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Abstract. The list update problem was first studied by McCabe [47]
more than 45 years ago under distributional analysis in the context of
maintaining a sequential file. In 1985, Sleator and Tarjan [55] introduced
the competitive ratio framework for the study of worst case behavior on
list update algorithms. Since then, many deterministic and randomized
online algorithms have been proposed and studied under this framework.
The standard model as originally introduced has a peculiar cost function
for the rearrangement of the list after each search operation. To ad-
dress this, several variants have been introduced, chiefly the MRM model
(Mart́ınez and Roura, [46]; Munro, [49]), the paid exchange model, and
the compression model. Additionally, the list update problem has been
studied under locality of reference assumptions, and several models have
been proposed to capture locality of input sequences. This survey gives
a brief overview of the main list update algorithms, the main alterna-
tive cost models, and the related results for list update with locality of
reference. Open problems and directions for future work are included.

1 Introduction

List update is a fundamental problem in the context of online computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that must be served in an online manner. Let A be an arbitrary
online list update algorithm. To serve a request to an item x, A linearly searches
the list until it finds x. If x is the ith item in the list, A incurs a cost i to access
x. Immediately after this access, A can move x to any position closer to the front
of the list at no extra cost; this is called a free exchange. Also, A can exchange
any two consecutive items at a cost of 1; these are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence. This model is called the standard cost model [7].

The competitive ratio, first introduced formally by Sleator and Tarjan [55], has
served as a practical measure for the study and classification of online algorithms
in general and list update algorithms in particular. An algorithm is said to be
α-competitive (assuming a cost-minimization problem) if the cost of serving
any specific request sequence never exceeds α times the optimal cost (up to
some additive constant) of an offline algorithm which knows the entire request
sequence in advance.
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Notwithstanding its wide applicability, competitive analysis has some draw-
backs. For certain problems, it gives unrealistically pessimistic performance
ratios and fails to distinguish between algorithms that have vastly differing per-
formance in practice. Such anomalies have led to the introduction of many alter-
natives to competitive analysis of online algorithms. For a comprehensive survey
of alternative models, see [31].

As well, a common objection to competitive analysis is that it relies on an
optimal offline algorithm, OPT, as a baseline for comparing online algorithms.
While this may be convenient, it is rather indirect: One could argue that in com-
paring two online algorithms A and B, all the information we should need is the
cost incurred by the algorithms on each request sequence. For example, for some
problems, OPT is too powerful, causing all online algorithms to seem equally
bad. Certain alternative measures allow direct comparison of online algorithms,
for example, the Max-Max Ratio [18], the Relative Worst Order Analysis [23,24],
and the Bijective Analysis [12,13,14]. These measures have been applied mostly
to the paging problem as well as some other online problems.

To the best of our knowledge, relative worst order analysis [33] and bijec-
tive analysis [13,14] are the only alternative measures which have already been
applied to the list update problem. As mentioned above, both these measures di-
rectly compare two online algorithms A and B. For a given sequence, the relative
worst order analysis considers the worst ordering of the sequence for both A and
B and compares their outcome on these orderings. Then, among all sequences,
it considers the one that maximizes the worst case performance. For a precise
definition, see [24]. Besides the list update problem, relative worst order analysis
has been applied to other online problems including bin packing [23,36], paging
[24,25], scheduling [35], and seat reservation [26].

Under bijective analysis, we say A is no worse than B if we can define a
bijection f on the input sequences of the same length, such that the cost of A for
any sequence σ is not more than that of B for f(σ), where f(σ) is the bijected
sequence of σ. Bijective analysis proved successful in proving that LRU and
MTF are the unique optimal algorithms for respectively paging and list update
problems under a locality of reference assumption, while all other measures have
failed to show this empirically observed separation.

The list update problem is closely related to the paging problem. For paging,
there is a small memory (cache) of size k and a large memory of unbounded
size. The input is a sequence of page requests. If a requested page a is already
in the cache the algorithm pays no cost; otherwise, it pays a cost of one unit
to bring a into the cache. On bringing a page to the cache, an algorithm might
need to evict some pages from the cache to make room for the incoming page.
Paging algorithms are usually described by their eviction strategy; for example,
Least-Recently-Used (LRU) evicts the page in the cache that was least recently
used, and First-In-First-Out (FIFO) evicts the page that was first brought to the
cache. Paging can be seen as a type of list update problem with an alternative
cost model [53,55]: Each page is equivalent to an item in the list and the access
cost for the first k items (k being the size of the cash) is 0, while the cost for
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other items is 1. The only difference between the two problems is that when a
requested page is not in the cache, a paging algorithm should bring the page to
the cache. This is optional for a list update algorithm.

