;
21. step++;
22. node.sync(); /*Barrier synchronization*/

nodes are the row 0, due to this is the 1st super-step, i.e., the step length is 1 (super-
step number, step length and node groups will be given later), both nodes send its
local original data of row 0 to each other. The data to be sent is one 4th of the local
data, which is sharply smaller than the intermediate mining results.

From the example, we know procedure of BNPP is as follows. The number of
nodes of Butterfly Network is N, which is 2n, where n is the maximum number of
super-steps. For simplicity, the names of nodes are denoted by integers which are
from 0 to 2n-1. In the ith super-step (i≥1), each node firstly does local computation,
then N nodes are divided into (log2N)/2i-1 groups, where 1≤i≤n, i.e., each group has 2i
members which have continuous integers, further the members in each group are
divided into 2 partitions, the members in first half partition communicate or transfer
data with the nodes in the last half partition with 2i-1 steps, and vice versa, finally the
nodes go into barrier synchronization (line 13-22). Once there are no data to transfer
or the number of super-steps is equal to log2N, the computational work of the nodes
on Hama will be stopped. The method described above is illustrated in Algorithm 2.

3.3 Theorem

Theorem 1. Final results after pairwise communication or data transfer are complete.

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 139

Proof: From table 1, we know that one row of gene expression values of gene gi can
be represented by D(gi, T), and D(gi, T) = (xi0, xi1, …, xim). Further, we give
permutation of indexes of columns with ascending orders of gene expression values
of gene gi, which is denoted by gi and gi = (ei0, ei1, …, eim), where eij is an integer, the
range of which is from 0 to m-1. We assume v is a subset of gi, and v = (eio, …, eip, …,
eiq), where 0≤o≤p≤q≤m-1. The number of subsets of length k (1<k≤m) is k

mC , thus, gi

=
' '0

k
mC

i i
v

= . We assume one dataset with n genes is divided into 2τ splits, where τ =

log2N and N is the number of nodes. The split in node i is “gi0, gi1, …, gij”.
Due to the number of super-steps is no more than log2N, we firstly give the proof

of log2N super-steps, then give the proof of less than log2N super-steps.
(I) log2N super-steps: The maximum number of steps is τ + 3, which includes τ

super-steps, 1 step for original data saving, preprocessing and summary, respectively.
The results of step i in node j is denoted by Rij, and final results is represented by Rτ+2.

The completeness of LCSs of length m can be guaranteed by Rule 1 and Rule 2. To
prove the completeness of LCSs of length k (1<k<m), which can be guaranteed by
Rule 1 to Rule 6, we should consider N2 situations. Now we give the N situations of
node 0, the other situations of node i are similar with node 0.

(1) If vnk in gij is same with vn’k’ in gi’j’, and gij, gi’j’ are in the same node (node 0),
then we get vnk∈R00, vn’k’∈R00⇒vnk, vn’k’∈R10⇒vnk, vn’k’∈Rτ+2.

(2) If vnk in gij is same with vn’k’ in gi’j’ and gij, gi’j’ are in node 0, 1, then we get that
vnk∈R00, vn’k’∈R01⇒vnk∈R10, vn’k’∈R00 or R10⇒vnk, vn’k’∈R20⇒vnk, vn’k’∈Rτ+2.

(3) If vnk in gij is same with vn’k’ in gi’j’, and gij, gi’j’ are in node 0, 2, then we get that
vnk∈R00, vn’k’∈R02⇒vnk∈R10, vn’k’∈R02⇒vnk∈R20, vn’k’∈R20⇒vnk∈R20, vn’k’ ∈R00 or
R10 or R20⇒vnk, vn’k’∈R30⇒vnk, vn’k’∈Rτ+2.

(4) If vnk in gij is same with vn’k’ in gi’j’, and gij, gi’j’ are in node 0 and i, then <1> if
i∈[2ξ, 2ξ+1] (1≤ξ≤τ) and i is even, we get vnk∈R00, vn’k’∈R0i⇒vnk∈R10, vn’k’∈R0i or
R1i⇒ …⇒vnk∈Rξ-1 0, vn’k’∈R00 or R10 or … or Rξ-1 0 ⇒vnk, vn’k’∈Rξ0⇒vnk, vn’k’∈Rτ+2;
<2> if i∈[2ξ, 2ξ+1] and i is odd, we get vnk∈R00, vn’k’∈R0i⇒vnk∈R10, vn’k’∈R0i-1 or
R1i-1⇒ …⇒vnk∈Rξ-1 0, vn’k’∈R00 or R10 or … or Rξ-1 0 ⇒vnk, vn’k’∈Rξ0⇒vnk, vn’k’∈Rτ+2.

(5) If vnk in gij is same with vn’k’ in gi’j’ and gij, gi’j’ are in node 0, N-1, then we get
vnk∈R00, vn’k’∈R0N-1⇒vnk∈R10, vn’k’∈R0N-2 or R1N-2⇒vnk∈R20, vn’k’∈R0n-2

2 or R1n-2
2 or

R2n-2
2⇒ …⇒vnk∈Rτ0, vn’k’∈R00 or R10 or … or Rτ0⇒vnk, vn’k’∈Rτ+1 0⇒vnk, vn’k’∈Rτ+2.

(II) less than log2N super-steps: The maximum number of steps is ζ+3(ζ<τ), which
includes ζ super-steps, 1 step for original data saving, preprocessing and summary.
The results after step i in node j is denoted by Rij, final results is represented by Rζ+2.

(1) If ζ=0, it only has the data split phase, and there are no data to be transferred. If
the vnk in gij is same with vn’k’ in gi’j’, and gij, gi’j’ are in the different node (node p, q),
we have that vnk in gij is same with vmk in gij’ in node p, the vn’k’ in gi’j’ is same with
vm’k’ in gi’j’’ in node q, and then we get vnk∈R0p, vn’k’∈R0q⇒vnk, vn’k’∈Rζ+2.

(2) If ζ=1, it has 1 data split phase, super-step and data transfer, the group size and
communication step of which are 2 and 1. If vnk in gij is same with vn’k’ in gi’j’, and gij,
gi’j’ are in different groups (p, q), due to there are no transfers between group p and q,
we have the vnk(vn’k’)in gij(gi’j’) is same with vmk(vm’k’) in gmj’ (gm’j’’) in group p(q), and
then we get vnk∈R0i, vn’k’∈R0j⇒vnk∈R12

p-1, vn’k’∈R12
q-1⇒vnk, vn’k’∈Rζ+2.

140 T. Jiang et al.

(3) If ζ=i, it has 1 data split phase and i super-steps, the group size and communi-
cation step of which are 2i and 2i-1. If the vnk in gij is same with vn’k’ in gi’j’, and gij, gi’j’
are in the different groups (group p, q), due to there are no data to be transferred
between group p and q, we have the vnk(vn’k’) in gij(gi’j’) is same with vmk(vm’k’) in gmj’
(gm’j’’) in group p(q), and then we get vnk ∈ R0i, vn’k’ ∈ R0j⇒vnk ∈ Ri2

i*(p-1), vn’k’ ∈
Ri2

i*(q-1)⇒vnk, vn’k’∈Rζ+2. Thus, we prove the theorem.

Theorem 2. When each node has no data to transfer, i.e., each of the local data has
the longest length of LCSs, the computational work of Hama can be stopped.

Proof: The theorem can be transformed to Theorem 1, we do not give the proof.

Theorem 3. The nodes that have communicated with node i in earlier super-steps do
not need to communicate with node i in the later super-steps.

Proof: (proof based on data locality). When node j has communicated with node i,
node j has owned the data of node i. Even if the data of node i has changed, due to it
only saves mining result which is similar with node i, thus we prove it.

Theorem 4. The maximum number of super-steps of BNHB framework is log2N.

Proof: We assume the maximum number of super-steps is n. Based on the property of
Butterfly Network, step length in ith super-step is 2i-1. Due to the number of nodes is
2 time of the nth step length, node number in Hama platform is 2n, i.e., N = 2n. And
due to n = log22

n, thus, the number of super-steps of BNHB framework is log2N.

4 Experimental Evaluation

All algorithms are implemented using Java and compiled with Eclipse 3.6 on Ubuntu
11.04, and experiments are conducted on n (1≤n≤8) nodes with 1.8GHz CPU, 16G
memory and 120G disk. The nodes are connected by a gigabit Ethernet. Besides, the
versions of Hadoop [7] and Hama [11] are 0.20.2 and 0.4.0, respectively. Note the
programs are run on Hama system, input and output data are saved in HDFS [10].

We evaluate the methods with a real microarray dataset that used in some previous
studies [12]. It is from the study of clustering Lung Cancer genes, which has 1000
genes and 197 experimental conditions, and we insert / delete some rows / columns.

4.1 Comparison of OPSM and BNPP Methods

In this subsection, we evaluate the efficiency of OPSM and BNPP running on a single
machine and BNHB (4 node). First, we test runtime of methods on gene expression
data with 1000 rows and columns varying from 20 to 200, shown in Fig. 6(a). Then
we test the runtime of methods on gene expression data with 200 columns and rows
varying from 1000 to 10000, shown in Fig. 6(b). threshold denotes ratio of columns.

Fig. 6(a) shows the runtime of OPSM and BNPP with respect to number of
columns, running on a single machine and BNHB (4 nodes), respectively. Row
number is 1000, threshold is 0.6, and number of columns varies from 20 to 200. When

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 141

the number of columns is smaller, differentials of runtime of two methods are
relatively smaller. With the increasing of columns, differentials of runtime become
larger (about 10). From the test, we can see that when the column number is larger,
the performance of BNPP on BNHB is relatively obvious. Fig. 6(b) shows runtime of
OPSM and BNPP with respect to number of rows, running on a single machine and
BNHB (4 nodes), respectively. The number of columns is 200, threshold is 0.2, and
number of rows varies from 1000 to 10000. As same as runtime shown in Fig. 6(a),
when the number of rows is smaller, differentials of runtime are relatively smaller.
However, with the increasing of rows, differentials of runtime become larger. OPSM
on a single machine cannot finish in 3 hours, but BNPP running on BNHB can finish
in 1 hour even when row number reaches to 10000. From the test, we can see that
BNHB is much superior.

40 80 120 160 200

0

100

200

300

400

500

R
un

ti
m

e
(s

ec
)

Number of Col. (1000 rows, threshold is 0.6)

 Single Machine
 BNHB

2000 4000 6000 8000 10000

0
5000

10000
15000
20000
25000
30000
35000
40000

R
un

ti
m

e
(s

ec
)

Number of Rows (200 col., theshold is 0.2)

 Single Machine
 BNHB

(a) Runtime w.r.t. number of columns (b) Runtime w.r.t. number of rows

Fig. 6. Comparison of a single machine and BNHB

4.2 Comparison of BSP and BNHB

In this subsection, we will evaluate the scalability of the naïve Hama BSP framework
and BNHB framework running on a cluster with 4 nodes. We test the runtime of
OSPM and BNPP methods with respect to the number of columns, the number of
rows and the number of nodes respectively, which are illustrated in Fig. 7.

As the results shown in Fig. 7(a), when varying the number of columns from 20 to
200 and keeping the number of rows to be 1000, the running time of BNHB is smaller
than that of BSP when the number of columns is relatively larger, and nearly the same
as that of BSP when the number of columns is relatively smaller. This is because that
as the increasing of number of columns, the number of LCSs above the threshold
increases dramatically and there is larger number of rows to be sent on BSP than that
on BNHB. When varying the number of columns from 20 to 200 and keeping the
number of rows to be 5000, although the performance of both frameworks is nearly
the same, BNHB scales better than BSP. When varying the number of columns from
20 to 200 and keeping the number of rows to be 10000, the improved performance on
BNHB is obviously better than that on BSP, due to that there are a lot of original data
to be sent on BSP than that on BNHB.

142 T. Jiang et al.

0 40 80 120 160 200
5

10
15
20
25
30
35
40
45

R
un

tim
e

(s
ec

)

Number of Col. (1000 rows, threshold is 0.6)

 BSP
 BNHB

0 40 80 120 160 200
0

100
200
300
400
500
600
700
800

R
un

tim
e

(s
ec

)

Number of Col. (5000 rows, threshold is 0.6)

 BSP
 BNHB

0 40 80 120 160 200
0

500

1000

1500

2000

2500

3000

R
un

tim
e

(s
ec

)

Number of Col. (10^4 rows, threshold is 0.6)

 BSP
 BNHB

(a) Scalability w.r.t. number of columns

0 2000 4000 6000 800010000

0

500

1000

1500

2000

R
un

tim
e

(s
ec

)

Number of Rows (80 colu., theshold is 0.6)

 BSP
 BNHB

0 2000 4000 6000 800010000

0

5000

10000

15000

20000

25000
R

un
tim

e
(s

ec
)

Number of Rows (140 colu., theshold is 0.2)

 BSP
 BNHB

0 2000 4000 6000 800010000

0
1000
2000
3000
4000
5000
6000

R
un

tim
e

(s
ec

)

Number of Rows (200 colu., theshold is 0.2)

 BSP
 BNHB

(b) Scalability w.r.t. number of rows

2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

R
un

ti
m

e
(s

ec
)

Number of Nodes

 BSP(1000-200-0.2)
 BSP(5000-200-0.2)
 BSP(10000-200-0.2)
 BNHB(1000-200-0.2)
 BNHB(5000-200-0.2)
 BNHB(10000-200-0.2)

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

)

Number of Nodes

 BSP(5000-120-0.6)
 BSP(5000-160-0.6)
 BSP(5000-200-0.6)
 BNHB(5000-120-0.6)
 BNHB(5000-160-0.6)
 BNHB(5000-200-0.6)

(c) Scalability w.r.t. number of nodes

Fig. 7. Scalability of frameworks

Fig. 7(b) shows the execution times on BSP and BNHB over various numbers of
rows, which are ranging from 1000 to 10000. Three figures plotted in Fig. 7(b) indicate
that BNHB constantly performs well for various numbers of rows and columns. As
pointed out earlier, this very feature of BNHB is made feasible in practice due the early
reduction on the size of rowSend, and turns out to be very powerful especially when
there are large number of rows and columns. When varying the number of rows from
1000 to 10000, and keeping the number of columns to be 80 and threshold to be 0.6, the
runtime on BNHB is much smaller than that on BSP. When varying the number of rows
from 1000 to 10000, and keeping the number of columns to be 140 or 200 and threshold
to be 0.2, BNHB scales much better than BSP obviously.

Fig. 7(c) gives the scalability of frameworks of BNHB and BSP. As the number of
nodes on the cluster grows up from 2 to 8, both BSP and BNHB show well
scalability. When keeping the number of rows to be 5000 and threshold to be 0.6,
varying the column number from 120 to 200, BNHB scales much better than BSP on
4 nodes, and both frameworks show nearly the same performance on 2 and 8 nodes.
When keeping the column number to be 200 and threshold to be 0.2, varying the row
number from 1000 to 10000, BNHB scales much better than BSP on 4 nodes, and
both framework show nearly the same performance on 2 and 8 nodes. This is because

 Parallel Partitioning and Mining Gene Expression Data with Butterfly Network 143

that the number of rows to be sent on both frameworks is same or nearly same when
the number of nodes is 2 or 8. The experiments imply that if both frameworks scale
better with the growth of nodes, but when the number of nodes is too small or too
large, the performance of BNHB is not obvious than that of BSP.

5 Related Work

OPSM Mining or Clustering Genes: [1] introduces the KiWi mining framework for
massive datasets, which substantially reducing the search space and problem scale. [2]
devises a method called Affinity Propagation. In which, Real-valued messages are
exchanged between data points until a high-quality set of exemplars and clusters
emerges. To cope with data noise, [3] proposes a more robust version of OPSM
(OPSM-RM). [4] presents a noise-tolerant model called AOPC, [5] employes bucket
to relax OPSM model. However, these methods are developed for a single machine.

Parallel Processing Techniques: In [13], Kang et al. observe many graph mining
operations are essentially a repeated matrix-vector multiplication. Thus, they describe
an important primitive PEGASUS, which is a Peta Graph Mining library implemented
on the Hadoop platform [7]. In [14], Zhou et al. describe how reasoning about data
partitioning is incorporated into SCOPE optimizer. Pregel [15] is a distributed system
for processing large graph datasets. [16] introduces a lightweight extension of Hadoop
(CoHadoop) that allows applications to control where data are stored.

6 Conclusion

To address the problem mining gene expression data lacks the capability to incorporate
the largest data sets and consumes a long time, the paper proposes a Butterfly Network
based parallel partitioning method. Further, we prove our method can guarantee the
mining results are complete in theory. Finally, we implement one state-of-the-art
OPSMs mining methods (OPSM) and our parallel partitioning method (BNPP) on top
of the framework of naïve Hama BSP and our BNHB, and experimental results
demonstrate the scalability and effectiveness of our methods.

Acknowledgments. This work is partly supported by the National Basic Research
Program (973) of China (No. 2012CB316203), the Natural Science Foundation of China
(No. 61033007, 61272121), the National High Technology Research and Development
Program (863) of China (No. 2012AA011004), graduate starting seed fund of
Northwestern Polytechnical University (No. Z2012128, Z2013125, Z2013126).

References

1. Gao, B.J., et al.: Discovering Significant OPSM Subspace Clusters in Massive Gene
Expression Data. In: Proceedings of KDD, pp. 922–928. ACM Press, New York (2006)

144 T. Jiang et al.

2. Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science
315(5814), 972–976 (2007)

3. Chui, C.K., Kao, B., et al.: Mining Order-Preserving Submatrices from Data with Repeated
Measurements. In: Proceedings of ICDM, pp. 133–142. IEEE Press, Cancun (2008)

4. Zhang, M., Wang, W., Liu, J.: Mining Approximate Order Preserving Clusters in the
Presence of Noise. In: Proceedings of ICDE, pp. 160–168. IEEE Press, Cancun (2008)

5. Fang, Q., Ng, W., Feng, J., Li, Y.: Mining Bucket Order-Preserving SubMatrices in Gene
Expression Data. IEEE Trans. on Know. and Data Engin. 24(12), 2218–2231 (2012)

6. Gene Data, http://genomebiology.com/content/supplementary/
gb-2003-4-5-r34-s8.txt

7. Dean, J., et al.: MapReduce: Simplified Data Processing on Large Clusters. In:
Proceedings of OSDI, pp. 137–150. USENIX Press, California (2004)

8. Ding, L., Xin, J., Wang, G., Huang, S.: ComMapReduce: An Improvement of MapReduce
with Lightweight Communication Mechanisms. In: Lee, S.-G., Peng, Z., Zhou, X., Moon,
Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 150–168.
Springer, Heidelberg (2012)

9. Feldmann, R., Unger, W.: The Cube-Connected Cycles Network is a Subgraph of the
Butterfly Network. Parallel Processing Letters 2(1), 13–19 (1992)

10. Bulk Synchronous Parallel,
http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

11. Apache Hama, http://hama.apache.org
12. Cancer Program Data Sets, http://www.broadinstitute.org/

cgi-bin/cancer/datasets.cgi
13. Kang, U., et al.: PEGASUS: A Peta-Scale Graph Mining System-Implementation and

Observations. In: Proceedings of ICDM, pp. 229–238. IEEE Press, Florida (2009)
14. Zhou, J., Larson, P.A., et al.: Incorporating Partitioning and Parallel Plans into the SCOPE

Optimizer. In: Proceedings of ICDE, pp. 1060–1071. IEEE Press, California (2010)
15. Malewicz, G., et al.: Pregel: A System for Large-scale Graph Processing. In: Proceedings

of SIGMOD, pp. 135–146. ACM Press, Indiana (2010)
16. Eltabakh, M.Y., Tian, Y., et al.: CoHadoop: Flexible Data Placement and its Exploitation

in Hadoop. In: Proceedings of VLDB, pp. 575–585. ACM Press, Washington (2011)

Parallel and Distributed Mining of Probabilistic

Frequent Itemsets Using Multiple GPUs

Yusuke Kozawa1, Toshiyuki Amagasa2, and Hiroyuki Kitagawa2

1 Graduate School of Systems and Information Engineering, University of Tsukuba
kyusuke@kde.cs.tsukuba.ac.jp

2 Faculty of Engineering, Information and Systems, University of Tsukuba
{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract. Probabilistic frequent itemset mining, which discovers fre-
quent itemsets from uncertain data, has attracted much attention due to
inherent uncertainty in the real world. Many algorithms have been pro-
posed to tackle this problem, but their performance is not satisfactory
because handling uncertainty incurs high processing cost. To accelerate
such computation, we utilize GPUs (Graphics Processing Units). Our
previous work accelerated an existing algorithm with a single GPU. In
this paper, we extend the work to employ multiple GPUs. Proposed
methods minimize the amount of data that need to be communicated
among GPUs, and achieve load balancing as well. Based on the meth-
ods, we also present algorithms on a GPU cluster. Experiments show
that the single-node methods realize near-linear speedups.

1 Introduction

Uncertain data management is attracting considerable interest due to inherent
uncertainty in real-world applications such as sensor-monitoring systems. In the
area of uncertain data management, frequent itemset mining [1] from uncer-
tain databases is one of the important research issues. Since the uncertainty is
represented by probability, this problem is called probabilistic frequent itemset
mining. Many algorithms have been proposed to tackle probabilistic frequent
itemset mining [4,10,11]. However, existing algorithms suffer from performance
problems because the computation of probability is highly time-consuming. It is
thus necessary to accelerate this computation in order to handle large uncertain
databases.

To this end, GPGPU (General-Purpose computation on Graphics Processing
Unit) is an attractive solution. GPGPU refers to performing computation on
GPUs (Graphics Processing Units), which are originally designed for processing
3D graphics. GPGPU has received much attention from not only the field of high
performance computing but also many other fields such as data mining [3,5,9].
This is because GPUs have more than hundred processing units and can pro-
cess many data elements with high parallelism. It is also known that GPUs are
energy-efficient and have higher performance-to-price ratios than CPUs.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 145–152, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 Y. Kozawa, T. Amagasa, and H. Kitagawa

By leveraging such an emerging processor, our previous work [6] accelerated
an algorithm of probabilistic frequent itemset mining. Meanwhile, GPU clusters,
which are computer clusters where each node has one or multiple GPUs, have
emerged as a powerful computing platform, such as TSUBAME2.01 and Titan.2

Thus, it is increasingly important to harness the power of multiple GPUs and
GPU clusters. The utilization of multiple GPUs gives us further parallelism and
larger memory spaces. However, employing multiple GPUs has the problem that
each GPU has a separate memory space. If one GPU requires data that reside
in another GPU, the data need to be communicated via PCI-Express bus. Since
the PCI-Express latency is much higher than the GPU-memory latency, it is
probable that the communication becomes a bottleneck. It is therefore desirable
to reduce data dependencies among data fragments on different GPUs.

This paper proposes multi-GPU methods that take into account the above
concerns. First, we develop methods on a single node with multiple GPUs, and
then we extend the methods to use a GPU cluster. The proposed methods reduce
data dependencies by distributing candidates of probabilistic frequent itemsets
among GPUs. In addition, the methods consider load balancing, which is also
an important issue to achieve scalability. Experiments show that the single-node
methods realize near-linear speedups.

The rest of this paper is organized as follows. Section 2 explains preliminary
knowledge of proposed methods. Then Section 3 describes our proposed methods
that utilize multiple GPUs. The methods are empirically evaluated in Section 4.
Section 5 reviews related work, and Section 6 concludes this paper.

2 Preliminaries

We describes necessary knowledge to understand proposed methods. Section 2.1
defines probabilistic frequent itemsets. A baseline algorithm [10] is explained in
Section 2.2.

2.1 Probabilistic Frequent Itemsets

Let I be a set of all items. A set of items X ⊆ I is called an itemset, and
a k-itemset means an itemset that contains k items. An uncertain transaction
database is a set of transactions, each of which is a triplet of an ID, an itemset,
and an existential probability. An existential probability stands for the probabil-
ity that a transaction really exists in the database.

Since transactions have existential probabilities, the support of an itemset (the
number of transactions that include the itemset) becomes a random variable.
The probability mass function of the support of an itemset X is called a Support
Probability Mass Function (SPMF) fX . The function fX takes an integer k ∈
{0, 1, ..., |U|}, and fX(k) represents the probability that the support of X equals
k. An itemset X is called a Probabilistic Frequent Itemset (PFI) if

1 http://www.gsic.titech.ac.jp/en/tsubame2
2 http://www.olcf.ornl.gov/titan

http://www.gsic.titech.ac.jp/en/tsubame2
http://www.olcf.ornl.gov/titan

Parallel Probabilistic Frequent Itemset Mining Using Multiple GPUs 147

P (sup(X) ≥ minsup) =

|U|∑
k=minsup

fX(k) ≥ minprob, (1)

where minsup and minprob ∈ (0, 1] are user-specified thresholds.

2.2 pApriori Algorithm

Sun et al. [10] proposed a pApriori algorithm, which adapts the classical Apriori
algorithm [2] to uncertain databases. The pApriori algorithm comprises two main
procedures:

1. Generating a set of candidate k-itemsets Ck from a set of (k− 1)-PFIs Lk−1

2. Extracting a set of k-PFIs Lk from Ck
The pApriori algorithm continues these procedures alternately with incrementing
k by one until no additional PFIs are detected. Note that, in the beginning of
the algorithm, k’s value is one and each candidate 1-itemset is an itemset whose
element is merely one item in an input database U . Eventually the pApriori
algorithm returns all the PFIs extracted from U .

In order to determine whether or not an itemset X is a PFI, the SPMF of
X needs to be computed and assigned to Equation 1. For computing SPMFs,
Sun et al. [10] proposed two algorithms: dynamic-programming and divide-and-
conquer approaches. We adopted the latter algorithm for GPU implementation
because it is more suitable for parallel processing.

Owing to the high time complexity of computing SPMFs, it is desirable to
prune infrequent itemsets without computing SPMFs. Let cnt(X) be the number
of transactions that include an itemset X in an uncertain transaction database
U regardless of existential probabilities. Besides, let esup(X) be the expected
value of sup(X). With the two values, two lemmas are proved [10]. The lemmas
enable us to prune candidates in O (|U|) time, while the computation of SPMFs
requires O

(
cnt(X) log2(cnt(X))

)
time.

3 Multi-GPU Parallelization

In a multi-GPU system, each GPU has a separate memory space. If data de-
pendencies exist among GPUs, GPUs need to communicate with each other via
PCI-Express bus. Thus it is important how to distribute data to be processed
on GPUs, so that data dependencies are minimized.

Multi-GPU systems can be considered as a kind of distributed-memory sys-
tems. Meanwhile, there exists much work on frequent itemset mining for
distributed-memory systems. Zaki [12] classified data-distribution schemes that
existing algorithms employ into three: count distribution, data distribution,
and candidate distribution. In this paper, we propose methods employing the
candidate-distribution scheme, because this scheme enable GPUs to compute
SPMFs independently, unlike the other two schemes.

Section 3.1 describes methods on a single node equipped with multiple GPUs.
Then, Section 3.2 extends the methods to use a GPU cluster.

148 Y. Kozawa, T. Amagasa, and H. Kitagawa

3.1 Single-Node Methods

PrefixDistribution. We here describe an algorithm based on a näıve candidate-
distribution scheme. This algorithm is calledPrefixDistribution (PD), because the
algorithm distributes candidates by exploiting the property that two candidates
with different prefixes are not joinable. PD is divided into three phases: initializa-
tion, distribution, and loop phases.

In the initialization phase, PD extracts 1-PFIs. PD firstly generates candidate
1-itemsets from an input uncertain transaction database, and evenly distributes
the candidates among GPUs. Then GPUs extract 1-PFIs by using the single-
GPU method [6]. These PFIs are transferred to the CPU for generating next
candidates.

In the distribution phase, PD generates candidate 2-itemsets from the 1-PFIs
on the CPU, and distributes the candidates into GPUs according to their pre-
fixes. For example, consider four GPUs and eight 1-PFIs {a}, {b}, {c}, {d}, {e},
{f}, {g}, and {h}. Then, candidate 2-itemsets are assigned into the GPUs in a
zigzag fashion, in order to evenly partition the candidates among GPUs. More
specifically, candidates with prefixes a, b, c, and d are assigned to GPUs 1, 2,
3, and 4, respectively. Next candidates with prefix e are assigned to GPU 4,
candidates with prefix f are assigned to GPU 3, and so on.

Subsequently, each GPU extracts k-PFIs from the assigned candidates by
using the single-GPU method. The CPU gathers the k-PFIs from each GPU.
The collected k-PFIs on the CPU are broadcasted to all the GPUs, because the
k-PFIs are necessary in candidate generation on GPUs. Then k is incremented
and GPUs generate candidate k-itemsets from the (k − 1)-PFIs found on each
GPU. PD continues these operations until no candidates are found.

The proposed method PD reduces data dependencies among GPUs by dis-
tributing candidates according to prefixes. However, the distribution by prefix
may result in load imbalance. This is because the number of PFIs differs depend-
ing on a prefix. As a result, some GPUs may need to compute many SPMFs and
other GPUs may compute a few SPMFs. Thus PD is not desirable from the
viewpoint of load balancing.

Round-Robin Distribution. Round-Robin Distribution (RRD) distributes
candidates in a round-robin fashion. While RRD has an almost identical al-
gorithm to PD, major differences lie in the distribution and loop phases. In the
distribution phase, candidates are distributed among GPUs in round robin, in-
stead of using prefixes. In the loop phase, RRD generates next candidates on
the CPU and distributes these candidates into GPUs in round robin, thereby
balancing loads of GPUs at each iteration.

Count-Based Distribution. The algorithm of Count-Based Distribution
(CBD) is identical to RRD except for its candidate-distribution scheme. CBD
assigns candidates to GPUs by taking into account candidates’ cnt values. The
rationale is that the cnt values determine the computing time of SPMFs [10],
and the computing time of SPMFs dominates the processing time of candidates

Parallel Probabilistic Frequent Itemset Mining Using Multiple GPUs 149

Table 1. Characteristics of datasets

Dataset Type
Number of Avg. size of Number of

Density
items transactions transactions

Accidents real 468 33.8 340,183 7.2%

T25I10D500K synthetic 7558 25 499,960 0.33%

Kosarak real 41270 8.1 990,002 0.020%

on GPUs. Therefore we can achieve load balancing if candidates are distributed
by considering cnt values.

3.2 A Method on a GPU Cluster

A method on a GPU cluster is an extension of single-node methods. For the sake
of simplicity, we here assume that all the nodes hold an input database. As in the
single-node methods, candidates are distributed and are processed in parallel.
More precisely, candidates are distributed among nodes, and candidates within
a node are distributed among GPUs. For both of the candidate distribution, the
schemes of single-node methods can be used. Note that PFIs extracted on nodes
need to be broadcasted to other nodes in order to generate next candidates.

4 Experiments

4.1 Experimental Setup

We implemented the proposed methods using CUDA [13], OpenMP, and MPI.
Experiments were conducted on a GPU cluster of eight nodes, each of which is
equipped with two GPUs. The nodes are connected via InfiniBand QDR (Quad
Data Rate). This paper presents only the results on a single node due to the
limitation of space.

Table 1 summarizes the three datasets used in the experiments. The density
of a dataset is computed as the average length of transactions divided by the
number of items. Accidents and Kosarak are real datasets that are accessible on
Frequent Itemset Mining Implementations (FIMI) Repository.3 While Accidents
is the densest dataset, Kosarak is the sparsest dataset. T25I10D500K is a syn-
thetic dataset, generated by a data generator.4 The default values of minsup on
Accidents, T25I10D500K, and Kosarak are 33%, 0.65% and 0.2%, respectively.
Existential probabilities for the datasets are randomly drawn from a normal dis-
tribution with mean 0.5 and variance 0.02. The value of minprob is fixed to 0.5
for all the experiments.

4.2 Results on a Single Node

This section evaluates the three methods on a single node (PD, RRD, and CBD).
Figures 1(a)–1(c) show the speedups of the three methods compared to the

3 http://fimi.cs.helsinki.fi/
4 http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php

http://fimi.cs.helsinki.fi/
http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php

150 Y. Kozawa, T. Amagasa, and H. Kitagawa

31 33 35 37 39
minsup (%)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

du
p

PD RRD CBD

(a) Accidents: speedup

0.65 0.7 0.75 0.8 0.85
minsup (%)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

du
p

PD RRD CBD

(b) T25I10D500K: speedup

0.2 0.3 0.4 0.5 0.6
minsup (%)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

du
p

PD RRD CBD

(c) Kosarak: speedup

31 33 35 37 39
minsup (%)

1.0

1.3

1.6

1.9

2.2

2.5

2.8

L
oa

d
im

ba
la

nc
e

fa
ct

or

PD RRD CBD

(d) Accidents: load imbal-
ance between two GPUs

0.65 0.7 0.75 0.8 0.85
minsup (%)

1.0

1.3

1.6

1.9

2.2

2.5

2.8

3.1
L

oa
d

im
ba

la
nc

e
fa

ct
or

PD RRD CBD

(e) T25I10D500K: load im-
balance between two GPUs

0.2 0.3 0.4 0.5 0.6
minsup (%)

1.0

1.2

1.4

1.6

1.8

2.0

L
oa

d
im

ba
la

nc
e

fa
ct

or

PD RRD CBD

(f) Kosarak: load imbalance
between two GPUs

Fig. 1. Results on a single node with two GPUs

single-GPU method [6], with varying minsup values. From the charts, we can
make the following three observations:

1. The multi-GPU methods become faster than the single-GPU method, as the
minsup value decreases.

2. RRD and CBD are generally faster than PD.
3. CBD outperforms RRD on Kosarak, while CBD and RRD exhibit similar

performance on Accidents and T25I10D500K.

The first observation is due to the fact that small minsup values make the number
of candidates large, and thus GPUs have much more workload to be done in par-
allel. Although the number of candidates is small on Accidents, Figure 1(a) shows
near-linear speedups. This is because the cnt values become very large (nearly
250,000) on Accidents, and hence the computation of SPMFs on Accidents is far
more computationally demanding than the computation on T25I10D500K and
Kosarak. As a result, the overall processing time on GPUs is dominated by the
time of computing SPMFs, which can be performed in parallel.

The second observation results from the load imbalance in PD. To verify this
observation, we use a load imbalance factor defined as the ratio of the longest
processing time of GPUs to the shortest processing time of GPUs. The factor
takes the value of 1 if the load is completely balanced, and the factor increases as
the load is more imbalanced. Figures 1(d)–1(f) show the load imbalance factors
between two GPUs as a function of minsup value. These charts reveal that RRD
and CBD achieve better load balancing than PD on all the datasets.

Parallel Probabilistic Frequent Itemset Mining Using Multiple GPUs 151

The third observation emerges from a characteristic of datasets and the better
capability of CBD for load balancing. The characteristic is related to the disper-
sion of cnt values. For instance, candidates in Kosarak have a wide range of cnt
values (2,000–600,000). Since CBD distributes candidates by taking into account
cnt values, CBD accommodates to such variability, unlike RRD, which statically
assigns candidates to GPUs. As a result, CBD achieves better load balancing
than RRD, and realizes higher speedup ratios, as shown in Figures 1(c) and
1(f). On the other hand, CBD and RRD on Accidents and T25I10D500K ex-
hibit similar performance as shown in Figures 1(a) and 1(b). This is because the
cnt values (i.e., processing times) of candidates in Accidents and T25I10D500K
do not vary much. Thus it is sufficient to distribute candidates in round robin
in order to achieve load balancing.

5 Related Work

Frequent itemset mining. The problem of frequent itemset mining was firstly
introduced by Agrawal et al. [1]. Since the introduction, many algorithms have
been proposed to accelerate the mining. Parallelization of these algorithms has
been also widely studied. In the late 1990s, distribute-memory systems were
mainly used as the underlying architecture. Zaki summarized such algorithms
[12]. More recently, Özkural et al. [8] introduced a data distribution scheme based
on graph theory that divides the frequent itemset mining task in a top-down
manner. Frequent itemset mining on GPUs has been also studied [5,3,9]. Fang
et al. [5] proposed two approaches, GPU-based and CPU-GPU hybrid methods.
Amossen et al. [3] presented a novel data layout BatMap to represent bitstrings.
Then they make use of BatMap to accelerate frequent itemset mining. Silvestri
et al. [9] proposed a GPU version of a state-of-the-art algorithm DCI [7].

Probabilistic frequent itemset mining. While the above-mentioned parallel algo-
rithms work well for the conventional certain transaction databases, they cannot
effectively process frequent itemset mining from uncertain databases, which gains
increasing importance in order to handle data uncertainty. To mine frequent
itemsets with taking into account the uncertainty, a number of algorithms have
been proposed. Bernecker et al. [4] proposed an algorithm to find probabilistic
frequent itemsets under the attribute-uncertainty model, where existential prob-
abilities are associated with items. On the other hand, Sun et al. [10] considered
the tuple-uncertainty model, where existential probabilities are associated with
transactions.

Several attempts to accelerate these algorithms also exist. Wang et al. [11]
developed an algorithm to approximate the probability that determines whether
itemsets are PFIs or not. Our previous work [6] presented an algorithm using a
single GPU based on the work by Sun et al. [10]. We have extended this method
to use multiple GPUs in this paper.

152 Y. Kozawa, T. Amagasa, and H. Kitagawa

6 Conclusions

This paper has proposed methods of probabilistic frequent itemset mining using
multiple GPUs. The methods run in parallel by distributing candidates among
GPUs. The proposed method PD assigns candidates to GPUs according to their
prefixes. Then we have described RRD and CBD, which take into consideration
load balancing. RRD distributes candidates to GPUs in a round-robin fashion,
while CBD uses the cnt values of candidates to achieve better load balancing.
We have also presented methods on a GPU cluster by extending RRD and CBD.
Experiments on a single node showed that CBD achieves the best load balancing
and results in the fastest algorithm. Future work involves developing a CPU-GPU
hybrid method that utilizes CPUs and GPUs simultaneously. In addition, more
sophisticated multi-node methods should be considered.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Number 24240015 and HA-PACS Project for advanced interdisciplinary com-
putational sciences by exa-scale computing technology.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: SIGMOD, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: SIG-
MOD, pp. 207–216 (1993)

3. Amossen, R.R., Pagh, R.: A New Data Layout for Set Intersection on GPUs. In:
IPDPS, pp. 698–708 (2011)

4. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic Fre-
quent Itemset Mining in Uncertain Databases. In: KDD, pp. 119–128 (2009)

5. Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent Itemset Mining on Graphics
Processors. In: DaMoN, pp. 34–42 (2009)

6. Kozawa, Y., Amagasa, T., Kitagawa, H.: GPU Acceleration of Probabilistic Fre-
quent Itemset Mining from Uncertain Databases. In: CIKM, pp. 892–901 (2012)

7. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and Resource-Aware
Mining of Frequent Sets. In: ICDM, pp. 338–345 (2002)

8. Ozkural, E., Ucar, B., Aykanat, C.: Parallel Frequent Item Set Mining with Selec-
tive Item Replication. IEEE TPDS 22(10), 1632–1640 (2011)

9. Silvestri, C., Orlando, S.: gpuDCI: Exploiting GPUs in Frequent Itemset Mining.
In: PDP, pp. 416–425 (2012)

10. Sun, L., Cheng, R., Cheung, D.W., Cheng, J.: Mining Uncertain Data with Prob-
abilistic Guarantees. In: KDD, pp. 273–282 (2010)

11. Wang, L., Cheung, D.W., Cheng, R., Lee, S.D., Yang, X.S.: Efficient Mining of
Frequent Item Sets on Large Uncertain Databases. IEEE TKDE 24(12), 2170–
2183 (2012)

12. Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concur-
rency 7(4), 14–25 (1999)

13. NVIDIA, CUDA C Programming Guide (October 2012)

Taming Elephants,

or How to Embed Parallelism into PostgreSQL�

Constantin S. Pan and Mikhail L. Zymbler

South Ural State University, Chelyabinsk, Russia

Abstract. The paper describes the design and the implementation of
PargreSQL parallel database management system (DBMS) for cluster
systems. PargreSQL is based on PostgreSQL open-source DBMS and ex-
ploits partitioned parallelism. Presented experimental results show that
this scheme is worthy of further development.

1 Introduction

Currently open-source PostgreSQL DBMS is one of reliable alternatives for com-
mercial DBMSes [9]. There are many practical database applications based upon
PostgreSQL and research projects devoted to extension and improvement of
PostgreSQL.

One of the research goals is to adapt PostgreSQL for parallel query processing.
In this paper we describe the architecture and design of PargreSQL [8] parallel
DBMS for analytical data processing on cluster systems. PargreSQL represents
PostgreSQL with embedded partitioned parallelism.

The paper is organized as follows. Section 2 gives a description of the Par-
greSQL architecture in comparison with PostgreSQL’s one. Section 3 introduces
the implementationt principles of PargreSQL DBMS. The results of experiments
on the current implementation are shown in section 4. Section 5 briefly discusses
related work. Section 6 contains concluding remarks and directions for future
work.

2 PargreSQL Design

PargreSQL utilizes the idea of partitioned parallelism [2] in cluster systems (see
fig. 1). This form of parallelism supposes partitioning of relations and their
distribution among the disks of the cluster.

The way the partitioning is done is defined by a fragmentation function, which
for each tuple of the relation calculates the number of the processor node where
this tuple should be placed. A query is executed in parallel on all processor nodes
as a set of parallel agents. Each agent processes its own fragment and generates
a partial query result. The partial results are merged into the result relation.

� The reported study was partially supported by the Russian Foundation for Basic
Research, research projects No. 12-07-31217 and No. 12-07-00443.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 153–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

154 C.S. Pan and M.L. Zymbler

00

09
10

19

90

99

P0

R0

P1

R1

P9

R9

D
is

tr
ib

ut
io

n

Fragmentation function

R.id

M
er

gi
ng

Result relation

Ri = {t|t R, (t) = i}
i = 0, ..., 9

(t) = (t.id div 10) mod 10

Fig. 1. Query processing with partitioned parallelism

2.1 Client-Server Model

PostgreSQL is based on the client-server model. A session involves three pro-
cesses into interaction: a frontend, a backend and a daemon (see fig. 2a; here k
is a number of clients).

Frontend

Daemon
k

1connects

Backend

k

1

<<create>>

queryexec 1

1-user

-executor

(a) PostgreSQL processes

par_Frontend

Daemon
k

nconnects

par_Backend

k

1

<<create>>

Backendqueryexec n

1-user

-executor

(b) PargreSQL processes

Fig. 2. DBMS processes

The daemon handles incoming connections from frontends and creates a back-
end for each one. Each backend executes queries received from the related fron-
tend. The architecture of PargreSQL, in contrast with PostgreSQL, assumes that
a client connects to two or more servers (see fig. 2b; here n is a number of cluster
nodes).

The interaction sequence is shown in fig. 3. As opposed to PostgreSQL there
are many daemons running in PargreSQL. The frontend connects to each of
them, sends the same query to many backends, and receives the result relation.

2.2 Deployment Scheme

The application library libpq implements the interaction protocol between the
client and the server and consists of two parts: the frontend (libpq-fe) and the

Taming Elephants, or How to Embed Parallelism into PostgreSQL 155

f : Frontend

d : Daemon b : Backend
2: create()

1: connect() 4: sendresult()3: sendquery()

(a) PostgreSQL

f : par_Frontend

dn : Daemon

d1 : Daemon b1 : par_Backend

bn : par_Backend

2.1: create()

2.n: create()

1.n: connect()

1.1: connect()

3.n: sendquery()

5.1: sendresult()

5.n: sendresult()

3.1: sendquery()

4: exchange()

(b) PargreSQL

Fig. 3. Interaction of clients and servers

backend (libpq-be). The former is deployed on the client side and serves as an
API for the end-user application. The latter is deployed on the server side and
serves as an API for libpq-fe, as shown in fig. 4a.

Client

libpq-fe

libpq-fe

app

Server

Backend

libpq-be

(a) PostgreSQL deployment

Client

libpq-fe

libpq-fe

par_libpq-fe

libpq-fe

app

Server

par_Backend

libpq-be

(b) PargreSQL deployment

Fig. 4. DBMS deployment

PargreSQL deployment scheme is depicted in fig. 4b. The only difference of
deployment schemes (see fig. 4b) is that in case of PargreSQL there is one more
component on the client side — the libpq-fe wrapper.

2.3 PargreSQL Subsystems

There are following steps of query processing in PostgreSQL: parse, rewrite,
plan/optimize, and execute.

156 C.S. Pan and M.L. Zymbler

Parallel query processing in PargreSQL adds two more steps: parallelize
and balance. During the query execution each agent processes its own part of
the relation independently so, to obtain the correct result, transfers of tuples
are required. On parallelization step creation of a parallel plan is performed
by inserting special exchange operators into the corresponding places of the
plan. Balance step provides load-balancing of the server nodes during the query
execution process.

Comparison of PostgreSQL and PargreSQL architectures is depicted in fig. 5.
PostgreSQL (see fig. 5a) is treated as one of the PargreSQL’s subsystems (see
fig. 5b). PargreSQL development involves changes in Storage, Executor and Plan-
ner subsystems of PostgreSQL.

Backend

libpq

libpq-be libpq-fe

Parser Rewriter

Storage

Executor

Planner

(a) PostgreSQL subsystems

par_Storage

par_Exchange

par_Parallelizer

par_libpq

par_libpq-fe

par_Compat

<<use>>

<<use>>

<<use>>

par_Balancer

par_Backend

libpq-felibpq-be

<<use>>

<<use>>

Parser Rewriter

Storage

Executor

Planner

(b) PargreSQL subsystems

Fig. 5. DBMS subsystems

Parser checks the syntax of the query string and builds a parse tree. Rewriter
processes the tree according to the rules specified by the user (e.g. view defini-
tions). Planner creates an optimal execution plan for this query tree. Executor
takes the execution plan and processes it recursively from the root. Storage pro-
vides functions to store and retrieve tuples and metadata.

The changes in the PostgeSQL’s source code are needed to integrate it with
the new subsystems. par Storage is responsible for storing partitioning metadata
of relations. par Exchange encapsulates the implementation of the exchange op-
erator. Exchange operator is meant to compute the exchange function ψ for each
tuple of the relation, send “alien” tuples to the other nodes, and receive “native”
tuples in response. In section 3.2 we will describe exchange operator in detail.

Taming Elephants, or How to Embed Parallelism into PostgreSQL 157

There are new subsystems which do not require any modifications to the
PostgreSQL’s source code: par libpq-fe and par Compat. par libpq-fe is a wrap-
per around libpq-fe, it is needed to propagate queries from an application to
many servers. par Compat makes this propagation transparent to the applica-
tion. Section 3.1 further describes implementation details of par libpq subsystem.

3 PargreSQL Implementation

In this section we describe the implementation principles of some of the Par-
greSQL subsystems depicted in fig. 5b.

3.1 par libpq

Since the frontend in PargreSQL has to initiate a connection to every of the
database daemons, some modifications were introduced into the libpq application
library. The modified version is called par libpq. The purpose of this library is to
serve as a replacement for the original libpq and to allow the applications to use
PargreSQL without much effort.

par libpq consists of par libpq-fe library and a set of macros (par Compat).
par libpq-fe is a library to be linked with frontend applications instead of orig-
inal PostgreSQL’s libpq-fe, around which it is a wrapper. Its implementation is
illustrated with a class diagram in fig. 6. The idea is to use the original libpq-fe
for connecting to many servers simultaneously.

par_libpq-fe

par_PGconn

par_PQconnectdb()
par_PQstatus()
par_PQexec()
par_PQfinish()

libpq-fe

PGconn

PQconnectdb()
PQstatus()
PQexec()
PQfinish()

* 1

PGresult

Fig. 6. PargreSQL libpq-fe wrapper

par Compat is a set of C preprocessor definitions for transparent usage of
par libpq-fe. An example of these macros is given in fig. 7.

These macros change the original API calls into the new API calls, so by
including them an application programmer can switch from PostgreSQL to Par-
greSQL without global changes in the application code.

158 C.S. Pan and M.L. Zymbler

#define PGconn par_PGconn
#define PQconnectdb(X) par_PQconnectdb()
#define PQfinish(X) par_PQfinish(X)
#define PQstatus(X) par_PQstatus(X)
#define PQexec(X,Y) par_PQexec(X,Y)

Fig. 7. PargreSQL compatibility macros

3.2 Exchange Operator

In order to compute the correct results the DBMS instances running in parallel
have to send tuples to each other, because a tuple stored on one node could
be processed on another node, e.g. in case of an aggregation with group-by on
attribute A while the fragmentation attribute is B. To resolve such situations
we should implement an operator that would move tuples from one point in the
query plan to the same point on another node’s plan.

Exchange operator [3,10] serves as an exchange point for transfering tuples
between parallel agents. It is inserted into the query plans by par Parallelizer
subsystem (which will be discussed further). The operator’s structure is pre-
sented in fig. 8.

merge

split

scattergather

ex
ch

an
ge

Fig. 8. Exchange operator structure

Fig. 9 shows the algorithms for next() method of Exchange suboperators.
Split (see fig. 9a) decides whether a given tuple is “native” and should be kept

on the current node, or it is “alien” and should be sent to appropriate node.
“Native” tuples are returned immediately whereas “alien” tuples and NULLs
(meaning that scanning of tuples is over) are put into Scatter ’s buffer for sending
to appropriate nodes.

Gather (see fig. 9b) provides receiving of tuples from other processor nodes.
Having received a tuple Gather starts a receive operation again. NULL value
received means that the corresponding node has finished its work. As soon as a
NULL is received from every node Gather finishes its work.

Scatter (see fig. 9c) sends tuples coming from Split to other processor nodes.
Non-NULL tuple should be sent to a node with a number calculated by means

Taming Elephants, or How to Embed Parallelism into PostgreSQL 159

[right.isSending = TRUE]
WAIT

left.next

tuple

[native]

right.buffer := tuple

right.next

[alien]

[NULL]

[tuple]

else

(a) Split.next() method

[all NULLs gathered] NULL

[tuple]

else

Test

tuple

Irecv

NULLcnt++ Irecv

WAITelse

[NULL]

(b) Gather.next() method

Test[isSending]

NULL[ok]

waitelse

[NULL]

Isend(NULL)

to everyone

isSending := FALSE

NULL

Isend(tuple,)

isSending := TRUE

else

wait

(c) Scatter.next() method

even := not even

left.next right.next
[odd] [even]

tuple

right.next left.next

[NULL] [NULL]

[tuple]

[tuple]

[tuple]

[tuple]

NULL

[NULL] [NULL]

[WAIT][WAIT]

(d) Merge.next() method

Fig. 9. Algorithms for Exchange suboperators

of fragmentation function. In case of NULL value Scatter sends NULLs to all
the other nodes.

Merge (see fig. 9d) merges tuples from Gather and Split in an even-odd
manner.

The asynchronous MPI methods Isend, Irecv are used by Exchange to trans-
mit tuples and the Test method to check whether the appropriate transmission
finished.

3.3 Parallelizer

par Parallelizer subsystem prepares the query plan for parallel execution. The
cases in which the par Parallelizer inserts Exchange operators into the plan are
shown in fig. 10.

The Join operation executed independently on multiple nodes will miss some
tuples, unless we move the tuples matching the join qualifier to the same node.
That is performed by the Exchange operators, which are inserted under the Join
in cases (a), (b), and (c).

160 C.S. Pan and M.L. Zymbler

hash hash

hash
join

root

 = 0

sort sort

merge
join

material

nested
loop

(a) (b) (c)

(d)

sort

(e)

agg

(f) (g)

group
agg

 = 0 = f(a)

by 'a'

Fig. 10. Parallelizer cases

The root Exchange operator (d) will mix the order of the tuples, so there
is no point in a plan where an Exchange is above a Sort. In this case (e) the
Parallelizer inserts the Exchange operation a level deeper — below the Sort.

Another case where the tuples should get redistributed is an aggregation,
which is performed by the Agg operation in PostgreSQL. There are two types
of aggregation — simple and grouped. In case of simple aggregation (f) the
Parallelizer inserts an Exchange that would accumulate all the tuples on one
node (since they are all needed for some global aggregating function). However,
the grouped aggregation (g) only needs to have all the tuples of the same group
located together.

3.4 Data Manipulation Operations

The algorithms for the exchange subnodes shown above will only work for SE-
LECT statements. In order to support data manipulation queries the execution
process needs to become a bit trickier.

When PostgreSQL executes an UPDATE or DELETE query, the resulting
tuples coming from the root of the plan have a special hidden attribute — the
CTID. It is the address of this tuple inside the storage of PostgreSQL, with this
CTID PostgreSQL tells which tuples are to be deleted or updated. The other
attributes contain the updated values or, in case of a DELETE, there are no
other attributes.

No changes are needed in order for DELETE to work in PargreSQL. But
INSERT and UPDATE should have additional logic — since a tuple only needs
to be inserted on one node and can move from one node to another during an
UPDATE.

There are two places in the PargreSQL code that were changed in order to
implement that behaviour for UPDATE queries — the Split operator, and the
executor.

Taming Elephants, or How to Embed Parallelism into PostgreSQL 161

When Split meets an alien tuple, it creates a copy of the tuple and passes
one instance to the Merge (with the “delete me” bit set inside the CTID) and
the other — to the Scatter (with the “insert me” bit set inside the CTID). The
schematic for tuple flow in Exchange is shown in fig. 11.

merge

split

scattergather
[native]

[alien]
+DELETE_BIT

[alien]
+INSERT_BIT

Fig. 11. Tuple flow during an exchange

The executor in its turn checks for these bits and reacts accordingly. So, if the
“delete me” bit is set, it performs the delete routines, and if the “insert me” bit
is set — the insert routines. If neither bit is set the tuple is considered native
to the node, so the executor behaves as in PostgreSQL and updates the tuple in
the local storage.

For plain INSERT queries the parallelizer appends an additional condition
to the plan, that is equivalent to a WHERE fragattr % nodes == this node

clause. With this condition a tuple only gets inserted if it is native to the node.
Complex INSERT queries like INSERT INTO dest SELECT columns FROM src

do not need this additional condition.

3.5 Data Definition Operations

In order to provide data partitioning in PargreSQL we establish an additional
storage parameter for PostgreSQL tables, named fragattr (fragmentation at-
tribute). An application programmer is to specify an int-valued attribute of a
table as fragattr on the table’s creation. It is equivalent to defining the table’s
partitioning with ψ(t) = t.fragattr mod n fragmentation function, where n is
a number of nodes and mod denotes the modulo operation. The parameter is
specified in the WITH clause of the CREATE TABLE query (see fig. 12).

3.6 Load Balancing (Future Work)

We are planning to implement a load balancing scheme proposed in [6]. The
scheme is based on partial data replication. The last portion of tuples from each
fragment are copied to several other nodes in case the native node would get
delayed processing its fragment. When a node manages with its own fragment,
and some other node has not, the idle node can start processing the correspond-
ing copy, thus freeing the other node from some work. The “last” portion here

162 C.S. Pan and M.L. Zymbler

create table Person (
 id int,
 name varchar(30),
 gender char(1),
 birth date
) with (fragattr = id);

Fig. 12. Table creation in PargreSQL

means the tuples that get read last from the storage due to their physical order
or an index.

In PargreSQL the scheme could be represented by a number of tables in a
dedicated namespace of the database. The idle node would communicate to the
busy one and ask where to start processing of the partial copy from. After that
the two nodes would know where to start and to stop and would have rouhgly
the same amount of tuples to process.

4 Experimental Evaluation

To evaluate our approach we performed a series of experiments on SKIF-Aurora
SUSU supercomputer1 based on Intel R© Xeon 5680 processors and liquid cooling.
We executed a query carrying out a natural join of two synthetical tables com-
prising of 60 mln. and 1.5 mln. records respectively and distributed uniformly
among the computer nodes. To form values of tables’ fragmentation attributes,
a probabilistic model proposed in [6] was used.

1 2 4 8 16 32
Nodes

0

5

10

15

20

25

30

S
p
e
e
d
u
p

μ=0.2

μ=0.5

μ=0.8

linear

Fig. 13. PargreSQL speedup

Fig. 13 depicts the experimental results. Here μ is the portion of “alien” tuples
at every fragment of the relations, e.g. μ = 0.75 means that during the query

1 http://www.hpcwire.com/hpcwire/2011-12-08/skif aurora susu supercomputer

is most energy-efficient hpc system in russia.html

http://www.hpcwire.com/hpcwire/2011-12-08/skif_aurora_susu_supercomputer_is_most_energy-efficient_hpc_system_in_russia.html
http://www.hpcwire.com/hpcwire/2011-12-08/skif_aurora_susu_supercomputer_is_most_energy-efficient_hpc_system_in_russia.html

Taming Elephants, or How to Embed Parallelism into PostgreSQL 163

execution every agent was obliged to send 75% of the tuples stored at the agent’s
node to other nodes. As we can see PargreSQL demonstrates a quite acceptable
speedup.

5 Related Work

The research on adaptation of PostgreSQL for parallel and distributed query
processing includes the following.

In [5] authors introduce their work on extending PostgreSQL to support dis-
tributed query processing. Several limitations in PostgreSQL’s query engine and
corresponding query execution techniques to improve performance of distributed
query processing are presented.

ParGRES [7] is an open-source database cluster middleware for high perfor-
mance OLAP query processing. ParGRES exploits intra-query parallelism on
PC clusters and uses adaptive virtual partitioning of the database.

GParGRES [4] exploits database replication and inter- and intra-query par-
allelism to support OLAP queries in a grid. The approach has two levels of
query splitting: grid-level splitting, implemented by GParGRES, and node-level
splitting, implemented by ParGRES.

In [1] building a hybrid between MapReduce and parallel database is explored.
The authors created a prototype named HadoopDB on the basis of Hadoop
(communication layer) and PostgreSQL (database layer), that is as efficient as
parallel DBMS, but as scalable as MapReduce systems.

Our contribution is embedding partitioned parallelism into PostgreSQL on
the basis of the methods for parallel query processing, proposed in [2,3,6,10]. We
believe that our approach could be applied to other serial relational open-source
DBMSes (e.g. MySQL) to implement their parallel versions.

6 Conclusion

In this paper we have described the design and implementation of PargreSQL
parallel DBMS for cluster systems. PargreSQL is based upon PostgreSQL open-
source DBMS and exploits partitioned parallelism. This approach is applicable
to other open-source relational DBMSes. The results of preliminary experiments
show that this scheme is worthy of further development.

As future work we plan to implement load-balancing based upon partial data
replication, parallel execution of subqueries and stored procedures, and conduct
advanced experiments to analyze PargreSQL performance on complex queries.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.:
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB 2(1), 922–933 (2009)

164 C.S. Pan and M.L. Zymbler

2. DeWitt, D.J., Gray, J.: Parallel Database Systems: The Future of High Performance
Database Systems. Commun. ACM 35(6), 85–98 (1992)

3. Graefe, G.: Encapsulation of parallelism in the volcano query processing system.
In: Garcia-Molina, H., Jagadish, H.V. (eds.) SIGMOD Conference, pp. 102–111.
ACM Press (1990)

4. Kotowski, N., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.: Parallel query
processing for OLAP in grids. Concurrency and Computation: Practice and Expe-
rience 20(17), 2039–2048 (2008)

5. Lee, R., Zhou, M.: Extending PostgreSQL to Support Distributed/Heterogeneous
Query Processing. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajee-
warawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1086–1097. Springer, Hei-
delberg (2007)

6. Lepikhov, A.V., Sokolinsky, L.B.: Query processing in a DBMS for cluster systems.
Programming and Computer Software 36(4), 205–215 (2010)

7. Paes, M., Lima, A.A.B., Valduriez, P., Mattoso, M.: High-Performance Query Pro-
cessing of a Real-World OLAP Database with ParGRES. In: Palma, J.M.L.M.,
Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS,
vol. 5336, pp. 188–200. Springer, Heidelberg (2008)

8. Pan, C.: Development of a parallel dbms on the basis of postgresql. In: Turdakov,
D., Simanovsky, A. (eds.) SYRCoDIS. CEUR Workshop Proceedings, vol. 735, pp.
57–61. CEUR-WS.org (2011)

9. Paulson, L.D.: Open source databases move into the marketplace. IEEE Computer,
13–15 (2004)

10. Sokolinsky, L.B.: Organization of Parallel Query Processing in Multiprocessor
Database Machines with Hierarchical Architecture. Programming and Computer
Software 27(6), 297–308 (2001)

Effectively Delivering XML Information

in Periodic Broadcast Environments

Yongrui Qin1, Quan Z. Sheng1, Muntazir Mehdi2, Hua Wang3, and Dong Xie4

1 School of Computer Science,
The University of Adelaide, Adelaide, SA 5005, Australia

{yongrui,qsheng}@cs.adelaide.edu.au
2 Department of Computer Science,

TU Kaiserslautern, Gottlieb-Daimler-Strasse, Kaiserslautern 67663, Germany
muntazir.75@gmail.com

3 Department of Mathematics & Computing,
University of Southern Queensland, QLD 4350, Australia

hua.wang@usq.edu.au
4 Department of Computer Science and Technology,

Hunan University of Humanities, Science and Technology, Loudi 417000, China
dong.xie@hotmail.com

Abstract. Existing data placement algorithms for wireless data broad-
cast generally make assumptions that the clients’ queries are already
known and the distribution of access frequencies of their queries can be
obtained a priori. Unfortunately, these assumptions are not realistic in
most real life applications because new mobile clients may join in any-
time and clients may be reluctant to disclose their queries (due to privacy
concerns). In this paper, we study the data placement problem of peri-
odic XML data broadcast in mobile wireless environments. This is an
important issue, particularly when XML becomes prevalent in today’s
ubiquitous Web and mobile computing devices. Taking advantage of the
structured characteristics of XML data, we are able to generate effective
broadcast programs based purely on XML data on the server without
any knowledge of the clients’ access patterns. This not only makes our
work distinguished from previous studies, but also enables it to have
broader applicability. We discuss structural sharing in XML data which
forms the basis of our novel data placement algorithm. The proposed
placement algorithm is validated through a set of experiments and the
results show that our algorithm can effectively place XML data on air
and significantly improve the overall access efficiency.

1 Introduction

Wireless technology has become deeply embedded in everyday life. At the end of
2011, there were 6 billion mobile subscriptions, estimated by the International
Telecommunication Union (2011). That is equivalent to 87 percent of the world
population, and is a huge increase from 5.4 billion in 2010 and 4.7 billion mobile
subscriptions in 2009.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 165–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

166 Y. Qin et al.

Broadcast is one of the basic ways of information access via wireless technolo-
gies. In a wireless data broadcast system, the server broadcasts public informa-
tion to all mobile devices within its transmission range via a downlink broadcast
channel. Mobile clients “listen” to the downlink channel and access information
of their interest directly when related information arrives. Broadcast is band-
width efficient because all mobile clients can share the same downlink channel
and retrieve data from it simultaneously. Broadcast is also energy efficient at the
client ends because downloading data costs much less energy than sending data
[27].

Wireless data broadcast services have been available as commercial products
for many years, e.g. StarBand and Hughes Network. Recently, there has been a
push for such systems from the industry and various standard bodies. For ex-
ample, born out of the ITU “IMT-2000” initiative, the Third Generation Part-
nership Project 2 is developing Broadcast and Multicast Service in CDMA2000
Wireless IP network. Systems for Digital Audio Broadcast (DAB) and Digital
Video Broadcast (DVB) are capable of delivering wireless data services. Recent
news also reported that XM Satellite Radio (www.xmradio.com) and Raytheon
have jointly built a communication system, known as the Mobile Enhanced Sit-
uational Awareness Network (MESA), that would use XM satellites to relay
information to soldiers and emergency responders during a homeland security
crisis.

On the other hand, information expressed in semi-structured formats is wide-
spread over the past years. XML has rapidly gained popularity as a de facto stan-
dard to represent semi-structured information. Most Internet browsers provide
support for XML in their newer versions and nearly all the major IT compa-
nies (e.g., Microsoft, Oracle, and IBM) have integrated XML into the software
products. Delivering information in XML format is also popular in Web services
and in different kinds of Publish/Subscribe systems. Consequently, XML has at-
tracted attentions from database community recently and there has been a large
body of research work focusing on XML, such as XML filtering, querying and
indexing [17,26].

Combining both trends of the proliferation of mobile computing technologies
and XML data, broadcasting information in XML format in a wireless environ-
ment would be a preferable way of information delivering and sharing. Conse-
quently, the research of XML data broadcast is of great importance and in fact it
has been attracting more and more research interests [20,7,24,19,18]. To further
demonstrate practicability of XML data broadcast, we will present a potential
application of it by detailing a real life scenario in Section 2.

There are two typical data broadcast modes: (i) Periodic Broadcast Mode
and (ii) On-Demand Broadcast Mode [27]. In the periodic broadcast mode, data
are periodically broadcasted on a downlink channel via which the server sends
data to clients. Clients only “listen” to that channel and download data they
are interested in. In the on-demand broadcast mode, clients send their queries
to the server via an uplink channel and then the server considers all submit-
ted requests and decides the contents of next broadcast cycle. In this work, we

Effectively Delivering XML Information 167

focus on the periodic broadcast mode since it has many benefits such as saving
uplink bandwidth and power at the client ends by avoiding uplink transmissions
and effectively delivering information to an unlimited number of clients
simultaneously.

Data placement algorithms determine what data items to be broadcasted by
the server and the order of data items on wireless channels, aiming to reduce
average waiting time for mobile clients. To a large extent, the data placement
problem of XML data is similar to that in multi-item contexts [25,4] where mobile
clients may request multiple items each time. However, there are drawbacks of
existing data placement approaches in traditional data broadcast.

Firstly, previous work on multi-item placement problems generally makes as-
sumptions that the clients’ queries are already known and the distribution of
access frequencies of these queries can be obtained in advance [1,2,25,4]. For
example, it is proposed to allow the clients to provide a profile of their interests
to the servers [1,2], but this can lead to privacy concerns. These assumptions
significantly limit the practicability of the proposed placement algorithms in real
situations because: (i) new mobile clients may join in the network at anytime;
and (ii) mobile users may be reluctant to disclose their queries to the server via
uplink channel due to expensive communication cost and privacy concerns.

Secondly, in traditional data broadcast systems, appropriate placement can
hardly be generated based only on information of data items themselves on
the server. Hence, the above assumptions are inevitable for the design of data
placement algorithms. Alternatively, some work applies data mining techniques
to discover association rules from the history access patterns of a set of data [3].
This avoids to obtain access patterns of mobile clients on-the-fly. However, the
availability of such history access patterns of mobile clients is a necessity.

By contrast, in XML data broadcast, data items (or XML documents) usu-
ally share parts of their structure. Taking structural sharing between XML doc-
uments into consideration, we are able to analyze and estimate clients’ access
patterns via the analysis of this structural sharing. Then we can effectively place
XML data on wireless channels based purely on XML data on the server, which
is important for practical usage. In summary, the main contributions of this
paper can be described as follows:

– By taking advantage of the structural characteristics of XML data, we are
able to generate appropriate data placement results based only on XML data
on the server.

– A novel data placement algorithm which organizes XML data on air is pre-
sented.

– Extensive experiments are conducted to show the effectiveness of our pro-
posed data placement algorithm.

The remainder of this paper is organized as follows. Section 2 describes back-
ground knowledge of this work, including an application scenario, the system
model and XML similarity background. Section 3 discusses the structural sharing
property of XML data and proposes a novel data placement algorithm. Section 4

168 Y. Qin et al.

presents our experimental study for evaluating the performance of the proposed
data placement algorithm. Finally, Section 5 discusses related work and Section
6 gives some concluding remarks.

2 Application Scenario, System Model and XML
Similarity

In this section, we first describe an application scenario. Then we show the sys-
tem model of this work and introduce background knowledge of XML similarity.

2.1 Application Scenario

We use the following scenario to show potential applications of XML data broad-
cast in real life.

Consider a live basketball game. Information about the game and the players
on the court is usually the interest of a large number of audience. In this con-
text, data broadcast is a preferable way of delivering latest information to the
audience. Meanwhile, some audience could be outside of the stadium, such as
basketball fans who are watching live text information about the game via the
Internet at their homes. Therefore, the game information could also be delivered
via the Internet to online audience and other Web service providers who have
subscribed this basketball game. Using XML format to represent game informa-
tion can satisfy all these needs and realize simplicity, generality, and usability of
game information at the same time.

2.2 Periodic XML Data Broadcast System Model

Fig. 1 shows the model of our wireless XML data broadcast system. The sys-
tem includes an XML Data Center (the broadcast server), a broadcast program
scheduler, broadcast listeners (mobile clients) and a downlink channel (the server
sends information to mobile clients via it). The downlink channel can be shared
by all mobile clients. But mobile clients can not send their individual queries to
the server in this model as no uplink channel is available.

From the figure, we can see that the XML Data Center could be connected
to the Internet and deliver information to online users, Web service providers
and Publish/Subscribe systems, etc. With the use of XML format data, these
different applications can be integrated seamlessly with our wireless XML data
broadcast system for the purpose of sharing and delivering same information to
different kinds of users.

2.3 XML Similarity

Our goal is to place XML documents on the broadcast channel based only on the
information at the server side. We propose to explore relatedness between differ-
ent XML documents and place documents according to the relatedness results.

Effectively Delivering XML Information 169

Fig. 1. A wireless XML data broadcast system

For XML documents, structural similarity is well studied and can be applied in
our broadcast system as a way to calculate relatedness between documents.

Some existing work on measuring structural similarity between XML docu-
ments can be found in [23,11]. The main idea of their work is based on the con-
cept of path sets. Here, a path set of an XML document contains all full paths
(paths that are from root element to leaves) and their subpaths. A simple ex-
ample is presented in Fig. 2. The path set of this example is: {/player/name,
/player/position, /player/nationality, /player/college, /player,

/name, /position, /nationality,/college}. We denote a path set of an XML
document d as PS(d).

Fig. 2. An XML structure tree

Different types of measure can be adopted, such as Jaccard measure [16,10],
Dice’s coefficient [9] and Lian’s measure [15], to measure the similarity between
two XML documents di and dj . The exact forms of these measures based on PS
are as follows (Jaccard measure denoted as J(di, dj), Dice’s coefficient denoted
as D(di, dj) and Lian’s measure denoted as L(di, dj)):

J(di, dj) =
|PS(di)

⋂
PS(dj)|

|PS(di)
⋃
PS(dj)| (1)

170 Y. Qin et al.

D(di, dj) =
2 · |PS(di)

⋂
PS(dj)|

|PS(di)| + |PS(dj)| (2)

L(di, dj) =
|PS(di)

⋂
PS(dj)|

max{|PS(di)|, |PS(dj)|} (3)

From the above definitions, we can see that both Jaccard measure and Dice’s
coefficient give more weights on the total structural information of two comparing
documents while Lian’s measure emphasizes more on the difference of these
documents. All three measures vary in interval [0, 1]. If PS(di) = PS(dj), we
have J(di, dj) = D(di, dj) = L(di, dj) = 1. Clearly, the larger the values of these
measures are, the more structural sharing the two XML documents have.

3 Data Placement Algorithm

In this section, we introduce our data placement algorithm for periodic XML
data broadcast. We first discuss the structural sharing property of XML data
which we use to estimate the potential access patterns of mobile clients, i.e., the
probability of accessing a small set of similar XML documents simultaneously.
Then we put forward a novel data placement algorithm based on it.

3.1 Structural Sharing in XML Data

In the literature, two critical metrics, namely access time and tuning time, are
used to measure the system’s performance [12]. Data placement mainly affects
access time because tuning time depends on the total content downloaded by
mobile clients but not on the order of data. Hence, we use access time as our
metric in this analysis. In periodic broadcast, queries are used to describe the
interests of mobile clients and help mobile clients to skip irrelevant data on air,
but they are not actually submitted to the broadcast server.

Intuitively, for any two given XML documents, we can utilize one of the three
similarity measures described in Section 2.3 to calculate the similarity between
them and the similarity results can be used to approximate the probability that
a specific query is matched with both documents at the same time. For example,
if two XML elements are under structurally similar paths, then it is more likely
that either both elements or none satisfy a given query [23]. In fact, query is-
suers hardly have thorough knowledge about the broadcasted content and XPath
queries usually contain * and // which would match similar structure. Therefore,
if two XML documents are with larger structural similarity, i.e. d1 and d2, then
they would have a higher probability to be required simultaneously. However,
there are still three other cases to be considered, such as requiring d1 but not
d2, requiring d2 but not d1 and requiring neither of d1 and d2. Therefore, the

Effectively Delivering XML Information 171

Table 1. Matching Cases for Document d1 and d2 in a document set D

Case Probability Effect on ATexp

Matched both d1, d2 Pr(d1
⋂

d2) Positive

Matched none of d1, d2 1− Pr(d1
⋃

d2) Positive

Matched d1, but not d2 Pr(d1 − d2) Negative

Matched d2, but not d1 Pr(d2 − d1) Negative

above similarity measures consider only successful match probabilities of both
XML documents but do not consider unsuccessful match probabilities of them.

Nonetheless, unsuccessful match cases have effects on the expected access time
as well (but the query may still be satisfied by other documents). In order to
have better access efficiency, the distance between any two documents required
by the same query should be as less uniform as possible on air. Based on this,
we can infer that in the above example, cases of required d1 but not d2 and
required d2 but not d1 are likely to generate more uniform distances while other
two cases (required both documents or neither) are likely to have less uniform
distances. Observing this, we define a new similarity measure called Cohesion
to give a more accurate estimation of access patterns of mobile clients in the
following.

Note that, for any query q requiring at least one of the documents in D, q

must match some paths in PS(D) and it has a probability of |PS(d)|
|PS(D)| to match

d. If a query q fails to match any document in D, the issuer of q will not be
waiting the result to be broadcasted. Hence, we only consider satisfied queries
(this means at least one document is matched) in this work.

Now suppose we have a set of n XML documents D = {d1, d2, . . . , dn} on
the server, we can approximate access probability of any document d for queries
which successfully match at least one document in set D as follows:

Pr(d) =
|PS(d)|
|PS(D)| (4)

and for any i, j (1 ≤ i, j ≤ n)

Pr(di − dj) =
|PS(di) − PS(dj)|

|PS(D)| (5)

Here, PS(D) =
⋃n

i=1 PS(di).
There would be many different matching cases for a given set D. Take two

XML documents d1 and d2 in D as an example. As mentioned previously, there
would be four cases of matching of them and the probability of each case is
shown in Table 1. In this table, we also include positive and negative effects on
the expected access time (ATexp) for each case.

172 Y. Qin et al.

Based on Table 1, we define Cohesion C(di, dj) of XML documents di and dj
as follows:

C(di, dj) =
Pr(di

⋂
dj) · (1 − Pr(di

⋃
dj))

max{Pr(di − dj), P r(dj − di)} (6)

Here di and dj are both in set D. It is easy to see that C(di, dj) = C(dj , di).
According to Equation (4), Equation (5) and Equation (6), we can calculate
C(di, dj) after finding path sets of di, dj and D. Cohesion values can vary in
a wide range which exceeds interval [0, 1]. Strictly speaking, Cohesion values

only vary in interval [0, |PS(D)|
4] given that C(di, dj) = |PS(D)|

4 when PS(di) =
PS(dj). The lower bound 0 is trivial. In order to obtain the upper bound, we
only consider cases that have PS(di) �= PS(dj), from which we can infer that
max{|PS(di−dj)|, |PS(dj −di)|} ≥ 1. Without loss of generality, let |PS(di)| ≥
|PS(dj)|, according to Equation (4) and Equation (5), we can rewrite Equation
(6) as follows:

C(di, dj) ≤
|PS(di

⋂
dj)|

|PS(D)| · (1 − |PS(di

⋃
dj)|

|PS(D)|)

1
|PS(D)|

<
−(|PS(di)| − |PS(D)|

2)2 + |PS(D)|2
4

|PS(D)|
≤ |PS(D)|

4

Then the above result gives the upper bound of Cohesion C(di, dj). Now we can
normalize Cohesion values to interval [0, 1] in the following:

C′(di, dj) =

{
4·C(di,dj)
|PS(D)| PS(di) �= PS(dj)

1 PS(di) = PS(dj)
(7)

We can also infer that C′(di, dj) = 1 if and only if PS(di) = PS(dj). Similar
to other three similarity measures, the larger the value of Cohesion is, the more
structural sharing the two comparing XML documents have.

3.2 The Data Placement Algorithm

Based on the discussion of structural sharing in XML data, we can generate a
broadcast program for periodic data broadcast in a greedy way. From previous
discussions, we can see that the more the structural sharing of two XML doc-
uments is, the larger probability of matching both XML documents simultane-
ously. As a result, our Greedy Data Placement Algorithm (GDPA) places XML
documents with most structural sharing together first as an initial broadcast
program. Then it progressively appends other XML documents to the broadcast
program in a descendant order of structural sharing. Detailed steps of GDPA
are shown in Algorithm 1 and Algorithm 2.

Effectively Delivering XML Information 173

Algorithm 1. Initialize structural sharing matrix S[n][n]

Input: A set of XML documents D : {d1, d2, ..., dn}
Output: Structural sharing matrix S[n][n]
1. create matrix S[n][n]
2. for each document d in D do
3. compute PS(d)
4. end for
5. for each pair of documents < di, dj > in D (i < j) do
6. S[i][j] ⇐ structural sharing between di and dj
7. S[j][i] ⇐ S[i][j]
8. end for

Algorithm 2. GDPA

Input: Structural sharing matrix S[n][n]
Output: A broadcast program σ for D
1. σ ⇐ empty sequence
2. select a pair of documents < di, dj > with maximum value S[i][j] in matrix S[n][n]

3. if Length of di <= Length of dj then
4. add < di, dj > into σ
5. else
6. add < dj , di > into σ
7. end if
8. D′ ⇐ D − di − dj
9. while D′ is not empty do
10. dhead ⇐ the first document in σ
11. select a pair of documents < dimax , dhead > with maximum value S[imax][head]

(dimax ∈ D′)
12. drear ⇐ the last document in σ
13. select a pair of documents < djmax , drear > with maximum value S[jmax][rear]

(djmax ∈ D′)
14. if S[imax][head] >= S[jmax][rear] then
15. append dimax into σ from head
16. D′ ⇐ D′ − dimax

17. else
18. append dimax into σ from rear
19. D′ ⇐ D′ − djmax

20. end if
21. end while

Algorithm 1 initializes a structural sharing matrix S[n][n] for n XML docu-
ments on the broadcast server. Note that, all four similarity measures defined in
subsection 2.3 and 3.1 can be used in Algorithm 1 to compute structural shar-
ing between two documents (Line 6). All of them are symmetric which means
for any one of these measures, we must have S[j][i] = S[i][j]. Also we have
J(di, dj) = D(di, dj) = L(di, dj) = C′(di, dj) = 1 if i = j. Therefore, we only
need to calculate matrix S for entries S[i][j] where i < j.

174 Y. Qin et al.

Based on matrix S, Algorithm 2 finds the pair of XML documents with maxi-
mum structural sharing and adds them into the initial empty broadcast program
σ (Line 2). The sequence of the first pair of XML documents are placed accord-
ing to the ascendant order of document lengths (Line 3 to 7). Then Algorithm
2 appends the XML document with maximum structural sharing to the head
document dhead or the rear document drear of σ. If the maximum structural
sharing is derived between document d and document dhead, d will be appended
into σ from head; otherwise, d will be appended into σ from rear. This process
will be repeated until all XML documents are placed into σ (Line 9 to 21).

Regarding the computing complexity of Algorithm 2, the main task of the
scheduling is performed from Line 9 to 21. The whole ‘while’ block has at most
n loops. Within this block, Line 11 takes O(n) time. It is similar at Line 13,
which also takes O(n) time. Hence the time complexity of the whole ‘while’
block is O(n2 + n2). Meanwhile, the complexity of Line 2 is O(n2). As a result,
the complexity of Algorithm 2 is O(3n2).

4 Experiments

Since this is the first work that determines broadcast schedules based only on
XML data on the server without any knowledge of the clients’ access patterns,
we compare our algorithm with a common random data placement algorithm
(RDPA) and show its efficiency in terms of access time, which is a common
measure of performance in data broadcasts. We have not compared tuning time
as the comparing data placement algorithms would not affect it.

4.1 Experimental Setup

The experiments are run on three data sets each with 250 XML documents
defined by News Industry Text Format (NITF) DTD [13], which is published for
news copy production, press releases, and Web-based news organizations. The
average depth of the three document sets is between 6 and 8 while the maximum
depth is 20.

There are three data sets in the experiments, which are DS1, DS2 and DS3.
Data in DS1 can be well clustered into 6 clusters. Moreover, for any two doc-
uments di, dj in two different clusters of DS1, the minimum similarity values,
the maximum similarity values and the average similarity values of all four mea-
sures (normalized Cohesion is adopted here) are shown in Table 2. We can see
that all clusters are quite different from each other and share very little struc-
tural information. Data in DS2 are miscellaneous. Documents in DS2 cannot
be classified into fine clusters. Data in DS3 are a mix of well-clustered data and
miscellaneous data, which include 125 XML documents from DS1 and 125 XML
documents from DS2.

In the experiments, XPath queries are generated using the generator devel-
oped by [8]. Queries are allowed to repeat. The generator provides several pa-
rameters to generate different types of XPath queries, such as query depth,

Effectively Delivering XML Information 175

Table 2. Similarity between clusters in DS1

Measure
Similarity

Minimum Maximum Average

Jaccard 0.0097 0.1102 0.0435

Dice 0.0049 0.0583 0.0225

Lian 0.0057 0.1039 0.0345

Cohesion 0.0229 0.4620 0.1457

Table 3. Workload Parameters for the Experiments

Parameter Range Default Description

PROB 5% to 30% 10% probability(* and //)

QIR 0.1 to 5 1 query incoming rate

MQD 5 to 8 7 maximum query depth

probability of * and // and the maximum depth of generated XPath queries.
The probability of * and // appearing in each query’s step is between 5% and
30% (denoted PROB, and the default value is 10%). Note that, Query Incom-
ing Rate (denoted QIR) means the number of newly issued queries from mobile
clients in a unit of time (these queries are only locally issued for data retrieval
purpose and are not sent to the broadcast server). We measure this unit of time
by the time that mobile wireless system takes to broadcast a block of 1024-byte
XML data. The maximum depth of generated XPath queries (denoted MQD)
is between 5 and 8. Table 3 shows details of the parameters in the experiments.

The random data placement algorithm (RDPA) is compared with GDPA (us-
ing all four similarity measures defined in Equations (1), (2), (3) and (7)). In
RDPA, the server broadcasts XML documents in a random order.

We implement both RDPA and GDPA on Java Platform Standard Edition 6
running on Windows 7 Enterprise, 64-bit Operating System. All our experiments
are obtained by running 30 consecutive broadcast cycles. When we vary PROB,
we set QIR and MQD to their default values. When we vary QIR, we set
PROB and MQD to their default values. Similarly, when we vary MQD, we
set PROB and QIR to their default values.

Regarding air indexing and index distribution strategy, in our experiments, we
adopt Compact Index (CI) [24] as our index structure and (1,m) index scheme
[12] as our index distribution strategy. This is because CI is the state-of-the-art
indexing technique for XML data broadcast and (1,m) index scheme is the most
popular index distribution strategy for traditional periodic data broadcast. More
details can be found in [24] and [12].

4.2 Performance of GDPA

Our experimental results are shown in Fig. 3, Fig. 4 and Fig. 5. Average ac-
cess time (AAT) is our performance metric. Also we only consider AAT for

176 Y. Qin et al.

5 10 15 20 25 30
800

900

1000

1100

1200

1300

1400

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
800

900

1000

1100

1200

1300

1400

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 10 15 20 25 30
800

900

1000

1100

1200

1300

1400

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 3. Evaluating AAT Performance on DS1: well-clustered data set

5 10 15 20 25 30
3000

3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 5.5 6 6.5 7 7.5 8
3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

3220

MQD

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 4. Evaluating AAT Performance on DS2: miscellaneous data set

5 10 15 20 25 30
2300

2350

2400

2450

2500

2550

PROB(%)

A
A

T

RDPA
J/D
Lian
Cohesion

(a) Varying PROB

0 1 2 3 4 5
2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

QIR

A
A

T

RDPA
J/D
Lian
Cohesion

(b) Varying QIR

5 5.5 6 6.5 7 7.5 8
2320

2340

2360

2380

2400

2420

2440

2460

2480

2500

2520

MQD

A
A

T

RDPA
J/D
Lian
Cohesion

(c) Varying MQD

Fig. 5. Evaluating AAT Performance on DS3: a mixed set of well-clustered data and
miscellaneous data

all successful matched queries and abandon unsuccessful matched queries. The
main reason for this is that, AAT of unsuccessful queries is determined by index
distribution but not by data placement results (more details about this can be
found in [12]). Note that, GDPA can be implemented with four different similar-
ity measures defined in Section 3, which are Jaccard measure, Dice’s coefficient,
Lian’s measure and our proposed Cohesion. Through our experiments, Jaccard
measure and Dice’s coefficient always yield the same results. Therefore, we de-
note GDPA implemented with them as J/D method in all figures. Meanwhile,
we denote GDPA implemented with Lian’s measure as Lian method and denote
GDPA implemented with Cohesion as Cohesion method.

Fig. 3 shows the results on DS1. From the figure we can see that all GDPA
methods outperform RDPA significantly. Specifically, J/D method achieves the

Effectively Delivering XML Information 177

best results while Lian method and Cohesion method provides similar results.
This indicates that J/D method better fits well-clustered data. In Fig. 3(a),
GDPA methods become slightly worse when PROB increases. Since DS1 is well-
clustered, most queries only require documents in the same clusters. Thus PROB
has less effect on AAT . In Fig. 3(b), when QIR increases, J/D method becomes
slightly better. This indicates that J/D method can achieve better scalability
than other methods when accessing well-clustered data. Fig. 3(c) shows that all
GDPA methods remain stable as MQD increases. It is interesting to note that
for RDPA, AAT always remains stable.

Fig. 4 shows the results on DS2. From the figure we can see that all GDPA
methods achieve better performance when compared with RDPA. Specifically,
Cohesion method achieves the best results while J/D method achieves the worst
results among GDPA methods. This indicates that Cohesion method better fits
miscellaneous data. In Fig. 4(a), both GDPA methods and RDPA become worse
when PROB increases. It is clear that PROB has more effect on AAT for miscel-
laneous data. In Fig. 4(b), when QIR increases from 0.1 to 0.5, GDPA methods
J/D and Lian together with RDPA become worse while Cohesion method still
becomes better. After that, when QIR increases, all methods become slightly
better. This shows that Cohesion method can achieve best scalability when ac-
cessing miscellaneous data.

Fig. 5 shows the results on DS3. Similarly, all GDPA methods achieve better
performance when compared with RDPA. Specifically, Lian method achieves the
best results while J/D method provides the worst results among GDPA methods.
This shows that Lian method better fits hybrid data. However, Cohesion method
achieves very similar performance of Lian method. In Fig. 5(a), both GDPA
methods and RDPA become worse when PROB increases. PROB has more
effect on AAT for hybrid data. In Fig. 5(b), when QIR increases, all GDPA
methods become slightly better and still Lian method provides the best results.

To sum up, GDPA methods always achieve better AAT when compared with
RDPA. When accessing well-clustered data, J/D method achieves the best per-
formance. When accessing miscellaneous data, Cohesion method provides the
best performance and finally when accessing hybrid data, Lian method shows
the best performance.

5 Related Work

Multi-item data placement problem is related to the data placement problem
of XML data which is the focus of our work. It is proved to be a NP-Complete
problem [6].

Existing data placement methods for processing multi-item queries in peri-
odic broadcast[5,14,3] generally makes assumptions that the clients’ queries are
already known and the distribution of access frequencies of these queries can be
obtained in advance. However, these assumptions are not true for most applica-
tions in real life because the demand is either not known or it may be costly to
collect the demand information.

178 Y. Qin et al.

Multi-item data placement problem in on-demand broadcast mode has also at-
tracted lots of interests [25,22]. These approaches are in pure on-demand broad-
cast mode and strictly require that mobile clients submit their queries to the
server for desired data. Otherwise, the server will not broadcast related data
on air. This is because the server filters and schedules data solely based on
submitted queries. However, frequent use of uplink channel leads to high com-
munication cost via uplink channel, which can shorten battery life of mobile
clients dramatically.

The most related work is proposed in [21] where the broadcast schedules are
generated based on clustering results of XML data on the server. However, when
finding the optimal clustering result, the clustering process requires manually
specifying the number of clusters and has to compare different clustering results
based on clients’ query distribution, which differs from our work in this paper.

6 Conclusion

In this paper, we have studied the data placement problem of periodic XML
data broadcast in mobile wireless environments. Taking advantage of the struc-
tured characteristics of XML data, we are able to generate effective broadcast
programs based only on XML data on the server without any knowledge of the
clients’ access patterns. This not only makes our work distinguished from previ-
ous studies, but also enables it to have broader applicability. Our experiments
demonstrated that the proposed algorithm could improve access efficiency and
achieve better scalability.

In the future, we plan to further improve system’s performance by investi-
gating the insights of structural sharing among XML documents. For example,
we may consider details on how to measure structural sharing distribution in
an XML document set, how the distribution affects the expected access time
of queries and how to choose a similarity measure based on structural sharing
distribution in a set of XML documents.

References

1. Acharya, S., Alonso, R., Franklin, M.J., Zdonik, S.B.: Broadcast Disks: Data Man-
agement for Asymmetric Communications Environments. In: SIGMOD, pp. 199–
210 (1995)

2. Acharya, S., Franklin, M.J., Zdonik, S.B.: Balancing Push and Pull for Data Broad-
cast. In: SIGMOD Conference, pp. 183–194 (1997)

3. Chang, Y.I., Hsieh, W.H.: An Efficient Scheduling Method for Query-Set-Based
Broadcasting in Mobile Environments. In: ICDCS Workshops, pp. 478–483 (2004)

4. Chen, J., Lee, V.C.S., Liu, K.: On the Performance of Real-time Multi-item Re-
quest Scheduling in Data Broadcast Environments. Journal of Systems and Soft-
ware 83(8), 1337–1345 (2010)

5. Chung, Y.D., Kim, M.H.: QEM: A Scheduling Method for Wireless Broadcast
Data. In: DASFAA, pp. 135–142 (1999)

Effectively Delivering XML Information 179

6. Chung, Y.D., Kim, M.H.: Effective Data Placement for Wireless Broadcast. Dis-
tributed and Parallel Databases 9(2), 133–150 (2001)

7. Chung, Y.D., Lee, J.Y.: An Indexing Method for Wireless Broadcast XML Data.
Inf. Sci. 177(9), 1931–1953 (2007)

8. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path Sharing and
Predicate Evaluation for High-Performance XML Filtering. ACM Trans. Database
Syst. 28(4), 467–516 (2003)

9. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecol-
ogy 26(3), 297–302 (1945)

10. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting Hierarchical Domain Struc-
ture to Compute Similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)

11. Helmer, S.: Measuring the Structural Similarity of Semistructured Documents Us-
ing Entropy. In: VLDB, pp. 1022–1032 (2007)

12. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and
Access. IEEE Trans. Knowl. Data Eng. 9(3), 353–372 (1997)

13. IPTC: International Press Telecommunications Council, News Industry Text For-
mat (NITF), http://www.nitf.org

14. Lee, G., Yeh, M.S., Lo, S.C., Chen, A.L.P.: A Strategy for Efficient Access of
Multiple Data Items in Mobile Environments. In: MDM, pp. 71–78 (2002)

15. Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An Efficient and Scalable
Algorithm for Clustering XML Documents by Structure. IEEE Trans. Knowl. Data
Eng. 16(1), 82–96 (2004)

16. Lin, D.: An Information-Theoretic Definition of Similarity. In: ICML, pp. 296–304
(1998)

17. Miliaraki, I., Koubarakis, M.: FoXtrot: Distributed structural and value XML fil-
tering. TWEB 6(3), 12 (2012)

18. Park, C.S., Park, J.P., Chung, Y.D.: PrefixSummary: A Directory Structure for
Selective Probing on Wireless Stream of Heterogeneous XML Data. IEICE Trans-
actions 95-D(5), 1427–1435 (2012)

19. Park, J.P., Park, C.S., Chung, Y.D.: Energy and Latency Efficient Access of Wire-
less XML Stream. J. Database Manag. 21(1), 58–79 (2010)

20. Park, S.-H., Choi, J.-H., Lee, S.: An Effective, Efficient XML Data Broadcasting
Method in a Mobile Wireless Network. In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 358–367. Springer, Heidelberg (2006)

21. Qin, Y., Wang, H., Sun, L.: Cluster-Based Scheduling Algorithm for Periodic XML
Data Broadcast in Wireless Environments. In: AINA Workshops, pp. 855–860
(2011)

22. Qin, Y., Wang, H., Xiao, J.: Effective Scheduling Algorithm for On-Demand XML
Data Broadcasts in Wireless Environments. In: ADC, pp. 95–102 (2011)

23. Rafiei, D., Moise, D.L., Sun, D.: Finding Syntactic Similarities Between XML Doc-
uments. In: DEXA Workshops, pp. 512–516 (2006)

24. Sun, W., Yu, P., Qin, Y., Zhang, Z., Zheng, B.: Two-Tier Air Indexing for On-
Demand XML Data Broadcast. In: ICDCS, pp. 199–206 (2009)

25. Sun, W., Zhang, Z., Yu, P., Qin, Y.: Efficient Data Scheduling for Multi-item
Queries in On-Demand Broadcast. In: EUC (1), pp. 499–505 (2008)

26. Vagena, Z., Moro, M.M., Tsotras, V.J.: RoXSum: Leveraging Data Aggregation
and Batch Processing for XML Routing. In: ICDE, pp. 1466–1470 (2007)

27. Xu, J., Lee, D.L., Hu, Q., Lee, W.C.: Handbook of Wireless Networks and Mobile
Computing, pp. 243–265. John Wiley & Sons, Inc. (2002)

http://www.nitf.org

GUN: An Efficient Execution Strategy

for Querying the Web of Data

Gabriela Montoya1, Luis-Daniel Ibáñez1, Hala Skaf-Molli1,
Pascal Molli1, and Maria-Esther Vidal2

1 LINA– Nantes University, France
{gabriela.montoya,luis.ibanez,hala.skaf,

pascal.molli}@univ-nantes.fr
2 Universidad Simón Boĺıvar, Venezuela

mvidal@ldc.usb.ve

Abstract. Local-As-View (LAV) mediators provide a uniform interface
to a federation of heterogeneous data sources to attempt the execution of
queries against the federation. LAV mediators rely on query rewriters to
translate mediator queries into equivalent queries on the federated data
sources. The query rewriting problem in LAV mediators has shown to
be NP-complete, and there may be an exponential number of rewritings,
making unfeasible the execution or even generation of all the rewritings
for some queries. The complexity of this problem can be particularly
impacted when queries and data sources are described using SPARQL
conjunctive queries, for which millions of rewritings could be generated.
We aim at providing an efficient solution to the problem of executing LAV
SPARQL query rewritings while the gathered answer is as complete as
possible. We formulate the Result-Maximal k-Execution problem (Re-
MakE) as the problem of maximizing the query results obtained from
the execution of only k rewritings. Additionally, a novel query execution
strategy called GUN is proposed to solve the ReMakE problem. Our ex-
perimental evaluation demonstrates that GUN outperforms traditional
techniques in terms of answer completeness and execution time.

