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Abstract. Array range queries are of current interest in the field of
data structures. Given an array of numbers or arbitrary elements, the
general array range query problem is to build a data structure that can
efficiently answer queries of a given type stated in terms of an interval of
the indices. The specific query type might be for the minimum element
in the range, the most frequently occurring element, or any of many
other possibilities. In addition to being interesting in themselves, array
range queries have connections to computational geometry, compressed
and succinct data structures, and other areas of computer science. We
survey recent and relevant past work on this class of problems.

Keywords: array, range query, document retrieval, range search, selec-
tion, range frequency, top-k.

1 Introduction

Given an array of numbers or arbitrary elements, the general array range query
problem is to build a data structure that can efficiently answer queries of a given
type stated in terms of an interval of the indices. For instance, we might ask for
the minimum element value that occurs in the range. It is possible to define a
nearly endless variety of such problems by making different choices for the type
of query to answer, the amount of space allowed, the model of computation, and
so on. Much work has been done on these problems, especially in the last few
years. Besides the steady procession of improvements in time and space bounds,
work on array ranges has led to new techniques and insights in data structure
design applicable to many other problems.

In this paper we survey current results on array range queries. In this intro-
duction we first define the scope of the survey and discuss classification of range
queries. Then we introduce some commonly-used techniques for these problems,
and in subsequent sections we describe current work in the field organized by
our classification.

We are primarily interested in range queries on arrays as such; that is, se-
quences of data indexed by consecutive integers. Geometric problems are typi-
cally approached using different techniques and are not the main focus here. The
1999 survey of Agarwal and Erickson gives detailed coverage of geometric range
query work up to that date [1], and we mention some recent geometric work rele-
vant to array range queries. Similarly, although many of the data structures used
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for array range queries are related to those used for string searching problems,
our focus here is not on string search. Array ranges can be naturally general-
ized to queries on paths in trees, and we discuss some of that work without
attempting to cover it all.

Array range queries tend to be distinguished by small input and output sizes.
A query typically consists of just the starting and ending indices of the range;
in some problems there may also be something else in the query, such as a color
or a threshold, but seldom more than a constant number of such things. The
answer to a query is usually also of small size, such as a single element or just
an answer of “yes” or “no.” It is unusual for the output size to be as big as the
entire contents of the range.

Unless otherwise specified, we assume a RAM model of computation in which
the machine can perform operations on words of length O(log n) in unit time;
data structures of O(n) such words; and a static analysis, in which we are allowed
to see the entire array in advance and possibly process it in larger working space
to build the data structure, after which the element values cannot change. In
dynamic versions of array range query problems, the question arises of what is
an update. Changing the value of the element at one index, without changing the
number of elements nor the values at any other indices, may be the most natural
form of dynamic update for an array. However, because of the way they use
geometric data structures internally, many dynamic array range data structures
also support insertions and deletions, shifting all later elements up or down by
one index position, at no additional cost over changing the value of a single
element. Unless otherwise specified, we assume that a dynamic update can be
an insertion or deletion.

1.1 Classification of Array Range Queries

The unending desire for novel results has led researchers to consider a bewilder-
ing assortment of different kinds of array range query problems, and it may not
be possible to fit them all into a consistent classification scheme. However, we
can discern a few general categories that may be useful in organizing the discus-
sion. Very often, a single paper may describe several different problems, possibly
connected by a common data structure that cuts across our classification.

First, an array range query usually considers one of three things about array
element values to determine how they can satisfy the query. We discuss each of
these in its own section.

– The array elements may be values that have an order, typically real numbers,
with the ordering or magnitude of the numbers relevant to the query result.
In this case the element values are often called weights. These queries are
discussed in Section 2.

– The interesting thing about array elements may be only whether each value
does or does not occur in the range at least once, without regard for an
ordering of the values nor how many times each value occurs. Elements
considered this way are often called colors. These queries are discussed in
Section 3.
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– The number of times each value occurs in the range, not only whether it is
zero or nonzero, may be important to the query result. Considering element
frequencies in this way can be said to combine weights (because some values
can be ranked above others) and colors (because the values as such are not
ordered). These queries are discussed in Section 4.