1.1 Outline

In this survey, we give an overview of selected results regarding list update in the
standard and alternative cost models. We do not aim to be exhaustive, but rather
give highlights of the field. For other surveys on the list update problem, we
refer the reader to [2,4,48]. In Section 2, we review a selection of existing results
on list update for the standard model. In particular, we consider the classical
deterministic and randomized algorithms for the problem. While list update
algorithms with a better competitive ratio tend to have better performance in
practice, the validity of the cost model has been debated, and a few other models
have been proposed for the problem. In Section 3, we review the main results
related to these alternative cost models which include the MRM cost model,
the paid exchange model, the compression model, and the free exchange model.
In Section 4, we discuss the list update problem with locality of reference and
review the proposed models which measure this locality.

2 Algorithms

List update algorithms were among the first algorithms studied using competitive
analysis. Three well-known deterministic online algorithms are Move-To-Front
(MTF), Transpose, and Frequency-Count (FC). MTF moves the requested item
to the front of the list; whereas Transpose exchanges the requested item with the
item that immediately precedes it. FC maintains an access count for each item
ensuring that the list always contains items in non-increasing order of frequency
count. Timestamp is an efficient list update algorithm introduced by Albers [1]:
After accessing an item x, Timestamp inserts x in front of the first item y that
is before x in the list and was requested at most once since the last request for
x. If there is no such item y, or if this is the first access to x, Timestamp does
not reorganize the list. Sleator and Tarjan showed that MTF is 2-competitive,
while Transpose and FC do not have constant competitive ratios [55]. Karp and
Raghavan proved a lower bound of 2 − 2/(l + 1) (reported in [40]), and Irani
proved thatMTF gives a matching upper bound [40]. It is known that Timestamp
is also optimum under competitive analysis [1].

Besides MTF and Timestamp which have optimum competitive ratio, El-Yaniv
showed that there are infinitely many algorithms which have optimum ratio [34].
In doing so, he introduced a family of algorithms called Move-to-Recent-Item

(MRI): A member of this family has an integer parameter k ≥ 1, and it inserts
an accessed item x just after the last item y in the list which precedes x and is
requested at least k+1 times since the last request to x. If such item y does not
exist, or if this is the first access to x, the algorithm moves x to front of the list.
It is known that any member of MRI family of algorithms is 2-competitive [34].
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Note that when k = 0,MRI is the same asTimestamp, and when k tends to infinity,
it is the same asMTF. Schulz proposed another family of algorithm called Sort-By-

Rank (SBR) [54], which is parameterized by a real value α where 0 ≤ α ≤ 1. The
extreme values of α result in MTF (when α = 0) and Timestamp (when α = 1). It
is known that any member of SBR family is also 2-competitive [54].

Classical list update algorithms have also been studied under relative worst
order analysis [33]. It is known that MTF, Timestamp, and FC perform identically
according to the relative worst order ratio, while Transpose is worse than all these
algorithms. Note that these results are almost aligned with the results under
competitive analysis.

In terms of the optimum offline algorithm for the list update problem, Manasse
et al. presented an offline optimal algorithm which computes the optimal list
ordering at any step in time Θ(n × (l!)2) [45], where n is the length of the
request sequence. This time complexity was improved to Θ(n × 2l(l − 1)!) by
Reingold and Westbrook [51]. Hagerup proposed another offline algorithm which
runs in time O(2l l! f(l) + l × n), where f(l) ≤ l! 3l! [38]. Note that the time
complexity of these algorithms is incomparable to one another. As pointed out
in [38]: “[Hagerup’s algorithm] is probably the best algorithm known for l = 4,
but it loses out rapidly for larger values of l due to the growth of f(l).” Another
algorithm by Pietzrak is reported to run in time Θ(n l3 l!) [48]. It should be
mentioned that Ambühl claims that the offline list update problem is NP-hard
[8], although a full version of the proof remains to be published.