1 Introduction

Querying the Web of Data raises the issue of semantic heterogeneity between
a large number of data sources. Local-as-view (LAV) mediation [1] is a well-
known and flexible approach to perform data integration over heterogeneous
data sources. A LAV mediator relies on views to define semantic mappings be-
tween a uniform interface defined at the mediator level, and local schemas or
views that describe the integrated data sources. A LAV mediator relies on a
query rewriter to translate a mediator query into the union of queries against
the local views. Additionally, new data sources can be included into LAV medi-
ators without affecting the definition of the existing ones; thus, LAV mediators
are well suitable to integrate sources from the Web of Data [2]. Nevertheless,
the query rewriting problem has shown to be NP-complete, and the number of
rewritings can be exponential even if mediated queries and local views are con-
junctive queries [3,4]. For example, a LAV mediator with 140 conjunctive views

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 180–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

GUN: An Efficient Execution Strategy for Querying the Web of Data 181

can generate 10,000 rewritings for a conjunctive query with 8 goals [5]. This
query rewriting problem complexity can be exacerbated by the usage of medi-
ator queries and local views defined as SPARQL conjunctive queries. SPARQL
queries are commonly comprised of a large number of triple patterns and many of
them are defined on general predicates that can be answered by the majority of
the data sources, i.e., rdf:type or rdfs:seeAlso. Additionally, these triple
patterns can be grouped into chained connected star-shaped sub-queries [6]. Fi-
nally, a large number of variables can be projected out. Thus, the conjunction
of all these properties impacts on the complexity of the query rewriting problem
and conduces to the explosion of the number of query rewritings. For exam-
ple, a query with 12 triple patterns that comprised three chained star-shaped
sub-queries can be rewritten using 300 views in billions of rewritings, if general
predicates are used in the triple patterns. This problem is even more challenging
considering that statistics cannot be always collected from the sources, and there
are not clear criteria to rank or prune the generated rewritings [7].

Therefore, it is not realistic to generate or execute such a huge number of
rewritings, and we aim at providing an efficient solution to the problem by con-
sidering only k LAV SPARQL query rewritings, where k corresponds to the first
k rewritings produced by a LAV rewriter. We devised the Result-Maximal k-
Execution Problem (ReMakE) as an extension of the Query-Rewriting-Problem
(QRP) as follows: given a subset Rk of size k of a solution R of a QRP for a
query Q, the ReMakE problem is to evaluate a set of rewritings R′ containing
Rk and contained in Q such that R′ is result-maximal. Furthermore, we pro-
pose the Graph-Union execution strategy (GUN) as a solution to the ReMakE
problem. Unlike traditional techniques, GUN relies on wrappers that populate
an RDF graph that is locally managed by the execution engine. This approach
takes advantage of the relatively low cost of the RDF-Graph union operation to
construct an aggregation of the data retrieved from the views. This approach
attempts at executing the original mediator query directly on the graph union
and consequently, it may find results hidden to the k first rewritings. For a given
set of rewritings, GUN always gathers at least all the answers collected by a tra-
ditional engine by executing the rewritings independently. If all relevant views
identified by the rewriter are in Rk, GUN guarantees to return the complete an-
swer without further processing of rewritings. Thus, the execution time of GUN
depends on the number of the relevant views that comprise the rewritings in Rk,
which is usually considerably lower than the total number of rewritings.

We compare GUN against traditional strategies in an experiment on synthetic
data generated by the Berlin SPARQL benchmark tool [8] and views proposed
by Castillo-Espinola [9]. We measure execution time and answer completeness
for a benchmark of queries. In the experiments, we can observe that GUN re-
trieves much more results in less time than existing engines. The amount of main
memory required to maintain a GUN graph is in general higher than the one
required to execute traditional approaches; however, improvements in execution
time and results are substantial enough to consider it a good trade-off.

182 G. Montoya et al.

The paper is organized as follows: Section 2 states preliminaries, while Sec-
tion 3 formalizes the ReMakE problem. Section 4 presents the GUN query ex-
ecution strategy as a solution for the ReMakE problem. Section 5 reports our
experimental study. Section 6 summarizes related work; and finally, conclusions
and future work are outlined in Section 7.

2 Preliminaries

We assume that a federation of data sources is integrated using the mediator-
wrapper architecture proposed by Wiederhold [10]. Mediators provide a uniform
interface to autonomous and heterogeneous data sources; they also implement
the tasks of rewriting an input query into queries against the data sources, and
merging data collected from the selected sources. Wrappers are software compo-
nents that solve interoperability between sources and mediators by translating
data collected from the sources into the schema and format understood by the
mediators. Particularly, GUN-based mediators rely on wrappers able to solve
resource identification and perform the corresponding RDF transformations to
conform source data into the mediator RDF schema.

Formally, a conjunctive query Q over a database or mediator schema D has
the form Q(X̄) :- P1(X̄1), . . . , Pn(X̄n) where Q, P1, . . ., Pn are predicates name
of some finite arity, and X̄ , X̄1, . . ., X̄n are tuples of variables. These predicates
constitute the global schema. We define the body of the query as body(Q) =
{P1(X̄1), . . . , Pn(X̄n)}. Any non-empty subset of body(Q) is called a subgoal of
Q, singleton subgoals are called atomic subgoals. Predicates in the body stand
for relations of D, while the head Q represents the answer relation of the query
over D. We consider queries that are safe, i.e., X̄ ⊆ ⋃n

i=1 X̄i, and call Q(D) the
result of executing Q over D.

In the spirit of [5], we define a view v as a safe query over D, we establish
the difference between the extension of v, denoted ext(v), and its evaluation
over D, v(D), and assume the relation ext(v) ⊆ v(D) to state two important
hypothesis: there may be data belonging to the database that is not available to
the extensions, and the extensions never hold data that is not in the database.

A rewriting of a query Q over a database D with a set of views V is a
conjunctive query r(x̄) :- v1(x̄1), . . . , vm(x̄m) where, vi ∈ V . A query rewriting
is contained in Q, if for all database D and set of views V over D, the result of
executing r in V is contained in the result of executing Q on D, i.e., r(V) ⊆ Q(D).

Maximally Contained Query Rewriting Problem (QRP). Given a con-
junctive query Q and a set of views V = { v1, . . . , vn } over a database D, QRP
is to find a set of rewritings R, called the solution of the QRP, such that:

– For all extensions of the views in the bodies of all rewritings in R, the union
of the results of executing each query rewriting in the views V is contained
in the result of executing Q in D, i.e.,

⋃
r∈R r(ext(v1), . . . , ext(vn)) ⊆ Q(D)

– R is maximal, i.e., there is no other set R′, such that:⋃
r∈R

r(ext(v1), . . . , ext(vn)) ⊂
⋃

r′∈R′
r′(ext(v1), . . . , ext(vn)) ⊆ Q(D)

GUN: An Efficient Execution Strategy for Querying the Web of Data 183

For a set R of rewritings, we define the set of relevant views Λ(R) = {v | v ∈
body(r) ∧ r ∈ R} as the set of views in the rewritings in R, and its execution
R(D) =

⋃
r∈R r(D). We also call ext(Λ(R)), the extension of the elements in

Λ(R).
The main drawback of existing query rewriting problem solutions for

LAV [1,5,4,11] is that the size of the set R can be exponential in the num-
ber of query subgoals [3,11]. Therefore, more than executing or generating an
enormous number of rewritings, it is more realist to solve the problem of gath-
ering data considering only k rewritings while obtaining an answer as complete
as possible.

3 Result-Maximal k-Execution Problem (ReMakE)

In this section, we formalize the problem of obtaining the maximal set of results
from a given subset of the rewritings of a query over a set of views.

Result-Maximal k-Execution Problem (ReMakE). Given a subset Rk of
size k of a solution R of a QRP of a query Q and a set of views V over a database
D, ReMakE is to find a set of rewritings R′ over the set of views in the bodies
of the rewritings of Rk, such that:⋃

rk∈Rk

rk(ext(Λ(Rk))) ⊆
⋃

r′∈R′
r′(ext(Λ(Rk))) ⊆ Q(D)

and that is result-maximal, i.e., that there is no another set R′′ such that:⋃
r′∈R′

r′(ext(Λ(Rk))) ⊂
⋃

r′′∈R′′
r′′(ext(Λ(Rk))) ⊆ Q(D)

We define this problem over the extensions of the views, as they are the real
datasets where the query will be evaluated. It is important to note that the
ReMakE problem only uses the query rewritings as an input and they could be
obtained using any query rewriter, therefore, it is independent of the approach
used to solve QRP. We also highlight that ReMakE is independent of the format
of the data inside the extensions of the views, the wrappers would transform any
format to the mediator schema.

To illustrate the problem, consider the generic set of rewritings in Figure 1,
and suppose we can only execute the first five query rewritings. It could exist a
rewriting comprised of some combination of views that were gathered for eval-
uating these five rewritings but that is not in the first five rewritings. ReMakE
aims to consider all the rewritings that could be obtained from the already
materialized views, hence in Figure 1 answers for rewriting rn would be also
obtained.

4 GUN: A Solution to the ReMakE Problem

In this section, we explain how to solve the ReMakE problem by taking advantage
of the relatively low cost of the RDF-Graph union. We use definitions of SPARQL
semantics of [12]:

184 G. Montoya et al.

r1 (x̄) :- v1 (w̄) , v2 (ȳ) , v3 (z̄)

r2 (x̄) :- v1 (w̄) , v4 (ā) , v3 (z̄)

r3 (x̄) :- v1 (w̄) , v5
(
b̄
)
, v6 (c̄)

r4 (x̄) :- v1 (w̄) , v7
(
d̄
)
, v8 (ē)

r5 (x̄) :- v1 (w̄) , v8 (ē) , v7
(
f̄
)

k = 5

...
...

...
...

rn (x̄) :- v1 (w̄) , v4 (ā) , v6 (c̄)

: v1 (w̄) , v

¯) , v4 (ā) ,
(
b̄
)
, v6 ()̄

)̄

rn (x̄) :- v1 (w̄) , v4 (ā) , v6 ()̄

Fig. 1. Illustration of the Result-Maximal k-Execution problem. Some combinations of
views materialized during the execution of a subset of rewritings (Rk) could correspond
to valid rewritings that does not belong to Rk.

Definition 1. The Sets I (IRI Identifiers), B (Blank Nodes), L (Literals) and
Υ (Variables) are four infinite and pairwise disjoint sets. We also define T =
I ∪B ∪L. An RDF-Triple is 3-tuple (s, p, o) ∈ (I ∪B)× I ×T . An RDF-Graph
is a set of RDF-Triples.

Definition 2. A mapping μ from Υ to T is a partial function μ : Υ → T . The
domain of μ, dom(μ), is the subset of Υ where μ is defined.

Definition 3. A triple pattern is a tuple t ∈ (I ∪Υ ∪L)× (I ∪Υ)× (I ∪Υ ∪L).
A Basic Graph Pattern is a finite set of triple patterns. Given a triple pattern
t, var(t) is the set of variables occurring in t, analogously, given a basic graph
pattern B, var(B) = ∪t∈Bvar(t). Given two basic graph patterns B1 and B2,
the expression B1 AND B2 is a graph pattern.

Definition 4. Given a triple pattern t and a mapping μ such that, var(t) ⊆
dom(μ), μ(t) is the triple obtained by replacing the variables in t according to
μ. Given a basic graph pattern B and a mapping μ such that var(B) ⊆ dom(μ),
then μ(B) = ∪t∈Bμ(t).

Definition 5. Two mappings μ1, μ2 are compatible (we denote μ1 � μ2) iff for
all ?X ∈ (dom(μ1)∩dom(μ2)), then μ1(?X) = μ2(?X). This is equivalent to say
that μ1 ∪ μ2 is also a mapping.

Definition 6. Let Ω1, Ω2 two sets of mappings. The join between Ω1 and Ω2 is
defined as: Ω1 �� Ω2 = {μ1 ∪ μ2 |μ1 ∈ Ω1 ∧ μ2 ∈ Ω2 ∧ μ1 � μ2}
Definition 7. Given an RDF-Graph G, the evaluation of a triple pattern t over
G corresponds to: [[t]]G = {μ | dom(μ) = var(t)∧μ(t) ∈ G}. The evaluation of a
basic graph pattern B over G is defined as: [[B]]G =��t∈B [[t]]G. The evaluation
of a Graph Pattern B′ of the form (B1 AND B2) over G is as follows: [[B′]]G =
[[B1]]G �� [[B2]]G

GUN: An Efficient Execution Strategy for Querying the Web of Data 185

We consider that our database is an RDF-Graph G. A conjunctive query over a
general database is analogous to the following query over an RDF-Graph:

Q(x) = SELECT x WHERE F (p1(x̄1)) AND . . . AND F (pn(x̄n))

where F is a translation function from predicates to triple patterns as defined
in [13] or a customized one. The definitions of variables, head and body are
the same. As the definitions of views and rewritings are based on the defini-
tion of query, they remain equivalent, together with the definitions of QRP and
ReMakE. We define the evaluation of a rewriting [[r(x)]]G as:

[[r(x)]]G = [[v1(x̄1), . . . , vm(x̄m)]]G = ([[pa(x̄a)]]ext(v1) �� · · · �� [[pz(x̄z)]]ext(v1))

�� · · · �� ([[pα(x̄α)]]ext(vm) �� · · · �� [[pβ(x̄β)]]ext(vm))

where pa . . . pz ∈ body(v1) and pα . . . pβ ∈ body(vm). Note that this definition
captures the practical implementation of the execution engine, where we mate-
rialize each call to a view (or more precisely, to its extension) and then, perform
the joins between the sub-results. Traditionally, plans like Left Linear, Right
Linear or Bushy Trees [14] are used to evaluate the rewritings over the extension
of the views present in each rewriting; but to solve the ReMakE problem, we
should ensure that any relevant combinations of obtained views are not missed,
even if these combinations are not part of the rewritings in Rk.

Empty

Final Result

��

Intermediate

Result

prod1 type t . prod1 producer p1 .
prod1 productFeature f1 .
rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1 .
off1 product prod1 .
off1 price p1 . off1 vendor ven1

��

offers(Offer,Vendor,de, 4)

off2 vendor ven1 .
ven1 country DE .
off2 validTo d1

Intermediate

Result
prod1 type t .
prod1 producer p1 .
prod1 productFeature f1 .
rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

��

market(Offer,Product, 2, 3)

off1 product prod1 .
off1 price p1 .
off1 vendor ven1

origin(Product,t, 0, 1)

prod1 type t .
prod1 producer p1 .
prod1 productFeature f1

opinions(Review,Product, 5,Rating)

rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

Fig. 2. Left Linear execution of the rewriting r of query Q. Views origin, opinions,
market and offers are loaded, but it is not possible to produce any results since the
join for Offer is empty. Prefixes are omitted to improve legibility.

186 G. Montoya et al.

Consider a query Q over a dataset generated with the Berlin Benchmark [8],
which offers information about products, their offers and users’ reviews. Q is
defined as: “Products of type t that are sold by vendors from Germany, and
their rating evaluation”.
Q(Product, Vendor, Rating) :- type(Product, t), product(Offer, Product), vendor(Offer,

Vendor), country(Vendor, de), reviewfor(Review, Product), rating1(Review, Rating).

Considering the following four views: i) origin: “Products’ type, producer, and
features”, ii) market: “Products’ offers, price and vendors”, iii) offers: “Offers’
vendor, countries and validity”, iv) opinions: “Products’ reviews, ratings and
reviewers”. A possible rewriting of Q is:
r(Product,Vendor,Rating) :- origin(Product,t, 0, 1), opinions(Review,Product, 5,Rating),

market(Offer,Product, 2, 3), offers(Offer,Vendor,de, 4).

Figure 2 shows the execution of the rewriting of the query Q following a left linear
execution plan. In this execution, the RDF Graphs retrieved from the sources
through the views are used to execute this rewriting. Notice that while executing
the plan some intermediate results are produced, like those corresponding to the
evaluation of the join between origin and opinions; however, these intermediate
results are dismissed without being used to produce answers. A pertinent solution
of the ReMakE problem must take advantage of these retrieved data. We now
define our solution to the ReMakE problem as follows:

Graph Union (GUN). Given Rk a subset of a set of rewritings R of a query
Q over a set of views V , apply Q to the union of the extensions of the views in
the bodies of the elements of Rk:

GUN(Rk) = [[Q]]⋃ ext(Λ(Rk))

Results

(Product, V endor,Rating)
(prod1,ven1,rat1)

Execution of Original Query

Graph

Aggregation

prod1 type t . prod1 producer p1 .
prod1 productFeature f1 . rev1 reviewFor prod1 .
rev1 reviewer reviewer1 . rev1 rating rat1 .
off1 product prod1 . off1 price p1 .
off1 vendor ven1 . off2 vendor ven1 .
ven1 country DE . off2 validTo d1

origin(Product,t, 0, 1)

prod1 type t .
prod1 producer p1 .
prod1 productFeature f1

opinions(Review,Product, 5,Rating)

rev1 reviewFor prod1 .
rev1 reviewer reviewer1 .
rev1 rating rat1

market(Offer,Product, 2, 3)

off1 product prod1 .
off1 price p1 .
off1 vendor ven1

offers(Offer,Vendor,de, 4)

off2 vendor ven1 .
ven1 country DE .
off2 validTo d1

Fig. 3. GUN execution of the rewriting r of query Q. Results are produced, at the cost
of building and querying over an aggregated graph. Prefixes are omitted to improve
legibility.

GUN: An Efficient Execution Strategy for Querying the Web of Data 187

Figure 3 shows the execution with GUN associated with the rewriting of query
Q. For each view in the rewriting, we retrieve all its answers and store them
into an aggregate RDF-Graph. As we are using the Local-As-View approach,
views are expressed in terms of the global schema, and we can run the original
query and execute joins that are not considered in the rewritings, like the one
between market and offers through Vendor. Therefore, GUN takes advantage of
all retrieved data to produce an answer for the user. GUN is affordable in the
context of the Semantic Web thanks to the simplicity of the RDF data model.
Implementing the same idea in relational databases would require to create the
universal relation, which may have a prohibitive cost.

Proposition 1. Graph Union is a solution to the ReMakE problem, i.e.,⋃
r∈Rk

[[r]]ext(Λ(Rk)) ⊆ [[Q]]⋃ ext(Λ(Rk)) (1)

[[Q]]⋃ ext(Λ(Rk)) ⊆ [[Q]]G (2)

And it is result-maximal.

Proof. As by construction of the views and their extensions
⋃

v∈V [[v]]G ⊆ G,
then

⋃
ext(Λ(Rk)) ⊆ G, making straightforward to see that (2) holds. For (1)

note that the set Λ(Rk) can be considered as a set of views over the graph⋃
Λ(Rk), then by the containment property, each member of Rk is contained in

Q. As we are applying the original query Q, it is clear that there is no rewriting
that can return more results than Q, meaning that GUN is maximal.

4.1 GUN’s Properties

In this section, we state some properties of GUN. Given a query Q and a set of
views V on a database D, let VR the set of relevant views, R the set of rewritings
of Q over V , and Rk a subset of R.

– Answer Completeness: If GUN is performed over Rk with Λ(Rk) = Λ(R),
then GUN will produce the complete query answer i.e., Λ(Rk) = Λ(R) ⇒
GUN(Rk) = Q(D). By definition of QRP, only the relevant views contribute
to the answer, therefore, if GUN’s aggregation graph contains all the relevant
views, then we can ensure that GUN will produce the complete answer.

– Effectiveness: We define the Effectiveness of GUN for a given Rk as:

GUNEffect(Rk) =
|GUN (Rk)| − |⋃rk∈Rk

rk(ext(Λ(Rk)))|
|Q(D)| − |⋃rk∈Rk

rk(ext(Λ(Rk)))|
intuitively, GUN has more effectiveness if it finds answers that are not found
by the execution of

⋃
rk∈Rk

rk(ext(Λ(Rk))). We say that GUN is effective
for a given Rk if GUNEffect(Rk) > 0

If |Q(D)|−|⋃rk∈Rk
rk(ext(Λ(Rk)))| = 0, then, the effectiveness is defined

to be 0. Note that effectiveness and answer completeness are related by the
following relation:

188 G. Montoya et al.

Table 1. Queries and their answer size, number of rewritings, number of relevant views
(RV) and views size

(a) Query information

Query Answer Size # rewritings # of RV
Q1 3.33E+07 1.61E+09 260
Q2 2.99E+05 6.37E+21 260
Q3 2.03E+05 3.52E+24 280
Q4 1.42E+02 6.02E+03 240
Q5 2.82E+05 1.30E+07 240
Q6 9.84E+04 1.22E+05 100
Q7 1.12E+05 1.15E+12 180
Q8 2.82E+05 4.08E+04 100
Q9 1.41E+04 2.00E+01 20
Q10 1.49E+06 9.76E+05 260
Q11 1.49E+06 3.24E+03 80
Q12 2.99E+05 2.37E+08 260
Q13 2.99E+05 2.41E+04 260
Q14 2.82E+05 8.08E+05 180
Q15 1.41E+05 4.64E+09 280
Q16 1.41E+05 8.36E+04 100
Q17 9.84E+04 2.02E+03 100
Q18 2.82E+05 3.12E+08 240

(b) Views size

Views Size
V1-V20 147,327
V21-V40 133,992
V41-V60 41,463
V61-V80 22,410
V81-V100 4,515
V101-V120 53,131
V121-V140 32,511
V141-V160 90,873
V161-V180 21,138
V181-V200 9,836
V201-V220 4,515
V221-V240 4,515
V241-V260 67,364
V261-V280 81,313
V281-V300 840,470

⋃
rk∈Rk

rk(ext(Λ(Rk))) ⊂ Q(D) ⇒ (GUNEffect(Rk)=1 ≡ GUN (Rk)=Q(D))

When the execution of Rk does not produce the complete answer, then,
GUN’s effectiveness for Rk equals to one iff GUN produces complete answers.

– Execution Time Independency of k: the execution time of GUN does not
depend on the number of rewritings executed (k). It depends on the number
of relevant views present in Rk. Execution time is the elapsed time between
the generation of Rk rewritings and their execution time. This includes the
time required to obtain the data from the wrappers, the time required to
add the obtained data to the graph and the time required to execute the
query plan on the graph.

– Non-blocking: GUN solves the ReMakE problem under the assumption that⋃
Λ(Rk) fits in main memory. If not, GUN can only approximate it, for

example, by splitting Rk into disjoint Rk1 and Rk2 such that
⋃
Λ(Rk1) and⋃

Λ(Rk2) fit in memory. Then, execute GUN (Rk1), clear the memory, and
execute GUN (Rk2). Therefore, GUN is a non-blocking execution strategy
i.e., running out of memory will not prevent GUN to execute at the expense
of non-maximality of the answer, as the combined effectiveness of GUN (Rk1)
and GUN (Rk2) is in general less than this of GUN (Rk).

5 Experimental Evaluation

To setup the experimental evaluation, we used the Berlin SPARQL Benchmark
tool (BSBM) [8] to generate a dataset of 5,000,251 triples, using a scale factor of
14,091 products. We used the 18 queries and the 10 views proposed in [9]. These
queries are very challenging for a query rewriter since their triple patterns can
be grouped into chained connected star-shaped sub-queries, that have between
1 and 13 subgoals, with only distinguished variables.

GUN: An Efficient Execution Strategy for Querying the Web of Data 189

Table 2. Values of k for obtaining the Complete Answers (CA) for queries Q4-Q6, Q8-
Q18; using GUN and Jena. GUN’s Effectiveness for different values of k. Effectiveness
for Q9 is not reported here since it only has 20 rewritings.

Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
CA GUN 281 45 >500 381 20 21 29 36 21 >500 20 21 21 56

Jena 281 >500 >500 383 20 141 119 >500 320 >500 >500 >500 40 >500

GUN’s k=80 0 1 0.0016 0 1 1 1 1 0.0476 1 1 0 1
Effectiveness k=160 0 1 0.0002 0 0 0 1 1 0.0451 1 1 0 1

k=320 0 1 0.0018 0 0 0 1 0 0.0406 1 1 0 1
k=500 0 1 0.0024 0 0 0 1 0 0.0382 1 1 0 1

We defined 5 additional views to cover all the predicates in the queries. From
these 15 views, we produced 300 views by horizontally partitioning each original
view into 20 parts, such that each part produces 1/20 of the answers given by the
original view. Queries and views information is shown in Tables 1a and 1b. The
size of the complete answer was computed by loading all the views into a persistent
RDF-Store (Jena-TDB) and executing the queries over it. The number of rewrit-
ings was obtained using the models counting feature of the SSDSAT [15] rewriter.

As we can see in Table 1a, the number of rewritings may be very large, making
unfeasible their full execution. Furthermore, the time to generate the rewritings
is not negligible, and in some cases (Q2, Q3 and Q7) SSDSAT could not generate
them after 72 hours. We chose to compute 500 rewritings, as this was the best
compromise we could find between number of rewritings and generation time,
i.e., 500 is the larger number of rewritings (multiple of 50) that could be produced
for all queries (but Q2, Q3 and Q7) in less than 15 hours. Additionally, we do not
have any statistics about the sources to select the best rewritings or to shrink
the set of relevant views. Q1 execution reached a timeout of 48 hours.

Some general predicates like rdfs:label are present in the most of the views;
therefore, the queries that have a triple pattern with these predicates will have
a large number of relevant views, but not all of these views will contribute to
the answer. The size of a view corresponds to the number of triples that can
be accessed through that view. Detailed information about the definition of the
queries and views can be found in the project website1.

We implemented wrappers as simple file readers. For executing rewritings,
we used one named graph per subgoal as done in [16]. The Jena 2.7.42 library
with main memory setup was used to store and query the graphs. We used the
Left Linear Plans implemented by Jena as a representative of traditional query
execution techniques.

5.1 Experimental Results

The analysis of our results focus on four aspects: answer completeness, effective-
ness, execution time and non-blocking as defined in section 4.1.

To study the answer completeness of GUN, we executed the GUN and Jena
strategies over Rk rewritings, we counted the number of rewritings to have the

1 https://sites.google.com/site/graphunion/
2 http://jena.apache.org/

https://sites.google.com/site/graphunion/
http://jena.apache.org/

190 G. Montoya et al.

complete answer. Table 2 shows that GUN is able to achieve the complete answer
for 12 queries whereas Jena is able to do so only for 6 queries. For queries Q9,
Q11, Q13 and Q17, GUN produced complete answers because at the reported
k, Λ(Rk) = Λ(R). For the rest of the queries, the non aggregated relevant views
did not contribute to produce more results. Detailed information about the ratio
of relevant views for each Rk can be found in the project’s website.

To demonstrate the effectiveness of GUN, we executed the GUN and Jena strate-
gies overRk with k ∈ {80, 160, 320, 500}, counted the number of answers and com-
puted the effectiveness. Table 2 shows that GUN has effectiveness 1 for k = 80 for
half of the queries, moreover, in 5 of these 7 queries, the maximum effectiveness
remains even after Jena executes 500 rewritings. In 4 cases, GUN is not effective
because Jena already found the complete answer for this value of k. Finally, in Q6
and Q14, GUN found more results than Jena. Effectiveness values are not mono-
tonic, since they can increase when considering a rewriting that contains a view
that contributes to produce results in GUN and not in Jena. However, they can
decrease after executing a rewriting that does not add new views to GUN, but
produces results for Jena.

Regarding the execution time, we want to: 1) demonstrate that GUN ex-
ecution time does not depend on k, but on |Λ(Rk)|, and 2) compare GUN’s
execution time with Jena’s. Table 3a shows total execution time, the detailed
values of the execution time are available in the project website. For all queries
GUN has better execution time, and for all but Q6 with k = 80, is more than
twice faster. When k = 500, the difference is dramatic, varying from almost 4
times faster (Q13) to 680 times faster (Q4). Table 3b shows total execution time
and number of loaded views for GUN. Execution time grows linearly in |Λ(Rk)|,
this is particularly visible in Q4 and Q13.

If we compare the times detailed in section 4.1, we notice that the dominating
time is the wrapper time. GUN loads views into the aggregated graph only once,
whereas Jena reloads them for each executed rewriting. Note that if we try to
cache the views in Jena to avoid reloading, it would consume more memory
and could consume even more memory than GUN if the views have overlapped
information, as it is the case in our setup.

Finally, we analyzed GUN’s and Jena’s memory consumption to demonstrate
that in spite of complex queries and many relevant views: 1) GUN is not blocking,
and 2) to compare memory used by GUN with respect to Jena. For GUN, we
count the number of triples of the aggregated graph. For Jena, we report an upper
bound, that is, the maximum number of triples loaded for executing a rewriting
in Rk. Table 4 summarizes the results. Neither GUN nor Jena consumes all the
available memory (8GB). GUN needs to load more triples than Jena, varying
from less than twice to 12 times more, in all cases except for Q10 with k ≥ 320.
GUN’s aggregation is in general larger than the sum of the named graphs of the
most memory-consuming rewriting in Rk.

In summary, GUN is effective with better execution time at the cost of higher
memory consumption. However, in our experimentation GUN never exhausts

GUN: An Efficient Execution Strategy for Querying the Web of Data 191

Table 3. Execution Time (ET) for GUN and Jena. Impact of Number of Relevant
Views (RV) over Execution Time in GUN.

(a) Execution Time for GUN and Jena

Query Execution Time
K=80 K=160 K=320 K=500

Q4 GUN 39 39 63 73
Jena 167 293 48,943 49,721

Q5 GUN 377 400 400 400
Jena 1,155 2,302 3,848 5,935

Q6 GUN 336 337 338 339
Jena 398 798 1,610 2,516

Q8 GUN 41 47 58 64
Jena 190 377 751 1,278

Q10 GUN 132 132 132 132
Jena 2,214 5,941 119,137 251,641

Q11 GUN 121 121 121 121
Jena 1,906 3,707 9,985 16,939

Q12 GUN 28 28 28 28
Jena 79 146 288 475

Q13 GUN 71 203 478 522
Jena 146 352 734 2,034

Q14 GUN 328 395 395 395
Jena 439 842 1,657 2,485

Q15 GUN 358 358 358 358
Jena 1,207 3,000 5,812 9,160

Q16 GUN 35 35 35 35
Jena 119 283 596 972

Q17 GUN 69 345 345 345
Jena 168 965 2,450 4,029

Q18 GUN 324 414 415 415
Jena 1,149 2,413 4,355 6,808

(b) Execution Time and Number of
Relevant Views for GUN

Query ET and # of RV
k=80 k=160 k=320 k=500

Q4 GUN 39 39 63 73
RV 23 25 31 38

Q5 GUN 377 400 400 400
RV 80 100 100 100

Q6 GUN 336 337 338 339
RV 62 63 66 69

Q8 GUN 41 47 58 64
RV 24 28 36 40

Q10 GUN 132 132 132 132
RV 79 80 80 80

Q11 GUN 121 121 121 121
RV 79 80 80 80

Q12 GUN 28 28 28 28
RV 80 80 80 80

Q13 GUN 71 203 478 522
RV 61 123 240 260

Q14 GUN 328 395 395 395
RV 81 101 101 101

Q15 GUN 358 358 358 358
RV 60 60 60 60

Q16 GUN 35 35 35 35
RV 40 40 40 40

Q17 GUN 69 345 345 345
RV 41 100 100 100

Q18 GUN 324 414 415 415
RV 80 100 100 100

the available memory in spite of the challenging setup. This makes it a very
appealing solution for the ReMakE problem.

6 Related Work

In recent years, several approaches have been proposed for querying the Web of
Data [17,18,19,20,21]. Some tools address the problem of choosing the sources that
can be used to execute a query [20,21]; others have developed techniques to adapt
query processing to source availability [17,20]. Finally, frameworks to retrieve and
manage Linked Data have been defined [18,20], as well as strategies for decompos-
ing SPARQL queries against federations of endpoints [7]. All these approaches as-
sume that queries are expressed in terms of RDF vocabularies used to describe the
data in the RDF sources; their main challenge is to effectively select the sources,
and efficiently execute the queries on the data retrieved from the selected sources.
In contrast, our approach attempts to semantically integrate data sources, and re-
lies on a global vocabulary to describe data sources and provide a unified interface
to the users. Thus, in addition to efficiently gather and process the data transferred
from the selected sources, it decides which of the rewritings of the original query
need to execute to efficiently and effectively produce the query answer.

Two main paradigms have been proposed to define the data sources in integra-
tion systems. The LAV approach is commonly used because it permits the scal-
ability of the system as new data sources become available [22]. Under LAV, the

192 G. Montoya et al.

Table 4. Maximum number of triples loaded by a rewriting in Rk in Jena. The number
of triples of the aggregated graph of GUN.

Query Maximal Graph Size Maximal Graph Size Maximal Graph Size Maximal Graph Size
k=80 k=160 k=320 k=500

GUN Jena GUN Jena GUN Jena GUN Jena
Q4 1,201,671 148,739 1,208,714 148,739 1,753,969 907,775 1,878,666 907,775
Q5 1,993,617 907,905 2,275,437 907,923 2,275,437 907,923 2,275,437 907,923
Q6 1,578,294 850,376 1,583,212 850,376 1,597,964 850,376 1,612,716 850,376
Q8 1,479,686 148,725 1,536,050 148,745 1,648,778 148,745 1,705,142 230,045
Q10 422,269 294,678 422,269 294,678 422,269 442,052 422,269 442,052
Q11 422,268 294,701 422,269 294,701 422,269 294,748 422,269 294,748
Q12 439,946 83,260 439,946 83,260 439,946 83,260 439,946 83,276
Q13 1,713,056 862,917 2,277,638 862,962 2,923,233 862,962 2,923,233 862,962
Q14 2,095,418 912,422 2,279,248 926,356 2,279,248 935,825 2,279,248 935,825
Q15 1,568,458 905,450 1,568,458 905,529 1,568,458 905,529 1,568,458 905,529
Q16 584,792 53,678 584,792 63,411 584,792 63,411 584,792 74,802
Q17 1,496,262 850,331 1,807,718 850,376 1,807,718 850,376 1,807,718 850,376
Q18 2,175,448 907,916 2,275,437 921,840 2,275,437 921,840 2,275,437 921,859

appearance of a new source only causes the addition of a new mapping describing
the source in terms of the concepts in the RDF global vocabulary. Under GAV, on
the other hand, entities in the RDF global vocabulary are semantically described
using views in terms of the data sources. Thus, the extension or modification of
the global vocabulary is an easy task in GAV as it only involves the addition or
local modification of few descriptions [22]. Therefore, the LAV approach is best
suited for applications with a stable RDF global vocabulary but with changing
data sources whereas the GAV approach is best suited for applications with stable
data sources and a changing vocabulary. Given the nature of the Semantic Web,
we rely on the LAV approach to describe the data sources in terms of a global
and unified RDF vocabulary, and assume that the global vocabulary of concepts
is stable while data sources may constantly pop up or disappear from the Web.

The problem of rewriting a global query into queries on the data sources is
one relevant problem in integration systems [23], and several approaches have
been defined to efficiently enumerate the query rewritings and to scale when a
large number of views exists (e.g., MCDSAT [4], GQR [5], Bucket Algorithm [23],
MiniCon [11]). Recently, Le et al, [16] propose a solution to identify and combine
GAV SPARQL views that rewrite SPARQL queries against a global vocabulary,
and Izquierdo et al [15] extends the MCDSAT with preferences to identify the
combination of semantic services that rewrite a user request. A great effort has
been made to provide solutions able to produce query writings in the least time
possible, however, to the best of our knowledge, the problem of executing the
query rewritings against the selected sources still remains open.

We address this problem and propose GUN, a query processing technique for
RDF store architectures that provide a uniform interface to data sources that
have been defined using the LAV paradigm [1]. GUN assumes that the query
rewriting problem has been solved using an off-the-shell query rewriter (e.g.,
[15,5]), which may produce a large number of query rewritings. GUN implements
a query processing strategy able to execute a reduced number of query rewritings
of and generate a more complete answer than the rest of the engines in less time,
as it was observed in our experimental results.

GUN: An Efficient Execution Strategy for Querying the Web of Data 193

Because GUN is able to answer mediator queries even in presence of a very
large space of query rewritings, it constitutes a relevant contribution to the im-
plementation of integration systems, and provides the basis for feasible semantic
integration architectures in the Web of Data.

7 Conclusion and Future Work

Performing complex queries on different data sources raises the severe issue of
semantic heterogeneity. Local-as-View mediators is one of the main approaches
to solve it. However, the high number of rewritings needed to be executed rep-
resents a severe bottleneck. We proposed the ReMakE problem, that consists
in maximizing the number of results obtained by considering only k rewritings
(Rk). We also proposed GUN, a solution to this problem, it uses the RDF data
model and takes advantage of the low cost of graph union operation.

Compared to state-of-the-art approaches, GUN provides an alternative way
to improve performance at the execution engine level rather than at the rewriter
level. This makes GUN usable with any LAV rewriter guaranteeing to achieve
greater or equal answer completeness for the same Rk. Our experiments demon-
strate that GUN gain is real, i.e., its effectiveness is equal to one for 57% of the
queries for the values of k until 80. It remains equal to one for 38% of the queries
for the values of k until 500.

Furthermore, GUN consumes considerably less execution time than Jena in
all the cases; the difference in execution time is tremendous, up to 681 times.
However, this improvement in effectiveness and execution time is at the cost of
an additional memory consumption of up to 12 times.

This work opens new perspectives to improve LAV approach for the Semantic
Web. First, we would like to measure the effectiveness degradation when executing
on low-memory setups, and include some heuristics to minimize it. As GUN cre-
ates materialized views for processing rewritings, we plan to evaluate the impact
on the effectiveness and the execution time when performing inference tasks on
the graph union. Finally, because GUN is mostly dependent on the ratio of views
in rewritings divided by the number of relevant views, an interesting perspective
is to modify rewriters to optimize the number of views in the first k rewritings.

References

1. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS 1995, pp. 95–104 (1995)

2. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M., Senellart, P.: Web data
management. Cambridge University Press (2011)

3. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, PODS 1998, pp. 254–263 (1998)

4. Arvelo, Y., Bonet, B., Vidal, M.E.: Compilation of query-rewriting problems into
tractable fragments of propositional logic. In: AAAI, pp. 225–230 (2006)

194 G. Montoya et al.

5. Konstantinidis, G., Ambite, J.L.: Scalable query rewriting: a graph-based approach.
In: SIGMOD Conference, pp. 97–108 (2011)

6. Vidal, M.-E., Ruckhaus, E., Lampo, T., Mart́ınez, A., Sierra, J., Polleres, A.: Ef-
ficiently joining group patterns in SPARQL queries. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010, Part I. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010)

7. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

8. Bizer, C., Shultz, A.: The berlin sparql benchmark. International Journal on Se-
mantic Web and Information Systems 5, 1–24 (2009)

9. Castillo-Espinola, R.: Indexing RDF data using materialized SPARQL queries.
PhD thesis, Humboldt-Universität zu Berlin (2012)

10. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25, 38–49 (1992)

11. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10, 270–
294 (2001)

12. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS) 34 (2009)

13. Baget, J.-F., Croitoru, M., Gutierrez, A., Leclère, M., Mugnier, M.-L.: Translations
between RDF(S) and conceptual graphs. In: Croitoru, M., Ferré, S., Lukose, D.
(eds.) ICCS 2010. LNCS (LNAI), vol. 6208, pp. 28–41. Springer, Heidelberg (2010)

14. Chaudhuri, S.: An overview of query optimization in relational systems. In: Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS 1998, pp. 34–43 (1998)

15. Izquierdo, D., Vidal, M.-E., Bonet, B.: An expressive and efficient solution to the
service selection problem. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 386–401. Springer, Heidelberg (2010)

16. Le, W., Duan, S., Kementsietsidis, A., Li, F., Wang, M.: Rewriting queries on
sparql views. In: WWW, pp. 655–664. ACM (2011)

17. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)

18. Basca, C., Bernstein, A.: Avalanche: Putting the Spirit of the Web back into Se-
mantic Web Querying. In: SSWS, pp. 64–79 (2010)

19. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW, pp. 411–420 (2010)

20. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I.
LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011)

21. Ladwig, G., Tran, T.: SIHJoin: Querying remote and local linked data. In: Antoniou,
G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC2011, Part I. LNCS, vol. 6643, pp. 139–153. Springer, Heidelberg (2011)

22. Ullman, J.D.: Information integration using logical views. Theoretical Computer
Science 239, 189–210 (2000)

23. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous information sources
using source descriptions. In: VLDB, pp. 251–262 (1996)

Complex Matching of RDF Datatype Properties

Bernardo Pereira Nunes1,2, Alexander Mera1, Marco Antônio Casanova1,
Besnik Fetahu2, Luiz André P. Paes Leme3, and Stefan Dietze2

1 Department of Informatics - PUC-Rio - Rio de Janeiro, RJ, Brazil
{bnunes,acaraballo,casanova}@inf.puc-rio.br

2 L3S Research Center - Leibniz University Hannover - Hannover, Germany
{nunes,fetahu,dietze}@l3s.de

3 Computer Science Institute, Fluminense Federal University,
Niterói, RJ, Brazil

lapaesleme@ic.uff.br

Abstract. Property mapping is a fundamental component of ontology match-
ing, and yet there is little support that goes beyond the identification of single
property matches. Real data often requires some degree of composition, trivially
exemplified by the mapping of “first name” and “last name” to “full name” on
one end, to complex matchings, such as parsing and pairing symbol/digit strings
to SSN numbers, at the other end of the spectrum. In this paper, we propose
a two-phase instance-based technique for complex datatype property matching.
Phase 1 computes the Estimate Mutual Information matrix of the property val-
ues to (1) find simple, 1:1 matches, and (2) compute a list of possible complex
matches. Phase 2 applies Genetic Programming to the much reduced search space
of candidate matches to find complex matches. We conclude with experimental
results that illustrate how the technique works. Furthermore, we show that the
proposed technique greatly improves results over those obtained if the Estimate
Mutual Information matrix or the Genetic Programming techniques were to be
used independently.

Keywords: Ontology Matching, Genetic Programming, Mutual Information,
Schema Matching.

1 Introduction

Ontology matching is a fundamental problem in many applications areas [10]. Using
OWL concepts, by datatype property matching we mean the special case of matching
datatype properties from two classes.

Concisely, an instance of a datatype property p is a triple of the form (s, p, l), where
s is a resource identifier and l is a literal. A datatype property matching from a source
class S to a target class T is a partial relation μ between sets of datatype properties from
S and T , respectively. We say that a match (A,B) ∈ μ is m:n iff A and B contain m and
n properties, respectively. A match (A,B) ∈ μ should be accompanied by one or more
datatype property mappings that indicate how to construct instances of the properties
in B from instances of the properties in A. A match (A,B) ∈ μ is simple iff it is 1:1 and
the mapping is a identity function; otherwise, it is complex.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 195–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 B. Pereira Nunes et al.

In this paper, we introduce a two-phase, instance-based datatype property matching
technique that is able to find complex n:1 datatype property matches and to construct
the corresponding property mappings. The technique extends the ontology matching
process described in [19] to include complex matches between sets of datatype proper-
ties and is classified as instance-based since it depends on sets of instances.

Briefly, given two sets, s and t, that contain instances of the datatype properties of the
source class S and the target class T , respectively, the first phase of the technique con-
structs the Estimated Mutual Information matrix (EMI) [18,19] of the datatype property
instances in s and t, which intuitively measures the amount of related information from
the observed property instances. The scope of this phase is to identify simple datatype
property matches. For example, it may detect that the “e-mail” datatype property of one
class matches the “electronic address” datatype property of another class. Additionally,
the first phase suggests, for the second phase, sets of candidate datatype properties that
can be matched only under more complex relationships, thereby reducing the search
space.

The second phase uses a genetic programming approach (GP) to find complex n:1
datatype property matches. For example, it discovers that the “first name” and “last
name” datatype properties of the source class match the “full name” datatype property
of the target class, and returns a property mapping function that concatenates the values
of “first name” and “last name” (of the same class instance) to generate the “full name”
value. The reason for adopting genetic programming is two-fold: it reduces the cost
of traversing the search space; and it can be used to automatically generate complex
mappings between datatype property sets.

The difficulty of the problem of finding complex matches between sets of datatype
properties should not be underestimated since the search space is typically quite large.
Therefore, our contribution towards a more accurate and efficient solution lies in
proposing a two-phase technique, which deals with the problem of finding complex
matches by: (a) using the Estimated Mutual Information matrix (in Phase 1) as a pre-
processing stage, limiting the candidate sets of properties for complex matches; (b)
adopting a genetic programming strategy to automatically generate complex property
mappings. We also give empirical evidence that the combination of both approaches,
EMI and GP, yields better results than using either technique in separate.

2 Background

2.1 Vocabulary Matching and Concept Mapping

We decompose the problem of OWL ontology matching into the problem of vocabulary
matching and that of concept mapping. In this section, we briefly review these concepts
and extend them to account for complex property matching. In what follows, let S and
T be two OWL ontologies, and VS and VT be their vocabularies, respectively. Let CS

and CT be the sets of classes and PS and PT be the sets of properties in VS and VT,
respectively.

An instance of a class c is a triple of the form (s, rdf :type, c), an instance of an
object property p is a triple of the form (s, p, o) and an instance of a datatype property
d is a triple of the form (s, d, l), where s and o are resource identifiers and l is a literal.

Complex Matching of RDF Datatype Properties 197

A vocabulary matching between S and T is a finite set μ ⊆ VS × VT. Given
(v1, v2) ∈ μ, we say that (v1, v2) is a match in μ and that μ matches v1 with v2; a
property (or class) matching is a matching defined only for properties (or classes).

A concept mapping from S to T is a set of transformation rules that map instances of
the concepts of S into instances of the concepts of T.

In this paper, we extend vocabulary matchings to also include pairs of the form
(A,B) where A and B are sets of datatype properties in PS and PT, respectively. We
say that (A,B) is an m:n match iff A and B contain m and n properties, respectively.
In this case, a match (A,B) must be accompanied by datatype property mappings, de-
noted μ[A,Bi], which are transformation rules that map instances of the properties in A
into instances of the property Bi, for i = 1, . . . , n, where B={B1, . . . , Bn}. Using “//”
to denote string concatenation, the following transformation rule (s, fullName, v) ←
(s, firstName, n), (s, lastName, f), v = n//f indicates that the value of the “full-
Name” property is obtained by concatenating the values of properties “firstName” and
“lastName”. We will use the following abbreviated form for mapping rules with the
above syntax:

μ[{firstName, lastName}, fullName] =

“fullName ← firstName//lastName′′

As an abuse of notation, when A is a singleton {A1}, we simply write μ[A1, Bi], rather
than μ[{A1}, Bi]. Finally, a match (A,B) is simple iff it is 1:1, that is, of the form
({A1}, B1), and the mapping μ[A1, B1] is the identity transformation rule, defined as
“(s,B1, l) ← (s, A1, l)”; otherwise, the match is complex.

2.2 An Instance-Based Process for Vocabulary Matching

In this section, we very briefly summarize the instance-based process to create vocabu-
lary matchings introduced in [19]. The outline of the process is as follows:

S1. Generate a preliminary property matching using similarity functions.
S2. Generate a class matching using the property matching obtained in S1.
S3. Generate an instance matching using the output from S1.
S4. Refine the property matching using the class matching generated in S2 and the

instance matching from S3.

The final vocabulary matching is the result of the union of the class matching obtained
in S2 and the refined property matching obtained in S4.

The intuition used in all steps of the process is that “two schema elements match
iff they have many values in common and few values not in common”, i.e. iff they are
similar above a given similarity threshold.

We obtain the following output from each individual step. S1 generates preliminary
1:1 property matchings based on the intuition that two properties match iff their in-
stances share similar sets of values. In the case of string properties, their values are
replaced by the tokens extracted from their values. S1 provides evidences on class and
instance matchings, explored in the next two steps.

198 B. Pereira Nunes et al.

S2 generates class matchings based on the intuition that two classes match iff their
sets of properties are similar. This step uses the property matchings generated in S1.

S3 generates instance matchings based on the intuition that two instances match iff
the values of their properties are similar. However, equivalent instances from different
classes may be described by very different sets of properties. Therefore, extracting val-
ues from all of their properties may lead to the wrong conclusion that the instances
are not equivalent. Therefore, Leme et al. [19] propose to extract values only from the
matching properties of the instances.

3 Two-Phase Property Matching Technique

In this section, we introduce a technique to partly implement and extend the ontology
matching process of Section 2.2 to compute complex n:1 datatype property matches
(note that the technique does not cover n:m matches). The technique comprises two
phases: Phase 1 uses Estimated Mutual Information matrices, defined in Section 3.1,
to compute 1:1 simple matches, while Phase 2 uses genetic programming to compute
complex n:1 matches, based on the information returned by Phase 1.

3.1 Phase 1: Computing Simple Datatype Property Matches with Estimated
Mutual Information

Let p=(p1,. . . ,pu) and q=(q1,. . . ,qv) be two lists of sets. The co-occurrence matrix of
p and q is defined as the matrix [mij] such that mij = |pi ∩ qj|, for i ∈ [1, u] and
j ∈ [1, v]. The Estimated Mutual Information matrix (EMI) of p and q is defined as the
matrix [EMIpq] such that:

EMIpq =
mpq

M
· log

⎛⎜⎜⎝M · mpq
v∑

j=1

mpj ·
u∑

i=1

miq

⎞⎟⎟⎠ (1)

where M =
u∑

i=1

v∑
j=1

mij .

We now adapt these concepts to define Phase 1 of the datatype property matching
process. Let S and T be two classes with sets of datatype properties A={A1, . . . , Au}
and B={B1, . . . , Bv}, respectively. Let s and t be sets of instances of the properties in
A and B, respectively (s and t therefore are sets of RDF triples).

Rather than simply using the cardinality of set intersections to define the co-
occurrence matrix [mij], Phase 1 computes [mij] using set comparison functions that
take two sets and return a non-negative integer. Such functions play the role of flexibi-
lization points of Phase 1, as illustrated in Section 4.1.

The set comparison functions depend on the types of the values of the datatype prop-
erties as well as on whether the functions take advantage of instance matches. For exam-
ple, given a pair of datatype properties, Ai and Bj , mij may be defined as the number
of pairs of triples (a,Ai, b) in s and (c, Bj , d) in t such that instances a and c match (or

Complex Matching of RDF Datatype Properties 199

are identical) and the literals b and d are equal (or are considered equal, under a literal
comparison function defined for the specific datatype of b and d).

For instance, Leme et al. [19] adopt the cosine similarity function to compare strings.
Thus, mij is computed as the number of (string) values of triples for property Ai in
s whose cosine distance to values of instances for property Bj in t is above a given
threshold (α = 0.8 in [19]).

To compute simple matches (1:1), the cosine similarity function proved to be appro-
priate, especially if the strings to be compared have approximately the same number of
tokens. However, the cosine similarity function turned out not to be appropriate when
using the co-occurrence matrix to suggest complex matches to Phase 2 of the technique.
We therefore adopted the Jaccard similarity coefficient to compute the co-occurrence
matrix, defined as

Jaccard(b, d) =
|b ∩ d|
|b ∪ d| (2)

which counts the number of tokens that strings b and d have in common.
Thus, given two properties Ai and Bj , mij is computed as the sum of

Jaccard(Ai, Bj), for all pairs of strings d and b such that there are triples of the form
(a,Ai, b) in s and (c, Bj , d) in t.

Phase 1 proceeds by computing the EMI matrix based on the co-occurrence ma-
trix, as in Eq. 1. Next, it computes a 1:1 matching, μEMI , between the properties in
A={A1, . . . , Au} and those in B={B1, . . . , Bv} such that, for any pair of properties Ap

and Bq , (Ap, Bq) ∈ μEMI iff EMIpq > 0 and EMIpj ≤ 0, for all j ∈ [1, v], with
j �= q, and EMIiq ≤ 0, for all i ∈ [1, u], with i �= p. Furthermore, Phase 1 assumes
that the property mappings, μEMI [Ar, Bs], are always the identity function.

Finally, Phase 1 also outputs a list of datatype properties to be considered for com-
plex matching in Phase 2. For the kth column of the EMI matrix, it outputs the pair
(Ak,Bk) as a candidate n:1 complex match, where Bk is the property of T that corre-
sponds to the kth column and Ak is the set of properties Ai of S such that EMIik > 0.
Indeed, if EMIik ≤ 0, then Ai and Bk have no information in common. However, note
that this heuristics does not indicate what is a candidate property mapping μ[Ak,Bk].
This problem is faced in Phase 2.

3.2 Phase 2: Computing Complex Property Matches with Genetic Programming

The second phase of the technique uses genetic programming to create mappings be-
tween the properties that have some degree of correlation, as identified in the first phase.
Briefly, the process goes as follows.

Recall that genetic programming refers to an automated method to create and evolve
programs to solve a problem [16]. A program, also called an individual or a solution, is
represented by a tree, whose nodes are labeled with functions (concatenate, split, sum,
etc) or with values (strings, numbers, etc). New individuals are generated by applying
genetic operations to the current population of individuals. Note that genetic program-
ming does not enumerate all possible individuals, but it selects individuals that should
be bred by an evolutionary process. The fitness function assigns a fitness value to each
individual, which represents how close an individual is to the solution and determines
the chance of the individual to remain in the genetic process.

200 B. Pereira Nunes et al.

The process requires two configuration steps, carried out just once. First, certain
parameters of the process must be properly calibrated to prevent overfitting problems, to
avoid unnecessary runtime overhead, and to help finding good solutions (see Section 4).
Once the parameters are calibrated, the second configuration step is to determine the
stop criterion. We opted to stop after a predetermined maximum number of generations
and return the best-so-far individual to limit the cost of searching for individuals.

We now show how to use genetic programming to compute complex datatype
property matches. Let S and T be two classes with sets of datatype properties
A={A1, . . . , Au} and B={B1, . . . , Bv}, respectively. Let s and t be lists of sets of in-
stances of the properties in A and B, respectively.

The genetic programming phase receives as input the candidate matches that Phase
1 outputs and the sets s and t. For each input candidate match, it outputs a property
mapping μ[Ak,Bk], if one exists; otherwise it discards the candidate match.

Let (Ak,Bk) be a candidate match output by the first phase, where Ak is a set of
properties in A and Bk is a property in B. The genetic programming phase first generates
a random initial population of candidate property mappings. In each iteration step, it
creates new candidate property mappings using genetic operations. It keeps the best-so-
far individual, and returns it when the stop criterion is reached.

The process depends on the following specifications (see [24] for a concrete exam-
ple), which should be regarded as flexibilization points.

A candidate property mapping μ[Ak,Bk] (the individual in this case) is represented
as a tree whose leaves are labeled with the properties in Ak and whose internal nodes
are labeled with primitive mapping functions.

The maximum population size, σpopulation, is a parameter of the process. The initial
population consists of σpopulation randomly generated trees. Each tree has a maximum
height, defined by the parameter σheight, each leaf is labeled with a property from Ak

and each internal node is labeled with a primitive mapping function.
The reproduction operation simply preserves a percentage of the property mappings

from one generation to the next, defined by the parameter σreproduction.
The crossover operation exchanges subtrees of two candidate property

mappings to create new candidate mappings. For example, suppose that
Ak={firstName,middleName, lastName} and Bk=fullName and consider
the following two candidate property mappings (which use the concatenation
operation, “//”, and are represented using the notation adopted in Section 2.1):

μ1[Ak, Bk] = “fullName ← (lastName//(firstName // middleName))

μ2[Ak, Bk] = “fullName ← ((middleName // firstName)//lastName)

The crossover operation might generate the following two new candidate property map-
pings (by swapping the sub-expressions in boldface):

μ3[Ak, Bk] = “fullName ← (lastName//(middleName // firstName))

μ4[Ak, Bk] = “fullName ← ((firstName // middleName)//lastName)

The mutation operation randomly alters a node (labeled with a property or with a primi-
tive mapping function) of a candidate property mapping. For example, the node labeled

Complex Matching of RDF Datatype Properties 201

with “middleName” of μ4[Ak, Bk] can be mutated to “firstName”, resulting in a new
candidate property mapping (which is acceptable, but not quite reasonable, since it re-
peats firstName):

μ5[Ak, Bk] = “fullName← ((firstName//firstName)//lastName)

Finally, recall that s and t are lists of sets of instances of the properties in A and B,
respectively. The fitness value of μ[Ak,Bk] is computed by applying μ[Ak,Bk] to the
instances of the properties in Ak occurring in s, creating a new set of instances for Bk,
which is then compared with the set of instances of Bk occurring in t. As in Section 3.1,
the exact nature of the fitness function depends on the types of the values of the datatype
properties as well as on whether the function takes advantage of instance matches or
not (which is possible when implementing S4). For instance, we used the Levenshtein
similarity function for string values and KL-divergence measure [2] for numeric values.

The Levenshtein similarity function is normalized to fall into the interval [0, 1],
where 1 indicates that a string is exactly equal to the other and 0 that the two strings
have nothing in common, while the KL-divergence measure is used to compute the
similarity between two value distributions.

Recall that we are given two samples, p and q, of instances of properties of classes
P and Q, respectively. Construct the set X of strings that occur as literals of instances
of Bk obtained by applying μ[Ak,Bk] to p, and the set Y of strings that occur as literals
of instances of Bk in q. The fitness score for a candidate property mapping is:

Fitnessstring(μ[A
k, Bk]) =

1

n

∑
x∈X
y∈Y

Levenshtein(x, y) (3)

where n is the number of pairs in X × Y .
In the case of numeric values, construct the set X of numeric values that occur as

literals of instances of Bk, obtained by applyingμ[Ak,Bk] to p, and the set Y of numeric
values that occur as literals of instances of Bk in q. The fitness score for a candidate
property mapping is:

Fitnessnumeric(F,G) =
1

n

∑
x∈X
y∈Y

ln

(
F (x)

G(y)

)
F (x) (4)

where n is the number of pairs in X × Y , F (x) represents the target distribution of
instances in X and G(y) is the the set of materialized mapping μ in Y from the source
distribution of instances.

4 An Example Implementation

With the help of an example, we illustrate how to implement the two-phase technique.
We assume that the implementation is in the context of S1 of the process described in
Section 2.2, that is, we will not use instance matches. We start with Phase 1, described
in Section 3.1.

202 B. Pereira Nunes et al.

Table 1. Example schemas

P # Q
A1 FirstName

B1
FullName
(FirstName // LastName)A2 LastName

A3 E-Mail B2 E-Mail
A4 Address

B3

FullAddress
(Address // Number //
Complement // Neighborhood)

A5 Number
A6 Complement
A7 Neighborhood

The example is based on personal information classes, modeled by class P , with 7
properties and class Q with 3 properties. Table 1 shows the properties from the two
classes P and Q, and also indicates which properties or sets of properties match. For
example, {A1, A2} matches B1.

4.1 Phase 1: Computing Simple Property Matches with Estimated Mutual
Information

Recall from Section 3.1 that an implementation of Phase 1 requires defining set compar-
ison functions used to compute the co-occurrence matrix [mij]. We discuss this point
in what follows, with the help of the running example.

We assume that all property values are string literals and that we are given two sam-
ples, p and q, of instances of properties of classes P and Q, respectively (each with
500 instances). As mentioned in Section 3, Leme et al. [19] use the cosine similarity
function to compute the co-occurrence matrix, which is able to indicate only simple
1:1 matches. By contrast, we used the Jaccard similarity coefficient that measures the
similarity between sets, which is able to find simple 1:1 matches and suggest complex
matches.

Figure 1 (a) shows the co-occurrence matrix computed using the cosine similarity
measure. Note that m43 = 164k, which is high because the values of A4 and B3 come
from a controlled vocabulary with a small number of terms (not indicated in Table 1).
By contrast, m32 = 500, which is low because A3 and B2 are keys (also not indicated
in Table 1).

Figure 1 (b) shows the co-occurrence matrix computed using the Jaccard similarity
(see Eq. 2), which measures the similarity and diversity between sets. Thus, the co-
occurrence indices are more sparse between the attributes that have values in common.

To clarify, consider A7 (Neighborhood) and B3 (FullAddress) and suppose that
“Cambridge” is an observed value of A7 and “* Oxford Street Cambridge MA, United
States” of B3. The cosine similarity of these two strings is 0.37, which is lower than the
threshold set by [19] (again, α = 0.8). Hence, these two strings are considered not to be
similar. However, also observe that “Cambridge” is fully contained in “* Oxford Street
Cambridge MA, United States”, which might indicate that A7, perhaps concatenated
with the values of other datatype properties, might match B3. Continuing with this
argument, lowering the threshold also proved not to be efficient to account for these
situations, since this increases noise in the matching process.

Complex Matching of RDF Datatype Properties 203

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 B3

A1 4 1 0
A2 0 0 0
A3 0 500 0
A4 0 0 164k
A5 0 0 0
A6 0 0 0
A7 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 B3

A1 4, 8k 0 1, 6k
A2 12, 3k 0 5, 1k
A3 0 500 0
A4 5, 5k 0 55k
A5 0 0 726
A6 797 0 8, 5k
A7 750 0 9, 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b)

Fig. 1. Co-occurrence matrices using (a) cosine similarity and (b) Jaccard similarity coefficient

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 B3

A1 0,0550 0, 0 0,0040

A2 0,0138 0, 0 0,0020

A3 0, 0 0,0020 0, 0

A4 0, 0 0, 0 0,0677

A5 0, 0 0, 0 0,0090

A6 0,0024 0, 0 0,0094

A7 0,0002 0, 0 0,0114

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. EMI matrix: dark gray cells represent simple matches and light gray cells represent possi-
ble complex matches for the property in the column

Thus, given two propertiesAi and Bj , mij is computed as the sum of Jaccard(x, y),
for all pairs of strings x and y such that there are triples of the form (a,Ai, x) in p and
(b, Bj , y) in q (see Figure 1). Once the co-occurrence matrix [mij] is obtained, we
compute the EMI matrix [EMIij], as described in Section 3.1 (see Figure 2).

The result of Phase 1 therefore is the matching μEMI between the sets of properties
{A1, . . . , Au} and {B1, . . . , Bv}, computed as in Section 3.1 (which we recall is 1 : 1),
assuming that, for each (Ai, Bj) ∈ μEMI , the property mappings μ[Ai, Bj] is always
the identity function (see Figure 2).

4.2 Phase 2: Computing Complex Property Matches with Genetic Programming

The second phase of the technique was implemented using a genetic programming
toolkit [21], (the discussion on calibration is omitted for brevity, see [24] for more
details).

The first phase of the technique outputs, for instance, a candidate match between
properties A1, A2, A4, A5, A6 and A7 (FirstName, LastName, Address, Number, Com-
plement and Neighborhood, respectively) and property B3 (FullAddress), see Figure 2.
Note that quite frequently streets are named after famous people, which justifies why
EMI outputs A1 and A2 as candidates properties. Following the example, having 6
properties as input, the genetic process begins the search for the solution.

As the property values are strings, the fitness function selected to find the best in-
dividual is the Levenshtein (see Eq. 3). Thus, after randomly generate an initial set of

204 B. Pereira Nunes et al.

individuals, the fitness function assigns to each individual a score. For each new gener-
ation, a new set of individuals is created from those individuals chosen according to a
probability based on their fitness value. After a predetermined number of generations,
the process stops with an expression that represents a property mapping that maps the
concatenation of the properties A4, A5, A6 and A7, that is, the expression:

((Address//Number)//(Complement//Neighborhood))

into property B3 (that is, FullAddress).

5 Evaluation and Results

The first result in this paper is the comparison of the two approaches, Estimated Mutual
Information and Genetic Programming, when separately evaluated.

For this evaluation, we used three datasets1 from three different domains. Table 2 lists
and describes the datasets used and their schema information. The “Personal Informa-
tion” dataset lists information about people, the “Real Estate” dataset lists information
about houses for sale, while the “Inventory” dataset describes product inventories.

Column “EMI” of Table 3 indicates that, using only the Estimated Mutual Infor-
mation approach, we obtained a precision of 1.0 for all datasets, which indicates that
none of the matches were mistakenly found; the rate of recall was low, between 0.21
and 0.38, indicating a high rate of missed property matches; and the F-Measure varied
from 0.34 to 0.54, hinting that this approach is insufficient to find simple and complex
matches. Indeed, out of the 12 simple matches expected for the “Personal Information”
dataset, this approach correctly obtained 6 matches only. Likewise, the EMI found 3 out
of 4 and 4 out of 6, for the datasets “Inventory” and “Real Estate”, respectively.

However, according to the discussion at the end of Section 3.1, as well as by observ-
ing the column “EMI” marked with “*” in Table 2, there are several candidate complex
matches that were suggested to the GP phase in each approach. Note that amongst those
are the exact remaining matches not found by the EMI technique. This is an indication
that, although not sufficient in itself, the EMI approach is an effective pre-processing
stage to the GP approach, by reducing the complexity of the search space while provid-
ing a high quality list of candidate complex matches.

Column GP of Table 3 indicates that, using genetic programming alone, the F-
Measure obtained was higher, and that all simple mappings were found. However, preci-
sion was 0.8 for the “Personal Information” dataset and 0.96 for the “Inventory” dataset,
which indicates that some matches were mistakenly suggested.

Table 3 shows that our two-phase technique resulted in a considerable improvement
over the independent use of the EMI and GP approaches when used independently. This
improvement is related to the fact that the first phase, using the EMI matrix, correctly
found all simple matches and suggested correct complex matches to the second phase.

1 With exception of the “Personal Information” dataset due to privacy reasons, other datasets
are available at http://pages.cs.wisc.edu/˜anhai/
wisc-si-archive/domains/

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/

Complex Matching of RDF Datatype Properties 205

Table 2. Mapping results for three datasets in different domains

Datasets Type EMI GP EMI+GP #Match

Personal
Information

String
1:1 6 12 12 12
1:n 11* 1 4 5

Numeric
1:1 0 0 0 0
1:n 0 0 0 0

Inventory
String

1:1 3 4 4 4
1:n 18* 2 4 4

Numeric
1:1 6 25 25 25
1:n 18* 1 3 4

Real Estate
String

1:1 4 4 6 6
1:n 7* 2 5 5

Numeric
1:1 1 1 1 1
1:n 7* 0 0 3

(∗) Complex matches suggested by EMI.

Table 3. P/R/F1 results for three datasets in different domains

EMI GP EMI+GP
Dataset P R F1 P R F1 P R F1

Personal Information 1 0.38 0.54 0.8 0.75 0.77 1 0.94 0.96
Inventory 1 0.24 0.39 0.96 0.87 0.91 0.97 0.97 0.97

Real Estate 1 0.33 0.5 1 0.47 0.64 1 0.8 0.89

The fact that the EMI matrix suggests correlated properties helps reduce the solution
space considered by the genetic programming algorithm, thus improving its overall per-
formance. In our tests, the run time of the combined approach showed an improvement
of approximately 36% when compared with the run time of the genetic programming
approach alone.

Furthermore, we also compared our method against state of the art methods. As a
baseline we used the iMap system [5], which similar to our approach addresses the
problem of 1:1 and n:1 (complex) matchings. From previously reported results in terms
of accuracy, iMap obtains 0.84 and 0.55 for 1:1 and 1:n mappings respectively, while
we obtain 1 and 0.955 for the “Inventory” dataset. For the “Real Estate” dataset, iMap
achieves 0.58 and 0.32, whereas we achieve 1 and 0.72, respectively. We also com-
pared our method against LSD [7], which is able to find only simple 1:1 matchings and
achieves an accuracy of 0.67.

6 Related Work

Ontology alignment frameworks implement a set of similarity measures to find the cor-
rect mappings. For instance, Duan et al. [9] utilize user feedback to determine the
importance of each similarity measure in the final mapping result. Similarly, Ritze
et al. [27] introduce ECOMatch that uses alignment examples to define parameters
to set the correct mapping strategy. Dhamankar et al. [6] describe iMap that prede-
fines modules of functions to semi-automatically find simple and complex matches by

206 B. Pereira Nunes et al.

leveraging external knowledge. Likewise, Albagli et al. [1] search for mappings using
Markov Networks, which combines different sources of evidence (e.g. human experts,
existing mappings, etc). Finally, Spohr et al. [30] use a translation mechanism to dis-
cover mappings in cross-lingual ontologies.

A drawback in most approaches is scalability. Duan et al. [8] address the scalability
problem using a local sensitivity hashing to match instances inside a cluster. Jiménez-
Ruiz and Grau [15] propose an “on the fly” iterative method called LogMap that, based
on a set of anchors (exact mappings), creates, extends and verifies mappings using a
logical reasoner. Complementary, Wang et al. [31] suggest a method for reducing the
number of anchors needed to match ontologies. Recent advances, such as RiMOM [20],
offer an automated environment to select an appropriate matching strategy through risk
minimization of Bayesian decision, while ASMOV ([14]) uses semantic validation to
verify mappings. Falcon [13] applies a divide-and-conquerapproach to ontology match-
ing. Several other systems, such as DSSim [22], S-Match [11], Anchor-Flood [12],
Agreement-Maker [3], ATOM [26] and SAMBO [17] tackle the alignment for ontolo-
gies and schemas relying on lexical, structural and semantical similarity measures. In a
recent survey, [29] analyze in more details well-established frameworks and outline fu-
ture directions and challenges in this field. Additional surveys are provided by [28,25].

Contrasting with the approaches just outlined, we provide an automatic technique
that finds simple and complex mappings between RDF datatype properties without
prior knowledge that can evolve to adapt to schema and ontology changes, previously
described in [23]. Similar to our approach, Carvalho et al.[4] propose a genetic program-
ming approach for deduplication problem. However, as the results show, our two-phase
approach achieves better results than those using only the genetic programming ap-
proach. Moreover, we extend his work to match simple and complex numeric datatype
properties.

7 Conclusion

In this paper, we described an instance-based, property matching technique that follows
a two-phase strategy. The first phase constructs the Estimated Mutual Information ma-
trix of the property values to identify simple property matches and to suggest complex
matches, while the second phase uses a genetic programming approach to detect com-
plex property matches and to generate their property mappings. This combined strategy
proved promising to beat combinatorial explosion. In fact, our experiments prove that
the technique is a promising approach to construct complex property matches, a prob-
lem rarely addressed in the literature.

Acknowledgement. This work has been partially supported by the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement No 317620
(LinkedUp).

References

1. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology match-
ing. Journal of Computer and System Sciences 78(1), 105–118 (2012)

Complex Matching of RDF Datatype Properties 207

2. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (1991)
3. Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: Efficient matching for large real-world

schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)
4. de Carvalho, M.G., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: A genetic program-

ming approach to record deduplication. IEEE Trans. Knowl. Data Eng. 24(3), 399–412
(2012)

5. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: imap: discovering complex
semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2004, pp. 383–394. ACM, New
York (2004)

6. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: imap: Discovering complex
mappings between database schemas. In: SIGMOD Conference, pp. 383–394 (2004)

7. Doan, A., Domingos, P., Levy, A.: Learning Source Descriptions for Data Integration. In:
Proceedings of the Third International Workshop on the Web and Databases, Dallas, TX, pp.
81–86. ACM SIGMOD (2000)

8. Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.:
Instance-based matching of large ontologies using locality-sensitive hashing. In: Cudré-
Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 49–64. Springer, Hei-
delberg (2012)

9. Duan, S., Fokoue, A., Srinivas, K.: One size does not fit all: Customizing ontology alignment
using user feedback. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 177–192.
Springer, Heidelberg (2010)

10. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
11. Giunchiglia, F., Autayeu, A., Pane, J.: S-match: An open source framework for matching

lightweight ontologies. Semantic Web Journal 3(3), 307–317 (2012)
12. Hanif, M.S., Aono, M.: An efficient and scalable algorithm for segmented alignment of on-

tologies of arbitrary size. Journal of Web Semantics 7(4), 344–356 (2009)
13. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. IEEE

Trans. Knowl. Data Eng. 67(1), 140–160 (2008)
14. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic veri-

fication. Journal of Web Semantics 7(3), 235–251 (2009)
15. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology matching.

In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011)

16. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge (1992)

17. Lambrix, P., Tan, H.: Sambo - a system for aligning and merging biomedical ontologies.
Journal of Web Semantics 4(3), 196–206 (2006)

18. Leme, L.A.P.P., Brauner, D.F., Breitman, K.K., Casanova, M.A., Gazola, A.: Matching object
catalogues. ISSE 4(4), 315–328 (2008)

19. Leme, L.A.P.P., Casanova, M.A., Breitman, K.K., Furtado, A.L.: Instance-based OWL
schema matching. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 14–26.
Springer, Heidelberg (2009)

20. Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment frame-
work. IEEE Transactions on Knowledge and Data Engineering 21(8), 1218–1232 (2009)

21. Meffert, K.: Jgap - java genetic algorithms and genetic programming package (2013),
http://jgap.sf.net/ (Online; accessed January 31, 2013)

22. Nagy, M., Vargas-Vera, M., Stolarski, P.: Dssim results for oaei 2009. In: Ontology Matching
(2009)

http://jgap.sf.net/

208 B. Pereira Nunes et al.

23. Nunes, B.P., Caraballo, A.A.M., Casanova, M.A., Breitman, K., Leme, L.A.P.P.: Complex
matching of rdf datatype properties. In: Ontology Matching (2011)

24. Nunes, B.P., Mera, A., Casanova, M.A., Breitman, K., Leme, L.A.P.P.: Complex matching of
rdf datatype properties. Technical Report MCC-11/12 (September 2011)

25. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

26. Raunich, S., Rahm, E.: Atom: Automatic target-driven ontology merging. In: ICDE Confer-
ence, pp. 1276–1279 (2011)

27. Ritze, D., Paulheim, H.: Towards an automatic parameterization of ontology matching tools
based on example mappings. In: Ontology Matching (2011)

28. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches, pp. 146–171 (2005)
29. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE

Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
30. Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual and cross-

lingual ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 665–680.
Springer, Heidelberg (2011)

31. Wang, P., Zhou, Y., Xu, B.: Matching large ontologies based on reduction anchors. In: IJCAI,
pp. 2343–2348 (2011)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 209–223, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Coordination Issues in Artifact-Centric
Business Process Models

Giorgio Bruno

Politecnico di Torino, Torino, Italy
giorgio.bruno@polito.it

Abstract. In recent years, research in the field of business processes has shown
a shift of interest from the activity-centric perspective to the artifact-centric one.
The benefits, such as improved communication among the stakeholders and
higher potential for flexibility, come from the focus on the key business entities
(called artifacts) and on the distribution of the control flow in the life cycles of
the artifacts. However, this perspective also entails a number of challenges,
such as the coordination between the life cycles of the artifacts. This paper
proposes an approach based on correlated transitions, i.e., transitions that
belong to different life cycles and must be performed jointly. A new notation
called Acta is illustrated with the help of two motivating examples.

Keywords: business processes, artifacts, life cycles, correlations, tasks.

1 Introduction

While it is commonly accepted that a business process is a standard way of organizing
work in a business context, the consent on what the starting point in the investigation
of the intended business should be is no longer unanimous.

According to the traditional definitions, a business process consists of a number of
tasks designed to produce a product or service and is meant to cross functional
boundaries in that it may involve members of different departments [5]. This point of
view has spurred a fruitful line of research, now labeled as activity-centric, and a
standard notation, BPMN [2].

In recent years, the notion of PAIS (Process-Aware Information System) [6],
which advocates a tighter integration between the areas of information systems and
business processes, has brought about a shift of interest from the activity-centric
perspective to the artifact-centric one. The latter emphasizes the identification of the
key business entities (called artifacts) and of their life cycles, which show how the
artifacts evolve over time through the execution of business operations (a.k.a. tasks).

The analysis (reported in [4]) of the operations of a global financing division
resulted in a high-level model consisting of 3 major artifact types, whose life cycles
include 18 states and approximately 65 tasks. The major benefit is the right level of
granularity, which facilitates communication among the stakeholders and helps them
focus on the primary purposes of the business.

210 G. Bruno

The major criticism raised against the activity-centric approach is the emphasis
placed on the tasks and the control-flow elements, while the business entities are not
considered as first-class citizens. As a matter of fact, the data flow in the activity-
centric approach is based on process variables and there is no automatic mapping
between business entities and process variables. Moreover, this perspective seems to
be more suitable for automated processes than for human-centric ones, as it lacks an
adequate representation of the situations in which different courses of action are
possible and the choices depend on human decisions. The artifact-centric approach
has the potential for coping with such issues owing to the emphasis placed on the
business entities on which human decisions are grounded.

A critical aspect in the artifact-centric approach is the handling of tasks (called
spanning tasks) operating on two or more artifacts in that some form of coordination
of their life cycles is needed. This paper grounds the coordination of the life cycles on
the notion of correlated transitions, i.e., transitions that belong to different life cycles
and must be performed jointly. Three kinds of correlation are examined: they are
referred to as generative, selective and direct correlation.

A new notation called Acta (Artifacts, Correlations and TAsks) is also presented.
Acta models are made up of two components, the structural model and the dynamic
one. The structural model basically shows the artifacts in terms of their properties and
the dynamic model is the collection of their life cycles.

Another important point is the impact that the artifact-centric approach has on the
structure of work lists. This paper presents a solution in which the work lists are
organized on the basis of the artifacts their owners are in charge of.

This paper is organized as follows. Section 2 is an overview of Acta and of
coordination issues; section 3 describes two motivating examples concerning a
purchase requisition process and a negotiation one. Section 4 illustrates structural
models and section 5 analyzes the correlated transitions needed in the dynamic
models of the examples. Section 6 presents the structure of work lists, section 7
discusses the related work and section 8 provides the conclusion of the paper.

2 Acta Models and Coordination Issues

Acta models are made up of two components, the structural model and the dynamic
one. The structural model shows the entities involved in a business process, in terms
of their types, associations and attributes. Emphasis is placed on mandatory
relationships and associative attributes, which play an important part in the
specification of the tasks, as will be illustrated in the next sections.

The dynamic model of a business process is the collection of the life cycles of the
artifact types needed. A life cycle defines the path to be followed over time by any
artifact of the type under consideration from the initial state to a final one, and it is
represented as a state-transition diagram. The states represent the stages in the path
and the transitions cause the artifact to move from the current state to the next one. In
this paper, transitions denote human tasks, i.e., actions to be carried out by persons
who participate in the process by playing specific roles. Transitions may also be
associated with automatic tasks.

 Coordination Issues in Artifact-Centric Business Process Models 211

A major issue in the artifact-centric perspective is the coordination of the life
cycles of the business entities involved. Coordination in Acta is achieved through
correlated transitions, i.e., transitions that belong to different life cycles and must be
performed jointly.

A group of correlated transitions is the result of a unit of work, called spanning
task, which affects artifacts of different types. Three kinds of correlation are
examined in this paper: generative, selective and direct correlation. A short account is
given in this section, while a more detailed description is provided in the next sections
with the help of the motivating examples.

In a group of correlated transitions, one is the master transition and the others are
the subordinate transitions; the spanning task is associated with the master transition.
The artifact acted on by the master transition is called master artifact and the artifacts
affected by the subordinate transitions are called subordinate artifacts.

When the effect of a spanning task is the generation of new artifacts, generative
correlation takes place. The correlated transitions are the master transition, i.e., the
one affecting the master artifact, and the initial transitions in the life cycles of the new
artifacts. Generation acts are usually remembered through associations between the
master artifact and the subordinate ones. For example, an account manager who is not
able to directly fulfill a purchase requisition coming from a customer generates a
number of requests for quote for different suppliers: the spanning task enterRequestsQ
operates on a purchase requisition (the master artifact) so as to produce new requests
for quote (the subordinate artifacts). The purchase requisition changes state and the
requests for quote enter the initial state; in addition, the requests for quote are
associated with the purchase requisition.

Selective correlation means that correlation stems from a selection of artifacts. For
example, the account manager selects one request for quote from among those that
have been fulfilled by the suppliers so as to fulfill the purchase requisition. Both the
request for quote and the purchase requisition change state; the selection is
remembered by means of a new association established between the artifacts.
Selective correlation may be additive or constitutive. In the first case, a new
association is established between artifacts, such as the purchase requisition and the
request for quote, already connected. In the second case, the artifacts become
connected for the first time; an example is a spanning task that enables a broker to
match a request and an offer, and the result is a connection between two artifacts that
before were unrelated.

Direct correlation means that a spanning task can also bring about a change of
state for the artifacts that are not input artifacts but are associated with the input ones.
For example, a confirmed purchase requisition makes the account manager produce a
confirmed request for quote: the request for quote is the one associated with the input
purchase requisition.

Acta models are meant to be conceptual models: tasks specify their intended
effects by means of post-conditions, while constraints are expressed by pre-conditions
and selections by selection rules.

212 G. Bruno

3 Description of the Examples

This section presents a short description of two motivating examples, whose models
will be illustrated in the next sections. The description focuses on the most important
aspects and disregards the details, such as the attributes of the entities.

3.1 Purchase Requisition Process

The process enables a selling organization, referred to as the seller, to carry out
commercial transactions with its partners (customers and suppliers). Three roles are
involved, account manager, customer and supplier. Account manager is an internal
role of the seller while the other roles designate external users acting on behalf of the
partners. The process runs on a platform that enables all the users to operate on the
same information system.

Customers enter purchase requisitions to get the prices for the goods they need.
The purchase requisitions are handled by the account managers. The process assumes
that each customer is served by one specific account manager, who may serve several
customers. While processing a purchase requisition, an account manager has three
options: they may fulfill it, reject it or involve a number of suppliers.

In the third case, they enter a number of requests for quote, each one directed to a
different supplier; this is a case of generative correlation. Suppliers may fulfill a
request for quote or may reject it. The account manager may select one request for
quote from among those fulfilled (additive selective correlation) so as to fulfill the
corresponding purchase requisition, or they may give up and reject the purchase
requisition. In addition, they must withdraw all the requests for quote fulfilled except
for the one selected, if any.

The customer may confirm a fulfilled purchase requisition or may withdraw it. If
the purchase requisition is based on a request for quote, the account manager is in
charge of confirming or withdrawing it, respectively; this is a case of direct
correlation.

The details regarding the attributes of the entities are ignored; however, the general
meaning of the above-mentioned actions can be inferred from the verbs used.
Therefore, fulfilling a request implies providing the information required, e.g., the
prices of the goods needed by a customer; confirming (or withdrawing) a request
means that the requester is satisfied (or dissatisfied) with the information provided by
the recipient of the request.

3.2 Negotiation Process

The process enables brokers to manage sales campaigns. After a broker has started a
campaign, sellers may enter offers of products and buyers may enter requests for
products. The broker may match one or more requests and one or more offers to
produce a transaction; the matching rule is not considered. This is a case of
constitutive selective correlation: the selection is made from among peer entities and
there are no direct connections between them.

The broker may reject requests and offers at their discretion. After some time, the
campaign is closed by the broker.

 Coordination Issues in Artifact-Centric Business Process Models 213

4 Structural Models

Structural models show the entities involved in business processes, in terms of their
types, associations and attributes. They extend UML class models with the purpose of
emphasizing mandatory relationships and associative attributes, which play an
important part in the specification of the tasks, as will be illustrated in the next
section.

Relationships are connections between pairs of types; they represent the
associations that may exist between the instances of the types involved. Cardinalities
place constraints on the number of connections between instances. The standard
cardinality is many-to-many and indicates that any entity of one type may be
connected to a number of entities of the other type; this number is not predetermined
and may be zero as well.

Associations may be mandatory on one side and optional on the other; in this case,
the relationship is shown as an oriented link whose origin is the type for which the
association is mandatory.

Mandatory relationships are important in that they determine which associations
have to be set when a new entity is generated. Depending on the multiplicity of the
relationship, the newly generated entity will be connected to one or more entities of
the destination type. On the destination side of a mandatory relationship, the default
multiplicity is one; on the source side it is 0 to many.

The structural model of the purchase requisition process is shown in Fig.1a. Types
Customer, Supplier and AccountMgr represent the participants in the process in terms
of the roles they play; such types are referred to as role types. Types PurchaseR and
RequestQ represent purchase requisitions and requests for quote, respectively.

Relationships imply attributes called associative attributes in the entities involved.
Such attributes refer to single entities or collections of entities depending on the
cardinalities of the corresponding relationships. The names of the associative
attributes may be omitted and in such cases they take the name of the type they refer
to, in the singular form or in the plural one (with the initial in lower case) depending
on the cardinality of the relationship. The name of a relationship is obtained from the
names of the types involved (if there are no other relationships between the same pair
of types) or from the names of the corresponding associative attributes (either explicit
or implicit) in alphabetic order. For example, the name of the relationship between
AccountMgr and Customer is accountMgr-customers or AccountMgr-Customer.

The meaning of the mandatory relationships appearing in Fig.1a is as follows.
Purchase requisitions are generated by customers, and then a relationship (Customer-
PurchaseR) is needed to identify the generator of each purchase requisition.
Relationship AccountMgr-Customer connects a customer with the account manager
who will take care of their purchase requisitions.

214 G. Bruno

Customer

RequestQ

AccountMgr

PurchaseR

Supplier

0..1 rfqSelected0..1

Customer

OfferCampaignRequest

Supplier

Transaction

Broker

1..n1..n

0..10..1

(a)

(b)

Fig. 1. The structural models of the processes: purchase requisition (a) and negotiation (b)

Requests for quote are complements of purchase requisitions; then when a new
request for quote is generated, it is associated with the purchase requisition it is a
complement of, and it is also connected to the supplier entity representing the
recipient of the request for quote. The relationships involved are purchaseR-requestsQ
and supplier-requestsQ, respectively; term requestsQ is the implicit associative
attribute on the RequestQ side. Relationship purchaseR-rfqSelected associates a
purchase requisition with the request for quote that has been selected from among
those fulfilled (if any).

Associative attributes are essential for navigational purposes as will be illustrated
in the next section. For example, if pr denotes a certain purchase requisition,
navigational expression “pr.customer.accountMgr” returns the AccountMgr entity
related to the Customer entity associated with the entity denoted by pr. The syntax of
navigational expressions in Acta is based on a simplified version of OCL [16].

In the negotiation process, whose structural model is shown in Fig.1b, types
Broker, Customer and Supplier represent the participants. Campaigns are managed by
brokers and such associations are represented by relationship Campaign-Broker.
Transactions are made up of a number of requests and a number of offers; however,
since requests and offers may be rejected, the cardinality of the relationships Request-
Transaction and Offer-Transaction is 0 or 1 on the transaction side.

 Coordination Issues in Artifact-Centric Business Process Models 215

5 Dynamic Models

This section presents the dynamic models of the motivating examples with the
purpose of illustrating the three kinds of correlation introduced in section 2. The
dynamic model of a business process is the collection of the life cycles of the artifact
types needed; for convenience they are shown in the same figure. The dynamic
models of the purchase requisition process and of the negotiation process are shown
in Fig.2 and in Fig.3, respectively. The following subsections provide the general
features of the Acta notation, illustrate initial tasks and post-conditions, and present
the examples of the correlations introduced in section 2.

5.1 General Features of the Acta Notation

Tasks are associated with transitions. Human tasks show the role required, or its
acronym, before the task name, e.g. “AM: enterRequestsQ”. Automatic tasks have no
role indications. Spanning tasks appear in two or more life cycles and group a number
of correlated transitions. The names of such transitions are identical; however, the
master transition can be distinguished from the subordinate ones in that its name
appears in bold while the other names are shown in italics. Moreover, role names only
appear on master transitions.

The process model specifies the effects and the constraints of the tasks by means of
post-conditions and pre-conditions, respectively; they are based on the structure of the
entities provided by the information model and are expressed with a simplified form
of OCL [16].

A human task is assigned to one role, but several participants may play the same
role; it is then necessary to determine whether any participant playing the role
required is entitled to perform the task or a specific participant is needed. The
performer is generic in the first case, and specific in the second one. The performer of
task enterPurchaseR in Fig.2 is generic, as indicated by the qualifier (any) following
the role acronym. The performers of all the other human tasks are specific. The
specificity is determined by a connection, either direct or indirect, between the role
type and the artifact type. The account manager in charge of a given purchase
requisition is not a generic one, but the one associated with the customer who issued
the purchase requisition. In general, a rule is needed to specify the desired connection;
however, in simple situations like those addressed in this paper, there is no need to
express these rules explicitly. The simplification is due to the assumption that the
connections between roles and artifact types are based on chains of mandatory
relationships; what is more, such chains are assumed to be unique. As a matter of fact,
on the basis of the information model shown in Fig.1a, there is only one such path
from type PurchaseR to type AccountMgr and it consists of types PurchaseR,
Customer and AccountMgr.

If a final state, i.e., a state having no output transitions, implies a notification for a
specific participant, the role name (or acronym) appears after the state name. For
example, when a purchase requisition enters state rejected (shown in Fig.2), a
notification has to be sent to the appropriate customer; the same rules introduced for
the identification of the task performers apply in this case as well.

216 G. Bruno

5.2 Initial Tasks and Post-Conditions

The purchase requisition process consists of the purchase requisition (PurchaseR) life
cycle and the request for quote (RequestQ) one.

Purchase requisitions are entered by customers when they want to. An initial task is
then needed: it is named enterPurchaseR and is associated with the initial transition,
i.e., the one entering the initial state and having no source icon. Its post-condition
“new PurchaseR” appears in the task description section below the life cycle. The
“new” operator asserts that a number of new entities of the type specified will exist
after the execution of the task. If the multiplicity is 1, it is omitted; multiplicity n (cf.
task enterRequestsQ) means that the number is decided by the performer of the task.

Due to mandatory relationship Customer-PurchaseR, the newly generated artifact
needs to be connected with a customer entity. The partners of mandatory relationships
are automatically searched for among the entities forming the context of the task. In
general, the context of a task includes the current artifact, the entity representing the
performer of the task (referred to as the performer entity) and the entities selected by
the performer. The context of task enterPurchaseR consists of the performer entity
only, which, however, fits the requirements of the relationship in that it is a customer
entity; therefore, the newly generated purchase requisition will be connected to this
entity.

5.3 Generative Correlation

A purchase requisition in the initial state is handled by an account manager who may
reject or fulfill it, or enter a number of requests for quote directed to suitable
suppliers.

Task enterRequestsQ performs a generative correlation. This effect is implied by
post-condition “new n RequestQ”. The mandatory relationships related to type
RequestQ require a new request for quote to be connected to two entities, i.e., a
purchase requisition and a supplier entity. The former entity is matched by the current
artifact but for the latter entity the context of the task provides no match; in such
cases, it is up to the performer to choose a suitable entity from among those available.
The selection may be subjected to the constraints indicated in the requirements, if any.

At the end of the task, the purchase requisition is moved in the pending state.

5.4 Additive Selective Correlation

A newly generated request for quote may be fulfilled or rejected by the supplier.
When the purchase requisition is in the pending state, the account manager may reject
it with task reject2 or they may fulfill it with task fulfill2 provided that a request for
quote is chosen from among those fulfilled by the suppliers.

Task fulfill2 carries out an additive selective correlation in that the quote to be
chosen is already connected with the purchase requisition. The master transition is in
the PurchaseR life cycle.

 Coordination Issues in Artifact-Centric Business Process Models 217

initial

rejected, C

pending

fulfilled

confirmedwithdrawn

handled

initial

selected

fulfilled

PurchaseR life cycle

C (any): enterPurchaseR

AM:
enterRequestsQ

AM: reject

RequestQ life cycle

AM:fulfill

AM: reject2

AM:
fulfill2

C: confirmC: withdraw

AM:
confirm2

AM:
withdraw2

enterRequestsQ

S: reject

S: fulfill

AM: withdraw
fulfill2

confirm2

withdraw2

rejected, AM

Abbreviations for roles
C = Customer; AM = AccountMgr.
Tasks
enterPurchaseR:: post: new PurchaseR.
enterRequestsQ:: post: new n RequestQ.
fulfill2:: with requestQ in purchaseR.requestsQ; post: purchaseR.rfqSelected == requestQ.
confirm2:: pre: purchaseR.rfqSelected != null; with requestQ as purchaseR.rfqSelected.
withdraw2:: pre: purchaseR.rfqSelected != null; with requestQ as purchaseR.rfqSelected.

confirmed, S

withdrawn, S

Abbreviations for roles
S = Supplier; AM = AccountMgr.

