
A Survey on Priority Queues

Gerth Stølting Brodal

MADALGO�, Department of Computer Science, Aarhus University
gerth@cs.au.dk

Abstract. Back in 1964 Williams introduced the binary heap as a basic
priority queue data structure supporting the operations Insert and Ex-
tractMin in logarithmic time. Since then numerous papers have been
published on priority queues. This paper tries to list some of the direc-
tions research on priority queues has taken the last 50 years.

1 Introduction

In 1964 Williams introduced “Algorithm 232” [125]—a data structure later
known as binary heaps. This data structure essentially appears in all introduc-
tory textbooks on Algorithms and Data Structures because of its simplicity and
simultaneously being a powerful data structure.

A tremendous amount of research has been done within the design and analy-
sis of priority queues over the last 50 years, building on ideas originating back to
the initial work of Williams and Floyd in the early 1960s. In this paper I try to
list some of this work, but it is evident by the amount of research done that the
list is in no respect complete. Many papers address several aspects of priority
queues. In the following only a few of these aspects are highlighted.

2 The Beginning: Binary Heaps

Williams’ binary heap is a data structure to store a dynamic set of elements
from an ordered set supporting the insertion of an element (Insert) and the
deletion of the minimum element (ExtractMin) in O(lg n) time, where n is the
number of elements in the priority queue1. Williams’ data structure was inspired
by Floyd’s 1962 paper on sorting using a tournament tree [65], but compared to
Floyd’s earlier work a binary heap is implicit, i.e. the data structure only uses one
array of size n for storing the n elements without using any additional space2. For
a set of size n it is simply an arrayA[1..n] storing the n elements in a permutation
implicitly representing a binary tree satisfying heap order, i.e. A[i] ≤ A[2i] and

� Center for Massive Data Algorithms, a Center of the Danish National Research
Foundation.

1 We let lg x denote the binary logarithm of x.
2 In the following we denote a data structure storing O(1) words of lg n bits between
the operations also as being implicit. The additional space will be stated explicitly
in these cases.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 150–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Survey on Priority Queues 151

A[i] ≤ A[2i+1] for all 1 ≤ i ≤ n (provided 2i ≤ n and 2i+1 ≤ n, respectively).
Williams gave an algorithm for constructing a heap from an array of n elements
in O(n lg n) time [125]. This was subsequently improved by Floyd [66] to O(n).

The average case performance of the operations on a binary heap was studied
in a sequence of papers. Porter and Simon [111] introduced the random heap
model, and proved that random insertions into a random heap require about
1.61 element exchanges. Bollobás and Simon [10] considered inserting a random
sequence of elements into an initially empty binary heap and proved that the
average number of exchanges per element inserted is about 1.7645. Doberkat
studied the average number of exchanges for ExtractMin in a random heap
[38] and for Floyd’s heap construction algorithm [39].

Gonnet and Munro considered the constants in the number of comparisons to
maintain a binary heap [80], and gave upper and lower bounds proving that In-
sert requires lg lgn±O(1) comparisons (the upper bound still requiring O(lg n)
elements to be moved) and ExtractMin requires lg n + lg∗ n± O(1) compar-
isons. An 1.5n − O(lg n) lower bound for the number of comparisons for con-
structing a heap was proved by Carlsson and Chen in [22].

Sack and Strothotte [113] showed how to support the merging of two binary
heaps (Meld) of size n and k in time O(k+lg n · lg k), where k ≤ n. If the heaps
are represented as binary trees using pointers the additive “k” term disappears
from their bound.

It is obvious that the k smallest elements in a heap can be extracted by k
applications of ExtractMin in O(k lg n) time. Frederickson [73] proved that
the partial order given by a binary heap (or more generally, from any heap
ordered binary tree) allows us to select the k smallest elements in O(k) time
(reported in arbitrary order).

3 Reducing the Number of Comparisons

All the results in Section 2 assume the partial order of the original binary heaps
of Williams. In this section we summarize work on lowering the constants in the
number of comparisons by considering priority queues with alternative require-
ments with respect to the order maintained.

Johnson [88] generalized binary heaps to implicit d-ary heaps with O(lgd n)
and O(d lgd n) time for Insert and ExtractMin, respectively. By setting d =
ω(1), d-ary heaps achieve sublogarithmic insertion time. Subsequently many pri-
ority queues achieved constant time Insert and logarithmic time ExtractMin,
surpassing the bounds of Johnson.

The weak heaps of Peterson and Dutton [108,41] are not completely implicit
like binary heaps. They store the input elements in one array and require one
additional bit per element. Edelkamp and Wegener [47] proved that sorting n
elements using a weak heap uses n lgn + 0.09n comparisons, getting very close
to the information theoretic lower bound of n lgn − 1.44n comparisons [67]. A
refinement of weak heap sorting performs at most n lgn−0.9n comparisons [46].
Edelkamp et al. [43] studied variations of weak heaps, in particular they reduced
the cost of Insert to be constant.