When considering the ordered element value (weight), a query may meaningfully
be stated in terms of the actual value, or its rank among the values that occur
in the query range. Similarly, a query based on color could be concerned with
an actual color value, or “the first (or k-th) color to occur in the range.” And a
frequency query could be in terms of a given value of the frequency (either a raw
number or a ratio to the query range length) or as a rank among frequencies,
such as the mode. In all three categories, then, we can describe range query
problems based on raw value and on rank, and that provides a second dimension
for our classifiation.

Having defined the property of interest, and whether to consider it as a raw
value or as a rank, we can describe different range query problems depending on
what information is given as input to the query.

– The values of interest may be completely determined by the problem, so that
a query consists of only a range of indices. Such problems can often be seen
as special cases of more general problems, of separate interest because they
may be easier than the general versions.

– A single value or rank of interest may be specified in the query.
– A threshold may be part of the query, with all values or ranks above or below

the threshold being of interest. In some cases, upper and lower thresholds
may give rise to significantly different problems. A closely-related category
allows an interval (two thresholds) to be given in the query and then matches
values within the interval, giving the effect of the intersection of an upper
and a lower threshold query, possibly with better bounds.

– A few problems have been described in which the query includes an exact
value or a threshold that can be chosen with generality, but the choice is
made during preprocessing, and must be the same for all queries.

Finally, there may be several different forms in which a query can return its
result, and different kinds of results from what would otherwise be the same
problem may require different data structures and have different bounds.

– The query may return a single element weight, color, or frequency matching
the criteria, or a rank on one of those properties. These six possibilities
correspond to the first two dimensions of our categorization.

– The query may return the index of an element at which the match occurs.
Many queries usually thought of as returning values (the previous category)
implicitly do it by returning indices where those values occur; but asking for
the index is a slightly stronger question, and may be more difficult.

– The query may return a list of all matching values or indices.
– The query may return only a decision result: “yes” or “no” to whether a

matching result occurs in the range at all.
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1.2 Techniques for Array Range Query

Many range query data structures begin their preprocessing by doing rank space
reduction [38,22]. Rank space reduction starts with an array A[1..n] of arbitrary
elements and creates an array B[1..n] of integers in the range 1 to n, where each
element of B[i] represents the rank of A[i] among the set of values that occur in
A. A similar array B′ is created to translate the ranks back to element values
from A. If original values are ever needed, then the ranks from B can be looked
up in B′. This reduction means that the rest of the data structure can deal
exclusively with integers the size of n; and in particular, it can use the usual
RAM techniques to do predecessor queries in O(log logn) time.

If a query consists solely of an interval of indices into an array of size n, only
O(n2) distinct queries are possible. Then we could store the answers to all of
them in a table that size, and answer queries in constant time just by looking up
the answers in the table. Quadratic space is rarely satisfactory, but if we split
the input into blocks of size Ω(

√
n), there are O(n) intervals that start and end

on block boundaries and we could afford to store a constant-sized answer for
each of them in linear space. Many array range data structures use such a table
as the first step in a recursion that will eventually answer arbitrary queries.

It is also common practice to reduce to some other, already-solved array range
query problem. Indeed, many of the array range queries we discuss here originally
arise as reductions used to solve other problems. The rank and select queries
of the succinct data structures literature [61,60,72,46,79] are often invoked as
building blocks for more complicated array range problems. Given a vector of
bits, the rank query asks for the number of 1 bits that occur between the start
of the vector and a given index; the select query is the reverse, asking for the
index of the i-th 1 bit. Rank and select within a range of indices (instead of only
counting from the start) are easy to answer by doing, and subtracting out, one
additional rank query at the start of the range.