2.1 Paid Exchanges vs Free Exchanges

All the main existing online algorithms for the list update problem are economi-
cal, i.e., they only use free exchanges (look at Table 1). In fact, there is only one
known non-trivial class of algorithms that uses paid exchanges [37]. This raises
the question of how important it is to make use of paid exchanges. In their
seminal paper, Sleator and Tarjan claimed that free exchanges are sufficient to
achieve an optimal solution [55]. The following example by Reingold and West-
brook shows that this is not the case, and that paid exchanges are sometimes
necessary [51].

Consider the initial list configuration (1,2,3) and the request sequence
〈3, 2, 2, 3〉. One can verify that any algorithm relying solely on free exchanges
must incur a cost of at least 9. On the other hand, if we apply two paid exchanges
(at a cost of 2) before any access is made and refashion the list into (2,3,1), the
accesses 〈3, 2, 2, 3〉 can be served on that list at a cost of 2,1,1,2 respectively, for
a total access cost of 6 and an overall cost of 2 + 6 = 8 once we include the cost
of the paid accesses.

Considering the above example, one might ask: what is the approximation
ratio of the best (offline) list update algorithm which is restricted to only use
free exchanges? This question is still open and remains to be answered. We
conjecture this ratio to be strictly larger than 1 and smaller than or equal to
4/3.
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Table 1. A review of online strategies for list update problem

Algorithm Competitive Ratio deterministic Projective Economical

MTF 2 [55,40] � � �
Transpose non-constant [55] � x �

Frequency Count non-constant [55] � � �
Random-MTF (RMTF) 2 [21] x � �
Move-Fraction (MFk) 2k [55] � x �

Timestamp 2 [1] � � �
MRI family 2 [34] � � �
SBR family 2 [54] � � �

Timestamp family (randomized) 1.618 [1] x � �
SPLIT 1.875 [40,42] x x �
BIT 1.75 [52] x � �

Random Reset (RST) 1.732 [52] x � �
COMB 1.60 [6] x � �

Reingold and Westbrook showed that there are optimal offline algorithms
which only make use of paid exchanges [51]. Note that this is the exact opposite
of the situation as claimed by Sleator and Tarjan. It is still not clear how an
online algorithm can make good use of paid exchanges. Almost all existing op-
timal online algorithms only use free exchanges, while there are optimal offline
algorithms which only use paid exchanges. This calls into question the validity
of the standard model (see Section 3.4).

2.2 Randomization

As mentioned earlier, any deterministic list update algorithm has a competitive
ratio of at least 2 − 2/(l + 1). In order to go past this lower bound, a few
randomized algorithms have been proposed. However, it is important to observe
that the competitive ratio of a randomized algorithm is not a worst case measure,
and in that sense, it is closer in nature to the average competitive ratio of a
deterministic algorithm.

Randomized online algorithms are usually compared against an oblivious ad-
versary which has no knowledge of the random bits used by the algorithm. To
be more precise, an oblivious adversary generates a request sequence before the
online algorithm starts serving it, and in doing so, it does not look at the random
bits used by the algorithm. Note that the oblivious adversary knows the algo-
rithm code. Two stronger types of adversaries are adaptive online and adaptive
offline adversaries. An adaptive online adversary generates the tth requests of
an input sequence by looking at the actions of the algorithm for serving the last
t − 1 requests. An adaptive offline adversary is even more powerful and knows
the random bits used by the algorithm, i.e., before giving the input sequence
to the online algorithm, it can observe how the algorithm serves the sequence.
The definition of the competitive ratio of an online algorithm is slightly different
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when compared with different adversaries, and is based on the expectations over
the random choices made by the online algorithm (and adaptive adversaries).
For a precise definition of competitiveness for randomized algorithms, we refer
the reader to [52].