Fig. 2. The dynamic model of the purchase requisition process

The description of task fulfill2 includes two parts, i.e., the selection rule and the
post-condition. The selection rule “with requestQ in purchaseR.requestsQ”,
introduced by keyword with, indicates that one entity of type RequestQ is needed and
it is to be selected from among those associated with the input purchase requisition.
As a general rule, the entities selected by the performer become part of the context of
the task. The state of the requests for quote is not explicitly indicated as it can be
found in their life cycle; in fact, it is the input state (fulfilled) of the subordinate
transition fulfill2. The selection basis, which is the collection of the entities from
among which the choice has to take place, may be empty and in this case the spanning
task is not enabled.

 The post-condition “purchaseR.rfqSelected == requestQ” indicates that the choice
is recorded by means of a new association based on relationship purchaseR-
rfqSelected. Since requestQ is the term used in the selection rule to denote the request

218 G. Bruno

for quote chosen by the performer, the associative attribute rfqSelected will refer to
that request for quote.

A request for quote in state fulfilled may be withdrawn by the account manager;
the reason is to prevent the requests for quote not selected from remaining blocked in
this state.

5.5 Direct Correlation

The customer may confirm or withdraw a fulfilled purchase requisition, whose state
becomes confirmed or withdrawn, respectively.

If the purchase requisition is based on a request for quote, the account manager is
in charge of confirming or withdrawing it with tasks confirm2 or withdraw2,
respectively. These tasks must be performed only if there is a request for quote
associated with the input purchase requisition, i.e., if associative attribute rfqSelected
is not null. The conditional nature of the tasks is indicated by the pre-condition
“purchaseR.rfqSelected != null”. If the pre-condition is false the alternative transitions
without labels (which are automatic transitions) are carried out so as to bring the
purchase requisition to final state “handled”.

Tasks confirm2 and withdraw2 provide an example of direct correlation: if they are
enabled, they also act on the request for quote which is obtained from the input
purchase requisition through the associative attribute rfqSelected, as expressed by the
selection rule “with requestQ as purchaseR.rfqSelected”. The request for quote is then
moved to state confirmed or to state withdrawn.

5.6 Constitutive Selective Correlation

The negotiation process whose dynamic model and information one are shown in
Fig.3 and in Fig.1b, respectively, presents an example of constitutive selective
correlation.

The process consists of the Campaign, Offer and Request life cycles. When a
campaign is open, suppliers may enter offers and customers may enter requests. They
do so with the initial tasks enterOffer and enterRequest, respectively.

Generating a new offer or a new request implies submitting it to an open campaign;
therefore the generation of these artifacts takes place within a context, which is
determined by the choice of an open campaign, this choice being made by the
performer of the task. For this reason, the descriptions of the tasks include the
selection rule “with campaign (lifecycleState == open), which means that their
performers have to select an open campaign as a contextual entity for the newly
generated artifact. The term “lifecycleState” denotes a system attribute that provides
the name of the current state in the life cycle of the artifact under consideration.

The broker can reject offers and requests or combine them into transactions. Task
genTransaction carries out a constitutive selective correlation in that no previous
connections exist between the artifacts combined in the newly generated transaction.
The requirements specify no matching rule for the selection of offers and requests; if,
instead, one is given, it will be expressed as a pre-condition of the task.

 Coordination Issues in Artifact-Centric Business Process Models 219

initial

C (any): enterRequest

Request life cycle

rejected, C

B: reject

B (any): enterCampaign

Campaign life cycle

B: genTransaction

open

genTransaction

Offer life cycle

closed

B: close

initial

B: start

accepted, C

initial

S (any): enterOffer

rejected, S

B: reject

accepted, S

Abbreviations for roles
B = Broker.
Tasks
genTransaction::
with offers in campaign.offers,
with requests in
campaign.requests;
post: new Transaction.

Abbreviations for roles
B = Broker, C = Customer.
Tasks
enterRequest::
with campaign (lifecycleState
== open); post: new Request.

Abbreviations for roles
B = Broker, S = Supplier.
Tasks
enterOffer::
with campaign (lifecycleState
== open); post: new Offer.

genTransaction

Fig. 3. The dynamic model of the negotiation process

6 Artifact-Centric Work Lists

Business processes are means to organize work and their models should then show
what the units of work are and to which roles they are entrusted. During their
execution, the units of work are assigned to the appropriate participants through their
work lists.

However, the organization of the work lists is not independent of the approach
adopted for the representation of the business processes. With activity-centric
notations, such as BPMN, the entries of the work lists draw on the tasks defined in the
process models and then their labels follow the pattern “task-name info” where info
stands for information taken from the task parameters. By clicking on an entry, a
participant may perform the corresponding task through the graphical interface
provided by the implementation.

In artifact-centric notations, instead, the focus is on the artifacts and then it is
natural to structure the work lists on the basis of the artifacts that their owners are in
charge of. This section discusses the issue with reference to the examples illustrated
in the previous sections.

The content of work lists is a kind of viewpoint that the participants in the process
are provided with on the artifacts they are in charge of. The viewpoint includes the
options currently available and it changes on the basis of the decisions taken by the
participants. One of the challenges is the identification of the most expressive

220 G. Bruno

technique to help participants work in this way. The Acta approach suggests replacing
textual entries with a more structured representation stressing the distinction between
master artifacts and subordinate ones.

An example is given in Fig.4 with reference to the purchase requisition process. A
work list for a certain account manager is presented; Fig.4a shows the content of the
work list before task fulfill2 is performed and Fig.4b shows it immediately after.

The work list is organized in two columns, the left one referring to master artifacts
and the right one to subordinate artifacts. The master column includes two purchase
requisitions, pr2 in the initial state and pr1 in the pending state; pr1 and pr2 represent
identifiers. Each entry contains three major fields: the identifier, the life cycle state
and the options available. Artifact pr2 is in the initial state and hence there are no
subordinate items; the performer may select one option out of three. On the contrary,
purchase requisition pr1 has three subordinate requests for quote, i.e., rfq1 and rfq3 in
state fulfilled and rfq2 in state rejected. For the last one, there is no option available,
while the others may be rejected or selected.

enterRequestsQ, fulfill, rejectpr2 initial

PurchaseR

fulfill2, reject2pr1 pending

RequestsQ

fulfilled

fulfilled

rejected

reject, select

reject, selectrfq1

rfq2

rfq3

enterRequestsQ, fulfill, rejectpr2 initial

PurchaseR

pr1 fulfilled

RequestsQ

fulfilled

selected

rejected

rejectrfq1

rfq2

rfq3

(a)

(b)

Fig. 4. An example of work list before (a) and after (b) fulfill2 is performed

The select option appears when an artifact, such as rfq1 or rfq3, may be involved in
a selective correlation through a subordinate transition. Since a subordinate transition
can only take place in conjunction with the corresponding master transition, the select
option enables the performer to mark a subordinate artifact before carrying out the
spanning task. As a matter of fact, if the account manager wants to fulfill purchase
requisition pr1 with the help of request for quote rfq3, first they select rfq3 and then
they choose the fulfill2 option on pr1. At the end of the task, the state of pr1 is
fulfilled and no options are available because this state is handled by the customer
who issued the purchase requisition. The request for quote selected, i.e., rfq3, is in the
selected state and no options are available because the output transitions of this state
are directly correlated with their master transitions; when the master artifact is acted

 Coordination Issues in Artifact-Centric Business Process Models 221

on, the subordinate artifacts are acted on as well. For the request for quote rfq1, the
select option is no longer available as the master artifact is no longer in the pending
state.

7 Related Work

According to Sanz [17], the roots of the artifact-centric perspective can be found in
past research on entity-based dynamic modeling, but only in recent years, the core
ideas have permeated the discipline of Business Process Management.

Term artifact has been introduced in [15] to designate a concrete and self-
describing chunk of information that business people use to run a business. The
artifact types and their life cycles come from experience and show how the actual
entities evolve over time: the business activities, which are responsible for the state
transitions, are introduced in a subsequent step of analysis along with the business
rules governing their execution.

In the case-handling approach [1], a process is meant to take care of a specific
entity type (e.g., an insurance claim), called the process case: the purpose is to
improve the flexibility of the control flow as the process evolution depends on the
state of the case and not only on the tasks performed [10].

The BALSA framework [7] builds on the notion of artifact and adds services,
which encapsulate units of work acting on one or more artifacts, and associations,
which specify various kinds of constraints for the services.

In the artifact-centric approach, there are three major issues to cope with, i.e.,
structure, dynamics and coordination. Structure is about the properties (attributes and
associations) of the artifacts involved, dynamics encompass the artifact life cycles and
coordination is concerned with the synchronization of the life cycles. Such issues are
dealt with in various ways, ranging from separate models to holistic ones.

The Guard-Stage-Milestone (GSM) approach [8] is a holistic technique: the major
building blocks are the artifacts, which contain informational aspects (attributes and
associations), life cycles and coordination items (events and rules). The drawback is
the difficulty of understanding the propagation of the events between the life cycles.
For example, an activity performed on an entity can produce an event that is targeted
at another entity and triggers an activity affecting this entity. The second activity then
turns out to be correlated with the first one.

In ArtiNet [9] and Chant [3], the life cycles are integrated in one model and
coordination is obtained with transitions operating on two or more artifacts. Models
are monolithic in that they are based on Petri nets where places represent artifact
states and tokens denote artifacts.

In other approaches, where the relationships between artifact types are explicitly
defined, coordination takes advantage of them, in particular of hierarchical
relationships. Hierarchical structures, such as those related to physical systems, are
addressed by COREPRO [14], which provides specific means to achieve mutual
synchronization between the state of a compound object and those of its components.
The approach presented in [12] is aimed at automatically generating a process model

222 G. Bruno

from the entity life cycles provided that the synchronization points are manually
identified beforehand.

The PHILharmonicFlows approach [11] is based on micro processes and macro
processes; the former define the life cycles of the artifacts and the latter provide a
coordination mechanism consisting of macro steps and macro transitions. A macro
step is associated with an artifact type and a particular state of its life cycle; at run
time, it refers to the artifacts being in that state. A macro transition activates an output
macro step only when the artifacts collected in the input macro steps satisfy certain
conditions, which are related to the structure of the artifacts (in particular to the
associations). In Acta, coordination is carried out by the spanning tasks, which are
included in the life cycles and then no separate coordination model is needed.

With the Proclets framework [13], life cycles can be defined in separate building
blocks, called Proclets, equipped with ports through which they can send and receive
messages. The drawback is to address coordination with notions, such as messages
and send/receive operations, which are too close to the programming domain.

8 Conclusion and Future Work

The artifact-centric approach is a promising viewpoint on business processes in that it
places emphasis on the life cycles of the major business entities involved. However, it
must face a number of challenges, such as the coordination of the life cycles and the
handling of tasks spanning two or more life cycles.

This paper has analyzed these challenges on the basis of a new notation named
Acta and with the help of two motivating examples. The main contribution of this
paper is the notion of correlated transitions along with their classification in three
major kinds, i.e., generative, selective and direct correlations. This notion is
grounded on the distinction between master transitions and subordinate ones; the
corresponding artifacts are called master artifacts and subordinate ones, respectively.
Tasks spanning two or more life cycles determine a group of correlated transitions
operating on one master artifact and on a number of subordinate artifacts. A spanning
task is defined in the life cycle of the master artifact and its name appears in the labels
of the subordinate transitions.

The artifact-centric approach has greater potential than the activity-centric one for
coping with human-centric processes in which different courses of action are possible
and the choices depend on human decisions. For this reason, it is essential to work out
new structures for the work lists. This paper has illustrated one in which the artifacts
are shown along with the options compatible with their states and the spanning tasks
take advantage of a visual representation emphasizing the connections between the
master artifacts and the subordinate ones.

The Acta notation is a proof of concept and current work is devoted to the
definition of a suitable support environment.

Acknowledgements. The author wishes to thank the anonymous reviewers for their
helpful comments.

 Coordination Issues in Artifact-Centric Business Process Models 223

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering 53, 129–162 (2005)

2. BPMN, Business Process Model and Notation, V.2.0,
http://www.omg.org/spec/BPMN/ (retrieved May 13, 2013)

3. Bruno, G.: Combining information and activities in business processes. In: Liddle, S.W.,
Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp.
481–488. Springer, Heidelberg (2012)

4. Chao, T., et al.: Artifact-Based Transformation of IBM Global Financing. In: Dayal, U.,
Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 261–277.
Springer, Heidelberg (2009)

5. Davenport, T.H., Short, J.E.: The new industrial engineering: information technology and
business process redesign. Sloan Management Review, 11–27 (Summer 1990)

6. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information
Systems: bridging people and software through process technology. Wiley, New York
(2005)

7. Hull, R.: Artifact-centric business process models: Brief survey of research results and
challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp.
1152–1163. Springer, Heidelberg (2008)

8. Hull, R., et al.: Introducing the Guard-Stage-Milestone approach for Specifying Business
Entity Lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp.
1–24. Springer, Heidelberg (2011)

9. Kucukoguz, E., Su, J.: On lifecycle constraints of artifact-centric workflows. In: Bravetti,
M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 71–85. Springer, Heidelberg
(2011)

10. Künzle, V., Reichert, M.: Towards object-aware process management systems: Issues,
challenges, benefits. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 197–
210. Springer, Heidelberg (2009)

11. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-aware
process management. Journal of Software Maintenance and Evolution: Research and
Practice 23(4), 205–244 (2011)

12. Küster, J.M., Ryndina, K., Gall, H.C.: Consistency of business process models and object
life cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90. Springer,
Heidelberg (2007)

13. Mans, R.S., et al.: Proclets in healthcare. Journal of Biomedical Informatics 43(4), 632–
649 (2010)

14. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large
process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 131–149. Springer, Heidelberg (2007)

15. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

16. OCL, Object Constraint Language, V.2.3.1, http://www.omg.org/spec/OCL/
(retrieved May 13, 2013)

17. Sanz, J.L.C.: Entity-centric operations modeling for business process management - A
multidisciplinary review of the state-of-the-art. In: 6th IEEE International Symposium on
Service Oriented System Engineering, pp. 152–163. IEEE Press, New York (2011)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 224–238, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Exploring Data Locality
for Clustered Enterprise Applications

Stoyan Garbatov and João Cachopo

INESC-ID Lisboa / Instituto Superior Técnico,
Universidade Técnica de Lisboa, Rua Alves Redol, 9

1000-029 Lisboa, Portugal
stoyangarbatov@gmail.com, joao.cachopo@ist.utl.pt

Abstract. Exploring data locality is crucial to achieve good performance on a
distributed system. For many complex, constantly evolving applications, rely-
ing on programmers to write their code so as to explore data locality results of-
ten in sub-par performance. We propose an automatic approach for dealing with
this problem. Instead of expecting programmers to identify data locality, the so-
lution developed here relies on a stochastic analysis of the data-access patterns
exhibited by the application at run-time. The analysis makes it possible to corre-
late not only domain data but application functionality as well. This information
is used to explore data locality in clustered enterprise applications by combining
two orthogonal and complementary approaches. The first approach reduces the
memory foot-print by using a more compact in-memory representation for the
application's domain classes and, furthermore, by delaying the loading of less
frequently accessed data. The second approach generates a new request distri-
bution policy. It employs the Latent Dirichlet Allocation partitioning algorithm,
generating sub-sets of highly correlated application functionality. Every cluster
node is responsible for processing requests belonging to a single sub-set. The
combination of these approaches allows cluster nodes to make better use of
their memory, thereby increasing the computational efficiency of the system.
The work has been validated on the TPC-W benchmark, demonstrating signifi-
cant performance improvements.

Keywords: heap management; in-memory object representation; persistence;
clustered web servers; load balance; locality awareness; Latent Dirichlet Allo-
cation; scalability; performance.

1 Introduction

Nowadays, it is well-known that the performance of any computational system is
strongly dependent on its data locality. The “principle of locality”, which was
introduced by Denning [7], has two basic variants, temporal and spatial. Over short
periods of time, a program distributes its memory references non-uniformly over its
address space, but the portions of the address space that are favoured remain largely
the same for long periods of time. Temporal locality implies that the information that
will be in use in the near future is likely to be already in use. Spatial locality states

 Exploring Data Locality for Clustered Enterprise Applications 225

that the portions of the address space that are in use consist of a small number of indi-
vidually contiguous segments of that address space. As a consequence, locality of
space denotes that the referenced locations of the program in the near future are likely
to be near the currently referenced locations.

An application can be qualified as having good data locality if it operates in such a
way that whenever it is executing a given functionality, all the relevant and necessary
data for its successful completion is in an easily accessible location, with minimal
presence of unnecessary data intermingled with it. While it is easy to define good
locality in such a way, achieving it in practice is quite complicated. The first difficulty
resides in identifying the working set of a given functionality, prior to executing it.
The expression “working set” is employed here to designate the minimal set of
application data without which certain functionality cannot be executed in its com-
pleteness. The non-determinism present in most systems makes this even harder. The
second major difficulty is to guarantee that the necessary data is in an easily-
accessible location. For a system where application data originates from a persistence
layer (such as data-base) the trivial solution would be to load all existing data into
memory and it would be “easily-available” for any operation. Unfortunately, having
all data in memory does not automatically lead to good locality. This is because, with
respect to any single operation, the large volume of unnecessary data that is inter-
weaved between the relevant pieces of information, leads to a slow-down in the proc-
ess of accessing all the material information. Good locality would only be achieved if
the necessary data were placed spatially close to one another, to minimize access
costs.

These deliberations lead to the following conclusion. The direction that should be
followed, when attempting to achieve better locality, is to develop an automatic
solution capable of analyzing and predicting with accuracy a target application’s be-
haviour, in terms of the data accesses it performs. The solution should explore the
correlation that has been identified to exist between data and functionality, when de-
ciding upon the appropriate measures that should be taken, to improve the target’s
locality and, subsequently, its performance and computational efficiency.

Taking this into account, our work presents a solution focused on improving the
performance and computational efficiency of clustered Java enterprise applications.
The solution developed here can be applied, without any modifications (save trivial
ones), to any large-scale distributed Java application where domain data originates
from an external source (such as a persistence layer) that has fine granularity control
over the data that is being loaded.

The solution consists in two complementary approaches for achieving the goals of
this work. Both approaches make use of stochastic models for analyzing and predict-
ing the behaviour of the target system, with regards to the data accesses it performs at
run-time.

The first approach reduces the memory footprint of target applications’ domain
data. At compile time, it identifies the most compact and efficient in-memory repre-
sentation of domain objects, while delaying, at run-time, the loading of data with low
probability of being accessed.

226 S. Garbatov and J. Cachopo

The second approach consists in a request routing algorithm that explicitly takes
into account the correlation between the working-sets of incoming requests, distribut-
ing them in a way that attempts to maximize the data locality of operations performed
at server nodes. With this algorithm, server nodes are responsible for processing only
a particular subset of request types: Requests are partitioned into disjoint groups,
based on their working-sets. The composition of the working-sets of request types is
established by using automatic data access pattern analysis and prediction routines.
The Latent Dirichlet Allocation partitioning algorithm is used to maximize the corre-
lation between the working sets of all requests placed in a particular group. This is
done to improve the locality of all operations that are to be executed on a given node.

It is important to note that the present article is a continuation of the studies pre-
sented in [14] and [15]. The main contribution of the current work resides in the in-
corporation of the two previously developed approaches and a more extensive and
comprehensive evaluation of the benefits of their usage.

The article is organized as follows. Section 2 discusses related work. Section 3 de-
scribes our new proposal in detail. Section 4 presents the benchmark that we used to
evaluate the solution and discusses the results obtained. Finally, Section 5 presents
some concluding remarks.

2 Related Work

Accounting for the two complementary approaches developed in this work, for the
purpose of improving a clustered web server system's performance and computational
efficiency, the relevant related works for each shall be discussed separately.

2.1 Memory Management

Acceptable application performance cannot be expected without proper memory man-
agement. Some research works, such as [17], [6] and [3] focus on analyzing the con-
ditions under which application data is allocated and manipulated in the heap. Their
goal is to devise ways for improving the memory management of the data.

Jones and Ryder [17] performed a study on Java objects’ lifetimes. They suggest
that the lifetimes of allocated instances belong to a reduced number of small ranges.
Furthermore, the authors state that it is possible to form highly cohesive groups of
allocation sites, based on the lifetime length of their allocated objects. They demon-
strate that objects associated to identically grouped allocation sites usually only exist
during certain phases of an application’s execution. The authors reach the conclusion
that to perform an accurate prediction of an object’s lifetime distribution, its necessary
to take into account an additional stack level, besides the allocation site itself.

Bhattacharya et al. [3] proposed an approach that decreases the loss in performance
observed whenever there is memory bloat caused by excessive generation of short-
duration objects when executing loops. They identify which objects can be re-used
and, subsequently, apply a source-to-source transformation, which allows the previ-
ously determined objects to be employed in a more memory-efficient manner.

 Exploring Data Locality for Clustered Enterprise Applications 227

From the works considered so far, a few points can be highlighted. Overly large
heaps are prone to causing serious performance degradation. Two lines of action have
been identified for dealing with this issue. One seeks to keep the memory footprint
small by preventing the loading of unnecessary data or by delaying its loading to the
moment when it is needed. The other consists in keeping the heap compact by de-
allocating no-longer-necessary data and recycling its memory. Several features, essen-
tial for the operation of both lines of action, include performing automatic analysis of
the target application's behaviour and its precise prediction to allow for dynamic and
adaptive identification of the most appropriate approach that should be employed.

2.2 Cluster Request Distribution

Scalability is a major property for web systems that have to deal, on a regular basis,
with heavy workloads caused by large volumes of traffic and significant variations in
the number of clients. This has led to extensive research performed in this domain.
This section's related work discussion shall be limited to research covering request
distribution for clustered web systems. Cardellini et al. [5] performed a comprehen-
sive study of locally clustered systems, whereas Amza et al. [2] evaluated transparent
scaling approaches tailored for dynamic content systems.

Pai et al. [18] introduced the concept of locality-aware request distribution
(LARD). The main idea behind this concept is that for a clustered web server system
to have good scalability and efficiency, the load-balancing policy should take into
account the content associated with incoming requests and redirect them so that the
data locality of the server node responsible for processing them is improved. A hash
function is used to partition all system functionality, while the load balancer ensures
that every server node only processes requests associated to a given partition. This
approach decreases the working-sets of all nodes to a portion of the system working-
set, allowing for improved data locality and scalability.

Zhang et al. [21] performed a lengthy simulation study of AdaptLoad. AdaptLoad
is a load-balancing policy with self-adjusting capabilities that observes and takes into
consideration workload variations to adjust its control parameters. When this load-
balancing policy is employed, server nodes receive only requests that have similar
processing times. This is done with the goal of minimizing the overall task slowdown,
by executing separately requests with different sizes.

Amza et al. [1] presented a new conflict-aware scheduling technique for database
back-ends of dynamic content site applications in cluster environments that provides
throughput scalability and one-copy serializability. The authors employ information
about the application data accessed during transactions to develop a conflict-aware
scheduler that provides one-copy serializability and reduces the rate of conflicts.

Elnikety et al. [8] proposed a memory-aware load balancing method for dispatch-
ing transactions to replicas in systems with replicated databases. The algorithm uses
information about the data manipulated in transactional contexts, with the aim of
assigning transactions to replicas so as to guarantee that all necessary data for their
execution is in memory, thereby reducing disk I/O.

228 S. Garbatov and J. Cachopo

Zhong et al. [22] studied the improvements that can be obtained with data place-
ment, when accounting for the correlation within data. The authors proposed a poly-
nomial-complexity algorithm for calculating object placement that achieves a close to
optimal solution, in terms of minimizing communication costs. Further optimizations
of the algorithm consist in focusing on a small set of higher importance objects.

Considering the research works discussed in this section, it is possible to draw sev-
eral conclusions. Request distribution policies that emphasize data locality instead of
focusing solely on load distribution appear to offer much better scalability and per-
formance gains. Uniform load distribution is still important and should be used to
complement locality aware policies, without taking precedence over them. Despite all
the research accomplished in the area of locality-aware load distribution, existing
solutions have (at least) one of the following shortcomings:

• While seeking to improve data locality, they do not take explicitly into account
the access patterns performed while processing requests, either because they lack
a proper analysis of data usage or because they expect that locality emerges
“naturally” when requests are distributed among server nodes, without account-
ing for the data access patters performed in their contexts.

• Data access pattern analysis is performed manually.
• The partitioning of requests/functionality among server nodes is performed

manually.

3 System Description

The solution presented in this paper explores the data locality subjacent in the opera-
tion of target applications for the purpose of improving their performance and compu-
tational efficiency. This is achieved through two orthogonal approaches, based on
[14] and [15]. The first seeks to reduce the memory footprint of the application, whilst
the second improves its data locality by accounting for the correlation between func-
tionality and data accessed within its context. A brief description of the implementa-
tion of each of these approaches shall be presented next.

3.1 Memory Footprint Reduction

The first part of the solution presented here employs two complementary techniques
for reducing the memory footprint of a Java application’s domain data, while, simul-
taneously, improving performance when the application is placed under sub-optimal
memory availability conditions. This was performed in the context of the Fénix
Framework [9], which allows the development of Java applications with a transac-
tional and persistent domain model.

One of the technique uses a carefully selected in-memory layout for instances of
domain classes to achieve a compact representation with minimal memory overhead.
The second technique consists in delaying the loading of domain data until the
moment when it is effectively needed, as opposed to eager loading. This strategy
seeks to decrease the upper limit of the effectively used heap, by avoiding the loading
of domain data that is never to be accessed during the lifetime of the application.

 Exploring Data Locality for Clustered Enterprise Applications 229

Both techniques make informed decisions about the actions that are to be taken.
These decisions are based on predictions made by stochastic models of the applica-
tion’s data access patterns. A comprehensive description and discussion of these
models, which have been developed previously, can be found in [16, 11, 10, 12].
Their implementations have been evaluated and demonstrated to generate correct and
highly precise predictions about the effectively accessed domain data throughout the
execution contexts of an application. In the context of the work presented here, these
methods supply the access probabilities of all domain classes and their fields.

An important concept when discussing object layouts is that of a "Box". A Box is
responsible, among other things, for holding the persistent state of domain objects, as
well as for loading it from persistence, whenever it is needed.

Before describing the new domain object layout DynamicL, the two previously ex-
isting schemas OneBoxPerSlotL and OneBoxPerObjectL, will be considered. For
OneBoxPerSlotL, every object attribute is contained by a single Box. At runtime,
when a domain object is referenced for the first time, it is initialized as a thin wrapper
containing the ObjectId (a unique system-wide identification of that instance). The
first time that any of an object's attributes are accessed, all Boxes of that object are
initialized and their contents loaded from the persistence layer, in a single round-trip.

For the OneBoxPerObjectL layout, every domain object has all of its persistent
state kept in a single Box. The behaviour, when referencing an instance or accessing
any of its attributes for the first time, is identical to that of the OneBoxPerSlotL.

By analysing these layout styles, a few pertinent points were identified. If a com-
pact object memory representation is to be achieved, then domain classes should have
as few as possible Boxes to minimize the induced memory overhead. Furthermore,
both approaches load significant volumes of persistent data into memory, even though
most of it might not end up being necessary for the operation of the application.

The DynamicL layout was developed to account for these considerations. The ap-
proach is adaptive since the actual layout configuration is chosen at compile-time,
based on the data access pattern analysis provided by the stochastic models. This
makes it possible for domain data to have different layouts from one deployment to
another, if a significant change in the application behaviour is detected.

DynamicL code generation proceeds as follows. For every domain class, its attrib-
utes are split into a high access probability set (HighP) and a low access probability
set (LowP). For a given domain object, the code generator places HighP fields in
individual Boxes, while all LowP fields are wrapped by a single Box.

Even though HighP fields are assigned individual Boxes, the overhead caused by
these boxes, when compared against OneBoxPerObjectL is negligible, because, in
most applications, only a fraction of data is responsible for the majority of accesses
performed. It is rare to have a class with more than a few HighP fields. As such, Dy-
namicL is close to the optimal solution, in terms of the number of Boxes per instance.

With DynamicL, when an instance is referenced for the first time, the procedure is
identical to the other approaches. On the other hand, when a field that has not been
loaded yet is accessed, the associated Box is initialized and all fields held by that Box
are loaded from persistence. Only the field(s) within that Box are loaded, regardless
of the state in which the remainder of instance Boxes might be. This measure was

230 S. Garbatov and J. Cachopo

taken to minimize the loading of unnecessary data from persistence. It is still possible
for unnecessary data to be loaded, but this is much less likely to happen.

It should be noted that a lazy version of the OneBoxPerSlotL is not a viable solu-
tion. The overhead of a single Box per field cannot be offset by delaying/avoiding the
loading of low access probability data. The resulting footprint would be between that
of the eager OneBoxPerSlotL and OneBoxPerObjectL.

3.2 Request Distribution

The clustering solution has been implemented in three modules – an access pattern
analysis module, an optimal clustering module, and a request distribution module.
The first module identifies the composition of the working-sets of all request types
supported by the target system. In practice, this is achieved by employing the stochas-
tic models referred to in the previous section.

The second module, which has been described in more detail in [13], calculates the
optimal clustering of the target's functionality (request types) and domain data (work-
ing-set composition), based on the access pattern behaviour observed at runtime.

The algorithm used for partitioning the request types is Latent Dirichlet Allocation
(LDA) [4]. LDA is the current state-of-the-art in multivariate clustering algorithms.
By providing the request types and their respective working-sets as input to LDA, the
algorithm groups requests into clusters. LDA seeks to maximize the (positive) corre-
lation between elements placed in the same cluster and, since the request types are
characterized by their working-sets, this leads to clusters being composed of request
types that have very similar working-sets.

There are several control parameters (among which is the number of clusters into
which the elements should be grouped) that are supplied as input to LDA. As such,
LDA can only guarantee that the cluster composition maximizes the correlation be-
tween elements for the control parameters given. There is no way to know, a priori,
what parameter values lead to the best results. Intuitively, good clusters have the
property that their elements are (conceptually) close one another and far from
elements of other clusters. The Silhouette technique [19] captures this notion and
provides a numerical value of how good a particular clustering is. By calculating the
average Silhouette values for the clusters generated by LDA, across all possible com-
binations of control parameter values, within their valid ranges, it was possible to
identify the control values that lead to the highest quality results.

The request distribution module, which enforces the new distribution policy, was
implemented as a software switch (Layer 7 of the OSI stack). The switch is the sole
entry point through which all incoming requests pass, before being redirected to a
server node. It is the only visible component of the system, from client point of view,
hiding the multiplicity of application server nodes.

When a request arrives at the switch, its type is determined and then used to iden-
tify the cluster to which it belongs. Afterwards, the request is forwarded to a node that
only deals with requests of that particular group. Once the request has been processed,
the result is returned to the switch, and then back to the client.

 Exploring Data Locality for Clustered Enterprise Applications 231

Servers dealing only with a particular subset of request types allows them to have
working-sets that are much smaller than the system working-set, not only because a
subset of all functionality is processed there, but also because the requests were spe-
cifically selected to maximize the similarity of their working sets. This allows for a
more efficient use of computational resources (e.g. smaller heaps, less garbage collec-
tion, etc) and better data locality, leading ultimately to improved system performance.

4 Results

The TPC-W benchmark [20] was used to validate the work presented here. It specifies
an e-commerce workload simulating the activities of a retail store website, where
emulated users can browse and order products. The main metric is the WIPS – web
interactions per second that the system under test can sustain. The benchmark is char-
acterised by a series of input parameters. One of these is the type of workload, which
defines the percentage of read and write operations, that is to be simulated by the
emulated browsers (EB). The workload types considered here are Type1 (95% read
and 5% write); Type2 (80% read and 20% write); Type3 (50% read and 50% write).

The analysis of the system was performed with the benchmark executing in Type2
mode. The same profiling results (from Type2) were employed for all 3 workload
configurations (Type1, Type2, and Type3) in the performance testing phase.

The remaining parameters are: number of EBs - 10; ramp-up - 180s; measurement
- 600s; ramp-down - 60s; number of book items in the database - 1k, 10k, and 100k;
think time - 0, ensuring that the EBs do not wait before making a new request.

Measurements were made with the benchmark running in two different configura-
tion scenarios. The first configuration (Alpha) is a single machine equipped with 2x
Intel Xeon E5520 (total of 8 physical cores with hyper-threading running at 2.26
GHz) and 24 GB of RAM. Alpha's operating system is Ubuntu 10.04.3. The second
configuration (Beta) is a cluster of five machines with identical hardware specifica-
tions. Each machine has 2x Intel Xeon E5506 (a total of 8 physical cores running at
2.13GHz) and 2 GB of RAM. The operating system is Ubuntu 10.04.4 LTS. The av-
erage latency of any inter-node communication was measured to be 0.3ms.

For both configurations, the JVM is Java(TM) SE Runtime Environment (build
1.6.0 22-b04), Java HotSpot(TM) 64-Bit ServerVM (build 17.1-b03, mixed mode).
The benchmark server replicas, as well as the load-balancer, were run on top of
Apache Tomcat 6.0.24, with the options "-Xshare:off -Xms64m -Xmx$(heapSize)m -
server -XX:+UseConcMarkSweepGC -XX:+AggressiveOpts".

4.1 Single Machine Configuration (Alpha)

For the single machine configuration, the client (emulated browser generator), the
load-balancer and all server replicas were run on the same physical machine. The
load-balancer and all replicas were deployed on individual Tomcat instances.

While evaluating the request distribution part of this work on a single physical ma-
chine might seem somehow forced, there were two reasons for doing so. Having all

232 S. Garbatov and J. Cachopo

server nodes on the same physical machine simulates a scenario where the system is
heavily loaded, making it possible to appreciate the effects of less-than-optimal re-
source availability (CPU and RAM). This aspect was expanded by having the Tomcat
instances where the benchmark replicas were deployed operate under five different
maximum heap size configurations - 512MB, 640MB, 768MB, 896MB and 1024MB.
Furthermore, with the emergence of cloud-computing, it is no longer that much of a
stretch to imagine several virtual servers running on top of a single physical machine,
depending on the resource availability and allocation.

It should be noted that, for Alpha, a total of 540 distinct benchmark and server con-
figurations were evaluated (2 layout policies, 3 request distribution policies, 2 cluster
sizes, 5 max heap sizes, 3 workload types and 3 data-base sizes). Additionally, every
single configuration was executed 4 times, independently of previous runs, to provide
a more representative view of the behaviour of the system under test. Taking all this
into account and the fact that a single execution of the benchmark takes approxi-
mately 15min (14min benchmark execution and 1min for Tomcat reboot, benchmark
redeploy and database refresh), the results for Alpha took 540h to generate.

The two layout policies under which the benchmark performance was evaluated
are the DynamicL and the OneBoxPerObjectL. OneBoxPerSlotL results are omitted
because they are worse than the ones provided by any of the other two alternatives.

The first of the three request distribution policies to be evaluated is the one dis-
cussed in Section 3.2, which shall be called the LDA policy. The second policy corre-
sponds to an idealized locality-aware request distribution (LARD), where each node
is responsible for processing a subset of request types, and there are no intersections
among the sets assigned to different server nodes. This policy is idealized because it
assumes prior knowledge of the composition of the workload, in terms of the relative
proportions of incoming request types, as well as the average time that requests of a
given type take to be processed. The policy attempts to achieve the most uniform load
distribution possible, whilst keeping every server node dedicated to processing a fixed
subset of request types. The third policy employs a classic (non-weighted) round-
robin (RR) approach for distributing incoming requests among existing server nodes.

The different solutions are evaluated for 3 and 4 server replicas. Only these server
replication values were considered because it has been demonstrated in [13] that the
optimal number of unique and non-intersecting sub-sets of functionality into which
the TPC-W's request types can be subdivided into, resides in between 3 and 4.

0

200

400

600

800

1000

1200

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA

Dyn_LARD

Dyn_RR

OneB_LDA

OneB_LARD

OneB_RR

0

200

400

600

800

1000

1200

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA

Dyn_LARD

Dyn_RR

OneB_LDA

OneB_LARD

OneB_RR

Fig. 1. WIPS, 1024MB, Alpha, 3 server replicas (left), 4 server replicas (right)

 wips wips

 Exploring Data Locality for Clustered Enterprise Applications 233

The WIPS achieved through the 6 possible combinations of layout and request dis-
tribution policies, when the servers are allocated 1024MB of heap, for 3 and 4 server
replicas, can be seen in Fig. 1 left and right, respectively. Each group of bars corre-
sponds to a particular benchmark configuration, where t1, t2, and t3 indicate workload
type, and b1k, b10k, and b100k indicate the size of the database used.

By analyzing the results, it can be said that all configurations with the DynamicL
layout display significantly better throughput than their OneBoxL counterparts. In
terms of the request distribution policies, the RoundRobin policy is rather consistently
outperformed by the other two policies. The LDA and LARD policies display similar
throughput, even though, for most configurations, the LARD version is slightly better.

The relative throughput gains obtained when comparing DynamicL_LDA against
the remaining 5 policy configurations can be seen in Fig. 2 left and right for 3 and 4
server node configurations, respectively. The relative gain has been calculated as

()()_ _ _ 100, %Dyn LDA OLP RDP OLP RDPT T T− × where T stands for throughput and OLP and RDP indi-

cate the object layout and request distribution policies against which the Dyn_LDA is
being compared. The average throughput grains are as follows: Dyn_LARD -4.89%
(3), -4.68(4); Dyn_RR 16.66%(3), 18.49(4); OneB_LDA 61.66%(3), 65.01%(4);
OneB_LARD 60.72%(3), 61.67%(4); OneB_RR 82.29%(3), 81.31(4).

If we consider the effect over throughput variation, when one of the policies is
changed, while keeping the other fixed (e.g. Dyn_LARD to OneB_LARD, or
OneB_LDA to OneB_RR), the results are as follows. The average throughput gain of
Dyn vs OneB is 62.52%; LDA vs LARD is -3.07% and LDA vs RR is 14.96%.

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA vs Dyn_LARD

Dyn_LDA vs Dyn_RR

Dyn_LDA vs OneB_LDA

Dyn_LDA vs OneB_LARD

Dyn_LDA vs OneB_RR

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA vs Dyn_LARD

Dyn_LDA vs Dyn_RR

Dyn_LDA vs OneB_LDA

Dyn_LDA vs OneB_LARD

Dyn_LDA vs OneB_RR

Fig. 2. Throughput gain, Dyn_LDA vs All, Alpha, 3 servers (left), 4 servers (right)

Based on these results, several remarks can be made. Employing the DynamicL ob-
ject representation policy offers significant and unambiguous performance gains,
independently of the other configuration parameters. In terms of request distribution
policy, the LDA clearly offers better throughput than RoundRobin, unfortunately it
falls slightly behind the throughput that LARD displays. Nevertheless, if we account
for the fact that this particular LARD implementation is an idealized approach that
makes use of perfect prior knowledge, about the target system's behaviour, then it is
quite positive that the performance offered by the LDA policy is so similar to an ap-
proach that would be otherwise impossible to achieve in practice.

234 S. Garbatov and J. Cachopo

4.2 Cluster Configuration (Beta)

For the cluster configuration, the client and load-balancer were deployed on the same
node, while having a separate node for each of the 3/4 server replicas. The data-base
was operating on yet another node, different from the ones listed so far.

For Beta, 108 distinct benchmark and server configurations were evaluated (2 lay-
out policies, 3 request distribution policies, 2 cluster sizes, 1 heap size - 1024MB, 3
workload types and 3 data-base sizes). Every configuration was evaluated 2 times,
independently of previous executions, leading to a total of 54h execution time.

0

100

200

300

400

500

600

700

800

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA

Dyn_LARD

Dyn_RR

OneB_LDA

OneB_LARD

OneB_RR

0

100

200

300

400

500

600

700

800

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA

Dyn_LARD

Dyn_RR

OneB_LDA

OneB_LARD

OneB_RR

Fig. 3. WIPS, 1024MB, Beta, 3 server replicas (left), 4 server replicas (right)

The average throughput achieved for Beta (see Fig. 3) is lower than the one for the
Alpha configurations. When operating under Alpha, the benchmark throughput is, on
average, 35.39% higher than for Beta. This is mainly due to the latency in communi-
cation between the load-balancer, replicas and the data-base. There is a single con-
figuration where this is not observed. The 4 replica Beta configuration with OneB_RR
displays about 21% higher throughput than its Alpha counterpart. The most likely
reason for this is that the less efficient resource usage of the OneB_RR is exacerbated
by the (relatively) lower resource availability in Alpha, when compared to Beta. This
leads to a lower overall system throughput (in Alpha), even when accounting for the
additional communication latency that exists in Beta.

- 40%

- 20%

0%

20%

40%

60%

80%

100%

120%

140%

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA vs Dyn_LARD
Dyn_LDA vs Dyn_RR
Dyn_LDA vs OneB_LDA
Dyn_LDA vs OneB_LARD
Dyn_LDA vs OneB_RR

- 40%

- 20%

0%

20%

40%

60%

80%

100%

120%

140%

t1
_b

1k

t1
_b

10
k

t1
_b

10
0k

t2
_b

1k

t2
_b

10
k

t2
_b

10
0k

t3
_b

1k

t3
_b

10
k

t3
_b

10
0k

Dyn_LDA vs Dyn_LARD
Dyn_LDA vs Dyn_RR
Dyn_LDA vs OneB_LDA
Dyn_LDA vs OneB_LARD
Dyn_LDA vs OneB_RR

Fig. 4. Throughput gain, Dyn_LDA vs All, Beta, 3 servers (left), 4 servers (right)

 wips wips

 Exploring Data Locality for Clustered Enterprise Applications 235

A comparison of Dyn_LDA against the other 5 policy configurations can be seen
in Fig. 4. The average throughput variations are the following: Dyn_LARD -6.55%
(3), -4.87% (4); Dyn_RR 6.06% (3), -7.18% (4); OneB_LDA 53.53% (3), 53.58%
(4); OneB_LARD 48.01% (3), 44.49% (4); OneB_RR 56.36% (3), 9.83% (4).

The results obtained when only the object layout or the request distribution policy
is changed, while the other remains fixed, are considered next. Using Dyn instead of
OneB leads to an average of 47.91% increase in throughput. The average throughput
of LDA is 5.21% lower than LARD and 6.80% lower than RR.

Some considerations about the results observed thus far are necessary. The benefits
of using the DynamicL policy for Beta (47.91%) are significant, yet, they are never-
theless lower than the ones achieved for Alpha (66.06%). The relation between the
LDA request policy and LARD remains mostly the same (-4.23% for Alpha and -
5.21% for Beta), however the ratio between LDA and RR changed significantly (from
9.71% for Alpha to -6.80% for Beta). Furthermore, it should be noted that these varia-
tions are not so much due to a decrease in the DynamicL and LDA throughput, when
moving from Alpha to Beta, so much as due to an increase in the throughput when the
benchmark operates with OneBoxPerObject and RR.

This phenomena is explainable with the fact that both DynamicL and LDA focus
on improving the locality of data with which the target application operates. This
makes it possible for the application to operate longer without performance handicaps
when operating with limited computational resources (e.g. less CPU time and free
memory). On the other hand, the less efficient resource-management of OneBox-
PerObjectL and RR lead any system that is employing them to require higher resource
availability levels to operate without suffering sub-optimal performance.

All this leads to the conclusion that any system capable of employing the dual-
approach solution (DynamicL + LDA request distribution) presented with this work
will be able to remain operating at normal performance levels for longer, when faced
with increasingly restricted availability of resources.

4.3 Further Discussion

Even though it has been repeatedly stated that the DynamicL approach reduces the
memory footprint of its target application, as well as minimizing the garbage-
collection activity, no direct evidence has been given so far to back these statements.
The percentage of CPU usage, as well as the intensity of GC activity (as a function of
% of CPU employed for it) for a particular TPC-W configuration (1024MB max heap,
type 2 workload, 100k books in data-base) can be observed in Fig. 5 (left) for the
OneBoxPerObjectL, and in Fig. 5 (right) for the DynamicL. It should be noted that
these results were obtained with the benchmark operating with a single instance (no
server replication, nor load-balancing). As can be seen from these results (and without
pretending to be exhaustive in their coverage), when the TPC-W is operating with the
OneBoxPerObjectL, the GC activity remains steady in the 20% range of CPU occupa-
tion, while for the DynamicL approach, there are only a few short bursts of GC, dur-
ing a corresponding period of time (with identical length).

236 S. Garbatov and J. Cachopo

Fig. 5. CPU/CG activity, 1024MB, t2, b100k, OneBoxPerObjectL (left) DynamicL (right)

Last but not least, Fig. 6 presents the average size of the effectively used server
heaps for a particular TPC-W configuration, when operated with 4 replicas, on Alpha.
The clouds of dots reflect the average heap size of the four replicas (without consider-
ing the load-balancer). On the average, the LDA heap is 5.30% bigger than the LARD
heap and 33.34% smaller than the RR. If linear regression is applied on the clouds-of-
dots, it is possible to conclude that, at least for this particular configuration, the heap
growth rate for the LDA approach is 45.52% lower than the growth rate exhibited by
the LARD, and 67.02% lower than the RR heap growth rate.

heap = 86192t + 2E+08
heap = 52178t + 2E+08

heap = 28428t + 2E+08

1.E+08

2.E+08

3.E+08

4.E+08

time (s)

H
ea

p
 S

iz
e

(b
yt

es
)

New Heap
RoundR Heap
LARD Heap

Fig. 6. Heap size at run-time, 4 serv, 640MB, t3, b10k, Alpha

5 Conclusions

The article presented here proposed an automatic solution for improving the
efficiency and performance of enterprise Java distributed-system applications, by
exploring their data-locality. The solution incorporates two previously developed
approaches (an object representation layout policy named DynamicL and a request
distribution policy based on Latent Dirichlet Allocation), expanding them, thus, in
their applicability. The system has been validated on the TPC-W benchmark, in two
distinct hardware configurations.

 Exploring Data Locality for Clustered Enterprise Applications 237

The results demonstrate that the usage of the solution developed here allows for
significant improvements. These cover an increase in the efficiency of the usage of
computational resources, which allows the target system to remain operating with
optimal performance even when subjected to increasingly restrictive resource avail-
ability constraints.

Furthermore, when compared to previously existing solutions, the newly developed
one demonstrates expressive performance gains. On a single heavily loaded machine,
the individual approaches that compose the solution are capable of offering up to
9.71% (LDA request distribution) and 66.06% (DynamicL object layout) increase in
throughput respectively. However, the integrated solution allows for an increase in
throughput of up to 77.56%, which is actually better than the sum of its parts.

When evaluating performance in a clustered environment, the individually applied
approaches can provide up to 6.80% and 47.91%, whereas the integrated solution
displays gains of up to 56.36%.

Based on all the results, it is possible to observe that the integrated solution pro-
vides a magnifying effect over the performance achieved by the two approaches that it
employs.

Acknowledgments. This work was partially supported by national funds through
FCT – Fundação para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/
2013, as well as by FCT (INESC-ID multiannual funding) PIDDAC Program funds
and by the Specific Targeted Research Project (STReP) Cloud-TM, which is co-
financed by the European Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT under contract SFRH/BD/64379/2009.

References

1. Amza, C., Cox, A.L., Zwaenepoel, W.: Conflict-aware scheduling for dynamic content ap-
plications. In: Proceedings of the 4th conference on USENIX Symposium on Internet
Technologies and Systems, vol. 4, pp. 6–20. USENIX Association (2003)

2. Amza, C., Cox, A.L., Zwaenepoel, W.: A comparative evaluation of transparent scaling
techniques for dynamic content servers. In: Proceedings of the 21st International Confer-
ence on Data Engineering (ICDE 2005), pp. 230–241. IEEE (2005)

3. Bhattacharya, S., Nanda, M.G., Gopinath, K., Gupta, M.: Reuse, Recycle to De-bloat
Software. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 408–432. Springer,
Heidelberg (2011)

4. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Re-
search 3, 993–1022 (2003)

5. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.: The state of the art in locally distrib-
uted Web-server systems. ACM Computing Surveys (CSUR) 34(2), 263–311 (2002)

6. Chis, A.E., Mitchell, N., Schonberg, E., Sevitsky, G., O’Sullivan, P., Parsons, T., Murphy,
J.: Patterns of Memory Inefficiency. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813,
pp. 383–407. Springer, Heidelberg (2011)

7. Denning, P.J., Schwartz, S.C.: Properties of the working-set model. Communications of
the ACM 15(3), 191–198 (1972)

238 S. Garbatov and J. Cachopo

8. Elnikety, S., Dropsho, S., Zwaenepoel, W.: Tashkent+: Memory-aware load balancing and
update filtering in replicated databases. ACM SIGOPS Operating Systems Review 41(3),
399–412 (2007)

9. Fernandes, S., Cachopo, J.: Strict serializability is harmless: a new architecture for enter-
prise applications. In: Proceedings of the ACM International Conference on Object-
Oriented Programming Systems, Languages and Applications, Portland, Oregon, USA, pp.
257–276. ACM (2011)

10. Garbatov, S., Cachopo, J.: Importance Analysis for Predicting Data Access Behaviour in
Object-Oriented Applications. Journal of Computer Science and Technologies 14(1), 37–
43 (2010)

11. Garbatov, S., Cachopo, J.: Predicting Data Access Patterns in Object-Oriented Applica-
tions Based on Markov Chains. In: Proceedings of the Fifth International Conference on
Software Engineering Advances (ICSEA 2010), Nice, France, pp. 465–470 (2010)

12. Garbatov, S., Cachopo, J.: Data Access Pattern Analysis and Prediction for Object-
Oriented Applications. INFOCOMP Journal of Computer Science 10(4), 1–14 (2011)

13. Garbatov, S., Cachopo, J.: Optimal Functionality and Domain Data Clustering based on
Latent Dirichlet Allocation. In: Proceedings of the Sixth International Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain, pp. 245–250.
ThinkMind (2011)

14. Garbatov, S., Cachopo, J.: Decreasing Memory Footprints for Better Enterprise Java Ap-
plication Performance. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.)
DEXA 2012, Part I. LNCS, vol. 7446, pp. 430–437. Springer, Heidelberg (2012)

15. Garbatov, S., Cachopo, J.: Explicit use of working-set correlation for load-balancing in
clustered web servers. In: Proceedings of the Seventh International Conference on Soft-
ware Engineering Advances (ICSEA 2012), Lisbon, Portugal (2012) (in print)

16. Garbatov, S., Cachopo, J., Pereira, J.: Data Access Pattern Analysis based on Bayesian
Updating. In: Proceedings of the First Symposium of Informatics (INForum 2009), Lisbon,
Paper 23 (2009)

17. Jones, R.E., Ryder, C.: A study of Java object demographics. In: Proceedings of the 7th In-
ternational Symposium on Memory Management, Tucson, AZ, USA, pp. 121–130. ACM
(2008)

18. Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.:
Locality-aware request distribution in cluster-based network servers. In: Proceedings of the
Eighth International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, United States, pp. 205–216. ACM (1998)

19. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)

20. Smith, W.: TPC-W: Benchmarking An Ecommerce Solution. Intel Corporation (2000)
21. Zhang, Q., Riska, A., Sun, W., Smirni, E., Ciardo, G.: Workload-aware load balancing for

clustered web servers. IEEE Transactions on Parallel and Distributed Systems 16(3), 219–
233 (2005)

22. Zhong, M., Shen, K., Seiferas, J.: Correlation-Aware Object Placement for Multi-Object
Operations. In: Proceedings of the 2008 the 28th International Conference on Distributed
Computing Systems, pp. 512–521. IEEE Computer Society (2008)

A Framework for Data-Driven Workflow

Management: Modeling,
Verification and Execution

Nahla Haddar, Mohamed Tmar, and Faiez Gargouri

University of Sfax, B.P. 1069, 3029 Sfax, Tunisia
nhaddar@ymail.com, {mohamed.tmar,faiez.gargouri}@isimsf.rnu.tn

Abstract. In recent years, many data-driven workflow modeling ap-
proaches has been developed, but none of them can insure data inte-
gration, process verification and automatic data-driven execution in a
comprehensive way. Based on these needs, we introduced, in previous
works, a data-driven approach for workflow modeling and execution. In
this paper, we extend our approach to ensure a correct definition and
execution of our workflow model, and we implement this extension in
our Framework Opus.

Keywords: Data-driven workflow management Framework, Petri nets,
Relational algebra, Workflow analysis and verification, Soundness
property.

1 Introduction

In a competitive environment continually evolving, companies are recognized the
need to manage their business processes in order to align their information sys-
tems, more and more quickly, in a process-oriented way. In this context, workflow
management systems (WMS) offer promising perspectives for modeling, process-
ing and controlling processes. In the most common WMS, only the control flow 1

is completely included [1]. In Fact, during process execution, a process-oriented
view (e.g. worklists) is provided to end-users. However, the behavior of an ac-
tivity during its execution is out of the control of the WMS [2]. As almost all
processes are related to data, such as the costs of the ordered products, the
addresses information for delivery, etc., the main goal from using a WMS is to
automate, as possible, the manipulation of data in business processes, and to
restrict as possible the manual tasks performed by human actors.

Regarding the existing literature, the need for modeling processes that com-
bine data and control flow has been widely studied. Most of them are inspired
from Petri nets (P-nets) formalism, such as the approaches proposed in [3–7].
Thus, to enhance earlier approaches that have mainly focused on process activi-
ties and largely overlooked the data, we previously extended, in [8,9], the P-nets

1 Control flow: is a set of synchronized activities representing the business process
functions, and a set of ordering constraints defining their execution sequence [1].

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 239–253, 2013.
© Springer-Verlag Berlin Heidelberg 2013

240 N. Haddar, M. Tmar, and F. Gargouri

formalism by data operations inspired from the relational algebra to model data-
driven workflows. This extension improves the generation of business functions
from the process definition, without the need for a programmer, and provides
advanced abilities for the information system (IS) and the users’ integration. In
this paper, we extend the modeling method of the proposed approach [8, 9] by
some rules, to ensure the consistency of the process model during runtime. We
also provide a technique to verify a released notion of the classical soundness
property.

The remainder of the paper is organized as follows: we present the related
work in Sect. 2 and we continue by introducing our workflow model in Sect. 3.
In Sect. 4, we present the definition of the firing rules that ensure a uniform
execution of all the process activities. Then we discuss, in Sect. 5, the technique
provided to ensure the analysis and the verification of our workflow model. In
Sect. 6, we present our Framework Opus. Section 7 concludes.

2 Related Work

The need for modeling processes integrating data has been recognized by sev-
eral authors [3–7, 10, 11]. The Case Handling Paradigm [11] aims to coordinate
activities which are presented as forms in relation to atomic data elements. The
problem here is that data may be omitted or activities are unwittingly ignored
or executed many times. In addition, more than one user can handle the same
case simultaneously, which damages the data coherence.

The PHILharmonicFlows system [2] provides a comprehensive approach that
combines object behavior based on states with data-driven process execution. In
fact, it allows the control of activities by presenting them as form-based 2 and
black-box activities 3. The proper execution as well as termination of processes
at runtime is further ensured by a set of correctness rules [12]. But, the execu-
tion of form-based activities increases the rate of errors that may be caused by
the manual seizure performed by human actors, even if the seized data values
respect the data types requested by the form’ input fields.

Many extensions of P-nets in which tokens carry data have been defined in the
literature. The workflow nets based on colored P-nets (WFCP-nets) [10] consider
a P-net color as an abstraction of data objects and flow control variants. The
execution of a WFCP-net depends on the interpretation of its arc expressions
and guard expressions, which describe the business rules. Besides, the verifica-
tion methods of workflow nets [13] are adapted to WFCP-nets. The weakness of
this approach is that the process specification consists of a graphical part and
a WF script part. The latter is a hard-coding process logic that describes the
data elements and the behavior of activities. So, resulting applications are both
complex to design and costly to deploy, and even simple process changes require

2 Form-based activities: provide input fields for writing and data fields for reading
selected attributes of data object instances [2].

3 Black-box activities: allow the integration of advanced functionalities (e.g. sending
e-mails) [2].

A Framework for Data-Driven Workflow Management 241

costly code adaptations and testing efforts. Another extension of P-nets is the
workflow nets with data (WFD-nets) [7], in which transitions can read from
or write to some data elements. This extension does not provide a support for
executing process models. However, it defines algorithms to verify a soundness
property that guarantees the proper termination of a WFD-net and that only
certain transitions are not dead.

None of the existent approaches considers data integration, process verifica-
tion and data-driven execution issues in a comprehensive way. Thus, in this area
a comprehensive approach for supporting these three issues is still missing.

3 Our Data-Driven Workflow Model

As described by the most modeling approaches, a process is defined, in a higher
level of abstraction, as a set of synchronized activities performed by roles ac-
cording to the available data. If we stop at this level, we will not be able to
generate the process functions from the process model definition, and activities
will behave as a black box in which data are managed by invoked application
components. To attempt the lowest level of abstraction, we propose to split each
activity, in a process, to tasks applied on data. Each task consumes data to pro-
duce others. Thus, each activity is presented as a set of data-driven tasks. Each
task consumed data provenance can be either the IS, or data produced by other
tasks. But, in some cases, to complete the processing of a task, data can be seized
by a role. Accordingly, to enable tasks to generate new data from old ones and
import data from the IS, data have to be well structured. We introduced this
approach in [8,9], in a formal way, as a data-driven modeling approach based on
combination between structured tokens P-nets and relational algebra.

3.1 Data Structure

According to [8, 9], we define each handled data as a data structure; i.e, a pair
s = (C, D), where C is a list of attributes and D is a list of data tuples.
Each tuple is an ordered list of attributes values, formally defined by:

C =(c1, c2 . . . cn), D ={(d11 , d12 . . . d1n), (d21 , d22 . . . d2n) . . . (dm1 , dm2 . . . dmn)} .

Where n (resp. m) is the number of attributes (resp. tuples) in s.
Each attribute cj = (αj , βj) is a pair characterized by an attribute identifier

αj and an attribute type βj , such as: ∀j ∈ {1, 2 . . . n}, βj ∈ {Int, F loat, Char,
String, Date, Boolean . . .}, and ∀i ∈ {1,2 . . .m}, an attribute value dij is a
specific valid value for the type βj of the attribute cj .

At modeling step, the designer has just to define the data structure attributes
and the values types put up with each one. At runtime, the different data struc-
ture tuples comprise varying values according to each attribute type.

3.2 Process Structure

The workflow process is defined as a P-net representing the work, where a
place corresponds to a data structure that contains structured tokens (tuples)

242 N. Haddar, M. Tmar, and F. Gargouri

and a transition corresponds to a task. A workflow is then a quadruplet [8, 9]
WF = (S, T, Pre, Post), where:

S = {s1, s2 . . . s∣S∣} is a finite set of data structures,
T = {t1, t2 . . . t∣T ∣} is a finite set of tasks inspired from the relational algebra,
Pre ∶ S × T → N is the pre-incidence matrix, such as, ∀i ∈ {1, 2 . . . ∣S∣} and

j ∈ {1, 2 . . . ∣T ∣}, P re(si, tj), is the edge between a data structure si and a
task tj weight, representing the number of tokens consumed by tj in order to be
firable, i.e. executable.

Post ∶ T × S → N is the post-incidence matrix. Due to the dynamic of the
relational algebra, we cannot be limited to a static post-incidence matrix thus,
∀i ∈ {1, 2 . . . ∣S∣} and j ∈ {1, 2 . . . ∣T ∣}, Post(tj , si) ∈ [PostMin(tj , si),
PostMax(tj , si)]. Where: PostMin(tj , si) (resp. PostMax(tj , si)), is the edge
between a task tj and a data structure si minimal (resp. maximal) weight, rep-
resenting the minimal (resp. maximal) number of tj produced tokens.

3.3 Data Operations

A task can be viewed as a data operation applied on data structure tokens to
produce others. Therefore, we have inspired from the relational algebra to define
the behavior of operations. We presented these operations in [9]. So, in this
paper, we detail in Appendix A, only operations that we will use to demonstrate
the new extensions of the model. Noting that the definition of the Add Tuples
operation, presented in Table 1, is an extended version of its definition in [9]. In
fact, in this version, we allow to inserts all a data structure tuples in another
data structure, instead of inserting only a single tuple [9].

3.4 Workflow Example

The customer solvency check role (SCRole) evaluates the received orders, and
sends them to the inventory check. After the evaluation, either an order is re-
jected, or sent to shipping and billing. As illustrated by Fig. 1, considering that
s8, s13, and s19 present tables from the IS, we restrict our example to the inven-
tory check role (ICRole) sub-process, which performs the following activities:

Select the ordered products: t7 extends s8 (which contains all the products
data) by the ord qtity attribute, in order to allow the ICRole to enter the or-
dered quantities. Then, t8 selects from s9 only tuples having an ordered quantity
value higher than zero and lower than the stocked product quantity.

Verify the products availability: t9 checks s10 content. If it contains one or
more tokens, t9 will reproduce s11 token in s12, otherwise, it will end the pro-
cess.

Create a new order: according to the decision of t9, if there are available
products, t10 will add a new order in s13.

Create the new order lines: the ICRole enters the new order identifier and t13
saves it in s17. Then, t14 will create the new order lines and finally, t15 will save
the resulting structured s18 tokens in s19.

A Framework for Data-Driven Workflow Management 243

Fig. 1. The inventory check role sub-process [9] (modified version)

We deduce the Pre and Post matrix of the example in Fig. 1.

Pre =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t7 t8 t9 t10 t11 t12 t13 t14 t15

s8 x8 0 0 0 0 0 0 0 0
s9 0 x10 0 0 0 0 0 0 0
s10 0 0 x12 0 x12 0 0 0 0
s11 0 0 1 0 0 0 0 0 0
s12 0 0 0 x6 0 0 0 0 0
s13 0 0 0 0 0 0 0 0 0
s14 0 0 0 0 0 x14 0 0 0
s15 0 0 0 0 0 0 0 x16 0
s16 0 0 0 0 0 0 1 0 0
s17 0 0 0 0 0 0 0 x18 0
s18 0 0 0 0 0 0 0 0 x20

s19 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Following the definition of tasks in Appendix A, the number of tokens produced
by each task in Fig. 1, are defined as follows: x5 ∈ [0, 1], x6 = 1 (i.e. there
is only a single customer identifier), x7 = ∣D13∣ + x6, x9 = x8, x11 ∈ [0, x10],
x13 ∈ [0, x12], x15 ∈ [0, x14], x17 = ∣D17∣+1 = 1 (because D17 = ∅), x19 = x16×x18,
x21 = ∣D19∣ + x20. Accordingly, the Post matrix is defined by:

Post =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t7 t8 t9 t10 t11 t12 t13 t14 t15

s8 0 0 0 0 0 0 0 0 0
s9 x8 0 0 0 0 0 0 0 0
s10 0 [0, x10] 0 0 0 0 0 0 0
s11 0 0 0 0 0 0 0 0 0
s12 0 0 [0, 1] 0 0 0 0 0 0
s13 0 0 0 ∣D13 ∣ + x6 0 0 0 0 0
s14 0 0 0 0 [0, x12] 0 0 0 0
s15 0 0 0 0 0 [0, x14] 0 0 0
s16 0 0 0 0 0 0 0 0 0
s17 0 0 0 0 0 0 1 0 0
s18 0 0 0 0 0 0 0 x16 × x18 0
s19 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

244 N. Haddar, M. Tmar, and F. Gargouri

3.5 Marking

The marking M [θ] defines the state of the process described by WF at a given

time θ ∈ {0, 1, 2 . . .}. Thus, ∀i ∈ {1, 2 . . . ∣S∣} ∶ M [θ]
= (m

[θ]
1 m

[θ]
2 . . . m

[θ]
∣S∣),

where m
[θ]
i ∈ IN is the number of tuples in si.

The initial marking M [0] defines the state of WF at time θ = 0, in which only
root nodes of a WF process can be initiated by a finite number of tokens. The
evolution of the markings, in the other nodes, results due to the firing of WF
tasks. A valid initial marking must follow (1) [8, 9].

∀j ∈ {1,2 . . . ∣S∣},m
[0]
j =

⎧

⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪

⎩

max
k∈{1, 2...∣T ∣}Pre(sj , tk)

if ∀l ∈ {1,2 . . . ∣T ∣}PostMax(sj , tl) = 0,
0 otherwise.

(1)

3.6 Synthesis

Our proposed data-driven approach allows for a comprehensive integration be-
tween data flow and control flow, which ensures a successful data driven execu-
tion of the workflow. Indeed, data integration is granted through data structures
that can handle various data elements types. Furthermore, data manipulation
is enable through data operations that can read, write and generate new data
elements without any risk of simulating a WF process in which data can be lost.
This is granted through the dynamic behavior of the relational data operations,
which entails a generalization of the static post-incidence matrix of the classical
P-nets. In the next section, we present how we improve our approach by the
application of some firing rules. These latter grant a uniform definition of a WF
process and introduce the basic notions of our verification method, that ensures
a valid WF process execution.

4 Firing Rules

To ensure the process consistency during runtime, we improve the modeling
approach described in [8, 9] by adding some firing rules. The latter indicate
under which conditions a task may fire, and what the effect of the firing on the
marking is.

1. Assuming that ti, tj ∈ T , are two successive tasks in a WF , and s ∈ S is an
output data structure of ti and an input data structure to tj . Thus, tokens
produced by ti will be automatically consumed by tj :

∀ti, tj ∈ T,∃ s ∈ S ∣ < ti, tj > ⇒ pre(tj , s) = post(ti, s) . (2)

2. Assuming that δ is the function calculating the possible markings resulting of
the firing of a task ti ∈ T from a marking M . So, ∀M ∈ N∣S∣, t1, t2 . . . tk ∈ T ∶

δ({M1, M2 . . .Mn}, t1 t2 . . . tk) = ⋃

M∈{M1, M2...Mn}
δ({M}, t1 t2 . . . tk)

(3)

A Framework for Data-Driven Workflow Management 245

Where: δ({M}, t1 t2 . . . tk) = δ(δ({M}, t1), t2 . . . tk)
= δ(δ(δ({M}, t1), t2), t3 . . . tk)
= . . .

The function δ({M}, ti) is defined as follows:

δ({M}, ti) = {
∅ if M < Pre(., ti),
{M − Pre(., ti) + x} otherwise.

(4)

Where x ∈ [PostMin(., ti), PostMax(., ti)], and δ(∅, ti) = ∅ .
We apply (3) and (4) on the example illustrated in Fig. 1, and we cal-
culate the possible markings resulting from the firing sequence of tasks
< t7 t8 t11 t12 t13 t14 t15 >:
{M[0]} = {(x8 0 0 0 0 0 0 0 0 0 0 0), (x8 0 0 1 0 0 0 0 0 0 0 0), (x8 0 0 0 0 0 0 0 1 0 0 0),

(x8 0 0 1 0 0 0 0 1 0 0 0), (0 0 0 1 0 0 0 0 0 0 0 0), (0 0 0 1 0 0 0 0 1 0 0 0),
(0 0 0 0 0 0 0 0 1 0 0 0), (0 0 0 0 0 0 0 0 0 0 0 0)}

δ({M[0]}, t7 t8 t11 t12 t13 t14 t15) = δ(δ({M[0]}, t7), t8 t11 t12 t13 t14 t15)
= δ({{(0 x8 0 0 0 0 0 0 0 0 0 0), (0 x8 0 1 0 0 0 0 0 0 0 0), (0 x8 0 0 0 0 0 0 1 0 0 0),
(0 x8 0 1 0 0 0 0 1 0 0 0)}, ∅, ∅, ∅, ∅}, t8 t11 t12 t13 t14 t15)

= δ(δ({{(0 x8 0 0 0 0 0 0 0 0 0 0), (0 x8 0 1 0 0 0 0 0 0 0 0), (0 x8 0 0 0 0 0 0 1 0 0 0),
(0 x8 0 1 0 0 0 0 1 0 0 0)}, ∅}, t8), t11 t12 t13 t14 t15)

= δ({{(0 0 [0, x10] 0 0 0 0 0 0 0 0 0), (0 0 [0, x10] 1 0 0 0 0 0 0 0 0),
(0 0 [0, x10] 0 0 0 0 0 1 0 0 0), (0 0 [0, x10] 1 0 0 0 0 1 0 0 0)}, ∅}, t11 t12 t13 t14 t15)
= . . . = {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}

3. According to (1), any loop in a WF model will cause a blocking state. In
fact, if a task tj is waiting for a data structure s tuples, and if these tuples are
produced by a task ti, which will never be executed in certain conditions: if
his input data structures are not root nodes, and if tj ∈ < t1 t2 . . . ti >, i.e. the
firing sequence leading to execute ti, this case is identified as a deadlock. In
addition, even if the input data structures of tj are root nodes, the occured
cycle may cause a livelock (i.e. a loop without progress). Thus, we require
that each task t ∈ T is fired, at most once, in a sequence of tasks starting
from a marking M .

∀i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣}, δ({M}, t ti1 ti2 . . . tik t) = ∅ . (5)

We explain this rule through the example illustrated through Fig. 3.
4. To keep the coherency of a WF process at runtime, whatever the firing

sequence, starting from a marking M , the final marking has to be the same.
Formally: ∀i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣} and ∀j1, j2 . . . jk ∈ {1, 2 . . . ∣T ∣}, if
δ({M}, ti1 ti2 . . . tik) = ∅ (resp. δ({M}, tj1 tj2 . . . tjk) = ∅) then:
δ({M}, ti1 ti2 . . . tik−1) ≠ ∅ (resp. δ({M}, tj1 tj2 . . . tjk−1) ≠ ∅) is the final
marking. In such case we have to get:

δ({M}, ti1 ti2 . . . tik−1) = δ({M}, tj1 tj2 . . . tjk−1) . (6)

We elucidate this rule through the example illustrated in Fig. 1.

246 N. Haddar, M. Tmar, and F. Gargouri

{M[0]} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
0
0
0

⎞⎟⎠ ,
⎛⎜⎝
x1

0
0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

δ({M[0]}, t1 t2 t2)
= δ(δ({M[0]}, t1), t2 t2)
= δ

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

0
x2

0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, t2 t2

⎞⎟⎠

= δ
⎛⎜⎝δ

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

0
x2

0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, t2

⎞⎟⎠ , t2
⎞⎟⎠

= δ(∅, t2) = ∅ .

Fig. 2. Process model (a) with deadlock

So, we calculate the possible markings resulting from the firing sequence of
tasks < t7 t8 t11 t12 t13 t14 t15 t. >, such as t. refers to any task ∈ T that is
not in the above firing sequence:
δ({M[0]}, t7 t8 t11 t12 t13 t14 t15 t.) = δ(δ({M[0]}, t7), t8 t11 t12 t13 t14 t15 t.)

= . . .

= δ({{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}, t.) = ∅
⇒ {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅} is the final
marking. We also calculate the possible markings resulting from the firing
sequence of tasks < t7 t8 t11 t13 t12 t14 t15 t. >:
δ({M[0]}, t7 t8 t11 t13 t12 t14 t15 t.) = δ(δ({M[0]}, t7), t8 t11 t13 t12 t14 t15 t.)

= . . .

= δ({{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅}, t.) = ∅
⇒ {{(0 0 0 0 0 0 0 0 0 0 0 ∣D19 ∣ + x20), (0 0 0 1 0 0 0 0 0 0 0 ∣D19 ∣ + x20)}, ∅} is the final
marking. So, as t12 and t13 are two parallel tasks:
δ({M [0]

}, t7 t8 t11 t12 t13 t14 t15) = δ({M
[0]
}, t7 t8 t11 t13 t12 t14 t15).

5. When the final marking has been reached, a WF process needs to be revived
in order to be executed again. In other words, we have to ensure that ∀M ∈
N∣S∣, i1, i2 . . . ik ∈ {1, 2 . . . ∣T ∣} ∶

δ({M [0]
}, ti1 ti2 . . . tik ti1) = ∅ . (7)

To do so, we extend WF by a restitution task tr ∉ T , i.e. tr is not a data
operation, it is a simple transition used to return from all the final states to
the initial states. In such case:

δ(∅, tr) = {M
[0]
} . (8)

5 Workflow Analysis

As introduced in [13], the classical soundness property grants that a process
has always the possibility to terminate and all its tasks are coverable (i.e., can
potentially be executed). Termination ensures that the workflow can, during
its execution, neither get stuck (i.e., it is deadlock free) nor enter a loop that

A Framework for Data-Driven Workflow Management 247

cannot be left (i.e., it is livelocks free), whereas coverable excludes dead tasks in
the workflow. But, to ensure these criteria, the soundness property needs, to be
verified, that the process has a single source place i and a single final place o.

Nevertheless, to reflect the reality of business processes, we allow a WF model
to present initial and final states as needed and accordingly, it is not possible
to detect this classical soundness property. So, we propose a released notion of
soundness which ensures that there are no livelocks, or deadlocks, or dead tasks
in a WF . In other words, we will verify the well-formedness property of a WF
process. According to [14], a P-net is well-formed if it is live and bounded. We
adopt this rule to WF , thus, the first step is to verify its liveness property.

5.1 Verification of the Liveness Property

We tackle this issue in [8,9], but by analyzing other process cases, we have been
aware that the proposed technique is not enough to ensure the liveness property
of a WF model. So, we improve it as follows:

Assuming that {M [0]
} is the set of the possible initial markings, a WF model

is live if and only if: ∀t ∈ T, ∃ t1, t2 . . . tn ∈ T ∣ δ(M
[0], t1 t2 . . . tn t) ≠ ∅ ⇒

t is live.
To ensure the verification of this property, we proposed in [8, 9] a simple

algorithm based on (9) and (10), which are defined as the following:

Firable(t) = ⋀

i ∈ {1, 2 . . . ∣S∣}
Pre(si, t) ≠ 0

Expectable(si) . (9)

Expectable(s) = {
true if ∀i ∈ {1, 2 . . . ∣T ∣}, PostMax(s, ti) = 0 .
Firable(ti) if ∃ i ∈ {1, 2 . . . ∣T ∣}, where PostMax(s, ti) ≠ 0 .

(10)
We elucidate (9) and (10) through the example illustrated in Fig. 1.

Firable(t15) = ⋀

i ∈ {8,9 . . . 19}
Pre(si, t15) ≠ 0

Expectable(si)= Expectable(s18)= Firable(t14)

= Expectable(s15) ∧ Expectable(s17)= Firable(t12) ∧ Firable(t13)= Expectable(s14)∧

Expectable(s16) = Firable(t11) ∧ true= Firable(t11)= Expectable(s10)

= Firable(t8)= Expectable(s9) = Firable(t7)= Expectable(s8) = true

By using (9) and (10), we can verify that every task in a WF process is firable if
its expected tokens can be provided by the evolution of the marking. However,
this is not sufficient to verify its liveness proverty. In fact, if a WF model contains
structural conflicts, there will be a part in the workflow that may not be executed.
So, before applying (9) and (10), we have to start by verifying that the workflow
does not contains structural conflicts.

Conflict Resolution: we assume that a WF model has a structural conflict,
if it contains at least two tasks ti and tj having the same input data structure
sk, e.g., t2 and t5 sharing s2 in the Role 1 sub-process, t9 and t11 sharing s10

248 N. Haddar, M. Tmar, and F. Gargouri

in the Role 2 sub-process. To resolve such conflicts [8, 9], we extend the model
by adding extra tasks T ∗

= {tclone1 , tclone2 . . . tclonel} such as l is the number of
conflict tasks, and tclone is a clone operation formally defined as follows: whether
sk = (Ck, Dk), tclone(sk, l) = {sk1 , sk2 . . . skl

} .
The extended model WF+ = (S+, T+, P re+, Post+) such as: S+ = S,

T+ = T ∪ T ∗, Pre+ = S × T+, and Post+ = T+ × S.

Blocking State Resolution: after extending WF , the process has to be verified
to ensure that there are no deadlocks or livelocks. In fact, if we apply (9) and
(10) directly on a WF+, which contains deadlocks or livelocks, the equations will
enter in an infinite loop, as the case of model (a) presented in Fig. 2:
Firable(t2) = ⋀

i ∈ {1, 2, 3}
Pre(si, t2) ≠ 0

Expectable(si)=Expectable(s2) ∧ Expectable(s3)

= Firable(t1) ∧ Firable(t2)= Expectable(s1) ∧ Expectable(s2) ∧ Expectable(s3)

= true ∧ Firable(t1) ∧ Firable(t2)= Firable(t1) ∧ Firable(t2)= Expectable(s1) ∧

Expectable(s2) ∧ Expectable(s3)= true ∧ Firable(t1) ∧ Firable(t2)= . . .

The verification of deadlocks or livelocks is ensured by (5) defined by the firing
rule 3, which prohibits the existence of loops in a WF model. If this rule is not
verified, it means that the model contains deadlocks or livelocks and accordingly,
it is not live.

5.2 Verification of the Boundedness Property

As we extended WF to WF+, the boundedness property will be verified rela-
tively to the extended model. If WF+ is not bounded, it means that the workflow
will contain at least one data structure having a number of tokens increasing
infinitely with the evolution of the marking. To verify the boundedness prop-
erty of a WF , we assume that if its WF+ has no loop, it will be bounded. We
prove this idea as follows: According to (2): ∀ti, tj ∈ T, ∃s ∈ S ∣ < ti, tj >,
pre(tj , s) = post(ti, s), which ensures that the number of tokens produced
by a task, in its output data structure, will be automatically consumed by
the next task having, as input, the same data structure. Besides, according to
(5): ∀i ∈ {1, 2 . . . ∣T ∣}, M ∈ {M1,M2 . . .Mn}, δ({M}, t ti1 ti2 . . . tik t) = ∅,
which means that, there is no cycle in a WF model.

Consequently, {i ∈ {1, 2 . . . ∣T ∣}, M > Pre(., ti)} = ∅, and accordingly,
in any case, the marking of a data structure will never be higher then the
number of tuples requested by the task consuming this data structure tuples.

Thus, ∣
+∞
⋃

θ=0
δ(M [θ], ti)∣ < +∞, which means that, the set of possible markings

δ({M [θ]
}, ti) is a finite set ∀ti ∈ T , and consequently, WF+ is bounded.

6 Opus Framework

Opus Framework is implemented using Java Swing language with a set of Java
library, namely, JGraph, UMLGraph, JTable. . . It consists of a number of compo-
nents including a modeling editor, a workflow engine, and a verification module.

A Framework for Data-Driven Workflow Management 249

6.1 Opus Editor

The graphical modeling of workflow processes is ensured using Opus editor. The
latter is equipped with a set of graphical interfaces to create profiles of roles
performing the work, define data flow interactions between roles and the IS
(e.g. ICRole receives the data structure Customer Inf from SCRole and saves
Order Table and Order Line Table tokens in the IS), and finally, define the
sub-process model related to each role work. It also provides to the designer a
customized assistant for each operation in the process model, in order to help
him to model the process structure.

6.2 Verification of the Workflow Model

Opus system is equipped with a verification module which ensures the analyses
and the verification of the conceived workflow models, as described in Sect. 5.
The verification result of the ICRole sub-process is illustrated in Fig. 3. We
illustrate also the verification of model (a) (defined in Fig. 2), through Fig. 4.

Fig. 3. ICRole sub-process verifi-
cation (processing time 1.37 sec)

Fig. 4. Model (a) verification (processing
time 0.24 sec)

6.3 Opus Engine

Opus engine follows up the data flow routing, simulates the processing of tasks
according to its formal definition, considering the firing rules defined in Sect. 4,
and invites each role to perform its tasks according to its feasibility and ur-
gency. Furthermore, tokens of workflow initial states may be imported from the
IS. And in the same way, tokens of final states may be stored in. For this pur-
pose, Opus engine is equipped with the IS Integration Module that provides
the Import tool (which imports tuples from a definite IS table to a definite data
structure [9]), the ImportId tool (which imports the identifier of the last tuple
inserted in a definite IS table, instead of being entered by a role), and the Insert

250 N. Haddar, M. Tmar, and F. Gargouri

tool (which stores a data structure tuples in a definite IS table. It is considered
as an Add Tuples operation such as t10 and t15 in Fig 1). We detail all the ac-
tions, performed either by the ICRole or by Opus engine, through Fig. 5.
A1. Starting the ICRole sub-process: when the ICRole launches his process,
the engine will present to him the data structure Customer Inf received from
SCRole and will ask him to instantiate the data structure Product Table.

A2. Alimentation of the data structure Product Table from the IS: the ICRole
imports tuples to Product Table from the IS using the Import tool, and vali-
dates its tokens in order to execute t7 (see Step 1).

A3. Seizure of the ordered quantities: the ICRole seizes the ordered quanti-
ties relatively to the ordered products (OrdPs), in the resulting data structure
of t7, and validates his seizures (see Step 2).

A4. Select the OrdPs: during the execution of t8, the engine invites the ICRole
to enter the selection property in order to select the OrdPs (see Step 3). Then,
the ICRole saves the selection property for the next executions of t8.

A5. Verify the availability of the OrdPs: in this runtime example, s10 ≠ ∅, so,
t11 decides to send s14 to t12, also t9 decides to send s11 to t10.

A6. Insert a new order: t10 uses the Insert tool to insert a new order in the
IS Orders Table (see Steps 5, 5.1, 5.2).

A7. Create the new order lines: in parallel with t9, t11 then t12 will be auto-
matically executed to produce s15 (see Step 4-2). Then, t14 will be waiting for
s17 to be executed. In this case, the ICRole has to launch the execution of t13.

A8. Import the identifier of the last inserted order from the IS: the ICRole
launches the execution of t13 (see Step 6-1). The latter receives the empty data
structure S16 Order Id as an input, and instead of seizing the new order iden-
tifier, t13 will import its value using the ImportId tool (see Step 6-2).

A9. Wake a waiting task: at this level, the ICRole can turn to wake t14 by
validating s15 tokens, and the engine will launch its execution (see Step 7).

A10. Complete the creation of the new order lines: the engine executes t14 to
produce s18 tokens (see Step 8).

A11. Insert the new order lines: the engine executes t15 and asks the ICRole
to choose the suitable IS table for the insertion (see Step 9-1), and to perform
the matching between the data structure s18 and the chosen table (see Step 9-2).
If these two steps are well done, the engine will properly end the workflow.

We can deduce, from the execution details, the presence of four types of ac-
tions: 9.1% of actions are based on manual tasks (i.e. tasks that are performed
only by a role without the intervention of the engine, such as A3), 27.27% of
actions are based on automatic tasks (i.e. tasks that are performed only by the
engine without the intervention of a role, such as A5, A7 and A10), 18.18% of
actions are based on semi-automatic tasks (i.e. tasks that are performed by the
engine under control of a role, such as A1 and A9), and 45.45% of actions are
based on semi-automatic tasks only in the first execution (SA-FE) (i.e. tasks
that are semi-automatic tasks only in their first executions, but during their
next executions, they will migrate to be automatic tasks, such as A2, A4, A6,
A8 and A11).

A Framework for Data-Driven Workflow Management 251

Fig. 5. Executing the ICRole sub-process

252 N. Haddar, M. Tmar, and F. Gargouri

7 Conclusions and Future Work

According to the execution of the ICRole sub-process, manual tasks are ex-
tremely reduced. Other tasks are either purely executed by the engine, or ex-
ecuted by the engine under supervising of a human actor. That demonstrates
the success of the modeling approach in execution issue. In fact, thanks to the
detailed definition of the workflow model, Opus engine can interpret, automat-
ically, the process operational functions and perform a data-driven execution
based on the firing rules defined in Sect. 4. These latter ensure the consistency
of data, during runtime, and grant, together with the verification method, pre-
sented in Sect. 5, the proper termination of the workflow process. However, this
Framework must be completed by a module for documents generation (invoice,
purchase order. . .): the system can manage the content but not the container.

References

1. van der Aalst, W.M.P., Hee, K.: Workflow Management: Models, Methods, and
Systems. MIT Press (2004)

2. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. Journal of Software Maintenance and Evolution: Research
and Practice 23(4), 205–244 (2011)

3. Delzanno, G.: An overview of msr(c): A clp-based framework for the symbolic
verification of parameterized concurrent systems. Electr. Notes Theor. Comput.
Sci. 76, 65–82 (2002)

4. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Syst. J. 42(3), 428–445 (2003)

5. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

6. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fund. Informaticae 88(3), 251–274 (2008)

7. Sidorova, N., Stahl, C., Trčka, N.: Soundness verification for conceptual workflow
nets with data: Early detection of errors with the most precision possible. Inf.
Syst. 36(7), 1026–1043 (2011)

8. Haddar, N., Tmar, M., Gargouri, F.: A data-driven workflow based on structured
tokens petri net. In: The Seventh International Conference on Software Engineering
Advances, ICSEA 2012, pp. 154–160 (2012)

9. Haddar, N., Tmar, M., Gargouri, F.: Implementation of a data-driven workflow
management system. In: IEEE 15th International Conference on Computational
Science and Engineering, CSE 2012, pp. 111–118. IEEE Computer Society (2012)

10. Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes
with colored petri nets. Comput. Ind. 49(3), 267–281 (2002)

11. Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data Knowl. Eng. 53(2), 129–162 (2005)

12. Künzle, V., Reichert, M.: Philharmonicflows: Research and design methodology.
Technical report, University of Ulm (May 2011)

13. Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

A Framework for Data-Driven Workflow Management 253

14. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg
(2000)

Appendix A: Data Operations Definition

Table 1. Operations definition

Operation Formal definition

Inner Product: performs the combination
of a data structure tuples with those of
another data structure.
Noted: ×

∀ sj = (Cj , Dj), sk = (Ck, Dk), Cj = (cj1 , cj2 . . . cjnj
),

Ck = (ck1
, ck2

. . . cknk
), si = sj × sk = ((cj1 . . . cjnj

, ck1
. . . cknk

),Di)
Where: Di = ⋃

l ∈ {1 . . . nj}
p ∈ {1 . . . nk}

{(djl
1 . . . d

jl
nj , dkp1 . . . dkp

nk)}

Resulted tokens number:∣Di∣ = ∣Dj ∣ × ∣Dk ∣
Selection: selects the tuples of a data
structure that meet the desired criteria.
Noted: σ

Whether P is the selection property, ∀ sj = (Cj , Dj), si = σP sj⇔ si = (Cj , ⋃
e ∈Dj

P (e)
{e})

Resulted tokens number:∣Di∣ ∈ [0, ∣Dj ∣]

Projection: selects the values of specific
attributes in a data structure.
Noted: �

sj = (Cj ,Dj),∀(b1 . . . bn) ∈ {0,1}n, si = (Ci,Di) = �(b1...bn)sj
Where ci is a selected (resp. not selected) attribute, if bi = 1 (resp bi = 0).
⇔ Ci = (cj

j′
1

, cj
j′
2

. . . cjj′q
), Di = {(dj1

j′
1

, dj1
j′
2

. . . dj1j′q

),
(dj2

j′
1

, dj2
j′
2

. . . dj2j′q

) . . . (djmjj′
1

, djmjj′
2

. . . djmjj′q

)} .

Such as: q = ∑n
k=1 bk: is the number of attributes in the structure result,

j′k =min l = {1,2 . . . n}
∑l

p=1 bp = k

l: refers to the projection attributes indices.

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dj ∣]
Substitution: changes the name of
an attribute in a data structure.
Noted: ⧄

∀sj = (Cj , Dj), si = ⧄(cjk , c, sj) = ((cj1 . . . cjk−1, c, cjk+1 . . . cjn), Dj)
Resulted tokens number: ∣Di∣ = ∣Dj ∣

Permutation: allows to permute two
columns in a data structure.

Noted:
↷
�

∀si = (Ci, Di), sj = ↷
�(si, k, l), such as: k, l ∈ {1,2 . . . n}, k < l,

Cj = (ci1 . . . cik−1 , cil , cik+1 . . . cil−1 , cik , cil+1 . . . cin)
Dj = {(d1i1

. . . d1ik−1
, d1il

, d1ik+1
. . . d1il−1

, d1ik
, d1il+1

. . . d1in),(dmi1
. . . dmik−1

, dmil
, dmik+1

. . . dmil−1
, dmik

, dmil+1
. . . dmin)}.

Resulted tokens number:∣Di∣ = ∣Dj ∣
Extension: Extends a structure scheme
by adding an attribute c =(n, t) and
applying a function f.
Noted: �

∀sj = (Cj , Dj), si = �(sj , c, f), such as:
Ci = ((cj1 , cj2 . . . cjn , c),Di = {(dj11

, dj12
. . . dj1n

, f(dj11
, dj12

. . . dj1n
,

Dj)) . . . (djm1
, djm2

. . . djmn
, f(djm1

, djm2
. . . djmn

, Dj))})
Resulted tokens number:∣Di∣ = ∣Dj ∣

Add Tuples: inserts the tuples of a data
structure in another one.
Noted: +

∀sj = (Cj , Dj), , sk = (Ck, Dk),
Dj = {(dj11

, dj12
. . . dj1n

), (dj21
, dj22

. . . dj2n
) . . . (djm1

, djm2
. . . djmn

)}
Dk = {(dk11

, dk12
. . . dk1h

), (dk21
, dk22

. . . dk2h
) . . . (dkl1

, dk22
. . . dklh

)},
b1, b2 . . . bh) ∈ {1, 2 . . . n}: refers to the positions of the added values in the
resulting data structure. sj = +(sk, (b1, b2 . . . bh))
if h < n then: sj = ((c1, c2 . . . cn),{(dj11

, dj12
. . . dj1n

), (dj21
, dj22

. . . dj2n
)

. . . (djm1
, djm2

. . . djmn
), (dk1b1

, dk1b2
. . . dk1bh

. . . dk1n
),

(dk2b1
, dk2b2

. . . dk2bh
. . . dk2n

) . . . (dklb1
, dklb2

. . . dklbh

. . . dkln
)})

if h = n then: sj = ((c1, c2 . . . cn),{(dj11
, dj12

. . . dj1n
), (dj21

, dj22
. . . dj2n

)
. . . (djm1

, djm2
. . . djmn

), (dk1b1
, dk1b2

. . . dk1n
),

(dk2b1
, dk2b2

. . . dk2n
) . . . (dklb1

, dklb2
. . . dkln

)}) .

Resulted tokens number:∣Dj ∣ = ∣Dj ∣ + ∣Dk ∣
Control 1: Decides to continue or not
the information flow routing, according to
condition1. Noted: ±

Condition 1: if si is the data structure expected by the next task,

and sj is the controlled data structure, then: si = sk ± sj = { sk if sj = ∅ ,
∅ otherwise .

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dk ∣]
Control 2: Decides to continue or not
the information flow routing, according to
condition 2. Noted: ∓

Condition 2: if si is the data structure expected by the next task,

and sj is the controlled data structure, then: si = sk ∓ sj = { sk if sj ≠ ∅ ,
∅ otherwise .

Resulted tokens number: ∣Di∣ ∈ [0, ∣Dk ∣]

Generic Top-k Query Processing
with Breadth-First Strategies

Mehdi Badr and Dan Vodislav

ETIS, ENSEA, University of Cergy-Pontoise, CNRS, France
firstname.lastname@u-cergy.fr

Abstract. Many algorithms for top-k query processing with ranking predicates
have been proposed, but little effort has been directed toward genericity, i.e. sup-
porting any type (sorted and/or random) or cost settings for the access to the lists
of predicate scores. In previous work, we proposed BreadthRefine (BR), a generic
algorithm that considers the current top-k candidates as a whole instead of focus-
ing on the best candidate, then we compared it with specific top-k algorithms. In
this paper, we compare the BR breadth-first strategy with other existing generic
strategies and experimentally show that BR leads to better execution costs. To
this end, we propose a general framework GF for generic top-k processing, able
to express any top-k algorithm and present within this framework a first compar-
ison between generic algorithms. We also extend the notion of θ-approximation
to the GF framework and present a first experimental study of the approximation
potential of top-k algorithms on early stopping.

Keywords: Top-k procesing query, ranking, multicriteria information retrieval.

1 Introduction and Related Work

We address the problem of top-k query processing, where queries are composed of a set
of ranking predicates, each one expressing a measure of similarity between data objects
on some specific criteria. Unlike traditional boolean predicates, similarity predicates
return a relevance score in a given interval. The query also specifies an aggregation
function that combines the scores produced by the similarity predicates. Query results
are ranked following the global score and only the best k ones are returned.

Ranking predicates acquired an increasing importance in today’s data retrieval ap-
plications, especially with the introduction of new, weakly structured data types: text,
images, maps, etc. Searching such data requires content-based information retrieval
(CBIR) techniques, based on predicates measuring the similarity between data objects,
by using content descriptors such as keyword sets, image descriptors, geographical co-
ordinates, etc. We consider here the case of expensive ranking predicates over data
objects, whose specificity is that their evaluation cost dominates the cost of the other
query processing operations.

The general form of the top-k queries that we consider is expressed in Figure 1.
The query asks for the k best objects following the scores produced by m ranking
predicates p1, ..., pm, aggregated by a monotone function F . Figure 1 also presents a
query example from a touristic application, where the visitor of a monument takes a

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 254–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generic Top-k Query Processing with Breadth-First Strategies 255

select * from Object o select * from Monument m
order by F(p1(o), ..., pm(o)) order by near(m.address, here()) +
limit k similar(m.photo, myPhoto) +

ftcontains(m.descr, ’Renaissance sculpture’)
limit 1

Fig. 1. General form and example of top-k query

photo of a detail and searches for the ”best” monument on three criteria: near to its
current location, reproducing a similar detail, and exposing Renaissance sculptures.

As in this example, expensive ranking predicates come often from the evaluation of
similarity between images, text, locations and other multimedia types, whose content is
described by numerical vectors. This results in expensive search in highly dimensional
spaces, based often on specific multidimensional index structures [3].