152 G.S. Brodal

Elmasry et al. [56] studied how to reduce the number of comparisons for pri-
ority queues to get close to the optimal number of comparisons, and presented a
pointer based spriority queue implementation supporting Insert with O(1) com-
parisons and ExtractMin with lg n+ O(1) comparisons. Edelkamp et al. [45]
recently achieved the same bounds by an implicit priority queue using O(1) extra
words of lgn bits.

4 Double-Ended Priority Queues

Atkinson et al. [8] generalized the partial order of binary heaps and introduced
the implicit Min-Max heaps supporting both ExtractMin and ExtractMax
in logarithmic time and having linear construction time. Essentially Min-Max
heaps and all the following double-ended priority queues maintain a Min-heap
and a Max-heap for some partition of the elements stored.

Carlsson introduced the implicit Deap [21] as an alternative to Min-Max
heaps, improving the number of comparisons for ExtractMin/ExtractMax
from 3

2 lg n+ lg lgn to lgn+ lg lg n. Carlsson et al. [23] gave a proof that a Deap
can be constructed in linear time.

General techniques to convert single ended priority queues into double-
ended priority queues were presented by Chong and Sahni [32] and El-
masry et al. [57]. Alternative implementations of implicit double-ended queues
include [106,26,37,99,6]. Ding and Weiss [35] presented an implicit double-ended
priority queue for multi-dimensional data.

Double-ended priority queues supporting Meld were presented by Ding and
Weiss [36], Khoong and Leong [96], and Cho and Sahni [31], which are based on
min-max heaps, binomial queues, and leftist trees, respectively.

5 Implicit Data Structures

The original implicit heaps of Williams require O(lg n) worst-case time for In-
sert and ExtractMin. Similar bounds are achieved by several of the above
mentioned implicit double-ended priority queues. Carlsson et al. [24] described
an implicit heap with O(1) time Insert and O(lg n) time ExtractMin, storing
O(1) extra words of lg n bits between operations. Edelkamp et al. [45] presented
an implicit priority queue with the same time bounds and also using O(1) extra
words, but only requiring lg n + O(1) comparisons per ExtractMin. A pri-
ority queue with amortized O(1) time Insert and O(lg n) time ExtractMin
was presented by Harvey and Zatloukal [84], that does not store any additional
information between operations.

The existence of efficient implicit priority queue data structures implied the
canonical question if efficient implicit dynamic dictionaries also existed. The
study of implicit dynamic dictionaries was initiated by Munro and Suwanda [104]
who proved tight Θ(

√
n) bounds on implicit dictionaries satisfying a fixed partial

order. The bounds for implicit dictionaries were subsequently improved by Fred-
erickson [71] who achieved logarithmic time searches and O(n

√
2/ lg n · lg3/2 n)



A Survey on Priority Queues 153

time updates, and the first polylogarithmic bounds were given by Munro in [101]
achieving O(lg2 n) time for both updates and searches by encoding the bits of
pointers for an AVL-tree by the relative order of pairs of elements. Munro and
Poblete [103] presented a semi-dynamic implicit dictionary with O(lg2 n) time
insertions and O(lg n) time searches. Subsequently update time was improved to
O(lg2 n/ lgn) by implicit B-trees [69], and eventually logarithmic time bounds
where obtained by Franceschini and Grossi [68]. Franceschini and Munro [70]
furthermore reduced the number of exchanges to O(1) while keeping the number
of comparisons per operation logarithmic (update bounds being amortized).

6 DecreaseKey and Meld

Dijkstra’s single source shortest paths algorithm makes essential use of priority
queues, and in particular the primitive of lowering the priority of an existing
element in the priority queue. Fredman and Tarjan [77] introduced the De-
creaseKey operation for this and presented Fibonacci heaps, supporting De-
creaseKey in amortized constant time implying a running time of O(m+n lg n)
for Dijkstra’s algorithm, improving the previous bound of O(m lgm/n n) achieved
using anm/n-ary heap [89]. Fibonacci heaps also resulted in improved algorithms
for computing minimum trees in weighted graphs with running time O(m lg∗ n).
Fibonacci heaps are a generalization of the binomial queues of Vuillemin [123],
which achieve the same performance as Fibonacci heaps except for the De-
creaseKey operation. In particular both data structures support Meld in
amortized constant time. The worst-case time for Meld in a binomial queue
is Θ(lg n), but the amortized time was proven to be constant by Khoong and
Leong [96].