Ben-David et al. proved that if there is a randomized algorithm which is c-
competitive against an adaptive offline adversary, then there exist deterministic
algorithms which are also c-competitive [19]. In this sense, randomization does
not help to improve the competitive ratio of online algorithms against adaptive
offline adversaries. In fact, for the list update problem, the adaptive online and
adaptive offline adversaries are equally powerful, and the lower bound 2−2/(l+1)
for deterministic algorithms extends to adaptive adversaries [50,52]. This implies
that there is no randomized algorithm which achieves a competitive ratio better
than 2−2/(l+1) when compared against adaptive adversaries. So, randomization
can only help in obtaining a better competitive ratio when compared against
an oblivious adversary. In the following review of randomized algorithms, by
the notion of c-competitiveness, we mean c-competitiveness against an oblivious
adversary.

Random-MTF (RMTF) is a simple randomized algorithm for the list update
problem: after accessing an item, RMTF moves it to the front with probability
0.5. The competitive ratio of RMTF is 2 [21], which is no better than the best
deterministic algorithms. The first randomized algorithm that beats the deter-
ministic lower bound was introduced by Irani in 1991 [40]. In this algorithm,
called SPLIT, each item x has a pointer to another item which precedes it in
the list, and after each access to x, the algorithm moves x to either the front
of the list or front of the item that x points to (we omit the details here). This
randomized algorithm has a competitive ratio of 1.875 [40,42]. Reingold et al.
proposed another randomized algorithm named BIT [52]: Before serving the se-
quence, the algorithm assigns a bit b(x) to each item x which is randomly set
to be 0 or 1. At the time of an access to an element x, the content of b(x) is
complemented. Then, if b(x) = 1, the algorithm moves x to the front; otherwise
(when b(x) = 0), it does nothing. Note that BIT uses randomness only in the
initialization phase, and after that it runs deterministically; in this sense the
algorithm is barely random. It is known that BIT has a competitive ratio of 1.75
[52].

BIT is a member of a more generalized family of online algorithms called
COUNTER[52]. A COUNTER algorithm has two parameters: an integer s and a
fixed subset S of {0, 1, ..., s − 1}. The algorithm keeps a counter modulo s for
each item. With each access to an item x, the algorithm decrements the counter
of x and moves it to the front of the list if the new value of the counter is a
member of S. With good assignments of s and S, a COUNTER algorithm can be
better than BIT. For example, with s = 7, S = {0, 2, 4}, the ratio will be 1.735,
which is better than the 1.75 of BIT [52].

It is also known that a random reset policy can improve the ratio even further:
The algorithm Random Reset maintains a counter c(x) for each item x in the
list. The counter is initially set randomly to be a number i between 0 and s
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with probability πi. When the requested item has a counter larger than 1, the
algorithm makes no move and decrements the counter. If the counter is 1, it
moves the item to front and resets the item counter to i < s with probability
πi. Unlike COUNTER algorithms, RANDOM RESET algorithms are not barely
random. The best values of s and D result in an algorithm with a competitive
ratio of

√
3 ≈ 1.732 [52].

The deterministic Timestamp algorithm described earlier is indeed a special
case of a family of randomized algorithms introduced by Albers [1]. A random-
ized Timestamp(p) algorithm has a parameter p. Upon a request to an item,
the algorithm applies the MTF strategy with probability p and (determinis-
tic) Timestamp with probability 1− p. The competitive ratio of Timestamp(p) is
max{2− p, 1+ p(2− p)} which achieves its minimum when p = (3−√

5)/2; this
gives a competitive ratio of 1.618. Albers et al. proposed another hybrid algo-
rithm which randomly chooses between two other algorithms [6]. This algorithm
is called COMB. Upon a request to an item, the algorithm applies BIT strategy
with probability 0.8 and (deterministic) Timestamp with probability 0.2. COMB

has a competitive ratio of 1.6 [6], which is the best competitive ratio among
existing randomized online algorithm for the list update problem.

There has been some research for finding lower bounds for competitive ratio of
randomized list update algorithms against an oblivious adversary [40,52,56]. The
best existing lower bound is 1.5 proven by Teia, assuming the list is sufficiently
large [56]. Under the partial cost model, where an algorithm pays i− 1 units to
access an item in the ith position, Ambühl et al. proved a lower bound of 1.50084
for a randomized online algorithm. Note that there is still a gap between the best
upper and lower bounds [10].

