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Abstract. This paper is a survey on the problem of storing a string in
compressed format, so that (a) the resulting space is close to the high-
order empirical entropy of the string, which is a lower bound on the
compression achievable with text compressors based on contexts, and
(b) constant-time access is still provided to the string as if it was uncom-
pressed. This is obviously better than decompressing (a large portion
of) the whole string each time a random access to one of its substrings
is needed. A storage scheme that satisfies these requirements can thus
replace the trivial explicit representation of a text in any data structure
that requires random access to it, alleviating the algorithmic designer
from the task of compressing it.

1 Introduction

Massive textual data and text with markup are the formats of choice for doc-
uments, data interchange, document databases, data backup, log analysis, and
configuration files. These forms of unstructured, semi-structured, and replicated
data are gaining increasing popularity. Most of their processing is in the main
memory in computing clusters where space is an important issue. At the same
time, they are often highly compressible when considered as strings.

While most sequential processing methods decompress on the fly and scan the
content of these compressed strings (e.g. using tools such as zcat or bzcat), there
are many situations in which fast random access to some selected contiguous
segments (substrings) of these compressed strings is needed. The decompression
of the whole strings is too expensive because the accessed substrings may be
relatively few and small, and potentially scattered through the memory.

Problem Statement. The above scenario motivates the introduction of a com-
pressed string storage scheme (csss), which stores a string S[1, n] from the al-
phabet [σ] = {1, . . . , σ} in compressed form, while allowing random access to
the string via the operation:

Access(i,m): return the substring S[i, i+m−1] for m ≥ 1 and 1 ≤ i ≤ n−m+1.

The dynamic version of a csss supports also update operations on S, namely,
insertions, deletions or substitutions of symbols in S.
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Model and Complexity. We adopt the standard RAM model with a word
size of Θ(lg n) bits. We also assume that each symbol of the alphabet [σ] is
encoded by �lg σ� bits1 This means that the uncompressed string S requires
n�lg σ� bits to be stored in raw form, and Access to any substring of m symbols
can be optimally (and trivially) performed in Θ(1 + m lg σ/ lgn) time as each
word stores Θ(lg n/ lg σ) symbols.2

When S is highly compressible, which is the case in almost all large-scale texts,
the compressed representation of S can reach its information theoretic minimum,
called entropy. For each c ∈ [σ], let pc = nc/n be its empirical probability of
occurring in S, where nc is the number of occurrences of symbol c in S. The zero-
th order empirical entropy of S is defined as H0(S) = −∑σ

c=1 pc lg pc, where
H0(S) ≤ lg σ. Popular compressors such as those based in Huffman coding and
Arithmetic coding are able to store S using nH0(S) bits plus some lower order
term. Note that this compressed representation is effective when H0(S) < lg σ.
But this is not theoretically the best for a compressible text.

We can exploit the fact that a certain portion of S, say ω, is often followed
by a symbol c in S. In other words, the number of occurrence of ω and ωc
are very close. The conditional probability of finding c after reading ω in S
is therefore very high, potentially much larger than pc. This translates into a
better entropy notion. For any string ω of length k, let ωS be the string of
single symbols following the occurrences of ω in S, taken from left to right,
and |ωS | be the length of ωS. The kth order empirical entropy of S is defined
as Hk(S) = 1

n

∑
ω∈[σ]k |ωS| H0(ωS). Not surprisingly, for any k ≥ 0 we have

Hk(S) ≥ Hk+1(S). The value of nHk(S) bits is a lower bound to the output size
of any compressor that encodes each symbol of S only considering the symbol
itself and the k immediately preceding symbols [24].

Requirements on Time and Space Bounds. Based on the above discussion,
we require that a csss for string S fulfills the following conditions:

– It supports Access optimally in Θ(1 + m lg σ/ lg n) time for decoding any
substring of S of length m.

– It takes n (Hk(S) + ρ(k, σ, n)) bits, where ρ(k, σ, n) is the redundancy per
symbol, or any additional space required to support random access.

The rationale for the above two conditions is that a csss for S can replace
S itself for any RAM algorithm A having S as input. This replacement does
not penalize the asymptotic time complexity of A, and its space complexity is
not worsened when Hk(S) + ρ(k, σ, n) ≤ �lg σ�. For highly compressible S, it is
actually Hk(S) + ρ(k, σ, n) = o(lg σ), thus showing the importance of using a
csss for massive texts.

The redundancy ρ(k, σ, n) is a quantity of significant fundamental interest,
particularly for lower bounds (see [28] and references therein), and it is critical

1 The logarithms are to the base 2 unless otherwise specified, and σ ≤ n is customarily
taken to be a (usually slowly-growing) function of n.

2 Several authors prefer to use lgσ n in place of lgn/ lg σ.
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in practice. We anticipate that the best redundancy is currently ρ(k, σ, n) =

O
(

lg σ
lgn (k lg σ + lg lg n)

)
, which holds simultaneously for all 0 ≤ k ≤ lg n/ lgσ.

As k increases, the Hk term decreases, but ρ(k, σ, n) increases. However, as long
as k = o(lg n/ lgσ), we have that the term nρ(k, σ, n) = o(n lg σ) is asymp-
totically smaller than the space required by S in raw form. Interestingly, no
non-trivial lower bounds on the redundancy ρ(k, σ, n) are known. The rest of
the paper describes the state of the art on this topic.