Wavelet trees [48] are also popular building blocks; they generalize succinct
bit vectors with rank and select to larger alphabets while providing a few other
queries useful in solving array range problems. Navarro provides a general sur-
vey [74]. A wavelet tree stores an array (usually called a string in this context) of
elements from some alphabet, in a binary structure that divides the alphabet in
half at each level. Each node contains a succinct bit vector naming the subtrees
responsible for each remaining array elements at that level. The overall space
requirement for the basic data structure is O(n log σ) bits where σ is the size of
the alphabet, and it can support rank and select on any letter in O(log σ) time;
but it can also be used as part of the solution to many other kinds of queries.

2 Weight Queries

When the values stored in the array have meanings directly relevant to the query,
they are usually called weights. Weights might not be real numbers, but typically
have some structure such as a total order, a group, or a semigroup.
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2.1 Range Minimum Query

Range Minimum Query (RMQ) on weights equipped with an order is one of the
earliest-studied array range query problems. Range maximum is equivalent. This
problem has the important property that the minimum of a union of two sets
must be the minimum of one of the sets; so the query range can be decomposed
into a constant number of smaller ranges and the answer found by solving those
as subproblems. Highlights of the work on this problem, including the variation
for two-dimensional arrays, are shown in Table 1.

Table 1. Selected results on array range minimum query

space (bits) query time year ref. note

O(n log n) O(1) 1984 [51] LCA
O(n log n) O(log n) 1984 [38] 2-D
O(n log n) O(1) 1989,1993 [9,10]
4n+ o(n) O(1) 2002 [84] O(n log n) bits prep. space

array + 2n+ o(n) O(1) 2007 [35] 2n− o(n) space lower bound

O(n log n) O(1) 2007 [4] 2-D, O(n log(k) n) prep. time
O(n log n) O(1) 2009 [26] cache-oblivious, O(n/B) prep. time
2n+ o(n) O(1) 2010 [34]

array +O(n) O(1) 2012 [14] 2-D
O(n log n) O(1) 2013 [29] simplified

The one-dimensional array RMQ problem can be reduced to Lowest Common
Ancestor (LCA), and constant-time linear-space solutions for that problem go
back at least as far as the work of Harel and Tarjan in 1984 [51]. It is generally
taken for granted (whether explicitly stated or not) that data structures for
this problem must return the index of a minimum element, not only the weight.
Berkman and Vishkin’s work [9,10] is usually cited as the first significant data
structure for RMQ. Their main concern was with doing the preprocessing in a
parallel model, and with applying the data structure to other problems beyond
range queries; but they achieved constant time RMQ with a linear space data
structure by reducing from RMQ to LCA and then, by means of Cartesian
trees, back to RMQ with the constraint that successive elements differ by at
most one. Bender and Farach-Colton [8] give a simplified presentation of this
data structure. Preprocessing time can be linear with a careful implementation,
and subsequent results have also achieved linear preprocessing time.

Sadakane gives a succinct data structure for RMQ, again as part of a solution
to LCA [84]. It uses 4n+o(n) bits, but it requires asymptotically more than that
(O(n log n) bits) temporarily during preprocessing. Fischer and Huen improve
the data structure space bound to 2n + o(n) bits with access to the original
array [35], and never require more than that even during preprocessing. They
also give a lower bound of 2n−o(n) bits, and claim an advantage of not using bit
vector rank and select (which may make implementation easier). This is usually
cited as the current best result for the one-dimensional array RMQ problem in
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the basic RAM model. Fischer [34] later improves it to avoid the requirement for
access to the original array. In this volume, Durocher [29] gives a new linear-space
data structure with constant time query, using simple, practical techniques.

