
Smarter Mobile Apps through Integrated

Natural Language Processing Services

Bahar Sateli1, Gina Cook2, and René Witte1

1 Semantic Software Lab, Department of Computer Science and Software
Engineering, Concordia University, Montréal, Canada

2 iLanguage Lab, Montréal, Canada

Abstract. Smartphones are fast becoming ever-present personal assis-
tants. Third-party ‘apps’ provide users with nearly unlimited customiza-
tion options. A large amount of content read on these devices is text
based – such as emails, web pages, or documents. Natural Language
Processing (NLP) can help to make apps smarter, by automatically an-
alyzing the meaning of content and taking appropriate actions on be-
half of their users. However, due to its complexity, NLP has yet to find
widespread adoption in smartphone or tablet applications. We present a
novel way of integrating NLP into Android applications. It is based on
a library that can be integrated into any app, allowing it to execute re-
mote NLP pipelines (e.g., for information extraction, summarization, or
question-answering) through web service calls. Enabling a separation of
concerns, our architecture makes it possible for smartphone developers
to make use of any NLP pipeline that has been developed by a language
engineer. We demonstrate the applicability of these ideas with our open
source Android library, based on the Semantic Assistants framework, and
a prototype application ‘iForgotWho’ that detects names, numbers and
organizations in user content and automatically enters them into the
contact book.

1 Introduction

The hand-held devices market has never been a quiescent one. With fierce com-
petition among big mobile companies and rapid advancements in the hardware
industry, customers are now in possession of mobile devices with relatively large
amount of memory and processing resources that are powerful enough for a wide
range of tasks, from social networking to document editing and sharing. With
fast, ubiquitous Internet connections, smartphone users have access to an ever
growing amount of information available in web pages or email boxes. Unfortu-
nately, they are still left alone to deal with this information overload on their
usually small-screen devices. While state-of-the-art techniques from the Natural
Language Processing (NLP) domain have proven to be useful in dealing with
such situations, it is not yet feasible to deploy a complete NLP solution on
smartphones, mainly due to its resource-intensive nature. This major limitation
prompts the need for novel approaches that can bring NLP power to smart-
phones, taking into account their limited input and processing capabilities.

F. Daniel, G.A. Papadopoulos, P. Thiran (Eds.): MobiWIS 2013, LNCS 8093, pp. 187–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 B. Sateli, G. Cook, and R. Witte

Towards this end, efforts have been made to develop various applications for
mobile platforms, such as Google’s Android1 or Apple’s iOS,2 which target spe-
cific productivity issues, like retrieving information about places or events with
question-answering (QA) applications like Siri3 or context-sensitive information
extraction (IE) like Google Now.4 However, this means that users must install
and use different apps for their various information needs and the market is
still lacking a generic NLP app that can offer several text processing capabili-
ties, such as summarization or entity detection, in a unified manner. Preferably,
while offering various sophisticated NLP techniques, such an app should be sim-
ple enough so that customers, as well as other app developers with no technical
NLP background, can make use of its capabilities.

In this paper, we present the first open source NLP library for the Android
platform that allows various applications to benefit from arbitrary NLP services
through a comprehensive, service-oriented architecture. This work is significant
since we offer an application-independent software layer for Android that can be
integrated into any existing app in need of NLP support, rather than enhancing
a single application. Our approach introduces a novel Human-AI collaboration
pattern that can be leveraged to aid mobile users with information-intensive
tasks across various domains, such as health care, law, engineering, e-learning,
e-business, among others [1–3].

2 Background

In this section, we briefly explain the conceptual and technical foundations for
our work, namely, natural language processing and the web service-based Seman-
tic Assistants framework with its NLP API.

2.1 Natural Language Processing (NLP)

The history of Natural Language Processing (NLP) goes far back a few decades.
One of the ultimate goals of NLP is to derive intelligence from unstructured
content expressed in a natural language, such as English or German, using a va-
riety of techniques from the Artificial Intelligence and Computational Linguistics
domains. Text Mining is an immensely popular application of NLP that aims
at extracting patterns and structured information from textual content. Due to
its importance, many frameworks have been developed to facilitate the develop-
ment of text mining applications, such as the open source General Architecture
for Text Engineering (GATE) [4], designed both for language experts who need
to implement concrete NLP pipelines, as well as software developers seeking to
embed NLP capabilities in their applications.