Impact on Succinct Data Structures. csss is a natural fit for systematic
data structures for texts, also known as succinct indexes for texts, where the
indexing data structure is separated from the input string S. This concept was
born for proving lower bounds [7,13,14], and rapidly extended to to analyze the
upper bounds [33,1] on the space required to encode some data structures. Non-
systematic data structures instead encode both S and the index data structure
together, with no clear separation between the two objects. Some of the advan-
tages of systematic data structures are pointed out in [1] and rephrased here in
terms of csss.

(1) A systematic data structure does not make assumptions on S, which can
therefore be replaced by a csss for S thus providing high-order entropy bounds,
namely, n (Hk(S) + ρ(k, σ, n)) bits plus the space required by the succinct index.
Note that a non-systematic data structure requires instead S to be stored in a
specific format.

(2) The same csss for S can be shared among several systematic data struc-
tures. Here, we can build several succinct indexes on the same csss for S without
introducing replication. Note that multiple non-systematic data structures must
instead replicate S (or its equivalent format) internally.

These features can be made effective by showing how to obtain high-order
entropy bounds with static systematic data structures on texts.

Lemma 1 (Barbay et al. [1], Sadakane and Grossi [33]). Given a csss
for a string S of length n over the alphabet [σ], let n (Hk(S) + ρ(k, σ, n)) be
its number of required bits. Let I1, I2, . . . , Id be static systematic data structures
defined on the same S, where each Ij uses n τj(σ, n) bits, without accounting
for the storage of S. It is possible to build a static succinct data structure G
supporting all the functionalities of I1, I2, . . . , Id in their same asymptotic time
costs, namely, if a functionality takes t(n) time in some Ij , it now still takes
O(t(n)) time in G. The overall number of bits for G is

n

⎛

⎝Hk(S) + ρ(k, σ, n) +
d∑

j=1

τj(σ, n)

⎞

⎠ .

The global succinct data structure G in Lemma 1 strips the representation of
S from each Ij , and uses a shared csss for S. When the algorithms for the
functionalities of I1, I2, . . . , Id need access to S, simply G calls Access on the
csss for S. The functionalities have only a constant slow-down factor in their
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time complexities, while the space occupancy greatly reduces from representing d
times the same S in some (unknown) format versus a single and optimal entropy-
encoded representation of S by the csss. In many applications it is often the
case that ρ(k, σ, n) +

∑d
j=1 τj(σ, n) = o(lg σ), making the simple idea behind

Lemma 1 very useful.

Paper Organization. Section 2 describes the basic scheme that is shared by the
static csss presented in Section 3 and the dynamic csss presented in Section 4.
Finally, some further discussion and conclusions are given in Section 5.

2 Basic Scheme

As widely used in practice, the basic approach employs a compressor C of choice.
It partitions S into disjoint substrings called blocks B1, B2, . . . , Br, and stores S
as the sequence Z = C(B1) · C(B2) · · ·C(Br) obtained by concatenating the
output of C on the blocks. To perform Access(i,m), it has to find the index j
of the block Bj of S that contains position i, and decode C(Bj), C(Bj+1), . . . ,
until it gets the wanted m symbols. For the sake of discussion, suppose that all
blocks in S have the same size w, so that finding j is simple arithmetics, namely,
j − 1 = �(i − 1)/w�.

When considering the above approach in terms of the requirements on time
and space of a csss described in Section 1, we run into a trade-off that can work
in some practical cases but it surely causes some theoretical drawbacks. One
one hand, if w is much larger than m, then Access has no guarantee to take
Θ(1 + m lg σ/ lgn) time. On the other hand, if w is too small, then Z has not
guarantee to use n (Hk(S) + ρ(k, σ, n)) bits of space; for instance, some repeti-
tions inside S of the form xx for some substring x, could be split among two or
more blocks Bj , Bj+1, . . . , Bj+� such that the size of C(Bj)·C(Bj+1) · · ·C(Bj+�)
is significantly larger than the output size of compressing their concatenation
C(Bj ·Bj+1 · · ·Bj+�).

Nevertheless this basic scheme is still good if we replace the black-box com-
pressor C with a pool of suitable succinct data structures. Summing up, we need
the following ingredients to implement the basic scheme in a better way, where
points 1–2 indicate how to partition S into blocks, and points 3–5 indicate how
to encode the sequence of blocks of S (see Fig. 1).

1. Partition into blocks: Strategy to partition S into blocks B1, B2, . . . , Br,
which can have fixed size w or variable sizes.

2. Identify the target block: Succinct data structure(s) or rule to find in O(1)
time the index j of the block Bj containing position i, as required by the
implementation of Access(i,m).

3. Encode a block: Strategy to assign an encoding E(Bj) to each block Bj , for
1 ≤ j ≤ r.

4. Retrieve a block from its encoding : Succinct data structure(s) to store, and
retrieve in O(1) time, each block Bj from its encoding E(Bj), for 1 ≤ j ≤ r.
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Fig. 1. An illustration of points 1–5 in the basic scheme

5. Find the encoding of the target block: Succinct data structure(s) to store
Z = E(B1) ·E(B2) · · ·E(Br), the concatenation the encodings of the blocks,
and access each E(Bj) in O(1) time.