In many cases, predicates are evaluated by distant, specialized sites, that provide spe-
cific web services, e.g. map services evaluating spatial proximity, photo sharing sites
allowing search of similar images, specialized web sites proposing rankings for hotels,
restaurants, etc. Internet access to such services results into expensive predicate eval-
uation by distant, independent sites. Moreover, the control over predicate evaluation is
minimal most of the time, reduced to the call of the provided web service.

For each query, a ranking predicate may produce a score for each object. In the
following, we call a source the collection of scores produced by a ranking predicate for
the set of data objects. The list of scores may be produced e.g. by the access to a local
index structure that returns results by order of relevance. We consider here the general
case, where the access to the scores of a source is limited to sorted and/or random
access. This allows three possible types for a source S:

– S-source: sorted access only, through the operator getNext(S) returning the next
highest score s and the corresponding object identifier o.

– R-source: random access only, through the operator getScore(S, o) returning the
score of object o.

– SR-source: a source with both sorted and random access.

The general idea of a top-k algorithm is to avoid computing all the global scores, by
maintaining a list of candidate objects and the interval [L,U] of possible global scores
for each of them. The monotonicity of the aggregation function ensures that further
source accesses always decrease the upper bound U and increase the lower bound L.
The algorithm stops when the score of the best k candidates cannot be exceeded by the
other objects anymore. Figure 2 presents a possible execution for the example query in
Figure 1. We suppose S1 is an S-source, S2 an SR-source, S3 an R-source; scores are
presented in descending order for S/SR sources and by object id for R-sources. Local
scores belong to the [0, 1] interval, so the initial global score interval is [0, 3] for all
objects. We note candidates the set of candidates and Uunseen the maximum score of
unseen objects (not yet discovered). Initially, candidates = ∅ and Uunseen = 3.

A sorted access to S1 retrieves (o2, 0.4), so o2’s global score interval becomes
[0.4, 2.4]. Also Uunseen becomes 2.4 because further scores in S1 cannot exceed 0.4.
Then, a sorted access to S2 retrieves (o3, 0.9). This adds a new candidate (o3), lowers
Uunseen to 2.3 (further S2 scores cannot exceed 0.9), but also lowers the upper bound of

256 M. Badr and D. Vodislav

S1 (S) S2 (SR) S3 (R)
(o2, 0.4) (o3, 0.9) (o1, 0.9)
(o1, 0.3) (o1, 0.2) (o2, 0.7)
(o4, 0.25) (o4, 0.15) (o3, 0.8)
(o3, 0.2) (o2, 0.1) (o4, 0.6)

Access Retrieved candidates Uunseen

∅ 3.0
S1/S (o2, 0.4) {(o2, [0.4, 2.4])} 2.4
S2/S (o3, 0.9) {(o2, [0.4, 2.3]), (o3, [0.9, 2.3])} 2.3
S2/R (o2, 0.1) {(o2, [0.5, 1.5]), (o3, [0.9, 2.3])} 2.3
S3/R (o3, 0.8) {(o2, [0.5, 1.5]), (o3, [1.7, 2.1])} 2.3
S2/S (o1, 0.2) {(o2, [0.5, 1.5]), (o3, [1.7, 2.1]), (o1, [0.2, 1.6])} 1.6

Fig. 2. Examples of sources and query execution for the query example

o2 to 2.3, because the maximum score of S2 is now 0.9. Next, a random access to S2 for
o2 retrieves (o2, 0.1). This changes only the global score interval of o2, etc. Execution
ends when the minimum global score of o3 exceeds both Uunseen and the maximum
global score of all the other candidates, i.e. o3 is the best (top-1) object.

Related Work and Contribution
A large spectrum of top-k query processing techniques [11] has been proposed at dif-
ferent levels: query model, access types, implementation structures, etc. We consider
here the most general case, of simple top-k selection queries, with expensive access
to sources, limited to individual sorted/random probes, without additional information
about local source scores/objects, and out of the database engine.

This excludes from our context join queries [17,10] or interaction with other database
operators for query optimization [13,10,12]. We consider sequential access only, par-
allel processing is out of the scope of this paper. We exclude also approaches such as
TPUT [5], KLEE [16] or BPA [1], able to get several items at once, or disposing of sta-
tistical information about scores, or disposing also of the local rank. Algorithms such
as LARA [14], that optimize the management of the candidate list, are orthogonal to
our approach for expensive predicates, which focuses on source access.

In this context, top-k algorithms proposed so far fit with the general method pre-
sented in Figure 2 and propose their own heuristic for deciding the next access. How-
ever, most algorithms focus on specific source types and cost settings.

Algorithms such as NRA[7] (No Random Access) and StreamCombine[9] consider
only S-sources. NRA successively consults all the sources in a fixed order, while Stream-
Combine selects at each step the next access based on a notion of source benefit.

Other algorithms consider only SR-sources. The best known is TA[7] (Threshold
Algorithm), which consults sorted sources in a fixed order (like NRA), but fully eval-
uates the global score of each candidate through random access to the other sources.
The algorithm stops when at least k global scores exceed Uunseen. QuickCombine[8],
uses the same idea as StreamCombine to select the next sorted source to probe. CA[7]
(Combined Algorithm) is a combination of TA with NRA that considers random ac-
cesses being h times more expensive than sorted ones. It reduces the number of random
probes by performing h sorted accesses in each source before a complete evaluation of
the best candidate by random probes.

Also supposing cost asymmetry, a third category of algorithms considers one cheap
S-source (providing candidates) and several expensive R-sources. Upper[4,15] focuses
on the candidate with the highest upper bound U and performs a random probe for it,
unless U < Uunseen, in which case a sorted access is done. The choice of the next R-
source to probe is based on a notion of source benefit, dynamically computed. MPro[6]

Generic Top-k Query Processing with Breadth-First Strategies 257

is similar to Upper, but fixes for all the candidates the same order for probing the R-
sources, determined by sampling optimization.

Surprisingly, little effort has been made towards generic top-k processing, i.e. adapted
to any combination of source types and any cost settings. NC[19] (Necessary Choices)
proposes a framework for generic top-k algorithms in the case of results with complete
scoring, a strategy SR that favors sorted accesses, and a specific algorithm SR/G that
uses sampling optimization to find the best fit with the source settings.

Approximate top-k processing has been considered in several approaches. A variant
of the TA algorithm, called TAθ [7], defines an approximation parameter θ > 1 and the
θ-approximation of the top-k result as being a set K of k objects such that ∀x ∈ K,
∀y /∈ K, θscore(x) ≥ score(y) (global and local scores are considered to belong
to the [0,1] interval). To obtain a θ-approximation, TAθ simply changes the threshold
condition: the algorithm stops when at least k objects have a global score ≥ Uunseen/θ,
i.e. TAθ is equivalent to an early stopping of the TA algorithm.

Other approximation algorithms for top-k selection queries are proposed in [18], for
S-source algorithms, or in the KLEE system [16] for top-k processing in distributed
environments. Note that [18] is based on dropping candidates that have low probabil-
ity to be in the top-k and provides probabilistic guarantees for the result, but requires
knowledge about score distribution in sources.

In previous work, we have proposed BR (BreadthRefine) [2], a generic algorithm
that uses a breadth-first strategy for top-k processing in a larger context than NC, i.e.
incomplete scoring. The BR strategy considers the current top-k as a whole to be re-
fined, while all the other proposed strategies focus on the best candidate. BR has been
compared to algorithms of the three categories mentioned above and proved that it suc-
cessfully adapts to their specific settings, with better cost.

This paper completes the BR approach with the following contributions:

– A general framework GF for generic top-k processing, that allows expressing any
top-k algorithm in our context, thus providing a basis for comparative analysis.

– New, comparable generic variants of the BR, NC and CA algorithms with experi-
mental comparison, showing that the BR strategy leads to better costs.

– A generalization of θ-approximation computing in the context of GF, and a first
experimental study of the ability of generic top-k algorithms to produce good ap-
proximate results on early stopping, showing that the BR strategy has a better ap-
proximation potential.

The rest of the paper is organized as follows: the next section introduces the generic
framework for top-k processing and compares in this context the BR algorithm with
generic variants of NC and CA; Section 3 presents our approach for top-k approxima-
tion, then we report experimental results and end with conclusions.

2 Generic Top-k Framework and Algorithms

We propose GF, a generic framework for top-k processing (Figure 3). As in the example
of Figure 2, GF considers a top-k algorithm as a sequence of accesses to the sources, that
progressively discover scoring information about data objects. The input parameters are

258 M. Badr and D. Vodislav

the query q and the set of sources S. Query q specifies the number k of results to return
and the monotone aggregation function F , while the set of sources S materializes the
scores returned by the query’s ranking predicates.

In GF, algorithms maintain a set of candidates (initially empty) with their interval
scores, the threshold Uunseen (initialized with the aggregation of the maximum scores
maxj of the sources), and possibly other local data structures.

Notations: For a candidate c, we note [L(c), U(c)] its current interval of scores. We
note Uk(Lk) the current subset of k candidates with the best k upper (lower) bound
scores1. We note Uk the current k-th highest upper bound score among the candidates,
i.e. Uk = minc∈Uk

(U(c)), respectively Lk the current k-th highest lower bound score.
We note χ ∈ U1 the candidate with the current best upper bound score.

One source access is performed at each iteration, the access type being decided by
the SortedAccessCondition predicate. In the case of a sorted access, a source Sj is cho-
sen by the BestSortedSource function, then is accessed through getNext. The returned
object-score couple is used to update the threshold, the set of candidates and local vari-
ables. The retrieved object is added/updated in the candidates set and objects not yet
retrieved in Sj update their upper bounds. Update also includes the discarding of non-
viable candidates. A candidate c with U(c) < Lk is called non-viable because it will
never be in the top-k result since at least k candidates surely have better scores.

In the case of a random access, the ChooseCandidate function selects a candidate
c, then BestRandomSource gives a random source to probe for it. After the random
access through getScore, the candidates set and local variables are updated (among
candidates, only c changes).

The end of the algorithm is controlled by the generic StopCondition predicate, which
depends on the type of top-k result expected (e.g. with complete or incomplete scoring).
The earliest end is obtained with predicate

StopCondition ≡ (|candidates| = k ∧ Lk ≥ Uunseen) (1)
i.e. only k candidates are viable and there is no viable unseen object. It is simple to
demonstrate that this condition is necessary and sufficient for a correct top-k result.
Since this result may have incomplete scoring, additional conditions are necessary to
ensure properties such as ordering or complete scoring of the results.

It is easy to see that any top-k algorithm in our context can be expressed in GF.
Indeed, for a given query and set of sources, each algorithm is equivalent to the se-
quence of accesses to the sources it produces, which can be obtained with a sequence
of decisions about the access type, the source and the candidate for random probes.

Given its ability to express any top-k algorithm, the GF framework is a valuable tool
for comparing top-k strategies. In the following, we express in GF and compare three
generic algorithms: a new variant of BR and new, generic and comparable variants of
the NC and CA algorithms.

2.1 BreadthRefine

BreadthRefine (BR) [2] proposes a generic algorithm framework that can be instantiated
to several variants. The main idea of the BR strategy is to maintain the set of current

1 With random selection among candidates with the same score if necessary.

Generic Top-k Query Processing with Breadth-First Strategies 259

GF (q, S)
candidates ← ∅; Uunseen ← F(max1, ..., maxm); ... //other local variables
repeat //choice between sorted or random access

if SortedAccessCondition() then //sorted access
Sj ← BestSortedSource() //choice of a sorted source
(o, s) ← getNext(Sj) //sorted access to the selected source
Update candidates, Uunseen and other local variables

else //random access
c ← ChooseCandidate() //choice of a candidate
Sj ← BestRandomSource(c) //choice of a random source
s ← getScore(Sj , c) //random access to the selected source
Update candidates and other local variables

endif
until StopCondition()
return candidates

Fig. 3. The GF generic top-k framework

top-k candidates Uk as a whole, instead of focusing on the best candidate χ, which is
the common approach.

The BR framework can be expressed in the more general GF framework by instanti-
ating SortedAccessCondition and ChooseCandidate to realize the BR strategy.

The SortedAccessCondition in the BR strategy combines three conditions:
|candidates| < k or Uunseen > Uk or CostCondition(). A sorted access is scheduled
if (i) there are not yet k candidates, or (ii) an unseen object could belong to the current
top-k Uk (Uunseen > Uk), or (iii) a generic CostCondition favors sorted access in the
typical case where a random access is more expensive than a sorted one. Condition
(ii) targets the decrease of Uunseen through sorted accesses and is the heart of the BR
strategy for sorted sources: it maintains the whole current top-k free of unseen objects,
while the common strategy is to consider only the best candidate (Uunseen > U(χ)).

The BR strategy is completed by the ChooseCandidate function for refinement by
random probes. All the existing algorithms facing this choice systematically select the
best current candidate χ. The BR strategy maintains the k best candidates as a whole
by first selecting the least refined candidate in Uk.

BR considers top-k with incomplete scoring, thus StopCondition is given by (1).

BR-Cost*
Several instantiations of the BR framework have been proposed in [2]. The best one
was BR-Cost, that fully implements the BR strategy and uses a CostCondition inspired
from CA: if r is the ratio between the average costs of random and sorted accesses, then
successive random probes must be separated by at least r sorted accesses.

In BR-Cost, BestSortedSource adopts the benefit-oriented strategy proposed by
StreamCombine [9] for choosing a sorted source. The benefit of source Sj is Bj =
(∂F/∂Sj)×Nj × δj/Cs(Sj), where (∂F/∂Sj) is the weight of Sj in the aggregation
function,Nj the number of candidates in Uk not yet seen in Sj , δj the expected decrease
of the score in Sj and Cs(Sj) the cost of a sorted access in Sj . Since (∂F/∂Sj) cannot
be computed for any monotone function F , we consider here, for simplicity, only the

260 M. Badr and D. Vodislav

Fig. 4. Scores in a sorted source Sj

case of weighted sum, in which (∂F/∂Sj) = coefj > 0, where coefj is the coefficient
corresponding to source Sj in the weighted sum.

BestRandomSource uses also a benefit-oriented strategy inspired from algorithms
with controlled random probes such as Upper [4]; the benefit of source Sj is Bj =
coefj×(crtmaxj−minj)/Cr(Sj), where crtmaxj andminj are respectively the cur-
rent maximum score and the minimum score in Sj and Cr(Sj) is the cost of a random
probe in Sj . Note that crtmaxj decreases in SR-sources (after sorted accesses), but re-
mains constant (equal to maxj) in R-sources. Note also that coefj×(crtmaxj−minj)
measures the reduction of the candidate’s score interval size after a random probe in Sj .

We propose here BR-Cost*, an improved variant of BR-Cost, using a different method
for estimating r as a ratio of benefits. Roughly speaking, the benefit of an access to a
source is the ratio between the refinement produced on the candidate score intervals and
the cost of that access. This approach favors the comparison with the NC strategy.

Consider the case of a S-source Sj in Figure 4 at the moment when the current score
is crtmaxj and Nrj objects have not been yet accessed. A sorted access to Sj refines
the score of the retrieved object, but also produces a decrease δj of crtmaxj that affects
the upper bound of the remaining Nrj − 1 objects. For the retrieved object, the width
of the score interval decreases with coefj × (crtmaxj − minj). For each one of the
remaining Nrj − 1 objects, the upper bound decreases with coefj × δj .

In conclusion, the benefit of a sorted access to Sj is:

Bs(Sj) = coefj × (crtmaxj −minj + (Nrj − 1) × δj)/Cs(Sj)

Benefit varies in time; if δj does not vary much, benefit globally decreases because
crtmaxj and Nrj decrease. We approximate the average benefit by considering δj ≈
(maxj −minj)/N , crtmaxj ≈ (maxj −minj)/2 and Nrj ≈ N/2:

Bs(Sj) ≈ coefj × (maxj −minj)/Cs(Sj) (2)

Benefit for a random access is computed in a similar way, but in this case only the score
interval of the selected candidate changes. If Sj is a SR-source, the benefit, respectively
the average benefit of a random access are:

Brs(Sj) = coefj × (crtmaxj −minj)/Cr(Sj)

Brs(Sj) ≈ coefj × (maxj −minj)/2Cr(Sj) (3)
For a R-source crtmaxj = maxj all the time, therefore

Br(Sj) = Br(Sj) = coefj × (maxj −minj)/Cr(Sj) (4)

The global benefit SB (RB) of processing sorted (random) accesses is defined as the
sum of average benefits of the sources allowing this kind of access.

Generic Top-k Query Processing with Breadth-First Strategies 261

SB =
∑

Sj∈SS∪SSR

Bs(Sj) RB =
∑

Sj∈SR

Br(Sj) +
∑

Sj∈SSR

Brs(Sj)

where SS , SR and SSR are respectively the disjoint sets of S-, R- and SR-sources.
In conclusion, the access ratio r used by BR-Cost* is:

r = SB/RB =

∑
Sj∈SS∪SSR

Aj

Cs(Sj)∑
Sj∈SR

Aj

Cr(Sj)
+
∑

Sj∈SSR

Aj

2Cr(Sj)

(5)

where Aj = coefj × (maxj − minj) is the amplitude of the interval produced by Sj

in the aggregated score.

2.2 Necessary Choices

As mentioned above, Necessary Choices (NC) [19] was the first proposal for a generic
algorithm, yet constrained to the case of complete top-k scoring. In this context, NC
identifies necessary accesses at some moment, as being those for candidates in Uk.

In this framework, NC proposes an algorithm SR/G that favors sorted against random
accesses for each candidate. SR/G is guided by two parameters: D = {d1, ..., dm},
which indicates a depth of sorted access in each S- or SR-source, and H , which indi-
cates a fixed order of probes in the random (R and SR) sources for all the candidates.
The meaning of D is that sorted access to a source Sj where crtmaxj ≥ dj has always
priority against random probes.

Among all the possible couples (D, H), SR/G selects the optimal one by using sam-
pling optimization. The optimization process converges iteratively: for some initial H
one determines the optimal D, then an optimal H for this D, etc.

Despite its genericity, NC is hardly comparable with BR. In the context of incomplete
top-k scoring adopted by BR, NC’s analysis of necessary accesses is no longer valid.
Source sampling used by SR/G is not always possible and does not guarantee similar
score distribution. We propose here a variant of SR/G, adapted to the context of BR by
considering incomplete scoring and a heuristic approximation of (D, H) inspired by
BR-Cost*. The intention is to compare the strategies proposed by BR-Cost* and SR/G
in a context as similar as possible.

The SR/G variant we propose is expressed in the GF framework as follows:
– Besides D and H , a local variable keeps the best candidate, i.e. the candidate in Uk

with incomplete scoring having the highest upper bound. SR/G realizes a first sorted
access to some source; the best object is initialized with this first retrieved object
and updated after each iteration. Note that at least one object in Uk has incomplete
scoring if the StopCondition has not been yet reached.

– SortedAccessCondition returns true if the set of sorted sources in which the best
candidate has not been yet retrieved and where crtmaxj ≥ dj is not empty.

– BestSortedSource returns one of the sources in this set.

– ChooseCandidate returns the best candidate.

– BestRandomSource returns the first random source not yet probed for the best
candidate, following the order defined by H .

– StopCondition, for incomplete scoring, is given by (1).

262 M. Badr and D. Vodislav

We propose an heuristic approximation of D and H , based on the notion of source
benefit used for BR-Cost*. For H we consider the descending order of the random
source benefit computed with (3) and (4). Estimation of D is based on three hypotheses:

1. The number of sorted accesses to a source must be proportional to the source benefit
given by (2).

2. Sorted accesses until depth dj in each source should produce a decrease of the
threshold enough for discriminating the top-k result, which is at least until
Uunseen = Rk, where Rk is the k-th highest real score of an object.

3. If nj = N − Nrj is the number of sorted accesses in Sj for reaching depth dj
(see Figure 4), the relation between nj and dj depends on the score distribution in
sources, generally unknown and approximated here with uniform distribution.

If we note Δj = maxj − dj the score decrease to reach depth dj , we obtain:
1. ∀j, nj = C ×Bs(Sj), where C is a constant.
2. Umax −Rk =

∑
coefj ×Δj , where Umax = F(max1, ...,maxm) is the highest

possible aggregated score.
3. ∀j, nj/N = (maxj − dj)/(maxj −minj).

Resolving this equation system produces the following estimation for the depth:

dj = maxj − A2
j

coefj × Cs(Sj)
× Umax −Rk∑

j A
2
j/Cs(Sj)

(6)

Real score Rk may be estimated by various methods. This is not important in our ex-
perimental evaluation, since we precompute the Rk value, hence considering the best
case for SR/G.

2.3 Combined Algorithm

Although Combined Algorithm (CA) [7], limited to SR-sources, is not a generic algo-
rithm, it was a first attempt towards genericity, by proposing to combine NRA and TA
strategies to adapt to the case of different costs for random and sorted access.

We propose here CA-gen, a generic variant of CA adapted to any source types. Like
for CA, if r is the ratio between the average costs of random and sorted access, each
sorted (S- and SR-) source is accessed r times, before performing all the random probes
for the best candidate in Uk with incomplete scoring in random sources.

The cycle of r sorted accesses in each source can be simulated in GF with local vari-
ables indicating the next source to access and the number of accesses already performed
in the cycle. Then SortedAccessCondition returns true if the cycle is not yet finished and
BestSortedSource simply returns the next source. ChooseCandidate returns the best
candidate, as defined above and BestRandomSource returns the first random source
not yet probed for the best candidate. If no such source exists, the cycle stops. StopCon-
dition, for incomplete scoring, is given by (1).

3 Approximation by Early Stopping

Top-k processing in our context is usually expensive because of predicate evaluation,
therefore reducing the execution cost by accepting approximate results is a promising

Generic Top-k Query Processing with Breadth-First Strategies 263

approach. We adopt the method proposed by TAθ [7], based on relaxing the threshold
condition in TA with a factor θ > 1, i.e. the algorithm stops when the score of at least
k candidates exceeds Uunseen/θ. This produces a θ-approximation of the top-k result,
i.e. a set Ka of k objects such that ∀x ∈ Ka, ∀y /∈ Ka, θ × score(x) ≥ score(y).

Note that this method is equivalent to an early stopping of the exact algorithm, i.e.
TA and TAθ have the same execution until the end of TAθ , which occurs first.

We generalize here the TAθ approach in the case of incomplete scoring within the
GF framework and thus enable a comparison between various top-k algorithms.

Note that TAθ considers that all source scores belong to the [0, 1] interval. In the
general case, in order to preserve the meaning of θ-approximations, we simply consider
that scores in source Sj belong to a [0,maxj] interval.

Consider an approximate solution Ka composed of k candidates with possibly in-
complete scoring at some point during the execution of the algorithm in the GF frame-
work. Then the condition for detecting Ka as a θ-approximation of the top-k result is
given by the following theorem.

Theorem 1. An approximate solution Ka composed of k objects with incomplete
scoring is surely a θ-approximation of the top-k result iff θ × minc∈Ka(L(c)) ≥
maxc/∈Ka

(U(c))

Proof. Since L(c) ≤ score(c) ≤ U(c), then ∀x ∈ Ka, score(x) ≥ L(x) ≥
minc∈Ka(L(c)) and ∀y /∈ Ka,maxc/∈Ka

(U(c)) ≥ U(y) ≥ score(y). If the theo-
rem condition holds, then ∀x ∈ Ka, y /∈ Ka, θ × score(x) ≥ score(y), i.e. Ka is a
θ-approximation.

Consider now x = argminc∈Ka(L(c)) and y = argmaxc/∈Ka
(U(c)). If the the-

orem condition does not hold for Ka, then θ × L(x) < U(y), so it is possible that
θ × score(x) < score(y), i.e. Ka may not be a θ-approximation.

In the GF context, algorithms manage only the set of candidates discovered in sorted
sources. Considering Ka ⊂ candidates, the stop condition (1) becomes:

θ ×minc∈Ka(L(c)) ≥ max(Uunseen,maxc∈candidates−Ka(U(c))) (7)

The difference with Theorem 1 is that here Uunseen gives the upper bound score for all
the objects not yet discovered and thus not members of candidates.

Theorem 2. Eliminating non-viable candidates does not affect the stop condition (7).

Proof. Suppose that at some moment a non viable candidate x affects the stop con-
dition. Since x /∈ Ka, x can only impact the right side of the inequality and only if
U(x) > Uunseen and U(x) > U(y), ∀y ∈ candidates − Ka. But U(x) < Lk (x
non-viable), so all the objects in candidates−Ka are non-viable and Lk > Uunseen,
which in accordance to (1) means that the exact top-k has been already found.

To estimate the precision of an approximate solution, we propose a distance measure
based on two principles: (i) order and final scores of elements in the top-k solution are
not important, and (ii) only wrong elements in the approximate solution affect precision.

Distance is measured by the difference between the real scores of wrong elements
and Rk, the k-th score in the exact solution, normalized to the [0, 1] interval by dividing
it by Rk. Indeed, Rk is the maximum possible distance to Rk, since the lowest possible

264 M. Badr and D. Vodislav

global score is 0. The distance between an element o ∈ Ka and the real result K ,
respectively between Ka and K are defined as follows:

dist(o,K) =

{
Rk−score(o)

Rk
, if o /∈ K

0, if o ∈ K
, dist(Ka,K) =

1

k

∑
o∈Ka

dist(o,K) (8)

We measure the precision of an approximate solution Ka as being 1 − dist(Ka,K).
The relation between our distance measure and θ-approximations is given by the

following theorem.

Theorem 3. If Ka is a θ-approximation of the real solution K , then dist(Ka,K) ≤
θ − 1.

Proof. If Ka = K then dist(Ka,K) = 0 and the inequality is true. Otherwise, con-
sidering x ∈ K − Ka, then score(x) ≥ Rk. Ka being a θ-approximation of K ,
∀o ∈ Ka, θ × score(o) ≥ score(x) ≥ Rk, so Rk − score(o) ≤ (θ − 1)score(o).

In conclusion, dist(Ka,K) = 1
k

∑
o∈Ka

dist(o,K) = 1
k

∑
o∈Ka−K

Rk−score(o)
Rk

≤
1
k

∑
o∈Ka−K

(θ−1)score(o)
Rk

= θ−1
kRk

∑
o∈Ka−K score(o) ≤ θ−1

kRk
kRk = θ − 1

We propose here a comparative study of the approximation potential of generic top-k al-
gorithms. We draw cost-distance curves for these algorithms and compare their shapes.
A point on the cost-distance curve indicates the precision of the approximate result on
early stopping at that moment/cost. Since arbitrary early stopping comes with no guar-
antees on the precision of the approximate result, we also produce θ-approximations in
each case and compare costs for measured and guaranteed precision.

4 Experiments

We experimentally compare the BR strategy with that of the other generic algorithms
in terms of execution cost and of approximation potential.

Data Sets and Parameters
We use synthetic sources, independently generated as lists of scores in the [0, 1] inter-
val for the N objects, then organized for S, R or SR access, depending on the source
type. We consider two types of score distribution in a source: uniform or exponential
(p(x) = λe−λx), for λ = 1 and restricted to the [0, 1] interval. Exponential distribution
illustrates S-sources where scores have fast decrease at the beginning, potentially more
discriminant than sources with uniform distribution.

We measure the execution costs for each algorithm as the sum of costs of all the
source accesses. We consider that all the sorted (random) accesses have the same cost
Cs (Cr). Each result in the experiments is the average of 10 measures over different
randomly generated sources. We consider weighted sum as the aggregation function,
with coefficients randomly generated for each of the 10 measures.

The following parameters are considered in the experiments: N = 10000 database
objects, k = 50, 6 sources of each type, and the most common cost settings, with ran-
dom accesses more expensive than sorted ones (Cr = 10, Cs = 1). Two configurations
for data distribution in sources are considered: uniform for all the sources or mixed, i.e.

Generic Top-k Query Processing with Breadth-First Strategies 265

(a) All source types (b) No R-sources (c) No S-sources

Fig. 5. Execution cost comparison

exponential distribution for half of the sorted sources (3 S-sources and 3 SR-sources)
and uniform for the other sources.

Comparison of the Execution Cost
We compare the execution cost of BR-Cost* with the NC variant and CA-gen in three
configurations of source types: no R-sources, no S-sources, all source types. We also
add to the comparison the reference non-generic algorithms compatible with that set-
ting. In each configuration, uniform and mixed data distribution are considered.

All source types (Figure 5.a). BR-Cost* behaves visibly better (10%) than both NC
and CA-gen for uniform distribution, while the difference becomes important for mixed
distribution: approximatively 37% better than NC and 40% better than CA-gen.

No R-sources (only S and SR). Note that here cost and source settings are in favor of
algorithms that realize only sorted access (NRA) or strongly favors them (NC). Figure
5.b shows that in the uniform distribution case BR-Cost* and NC are the best, with
very close costs, much better than CA-gen (around 33%), which is even outperformed
by NRA. For mixed distribution, BR-Cost* is clearly much better than NC and CA-gen
(almost 60%), which are outperformed by NRA.

No S-sources (only R and SR). Figure 5.c shows that in all the cases BR-Cost* out-
performs the other algorithms and that NC and CA-gen are less adapted to this setting,
performing worse than Upper. The benefit of using BR-Cost* is bigger in the mixed
distribution case (around 28% better than NC and CA-gen) compared to uniform distri-
bution (24%). Compared to Upper, the benefit is similar in both cases, around 15%.

In conclusion, BR-Cost* successfully adapts to various source types and data distri-
bution settings, and outperforms not only the other generic approaches, but also specific
algorithms designed for that case. We also note a weakness for the other generic strate-
gies in one of the studied cases: no S-sources for NC and no R-sources for CA-gen.
Paradoxically, mixed distribution does not improve cost in most cases; we guess that
discriminant distributions are counter-balanced here by the lack of correlation between
sources and by their relatively high number.

Approximation Potential
We measure the potential of approximation by early stopping of the generic top-k al-
gorithms by drawing their cost-distance curves. For space reasons, only the case of all
source types is presented here.

Distance between approximate and real solution, computed with Formula (8), is mea-
sured every 2000 cost units during the algorithm’s normal execution and a curve relying

266 M. Badr and D. Vodislav

(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 6. Approximation with the best k upper bound scores, all source types

these points is extrapolated. Each point on the curve represents the distance between the
approximate solution and the real one if the algorithm stops at that moment. A curve
”below” another one indicates a better approximation potential.

The form of the curve also indicates approximation stability. A monotone descending
curve means stable approximation, that improves if execution continues, while non-
monotony indicates an algorithm badly adapted for approximation by early stopping.

For each cost-distance curve we measure the end point that corresponds to a θ-
approximation obtained with the stop condition (7). We consider two values, θ = 1.05
and θ = 1.01, that correspond to a guaranteed distance of 0.05, respectively 0.01 (see
Theorem 3), i.e. a precision of 95%, respectively 99%. We compare the position of these
points with that of the intersection between the curve and the corresponding distance.

We consider two cases for the approximate solution. The first one is the set Uk of k
candidates with the highest upper bound. This is a natural choice for the approximate
solution, since Uk is the set of candidates that top-k algorithm focus on during exe-
cution. More precisely, all the algorithms proposed so far base their strategies on Uk,
either for deciding a sorted access, or for the choice of a candidate for random probes.
Intuitively, candidates with high upper bounds must be ”refined” because their upper
bound make them potentially belong to the final top-k. The algorithm must decide if
they really belong to the result or not - if not, the algorithm cannot end without refining
the candidate’s score to make it non-viable.

The second proposal for an approximate solution is the set of k candidates with
the highest lower bound Lk. Intuitively, belonging to Lk means that the candidate was
already refined with good scores in some sources. This may be a good indication that
the candidate belongs to the final top-k, better than for Uk where high upper bounds
may be the result of little refinement, thus with high uncertainty.

Approximation with Uk

Figure 6 presents the cost-distance curves for uniform and mixed data distributions.
Final costs for algorithms may be less visible, they are already indicated in Figure 5.

For uniform distribution (Figure 6.a), BR-Cost* approximation distance quickly de-
creases and the algorithm has clearly better approximation properties than CA-gen
(much higher distance, only decreasing at the end) or NC (totally unstable). Mixed dis-
tribution (Figure 6.b) accentuates the problems of NC and CA-gen (which becomes un-
stable), while BR-Cost* keeps a good curve shape. However, θ-approximation
significantly reduces the cost saving for BR-Cost*, e.g. for θ=1.05 algorithm stops

Generic Top-k Query Processing with Breadth-First Strategies 267

(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 7. Approximation with the best k lower bound scores, all source types

at cost 160 000, while the corresponding distance of 0.05 is already reached at cost
70 000.

In conclusion, BR-Cost* has clearly the best approximation potential with Uk among
the generic algorithms, with good properties for the different data distributions. The
other generic algorithms are badly adapted to approximation with Uk: NC and CA-gen
are systematically unstable. We guess that the good approximation properties of BR-
Cost* come from its breadth-first strategy. Handling the current top-k Uk as a whole,
instead of focusing on the best candidate only, produces a more stable evolution of Uk

toward the final solution. The price to pay for guaranteed precision in θ-approximations
is important for algorithms with good approximation curves - we notice a significant
difference with the potential cost at the same precision. Comparison with specific algo-
rithms (not presented here for space reasons) suggests that the cost of θ-approximations
is dependent on the total cost of the algorithm: for algorithms with very close cost-
distance curves, higher total costs systematically lead to higher θ-approximation costs.

Approximation with Lk

For both uniform (Figure 7.a) and mixed distribution (Figure 7.b), the curves for all the
algorithms are very close, stable, with good approximation potential. The sub-figure
for each case presents, besides the curves, a zoom on the final part of the execution,
where curves are very close. BR-Cost* and CA-gen have slightly better curves than
NC, the difference being visible in the mixed distribution case and on the final part
of the uniform case. Comparison of θ-approximations follows the conclusion of the
previous point, algorithms with better execution costs produce better θ-approximations,
i.e. BR-Cost* is the best, while CA-gen and NC are very close. We notice that cost-
distance curves with Lk are better than those with Uk in all the cases. This also leads to
an increased difference between the cost with θ-approximation and the potential one.

In conclusion, we notice that approximation with Lk has better quality than with Uk

for all the algorithms. Compared with the Uk case, approximation is always stable with
Lk and has better precision at the same execution cost. Even if BR-Cost* has globally
the best properties, the approximation potential of generic algorithms is very close in

268 M. Badr and D. Vodislav

this case. However, θ-approximations are not improved by Lk and lead to an increased
difference between the potential cost and that for guaranteed precision.

5 Conclusion

The BR breadth-first strategy adapts itself very well to various source type configu-
rations and data distributions, leading to better execution cost than the other generic
or specific strategies. Also, it globally has the best approximation potential among the
generic strategies, with a clear advantage in the Uk approximation case. However, Lk

approximation produces better results for all the algorithms and greatly reduces the dif-
ferences between them. We noticed that θ-approximation is weakly correlated with the
approximation potential and significantly depends on the total execution cost. This can-
cels the difference between Uk and Lk approximation and favors again the BR strategy
that produces better total costs.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries. In: VLDB,
pp. 495–506 (2007)

2. Badr, M., Vodislav, D.: A general top-k algorithm for web data sources. In: Hameurlain,
A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp.
379–393. Springer, Heidelberg (2011)

3. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–
373 (2001)

4. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases.
In: ICDE, p. 369 (2002)

5. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In: PODC, pp.
206–215 (2004)

6. Chang, K.C.-C., Hwang, S.W.: Minimal probing: supporting expensive predicates for top-k
queries. In: SIGMOD Conference, pp. 346–357 (2002)

7. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput.
Syst. Sci. 66(4), 614–656 (2003)

8. Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: VLDB, pp. 419–428 (2000)

9. Güntzer, U., Balke, W.-T., Kießling, W.: Towards efficient multi-feature queries in heteroge-
neous environments. In: ITCC, pp. 622–628 (2001)

10. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
databases. VLDB J. 13(3), 207–221 (2004)

11. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in
relational database systems. ACM Comput. Surv. 40(4) (2008)

12. Li, C., Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: SIGMOD Con-
ference, pp. 61–72 (2006)

13. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: Ranksql: Query algebra and optimization for
relational top-k queries. In: SIGMOD Conference, pp. 131–142 (2005)

14. Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Efficient aggregation of ranked in-
puts. In: ICDE, p. 72 (2006)

15. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases.
ACM Trans. Database Syst. 29(2), 319–362 (2004)

Generic Top-k Query Processing with Breadth-First Strategies 269

16. Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k query
algorithms. In: VLDB, pp. 637–648 (2005)

17. Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting incremental join
queries on ranked inputs. In: VLDB, pp. 281–290 (2001)

18. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guaran-
tees. In: VLDB, pp. 648–659 (2004)

19. Hwang, S.W., Chang, K.C.-C.: Optimizing top-k queries for middleware access: A unified
cost-based approach. ACM Trans. Database Syst. 32(1), 5 (2007)

Evaluating Spatial Skyline Queries on Changing Data

Fabiola Di Bartolo and Marlene Goncalves

Universidad Simón Bolı́var, Departamento de Computación, Apartado 89000
Caracas 1080-A, Venezuela

{fbartolo,mgoncalves}@usb.ve

Abstract. The amount of data being handled is enormous these days. To identify
relevant data in large datasets, Skyline queries have been proposed. A traditional
Skyline query selects those points that are the best ones based on user’s prefer-
ences. Spatial Skyline Queries (SSQ) extend Skyline queries and allow the user
to express preferences on the closeness between a set of data points and a set of
query points. However, existing algorithms must be adapted to evaluate SSQ on
changing data; changing data are data which regularly change over a period of
time. In this work, we propose and empirically study three algorithms that use
different techniques to evaluate SSQ on changing data.

Keywords: Skyline queries, Spatial Skyline queries, changing data.

1 Introduction

Wireless sensor networks (WSN) are commonly used to monitor control variables of di-
verse applications, such as environmental, medical, etc. Monitoring systems over WSN
are able to handle in real time the data generated by sensors. Sensor data are highly
changing, i.e., new observations are recorded even while using the monitoring systems.
Usually, very large datasets are collected by sensors since sensor data regularly change
over a period of time. In this sense, individuals and communities require to analyze a
broad range of data; therefore, techniques to filter relevant data must be applied. To
identify relevant data in large datasets, Skyline queries have been proposed.

A traditional Skyline query selects those points that are the best ones according
to multiple user’s criteria. Spatial Skyline Queries (SSQ) are an extension of Skyline
queries; they allow to express preferences on the closeness between a set of data points
and a set of query points [5].

In this work, we study SSQ on changing data. Suppose an online mobile recommen-
dation system that is able to suggest the best restaurants to be booked by a customer
who would like to have a lunch with 5 friends from 2 p.m. until 4 p.m. The customer
wants to find a restaurant close to each friend’s location with a low serving time and a
high overall score. Based on the customer criteria, the result must include the restau-
rants with the smallest distance from each friend’s location, the lowest serving time and
the highest overall score. To identify the best restaurants, a Skyline query may be eval-
uated. A restaurant belongs to the Skyline set if and only if there is no other restaurant
which is nearer to each friend’s location, and also it has a lower serving time and a
higher overall score. In this example, the data is changing, e.g., the friends may move

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 270–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Evaluating Spatial Skyline Queries on Changing Data 271

continuously or the restaurant availability may change frequently. Therefore, the Sky-
line set changes depending on each friend’s location and/or restaurant avalaibility. If the
friends move a significant distance, some restaurants must be discarded because they
are further away or new restaurants must be included because of their closeness. Addi-
tionally, availability of a restaurant may change since some customers finished eating,
cancelled or made new reservations. Thus, the recommendations or the Skyline must
be continuously refreshed according to changes of data. Particularly, availability is a
changing non-spatial datum and location is a moving query point.

On the other hand, time complexity for answering SSQ is higher than evaluating
traditional Skyline queries due to calculation of multiple distances to the query points.
Evaluation time is even higher in SSQ on changing data because of distance calcula-
tion and Skyline recalculation. Our contribution is to provide solutions to the problem
of evaluating SSQ on changing data. To the best our knowledge, algorithms for SSQ
do not assume non-spatial data changes [6] and Skyline algorithms for changing non-
spatial data only allow one query point [2–4, 7, 8]. We propose three algorithms that
use different techniques to calculate the Skyline Spatial when data are changing. The
first algorithm, AB2S, is a naive solution which calculates the Skyline Spatial set using
the BNL algorithm [1] at each change of the data. The second algorithm, VC2S+, is an
adaptation of V CS2 [6] that allows changing data. The third algorithm,CD2S, is able to
return the Skyline Spatial based on changing characteristics of the data and also prunes
the search space using spatial properties in order to avoid exhaustive searches. We have
empirically studied the performance of the three algorithms proposed to evaluate SSQ
on changing data. In the best case, our experimental study shows that average execution
time of CD2S was approximately one-third of the time taken by AB2S and VC2S+.

The paper is composed of four sections. Section 2 describes the three algorithms
proposed to evaluate SSQ on changing data. Section 3 reports the results of our experi-
mental study. Finally, Section 4 contains the conclusions and future work.

2 Proposed Algorithms

We propose three algorithms to evaluate SSQ on changing non-spatial data: AB2S,
VC2S+ and CD2S. Particularly, AB2S and VC2S+ are adaptations of existing algo-
rithms [1, 6] which consider changes of the non-spatial data and a moving query point.

All algorithms receive a Spatial Skyline query composed by multiple query points
and non-spatial dimensions, one changing non-spatial dimension, and one moving query
point. They use the Euclidean distance function to compute closeness between points.

The Spatial Skyline on changing data may transform its state according to the fol-
lowing: 1) Initial Configuration: Corresponds to the original values of the data. There
is not any change of data; 2) State Change Configuration: New data state after a non-
spatial dimension changes its value in at least one registry; and 3) Movement Change
Configuration: New data state after a moving query point has changed.

2.1 Naive Algorithm

Adapted BNL for Spatial Skyline (AB2S) is a naive algorithm based on BNL (Block
Nested Loop) [1]. The AB2S algorithm does not have methods to update the Spatial

272 F. Di Bartolo and M. Goncalves

Skyline according to changes of a moving query point. The Spatial Skyline is built in
any configuration to identify the correct points. AB2S starts on the Initial Configuration
which finds the candidates, computes the distances from each candidate to the query
points and calculates the Spatial Skyline on the candidates. A point is candidate if its
changing non-spatial dimension value is equal to a given state, e.g, the restaurant state
is available. In the State Change Configuration, AB2S updates the current candidates.
The AB2S algorithm determines the points that change its state. Those points in a given
state are now candidates. For each candidate that has not had a given state before, its
distance to the query points is calculated. Otherwise, for those candidates that already
had a given state at some time, their distance to the moving query point are updated.
Also, AB2S deletes invalid candidates, e.g., points that are no longer available. Finally,
dominance1 checks are done to update the Skyline set. In the Movement Change Config-
uration, AB2S only updates distances from each candidate to the moving query point.
With the new distances the Spatial Skyline is calculated through dominance checks. In
any configuration, AB2S performs the BNL algorithm on the found candidates.

2.2 Adaptation of V CS2

We adapted V CS2[6] to evaluate SSQ on changing non-spatial data. This adapted al-
gorithm is named VC2S+. VC2S+ calculates the non-spatial Skyline or the Skyline on
non-spatial dimensions, and builds the Voronoi diagram using the candidates; incorrect
results may be produced if the unavailable points are included in the Voronoi diagram.
The main disadvantage of this adaptation is that the Voronoi diagram and the Delaunay
graph must be reconstructed in the State Change Configuration.
VC2S+ starts on the Initial Configuration which finds the candidates, constructs the

Delaunay graph and proceeds to calculate the Non-Spatial Skyline on the candidates.
Subsequently, VC2S+ computes the Spatial Skyline using the V S2 algorithm [6].Thus,
the Delaunay graph scanning begins. Some dominance checks may be avoided, e.g., a
point belonging to the convex hull is a Skyline point, and therefore, it is not necessary
to check if it is dominated.

In the State Change Configuration, VC2S+ re-initializes data structures for the Sky-
line, the Spatial Skyline, the Non-Spatial Skyline, and the Delaunay graph. The candi-
dates are updated depending on state changes of the points. The Non-Spatial Skyline
is computed, and the search region and Delaunay graph are recalculated considering
updated candidates. Using the Delaunay graph, the Spatial Skyline is identified. Lastly,
the final Skyline is built merging the Non-Spatial Skyline and the Spatial Skyline.

In the Movement Change Configuration,VC2S+ saves the previous convex hull poly-
gon, and creates the convex hull that was modified by the movement of the query point.
The algorithm identifies a movement pattern [6] and updates the Skyline set in almost
all the patterns. Also, the distances from each candidate to the moving query point are
modified. The new search region is calculated. Finally, VC2S+ returns the final Skyline
after updating and merging the Non-Spatial Skyline and the Spatial Skyline.

1 A point A dominates a point B if it is better or equal in all criteria, and is better in at least one
criterion.

Evaluating Spatial Skyline Queries on Changing Data 273

2.3 Continuous Dynamic Spatial Skyline Algorithm

The Continuous Dynamic Spatial Skyline (CD2S) algorithm identifies the Spatial Sky-
line in terms of the changing features of the data. In Initial Configuration, CD2S ini-
tializes a d-dimensional matrix to storage the state value of each point in the dataset
P d. Then, it fills the lists of query points and non-spatial dimensions with the coordi-
nates and values indicated by the user. Also, the search region and the convex hulls are
created. One of the convex hulls is composed of all the query points, and it is named
Global Convex Hull while the Static Convex Hull comprises the query points excluding
the moving query point. Initially, the search region is the minimum bounding rectangle
that includes all the points in P d.

To explain the algorithm, we assume that the user preferences are expressed over
points that have a particular Boolean state, for instance the value True or 1. Therefore,
points whose state value is True are the candidates. To find these candidates in the
matrix, the algorithm has to read the row value (or a piece of the row) as a number
generated by the bits contained there. Only the rows or row pieces that have a value
greater than zero are going to be verified to select the candidates. Then, CD2S looks for
the candidates inside the search region and save them in a list. If the candidate is inside
the Global Convex Hull, it is directly marked as Skyline. In this step, the Skyline is
separated into two groups: Static Skyline and Dynamic Skyline. The first group is the set
of candidates inside the Static Convex Hull, and the second group is the set of candidates
inside the Global Convex Hull and outside the Static Convex Hull. While each point
is marked as Skyline, if there are no preferences on non-spatial dimensions, the search
region is reduced by the intersection with the dominance region of the point. In presence
of non-spatial dimensions, similar as the VC2S+ algorithm, the Non-Spatial Skyline is
calculated checking dominance between candidates considering only the non-spatial
dimensions. In this case, the search region is composed of the union of the dominance
regions of the Non-Spatial Skyline points. Next, the remaining Skyline is calculated, the
Outer Skyline, by means of the dominance checks of the candidates inside the search
region and outside the Global Convex Hull against previous Skyline.

In the State Change Configuration, when a change ocurrs CD2S updates the Skyline
set. First, it stores the previous search region in a variable. Then, the matrix is syn-
chronized with the new state values of the points and the points with a state value not
required by the user (e.g. False or 0) are removed from the candidate list and the Sky-
line set. If none was deleted from the Skyline in the previous step, then the candidate
list is temporarily stored in another variable and the current candidate list is reinitial-
ized. The reason is that old candidates which are not in the Skyline set, they will still be
dominated by the current Skyline. Nevertheless, if any Skyline point was deleted, then
the candidate list is held because old candidates can now be Skyline points and, the
new search region is created considering only the Skyline points that were not deleted.
The points whose state has changed to the value required and also are inside the search
region, are added to the candidate list and analyzed to be included in the Skyline. If a
candidate is inside the Global Convex Hull, the point is directly added to the Skyline
set, but some skyline points outside the Global Convex Hull could be dominated by this
new point; therefore, dominated points have to be deleted from the Skyline.

274 F. Di Bartolo and M. Goncalves

If some skyline point was deleted, it is necessary to find the candidates outside the old
search region and inside the new one. These points have to be added to the candidate list,
also this list is revised to remove points that are not in the new search region. Through
the candidate list and excluding the added objects, the remaining Skyline set is obtained

For each position change of the moving query point, in the Movement Change Con-
figuration, CD2S updates the Skyline set. The algorithm applies the same pattern iden-
tification as V CS2 [6] to evaluate the Skyline depending on the case. In this step, the
new Global Convex Hull is calculated, but the Static Convex Hull always is the same.
Also, the region where the Skyline is not affected by the movement is generated; this
region is named the Invariant Sector.

If there is any non-spatial dimension, the distances of the Non-Spatial Skyline points
to the moving query point are updated and the new search region is obtained (this Sky-
line does not change) The Dynamic Skyline points and Outer Skyline points are ana-
lyzed to delete dominated points; also, the non-skyline points in the candidate list inside
the new search region are checked to add new points to the Dynamic Skyline and Outer
Skyline. Before a point may be compared, its distance to the moving query point has to
be updated.

3 Experimental Study

We empirically study the three algorithms: AB2S, VC2S+, and CD2S. We synthetically
generated several datasets and Spatial Skyline queries by means of a Java program. 200
datasets comprise points with a spatial location, three non-spatial dimensions, and a
Boolean non-spatial dimension. Dataset sizes vary between 10,000 and 100,000 points.
Spatial Skyline Queries contain from 5 to 18 query points, from 0 to 3 non-spatial
dimensions and a Boolean non-spatial dimension. In all experiments, we measured the
total execution time and the number of dominance checks or comparisons.

Using these datasets and random change configurations, 340,000 simulations for the
three algorithms have been fulfilled. The simulations were generated in groups of 50.
The first simulation corresponds to the Movement Change Configuration, and the others
are continuous transformations on the data based on previously generated configura-
tions. Three parameters were used in the simulations: type of change (mode), percent-
age of points whose changing non-spatial dimension was updated (%stC), maximum
movement distance in meters for the moving query point (maxD). Also, for each dataset
was used a percentage from the total area occupied by the points in P which was used
for the initial position of the query points in Q (%area). Finally, the three algorithms
were implemented in Java and were executed on a Intel Q6600 CPU with 4 GB RAM
and disk of 100 GB.

3.1 Experiment Settings

We conduct five experiments. The first experiment shows the performance on 10,000
points of the three algorithms when the number of query points and non-spatial di-
mensions vary; the parameters are: mode=All and %stC=random in two variants:
#1 maxD=10 and #2 maxD=20. The second experiment considers the movement of

Evaluating Spatial Skyline Queries on Changing Data 275

one query point for datasets of 10,000 and %area=10 in five variants: #1 maxD=5,
#2 maxD=10, #3 maxD=15, #3 maxD=20 and #4 maxD=25. The third experiment
reports the performance of the algorithms when the non-spatial dimension change its
state on datasets of 10,000 points with %area=10 in five variants: #1 %stC=10, #2
%stC=30, #3 %stC=rand, #3 %stC=70 and #4 %stC=90. The fourth experiment
shows the impact of a variation of %area for datasets of 50,000 in three variants: #1
%area=10-maxD=10, #2 %area=25-maxD=10 and #3 %area=50-maxD=10.
Finally, the fifth experiment presents the results for datasets of 100,000 using queries
from 12 to 18 query points and the parameter values %stC=random, maxD=50 and
%area=10 in two variants: #1 any non-spatial dimension and #2 one non-spatial di-
mension.

3.2 Query Processing Performance

In this section, we compare our proposed algorithmCD2S against the AB2S and VC2S+
algorithms. In the first experiment, CD2S was the best algorithm in terms of execution
time. In fact the average execution time of CD2S is almost the 60% and 50% of the
time of AB2S and VC2S+. We can also observe that the average execution time of
CD2S is closer to the best execution time taken by any of the three algorithms while

(a) Execution time #1 (b) Execution time #2

(c) Skyline composition

Fig. 1. Experiment I

276 F. Di Bartolo and M. Goncalves

(a) Execution time (Exp II) (b) Execution time (Exp III) (c) Execution time (Exp IV)

(d) Execution time #1 (Exp V) (e) Execution time #2 (Exp V)

Fig. 2. Experiments II-V

the average execution time of VC2S+ is the closest to the worst execution time. For 50
continuous simulations generated using the parameters %stC and maxD, the average
execution time increases with respect to these parameter values (Figs. 1(a) and 1(b)).
The horizontal axis of Figs. 1(a) and 1(b) corresponds to the number of the query points
and the number of non-spatial dimensions. The execution time increases because of the
number of dominance comparisons also increases. Additionally, the skyline cardinality
increases too. Moreover, since the Static Convex Hull area is bigger when there are
more query points, the Static Skyline (staS) is greater than the Dynamic Skyline
(dynS), the Outer Skyline (outS) and the Non-Spatial (nsS) (Fig. 1(c)). Finally,
a bigger Static Skyline set is an advantage for CD2S algorithm because it holds the
Skyline set unless an point has to be deleted or added due to a new state change on the
points inside the Static Convex Hull.

On the other hand, Fig. 2(a) shows the execution time and comparisons of the three
algorithms from the second to the fourth experiment. In the second experiment, CD2S
and VC2S+ require less execution time than AB2S to identify the Skyline when a query
point is in movement. However, in the third experiment, Fig. 2(b) shows that the exe-
cution time of CD2S and AB2S is better than VC2S+ when a state change is produced.
For a medium dataset in both change types, the fourth experiment reports that the exe-
cution time of VC2S+ is worse than CD2S and AB2S. This is because of the number of

Evaluating Spatial Skyline Queries on Changing Data 277

dominance comparisons and the construction of the Voronoi diagram (Fig. 2(c)). The
best performance of CD2S compared to the others is in the fifth experiment #1. The av-
erage execution time taken by CD2S is 33% and 35% of the time of VC2S+ and AB2S,
and its number of dominance comparisons is at least one order of magnitude smaller.

Additionally, we can observe in the Figures 2(d)) and 2(e) that the SSQ evaluation
with a non-spatial dimension is more costly than SSQ answering with a spatial dimen-
sion. This is because the Skyline set is less selective.

4 Conclusions

In this paper, we have proposed three algorithms to evaluate SSQ on changing data. In
this work, changes on the query points and the non-spatial data are allowed. We have
adapted two state-of-the-art algorithms to consider changing data. Also, we have de-
fined a new algorithm named CD2S which is able to reduce dominance comparisons
and decrease the execution time. Our experimental study showed that CD2S reduces
the number of dominance comparisons and execution time because it avoids rebuild-
ing the whole Skyline each time that data are updated. However, only step wise data
changes are allowed. As a future work, we plan to extend our algorithms for continuous
changes. Also, we will perform experiments using real-world datasets and we will study
theoretical time complexity of the the different algorithms in terms of O−notation.

References

1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: IEEE Conf. on Data En-
gineering, pp. 421–430 (2001)

2. Chen, N., Shou, L.-D., Chen, G., Gao, Y.-J., Dong, J.-X.: Prismo: predictive skyline query
processing over moving objects. Journal of Zhejiang University Science C 13, 99–117 (2012)

3. Huang, Y.-K., Chang, C.-H., Lee, C.: Continuous distance-based skyline queries in road net-
works. Information Systems 37(7), 611–633 (2012)

4. Kodama, K., Iijima, Y., Guo, X., Ishikawa, Y.: Skyline queries based on user locations and
preferences for making location-based recommendations. In: Proceedings of the 2009 Inter-
national Workshop on Location Based Social Networks, LBSN 2009, pp. 9–16. ACM, New
York (2009)

5. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proceedings of the
32nd International Conference on Very Large Data Bases, pp. 751–762. VLDB Endowment
(2006)

6. Sharifzadeh, M., Shahabi, C., Kazemi, L.: Processing spatial skyline queries in both vector
spaces and spatial network databases, vol. 34, pp. 14:1–14:45. ACM, New York (2009)

7. Shen, H., Chen, Z., Deng, X.: Location-based skyline queries in wireless sensor networks.
In: NSWCTC 2009: Proceedings of the 2009 International Conference on Networks Security,
Wireless Communications and Trusted Computing, pp. 391–395. IEEE Computer Society,
Washington, DC (2009)

8. Zheng, B., Lee, K.C.K., Lee, W.-C.: Location-dependent skyline query. In: 9th International
Conference on Mobile Data Management, MDM 2008, pp. 148–155 (April 2008)

SONIC: Scalable Multi-query OptimizatioN

through Integrated Circuits

Ahcène Boukorca1, Ladjel Bellatreche1, Sid-Ahmed Benali Senouci2,
and Zoé Faget1

1 LIAS/ISAE-ENSMA, Futuroscope, Poitiers, France
(boukorca,bellatreche,zoe.faget)@ensma.fr

2 Mentors Graphics 38330 Montbonnot-Saint-Martin, France
sid-ahmed senouci@mentor.com

Abstract. In the first generation of databases, query optimizers were
designed to optimize individual queries. Due to the predefined number
of tables of a given database, the probability to have interaction between
queries is high. As a consequence, optimizers propose solutions for multi-
queries optimization. Getting this optimization is known as NP-hard
problem. To ensure a scalable solution, we borrow techniques used in the
electronic design automation (EDA) domain. In this paper, we first make
an analogy between the multi-query optimization problem and the EDA
domain. Secondly, we propose to model our problem with hypergraphs
massively used to design and test integrated circuits. Thirdly, we use our
results to materialize views. Finally, experiments are conducted to show
the scalability of our approach.

1 Introduction

The age of extremely large data is now a reality. This situation consolidates
the traditional position of the database technology as a support for storing,
managing, and accessing it in an efficient way. The database community made
several attempts on query optimization since the early 70s. Several algorithms
and systems have been proposed, such as the System-R project and its ideas have
been largely incorporated in many commercial optimizers. The difficulty of query
optimization is mainly related to the fact that each SQL query corresponding to
a select-project-join query in the relational algebra may be represented by many
query trees. The leaves of each query tree represent base relations and non-leaf
nodes are algebraic operators such as selections, projections, unions or joins. An
intermediate node indicates that the corresponding operator is applied on the
relations generated by its children, the result of which is then sent further up.
Thus, the edges of a tree represent data rows from bottom to top, i.e., from the
leaves which correspond to data in the database to the root which is the final
operator producing the query answer. For a complicated query, the number of
all possible query trees may be enormous due to many algebraic laws that hold
for relational algebra: commutative and associative laws of joins, laws involving
selection and projection push down along the tree, etc.

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 278–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 279

To choose the optimal solution for a given query tree, a database optimizer
may employ one of two optimization techniques: the rule-based optimization
approach (RBA) and the cost based optimization approach (CBA). The RBA
is the oldest one. It is simple since it is based on a set of rules concerning for
instance the implementation algorithms of the join, the use of an index or not,
whether the choice of the external relation is a nested loop, and so on. The
optimizer chooses an execution plan based on the available access paths and
their ranks. For instance, Oracle’s ranking of the access paths is heuristic. If
there is more than one way to execute a query, then the RBA always uses the
operation with the lower rank. Usually, operations of lower rank execute faster
than those associated with constructs of higher rank. In the CBA, the optimizer
estimates the cost of each possible execution plan1 by applying heuristic formulas
using a set of statistics about the database (sizes of tables, indexes, tuple length,
selectivity factors of join and selection predicates, sizes of intermediate results,
etc.) and hardware (size of buffer, page size, etc.). For each execution plan,
the query optimizer does the following tasks: (1) the selection of an order and
grouping for associative-and-commutative operations such as joins, unions and
intersection, (2) the choice of implementation algorithms for different algebraic
operations: for example, selections may be implemented using either a sequential
scan or an index scan. Join operation may be implemented in different ways:
nested loop, sort merge join and hash join (see Figure 1), (3) the management of
additional operators like group-by, sorting, etc. The cost-based optimizer chooses
the plan that has the lowest cost using advanced techniques (e.g., programming
approaches as in System R). An important point to be mentioned is that the
quality of the CBA depends strongly on the recency of the statistics. Deciding
which statistics to create is a difficult task [1].

Join

Selection dept

student

Student.dno=dept.dno

Sno=“1234”

Index scan

Sequential

scan

Hash join

student
dept

Join

Selection

Sno=“1234”

Student.dno=dept.dno
Sort merge

join

Sequential

scan

Sequential

scan

Index scan

T1
T2

Join

Selection dept

student

Student.dno=dept.dno

Sno=“1234”

Index scan

Sequential

scan

Hash join

student
dept

Join

Selection

Sno=“1234”

Student.dno=dept.dno
Sort merge

join

Sequential

scan

Sequential

scan

Index scan

T1
T2

Fig. 1. Two different plans for the same query

1 A query execution plan is a set of steps used to access data in relational databases.
Figure 1 gives an example of an execution plan, where dashed circles and solid circles
represent base tables and algebraic operations, respectively. Other execution plans
might be generated.

280 A. Boukorca et al.

The fact that a database is composed of a set of predefined tables indicates
that there is a great chance that queries span common tables. This phenomenon
is known as query interaction. In the 80s, several studies exploiting this in-
teraction have been elaborated (for more details see [2]). Business intelligence
technology and scientific applications use relational data warehouse technology
to model their applications, thus increasing even more the focus on query itner-
action [3,4]. A data warehouse (DW) is usually modeled with a relational schema
(star schema, snow flake schema). A star schema consists of one or several fact
tables related to multiple dimension tables via foreign key joins. Dimension ta-
bles are relatively small compared to the fact table and rarely updated. They
are typically denormalized so as to minimize the number of join operations re-
quired to evaluate a query. The typical queries on the star schema are called star
join queries. They are characterized by: (i) a multi-table join among a large fact
table and dimension tables and (ii) each of the dimension tables involved in the
join operation has multiple selection predicates. In such context, an intermediate
results benefit several queries. This phenomenon is known as multi-query opti-
mization. Instead of considering each query plan individually, they are merged
based on the common nodes in order to increase query interaction. Getting the
optimal merged query plan is NP-hard problem. Several algorithms were pro-
posed to deal with this problem, of mainly three types: dynamic programming
algorithms [5,6], genetic and randomized algorithms [7]. A model for selecting
the optimal merged query plan has to be established to facilitate the use of rel-
evant algorithms. Existing works dealing with this problem use a cost model to
quantify the quality of the obtained solution [6]. The major problem with these
solutions is their scalability.

To reduce this complexity, we propose to use graph theory algorithms which
have been proved of high interest in the electronic design automation domain,
since electronic circuits manipulate a large number of logical ports. This paper
is the fruit of the collaboration with Mentor graphics and our research team. An
integrated global query plan can be represented by a hypergraph. Hypergraphs
have the characteristic that their hyperedges connect several vertices without
any requirement on the order between these vertices. Projecting our problem,
we map vertices (nodes) of hypergraph to operations of queries, and hyperedges
to queries. Each hyperedge connects the operations of the query. In this paper,
we propose a solution for multi-query optimization based on the techniques and
tools of the EDA domain.

The paper is organized as follows: Section 2 presents the related work. Section
3 details our contributions, where an analogy with multi-query optimization and
EDA is given. Section 4 implements our results to select materialized views.
Section 5 concludes the paper by summarizing the main results and suggesting
future work.

2 Related Work

The multi-query optimization problem has been widely studied for traditional
databases [2] and more recently for semantic databases [8]. The difficulty of this

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 281

problem is the identification of relevant intermediate nodes. The tree structure
was widely used to model the interaction between queries [9]. Using query inter-
action, the merged trees, each one representing a given query of the workload,
gives raise to a global graph. This graph has been used as a data structure for
several optimization problems such as materialized views [10,11,12]. Yang et al.
[6] is one of the sole work in the context of DW that deals with two interdepen-
dent problems: (a) constructing an optimal and unified plan of queries and (b)
materializing views using that plan. The authors propose a cost-driven approach
that devided into two steps: (1) the construction of the unified plan and (2) the
selection of intermediate nodes that may represent the future materialized views.
We detail these two steps below.

1. Construction of the unified plan. This step is performed following the bottom
up scenario. Initially, the authors select the optimal tree of each query us-
ing a cost model. Once the optimal trees are identified, common expressions
(shared nodes) between these trees are obtained. These nodes are used to
merge all query trees into a single graph, called Multi-Views Processing Plan
(MVPP). This plan has four levels: at level 0, we find the leave nodes repre-
senting the base tables of the DW . At level 1, we find nodes which represent
the results of unary algebraic operations such as selection and projection.
At level 2, we find nodes representing binary operations such as join, union,
etc. The last level represents the results of each query. Each intermediate
node of the graph is tagged with the cost of each operation and its mainte-
nance cost. Two algorithms are proposed for selecting the best MVPP. To
reduce the search space of potential best MVPP, the authors first ignore
unary operations and consider only joins. Once the best plan is obtained,
they introduce the selections and projection. The first algorithm, called ”A
feasible solution”, generates all possible MVPP. By the use of a cost model,
the plan with the minimum cost will be chosen. This algorithm is costly in
terms of computation. To simplify the previous algorithm, a second algo-
rithm is proposed based on 0-1 integer programming. The different steps of
this algorithm are:

– identification for each query Qi(1 ≤ i ≤ k) of a set P of l (l > 1) join
plan trees, P ={p1, · · · , pl};

– identification for each join plan tree pj ∈ P ; all sub-trees are identified,
where each one is called a join pattern. Let S = {s1, .., sm} be the set of
all patterns;

– construction of a query-join-plan-tree usage matrix A, where each ele-
ment aij takes value 1 if the query Qi can be answered using the join
plan tree pj , else 0;

– construction of a contained usage matrix A, where each element bij takes
value 1 if the join pattern sj is contained in the join tree pi, else 0;

The problem of selecting an optimal MVPP is reduced to the selection of a
subset {p1, .., pl} of l join plan trees that minimizes the total query processing

cost x0, whith x0 =
∑m

i=1 Ecost(si) ∗ (
∑l

j=1 bij ∗ xj). In this formula, each

282 A. Boukorca et al.

query uses one and only one pi, xj=0 if no query use the join plan tree pj ,
else xj1, and Ecost(si) is the cost estimation of the join pattern si.
The main drawback of this approach is its high complexity due to the gen-
eration of all possible plans [13].

2. View Selection. This algorithm is performed in two steps: (1) generation
of materialized views candidates which have positive benefit between query
processing and view maintenance. This benefit corresponds to the sum of
query processing using the view minus the maintenance cost of this view,
(2) only candidate nodes with positive benefit are selected to be materialized.

The authors conducted a simplistic implementation using set of 5 queries. The
obtained results cannot be generalized. To summarize, the existing studies on
multiple query optimization suffer from scalability. To offer efficient algorithms,
we propose an analogy between the problem of selecting MVPP and electronic
circuit design.

3 Analogy between MVPP Generation and EDA

The multi-query optimization problem (MQOP) is formalized as follows: given
a workload of queries to be optimized, the MQOP consists in finding the best
execution order of different operations of queries such as the total cost of the
workload is minimized. It is well known that, for a given query, multiple execution
plans are possible depending on the combination of intermediate operations of
selection, join, projection, etc. Even if the query result is the same, the costs of
two different execution plans can vary in terms of Input/Output. The optimal
plan for a given query can be obtained by testing all plans. Combining different
optimal plans of queries does not guarantee the optimality, and, conversely, the
use of non-optimal individual plans can lead to better results [14,6]. Our answer
to this problem is based on an analogy between the MVPP and an electronic
circuit. As shown in the following example, a given MVPP can easily be mapped
to an electronic circuit.

Example 1. Consider the star schema benchmark (SSB)2. The DW contains a
fact table Lineorder, and four dimension tables: Customer, Supplier, Part and
Dates. On top of this schema a set of 30 queries is executed. Figure 2 describes
the MVPP of those 30 queries. Note that a MVPP contains four level of nodes
(cf. Introduction). We designed the MVPP as an electronic circuit, where the
intermediate results become electronics ports (AND, OR, XOR) as shown in
Figure 3. This analogy allows us to borrow optimization techniques and tools
defined in electronic circuits domain to handle very large MVPP.

4 Constructing the MVPP Using Hypergraphs

In this section we present our approach to generate the MVPP using all join
nodes at the same time. Instead of using individual query plans, our approach

2 http://www.cs.umb.edu/poneil/StarSchemaB.pdf

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 283

Fig. 2. An example of MVPP of 30 queries

Fig. 3. Electronic circuit corresponding to the MVPP

follows a top down scenario, where all queries are considered simultaneously. We
use the graph data structure to represent the different join plans.

The idea of our approach is to group join nodes in several connected compo-
nents, where each component contains the nodes that can interact with them, so
that these nodes can be reused. This allows us to use graph theory algorithms
which have been proven useful in terms of efficiency and performance [15]. The
generated join nodes have no order between them, so it is impossible to repre-
sent those nodes by a graph since a graph requires that an edge connects two

284 A. Boukorca et al.

Fig. 4. An example of join Hypergraph Fig. 5. Result of hypergraph Partitioning

vertices with a determined direction. On the other hand, hypergraphs connect
many vertices without any particular order between them. Hence, we choose to
represent a set of queries which have many join nodes by an hypergraph.

An hypergraph is a set of vertices V and a set of hyperedges E. In our case,
V represents the set of join nodes, such that for each vertex vi ∈ V corresponds
a join node nj. The same way, E represents the workload of queries Q, such that
for each hyperedge ei ∈ E corresponds a query qj . An hyperedge ei connecting a
set of vertices corresponds to a join nodes of the query qj . As shown in Figure 4,
an example of a join hypergraph, the hyperedge e23 corresponds to query q23 and
connects the join nodes nj28, nj30, nj32 and nj33. The hyperedge e2 corresponds
to query q2 and connects one join node nj1.

The set of join nodes will be partitioned into several disjoint sub-sets, called
connected components. Each component can be processed independently to gen-
erate a local MVPP by ordering the nodes.

Table 1 summarizes the correspondence between the graph vision and the
query vision.

Table 1. correspondence graph -Query

Vision hypergraph Vision of query

V = {vi} set of vertices {nj} set of join nodes

Hyperedge ej Query qj
Section (sub-hypergraph) Connect component

Hypergraph HA Workloads of queries Q
Oriented graph Processing Plans

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 285

4.1 Hypergraph Partitioning

In this section, we adapt an existing algorithm derived from graph theory to
aggregate the join nodes on connected components. First, we used HMETIS 3

programs to partition an hypergraph into several hypergraphs [16]. HMETIS is
a free software library developed by the Karypis laboratory. This software allows
parallel or serial partitioning. HMETIS algorithms are based on the multilevel
hypergraph partitioning schemes, their principle is to divide an hypergraph into
k partitions (new hypergraphs) such that the number of hyperedges cut is min-
imal [15,17,18,16]. More precisely, the main steps of the multilevel partitioning
algorithms are: (1) A random division of the set of vertices into two disjoints
subsets called sections. (2) An adjustment operation to minimize the number of
the hyperedges cutting4. This operation will be repeated until no improvement
is further possible. (3) Each bisection will be divided the same way until k parti-
tions are formed. However, in our context, the exact number of partitions to do
is unknown. We want to get all possible disjoint partitions (connected compo-
nents). To this end, we adapt the original algorithm to our problem by changing
the stopping criterion, so that the algorithm stops only when there is no pos-
sibility to partition without cutting hyperedges. Precisely, the algorithm works
as follows: (1) The set of vertices will be divided if and only if the number of
hyperedges cutting is null. (2) Each bisection result of the hypergraph partition-
ing will be divided in the same way until there is no more divisible hypergraph.
The result of the hypergraph partitioning is a set of small disjoint hypergraphs.
Each small hypergraph will be separately processed to generate the MVPP.

Figure 5 presents the join hypergraph partitioning of the hypergraph shown
in Figure 4, where three connected components corresponding to three new hy-
pergraphs are obtained.

4.2 From Hypergraph to Graph

In the previous section, we have presented the join hypergraph construction and
its partitioning into several disjoints hypergraphs. The remaining step to gener-
ate the MVPP is to find an order between join nodes in each small hypergraph,
i.e. to transform each hypergraph into an oriented graph.

A characteristic of OLAP queries is that all join operations involve the fact
table. Figure 6a shows a join tree plan of an OLAP query. Figures 6b and c show
that the join nodes graph in the MVPP for one connected component always
has a start node called pivot which corresponds to the first join operation.

To generate the MVPP, the hypergraphs generated by the initial join hyper-
graph partitioning must be transformed into oriented join graphs graph. Adding
an arc to a graph corresponds to establishing an order between two join nodes.
We start by the node which maximizes the reuse benefit. As shown in Algorithm
1, the number of reuses of a node is the number of hyperedges which connect the

3 http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
4 We said an hyperedge is cut if it connects vertices from both sections

286 A. Boukorca et al.

Algorithm 1. findPivot(HyperGraph G)

1: benefitemax ← 0;
2: for all vi ∈ V do
3: nbr ← nbrUse(vi); {get the number of hyperedges which use the vertex vi; the

reuse number is (nbr-1)}
4: cost ← costProcessing(vi); {get the processing cost of the vertex (node) vi, in

the graph G}
5: benefit ← (nbr − 1) ∗ cost− cost {get the reuse benefit of the vertex vi }
6: if benefit ≺ benefitemax then
7: benefitemax ← benefit;
8: pivot ← vi;
9: end if
10: end for
11: return pivot

Fig. 6. Possible join nodes arrangement in MVPP

vertex corresponding to this node. The node which maximizes the benefit will
be added to the graph and will be deleted from the hypergraph. This operation
will be repeated until all nodes are added to the graph.

Algorithm 2 describes the transformation steps of an hypergraph into an ori-
ented graph. (1) We start by finding the pivot node, which has the maximum
benefit. (2) If the pivot is used by all hyperedges (ie. all queries), then the pivot is
added to the graph and deleted from the hypergraph. When deleting the pivot,
all hyperedges that do not have a vertices are deleted. (3) If the pivot is not
used by all hyperedges, then the pivot is added to the graph and the hyper-
graph is partitioned into two disjoint hypergraphs G1 and G2 by Algorithm 3.
G1 includes all hyperedges using the pivot and G2 has the other hyperedges.
Both hypergraphs will be transformed the same way into oriented graphs graph.
Figure 7 shows the transformation steps of an hypergraph into an oriented graph.

Algorithm 1 allows to find the vertex (node) which is the pivot in the hyper-
graph G. This pivot corresponds to the node which has the best possible benefit
of intermediate results reuse. The benefit is the number of reuse multiplied by
the processing cost minus the cost processing to generate the intermediate result.

Algorithm 3 allows partitioning a hypergraph into two disjoint hypergraphs
using a node as a pivot. The first hypergraph contains the hyperedges that

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 287

Algorithm 2. transformHyperGraph(Hypergraph G)

1: while V not empty do
2: pivot ← findP ivot(G); {Algorithm 1}
3: if pivot ∈ all(e ∈ E) then
4: addV ertexToGraph(pivot);{add the vertex pivot to the graph graph }
5: deleteV ertex(pivot);{delete the vertex pivot from V of G }
6: for all ei ∈ E do
7: if No vertice in ei then
8: deleteHyperEdge(ei);{delete all hyperedges which have no a vertex}
9: end if
10: end for
11: else
12: partitionP ivot(pivot,G1, G2); {Algorithm 3}
13: addV ertexToGraph(pivot);
14: transformHyperGraph(G1); {re-transformation}
15: transformHyperGraph(G2); {re-transformation}
16: end if
17: end while

Fig. 7. Transformation steps of a join hypergraph to an oriented graph

use the pivot, and the second hypergraph contains the other hyperedges. If the
second hypergraph contains vertices which are used by the first hypergraph, we
duplicate the common vertices into the second hypergraph. Figure 8 shows an
example of the result of hypergraph partitioning with the pivot nj28. In this
example, we note that node nj18 is used by both hypergraphs. Hence, this node
is duplicated into node nj33 in the second hypergraph.

288 A. Boukorca et al.

Algorithm 3. partitionPivot(Vertex pivot, HyperGraph G1, HyperGraph G2)

1: for all ei ∈ E do
2: if pivot ∈ ei then
3: addToGraph(ei, G1);{add the hyperedge ei to the first hypergraph G1 }
4: else
5: addToGraph(ei, G2);{add the hyperedge ei to the second hypergraph G2 }
6: end if
7: end for
8: for all vi ∈ G2.V do
9: if vi ∈ G1.V i then
10: putNewID(vi, G2);{Change the ID of the node to avoid conflict nodes into a

global MVPP }
11: end if
12: end for

Fig. 8. An Example of hypergraph partitioning with node as a pivot

5 Experimentation

To validate our proposal, we developed a simulator tool in Java Environment.
This tool consists in the following six modules. (1) An extraction module to get
all selection, join, projection and aggregation nodes from a query as a SQL string.
(2) A construction module which generates the join hypergraph of all queries. (3)
An hypergraph partitioning module, which partitions a hypergraph into several
hypergraphs without cutting hyperedges. (4) A transformation module, which
transforms a hypergraph into an oriented graph by using a function maximizing
the benefit of intermediate results reuse. (5) An aggregate module which assem-
bles all selection, join, projection and aggregation nodes to generate the final
MVPP. (6) A display module which displays the results of the generated MVPP
using the Cytoscape5 plug-in. This module can display the processing plan of a
component as shown in Figure 10, or the individual query processing plan.

5 http://www.cytoscape.org

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 289

Table 2. Execution time in milliseconds to generate a MVPP

Number of queries Hypergraph Feasible solution 0-1 integer programming

5 71 82 69

20 88 514 225

30 104 933 510

50 108 2258 781

60 114 4358 1224

499 283 25654 8604

Another module is developed to implement Yang’s algorithm [6] considering
their two algorithms: feasible solution and 0-1 integer programming (cf. Related
Work).

Fig. 9. The execution time to generate MVPP

A series of tests was applied on our approach module and Yang’s module. In
each test, we change the number of queries as input to monitor the behavior of
each algorithm. As shown in Table 2, our algorithm is more effective in terms of
execution time compare to Yang’s algorithms which increase exponentially with
the number of queries.

Figure 10 shows a graphic representation of three MVPP of three different
connected components with Cytoscape tool.

We now evaluate the impact of our obtained MVPP on the problem of select-
ing materialized views. During the MVPP generation we have, for each connected
component, a pivot join node which corresponds to the node that has the maxi-
mum reuse benefit relative to the node construction cost. As a consequence, each
pivot node is materialized. Therefore for each connected component a join node
will be materialized. Our materialization procedure is compared against Yang et
al.’s feasible solution [6].

To estimate the cost of query processing in our tests, we used a cost model
developed in [3]. This model estimates the number of Inputs/Outputs pages
required for executing a given query.

To perform this experiment, we developed a simulator tool using Java En-
vironment. The tool can automatically extract the data warehouse’s meta-data

290 A. Boukorca et al.

Fig. 10. MVPP of components

Fig. 11. Query processing cost using materialized views

characteristics. The data warehouse used in our test is SSB (Start Schema Bench-
mark) [19]. Its size is 1Go, with a fact table Lineorder of 6 000 000 tuples and
four dimension tables: Part, Customer, Supplier and Dates. 30 queries are con-
sidered to conduct our evaluation. These queries cover the most types of OLAP
queries6.

The obtained results are described in Figure 11. They show that our method
outperforms Yang’s algorithm.

6 Conclusion

In this paper, we first identified the limit of the existing algorithms dealing with
the problem of generating an optimal MVPP and its consequence on selecting
materialized views. The use of graph theory techniques massively used to design
and test electronic circuits allows us to alleviate the challenge of scalability of
MVPP generation. Advanced algorithms to generate the best MVPP for a given

6 The different types are :(a) 1-Join (10 queries), (b) 2-Joins (6 queries), (c) 3-Joins
(11 queries) and (d) 4-Joins (3 queries).

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits 291

workload are given. These algorithms are based on partitioning principle used in
EDA domain. The experimental results prove the effectiveness of our approach
even when applied to a large workload of queries. We also showed the impact of
using our generated MVPP for selecting materialized views.

Currently, we are working on considering the dynamic aspects of generating
MVPP and materialized views.

References

1. Bruno, N., Chaudhuri, S.: Efficient creation of statistics over query expressions.
In: Proceedings of the International Conference on Data Engineering (ICDE), pp.
201–212 (2003)

2. Sellis, T.K.: Multiple-query optimization. ACM Transactions on Database Sys-
tems 13(1), 23–52 (1988)

3. Kerkad, A., Bellatreche, L., Geniet, D.: Queen-bee: Query interaction-aware for
buffer allocation and scheduling problem. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 156–167. Springer, Heidelberg (2012)

4. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Interaction-aware scheduling
of report-generation workloads. VLDB Journal 20(4), 589–615 (2011)

5. Toroslu, I.H., Cosar, A.: Dynamic programming solution for multiple query opti-
mization problem. Information Processing Letters 92(3), 149–155 (2004)

6. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data
warehousing environment. In: Proceedings of the International Conference on Very
Large Databases (VLDB), pp. 136–145. Morgan Kaufmann Publishers Inc., San
Francisco (1997)

7. Ioannidis, Y.E., Kang, Y.C.: Randomized algorithms for optimizing large join
queries. In: Garcia-Molina, H., Jagadish, H.V. (eds.) ACM SIGMOD, pp. 312–321
(1990)

8. Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable multi-query optimization
for sparql. In: Proceedings of the International Conference on Data Engineering
(ICDE), pp. 666–677. IEEE (2012)

9. ElMasri, R., Navathe, S.B.: Fundamentals of Database Systems. Benjamin Cum-
mings, Redwood City (1994)

10. Gupta, H.: Selection and maintenance of views in a data warehouse. Ph.d. thesis,
Stanford University (September 1999)

11. Yang, J., Karlapalem, K., Li, Q.: A framework for designing materialized views in
data warehousing environment. In: ICDCS, p. 458 (1997)

12. Baralis, E., Paraboschi, S., Teniente, E.: Materialized view selection in a multidi-
mensional database. In: Proceedings of the International Conference on Very Large
Databases (VLDB), pp. 156–165 (August 1997)

13. Galindo-Legaria, C.A., Grabs, T., Gukal, S., Herbert, S., Surna, A., Wang, S.,
Yu, W., Zabback, P., Zhang, S.: Optimizing star join queries for data warehousing
in microsoft sql server. In: Proceedings of the International Conference on Data
Engineering (ICDE), pp. 1190–1199 (2008)

14. Gupta, A., Sudarshan, S., Viswanathan, S.: Query scheduling in multi query op-
timization. In: Proceedings of the International Database Engineering & Applica-
tions Symposium (IDEAS), pp. 11–19. IEEE Computer Society, Washington, DC
(2001)

292 A. Boukorca et al.

15. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph par-
titioning: applications in vlsi domain. IEEE Transactions on Very Large Scale
Integration Systems 7(1), 69–79 (1999)

16. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: ACM/IEEE
Design Automation Conference (DAC), pp. 343–348. ACM, New York (1999)

17. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: Application in vlsi domain. In: ACM/IEEE Design Automation Conference
(DAC), pp. 526–529 (1997)

18. Selvakkumaran, N., Karypis, G.: Multiobjective hypergraph-partitioning algo-
rithms for cut and maximum subdomain-degree minimization. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 25(3), 504–517

19. O’Neil, P., O’Neil, B., Chen, X.: Star schema benchmark (2009)

XML Schema Transformations

The ELaX Approach

Thomas Nösinger, Meike Klettke, and Andreas Heuer

Database Research Group
University of Rostock, 18051 Rostock, Germany
(tn,meike,ah)@informatik.uni-rostock.de

Abstract. In this article the transformation language ELaX (Evolution
Language for XML-Schema) for modifying existing XML Schemas is in-
troduced. This domain-specific language was developed to fulfill the cru-
cial need to handle modifications on an XML Schema and to express
such modifications formally. The language has a readable, simple, base-
model-oriented syntax, but it is able to also express more complex trans-
formations by using add, delete and update operations. A small subset
of operations of the whole language is presented and illustrated partially
by dealing with a real life XML Schema of the WSWC (Western States
Water Council). Finally, the idea of integrating an ELaX interface into
an existing research prototype for dealing with the co-evolution of cor-
responding XML documents is presented.1

1 Introduction

The eXtensible Markup Language (XML) is one of the most popular formats for
exchanging and storing information in heterogeneous environments. To assure
that well-defined XML documents can be understood by every participant (e.g.
user or application) it is necessary to introduce a document description. XML
Schema [3] is one commonly used standard for dealing with this problem. An
XML document is called valid, if it fulfills all restrictions and conditions of an
associated XML Schema.

After an XML Schema has been specified and widely used for XML docu-
ments, the requirements against the information contained in those documents
may change. Therefore, the XML Schema may need to adapted as well. This may
concern every possible structure within the XML Schema definition (XSD). The
occurring problem is: how can adaptions be described and formulated under con-
sideration of the underlying XML schema definition in a descriptive, intuitive
and easy-understandable way? The definition of a schema update language is
absolutely necessary; we introduce such a language in this paper.

A further issue in the overall context of exchanging information is the validity
of XML documents. The resulting problem of modifying an XML Schema is,

1 The comprehensive version is available as a technical report at:
www.ls-dbis.de/elax

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 293–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.ls-dbis.de/elax

294 T. Nösinger, M. Klettke, and A. Heuer

existing XML documents, which were valid against the former XML Schema,
have to be adapted as well (co-evolution). The standardized description of the
adaptions (e.g. a sequence of operations of an update language) is an essential
prerequisite for the co-evolution. The new evolution language ELaX (Evolution
Language for XML-Schema) is our answer to the above mentioned problems.

This paper is organized as follows. Section 2 introduces a running example,
which defines a realistic scenario for the use of ELaX. Section 3 gives the nec-
essary background of XML Schema and corresponding concepts. Section 4 and
section 5 present our approach, by first specifying the basic statements of ELaX
and then showing how our approach can contribute to the scenario discussed in
section 2. In section 6 we describe the practical use of ELaX in our prototype,
which was developed for handling the co-evolution of XML Schema and XML
documents. In section 7 we discuss some related transformation language for
XML Schema. Finally, in section 8 we draw our conclusions.

2 Running Example

Information exchange specifications usually provide some kind of XML Schema
which contains information about allowed structures, constraints, data types
and so on. One example is the WSWC (Western States Water Council), an
organization which accomplishes effective cooperation among 18 western states
in the conservation, development and management of water resources. Another
purpose is the exchange of views, perspectives and experiences among member
states - summarized the exchange of information. The expected format for XML
data exchange is defined in a set of XML Schemas, one report is presented in
the following. Due to space limitations, the chosen example is a simple one.

Fig. 1. The original WSWC report XML Schema

The original XML Schema is illustrated in figure 1. According to the complex
type (”ReportDataType”) a report (the component ”Report”) is a sequence
of an obligatory report identifier (”WC:ReportIdentifier”), an optional name

XML Schema Transformations 295

(”WC:ReportName”) and a set of reported units (”WC:ReportingUnit”). The
element declarations not given in this schema are specified in external XML
Schemas, which are represented by the ”xsd:include” component.

This original report has been adapted; the result is the XML Schema presented
in figure 2 (changed and added parts are highlighted by rectangles).

Fig. 2. The adapted WSWC report XML Schema

The modifications have the purpose to summarize information in only one
report that otherwise would be spread over multiple small reports. The question
is how can these modifications be described formally? Before presenting one pos-
sibility (i.e. ELaX), some background information and notations are presented
in the following chapter.

3 Technical Background

The XML Schema abstract data model consists of different components or node
types. Basically, these are: type definition components (simple and complex
types), declaration components (elements and attributes), model group com-
ponents, constraint components, group definition components and annotation
components [1]. Additionally, the element information item serves as an XML
representation of these components. The element information item defines which
content and attributes can be used in an XML Schema. Table 1 gives an overview
about the most important components and their representation.

The <include>, <import>, <redefine> and <overwrite> items are not ex-
plicitly given in the abstract data model (N.N. - Not Named), but they are
important components for embedding externally defined XML Schemas. In the
remaining parts of the paper, we will summarize them under the node type

296 T. Nösinger, M. Klettke, and A. Heuer

Table 1. Abstract Data Model and XML representation

Abstract Data Model Element Information Item

declarations <element>, <attribute>

group-definitions <attributeGroup>

model-groups <all>, <choice>, <sequence>,
<any>, <anyAttribute>

type-definitions <simpleType>, <complexType>

N.N. <include>, <import>,
<redefine>, <overwrite>

annotations <annotation>

constraints <key>, <unique>, <keyref>,
<assert>, <assertion>

N.N. <schema>

”module”. The <schema> item is the document root element of any W3C XML
Schema. It is a container for all the declarations and definitions.

Analyzing the possibilities of specifying declarations and definitions leads to
four different modeling styles of XML Schema: Russian Doll, Salami Slice, Vene-
tian Blind and Garden of Eden [8]. These modeling styles mainly influence the
re-usability of element declarations or defined data types but also the flexibility
of an XML Schema in general. The scope of element and attribute declarations
as well as the scope of type definitions is global iff the corresponding node is spec-
ified as a child of the <schema> item and can be referenced (e.g. by knowing
the name and namespace). In contrast, locally specified nodes are not directly
defined under the <schema> item, therefore the re-usability is low.

An XML Schema in the Garden of Eden style just contains global declara-
tions and definitions. If the requirements against exchanged information change
and the underlying schema has to be adapted then this modeling style is the
most suitable one. That is, because all components can be easily identified by
knowing the QNAME (qualified name). A qualified name is a colon separated
string of the target namespace of the XML Schema followed by the name of the
declaration or definition. The name of a declaration and definition is a string of
the data type NCNAME (non-colonized name), a string without colons. Due to
the characteristics of the Garden of Eden style, it is our basic modeling style.

4 XML Schema Transformation Language

In order to handle modifications on an XML Schema and to express these mod-
ifications formally, an adequate transformation language is absolutely essential.
Therefore, we developed ELaX (Evolution Language for XML-Schema) which
lets the user describe modifications in a simple, easily-understandable and ex-
plicit manner. The following criteria were important through the development
process, parts were already mentioned above:

1. Consideration of the underlying data model (i.e. the abstract data model and
element information item of the XML Schema definition)

XML Schema Transformations 297

2. Adequate and complete realization of the common operations ADD, UP-
DATE, DELETE

3. Definition of an descriptive and readable interface for creating, changing and
deleting XML Schema

4. Intuitive and simple syntax of operation steps

The abstract data model and the element information item consist of different
node types, which have to be adapted (see section 3). On these node types the
operations ADD, DELETE and UPDATE have to be executed; the first ELaX
statements are in an EBNF (Extended Backus-Naur Form) like notation:

elax ::= ((< add > | < delete > | < update >) ”; ”) + ; (1)

add ::= ”add” (< addannotation > | < addattributegroup >

| < addgroup > | < addst > | < addct > | < addelement >

| < addmodule > | < addconstraint >) ;

(2)

delete ::= ”delete” (< delannotation > | < delattributegroup >

| < delgroup > | < delst > | < delct > | < delelement >

| < delmodule > | < delconstraint >) ;

(3)

update ::= ”update” (< updannotation > | < updattributegroup >

| < updgroup > | < updst > | < updct > | < updelement >

| < updmodule > | < updconstraint > | < updschema >) ;

(4)

An ELaX statement always starts with ”add”, ”delete” or ”update” followed
by one of the alternative components for modifying the different node types.
Every component of rule (1) can optionally be repeated one or more times (i.e.
”+”), consequently an encapsulation or ordered sequence of operations is pos-
sible. The operations are separated by ”;”. By using the rules (1), (2), (3) and
(4), complex modifications of an XML Schema can be expressed formally. In
the following subsections, the statements for adding (<addelement>), deleting
(<delelement>) and updating (<updelement>) elements are presented.2

4.1 Adding Elements

According to the Garden of Eden modeling style, elements are either defined as
element declarations in the global scope of an XML Schema or as references to
such declarations. Furthermore, it is possible to define wildcards. The following
statements realize the add operation for elements:

addelement ::= < addelementdef > | < addelementref >

| < addelementwildard > ;
(5)

2 The statements not presented are available at: www.ls-dbis.de/elax

www.ls-dbis.de/elax

298 T. Nösinger, M. Klettke, and A. Heuer

addelementdef ::= ”element” ”name” ncname ”type” qname

((”default”|”fixed”) string)? (”final” (”#all”|”restriction”

|”extension”))? (”nillable” (”true”|”false”))? (”id” id)?

(”form” (”qualified”|”unqualified”))? ;

(6)

addelementref ::= ”element” ”ref” qname (”minoccurs” int)?

(”maxoccurs” int)? (”id” id)? < position > ;
(7)

Before going into detail, further components are necessary to localize or identify
elements and node types in general. It is possible to localize node types in a
content model under consideration of the node neighborhood with statement (8)
and to identify a node type itself by using an absolute addressing (10).

position ::= (”after”|”before”| (”as”(”first”|”last”) ”into”) |”in”)

< locator > ;
(8)

locator ::= < xpathexpr > | emxid ; (9)

xpathexpr ::= (”/”(”.” | (”node()” | (”node()[@name =′ ”ncname”′]”))

(”[” int ”]”)?)) + ;
(10)

An element reference statement (7) starts with ”element ref”, followed by the
qualified name of the referenced element declaration (qname) and other, optional
attributes for the frequency of occurrence (”minoccurs”, ”maxoccurs”) or an
XML Schema id (”id”). An element reference can be added ”after”, ”before”, ”as
first into”, ”as last into” or ”in” the model-group node type with consideration
of the node neighborhood and using statement (8). The identification of nodes is
possible with a unique identifier of our conceptual model (emxid)3. Alternatively,
a subset of XPath expressions can be used to create an absolute path (10). The
given subset is sufficient for the simple localization or identification of every node
type in the Garden of Eden style.