1 Google Android, http://www.android.com/
2 Apple iOS, http://www.apple.com/ios/
3 Siri, http://www.apple.com/ios/siri/
4 Google Now, http://www.google.com/landing/now/

http://www.android.com/
http://www.apple.com/ios/
http://www.apple.com/ios/siri/
http://www.google.com/landing/now/

Smarter Mobile Apps through Integrated NLP Services 189

Mobile Applications of NLP. In what follows, we present a number of stan-
dard NLP tasks, with a focus on those relevant for mobile applications. However,
this list is by no means exhaustive; many other tasks exist, in particular, for
domain-specific contexts (e.g., e-health, e-learning, or e-business).

Automatic Summarization. In the presence of mass information, there is a need
to allocate the attention of the target efficiently among the overabundance of
information sources [5]. Consider a mobile user that quickly needs to get the
main content out of a number of emails, documents, or web pages. Browsing
through large amounts of textual content on a small-screen device is not only te-
dious and time-consuming, but important information can be easily overlooked.
In such a situation, where a user’s information need is dispersed over a single
long or multiple documents, NLP techniques can provide him with a summary, a
compressed version of the original document(s) that preserves the main informa-
tion as good as possible. While generic summaries are probably the most widely
known, other summary types are even more interesting for mobile applications:
Focused summaries start from a topic (such as a question stated by the user)
and generate the summary targeted at this question. Update summaries take
the user’s reading history into account, summarizing only the new information
that was not seen before [6].

Information Extraction (IE) is one of the most popular applications of NLP. IE
identifies instances of a particular class of events, entities or relationships in a
natural language text and creates a structured representation of the discovered
information. A number of systems and APIs have been developed for this task,
such as OpenCalais,5 which can extract named entities like Persons and Orga-
nizations within a text and present them in a structured language, e.g., XML or
RDF.6 These techniques are also helpful for mobile applications, where users of-
ten deal with large amounts of textual content. For example, using an IE service
in a mobile app can help users to automatically find all the occurrences of a spe-
cific type of entity, such as ‘company’, and gather complementary information
in form of metadata around them.

Content Development. NLP techniques can also be helpful when developing new
content: Typing (or dictating) longer texts on a mobile device is typically cum-
bersome and time-consuming. Here, NLP services such as summarization or IE
can support users by generating part of the new content. For example, when
replying to an email in response to a question, a focused summary can provide
the main body of information that needs only editing and verification by a user.

Question Answering (QA) has become one of the most prominent applications
of NLP on mobile devices, in particular due to Apple’s Siri app. In contrast to
focused summaries, which also address an information need of a user, but are
typically answering open-ended questions in an essay-style (e.g., “What is the
importance of refrigeration for ice cream deliveries?”), QA aims at providing
answers to factual, closed questions (e.g., “Where do I find the nearest ice cream

5 OpenCalais, http://www.opencalais.com/
6 Resource Description Framework (RDF), http://www.w3.org/RDF/

http://www.opencalais.com/
http://www.w3.org/RDF/

190 B. Sateli, G. Cook, and R. Witte

NLP Service
Result

...

− Calling an NLP Service

Focused
Summarization

− Runtime Parameters

Word Processor

Client

NLP Service 1

NLP Service 2

NLP Service n

Server

Fig. 1. The Semantic Assistants service execution workflow [7]

parlor?”). QA is a significant improvement to simple (keyword-based) informa-
tion retrieval, which simply presents a list of possibly relevant documents to the
user, because it allows users to pose questions against its knowledge base in nat-
ural language. Then, after “understanding” the question, an answer formulation
step brings back the extracted information to the user. While systems like Siri
apply to a general domain, QA systems on mobile devices have much broader po-
tential: For example, a company might want to develop an app that can answer
questions about its products or services; or a university could provide students
and staff with an app that is capable of answering questions about its courses
or buildings.

2.2 The Semantic Assistants Framework

As we described in the previous section, NLP pipelines are diverse in nature and
in some scenarios, more than one NLP technique might be useful in respect to the
user’s task at hand. The Semantic Assistants framework [7] is an existing open
source architecture that provides a unified manner of offering NLP capabilities to
clients, ranging from desktop applications to web information systems, in form of
W3C standard web services.7 The goal of the Semantic Assistants architecture is
to wrap concrete analysis pipelines, developed based on existing NLP frameworks,
and broker them to connected clients through a service-oriented architecture.

Corresponding to the definition of service-oriented architectures, the Seman-
tic Assistants architecture has a repository of NLP pipelines that are formally
described using the Web Ontology Language (OWL).8 Such an infrastructure
allows for dynamic discovery of NLP services in the architecture and reasoning
capabilities over pipelines before recommending them to clients. For example,
based on the user’s context or the language of source content, Semantic Assis-
tants can recommend a subset of NLP services to the user. This way, any NLP
service deployed in the Semantic Assistants repository becomes available to all
connected clients through a WSDL9 interface description.