Using the scheme of points 1–5, we can implement Access(i,m) as follows. We
find the index j by points 1–2 and retrieve E(Bj) by point 5. We return Bj by
points 3–4. We repeat this for Bj+1, Bj+2, . . . , until we decode the wanted m
symbols. As we will see, this implementation requires O(1) time.

In the following we describe, in chronological order, some approaches that fol-
low the above scheme using high-order entropy bounds for the space complexity,
employing some basic succinct representation of bitvectors and binary trees that
are surveyed in other chapters of this book ([30].). For example, point 3 is easy
arithmetics when the blocks have the same size.

When the blocks are of variable sizes, a fully indexable dictionary (FID) [29]
can be employed to mark with a 1 the position in S at the beginning of each block
and with 0s the rest of the positions in S. The resulting bitvector X contains r
1s and n−r 0s, and can be stored in the FID using

⌈
lg
(
n
r

)⌉
+O(n lg lgn/ lgn) =

O(r lg(n/r)+n lg lg n/ lgn) bits. We remark that this space bound is often negligi-
ble when compared to that taken by the other succinct data structures employed
in the csss.

We recall that a FID supports two basic constant-time operations: Rankb(i)
returns the number of occurrences of bit b ∈ {0, 1} in the first i positions in
X ; Selectb(i) returns the position of the ith occurrence of bit b in X . We can
thus locate the block index j, corresponding to the block Bj in S that contains
position i as mentioned in point 2, by computing j = Rank1(i).
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3 Static Schemes

We describe the family of csss where only Access operation is supported on
input string S, which does not change during its lifetime. The first scheme has
variable-size blocks in the partition of S (point 1 in Section 2) but produces
fixed-size encodings for them (point 3); the last two schemes have fixed-size
blocks for S but produce variable-size encodings for them. Table 1 summarizes
some distinguishing features for the three static schemes discussed in this section.

Table 1. Summary of discussed results on static csss

redundancy ρ(k, σ, n) context size block size ref.

O( lg σ
lgn

((k + 1) lg σ + lg lg n)) any k variable §3.1
O( lg σ

lgn
(k lg σ + lg lg n)) fixed k < (1− ε) lg n/ lg σ (1/2) lg n/ lg σ §3.2

O( lg σ
lgn

(k lg σ + lg lg n)) k = o(lgn/ lg σ) (1/2) lg n/ lg σ §3.3

The three schemes share the same optimal time cost of Θ(1 + m lg σ/ lgn)
for Access, and O(n lg σ) construction time. Space is n (Hk(S) + ρ(k, σ, n)) bits,
where the redundancy ρ(k, σ, n) per symbol is reported in the table and is slightly
higher (a term (k + 1) instead of k) for the first scheme. The first scheme is
oblivious with respect to the value of k (which is not part of the input but appears
only in the analysis) and allows for potentially long blocks, even though the range
of values for k = Ω(lg n/ lg σ) gives a too large redundancy ρ(k, σ, n) = Ω(lg σ).
The second method requires a specific choice of k < (1 − ε) lg n/ lgσ, for any
0 < ε < 1, and all blocks must contain (1/2) lgn/ lg σ symbols. Interestingly,
it also supports append operations to add symbols at the end of S in constant
amortized time per symbol. The third scheme works for all k = o(lg n/ lg σ)
simultaneously, and all blocks must contain (1/2) lgn/ lg σ symbols.

3.1 LZ78 Parsing and Encoding

Sadakane and Grossi [33] introduced the notion here called csss, meeting the
time and space requirements described in Section 1 with redundancy ρ(k, σ, n) =
O( lg σ

lgn ((k + 1) lg σ + lg lg n)) simultaneously for any k.3 We give a simplified

description of the ideas in [34], following the basic scheme of Section 2.
As for point 1, the partitioning of the input string S produces r blocks of

variable sizes using first the Ziv-Lempel compression algorithm [38], also known
as LZ78 parsing, and then a greedy post-processing.

The LZ78 parsing works as follows. First we initialize a trie T as empty, the
current position p = 1 in S. Then, we parse S into blocks from left to right,

3 The authors of [15] pointed out a mistake in the smaller redundancy originally re-
ported in [34] that we fix here in Lemma 2.
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finding the longest string t ∈ T that appears as a prefix of S[p, n] (where t is the
empty string when T is empty). Thus we obtain the block S[p, p+|t|] ≡ t·S[p+|t|]
to be inserted into T . We set p = p+|t|+1, and repeat the parsing to discover the
next block. The resulting trie T is called an LZ-trie, and r′ is the final number
of blocks generated by algorithm LZ78 (and thus the number of nodes in T ).
We use Lemma 2.3 from [20] for bounding r′ in terms of the kth-order empirical
entropy Hk(S) of the string S.

Lemma 2 (Kosaraju and Manzini [20]). Let r′ be the number of blocks
produced by any parsing of the string S, such that each block appears at most M
times. For any k > 0,

r′ lg r′ ≤ nHk(S) + r′ lg
n

r′
+ r′ lgM +Θ(kr′ lg σ)

The greedy post-processing of the LZ78 parsing with window size w works as
follows, for a parameter4 w = 1

2 lg n/ lgσ. We define a block short if it contains
less than w symbols, and long otherwise. We perform a left-to-right scan of the
r′ blocks found by the LZ78 parsing, tagging each block as either short or long.
However, during this scan, we cluster together maximal runs of consecutive short
blocks, so that the resulting substring, called dense block, is not longer than w
symbols: a dense block replaces the short blocks that it contains. Moreover, we
impose that any two consecutive dense regions are always separated by a (short
or long) block.