4.2 Deleting Elements

Compared to the add operation, deleting an element basically just requires some
information of identification. The qualified name in general and in the case of ref-
erences and wildcards also the position of an element is sufficient. The following
statements realize the delete operation for elements:

delelement ::= < delelementdef > | < delelementref >

| < delelementwildcard > ;
(11)

delelementref ::= ”element” ”ref” qname

(”at” < locator > | < refposition >) ;
(12)

3 Our conceptual model is EMX (Entity Model for XML Schema); see also section 6

XML Schema Transformations 299

refposition ::= ((”first”|”last”|”all”| (”at” ”position” int))

”in” < xpathexpr >) | emxid ;
(13)

The element reference statement (12) starts with ”element ref”, followed by
the qualified name and information about the locator (introduced in section
4.1, statement (9)) or about the position of the reference (<refposition>). The
reference position statement (13) enables the localization of one reference if
more than one is given in the same group-model node type. With this statement
the ”first”, the ”last”, ”all” of them or a reference at a specific position (”at
position”) can be deleted. If the unique identifier of the conceptual model is
known, the emxid can be used instead of the XPath expression.

4.3 Updating Elements

Updating elements is implemented by rule (4). Basically, all given information
within an existing element can be updated. Also, adding new information to an
existing element is considered, so the update specification for elements is similar
to the one for adding new elements. The following statements realize the update
operation for elements:

updelement ::=< updelementdef > | < updelementref >

| < updelementwildcard > ;
(14)

updelementref ::= ”element” ”ref” qname ((”at” < locator >)

| < refposition >) (”change” (”ref” qname)?

(”minoccurs” int)? (”maxoccurs” int)? (”id” id)?)?

(”move” ”to” < position >)? ;

(15)

Element references are adapted with statement (15). Starting with ”element ref”,
the qualified name and information about the position element references can be
updated. The newly given or changed information are specified after ”change”.
This information comprises a list of tuples of an identifier and the corresponding
value, they are always optional (i.e. ”?”). Furthermore, it is possible to move
an element reference, that is why the ”move to” component was inserted at the
end of the statement (15). The move operation is a short form for deleting and
inserting an element reference completely.

5 Example

In section 2 an XML Schema for exchange reports of the WSWC (Western States
Water Council) was introduced. In general, three different steps are necessary
to modify the old schema of figure 1. The result is represented in figure 2 (the
steps are visualized in labelled rectangles).

1. Insert a new type, which contains up to ten reports

300 T. Nösinger, M. Klettke, and A. Heuer

2. Insert a new element, which has the new introduced type of step 1
3. Update the ”ReportDataType” type so that the report name is obligatory

Following, the necessary ELaX operations for the above mentioned steps are
described. Furthermore, the replaced values of the data types are boldfaced in
every following operation, e.g. the values of QNAME, NCNAME or XPath.

Step 1: First of all, a new complex type has to be inserted. The new complex
type gets the NCNAME ”ReportListDataType”. After specifying the complex
type, a group-model node type is inserted as a child of the new complex type
(a sequence). The last operation within the first step is performed by inserting
an element reference into the sequence. The necessary element declaration is
”Report”, this element can be referenced by the QNAME ”WC:Report”. Infor-
mation about the occurrence is also given, up to ten reports can be collected in
the report list. The following ELaX operations have to be executed, the sequence
of applied rules are listed below every operation:

add complextype name ReportListDataType ;

Sequence of rules: (1), (2), addct(see www.ls-dbis.de/elax)
(16)

add group mode sequence in

/node()/node()[@name=’ReportListDataType’] ;

Sequence of rules: (1), (2), addgroup(see www.ls-dbis.de/elax), (9), (10), (10)

(17)

add element ref WC:Report minoccurs 0 maxoccurs 10 in

/node()/node()[@name=’ReportListDataType’]/node() ;

Sequence of rules: (1), (2), (5), (7), (8), (9), (10), (10), (10)

(18)

The correct order of the operations (16), (17) and (18) is specified in the element
information item of XML Schema and represents the result of the implicitly given
relationships of node types.

Step 2: After specifying a new complex type in step 1, a new element declara-
tion with this complex type has to be defined. The NCNAME of this new element
is ”ReportList”, the qualified name of the complex type is ”WC:ReportList-
DataType”. Further information are not required.

add element name ReportList type WC:ReportListDataType ;

Sequence of rules: (1), (2), (5), (6)
(19)

Step 3: The last adaption of the XML Schema in figure 1 contains changing
the occurrence of the report name. In our example it is changed from ”minOccurs
= ’0’” to ”minOccurs = ’1’”. Consequently, the name is no longer optional but
obligatory. The corresponding operation is applied as follows:

update element ref WC:ReportName at /node()/node()

[@name=’ReportDataType’]/node()[2] change minoccurs 1 ;

Sequence of rules: (1), (4), part I (15), (9), (10), (10), (10), part II (15)

(20)

www.ls-dbis.de/elax
www.ls-dbis.de/elax

XML Schema Transformations 301

6 Practical Use of ELaX

The transformation language ELaX was specified for dealing with XML Schema
modifications. It is useful to describe and formulate different adaptions of an
XML Schema. In general, this reflects all add, delete and update operations
which are possible considering the underlying base model (XSD).

At the University of Rostock a research prototype named CodeX (Conceptual
design and evolution for XML Schema) was developed for dealing with co-
evolution. The idea behind CodeX is simple and straightforward at the same
time: A given XML Schema is transformed to the specifically developed con-
ceptual model (EMX - Entity Model for XML Schema [9]). With the help of
this simplified model, the desired modifications are defined and logged (i.e.
user interaction) and then used to automatically create transformation steps for
adapting the XML documents (by using XSLT - Extensible Stylesheet Language
Transformations). The mapping between EMX and XSD is unique, so it is pos-
sible to describe modifications not only on the EMX but also on the XSD.

ELaX is useful to unify the internal collected information (i.e. modifications)
and additionally provides an interface for dealing directly with the underlying
XML Schema.

7 State of the Art

Regarding other transformation languages, there are some which may possibly be
used instead of ELaX. The most commonly to mention are XQuery and XSLT.

XSLT is a language for transforming XML documents into other XML docu-
ments so it can also deal with XML Schema. XSLT is very complex and difficult
to understand, so the use and also the understanding of its results implies a huge
overhead. This language is neither suitable for describing modifications nor for
unifying the internal collected information within our context.

XQuery as a query language for different XML data sources and especially
the extension of it through the update facility [2] ”provide expressions that can
be used to make persistent changes” to instances of the abstract data model
(see section 3). By using all features of XQuery update, modifications can be
produced that lead to non-regular XML Schema. This is why restrictions are
required. However, by focussing on which parts of a complex update language
(i.e. XQuery update) are suitable or which parts lead to non-valid XML Schema,
again an unintentional overhead is produced.

In section 6 the integration of ELaX into our prototype was described in
parts. Other prototypes for dealing with the evolution of XML Schema are e.g.
X-Evolution [6], EXup [4], the GEA Framework [5] and XCase [7]. To our knowl-
edge, XSchemaUpdate (used in X-Evolution and EXup) is the only XML Schema
modification language which is comparable to ELaX. However, ELaX is closer
to the base-model and considers wildcards, constraints and attributes, which
are explicitly allowed in a node type considering the element information item
of XML Schema. Moreover, it distinguishes between element declarations and

302 T. Nösinger, M. Klettke, and A. Heuer

references amongst others, so more fine-grained operations are possible, which
simplifies the analyzing of modification steps.

8 Conclusion

In a heterogeneous and dynamic environment (e.g. the scenario of section 2),
also ”old” and longtime used XML Schema have to be modified to meet new
requirements and to be up-to-date. Modifications of XML Schema documents
urgently need a description and a formalism in order to be traceable. Therefore,
we developed the new language ELaX (Evolution Language for XML-Schema).

ELaX is a base-model-oriented transformation language, which can be used
to modify a given XML Schema. These modifications are in general add, delete
and update operations on the node types of XML Schema which are specified
in the abstract data model and implemented in the element information item.
ELaX has a simple, intuitive and easy-understandable syntax, but nevertheless
it is powerful enough to describe complex operations by combining the given op-
erations. Moreover, it can be used to log modifications for the adaptions of XML
documents associated with a given XML Schema, which represents an essential
prerequisite for the co-evolution. One remaining step is the implementation of
the language and the integration into our research prototype CodeX (Conceptual
design and evolution for XML Schema). After it, a final evaluation is planned.

References

1. XQuery 1.0 and XPath 2.0 Data Model (XDM), 2nd edn. (December 2010),
http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/ (Online; accessed
May 24, 2013)

2. XQuery Update Facility 1.0 (March 2011),
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/

(Online; accessed May 24, 2013)
3. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures (April

2012), http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/ (Online; ac-
cessed May 24, 2013)

4. Cavalieri, F.: EXup: an engine for the evolution of XML schemas and associated
documents. In: Proceedings of the 2010 EDBT/ICDT Workshops, EDBT 2010, pp.
21:1–21:10. ACM, New York (2010)

5. Domı́nguez, E., Lloret, J., Pérez, B., Rodŕıguez, Á., Rubio, A.L., Zapata, M.A.:
Evolution of XML schemas and documents from stereotyped UML class models: A
traceable approach. Information & Software Technology 53(1), 34–50 (2011)

6. Guerrini, G., Mesiti, M.: X-Evolution: A Comprehensive Approach for XML Schema
Evolution. In: DEXA Workshops, pp. 251–255 (2008)

7. Kĺımek, J., Kopenec, L., Loupal, P., Malý, J.: XCase - A Tool for Conceptual XML
Data Modeling. In: Grundspenkis, J., Kirikova, M., Manolopoulos, Y., Novickis, L.
(eds.) ADBIS 2009. LNCS, vol. 5968, pp. 96–103. Springer, Heidelberg (2010)

8. Maler, E.: Schema design rules for ubl..and maybe for you. In: XML 2002 Proceed-
ings by deepX (2002)

9. Nösinger, T., Klettke, M., Heuer, A.: A Conceptual Model for the XML Schema Evo-
lution - Overview: Storing, Base-Model-Mapping and Visualization. In: Grundlagen
von Datenbanken (2013)

http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 303–310, 2013.
© Springer-Verlag Berlin Heidelberg 2013

StdTrip+K: Design Rationale in the RDB-to-RDF Process

Rita Berardi1, Karin Breitman1, Marco Antônio Casanova1,
Giseli Rabello Lopes1, and Adriana Pereira de Medeiros2

1 Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro,

Rio de Janeiro, RJ – Brazil CEP 22451- 900
{rberardi,karin,casanova,grlopes}@inf.puc-rio.br

2 Instituto de Ciência e Tecnologia,
Universidade Federal Fluminense,

Rio das Ostras, RJ – Brazil CEP 28890-000
adrianamedeiros@puro.uff.br

Abstract. The design rationale behind the triplification of a relational database
is a valuable information source, especially for the process of interlinking pub-
lished triplesets. Indeed, studies show that the arbitrary use of the owl:sameAs
property, without carrying context information regarding the triplesets to be
linked, has jeopardized the reuse of the triplesets. This article therefore propos-
es the StdTrip+K process that integrates a design rationale approach with a
triplification strategy. The process supports the reuse of standard RDF vocabu-
laries recommended by W3C for publishing datasets and automatically collects
the entire rationale behind the ontology design, using a specific vocabulary
called Kuaba+W.

Keywords: Triplification, mapping, matching, design rationale.

1 Introduction

Linked Data refers to a set of best practices for publishing and connecting structured
data on the Web [3]. One of the most popular strategies to publish structured data on
the Web is to convert relational databases to the Linked Data format, in a process
known as RDB-to-RDF or triplification [11], [13].

One of the major challenges of publishing Linked Data is to investigate the value
of information based on the trustworthiness of its sources, the time of validity, the
certainty, or the vagueness asserted to specified or derived facts [6]. This challenge is
associated with the lack of analytical information about the published Linked Data,
i.e. information that answers questions such as: (1) Did the original relational data-
base suffer changes when published as Linked Data that could impact its quality?; (2)
Is the translation from the original relational database to Linked Data correct?; (3) Is
the chosen ontology the most appropriate to represent the original relational data-
base?; (4) Did the original relational database lose some relevant information when it
was published as Linked Data? These details of the triplification process should an-
swer the questions above mentioned which are reasoned in the decisions related to
changes, correctness, choices and information losing during the triplification.

304 R. Berardi et al.

In general, the decisions taken during a design process, the accepted and rejected
options, and the criteria used are called design rationale (DR) [8], or triplification
rationale by analogy. Besides helping the reuse of datasets, the triplification rationale
has a potential value for supporting design of new ontologies because all the experi-
ence acquired during a design can be transmitted and augmented by the reuse of pre-
vious DRs in new designs. Although there are several triplification engines, we are
unaware of any previous work that applies DR in the Linked Data domain, i.e. that
captures the triplification rationale. The details intrinsically involved in the mapping
activity should reflect all aspects related to how the concepts of the underlying con-
ceptual schema are mapped to the RDF terms. Furthermore, these detailed infor-
mation can explicit some problems in the mapping process. For instance, if an entity
element of an ER is mapped to a property element in RDF, the attribute elements of
this entity may not be represented due to the lack of the domain representation, since
the domain is represented as a property.

The matching step involves domain expert decisions regarding the construction of
the vocabulary. The details inherent in the matching step should reflect aspects related
to the choice of each term of the vocabulary that will be used to publish the database.
The decisions of the designer involved in this activity have to consider the database
domain and context. For instance, considering a domain of an university publication
database where the entity “Authors” has the attribute “name”, the most adequate rep-
resentation is dc:creator instead of foaf:Person, since dc:creator is more representa-
tive for the domain. Otherwise, if an entity “Students” has the same attribute “name”,
dc:creator is not the best choice although both entities are in the same domain of
“University”. The DR representation in the StdTrip+K process is executed through
the Kuaba approach [12] that represents a more complete DR in respect to other DR
approaches. So the major contribution of this paper is to address the incorporation of
DR capture through the addition of Kuaba+W vocabulary in the StdTrip process [14],
generating the StdTrip+K, that is, to the best of our knowledge, the first to address the
capturing of the decisions behind the triplification task. The remainder of this article
is organized as follows. Section 2 discusses related work. Section 3 details the
StdTrip+K process along with a running example and describes the Kuaba+W vocab-
ulary used to record the DR. Finally, Section 4 presents the conclusions and directions
for future work.

2 Related Work

There are several approaches RDB-to-RDF with different mechanisms to tackle this
translation process. The more relevant approaches for the RDB-to-RDF process are
Triplify [1], D2RQ [2], Virtuoso RDF view [7] and RDBtoOnto [4]. Triplify moti-
vates the need for a simple mapping solution using SQL (Structure Query Language)
as a mapping language and transforms database query results into RDF triples and
Linked Data. The mapping is done manually with no record of any rationale. D2RQ
generates the mapping files automatically, using the table-to-class and column-to-
predicate approach. It uses a declarative language, implemented as Jena graph, to
define the mapping file, also with nothing about recording rationale. In the Virtuoso
RDF view the mapping file, also called RDF view, is automatically generated with

 StdTrip+K: Design Rationale in the RDB-to-RDF Process 305

table-to-class approach. In this approach there is no reason to capture the rationale
since it does not imply in options, arguments and decisions. RDBtoOnto brings a
discussion on how to take advantage of database data in obtaining more accurate on-
tologies. This work also uses the table-to-class and column-to-predicate to create an
initial ontology schema, which is then refined through identification of taxonomies
guided by the tool. Although there is user interference, the decisions made are not
recorded. There are other approaches like DB2OWL [5] and Ultrawrap [15], but still
they do not cover the rationale issue. In the context of rationale models and tools,
there are argumentation-based models such as IBIS [17], DRL [9], QOC [10] that
allow the DR representation. However, they do not present a complete DR that in-
cludes accepted and rejected options and the reasons for that. Specifically in the
Linked Data context, we have not found researches with this purpose. There are prov-
enance models, like Open Provenance Model (OPM1), that records the history of cre-
ating a dataset in general terms. Despite been very important and essential for Linked
Data quality, it lacks in terms of decisions during the creation of a mapping file. We
can conclude that the approach followed by most tripliflying approaches has no con-
cern with design rationale recording.

3 The StdTrip+K Process

The StdTrip+K process (Fig.1) is anchored in the principle of ensuring interoperabil-
ity through the use of standards in schema design and through the DR recording. The
process receives as input the RDB, the metamodels and the DR vocabulary
Kuaba+W. At each stage, the respective DR is traced and recorded using Kuaba+W
vocabulary that is incrementally recorded throughout the process execution. In the
end, the process results in the RDB-to-RDF Mapping File, the OWL ontology and the
final DR. The Kuaba+W vocabulary is described in Section 3.1 and the four steps
(Mapping, Matching, Selection and Inclusion) of the StdTrip+K process are described
in Section 3.2 using a motivation example.

Fig. 1. StdTrip+K Process overview

1 openprovenance.org/

306 R. Berardi et al.

3.1 Kuaba+W – A Design Rationale Vocabulary for RDB-to-RDF Process

Kuaba+W extends the Kuaba approach [12] in the sense that it eliminates elements
not necessary in the RDB-to-RDF domain. Moreover, the Kuaba+W extension is
related to the addition of the Description element, which is related to a Justification
and carries information regarding the reasons for the domain expert to accept or reject
an idea. A description is also related to a Metamodel, also new in the extension, since
there is more than one metamodel involved in the RDB-to-RDF. A metamodel regis-
ters which formal artifact was involved in each step of design process, for instance ER
and RDF metamodels. Fig. 2 shows the main elements of the ontology, using a UML-
like graphical notation to help visualization. A Reasoning element represents the
design issue that the ontology designer should deal with (question, ideas and argu-
ments).

Fig. 2. The Kuaba+W ontology elements

An Idea represents a potential solution for the mapping or matching issue present-
ed by the Reasoning Element Question. The Argument represents the criteria used to
present an Idea for a Question. A Decision represents the acceptance or the rejection
of an idea as a solution to a question. A Justification indicates the justification for
each Decision that explains why an Idea was accepted or rejected as a solution for a
particular Question. Description contains details about any Reasoning Element and
justification, depending on the step of the process. Metamodel indicates which
metamodel is accessed in the mapping process to automatically build the rationale
RDF.

3.2 An Example Illustrating the Execution of the StdTrip+K Process

For the example we use the publication database depicted in Fig. 3. It is important to
note that we implicitly assume that the input database is fully normalized, i.e., the
input to the conversion stage must be in third normal form (3NF). Furthermore, we
also assume that the user who follows this approach has some knowledge about the
application domain of the databases. The result of the complete rationale captured can
be seen in the illustration of the final stage (Fig. 4).

 StdTrip+K: Design Rationale in the RDB-to-RDF Process 307

Fig. 3. Author-Publication ER diagram [14]

3.2.1 Stage 1 - Mapping

The general goal of this stage is to map the structure of the input relational database
schema onto intermediate database ontology (we call OWL’) and to trace the DR for
the mapping (we call DR1). OWL’ is not the final ontology because there is no execu-
tion of matching algorithms in this stage yet. To achieve the general goal, there are
two sub stages: (1.1) RDB-to-ER, to transform the relational database schema into an
Entity Relationship (ER) model and (1.2) ER-to-OWL’, to transform the ER model
into an OWL ontology (OWL’). The rationale captured in this stage records the map-
ping rules used in the mapping since it is part of the domain expert decisions. The
resulting (yet intermediate) OWL ontology is a model that simply mirrors the schema
of the input relation database. To illustrate the rationale representation, we will con-
sider only the part of the input database example regarding the mapping of the Author
and Institution classes with their attributes and the relationship established between
them, ex:WorksFor. We list the K-steps executed to capture the DR 1: K1 - Identify
reasoning elements from the ER model. The reasoning elements last_name, author,
Author_Institution and Institution were identified, because all of them are elements
that will be mapped; K2 - Identify the representation of the reasoning element in
the ER model. After having identified each reasoning element, the rationale represen-
tation records which element (Entity, Attribute, Relationship) it represents in the ER
model, in order to keep the traceability of each element; K3 - Record the corre-
sponding mapping of the ER element onto the OWL element. Having identified all
the ER elements, the DR model records the correspondent OWL element mapped for
each reasoning element; K4 - Record the argument for the mapping. For each
reasoning element, the argument is the respective mapping rule used in the mapping.
As the mapping rules are not rigid nor a consensus, this step records how each ele-
ment was mapped as an argument form; K5 - Record the corresponding OWL in-
termediate term. Finally, this step records the intermediate term mapped for each
element.

3.2.2 Stage 2 – Matching

The general goal of this stage is to find correspondences between the intermediate
ontology obtained in the previous stage (Stage 1 - Mapping) and standard well-known
RDF vocabularies. This stage comprises three sub stages: (2.1) Matchers execution –
For each element in the intermediate ontology, there are partial candidates according
to each matcher, with their respective similarity values. (2.2) Combination strategies

308 R. Berardi et al.

– aggregation strategies are applied to define an unified similarity value for each pair
of ontology terms. (2.3) Selection of match candidates – until here there is still more
than one match for each term, so the final sub stage aims at applying a selection strat-
egy to choose one final match candidate for each ontology term. The steps for the DR
representation of Stage 2, DR 2 are: K6 - Record the candidates for each interme-
diate term. It records each candidate that is presented to the domain expert; K7 -
Identify and record the arguments (in favor of and objects to). For each candidate,
there is a final similarity value that represents the reason for this candidate to be part
of the list presented to the domain expert. As the Kuaba+W DR model defines argu-
ments as “in favor of” and “objects to”, they have to be identified and traced to keep
all options the user currently have to make his or her decision. Due to space con-
straints, we illustrate only one case of different options with arguments in favor of and
objects to, associated to ex:last_name example.

3.2.3 Selection Stage

The general goal of this stage is to select the terms resulting from the previous stages
in order to build the final OWL ontology. In this stage, user interaction plays an es-
sential role. Ideally, the user should know the application domain because he or she
has to select the vocabulary elements that best represent each concept in the database.
Similarly to the previous DR models, the DR of this stage (DR 3) is incrementally
built from the preceding DR (DR 2) executing the following steps: K8 – Record the
user decision domain about each term. The Kuaba+W model records all decisions
involved in the acceptance (A) or rejection (R) of each term recommended by
StdTrip+K. In the DR 3 model, these decisions are represented by the letters A and R,
respectively; K9 – Record the justification of the domain expert. After each deci-
sion, the user expert justifies his or her choices. An example that represents the rele-
vance of tracing the DR of this stage is related to the term ex:last_name, for which the
expert domain decided to use the term with the lowest similarity value, and without
the DR it would not be possible to know why.

3.2.4 Inclusion Stage

The general goal of this stage is to complete the final OWL ontology with terms that
were not identified in the previous stages. This can happen when the Selection stage
does not yield any result or when none of the suggestions in the list is considered
adequate by the user. The DR 4 is recorded through the following step: K10 – Record
the new term and the justification. The expert domain justifies the inclusion of a
description which explains why this is an appropriate term in the input database con-
text.

 StdTrip+K: Design Rationale in the RDB-to-RDF Process 309

Fig. 4. Resulting design rationale captured for the example

4 Conclusions and Future Works

In this article, we introduced the StdTrip+K process. It allows the translation of a
relational database to RDF triples reusing standard vocabularies and recording the DR
from the translation. The StdTrip+K provides objective information about the RDB-
to-RDF process and it is possible to answer the questions that still arise when using
triple sets in the Linked Data cloud. (1) Has the database suffered changes when pub-
lished as RDF triples that could impact in its quality? May the original relational
database have lost some relevant information when it is published as RDF triples? As
the DR shows the original form of the dataset (as ER model), it is possible to compare
the database initial form and the mappings, and, consequently, evaluate the differ-
ences impact, if any. (2) Is the chosen ontology the most appropriate to represent the
database? Is the translation correct from the original relational database to RDF?
Once DR shows the options abandoned; accepted and the reasons for that, it is possi-
ble to evaluate the choices done. Also, the DR allows having access of one-to-one and
one-to-many mappings despite not having been addressed in the running example of
this article. We believe our work can be further improved as follows: Implementing
the reuse of DR in the mapping process, adding recommendation functionality in the
StdTrip+K making use of previous decisions regarding abandoned options in similar
domains; Providing a more compact visualization of the captured DR allowing a de-
tailed visualization just when required by the triple set consumer; and Incorporating
the rationale model to other RDB-to-RDF strategies that presents different character-
istic from StdTrip. The last further work emphasizes that the rationale model may be
adapted to capture the triplification rationale in other RDB-to-RDF processes and it is
not a specific solution for StdTrip approach.

310 R. Berardi et al.

References

1. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-weight
linked data publication from relational databases. In: WWW 2009, pp. 621–630. ACM,
New York (2009)

2. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In:
Proceedings of the 3rd International Semantic Web Conference, ISWC 2004 (2004)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Jour-
nal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

4. Cerbah, F.: Learning highly structured semantic repositories from relational databases: The
RDBToOnto Tool. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 777–781. Springer, Heidelberg (2008)

5. Cullot, N., Ghawi, R., Yétongnon, K.: DB2OWL: A Tool for Automatic Database-to-
Ontology Mapping. In: SEBD, pp. 491–494 (2007)

6. Dividino, R., Schenk, S., Sizov, Staab, S.: Provenance, Trust, Explanations – and all that
other Meta Knowledge. Künstliche Intelligenz KI 23(2), 24–30 (2009)

7. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. Networked Knowledge-
Networked Media, 7–24 (2009)

8. Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(13), 78–85
(1997)

9. Lee, J., Lai, K.: What’s in Design Rationale. Human-Comput. Interaction 6(3-4), 251–280
(1991)

10. Maclean, A., Young, R., Bellotti, V., Moran, T.: Questions, Options, and Criteria: Ele-
ments of Design Space Analysis. Human-Comput. Interaction 6(3-4), 201–250 (1991)

11. McGuinness, D., Harmelen, F.: OWL web ontology language – W3C Recommendation
(2004), http://www.w3.org/TR/owl-features/ (retrieved February 2013)

12. Medeiros, A.P., Schwabe, D.: Kuaba approach: Integrating formal semantics and design
rationale representation to support design reuse. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing 22, 399–419 (2008)

13. Prud’hommeaux, E., Hausenblas, M.: Use cases and requirements for mapping relational
databases to rdf (2010), http://www.w3.org/TR/rdb2rdf-ucr/ (retrieved No-
vember 27, 2012)

14. Salas, P., Viterbo, J., Breitman, K., Casanova, M.A.: StdTrip: Promoting the Reuse of
Standard Vocabularies in Open Government Data. In: Wood, D. (ed.) Linking Government
Data, pp. 113–134. Springer (2011)

15. Sequeda, J., Depena, R., Miranker: Ultrawrap: Using SQL views for RDB2RDF. In: Pro-
ceedings of International Semantic Web Conference. ISWC 2009 (2009)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 311–318, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Organizing Scientific Competitions on the Semantic Web

Sayoko Shimoyama, Robert Sidney Cox III, David Gifford,
and Tetsuro Toyoda

Integrated Database Unit, Advanced Center of Computing and Communication (ACCC)
RIKEN,

2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
toyoda.tetsuro@gmail.com

Abstract. Semantic web techniques for Linked Open Data (LOD) are expected
to enhance the use of scientific data, and several data repositories for LOD have
been launched. Modifiable “Forkable Open-source programs” on code sharing
platforms make applications (Apps) utilizing data ready for reuse. In order to
organize a web-based scientific competition, platforms for both semantic data
resources and application programs need to be integrated so as to yield a
creative cycle between data publication and application development. We
developed the LinkData.org platform to integrate both data and application pub-
lishing platforms by recording dependency graphs, the utility of which we test-
ed by organizing a scientific competition for synthetic biology on the platform.
It was found that participants to the competition generated many dependency
graphs by forking pre-existing applications or reusing schema of pre-existing
datasets. These creative activities could not be observed explicitly without be-
ing recorded such as by dependency graphs among the datasets and applications
on the platform. Hence we suggest a worldwide system needs to be established
to record and harvest such dependency graphs from distributed data platforms
and application-development platforms around the world, so that our intellectu-
al and creative activities using open datasets for application development may
be recorded properly.

Keywords: Semantic Web, Linked Open Data, GenoCon, Synthetic Biology,
Open Science.

1 Introduction

Data repositories and directories for open data such as The Comprehensive
Knowledge Archive Network (CKAN) web-based system for data storage and distri-
bution, supported by the Open Knowledge Foundation, help users register their data
resources and locate related data. The Resource Description Framework (RDF) graph
structure data format is the standard for sharing Linked Open Data (LOD) on the web
[1].

The LOD model with RDF and SPARQL endpoints [2] gives open data access to
external applications (Apps) worldwide, however, the act of separating data from
applications on the web hides synergic collaboration between data and applications;

312 S. Shimoyama et al.

resulting in the situation that scientific competitions requiring development of both
scientific linked data and applications using the data are not well organized without
special attention to clearly displaying the dependency among these entities.

To overcome this situation, we developed its LinkData.org (http://linkdata.org) as a
data publishing platform and LinkDataApp (http://app.linkdata.org) as an application
publishing platform, and combined them by automatically recording dependency
graphs that relate data and Apps using the data; thus LinkData acts as a repository of
dependency graphs connecting Apps and datasets, as well as a repository of applica-
tions and datasets.

Here we introduce the dependency graph by using the online activities performed
by participants for GenoCon2, the second international genomic design competition.
We find that dependency graphs well represent the relationship between the
GenoCon2 Data and Apps.

2 Methods

2.1 LinkData as an RDF Publishing Platform

Support Functions for Creating Table Data to Upload. As a support function that
allows Users to easily define schema, LinkData provides a GUI by which anyone can
create and download a template. When a User enters metadata for their data using this
GUI, a table format Excel file using column names for RDF properties is generated,
and this file can be downloaded. Users input their data to the template to create their
own table data to upload.

Conversion to RDF Format and Publishing. The template data tables can be up-
loaded, converted to RDF format, and published online. When a User uploads the
table data file in Excel or TSV format, anyone accessing the page will be able to
browse and download the table data, a template for table data, as well as in RDF for-
mat. Please see the results section for an example.

Reuse Data Function. Schemas of all of published Data can be reused for publishing
new datasets. Users can activate the reuse table data function at the published Data
webpage and down-load a template with minimal modification.

Displaying Applications Relating to Particular Data. Applications that are using
particular Data as an input are displayed on the page of each of published Data.

Creating Application by Editing Sample Program. A sample JavaScript program is
automatically generated when a User selects a file from published Data as an input
and creates a new App. Users can edit the sample program on a web browser to
develop an original App. Anyone accessing to the published App page is able to
execute, fork and download the App. Please see the result section for an example.

 Organizing Scientific Competitions on the Semantic Web 313

Forking Application to Publish as a New One. The Source code of published Apps
can be reused by anyone. A forked program will be modified and published as a new
App. The relationships between App and the Data used as input for the App are
maintained so that users only need to make minimal changes to the program.

Changing Input Files to Create a New Application. When a User forks an App,
input files can be changed to new Data provided by the User. With this function a user
can create a new App without editing the program, and any User can create their own
App even if they are not a JavaScript programmer.

Displaying Data relating to an App. Data used as an input to a particular App are
displayed on the page of each published App.

2.2 Entities and Links of LinkData Concepts

The dependency graph uses three entity nodes: Data, App and User (Table 1). A user
is a person registered to use the platforms. Data is a single data set which has been
published by one or more Users of LinkData. It must have at least one file uploaded
by the User. An App is a JavaScript application which has been published by a User
in LinkDataApp, or an external web page registered by the user as an application
using the Data. An App must load at least one file from Data. Relationships among
entities are described by eight types of links shown in Table 2. A link relationship
represents the graph association from one entity node to another. For the link new
Data to old Data, a link termed “reuse,” will be generated when a User creates new
Data by reusing an existing schema from the old Data. The link Data to User, termed
“contributed”, will be generated when a User creates any Data. The link from a new
App to an old App, termed “fork”, will be generated when a User creates a new App
by reusing an existing App’s program code. The link from an App to Data, termed
“load”, will be generated when a User creates a new App by specifying some files as
input from some particular Data or loads some files in their existing App. The link
from User to User, termed “follow”, will be generated when a User follows another
User. For example, if User A follows User B, User A can receive updates about User
B’s Data or App and information about Data and Apps evaluated by User B. The links
from User to Data and from User to App, termed “vote”, will be generated when a
user browses Data or an App and gives a Useful or Un-useful rating for that Data or
App.

Table 1. Entities of LinkData Concepts

Entity Definition

Data A single data set which has been published by a User in LinkData

Application (App)
A single application which has been published by a User in
LinkData

User A user who had registered for a LinkData account

314 S. Shimoyama et al.

T

Link Term

Data (new)

→ Data (old)
reuse

Data

→ User
contributed

App (new)

 → App (old)
fork

App

→ Data
load

App

→ User
contributed

User (A)

→ User (B)
follow

User

→ Data
vote

User

→ App
vote

Fig. 1. Dependency graph fo
data, application and user, an
Load - Lad, Vote for Data - L
App - Lau are shown in the fig

Table 2. Links of LinkData Concepts

Label Definition

Ldd Create new Data by reusing an existing Data.

d Ldu
The relationship between Existing Data and the u

who created the Data.

Laa
Create a new App by reusing an existing App’s p

gram code.

Lad
Create an App by specifying some files as input fro

some particular Data.

d Lau
The relationship between an Existing App and t

user who created the App.

Luu
User A follows user B to receive updates and inf

mation of evaluated Data and Apps by user B.

Lud
A user gives a rating of Useful or Un-useful

considered Data

Lua
A user gives a rating of Useful or Un-useful for

considered App

or usability analysis. The graph comprises three types of no
nd eight types of links: Reuse - Ldd, Fork - Laa, Follow - L
Lud, Vote for App - Lua, Contributed Data - Ldu and Contribu
gure.

ser

ro-

om

the

for-

for

r a

odes:
Luu,
uted

 Organizing Scientific Competitions on the Semantic Web 315

2.3 Dependency Graph for Analyzing the Creative Activities on the Platforms

The dependency graph represents the record of a user’s creative activities on the plat-
forms. The graph is composed of three types of nodes: data, application and user, and
eight types of links between them: Ldd, Laa, Luu, Lad, Lud, Lua, Ldu and Lau are
shown in Fig. 1, and the accumulated links represent the record of activities, such as
loading data, data template reuse, and application forking (cloning and modification).

3 Results and Discussion

3.1 Count of Relationships among Three Entities Indicates Creative Synergy
Cycle

LinkData hosts 557 datasets and 260 applications as of March, 2013. Datasets contain
350 public, 40 limited, and 162 private. Applications contain 160 public, 55 limited,
and 45 private. There are a large number of Load (App to Data) relationships and
many Fork (App to App) relationships (Table 3). In contrast, there are few Reuse
(Data to Data) relationships. It is thus clear that there is a stronger synergy cycle be-
tween data resources and applications than “in data” (between Data and Data). In
other words, this indicates that a platform which has both capabilities of publishing
data resources and creating applications has higher creativity than one having only
one capability of data resource creation.

Table 3. Count of relationships between data resources and applications hosted in LinkData

Kind of relationship Count

Load (App to Data) 166

Fork (App to App) 137

Reuse (Data to Data) 39

Follow (User to User) 52

Vote (User to Data) 244

Vote (User to App) 89

All the dependency graphs are downloadable from the LinkData.org APIs (Table 4.).

Table 4. Downloadable Dependency Graph APIs on LinkData

APIs TSV format JSON format

reuse http://linkdata.org/api/1/graph/reuse_tsv.txt http://linkdata.org/api/1/graph/reuse_rdf.json
fork http://linkdata.org/api/1/graph/fork_tsv.txt http://linkdata.org/api/1/graph/fork_rdf.json
load http://linkdata.org/api/1/graph/load_tsv.txt http://linkdata.org/api/1/graph/load_rdf.json
follow http://linkdata.org/api/1/graph/follow_tsv.txt http://linkdata.org/api/1/graph/follow_rdf.json
vote to Data http://linkdata.org/api/1/graph/vote_data_tsv.txt http://linkdata.org/api/1/graph/vote_data_rdf.json
vote to App http://linkdata.org/api/1/graph/vote_app_tsv.txt http://linkdata.org/api/1/graph/vote_app_rdf.json

316 S. Shimoyama et al.

3.2 Organizing a Scientific Competition Using the Integrated Platform

For the synthetic biology competition GenoCon2 (http://genocon.org) [3], we chal-
lenged participants to design novel regulatory DNA for controlling gene expression in
the thale cress plant Arabidopsis thaliana. Participant DNA designs will be synthe-
sized and tested for tissue and time specificity in a real plant. Participants are allowed
to create a de novo design tool as an App on the platform, or to modify by forking the
App we provided as a computer aided design tool on the platform, called
PromoterCAD [4].

Using PromoterCAD function modules, genes with the desired properties can be
found and mined for regulatory motifs. These are introduced into the synthetic pro-
moter by user choice of regulatory position. Repeating this process can create com-
plex regulation at the promoter. Finally, the DNA design is exported for error and
safety checking, DNA synthesis, and experimental characterization.

PromoterCAD rests on a rich set of high throughput microarray and DNA sequence
data containing over one million measurements and annotations of 20,000 genes.
These were uploaded to LinkData as a series of data mashup tables and data rank lists
(Fig. 2). Where other DNA design tools act as sequence editors with DNA specific
functions, PromoterCAD is able to pull sequence data directly from the data sources
in the LinkData system, guided by the menu-driven interface. LinkData gives
PromoterCAD the power to allow users to quickly perform advanced data queries,
retrieve useful sequences, and organize them into their promoter sequence designs.

Fig. 2. PromoterCAD LinkData system for DNA design incorporates database information with
user knowledge

 O

Fig. 3. Dependency graph o
application on LinkData. T
interaction between the Data
Apps (Blue color box), and
box). Red, Blue, Green and G
fork, contribute and vote, respe

Organizing Scientific Competitions on the Semantic Web

The LinkData system provi
code extensibility to PromoterCA
With the forking function, users
write their own JavaScript d
mining modules to PromoterCA
and draw upon the rich linked d
in new ways. For example,
participant in GenoCon2 modifie
PromoterCAD function to disp
the top 10 expressing genes i
specific plant tissue. Ot
GenoCon2 participants used
module, and the forked utility
since been incorporated as part
the main PromoterCAD functi
ality. Customizing applications w
optional user created modules
lows non-coding users to take
vantage of the experience of m
advanced coding users.

The architecture
PromoterCAD allows n
LinkData sources to be added w
out any direct code modificat
PromoterCAD provides dow
loadable template file of input d
that is structured with spreadsh
(Excel) so that users only need
copy and paste gene express
values or regulatory sequence l
and upload it to LinkData. T
function is intended to allow sci
tists who are not programmers
add their own databases
PromoterCAD. A user could ad
PromoterCAD to design regulat
DNA in other organisms such
mouse, human, or bacteria by
placing all of the data tables.

The dependency graph in Fig
shows an example of the cy
enhancing synergistic collabo
tion in this web-based scient
competition for synthetic biolo
promoter design. The sou

of the PromoterCAD
This graph shows the
(Green color box), the
the Users (Grey color

Grey lines indicate load,
ectively.

317

ides
AD.
can

data
AD,
data
one
ed a
play
in a
ther
this
has
t of
ion-
with

al-
ad-

more

of
new

with-
tion.
wn-
data
heet
d to
sion
lists
This
ien-
s to

to
dapt
tory

h as
re-

g. 3
ycle
ora-
tific
ogy
urce

318 S. Shimoyama et al.

dataset http://linkdata.org/work/rdf1s339i “Speedup Lists of Developmental
Coexpression” is a source for this graph. Data may be viewed and downloaded in
mentioned formats. The App “GenoCon PromoterCAD” at
http://app.linkdata.org/app/app1s94i is also shown in the graph.

The GenoCon2 promoter design contest generated active user groups and over 40
international submissions including from the USA, Egypt and Japan. Key users coop-
erated to create original designs that were modified and possibly improved by other
users. Team collaboration was aided by the open nature of the design platform, and 13
high level promoter designs are being considered for final construction as transgenic
plants. Application to further design challenge projects for other organisms is also
planned.

4 Conclusion

A scientific competition was successfully organized on the LinkData platform that
records the dependency graphs among datasets and applications. It was found that
participants to the competition generated many dependency graphs by forking pre-
existing applications or reusing the schema of pre-existing datasets as shown in Fig. 3,
i.e., most of the participants did not develop a new de novo application by their own
hands from scratch, but modified the applications or reused the datasets developed by
others. These creative activities could not be observed explicitly without being rec-
orded such as by dependency graphs among datasets and applications on the platform.
Hence, we suggest a worldwide system needs to be established to record and harvest
such dependency graphs from distributed data platforms and application-development
platforms around the world, so that our intellectual and creative activities using open
datasets for application development may be recorded properly.

Acknowledgement. We would like to acknowledge: Ms. Yuko Yoshida for develop-
ment of converter and valuable discussion. Dr. Shuji Kawaguchi for giving advice on
score calculation. Dr. Koro Nishikata for testing LinkData. Mr. Chanaka Perera, Mr.
Uditha Punchihewa, Mr. Gayan Hewathanthri, Mr. Hiroaki Osada, Mr. Kazuro
Fukuhara and Mr. Kiyoshi Mizumoto (Axiohelix Co., Ltd.) for web application and
LinkData development. The Committee of Linked Open Data Challenge Japan for
continuing interest and encouragement.

This work was supported by the National Bioscience Data-base Center (NBDC) of
the Japan Science and Technology Agency (JST).

References

1. Manola, F., et al.: RDF Primer. W3C Rec. (2004)
2. Prud’hommeaux, E., et al.: SPARQL Query Language for RDF. W3C Candidate Rec.

(2006)
3. Toyoda, T.: Methods for Open Innovation on a Genome – Design Platform Associating Sci-

entific, Commercial, and Educational Communities in Synthetic Biology. Methods in En-
zymology 498, 189–203 (2011)

4. Cox III, R.S., et al.: PromoterCAD: data-driven design of plant regulatory DNA. Nucleic
Acids Research (in press)

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 319–326, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Inductive Logic Programming-Based Approach
for Ontology Population from the Web

Rinaldo Lima1, Bernard Espinasse2, Hilário Oliveira1, Rafael Ferreira1,
Luciano Cabral1, Dimas Filho1, Fred Freitas1, and Renê Gadelha1

1 Informatics Center, Federal University of Pernambuco, Recife, Brazil
{rjl4,htao,rflm,lsc4,dldmf,fred,rnsg}@cin.ufpe.br

2 LSIS, Aix Marseille University, Marseille, France
bernard.espinasse@lsis.org

Abstract. Developing linguistically data-compliant rules for entity extraction is
usually an intensive and time-consuming process for any ontology engineer.
Thus, an automated mechanism to convert textual data into ontology instances
(Ontology Population) may be crucial. In this context, this paper presents an
inductive logic programming-based method that induces rules for extracting in-
stances of various entity classes. This method uses two sources of evidence:
domain-independent linguistic patterns for identifying candidates of class in-
stances, and a WordNet semantic similarity measure. These two evidences are
integrated as background knowledge to automatically generate extractions rules
by a generic inductive logic programming system. Some experiments were con-
ducted on the class instance classification problem with encouraging results.

Keywords: Ontology Population, Information Extraction, Pattern Learning,
Inductive Logic Programming.

1 Introduction

Ontologies, from the computer science point of view, consist of logical theories that
encode knowledge about a certain domain in a declarative way [2]. They also provide
conceptual and terminological agreements among humans or computational agents
that need to share information. On the other hand, the development of ontologies re-
lies on domain experts that typically adopt a manual construction process, which turns
out to be very time-consuming and error-prone. Hence, an automated or semi-
automated mechanism able to extract the information contained in existing web pages
into ontologies, Ontology Population (OP), is highly desired [2].

In this scenario, the main goal of this paper is to describe and evaluate a method to
automatically induce, via an Inductive Logic Programming (ILP) framework, extrac-
tion rules for OP. The proposed method also exploits the semantic similarity between
classes and candidate class instances. More precisely, this method relies on: (i) a natu-
ral language preprocessing which not only takes into account the typical lexical-
syntactic aspects present in the English language, but also exploits semantic similarity
between ontology classes and candidate class instances, and (ii) an ILP-based induc-
tion of symbolic extraction rules (expressed as Horn clauses) from examples.

320 R. Lima et al.

The rest of this paper is organized as follows: Section 2 is dedicated to related
work. Section 3 presents some basic concepts about ILP. The ILP-based method for
OP is described in Section 4. We present and discuss experimental results of our
method for OP in Section 5. Finally, in Section 6 we conclude and outline future
work.

2 Related Work

Several approaches have been developed for extracting class instances from textual
data using machine learning techniques. KnowItAll [5] is a hybrid named-entity ex-
traction system that combines Hearst's and some learned patterns for extracting class
instances from the Web using a search engine. In order to assess the candidate in-
stances, KnowItAll uses the PMI metric and a Naïve Bayes classifier for achieving a
rough estimate of the probability that each candidate instance is correct. In [4], the
authors proposed the idea that learned patterns could be used as both extractors (to
generate new information) and discriminators (to assess the truth of extracted infor-
mation). More recently, [9] reports some experimental results using ILP techniques to
induce rules that extract instances of various named entities. Moreover, [9] also re-
ported a substantial reduction in development time by a factor of 240 when ILP is
used for inducing rules, instead of involving a domain specialist in the entire rule
development process.

Although our approach has explored the same kind of surface patterns used by
most of the approaches described above, our richer set of features (POS tagging,
NER, and semantic similarity measure) seems to achieve promising results. Further-
more, our research hypothesis is that an ILP-based method would allow an easier and
flexible integration of background knowledge (BK) provided by other levels of lin-
guistic analysis, as potential future work.

3 Inductive Logic Programming

Inductive Logic Programming is a subfield of machine learning which uses first order
clauses as a uniform representation for examples, background knowledge, and hy-
potheses [7]. According to [3], there are two main motivations for using ILP: (i) it
overcomes the representational limitations of attribute-value (propositional) learning
systems that employ a table-based example representation; (ii) it rather employs a
declarative representation, which means that the hypotheses are understandable and
interpretable by humans. Moreover, by using logic, ILP systems can exploit BK in its
learning (induction) process. For instance, the BK can be expressed in the form of
auxiliary predicate definitions provided by the user.

Informally, the ultimate goal of ILP is to explain all of the positive and none of the
negative examples. More formally, given: (i) a set of examples E = E+∪ E-, where E+
(positive) and E- (negative), and; (ii) background knowledge BK, the task of ILP is to
find a hypothesis H such that: ∀e ∈ E+: BK ∧ H |= e (H is complete), and ∀e ∈ E-: BK ∧ H |≠ e (H is consistent).

 An Inductive Logic Programming-Based Approach for Ontology Population 321

Many existing ILP implementations, such as GILPS [10], are closely related to
Prolog and, therefore, they impose the following typical restriction to the way of
how the BK (in terms of predicates or rules) and examples are represented. In other
words, the BK is restricted to Prolog clause in the form head :- body1, body2, ...,
bodyn. Thus, the head is implied by the body clauses, whereas E+ and E- are restricted
to ground facts. We refer the reader to [3], [7], [10] for further details on ILP.

4 An ILP-Based Method for Populating Domain Ontologies

Our supervised method for OP takes profit of the high redundancy present in the Web
content, considering it as a big corpus. Sharing the same idea, several authors pointed
it out as an important feature because the amount of redundant information can repre-
sent a measure of its relevance [5], [4]. Moreover, we take into account the portability
issue, i.e., the method should able to perform independently of the domain. We adopt-
ed the ILP framework as the core component for machine learning in our method
because it can provide extraction rules in a symbolic form which can be fully inter-
preted by a knowledge engineer. Consequently, the user can either refine these rules
or simply converting them to other rule formalisms.

One of the main advantages of ILP over other statistical machine learning algo-
rithms is that not only the learned patterns are expressed in a symbolic form which is
more easily interpreted by a knowledge engineer, but also allows the integration of
considerable amount of prior knowledge as part of the solution to the problem under
consideration. Moreover, according to [9], when compared with a handcrafting rule
approach, an ILP-based method can provide a complete and consistent view of all
significant patterns in the data at the level of abstraction specified by the knowledge
engineer.

The proposed method is composed of four main steps as illustrated in Fig. 1.

Fig. 1. Overview of the ILP-based ontology population system

322 R. Lima et al.

In general terms, the method consists of a supervised approach to automatically
generating extraction rules that subsumes lexico-syntactic patterns present in textual
documents. As a result, the induced rules can be applied on an unseen set of prepro-
cessed documents in order to extract instances that populate an ontology. In the re-
main part of this section, we present each system component in more detail.

4.1 Corpus Retrieval

The first step, the corpus retrieval process, starts retrieving sentences from web pages
in order to constitute a corpus. We rely on a set of domain-independent linguistic
patterns for this task. Fig. 2 presents the patterns used for gathering relevant docu-
ments containing candidate instances of concepts (classes) of a domain ontology.

After the user’s choice of a class from this domain ontology, the system retrieves
some documents based on both the label of the chosen class, and the patterns P (Fig.
2). For instance, selecting the Country class, the above patterns would match sentenc-
es in natural language such as: “is a country”; “countries such as”; “such countries
as”; “countries especially”; “countries including”; “and other countries”; “or other
countries”. These phrases likely include instances of the Country class in the
CANDIDATE(S) part [2], [4], [5].

Fig. 2. Domain-independent Hearst patterns

Next, each query is submitted to a Web search engine, and the first N web docu-
ments are fetched for each pattern. We are interested in extracting sentences like,
"such countries as CANDIDATES" or "CANDIDATE is a country" where
CANDIDATE(S) denotes a single noun phrase or a list of noun phrases. For instance,
in the sentence: "Why did countries such as Portugal, France grow rapidly in the
1930's?", the terms "Portugal" and "France" are extracted as candidate instances of
the Country class.

4.2 Text Preprocessing

Two text preprocessing techniques are performed at this step (ii) lexico-syntactic
analysis, and (ii) semantic similarity measuring.

Lexico-Syntactic Analysis. The main goal of our system is to automatically induce
extraction patterns that discovers hypernymy relations (is-a relations) between two
terms. For doing that, we need a representation formalism that expresses these pat-
terns in a simple and effective way. We defined a set of lexico-syntactic features pro-
duced by the preprocessing component in our architecture. These features are the
building blocks that compose the background knowledge that will be used later by the

P1: <CANDIDATE> is a/an <CLASS>
P2: <CLASS>(s) such as <CANDIDATES>
P3: such <CLASS>(s) as <CANDIDATES>
P4 and P5: <CLASS>(s) (especially/including) <CANDIDATES>
P6 and P7: <CANDIDATES> (and/or) other <CLASS>(s)

 An Inductive Logic Programming-Based Approach for Ontology Population 323

component responsible for the induction of extraction rules. The prototype system
developed in this work relies on the Stanford CoreNLP [11], a Natural Language
Processing (NLP) tool. This NLP tool performs the following sequence of processing
task: sentence splitting, tokenization, Part-of-Speech (POS) tagging, lemmatization,
and Named Entity Recognition (NER) which labels sequences of words in a text into
predefined categories such as Person, Organization, Date, etc.

Semantic Similarity Measuring. Semantic similarity measures based on WordNet
[8] have been widely used in NLP applications, and they take into account the
WordNet taxonomical structure to produce a numerical value for assessing the degree
of the semantic similarity between two terms. We adopted the similarity measure
proposed in [12] which provides the degree of similarity between the class C and a
candidate class instance Ci. It relies on finding the most specific concept that sub-
sumes both the concepts in WordNet.

4.3 Background Knowledge Generation

This step consist of identifying, extracting, and appropriately representing relevant
BK for the task at hand. Previous research have shown that shallow semantic parsing
can provide very useful features in several information extraction related tasks [6].
Accordingly, we explore the features listed in Tab. 1, which constitute the BK in our
approach. These features provide a suitable feature space for the classification prob-
lem of candidate instances, as they describe each token in the corpus. Furthermore,
we calculate the similarity degree between each token tagged as singular or plural
noun by the POS tagger and a class in the domain ontology. We illustrate in Tab. 1
the BK that characterizes the candidate instance of the Country class, "France".

Table 1. ILP Predicates for the token "France"

Predicate Generated Meaning

token (t_1) t_1 is the token identifier

t_length (t_1, 6) t_1 has length of 6

t_ner (t_1, location) t_1 is a location entity according to the NER
t_orth (t_1, upperInitial) t_1 has an initial uppercase letter

t_pos (t_1, nnp) t_1 is a singular proper noun

t_next(t_1, t_2) t_1 is followed by the token t_2

t_type (t_1, word) t_1 is categorized as a word

t_wnsim(t_1, country, ’09-10’)
t_1 has a similarity score between 0.9 and 1.0 with the
Country class

Given that the WordNet similarity values are in the [0,1] range, we perform a dis-
cretization of this numerical feature by creating 10 bins of equal sizes (0.1 each).
Thus, for example, if the WordNet similarity value between the candidate class in-
stance “France”, and the class “Country” is 0.96, we put this value in the 10th bin
which corresponds to the predicate t_wnsim(t_id, country, '09-10'). In other words,
the predicate t_wnsim(A, country, '09-10') means that the token ‘A’ has a similarity
score between 0.9 and 1.0 with the Country class.

324 R. Lima et al.

4.4 Rule Induction

In this last step, we have to define the language bias which both delimits and biases
the possibly huge hypothesis search space. In GILPS, this is achieved by providing
appropriate mode declarations. Mode declarations characterize the format of a valid
hypothesis (rule). They also inform both the type, and the input/output modes of the
predicate arguments in a rule. Mode head declarations (modeh) state the target predi-
cate, i.e., the head of a valid rule that the ILP system has to induce, whereas mode
body declarations (modeb) determine the literals (or predicates), which may appear in
a rule body. In addition, the engine parameter in GILPS permits the user to choose the
way rules are specialized/generalized, i.e., how the hypothesis space are traversed,
either in top-down or bottom-up manner. The top-down approach was selected be-
cause it enables the construction of shorter theories (in term of the number of clauses)
[10]. Finally, GILPS induces a set of rules that can be applied on an unseen set of
preprocessed documents in order to extract instances that populate an ontology.

5 Experimental Evaluation

In this section, we describe how the corpus was created and annotated. Next, we pre-
sent and discuss the results of our experiments on the OP task.

5.1 Corpora Creation and Annotation of Examples

The corpus used in this evaluation was compiled using the 7 surface patterns listed in
Section 4.1. We have performed an evaluation on 5 classes, namely Country, Disease,
Bird, Fish, and Mammal classes. For each class, the system retrieved approximately
420 sentences equally distributed into sentences containing positive and negative
candidate instances. We used the Bing Search Engine API [1] for collecting a total of
2100 sentences (420 sentences for 5 classes).

The task of inducing target predicates in GILPS requires that positive and negative
examples be explicitly indicated before the generation of the classification model.
Thus, two human annotators manually tagged the positive instances. There is no need
to annotate the negative examples because they can be automatically identified as the
complement of the positive ones.

5.2 Evaluation Measures and GILPS Parameters

The performance evaluation is based on the classical measures used in IR systems,
i.e., Precision P, Recall R, and F1-measure. In all experiments, we used 10-fold
cross-validation that provides unbiased performance estimates of the learning algo-
rithm. GILPS was run with its default parameters, except for the following specific
settings: theory_construction = incremental, evalfn = compression, clause_length =
8, nodes = 1000. In incremental theory construction, when the best hypothesis from
an example is found, all the positive examples covered by this hypothesis are retract-
ed from the training set, whereas the nodes parameter determines the maximum num-
ber of hypotheses that may be derived from a single positive example.

 An Inductive Logic Programming-Based Approach for Ontology Population 325

5.3 Results and Discussion

In order to estimate the classification performance of the learned rules for each class,
we used two versions of the compiled corpus as described in Section 5.1. The first
version of the corpus was only annotated with lexico-syntactic features (see Section
4.2). In the second version, we added a WordNet semantic similarity feature. Each
class was assessed separately by building a binary classifier for each one.

Table 2. Classification performance of the induced rules

 No WordNet With WordNet
Class P R F1 P R F1

Country 0.96 0.92 0.94 0.98 0.96 0.97

Disease 0.95 0.69 0.80 0.97 0.84 0.96

Bird 0.93 0.53 0.67 0.95 0.73 0.82

Fish 0.93 0.42 0.58 0.94 0.50 0.65

Mammal 0.93 0.39 0.55 0.93 0.49 0.64

The results shown in Tab. 2 are encouraging, since the proposed method seems to

successfully extract a significant number of positive instances from the corpora. Con-
sidering the F1 score for the Country class, one can observe that, as being an entity
type recognized by the parser (named entity = location), the Country class had a very
tiny improvement on the sample with the additional WordNet predicate. On the other
hand, for the other classes, the rules based only on lexico-syntactic predicates are
highly precise, but its achieved recall score is lower than those ones when the
WordNet predicate is used. This comparison shows that the semantic similarity meas-
ure provided by WordNet can be very useful. In fact, a statistical significance test
(paired Student t-test) for the difference between the F1 scores of the two experiments
above were performed. The test revealed that there is a significant difference at α =
0.05 (95% confidence interval) between them. Thus, this assessment suggests that the
additional WordNet similarity predicate in the BK actually contributed to achieve
better performance results.

In the following, we list some induced rules expressed in terms of (number of liter-
als), (positive examples covered), (negative examples covered), and the (rule preci-
sion P):

Rule 1: #Literals = 4, PosScore = 17, NegScore = 0, P = 100%
is_a_mammal(A):- t_ner(A,misc), t_orth(A, upperinitial), t_pos(A, nn).

Rule 2: #Literals = 3, PosScore = 629, NegScore = 14, P = 97.8%
is_a_country(A):- t_wnsim_country(A, '09-10'), t_ner(A, location).

Rule 3: #Literals = 4, PosScore = 329, NegScore = 28, P = 92.0%
is_a_disease(A):- t_length(A,8), t_type(A, word), wnsim(A, disease, '09-10').

The ILP-based system found a perfect extraction rule for the Mammal class (Rule 1),
i.e., an instance beginning with an uppercase letter, tagged "miscellaneous" by the
NER, and tagged as a singular noun. In Rule 2, the high precision score of the Coun-
try class is mainly due to the NER that has tagged the instance as a “location”

326 R. Lima et al.

combined with a high score similarity with the WordNet synset "country". Rule 3
classifies an instance of the Disease class if it is a term with 8 characters, and its simi-
larity score with the WordNet synset "disease" is between 0.9 and 1.0.

6 Conclusion and Future Work

We have presented an ILP-based method for ontology population, which mainly relies
on shallow syntactic parsing and a semantic similarity measure. Although we have
achieved encouraging results so far, there are still some opportunities for improve-
ment. Indeed, our method is currently based on a set of domain-independent extrac-
tion rules that usually fails to generalize on the most linguist variations. Thus, in order
to improve its recall, we intend to use another sentence representation formalism
based on dependency grammar, which was proven to be more robust to linguist varia-
tions. Finally, we intend to extract instances of relations as well.

References

1. Bing Search Engine API. API Basics,
http://www.bing.com/developers/s/APIBasics.html

2. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and
Applications. Springer, New York (2006)

3. De Raedt, L.: Inductive Logic Programming. In: Encyclopedia of Machine Learning, pp.
529–537 (2010)

4. Downey, D., et al.: Learning Text Patterns for Web Information Extraction and Assess-
ment. In: Proceedings of the 19th National Conference on Artificial Intelligence Workshop
on Adaptive Text Extraction and Mining, San Jose, USA (2004)

5. Etzioni, O., et al.: Web-Scale Information Extraction in KnowItAll. In: Proc. of the 13th
International World Wide Web Conference (WWW 2004), New York, USA, pp. 100–110
(2004)

6. Finn, A.: A Multi-Level Boundary Classification Approach to Information Extraction. Phd
thesis, University College Dublin (2006)

7. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applications. El-
lis Horwood, New York (1994)

8. Miller, G.A.: WordNet: a Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

9. Patel, A., Ramakrishnan, G., Bhattacharya, P.: Incorporating Linguistic Expertise Using
ILP for Named Entity Recognition in Data Hungry Indian Languages. In: De Raedt, L.
(ed.) ILP 2009. LNCS, vol. 5989, pp. 178–185. Springer, Heidelberg (2010)

10. Santos, J.: Efficient Learning and Evaluation of Complex Concepts in Inductive Logic
Programming. Ph.D. Thesis, Imperial College (2010)

11. Stanford CoreNLP Tools. The Stanford Natural Language Processing Group,
http://nlp.stanford.edu/software/corenlp.shtml

12. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: Proc. of the 32nd Annual
Meeting of the Association for Comp. Linguistics, New Mexico, USA, pp. 133–138 (1994)

Incremental Algorithms

for Sampling Dynamic Graphs

Xuesong Lu, Tuan Quang Phan, and Stéphane Bressan

School of Computing, National University of Singapore
{xuesong,disptq,steph}@nus.edu.sg

Abstract. Among the many reasons that justify the need for efficient
and effective graph sampling algorithms is the ability to replace a graph
too large to be processed by a tractable yet representative subgraph. For
instance, some approximation algorithms start by looking for a solution
on a sample subgraph and then extrapolate it. The sample graph should
be of manageable size. The sample graph should preserve properties of
interest. There exist several efficient and effective algorithms for the sam-
pling of graphs. However, the graphs encountered in modern applications
are dynamic: edges and vertices are added or removed. Existing graph
sampling algorithms are not incremental. They were designed for static
graphs. If the original graph changes, the sample must be entirely recom-
puted. Is it possible to design an algorithm that reuses whole or part of
the already computed sample?

We present two incremental graph sampling algorithms preserving
selected properties. The rationale of the algorithms is to replace a frac-
tion of vertices in the former sample with newly updated vertices. We
analytically and empirically evaluate the performance of the proposed al-
gorithms. We compare the performance of the proposed algorithms with
that of baseline algorithms. The experimental results on both synthetic
and real graphs show that our proposed algorithms realize a compro-
mise between effectiveness and efficiency, and, therefore provide practi-
cal solutions to the problem of incrementally sampling the large dynamic
graphs.

1 Introduction

Graph sampling consists in the selection of a subgraph, the sample graph, from
an original graph. Graph sampling is useful, for instance, when the original graph
is too large to be processed. The original graph is then replaced by a represen-
tative sample graph of manageable size. A sample graph is representative if it
preserves selected properties of the original graph. The properties of interest are
usually the topological properties such as degree distribution, clustering coeffi-
cient distribution, etc.

In the pioneering paper [14], Leskovec et al. discuss several candidate graph
sampling algorithms. The authors empirically evaluate and quantify the ability
of these algorithms to preserve selected graph properties. Later, Hübler et al.
propose Metropolis algorithms to improve the quality of sampling general graph

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 327–341, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

328 X. Lu, T.Q. Phan, and S. Bressan

Fig. 1. Illustration of the rationale of incremental construction of a sample g′ of G′

from a sample g of G. G′
u is the subgraph induced by the updated vertices of G′. g′ is

constructed by replacing some vertices in g with selected vertices (in the smaller gray
rectangle) of G′

u.

properties in [12]. Several authors propose graph sampling algorithms designed
to preserve different specific properties (e.g. [10,16,17]). The above algorithms are
sampling from static original graphs. Vertices and edges are neither added to nor
removed from the original graph. However, the graphs encountered in modern
applications are dynamic, that is, vertices or edges are added or removed. For
example, Twitter was reported to have an average of 460, 000 new users every
day in February of 2011 [1]. Some of the properties of the Twitter user graph
may have correspondingly changed over time.

For the sake of efficiency, at least, we want to avoid sampling the successive
graphs from scratch. The challenge is to incrementally maintain a representative
sample graph. We try and devise algorithms able to incrementally update the
sample graph as the original graph is modified.

Formally, we consider two undirected graphs G and G′. We refer to G as the
“old” graph and to G′ as the “updated” graph. For the sake of simplicity, we
consider that G′ is obtained by the addition of vertices and edges to G. We call
“updated” a vertex of G′ that does not belong to G, or is the endpoint of an
edge in G′ that does not belong to G. We consider sample graphs of fixed size.
The rationale of the proposed algorithms is to replace a fraction of the vertices
in the sample graph g of the graph G with updated vertices to obtain a sample
graph g′ of the graph G′. We refer to g as the “old” sample graph and to g′

as the “updated” sample graph. Figure 1 illustrates this rationale. We devise
two variants of the idea above in which the vertices are replaced randomly or
deterministically, respectively.

The rest of the paper is organized as follows. Section 2 discusses related work
on graph sampling algorithms and incremental algorithms. Section 2.4 introduces
the background knowledge of Markov Chain Monte Carlo and the Metropolis
algorithm. Section 3 presents our algorithms. Section 4 analytically and empir-
ically evaluates the performance of the proposed algorithms. We compare our
algorithms with the state of the art algorithms proposed in [14] and [12], and
show our incremental algorithms successfully realize the compromise between
effectiveness and efficiency. Finally, we conclude in Section 5.

Incremental Algorithms for Sampling Dynamic Graphs 329

2 Related Work and Background Knowledge

2.1 Incremental Algorithms on Dynamic Graphs

In order to avoid the re-computation from scratch, a few incremental algorithms
have been proposed for graph analysis problems on dynamic graphs[6,7,21].
In [6], Desikan et al. propose a method to incrementally compute PageRank
for dynamic graphs. They argue that their approach can be generally used to
incrementally compute any graph metric that satisfies the first order Markov
property. In [7], Fan et al. propose incremental algorithms for graph pattern
matching on dynamic graphs. They consider both unit update, i.e., a single-
edge deletion or insertion, and batch updates, i.e., a list of edge deletions or
insertions on the graph. In our work, we consider only batch updates. The rea-
son is that unit updates change very little graph properties of large graphs,
thereby the old samples are still representative. In [21], Roditty et al. study
dynamic shortest-paths problems. They analyze the computational complexity
of incremental single-source shortest-paths problems and propose a randomized
fully-dynamic algorithm for the all-pairs shortest-paths problem.

2.2 Sampling from Static Graphs

Previous work concerned with graph sampling are mostly focusing on sampling
from static graphs. Examples include sampling community structure of the orig-
inal graph [17], sampling from disconnected or loosely connected graphs [20],
sampling connected induced subgraphs [16], etc. Among these literatures, pa-
per [14] and [12] aim to sample general graph properties from an original graph.

In the pioneering paper [14], Leskovec et al. discuss a series of candidate al-
gorithms for sampling from large graphs. The sample graphs are supposed to
preserve properties of interest in the original graphs. Among the discussed algo-
rithms, Random Walk (RW) sampling and Forest Fire (FF) sampling perform
best overall. RW selects uniformly at random a starting vertex and simulates a
random walk on the graph. In each step, RW jumps back to the starting vertex
with a certain probability and restarts the random walk. Similarly to RW, FF
selects a starting vertex v uniformly at random from the graph. Then a random
number x is drawn from a geometric distribution with mean

pf

1−pf
, where pf is

called forward burning probability. FF hereafter selects x neighbor vertices of
v that have not yet been selected. Recursively, FF applies the same process to
these newly selected vertices, until enough vertices are sampled. Both RW and
FF have the problem of getting stuck. The solution is to select a new starting
vertex uniformly at random.

RW and FF are efficient but do not guarantee to generate the most or nearly
the most representative sample graphs with respect to specific graph properties.
Hübler et al. improve this issue in [12]. They adopt the idea of random walk
on Markov chain and propose the Metropolis Graph Sampling (MGS) algorithm
for sampling representative sample graphs. The algorithm belongs to Markov
Chain Monte Carlo (MCMC) methods [5,11]. In particular, MGS selects an

330 X. Lu, T.Q. Phan, and S. Bressan

initial subgraph gcurrent of size n uniformly at random from G, where n is the
sample graph size. MGS sets gbest = gcurrent and starts a random walk from
gcurrent. At each step, MGS randomly replaces a vertex v in gcurrent with a
vertex w randomly selected from (G\gcurrent)∪{v}. MGS forms a new subgraph
gnew = (gcurrent \ {v}) ∪ {w}. Then MGS transfers from gcurrent to gnew with

probability min(1,
ΔG,σ(gcurrent)
ΔG,σ(gnew)), where ΔG,σ(g) measures the distance between

the original graph G and the sample graph g with respect to property σ. In
case of a success, if ΔG,σ(gcurrent) < ΔG,σ(gbest), MGS sets gbest = gcurrent.
The random walk terminates after a sufficiently large number of steps. MGS
then outputs gbest as the sample graph. Overall, MGS generates subgraphs with
probability inversely proportional to their distance measure Δ to the original
graph, and stores the subgraph with the smallest distance measure as the sample
graph.

MGS outperforms RW and FF in preserving the properties of original graphs.
However, MGS is not efficient because of two reasons. First, it requires a large
number of random walk steps in order to achieve the convergence of the Markov
chain. The number of random walk steps usually scales with the size of the
original graph. Second, it computes the graph property σ of the subgraph and
the distance measure at each random walk step, which requires additional cost.

2.3 Sampling from Graph Streams

In a recent work [3], Ahmed et al. considers the situation such that one cannot
access the entire original graph from main memory. This situation happens when
the original graph is too large or dynamic over time. They propose to solve the
problem by considering the original graph as a stream of edge lists and generating
a sample graph from the graph stream. The main proposed algorithm is called
Partially-Induced Edge Sampling (PIES). PIES maintains a reservoir of size n,
where n is the size of the sample graph. It inserts into the reservoir the first n
vertices of the graph stream and randomly replaces existing vertices afterwards
by newly arrival ones. At each step, an edge is added to the sample graph if
its two incident vertices are in the reservoir. Once a vertex is replaced, all the
incident edges are removed accordingly from the sample graph. The sampling
process continues until the end of the graph stream.

Our work is different from the work in [3] in two aspects. First, we consider
batch updates on the original graph, that is, we update the old sample graph
after a number of vertices and edges are added to the original graph, whereas
in [3] the authors consider unit updates, that is, they update the old sample
graph whenever a new edge is added to the original graph. As we discussed
in Section 2.1, unit updates are cumbersome as they change very little graph
properties of original graphs. Second, we focus on generating most representative
sample graphs, whereas PIES focus on sampling from a graph stream using a
single pass, and, therefore has no theoretical guarantee on sample quality.

Incremental Algorithms for Sampling Dynamic Graphs 331

2.4 Markov Chain Monte Carlo

The Metropolis algorithm belongs to Markov Chain Monte Carlo methods [5,11].
Markov Chain Monte Carlo methods are a category of algorithms that sample
from a Markov chain via random walk. The Markov chain is constructed by all
the candidate samples or states. The current state depends only on its adjacent
states. If the constructed Markov chain is ergodic, that is, the Markov chain is
aperiodic and irreducible1, it has a stationary distribution over all the states,
which is achieved by a sufficient large number of random walk steps on the
Markov chain.

The Metropolis algorithm [18] can draw samples from an ergodic Markov chain
with any desired probability distribution P by satisfying the detailed balance
condition p(s)T (s, s′) = p(s′)T (s′, s), where p(s) is the stationary probability
of state s and T (s, s′) is the transition probability from s to s′, for any state s
and s′. The transition probability T (s, s′) = t(s, s′)×a(s, s′), where t(s, s′) is the
probability of transferring from s to s′ and a(s, s′) is the probability of accepting
the transition. To ensure the detailed balance, the acceptance probability has

to be set as a(s, s′) = min(1, p(s′)
p(s) × t(s,s′)

t(s′,s)). If the constructed Markov chain

is regular, that is, all the states have the same number of adjacent states, we
have t(s, s′) = t(s′, s). In such kind of scenario, the acceptance probability is

simplified as a(s, s′) = min(1, p(s′)
p(s)).

3 Proposed Algorithms

We now turn to the problem of incremental construction of a updated sample
graph g′ of G′ from an old sample graph g of G. The two shortcomings discussed
in Section 2.2 make MGS not appropriate for sampling from very large graphs.
Therefore, we incrementally use the idea of MGS to avoid sampling from scratch,
while keeping the sample graph quality still competitive. The incremental algo-
rithms should either reduce the number of random walk steps or the cost of
computing σ and the distance measure.

3.1 Incremental Metropolis Sampling

One factor that determines the efficiency of the MGS algorithm is the number of
random walk steps required to achieve the stationary distribution. If we sample
g′ from G′ using the MGS algorithm, the number of random walk steps is rele-
vant to the size of G′. The smaller the size of G′ is, the fewer subgraphs of G′

are in the constructed Markov chain, thereby the fewer random walk steps are
required to achieve the stationary distribution. Therefore the efficiency of the
MGS algorithm can be improved if we can apply it to sample g′ from a subgraph
of G′. On the other hand, as we discussed in Section 1, the rationale of incremen-
tal sampling is to replace some vertices in g with the same number of updated

1 Any state is reachable from any other state in a finite number of random walk steps.

332 X. Lu, T.Q. Phan, and S. Bressan

vertices in G′. The key challenge is how to select the replaced vertices and the
updated vertices. We denote by G′

temp the subgraph induced by the vertices in
g and the updated vertices in G′. We find that the Metropolis algorithm can
spontaneously solve this problem via random walk on the Markov chain whose
states are the subgraphs induced by the vertices in G′

temp.
In particular, we first construct the subgraph G′

temp and set gbest = gcurrent =
g. We start the random walk from the old sample graph g. At each step, we
randomly select a pair of vertices (v, w), where v ∈ gcurrent and w ∈ (G′

temp \
gcurrent)∪{v}. We construct a new subgraph gnew = (gcurrent\{v})∪{w}. We ac-

cept the transition from gcurrent to gnew with probability min(1,
ΔG′,σ(gcurrent)

ΔG′,σ(gnew)).

Reader notice that, differently from the MGS algorithm, we construct the sub-
graphs gcurrent and gnew from G′

temp but compute the distance measure Δσ

between the subgraphs and the updated graph G′. In case of a success, we set
gcurrent = gnew and, if ΔG′,σ(gcurrent) < ΔG′,σ(gbest), we store gcurrent as gbest.
We output gbest as the updated sample graph g′ after a sufficient large number
of random walk steps. In summary, we sample g′ from the subgraph G′

temp of G′.
We construct a Markov chain whose states are the induced subgraphs of size n
of G′

temp. We perform a random walk starting from g on this Markov chain using
the Metropolis algorithm. The replacement of the vertices is spontaneously real-
ized during the random walk. We output the subgraph as the new sample g′ that
has the smallest distance measure to G′ with respect to property σ. We call this
algorithm Incremental Metropolis Sampling (IMS). The pseudo code is described
in Algorithm 1. The parameter p affects the convergence of the Markov chain.
We set p = 10 × E

V lgV in the experiment according to the parameter setting
in [12], where E and V are the number of edges and the number of vertices of
G′

temp, respectively.
We next prove the Ergodicity of the constructed Markov chain in Algorithm 1.

Lemma 1. The Markov chain constructed by the IMS algorithm is ergodic on
the space of subgraphs of size n induced by the vertices of G′

temp.

Proof. (i) Aperiodicity. It is straightforward to prove the Markov chain is ape-
riodic because there is self loop by applying the Metropolis algorithm.

(ii) Irreducibility. We prove that there is always a path from subgraphs g1
of size n to subgraph g2 of size n, for any g1 and g2 of G′

temp. Suppose g1 \
g2 = {v1, v2, . . . , vk} and g2 \ g1 = {w1, w2, . . . , wk}, where 1 ≤ k ≤ n. Denote
by a pair (vi, wi) replacing vi by wi in g1. The sequence of replacement pairs
(v1, w1), (v2, w2), . . . , (vk, wk) forms a path from g1 to g2. Since g1 and g2 are
any subgraphs of size n of G′

temp, we proved the irreducibility.
By (i) and (ii), we proved the ergodicity of the Markov chain.

The proof of the detailed balance of the Markov chain is similar to that in [12] for
proving the detailed balance of the Markov chain whose states are the connected
graphs. Since the Markov chain is ergodic and satisfies the detailed balance
condition (see Section 2.4), we can sample the subgraphs of size n using IMS with
probability inversely proportional to their distance measure Δσ to the updated
graph G′.

Incremental Algorithms for Sampling Dynamic Graphs 333

Algorithm 1. Incremental Metropolis Sampling

Input: g : a sample graph of G, n : the sample size, G′ : the updated graph,
#it : the number of random walk steps.

Output: g′ : a sample graph of G′.

1 G′
temp = the subgraph of G′ induced by the vertices of g and the updated

vertices of G′;
2 gbest = gcurrent = g;
3 for i = 1 to #it do
4 v ← a vertex selected uniformly at random from gcurrent;
5 w ← a vertex selected uniformly at random from (G′

temp \ gcurrent) ∪ {v};
6 gnew = (gcurrent \ {v}) ∪ {w};
7 α ← random number from interval [0, 1];

8 if α < (
ΔG′,σ(gcurrent)

ΔG′,σ(gnew)
)p then

9 gcurrent = gnew ;
10 if ΔG′,σ(gcurrent) < ΔG′,σ(gbest) then
11 gbest = gcurrent;
12 end

13 end

14 end
15 g′ = gbest;
16 Return g′;

3.2 Sample-Merging Sampling

Another factor that affects the efficiency of the MGS algorithm is the compu-
tational cost at each random walk step. As we need to compute the property
σ of the current subgraph and the distance measure of the current subgraph to
the original graph, this cost is in turn determined by the size of the subgraph.
Therefore the second method to speed up the MGS algorithm is to reduce the
size of the sampled subgraphs in the Markov chain.

To achieve this goal, we propose an algorithm based on the following conjecture.
If gx is a representative sample graph ofGx and gy is a representative sample graph
of Gy, gx ∪ gy is a representative sample graph of Gx ∪Gy. We assume that Gx ∩
Gy = ∅. Note that gx ∪ gy is an induced subgraph of Gx ∪ Gy . The intuition is
that, gx∪gy fully preserves the properties of Gx∪Gy if gx = Gx and gy = Gy, and
gx ∪ gy do not preserve any properties of Gx ∪Gy if both gx and gy have only one
vertex. Therefore, if gx is a normal sample graph of Gx and gy is a normal sample
graph of Gy, gx ∪ gy should preserve the properties of Gx ∪Gy to some extent.

The algorithm then works as follows. We construct a subgraph gnon that is
induced by the non-updated vertices of g. We denote by G′

non the subgraph
induced by the non-updated vertices of G′. We consider gnon as a representative
sample graph of G′

non. Suppose the size of gnon is snon. We denote by G′
u the

subgraph induced by the updated vertices of G′. We then sample a subgraph g′u
of size n− snon from G′

u using the MGS algorithm. According to the conjecture,
gnon ∪ g′u is a representative sample graph of G′ = G′

non ∪ G′
u. We merge gnon

334 X. Lu, T.Q. Phan, and S. Bressan

and g′u and form the sample graph g′, that is, g′ is the subgraph induced by the
vertices of gnon and g′u. In summary, we deterministically keep in g′ the non-
updated vertices of g. We select the rest of the vertices of g′ from the updated
vertices of G′ using the MGS algorithm. By this method, we achieve the goal of
reducing the size of subgraphs in the Markov chain.

We call this algorithm Sample-Merging Sampling (SMS). The pseudo code is
described in Algorithm 2.

Algorithm 2. Sample-Merging Sampling

Input: g : a sample subgraph of G, n : the sample size, G′ : the updated graph,
#it : the number of random walk steps.

Output: g′ : a sample graph of G′.

1 gnon = the subgraph induced by the non-updated vertices of g;
2 snon = the size of gnon;
3 G′

u = the subgraph induced by the updated vertices of G′;
4 Sample g′u of size n− snon from G′

u using the MGS algorithm;
5 g′ = gnon ∪ g′u;
6 Return g′;

The problem of SMS is that it may generate sample graphs of lower quality
with respect to property σ, that is, ΔG′,σ(g′) > ΔG′,σ(g). The possible explana-
tions are as follows. First, g is already a representative sample graph of G′ with
respect to property σ; second, gnon is not a representative sample graph of G′

non

as we expected; lastly, the merging phase introduces extra error to the distance
measure between G′ and g′. In this case, we restore g as a representative sample
graph of G′, as we are concerned with preserving graph properties rather than
updating the old sample graphs.

4 Performance Evaluation

4.1 Analytical Evaluation

Complexity Analysis. We present the time complexity of the algorithms in
this section. In the MGS algorithm, we compute at each step the graph property
σ of a subgraph of size n and compute the distance measure Δ between the
subgraph and the original graph. We denote by O(Cσ,n) the time complexity
of computing property σ of a subgraph of size n. We select the Kolmogorov-
Smirnov D-statistic to compute Δ. Below we see that the time complexity scales
linearly with the size of the distribution (the property) of the sample graph plus
that of the original graph. For the sake of simplicity, we denote by O(n + N)
the corresponding time complexity, where N is the size of the original graph.
Therefore the time complexity of MGS at each step is O(Cσ,n + n + N). The
number of random walk steps required is at least equal to the mixing time of

Incremental Algorithms for Sampling Dynamic Graphs 335

the Markov chain. The mixing time of a Markov chain is theoretically studied
in [22]. There are also empirical techniques for evaluating the mixing time, for
instance, the Geweke diagnostics [8]. However, it is estimated that the number
of random walk steps in the order of size of the original graph is sufficient for
the convergence of our Markov chain [9,12]. Therefore the total time complexity
of MGS is O(Cσ,nN + nN + N2). Accordingly, the time complexity of IMS is
O(Cσ,nNtemp + nNtemp + N2

temp), where Ntemp is the size of subgraph G′
temp.

The time complexity of SMS is O(Cσ,nuNu +nNu +N2
u), where nu is the size of

subgraph g′u and Nu is the size of subgraph G′
u. We use the number of random

walk steps discussed in this section in the experimental study below.

4.2 Empirical Evaluation

We conduct the experimental study in this section. We empirically evaluate the
algorithms on their abilities of preserving a selected set of graph properties.
All the properties are considered as distributions. We choose the Kolmogorov-
Smirnov D-statistic to compute distance measure Δσ between the sample graph
and the original graph on property σ, following the convention in [12,14]. We
compare the efficiency of the algorithms. We run experiments on both synthetic
datasets and real datasets.

The Graph Properties. We select four graph properties for evaluation, which
are also used in [14].

Degree distribution: the degree distribution is defined as the probability dis-
tribution of all the degrees over a graph.

The distribution of clustering coefficient: the clustering coefficient of a vertex
is defined as the ratio of existing edges between its neighbor vertices. Suppose
a vertex v connects to k other vertices, where k > 1. The clustering coefficient
of v is computed as m

k(k−1)/2 , where m is the number of existing edges between

these k vertices. The distribution of clustering coefficient [14] is defined as the
distribution of average clustering coefficient over all vertices of the same degree.

The distribution of component size: a graph may consist of many disjoint
components. The distribution of component size is defined as the distribution
of the numbers of components over all the sizes. A relevant property is the
graphlet distribution or the distribution of network motifs [13,19]. A graphlet is
a connected induced subgraph usually having 3, 4 or 5 vertices. The graphlet
distribution is defined as the probability distribution of all the graphlets over a
graph.

Hop-plot: P (h) is defined as the number of reachable pairs of vertices at
distance less than or equal to h. The hop-plot is the distribution of the numbers
of vertex pairs over all the distances less than or equal to h [14].

All the properties are computed using the Snap [2] library.

336 X. Lu, T.Q. Phan, and S. Bressan

Kolmogorov-Smirnov D-statistic. We select the Kolmogorov-Smirnov D-
statistic to compute the distance measure ΔG,σ(g) between the sample graph g
and the original graph G on property σ, following the conventions in [12,14]. The
distribution (normalized) of a property of the sample graph and that of the orig-
inal graph usually have different sizes. The KS D-statistic is appropriate for this
distance measure since it can measure the difference between two distributions
of different sizes.

Given distribution D = [D1, D2, . . . , DnD] and d = [d1, d2, . . . , dnd
], the KS

D-statistic is computed as follows. We first define a range of random variables
x = [x1, x2, . . . , xk]2. Then we compute the cumulative distribution function FD

and Fd for D and d over x, respectively, as Equation 1,

FD(i) =
1

nD

nD∑
j=1

Ij , i = 1, 2, . . . , k, (1)

where Ij = 1 if Dj ≤ xi and Ij = 0 otherwise.
Then the KS D- statistic is computed as,

D = sup
i

|FD(i) − Fd(i)|, i = 1, 2, . . . , k. (2)

A smaller value of KS D-statistic means the two distributions in comparison
are more similar to each other. Therefore, in our scenario smaller values of KS
D-statistic mean higher quality of sample graphs.

Datasets. We generate Barabási-Albert random graphs [4] and Forest Fire
random graphs [15] for the synthetic datasets. Both of the graph models simu-
late the evolution of real graphs. Barabási-Albert random graphs simulate the
preferential attachment phenomenon in real graphs. Forest Fire random graphs
reproduce the behavior of densification power laws and shrinking diameters in
real graph evolution.

We generate 10 random graphs with different densities for each model. In the
Barabási-Albert model, the density of the graph is determined by the parameter
d, which is the number of edges each new vertex generates. Higher values of
d lead to the generation of denser graphs. We set d = 1, 2, . . . , 10 for the ten
graphs, respectively. In the Forest Fire model, the density is relevant to both the
forward burning probability p and the backward burning probability pb. We set
pb = 0.3 and vary the value of p from 0.31 to 0.4 with increments of 0.01. Higher
values of p lead to the generation of denser graphs. In order to generate multiple
disjoint components in the Barabási-Albert graphs, we randomly form a new
small component with a fixed probability at the arrival of each new vertex. In the
Forest Fire graphs, we generate multiple components by setting the probability of
a new vertex being an orphan to be 0.1. However, we discard the orphan vertices

2 In our experimental study, we select the random variables varying in the range {0, 1}
with increments 0.01.

Incremental Algorithms for Sampling Dynamic Graphs 337

and keep only the vertices having degree at least 1. Each Barabási-Albert graph
has 10, 000 vertices and Each Forest Fire graph has 100, 000 vertices.

The real dataset is a Facebook friendship graph. The graph contains a five-
year friendship list within 15 schools in USA, with complete time-stamp for the
confirmation of each pair of friends. The graph has 331, 667 vertices (users) and
1, 391, 866 edges (pairs of friends).

Experimental Setup. We implement RW, FF, MGS, PIES, IMS and SMS
using C++. We run all the algorithms on each of the graphs described above. We
evaluate their ability of sampling each of the selected properties separately. For
each Barabási-Albert graph, we generate a sample graph of size 200 whenever
the graph size increases by 1, 000. For each Forest Fire graph, we generate a
sample graph of size 1, 000 whenever the graph size increases by 10, 000. For
the Facebook friendship graph, we generate ten sample graphs of size 1, 000
whenever the graph size increases by 30, 000. FF, RW and MGS always generate
the sample graphs from scratch, whereas IMS and SMS incrementally generate
the updated sample graphs based on the old sample graphs in previous sampling
stage. PIES updates sample graphs whenever a new edge is added to the original
graph. However, we evaluate the sample graphs only in the stages described
above. We compute the average distance measure between the sample graphs
and the current original graphs for each graph property. We compute the average
execution time for generating the sample graphs of all four properties for each
graph model. All the experiments are run on a cluster of 54 nodes, each of which
has a 2.4GHz 16-core CPU and 24 GB memory.

Effectiveness. Figure 2, 3 and 4 show the average results of preserving de-
gree distribution of the Barabási-Albert graphs, the Forest Fire graphs and the
Facebook friendship graph, respectively.

We observe that the IMS and SMS algorithms perform very similar to the
MGS algorithm and perform much better than the RW and FF algorithms. RW
and FF start from a random vertex and tend to sample subgraphs in a local
area around the vertex. Therefore they are not able to capture the global degree
distribution of the original graph. On the contrary, IMS can find the optimal
sample graph induced by the selected vertices of G′

temp that preserves the degree
distribution of the original graph G′, and SMS can find the optimal subgraph
induced by the updated vertices that preserves the degree distribution of the
updated graph. PIES performs better than RW and FF as it samples globally
from the entire original graph. However, PIES does not perform as good as IMS
and SMS since it has no theoretical guarantee on sample quality. IMS and SMS
perform slightly worse than MGS since they do not search the entire space of
the subgraphs of G′. On the other hand, the IMS performs slightly better than
SMS. This is because SMS samples local optimal subgraphs from the updated
graph and introduces extra error in the merging phase.

Figure 5, 6, and 7 show the average results of preserving the distribution of
clustering coefficient of the Barabási-Albert graphs, the Forest Fire graphs and
the Facebook friendship graph, respectively.

338 X. Lu, T.Q. Phan, and S. Bressan

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices

RW
FF
MGS
PIES
IMS
SMS

Fig. 2. Degree distribution:
Barabási-Albert graphs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10 20 30 40 50 60 70 80 90 100

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 3. Degree distribution:
Forest Fire graphs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

30 60 90 120 150 180 210 240 270 300

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 4. Degree distribution:
Facebook friendship graph

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices

RW
FF
MGS
PIES
IMS
SMS

Fig. 5. Clustering co-
efficient distribution:
Barabási-Albert graphs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10 20 30 40 50 60 70 80 90 100

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 6. Clustering coeffi-
cient distribution: Forest
Fire graphs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

30 60 90 120 150 180 210 240 270 300

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 7. Clustering co-
efficient distribution:
Facebook friendship graph

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices

RW
FF
MGS
PIES
IMS
SMS

Fig. 8. Component size dis-
tribution: Barabási-Albert
graphs

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 10 20 30 40 50 60 70 80 90 100

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 9. Component size
distribution: Forest Fire
graphs

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

30 60 90 120 150 180 210 240 270 300

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 10. Component size
distribution: Facebook
friendship graph

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices

RW
FF
MGS
PIES
IMS
SMS

Fig. 11. Hop-plot: Barabási-
Albert graphs

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 12. Hop-plot: Forest
Fire graphs

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

30 60 90 120 150 180 210 240 270 300

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 13. Hop-plot: Face-
book friendship graph

Incremental Algorithms for Sampling Dynamic Graphs 339

We observe the similar results to those of preserving degree distribution. MGS,
IMS and SMS perform better than RW, FF and PIES. IMS performs slightly
better than SMS. Both IMS and SMS perform very close to MGS.

Figure 8, 9, and 10 show the average results of preserving the distribution of
component size of the Barabási-Albert graphs, the Forest Fire graphs and the
Facebook friendship graph, respectively.

We observe that RW, FF, MGS, IMS and SMS perform close to each other on
the Barabási-Albert graphs and the Facebook friendship graph. This is because
there is a giant component with 99% vertices in each Barabási-Albert graph and
in the Facebook friendship graph. The distribution of component size is domi-
nated by this giant component. Since RW and FF tend to generate a connected
subgraph, the corresponding distribution of component size is similar to the dis-
tribution of graphs with a giant component. On the other hand, the Forest Fire
graphs have several large components. The distributions of component size of
the Forest Fire graphs are much flatter. Therefore we observe that IMS and SMS
perform much better than RW and FF on the Forest Fire graphs. PIES always
performs the worst.

Figure 11, 12, and 13 show the average results of preserving hop-plot of the
Barabási-Albert graphs, the Forest Fire graphs and the Facebook friendship
graph, respectively.

We observe that IMS outperforms the other five algorithms. By checking the
result of each graph, we find that MGS and SMS do not perform well on sparse
graphs. MGS may get stuck in local optimal because for a sparse original graph
new subgraphs after replacement usually do not have change on the paths. For
SMS, in addition to the former reason, the merging phase may introduce more
errors on hop-plot for sparser graphs, especially when there form connections
between the two parts of the sample graphs.

Overall, we show that MGS, IMS and SMS perform better than RW, FF and
PIES on preserving the four properties. IMS and SMS are as effective as MGS
and IMS performs better than SMS in general. Among the four properties, we
observe that SMS performs not so well on preserving the hop-plot property. The
possible explanation is that hop-plot is a global property of the original graph,
whereas SMS generates the local optimal sample graph from the updated graph.
The merging phase also introduces extra error.

Efficiency. Figure 14, 15 and 16 show the average execution time of sampling
the four graph properties for the Barabási-Albert graphs, the Forest Fire graphs
and the Facebook friendship graph, respectively.

We observe that RW, FF and PIES are faster than the other three algorithms
as expected. Our IMS and SMS algorithms are much faster than the MGS algo-
rithm, and SMS is faster than IMS. This is as expected because IMS and SMS
require fewer random walk steps than MGS does, and SMS computes the graph
properties and distance measure of subgraphs of smaller sizes than IMS does.

The difference between the execution time of MGS and IMS and that between
MGS and SMS increases very quickly as the original graph grows. This is because
the total number of vertices of the original graph increases much faster than the

340 X. Lu, T.Q. Phan, and S. Bressan

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Number of Vertices

RW
FF
MGS
PIES
IMS
SMS

Fig. 14. Execution Time:
Barabási-Albert graphs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

d)

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 15. Execution Time:
Forest Fire graphs

 0

 10000

 20000

 30000

 40000

 50000

 60000

30 60 90 120 150 180 210 240 270 300

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

d)

Number of Vertices (in thousand)

RW
FF
MGS
PIES
IMS
SMS

Fig. 16. Execution Time:
Facebook friendship graphs

number of updated vertices does as the original graph grows. Therefore the
number of random walk steps required by MGS increases much faster than that
required by IMS and SMS.

5 Conclusion

We have presented two incremental graph sampling algorithms preserving the
distributions of degree, of clustering coefficient, of component size and of hop-
plot. The rationale of the algorithms is to replace a fraction of vertices in the
old sample with newly updated vertices. The two algorithms differ in their way
of selecting the vertices to be replaced and updated in the sample graph.

We analytically and empirically evaluated the performance of the proposed al-
gorithms: Incremental Metropolis Sampling and Sample-Merging Sampling. We
compared their performance with that of baseline algorithms: Random Walk,
Forest Fire, Metropolis Graph Sampling. The experiment results on both syn-
thetic and real graphs showed that our proposed algorithms realize a compromise
between effectiveness and efficiency.