For RMQ on two-dimensional arrays, Gabow, Bentley, and Tarjan [38] give a
solution with O(n log n) space and preprocessing time, and O(log n) query. Note
that we describe the array as

√
n by

√
n for a total of n elements overall to make

these results more easily comparable to the one-dimensional case. Amir, Fischer,
and Lewenstein [4] give a linear-space, constant query time data structure for

two-dimensional array RMQ with O(n log(k) n) preprocessing time, where log(k)

means logarithm iterated any constant number of times.
Demaine, Landau, and Weimann [26] extend RMQ in several directions at

once, as well as reviewing some extensions of the problem in more detail. They
give an algorithm for one-dimensional arrays with the usual linear space and
constant query time as well as optimal O(n/B) preprocessing time in the cache-
oblivious model (B is the block size); they solve Bottleneck Edge Query (BEQ),
which is a generalization to paths in graphs, in linear space, O(k) query time,

and O(n log(k) n) preprocessing time, as well as giving some results on a dynamic
version; and they show a combinatorial lower bound that suggests Cartesian
trees cannot usefully be applied to the two-dimensional array RMQ problem.
Other techniques than Cartesian trees may still be applicable. Brodal, Davoodi,
and Rao [14] give a data structure for two-dimensional RMQ in O(n/c) bits (not
words; c can be chosen) plus access to the original array, with linear preprocessing
and O(c) query time, and they show a matching lower bound.

2.2 Counting and Reporting

Purely counting elements in an array range is trivial, so the term range counting
usually refers to counting elements subject to some restriction, such as elements
whose weight is in a specified interval. Similarly, range reporting on arrays usu-
ally refers to reporting elements whose weights are within an interval. These
definitions make the array range queries equivalent to geometric range queries
on a two-dimensional grid, and the best results use geometric range query tech-
niques. Conversely, solutions to geometric versions of these problems often start
with rank-space reduction to integer coordinates, so the equivalence is close.

We summarize interesting results on counting, reporting, and emptiness in
Table 2. The 1988 data structure of Chazelle [22] is a precursor to the wavelet
tree, without the optimization of using succinct bit vectors in the nodes; it
achieves O(log n) time for counting and O(log n+ k logε n) for reporting, where
k is the number of results, in linear space. By using a wavelet tree, Mäkinen
and Navarro [70] achieve O(log n) time for counting and O(k logn) for report-
ing. Bose et al. [11] improve both these query times by a factor of log logn.
Other significant results also involve logε n trade-offs: for instance, O(log n+ k)
reporting with O(n logε n) space [3]. Nekrich [75,76] gives a good survey of pre-
vious work up to 2009, as well as a O(log n + k logε n) dynamic reporting data
structure (linear space, O(log3+ε n) updates) and a O(logn/ log logn+ k logε n)
static linear-space reporting data structure.
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Table 2. Selected results on range counting and reporting

problem space query time year ref.

counting

O(n) O(log n) 1988 [22]
n+ o(n) O(log n) 2007 [70]
n+ o(n) O(log n/ log log n) 2009 [11]
n+ o(n) O((log n/ log log n)2)∗ 2011 [52]

O(n) O(log σ)† 2011 [55]
n+ o(n) O(log σ log n)† 2012 [78]

compressed O(log σ/ log log n)† 2012 [56]

reporting

O(n) O(log n+ k logε n) 1988 [22]
O(n logε n) O(log n+ k) 2000 [3]
n+ o(n) O(k log n) 2007 [70]
n+ o(n) O(k log n/ log log n) 2009 [11]
O(n) O(log n+ k logε n)∗ 2007,2009 [75,76]

O(n) O((1 + k) log σ)† 2011 [55]

O(n log log n) O(log σ + k log log σ)† 2011 [55]
n+ o(n) O((log n+ k) log σ log n)† 2012 [78]

compressed O((1 + k) log σ/ log log n)† 2012 [56]
∗dynamic †on trees

Range counting results are often presented as barely-discussed corrollaries in
papers on range reporting, but He and Munro [52] give a succinct dynamic data
structure specifically for counting, with O((log n/ log logn)2) time for queries
and updates in the worst case of large alphabet size; they state the bounds in
a more complicated form taking into account the possibility of small alphabets,
and discuss applications to geometric range counting. He, Munro, and Zhou [55]
also propose extending counting and reporting queries to paths in trees; they
achieve O((1 + k) log σ) reporting time (to report k elements, σ distinct weights
in the tree) with linear space, and O(log σ+ k log log σ) time with O(n log logn)
space. Patil, Shah, and Thankachan [78] give succinct data structures for tree
path counting and reporting at a logn time penalty. Then He, Munro, and Zhou
improve their earlier linear-space results to compressed space [56], also improving
the query times by log logn.