7 Web Services Architecture, http://www.w3.org/TR/ws-arch/
8 Web Ontology Language (OWL), http://www.w3.org/2004/OWL/
9 Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl

http://www.w3.org/TR/ws-arch/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/wsdl

Smarter Mobile Apps through Integrated NLP Services 191

As shown in Fig. 1, an NLP execution workflow is initiated by the client
through sending textual content (e.g., the URL of a document or literal text)
to a Semantic Assistants server. Optionally, clients can customize the pipelines’
behaviour by setting a number of runtime parameters, e.g., output formats or
special thresholds. These requests trigger the execution of an actual NLP pipeline
on the provided content, and if successful, return the results to the client in form
of a unified XML document. The receiving client is then responsible for parsing
the results and providing the user with a proper presentation, for instance, high-
lighting annotations in a text or opening up a new document.

In order to facilitate the integration of new clients, the Semantic Assistants ar-
chitecture offers a Client-Side Abstraction Layer (CSAL) library. Essentially, the
CSAL library is a Java archive of common communication and data transforma-
tion functionalities that can be reused by different clients. Such an abstraction
layer eases the implementation of the client-server communication process in
new clients, as well as the transformation of NLP results to other useful data
types.

What distinguishes the Semantic Assistants framework from other approaches
is its emphasis on a separation of concerns : Users who interact with the NLP
pipelines are not concerned with how the analysis is performed on their provided
content; Application developers can use the CSAL library to easily connect to
the back-end server and invoke services and retrieve the results; and Language
engineers can develop sophisticated NLP pipelines without worrying about how
they are going to be offered to the end user. Currently, the Semantic Assistants
architecture supports NLP pipelines developed based on the GATE10 frame-
work, but also provides for the execution of pipelines based on OpenNLP11 and
UIMA12 through their GATE integration.

3 Design of the Semantic Assistants Android NLP Layer

Following the description of how different NLP techniques can aid mobile users
and the Semantic Assistants framework that provides such capabilities to its
connected clients, we now describe a high-level design overview of our novel
Android-NLP integration process. The ultimate goal we are trying to achieve in
this integration is to provide a software layer to the Android platform that can
be used by various applications in need of NLP support.

Our research hypothesis is that numerous applications running on a smart-
phone can benefit from natural language processing support: interactions with
the user will become faster through automation; tasks that are currently difficult
to perform on small-screen devices will be significantly improved.

Robust, open source implementations for tasks like information extraction or
automatic summarization are readily available, in the form of NLP pipelines

10 GATE, http://gate.ac.uk/
11 OpenNLP, http://opennlp.sourceforge.net
12 UIMA, https://uima.apache.org/

http://gate.ac.uk/
http://opennlp.sourceforge.net
https://uima.apache.org/

192 B. Sateli, G. Cook, and R. Witte

running within a text analysis framework. However, these frameworks cannot be
executed on an Android device, as NLP is very resource-intensive and mobile
devices have both hard- and software limitations [8]. Furthermore, rather than
just enhancing a single application with NLP capabilities, we aim to offer an
application-independent software layer that can be integrated into any existing
application requiring NLP support. Similarly, we do not want to restrict the type
and number of possible NLP analysis services in advance: rather, it should be
possible to dynamically add new services and have them discovered by the mobile
device, i.e., we aim to design a service-oriented architecture (SOA). The vision
is that applications on a mobile device can dynamically request NLP services,
such as entity extraction, summarization [9, 10], or question-answering [11], to
support the user in knowledge-intensive tasks, just like a human assistant would.

3.1 Requirements

We start by defining a set of requirements for our integration.

Remote Execution of Services (R1). In order to tackle the limited memory and
processing capacities of mobile devices, the integration must execute the NLP
services on a remote machine and bring the results back to the mobile device.

NLP Service Independence (R2). Mobile users deal with various types of infor-
mation, ranging from news articles to personal documents, for which generic
or domain-specific NLP pipelines may be useful. Irrespective of how the NLP
pipelines are concretely implemented, the integration must offer them within a
single unique interface.

App Independence (R3). The integration must be realized in such a way that
various apps can seamlessly benefit from NLP services, rather than enhancing a
single app only.

Flexible Response Handling (R4). Depending on the application area, NLP
pipelines can generate various output formats, e.g., annotations for IE or new
documents for summarization. The integration must accordingly represent and
transform the NLP pipeline results in a mobile device.