Metropolis Graph Sampling is the most effective yet slowest of the three base-
line algorithms. Our algorithms are as effective as Metropolis Graph Sampling
and significantly more efficient than Metropolis Graph Sampling. Although very
efficient, Random Walk and Forest Fire prove not effective. Our algorithms are
less efficient that than Random Walk and Forest Fire but significantly more
effective. Of the two algorithms, Incremental Metropolis Sampling is slightly
more effective than Sample-Merging Sampling, while Sample-Merging Sampling
is more efficient than Incremental Metropolis Sampling.

We have provided practical algorithms for the incremental sampling of the
large dynamic graphs being created in real life such as coauthor network, social
network, World Wide Web and so on.

Acknowledgements. We thank Prof. Edoardo Airoldi (airoldi@fas.harvard.edu)
for providing the Facebook friendship dataset.

References

1. http://blog.twitter.com/2011/03/numbers.html

2. http://snap.stanford.edu

http://blog.twitter.com/2011/03/numbers.html
http://snap.stanford.edu

Incremental Algorithms for Sampling Dynamic Graphs 341

3. Ahmed, N.K., Neville, J., Kompella, R.: Space-efficient sampling from social ac-
tivity streams. In: BigMine, pp. 53–60 (2012)

4. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Sci-
ence 286(5439), 509–512 (1999)

5. Berg, B.A.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis:
With Web-based Fortran Code. World Scientific Publishing Company (2004)

6. Desikan, P.K., Pathak, N., Srivastava, J., Kumar, V.: Incremental page rank com-
putation on evolving graphs. In: WWW (Special Interest Tracks and Posters), pp.
1094–1095 (2005)

7. Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern
matching. In: SIGMOD Conference, pp. 925–936 (2011)

8. Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calcula-
tion of posterior moments. In: Bayesian Statistics, pp. 169–193 (1992)

9. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining re-
sults via swap randomization. In: KDD, pp. 167–176 (2006)

10. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: A case
study of unbiased sampling of osns. In: INFOCOM, pp. 2498–2506 (2010)

11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

12. Hübler, C., Kriegel, H.-P., Borgwardt, K.M., Ghahramani, Z.: Metropolis algo-
rithms for representative subgraph sampling. In: ICDM, pp. 283–292 (2008)

13. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformat-
ics 20(11), 1746–1758 (2004)

14. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636
(2006)

15. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. TKDD 1(1) (2007)

16. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random.
In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212.
Springer, Heidelberg (2012)

17. Maiya, A.S., Berger-Wolf, T.Y.: Sampling community structure. In: WWW, pp.
701–710 (2010)

18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics 21(6), 1087–1092 (1953)

19. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
Motifs: Simple Building Blocks of Complex Networks. Science 298(5594), 824–827
(2002)

20. Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with multidimen-
sional random walks. In: Internet Measurement Conference, pp. 390–403 (2010)

21. Roditty, L., Zwick, U.: On dynamic shortest paths problems. Algorithmica 61(2),
389–401 (2011)

22. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain
Approach (Progress in Theoretical Computer Science). Birkhäuser, Boston (1993)

CoDS: A Representative Sampling Method

for Relational Databases

Teodora Sandra Buda1, Thomas Cerqueus1, John Murphy1,
and Morten Kristiansen2

1 Lero, Performance Engineering Lab
School of Computer Science and Informatics, University College Dublin
teodora.buda@ucdconnect.ie, {thomas.cerqueus,j.murphy}@ucd.ie
2 IBM Collaboration Solutions, IBM Software Group, Dublin, Ireland

morten kristiansen@ie.ibm.com

Abstract. Database sampling has become a popular approach to han-
dle large amounts of data in a wide range of application areas such as
data mining or approximate query evaluation. Using database samples is
a potential solution when using the entire database is not cost-effective,
and a balance between the accuracy of the results and the computational
cost of the process applied on the large data set is preferred. Existing
sampling approaches are either limited to specific application areas, to
single table databases, or to random sampling. In this paper, we pro-
pose CoDS: a novel sampling approach targeting relational databases
that ensures that the sample database follows the same distribution for
specific fields as the original database. In particular it aims to maintain
the distribution between tables. We evaluate the performance of our al-
gorithm by measuring the representativeness of the sample with respect
to the original database. We compare our approach with two existing
solutions, and we show that our method performs faster and produces
better results in terms of representativeness.

Keywords: Relational database, Representative database sampling.

1 Introduction

Nowadays applications are generally faced with the challenge of handling large
number of users that produce very large amounts of data up to terabytes in size.
The storage space, administration overhead of managing large datasets and the
analysis of this data is a real challenge in different fields. For instance, in data
mining, a balance between the accuracy of the results and the computational
cost of the analysis is generally preferred to overcome this challenge. Moreover,
in software validation, the operational data available for a system under devel-
opment could serve as a realistic testing environment. However these databases
consist of large amount of data, which is computationally costly to analyze.

Database sampling is a potential solution to this problem: a smaller database
can be used instead of the original one. Olken’s major contribution to random

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 342–356, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

CoDS: A Representative Sampling Method for Relational Databases 343

sampling from large databases proves sampling to be a powerful technique [14].
Database sampling methods aim to provide databases that (i) are smaller in size,
(ii) are consistent with the original database (e.g. conformance of the schema),
(iii) contain data from the original database, (iv) are representative of the orig-
inal database. The last criteria is crucial because the accuracy of the results
of the following analysis to be performed on the sample is expected to be sig-
nificantly higher if the sample is representative of the original database. For
instance, a representative sample of the production environment would deter-
mine the sample contain realistic test data, encompassing a variety of scenarios
the user created. In particular, in functional testing, a small realistic sample of
the production environment would suffice to test the core functionality of the
system under development, while maintaining the accuracy of the results. The
problem raised in this work is to define a method that produces a representative
database sample targeting relational databases.

Existing databases sampling methods involve random sampling [6], target
single-table databases [11], or they are specific to an application area [10,4].
For instance, in [13], the reader is presented a representative sampling approach
that aims to handle scalability issues of processing large graphs. However, most
of today’s structured data is stored in relational databases, consisting of multiple
tables linked through various constraints. Single table sampling methods applied
on relational databases produce an inconsistent sample database with regards
to the referential integrity. Moreover, we expect that random samples provide
poor accuracy in the results of the analysis to be performed on the large data
set (e.g. testing purposes, data mining methods, approximate query evaluation).
For instance a random sample of the production environment could sample only
one test case and not detect high priority errors of the system.

In this paper, we propose the CoDS system: a novel approach for database
sampling, targeting relational databases, with the purpose of creating a smaller
representative sample, that respects the referential integrity constraints. We con-
sider that a sample is representative if it follows the same distribution for specific
fields. The fields considered by CoDS are the foreign key constraints. A foreign
key constraint in a database is used to create and enforce a link between the data
in two tables. Thus, these constraints represent invaluable inputs for our system
to depict the relationships between data and produce a representative sample.
If the sample database follows the same distribution as the original database for
these fields, it is feasible to expect that the results of the following analysis to be
performed on the sample will produce the same results as the ones performed on
the original database. The sampling mechanism proposed is independent of the
application area and will result in producing a consistent representative sample.

The remainder of this paper is organized as follows: Section 2 discusses re-
lated work and describes various application areas in which representative sample
database may be of interest. Section 3 describes the main contribution of this
work: the representative database sampling system. Sections 4 describe the ex-
perimental evaluation of CoDS, and its comparison with previous approaches.
Section 5 concludes the paper.

344 T.S. Buda et al.

2 Related Work

Several database sampling methods have been proposed in specific application
areas proving sampling to be a useful and powerful technique. However, most of
them are designed for specific application areas: software testing, data mining,
query approximation. Before presenting methods built for these different areas,
we present general approaches.

General approaches. The database sampling approach presented in [3] is ori-
ented towards relational databases focusing on the advantage of using prototype
databases populated with operational data. Data items that follow a set of in-
tegrity constraints (e.g. foreign-key constraints, functional dependencies, domain
constraints) are randomly selected from the original database, so that the result-
ing sample database is consistent with the original database. Furthermore, there
are a few commercial applications that support sampling from databases. For in-
stance, IBM Optim1 is used for managing data within many database instances.
Its component, Move, can be used for sampling by using the option to select
every nth row of each table from the original database. Optim ensures that the
referential integrity is respected by the sample database. As a recognized value
of database sampling, Oracle DBMS supports the possibility to query a sample
of a given table instead of the whole table by using the Sample statement2.

Software testing. Analyzing the production environment, its constraints, and
generating relevant testing data are just a few of the challenges encountered dur-
ing the testing process. Existing methods for populating the testing environment
commonly generate synthetic data values or use some type of random distribu-
tion to select the data that must be included in the resulting database [18,15].
In [20] the reader is presented with a privacy-preserving approach that uses the
operational data available for testing purposes focusing on the importance of
the representativeness of the data as it can increase the probability of detecting
crucial faults of the system. Moreover, the testing environment would encompass
scenarios created by the user, useful for testing the core functionality of the sys-
tem. However, the production environment generally consists of large amounts
of data. Database sampling is a potential solution to overcome this challenge.

Data mining. Various sampling approaches have been proposed in the data min-
ing community, proving that sampling is a powerful technique for achieving a
balance between the computational cost of performing data mining on a very
large population and the accuracy of the results [17,12]. However, the approaches
devised in this community are generally oriented towards the data mining algo-
rithm used on the sample [4,19,16] and most of the standard methods for data
mining are built on the assumption that data is stored in single-table databases.

1 http://www-01.ibm.com/software/data/data-management/optim-solutions/
2 http://docs.oracle.com/cd/B19306 01/server.102/b14200/statements

10002.htm

http://www-01.ibm.com/software/data/data-management/optim-solutions/
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10002.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10002.htm

CoDS: A Representative Sampling Method for Relational Databases 345

In [11], the authors propose a static sampling approach which uses the distribu-
tion of the sample data as an evaluation criterion to decide whether the sample
reflects the large dataset. However, it is limited to single-table datasets and
to univariate analysis. Some recent work in the data mining community [8,21]
avoided this shortcoming and target relational databases. In [21], authors present
a sampling algorithm for relational databases that focuses on improving the scal-
ability and accuracy of multi-relational classification methods.

Approximate Query Evaluation. Numerous papers proposed random sampling
for approximate query answering [2,9], and statistics estimation for query size
result [5], allowing approximate but faster answers to queries. A more recent
approach that extended the table-level sampling to relational database sampling
is presented in [7]. The authors propose a sampling mechanism called Linked
Bernoulli Synopses based on Join Synopses [1] aiming to provide fast approx-
imate query answers for join queries over multiple tables. Their solution imply
maintaining the foreign key integrity of the synopses. Both approaches are prob-
abilistic and require the processing of each tuple in a database. In the case of
JS, each tuple from the set of tables is sampled with a probability equal to the
sampling rate. After this insertion of tuples in the sample database, JS ensures
the referential integrity of the sample database remains intact by visiting all the
tables, starting with the root, and adding the missing referenced tuples in the
sample database. LBS is run only one time over the entire database. The decision
of whether or not to include the row in the sample is different in LBS. LBS re-
quires the retrieval of every tuple from each table and calculates the probability
of a tuple t, being inserted in the sample database based on the probabilities of
the tuples referencing tuple t to be inserted in the sample. The computation of
this probability is described in detail in [7]. In the case that one of referencing
tuples has already been included in the sample, the tuple under analysis is also
included in the sample, thus avoiding the referential integrity to be broken.

3 CoDS: A Representative Sampling System

The CoDS3 system proposes a method to produce a representative α-sample
of an original database, where α represents the sampling rate for the original
database and is given as an input by the user of the system. The objective
is to maintain the distribution between the tables of a database to ensure the
representativeness property, while maintaining the referential integrity of the
data. The system targets relational databases, in third normal form. We assume
that the schema of the original database forms a connected graph. CoDS aims to
analyze and preserve the distributions between a starting table and the rest of
the tables of the database, through various joins when needed. CoDs computes
a set of identifiers that need to be sampled from the starting table to preserve
these distributions, along with a representative error measure when a perfect
representative sample could not be created. CoDS is composed of four phases:

3 Chains of Dependencies-based Sampling.

346 T.S. Buda et al.

Fig. 1. The Financial database schema

– The system identifies the starting table (section 3.2).
– The system detects the relationships of the starting table with the rest of

the tables of the database by following the foreign key constraints from the
metadata. Then it generates the scatter plots associated to these relation-
ships (section 3.3).

– The system analyzes the generated scatter plots between the starting table
and the rest of the tables in order to compute a set of identifiers of the
starting table that need to be sampled to preserve the distribution of these
relations (section 3.4).

– Finally, the system proceeds in sampling the tuples associated with the set
of identifiers of the starting table computed in the previous step, and to
sampling all the related tuples from the rest of the tables (section 3.5).

Before presenting each phase in detail, we introduce the formal model and defi-
nitions used in the remaining of the document.

3.1 Model and Definitions

Relational database. A relational database is a set of n tables T = {t1, ..., tn}.
Each table ti of the database is composed of a set of attributes Ai = {a1, ..., am}.
The set of attributes that allow to uniquely identify a tuple in table ti is called the
primary key noted PKi. A foreign key is a set of attributes that refers to another
table’s attributes. For instance, in Fig. 1, an example of such foreign key is
client id, declared in table Disposition. A table may contains several foreign keys.
We denote by FKj

i the set of attributes of table ti that reference table tj . When a

CoDS: A Representative Sampling Method for Relational Databases 347

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

di

sp
os

iti
on

district

Fig. 2. Scatter plot associated to chain 〈District, Client, Disposition〉

table ti defines a foreign key constraint to another table tj , we say that ti directly
references tj and we denote it by: ti → tj . Symmetrically, tj is directly referenced
by ti, and denote it by tj ← ti.We refer by children of table t by children(t)
to the set of tables that t references: children(t) = {ti ∈ T : t → ti}. We refer
by desc(t) to the set of all the descendants of t:

desc(t) = children(t) ∪
⋃

ti∈children(t)

desc(ti)

Similarly, we refer to parents of t by: parents(t) = {ti ∈ T : t ← ti}. We define
the set of related tables of ti as follows: RT (t) = parents(t) ∪ children(t). We
denote by O(t) and S(t) the tuples of t in the original and the sample database.

Chain of dependencies. A chain of dependencies is a sequence of tables 〈t1, . . . , tk〉
such that ∀i ∈ [1, k − 1], ti ∈ RT (ti+1) ∧ ∀i, j ∈ [1, k], i �= j ⇒ ti �= tj . An
example of a chain of dependencies in Fig. 1 is 〈District, Client,Disposition〉.
The set of all chains of dependencies of t (i.e. t1=t) is denoted by Ch(t).

Scatter plot and data point. Given a chain 〈t1, . . . , tk〉 we consider the scatter
plot associated to this chain between table t1 and table tk. We denote by Sp(t)
the set of all scatter plots associated to Ch(t). A scatter plot is composed of a set
of points corresponding to that plot. Each point of a scatter plot is called a data
point. A data point situated at the coordinate (x, y) means that: (i) if t1 ← t2: x
tuples of table t1 are indirectly referenced by y tuples of table tk, (ii) if t1 → t2:
x tuples of table tk are indirectly referenced by y tuples of table t1. For instance,
for the scatter plot of chain 〈District, Client,Disposition〉 presented in figure 2,
we can see that only one district is indirectly referenced by 663 dispositions, or
that 7 districts are indirectly referenced by 54 dispositions. Each data point is
uniquely identified by its y value, and contains identifiers of table t1 (i.e. contains
a set of values of PK1) from the original database. For instance, in Fig. 2, the

348 T.S. Buda et al.

data point with y = 663 contains the identifier of the single district that is
indirectly referenced by 663 dispositions.

3.2 Starting Table Selection

The objective of this phase is to select a starting table for the sampling, which we
denote by t. In CoDS, a leaf table (i.e. a table that has no children) is chosen as
starting table. If the database has more than one leaf tables the system chooses
the one with the maximum number of tuples. The reason for this is to avoid
choosing a leaf with few tuples, as this would critically impact the sampling
method by having very little influence on the tuples selected from the related ta-
bles, and thus on the representativeness of the sample database. CoDS selects a
leaf table as a starting table in order to reduce the computational cost of analyz-
ing the chains generated by using a bottom-up approach. We show in section 3.3
that the computational cost of analyzing a chain using a bottom-up approach is
lower in contrast with a top-down approach. Moreover, we expect that using a
leaf table produces less errors related to the sample size and representativeness.

3.3 Generation of Chains

In the second phase, we aim to discover the relationships between the start-
ing table and the rest of the tables of the database, generate the set of chains
of dependencies of the starting table and construct their associated scatter
plots. These scatter plots will be used for the selection of identifiers of the
starting table. The system generates Ch(t) by following all the possible paths
through the arrows between the tables, starting with t. Note that each ta-
ble is visited only once in this representation and the shortest path is pre-
ferred. If two chains with equal tk have the same length but are composed
of different tables, both chains are considered. Let us consider the relational
database presented in Fig. 1. CoDS generates the following chains of depen-
dencies for t = District: Ch(District) = {〈District, Client〉, 〈District, Client,
Disposition〉, 〈District, Client,Disposition, Card〉, 〈District, Account〉,
〈District, Account,Disposition〉, 〈District, Account,Order〉, 〈District, Account,
T rans〉, 〈District, Account, Loan〉, 〈District, Account,Disposition, Card〉}.
For each chain of dependency discovered, ch = 〈t1, t2, . . . , tk〉, a scatter plot is
generated with the following properties:
If t1 → t2: The scatter plot is interpreted as x tuples of table tk are indi-
rectly referenced by y tuples of table t1 (i.e. the x-axis corresponds to the tk,
while the y-axis corresponds to t1). The reason for this is that t1 is directly or
indirectly referencing each table in the chain. Thus, table t1 is in relation 1:1
or 1:N with table t2 and indirectly with all tables from ch. In this case, if the
x-axis corresponds to t1, the scatter plot would be formed of a single point, cor-
responding to all of the identifiers of t1. Each scatter plot is composed of a set of
data points, which are composed of the set of identifiers of table t1. In order to
compute these identifiers in this case, the following query is run by the system:
SELECT tk.PKk, t1.PK1 FROM t1 �� . . . �� tk. For each value of tk.PKk, CoDS

CoDS: A Representative Sampling Method for Relational Databases 349

will count the number of distinct values for t1.PK1 from the previous query and
this will determine the values for y. For each value of y, CoDS will count how
many identifiers of tk.PKk (i.e. x value) are associated with y distinct tuples of
t1. A nested SQL query in this case would result in losing information about the
identifiers of each data point, or would require an extra query for each value on
the y-axis. In order to avoid multiple queries, CoDS constructs the set of data
points from the above query. The method constructs the data point with the
values of t1.PK1. The data point will appear at coordinates (x, y).
If t1 ← t2: The scatter plot is interpreted as x tuples of table t1 are indirectly
referenced by y tuples of table tk (i.e. the x-axis will correspond to the t1, while
the y-axis will correspond to tk). The reason for this is that each table in the
chain is directly or indirectly referencing t1. Symmetrically with the previous
case, if we considered the axes inverted, the scatter plot would consist of a single
point. The data points associated to this scatter plot are computed using the
following query:

SELECT t1.PK1, COUNT(DISTINCT tk.PKk) AS y FROM t1 �� . . . �� tk
GROUP BY t1.PK1

The query is distinct in this case as the grouping of values of the y-axis is per-
formed by the identifiers of t1. Thus, after this query is performed, CoDS con-
structs for each value of y the set of identifiers of t1 associated with y number of
tuples of table tk and a data point dp composed of the identifiers discovered with
coordinates (‖dp‖, y). In this case, we also do not use a nested query in order to be
able to instantiate each data point with the associated values for t1.PK1 without
using additional queries. For instance for ch = 〈District, Client,Disposition〉
the following query is constructed:

SELECT District.district id,COUNT(DISTINCT Disposition.disp id) AS y

FROM District �� Client �� Disposition GROUP BY District.district id

The system proceeds in counting how many districts (i.e. x value) have the same
y number of dispositions associated. For each value of y it then constructs the
data point with the associated values of district id. Each unique data point
will appear at the computed coordinates (x, y) on the scatter plot associated.
The scatter plot is presented in Fig. 2. Finally, we observe that a bottom-up
approach will determine the processing of smaller results for the queries used
and will require less internal processing of data by CoDS, delegating this task
to the database management system.

3.4 Identification of Tuples to Sample

The third phase of the system consists of the selection of identifiers from the
starting table to sample so that the size of the starting table will be α · ‖O(t)‖.
The output of this phase is a set of identifiers from the starting table that are
required to be included in the sample for preserving the distribution along the
discovered chains. We refer to this set of identifiers to sample with IdS . The

350 T.S. Buda et al.

input of this phase is a set of chains of dependencies generated previously by
the system, with their associated scatter plots and data points. A key point is
identifying data which has the same characteristics across all the scatter plots,
as they represent the same scenario. As data points consist of a set of identifiers
with the same characteristic on the y and x axis, CoDS considers each data point
as a group of identifiers from the starting table with the same characteristics.
However, as data points are distributed across multiple scatter plots, a set of
identifiers grouped in one scatter plot might be distributed in another. The
objective is to produce an α-sample of each of these data points. The current
number of identifiers of a data point dp represents the number of identifiers of
t that have been included in IdS . It is calculated using the following formula:

CurrentNo(dp) = ‖IdS ∩ dp‖

The expected number of tuples of data point dp represents the number of iden-
tifiers dp should contain in the sample database. It is defined as:

ExpectedNo(dp) = α · ‖dp‖

The objective of CoDS is to meet the following condition:

∀dp ∈ ∪sp∈Sp(t�)sp : CurrentNo(dp) = ExpectedNo(dp)

It is not always feasible that all data points in all scatter plots verify this con-
dition. The system proceeds in checking for each data point dp of all scatter
plots whether this condition is met or not. While the latter is true the system
calls balance(dp). In order to avoid an infinite loop, the maximum number of
iterations for calling balance(dp) is: �ExpectedNo(dp)−CurrentNo(dp)�. The
function balance represents the core functionality of the sampling algorithm.
The function is presented in detail in algorithm 1, where ‖dp‖ represents the
number of identifiers that the data point dp contains. In order to decide which
identifier should be added to a data point, the system computes for each data
point dp the set of related data points, RDP(dp) by intersecting dp with all the
data points from all the rest of the generated scatter plots:

RDP (dp) = {dp′ ∈ ∪sp′∈Sp(t�)\spsp
′ : dp′ ∩ dp �= ∅} (1)

This information is used to calculate the impact factor of an identifier id ∈ dp:

IF (id) =
∑

dp′∈RDP (dp)

CurrentNo(dp′)
ExpectedNo(dp′)

The impact factor suggests how much impact adding an identifier will have.
Adding an identifier with low impact factor will not trigger major differences
between the current number and the expected number of any of the related data
points, facilitating a balanced insertion. Situations when no identifier is found to
insert in IdS (i.e. as this would disrupt the distribution with the current number

CoDS: A Representative Sampling Method for Relational Databases 351

of a related data point higher than the expected number) are best avoided using
this strategy.

After all data points are balanced by CoDS, if ‖S(t)‖ �= α · ‖O(t)‖, the
system finally checks for each value of PK in O(t) whether it can be added to
IdS . The reason for this is to try to fill data points that have the current number
1, and expected number 0 or 1 as these are hardly influenced by balance(dp).

Algorithm 1. balance(dp)

1 if CurrentNo(dp) <ExpectedNo(dp) then
2 c ← 0;
3 RDP (dp) ← computeRDP (dp) ; // see equation (1).
4 while c < ‖dp‖ do
5 // Retrieve identifier with the c-th smallest impact factor

6 id ← dp.getIdNthSmallestIF(c);
7 IdS ← IdS ∪ {id};
8 // Checking whether adding id disrupts any scatter plot

9 if ∃dp′ ∈ RDP (dp): CurrentNo(dp′) > �ExpectedNo(dp′)� then
10 IdS ← IdS \ {id};
11 else break;
12 c++ ;

3.5 Creation of the Database Sample

The final phase consists in creating and populating the tables in the sample
database. For each table of the original database, we create a new table in the
sample database following the same specifications (attributes, types, primary
key, foreign keys, etc.). After the insertion of the tuples corresponding to the
IdS of the t, fillRT(t) is called. This method ensures that the related tables
of t will be filled with referencing or referenced tuples of S(t). The algorithm
is presented in detail in algorithm 2 and it represents a bottom-up breadth-first
recursive approach. In this algorithm, isF illed(t) determines whether a table t
has already been filled, and filled(T) defines the set of tables of T that have
been filled: filled(T) = {ti ∈ T : isF illed(ti)}. Note that a table t with multi-
ple children is not filled until either all its children or all its children reachable
by the already filled tables have been filled. The reason for this is to avoid the
space overhead that might be triggered between the children of t. For instance,
in Fig. 1, children(Disposition) = {Account, Client}. Considering t = District,
filling table Account will trigger inserting tuples in table Disposition. Filling ta-
ble Disposition with tuples referencing existing tuples in Account might trigger
inserting tuples in Client to avoid missing references. This would trigger insert-
ing tuples in District to avoid missing references, and results in a cyclic insertion
flow that should be avoided. The function buildAndExecuteQuery(t1, T

′) (al-
gorithm 2, lines 3 and 8) is used to insert tuples in table t1 based on already the
inserted tuples in tables T ′ = {t2, t3, . . . , tj}. The function executes one of the
following queries:

352 T.S. Buda et al.

If t1 ← t2: INSERT INTO S.t1 (SELECT * FROM O.t1 WHERE PK1 IN

(SELECT FK1
2 FROM S.t2) AND ... AND PK1 IN (SELECT FK1

j FROM S.tj))

If t1 → t2: INSERT INTO S.t1 (SELECT * FROM O.t1 WHERE FK2
1 IN

(SELECT PK2 FROM S.t2) AND ... AND FKj
1 IN (SELECT PKj FROM S.tj))

Algorithm 2. fillRT(t)

1 Crt ← ∅;
2 for ti ∈ children(t): not isFilled(ti) do
3 buildAndExecuteQuery(ti,filled(parents(ti)));
4 Crt ← Crt ∪ {ti};
5 for ti ∈ Crt do fillRT(ti);
6 for ti ∈ parents(t) and not isFilled(ti) do
7 if (∀tj ∈ children(ti) : isF illed(tj) or � d ∈ desc(tj): isFilled(d)) then
8 buildAndExecuteQuery(ti,filled(children(ti)));

9 for ti ∈ parents(t): isFilled(ti) do fillRT(ti);

4 Evaluation

In this section we evaluate our method and compare it to the Join Synopses ap-
proach (JS) [1], and Linked Bernoulli Synopsis approach (LBS) [7]. Both methods
aim to construct a consistent database sample of a relational database and are
described in detail in section 2.

4.1 Environment and Dataset

JS, LBS, and CoDS were implemented against MySQL databases, using Java 1.6.
CoDS was deployed on a machine with quad-core 2.5GHz processor, 16GB RAM,
and 750GB Serial ATA Drive with 7200 rpm. Each experiment was run with
12GB maximum size of the memory allocation pool. We consider the Financial
database4 from PKDD’99 Challenge Discovery (see Fig. 1). It contains typical
bank data, such as its clients information, their accounts, transactions, loans, and
credit cards. The database contains 8 tables, and a total of 1, 079, 680 tuples.
The sizes of the tables range from 77 (table District) to 1, 056, 320 tuples (table
Trans). The average number of tuples per table is 134, 960.

4.2 Measures

Representativeness. In this work, we aim to produce a representative sample
of a relational database. In order to measure the accuracy of our approach, we
propose to measure the representativeness of a sample as follows. We evaluate
the sample database by comparing the distributions between consecutive linked

4 http://lisp.vse.cz/pkdd99/Challenge/berka.htm

http://lisp.vse.cz/pkdd99/Challenge/berka.htm

CoDS: A Representative Sampling Method for Relational Databases 353

tables in the graph representation of the database (e.g. in Fig. 1: District and
Account, Account and Order, Disposition and Card, ...) with their associated
distributions in the original database. The representativeness error of the rela-
tionship between two tables:

δ(t, t′) =
1

‖spt′t ‖
∑

dpt′
t ∈spt′

t

min

(|S − E!|
 E! ,

|S − �E�|
�E�

)

where ‖spt′t ‖ represents the number of data points in the scatter plot between
table t and table t′, S = CurrentNo(dpt

′
t), and E = ExpectedNo(dpt

′
t). The

average representativeness error for a sample database:

δ(T) =
1

‖T ‖
∑
t∈T

⎛⎝ 1

‖RT (t)‖
∑

t′∈RT (t)

δ(t, t′)

⎞⎠
Sample size error. When sampling a database O(T) with a sampling rate α, we
expect that each table will be reduced in size by α. As a consequence, we expect
the database size to be reduced by a factor α. An accurate sampling method
should produce a sample database S(T) with size α · ‖O(T)‖. We measure the
global sample size error of a sample with respect to a database as:

global sample size error(T) =
ST − α · OT

α ·OT

where OT =
∑

t∈T ‖O(t)‖ and ST =
∑

t∈T ‖S(t)‖.

Time. We measure the time needed to sample a database in seconds.

4.3 Results and Observations

In this section, we present the results of running CoDS, JS, and LBS with regards
to the metrics described in the previous section. The starting table identified by
CoDS is the leaf table District. A diamond pattern described in detail in [7]
is contained in the Financial database between the following tables: District,
Client, Account, Disposition (see Fig. 1). The proposed solutions for applying
LBS in this situation is to store the District table completely, or switch to JS
method. For comparison purposes and due to the small number of tuples of the
District table, we have chosen to store it completely when applying LBS.

Representativeness error. Figure 3 shows the results for the average representa-
tiveness error for the sample database. We observe that CoDS method performs
best for all values of α. The error varies between 23.2% and 8.9% for the LBS
method with an average of 29.9%, resulting in LBS being the less accurate
method for this measure. JS method is quite close to LBS, with the represen-
tative error varying between 23.5% and 7.2% and an average of 29.2%. CoDS
method is less sensible to the variation of α, with the error varying between 7%
and 5%. We observe that the CoDS method produces the most representative
sample, with an average error of 6.3%.

354 T.S. Buda et al.

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ep

re
se

nt
at

iv
en

es
s

er
ro

r
(%

)

Sample rate α

JS
LBS

CoDS

Fig. 3. Representativeness error for JS, LBS, and CoDs

-40

-20

 0

 20

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
lo

ba
l s

am
pl

e
si

ze
 e

rr
or

 (
%

)

Sample rate α

JS
LBS

CoDS

Fig. 4. Global sample size error

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
T

im
e

(s
)

Sample rate α

JS
LBS

CoDs

Fig. 5. Execution time

Sample size error. Figure 4 shows the results for the global sample size error.
The error can be negative in the case that not enough tuples have been inserted
in the sample database. We observe that the LBS technique produces the best
sample database with a global sample size error varying between 4.55% and 0.1%.
We notice that JS performs quite close to LBS with regards to this metric, with
the error varying between 4.96% and 0.1% for the JS method. CoDS method
generally samples less data than expected, with the global sample size error
varying between −23.3% and −18.3%. The worst case for all methods occurs
when α = 0.1 due to the fact that the sample size error is relative to the expected
sample size. Thus, for small values of alpha, a small variation between the sample
and its expected size determines higher values for the error. Moreover, the reason
why CoDS generally produces a sample database with less tuples than desired
is because the method is cautious and does not insert tuples that might disturb
the representativeness of the sample.

Execution time. Figure 5 shows the execution time for CoDS, JS, and LBS
methods. We observe that CoDS outperforms JS, and LBS producing a sample

CoDS: A Representative Sampling Method for Relational Databases 355

database 300-1000 times faster, for α ranging from 0.1 to 0.9. The execution
time in the case of JS and LBS is dependent on the processing of each tuple of
each table in the original database.

In conclusion, we observe that CoDS produces the best results in terms of
representativeness except for α = 0.9. We observe that CoDS is very close to the
best solution in terms of global sample size error and outperforms JS and LBS
method with regards to the execution time for all values of α by producing a
sample database between 300 and 1000 times faster.

5 Conclusion

In this paper, we proposed CoDS, a novel approach for relational database sam-
pling. CoDS aims to produce a representative consistent sample by taking into
consideration the dependencies between the data in a relational database. To
do so, CoDS analyses the distribution between a certain table (called the start-
ing table) and all the other tables. We conducted experiments on the Financial
database. Results show that CoDS outperforms the previous existing consistent
sampling approaches in terms of representativeness and also in terms of exe-
cution time. The sampling algorithm aims to significantly decrease the storage
space needed for the original database, while achieving a balance between the
computational cost of running the analysis on the original database and the
accuracy of the results by preserving the properties of the original database.

As future work, we plan to extend our method to take into account other
characteristics of the database. In particular we aim to consider the distribution
of attributes values in order to produce a sample that is realistic not only at the
table-level, but also at the attribute-level. We plan to study how to improve our
method’s accuracy in terms of sample size error, while maintaining the repre-
sentativeness of the sample. Last but not least, we plan to apply our approach
to populate testing environments. This work will be done in collaboration with
IBM. The objective is to significantly decrease the time it takes to populate the
testing environment, and demonstrate in a real situation that the representa-
tiveness of a sample allows to find more anomalies in the code in comparison
with random-based samples.

Acknowledgments. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre (www.lero.ie).

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for ap-
proximate query answering. In: International Conference on Management of Data
(SIGMOD), pp. 275–286 (1999)

2. Agarwal, S., Iyer, A.P., Panda, A., Madden, S., Mozafari, B., Stoica, I.: Blink and
it’s done: interactive queries on very large data. VLDB Endowment 5(12), 1902–
1905 (2012)

356 T.S. Buda et al.

3. Bisbal, J., Grimson, J., Bell, D.: A formal framework for database sampling. In-
formation and Software Technology 47(12), 819–828 (2005)

4. Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: Analysis of sampling techniques
for association rule mining. In: 12th ACM International Conference on Database
Theory (ICST), pp. 276–283 (2009)

5. Chaudhuri, S., Das, G., Srivastava, U.: Effective use of block-level sampling in
statistics estimation. In: ACM International Conference on Management of Data
(SIGMOD), pp. 287–298 (2004)

6. Ferragut, E., Laska, J.: Randomized sampling for large data applications of SVM.
In: 11th IEEE International Conference on Machine Learning and Applications
(ICMLA), vol. 1, pp. 350–355 (2012)

7. Gemulla, R., Rösch, P., Lehner, W.: Linked bernoulli synopses: Sampling along
foreign keys. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 6–23. Springer, Heidelberg (2008)

8. Goethals, B., Le Page, W., Mampaey, M.: Mining interesting sets and rules in
relational databases. In: 25th ACM Symposium on Applied Computing (SAC),
pp. 997–1001 (2010)

9. Haas, P.J., König, C.: A bi-level bernoulli scheme for database sampling. In: ACM
International Conference on Management of Data (SIGMOD), pp. 275–286 (2004)

10. Ioannidis, Y.E., Poosala, V.: Histogram-based approximation of set-valued query-
answers. In: 25th International Conference on Very Large Data Bases (VLDB), pp.
174–185 (1999)

11. John, G., Langley, P.: Static versus dynamic sampling for data mining. In: 2nd
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
367–370 (1996)

12. Köhler, H., Zhou, X., Sadiq, S., Shu, Y., Taylor, K.: Sampling dirty data for match-
ing attributes. In: ACM International Conference on Management of Data (SIG-
MOD), pp. 63–74 (2010)

13. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random.
In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212.
Springer, Heidelberg (2012)

14. Olken, F.: Random Sampling from Databases. PhD thesis, University of California
at Berkeley (1993)

15. Olston, C., Chopra, S., Srivastava, U.: Generating example data for dataflow pro-
grams. In: International Conference on Management of Data, pp. 245–256 (2009)

16. Palmer, C.R., Faloutsos, C.: Density biased sampling: an improved method for
data mining and clustering. In: ACM International Conference on Management of
Data (SIGMOD), pp. 82–92 (2000)

17. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: 5th ACM
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
23–32 (1999)

18. Taneja, K., Zhang, Y., Xie, T.: MODA: Automated test generation for database
applications via mock objects. In: IEEE/ACM International Conference on Auto-
mated Software Engineering (2010)

19. Toivonen, H.: Sampling large databases for association rules. In: 22nd International
Conference on Very Large Data Bases, VLDB (1996)

20. Wu, X., Wang, Y., Guo, S., Zheng, Y.: Privacy preserving database generation for
database application testing. Fundamenta Informaticae 78(4), 595–612 (2007)

21. Yin, X., Han, J., Yang, J., Yu, P.: Efficient classification across multiple database
relations: a crossmine approach. IEEE Transactions on Knowledge and Data En-
gineering (TKDE) 18(6), 770–783 (2006)

Publishing Trajectory with Differential Privacy:

A Priori vs. A Posteriori Sampling Mechanisms

Dongxu Shao1, Kaifeng Jiang2, Thomas Kister1, Stéphane Bressan2,
and Kian-Lee Tan1

1 School of Computing, National University of Singapore
{shaodx,thomas.kister,tankl}@comp.nus.edu.sg

2 Center for Maritime Studies, National University of Singapore
{cmsjk,steph}@nus.edu.sg

Abstract. It is now possible to collect and share trajectory data for any
ship in the world by various means such as satellite and VHF systems.
However, the publication of such data also creates new risks for privacy
breach with consequences on the security and liability of the stakehold-
ers. Thus, there is an urgent need to develop methods for preserving
the privacy of published trajectory data. In this paper, we propose and
comparatively investigate two mechanisms for the publication of the tra-
jectory of individual ships under differential privacy guarantees. Tradi-
tionally, privacy and differential privacy is achieved by perturbation of
the result or the data according to the sensitivity of the query. Our ap-
proach, instead, combines sampling and interpolation. We present and
compare two techniques in which we sample and interpolate (a priori)
and interpolate and sample (a posteriori), respectively. We show that
both techniques achieve a (0, δ) form of differential privacy. We ana-
lytically and empirically, with real ship trajectories, study the privacy
guarantee and utility of the methods.

1 Introduction

With the increasing pervasiveness of high quality location-acquisition technolo-
gies, geolocation becomes the bread and butter of many applications. In those
applications traditionally concerned with navigation such as shipping, new an-
alytical and operational opportunities are created. However, the possibility to
collect and share trajectory data for any ship in the world by various means
such as satellite and VHF systems creates new risks for privacy breach with
detrimental consequences on the security and liability of the stakeholders. More-
over, trajectory data generally contain sensitive information [1]. Any improper
publication of such sensitive data can lead to privacy breach. In fact, as every
position is potentially sensitive, it is critical to protect the privacy of each indi-
vidual position in the trajectory. This motivates us to investigate the problem
of publishing trajectory data with differential privacy.

ε-differential privacy was first introduced by Dwork in 2006 [2], and it is now
a widely accepted privacy standard. It requires that the output answer by the

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 357–365, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

358 D. Shao et al.

randomized mechanism to a query function be insensitive to any change of a
single element in the underlying database. The insensitivity is controlled by the
parameter ε. Hence it is very difficult for attackers to obtain truthful information
about any position by analyzing the published results.

There are mainly two methods for achieving differential privacy: Laplacian
mechanism [3] and Exponential mechanism [4]. The first one adds random noise
following the Laplace distribution to the true answers. The second one returns
a sampled result from the collection of all possible outputs. Both of the two
mechanisms perturb the results according to the sensitivity of the query. The
query in our consideration here is the trajectory itself. Its sensitivity is very
high because the velocity of a ship can be very fast. Hence it is very hard to get
good utility by using these two common methods. In order to obtain reasonable
utility, we adopt a relaxed version of ε-differential privacy.

Dwork et al. [5] proposed (ε, δ)-differential privacy, where δ bounds the prob-
ability that ε-differential privacy does not happen. In this paper, we propose
two mechanisms using combination of sampling and interpolation to preserve
(0, δ)-differential privacy. Therefore, our proposal guarantees that the strongest
version of ε-differential privacy happens except for a little probability δ. This
privacy preserving is obtained by the sampling stage. The interpolation stage is
designed to deliver trajectories with good utility. These two stages can be in any
order. We also compare a priori sampling mechanism and a posteriori sampling
mechanism.

Contribution: In this paper, we consider the problem of publishing trajectories
via the differential privacy model. The key challenge is to improve the utility of
the mechanism while preserving privacy level. Our proposed mechanisms are
able to achieve the strongest differential privacy except a small probability. We
comparatively evaluate the performance of this mechanism both qualitatively
by illustrating the publication of real ship trajectories and quantitatively by
measuring the error between the published and original trajectory.

– We propose a priori sampling mechanism (SFI1) and a posteriori sampling
mechanism (IFS2) to publish trajectories with (0, δ)-differential privacy.

– We compare these two mechanisms analytically and empirically.

– We conduct numerical experiments to evaluate the utilities of SFI and IFS.
The numerical results show that the SFI mechanism has better performance.

The rest of this paper is organized as follows. Section 2 reviews related work. For-
mal definitions and problem statement are introduced in Section 3. We present
our two sampling-based differentially private mechanisms in Section 4. We report
the numerical results in Section 5 and give the final conclusion in
Section 6.

1 SFI stands for Sampling First and Interpolation.
2 IFS stands for Interpolation First and Sampling.

Publishing Trajectory with Differential Privacy 359

2 Related Work

Generally there are mainly two different types of trajectory publishing. One
type aims to publish a group of trajectories and considers each trajectory as one
individual record. The other type considers one trajectory as a database and
each position in the trajectory as one individual record.

Recent privacy-preserving technology for the first type starts with (k, δ)-
anonymity proposed by Abul et al.[6]. The intuition is to disturb the trajectory
so that at least k many different trajectories co-exist in a cylinder with radius
δ. Chen et al.[7] were among the first to connect trajectory publishing and dif-
ferential privacy. They proposed a data-dependent sanitization mechanism by
building a noisy prefix tree according to the underlying data.

To our knowledge, not much work has been done on the second type. This
is the focus of our paper. The privacy of each position can be preserved by
sampling. Besides, we use interpolation to retrieve the information of sampled-
out positions. The interpolation method in our proposal is widely used in robot
route planning. To find smooth enough paths passing through a sequence of given
waypoints, with requirements on velocity and direction, a classic technology is
using Bézier spline. To obtain a continuous curve matching given direction and
velocity at waypoints, cubic Bézier was applied in [8].

The random sampling method would allow others to study the statistical
patterns about the entire population based upon the collected sample data.
Intuitively, a simple random sampling already provides certain amount of privacy
guarantees for the underlying population. Chaudhuri and Mishra [9] have shown
that a simple random sampling mechanism only does not preserve ε-differential
privacy, and under certain conditions it may guarantee that the ε-differential
privacy is preserved with probability at least 1− δ. Gehrke et al. [10] introduced
a new definition of privacy called crowd-blending privacy, which is a relaxation of
differential privacy. The authors show that the crowd-blending mechanism, with
a pre-sampling from the underlying population, can both guarantee differential
privacy and the stronger notion of zero-knowledge privacy.

In the above mentioned random sampling results, only the sampled data would
be released to public for statistical studies. However, in order to monitor the
ship’s navigation, we still would like to estimate the ship’s possible positions
in the time interval between any two sampled positions. Significant events may
happen in some time interval. Hence it is of great importance to infer the ship’s
positions during the navigation. This could also be achieved by the interpolation.
Our proposal in this paper can achieve (0, δ)-differential privacy for small δ.
Moreover, a large number of experiments conducted on real ship trajectories
demonstrate good utility of our mechanisms.

3 Preliminaries

Differential privacy has been widely used to protect the privacy of the individual
participants while providing useful statistical information about the underlying
population.

360 D. Shao et al.

Definition 1 ((ε, δ)-Differential privacy[5]). A randomized mechanism
K gives the (ε, δ)-differential privacy if for every two databases D and D′ differ-
ing in at most one row, and for every S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D′) ∈ S] + δ.

Note that if δ = 0, (ε, 0)-differential privacy is ε-differential privacy [2, 3]. (ε, δ)-
differential privacy is a relaxed version of ε-differential privacy that allows pri-
vacy breaches to occur with a very small probability controlled by δ.

A trajectory is a sequence of positions on the 2-dimensional plane representing
the moving path of a vehicle with additional information such as the direction,
velocity and timestamp at every position. For simplicity, we assume that the
information of the starting position and the terminal position is known to public.

Definition 2. A trajectory T is a sequence 〈(P0, θ0, v0, t0), . . . , (Pn, θn, vn, tn)〉,
where Pi is the coordinate of the i-th position, θi is the direction, vi is the velocity
and ti is the timestamp.

After we deliver an output for an input trajectory, we have to measure the utility
of our delivery. There are many ways to measure the distance of two trajectories,
based on different intuitions. Two measures are adopted here for two purposes.

Definition 3. Given two trajectories T and T̃ , the MAX distance between them
is

MAX(T, T̃) = max{||Pi − P̃i||2 : 0 ≤ i ≤ n}.
The MAX distance measures the maximum of the distance between positions
with the same timestamp. To calculate the MAX distance, the two trajectories
must have the same timestamps. Since the goal of this paper is to publish a
perturbed trajectory T̃ while preserving (0, δ)-differential privacy, we have to
define neighboring trajectories to be with the same timestamp sequence.

Definition 4. Two trajectories T and T ′ are neighboring if they have the same
timestamp sequence and differ at exactly one tuple.

Alternatively, one may be interested in the similarity between T and T̃ . The
Dynamic Time Warping distance (DTW) [11] is an ideal to fulfill this task. The
Dynamic Time Warping (DTW) algorithm defined recursively as:

DTW(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = −1 and j = −1,
+∞ else if i = −1 or j = −1,

dist(Pi, P̃j) + min(DTW(i− 1, j), otherwise
DTW(i, j − 1),
DTW(i− 1, j − 1))

where dist(Pi, P̃j) is the cost function between the two points. We choose to

define that function as the Euclidean distance between Pi and P̃j . The algorithm
consists in walking along both trajectories, pairing points between the both of

Publishing Trajectory with Differential Privacy 361

them, but allowing that for the next step only one of the trajectories is walked
to its next point. Therefore a point can be paired with one or more consecutive
points on the other trajectory. This allows us to measure the similarity between
both trajectories’ pattern.

4 Sampling-Based Differentially Private Schemes

In this section, we shall present two differentially private schemes to protect an
individual trajectory. Both schemes are based on sampling and interpolation:
Apriori Sampling Scheme (SFI) and Aposteriori Sampling Scheme (IFS).

To analyze the privacy of our mechanisms, we first recall the composition
lemma proved by Dwork et al. [12], which implies the adaptive combination of a
(ε, δ)-differentially private algorithm and a deterministic algorithm is also (ε, δ)-
differentially private. Hence, the privacy in our proposal is fully taken care of
by the sampling stage. Moreover, the interpolation method employed is cubic
Bézier interpolation. It is a classic method of route planning.

An extended version of this paper with proofs, details of Bézier interpolation
and pseudocodes is available in the technical report [13].

4.1 A Priori Sampling

Given a trajectory T and a privacy parameter δ, we first compute an integer
k = � 1

δ �. Then we partition T into groups with k positions. By sampling an
integer l from {1, ..., k} uniformly, we keep the l-th position in each group and
remove all other positions. Then we interpolate positions removed by using cubic
Bézier interpolation.

Theorem 1. The mechanism SFI is (0, δ)-differentially private.

In fact, the behaviour of the privacy parameter δ is dependent on the number of
positions in the underlying trajectory. To achieve the (0, 0)-differential privacy
where δ = 0, no intermediate positions can be sampled, and the output is based
on the interpolation of the two endpoints only. The next strong (0, δ)-differential
privacy happens for δ = 1

n , where only one intermediate position is sampled. In
other words, if the input δ is between 0 and 1

n , then the mechanism is the same
as that for δ = 0. Generally, a non-trivial δ is one element of the discrete set
{ k
n : k = 0, . . . , n}.

4.2 A Posteriori Sampling

In the SFI mechanism for small δ, few intermediate positions are sampled for
the interpolation. In other words, much information between two consecutive
waypoints is lost. Hence, the interpolation may not reflect the real trajectory
very well. An alternative way to avoid this is to do interpolation first and then
sample a sub-trajectory. Since all information is kept in the interpolation stage,
the sampled sub-trajectory will be more similar to the real one.

362 D. Shao et al.

Let T be an input trajectory. The first step is to interpolate the curve in
each time interval by using the cubic Bézier interpolation. Let B(t) be the
resulted Bézier-spline. Then we sample m timestamps uniformly from these
n many time intervals, say t′1, . . . , t

′
m. So the intermediate trajectory Tmid is

〈(B(t′i), B
′(t′i))i=1,...,m〉 with two endpoints.

So far, Tmid is an alternative version of T . It can be proved the process to

output Tmid is (0, δ)-differentially private by setting m ≤ ln(1−δ)

ln(1− 2
n)
. However, Tmid

and T may not have the same timestamps. To do the comparison, we have to
interpolate the positions at the timestamps of T .

Theorem 2. The mechanism IFS is (0, δ)-differentially private.

Generally, a non-trivial δ is one element of the discrete set {1−(1− 2
n)m : m ∈ N}.

5 Experimental Results

In order to compare our two algorithms, we use real trajectories of ships cap-
tured in the Singapore Straits during one hour (2012-09-09 from 08:00 to 09:00
UTC time). Because of space constraint, we have selected two representative
trajectories with different shapes, one from a tug boat (Ship 1) and one from a
cargo ship (Ship 2). As a summary, we present the average error for these two
mechanisms on all real trajectories we have.

For each value of δ we generate 100 trajectories and choose to present one
randomly. We then compute for both mechanisms the average distance between
the original trajectory and the published trajectories, according to the MAX
and DTW distances.

For the two selected representative ships, Figure 1 reports the average MAX
error of the SFI and IFS mechanisms, and Figure 2 reports the average DTW
error of the SFI and IFS mechanisms. Figure 3 reports the average errors for two
mechanisms on all real trajectories we have, where each mechanism generates
100 trajectories for each real trajectory.

All these figures show a similar trend. The utility of SFI mechanism is better
when δ is small. Smaller value of δ implies worse accuracy of the second inter-
polation. When δ reaches some value, the utility of IFS mechanism becomes no

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000
Ship 1

M
A

X
 D

is
ta

nc
e

SFI
IFS

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000
Ship 2

M
A

X
 D

is
ta

nc
e

SFI
IFS

Fig. 1. MAX

Publishing Trajectory with Differential Privacy 363

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

4 Ship 1

D
TW

 D
is

ta
nc

e

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000
Ship 2

D
TW

 D
is

ta
nc

e

SFI
IFS

SFI
IFS

Fig. 2. DTW

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000
DTW

D
TW

 D
is

ta
nc

e

SFI
IFS

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000
MAX

M
A

X
 D

is
ta

nc
e

SFI
IFS

Fig. 3. Average error

103.72 103.73 103.74 103.75 103.76 103.77

1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28

1.285

← Start

← End

Ship 1, 65 Points

Longitude

La
titu

de

Original
SFI

103.72 103.73 103.74 103.75 103.76 103.77

1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28

1.285

← Start

← End

Ship 1, 65 Points

Longitude

La
titu

de

Original
IFS

Fig. 4.Original trajectory of Ship 1 with results published by two mechanisms (δ = 0.1)

worse than that of SFI mechanism. This is because the number of sampled way-
points m goes to infinity while δ increases to 1, which will provide more accurate
information. Hence, the IFS mechanism would be chosen for high toleration of
privacy breach.

Another consequence of Figure 1 and Figure 2 is that the SFI mechanism
works better for the trajectory of ship 1 with almost all δ. This behavior is
common in our experiments and the trajectory of ship 1 is representative. Hence,
it is reasonable to conclude that the utility of SFI for not-so-smooth trajectories
is better than that of IFS mechanism.

We can now illustrate the end result with the trajectories of two selected
ships in Figure 4 and Figure 5. They illustrate the original trajectories together
with their published trajectories with IFS and their published trajectories with

364 D. Shao et al.

103.724103.726103.728103.73103.732103.734103.736

1.287

1.288

1.289

1.29

1.291

1.292

1.293

← Start

← End

Ship 2, 91 Points

Longitude

La
titu

de

Original
SFI

103.725 103.73 103.735 103.74

1.287

1.288

1.289

1.29

1.291

1.292

1.293

← Start

← End

Ship 2, 91 Points

Longitude

La
titu

de

Original
IFS

Fig. 5.Original trajectory of Ship 2 with results published by two mechanisms (δ = 0.1)

SFI, respectively. We observe on these examples that both methods generate
trajectories similar to the original trajectory and that SFI generates trajectories
that are smoother and closer to the original one. This is exacerbated when the
original trajectory is less smooth as in Figure 5.

6 Conclusion

The publication of the accurate trajectory of a ship is a potential menace to
privacy that may threaten the security or engage the liability of the ship and its
stakeholders.

We proposed two mechanisms for the publication of ship trajectories with dif-
ferential privacy guarantees, using a combination of sampling and interpolation
to create a perturbation. The first mechanism, SFI, follows an a priori approach
in which a trajectory is sampled and interpolated. The second mechanism, IFS,
follows an a posteriori approach in which a trajectory is interpolated, sampled
(and possibly interpolated and sampled again).

We showed that both SFI and IFS are (ε, δ)-differentially private with ε =
0. We analytically and empirically compared the two mechanisms and showed
that both of them are effective in publishing realistic trajectories similar to the
original trajectory. We showed that the utility of SFI is better than that of IFS
for smaller values of δ and not-so-smooth trajectories.

We are currently fine tuning the general approaches discussed in this paper to
take care of special cases. We are also studying the extension of our techniques
to take into account prescribed constraints such as further speed, acceleration
and other maneuvering limits and forbidden areas.

Acknowledgements. This research was funded by the A*Star SERC project
“Hippocratic Data Stream Cloud for Secure, Privacy-preserving Data Analytics
Services” 102 158 0037, NUS Ref: R-702-000-005-305 and R-252-000-433-305.

Publishing Trajectory with Differential Privacy 365

References

[1] Agard, B., Morency, C., Trépanier, M.: Mining public transport user behaviour
from smart card data. In: The 12th IFAC Symposium on Information Control
Problems in Manufacturing, INCOM (2006)

[2] Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

[3] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

[4] McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp.
94–103. IEEE (2007)

[5] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

[6] Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in
moving objects databases. In: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, ICDE 2008, pp. 376–385. IEEE Computer Soci-
ety, Washington, DC (2008)

[7] Chen, R., Fung, B.C.M., Desai, B.C.: Differentially private trajectory data publi-
cation. CoRR abs/1112.2020 (2011)

[8] Mandel, C., Frese, U.: Comparison of wheelchair user interfaces for the paralysed:
Head-joystick vs. verbal path selection from an offered route-set. In: Proceedings
of the 3rd European Conference on Mobile Robots, ECMR 2007 (2007)

[9] Chaudhuri, K., Mishra, N.: When random sampling preserves privacy. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 198–213. Springer, Heidelberg (2006)

[10] Gehrke, J., Hay, M., Lui, E., Pass, R.: Crowd-blending privacy. Cryptology ePrint
Archive, Report 2012/456 (2012), http://eprint.iacr.org/

[11] Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech and Signal Process-
ing 26(1), 43–49 (1978)

[12] Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: 2010
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
51–60. IEEE (2010)

[13] Shao, D., Jiang, K., Kister, T., Bressan, S., TAN, K.L.: Publishing trajectory
with differential privacy: A priori vs a posteriori sampling mechanisms. Technical
Report: TRA4/13 (2013),
https://dl.comp.nus.edu.sg/dspace/handle/1900.100/3932

http://eprint.iacr.org/
https://dl.comp.nus.edu.sg/dspace/handle/1900.100/3932

Towards Automated Compliance Checking

in the Construction Industry

Thomas H. Beach1,, Tala Kasim1, Haijiang Li1, Nicholas Nisbet2,
and Yacine Rezgui1

1 School of Engineering, Cardiff University, 5 The Parade, Roath, Cardiff, UK
2 AEC3 UK Ltd

Abstract. The Construction industry has a complex structure of regu-
latory compliance, consisting of statutory requirements and performance
based regulations. The increasing importance of sustainability has fur-
ther intensified this, with a new building’s compliance against sustain-
ability assessment methodologies now often an important contractual
requirement.

Automatic compliance checking against these requirements has been
long sought after within this industry and several approaches have at-
tempted to achieve this goal. The key improvement that can be made to
many existing approaches is enabling the development and maintenance
of the regulations by those who are most qualified to do this the domain
experts. This is illustrated by the fact that in many cases regulatory
compliance systems are closed and when modifications are needed they
must be made by software’s developers. This process is simply not viable
in this industries rapidly changing environment.

In this paper we describe our framework for compliance checking,
showing the potential for utilising an integrated process to enable domain
experts to create and maintain their own regulations that can then be
executed by an open source rule engine. We will describe our process,
the methodology and software developed to support it. We will present
our initial results in the form of two case studies illustrating progress
towards automation of commonly used regulations. Finally, we will also
discuss how our approach could be generalised to other related sectors to
enable the adoption of a similar approach towards automatic regulatory
compliance.

1 Introduction

One of the major concerns for professionals in any industry is ensuring compli-
ance of their work against the plethora of statutory, contractual and performance
based requirements their industry or clients may impose upon them. To help ease
these problems the use of computer systems to support regulatory compliance
has become increasingly common, but, in many cases, there is one key problem;
the conversion of regulations designed to be readable by humans into computer
executable code is a difficult challenge. Performing this task often requires close

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 366–380, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Automated Compliance Checking in the Construction Industry 367

co-operation of domain experts with expertise relating to the regulations them-
selves and computing experts with experience in the systems with which these
compliance checking systems are built.

The problem is particularly acute within the AEC (Architecture Engineering
and Construction) sector. This particular sector has a complex structure of reg-
ulatory and contractual requirements [14]. These contractual requirements are
often specified based on the client’s desires as to how the building should per-
form, i.e. a “green” charity will often want a building with a low carbon footprint.
Additionally, these requirements vary between countries and even sometimes be-
tween local authorities. This, coupled with the fact that a building is built by
a large multi-organisational team, leads to a challenging environment in which
regulatory compliance must be measured with a high level of certainty right from
the building’s conception.

In addition to this, working within the AEC sector presents additional chal-
lenges. Firstly, AEC regulations are highly complex and, especially in the case of
energy performance regulations, constantly evolving. Secondly, the AEC sector is
only beginning to tackle coordination issues between partners within a construc-
tion project [15] because of this building data within the AEC sector is still often
stored in a series of incompatible proprietary data formats for application such
as AutoDesk Revit [5] and Bentley Systems’ Micro-station [6], currently only one
open data standard exists - The IFCs (Information For Construction) [1].

This paper outlines our work in developing an integrated approach for the
development of a regulatory compliance system. There were several key goals
behind the development of this methodology:

– To produce a methodology to allow domain experts to specify the regulations
within the system.

– To produce a methodology that will allow the freedom to move between
different data standards.

– To separate, as much as possible, the domain expertise from the computing
expertise.

While our initial work has been focused on regulatory compliance checking within
the AEC sector we also believe that our approach is generalisable to other regu-
lations in related fields of industry. Within the AEC sector itself the adoption of
our three key goals has proved especially important. As regulations are rapidly
evolving, the ability of the experts that truly understand the regulations to
update them vastly improves the maintainability of the system. This also gives
increased understand of what the regulatory compliance system is actually check-
ing allowing validation of the system to be conducted with a far higher level of
certainty.

In this paper, Section 2 will outline the background of the regulations that
are being considered in this work, Section 4 will describe existing work in the
field of regulatory compliance, focusing specifically on other efforts within the
AEC sector. The architecture of our system will then be described and, fi-
nally, two case studies that have been used for validation will be discussed in
Section 8.

368 T.H. Beach et al.

2 Background

Prescriptive national building standards were first introduced in the UK in 1965.
Since then, and with increasing focus on low carbon initiatives and sustainabil-
ity, additional regulations have been added. Two of the most common perfor-
mance based regulations are the Code For Sustainable Homes (CSH) [9] and
BREEAM (BRE Environmental Assessment Method) [11]. These two regula-
tions are optional, but their use is often stipulated by clients when purchasing
buildings. Both of these regulations are termed “balanced scorecard methodolo-
gies”, meaning that each section of the regulations award a set number of points
(also called credits) and the credit total is used to provide an overall rating for
each building.

2.1 Code for Sustainable Homes

The Code for Sustainable Homes (CSH) [9] is the national standard for assessing,
rating and certifying the sustainability performance homes. It aims to encourage
continuous improvement in sustainable home design and to promote higher stan-
dards over the current statutory requirements. The code provides nine measures
for sustainable design; namely: energy, water, materials, surface water runoff,
waste, pollution, health and well-being, management and ecology. Each of these
sections awards credits and according to the performance in these sections an
overall rating is given of between 1 to 6 stars. Code for Sustainable Homes is a
voluntary scheme that applies in England, Wales and Northern Ireland.

2.2 BREEAM

BREEAM (Building Research Establishment Environmental Assessment
Method) [11], established in the UK in 1990, is the first comprehensive building
performance assessment method. The main aim of introducing BREEAM was to
mitigate the impact of buildings on the environment and to increase recognition
of buildings according to their environmental benefits. The basis of the scheme is
to grade the individual building according to environmental performance. There
are nine different dimensions assessed in BREEAM, namely: management, ma-
terials, health and well-being, energy, transport, water, land use and pollution.
Each issue is then divided into sub categories which are required to meet certain
criteria to achieve a BREEAM rating benchmark [11]. BREEAM certification is
awarded on a scale ranging from unclassified, pass, good, very good, excellent
and outstanding.

3 Related Work

There have been considerable efforts in the past towards performing automated
regulation checking, with various approaches being adopted, Giblin et al [10]
describe their developments in the use of regulations being expressed as logical

Towards Automated Compliance Checking in the Construction Industry 369

models, in their work they have specifically targeted regulations designed for the
regulation business activities. Similar work has been done by Cheng et al [7] in
development of an XML framework for expressing regulations.

Within the AEC sector itself there have been several efforts to automate com-
pliance of building regulations; Liebich et al [13] is one of the earliest successful
examples within the industry of the implementation of a compliance checking
system. This particular work was targeted at Singapore’s Building Regulations.
However, in their work the authors focus mainly on the processing of rules in
relation to industry standard data formats and not on the critical aspect of the
of extracting the rules from the regulation documents. This work has, however,
been one of the most successful to date in terms of actual use within the AEC
industry.

Yang et al [16] expand on the idea of compliance checking by utilising an
object orientated approach to modelling requirements. Their approach allows
the extraction of entities from within the building regulations, however from the
descriptions presented by the authors, their approach seems a largely manual
process of extracting rules in the form of computerised code directly from the
regulations document. More recently, Eastman et al [8] outlined the architecture
that a building compliance checking must take and summarised existing efforts
within the industry, including various approaches of extracting regulatory in-
formation from human readable documents. In their work the authors raised
concerns about the different types of data formats used in the AEC sector and
they also described initial work in embedding meta-data relating to IFC object
based format directly into building regulations.

In terms of commercial products, the main compliance checking product cur-
rently on the market for the AEC sector is Solibri Model Checker [3]. The Solibri
model checker enables users to perform several common pieces of regulatory
checking, i.e. the distance a fire escape and evacuation distance, as users are
designing the building. However, one major problem with the Solibri system is
that the regulations within the application are closed, users cannot edit them or
add new regulations. The only way in which new regulations are added is when
Solibri updates the software. This is a critical problem with the vast variety and
inter-national differences between regulations int the AEC sector.

4 System Architecture

One of the key goals in developing our architecture is that the process of devel-
oping the rules used for compliance checking in the AEC sector is kept as close
as possible to the domain specialists; the people that understand the regulations
and the people that understand the industry specific data formats. To achieve
this the architecture shown in Figure 1 has been developed.

Figure 1 shows how our architecture is divided into three distinct domains
with the main software components supporting the process of the regulatory
compliance checking in the centre. Each domain encompasses a set of users
within the AEC sector:

370 T.H. Beach et al.

Fig. 1. System Architecture

Regulation Domain - The experts that create and/or maintain the regulations.
Currently within the AEC sector companies operating in this domain will include
BRE (Building Research Establishment), who maintain and operate BREEAM
and UK central government that manage CfSH.

Data Domain - The experts that define and implement the data formats used
by the AEC sector. Commonly used data formats include the IFCs [1] which are
the only open standard currently used within the AEC industry. The IFCs are
maintained by BuildingSMART [2]. Other data formats commonly used include
proprietary formats from Bentley Systems [6] and AutoDesk [5].

Design Domain - The users of the system; i.e. architects, engineers. These
individuals will utilise an automatic compliance checking system as a design
tool when designing their building.

Our architecture also consists of three main software components:

– A Rule Compiler that converts the information extracted from the Rule
documents into a machine readable form. This will be described further in
Section 5.

– A Data dictionary containing mappings between the data needed for the
execution of the rules and the data available in one of more industry specific
data formats. This will be described further in Section 6.

– A web services interface allowing communication with add-ons developed for
industry standard design packages.

The following sections will describe how our architecture is used in each of the
domains in Figure 1, firstly describing how the rules are extracted from the
regulation documents, then how the data required by these rules is mapped into
an industry standard data model, and finally how the rule engine uses the output
from these two domains to perform regulatory compliance checking on submitted
building models.

Towards Automated Compliance Checking in the Construction Industry 371

5 Extracting Rules from Regulatory Documents

The process of extracting computable rules from the regulation documents has
been undertaken by the addition of meta data to the regulation documents. In
order to do this the RASE methodology [12], which has been used previously in
similar efforts, has adopted and expanded. The RASE methodology allows the
addition meta-data to the regulation document at the block level (i.e paragraph
level) and inline (i.e. individual words or groups of words).

At the block level, series of nested boxes are used to surround paragraphs
(or groups of paragraphs) enabling the expression of complex and/or nested
groupings. Each box normally represents one decision, which contains one or
more inline which define what this decision is.

RASE provides users with four ”tags“ each of which has a well defined logical
meaning:

– Application: Restricts the Scope
– Selection: Increases the Scope
– Exception: Allows the specification of exceptions to the rule being specified.
– Requirement: Specifies the definitive requirements that must be met.

In short, Application, Selection and Exception define the scope of the decision
and the requirements define the decision itself. This is shown in the Venn Dia-
gram in Figure 2. In practice, these block and inline tags are added as HTML
tags to XHTML versions of the regulations using an specifically created appli-
cation, an example of the output of this application is shown in Figure 3.

Additionally, when adding metadata to the documents the domain specialist
must also specify extra data describing each tag that they add:

– The topic i.e Building, Window, Door.
– The property i.e. type, width, height.

Fig. 2. Defining the Scope

372 T.H. Beach et al.

Where the principal contractor achieves compliance with the criteria of a compliant
scheme, CCS score between 24 and 31.5

Fig. 3. Adding MetaData to Regulation Documents

– The comparison i.e. = , > , <

– The value.

– The Unit i.e m, cm, litres.

This information is specified in plain English based on the text of the regulation
itself. Within the application which is used to add the metadata, users have the
ability the pick from items that have been previously used in each of the fields
to promote the re-use of terminology where appropriate.

5.1 Extending RASE

One important consideration that had to be taken into account is that BREEAM
and the Code for Sustainable Homes do not just produce pass/fail results. They
give numeric scores (credits) which are then computed in a post-process to give
an overall rating. In order to deal with this “Balanced Scorecard” approach the
RASE terminology needed to be expanded to include the concepts of total and
output.

Totals are needed as each part of the regulations (known as an issue) has a
varying maximum number of credits that can be awarded depending on factors
such as the buildings type, whether it has laboratory features and, in some cases,
more complex decisions need to be made to determine the total number of credits
available for an issue.

Output is needed to allow us to model the amount of credits awarded i.e. in
some issues credits could be awarded on a sliding scale i.e. for achieving a certain
performance between 1 and 5 credits could be awarded. Credits may also need to
be broken down so one decision awards one credit and a second decision awards
a second credit (giving a total of two credits for the issue) - using an output tag
carefully allows this to modelled.

This is further complicated by the way in which balanced scorecard regulations
within the AEC sector treat issues that are not applicable. In this case, if an
issue (or part of an issue) is not applicable then its credits disappear (their totals
are set to zero).

An example of this would be a regulation that stated “All bicycle racks must
be within 10m of the main entrance of the building - award 1 credit”. However,
the correct interpretation of this is that if a building does not have bicycle racks
then the credit would not exist - and the designer would not be penalised for
not including bicycle racks. This particular problem needed careful consideration
when converting the RASE metadata into computer executable rules, which is
discussed further in Section 7.

Towards Automated Compliance Checking in the Construction Industry 373

5.2 Practical Implementation of the Approach

In order to implement our approach individuals with the knowledge of the various
regulations were initially instructed in a workshop style environment, this was
followed up by individual ad-hoc meetings to enable the various individuals to
utilise the software correctly. All together, two days of training were undertaken
by the users. Following this training, it was found that, given the pre-existing
knowledge of the complex logical structure of these regulations, the process of
actually applying the RASE methodology was relatively fast, with each issue
within a regulation document taking between two hours and a full day for the
longest complex issues.

There was, however, one modification that was made to our approach as the
process was being undertaken. This was to to utilise decision flowcharts (in
spreadsheet format) that had been created for many BREEAM issues. These
flowcharts contain sufficiently rich information regarding the logical structure of
BREEAM to enable us to generate a large amount of the markup code auto-
matically. This was adopted as it greatly speeded the translation of BREEAM
(the most complex of our regulations) into a machine executable form, and en-
abled additional, more detailed, validation to take place within the BREEAM
regulations.

6 Integration of Rules with an Industry Standard Data
Format

Once the task of adding metadata to a regulation has been completed, the next
challenge is to map the data into an industry standard data format. For our
work the IFCs [1] have been chosen, the reason for this selection is that the IFCs
are currently the only open standard within the AEC sector.

The first step is to determine the data requirements of the regulations. This
is done using a tool developed to read the meta-data previously added to regu-
lations and produce list of all the data items it requires. Also at this stage the
data-type (double, integer, boolean, enumerated type or string) of the data needs
to be worked out, this is done by automatically applying a series of heuristics
on the comparison and value properties set on the inline tags within the docu-
ment, additionally the name of the data items will also be converted into more
conventional variable names by removing spaces and any invalid characters.

The use of the metadata that has been embedded into regulation documents
to produce this data listing leads to the data structures generated naturally
using the terms that occur within the regulation documents. To enable to trans-
lation between this “language” and the “language” of the IFCs the concept of a
dictionary that performs the mapping between these two languages is used.

Figure 4 shows an example a few such mappings, in this Figure the solid ar-
rows represent mappings intra-context and the dotted arrows show mappings
between the terminology used in the regulations and the IFCs (inter-context).
Figure 4 shows object Building and it’s properties UsedForFlammableStorage,

374 T.H. Beach et al.

Fig. 4. Example Mappings to the IFCs

DaysReserveWater and isShellOnly (extracted from the meta-data added to the
regulations). These are mapped by our dictionary to their counterparts in the
IFC model. “Building” is mapped to IFCBuilding, UsedForFlammableStorage is
mapping to a FlammableStorage data item within the SpaceFireSafetyRequire-
ments property-set of the IFCBuilding object and isShellOnly does not map
directly to data within IFCs so it is mapped to a newly added data item within
a newly created IFC extension. DaysReserveWater however, needs data from two
data items within the IFCs, which can be seen as there are two dotted arrows
leading to it. In this example three mappings have been described, however in
reality a single issue will have many mappings (often between 10 and 25) - there
is, however, significant re-use of mappings across a complete set of regulations.

From this process that there emerges three distinct types of mappings:

1. A 1-1 mapping to an IFC data item.
2. A 1-1 mapping to some new data item that are being added to the IFCs
3. A 1-many mapping to several existing data items within the IFC model.

The first and second of these are relatively simple to map, with the first occurring
when a data item exists within an IFC model, and the second occurring when
a data item does not exist, and it cannot be calculated in some way. The third
type is more complex and this can be subdivided into several sub-types; where
the mapping is done by some standard calculation (i.e. area, volume), where
the mapping is done by some procedure or more complex calculation that must
be defined and finally when the calculation may need to use the results of an
external application.

To undertake this process of mapping, the individual performing the mapping
will undertake the two tasks shown on Figure 1. They will firstly, by entering data
in a spreadsheet that is automatically generated from the meta-data produced
previously. In completing this spreadsheet they will identify the target data items
within the IFCs and also specify (in the case of 1 to many mappings) if it will
be computed as a calculation, a procedure or using an external application.

Towards Automated Compliance Checking in the Construction Industry 375

Once the data entry is completed the spreadsheet will be processed to gener-
ate an XML data dictionary and a set of java method stubs for each calculation,
procedure and call to external program. An example method stub for the calcu-
lation relating to “DaysReserveWater” is shown below:

public static IFCReal DaysReserveWater_Calculation(

IFCProject project, IFCBuilding building) { }

In this example the method is given two pieces of input data the IFCProject
(which is the root element of an IFC Model) and the Building being consid-
ered.The returned type is defined based on the type of data the dictionary is
expecting (in this case an IFCReal). The domain data specialist needs only to
implement the contents of this method to calculate the value needed.

7 Execution of Rules Using the DROOLS Rule Engine

Once the addition of meta-data to regulation documents, and the data mapping
has been completed, the regulations are now ready for processing.

At the centre of our processing is the DROOLS [4] rule engine. This rule
engine was selected as the execution engine for our compliance checking systems
because its open source and widely used.

In order for the DROOLS rule engine to process the meta-data that has
been added to the regulation documents the meta-data tags must be converted
into a format understandable by the rule engine, namely DRL (DROOLS Rule
Language). This is done by using our rule compiler which converts RASE into
DRL. The DRL is then converted by DROOLS into executable code bytecode.

This process of converting the RASE into DRL is done by utilising a series of
logical formulas based on the RASE tags within each block level metadata tag.
Generally speaking each block level tag is treated as a rule. When executing a
rule it is done in two steps: firstly determine if the rule is in scope and secondly
determine if the rule has been passed or failed.

The logical formula used to determine this is shown in Figure 5.

Fig. 5. Rule Logic Expansion - adapted from [12]

376 T.H. Beach et al.

The first step is to determine if a rule is within scope. Within figure 5 S1,S2
represents the Select Tags - E1,E2 represent Exception tags and A1,A2 represent
the applicable tags. This means in order for a rule to be applicable: All the
exceptions must not be met (i.e. are false), all the applicabilities must be met
and at least one selection must be met.

Once it has been determined if a rule is in scope it must then be determined
if it has passed/failed. This is done using the second formula shown in Figure 5.
This figure shows that in order for a rule to be passed as true it must either be
out of scope or must pass all of its requirements.

Using these formulas our rule compiler converts tagged documents into DRL
rules. In our previous example (Figure 3) a simple sample clause was shown.
This clause is verifying if the principal contractor has a suitable score from the
compliant construction scheme (CCS) and awards 1 credit if successful. This
particular clause has one application: that the rule only applies to contractors
that are the “principal contractor and two requirements: that the CCS score is
greater than 24 and that it is less than 31.5. The DRL produced by running this
clause through our rule compiler is shown below:

rule BREEAM_MAN2_1-1SF salience 100 when

not exists Contractor(type==’principal’)

then result.isNA(’BREEAM_MAN_2_1-1’)

end

rule BREEAM_MAN2_1-1ST salience 100 when

not exists Contractor(type==’principal’)

then result.total(’BREEAM_MAN_2_1’,1)

end

rule BREEAM_MAN_2_1-1F when

not exists Result(id=’BREEAM_MAN2_1-1’,na==true)

exists Contractor(type==’principal’, ccs_score <24 , ccs_score > 31.5)

then results.fail(’BREEAM_MAN2_1-1’)

end

rule BREEAM_MAN_2_1-1T when

not exists Result(id=’BREEAM_MAN2_1-1’,na==true)

forall ($contractor: Contractor(type==’principal’)

Contractor(this=$contractor, ccs_score >=24 , ccs_score <=31.5)

)

then results.award(’BREEAM_MAN2_1’,1)

end

This DRL shows that in fact four DRL rules are generated for this clause. The
first checks if the clause is NA, the second checks if the clause is applicable, the
third checks if it fails and a final rule checks if it passed.

This approach was taken as it was not desirable to adopt an approach of
assuming the rule was true (or applicable) just because it did not fail. The
reason for this is to enable the system to handle situations where information
may be missing from data files and enable us to give a third outcome “unknown”.

Towards Automated Compliance Checking in the Construction Industry 377

Within the DRL code shown above; the Result object enables the rule engine
to look up the results of previous rule executions. Additionally, it can be seen
that testing to see if a rule has failed only requires testing to see if there exists
one object that violates it, whereas testing for truth requires testing of each
object in turn using forall. Finally, it should be noted that the scope rules are
given a salience value, the reason for this value being specified is to ensure that
the rule engine executes the scope rule prior to the rules determining if it is true
or false.

It is worth examining the implementation of output and total. Processing
an output is relatively simple as it is just a matter of giving the credits ID
(BREEAM MAN2 1) and the number of credits scored to the award method.
However, the total is only also awarded is the rule determining if the regulation
is in score is found to be true. This enables correct modelling of the behaviour
of these regulations.

This example has shown how the DRL will be generated for a single clause,
but (as described in Section 5) it is possible to group together clauses using block
level RASE tags. This is generally much simpler to generate DRL for as it is
simply applying and/or semantics to the results of rules such as those described
in this section.

8 Case Study

Initial trials of the system have taken place and the results have been successful.
Two case study issues have been tested; ECO5 from Code for Sustainable Homes
and MAN2 from BREEAM. In order to test these issues several sets of sample
building data were used. In each case, this building data was assessed using the
standard manual process and then automatically by our system, with the two
sets of results then compared to ensure the accuracy the automated system. In
all cases so far the automated system has proven to be accurate. In this section
we will describe one test from each of the two case studies in detail, to show how
the developed system has functioned.

In our first test, the ECO (Ecology) 5 was examined. This issue tests the
protection of ecological features within the construction site. Figure 6 shows the
visualised and raw results from one of the Eco5 tests. It can be seen from this
figure that rule is structured as a single OR with 6 possible options.

In this particular test, two of these options have been passed, meaning that
the result of the overall regulation is true. The raw result output in the figure
also shows the passes, the awarding of a total and the credit that have been
awarded. It is interesting to note that the credits are awarded twice for Eco5,
this is because two of the options have passed when only one was required, the
post processing, however, understands this possibility and only considers the
highest value awarded.

For our second case study we tested the Man (Management)2 issue. This issue
tests whether construction sites are managed in an environmentally, socially
responsible and accountable manner. Figure 7 shows an equivalent set of results

378 T.H. Beach et al.

Fig. 6. CfSH Eco5 Results

Fig. 7. BREEAM Man2 Results

for the more complex Man2 issue. This issue has a more deeply nested structure
of requirements, a large number of which are not applicable in this example.

In this particular example the only branch that is applicable is output-0-
0-1 this is an OR choice between two options. This structure is due to the
fact that within the Man2 issue there are several sections that apply only for
buildings with self contained dwellings, i.e. flats and sheltered housing. Equally
the section is applicable in Figure 7 is relevant only to buildings without self
contained dwellings. The results of the output-0-0-1 branch shows that one of its
sub-regulations fails and the other passes, meaning the regulation itself is true.
Once again the raw output shows that total/credits have been awarded for the
pass result.

Towards Automated Compliance Checking in the Construction Industry 379

9 Conclusion

Automating Regulatory compliance within the AEC sector is key within the
industry due to its complex regulatory structure and the many differences inter
and intra nationally in the regulations that apply to buildings [14].

Our integrated approach described in this paper allows various domain ex-
perts with experience in the regulations and domain specific data files to create
and maintain the regulatory compliance system. Using our approach those who
maintain the regulations can alter the metadata that has been added to the
regulations in order to change their functionality without needing to understand
the industry data file formats or even how the underlying rule engine will work.

The decoupling of the data formats from the rule execution also allows for
the development of multiple data file back-ends for the system. This will easily
allow, although our initial work has focused on the IFC format, for additional
data formats. Our work in mapping into the IFC format has also enabled us to
identify additional data items that need to be added to the IFC specification and
this will be contributed back to BuildingSmart (the standardisation body for the
IFCs) in the form of an extension proposal covering regulatory compliance.

Even though only a few issues have been developed so far to a fully working
state, the remainder of the issues within BREEAM and CSH have been analysed
to ensure our system is able to cope with all the types of requirements present
within these regulations. In the future we will expand our system to integrate it
closely with an industry standard design package to enable dynamic requirement
checking as a designer designs their building.

We believe that our system provides significant advantages over existing ap-
proaches. Currently the only widely used regulation compliance system in the
AEC sector is Solibri[3]. However, their system currently only provides a small
subset of the regulations used by the construction industry. More importantly,
however, the rule system implemented by Solibri is closed, meaning that rule
modifications must be made the company itself. The key advantage of our sys-
tem over their product is our integrated approach, allowing the domain experts,
who truly understand the regulations, to work together using software tools to
produce the computer executable rules. To the best of our knowledge this ap-
proach, utilising experts that are familiar with each aspect of the process (reg-
ulations and industry specific data formats) is unique within the construction
industry.

While our initial work has focused on the development of a regulatory com-
pliance system for the AEC sector it is anticipated that our approach is gener-
alisable to many other related industries. However, when adapting the approach
modifications may need to be made to the meta-data used to support specific
ways in which a particular industry operates, this will be similar to the modifi-
cations made to adapt RASE in Section 5.1 to support the balanced-scorecard
regulations common in the AEC sector.

380 T.H. Beach et al.

References

1. Industry Foundation Classes ISO/PAS 16739:2005
2. BuildingSmart, http://www.buildingsmart.org/ (access March 2013)
3. Solibri Model Checker, http://www.solibri.com/ (access March 2013)
4. DROOLS Expert - Rule Engine, http://www.jboss.org/drools/ (accessed March

2013)
5. Autodesk Revit Architecture – available at:

http://usa.autodesk.com/revit-architecture/ (last accessed: January 15,
2013)

6. Bentley Systems – available at: http://www.bentley.com (last accessed: January
15, 2013)

7. Cheng, C.P., Lau, G.T., Law, K.H.: Mapping regulations to industry-specific tax-
onomies. In: Proceedings of the 11th International Conference on Artificial Intelli-
gence and Law, ICAIL 2007, pp. 59–63. ACM, New York (2007)

8. Eastman, C., Lee, J.M., Jeong, Y.S., Lee, J.K.: Automatic rule-based checking of
building designs. Automation in Construction 18(8), 1011–1033 (2009)

9. UK Government Department for Communities and Local Government. Code for
Sustainable Homes Technical Guide. Technical report (2010)

10. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed
as logical models (realm). In: Proceedings of the 2005 Conference on Legal Knowl-
edge and Information Systems: JURIX 2005: The Eighteenth Annual Conference,
Amsterdam, The Netherlands, pp. 37–48. IOS Press (2005)

11. BRE Global. BREEAM Technical Guide V2.0. Technical report, BRE Global
(2011)

12. Hjelseth, E., Nisbet, N.: Exploring semantic based model checking. In: Proceedings
of the 2010 27th CIB W78 International Conference, vol. (54) (2010)

13. Liebich, T., Wix, J., Forester, J.: Speeding-up Building Plan Approvals:The Sin-
gapore e-Plan Checking project offers automatic plan checking based on IFC. In:
European Conferences on Product and Process Modelling (2002)

14. Rezgui, Y., Miles, J.: Harvesting and Managing Knowledge in Construction: From
theoretical foundations to business applications. Taylor & Francis (2011)

15. Rezgui, Y., Beach, T., Rana, O.F.: A Governance Approach for BIM Management
across Lifecycle and Supply Chains Using Mixed-Modes of Information Delivery.
Journal of Civil Engineering and Management 2 (2013)

16. Yang, Q.Z., Xu, X.: Design knowledge modeling and software implementation
for building code compliance checking. Building and Environment 39(6), 689–698
(2004)

http://www.buildingsmart.org/
http://www.solibri.com/
http://www.jboss.org/drools/
http://usa.autodesk.com/revit-architecture/
http://www.bentley.com

Quantifying Reviewer Credibility

in Online Tourism

Yuanyuan Wang, Stephen Chi Fai Chan, Grace Ngai, and Hong-Va Leong

Department of Computing, The Hong Kong Polytechnic Univesity,
Hung Hom, Kowloon, Hong Kong, China

{csyywang,csschan,csgngai,cshleong}@comp.polyu.edu.hk

Abstract. With the growing interconnectedness of the world and ad-
vances in transportation and communication, more and more people are
travelling as independent tourists, putting together their own itineraries
and activities from information researched from social media. However,
many reviewers post reviews without validation, leading to the explo-
sive growth of reviews and the proliferation of uninformative, biased or
even false information. This makes it very challenging for travellers to
find credible reviews. Previous work has shown that credibility assess-
ment of sources and messages are fundamentally interlinked. Hence, there
has been much work on measuring the credibility of reviewers. However,
most current work investigates the factors impacting the perception of
reviewer credibility without quantitative evaluation. This paper presents
a method that quantifies the credibility of reviewers in TripAdvisor. An
Impact Index is proposed to measure reviewer credibility by evaluating
the expertise and trustworthiness based on the number of reviews posted
by the reviewer and the number of helpful votes received by the reviews.
Furthermore, the Impact Index is improved into the Exposure-Impact
Index by considering in addition the number of destinations on which
the reviewer posted reviews. Our experimental results show that both
Impact Index and Exposure-Impact Index outperform the state-of-the-
art method in measuring the credibility of reviewers to help travellers
search for credible reviews.

Keywords: reviewer credibility, credible review, tourism.

1 Introduction

The growing interconnectedness of the world and the advances in transportation
and communication have swelled the number of travellers travelling as indepen-
dent tourists, putting together their own itineraries and activities from informa-
tion researched from social media. Moreover, an increasing number of travellers
post reviews online to share their experiences and opinions, which has become
one important source of information [1–3]. However, tourism websites usually do
little to verify the identity of reviewers and the content of reviews. Reviewers
are usually allowed to register at the website using nickname and email address,

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 381–395, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

382 Y. Wang et al.

without other identifying information, such as real name, photo and occupa-
tion. Even worse, they can freely post reviews without going through a rigorous
editorial process for factual verification [3]. This leads to the explosive growth
of reviews and the presence of uninformative, biased or even false information,
which make it very time consuming and challenging for the travellers to find
credible reviews [4, 5].

Some investigations into the cues that influence the perception of the credi-
bility of reviews in tourism [3, 9, 10] provide travellers with some guidelines for
judging credible reviews. However, these studies did not develop a method to
search for credible reviews automatically. Credibility assessment has been stud-
ied from three perspectives: source credibility, message credibility and medium
credibility [6–8]. In tourism, the review can be considered the message, the re-
viewer, the source and the tourism website, the medium. Rieh et al. [8] and
Fragale et al. [11] have pointed out that credibility assessment of sources and
messages are fundamentally interlinked. In light of this insight, this paper focuses
on measuring the credibility of reviewers to help travellers search for credible re-
views.

There has been much work on measuring the credibility of reviewers. Some
researchers have applied surveys to explore the factors affecting the evaluation of
the expertise and trustworthiness of the reviewer in online tourism [10, 12–14],
which are also two key dimensions of source credibility [7, 15, 16]. However, these
studies did not make a quantitative evaluation of reviewer credibility. Lee et al.
[4] was the first team, so far we can determine, to use the average Review Helpful
rating (RHR), which is the total number of helpful votes (or total RHR in their
term) that a reviewer received from travellers, divided by the total number of
reviews posted by the reviewer, to quantitatively represent reviewer credibility
in TripAdvisor1. This method tends to favor the reviewers who have posted
few reviews (possibly implying a narrow range of expertise) but nevertheless
obtained high average RHR (which implies high trustworthiness).

In this paper, we present a method that quantitatively measures the credi-
bility of reviewers in TripAdvisor, which is the most popular travel community
in the world. An Impact Index is proposed to compute the reviewer credibility
by evaluating the expertise and trustworthiness jointly, based on the number of
reviews posted by the reviewer and the number of helpful votes received by the
reviews. Reviewers who have a high Impact Index are those who have posted
more reviews, which manifests their expertise, and each of the reviews having
obtained more helpful votes, implying their trustworthiness. Compared to the
previous method of measuring average RHR, the Impact Index considers exper-
tise and trustworthiness simultaneously, and does not emphasize one dimension
only. To better represent the multi-faceted nature of credibility, the Impact Index
is further improved into the Exposure-Impact Index by considering in addition
the number of destinations on which a reviewer has posted reviews. Then, we
examine the effectiveness of the Impact Index and the Exposure-Impact Index
by comparing them to the previous method of measuring average RHR.

1 http://www.tripadvisor.com/

Quantifying Reviewer Credibility in Online Tourism 383

The rest of this paper is organized as follows. Related work is presented in
Second 2. Section 3 presents the Impact Index and the Exposure-Impact Index.
In Section 4, comparison experiments are presented to demonstrate the effective-
ness of the Impact Index and the Exposure-Impact Index measurement. Finally,
we conclude this paper by giving some directions for future work.

2 Related Work

In tourism, the products are the intangible and experiential service purchases,
which can not be evaluated before their consumption. Therefore, travellers tend
to search for information before travelling to reduce the degree of uncertainty
and risk, and facilitate decision making [1, 2]. The development of social media
technologies and travellers’ willingness to post reviews online sharing experience
and opinion have created a market for tourism websites, such as TripAdvisor.
However, Kusumasondjaja et al. [3] pointed out, tourism websites usually lack
the mechanism to rigorously verify reviewers and review contents, leading to the
explosive growth of reviews and the presence of uninformative, biased or even
false information, which make it very time consuming and challenging for the
travellers to find credible reviews [4, 5].

To address this problem, some researchers have investigated the cues that
affect the perception of the credibility of reviews [3, 9, 10, 12]. For instance,
Kusumasondjaja et al. [3] investigated the impact of the review valence and the
reviewer’s identity on the perception of credibility, and found that a negative
review with the reviewer identity disclosed could enhance the perceived credi-
bility of reviews. The work of Xie et al. [9] indicated that hotel reviews with the
presence of personal profile information were perceived as being more credible
by travellers. Sidali et al. [12] found that a review must be perceived as expert
so as to be trusted. The study conducted by Gretzel et al. [10] indicated that
the detailed description, the type of website, and the date the review was posted
were very important for the evaluation of a travel review. However, most of
the previous work developed qualitative guidelines based on surveys to help the
travellers distinguish credible reviews, without developing a method to search
credible reviews automatically.

Previous literatures [8, 11] pointed out that credibility assessment of sources
and messages are fundamentally and positively interlinked. Source credibility
has been widely investigated since the “Yale Group”, led by Carl Hovland, de-
fined it as expertise and trustworthiness [15]. Although many studies on source
credibility have explored several different dimensions, the focus is still the initial
two dimensions [7, 15, 16]. In terms of these two dimensions of source credibility,
there has been much work on investigating the credibility of reviewers. Gretzel
et al. [10] found that reviewer credibility is most frequently judged based on the
reviewer’s travel experience. The result of the survey conducted by Sidali et al.
[12] showed that the number of posted reviews and travelling a lot are important
to judge the expertness. Vermeulen et al.[14] have applied experience as proxy
of expertise. However, these studies did not make a quantitative evaluation of

384 Y. Wang et al.

the reviewer credibility. Additionally, Lee et al. [4] used the average RHR to
represent the credibility of reviewers. This approach can evaluate the reviewer
credibility quantitatively, but it tends to favor the trustworthiness.

3 Quantifying the Credibility of Reviewer

In this section, we present a method and its improved approach to measure the
credibility of reviewers.

3.1 Reviewer Credibility

This paper focuses on measuring reviewer credibility by considering two key di-
mensions: expertise and trustworthiness. In previous literature [15, 20, 21], the
expertise of source refers to the source’s knowledge, ability or skill to know the
truth and provide valid information, and it is usually described by the terms
“experienced”, “knowledgeable”, and “competent”. The trustworthiness of the
source refers to the source’s willingness, moral inclination or motivation to tell
the truth, and it is commonly described by the terms “well-intentioned”, “truth-
ful”, and “unbiased”.

Based on previous studies [10, 12–14], the experience of reviewers in tourism
can be used to represent expertise because expertise increases as experience in-
creases. It can be extracted from reviewers’ contribution history [12]. TripAdvisor
records reviewers’ contribution factors, as shown in Figure 1, and the descrip-
tions of them are presented in Table 1. In TripAdvisor, helpful vote is a feedback
from a traveller who considers the review helpful. Previous work [4] has stated
that the number of helpful votes can signal the quality of an online review, and

Reviewer Review count

Destination count

Photo count

Forum-post count

Average length

of reviews

Review

Helpful vote
“ ”

Destination

Fig. 1. A reviewer in TripAdvisor and her/his contribution factors and helpful votes

Quantifying Reviewer Credibility in Online Tourism 385

Table 1. Contribution factors of reviewers in TripAdvisor

Contribution Factor Description

Destination Count No. of cities that a reviewer has visited

Review Count No. of reviews that a reviewer has posted

Average Length Total no. of words of all reviews posted by a reviewer
of Reviews (ALR) divided by Review Count

Photo Count No. of photos that a reviewer has uploaded

Forum-post Count No. of posts that a reviewer has posted in forum

serve as a reputation proxy of the reviewer. Therefore, this paper used the con-
tribution factors and the number of helpful votes as the indicators to evaluate
the expertise and trustworthiness of reviewer credibility in TripAdvisor.

3.2 Impact Index

Inspired by the H-Index [22], which is an index measuring both the productivity
and impact of the published work of a scientist or scholar, we develop a method
to measure both the expertise and trustworthiness of the reviewer. H-Index is
computed based on the set of the most cited papers and the number of citations
the papers have received. Among different contribution factors of reviewers in
TripAdvisor, the number of reviews can directly reflect the quantity of reviewer’s
contribution. Moreover, the number of helpful votes cast on reviews can represent
the impact of the reviews. So we propose an Impact Index to measure reviewer
credibility based on the number of reviews and the number of helpful votes. It
is defined as:

A reviewer has an Impact Index of L if the reviewer has posted at least
L reviews, each of which has received at least L helpful votes, and the
other reviews have less than L helpful votes.