2.3 Other Weight Queries

There is a near-trivial folklore solution to range sum, or equivalently range mean,
in a static array: just precompute and store the sums for all ranges begin-
ning at the start of the array, and then subtract the sums for the endpoints
to answer an arbitrary range query in constant time. This approach general-
izes to arbitrary dimension by applying the principle of inclusion and exclusion
on ranges with one corner fixed at the origin, although the constant in the
query time is exponential in the number of dimensions. Fredman [37] introduced
the dynamic one-dimensional version of the problem (with updates consisting of
changing a single element’s value) and gave aO(log n) time, linear-space solution.
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A typical modern approach might use any standard balanced tree augmented
with subtree sums to allow query, update, insertion, and deletion in O(log n)
time. Matching Ω(log n) bounds have been shown in various models of compu-
tation [37,85,50].

There are matching upper and lower bounds of Θ(n+mα(m,n)) time to do m
array range sum queries off-line, where α is the inverse Ackermann function [23].
Brodnik et al. [18] give a constant-time solution using O

(
(n+ UO(log n)) logU

)

bits of memory in the RAMBO model of computation, where bits can be shared
among memory words, summing integers modulo U . The high-dimensional dy-
namic array case was extensively studied in the database community around the
turn of the century [57,44,24,82]. Almost all of these results still apply when
“sum” is generalized to arbitrary group operations; some of the related work
can be further generalized to arbitrary semigroups, forming a connection to the
results on range minimum because minimum is a semigroup operation.

Range minimum was generalized in one direction to semigroups, but a differ-
ent generalization is to the range selection problem of returning a chosen order
statistic. The special case of range median was the first to be studied: Krizanc,
Morin, and Smid [67,68] gave multiple results for it trading off time and space,
with O(nε) time for linear space on array ranges. They also considered tree
paths. Gagie, Puglisi, and Turpin [43] review existing results on range median
and then supersede most of them by showing how to use wavelet trees to answer
selection, for general order statistics chosen at query time, in O(log σ) time with
a linear-space data structure. Subsequent results by Brodal and Jørgensen [17];
Gfeller and Sanders [45]; and then all four of those authors together [16] in-
clude queries in O(log n/ log logn) time with linear space, a dynamic version
with O((log n/ log logn)2) query time in O(n logn/ log logn) space, and various
results on other models including a cell-probe lower bound of O(log n/ log logn)

for dynamic range median if updates are O(logO(1) n). Jørgensen and Larsen [63]
give additional lower bounds, notably including Ω(n1+Ω(1)) space for constant-
time queries; and a linear-space static data structure with query time O((1 +
log k)/ log log n) where k is the order statistic desired, optimal by their lower
bounds except for small values of k. In compressed space, He, Munro, and Nichol-
son [53] give a dynamic data structure with query time, in a recently-posted cor-
rection to the conference paper [54], O((log n/ log logn)(log σ/ log log σ)). The
earlier-mentioned tree path counting results of He, Munro, and Zhou [55,56] and
of Patil, Shah, and Thankachan [78] can also be applied to tree path selection
with nearly the same bounds; in the case of the He, Munro, and Zhou results
the denominator in the query time changes from log logn to log log σ.

Instead of selecting a single order statistic, we could ask for the first k or-
der statistics: a top-k problem. Range reporting answers top-k queries if the
results are returned in sorted order, preferably with output-sensitive time, and
many current range reporting data structures work that way. However, Brodal et
al. [15] describe a linear-space data structure for top-k reporting with O(k) out-
put time, and that is better than the lower bound for range reporting. As we dis-
cussed, “range reporting” in current use implies that queries include thresholds



Array Range Queries 341

on element weights, in effect an extra dimension of the geometric problem, and
that is not part of the definition of top-k queries. Nekrich and Navarro [77] give
a linear-space data structure for sorted reporting with a threshold in O(k logε n)
time, as well as some other time-space trade-offs.