Although randomized algorithms achieve better competitive ratios than de-
terministic algorithms, the validity of such comparisons is under question. As
mentioned earlier, the competitive ratio of a randomized algorithm (against an
oblivious adversary) is defined by the expectation over the random choices made
by the online algorithm. In that sense, the competitive ratio does not capture
the worst-case behavior of randomized algorithms, instead, it captures the ex-
pected cost over random bits for the worst sequence generated by the adversary.
A better comparison would be to compare the worst cost over random bits,
which is captured by adaptive adversaries. As mentioned earlier, randomized
online algorithms cannot achieve improved ratios against adaptive adversaries.
To conclude, the improved competitive ratios of randomized online algorithms
are mostly due to the decreased power of adversary rather than enhanced power
or smarts of online algorithms. There is empirical evidence supporting this, as
in real life sequences (e.g., when there is locality of reference) deterministic al-
gorithms outperform their randomized counterparts [15,13]. Besides randomized
competitive analysis, randomized algorithms have also been studied under the
relative worst order ratio. It is known that under this framework RMTF and BIT

are not comparable [33].
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2.3 Projective Property

Most of the existing algorithms for the list update problem satisfy the projective
property. Intuitively, an algorithm is projective if the relative position of any two
items x, y in the list maintained by the algorithm only depends on their relative
position in the initial configuration and also the requests to x and y in the input
sequence. The algorithms with the projective property are usually studied under
the partial cost model, where an algorithm pays i− 1 units to access an item in
the ith position.

In order to achieve an upper bound for the competitive ratio of an algorithm
A with the projective property, it suffices to compare the cost of A when applied
to sequences of two items with the cost of an optimal algorithm OPT2 for serving
those sequences. Fortunately, the nature of OPT2 is well-understood and there
are efficient optimal offline algorithms for lists of size two [51]. This opens the
door for deriving upper bounds for the competitive ratio of projective algorithms
under the partial cost model, which also extend to the full cost model.

Ambühl et al. showed that COMB is the optimum randomized projective algo-
rithm under competitive analysis [9,11]. Consequently, if one wants to improve
on the randomized competitive ratio 1.6 of COMB, they should introduce a new
algorithm which is not projective.

3 Alternative Models

The validity of the standard cost model for the list update has been debated,
and a few other models have been proposed for this problem. In this section, we
review these models and the main relevant results.

3.1 MRM Model

Mart́ınez and Roura [46], and also Munro [49], independently addressed the
drawbacks of the standard cost model. The result is a model that we refer to as
the MRM model. The standard model is not realistic in some practical settings
such as when the list is represented by an array or linked list. Mart́ınez and
Roura argued that, in a realistic setting, a complete rearrangement of all items
in the list which precede the requested item at position i would require a cost
proportional to i, while this has cost proportional to i2 in the standard cost
model. Munro provided the example of accessing the last item of the list of size
l and then reversing the entire list. The real cost of this operation in an array or
a linear link list should be O(l), while it costs about l2/2 in the standard cost
model. As a consequence, their main objection to the standard model is that it
prevents online algorithms from using their true power. They instead proposed
the MRM model in which the cost of accessing the ith item of the list plus the
cost of reorganizing the first i items is linear in i.

Surprisingly, it turns out that the offline optimum benefits substantially more
from this realistic adjustment than the online algorithms do. Under the MRM
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model, every online algorithm has an amortized cost of Θ(l) per access for some
arbitrary long sequences, while there are optimal algorithms which incur a cost
of Θ(lg l) on every sequence. Hence, all online list update algorithms have a
competitive ratio of Ω(l/ lg l). Among offline algorithms which have an amortized
access cost of Θ(lg l) per request, we might mention Order By Next Request
(OBNR) proposed by Munro [49]: After accessing an item x at position i, OBNR

reorders the elements from position 1 to position p in order of next access (i.e.,
the items which will be requested earlier appear closer to front). Here p is the
first position at or beyond i which is a power of 2, i.e., p = 2�lg i�.

We would like to observe that randomization does not help to improve the
competitive ratio under the MRM model, and the same lower bound holds for
randomized online algorithms, i.e., there is no randomized algorithm with a
constant competitive ratio under the MRM model [46]. One may be tempted
to argue that this is proof that the new model makes the offline optimum too
powerful and hence this power should be removed; however, this is not correct as
in real life online algorithms can rearrange items at the cost indicated. Note that
the ineffectiveness of this power for improving the worst case competitive ratio
does not preclude the possibility that under certain realistic input distributions
(or other similar assumptions on the input) this power might be of use. Mart́ınez
and Roura observed this and posed the question [46]: “[An] important open
question is whether there exist alternative ways to define competitiveness such
that MTF and other good online algorithms for the list update problem would be
competitive, even for the [modified] cost model”. This question was answered by
Angelopoulos et al. who showed that MTF is the unique optimal algorithm under
bijective analysis for input sequences which have locality of reference [13,14].