This greedy post-processing thus partitions S into r blocks, where r ≤ r′,
satisfying the following conditions.

– The blocks are pairwise disjoint and tagged as either long, short, or dense:
by construction, no two consecutive short blocks or dense blocks can exist.

– Any two consecutive blocks contains more than w symbols in total.

As a result, any substring of S of length m overlaps with O(1 +m/w) = O(1 +
m lg σ/ lgn) blocks. Retrieving each such block in constant time provides the
claimed bound for Access. We thus discuss how to encode the sequence of blocks
so that each of them can be retrieved in constant time (see points 3–5 in the
basic scheme of Section 2, as we use a FID for point 2 as already discussed).

We consider the r blocks as a set of r strings, which are stored in a fast
compressed trie F . Note that we do not specify the details on how to store F
since there are many ways described in the chapter of this book dealing with
succinct trees [30]. Conceptually F is a refinement of the LZ-trie produced during
the LZ78 parsing, augmented with the dense blocks. However, since the dense
blocks are of length at most w, there cannot be more than σw = O(

√
n) distinct

ones, so they increment the size of the LZ-trie by o(n) bits when obtaining F .
As a result, for each block Bj of the partition of S we get a unique identifier in

[r] using F and vice versa. This identifier is the encoding E[Bj ]. The theoretical
implementation of F so that given E[Bj ], we can retrieve Bj in constant time

4 In practical situations it is more convenient to fix a larger value of w.
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is quite complex (see [34]) but practical non-constant implementations can be
adapted to this goal using string dictionaries (e.g. [4,27]).

Using the above identifiers, each block Bj is encoded by the b = �lg r� bits
of E(Bj), and the sequence Z = E(B1) ·E(B2) · · ·E(Br) is the encoding of the
sequence of blocks.5 In order to retrieve the jth block Bj , we access the jth b-bit
integer E(Bj) in Z by simple arithmetics, and use this integer as the identifier
for the wanted block. This is given to F as an input query, and the outcome is
Bj as explained above.

When computing the space bound, we need O(r lg(n/r) + n lg lg n/ lgn) bits
for the FID in point 2, O(n lg σ lg lgn/ lgn) bits for storing F in a succinct way
(point 4) given the choice of w, and r�lg r� ≤ r lg r + r bits for Z (point 5).
Observing that r ≤ r′, we can apply Lemma 2 on r, and using the fact that
r ≤ 2n/w and M ≤ σ by construction, we can thus bound the space of Z as

r lg r + r ≤ nHk(S) +
2n

w
(1 + lgw) +

n

w
lg σ +Θ

(
nk lg σ

w

)

The total redundancy ρ(k, σ, n) is therefore

O

(
lg lg n

lgn/ lg σ
+

1

w
lgw +

1

w
lg σ +

k lg σ

w

)

= O

(
lg σ

lg n
((k + 1) lg σ + lg lg n)

)

using the choice w = 1
2 lg n/ lgσ.

Theorem 1 (Sadakane and Grossi [34]). A csss using LZ78 parsing and
encoding can be implemented with redundancy of ρ(k, σ, n) = O( lg σ

lg n ((k+1) lg σ+

lg lg n)) simultaneously for any k.

Note that this csss actually works with any parsing (not only LZ78) that guar-
antees a high-order entropy bound as stated in Lemma 2. The choice of LZ78 is
motivated by the property that the space requirement of the LZ-trie dictionary
(and so of the dictionary F ) can be shown to be a lower-order term.

3.2 Statistical Encoding

González and Navarro [15] observed that an alternative and simpler csss can
be obtained by using a semi-static kth-order modeling plus statistical encoding,
yielding a redundancy of ρ(k, σ, n) = O( lg σ

lgn (k lg σ + lg lg n)) for any fixed k <

(1− ε) lg n/ lg σ and any constant 0 < ε < 1.
A semi-static kth-order modeler applied to a string S produces the empirical

conditional probability of finding a symbol c after reading substring ω in S (see
Model and complexity in Section 1). Formally, q1, q2, . . . , qn are the empirical
probabilities such that qi = nc

S/|ωS| for k + 1 ≤ i ≤ n, where ωS is the string of
single symbols following all the occurrences of substring ω ≡ S[i− k, i− 1] in S,

5 A smarter encoding from [8] can be employed but the final redundancy does not
change asymptotically.
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and nc
S is the number of occurrence of symbol c ≡ S[i] in ωs. As a result, it is

noted in [15] that
∑n

i=k+1 −qi lg qi = nHk(S). Hence, any statistical encoder E,
such as Arithmetic coding [37], that encodes the ith symbol of S with −qi lg qi
bits, has output size |E(S)| = nHk(S) + O(k lg n) bits where the additive term
is an upper bound for the first k symbols of S.