3 Color Queries

If we consider array elements primarily with respect to distinctness, possibly
imposing an order on the distinct values, we can define array range queries based
on these colors. Color range query problems often arise in the document retrieval
literature, and are often presented along the way to solving other problems rather
than as independent results.

Gagie et al. [42] have a useful framework for understanding recent work on
colored range queries. As they explain, the colored range listing problem is fun-
damental. Given a range, colored range listing returns the index of the first
element of each distinct color in the range. Looking at the array elements is
easy; the difficulty lies in removing the duplicates to give output-sensitive time.
Some of the first output-sensitive results are due to Janardan and Lopez [62],
whose linear-space static data structure reports k results in O(log n + k) time.
Gupta, Janardan, and Smid [49] suggest transforming each element A[i] in the
original array A into a point (i, j) on the plane using the largest j < i such
that A[j] = A[i], and give dynamic results. Muthukrishnan [73] describes an
equivalent transformation in terms of an array C. In either form, appropriate
range queries on the transformed input give the answers to colored range list-
ing. Muthukrishnan’s data structure uses O(n) space and O(k) query time. The
subsequent improvements to range minimum queries allow tighter space bounds
with or without compromises on the query time, and much subsequent work on
colored range listing comes down to applying better RMQ results in this set-
ting. Gagie, Puglisi, and Turpin [43] describe how to use wavelet trees for range
selection, the generalization of range minimum, and apply it to colored range
listing. Using range selection instead of range minimum eliminates the need to
store the suffix array in the document retrieval application they consider. The
recent publication of Gagie et al. on compressed document retrieval [41] includes
a good survey of colored range problems within their framework.

Merely counting the distinct colors instead of returning them is the range
color counting problem. Bozanis et al. [13] give a linear-space O(log n)-time
data structure for it. Lai, Poon, and Shi [69] apply a result of Gupta et al. [49]
to solve the dynamic version with a log2 penalty: either O(n log n) space and
O(log n) query, or linear space and O(log2 n) query. Gagie and Kärkkäinen [40]
reduce it to compressed space with query time logarithmic in the length of the
query range, slightly better than O(log n). They also give some dynamic results,
expanded in the journal version by Gagie et al. [41].

If we ask for colors to be listed in order, combining the distinctness of col-
ors with the ordering of weights, we have the top-k color reporting problem.
Karpinski and Nekrich [66] give a linear-space data structure for this problem
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with optimal O(k) query time. This top-k problem defined by an ordering of
the element values is different from a top-k problem defined by frequency rank
within the range, as considered in the next section. Authors working on such
problems use similar or identical terminology for the two.

4 Frequency Queries

When queries concern element frequencies, most combinations of the other pa-
rameters in our classification yield interesting and distinct problems: we can ask
about raw frequencies or their ranks, provide exact values or thresholds, and
return several different kinds of results. High frequencies and low frequencies
often necessitate different techniques and sometimes even have different bounds.

4.1 Queries Related to Raw Frequency

The well-known element uniqueness problem, of determining whether any ele-
ment in an array occurs more than once, has a lower bound of Ω(n logn) in the
algebraic decision tree model [7]. Determining whether the frequency exceeds
k requires Θ(n log(n/k)) (matching upper and lower bounds) [71,27]. These
bounds also apply to the time for preprocessing plus one query on the array
range versions of the problems. The array range query of whether any element
has frequency at least k in the range, k chosen during preprocessing, is trivial
to solve with a linear-space data structure and constant-time queries: just store,
for each range starting point, the end of the shortest range for which the answer
is “yes.” Greve et al. [47] describe that data structure. But for k > 1, even if
chosen during preprocessing, testing the existence of an element with frequency
exactly k in the range is more difficult. Greve et al. [47] show matching upper
and lower time bounds of Θ(log n/ log logn) with k chosen at query time, as-
suming a linear-space data structure, the cell probe model for the lower bound,
and word RAM for the upper bound.