Reviewers with higher Impact Index have following characteristics: first, they
have posted more reviews on many things about their travels, such as different
attractions, restaurants or hotels. It manifests that they have more experience
and knowledge, and become relatively more competent to write helpful reviews,
which indicates their higher level of expertise. Second, they have sufficient num-
ber of reviews that have received more helpful votes. It manifests that more
travellers believe their reviews are helpful and reliable, which implies their high
level of trustworthiness. The algorithm for computing the Impact Index of a
reviewer is as follows:
Algorithm for computing Impact Index

1. Input N reviews posted by the reviewer and the number of

helpful votes received by each review;

2. Initialize the Impact Index: L=0;

3. Rank the reviews based on the number of helpful votes in

descending order and get their ranking indexes. The number

386 Y. Wang et al.

of helpful votes of the i’th review (i=1,2, ...,N) is denoted

as H(i);

4. i=1;

5. If H(i)>=i, i=i+1 and goto step 5; Otherwise L=i-1;

6. Output the Impact Index L.

The ranking index of the review

More than L helpful votes

The No.

of Helpful
Votes

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 2. Geometrical representation of the Impact Index of a reviewer

For instance, as shown in Figure 2, a reviewer has posted 7 reviews, which are
ranked according to their number of helpful votes, from the most to the least,
with the ranking indexes as {1,2,...,7}. For each of the reviews, from the first to
the fourth, the number of helpful votes is larger than its ranking index. But for
the fifth review, its number of helpful votes is smaller than the ranking index.
Therefore, the Impact Index L of the reviewer is 4. A reviewer cannot have a
high Impact Index without posting a substantial number of reviews. Meanwhile,
these reviews need to receive more helpful votes from travellers in order to count
for the Impact Index.

Although the Impact Index measures the credibility of a reviewer by consider-
ing both expertise and trustworthiness, only using the number of reviews is not
enough to represent the multi-faceted nature of credibility. For instance, a re-
viewer may have posted a lot of reviews on only one destination, which indicates
that this reviewer is only knowledgable about this particular destination, with
limited rather than diverse and broad experience. Therefore, we need to consider
more contribution factors as indicators to evaluate the reviewer credibility.

3.3 Exposure-Impact Index

With the Exposure-Impact Index, we further consider the number of destina-
tions on which a reviewer has posted reviews as another dimension of reviewer

Quantifying Reviewer Credibility in Online Tourism 387

credibility. If a reviewer has posted reviews on many destinations, she or he tends
to have high exposure and has experienced many attractions, hotels or restau-
rants at different destinations, implying her/his diverse and broad experience
and knowledge. So the reviewer is possibly more competent and is better able
to provide comprehensive and reliable information. Therefore, the Impact Index
is further improved into Exposure-Impact Index, which is defined as:

A reviewer has an Exposure-Impact Index of E if there are at least E
destinations on which the reviewer has posted reviews, and the reviews
on each of the E destinations have received at least E helpful votes, and
the reviews on other destinations have received less than E helpful votes.

The Exposure-Impact Index makes use of the number of destinations and the
number of helpful votes as two direct elements and also indirectly considers the
impact of the number of reviews. If the Exposure-Impact Index of a reviewer is
higher, two conditions should be satisfied: on one hand, the reviewer has posted
many reviews on more destinations, and has higher exposure, which indicates
the diversity and the breadth of the experience and knowledge of the reviewer,
and further implies her/his wider range of expertise; on the other hand, the
reviews on each destination have received more helpful votes, which indicates
that the reviewer has posted more helpful and reliable reviews, implying the
trustworthiness. Therefore, the reviewer’s expertise and trustworthiness can be
evaluated simultaneously by the Exposure-Impact Index.

The algorithm for computing the Exposure-Impact Index is similar to that for
computing Impact Index. Figure 3 shows an example to calculate the Exposure-
Impact Index of a reviewer, who has been to 6 destinations. The destinations
are ranked based on the total number of helpful votes, which is the sum of the
number of helpful votes received by all the reviews on each destination. The

The ranking index
of the destination

More than E helpful votes

The No.

of Helpful
Votes

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 3. Geometrical representation of the Exposure-Impact Index of a reviewer

388 Y. Wang et al.

ranking index of the 6 destinations are {1,2,...,6}. For each destination, from
the first to the third, the number of helpful votes is larger than or equal to
its ranking index. However, for the fourth destination, its number of helpful
votes is smaller than the ranking index. So the Exposure-Impact Index E of the
reviewer is 3. Reviewers cannot have high Exposure-Impact Index if they have
not posted multiple reviews on a substantial number of destinations. Meanwhile,
the reviews on each of the destinations need to receive enough helpful votes in
order to contribute to the Exposure-Impact Index.

4 Evaluation

We evaluated the Impact Index and the Exposure-Impact Index as follows.
Firstly, experiments were carried out on three data sets collected from TripAdvi-
sor to compare the effectiveness of our methods against the average RHR method
in assessing the credibility of reviews. In the experiment, we invited a team of
raters to assess the quality of the reviews posted by the reviewers using each
of the three methods. Secondly, linear regression analysis was applied to exam-
ine the relationship between the contribution factors and the credibility of the
reviewer as assessed by different methods.

4.1 Data Collection

We developed a web crawler to collect data from TripAdvisor. As evaluation
data, we downloaded reviews written in English that were posted between Aug
10, 2012 and Oct 3, 2012 on three destinations: Hong Kong, New York, and
London. These destinations were chosen because they are popular destinations
located in different continents (thus ensuring a disparate enough group of re-
viewers) and also contain a significant percentage of English-language reviews.
Along with each review, we also downloaded metadata such as the number of
helpful votes and the contribution factors of its author. General description of
the data sets is shown in Table 2. The overlap of the reviewers between any two
destinations was less than 5%, and there were only 20 reviewers who had posted
reviews on three destinations. Therefore, our evaluation is, for all intents and
purposes, based on three different data sets.

Table 2. Descriptions of data sets

Data Sets No. of reviewers No. of reviews

D-HongKong 4205 86612

D-NewYork 21879 384901

D-London 21375 362791

Quantifying Reviewer Credibility in Online Tourism 389

4.2 Evaluation of Effectiveness by Human Raters

This paper focuses on quantifying reviewer credibility to help travellers find
credible reviews. Therefore, to assess the effectiveness of our methods, we con-
ducted a survey and invited human raters to evaluate the credibility of reviews
posted by the reviewers with high value of Impact Index, Exposure-Impact Index
and average RHR. Based on previous results of investigations [6–8, 17–19] into
criteria in evaluating the credibility of messages or reviews, we focus on three
dimensions: organization, information and reliability. The organization dimen-
sion judges if the review is written in a well-organized structure, with a clear
topic and in fluent language that make it easy to read and understand [6, 7, 17].
The information dimension decides if the review contains diverse, detailed and
sufficient relevant information about what it reviews on [6, 7, 18, 19]. And the
reliability dimension assesses if the review is telling the truth, and expressing
unbiased opinion based on reviewer’s personal experience [6, 18, 19]. The 5-point
scale was used to evaluate each dimension, which is described in detail as Table
3, 4 and 5.

For each data set (D-HongKong, D-NewYork, D-London), e.g. D-HongKong

For each credibility measurement (Impact Index, Exposure-Impact Index,
average RHR), rank reviewers by the measurement, e.g. Impact Index

Select the 3 longest reviews from each of the selected reviewer

Randomly select 20 reviewers from 50 top ranked reviewers

Let the raters of one group rate these 60 (3*20) reviews in three dimensions:
organization, information and reliability

Compute the average rating of each dimension for each review

Compute the average rating of each dimension of 60 reviews, to evaluate
the effectiveness of each credibility measurement, e.g. Impact Index

Fig. 4. Implementation flow of survey

We recruited 15 raters who are graduate students, and divided them into
three groups equally. For each data set, one group of raters were invited to
check the credibility of the reviews posted by the reviewers with high value
of one measurement. Figure 4 shows the survey procedures, using the data set
D-HongKong as an example.

Survey Results. For each data set, the evaluation results of the reviews chosen
from the reviewers returned by each of the three measurement methods were col-
lected from the corresponding group of raters. The average rating of the reviews

390 Y. Wang et al.

Table 3. Description of each rating level in the organization dimension of a review

Ratings Description of organization

5 Its structure is clear and easily recognized;
Most of the paragraphs have clear topic with detailed description;
Its language is fluent and easy to read and understand.

4 It is paragraphed clearly, but not organized in a clear structure;
Some of the paragraphs have clear topic with detailed description;
Its language is generally fluent and easy to read and understand.

3 It is not paragraphed clearly or just has one long paragraph;
Most of the paragraphs do not have clear topic. If it has one
paragraph, the topic is not clear but with detailed description;
Its language has no obvious problem for reading and understanding.

2 It has only one paragraph;
It has no clear topic or detailed description;
Its language is not easy to read and understand.

1 It has only one paragraph with few sentences;
It has no topic or detailed description;
Its language is very poor, and difficult to read and understand.

Table 4. Description of each rating level in the information dimension of a review

Ratings Description of information

5 The information it describes is relevant to the reviewed object;
It includes sufficient basic information and some unique information
(e.g. something the reviewer experienced personally);
The information about the object is detailed and useful
(e.g. it describes several different aspects in detail).

4 Most of the information it describes is relevant to the reviewed object;
It includes some basic information about the object;
The information about the object is generally detailed and useful.

3 Some of the information it describes is relevant to the reviewed object;
It includes a little basic information about the object;
The information about the object is general.
(e.g. it describes only one or no aspect in detail)

2 A little information it describes is relevant to the reviewed object;
It includes just one piece of basic information about the object;
Or it includes some basic information about the object, which is
too common and easily obtained.

1 The information it describes are not relevant to the reviewed object.

in each dimension posted by the reviewers ranked top by three methods for each
data set are shown in Figure 5. From the figure, we can observe that the reviews
posted by the reviewers returned by Impact Index and Exposure-Impact Index
obtain much higher rating in each dimension than those returned by average
RHR. For instance, the rating of reviews posted by the reviewers returned by
Impact Index and Exposure-Impact Index is higher in the organization dimension
than those returned by average RHR, by 7%-22% and 17%-27%, respectively.

Quantifying Reviewer Credibility in Online Tourism 391

Table 5. Description of each rating level in the reliability dimension of a review

Ratings Description of reliability

5 The information of the object includes comprehensive and convincing
specifics, examples, or data, and can be accepted as truth;
The opinion is fair and unbiased, with detailed personal experience
(e.g. including date, time, person, or what happened) as evidence,
which can support the opinion.

4 The information of the object includes some convincing specifics,
examples, or data, and can be generally accepted as truth;
The opinion is generally fair, with some detailed personal experience
as evidence, which can generally support the opinion, though not
sufficiently. And there may be a few biased opinions.

3 The information of the object includes a few convincing specific,
example, or data, and can be generally accepted as truth;
Some of the opinions are generally fair, with a few personal experiences
as evidence. And there are some biased and unfair opinions.

2 The information of the object is very general without any detail. And
it is difficult to accept the information as truth;
The opinion is biased and unfair, or the personal experience can
not support the opinion.

1 There is little or no basic information of the object. The information
is seems to be false;
The opinion is expressed in a very emotional and extreme way, and is
unfair without any evidence. Its purpose is to boast of or attack the
reviewed object.

RHR

I I
I

(a)

RHR
I

I I

(b)

RHR
I

I I

(c)

Fig. 5. The average rating of reviews in each dimension posted by reviewers ranked top
by three methods on three data sets (a) D-HongKong (b) D-NewYork (c)D-Longdon

The survey results suggest that the reviews posted by the reviewers returned by
Impact Index and Exposure-Impact Index are more credible than those returned
by average RHR. Therefore, our methods work more effectively than the average
RHR to help find credible reviews. We believe that this is because both the Im-
pact Index and Exposure-Impact Index methods evaluate reviewer credibility by
considering two dimensions, including expertise and trustworthiness, while the
average RHR method tends to favor the reviewers who have posted few reviews,

392 Y. Wang et al.

which possibly implies a narrow range of expertise, but nevertheless obtained
high average RHR.

Moreover, the rating of reviews posted by the reviewers returned by the
Exposure-Impact Index is higher in each dimension than that returned by the
Impact Index. Therefore, we suggest that the Exposure-Impact Index method
performs better than the Impact Index method, because it assesses the expertise
of the reviewer by directly considering the number of destinations.

4.3 Regression Analysis on Contribution Factors versus Credibility
Formulation

To give us further insight into the differences between various methods, we per-
formed a linear regression analysis experiment to investigate the relationship be-
tween the contribution factors and the three evaluation methods: namely, Impact
Index, Exposure-Impact Index and average RHR, respectively. The independent
variables were the contribution factors, and the dependent variable was the value
returned by each measurement method. For each data set, the linear regression
analysis investigated the relationship between the dependent and independent
variables, in order to find the contribution factors which are strongly related to
reviewers’ Impact Index, Exposure-Impact Index and average RHR.

Linear Regression Analysis Results. The results obtained by linear regres-
sion analysis are presented in Figure 6 which shows the most relevant contri-
bution factors to reviewers’ Impact Index, Exposure-Impact Index and average
RHR. Each sub-figure, such as Figure 6(a), represents the model generated by
linear regression which best fits the data. The weights of the edges are the Beta
values, which are the standardized coefficients of the model. They give the es-
timates of the correlations between the independent variables and dependent
variable that have been standardized with variance 1.

From the figure, we can observe that the average RHR of reviewers is strongly
related to the Average Length of Review (ALR), while the Impact Index and
Exposure-Impact Index are positively related to the Destination Count, Review
Count and ALR. This shows that the Impact Index and the Exposure-Impact
Index behave similarly when compared to the average RHR. This suggests that
considering only the average RHR will give us some credible reviewers but it

Table 6. Three reviewers of D-HongKong who are ranked lower by average RHR

Reviewer Average Impact Exposure Destination Review No. of
RHR Index -Impact Index helpful

name ranking ranking ranking Count Count votes

ct-cruisers 908 15 5 125 416 460

Fiver75 3266 28 6 87 983 391

bongkeh 441 29 17 56 165 258

Quantifying Reviewer Credibility in Online Tourism 393

Average RHR
of reviewer

ALR

0.38

(a)

Impact Index
of reviewer

ALR

0.26

0.20

Destination
Count

0.45

Review
Count

(b)

Exposure-Impact
Index of reviewer

ALR

0.21

Review
Count

0.39

Destination
Count

0.38

(c)

Average RHR
of reviewer

ALR

0.37

(d)

Impact Index
of reviewer

ALR

0.26

0.19

Destination
Count

0.41

Review
Count

(e)

Exposure-Impact
Index of reviewer

ALR

0.22

Review
Count

0.37

Destination
Count

0.34

(f)

Average RHR
of reviewer

ALR

0.35

(g)

Impact Index
of reviewer

ALR

0.24

0.20

Destination
Count

0.40

Review
Count

(h)

Exposure-Impact
Index of reviewer

ALR

0.20

Review
Count

0.38

Destination
Count

0.33

(i)

Fig. 6. Results of linear regression analysis between contribution factors (ALR denotes
Average Length of Reviews) and reviewer’s average RHR, Impact Index, and Exposure-
Impact Index. (a)-(c) D-HongKong; (d)-(f) D-NewYork; (g-i) D-London.

misses some reviewers who have a high level of exposure and expertise, but
the average RHR is not so high. For instance, Table 6 shows three reviewers
in D-HongKong who have posted a lot of reviews on many destinations, and
received a fair number of helpful votes, and who also have much exposure and
expertise. They would not have been discovered by the average RHR method,
but are ranked much higher by both Impact Index and Exposure-Impact Index
methods.

5 Conclusions

To help travellers search credible reviews online, this paper proposes one mea-
surement and a variant to quantify the credibility of reviewers in TripAdvisor.
The Impact Index is proposed to evaluate the reviewer credibility by considering
expertise and trustworthiness based on the number of reviews and the number of
helpful votes. To represent the the multi-faceted nature of credibility, the Impact
Index is further improved into Exposure-Impact Index by considering in addition

394 Y. Wang et al.

the number of destinations on which a reviewer has posted reviews. Experimental
results show that both the Impact Index and the Exposure-Impact Index work
more effectively than average RHR to quantify the credibility of reviewers to
help find credible reviews. Additionally, the Impact Index and Exposure-Impact
Index can discover some credible reviewers that the average RHR missed.

So far, in this research we have put in equal emphasis on the number of des-
tinations and the number of helpful votes. However, different weighting schemes
may be more appropriate for different purposes. Therefore, for the future work,
we will investigate the impact of adjusting the weight of two dimensions for the
Exposure-Impact Index, and then develop more effective methods to evaluate
the credibility of reviewers in tourism for helping travellers search for credible
reviews. It is believed that this method to quantify reviewer credibility is appli-
cable to other domains with a reviewer-review-feedback structure.

Acknowledgement. This project was partially supported by Hong Kong Re-
search Grants Council. The number of the grant is PolyU 5116/08(B-Q13F).

References

1. Litvin, S.W., Goldsmith, R.E., Pan, B.: Electronic Word-of-mouth in Hospitality
and Tourism Management. Tourism Management 29(3), 458–468 (2008)

2. Sparks, B.A., Browning, V.: The Impact of Online Reviews on Hotel Booking
Intentions and Perception of Trust. Tourism Management 32(6), 1310–1323 (2011)

3. Kusumasondjaja, S., Shanka, T.: Credibility of Online Reviews and Initial Trust:
The Roles of Reviewer’s Identity and Review Valence. Journal of Vacation Mar-
keting 18(3), 185–195 (2012)

4. Lee, H., Law, R., Murphy, J.: Helpful Reviewers in TripAdvisor: An Online Travel
Community. Journal of Travel & Tourism Marketing 28(7), 675–688 (2011)

5. Metzger, M.J., Flanagin, A.J., Medders, R.: Social and Heuristic Approaches to
Credibility Evaluation Online. Journal of Communication 60(3), 413–439 (2010)

6. Metzger, M.J., Flangin, A.J., Eyal, K., Lemus, D.R., McCann, R.M.: Credibility for
the 21st Century: Integrating Perspectives on Source, Message, and Media Cred-
ibility in the Contemporary Media Environment. Communication Yearbook 27,
293–335 (2003)

7. Flanagin, A.J., Metzger, M.J.: Digital Media and Youth: Unparalleled Opportu-
nity and Unprecedented Responsibility. The John D. and Catherine T. MacArthur
Foundation Series on Digital media and Learning, pp. 5–27. MIT Press, Cambridge
(2008)

8. Rieh, S.Y., Danielson, D.R.: Credibility: A Multidisciplinary Framework. Annual
Review of Information Science and Technology 41(1), 307–364 (2007)

9. Xie, H., Miao, L., Kuo, P.J., Lee, B.Y.: Consumers’ Responses to Ambivalent On-
line Hotel Reviews: The Role of Perceived Source Credibility and Pre-decisional
Disposition. International Journal of Hospitality Management 30(1), 178–183
(2011)

10. Gretzel, U., Yoo, K.H., Purifoy, M.: Online Travel Review Study: Role and Impact
of Online Travel Reviews. Laboratory for Intelligent Systems in Tourism, Texas
A&M University (2007)

Quantifying Reviewer Credibility in Online Tourism 395

11. Fragale, A.R., Heath, C.: Evolving Information Credentials: The (mis) Attribu-
tion of Believable Facts to Credible Sources. Personality and Social Psychology
Bulletin 30(2), 225–236 (2004)

12. Sidali, K.L., Schulze, H., Spiller, A.: The Impact of Online Reviews on the Choice
of Holiday Accommodations. In: Information and Communication Technologies,
pp. 87–98. Springer Wien, New York (2009)

13. Yoo, K.H., Lee, Y., Gretzel, U., Fesenmaier, D.R.: Trust in Travel-related Con-
sumer Generated Media. In: Information and Communication Technologies in
Tourism, pp. 49–60. Springer, New York (2009)

14. Vermeulen, I.E., Seegers, D.: Tried and Tested: The Impact of Online Hotel Reviews
on Consumer Consideration. Tourism Management 30(1), 123–127 (2009)

15. Hovland, C.I., Janis, I.L., Kelley, H.H.: Communication and Persuasion: Psycho-
logical Studies of Opinion Change. Yale University Press, New Haven (1953)

16. Pornpitakpan, C.: The Persuasiveness of Source Credibility: A Critical Review of
Five Decades. Journal of Applied Social Psychology 34(2), 243–281 (2004)

17. Fogg, B.J., Soohoo, C., Danielson, D.R., Marable, L., Stanford, J., Tauber, E.R.:
How do Users Evaluate the Credibility of Web Sites? A Study with Over 2,500
Participants. In: Proceedings of the 2003 Conference on Designing for User Expe-
riences, pp. 1–15 (2003)

18. Rieh, S.Y.: Judgment of Information Quality and Cognitive Authority in the Web.
Journal of the American Society for Information Science and Technology 53(2),
145–161 (2002)

19. Metzger, M.J.: Making Sense of Credibility on the Web: Models For Evaluating On-
line Information and Recommendations for Future Research. Journal of the Amer-
ican Society for Information Science and Technology 58(13), 2078–2091 (2007)

20. Fogg, B.J., Tseng, H.: The Elements of Computer Credibility. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems: the CHI is the
Limit, pp. 80–87 (1999)

21. Cho, J., Kwon, K., Park, Y.: Q-rater: A Collaborative Reputation System Based
on Source Credibility Theory. Expert Systems with Applications 36(2), 3751–3760
(2009)

22. Hirsch, J.E.: An Index to Quantify an Individual’s Scientific Research Output.
Proceedings of the National academy of Sciences of the United States of Amer-
ica 102(46), 16569 (2005)

Classifying Twitter Users Based on User Profile

and Followers Distribution

Liang Yan1, Qiang Ma2, and Masatoshi Yoshikawa2

1 Corporate Software Engineering Center, Toshiba Corporation,
1, Komukai-Toshiba-cho, Saiwai, Kawasaki, 212-8582, Japan

an@swc.toshiba.co.jp
2 Graduate School of Informatics, Kyoto University,
Yoshida Honmachi, Sakyo, Kyoto, 606-8501, Japan

{qiang,yoshikawa}@i.kyoto-u.ac.jp

Abstract. We propose methods to classify Twitter users into open ac-
counts and closed accounts. Open accounts (shop accounts, etc.) are the
accounts who publish information to general public and their intentions
is to promotion products, services or themselves. On the other hand,
closed accounts tweet information on their daily lives or use Twitter as
a communication tool with their friends. To distinguish these two dif-
ferent kinds of Twitter users can help us to search for local and daily
information on Twitter. We classify Twitter accounts based on user pro-
files and followers distributions. The features of profile of open accounts
include clue keywords, telephone number, detailed address, and so on.
Follower distribution is another notable feature: most open accounts have
followers from variety community. The experimental results validate our
methods.

1 Introduction

To search for some real time information, such as “where can I buy iPhone5 now
in Kyoto”, Twitter is a valuable source since there are million users publish local
and daily (shopping, etc.) information. To search for the real time information
on Twitter, we need analyze the tweets with using some clue phrases[1][2]. We
notice that there are two groups of users on Twitter, from which we can get
different clue phrases. For example, in the query that searching for the shops
where can buy iPhne5, the two group can be consumers and sellers. Consumers
are more like to use “buy”, while sellers use some words about “sell” in their
tweets. Not only the different expression in tweets contents, but also the conflicts
of the results need to be considered. For example, a shop might say that “There
are still some inventories in our shop”, while a consumer said “iPhone5 is sold out
in that shop” at the same time. The message from consumer has high probability
of being right in this case.

It is to say that, to distinguish different type of users is helpful to discovery
right and real information from Twitter. In this paper, we propose novel no-
tions of open account and closed account to distinguish Twitter users. An open

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 396–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Classifying Twitter Users Based on User Profile and Followers Distribution 397

account is the account with a purpose for promotion and most of their tweets
are advertisement, such as a shop, a singer, a news agency and so on. A closed
account is the account with a purpose for making friends or communication and
the tweets are almost about daily log or feeling show.

We classify the two groups by user profiles and followers distributions. There
are some features in an open account’ profile, such as some clue words, tele-
phone and the detailed address. We apply machine learning technologies, such
as SVM (support vector machine) by using these features to user classification.
We also notice the followers distributions of open accounts more scattered than
those of close accounts. The followers of an open account is more likely from
anywhere with no relationship with each other, while the closed account’s fol-
lowers are more likely to be the acquaintances in the real world. We calculate
the entropy/standard deviation to estimate the diversity of its followers. We also
propose an integrated user classification method by using features of both user
profiles and followers distributions. From the experiments, we found both user
profile and followers distribution are instrumental for classifying Twitter users.

2 Related Work

Marco Pennacchiotti et al.[3] employ a machine learning approach to classify
Tweet users into many fields, such as political orientation or ethnicity, by ana-
lyzing user profile features, tweeting behavior and social network.

A. Java et al.[4] propose method to classify the Twitter users into information
seeking users, information sharing users and friend making users by comparing
the quantities of a user’s friends and followers. Their purpose is different from
our work. Usually, open account is an information sharing user. But sometime,
they also follow a lot of accounts for get the information from the customers or
competitors, and in that case, open account can also be an information seeking
user at the same time.

What’s more, Z. Chu et al.[5] also study on classifying Twitter user into
human, bot and cyborg by comparing the tweets content they wrote and the
frequency they post tweets. But the goal is totally different from us because
open account, such as shops and celebrities, are also human accounts.

3 Classification of Twitter Users

3.1 Open Account and Closed Account

Open accounts are the accounts with a purpose for advertising or spreading
information, tweeting to general public. Closed accounts are the accounts with
a purpose for making friends or communication, tweeting to a certain range of
accounts.

Usually, a closed account is created by one person. They publish tweets about
their daily lives, share experience, contact friends, or just for fun. However, open
accounts have more need to be done that they are intending to be broadcast

398 L. Yan, Q. Ma, and M. Yoshikawa

centers or information sources. They can be an organization, a company, an
agent or an institution and so on. They active in the world of Twitter to better
advertise or publicize benefit with the huge amount of Twitter users.

3.2 User Classification by Using User Profile

Usually, open accounts have some clue words in profile, such as “shop” “bot”,
which help us to know them. Also, an open account is more likely to have tele-
phone numbers or a postal address. For example, a travel agent gives a telephone
number for clients to contact. However, closed accounts, almost nobody will give
a telephone number or a postal address. Therefore, we propose SVM based clas-
sification method by using the features of clue words, telephone number and
address.

The feature of clue words is the frequency of clue words appearing in a profile.
For example, we find “shop” and “sell” in a shop’s profile and both word only
appear once, the feature of clue words would be “2”. The features of telephone
number and address are “1” or “0”. “1” means there is telephone number or
address in the profile, while “0” is opposite. Currently, we use libsvm-3.141 to
realize the SVM based classification.

We propose the method to collect clue Words of Open Accounts’ Profiles as
follow.

1. First, we give a seed set of clue words R
2. Then, classify the given accounts by using R. As a result, we have Do and

Dc. Do is the profiles set of open accounts, while Dc is the profiles set of
closed accounts

3. Extract nouns set Ki from i ∈ Do. Let K be the union of all the Ki.
4. For each k ∈ K compute s(k) = df(k,Do)/(1 + df(k,Dc). Here, df(k,Do)

and df(k,Dc) denote the frequency of k in Do and Dc, respectively. This
formula means that a noun with high frequency in profiles of open accounts
and low frequency in profiles of closed accounts will have high probability of
being clue word to distinguish open and closed accounts.

5. If s(k) > θ, add k into R. Here, theta is a pre-specified threshold.
6. Repeat 2-6 until there is no new clue words can be added into R.
7. Output R as the clue words set.

3.3 User Classification Based on Followers’ Network

The followersf distributions are different between open account and closed ac-
count. For a closed account, his/her followers are from a small number of com-
munities, such as his/her friends, classmates, colleagues and relatives and so
on. However, in the case of an open account, the followers can from anywhere
and they never know each other usually. For example, the followers of a news
media’s account are more likely the persons who are interested in reading news
from various communities. Figure 1 and Figure 2 shows the examples followers
distributions of an open account and a closed account.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Classifying Twitter Users Based on User Profile and Followers Distribution 399

Fig. 1. Example of Open Account’s
Followers’ Network

Fig. 2. Example of Closed Account’s
Followers’ Network

We suppose the followers distribution of an open account is more scattered and
have a higher diversity. The method to classify users by compare their followers
distribution is in three steps.

1. Creating followers’ network. To a given account, we construct its followers’
network with its followers, and the followers and friends of its followers.

2. Detecting the communities in the network. We utilize Gephi[6] to detect
communities from the followers’ network of each given account.

3. Calculating the entropy/Standard deviation of the followers’ network by only
considering the followers, but the followers’ followers or friends.

The followers diversity based on entropy is computed as follows. In the formula,
n is the number of detected communities.

E = −
n∑

i=1

(pi log pi) (1)

where pi = xi

nf
is the possibility of a node belong to community i.

The follower diversity based on standard deviation is computed as follows.

Ss =

√√√√ 1

n− 1

n∑
i=1

(
xi − u

nf
)2 (2)

where u is the average nodes number of a community. xi is the nodes number of
community i. nf is the whole nodes number of the network.

Higher Entropy and Lower standard deviation are expected in open accounts.

3.4 Integrated Classification Methods

As one of the integrated ways, we use the follower diversity (entropy) as a new
feature and apply the machine learning method.

400 L. Yan, Q. Ma, and M. Yoshikawa

Table 1. Clue Words Set

Original Word in Japanese Meaning in English

shoppu,eigyo,jyoho,shinbun,koushiki, shop,business,information,newspaper,official,
nyusu,hasshin,kachudo,unnei,kaishya, news,transmission,acivity,management,company,
kigyo,tenpo,chiiki,oen,ibento,kaisai enterprise,store,region,support,event,hold

As the other integrated way, we define an integrated formula as follows. If an
account has a high score, its possibility of being open account is high.

score = α ∗ E + β ∗ scorep (3)

scorep = log(w1k + w2t + w3a) (4)

where, α , β, w1, w2 and w3 are pre-specified parameters. k is clue words, t is
telephone and a is address.

4 Experiments

4.1 Data Set

We used three data sets in our experiments. We collected a list of 85 Twitter ac-
counts whose tweets had been highly ranked by using the Twitter search engine2

with a query “iPhone5 near:’Kyoto’ within:50mi” (in Japanese). We classified
these 85 accounts into open and closed accounts based on analysis of their profiles
and tweets manually. As the result, there are 16 open and 69 closed accounts.
We collected the 85 accounts’ profiles by using Twitter API3 and the profiles of
the 85 accounts constitute data set A.

We also collect data need to construct the followers’ network of the 85 ac-
counts. The followers’ network of the 85 accounts is data set B. We collected the
profiles from the followers’ network of an open account from data set B. We get
488 accounts’ profiles as data set C, and there are 149 open accounts and 339
closed accounts.

4.2 Experiment on Classifying Method Users Based on SVM

We constructed an initial clue words set by using 20 open and 20 closed accounts.
Then, with the method described in Section 3.2, we have collected the clue words
set shown in Table 1.

Then, for data sets A and C, we classify them by our SVM based method.
We tested three kinds of combinations of features in this experiment. k means
keyword, t means telephone number and a means address. Table 2 shows the
results of data set A, while Table 3 shows that of data set C. We calculate
Precision (p), Recall (r) and F-measure to evaluate the results. From the results,
we conclude as follow.
2 http://twitter.com/#!/search
3 https://dev.twitter.com

http://twitter.com/#!/search

Classifying Twitter Users Based on User Profile and Followers Distribution 401

Table 2. Result of Data Set A by SVM Based User Classification

Feartures Precision Recall F-measure

k&t&a 1 0.437500 0.608696
k 1 0.18750 0.315789

t&a 1 0.312500 0.476190

Table 3. Result of Data Set C by SVM Based User Classification

Feartures Precision Recall F-measure

k&t&a 0.745098 0.510067 0.605578
k 0.551724 0.322148 0.406780

t&a 1 0.288591 0.447917

– Feature words substantial increase recall ratio of identifying open accounts,
with an undesirable precision ratio.

– Telephone number and address achieve a good precision of identifying open
accounts, but the recall need to be improved.

– Considering feature words, telephone number and address achieved best per-
formance to identify open accounts.

We found about 70% of open accounts’ profiles have clue words (the words in
our clue words set), while there are some (about 20%) closed accounts’ profiles
also have some clue words. The closed accounts which have clue words are easily
classified into open accounts wrongly. That is why clue words give us a high recall
but low precision. We also found that, the open accounts’ profiles, which have
telephone number and address are only about 30%, but almost all the closed
accounts’ profile don’t have telephone number or address. This leads a high
precision and low recall when we only consider telephone number and address.

4.3 Experiment on Classifying Based on Followers Distribution

In this experiment, at first, we compared the diversity scores of open and closed
accounts. The results are shown in Table 4.

From the results, we can see that, entropy based diversity of open account is
higher than that of closed account, while standard deviation based diversity of
open account is lower. It is to say, the diversity of an open account’s followers is
higher.

We chose receiver operating characteristic (ROC) to evaluate our method. We
set open accounts as positives, while closed accounts as negatives. ROC curve of

Table 4. Average of Entropy and Standard Deviation based Diversity Scores

Average Entropy based Diversity Standard Deviation based Diversity

Open Account 2.7811 0.0463
Closed Account 2.4282 0.0750

402 L. Yan, Q. Ma, and M. Yoshikawa

Fig. 3. ROC Curves of Diversities of
Entropy and Standard Deviation

Fig. 4. ROC curve for Comparing case
(1,2) and (0,1)

Table 5. Results on Data Set A (integrated classification method based svm)

Feartures Size of Training Data Set Precision Recall F-measure

e&k&t&a 10 0.875000 0.437500 0.583333
e&k&t&a 20 0.888889 0.500000 0.640000
k&t&a 10 1 0.375000 0.545455
k&t&a 20 1 0.437500 0.608696

diversities based on entropy and standard deviation are shown in Figure 3. Y-
axis is sensitivity and X-axis is 1-specificity. Sensitivity measures the proportion
of actual positives which are correctly identified, while specificity measures the
proportion of negatives which are correctly identified. Usually, the result is good
when the result curve is in the left side of the middle line.

Both of the ROC curves of entropy and standard deviation are on the left
side. It is to say, followers distribution is helpful in classification.

4.4 Experiment on Integrated Classification Methods

We carried out the experiments on our integrated classification methods by using
data set A and data set B. The results of integrated method based on SVM are
shown in Table 5. In the table, e means the feature of entropy. From the result,
we can say, entropy based follower diversity is a useful feature to improve the
recall ratio to identify open accounts.

We also carried out experiment on integration calculation to integrate user
profile and followers’ network for user classification. We use data set C to decide
the parameters of w1, w2 and w3. We calculate the value of precision (p), recall
(r) and F-measure (F) and set the value of w1, w2 and w3 as 1, 2 and 2 because
of the best average score of F measure. Then, we set a and b as (1,1), (2,1), (1,2)
and (0,1) and we found the value of (1, 2) achieve the best performance. Also,
we compare the results when a and b are (0,1) and (1,2) by using ROC curves as
Figure 4 shows. We can see, the best point is the farthest node from the middle
line and the best point of case (1, 2) is farther from the middle line.

Classifying Twitter Users Based on User Profile and Followers Distribution 403

From the experimental results, we found that both user profile and followers’
network are useful for user classification. As to integrated classification meth-
ods, we found that the result of integration calculation is better than machine
learning technologies by comparing with the best score of F measure (0.714286
vs. 0.640000). What’s more, we also found that result comes better when we
consider followers’ network rather than only use user profile.

5 Conclusion

In this paper, we proposed novel concepts of open and closed accounts. We also
proposed methods for classifying Twitter users into open accounts and closed
accounts based on user profiles and followers’ distribution. The experimental
results reveal that both user profile and followers distribution can help classifi-
cation and we will achieve better results when we use both of them.

Further experiments using large data set are necessary to improve the classifi-
cation methods. Applications for Twitter search based on the user classification
are another direction of our future work.

Acknowledgment. This work was partly supported by JSPS KAKENHI Grant
Number 25700033.

References

1. Yan, L., Ma, Q., Yoshikawa, M.: Where can I Buy iPhone4S Now?: Spatio-Temporal
Entity Retrieval on Twitter. DEIM Forum 2012 (2012)

2. Yan, L., Ma, Q., Yoshikawa, M.: Classifying Twitter Users for Spatio-temporal En-
tity Retrieval. IPSJ Technical Reports 2012-DBS-156(15), 1–6 (2012)

3. Pennacchiotti, M., Popescu, A.: A Machine Learning Approach to Twitter User
Classification. In: ICWSM 2011, pp. 281–288 (2011)

4. Java, A., Song, X., Finin, T., Tseng, B.: WhyWe Twitter: Understanding Microblog-
ging Usage and Communities. In: SNA-KDD 2007, pp. 56–65 (2007)

5. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is Tweeting on Twitter: Hu-
man, Bot, or Cyborg? In: ACSAC 2010, pp. 21–30 (2010)

6. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An Open Source Software for Ex-
ploring and Manipulating Networks. In: ICWSM 2009, pp. 361–362 (2009)

Fast Community Detection

Yi Song and Stéphane Bressan

School of Computing,
National University of Singapore
{songyi,steph}@nus.edu.sg

Abstract. We propose an algorithm for the detection of communities
in networks. The algorithm exploits degree and clustering coefficient of
vertices as these metrics characterize dense connections, which, we hy-
pothesize, are indicative of communities. Each vertex, independently,
seeks the community to which it belongs by visiting its neighbour ver-
tices and choosing its peers on the basis of their degrees and clustering
coefficients. The algorithm is intrinsically data parallel. We devise a ver-
sion for Graphics Processing Unit (GPU). We empirically evaluate the
performance of our method. We measure and compare its efficiency and
effectiveness to several state of the art community detection algorithms.
Effectiveness is quantified by five metrics, namely, modularity, conduc-
tance, internal density, cut ratio and weighted community clustering.
Efficiency is measured by the running time. Clearly the opportunity to
parallelize our algorithm yields an efficient solution to the community
detection problem.

1 Introduction

A Community forms when a group of vertices in a network is more interconnected
than its vertices are connected to other vertices in the network. The knowledge of
such groups or communities helps finding efficient ways to distribute and gather
information in online social networks for example. Community detection is a
useful tool in fields such as sociology, biology and marketing. In this paper, we
propose an efficient yet effective algorithm for the detection of communities in
networks.

We model a network as a simple graph G(V,E), where V is a set of vertices
and E is a set of edges. G is undirected, un-weighted, and has no self-loop.
The idea of our method is, for each vertex, to seek the community to which
it belongs by visiting its neighbour vertices. Decisions are made based on the
degrees, clustering coefficients of the neighbours and the number of common
neighbours. Our method starts from a micro perspective, which is different from
that of previous works such as GN (see [13] and [25]). Considering the size
of networks in modern applications, we try and design a scalable method in
order to be able to deal with the large networks in a reasonable time. Therefore
we try and minimize the number of pairs-wise computation among vertices.
Instead of comparing all pairs of vertices in a graph, we only explore each vertex’

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 404–418, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fast Community Detection 405

immediate neighbourhood. Indeed vertices in the same community are more
likely to be neighbours. This significantly reduces the complexity except in the
case of dense graphs. In our algorithm, as vertices can independently explore
their neighbourhood and join a community by following an immediate neighbour,
the algorithm is intrinsically data parallel. We devise a parallel algorithm and
implement it on a Graphics Processing Unit (GPU).

We empirically evaluate the performance of our algorithm with both real
world networks and synthetic networks. We evaluate the quality of communities
using metrics from different classes (see [36]), as well as with one metric recently
proposed in [28]. The metrics include modularity, conductance, internal density,
cut ratio, and weighted community clustering (WCC). Those metrics indicate
the community quality from different perspectives. We measure the running time.
We compare our algorithm with several the state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related works on graph clustering and community detection. Section 3 presents
the algorithm we propose. Section 4 shows the experiment setting, experiment
results and results analysis. Finally we conclude in Section 5.

2 Related Work

Graph clustering and community detection methods can be categorized into sev-
eral classes. Several authors ([27,18,37,17,33]) use random walks. For example,
Pons and Latapy in [27] use random walk to calculate the similarities, which
they call distance between each pair of adjacent vertices, and then use Ward’s
agglomerative hierarchical clustering approach to find communities. Jin et al.
in [18] propose an algorithm based on Markov random walk to unfold the com-
munities, and extract them with a cutoff criterion in terms of conductance.
Dongen in [33] uses Markov Clustering, which simulates the random walks.

Several authors ([25,4,26,15,16]) focus on modularity which is first proposed
by Girvan and Newman in [13]. Modularity is defined as the number of edges
inside groups minus the expected number in an equivalent graph with edges
placed at random. An equivalent graph here means that the graph has the same
number of edges and the same degree distribution. For example, Clauset in [4]
defines a local measurement of community structure called locally modularity
and proposes an agglomerative algorithm to maximize the local modularity of the
communities detected. Girvan and Newman in [25] propose a divisive method to
identify community. The edges with highest betweenness are removed iteratively,
thus disconnecting the graph and creating communities. The best partition has
the highest modularity.

Some authors, e.g., in [9] and [12], use cliques. For example, Du et al. in [9]
use maximal cliques for community detection. An algorithm called ComTector is
proposed. It enumerates all maximal cliques for finding clustering kernel, assigns
the rest vertices to closest kernels, and merges fractional communities. Palla et
al. in [12] design the clique percolation method (CMP) which finds all cliques of
size k. Communities are connected union of k-cliques.

406 Y. Song and S. Bressan

The authors of [30],[5] and [1] detect community in an agglomerative way.
Ahn et al. in [1] define clusters as sets of edges. Their method group edges
with an agglomerative hierarchical clustering technique. Clauset et al. in [5]
propose a greedy hierarchical agglomerative algorithm. It starts from each vertex
being a community and then joins two communities at each iteration. The two
communities are selected based on the idea of maximizing modularity increment.
They use dendrogram to represent the whole process.

Besides those ideas, Jierui and Boleslaw in [34] propose speaker-listener label
propagation algorithm for overlapping community detection. Zhang et al. in [38]
propose a method that combines spectral mapping, fuzzy clustering and the op-
timization of a quality function. Yan and Gregory in [35] propose an optimiza-
tion for existing community detection algorithms. Pairwise vertex similarities
are measured beforehand, and existing algorithms are applied on the graph with
the vertex similarities as edge weights. Rosvall and Bergstrom in [29] use an
information theoretic approach to detect community in weighted and directed
network.

Some methods, such as those presented in [2], [3], [14], [19] and [6], detect com-
munity locally. For example, Baumes et al. in [2] and [3] propose two heuristics to
detect locally dense subgraphs as communities. Two subgraphs with significant
overlap can be locally optimal and thus are overlapping communities. The first
heuristic finds disjoined clusters by deleting high-ranking vertices and then adds
the deleted vertices to one or more clusters. The second heuristic starts from
randomly chosen seeds and then adds or deletes one vertex at a time untill the
density metric cannot be further improved. Goldberg et al. in [14] propose an
additional requirement based on the work in [2] and[3], which requires the com-
munity to be a connected sub-graph. so that the algorithm is able to examine
the connectivity of the cluster found.

3 Algorithm

We propose an algorithm that delegates the job of finding communities to indi-
vidual vertices. Each vertex seeks its community independently. The decisions
of which community to join are made based on the degrees and clustering coeffi-
cients of neighbours, as well as on the number of common immediate neighbours.
We hypothesize that vertices tend to join groups with more connections. In other
words, the vertices try to attach themselves to dense structures, i.e. structures
with more connections among vertices in this structure.

The algorithm starts by calculating degrees and local clustering coefficient for
each vertex (line 1). The local clustering coefficient is defined as

cc[i] =
ejk : j, k ∈ V, ejk ∈ E

degree[i] ∗ (degree[i] − 1)

It is the ratio between the number of edges between vertices within its neigh-
bourhood and the number of edges that could possibly exist between them. It
quantifies how close the vertex connects with its neighbours.

Fast Community Detection 407

Algorithm 1. Fast Community Detection

Input: graph G(V,E) with |V | vertices, |E| edges;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 Compute degree[v] and cc[v], v ∈ V ;
2 for each v do
3 if degree[v]<degree[vj] then /* vj ∈vneighbour */

4 g[v] ← vi, where degree[vi]=max(degree[vj]) ;
5 else
6 g[v] = v;

7 for each v do
8 if g[v] = v and degree[v]=degree[vi] then
9 if v and vi has more than half common vertices;

10 then
11 g[v]← vi, if vi has smaller id;

12 else
13 vg ← g[v];
14 c1 ← number of common neighbours between v and j;
15 c2 ← number of common neighbours between v and (vneighbour \ vg);
16 if c1<c2 then
17 g[v] ← vi, where degree[vi]=max(degree[vj]), vj ∈(vneighbour \ vg)
18 for each v do
19 if g[v] �= v then
20 i ← g[v];
21 repeat
22 i ← g[i] ;
23 until g[i]= i, find standalone vertex;
24 g[v]←i;

25 k ← different numbers in g[v];
26 for i from 1 to k do
27 for v ∈ Ci do
28 find the cluster Cj where v has the maximum number of immediate

neighbours;
29 if i �= j then
30 Cluster v into Cj ;

31 Return Ci,i ∈ (1, 2, ..., k′);

In the second step, each vertex look around its immediate neighbours. If the
degree of the vertex, for example vertex v, is the largest among its immediate
neighbours, vertex v stands alone and does not follow other vertices. If the degree
of vertex v is not the largest among its immediate neighbours and itself, vertex
v follows the neighbour with the largest degree among v’s immediate neighbours
(line 2-6). If more than one vertex among the immediate neighbours have the
largest degree, then vertex v follows the one with the largest clustering coefficient
compared to other neighbours.

In the second round, each vertex adjusts their decisions (line 7-17). If the
standing-alone vertex v has neighbours with the same degree, check the number

408 Y. Song and S. Bressan

of common neighbours of vertex v and v′s neighbour that has the same degree.
If there are enough common neighbours, these two vertices are suggested to
be in the same community. If the vertex v does not stand alone but follows
some neighbour, we check the number of common neighbours vertex v has with
the vertex that it follows, and the number of common neighbours it has with
the other neighbours. If vertex v has more common neighbours with its other
neighbours than the one it follows, then vertex v turn to the vertex with the
second largest degree in the neighbourhood or stands alone if itself has the second
largest degree.

In the third round, each vertex finalizes the community which it desired to
join (line 18-24). If the vertex that vertex v follows is also following vertex vi,
than vertex v also turn to vertex vi. In the end, each vertex follows a vertex
that stands alone. With all the other vertices that follow this vertex, they form
a community.

After each vertex chooses its community (line 25), we post-process the member-
ships to refine the communities (line 26-30). If any vertex has more connections
outside the community than inside the community, it changes its membership.
This refine process may change the number of communities from the last step.

The only input of the algorithm is the graph itself. No pre-defined number of
communities is needed. In experiments the graph is given as an edge list. The
output is the communities.

1

2

3

4 5

6

7

8

Fig. 1. Example

Figure 1 shows a graph with 8 vertices and 14 edges. After the first round,
vertex 2, 3, 4, 5, 6 all follow vertex 1 (g[1]=1, g[2]=1, g[3]=1, g[4]=1, g[5]=1,
g[6]=1), while vertex 7 and 8 follow vertex 6 (g[7]=6, g[8]=6). In the second
round for each vertex, the status of vertex 1 is unchanged. The status of vertex
2, 3, 4, 5 is also unchanged, because they have more common neighbours with
vertex 1 that they follow than with other vertices ({vertex 2, 3, 4, 5}\themselves),
vertex 7 and 8 still follow 6, while vertex 6 changes to be standing alone instead
of following vertex 1 because vertex 6 has more common neighbours with 7
and 8 than with vertex 1. No more changes happen in the third round and the
refinement, and thus final result is that we find two communities: one community
is labelled by vertex 1, and has vertex 1, 2, 3, 4, 5; the other community is labelled
by vertex 6, and has vertex 6, 7, 8.

We devise a parallel version. Both the first and second rounds are parallelized.
In the first round the vertices look for the vertex with the largest degree in the
neighbourhood at the same time. In the second round, each vertex make decisions
concurrently. The rest of the algorithm is sequential.

Fast Community Detection 409

The time complexity for calculating clustering coefficient is O(n∗d2), where n
is the number of vertices and d is the maximum degree of vertices in graph. The
complexity for the first round is O(n∗d). The complexity for the second round is
O(n ∗ d2). The complexity for the third round is O(n2). The complexity for the
refinement is O(n ∗ d2). Therefore the time complexity for the whole algorithm
is O(n ∗ d2 + n2). For the parallel version, The complexity for the first round
is O(d). The complexity for the second round is O(d2). The rest is the same as
that of the sequential version. Thus the time complexity for the whole parallel
algorithm is O(d2 + n2).

4 Experiment

We conduct experiments on both synthetic and real world graphs including three
benchmarks for community detection. We ran the sequential algorithms on an
2.83GHz Inter Core, 2 Quad CPU machine with 2GB of main memory under
Windows 8 OS. The parallel algorithm ran on the same machine with a GeForce
GTX 560 Ti graphics card having 2048 MB of global memory, 8 multiprocessor
and 48 CUDA cores per multiprocessor. All algorithms were implemented in
Visual C++ 10.0. The parallel algorithm is implemented using the application
programming interface CUDA for the C language. CUDA [7], the C language
Compute Unified Device Architecture, is provided by NVIDIA and works on
NVIDIA graphic cards. The CUDA programming model consists of a sequential
host code combined with a parallel kernel code.

We compare our algorithm with three state-of-the-art algorithms: InfoMap
[29], WalkTrap [27] and Girvan and Newman (GN)[13][25]. InfoMap is based
on information theory. Walktrap is based on random walk. InfoMap has been
empirically shown to have better performance compared with other algorithms
for community detection [11].

4.1 Dataset

We generate a batch of benchmark graphs [20] with known community structure,
number of vertices, the average degree, maximum degree, minimum and maxi-
mum size of micro and macro community due to the hierarchical structure, and
fraction of edges between vertices belonging to same or different communities.
In our experiments, we generate graphs with 2000 vertices and different aver-
age degrees while the other parameter are the same. They have no overlapping
communities.

The real-world benchmark graphs we use are listed as followings. Among
them Zachary’s Karate Club data, American College Football data and Dolphin
network are widely used for evaluating community detection algorithms.

Karate Club data is a social network of karate club members studied by
the sociologist Wayne Zachary. The network has 34 members (vertices) and they
separated into two different groups due to a controversy between one of the
instructors and administrator of the club.

410 Y. Song and S. Bressan

American College Football data is a network with 115 teams (vertices)
which are separated into 12 conferences. An edge exists between two vertices if
there is match between two teams. More games happen among teams within the
same conference than teams from different conferences.

Dolphin Network is collected by David Lusseaua [23]. The network repre-
sents frequent associations between 62 dolphins (vertices) in a community living
off Doubtful Sound, New Zealand.

Email-URV data is collected by Guimer et al. [8]. The network contains
user-to-user (address- to-address) links from the network of e-mail interchanges
among faculty and graduate students at Rovira i Virgili University of Tarragona,
Spain. It’s available on Alex Arenas Website [10].

Arxiv HEP-PH collected by Leskovec et al. [22], is a collaboration network
contains scientific collaborations between authors who submitted papers to High
Energy Physics. It’s available on SNAP website [31].

Wiki-Vote , collected by Leskove et al. [21], contains user-to-user (who-vote-
whom) links from Wikipedia network. It’s available on SNAP website [31]. Each
vertex represents a user. An edge is created from a user to a candidate if a user
votes for Wikipedia admin candidates.

Email-Enron data set contains user-to-user (address-to-address) links. It was
made public by the Federal Energy Regulatory Commission during its investi-
gations. We obtained it from [31]. Each vertex represents an email address. An
edge exists between vertex i and vertex j if address i sends at least one email
message to address j.

Epinions data set contains user-to-user (who-trust-whom) links from Epin-
ions network. It was collected by Epinions staff P. Massa. We obtained it from
trustlet website [32][24]. Each vertex represents a user. An edge corresponds to
a trust or distrust statement from one user to another user.

We extract the largest component of the networks that have more than one
component. The number of vertices and the number of edges of each data are
listed in Table 1

Table 1. Statistics of datasets

Number of Vertices Number of edges
Karate Club 34 78

Dolphin 62 159
American College Football 115 610

Email-URV 1,133 5451
Wiki-Vote 7,066 100,736

Arxiv HEP-PH 11,204 117,649
Email-Enron 33,696 180,811

Epinions 119,130 704,276

4.2 Metrics

We use five metrics to qualify the communities: modularity, conductance, inter-
nal density, cut ratio and weighted community clustering. Modularity, conduc-
tance, internal density and cut ratio are selected from four classes of metrics for

Fast Community Detection 411

community [36] so that we can eliminate the bias of having only one kind of
metric. Weighted community clustering is a recently proposed metric [28].

The Modularity [25] is defined as

modularity =
1

2m
Σi,j∈V (Aij − kikj

2m
)δ(ci, cj)

where Aij = 1 if i and j are connected, otherwise Aij = 0, and δ(ci, cj) = 1 if i
and j belong to the same cluster, otherwise δ(ci, cj) = 0.

The Conductance for a set of vertices S is defined as

conductance(S) =
cs

2ms + cs

where cs = |(u, v) ∈ E : u ∈ S, v /∈ S|. It is the number of edges with one end in
the set and the other end outside the set. ms = |(u, v) ∈ E : u ∈ S, v ∈ S|. It is
the number of edges in S.

The Internal Density for a set of vertices S is defined as

InternalDensity(S) =
ms

ns(ns − 1)/2

where ms is the same as above. ns is the number of vertices in S. Internal Density
is the internal edge density of S.

The Cut Ratio for a set of vertices S is defined as

CutRatio(S) =
cs

ns(n− ns)

Cut Ratio is the fraction of existing edges out of all possible edges having one
end outside the cluster.

The Weighted Community Clustering for a is defined as

WCC(S) =
1

|S|
∑
x∈S

f(x, S)

where f(x, S) = t(x,S)
t(x,V) ∗ vt(x,V)

|S\x|+vt(x,V \s) if t(x, V) �= 0; f(x, S) = 0 if t(x, V) = 0.

t(x, S) is the number of triangles that vertex x closes with vertices in S and
vt(x, S) is the number of vertices of S that form at least one triangle with x.

In our experiments, we take the average of the conductances of communities
found for the conductance of the whole network, and same for the other metrics
except modularity.

4.3 Experimental Assessment and Analysis

Figure 2 shows the communities found in the Karate Club network by each
algorithm. Figure 3 shows the communities found in the Dolphin new network
by each algorithm. Vertices in the same color are in the same community.

Figure 4 shows the measurement results on the four real data sets. X-axis is la-
belled by the names of data sets. Y-axis is the value of metrics. For each data set,
the metric values for the communities detected by each algorithm are compared.
Figure 4 (a) shows that the communities that FCD and ParallelFCD found have

412 Y. Song and S. Bressan

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Fig. 2. Communities for Karate Club data by different algorithms

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Fig. 3. Communities for Dolphin data by different algorithms

lower modularity on these four datasets. However, this does not indicate that
our algorithm is not better than the other three algorithms. Figure 2 shows that
our algorithm identifies two communities that coincide with the truth that the
members of the Karate Club separated into two different groups due to the con-
troversy, and thus the result of our algorithm is actually more reasonable than
the other three algorithms even though the modularity values are lower. Figure 4
(b) shows the conductance results. The lower the conductance, the better the
communities found. In this case, our algorithm has the lowest conductance on
two data sets and highest conductance on the other two data sets. Figure 4 (c)
shows the internal density results. The higher the internal density, the better
the communities found. In this case, our algorithm has highest internal density
in three of the four data sets, and lowest in one data set. Figure 4 (d) shows
the cut ratio results. The lower the cut ratio the better the communities found.
In this case, our algorithm has the lowest cut ratio in one of the four data set,
and the highest in the other three data sets. Figure 4 (e) shows the weighted
community clustering results. The higher the WCC, the better the communi-
ties found [28]. In this case our algorithm has lower WCC in three of the four
data sets. Figure 4 (f) shows the running time. For all the four data sets here,
FCD performs fastest among the algorithms. ParallelFCD performs faster than
InfoMap, WalkTrap and GN on the Email-URV data.

To sum up the results on these four real data sets, our algorithm, FCD and its
parallel version, find communities with better values in terms of internal density
and conductance, but not with other metrics. However, as we see from the results
for Karate Club, the communities detected by our algorithm stay more truthful

Fast Community Detection 413

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(a) Modularity

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(b) Conductance

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(c) Internal Density

 0

 1000

 2000

 3000

 4000

 5000

 6000

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(d) Cut Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(e) Weighted Community Clustering

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(f) Running Time

Fig. 4. Measurements on real world data

than those by the other algorithms. In this sense, our algorithm is effective. From
the comparison of the running time, FCD is obviously more efficient than the
others.

Figure 5 shows the results on the benchmark graphs. It shows the value chang-
ing as the graphs increase average degrees. X-axis is the average degree of the
graphs. Y-axis is the value of metrics. Each dot represents one metric value for
the communities detected by one algorithm. Figure 5 (a) shows the modularity

414 Y. Song and S. Bressan

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

m
od

ul
ar

ity

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(a) Modularity

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

co
nd

uc
ta

nc
e

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(b) Conductance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20 25 30

in
te

rn
al

 d
en

si
ty

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(c) Internal Density

 0

 20000

 40000

 60000

 80000

 100000

 120000

 5 10 15 20 25 30

cu
t r

at
io

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(d) Cut Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

W
C

C

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(e) Weighted Community Clustering

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

tim
e

(in
 s

ec
on

ds
)

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(f) Running Time

Fig. 5. Measurements on synthetic data

results. It shows that WalkTrap has the highest modularity in general though
in some cases GN and FCD has the highest modularity, and FCD has higher
modularity than InfoMap. Figure 5 (b) shows the conductance results. It shows
that InfoMap has the highest conductance and GN has the the lowest. Figure
5 (c) shows the internal density results. It shows that InfoMap has the highest
internal density, and GN has the lowest density. Figure 5 (d) shows the cut ratio
results. It shows that InfoMap has the highest cut ratio, and GN has the lowest.

Fast Community Detection 415

Figure 5 (e) shows the WCC results. It shows that FCD and WalkTrap have
higher WCC, and InfoMap and GN has lower WCC. Figure 5 (f) shows the run-
ning time. FCD and ParallelFCD are shown to be faster in most cases. GN is
much slower than InfoMap, WalkTrap and FCD. ParallelFCD is not obviously
faster than FCD due to the data communication between the host CPU and
device GPU.

To sum up the results on these synthetic graphs, FCD (ParallelFCD) performs
more stable than InfoMap and GN in terms of effectiveness. InfoMap is the best
in terms of internal density but the other three algorithms are better in terms of
conductance, cut ratio and WCC. GN is the best in terms of conductance and
cut ratio but the other three algorithms are better in terms of internal density
and modularity. Compare with WalkTrap, FCD is better in most cases in terms
of modality and internal density.

FCD is faster than the other three in general. In other words, FCD is more
efficient.

Another set of experiment tests running time on large networks: Wiki-Vote,
Arxiv HEP-PH, Email-Enron, and Epinion network. We sample subgraphs from
the networks. Every subgraph contains k percentage vertices of the original net-
works, where k = 10, 20, ..., 90. We run FCD and InfoMap algorithm on these
subgraphs and the original graphs. The running time is recorded. Figure 6 shows

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000

tim
e

(in
 s

ec
on

ds
)

number of vertices

FCD
InfoMap

(a) Wiki Vote Network

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000

tim
e

(in
 s

ec
on

ds
)

number of vertices

FCD
InfoMap

(b) Arxiv HEP-PH network

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000

tim
e

(in
 s

ec
on

ds
)

number of vertices

FCD
InfoMap

(c) Email-Enron Network

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20000 40000 60000 80000 100000 120000

tim
e

(in
 s

ec
on

ds
)

number of vertices

FCD
InfoMap

(d) Epinion Network

Fig. 6. Running time for large networks

416 Y. Song and S. Bressan

the running time changing as the number of vertices of networks increases. Each
figure shows the results for one data set. X-axis is the number of vertices. Y-
axis is the time measured in seconds. Due to WalkTrap and GN algorithms’
scalability on large graphs, we only compare InfoMap and FCD algorithm here.
The results show that both algorithms are able to work with graphs with more
than 10,0000 vertices. For graphs such as Email-Enron with 33,696 vertices, the
algorithms are able to finish the task in a few minutes. In most cases FCD is
faster than InfoMap.

5 Conclusions

In this paper we propose a fast community detection algorithm. It initiates each
vertex to seek for the community in its neighbourhood independently. Each
vertex chooses its community and peers based on the knowledge of degrees and
clustering coefficients of neighbours and the number of common neighbours. The
algorithm is parallelizable and thus we devise a GPU version of the algorithm
for parallel computation. We empirically evaluate the performance of FCD, and
compare it with InfoMap, WalkTrap and GN algorithms. We find that FCD is
the fastest. We assess effectiveness based on the values of modularity, conduc-
tance, internal density, cut ratio and weighted community clustering. We find
that FCD has more stable effectiveness than InfoMap and GN, while it produces
results of comparable quality to that of WalkTrap.

References

1. Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466, 761 (2010)

2. Baumes, J., Goldberg, M.K., Krishnamoorthy, M.S., Magdon-Ismail, M., Preston,
N.: Finding communities by clustering a graph into overlapping subgraphs. In:
IADIS AC, pp. 97–104 (2005)

3. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlap-
ping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang,
F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer,
Heidelberg (2005)

4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72,
026132 (2005)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

6. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery
method for overlapping communities. CoRR (2012)

7. CUDA-Zone, http://www.nvidia.com/object/what_is_cuda_new.html
8. Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community struc-

ture in a network of human interactions. Physical Review E 68 (2003)
9. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social

networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop
on Web Mining and Social Network Analysis, WebKDD/SNA-KDD 2007, pp. 16–
25. ACM (2007)

http://www.nvidia.com/object/what_is_cuda_new.html

Fast Community Detection 417

10. Email-URV, http://deim.urv.cat/~aarenas/data/welcome.htm

11. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative
analysis: invited presentation, extended abstract. In: VALUETOOLS 2009. ICST,
Brussels (2009)

12. Gergely Palla, I.F., Derenyi, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

13. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

14. Goldberg, M.K., Kelley, S., Magdon-Ismail, M., Mertsalov, K., Wallace, A.: Finding
overlapping communities in social networks. In: SocialCom/PASSAT, pp. 104–113
(2010)

15. Gregory, S.: An algorithm to find overlapping community structure in networks.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D.,
Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer,
Heidelberg (2007)

16. Gregory, S.: A fast algorithm to find overlapping communities in networks. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS
(LNAI), vol. 5211, pp. 408–423. Springer, Heidelberg (2008)

17. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, p. 18. Springer,
Heidelberg (2001)

18. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., Liu, J.: A Markov random walk
under constraint for discovering overlapping communities in complex networks.
Journal of Statistical Mechanics: Theory and Experiment (2011)

19. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hi-
erarchical community structure in complex networks. New Journal of Physics 11
(2009)

20. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics) 78(4) (2008)

21. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links
in online social networks. In: Proceedings of the 19th International Conference on
World Wide Web. ACM (2010)

22. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. TKDD 1(1) (2007)

23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405
(2003)

24. Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Computing with
Social Trust. Springer, London (2009)

25. Newman, M., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 026113 (2004)

26. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of
modularity to directed graphs with overlapping communities. Journal of statistical
Mechanics: Theory and Experiment (2009)

27. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

http://deim.urv.cat/~aarenas/data/welcome.htm

418 Y. Song and S. Bressan

28. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.-L.: Shaping com-
munities out of triangles. In: Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM 2012. ACM (2012)

29. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of the
United States of America 105 (2008)

30. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
31. SNAP, http://snap.stanford.edu/data
32. TrustLet, http://www.trustlet.org/
33. van Dongen, S.M.: Graph clustering by flow simulation. PhD thesis, University of

Utrecht (2000)
34. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection

in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012, Part II. LNCS, vol. 7302, pp. 25–36. Springer, Heidelberg (2012)

35. Yan, B., Gregory, S.: Detecting communities in networks by merging cliques. CoRR
(2012)

36. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data
Semantics, MDS 2012. ACM (2012)

37. Yen, L., Vanvyve, L., Wouters, D., Fouss, F., Verleysen, F., Saerens, M.: Clustering
using a random-walk based distance measure. In: Proceedings of ESANN 2005
(2005)

38. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community struc-
ture in complex networks using fuzzy c-means clustering. Physica A: Statistical
Mechanics and its Applications 374(1), 483–490 (2007)

http://snap.stanford.edu/data
http://www.trustlet.org/

Force-Directed Layout Community Detection

Yi Song and Stéphane Bressan

School of Computing,
National University of Singapore
{songyi,steph}@nus.edu.sg

Abstract. We propose a graph-layout based method for detecting com-
munities in networks. We first project the graph onto a Euclidean space
using Fruchterman-Reingold algorithm, a force-based graph drawing al-
gorithm. We then cluster the vertices according to Euclidean distance.
The idea is a form of dimension reduction. The graph drawing in two
or more dimensions provides a heuristic decision as whether vertices are
connected by a short path approximated by their Euclidean distance. We
study community detection for both disjoint and overlapping communi-
ties. For the case of disjoint communities, we use k-means clustering. For
the case of overlapping communities, we use fuzzy-c means algorithm.
We evaluate the performance of our different algorithms for varying pa-
rameters and number of iterations. We compare the results to several
state of the art community detection algorithms, each of which clusters
the graph directly or indirectly according to geodesic distance. We show
that, for non-trivially small graphs, our method is both effective and effi-
cient. We measure effectiveness using modularity when the communities
are not known in advance and precision when the communities are known
in advance. We measure efficiency with running time. The running time
of our algorithms can be controlled by the number of iterations of the
Fruchterman-Reingold algorithm.

1 Introduction

Communities detection is instrumental in fields of study such as sociology [9],
biology [8], and marketing [21]. Communities exist when nodes in the network
form a group in which they are better connected to each other than to the rest
of the network. In this paper, we propose methods for finding communities.

We model a network as a simple graph G(V,E), which is undirected, un-
weighted and without self-loop. V is a set of vertices. E is a set of edges. Our
main idea is to obtain a representation of the graph in a Euclidean space and
then cluster the vertices based on the Euclidean distance. This is different from
what common graph clustering algorithms in that most of them cluster the graph
and detect communities directly or indirectly according to geodesic distance. We
use Fruchterman-Reingold’s force-directed algorithm (FR) (see [11].) This graph
layout approach transforms the connections among vertices based on attractive
forces and repulsive forces pulling vertices together and pushing them apart, re-
spectively, into proximity in a Euclidean space. In this way, vertices with more

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 419–427, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

420 Y. Song and S. Bressan

connections are closer while vertices without or with less connections are rel-
atively further from each in the Euclidean space of possibly lower dimension
that is intrinsic of the graph. Such a dimension reduction is a good opportu-
nity enables the use of the graph layout and Euclidean distance to heuristically
detect communities. While the original FR algorithm is presented for two dimen-
sions, we consider versions for one, two, three and more dimensions and three
dimensions. We evaluate the role of the number of dimensions as a parameter of
our methods in terms of its impact on effectiveness and efficiency. For disjoint
community detection, the data clustering technique we use is k-means cluster-
ing (KM), while for overlapping community, we use Fuzzy C-mean clustering
(FCM), which can indicate the strength between each vertex and communities,
and thus does not restrict each vertex to belonging to one group only. All these
algorithms’ complexities are not high and neither is FR’s. Our method building
on these techniques is thus efficient for large social networks.

We evaluate effectiveness by measuring modularity. Modularity is defined
based on this idea that edges between nodes in the same community are dense,
and are sparse between different communities. To find communities with natu-
ral division, modularity is defined as the number of edges falling within groups
minus the expected number in an equivalent (same number of edges and the
same degree distribution) graph with edges placed at random [19]. For graphs
with known community structures, we measure the precision as well by compar-
ing memberships to communities that our approach discovers with those to the
known communities.

The rest of the paper is organized as follows. Section 2 introduces the related
works on graph clustering and community detection. Section 3 briefly reviews
the background and presents our approach to discovery community structures in
networks. Section 4 describes the data sets that we use, and present and analyze
the results of our experiments. Finally we conclude in Section 5.

2 Related Work

Community detection is a form of graph clustering. Graph clustering meth-
ods can be categorized into partition clustering, hierarchical clustering, divisive
global clustering, and agglomerative global clustering [23]. Large amount of spe-
cific methods are proposed such as Star clustering [3], Repeated Random Walks
[17], and Markov Clustering [24].

Some methods are specifically proposed for disjoint community detection. Gir-
van and Newman, in their pioneering works on community detection ([13,18]),
propose a divisive method to identify community. The edges with highest be-
tweenness are removed iteratively, which splits the graph into communities.
Clauset et al. in [6] propose a greedy hierarchical agglomerative algorithm which
starts from each vertex being a community and then joins two communities at
each iteration. Rosvall and Bergstrom in [22] use information theoretic approach
to detect community in weighted and directed network.

For overlapping community detection, Du et al. in [7] use maximal cliques for
community detecting. They propose an algorithm that enumerates all maximal

Force-Directed Layout Community Detection 421

cliques, finds clustering kernel in each group of the overlapping maximal cliques.
Palla et al. in [12] propose the clique percolation method which finds all cliques
of size k and communities are detected by finding connected union of k-cliques. It
’s based on an assumption that the network must have a large quantity of similar
cliques. Chen et al. in [5] detect overlapping communities utilizing concept from
game theory. Lancichinetti et al. in [15], considering various networks features,
present a method called Order Statistical Local Optimization Method. It can be
applied to weighted, directed graphs besides simple graphs. Jierui and Boleslaw
in [25] propose the Speaker-listener Label Propagation Algorithm for overlapping
community detection in large-scale networks.

3 Algorithm

3.1 Background

Force-Directed Algorithms. The idea of force-directed algorithms is to
achieve a ”aesthetically pleasing” graph layout by simulating the whole graph
as a physical system. Edges in the graph are seen as springs binding vertices.
Vertices are virtually pulled closer together or pushed further apart according to
physical forces. The positions of the vertices are adjusted and this procedure con-
tinues until the the system comes to an equilibrium. In addition, Fruchterman
and Reingold’s force-directed algorithm [11] aims at even vertex distribution.
The authors define the attractive force and the repulsive force as fa(d) = d2/k

and fr(d) = −k2/d, where k = C
√

area
number of vertices , and d is the distance

between every pair of vertices. area is the windows size for display the graph.

k-Clustering. K-means clustering [16] partitions objects to k clustering, as-
signs each object the cluster with the nearest mean and adjusts their member-
ship untill an optimum is reached. As a soft version of k-means, Fuzzy C-means
clustering (FCM) [4] assigns each object a fuzzy degree of membership to each
cluster. Instead of belonging to only one cluster, objects classified via this algo-
rithm can belong to several clusters with different strengths. As a general version
of k-means, Expectation-maximization algorithm (EM) [2] models clusters using
statistic distributions. The reason we adopt k-means, rather than EM is that
k-means is effective enough for this problem and k-means is more efficient. We
experimentally show this in Section 4.

3.2 Algorithm

We propose an algorithm that can systematically enumerate all possible number
of clusters and find the configuration with the highest modularity. Therefore, the
algorithm iterates by changing the value of k from 1 to |V | which is the number
of vertices in the network. We show the changes of modularity with the change
of k value. If the number of clusters is prior knowledge, we can set the number of
iterations to be 1 to this numeber.

422 Y. Song and S. Bressan

Our method starts from the FR algorithm. The inputs for the algorithm are
the edges of the graph only. Output is the coordinates of vertices in Euclidean
Space. Then we sort the degrees of the vertices and initialize the centers of the
clusters for the clustering by the vertices with highest degrees. The idea is that
the vertices with high degree have higher chance of being the community centers.
The centers may change during the clustering. We refine the clusters after the
data clustering in Euclidean space. If there’s any vertex that doesn’t have any
connection with other vertices in the same cluster, or it has less connections
inside its cluster than outside its cluster, then it will be grouped to the cluster
where it has the maximum number of connections. In other words, this vertex will
be grouped to the cluster that has most immediate neighbors. The refinement
process may change the number of clusters, which is actually good for those
who only roughly know the number of clusters. They can input the maximum
number of clusters they believe and let our method find out the exact number
of clusters in the network without trying all the value of k from 1 to |V |.

Algorithm 1. Force-directed Layout Community Detection Algorithm

Input: graph G with n vertices, the number of trials t, t ≤ n.;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 v = Fruchterman Reingold(G), v ∈ Rn∗2, v =[v1;v2;...;vn];
2 Sort degree(G);
3 k ← 1;
4 for each k ≤ t do
5 C′

i = K-means(v);
6 Ci = Refinement(C′

i);
7 Calculate modularity and record the maximum;

8 Return Ci,i ∈ (1, 2, ..., k′) with the maximum modularity;

Algorithm 2. Refinement

Input: Clusters Ci, i ∈ (1, 2, ..., k);
Result: Clusters C′

i, i ∈ (1, 2, ..., k′);

1 for i from 1 to k do
2 for v ∈ Ci do
3 find the cluster Cj where v has the maximum number of immediate

neighbors;
4 if i �= j then
5 Cluster v into Cj ;

6 Return C′
i,i ∈ (1, 2, ..., k′);

We call the above algorithm FR-KM for the experiments. The other two ver-
sions of the algorithm are similar to FR-KM but depend on different clustering
methods. We name the one using expectation-maximization algorithm FR-EM
and the one using fuzzy c-means algorithm FR-FCM. For FR-FCM, there’s no

Force-Directed Layout Community Detection 423

refinement of the memberships for the vertices, since we intend to deal with
overlapping community.

The modularity we use is the same as [18], defined as 1
2mΣi,j∈V (Aij − kikj

2m)δ
(ci, cj), where Aij = 1 if i and j are connected, otherwise Aij = 0, and δ(ci, cj) =
1 if i and j belong to the same cluster, otherwise δ(ci, cj) = 0.

4 Experiment

We conduct experiments on both synthetic and real world graphs including two
benchmark graphs for community detection algorithm. The experiments ran on
an Inter Core, 2 Quad CPU, 2.83GHz, 2GB machine running Windows 8 OS.
The algorithms are implemented in C.

We use a batch of benchmark graphs [14] to evaluate the effectiveness of our
method. The real-world benchmark graphs we use are Zachary’s Karate Club
data and American College Football data. We also test on the Email-URV data
set, Wikipedia data set, and Facebook data set. They represent large online
social network data. See [1] for detailed description of the data sets ,and results
and analysis of overlapping community detection.

4.1 Analysis of Non-overlapping Community Detection

We compare our method to the algorithms of Girvan and Newman(GN) ([13,18]),
one of the state-of-the-art algorithms in community detection. Modularity is
first proposed in this algorithm. We also compare our method with Walktrap
algorithm ([20]) and InfoMap algorithm ([22]), which has been shown to perform
quite well for community detection (see [10]).

Table 1. Performance Comparison between FR-EM,FR-KM and GN

KarateClub AmericanFootball EmailURV
modularity running time modularity running time modularity running time

GN 0.4013 0.016 0.5976 1.014 0.5323 3193.532
Walktrap 0.3944 0.0000001 0.6015 0.015 0.5250 0.92
InfoMap 0.402038 0.015 0.599176 0.047000 0.521420 5.912000
FR-KM 0.417406 0.020000 0.601731 2.179000 0.542659 15.388000

Table 1 shows the performance of the algorithms. In this comparison, we use
the normal two dimension FR algorithm with its iteration equal 400 for Karate-
Club and AmericanFootball data and 1000 for EmailURV data. The number
of trials is set to 30. For all three graphs, our method produces partitions with
highest modularity among the four algorithms. Although Walktrap and InfoMap
are faster than our method and GN is faster than our method for smaller graphs,
the running time of our method is still tolerable. As the size of graph becomes
larger, our method becomes faster. If the number of clusters is known in ad-
vance, then the number of trial is 1 instead of 30 that we set. If so, our method
takes much less time. GN is much slower for larger graphs. For the other two

424 Y. Song and S. Bressan

real-world data sets, Wiki-Vote and Facebook, we are unable to make the com-
parison due to GN ’s scalability, but we will show the running time of clustering
these two graphs by our method.

Figure 1 shows the performance comparison between multiple dimension FR-
KM and GN. We extend the normal two dimension FR algorithm to one dimen-
sion and three, four, five dimensions. We set the number of trials 30. For karate
club data, the number of trial is equal to its number of vertices. We run each
FR-KM with the number of iterations of FR changing from 100 to 2000 with
interval 100. We find that the larger the number of iterations of FR-KM, the
longer time it takes. However, the number of iterations of FR doesn’t have deci-
sive influence on the modularity. This suggests that there is no need to increase
the number of iterations to get higher modularity. In terms of dimension, we find
that for small graphs, projecting them to one dimension or three dimension may
get higher modularity sometimes, but for large graphs, the two dimension FR-
KM performs best. It’s faster and clusters graph with higher modularity. That
is why we shall adopt the normal two dimension FR in our algorithm when it
comes to large graphs. FR-KM outperforms in both effectiveness and efficiency
with large graphs compared with GN.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1 10 100 1000 10000

m
od

ul
ar

ity

time(in seconds)

FR-KM.1D.KarateClub

FR-KM.2D.KarateClub

FR-KM.3D.KarateClub

FR-KM.4D.KarateClub

FR-KM.5D.KarateClub

GN.KarateClub

FR-KM.1D.Football

FR-KM.2D.Football

FR-KM.3D.Football

FR-KM.4D.Football

FR-KM.5D.Football

GN.Football

FR-KM.1D.EmailURV

FR-KM.2D.EmailURV

FR-KM.3D.EmailURV

FR-KM.4D.EmailURV

FR-KM.5D.EmailURV

GN.EmailURV

Fig. 1. Performance Comparison between multiple dimension FR-KM and GN

Figure 2 shows the modularity when the initial input number of clusters, k
varies. The final number of clusters may be different from the values of k on X-
axis here. Our method changes the number of clusters during cluster refinements,

Force-Directed Layout Community Detection 425

which produces local optimum number of clusters. Therefore, we can see from
the result that the trend of the line is horizontal in general. This suggests that
even without knowing the number of clusters beforehand, we can find a local
optimum around initial k value. This local maximum is probably the global
optimum or close to the global optimum.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

m
od

ul
ar

ity

k

FR_KM
FR_EM

(a) Karate Club data

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

m
od

ul
ar

ity

k

FR_KM
FR_EM

(b) Football data

Fig. 2. Modularity for varying number of clusters

Figure 3 shows the running time for varying number of clusters for Email-
URV data, Wiki-Vote data and Facebook data. For each data set, the time
for projecting the graph onto Euclidean space is the same, but the clustering
time differs. KM running time keeps the same in general as the initial number
of clusters increases while EM ’s running time linearly increases as the initial
number of clusters increases. Compared with KM, EM takes much more time.
The trends are similar among results for the three data sets.

 10

 100

 1000

 10000

 0 10 20 30 40 50

tim
e(

in
 s

ec
on

ds
)

k

FR_KM on Email-URV Data
FR_EM on Email-URV Data

FR_KM on Wiki-Vote Data
FR_EM on Wiki-Vote Data
FR_KM on Facebook Data
FR_EM on Facebook Data

Fig. 3. Running time for varying
number of clusters for Email-URV,
Wiki-Vote, and Facebook data set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30

pr
ec

is
io

n

average degree

FR_KM
GameTheory

CFinder
InfoMap

WalkTrap
GN

Fig. 4. Precision for varying aver-
age degree of synthetic graphs

We compare our method with GN, InfoMap and WalkTrap algorithm, and
two other community detection algorithms, CFinder ([12]) and GameTheory
algorithm ([5].) Figure 4 shows the precision achieved by the algorithms on the
generated graphs with different average degrees. Since the community structures

426 Y. Song and S. Bressan

are known, precision is obtained by counting the number of correctly clustered
vertices. The results show that our method outperforms the CFinder, GN and
InfoMap, and produces results comparable with GameTheory algorithm and
WalkTrap. The reason for CFinder having the low precision may be that not
every vertex in the graph are clustered. The clusters consists of 3-cliques only
in our experiment. The reason for InfoMap having the low precision may be
that the number of community this method detects is large and most of the
communities are of small size. Many communities are of size of two vertices only.

5 Conclusions

In this paper, we propose a graph-layout based community detection algorithm.
We use Fruchterman-Reingold algorithm to project the graph onto a Euclidean
space and we cluster the vertices according to their Euclidean distance. Then we
refer to the original graph information to refine the communities detected. We
evaluate the effectiveness and efficiency on both real-world data and synthetic
data. For disjoint community detection, the results show that FR-KM is more
effective on both small graphs and large graphs than GN, and is much more effi-
cient than GN on large networks. FR-KM is also more effective than Walktrap
and InfoMap algorithms in terms of modularity. Compared with GN, CFinder,
InfoMap, WalkTrap and Gametheory algorithms on the synthetic graphs with
known communities in advance, our method is more effective than GN and
CFinder and has good performance comparable with WalkTrap and Game The-
ory algorithm according to the results of precision. For overlapping detection,
the result for Karate Club data shows that FR-FCM is reasonably effective.

References

1. https://dl.comp.nus.edu.sg/dspace/handle/1900.100/4144

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical society, Series B (1977)

3. Aslam, J.A., Pelekhov, E., Rus, D.: The star clustering algorithm for static and
dynamic information organization. J. Graph Algorithms Appl. 8, 95–129 (2004)

4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell (1981)

5. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify
overlapping communities in social networks. Data Min. Knowl. Discov. (2010)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

7. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale
social networks. In: WebKDD/SNA-KDD, ACM (2007)

8. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and dis-
play of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. (1998)

9. Etling, B., Kelly, J., Faris, R., John, P.: Mapping the arabic blogosphere: Politics,
culture, and dissent. Berkman Center Research Publication (2006-06) (2009)

10. Fortunato, S., Castellano, C.: Community structure in graphs. In: Encyclopedia of
Complexity and Systems Science, pp. 1141–1163 (2009)

https://dl.comp.nus.edu.sg/dspace/handle/1900.100/4144

Force-Directed Layout Community Detection 427

11. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exper. 21(11), 1129–1164 (1991)

12. Gergely Palla, I.F., Derenyi, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature (2005)

13. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences (2002)

14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical Review E 78 (2008)

15. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically
significant communities in networks. CoRR (2010)

16. Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28, 129–137 (1982)

17. Macropol, K., Can, T., Singh, A.K.: Rrw: repeated random walks on genome-scale
protein networks for local cluster discovery. BMC Bioinformatics (2009)

18. Newman, M., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 026113 (2004)

19. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

20. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

21. Reddy, P.K., Kitsuregawa, M., Sreekanth, P., Rao, S.S.: A graph based approach to
extract a neighborhood customer community for collaborative filtering. In: Bhalla,
S. (ed.) DNIS 2002. LNCS, vol. 2544, pp. 188–200. Springer, Heidelberg (2002)

22. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of the
United States of America 105 (2008)

23. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
24. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis (2000)
25. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection

in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012, Part II. LNCS, vol. 7302, pp. 25–36. Springer, Heidelberg (2012)

On the Composition of Digital Licenses

in Collaborative Environments

Marco Mesiti, Paolo Perlasca, and Stefano Valtolina

DI, Department of Computer Science, University of Milano, Italy
{mesiti,perlasca,valtolina}@di.unimi.it

Abstract. In the era of Web 2.0, users are not any longer just consumers
of resources but they can actively produce, share and modify content, by
composing and enhancing digital resources and services. In this context,
the intellectual property of the users collaborating in authoring activities
should be preserved. Starting from a model for digital licences generation
and management useful in collaborative environments like the Web 2.0,
in this paper we propose the algorithms of a DRM component respon-
sible for the composition and modification of digital resources and the
generation of the related licenses. Then, the paper presents a compliant
architecture based on a composition of web services.

1 Introduction

The complexity and expanding scale of most collaborative projects being carried
out nowadays in the context of Web 2.0 require more cooperation among users
in the production of digital contents and services. We are also observing the
generation of communities of users (belonging to the same company or group of
interest) working together for the creation of new resources (like wikies, social
networks, and mashups). Users are not any longer just consumers of resources
but they can actively produce, share and modify content/services eventually
created by other users. In this context, the intellectual property of the users
collaborating in the authoring activities should be preserved.

Different Rights Expression Languages (like ccREL [6], ODRL [8], MPEG-21
REL [10]) have been develop for the specification of licenses to preserve the in-
tellectual property. These proposals differ from the scope and the granularity
according to which it is possible to specify and manage each aspect directly or
indirectly related to the license specification and management processes. Digi-
tal Rights Management (DRM) systems enable the creation, adaptation, distri-
bution and consumption of multimedia contents and services according to the
permissions and constraints specified by the content creators or rights issuers
[1, 13]. MPEG-21 REL [10] and ODRL [8] natively support the specification
of rights for the modification and composition of resources. Few approaches for
the specification of licenses of composed resources have been proposed in the
context of the creative common licences expressed by ODRL [3–5]. However,
these licences have a different purpose than those created by MPEG-21 REL

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 428–442, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Composition of Digital Licenses in Collaborative Environments 429

and current DRM systems are mainly tailored for the protection of resources
rather than for supporting users in the composition process.

This paper provides the building-blocks for the realization of a tool helping an
user to visualize his/her own resources (or the resources created by the commu-
nities she/he belongs to), to compose resources, and to generate related licenses.
We first introduce a formal model that is compliant with the MPEG-21 REL for
the representation of licenses as collection of grants. By abstracting many ver-
bose details of MPEG-21, we create the basis for reasoning on the composition
issues. Moreover, the model points out different approaches for specifying the
principal of a grant (either by specifying a single user identifier, a group of user
identifiers or a predicate to be evaluated by considering user certificates) that
can be very useful in our collaborative environments to reduce the number of
licenses to be generated and, at the same time, to make a broader usage of digi-
tal resources. Then, we provide an approach for evaluating the weak and strong
compatibility of two grants that is the basis for the composition and update of
resources. In the evaluation of weak compatibility, the user profile and the condi-
tions of grants are not considered. This is useful in the early stage of composition
design to quickly checking the basic conditions of composition without loosing
time in the evaluation of the user profile and also when external services needed
for their evaluation are unavailable. Afterward, to actually enable the user to
compose resources, and to generate the final license, user profile and conditions
of grants are taken into account in the evaluation of strong compatibility. We
finally propose an architecture supporting the composition of resources and the
generation of a new license based on the components’ licenses. Key features of
this architecture are the weak and strong compatibility service for the two-steps
evaluation of licenses compatibility and the process of resources aggregation and
generation of the corresponding license.

The paper is organized as follows. Section 2 presents the license data model
and how a license is evaluated. Section 3 deals with the issue of checking whether
two grants are compatible for composition and can be exercised at the current
time. Section 4 provides the basic algorithms for the generation of a new license
when resources are composed or updated, whereas Section 5 deals with the en-
abling architecture. Related work and concluding remarks are finally presented.

2 License Data Model

In this section we provide a formal model for the representation of licenses that
supports the specification of communities to whom a grant is released. Finally,
we discuss the mechanism for the evaluation of an access request.

Principals and Issuers. The principals to whom rights are granted can be
specified through the user identifiers or relying on the possession of a given
certificate. For the sake of simplicity, in our model the fact that users hold
certificates are represented through predicates. Such predicates are verified on
a given user, if and only if she/he holds the corresponding certificate released

430 M. Mesiti, P. Perlasca, and S. Valtolina

u ↓ p iif

⎧
⎪⎨

⎪⎩

p = u p ∈ U
u ∈ p p is a set

p(u) isPred(p)

(a)

p1 � p2 iif

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1 = p2 p1, p2 ∈ U
p1 ∩ p2 �= ∅ p1, p2 are sets

p1 ∈ p2 p1 ∈ U and p2 is a set

p2 ∈ p1 p2 ∈ U and p1 is a set

isPred(p1) ∨ isPred(p2)

(b)

Fig. 1. Predicates on Principal specifications

by a Credential Authority. A predicate can also be evaluated on a set of users
and, in this case, it is verified when each user in the set holds the corresponding
certificate. The use of certificates in our collaborative environment is particularly
useful to specify with a single license the community of users that can exercise
a given right. In the remainder, U denotes the set of user identifiers.

Definition 1 (Principal). The principal of a license can be: a unique identifier
associated with a user, a set of user identifiers, or a predicate m. A user i satisfies
the predicate m, if and only if the user i holds the corresponding certificate m.

Example 1. Let {i1, ..., i10} ⊆ U be a set of user identifiers. The principal of
a license can be: i1, the set {i3, i5, i7}, or uniMi, where uniMi is a predicate
assessing the employment at the University of Milan. In the paper we will use
the user identifiers Alice, Bob, and Tom. Alice and Tom are uniMi employees. �

The user issuing a license is named issuer. The issuer of a license is always a single
user identifier. With I we denote the set of issuers, I ⊆ U . Given a principal
specification p, we might need to establish whether a user u is a principal. The
predicate ↓ is satisfied in the cases reported in Figure 1(a) (function isPred is
true when the argument is a predicate). Moreover, the predicate $ in Figure 1(b)
is used to weakly identify when two principal specifications p1 and p2 can have
non empty intersection. Since the evaluation of predicates requires to access the
user profile, when p1 or p2 is a predicate, $ is considered verified, and its actual
evaluation deferred when the strong conditions are taken into account.

Resources. A Resource can be a digital work (such as an e-book, an audio
file, or an image), a service (such as an email service or a transaction service),
or even a fragment of information characterizing a principal (such as a name or
an email address). Resources can be the aggregation of different ones. In order
to allow the specification of digital licenses at different granularities (from the
entire resource to one of its component), resources can be represented through
a tree. Internal nodes are labeled by resource identifiers, whereas leaves are the
resources. Resource identifiers are exploited as references in digital licenses. We
denote with O the set of resources, and with Ô the corresponding identifiers.

Example 2. Suppose that otxt and oimg are resources representing a text and a
picture. The resource oc obtained by their concatenation is denoted, by adopting
a JSON notation [12], as {ôc : {ôtxt : otxt, ôimg : oimg}}. �

On the Composition of Digital Licenses in Collaborative Environments 431

Rights. A principal can be granted to exercise a right against a resource. Typi-
cally, a right specifies an action (or activity) or a class of actions that a principal
may perform on or using the associated resource. Rights can be classified in 3
types: use, through which the principal can play, print, execute a resource;
manage, through which the principal can install, uninstall, move or delete
a resource; transformation, through which the principal is authorized to manipu-
late the resource. The MPEG-21 transformation rights we deal with are: reduce,
enlarge, modify, diminish, enhance, adapt and embed. These rights present a
subsumption relationship existing among them: the modify right subsumes the
reduce and enlarge rights. Another subsumption exists between the transfor-
mation rights and the play right because, in order to transform a resource, the
user should be able to access/play the resource itself. The modify right allows
one to apply any modification to a given resource, whereas reduce and enlarge

allow a specific kind of modification. The rights adapt, diminish, and enhance

present the same semantics and subsumption relationships of the previous three
rights but their application produces a new modified resource, and leave the
original ones unaltered. The embed right allows one to attach or include another
resourse in a given resource. This right is important in order to correctly operate
a composition among resources. With R we denote the set of rights.

Conditions. MPEG-21 provides a set of conditions for the verification of terms
and obligations under which rights can be exercised by a given principal. Let
NC be the set of name of MPEG-21 conditions we consider.

Example 3. ExerciseLimit, ValidityInterval, and FeeFlat are samples of
names of conditions available in MPEG-21, representing: the number of times a
given right can be exercised, temporal interval of right validity, and the obligation
of the payment of a fee, respectively. �

Each condition name can be associated with a set of basic constraints represent-
ing limitations (like temporal and spatial constraints) that need to be verified
to consider the condition satisfied. Let NPc be the set of property names associ-
ated with the condition identified by the condition name c ∈ NC, a constraint is
npc op v, where: npc ∈ NPc is the name of a property, op ∈ OP = {<,>,≤,≥,=,
�=,∈, �∈} is a comparison operator, and v is a valid value for the property name
npc (the set of legal values for a property name npc is denoted Vnpc).

Definition 2 (Condition). Let c∈NC be a condition name, {npc1 ,. . . ,npcm}⊆
NPc. A condition c is a pair (c, {〈npc1op1v1〉, . . . 〈npcmopmvm〉}), where vi ∈
Vnpci

, opi ∈ OP , 1 ≤ i ≤ m

Example 4. Consider the condition names presented in Example 3. A property,
named count, can be specified for ExerciseLimit, representing the
number of times a right can be exercised. Therefore, the following condition
c1 = (ExerciseLimit, {〈count = 5〉}) states that the associated right can be
exercised up to five times. The condition c2 = (ValidityInterval, {〈time >
”2012-01-01T 00:00:00”,time < ”2013-01-01T 00:00:00”〉}) represents a validity

432 M. Mesiti, P. Perlasca, and S. Valtolina

time interval between midnight of January 1, 2012 and, midnight of January 1
2013. The condition c3 = (FeeFlat, {〈amount = 5〉}) is satisfied whenever the
principal has paid the amount of 5. �

Grants and Licenses. A grant describes the terms of a license. In the following
to identify the ith component of a tuple t, we use the notation t[i].