The above considerations are exploited in [15], as described below by following
our basic scheme of Section 2. The input string S is partitioned in blocks of fixed
size w = 1

2 lg n/ lg σ. Thus there are r = �n/w� blocks and any block can be
located in constant time by simple arithmetics (points 1–2). We therefore discuss
how to encode the sequence of blocks so that each of them can be retrieved in
constant time (points 3–5).

As for point 3, the semi-static statistical encoder E is applied to the individual
blocks using the statistics of their immediately previous k symbols. Namely, for
any given block Bj of S, j > 1, let κj denote the kth-order context of Bj, defined
as the last k symbols of Bj−1 preceding Bj in S. Then, the encoding E(Bj) is
obtained using the conditional probabilities of the semi-static kth-order modeler
applied to the concatenated sequence κj · Bj . It is worth noting that only the
symbols of Bj are encoded, and decoding E(Bj) needs the knowledge of its
context κj .

As for point 4, we store the mapping between each block Bj and its encoding
E(Bj), for 1 ≤ j ≤ r, using a two-dimensional table T of w-long strings, such
that T [κj, E(Bj)] = Bj , for 1 ≤ j ≤ r. (Here, κ1 is the empty string.)

It remains to describe the succinct data structures for storing and accessing
the sequence Z of the statistical encodings of the blocks (point 5).

– Define Zj = E(Bj) if the number of bits |E(Bj)| ≤ (1/2) lgn, or Zj = Bj

otherwise, for 1 ≤ j ≤ r: store Z = Z1 · Z2 · · ·Zr along with a two-level
index [25] to record the lengths |E(Bj)| and mark the starting position of
each Zj inside Z.

– Store a FID D such that D[j] = 1 if and only if Zj = Bj , for 1 ≤ j ≤ r. This
marks the blocks Bj in S that are stored verbatim because their statistical
encodings E(Bj) are too large.

– Store the concatenation of contexts K = κ1 · κ2 · · ·κr as a long string.

By construction, any substring of S of length m overlaps with O(1 +m/w) =
O(1 +m lg σ/ lgn) blocks. Retrieving each such block Bj in constant time pro-
vides the claimed bound for Access. To this end, we retrieve Zj from Z using its
two-level index. We check whether D[j] = 1 and, if so, we merely return Zj as
Zj = Bj . Otherwise, Zj = E(Bj): we extract κj from K by simple arithmetics,
and return T [κj, E(Bj)] as Bj.

The space requirement of this csss can be computed as follows. The two-
dimensional table T has size upper bounded by σk × 2(1/2) lgn × (1/2) lgn =
O(σk

√
n lgn), which is O(n1−ε) when k < (1/2 − ε) lg n/ lgσ. Playing with

the multiplicative constant in the choice of w, we can allow for k < (1 −
ε) lgn/ lg σ. The storage of D requires O(r) = O(n lg σ/ lgn) bits and that of
K takes O(nk lg2 σ/ lgn) bits. Finally, using Arithmetic coding as encoder E,
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the storage of Z takes nHk(S)+O(k lgn+r) bits, plus O(n lg σ lg lg n/ lgn) bits
for its two-level index.

Theorem 2 (González and Navarro [15]). A csss using semi-static kth-
order modeling plus statistical encoding can be implemented with redundancy of
ρ(k, σ, n) = O( lg σ

lgn (k lg σ + lg lg n)) for any fixed k < (1 − ε) lg n/ lgσ and any
constant 0 < ε < 1.

Interestingly, this csss can also support append operations, where the input
string S is extended as S · c1 · · · c2 · · · cg by appending symbols c1, c2, . . . , cg.
Using the logarithmic method and the global rebuilding technique to dynamize
static data structures, the amortized cost is O(1) per appended symbol.

3.3 Frequency Encoding

Ferragina and Venturini [9] coined the term csss and described a simplification
that avoids the use of LZ-based or statistical compressors, still guaranteeing a
redundancy of ρ(k, σ, n) = O( lg σ

lgn (k lg σ + lg lg n)) simultaneously for all k =

o(lg n/ lg σ).
We follow our basic scheme of Section 2 to describe this approach. As done

in Section 3.2, the input string S is partitioned into blocks of fixed size w =
1
2 lgn/ lg σ. Thus there are r = �n/w� blocks and each block can be located in
constant time by simple arithmetics (points 1–2).

The main idea is how to encode the blocks (points 3–5). We observe that while
there are r = n/w blocks, the number of distinct blocks is at most σw =

√
n.

These distinct blocks are sorted in non-increasing order of frequency, namely,
according to the number of times each distinct block appears in the partition of
S (hence, the total sum of frequencies is r). The distinct blocks thus sorted are
then assigned codewords in lexicographic order, starting form the empty string,
ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , so that less frequent blocks cannot get
assigned shorter codewords than more frequent blocks. This is a crucial fact,
as we will see. For each block Bj of S, then its encoding E(Bj) is simply the
codeword assigned to Bj (as a distinct block) in this way. This completes point 3.

As for point 4, we store the mapping between each block Bj and its encoding
E(Bj), for 1 ≤ j ≤ r, using a lookup table T such that T [E(Bj)] = Bj , for
1 ≤ j ≤ r.

Finally, we store Z = E(B1) · E(B2) · · ·E(Br), the concatenation the encod-
ings of the blocks, along with a two-level index [25] to mark the starting position
of each E(Bj) inside Z (point 5).