A closely related but not identical class of problems considers a threshold on
the proportion of array elements in a range that contain a given value. These
problems represent a stepping stone to the frequency-rank problems in the next
subsection. Results for these problems are summarized in Table 3.

Given β fixed at preprocessing time, the range β-majority query problem is
to return an element that occurs (or all such elements) in at least β proportion
of the elements of the query range. A geometric data structure of Karpinski and
Nekrich [65] can be applied to solve this inO(n/β) space andO((1/β)(log logn)2)
query time. Durocher et al. [30,31] give a solution in O(n log(1+1/β)) space and
O(1/β) query time, and Gagie et al. [39] in O(n) space and O((1/β) log logn)
query time; in recent work, Belazzougui, Gagie, and Navarro improve the query
time to optimal O(1/β) [6]. Elmasry et al. [32] study a dynamic version of this
problem, mostly in a geometric setting with β fixed and updates consisting of
point addition and removal; for arrays, their data structure gives O(n) space
and O((1/β) log n/ log log n) query time, with O((1/β) log3 n/ log logn) amor-
tized insertion and O((1/β) log n) amortized deletion.
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Table 3. Selected results on array range majority and minority

problem space query time year ref.

β-majority

O(n/β) O(1/β) 2008 [65]
O(n log(1 + 1/β)) O(1/β) 2011,2013 [30,31]

O(n) O((1/β) log log n) 2011 [39]
O(n) O((1/β) log n/ log logn)∗ 2011 [32]
O(n) O(1/β) 2012 [6]

α-majority

O(n(H + 1)) O(1/α) 2011 [39]
O(n log n) O(1/α) 2012 [21]

n log log σ +O(n) O(1/α) 2012 [6]
O(n) O((1/α) log log(1/α)) 2012 [6]

n+ o(n) O((1/α) log log σ) 2012 [6]

α-minority O(n) O(1/α) 2012 [21]
∗dynamic

When the proportion threshold is α chosen at query time, it is easy to solve
range majority at a factor of logn space penalty by building copies of a slightly
modified β-majority data structure for each power of two value of β and then
choosing the closest one at query time. Chan et al. describe that technique [21].
Gagie et al. [39] give a compressed range α-majority data structure (O(n(H+1))
words where H is entropy, bounded above by log σ where σ is the number of
distinct elements) with O(1/α) query time. Belazzougui, Gagie, and Navarro [6]
give multiple new results for this problem with query time varying depending
on space, as summarized in our table.

Another possibility is to make the frequency threshold depend on the ele-
ment value. De Berg and Haverkort [25] describe significant-presence queries.
An element value has a significant presence in a query range if at least a spec-
ified fraction of the elements with that value in the entire array occur within
the query range: the range covers a fraction of the color class rather than the
color class necessarily covering a fraction of the range. The significant-presence
range query is to find all the values which have significant presence in the range.
The main results of de Berg and Haverkort concern approximate versions of this
problem in an arbitrary-dimensional geometric setting, but they solve the exact
problem on one-dimensional arrays with the threshold fixed during preprocessing
using linear space and O(log n+ k) query time.

Querying for a threshold on frequency in the opposite direction, that is, con-
sidering elements that occur at least once in the query range but less than some
number of times, requires significantly different techniques. Chan et al. [21] solve
range α-minority (α may be chosen at query time) using O(n) space and O(1/α)
query time.

4.2 Queries Related to Frequency Rank

Rangemode (most frequent element) is arguably a more natural and useful query
than range majority; indeed, previous results on range majority are often inspired
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by or connected with work on the more difficult question of range mode. Range
mode and more general frequency rank problems are of great current interest
because of applications in document retrieval: in an array of document identifiers
corresponding to a suffix array, high-frequency elements in a range identify the
documents that contain a given substring many times.