Definition 3 (Grant). A grant g is a 4-tuple 〈p, r, ô, C〉 where p is a principal,
r ∈ R is a right, ô ∈ Ô is a resource identifier, and C is a set of conditions.

Example 5. Suppose that otxt, oimg and ompg are resources representing a text, a
picture and a piece of music. Moreover, c1, c2, c3 are the conditions specified in
Example 4. The following grants specify that user Alice can play oimg without
restrictions, she can adapt, play and print otxt under the satisfaction of condition
c1 and c2. Moreover Tom, Bob and users belonging to uniMi can embed ompg under
the satisfaction of condition c3. Tom can reduce and print, like Alice, otxt under
the satisfaction of condition c1 and c2.

g1 = < Alice, play, ôimg, {} > g2 = < Alice, adapt, ôtxt, {c1, c2} >

g3 = < Alice, play, ôtxt, {c1, c2} > g4 = < Alice, print, ôtxt, {c1, c2} >

g5 = < uniMi, embed, ômpg, {c3} > g6 = < {Tom, Bob}, embed, ômpg, {c3} >

g7 = < Tom, print, ôtxt, {c1, c2} > g8 = < Tom, reduce, ôtxt, {c1, c2} > �

With G we denote the set of grants. A License is conceptually a container of
grants expressing the rights that can be exercised on the identified resources.

Definition 4 (License). A license l is a pair < i,G >, where: l [1] = i ∈ I is
the party issuing the license, and l [2] = G = {g1, . . . , gn} ⊂ G is a set of grants.

In the following, L denotes the set of licenses, Lu is the set of licenses of user
u, Gu = {g ∈ ⋃l[2]∈Lu

| u ↓ g[1]} is the set of grants issued to the user u,

Go
u = {g ∈ Gu | g [3] = ô} denotes the set of grants of user u that refers

to resource o, and Gr,o
u = {g ∈ Go

u | g[2] = r} is the subset of Go
u referring to

the right r. These sets contain all the grants referring the resource o and the
resources that o aggregates.

Example 6. Consider the grants of Example 5. Bob can issue the following li-
censes to Alice, Tom and to himself respectively.

– l1= < Bob, {g1, g2, g3, g4, g5} > ∈ LAlice

– l2=< Bob, {g5, g6, g7, g8} > ∈ LTom

– l3=< Bob, {g6} > ∈ LBob

Relying on these licenses, we can compute the following sets.

– L = {l1, l2, l3}, LAlice = {l1}, LTom = {l2}, LBob = {l3}
– GAlice = {g1, g2, g3, g4, g5}, GTom = {g5, g6, g7, g8}, GBob = {g6}
– G

ômpg
Alice = {g5}, G

ômpg
Tom = {g5, g6}, G

ômpg
Bob = {g6} �

On the Composition of Digital Licenses in Collaborative Environments 433

License Evaluation. The user profile is used to store the information of con-
text (for example, her/his location and time of execution), the state of given
constraints, and the certificates he/she holds. This information is used when
granting the access to resources The profile management will be presented when
discussing the system architecture.

Definition 5 (User Profile). Let u ∈ U be an user. The profile of user u,
denoted Pro(u), is a set of tuples (c, npcjwj), where c ∈ NC, npc ∈ NPc and
wj ∈ Vnpcj

, and a set of certificates asserting the partecipation to a community

whose validity are certified by a Credential Authority.

In the following, [[npcj]] Pro(u) = wj denotes that the current value for the
property npcj in the profile of u is wj , whereas evalu is a predicate for the
evaluation of a constraint/grant for a user u.

Definition 6 (Condition and Grant Evaluation). Consider u ∈ U and a
condition (c, {〈npc1op1v1〉, . . . 〈npcmopmvm〉}). c is satisfied wrt u if and only if:

evalu(c) =
m∧
i=1

evalu([[npci]] Pro(u) opi vi) = true

A grant g = 〈p, r, ô, C〉 is satisfied w.r.t. u if and only if:

evalu(g) = u ↓ p ∧∧c∈C evalu(c) = true

Given an authorization request <u, r, ô>, representing the request of user u∈U
to exercise the right r∈R on the resource o∈O, we now present its evaluation.

Definition 7 (Authorization Request Evaluation). Let ar =< u, r, ô > be
an authorization request and Gu the set of grants issued for u. ar is granted to u,
denoted by [[ar]] , if and only if ∃ g = 〈p, r, ô, C〉 ∈ Gu such that evalu(g) = true.

3 Grant Compatibility

In this section, we first discuss whether two rights are compatible, that is,
whether they can be applied at the same time either on the same resource or on
a pair of resources. Then, we present the notion of grant compatibility. We dif-
ferentiate between weak and strong grant compatibility because of performance
issues, the latter notion is more complex to be evaluated (and it is useless to
compute if the licenses are not weak compatible). Without loss of generality, we
restrict ourselves to pairs of licenses.

The rights compatibility notion depends on the context (same resource or
different resources) on which the rights have been specified. In order to introduce
this notion, we first need to establish when two rights are in conflict, that is,
when they cannot be exercised at the same time by the same user. The pairs of
privileges (enlarge, reduce) and (enhance, diminish) are in conflict because it
does not make sense to apply at the same time, or within the same transaction,

434 M. Mesiti, P. Perlasca, and S. Valtolina

two opposite privileges on the same resource. Moreover, since these pairs of
privileges are subsumed by the corresponding modify/adapt privilege, the grant
issuer, wishing to grant a wider rights to the principal, can exploit this privilege
instead of the conflicting privileges. The pairs of privileges (embed, reduce) and
(embed, diminish) are in conflict when specified on different resources, because
it is not possible to embed the first resource into the second one if we are only
allowed to reduce/diminish the second resource.

We also need to introduce the notion of non comparable rights. Two rights
are non comparable on different resources, when the possibility to exercise the
first right does not influence the possibility to exercise the second one. The
rights RT = {reduce, enlarge, modify, diminish, enhance, adapt}, that is, the
transformation rights with the exception of embed, are non comparable among
each others. Formally, each pair in RT × RT is not comparable.

Definition 8 (Rights Compatibility). Let (ri, rj) ∈ R×R be a pair of rights.
ri is compatible with rj, if and only if: when specified on the same resource, they
are not in conflict, i.e., (ri, rj) �∈ {(enlarge, reduce), (enhance, diminish)};
when specified on different resource, they are not in conflict and are comparable,
i.e. (ri, rj) �∈ {(embed, reduce), (embed, diminish)} ∪ RT × RT .

Relying on the notion of rights compatibility, we can introduce the concept of
weak grants compatibility.

Definition 9 (Weak Grants Compatibility). Let gi = 〈pi, ri, ôi, Ci〉 and
gj = 〈pj , rj , ôj , Cj〉 ∈ G be two grants. gi is weak compatible with gj (gi � gj) if
and only if: pi $ pj and ri is compatible with rj .

The fact that an user holds grants that are weak compatible does not mean that
she/he can exercise them on the resources. The user profile should be considered
and the grants that are weak compatible evaluated by taking the user profile
into account.

Definition 10 (Strong Grants Compatibility). Let gi and gj be two weak
compatible grants (gi � gj), Pro(u) the profile of user u. gi and gj are strong
compatible w.r.t. u (gi �u gj) if and only if evalu(gi) = evalu(gj) = true

Example 7. Consider the license l2 of Example 6. It follows that

g5 � g6, g5 � g7, g6 � g7, g7 � g8 and g5 �� g8, g6 �� g8

Suppose now that evalTom(c1) = evalTom(c3) = true whereas evalTom(c2) = false.
Consequently, only g5 �Tom g6 holds. �

4 License Composition

The creation of a new license for the composition of two resources or for a
modified resource can be realized by exploiting the License Generation Service
of our architecture (details in the next section). Therefore, a request of license

On the Composition of Digital Licenses in Collaborative Environments 435

Algorithm 1. The compose licenses request
Input: oa a resource, ob a resource, r ∈ {enlarge, modify, enhance, adapt, embed} a right, oc the

composed resourse, u a user
1: if ∃ga ∈ Gembed,oa

u and ∃gb ∈ G
r,ob
u s.t. ga �u gb then

2: if r ∈ {enhance, adapt} then
3: Generate the license lc = <u,Goa

u ∪ G
ob
u [

oc/ob
]>

4: else
5: if r = embed then
6: Generate the license lc = <u,Goa

u ∪ G
ob
u ∪ {(u, play, ôc, {})}>

7: else
8: Generate the license lc = <u,Goa

u ∪ G
ob
u >

9: end if
10: end if
11: end if
Output: The generated license (or denial to generate a license)

generation should be sent to this service. We consider the following kinds of basic
license generation requests: compose, update, add, remove. The first two are used
when the user wishes to automatically generate a license for the composition of
two resources, or the modification of a single resource. By contrast, the last two
are used to specify extra grants for new added resources, or to remove grants
that do not apply any longer to the modified resource.

For the sake of understandability we present the algorithms for the evaluation
of the basic licenses generation requests. However, the approach can be easily
extended to consider more sophisticated sequences of combinations and mod-
ifications of resources. In these cases, the actual generation of the license can
be postponed at the end of the sequence of basic modification operations. We
also remark that analogous algorithms have been developed for simply check-
ing whether there are the conditions for the generation of a new license. These
checking algorithms simply exploit the weak compatibility notions instead of the
strong compatibility notions discussed in the previous section. In the remainder
with the notation G[o

′
/o] we mean that in the licenses contained in G, all the

references to the resource o are substituted with the reference o′.
Algorithm 1 generates the new license when there is a compose licenses re-

quest. Whenever an user u wishes to compose a resource oa with a resource ob,
she/he should at least hold an embed right on oa and a right r that allows to
update (or append information to) the resource ob. If r ∈ {enhance, adapt},
the resource ob should be left unchanged and a new resource, named oc, should
be generated. Otherwise, oc is ob itself. Whenever user u holds the grants for
performing the composition operation, a new license is generated containing the
union of the grants user u holds on the original resources. In case a new resource
is generated, the references to ob occurring in the grants should be substituted
with the references to oc (line 3 in Algorithm 1). If r = embed, the resource
oc contains the concatenation of ob and oa. In this case we need to introduce a
grant that allows the user u to access the container oc, otherwise the access to
the components would be forbidden.

Algorithm 2 is used to generate a new license when a resource is modified
through a enhance/adapt/diminish right. For the other transformation rights

436 M. Mesiti, P. Perlasca, and S. Valtolina

Algorithm 2. The update licenses request
Input: o a resource, r ∈ {enhance, adapt, diminish} a right, oc the modified resourse, u a user
1: if ∃g ∈ Gr,o

u s.t. [[< u, r, o >]] then
2: Generate the license lc = <u,Go

u[
oc/o]>

3: end if
Output: The generated license (or denial to generate a license)

there is no need to generate a new license (the original license is still valid).
Since a new resource oc is generated, we need to substitute the references to ob
occurring in the grants with the references to oc.

Example 8. Let otxt = {ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2}} and otxt3 = {ôtxt3 :
{ôtxt4 : otxt4 , ôtxt5 : otxt5}} be two resources, l4=< Bob, {g9, g10, g11, g12} > ∈ LTom

be another license issued from Bob to Tom consisting of the following grants:

g9 = < Tom, enlarge, ôtxt, {c1, c2} > g10 = < Tom, embed, ôtxt3 , {c1, c2} >

g11 = < Tom, embed, ôtxt, {} > g12 = < Tom, enhance, ôtxt, {} >

Suppose that Tom wishes to compose otxt3 into otxt by enhancing, enlarging
or embedding the latter. At the time of the request, we have that: LTom =

{l2, l4}, G
embed,ôtxt3
Tom = {g10}, Genlarge,ôtxt

Tom = {g9}, Gmodify,ôtxt
Tom = Gadapt,ôtxt

Tom =

∅, Genhance,ôtxt
Tom = {g12}, Gembed,ôtxt

Tom = {g11}. Finally, suppose that evalTom(c1)
= evalTom(c2) = true. Consequently, g10 �Tom g9, g10 �Tom g11 and g10 �Tom g12
are valid and thus, in all cases, the Tom’s requests can be satisfied. Referring to
Algorithm 1, if Tom requires to compose otxt3 into otxt

by enlarging otxt. The structure of the resulting updated resource otxt is otxt =

{ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2 , ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}} whereas the
generated license is l5=< Tom, {g7, g8, g9, g10, g11, g12} > ∈ LTom.

by embedding otxt. A new resource otxt6 is generated and its structure is otxt6 =

{ôtxt6 : {ôtxt : {ôtxt1 : otxt1 , ôtxt2 : otxt2}, ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}}. A
new license is generated for otxt6 : l6=< Tom, {g7, g8, g9, g10, g11, g12, g13} > ∈ LTom,

where g13 = < Tom, play, ôtxt6 , {} > is a new grant that allow Tom to access
to the concatenated resources.

by enhancing otxt. A new resource otxt7 is generated and its structure is otxt7 =
{ôtxt7 : {ôtxt1 : otxt1 , ôtxt2 : otxt2 , ôtxt3 : {ôtxt4 : otxt4 , ôtxt5 : otxt5}}}. A new license
is generated for otxt7 : l7=< Tom, {g′7, g′8, g′9, g10, g′11, g′12} > ∈ LTom where the
grants are updates as follows in order to refer to the new resource identifier:

g′7 = < Tom, print, ôtxt7 , {c1, c2} > g′8 = < Tom, reduce, ôtxt7 , {c1, c2} >

g′9 = < Tom, enlarge, ôtxt7 , {c1, c2} > g′11 = < Tom, embed, ôtxt7 , {} >

g′12 = < Tom, enhance, ôtxt7 , {} > �

The two presented algorithms allow the automatic generation of a new license
when resources are composed and modified. However, the user might decide to
introduce further grants (e.g. on new introduced resources) or to remove useless
grants (e.g. grants that refer resource components that have been removed).
These operations are performed through the add and remove algorithms that we
do not report for space constraints. The add algorithm checks the consistency of

On the Composition of Digital Licenses in Collaborative Environments 437

Fig. 2. A simplified DRM scenario

the new inserted grants with respect to the other grants occurring in the license,
whereas the remove algorithm compacts the license by removing grants that
cannot any longer be evaluated on the modified resource.

5 Enhanced DRM Architecture

This section presents a DRM architecture enabling a set of services and tech-
nologies to govern the authorized use of digital resources and to manage any
consequences of that use throughout their entire life cycle. The architecture is
approached by identifying the main involved entities: the resource provider, the
users and the issuer. A DRM system is a set of DRM related services offered
by the issuer to users and resource providers to enable the consumption of re-
sources. In a typical simplified scenario, illustrated in Figure 2, a user exploits
its DRM client to contact a Resource Service (1). This service enables the access
to the protected resources (2). After an authorization has been requested (3)
and evaluated according to the user profile (4) through a set of services, the
resources can be consumed. For evaluating the user-request and for issuing the
corresponding license, the architecture relies on a workflow of service-requests.
In the reminder of the section, we first report a set of high level services that are
needed for enabling such composition, and then we describe the correct sequence
of service-requests used to compose a new resource and to generate its proper
license. For the lack of space we concentrate only on the issue of composition,
the update of a single resource is handled analogously.

Service-Oriented Architecture. The architecture in [14] is extended for sup-
porting the license generation when a new resource is created by a user (hence-
forward the producer) through the composition of different resources. For the

438 M. Mesiti, P. Perlasca, and S. Valtolina

sake of clarity, we avoid to present the external tracking and payment services
focusing only on services devoted to check the composition compatibility.

1. Resource Service. This service is in charge of the management of the resources
and answers to the access/composition requests posed by an user through a
DRM compliant client.

2. License Service. This service is in charge of the management of the licenses
and of issuing new licenses upon users request.

3. Authorization Service. The Authorization Service is responsible for the eval-
uation of licenses upon an access/composition request is received by the Re-
source Service. For its activity the Authorization Service gets in touch with
the License Service for obtaining the licenses, with the Compatibility Service
for checking compatibility issues in case of composition/update of resources,
with the Identification Service for the evaluation of principal specification
on licenses’ grants, and for acquiring the user profile for the evaluation of
grants, and with External Services for checking specific constraints (like for
example the external Payment Service in case the principal has to pay for
consuming the resources) occurring in licenses.

4. Identification Service. This service is responsible for the authentication of
the users and for checking the users’ certificates. Moreover, it gets in tough
with the DRM client to obtain temporal, geographical and context of use
information to be included in the user profile. Finally, the Identification
Service is in charge of storing and keep updated the users profiles.

5. Compatibility Service. This service is responsible to check the weak and
strong compatibility conditions discussed in Section 3. The Compatibility
Service, like the Authorization Service, can get in tough with External Ser-
vices for the strong verification of conditions of grants.

6. License Generation Service. This service is in charge of executing the algo-
rithms discussed in Section 4, and of creating the new licence of the composed
resource by interacting with the License Service to retrieve licenses and to
store the generated ones.

DRM Services Composition in Collaborative Environment. In a col-
laborative environment, we should define a workflow of service-requests able to
support the generation of a license of a new resource created by composing dif-
ferent ones. Specifically, our proposal relies on a workflow consisting of two main
activities: the composition of different resources and the definition of the license
on the resulting resource. To support these activities, our architecture should
adopt specific composition and integration management services (see Figure 3).

For composing different resources, the DRM client forwards the composition
request obtained by the producer to the Resource Service. In order to autho-
rize the operation, the Resource Service gets in touch with the Authorization
Service. This service collects the licenses of the involved resources from the Li-
cense Service. By considering the grants contained in the obtained licenses, the
Authorization Service evaluates the composition request by means of the Com-
patibility Service. The first check concerns the validity of the weak compatibility

On the Composition of Digital Licenses in Collaborative Environments 439

Fig. 3. Sequence of service-requests for composing a set of resources in the DRM system

conditions of the resources to compose and leads to the identification of a set of
operations that the producer can carry out on the original resources according to
her/his licenses. Once the Compatibility Service has checked the weak compati-
bility conditions, the Authorization Service has to authenticate the producer and
control the grant conditions according to the producer profile. Authentication
is realized in the following way. The Authorization Services asks to the Identi-
fication Service to authenticate the producer by providing the producer profile.
The Identification Service, in turn, needs to query the DRM client for gathering
information about the producer’s context of use and for the evaluation of predi-
cates relying on the producer certificates. The evaluation of the grant conditions
is realized through the Compatibility Service by considering the producer profile
and External Services. After carrying out these two activities, the Authorization
Service can authorize or refuse the access to resources. In case the compatibility
check comes to a satisfactory reply, it will provide the set of operations that the
producer can carry out for composing the new resource.

Once the resources have been composed, the producer requests the genera-
tion of a new license. First of all, the DRM client has to contact the License
Generation Service that takes care of all steps needed to create the new license
and to send it to the License Service for its storage (see Figure 4). The License
Generation Service requires to the License Service the producer’s licenses of the

440 M. Mesiti, P. Perlasca, and S. Valtolina

Fig. 4. Sequence of service-requests for the generation and storage of a new license

component resources and exploits the information to compose a set of grants to
assign to the license of the new resource according to the operations carried out
by the producer. To complete these operations, the License Generation Service
has to ask to the Identification Service to generate new identifiers for resources
enhanced and adapted during the composition process. By exploiting the iden-
tifiers generated by the Identification Service, the License Generation Service
generates the license of the new resource, if it is possible. If the process is posi-
tively concluded, the License Generation Service sends the new resource to the
Resource Service for its storage and sends the new license to the License Service.

6 Related Work

Different Rights Expression Languages (like ccREL [6], ODRL [8], MPEG-21
REL [10]) have been proposed for expressing digital licenses, terms and con-
ditions. These proposals differ from the scope and the granularity according to
which it is possible to specify and manage each aspect of the license specification
and management processes. Although some of them support the necessary rights
to compose resources, none of them explicitly defines how to create and assign
a new license to the result of the composition.

The issue of license composition and compatibility analysis is difficult to ad-
dress in a systematic way since license terms and conditions can be expressed
in different ways, including the natural language, by using terms whose mean-
ing would be ambiguous or not interpretable uniquely. This aspect makes obvi-
ously more difficult to determine which correct result should be returned from the
composition process. In [3–5] the authors address the problem of service

On the Composition of Digital Licenses in Collaborative Environments 441

license1 composition and compatibility analysis by using the ODRL-s language
[2], an extension of ODRL [7, 8] to implement the clauses of service licensing. A
similar approach is used in [19] where the authors present a framework to asso-
ciate licensing terms to web data in order to combine licenses for the data resulting
from queries; the resulting composite license is still expressed as licensing terms.
Finally, in [1] the authors address the issue of identifying the kind of licenses, ex-
pressed through MPEG-21 REL [10, 11], a user should hold in order to compose
or transform resources and present use-cases for the main operations.

Our approach differs from them from several points of view. First, our ap-
plication scenario is different from that of service and web data licensing. In
their case, the focus is on the management of the business and legal contractual
information expressed as CC terms, with respect to the ODRL CC profile [9]
and the CC license schema [6] respectively. This is used to establish if different
services are compatible and composable among them and to verify wether users
can access to web data provided by different data sets and released under dif-
ferent licensed terms. Conversely, our formal model, compliant with MPEG-21
REL [10], is mainly focused on the issue of determining the conditions under
which the transformation/composition of resources can be performed in a sys-
tematic way and to provide a license for the transformed/composed resource.
Finally, the weak/strong evaluation strategy we propose allows the evaluation
of the authorization conditions only when strictly required.

With the proliferation of Internet-based applications and the ready availabil-
ity of powerful file sharing and distribution tools, DRM has become a critical
concern in the Internet domain. The literature is rich of proposals exploiting
DRM platforms based on the distribution of digital content via Internet, like:
the Open and Secure Digital Rights Management Solution (OSDRM) [18]; the
Microsoft Windows Media DRM platform (MSDRM) [17]; the IBM Electronic
Media Management System (EMMS) [16]; and the Real Networks HelixDRM
[15]. These solutions aim at creating a secure framework for delivering multi-
media on the Internet, and caters for the creation of secure contents, payment
collection, distribution and rendering of multimedia. Most of this literature de-
scribes a DRM system as a platform containing several functionality, including
content registration and protection; it offers publication, content search, pur-
chase and licensing, authorization and access control. Nevertheless, these sys-
tems are not able to support users in the composition process by taking into
account the users’ licenses on the component resources.

7 Conclusions and Future Work

Starting from a formal model for the representation of licenses, in this paper we
provided algorithms for the evaluation of compatibility of license’s grants and
for the generation of a new license of composed/updated resources. Moreover,
we discussed an architecture that allows the composition and modification of

1 A service license describes the terms and conditions for the use and access of the
service in a machine readable way that services could be able to understand.

442 M. Mesiti, P. Perlasca, and S. Valtolina

resources. These results are the building blocks for the realization of a tool for
helping a user to compose resources in collaborative environments that we are
currently implementing. We remark that our licenses can be easily translated
into corresponding MPEG-21 REL licenses [10].

As future work we plan to enhance our approach by allowing the composition
of resources belonging to different users. In this scenario, a negotiation of users’
grants should take place in order to determine the grants to be assigned to the
generated resource. Moreover, we are considering the issue of distribution of
licenses to the users belonging to the user’s communities.

References

1. Delgado, J., et al.: Definition of mechanisms that enable the exploitation of gov-
erned content. In: AXMEDIS, pp. 136–142 (2006)

2. Gangadharan, G., et al.: ODRL service licensing profile (ODRL-s). In: Proc. 5th
Int’l Workshop for Technical, Economic and Legal Aspects of Business Models for
Virtual Goods, Germany (2007)

3. Gangadharan, G., D’Andrea, V.: Service licensing: conceptualization, formaliza-
tion, and expression. Service Oriented Computing and Applications 5(1), 37–59
(2011)

4. Gangadharan, G.R., et al.: Consumer-specified service license selection and com-
position. In: ICCBSS, pp. 194–203 (2008)

5. Gangadharan, G.R., Weiss, M., D’Andrea, V., Iannella, R.: Service license com-
position and compatibility analysis. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 257–269. Springer, Heidelberg (2007)

6. Abelson, H., et al.: ccREL: The Creative Commons Rights Expression Language.
Creative Commons Wiki (2008)

7. Iannella, R.: Open digital rights management. In: Workshop on Digital Rights
Management for the Web, France (2001)

8. Iannella, R.: Odrl specification 1.1 (2002)
9. Iannella, R.: Odrl creative commons profile specification (2005)
10. Information Technology-Multimedia Framework. Part 5: Rights expression lan-

guage, iso/iec 21000-5 (2004)
11. Information Technology-Multimedia Framework. Part 6: Rights data dictionary,

iso/iec 21000-6 (2004)
12. json. Javascript object notation
13. Ku, W., Chi, C.-H.: Survey on the technological aspects of digital rights manage-

ment. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 391–403.
Springer, Heidelberg (2004)

14. Michiels, S., et al.: Towards a software architecture for DRM. In: DRM, pp. 65–74
(2005)

15. RealNetworks. Helixcommunity-the foundation of great multimedia applications
(2013)

16. RealNetworks. The IBM electronic media management system (2013)
17. RealNetworks. Windows media digital rights management (2013)
18. Serrão, C., et al.: Open SDRM - An open and secure digital rights management

solution. In: Proc. Int. Association for Development of the Information Society,
Portugal (2003)

19. Villata, S., Gandon, F.: Licenses compatibility and composition in the web of data.
In: COLD (2012)

The Hints from the Crowd Project

Paolo Fosci1, Giuseppe Psaila1, and Marcello Di Stefano2

1 University of Bergamo, Dept. of Engineering,
Viale Marconi 5, I-24044 Dalmine, BG, Italy

{paolo.fosci,psaila}@unibg.it
2 University of Palermo, Dept. of Computer Science Engineering,

Viale delle Scienze Ed. 6, I-90100 Palermo, Italy
marcello.distefano@unipa.it

Abstract. Can the crowd be a source of information? Is it possible to
receive useful hints from comments, blogs and product reviews? In the
era of Web 2.0, people are allowed to give their opinion about everything
such as movies, hotels, etc.. These reviews are social knowledge, that can
be exploited to suggest possibly interesting items to other people.

The goal of the Hints From the Crowd (HFC) project is to build
a NoSQL database system for large collections of product reviews; the
database is queried by expressing a natural language sentence; the result
is a list of products ranked based on the relevance of reviews w.r.t. the
natural language sentence. The best ranked products in the result list
can be seen as the best hints for the user based on crowd opinions (the
reviews).

The HFC prototype has been developed to be independent of the par-
ticular application domain of the collected product reviews. Queries are
performed by evaluating a text-based ranking metric for sets of reviews,
specifically devised for this system; the metric evaluates the relevance of
product reviews w.r.t. a natural language sentence (the query).

We present the architecture of the system, the ranking metric and
analyze execution times.

1 Introduction

Users of modern Web 2.0 applications consider a matter of fact being allowed to
write their own comments or reviews about any kind of product. Similarly, they
expect to find reviews posted by other users, so that they can exploit them to
make decisions about, e.g., a phone, a hotel room, a movie.

All these reviews constitute an incredible source of information. They are
previous social knowledge about products, by means of which users would like
to get useful hints. But how could a user obtain them? Typically, the user has
a wish and would like to find out products that match those wishes, based
on opinions of other users. This approach must be necessarily supported by a
system. In fact, looking at the problem by a database technology point of view,
product reviews constitute a text, yet moderately structured, database; user’s
wishes can be seen as natural language queries over the set of reviews and the

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 443–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

444 P. Fosci, G. Psaila, and M. Di Stefano

user wants to obtain the products whose set of reviews matches the query at
the highest degree. In other words, such a system is a NoSQL database system,
where queries are natural language sentences.

This is the premise that motivated the Hints From the Crowd (HFC) project:
we wanted to build a NoSQL database system for large collections of product
reviews; the database is queried by expressing a natural language sentence; the
result is a list of products ranked based on the relevance of reviews w.r.t. the
natural language sentence. The best ranked products in the result list can be
seen as the best hints for the user based on crowd opinions (the reviews).

We started the development of the HFC prototype from our previous work [2],
where we studied several ranking metrics for retrieving blogs, but we introduced
semantic tagging and semantic expansion based on the WordNet ontology.

The main goal of the project was to demonstrate that it is possible to obtain
an answer to a query in acceptable time on a large set of reviews. So, the paper
is focused on the architecture of the prototype, on the precise definition of the
ranking metric, and on the study of execution time performance at query time.

Three main categories of NoSQL databases are usually considered [7] : Key-
Value stores, Document stores and Column Family stores. Furthermore, even
Graph databases can be considered as well belonging to the world of NoSQL
databases [6]. However, the work in [1] clearly highlights that a key aspect of
NoSQL databases is performance in terms of execution times; therefore, this
motivates our focus on proposing efficient solutions for our proposal.

As far as the analysis of customer reviews is concerned, usually data mining
techniques are adopted. In particular, [5] presents a system to compare opinions
about products is presented, where association rule mining is exploited to assign
a positive or negative polarity to words (namely, adjectives) in product reviews,
and use this polarity to rank the opinion about products; [4] extracts, by means of
an association rule mining technique, relevant features that summarize product
reviews. Notice that we do not propose a data mining technique. We simply take
inspiration from the concept of frequent itemset.

The paper is organized as follows. Section 2 shows and describes the archi-
tecture of the system. Section 3 describes how the query engine works and the
ranking measure. Section 4 presents the results of the performance study we con-
ducted by means of the IMDb dataset. Finally, Section 5 draws the conclusions.

2 The HFC System

As stated in Section 1, the goal of the Hints From the Crowd project is to build
a NoSQL database system that deals with collections of product reviews, that
can be queried by expressing a natural language sentence. The system extracts
those products whose reviews better match the natural language query (in the
rest of the paper, we use the term query in place of natural language query).

Due to lack of space, in this Section we briefly present the architecture of the
overall system and data structures defined to foster query performance.

The Hints from the Crowd Project 445

Analizer Loader Expander

Query
Engine

Product
Reviews

Tagged
Reviews

File System
Data Structure

Relational
Database

Web
Application

Fig. 1. Architecture of the HFC System

Architecture. The HFC system is composed by several components, each one
devoted to perform a specific task. We distinguish between the back-end, respon-
sible for the initial general indexing, and the front-end, where the Query Engine
and its user interface actually resides. Figure 1 shows the architecture.

Back-end. In this side of the system, we find the components (denoted as rect-
angles) that prepares the data structure on which queries are executed. These
components operate on source data and intermediate results (denoted as ovals)
and upload data structures in the Storage Box.

– Analyzer. This component analyzes product reviews, identifying words and
their grammar categories by a pos-tagger1, obtaining tagged reviews.

– Loader. The goal of this component is to actually load tagged reviews into
the data structures on which queries are performed (see paragraph Data
Structure).

– Expander. After completion of loading of tagged reviews, tagged words are
expanded on the base of their grammar category by means of an ontology2,
in order to afterwards allow the Query Engine to capture a wider set of
results related with a query.

Front-end. The Query Engine is the key component of the front-end. It exploits
the preliminary work performed by back-end components, to answer the query
provided by users through the Web Application.

Data Structure. The HFC system must provide reasonable performance at
query time, but at the same time all the components must easily get all the
information they need. For these reasons, both a relational database and a file
system data structure have been adopted.

Figure 2 depicts the schema of the data structure. The key table of the schema
is table Terms, which describes each single term managed by the system. In
effect, we distinguish between simple words and tagged words (i.e., terms), that
is, words with a tag that describes the grammatical category (adjective, noun,

1 For pos-tagging we used the Stanford Parser :
http://nlp.stanford.edu/index.shtml

2 We used WordNet 3.1 : http://wordnet.princeton.edu/

http://nlp.stanford.edu/index.shtml
http://wordnet.princeton.edu/

446 P. Fosci, G. Psaila, and M. Di Stefano

Terms(id, word, tag, taggedword, products, reviews, occurrences)
Term2Expansion(termId, expandedWordId, relation)
Occurrences(id, productId, termId, review, position)
Product(id, domain specific attributes)

Fig. 2. Schema of the Relational Database

verb, or adverb), based on the classification used by WordNet ; therefore, the
same simple word can appear several times in the table, one for each different
possible grammatical category for that word. Attributes products, reviews and
occurrences counts the number of products and the number of reviews in which
a term occurs, and the total number of occurrences, respectively.

If a term is obtained by expanding another term, based on the WordNet
ontology, it is described in the same table Terms. The expansion relation is
described by table Term2Expansion, that associates a term (attribute termId)
to the expanded term (attribute expandedTermId). Attribute relation denotes
the typology of expansion, i.e., synonym, hypernym, meronym to name a few.

Table Occurrences describes all occurrences of terms in product reviews; in
particular, notice attribute position, that indicates the position of the occur-
rence in the review. This table is actually represented as a pool of files where
each file is the inverted index for a term.

Finally, table Productsdescribes each single product, and its schema is context-
dependent since attributes are defined based on the application domain. For exam-
ple, since we use IMDb movie data set to test the prototype, we defined attributes
concerning movies, such as title, director, year, and so on.

3 Query Engine

We now describe the key component, i.e., the query engine. Based on a natu-
ral language sentence (the query) it extracts those products whose reviews are
mostly relevant for the query. Relevance is evaluated by means of a ranking met-
ric; retrieved products are returned as a list sorted in reverse order of relevance.
Hereafter, we describe how the ranking metric is defined.

3.1 Termsets

In this paper we consider a query q as a set of terms (or briefly, a termset).
Thus, we describe a query containing a number n of terms as q = {t1, . . . , tn},
and we investigate only those queries where n > 1 or, in other words, |q| > 1.

With I, we denote a generic termset that is a subset of q for which applies
|I| > 1. With Dq, we denote the set of termsets I derived from q. Notice that
the cardinality of Dq is |Dq| = 2n − (n+ 1), i.e. Dq is the power set of q without
the empty set and the n single terms that compose q.

With Il we denote an l-termset of q, that is a termset composed by l terms, i.e.
|Il| = l. With Dq,l we denote the set of l-termsets Il. Notice that the cardinality
of Dg,l is |Dq,l| = (nl).

The Hints from the Crowd Project 447

3.2 Termset Weight

We now define the concept of weight for a termset.

Definition 1: The weight of a l−termset is a function of its length and the
length of the query q (|q| = n); it is denoted as wq(l).
For n = 2, there is only one 2-termset and its weight is wq(2) = 1 by definition.
For n > 2, the weight of the single n−termset q is, by definition, wq(n) = 0.5,
while for 2 < l < n, it is wq(l) = wq(l + 1)/((nl) + 1) and for l = 2 it is
wq(2) = wq(3)/(n2). �

The rationale behind Definition 1 is the following. The topmost termset, corre-
sponding to the whole query, is the most important one, and its weight is equal
to the overall weight of all the shorter termsets. The same principle is valid for
any generic termset Il (with 2 < l < n), whose weight is equal to the overall
weight of all lower level termsets (even those that are not subset of Il). This way,
reducing the size of termsets, the contribution of each level quickly decreases.

Notice, that the overall weight of all termsets is exactly 1 (
∑

I∈Dq
wq(|I|) = 1).

3.3 Query Expansion and Semantic Coefficient

As stated in Section 2, reviews are processed performing several operations.
Similar operations are performed on a user-query in natural language as well.

Pos-tagging. By means of Stanford Parser, each word of a user query is tagged
with an attribute that denotes its grammar role (verb, noun, adjective to name
a few) in the query.

Stopwords filtering. Stopwords are those words that are too common in reviews
(such as articles, conjunctions or common verbal forms like is or have). These
words hold a small semantic meaning, so after pos-tagging operation stopwords
are discarded from the query.

Thus, denoting with SW the set of possible stopwords, frm now on the nota-
tion:

q = {t1, . . . , tn}
includes only those terms ti /∈ SW , and, as stated in Section 3.1, we consider
only those queries q such that |q| > 1 (actual length without stopwords).

Term expansion. By means of WordNet ontology, each tagged term ti ∈ q is
expanded with all those terms directly associated to ti based on its grammar tag.
For example, a noun is expanded with all its synonyms, hypernyms or hyponyms
and so on, while a verb is expanded with all its synonyms or meronyms, to name
a few. There are actually a total of 15 possible different relationships between a
tagged term and its expanded word.

We denote with t∗i the generic expanded term of ti, and with ET (ti) the set
of all expanded terms of ti. By definition, ti ∈ ET (ti) with an identity relation,
thus, |ET (ti)| ≥ 1.

448 P. Fosci, G. Psaila, and M. Di Stefano

Notice that, given a generic expanded term t∗, it can happen that t∗ ∈ ET (ti)
and t∗ ∈ ET (tj), with i �= j. In other words, we cannot state a-priori that
ET (ti) ∩ ET (tj) = % with i �= j. As an example, the term colour can be an
hypernym expansion for both terms red and black.

Query expansion. An expanded query q∗ is each combination of {t∗1, . . . , t∗n}. We
consider valid a combination q∗ = {t∗1, . . . , t∗n} only if t∗i �= t∗j ∀i �= j Notice that
the original query q is a particular q∗ itself, and it is valid by definition.

Expanded Termsets. Previous considerations about query q and its expansions,
are applicable to each termset Il. With I∗l we denote an expanded termset I∗l =
{t∗1, . . . , t∗l }, and similarly I∗l is valid only if t∗i �= t∗j ∀i �= j.

With EI(I) we denote the set of all possible expanded termset I∗ that can be
derived from I. The cardinality of EI(I) =

∏
t∈I |ET (t)|, that is the number of

all possible combinations of the expanded terms of those terms that compose I.
Finally, with D∗

q , we denote the set of all valid expanded termsets that are
included in q and all its valid expansions q∗.

Semantic coefficient. Each t∗ ∈ ET (t) has a semantic coefficient sct(t
∗), with

0 < sct(t
∗) ≤ 1, that depends on the cardinality of ET (ti).

Definition 2: For each t∗ ∈ ET (t) except t, sct(t
∗) = 0.5/|ET (t)|, and sct(t) =

0.5 + 0.5/|ET (t)|. �

The rationale of semantic coefficient, is the following. A term describes a
semantic concept that is mostly expressed by the term itself, but receives a
small contribution from expanded terms: the greater the number of expansions,
the smaller the semantic contribution of a single expanded term. Notice that∑

t∗∈ET (t) sct(t
∗) = 1.

With scI(I∗) we denote the semantic coefficient for an expanded termset I∗

derived from I.

Definition 3: Given an expanded termset I∗ = {t∗1 . . . t∗l } derived for a termset
I = {t1 . . . tl}, it is scI(I∗) =

∏
t∗i ∈I∗

l
scti(t

∗
i). �

This way, a termset that contains only original terms gives the highest semantic
contribution, while augmenting the number of expanded terms in the termset,
the semantic contribution decreases.

Notice that, according to the above definition,
∑

I∗∈EI(I) scI(I∗) = 1.

3.4 Product Reviews and Termsets

Consider a product p (a movie, a camera, etc.); its set of reviews is denoted by
R(p) = {r1, . . . , rk}. Each review is a text, i.e., a sequence of term occurrences
ri =< t1, . . . , ts >.

With T (R(p)) we denote the set of terms appearing in reviews for product p,
and with T (ri) the set of terms appearing in review ri ∈ R(p).

The Hints from the Crowd Project 449

Definition 4: A termset I is said relevant for product p if ∃ri|I ⊆ T (ri). �

The set of relevant termsets for product p is denoted as RDp,q. In an analogous
way, RD∗

p,q is the set of all relevant expanded termsets for product p. Notice
that RDp,q ⊆ Dq, and also RD∗

p,q ⊆ D∗
q .

3.5 Termset Average Density

In a preliminary work [3], we assumed that every termset occurrence in product
reviews contribute to the support of the termset with the same weight, i.e. 1,
since the support, by definition, is the number of reviews containing the termset
on the total amount of reviews.

Given a termset I, in a single review, terms in I can be very dense or very
sparse. We had the intuition that a review in which the occurrences of terms in
I are dense is more relevant for the query than a review where occurrences are
sparse. Thus, we introduce the concept of Termset Density of an termset I for
a single review.

Definition 5: Consider a product p, a review r ∈ R(p), and a termset Il. The
Termset Review Density dr(Il) is defined as

dr(Il) = l/minWinr(Il)

where minWinr(Il) is the size of the minimal window in review r that includes
all the terms of termset Il. �

Notice that for Termset Review Density, it holds that 0 < d(Il, r) ≤ 1
The next step is to define a Termset Average Density for a generic termset I

(we omit the subscript l so as not to burden notation) w.r.t. a product p.

Definition 6: Consider a product p and its set of reviews R(p). With RI(p)
we call the subset of R(p) of those reviews containing termset I. The Termset
Average Density for product p, denoted as adp(I), is defined as:

adp(I) = (
∑

r∈RI(p)
dr(I))/|R(p)|

�

The Termset Average Density is analogous to termset support, with the differ-
ence that the contribution of the occurrence of a termset I in a review r is not
1 but its density dr(I). Notice that adp(I) ≤ sp(I) ≤ 1, where with sp(I) we
denote the support of a termset I for a product p.

3.6 Product Ranking Metric

Finally, we can now define the Product Ranking Metric PRM.

Definition 7: Consider a query q, the set of termsets D∗
q derived from q, the

weights wq(|I∗|) and semantic coefficients scq(I
∗) for each expanded termset

I∗ ∈ D∗
q .

Consider a product p, the set of reviews R(p) and the set of relevant expanded
termsets RD∗

p,q that can be actually extracted from R(p). Given, for each I∗ ∈

450 P. Fosci, G. Psaila, and M. Di Stefano

Table 1. Data set general informations

Reviews per Movie

Movies Reviews Max Min Avg Data Size

109,221 2,207,678 4,876 1 20 3,091Mb

Table 2. Indexed schemes

Schema A B Diff %

Pos-Tagger active inactive
Distinct tagged terms 1,151,827 776,852 -32.55%
Occurrences 216,345,522 216,345,522 0.00%

Analyzer Time (A = Ps+Pt) 2226.80h 3.82h -99.83%
Parsing Time (Ps) 2.11h 2.42h +14.74%
Pos-tagging Time (Pt) 2224.69h 1.40h -99.94%

Loader Time (D) 56.05h 49.76h -11.23%
Expander Time (E) 3.73h 2.67h -28.49%

Total Time (T = A+D+E) 2286.58h 56.25h -97.54%

RD∗
p,q, the average termset density adp(I∗), the Product Relevance Value for

product p is defined as

PRM q(p) =
∑

I∗∈RD∗
p,q

(wq(|I∗|) × adp(I∗) × scq(I∗))
�

The rationale of the above definition is the following. For each termset I∗ in-
cluded in the query q and actually relevant in the reviews, its contribution to the
overall relevance value is given by its weight wq(|I∗|) (that depends on its size)
multiplied by its average density adp,q(I∗) and its semantic coefficient scq(I

∗).
The system of weights and semantic coefficients has been designed to obtain

a PRM q(p) = 1 for an ideal set of reviews for product p, where each review
contains every expanded termset I∗ that can be derived from q with a density
dr(I∗) = 1, and every expanded termset I∗ is valid.

4 Evaluation

Our dataset (downloaded from IMDb.com web site) is described in Table 1.
Experiments have been run on a PC with two Intel Xeon Quad-core 2.0GHz/

L3-4MB processors, 12GB RAM, four 1-Tbyte disks and Linux operating system.

Indexing. While indexing data set, as described in the back-end of HFC in
Section 2, we figured out how pos-tagging affects the HFC system.

Disabling pos-tagging means tagging each term with a unique trivial tag, and
considering for each term every possible expansion regardless of its role inside
the query; in other words, disabling pos-tagging implies a significant reduction
of the number of managed distinct terms because words are not distinguished
anymore on the basis of their grammar category; however, the counter effect is

The Hints from the Crowd Project 451

that the query engine has to likely retrieve a greater number of term occurrences
and calculate a greater number of termsets (briefly see Table 4).

Table 2 reports data collected during dataset indexing. Column A shows
data regarding indexing with pos-tagging activated, while Column B shows data
regarding indexing with pos-tagging deactivated (respectively Schema A and
Schema B in the rest of the paper). For each Schema, the number of identi-
fied tagged terms and the total number of indexed term occurrences are shown.
As stated before, disabling pos-tagging reduces the number of tagged terms
(∼ 33%) while the number of occurrences remains unchanged. Table 2 reports
also data relative to execution time during the tasks described in the back-end of
the system architecture (see Figure 1) in the indexing phase. In particular, the
Analyzer Time has been splitted into a Parsing Time, that is basically the share
of time due to reading data from data set and identify terms occurrences, and
a Pos-tagging Time, that considers only the execution time of Stanford Parser
when pos-tagging is active, or the simple operation of labeling each term with
the same tag when the pos-tagging is inactive. It is clearly evident how much
pos-tagging affects the Analyzer Time: 2224.69 hours equivalent to more than
92 days! In order to reduce this waiting time, we exploited all the 8 cores of
our machine, parallelizing the Analysis phase in 8 independent processes, split-
ting data set into 8 different independant sub-data sets, and reducing the actual
waiting time to about 13 days.

To conclude, it is interesting to notice how the difference of tagged terms rec-
ognized in Schema A w.r.t. Schema B affects more (in percentage) the execution
time of the Expander than the Loader (that include also occurrences loading).

Query Performance. For our query performance tests, we prepared a set of 25
standard user queries in natural language like I want to know more about the
history of Greece and Persian wars, or All those moments will be lost in time,
like tears in rain3. Due to the lack of space, we don’t report the other queries.

Basically, the query engine evaluates a query performing 4 different steps:
(1) query expansion, (2) occurrences loading, (3) product ranking, (4) result sort-
ing. While Steps 1 and 4 must be performed by a single unique thread, Steps 2
and 3 can be parallelized (and performed in different threads).

On the base of this consideration, we realized also a multi-thread version of
the query engine, with 5 different running threads for Steps 2 and 3. In order
to do that, it was necessary to horizontally split the pool of files that represent
Table Occurrences described in section 2, into 5 different and independant file
systems.

The first test we made, on Schema A, shows the benefits on average perfor-
mance per query (Table 3) from the single-searching-thread version of the query
engine (SST-QE) to the 5-searching-threads verion of query engine (5ST-QE).

The analysis shows that most of of execution times is spent during occurrences
loading: this is mostly due to our storage system based on classical hard disks.

3 From the movie Blade Runner.

452 P. Fosci, G. Psaila, and M. Di Stefano

Table 3. SST-QE vs 5ST-QE

SST-QE 5ST-QE Diff %

Average Time (T=QE+TG+TE+TM+S) 2,501.12 ms 1,994.66 ms -20.25%

1. Query Expansion (QE 286.44 ms 286.40 ms -0.01%
Thread generation (TG) 0.40 ms 1.88 ms 370.00%
Thread execution (TE ≤ O+R) 2,199.64 ms 1,691.60 ms -23.10%

2. Occurrences Loading (O) 1,962.52 ms 1,639.84 ms -16.44%
3. Ranking (R) 237.12 ms 75.12 ms -68.32%

Thread merging (TM) 1.64 ms 1.80 ms 9.76%
4. Sorting (S) 13.00 ms 12.98 ms -0.17%

Table 4. Pos tagging vs No-pos tagging

Schema A B Diff %

Pos Tagging active inactive
Total time 1,995 ms 3,480 ms 74.47%
Movies 2,067 2,994 44.85%
Occurrences Retrieved 107,200 226,994 111.75%
Termsets analyzed 5,414 13,795 154.80%

With more modern solid-state storage devices, that are at least one order of
magnitude faster, we are confident to dramatically improve performance.

Another issue is about threads parallelization. From the compared analysis,
at first glance could seems that the 5ST-QE has not significantly improved per-
formance, since there is only a 16.44% of gain in occurrences loading. However,
this is due to the fact that using a single machine data are transferred to main
memory through a single system bus. We are confident that by parallelizing the
process on different machines, performance should significantly increase. As a
matter of fact, the compared analysis of ranking execution times, that do not
involve disk use, tells that 5ST-QE is 68.26% faster than SST-QE.

The second test, is a comparison between average performance of the 5ST-
QE on Schema A and Schema B (as described in the Indexing paragraph).
Table 4 provides average data-per-query. It can be noticed that when pos-tagger
is inactive, there is a growing of average execution time, mostly due to the
larger number of occurrences to load, and also to the larger number of termsets
to analyze. On the other hands, the number of retrieved movies increases, since
deactivating pos-tagging has the effect of increasing the number of expanded
terms to search (causing generation of false positive movies, i.e., movies whose
reviews are not actually relevant w.r.t. the original query).

5 Conclusions

The scope of this paper was to present the architecture and the query engine
of HFC NoSQL database system. Although performance of the system can be

The Hints from the Crowd Project 453

further be improved, the considerations in Section 4 show that the approach is
feasible in terms of query response time.

We are aware we did not discuss about system effectiveness, but it was beyond
the scope of the paper. However the web-interface we developed is designed to
collect users opinions about the system, and by means of that, in the future
work we intend to deeper investigate effectiveness of the system. Moreover, as
far as effectiveness is concerned, in the future work we intend to integrate term
expansion with linked-data as a source for semantic ontology about terms.

References

1. Cattell, R.: Scalable sql and nosql data stores. SIGMOD Record 39(4), 12–27 (2011)
2. Fosci, P., Psaila, G.: Finding the best source of information by means of a socially-

enabled search engine. In: 16th Annual KES Conference, San Sebastian (Spain), pp.
1253–1262 (September 2012)

3. Fosci, P., Psaila, G.: Toward a product search engine based on user reviews. In:
DATA 2012 Int. Conf. on Data Technologies and Applications, Rome, Italy (July
2012)

4. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Kim, W., Kohavi,
R., Gehrke, J., DuMouchel, W. (eds.) KDD, pp. 168–177. ACM (2004)

5. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on
the web. In: Ellis, A., Hagino, T. (eds.) WWW, pp. 342–351. ACM (2005)

6. Robin, H., Jablonski, S.: Nosql evaluation: A use case oriented survey. In: CSC 2011
International Conference on Cloud and Service Computing, Hong Kong, China, pp.
336–341 (December 2011)

7. Strauch, C.: Nosql databases (2011),
http://www.christof-strauch.de/nosqldbs.pdf

http://www.christof-strauch.de/nosqldbs.pdf

Database Technology: A World of Interaction

Amira Kerkad, Ladjel Bellatreche, and Dominique Geniet

LIAS/ISAE-ENSMA, Poitiers University,
Futuroscope, France

{amira.kerkad,bellatreche,dgeniet}@ensma.fr

Abstract. Interaction is a typical phenomenon in database systems. It
involves several components of DBMS: the data, the queries, the opti-
mization techniques and devices. Each component is a critical issue for
the database performance. The interaction between queries is well estab-
lished and recognized by the database community. The interaction among
optimization techniques has been also exploited during the physical de-
sign of databases. The interaction in multi levels is usually ignored when
selecting optimization techniques. In our work, we deal with the com-
bined problem of query scheduling, buffer management and horizontal
partitioning simultaneously, by proposing an interaction-aware solution.
An experimental study is given to show the efficiency of our proposal.

1 Introduction

The database technology is an adequate environment for the interaction, that it
may concern several components of the database: (a) the schema, (b) the queries,
(c) the optimization techniques, and (d) devices. At the schema level, correlations
between attributes are extremely common in the real world relational datasets
[1]. This correlation has been exploited to define materialized views and indexes.
At the query level, interaction has been massively studied under the problem
of multi-query optimization. The data warehousing and scientific applications
with their star join queries increase the rate of interaction. This interaction
has been used for selecting optimization techniques such as materialized views.
Recently, with the spectacular development of devices (disk, SDD, flash, etc.),
several research studies exploited the interaction between devices to co-process
tasks among them [2]. The interaction also touches optimization techniques. In
[3,4], similarities between materialized views, indexes, data partitioning and the
clustering were identified and used to facilitate their selections.

Usually, the interaction concerns only one component. In this paper, we con-
sider the multi-component interaction, with three optimization techniques, where
each one concerns one component: the query scheduling (the query level), the
horizontal data partitioning (data level) and the buffer management (the de-
vice level). The query scheduling (QS) consists in defining an optimal order of
executing queries to allow some queries to get benefit from already processed
data. The horizontal data partitioning (HDP) is a non redundant optimization
technique [5]. The buffer management (BM) consists in allocating and replacing

H. Decker et al. (Eds.): DEXA 2013, Part I, LNCS 8055, pp. 454–461, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Database Technology: A World of Interaction 455

data in the buffer pool to lower the cost of queries. Usually, these problems are
treated either in isolation or pairwise such as BM and QS [6]. However, these
problems are similar and complementary. But by exploring the state of art, we
figure out that each problem considers the interaction on one level. For instance,
the HDP does not consider buffer content nor query order [7,8].

To facilitate the understanding of our proposal, let us consider a motivating
example. Let DW be a relational data warehouse with a fact table Sales and
three dimension tables: T ime ; Product ; Customer. On the top of this DW , a
workload of 10 star join queries is defined. The execution plans of all queries are
merged in one graph called Multi-View Processing Plan (MVPP). MVPP is a
graphical representation of a workload proposed in the context of Multi-Query
Optimization [9]. Note that selection operations are pushed down after construct-
ing the MVPP. This graph has four main levels: (a) leaf nodes representing the
base tables, (b) selection nodes that may be used to partition the databases
((e.g., {s1, s2 . . . s8})), (c) join operation nodes (e.g., {j1; j2 . . . ; j9}) and (d)
final nodes for grouping, ordering and projections (e.g., {gop1; gop2; . . . gop10}).

Fig. 1. Example for MVPP of 10 queries in (a) and its obtained clusters (hives) in (b)

Note that the join operation j3 between table Sales and Product is shared by
four queries Q4, Q7, Q9 and Q10. In order to optimize the query Q4 involving
two selections {s2, s4} and a join j3, the HDP may be a relevant optimization
structure. The optimization of query Q4 impacts not only query Q4, but its
benefit will propagate through all queries interacting with join node j3: Q7, Q9

and Q10. To spread the benefit along query plans while having the constraint of
threshold W that limits the number of fragments, the choice becomes very hard
to do.

If we consider the query interaction, we can group queries into four disjoint
subsets depending on shared joins:

{Q1}; {Q2;Q3}; {Q4;Q7;Q9;Q10}; {Q5;Q6;Q8}. Note that the first join is
very expensive because it involves the fact table. If the first join is optimized by
the use of the HDP based on its selections, all queries in the same group will
benefit from the partitioning. On the other hand, the intermediate results are
candidates for bufferization. If we reorganize the initial structure of the MVPP
by grouping queries sharing at least one node, a set of clusters is obtained as
in Figure 1-b. Each cluster is called: hive. In each hive, we elect a query to be

456 A. Kerkad, L. Bellatreche, and D. Geniet

executed at first. This query is called queen-bee, and once executed, all its shared
nodes are cached. Thus, queries in the same hive will be ordered and get benefit
from the buffer content.

Along this paper, we exploit query interaction features to propose a new
approach that deals simultaneously with the HDP , the BM and QS.

The rest of this paper is organized as follows: in section 2, we give the formal-
ization and main challenges regarding the PBS problem. A resolution approach is
proposed in Section 3 followed by an experimental study to validate our proposal
in Section 4. A conclusion is given in Section 5.

2 Formalization

In [10], a formalization of the combined problem including BM and QS was
given. The HDP selection problem involves a DW schema, a workload Q and
threshold W . The problem aims at providing a partitioning schema, where the
fact table is decomposed into N fragments (N ≤ W) minimizing the query
processing cost, where W represents a threshold fixed by the DBA. From these
formalizations, we can easily identify the similarities and the complementarities
between BM, QS and HDP. The combined problem including HDP , BM and
QS, called ”Partitioning-Buffering-Scheduling” problem (PBM) is formalized
as follows: Given a DW , a workload Q, a buffer size B and a threshold W , the
PBM consists in partitioning the DW such as the execution cost by considering
the limited buffer size B and the threshold W will be minimized.

Beside the hardness of each problem individually, the combined problem
brings new challenges regarding: (1) the resolution scenarios; (2) the nature
of the new buffer objects after partitioning and (3) the global query rewriting
on fragments.

1. By studying the semantic behind each optimization technique, we propose
to start by the partitioning and then the two other techniques. This is due
to the fact that the HDP alters the data component [8].

2. Theoretically, a buffer object is any subset of tuples from the universal rela-
tion UR. The UR is obtained by joining all tables in the database. Existing
works concerned the non partitioned case. In these works, the objects consid-
ered are the results (or sub results) obtained from algebraic operations in the
query plan. We call these objects: elementary nodes. In the partitioned case,
the buffer objects are not the same as elementary nodes ; because queries are
rewritten to cover different sub-schemas using joins between fragments fol-
lowed by unions between all partial results. In this case, the elementary nodes
are broken into several operations inside valid subschemas. We call the inner
nodes of a subschema: subnodes. Thus, in a horizontally partitioned schema,
buffer objects are substituted by subnodes rather than elementary nodes.
The number of subnodes is much larger then elementary nodes, but their
sizes are often smaller.

3. Once the warehouse is partitioned, all queries will be rewritten in the frag-
ments. This rewriting has to consider simultaneously buffer content and
query order.

Database Technology: A World of Interaction 457

Fig. 2. Methodology of resolution of the combined problem

3 Proposal: Divide and Conquer Solution

Note that the isolated problems are very hard to solve, and existing techniques
are either simple with low efficiency, or efficient with high complexity. To get a
trade-off between efficiency and complexity, we propose a new divide and conquer
solution for each phase guided by query interaction. In order to alleviate the
algorithms, we also do an effort on the data structure that handles potential
solutions. This data structure will carry out different phases of the proposed
approach. Figure 2 summarizes our methodology. The entries are processed to
generate an encoding schema using our dynamic data structure. This schema
allows representing and handling fragments. The HDP algorithm runs over this
encoding to find the partitioning schema with minimal cost. Once the (near)
optimal partitioning schema is returned, query plans need to be traced on the
new substar schemas. To do so, the dynamic data structure is exploited to detect
the valid substar schemas for each query and get new plans. The new query
plans are processed by the BM and QS algorithms to find the optimal order of
executing queries, and the best buffer scenario. Besides the obtained partitioning
schema, the algorithm returns an ordered set of queries and the associated buffer
strategy. A cost model is used in both algorithms to measure the quality of a
solution. The details of each phase in the proposed methodology are given along
this section.

To facilitate the understanding of our proposal, we give the following assump-
tions: (1) no indexes are considered, (2) the workload is known in advance, and
(3) the scheduling is performed offline.

3.1 Dynamic Data Structure

In this section, we describe our dynamic data structure that considers query
interaction and allows : (a) representing solutions, (b) horizontal partitioning
and (c) getting new query plans.

– (a) Representing solutions: one of the main problems in HDP is representing
selection attributes and their sub-domains for the optimization process. To
obtain the set of selection attributes, the MVPP is explored plan by plan.
The encoding is updated by the new attributes and subdomains found in

458 A. Kerkad, L. Bellatreche, and D. Geniet

queries predicates. To construct the encoding two elementary functions are
required : Horizontal Split and Vertical Split. The former splits the attribute
subdomains to create a new one. The later adds a new array when a new
selection attribute is found.

The principle of this coding is to start from an empty set of attributes, and
for each query, add its required selection attributes by creating new arrays.
Each array contains one range. When a selection is found for the current
query, three operations can be performed: (1) If the attribute does not exist
in the schema, apply a Vertical Split to extend the schema vertically by
adding a new array for the attribute. The range is split into many parts to
cover the new subdomains. An else range is added to ensure completeness.
(2) If the attribute already exists, apply a Horizontal Split on the else range
to add the new subdomains. (3) Finally, if the administrator knows the value
remaining in the else range, it is replaced by this value. The result of this
phase is an encoding schema containing the set of selection attributes and
their associated sub-domains.

– (b) Partitioning schema: partitioning is ensured using the two primitives:
Merge and Split applied on the encoding schema. The Merge function is
applied on two partitions to get them in one partition. The Split is applied
on one partition in order to be divided into two partitions if it covers at least
two subdomains. Partitions can be managed by applying a series of split and
merge.

– (c) Generating Profiles: the queries need to be rewritten by projecting their
plans on the new schema. This rewriting phase can be performed using query
profiles obtained by our dynamic data structure which allows three main
functions: (1) identification of valid subschemas, (2) ordering joins inside a
subschema and (3) estimating execution cost. To generate query profiles, we
propose to use the obtained encoding schema and to fill each cell by 1 if
the subdomain is used by the query; 0 otherwise. The cells are also indexed
by selectivity of each subdomain in order to generate the selectivity factor
profile. To represent subschemas, the cells values are set to 1 on the required
partitions and 0 otherwise. This representation allows the cost model to
identify the valid subschemas of each query by matching the query and the
subschema profiles. If we consider that the best join order is obtained by
minimal intermediate results, this order may be provided using the selectivity
factor profile to estimate intermediate results size. In addition, these profiles
allow estimating the execution cost of the workload. Consequently, the cost
model proposed in [10] is extended to deal with the partitioning case.

3.2 Horizontal Partitioning : Elected Query Algorithm

To face the high complexity of the HDP problem, we use the interaction in the
partitioning process. As it is shown in the motivating example, if some queries
are elected to be optimized, the gain is spread through all queries interacting
with the elected ones. Based on this feature, we propose an algorithm called

Database Technology: A World of Interaction 459

Elected Queries for HDP (EQHDP). The algorithm starts from the MVPP, and
elects most “beneficial” queries to steer the partitioning process.

Queries are grouped into disjoint subsets, where each couple of queries sharing
at least one node in the MVPP are in the same group. Queries inside each group
are sorted by minimal cost. The first query (the least expensive) is elected in its
group. This phase returns the set of elected queries EQi from each group i. The
obtained set of elected queries is sorted by descending costs. That way, the most
expensive queries are optimized before the threshold W is exceeded. The elected
queries prune the schema of attributes depending on their requirements, i.e.,
only required attributes are taken. The sub-domains are tagged with the total
number of elected queries using each one. Let uij be the number of EQ using this
sub-domain and let ki be the maximal value of uij in the attribute ai. The set of
attributes is sorted by maximal use (value of ki) in order to start by partitioning
on most used attributes before W is attained. After sorting the attributes, each
attribute ai is split/merged as follows: (1) The subdomains, which are not used
by any elected query (uij = 0), are grouped in one partition P0; (2) the most
used subdomains having ki elected queries accessing them are grouped in one
partition Pk (ki is the maximal usage value of ai); and (3) if N > W or ki �= 0
then, the remaining sub-domains are merged with P0; otherwise, the sub-domains
accessed by ki − 1 elected queries are grouped in a new partition. The operation
is repeated until ki = 0 or N > W . This allows creating partitions to satisfy the
most beneficial queries.

If partitioning is still possible (N < W), the obtained partitions are split
depending on the correlation between queries accessing each sub-domain of the
partition. If two subsets of elected queries require some sub-domains indepen-
dently, a new partition is created to contain sub-domains used independently
from the others. If N < W after these merge and split operations regarding only
the elected queries, then partitioning is still possible. The optimization process
moves to other queries to improve their performance as well. The next set of
queries is the successors of current EQs. If at least one group still has a suc-
cessor, a new set of elected queries is generated by the found successors of all
groups. The same process is applied by extending the encoding schema with
the new set of selection attributes incrementally. The partitioning is done until
N = W or no more queries are left in any group.

3.3 Buffer Management and Query Scheduling

To reduce the complexity of the joint problem of BM and QS, we propose an
approach inspired from the natural life of bees. This algorithm called Queen-Bee
Algorithm has been proposed in our previous work [10]. The basic idea behind
our queen-bee algorithm is to partition the queries of the MVPP into subsets
called hives. And for each hive, elect a query (queen-bee) to be executed first and
its nodes will be cached. We associate the dynamic buffer management strategy
DBM to our queen-bee algorithm. DBM mainly traverses the query plan and,
for each intermediate node (operation), checks the buffer content: if the result
of the current operation is already cached, it is read from the cache; else it is

460 A. Kerkad, L. Bellatreche, and D. Geniet

cached while there is enough buffer space. Once a node of a given hive is treated,
its rank1 value is decremented. When the rank of a node is equal 0, it will be
removed from the buffer since it is useless for next queries.

Our query scheduler works on the clusters of queries (hives) and it shall order
the queries inside each hive according to the buffer content. To do so, three
modules extend our queen-bee algorithm [10], where global relations are replaced
by local fragments: (1) generating of a query graph with connected components
(QGCC), (2) sorting the components which is optional depending on whether
queries have priority or not (this phase is ignored in our study) and (3) sorting
queries inside each component.

4 Experimental Study

The experimental study is done using our Java Simulator which is connected to
a star schema benchmark (SSB) of 100GB. The data is located on a server of
32GB of RAM and 2 × 2.5GHz of CPU. The buffer pool size is set to 2 GB.
We use two different workloads. The first one has 12 queries with no interaction.
For the second one, we add 10 others to get 22 interacting queries. We compare
our algorithm (PBS) with different cases: HDP using EQHDP algorithm, HDP
using a Simulated Annealing (SA, with 500 iterations and initial temperature
=300), BM and QS using the Queen-Bee algorithm and finaly, combining the
three techniques using the SA. The SA is chosen in our experiments because it
has been widely used in hard optimization problems, and has proven its efficiency
compared to genetic and hill climbing algorithms[7].

Figure 3 shows that the EQHDP outperforms SA with interacting queries,
because it is guided by interaction while the SA explores randomly the search
space. The Queen-Bee optimizes workload 1, but it doesn’t reduce the cost of
workoad 2 because no objects are cached (no interaction). The three techniques
(HDP-BM-QS) are combined using a SA which gives a better performance then
the isolated selection. The PBS algorithm outperforms the new SA in workload
2 contrary to workload 1. The reason is that PBS is steered by query interaction,
which makes it more efficient then random search algorithms.

We also observed that BM after HDP may lower execution cost even when
the initial queries are not inetracting because the partitioned schema makes new
overlapping nodes. For instance, the number of nodes in the workload 1 passes
from 67 elementary nodes to 1393 subnodes and in the workload 2 from 77 to
2580. As the subnodes are much smaller than elementary nodes, a large number
of these nodes may fit in the buffer pool, which highers cache hits. Figure 4
shows the runtime of each algorithm (in logarithmic scale). The EQHDP and
the Queen-Bee are much faster then the SA, which makes their combination
in PBS more interesting then heuristics. In these experiments, we show that
the PBS provides a compromise between efficiency and greediness by exploiting
query interaction.

1 We define the rank value of a node noi as a counter representing the number of
queries accessing noi.

Database Technology: A World of Interaction 461

 0

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

Workload-1 Workload-2

Ex
ec

uti
on

 co
st

(I/
O)

Threshold W=100

Initial
EQHDP

SA(HDP)
Queen-Bee

SA(HDP-BM-QS)
PBS

Fig. 3. Comparing performance of isolated
and combined optimization techniques

 1

 10

 100

 1000

 10000

EQHDP Queen-Bee SA(HDP) SA(HDP-BM-QS) PBS

Al
go

rith
m

re
ac

tiv
ity

 (m
s)

Log-scale(10)
Reactivity

Fig. 4. Comparing reactivity of each opti-
mization technique

5 Conclusion

In this paper, we identify the interactions between different layers of database
systems. They concern data, queries, devices and the optimization techniques.
We motivate the need to develop physical design solutions by considering the
interaction between these layers. To instantiate our proposal, we propose a com-
bination of three well known problems in the literature: horizontal data parti-
tioning, buffer management and query scheduling. Advanced solutions are given
for this joint problem including algorithms, cost models and evaluations. The
obtained results are encouraging.

References

1. Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.B.: Coradd: Correlation
aware database designer for materialized views and indexes. PVLDB 3(1), 1103–
1113 (2010)

2. Breß, S., Schallehn, E., Geist, I.: Towards optimization of hybrid CPU/GPU query
plans in database systems. In: Pechenizkiy,M.,Wojciechowski, M. (eds.) NewTrends
in Databases & Inform. AISC, vol. 185, pp. 27–35. Springer, Heidelberg (2012)

3. Sanjay, A., Surajit, C., Narasayya, V.R.: Automated selection of materialized views
and indexes in microsoft sql server. In: VLDB, pp. 496–505 (2000)

4. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C.,
Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In:
VLDB, pp. 1087–1097 (2004)

5. Sanjay, A., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal parti-
tioning into automated physical database design. In: ACM SIGMOD, pp. 359–370
(2004)

6. Thomas, D., Diwan, A.A., Sudarshan, S.: Scheduling and caching in multiquery
optimization. In: COMAD, pp. 150–153 (2006)

7. Bellatreche, L., Boukhalfa, K., Richard, P., Woameno, K.Y.: Referential horizontal
partitioning selection problem in data warehouses: Hardness study and selection
algorithms. IJDWM 5(4), 1–23 (2009)

8. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice Hall (1999)

9. Sellis, T.K.: Multiple-query optimization. ACM Transactions on Database Sys-
tems 13(1), 23–52 (1988)

10. Kerkad, A., Bellatreche, L., Geniet, D.: Queen-bee: Query interaction-aware for
buffer allocation and scheduling problem. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 156–167. Springer, Heidelberg (2012)

Author Index

Abdulahhad, Karam I-63
Alvarado, Ana II-334
Amagasa, Toshiyuki I-145
Antunes, Nuno II-274
Arase, Yuki II-259
Arour, Khedija II-364

Badr, Mehdi I-48, I-254
Baldizan, Oriana II-334
Bao, Zhifeng I-25, II-380
Basso, Tania II-274
Beach, Thomas H. I-366
Bedo, Marcos Vinicius Naves II-94
Bellatreche, Ladjel I-278, I-454, II-458
Bench-Capon, Trevor I-4
Ben Yahia, Sadok II-109, II-450
Berardi, Rita I-303
Berkani, Nabila II-458
Berrut, Catherine I-63
Bianchini, Devis II-65
Bieliková, Mária II-372
Böttcher, Stefan II-189
Bouasker, Souad II-109
Boukorca, Ahcène I-278
Bouzeghoub, Amel II-364
Brahmi, Hanen II-450
Breitman, Karin I-303
Bressan, Stéphane I-88, I-327, I-357,

I-404, I-419, II-380, II-395
Bruno, Giorgio I-209
Buda, Teodora Sandra I-342
Bültmann, Alexander II-189

Cabot, Jordi II-442
Cabral, Luciano I-319
Cachopo, João I-224
Camacho-Nieto, Oscar II-18
Casanova, Marco Antônio I-195, I-303
Cerqueus, Thomas I-342
Chan, Stephen Chi Fai I-381
Chebil, Wiem I-78
Chen, Jianwen II-243
Chen, Qun I-129
Chen, Wei II-426

Chertes, Florin II-349
Chevallet, Jean-Pierre I-63
Cosentino, Valerio II-442
Cox III, Robert Sidney I-311
Cuppens, Frédéric II-442
Cuzzocrea, Alfredo II-156

Darmoni, Stéfan Jacques I-78
De Antonellis, Valeria II-65
de Medeiros, Adriana Pereira I-303
de Oliveira, José Palazzo Moreira II-434
Di Bartolo, Fabiola I-270
Dietze, Stefan I-195
Dimitrov, Denis II-124
Ding, Zhiming II-42
Di Stefano, Marcello I-443
dos Santos, Davi Pereira II-94

El Saraj, Lama II-458
Espinasse, Bernard I-319, II-458

Faget, Zoé I-278
Feinerer, Ingo II-349
Feng, Ling II-243
Ferreira, Rafael I-319
Fetahu, Besnik I-195
Filho, Dimas I-319
Fosci, Paolo I-443
Fousteris, Nikolaos II-203
Franz, Barbara II-466
Frasincar, Flavius II-57
Freitas, Fred I-319
Furtado, Pedro II-141
Furukawa, Ryo II-289

Gadelha, Renê I-319
Garbatov, Stoyan I-224
Gargouri, Faiez I-239
Geniet, Dominique I-454
Gergatsoulis, Manolis II-203
Gifford, David I-311
Goncalves, Marlene I-270, II-334
Gutiérrez-Soto, Claudio II-73

464 Author Index

Haddar, Nahla I-239
Hara, Takahiro II-213, II-259
Hartel, Rita II-189
He, Fengcheng II-42
Heendaliya, Lasanthi II-228
Helm, Emmanuel II-466
Heuer, Andreas I-293
Hoshino, Ayako I-118
Hubert, Gilles II-73
Hurson, Ali II-228

Ibáñez, Luis-Daniel I-180
Ito, Chihiro I-118
Itoh, Fumiaki II-410
Iwata, Mayu II-259

Jiang, Kaifeng I-357
Jiang, Tao I-129

Kanno, Kyota I-118
Kasim, Tala I-366
Kaster, Daniel S. II-94
Kato, Ryo II-259
Kawabata, Takayuki II-410
Kerkad, Amira I-454
Khanna, Pritee I-103
Khil, Ara II-81
Khouri, Selma II-458
Kim, Myungwon II-81
Kim, Youngjin II-81
Kiran, R. Uday II-418
Kister, Thomas I-357
Kitagawa, Hiroyuki I-145
Kitsuregawa, Masaru II-418
Klettke, Meike I-293
Komai, Yuka II-213
Kozawa, Yusuke I-145
Kristiansen, Morten I-342

Le, Thuy Ngoc I-88
Leong, Hong-Va I-381
Li, Guoliang I-25
Li, Haijiang I-366
Li, Luochen I-88
Li, Yaguang II-42
Li, Yiping II-243
Li, Zhanhuai I-129
Libourel, Thérèse II-458
Lima, Rinaldo I-319

Lin, Dan II-228
Ling, Tok Wang I-25, I-88
Liu, Chengfei II-42
Liu, Kuien II-42
Lopes, Giseli Rabello I-303
López-Yáñez, Itzamá II-18
Loyer, Yann I-9
Lu, Xuesong I-327

Ma, Hui II-9
Ma, Qiang I-396
Mann, Janet II-124
Marchand-Maillet, Stéphane I-40
Mart́ınez, Salvador II-442
Mehdi, Muntazir I-165
Melchiori, Michele II-65
Mera, Alexander I-195
Mesiti, Marco I-428
Milo, Tova I-7
Mishra, Sumit II-34
Moctar, Abderrahmane Ould Mohamed

II-319
Mohamed, Hisham I-40
Molli, Pascal I-180
Mondal, Samrat II-34
Montoya, Gabriela I-180
Moraes, Regina II-274
Mori, Takuya II-289
Murphy, John I-342

Naacke, Hubert II-319
Nakayama, Hiroki I-118
Ngai, Grace I-381
Nisbet, Nicholas I-366
Nishio, Shojiro II-213, II-259
Niu, Zhendong II-426
Nösinger, Thomas I-293

Oliveira, Hilário I-319

P. Paes Leme, Luiz André I-195
Pan, Constantin S. I-153
Pan, Wei I-129
Pandey, Shreelekha I-103
Pereira Nunes, Bernardo I-195
Perlasca, Paolo I-428
Phan, Tuan Quang I-327
Psaila, Giuseppe I-443

Author Index 465

Qin, Yongrui I-165
Quaresma, Paulo II-434

Rástočný, Karol II-372
Rezgui, Yacine I-366
Rodier, Sophie II-458
Ross, Isla II-174

Sadoun, Isma I-9
Saha, Sriparna II-34
Sarr, Idrissa II-319
Sasaki, Yuya II-213
Satoh, Ichiro II-304
Schewe, Klaus-Dieter I-1
Schlüßler, Jonathan II-189
Schouten, Kim II-57
Schuler, Andreas II-466
Senouci, Sid-Ahmed Benali I-278
Shao, Dongxu I-357, II-395
Sheng, Quan Z. I-165
Sheremetov, Leonid II-18
Shimoyama, Sayoko I-311
Singh, Lisa II-124
Skaf-Molli, Hala I-180
Song, Qiang II-410
Song, Wonmoon II-81
Song, Yi I-404, I-419
Soualmia, Lina Fatima I-78
Stańczyk, Urszula II-1, II-26
Stavrakas, Yannis II-203

Takenouchi, Takao II-289
Tan, Kian-Lee I-357
Tang, Ruiming II-380, II-395
Tmar, Mohamed I-239

Toyoda, Tetsuro I-311
Traina Jr., Caetano II-94
Tripney, Brian G. II-174

Valduriez, Patrick II-380, II-395
Valtolina, Stefano I-428
Vidal, Maria-Esther I-180, II-334
Vieira, Marco II-274
Vodislav, Dan I-48, I-254

Wang, Anqi II-9
Wang, Hua I-165
Wang, Yuanyuan I-381
Wang, Zhong I-129
Wang, Zhuo I-129
Watanabe, Yousuke II-410
Weitzel, Leila II-434
Wilson, Francis A. II-174
Wilson, John N. II-174
Wu, Huayu I-88, II-380

Xie, Dong I-165
Xie, Xing II-259
Xu, Jiajie II-42

Yan, Liang I-396
Yin, Shaoyi I-48
Yokota, Haruo I-103, II-410
Yoshikawa, Masatoshi I-396

Zammali, Saloua II-364
Zeitouni, Karine I-9
Zeng, Yong I-25
Zhang, Mengjie II-9
Zhao, Xiangyu II-426
Zymbler, Mikhail L. I-153

	Preface
	Organization
	Table of Contents – Part I
	Keynote Talks
	Horizontal and Vertical Business Process Model Integration (Abstract)
	References

	Structuring E-Participation in Policy Making through Argumentation
	References

	Making Collective Wisdom Wiser
	References

	Search Queries
	Preferences Chain Guided Search and Ranking Refinement
	1 Introduction
	2 Preliminaries
	3 Maximality-Based Selection
	4 Preferences Chain Guided Selection
	5 Preferences Chain Guided Ranking Refinement
	6 Preferences Chain Guided Top-k Approximation
	7 Experiments
	8 Conclusion
	References

	Efficient XML Keyword Search: From Graph Model to Tree Model
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Data Model
	3.2 Reference Types

	4 Transforming Query Processing over XML Graph to XML Tree
	4.1 Real Replication
	4.2 Virtual Replication
	4.3 Query Evaluation

	5 Sequential References and Cyclic References
	5.1 Sequential References
	5.2 Cyclic References
	5.3 Reachability Table Space Complexity

	6 Further Extension and Optimization
	6.1 Removing Unnecessary Checking of the Reachability Table
	6.2 Adding Distance to Reachability Table

	7 Algorithms
	8 Experiments
	8.1 Comparing the Results
	8.2 Performance

	9 Conclusion
	10 Appendix
	References

	Permutation-Based Pruning for Approximate K-NN Search
	1 Introduction
	2 Prior Work
	3 Indexing Model
	4 Practical Setup
	4.1 Indexing
	4.2 Searching
	4.3 Reference Points Selection

	5 Experimental Results
	6 Conclusion
	References

	Indexing
	Dynamic Multi-probe LSH: An I/O Efficient Index Structure for Approximate Nearest Neighbor Search
	1 Introduction
	2 Background and Related Work
	3 Dynamic Multi-probe LSH
	3.1 Overview
	3.2 Index Construction
	3.3 Approximate K Nearest Neighbor Search

	4 Experimental Evaluation
	4.1 Methods under Evaluation
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Experimental Results

	5 Conclusion
	References

	Revisiting the Term Frequency in Concept-Based IR Models
	1 Introduction
	2 Why Concepts
	3 Conceptual Indexing and Concept-Based IR Models
	4 A New Weighting for Conceptual IR: Concepts Relative Weight
	4.1 Introduction
	4.2 General Description of Our Proposal
	4.3 Concept Weighting Hypotheses
	4.4 Step 1
	4.5 Steps 2 and 3: The Relative Weight Function
	4.6 Step 2: A Hierarchy on Concepts Extracted from Text
	4.7 Step 3: The Relative Weight (rw) Algorithm
	4.8 Indexing a Document with Concepts

	5 Experiments
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusion
	References

	BioDI: A New Approach to Improve Biomedical Documents Indexing
	1 Introduction
	2 Related Work
	3 The Steps of Our Proposed Approach
	3.1 Step 1: Pretreatment
	3.2 Step 2: Descriptors Extraction
	3.3 Step 3: Filtering
	3.4 Step 4: Final Ranking

	4 Experiments and Results
	4.1 Evaluation of the Terms Extraction
	4.2 Experiments and Results of Generating the PI
	4.3 Evaluation of the Filtering Step and Final Ranking
	4.4 Evaluation of Some Other Approaches

	5 Discussion
	6 Conclusion and Future Work
	References

	Discovery of Semantics
	Discovering Semantics from Data-Centric XML
	1 Introduction
	2 Preliminary
	3 ORA-Semantics Discovery
	3.1 Step 1: Pre-processing
	3.2 Step 2: Internal Node Classification
	3.3 Leaf Node Classification
	3.4 Step 4: Implicit Relationship Type Discovery

	4 Experiment
	4.1 Accuracy of Internal Node Classification
	4.2 Accuracy of Leaf Node Classification
	4.3 Accuracy of Implicit Relationship Type Discovery

	5 Related Work
	6 Conclusion and Future Work
	References

	Finding Image Semantics from a Hierarchical Image Database Based on Adaptively Combined Visual Features
	1 Introduction
	2 Related Work
	3 Correlating Visual Similarity with Semantics of Images
	4 Related Databases and Database Used for Experimentation
	5 Methodology
	5.1 Feature Extraction Techniques
	5.2 Construction of Visual Signature of a Node/Category
	5.3 Branch Selection Algorithm
	5.4 Pruning Algorithms

	6 Experimental Setup
	7 Results and Discussion
	7.1 Performance of Branch Selection Algorithm
	7.2 Performance of Pruning Algorithms
	7.3 Semantics Assigned to Query Images
	7.4 Other Issues

	8 Conclusion and Future Scope
	References

	Formalization and Discovery of Approximate Conditional Functional Dependencies
	1 Introduction
	1.1 Our Contributions and Organization of This Paper

	2 Statement of Discovery Problem
	2.1 Approximate CFDs
	2.2 Discovery Problem for Approximate CFDs

	3 ApproxCFDMiner
	3.1 Free Itemset and FP-Tree
	3.2 approxCFDMiner Algorithm

	4 ApproxCTANE
	5 ApproxFastCFD
	5.1 Minimal Coverset
	5.2 approxFastCFD Algorithm

	6 Experiments
	6.1 Settings
	6.2 Scalability on Synthetic Data
	6.3 Real Data Experiments

	7 Conclusions
	References

	Parallel Processing
	Parallel Partitioning and Mining Gene Expression Data with Butterfly Network
	1 Introduction
	2 Preliminary and Analysis
	2.1 Preliminary
	2.2 OPSM Mining on a Single Machine, MR and Hama BSP

	3 Parallel Partitioning Methods
	3.1 Butterfly Network Based Hama BSP Framework and Example
	3.2 Distributed Hash Tables Based Deduplication Method and Algorithm
	3.3 Theorem

	4 Experimental Evaluation
	4.1 Comparison of OPSM and BNPP Methods
	4.2 Comparison of BSP and BNHB

	5 Related Work
	6 Conclusion
	References

	Parallel and Distributed Mining of Probabilistic Frequent Itemsets Using Multiple GPUs
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Frequent Itemsets
	2.2 pApriori Algorithm

	3 Multi-GPU Parallelization
	3.1 Single-Node Methods
	3.2 A Method on a GPU Cluster

	4 Experiments
	4.1 Experimental Setup
	4.2 Results on a Single Node

	5 Related Work
	6 Conclusions
	References

	Taming Elephants,or How to Embed Parallelism into PostgreSQL
	1 Introduction
	2 PargreSQL Design
	2.1 Client-Server Model
	2.2 Deployment Scheme
	2.3 PargreSQL Subsystems

	3 PargreSQL Implementation
	3.1 par_libpq
	3.2 Exchange Operator
	3.3 Parallelizer
	3.4 Data Manipulation Operations
	3.5 Data Definition Operations
	3.6 Load Balancing (Future Work)

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	XML and RDF
	Effectively Delivering XML Information in Periodic Broadcast Environments
	1 Introduction
	2 Application Scenario, System Model and XML Similarity
	2.1 Application Scenario
	2.2 Periodic XML Data Broadcast System Model
	2.3 XML Similarity

	3 Data Placement Algorithm
	3.1 Structural Sharing in XML Data
	3.2 The Data Placement Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance of GDPA

	5 Related Work
	6 Conclusion
	References

	GUN: An Efficient Execution Strategy for Querying the Web of Data
	1 Introduction
	2 Preliminaries
	3 Result-Maximal k-Execution Problem (ReMakE)
	4 GUN: A Solution to the ReMakE Problem
	4.1 GUN's Properties

	5 Experimental Evaluation
	Experimental Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Complex Matching of RDF Datatype Properties
	1 Introduction
	2 Background
	2.1 Vocabulary Matching and Concept Mapping
	2.2 An Instance-Based Process for Vocabulary Matching

	3 Two-Phase Property Matching Technique
	3.1 Phase 1: Computing Simple Datatype Property Matches with Estimated Mutual Information
	3.2 Phase 2: Computing Complex Property Matches with Genetic Programming

	4 An Example Implementation
	4.1 Phase 1: Computing Simple Property Matches with Estimated Mutual Information
	4.2 Phase 2: Computing Complex Property Matches with Genetic Programming

	5 Evaluation and Results
	6 Related Work
	7 Conclusion
	References

	Enterprise Models
	Coordination Issues in Artifact-Centric Business Process Models
	1 Introduction
	2 Acta Models and Coordination Issues
	3 Description of the Examples
	3.1 Purchase Requisition Process
	3.2 Negotiation Process

	4 Structural Models
	5 Dynamic Models
	5.1 General Features of the Acta Notation
	5.2 Initial Tasks and Post-Conditions
	5.3 Generative Correlation
	5.4 Additive Selective Correlation
	5.5 Direct Correlation
	5.6 Constitutive Selective Correlation

	6 Artifact-Centric Work Lists
	7 Related Work
	8 Conclusion and Future Work
	References

	Exploring Data Locality for Clustered Enterprise Applications
	1 Introduction
	2 Related Work
	2.1 Memory Management
	2.2 Cluster Request Distribution

	3 System Description
	3.1 Memory Footprint Reduction
	3.2 Request Distribution

	4 Results
	4.1 Single Machine Configuration (Alpha)
	4.2 Cluster Configuration (Beta)
	4.3 Further Discussion

	5 Conclusions
	References

	A Framework for Data-Driven Workflow Management: Modeling, Verification and Execution
	1 Introduction
	2 Related Work
	3 Our Data-Driven Workflow Model
	3.1 Data Structure
	3.2 Process Structure
	3.3 Data Operations
	3.4 Workflow Example
	3.5 Marking
	3.6 Synthesis

	4 Firing Rules
	5 Workflow Analysis
	5.1 Verification of the Liveness Property
	5.2 Verification of the Boundedness Property

	6 Opus Framework
	6.1 Opus Editor
	6.2 Verification of the Workflow Model
	6.3 Opus Engine

	7 Conclusions and Future Work
	References

	Query Evaluation and Optimization
	Generic Top-k Query Processingwith Breadth-First Strategies
	1 Introduction and Related Work
	2 Generic Top-k Framework and Algorithms
	2.1 BreadthRefine
	2.2 Necessary Choices
	2.3 Combined Algorithm

	3 Approximation by Early Stopping
	4 Experiments
	5 Conclusion
	References

	Evaluating Spatial Skyline Queries on Changing Data
	1 Introduction
	2 Proposed Algorithms
	2.1 Naive Algorithm
	2.2 Adaptation of VCS2
	2.3 Continuous Dynamic Spatial Skyline Algorithm

	3 Experimental Study
	3.1 Experiment Settings
	3.2 Query Processing Performance

	4 Conclusions
	References

	SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits
	1 Introduction
	2 Related Work
	3 Analogy between MVPP Generation and EDA
	4 Constructing the MVPP Using Hypergraphs
	4.1 Hypergraph Partitioning
	4.2 From Hypergraph to Graph

	5 Experimentation
	6 Conclusion
	References

	Semantic Web
	XML Schema Transformations The ELaX Approach
	1 Introduction
	2 Running Example
	3 Technical Background
	4 XML Schema Transformation Language
	4.1 Adding Elements
	4.2 Deleting Elements
	4.3 Updating Elements

	5 Example
	6 Practical Use of ELaX
	7 State of the Art
	8 Conclusion
	References

	StdTrip+K: Design Rationale in the RDB-to-RDF Process
	1 Introduction
	2 Related Work
	3 The StdTrip+K Process
	3.1 Kuaba+W – A Design Rationale Vocabulary for RDB-to-RDF Process
	3.2 An Example Illustrating the Execution of the StdTrip+K Process

	4 Conclusions and Future Works
	References

	Organizing Scientific Competitions on the Semantic Web
	1 Introduction
	2 Methods
	2.1 LinkData as an RDF Publishing Platform
	2.2 Entities and Links of LinkData Concepts
	2.3 Dependency Graph for Analyzing the Creative Activities on the Platforms

	3 Results and Discussion
	3.1 Count of Relationships among Three Entities Indicates Creative SynergyCycle
	3.2 Organizing a Scientific Competition Using the Integrated Platform

	4 Conclusion
	References

	An Inductive Logic Programming-Based Approach for Ontology Population from the Web
	1 Introduction
	2 Related Work
	3 Inductive Logic Programming
	4 An ILP-Based Method for Populating Domain Ontologies
	4.1 Corpus Retrieval
	4.2 Text Preprocessing
	4.3 Background Knowledge Generation
	4.4 Rule Induction

	5 Experimental Evaluation
	5.1 Corpora Creation and Annotation of Examples
	5.2 Evaluation Measures and GILPS Parameters
	5.3 Results and Discussion

	6 Conclusion and Future Work
	References

	Sampling
	Incremental Algorithms for Sampling Dynamic Graphs
	1 Introduction
	2 Related Work and Background Knowledge
	2.1 Incremental Algorithms on Dynamic Graphs
	2.2 Sampling from Static Graphs
	2.3 Sampling from Graph Streams
	2.4 Markov Chain Monte Carlo

	3 Proposed Algorithms
	3.1 Incremental Metropolis Sampling
	3.2 Sample-Merging Sampling

	4 Performance Evaluation
	4.1 Analytical Evaluation
	4.2 Empirical Evaluation

	5 Conclusion
	References

	CoDS: A Representative Sampling Method for Relational Databases
	1 Introduction
	2 Related Work
	3 CoDS: A Representative Sampling System
	3.1 Model and Definitions
	3.2 Starting Table Selection
	3.3 Generation of Chains
	3.4 Identification of Tuples to Sample
	3.5 Creation of the Database Sample

	4 Evaluation
	4.1 Environment and Dataset
	4.2 Measures
	4.3 Results and Observations

	5 Conclusion
	References

	Publishing Trajectory with Differential Privacy: A Priori vs. A Posteriori Sampling Mechanisms
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Sampling-Based Differentially Private Schemes
	4.1 A Priori Sampling
	4.2 A Posteriori Sampling

	5 Experimental Results
	6 Conclusion
	References

	Industrial Applications
	Towards Automated Compliance Checking in the Construction Industry
	1 Introduction
	2 Background
	2.1 Code for Sustainable Homes
	2.2 BREEAM

	3 Related Work
	4 System Architecture
	5 Extracting Rules from Regulatory Documents
	5.1 Extending RASE
	5.2 Practical Implementation of the Approach

	6 Integration of Rules with an Industry Standard Data Format
	7 Execution of Rules Using the DROOLS Rule Engine
	8 Case Study
	9 Conclusion
	References

	Quantifying Reviewer Credibilityin Online Tourism
	1 Introduction
	2 Related Work
	3 Quantifying the Credibility of Reviewer
	3.1 Reviewer Credibility
	3.2 Impact Index
	3.3 Exposure-Impact Index

	4 Evaluation
	4.1 Data Collection
	4.2 Evaluation of Effectiveness by Human Raters
	4.3 Regression Analysis on Contribution Factors versus Credibility Formulation

	5 Conclusions
	Acknowledgement.

	References

	Classifying Twitter Users Based on User Profile and Followers Distribution
	1 Introduction
	2 Related Work
	3 Classification of Twitter Users
	3.1 Open Account and Closed Account
	3.2 User Classification by Using User Profile
	3.3 User Classification Based on Followers' Network
	3.4 Integrated Classification Methods

	4 Experiments
	4.1 Data Set
	4.2 Experiment on Classifying Method Users Based on SVM
	4.3 Experiment on Classifying Based on Followers Distribution
	4.4 Experiment on Integrated Classification Methods

	5 Conclusion
	References

	Communities
	Fast Community Detection
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Experiment
	4.1 Dataset
	4.2 Metrics
	4.3 Experimental Assessment and Analysis

	5 Conclusions
	References

	Force-Directed Layout Community Detection
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Background
	3.2 Algorithm

	4 Experiment
	4.1 Analysis of Non-overlapping Community Detection

	5 Conclusions
	References

	On the Composition of Digital Licenses in Collaborative Environments
	1 Introduction
	2 License Data Model
	3 Grant Compatibility
	4 License Composition
	5 Enhanced DRM Architecture
	6 Related Work
	7 Conclusions and Future Work
	References

	The Hints from the Crowd Project
	1 Introduction
	2 The HFC System
	3 Query Engine
	3.1 Termsets
	3.2 Termset Weight
	3.3 Query Expansion and Semantic Coefficient
	3.4 Product Reviews and Termsets
	3.5 Termset Average Density
	3.6 Product Ranking Metric

	4 Evaluation
	5 Conclusions
	References

	Database Technology: A World of Interaction
	1 Introduction
	2 Formalization
	3 Proposal: Divide and Conquer Solution
	3.1 Dynamic Data Structure
	3.2 Horizontal Partitioning : Elected Query Algorithm
	3.3 Buffer Management and Query Scheduling

	4 Experimental Study
	5 Conclusion
	References

	Author Index