Inter-App Communication (R5). Various apps must be able to share content
with the integration layer for analysis and receive the results, where applicable.
It should also be possible to receive content from one app and write the results
to another.

3.2 Developed Solution

Here, we describe our design decisions to meet the requirements enumerated in
the previous section. Our goal is to design an architecture that allows Android
apps to connect to a remote Semantic Assistants server and benefit from its NLP
services, either directly within their environment or through another service app,
i.e., an application that performs the invocation process and returns the results
to the app that originally requested the NLP service.

Smarter Mobile Apps through Integrated NLP Services 193

W
eb

 S
erver

Language

Descriptions

Service

Semantic Assistants

NLP Service Connector

Semantic Assistants Server

Linux Kernel

User Android−Enabled Device

L
ib

raries
A

p
p

licatio
n

s

Service Information

Service Invocation
System
Libraries Abstraction Layer

...
Assistants

SA Android

Semantic

Other
Any

AppApp

Fig. 2. The Semantic Assistants-Android integration high-level architecture

Fig. 2 illustrates a high-level overview of our integration architecture, where the
client is always an Android app requesting an NLP service, and the server side is
the Semantic Assistants server brokering these pipelines asWeb services (R1). The
client-server communication is facilitated through an Android-specific client-side
abstraction layer, designed as an extension to the Semantic Assistants framework.
Because of the absence of Simple Object Access Protocol (SOAP) [12] libraries in
Android, both components in our architecture have to communicate in a REST-
ful way. To provide a RESTful communication over the HTTP protocol, we ex-
tended the Semantic Assistants server tier with a REpresentational State Transfer
(REST) [13] interface that additionally provides a secure HTTPS channel.

The Semantic Assistants Android abstraction layer encompasses common
functionalities for Android apps to communicate with the Semantic Assistants
server by creating RESTful requests for service inquiry, execution, user authenti-
cation and eventually, parsing the retrieved results. It also contains pre-defined
Android intents13 for remote execution of NLP services. In the Android plat-
form, intents are system-wide messages that contain abstract descriptions of
operations to be performed. Intents are the Android’s platform facility for com-
munication between components within one or multiple applications. The Se-
mantic Assistants Android abstraction layer library has an extensible structure
for NLP intents that can be extended as more frequently-used NLP services are
made available in the Semantic Assistants repository. For example, the Semantic
Assistants Android abstraction layer has a built-in entity detection intent that
extracts Person and Location named entities from a given text and returns the
extracted results as series of annotations to the invoking application. We will
demonstrate a use case for this intent within a demo app in Section 4.

4 Implementation

Our two novel components in the Android-NLP integration are the Semantic
Assistants App and the Semantic Assistants Android Abstraction Layer library

13 Intents and Intent Filters, http://developer.android.com/guide/components/

intents-filters.html

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

194 B. Sateli, G. Cook, and R. Witte

shown in Fig. 2. The Android abstraction layer plays the role of a system-wide
library that can be referenced by all Android apps installed on the application
layer of the Android OS architecture. The Semantic Assistants App14 is an imple-
mentation of a general-purpose NLP app that can offer various NLP services to
users both within its user interface, as well as other apps using system messages.

4.1 The Semantic Assistants Android Abstraction Layer

Technically, the Semantic Assistants Android abstraction layer is an Android
library15 project that holds shared code and resources for apps that need NLP
support in their workflow (R3). The abstraction layer classes implementing the
SA-Android communication and data transformation are compiled by the An-
droid development tools into a Java archive (JAR) file and installed on the
system. Thereby, various apps can refer to the Semantic Assistants abstraction
layer as a library dependency in their code. Using the library classes, other
apps can directly connect to a given Semantic Assistants server interface and
invoke the NLP services available in the server’s repository without the hassle
of implementing connection handlers to a remote server. The library also helps
developers in preparing requests conforming to the Semantic Assistants server
endpoint description file and parsing the resulting XML document. The cur-
rent implementation of the Semantic Assistants Android library supports NLP
service inquiry, invocation, and user authentication on the Semantic Assistants
server over HTTP and HTTPS protocols.