Unlike the standard model, under which the offline problem is NP-hard,
Golynski and López-Ortiz introduced an offline algorithm which computes the
optimal arrangement in time O(n3) (n is the length of the input sequence) and
serves any input sequence optimally under the MRM model [37]. It remains open
to investigate whether an optimal offline algorithm with a better running time
exists. Kamali et al. did an empirical study of the performance of the list update
algorithms under the MRM model and observed that a context-based algorithm,
initially applied for compression purposes, outperforms other algorithms [43].

3.2 Paid Exchange Model

Reingold et al. considered another variant of the standard model in which the
access cost is similar to the standard model, but the cost for paid exchanges is
scaled up by a value d ≥ 1 [52]. As pointed out in [52], “This is a very natural
extension, because there is no a priori reason to assume that the execution time
of the program that swaps a pair of adjacent elements is the same as that of the
program that does one iteration of the search loop”. In the new model, the cost
involved in a paid exchange is d, while free exchanges are not allowed. We refer
to this model as the d-paid exchange model. Reingold et al. suggested a family
of randomized COUNTER algorithms for this model [52]. Each algorithm in this
family has a parameter s and maintains a modulo s counter for each item.
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The counters are initially set independently and uniformly at random. When
there is a request to an item x the counter for x is decremented. In case the
counter becomes s − 1, x is moved to front. The competitive ratio of these
algorithms improves as d increases. For the best selection of s, the ratio will be
2.75 when d = 1. This decreases to (5 +

√
17)/4 ≈ 2.28 when d tends to infinity.

On the other hand, for any value of d ≥ 1, no deterministic algorithm can be
better than 3-competitive under the d-paid exchange model [52]. The proof is
based on a cruel adversary which requests the last item in the list maintained
by the online algorithm A. If the cost paid by A for paid exchanges is more
than half of the cost it pays for the accesses, the adversary takes the optimal
static approach. (It sorts items in decreasing order of their frequencies in the
sequence and does not move any item.) Otherwise, the adversary maintains a
list which is the same list as the one maintained by the algorithm, but in reverse
order. Hence, the total access cost that the adversary pays is n, compared to the
n× l that the online algorithm pays (l being the size of the list), while the cost
involved in exchanges remain the same in both. A precise analysis gives the lower
bound of 3. This lower bound extends to randomized algorithms when compared
against adaptive adversaries [52]. Westbrook showed that a deterministic version
of the COUNTER family has a competitive ratio of at most (5 +

√
17)/2 ≈ 4.56

(reported in [7]). These algorithms perform similar to randomized COUNTER

algorithms, except that the counters are initially set to be 0. Note that there is
still a gap between the best upper and lower bounds.

Sleator and Tarjan studied the list update problem under the standard model
when no free exchanges are allowed [55]. We refer to this model as the paid
exchange model. Note that this model is equivalent to the d-paid exchange model
with d = 1. Recall that almost all existing algorithms only make use of free
exchanges. Under the paid exchange model, free exchanges can be replaced by
a set of paid exchanges (paying an additional cost). For example, MTF pays
almost twice for each request, since after accessing an element at index i, the
algorithm pays another i − 1 units to move the item to the front using paid
exchanges. In fact, any algorithm with a competitive ratio i under the standard
model has a competitive ratio of at most 2i under the paid exchange model.
This holds because OPT pays the same cost under both the standard and paid
exchange models. In particular, MTF has a competitive ratio of 4 under the paid
exchange model [55]. So, there is a gap between the lower bound 3 and the upper
bound of 4 given by MTF. To close this gap, one might consider the algorithm
MTF-Every-Other-Access which moves a requested item to the front of the list
on every even request for the item. Note that this is equal to (deterministic)
COUNTER algorithm with s = 2. A detailed analysis shows that this algorithm
is 2-competitive under the standard model [21], and 3-competitive under the
paid exchange model (we skip the details in this review). Hence, the algorithm is
optimal under both models, and the lower bound 3 is tight for the paid exchange
model.
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3.3 Compression Model