By construction, any substring of S of length m overlaps with O(1+m/w) =
O(1 +m lg σ/ lgn) blocks. Retrieving each such block Bj in constant time pro-
vides the claimed time bound for Access: retrieve E(Bj) from Z using its two-
level index and return T [E(Bj)] as Bj .

The space requirement of this csss can be computed as follows. Table T
requires O(

√
n lgn) bits. The two-level index for Z requires O(n lg σ lg lgn

lg n ) bits.
It is interesting to analyze the space requirement for Z as argued next. Let Sw
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be the sequence of blocks as they appear in S. A relevant property is that the
0th-order entropy encoding of Sw gives the kth-order entropy encoding of S.

Lemma 3 (Ferragina and Venturini [9]). For any 1 ≤ w ≤ n, it holds
rH0(Sw) ≤ nHk(S) +O(rk lg σ), simultaneously over all k ≤ w.

The codewords E(Bj) assigned to the blocks in Sw attain the 0th-order entropy
according to the golden rule of data compression: assign shorter codewords to
more frequent symbols. The crucial property is therefore that the

∑r
j=1 |E(Bj)|

bits in Z cannot be larger than the 0th-order encoding of Sw.

Theorem 3 (Ferragina and Venturini [9]). A csss using frequency encod-
ing can be implemented with redundancy of ρ(k, σ, n) = O( lg σ

lgn (k lg σ + lg lgn))

simultaneously for all k = o(lg n/ lg σ).

Fredriksson and Nikitin [12] employed a similar idea of frequency encoding using
other forms of codewords but their redundancy is ρ(k, σ, n) = 1 + o(Hk(S) + 1),
which can be larger than O(n lg σ

lgn (k lg σ + lg lg n)). Among others, they adopted

the Fibonacci codes [10]: any positive integer x has a unique representation as
a sum Fibonacci numbers, such that no two of them are consecutive. Thus the
code for x uses lgφ n + 1 bits, where φ is the golden ratio: since the bit in the
last position is 1, another 1 can be appended so that this is the only position
where two consecutive 1s appear. This fact is useful to locate each E(Bj) inside
Z by looking at their unique pattern of consecutive pair of 1s.

4 Dynamic Schemes

The dynamic version of csss is responsive to the changes of the input string S
without recomputing from scratch the entire scheme after each update to S. The
goal is to guarantee optimal time for Access and still high-order entropy bounds
for the space in this dynamic setting. Jansson et al. [19] define the following two
variants of dynamic csss.

The compressed random access memory (CRAM ) supports Access and

Replace(i, c): replace S[i] by a symbol c ∈ [σ].

The extended compressed random access memory (ECRAM ) supports Access
and

Insert(i, c): insert the symbol c into S between positions i− 1 (if it exists) and i,
and make S one symbol longer.

Delete(i): delete S[i] and make S one symbol shorter.

Table 2 reports the bounds achieved by the known dynamic schemes for csss.
The space bounds are n (Hk(S) + ρ(k, σ, n)) bits and, for brevity, we use the
notation ρstat in the table as a shorthand for the redundancy bound seen in
Section 3.3 for the the static case, namely, O( lg σ

lg n (k lg σ+lg lg n)) simultaneously
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Table 2. Summary of discussed results on dynamic csss

Access(i,m) Replace redundancy ρ(k, σ, n) ref.

Θ(1 +m lg σ/ lg n) O
(
min

{
lgn
lg σ

, (k+1) lg n
lg lgn

})
O(ρstat) §4.1

Θ(1 +m lg σ/ lg n) O(1/ε) O(ε(k + 1) lg σ + ρstat) §4.1
Θ(1 +m lg σ/ lg n) O(1) O(ρstat) §4.2

Access(i,m) Insert/Delete redundancy ρ(k, σ, n) ref.

Θ(lg n/ lg lg n+m lg σ/ lg n) Θ(lg n/ lg lg n) O(k lg lgn/ lgn+ ρstat) §4.1
Θ(lg n/ lg lg n+m lg σ/ lg n) Θ(lg n/ lg lg n) O(lg σ lg lgn/ lg n) §4.2

for all k = o(lg n/ lg σ). The reason is that these dynamic schemes use the
frequency coding framework presented in Section 3.3 as a baseline.

The top part of Table 2 provides the bounds for the CRAM, and it shows
that the CRAM can be implemented with the same optimal Access time and
high-order entropy bound of the static csss seen in Section 3.

The bottom part of Table 2 provides the bounds for the extended CRAM,
noting that Replace can be theoretically simulated by Delete followed by Insert.
It is observed in [19] that the Access and Insert/Delete bounds are optimal as
the extended CRAM solves the list representation problem, for which there is a
cell probe lower bound of Ω(lg n/ lg lg n) [11]. There is no dependency on ρstat
and k in the redundancy in the last line because Access has a larger complexity
than that in the static case. Finally, note that the scheme in Section 3.2 supports
append operations in constant amortized time.

4.1 Managing CRAM and Extended CRAM

Jansson et al. [19] started out from the frequency coding of Ferragina and Ven-
turini [9] (Section 3.3) as a baseline to design a dynamic version of their csss.
We review the basic scheme of Section 2 to highlight the difficulties of this dy-
namization process.