4.2 The Semantic Assistants App

As a part of our contribution and in order to demonstrate a general-purpose app
offering arbitrary NLP services to Android mobile users, we have implemented
an Android app, called the Semantic Assistants App, that offers a unique user
interface to inquire and invoke NLP services on a user-provided content. The
Semantic Assistants App’s main activity allows users to authenticate themselves
and configure the app to connect to a specific Semantic Assistants server end-
point. Once the user settings are stored, the Semantic Assistants App inquires
about the available assistants from the server and generates a dynamic list con-
taining service names (R2), their descriptions and possible further configuration
options, such as applicable runtime parameters, as shown in the top part of Fig. 3.
When the user selects a service from the list, the Semantic Assistants App fea-
tures a text field for the user to enter content for analysis. For example, in our
screenshot taken from a tablet running the Semantic Assistants App, we have
provided a short sentence for a sample analysis scenario and chosen the “Per-
son and Location Extractor” as the NLP service. Pressing the “Invoke” button

14 Semantic Assistants App is available at http://www.semanticsoftware.info/

sa-android
15 Android Library Project, http://developer.android.com/tools/projects/

index.html

http://www.semanticsoftware.info/sa-android
http://www.semanticsoftware.info/sa-android
http://developer.android.com/tools/projects/index.html
http://developer.android.com/tools/projects/index.html

Smarter Mobile Apps through Integrated NLP Services 195

Fig. 3. The Semantic Assistants App Service User Interface

sends a request to the remote Semantic Assistants server through the Semantic
Assistants Android abstraction library, which in turn triggers the execution of
the actual pipeline on the server. The Person and Location entities found in the
text are first received by the Semantic Assistants Android abstraction library
in form a typical Semantic Assistants XML document. The library then parses
the embedded entities to an array of Java objects and sends them back to the
Semantic Assistants App, where a list is automatically populated from the en-
tities’ literal content, their semantic types, their exact character offsets in the
original text, as well as any additional features provided by the pipeline (Fig. 3,
bottom).

Of course, manually pasting content into the Semantic Assistants App’s text
field is still not convenient for most mobile users, especially on small screens.
That’s why the Semantic Assistants App also listens to the system’s sharing
intents, broadcasted from other existing apps on the device (R5). Sharing intents
are fired in the system whenever an app provides the user with the ability to share
content directly with another app, e.g., sending a paragraph from a web page
to an email application as a newly composed message. Because the Semantic
Assistants App registers itself in the Android system as a listener component
for sharing intents, its name pops up in the contextual menu of sharing actions
where applicable. Hence, users can choose the Semantic Assistants App as the
content receiver application and thereby automatically populate the text field
of the app, preparing it for a new NLP analysis session. Based on the NLP
pipeline’s result format, the Semantic Assistants App can eventually present the
extracted annotations in a list format, or open up the generated output file in
the Android’s configured default browser (R4).

Listening to system-wide sharing intents provides Semantic Assistants App
users with a convenient method to invoke arbitrary NLP pipelines using the app’s
graphical user interface. However, another important target user group of our
integration are Android app developers who need to embed NLP capabilities in
their own application. In order to suppress the need to interact with the Semantic

196 B. Sateli, G. Cook, and R. Witte

1 <service
2 android:name="info.semanticsoftware.semassist.android.service.

SemanticAssistantsService"
3 android:process=":semassist_service"
4 android:label ="semassist">
5 <intent−filter android:label ="Semantic Assistants Open Intents">
6 <action android:name="org.openintents.action.PERSON_LOCATION_EXTRACTOR" />
7 <category android:name="android.intent.category.DEFAULT" />
8 </intent−filter>
9 </service>

Fig. 4. A Semantic Assistants open intent example

Assistants App’s GUI for each analysis session, the Semantic Assistants App is
designed to offer its “Semantic Assistants Open Intents” to all applications,
once it has been installed on a device. The idea behind open intents is to allow
other apps to invoke specific NLP services in a headless manner by sending a
broadcast message across the system asking for a specific intent. If the intent is
recognized by the Semantic Assistants App, it is received and transformed into
a corresponding NLP service execution request. Subsequently, the results of a
successful execution are returned to the app that sent the broadcast message.
Fig. 4 shows an example Semantic Assistants open intent to extract person and
location named entities from a given text.

5 Application

Following a thorough description of the Android-NLP integration, in this section
we explain how Android app developers can now embed NLP capabilities in their
own apps using our novel architecture. We begin this section by an example
scenario, in which an app developer wants to write a smart app for his client.
Our developer’s client frequently travels to different conferences and meets new
people. He tries to remember and keep in touch with his new connections by
creating contact entries in his Android phone. However, every once in a while,
he goes back to his contact book, though by just reading a name he doesn’t
remember in which context he met that specific person. So he asks our developer
to create an app for him that can automatically extract useful metadata and
related context information from the emails his connections send him and create
new contacts or add notes to his contact book entries.