An important application of the list update problem is in data compression. Such
an application was first reported by Bentley et al. who suggested that an online
list update algorithm can be used as a subroutine for a compression scheme [20].
Consider each character of a text as an item in the list, and the text as the input
sequence. A compression algorithm writes an arbitrary initial configuration in
the compressed file, as well as the access cost of ALG for serving each character
in unary. Hence, the size of the compressed file is equal to the access cost of
the list update algorithm. The initial scheme proposed in [20] used MTF as
its subroutine. Albers and Mitzenmacher [5] used Timestamp and showed that in
some cases it outperformsMTF. Bachrach et al. studied compressions schemes for
a large family of list update algorithms which includes MTF and Timestamp [16].
In order to enhance the performance of the compression schemes, the Burrows-
Wheeler Transform (BWT) can be applied to the input string to increase the
amount of locality [27]. Dorrigiv et al. observed that after applying the BWT,
the schemes which use MTF outperform other schemes in most cases [32].

All the above studies adopt the standard cost model for analysis of compres-
sions schemes. More formally, when an item is accessed in the ith position of
the list, the value of i is written in unary format on the compressed file. In
practice, however, the value of i is written in binary format using Θ(lg i) bits.
Hence the true “cost” of the access is logarithmic in what the standard model
assumes. This was first observed in the literature by Dorrigiv et al. in [32] where
they proposed a new model for the list update problem which is more appropri-
ate for compression purposes. We refer to this model as the compression model.
Under this model, the cost of accessing an item in the ith position is Θ(lg i).
They observed that there is a meaningful difference between the standard model
and compression model: Consider the Move-Fraction (MF) family of list update
algorithms proposed by Sleator and Tarjan [55]. An algorithm in this family
has a parameter k (k ≥ 2) and upon a request to an item in the ith position,
moves that item �i/k	 − 1 positions towards the front. While MFk is known to
be 2k-competitive under the standard model [55], it is not competitive under the
compression model [32]. For example, MF2 is 4-competitive under the standard
model, and Ω(lg l) competitive under the compression model. A precise analysis
of MTF under the compression model shows that it has a competitive ratio of 2
under the compression model, which makes it an optimal algorithm under this
model. We skip the details in this review.

A randomized algorithm can also be applied for text compression if the ran-
dom bits used by the algorithm are included in the compressed file. The number
of random bits does not change the size of the file dramatically, specially for
barely random algorithms like BIT. So it is worthwhile to study these algorithms
under the compression model.

3.4 Free Exchange Model

Recall that all well known existing online algorithms for the list update problem
only use free exchanges, while an optimal offline can restrict itself to using paid
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exchanges only. This suggests that it is more appropriate to consider a model
which does not allow paid exchanges, i.e., after an access to an element an
algorithm can only move the item to somewhere closer to the front. This is a
natural variant of the standard model which we call the free exchange model.
Since most of the existing algorithms for list update only use free exchanges,
they have the same cost under this model. As mentioned earlier, under the
standard model, OPT needs to use paid exchanges. Hence, restricting the model
to only allow free exchanges decreases the power of OPT. However, the lower
bound of 2 (the lower bound for the competitive ratio of any deterministic online
algorithm under the standard model) can be extended to the free exchange
model, i.e., under the free exchange model, any deterministic online algorithm
has a competitive ratio of at least 2. The proof is straightforward and omitted
in this review.

4 Locality of Reference

Another issue in the analysis of online algorithms is that “real-life” sequences
usually exhibit locality of reference. Informally, this property suggests that the
currently requested item is likely to be requested again in the near future. For
the paging problem, several models for capturing locality of reference have been
proposed [22,57,3,17].