First of all, the partition of the input string S into fixed-size blocks (points 1–
2) can be handled with some standard techniques for dynamic data structures.
Since the block size is w = (1/2) lgn/ lgσ, when n grows or shrinks by a constant
factor, we rebuilt all the storage scheme using an updated value of w. This has to
be incrementally deamortized to provide the worst-case bounds discussed before.

The real difficulty comes with the frequency coding of blocks (points 3–5). The
golden rule behind frequency coding is that shorter codewords are assigned to
more frequent blocks. When a single symbol is changed in a block, the frequency
of the old block should be decreased by one and that of the new block should
be either initialized to one (if this is the first time that the block appears) or
increased by one. However, it is inefficient to update the lookup table T and
recode the entire Z described in Section 3.3, as it could take nearly O(r) time.
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The lifetime of the csss is therefore divided into phases, where at the end
of each phase there is a reconstruction (and deamortization applies too). Two
fundamental ideas are employed during a phase.

The first idea is to take a snapshot F0 of the frequencies of blocks at the
beginning of the phase, and maintain an updated version F1 of the frequencies
during the phase. However, F0 is the one employed to encode the blocks during
the phase, while F1 becomes the new F0 only in the next phase. This approach
makes sense because the high-order empirical entropy of a string does not change
too much after a small change to the string.

Lemma 4 (Jansson et al. [19]). For any two strings T and T ′ that differ in
a single symbol from [σ], let t = max{|T |, |T ′|}. It holds t |Hk(T ) − Hk(T

′)| =
O((k + 1)(lg t+ lg σ)).

We can therefore use F0 and delay the update of the encodings of the blocks,
changing only part of the data structures. However, after some updates, we have
to face the costly process of re-encoding. This requires changing Z heavily, which
is expensive for several reasons. One of them is that the encoding of the blocks
is of variable size, and so we cannot simply maintain Z as the concatenation of
the encodings.

Consequently, the second idea is to use a memory-manager data structure to
store a set of r variable-length codewords that represent the content of Z. The
codewords can change length, up to lg r bits, while r cannot change during the
phase. We want to access the ith codeword and reallocate it when it changes, in
constant time, while keeping the wasted space small.

Lemma 5 (Jansson et al. [19]). Let z be the total number of bits in the
encoding of Z. Its r codewords can be stored using a memory manager that
occupies z+O(lg4 z+r lg lg z) bits while supporting the access and the reallocation
operations in constant time each.

Other data structures and invariants are described in [19] to support Access
and Replace, while more sophisticated solutions are needed to support Insert and
Delete. The CRAM has also a practical implementation [32].

Theorem 4 (Jansson et al. [19]). The CRAM can be implemented so that Ac-
cess takes optimal Θ(1 +m lg σ/ lgn) time and Replace takes O(1/ε) time for any
ε > 0, with a redundancy of ρ(k, σ, n) = O(ε(k+1) lg σ+ lg σ

lgn (k lg σ+lg lgn)) simul-

taneously for all k = o(lg n/ lg σ). The redundancy can be reduced toO( lg σ
lgn (k lg σ+

lg lg n)) by increasing the cost of Replace to O
(
min

{
lgn
lg σ ,

(k+1) lgn
lg lgn

})
time.

Theorem 5 (Jansson et al. [19]). The extended CRAMcan be implemented so
that Access takes optimal Θ(lg n/ lg lg n+m lg σ/ lgn) time, and Insert and Delete
take Θ(lg n/ lg lg n) time, with a redundancy of ρ(k, σ, n) = O(k lg lgn/ lgn+ lg σ

lgn

(k lg σ + lg lg n)) simultaneously for all k = o(lg n/ lg σ).
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4.2 Multiple Encodings of Blocks

Grossi et al. [17] conceptually represented S as a sequence Sw of r macro-symbols
over the macro-alphabet [σw], where each macro-symbol is a block of S. They
exploited the property in Lemma 3 stating that the 0th-order entropy encoding
of Sw gives the kth-order entropy encoding of S.

This implies that if we can maintain a dynamic compressed representation of
Sw in rH0(Sw)+O(r lg lg n) bits, we obtain a dynamic compressed representation
of S in nHk(S) + O(n lg σ

lg n (k lg σ + lg lg n)) bits as r = n/w. Hence, the plan

for the frequency coding of blocks (points 3–5) is to use Lemma 5 with z =
rH0(Sw) +O(r) to store the codewords in Z.

We can therefore focus on dynamically maintaining the encoding of the macro-
symbols in [σw] to obtain a 0th-order entropy encoding of Sw. We divide the
whole set of assigned codewords into O(lg r) classes Cj . In the ideal static sit-
uation, each macro-symbol y of frequency fy is assigned a codeword from the
class Cj such that r

2j < fy ≤ r
2j+1 . Recalling that

∑
y∈[σw] fy = r, the 0th-order

entropy plus a lower-order term is achieved for Sw when the codeword for y is
lg(r/fy) = j +O(1) bits long. This implies that |Cj | ≤ 2j+O(1). In the dynamic
setting, we need flexibility and so we assign more than one class to y, under the
requirement that y has at most one codeword assigned from each such class.