In a typical Android development process, our developer starts by designing an
Android app that receives shared content from an email app on the device. Once
he receives the message content in his app, he has to apply various heuristics, such
as regular expressions or string matching, on the text to find useful entities for his
client. Such an approach is computationally expensive and does not usually yield
an acceptable precision or recall when implemented by someone unfamiliar with
the text mining domain. Therefore, after a short research, our developer finds a

Smarter Mobile Apps through Integrated NLP Services 197

Fig. 5. The iFW app workflow sequence diagram

1 <!−− Transparent activity bound to the system share intent −−>
2 <activity android:name=".activity.ContactFinderActivity" android:theme="@style/Theme.

Transparent">
3 <intent−filter android:label ="iForgotWho">
4 <action android:name="android.intent.action.SEND" />
5 <category android:name="android.intent.category.DEFAULT" />
6 <data android:mimeType="text/*"/>
7 </intent−filter>
8 </activity>
9

10 <!−− Broadcast receiver for the Semantic Assistants App messages −−>
11 <receiver android:name=".services.NotifBroadcastReceiver">
12 <intent−filter>
13 <action android:name="info.semanticsoftware.semassist.android.BROADCAST"/>
14 </intent−filter>
15 </receiver>

Fig. 6. The iForgotWho app manifest file snippet

Semantic Assistants open intent that can extract various entities, such as person,
organization, location and address entities, from a given text. The developer then
embeds the Semantic Assistants Android abstraction library in his project and
delegates the entity extraction responsibility to the Semantic Assistants App via
a simple Java method call, provided by the abstraction library classes. In this
case, the processing flow of this new application, called the ‘iForgotWho’ app,
follows the sequence shown in Fig. 5.

To better demonstrate this use case, we implemented the iForgotWho (iFW)
Android app and used its NLP capability on an example email message. The
iFW app’s manifest file16 (Fig. 6) denotes two important features about this
app: The iFW app accepts textual content shared from other apps (lines 1–8)
and listens to broadcast messages sent from the Semantic Assistants App (lines
10–15).

16 The AndroidManifest.xml File, http://developer.android.com/guide/topics/

manifest/manifest-intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

198 B. Sateli, G. Cook, and R. Witte

1 public class ContactFinderActivity extends Activity {
2 @Override
3 public void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState) ;
5 Intent service = new Intent("org.openintents.action.INFORMATION_EXTRACTOR");
6 /∗The share intent carries the user selected text .
7 ∗ We simply pass the text to the designated Semantic Assistants service . ∗/
8 String input = getIntent() . getExtras () . getString (Intent .EXTRA TEXT);
9 service .putExtra(Intent .EXTRA TEXT, input);

10 /∗ True silent mode means that iForgotWho app
11 ∗ will take care of the results presentation . ∗/
12 service .putExtra(Constants.SILENT MODE, "true");
13 // call the service
14 startService (service) ;
15 // close the activity
16 finish () ;
17 }
18 }

Fig. 7. The iForgotWho activity requesting an open intent

The iFW app contains only two activity classes17 – one transparent activity
that delegates user requests to the Semantic Assistants Android library and
another one that lists the extracted entities and asks for the user’s permission
before adding them to his contact book. Fig. 7 contains the complete source
code of the iFW’s service-requesting activity, showing how the complicated task
of entity detection can be simply achieved through using a Semantic Assistants
open intent.

In our example scenario, our developer’s client uses the iFW information
extraction feature to automatically create a new contact entry from an email
message he has received from one of his connections. The client selects the content
of his email message and shares it with the iFW app. The iFW app then calls
the INFORMATION EXTRACTOR service of the Semantic Assistants App to extract
useful information, such as the person’s name or phone number from the email
message, through executing GATE’s ANNIE pipeline [4] on the server side. Upon
receiving the results, iFW prompts the user with the detected entities and lets
our client verify the results. Once approved by the user, iFW automatically
creates a new contact entry and populates the corresponding fields, such as
the contact’s name, phone number and a sentence from the (email) message
containing a named entity, like the sender’s name, as contextual information to
help our user remember the contact. Fig. 8 shows the sharing process and the
contact entry that is eventually created by the iFW app in the user’s contact
book.

As we showed in our iFW app, our Android-NLP integration architecture
provides the possibility for developers to enhance their applications’ capabilities
with state-of-the-art techniques from the natural language processing domain,
implementing novel use cases of human-AI collaboration patterns within the
context of mobile devices at the convenience of calling open intents.