Borodin et al. suggested the notion of access graph to model locality for paging
[22]. This model assumes that input sequences are consistent with an access
graph G, which is known to the online algorithm. Each page is associated to a
vertex of G. In a consistent sequence, there is an edge between vertices associated
with two consecutive requests. The quality of algorithms is then compared using
competitive analysis [22,41,28] or any other measure, e.g., the relative worst order
ratio [25]. It is known that an algorithm FAR, which brings the structure of the
access graph into account, is a uniformly competitive algorithm, i.e., it is within a
constant factor of the best attainable competitive ratio for any access graph [41].
In that sense, FAR outperforms both FIFO and LRU, which are k-competitive
for some graph families (e.g., cycles of length k + 1). Among classical paging
algorithms, most results show an advantage for LRU over other algorithms, in
particular FIFO [28,25].

Other models defined for capturing locality of reference in paging include that
of Karlin et al., which assumes the sequences are generated by a Markov chain
[44], and that of Torng, which compares the average length of sequences in a
window containing m different pages [57]. The model considered by Torng is
related to the concept of working set defined by Denning [29,30]. At any time t,
and for a time window of size τ , the working set W (t, τ) is the number of pages
accessed by a process in the time window τ . Denning shows that in practical
scenarios the size of the working set is a concave function of τ . Inspired by
this, Albers et al. defined a model for locality, called concave analysis, in which
the sequences are consistent with a concave function f so that the maximum
number of distinct requests in a window of size τ is at most f(τ) [3]. Measuring
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the performance of online algorithms by the page fault rate (the ratio between
the number of faults and all requests), they showed that LRU is the optimal
algorithm for sequences which are consistent with a concave function, while this
is not the case for FIFO. Later, Angelopoulos et al. showed that under the same
model of locality, LRU is the unique optimal algorithm for paging with respect to
bijective analysis, when the quality is measured by the number of faults (rather
than the fault rate) [12,14].

In practical scenarios, input sequences for the list update problem have a
high degree of locality. This is particularly the case when list update is used
for compression purposes after BWT (see Section 3.3). Hester and Hirschberg
claim [39]: “Move-To-Front performs best when the list has a high degree of
locality”. Angelopoulos et al. formalized this claim by showing that MTF is the
unique optimal solution under bijective analysis for sequences that have locality
of reference with respect to concave analysis [13,14].

Albers and Lauer further studied the problem under locality of reference as-
sumption [4]. They defined a new model which is based on the number of runs
in input sequences: For an input sequence σx,y involving two elements only, a
run is a maximal subsequence of requests to the same item. A run is long if it
contains at least two requests; otherwise, it is short. Consider the items in the
list to be x and y. Consider a long run R of requests to x. Let R′ denote the
next long run which comes after R in the sequence. Note that there might be
short runs between R and R′. If R′ is formed by requests to y, then a long run
change happens. Also, a single extra long run change happens when the first
long run and the first request of the sequence reference the same item. For an
arbitrary sequence σ, define the number of runs (resp. long run changes) to be
the total number of runs (resp. long run changes) of the projected sequences
over all pairs (x, y). Let r(σ) and l(σ) respectively denote the total number of

runs and long run changes in σ. Define λ = l(σ)
r(σ) , i.e., λ represents the fraction

of long run changes among all the runs. Note that we have 0 ≤ λ ≤ 1. The
larger values for λ imply a higher locality of the sequence, e.g., when all runs
are long, we get λ = 1. Also, note that the length of long runs does not affect
the value of λ. Using this notion of locality, the competitive ratio of MTF is at
most 2

1+λ , i.e., for sequences with high locality MTF is 1-competitive. The ratio
of Timestamp does not improve on request sequences satisfying λ-locality, i.e.,
it remains 2-competitive. The same holds for algorithm COMB, i.e., it remains
1.6-competitive. However, for the algorithm BIT, the competitive ratio improves
to min{1.75, 2+λ

1+λ}.

5 Concluding Remarks

The standard model for the list update problem has been found wanting for cer-
tain applications and alternative models have been proposed. These models are
not yet fully-studied, and some aspects of them remain to be settled. In order to
obtain meaningful results for new models, one might require alternative analysis
methods which act as substitutes for competitive analysis. These methods can
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also be applied for comparing deterministic online algorithms with randomized
algorithms. As discussed earlier, such comparison is not valid under competitive
analysis. There are also open questions regarding the list update problem with
locality of reference, e.g., whether the access graph model can be applied for the
list update problem, and in case it can, how one can devise a reasonable online
algorithm which brings the graph structure into account. (Recall that such an
algorithm exists for paging.)
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