When a symbol of S is replaced, the frequency of a macro-symbol can change.
Thus, macro-symbols may move to different classes in the lifetime of the data
structure. Once a macro-symbol enters a class for the first time, it is assigned
an available codeword e of that class; the next time it will re-enter that class, it
will reuse the same codeword e. Since the number of available codewords in any
class is limited, it may happen that the last available codeword is consumed in
this way (i.e., |Cj | = 2j+O(1)). If so, it is shown in [17] that Ω(r) Replaces have
been done, and so we can amortized the cost (which can be deamortized with
an incremental rebuilding technique).

This mechanism causes no significant waste of bits in the 0th-order empirical
entropy of Sw, since the extra space is a lower-order term: the waste due to
multiple codewords (from distinct classes) for the same y is just O(fy) bits.

Lemma 6 (Grossi et al. [17]). For any macro-symbol y ∈ [σw ], the overall
space required by the codewords of y in the encoding of Sw is fy lg

r
fy

+ O(fy)

bits.

The implication of Lemma 6 is that the encoding of Sw takes
∑

y∈[σw] fy lg
r
fy

+

O(fy) = rH0(Sw) +O(r) bits.
Other properties and data structures are employed to obtain the bounds for

the CRAM and the extended CRAM. In the latter, a variable-size partition of S
is maintained.

Theorem 6 (Grossi et al. [17]). The CRAM can be implemented so that
Access takes Θ(1 + m lg σ/ lg n) time and Replace takes O(1) time, with a re-
dundancy of ρ(k, σ, n) = O( lg σ

lgn (k lg σ + lg lg n)) simultaneously for all k =

o(lg n/ lg σ).
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Theorem 7 (Grossi et al. [17]). The extended CRAM can be implemented so
that Access takes Θ(lg n/ lg lgn +m lg σ/ lg n) time, and Insert and Delete take
Θ(lg n/ lg lg n) time, with a redundancy of ρ(k, σ, n) = O(lg σ lg lgn/ lgn).

5 Further Discussion and Conclusions

This paper described a survey on compressed string storage schemes (csss) that
have optimal access time, as if the text was uncompressed, and squeeze the text
of n symbols over alphabet [σ] to reach a space bound in bits that is close to
the kth-order empirical entropy nHk + o(n lg σ) (see Table 1). Time bounds for
replacing, inserting and deleting individual text symbols are also optimal (see
Table 2). Interestingly, there are currently no lower bounds on the redundancy
o(n lgα) when a csss has optimal access time. From the practical point of view,
some of the proposed methods have been implemented but still the research in
this direction has not been fully explored all the directions. For example, one
main limitation in practice is that the required value of the block size w =
(1/2) lgn/ lgσ is quite small, even for ASCII text. New results in this direction
could bring also fresh theoretical questions to investigate.

When removing some of the optimality constraints on a csss, such as the
constant-time bound for accessing O(w) symbols of the text or the high-order
entropy Hk, there are a plethora of ideas and solutions. Indeed, random access
to compressed data is a basic problem in many applications on massive data sets,
and there are too many practical and effective solutions to be mentioned in this
paper (e.g. see the book [36]).

Compressed text indexing is a good source of ideas and sophisticated tools (e.g.
see the surveys [16,18,26]) that can achieve high-order Hk entropy bounds. For
example, several solutions are based on storing the Burrows-Wheeler transform
[5] in some 0th-order compressed data structures, but recovering a substring of
the text is suboptimal when compared to the optimal access cost of csss. On
the other hand, these solutions have indexing and searching functionalities while
csss can only support Access.

Another field that is steadily growing is that of grammar compressed texts
(e.g. see the survey [22] and a practical algorithm [21]). Some elegant results can
decode a substring of length m in O(m+ lgn) time [2], where n is the length of
the uncompressed text, and there is a matching lower bound for the logarithmic
cost [35]. In general, these methods can potentially compress better than the
csss described in this survey, but finding the optimal grammar is NP-hard. The
problem admits a logarithmic approximation factor [6,31], where the measure is
the number of rules rather than the number of bits to represent the grammar.

Several other kinds of encodings have the property that each substring of
the input text is translated into a substring of the corresponding encoded text
(e.g. [3,23]), but they do not achieve high order entropy but still compress well in
practice. One theoretical question is related to the encoding in [8] that shows how
to store optimally a sequence of integers with constant-time random access to
read and change one element. In our notation, the stated bound is �n lg σ�+O(1)
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bits, which can save Θ(n) bits over the raw representation in n�lg σ� bits. When
comparing it to the bound of nHk+o(n lg σ) for csss, the extra space is just O(1)
bits instead of o(n lg σ), but Hk can be much lower than lg σ for compressible
text (and so nHk = o(n lg σ)). An interesting open problem is whether it is
possible to combine the best of the two choices in some tradeoff that can blend
the two opposite situations mentioned above.
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7. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text re-
trieval. J. Algorithms 48(1), 2–15 (2003)

8. Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In:
STOC, pp. 593–602 (2010)

9. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372(1), 115–121 (2007)

10. Fraenkel, A.S., Kleinb, S.T.: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics 64(1), 31–55 (1996)

11. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: STOC, pp. 345–354 (1989)

12. Fredriksson, K., Nikitin, F.: Simple random access compression. Fundam. In-
form. 92(1-2), 63–81 (2009)

13. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379, 405–417 (2007)

14. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput.
Sci. 387, 348–359 (2007)
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