Krizanc et al. [67,68] introduce the range mode problem for arrays, immedi-
ately also generalizing it to paths in trees. They give data structures for arrays
and trees with O(n2−2ε) space and O(nε logn) query time, where ε can be cho-
sen. Setting it to 1/2 gives linear space and O(

√
n logn) time. They also give

a O(n2 log logn/ logn)-space, constant-time data structure, slightly beating the
obvious quadratic-sized table of all possible answers. In the same work they
consider range median; and the connection between median and mode has per-
sisted in later work by others, with results on both problems often appearing
simultaneously.

Petersen [80] improves the O(nε log n)-time result to O(nε) with the same
O(n2−2ε) space; however, the hidden constant in the space requirement goes to
infinity as ε approaches 1/2, so linear space is no longer achievable. He improves
the space bound for constant time to O(n2/ logn); then, with Grabowski [81],
to O(n2 log logn/ log2 n).

Bose et al. [12] consider approximate range mode, where the goal is to return
an element with frequency at least β (chosen at preprocessing) times the fre-
quency of the true mode. Their general data structure requiresO(n/(1−β)) space
and O(log log1/β n) time, but for β ∈ {1/2, 1/3, 1/4} they give data structures
with constant time and O(n log n), O(n log logn), or O(n) space, respectively.
They also give results on an approximate version of the range median.

Chan et al. [19,20] have the best current results on linear-space array range
mode, including O(

√
n/ logn) time with linear space; actually O(

√
n/w) on a

w-sized word RAM, thus O(
√

n/B) in external memory. They give an argument,
based on a reduction from boolean matrix multiplication, suggesting that the

√
n

factor in the time may be difficult or impossible to remove with a linear-space
data structure; and some results on the dynamic one-dimensional version where
updates consist of changing single element values (not insertion or deletion), and
some higher-dimensional geometric range mode queries.

Top-k array range frequency is closely related to top-k document retrieval, the
problem of returning the documents with top k most occurrences of a search sub-
string, or the top k best values of some relevance function related to counting
substring occurrences. Top-k document retrieval reduces to top-k array range
frequency on the suffix array; however, because the queries are related to sub-
strings, they correspond to internal nodes of the suffix tree, and there are only a
linear number of possible query ranges. True top-k array range frequency would
allow a quadratic number of distinct query ranges. This distinction allows the
data structures for top-k document retrieval to achieve better results than would
be possible for top-k array range frequency; and the techniques used, although
related, are not directly applicable to the general array range problems. Hon,
Shah, and Vitter [59], and Hon, Shah, and Thankachan [58] have some interesting
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recent work on the document retrieval problem. On the array version, there is
very little work on the exact problem; recall that merely finding the mode is
a difficult problem, and the top-k version must be at least as hard. Some of
the work of Janardin and Lopez [62] is applicable to special cases of top-k fre-
quency. Gagie et al. [41], as well as giving results on document retrieval, solve
an ε-approximate version, in O((n/ε) log n) space (worst case; they state a more
precise bound in terms of entropy) and O(k log σ log(1/ε)) query time. Chan et
al. [21] use a one-sided version (one end of the query must be index 0, making
the problem much easier) with O(n) space and O(k) query time as part of their
range majority data structure.

Top-k array range frequency naturally suggests a selection version, of finding
the k-th most frequent element in an array range. That is an open problem in the
case of general k. We have described the special case of range mode already. Chan
et al. [21] introduce the range least frequent element problem, giving a linear-time
data structure with O(

√
n) query time and an argument from boolean matrix

multiplication suggesting that, as with mode, a significantly better query time
may not be possible.

5 Conclusion

We have surveyed work in array range queries, an active field of current data
structure research. We have also described a classification scheme for array range
query problems. Not all imaginable categories in our classification are covered
by existing work; the missing ones may suggest open problems of interest.

Acknowledgement. We gratefully acknowledge the suggestions made by an
anonymous reviewer.
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