17 Activity classes provide user interface components that users interact with.

Smarter Mobile Apps through Integrated NLP Services 199

Fig. 8. Sharing content with the iFW app (left) and the resulting contact entry (right)

6 Related Work

Using natural language processing techniques in the context of mobile devices
has recently gained attention, both among academic and industry communities.
The lavish launch of Apple’s Siri as a voice-controlled personal assistant was
a major demonstration of how state-of-the-art NLP techniques can aid mobile
users with productivity tasks, like finding a nearby restaurant. This has moti-
vated other frontier mobile development companies to increase their efforts in
adopting NLP techniques for mobile devices. Google Now integrates additional
techniques, such as personalization, on top of NLP. However, many of these
applications are still largely limited to “speak to command” use cases, which
merely provides a natural language interface for users to issue spoken, intuitive
commands to a mobile device for tasks like question-answering or sending text
messages in a hands-free manner [14]. Moving beyond speech recognition, the
apparent need for other more complex tasks requiring sophisticated NLP anal-
ysis is being satisfied through various apps for information-intensive areas like
personalized news recommendation [15] or web page summarization [9]. Unlike
these rapidly emerging task-specific apps, our mobile-NLP integration aims at
providing a general NLP solution that can offer various techniques through a uni-
fied interface. On the foundations of the Semantic Assistants’ service-oriented
architecture, a multitude of generic and domain-specific NLP pipelines can be de-
ployed and utilized within Android apps. In addition, in contrast to [16] and [17],
where authors try to adapt resource-intensive NLP techniques like information
extraction and machine translation to mobile contexts, our integration architec-
ture offers the full power of NLP applications to mobile users.

Alongside the efforts to develop NLP-enabled apps that target specific pro-
ductivity issues in mobile contexts, others are providing more general solutions
to embed NLP capabilities within mobile apps by providing software APIs.

200 B. Sateli, G. Cook, and R. Witte

AlchemyAPI18 offers an Android SDK for app developers to make use of its
various text mining techniques, such as keyword extraction or concept tagging,
within their apps through embedding a Java archive file that makes remote web
service calls to the AlchemyAPI text mining platform. Maluuba19 is another
NLP API for mobile apps that offers two separate interfaces for “interpreting”
spoken commands and “normalizing” textual content for Android and Windows
Phone devices. In contrast, our approach not only provides a unique interface
to offer various NLP techniques, but also provides ready-to-use NLP intents.
This is an advantage over merely publishing an API that first needs to be un-
derstood by developers and then employed in their apps. Moreover, unlike these
commercial offerings, both the Semantic Assistants framework and our Semantic
Assistants-Android integration are open source software20 that allow the devel-
opers to deploy their own custom NLP pipelines (e.g., for healthcare, biomedical
research, e-learning, or entertainment) and extend our integration’s open intents,
as their need arises. Finally, by providing a clear separation of concerns, mobile
developers with no NLP background can now make use of a multitude of exist-
ing open source pipelines, in particular those developed based on the popular
GATE framework, as well as custom pipelines that language engineers will de-
velop without the concern on how these pipelines are going to be integrated in
mobile apps.

7 Conclusion

For many users, smartphones have become their go-to-device for industry news
feeds, checking email, and scheduling their agenda. The sheer quantity of text
which is read on these devices, and the number of screen-taps needed to get
things done, could be significantly reduced by applying existing Natural Lan-
guage Processing (NLP) pipelines, such as automatic summarization or infor-
mation extraction, to news feeds, emails, or attachments. Summarized text can
also be consumed in an eyes-free manner using the smartphone’s Text-To-Speech
capabilities. Dates, locations and people can be automatically detected using
named entity recognition and integrated in the creation of new events in a user’s
agenda and entries in the contact book as we demonstrated with the iFW app.
We developed the first open source API for Android that provides an easy way to
integrate NLP capabilities into an application. It relies on interactions familiar
to mobile application developers, without requiring any background in compu-
tational linguistics. With our framework, application developers can easily inte-
grate complex text mining tasks into a smartphone application, either based on
existing open source NLP tools, or by delegating the pipeline development to
a language engineer. We believe that the resulting architecture has significant
potentials to make mobile apps ‘smarter’ across a wide range of domains.

18 AlchemyAPI, http://www.alchemyapi.com
19 Maluuba, http://www.maluuba.com/
20 Available at http://sourceforge.net/projects/semantic-assist/

http://www.alchemyapi.com
http://www.maluuba.com/
http://sourceforge.net/projects/semantic-assist/

Smarter Mobile Apps through Integrated NLP Services 201

References

1. Aanensen, D.M., Huntley, D.M., Feil, E.J., al Own, F., Spratt, B.G.: EpiCollect:
Linking Smartphones to Web Applications for Epidemiology, Ecology and Commu-
nity Data Collection. PLoS ONE 4(9), e6968 (2009)

2. Doukas, C., Pliakas, T., Maglogiannis, I.: Mobile healthcare information manage-
ment utilizing Cloud Computing and Android OS. In: 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
September 4, pp. 1037–1040 (2010)

3. Kamel Boulos, M.N., Wheeler, S., Tavares, C., Jones, R.: How smartphones are
changing the face of mobile and participatory healthcare: An overview, with exam-
ple from eCAALYX. Biomedical Engineering Online 10(1), 1–24 (2011)

4. Cunningham, H., et al.: Text Processing with GATE (Version 6). University of
Sheffield, Deptartment of Computer Science (2011)

5. Simon, H.A.: Designing organizations for an information rich world. In: Green-
berger, M. (ed.) Computers, Communications, and the Public Interest, pp. 37–72.
The Johns Hopkins Press (1971)

6. Witte, R., Bergler, S.: Next-Generation Summarization: Contrastive, Focused, and
Update Summaries. In: International Conference on Recent Advances in Natural
Language Processing (RANLP 2007), Borovets, Bulgaria, September 27-29 (2007)

7. Witte, R., Gitzinger, T.: Semantic Assistants – User-Centric Natural Language
Processing Services for Desktop Clients. In: Domingue, J., Anutariya, C. (eds.)
ASWC 2008. LNCS, vol. 5367, pp. 360–374. Springer, Heidelberg (2008)

8. Park, S.Y., Byun, J., Rim, H.C., Lee, D.G., Lim, H.: Natural language-based user
interface for mobile devices with limited resources. IEEE Transactions on Consumer
Electronics 56(4), 2086–2092 (2010)

9. Alam, H., Hartono, R., Kumar, A., Rahman, F., Tarnikova, Y., Wilcox, C.: Web
Page Summarization for Handheld Devices: A Natural Language Approach. In: 7th
International Conference on Document Analysis and Recognition (ICDAR 2003),
vol. 2, pp. 1153–1157 (2003)

10. Buyukkokten, O., Garcia-Molina, H., Paepcke, A.: Seeing the whole in parts: text
summarization for web browsing on handheld devices. In: Proceedings of the 10th
International Conference on World Wide Web, WWW 2001, pp. 652–662. ACM,
New York (2001)

11. Jilani, A.: Mobile Phone Text Processing and Question-Answering. In: Future Tech-
nologies in Computing and Engineering: Proceedings of Computing and Engineer-
ing Annual Researchers’ Conference 2010: CEARC 2010, pp. 130–135 (2010)

12. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple Object Access Protocol (SOAP) 1.1. W3C Note,
World Wide Web Consortium (May 2000), http://www.w3.org/TR/SOAP/

13. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis (2000)

14. Zhou, L., Shaikh, M., Zhang, D.: Natural Language Interface to Mobile Devices.
In: Shi, Z., He, Q. (eds.) Intelligent Information Processing II. IFIP, vol. 163, pp.
283–286. Springer US (2005)

15. Tavakolifard, M., Gulla, J.A., Almeroth, K., Ingvaldsen, J.E., Nygreen, G., Berg,
E.: Tailored News in the Palm of Your HAND: A Multi-Perspective Transparent
Approach to News Recommendation. In: Proceedings of the 22nd International
World Wide Web Conference, WWW 2013, May 13–17, Rio de Janeiro, Brazil
(2013)

http://www.w3.org/TR/SOAP/

202 B. Sateli, G. Cook, and R. Witte

16. Seon, C.N., Kim, H., Seo, J.: Information extraction using finite state automata and
syllable n-grams in a mobile environment. In: Proceedings of the ACL 2008: HLT
Workshop on Mobile Language Processing, Columbus, Ohio, pp. 13–18. Association
for Computational Linguistics (June 2008)

17. Homola, P.: A Distributed Database for Mobile NLP Applications. In: Proceedings
of the ACL 2008: HLTWorkshop on Mobile Language Processing, Columbus, Ohio,
pp. 27–28. Association for Computational Linguistics (June 2008)

	Smarter Mobile Apps through IntegratedNatural Language Processing Services
	1 Introduction
	2 Background
	2.1 Natural Language Processing (NLP)
	2.2 The Semantic Assistants Framework

	3 Design of the Semantic Assistants Android NLP Layer
	3.1 Requirements
	3.2 Developed Solution

	4 Implementation
	4.1 The Semantic Assistants Android Abstraction Layer
	4.2 The Semantic Assistants App

	5 Application
	6 Related Work
	7 Conclusion
	References