A sequence of priority queues achieves the same amortized performance as
Fibonacci heaps. Peterson [108] gave a solution based on AVL-trees, Driscoll
et al. [40] presented the rank-relaxed heaps, Kaplan and Tarjan [94] presented
the thin heaps, Chan [25] presented the quake heaps, Haeupler et al. [81] pre-
sented the rank-pairing heaps, and Elmasry [53] presented the violation heaps.
Høyer [85] presented a general technique to construct different data structures
achieving time bounds matching those of Fibonacci heaps, using red-black, AVL-
trees and (a, b)-trees. Elmasry improved the number of comparisons of Fibonacci
heaps by a constant factor [48].

A direction of research has been to develop priority queues with worst-case time
guarantees for the operations supportedbyFibonacci heaps.The run-relaxedheaps
by Driscoll et al. [40] achieve worst-case constant timeDecreaseKey operations,
but Meld takes logarithmic time. The same result was achieved by Kaplan and
Tarjan [93] with fat heaps. Elmasry et al. presented two-tier relaxed heaps [58] in
which the number of comparisons forExtractMin is reduced to lg n+3 lg lgn+
O(1). Elmasry et al. [55] achieve similar bounds whereDecreaseKey operations
are supported with lgn + O(lg lg n) comparisons by introducing structural vio-
lations instead of heap order violations. The first priority queue with worst-case
o(lg n) timeMeldwas a generalization of binomial queues by Fagerberg [63], sup-
portingMeld in o(lg n) time and ExtractMin in time ω(lgn). A priority queue



154 G.S. Brodal

with constant time Insert and Meld, and logarithmic time ExtractMin and
DecreaseKey was presented byBrodal [11]. A purely functional implementation
of [11] (withoutDecreaseKey) was given by Brodal and Okasaki in [17].

Comparison based priority queues with worst-case constant time Insert, De-
creaseKey and Meld and logarithmic time ExtractMin were presented by
Brodal [12], assuming the RAM model. Similar bounds in the RAM model were
achieved by Elmasry and Katajainen [59]. Brodal et al. [16] recently achieved
matching bounds in the pointer machine model.

Common to many of the priority queues achieving good worst-case bounds
for Meld and/or DecreaseKey are that they use some redundant counting
scheme [33] to control the number of trees in a forest of heap ordered trees, the
number of structural violations and/or heap order violations.

Kaplan et al. [92] emphasized the requirement that the DecreaseKey op-
eration as arguments must take both the element to be deleted and a reference
to the priority queue containing this element, since otherwise FindMin, De-
creaseKey, or Meld must take non-constant time.

Chazelle [28] introduced the soft heap, a priority queue specialized toward
minimum spanning tree computations that is allowed to perform a limited num-
ber of internal errors. A simplified version of soft heaps was given by Kaplan and
Zwick [95]. Minimum spanning tree algorithms using soft heaps were presented
by Chazelle [27] and Pettie and Ramachandran [110], where [110] is an optimal
minimum spanning tree algorithm but with unknown complexity.

Mortensen and Pettie [43] presented an implicit priority queue supporting
Insert and DecreaseKey in amortized constant time and ExtractMin in
logarithmic time, using O(1) words of extra storage.

7 Self-adjusting Priority Queues

Crane [34] introduced the leftist heaps. The leftist heaps of Crane are height
balanced heap ordered binary trees, where for each node the height of the left
subtree is at least the height of the right subtree. Cho and Sahni [30] introduced
a weight-balanced version of leftist trees. Okasaki [105] introduced maxiphobic
heaps as a very pedagogical and easy to understand priority queue where oper-
ations are based on the recursive melding of binary heap ordered trees.

Sleator and Tarjan introduced the skew heaps [117] as a self-adjusting version
of leftist heaps [34], i.e. a data structure where no balancing information is
stored at the nodes of the structure and where the structure is adjusted on each
update according to some local updating role. A tight analysis was given in
[91,115] for the amortized number of comparisons performed by ExtractMin
and Meld in a skew heap, showing that the amortized number of comparisons
is approximately lgφ n, where φ = (

√
5 + 1)/2 is the golden ratio. The upper

bound was given by Kaldewaij and Schoenmakers [91] and the matching lower
bound was given by Schoenmakers [115].

Pairing heaps [76] were introduced as a self-adjusting version of Fibonacci
heaps, but the exact asymptotic amortized complexity of pairing heaps remains



A Survey on Priority Queues 155

unsettled. Stasko and Vitter [118] did an early experimental evaluation show-
ing that DecreaseKey was virtually constant. Fredman later disproved this
by showing a lower bound of amortized time Ω(lg lg n) for the DecreaseKey
operation on pairing heaps [74]. Iacono [86] gave an analysis of pairing heaps
achieving amortized constant Insert and Meld, and logarithmic ExtractMin
andDecreaseKey operations. Pettie [109] proved an upper bound of amortized
O(22

√
lg lgn) time for Insert, Meld and DecreaseKey, and amortized O(lg n)

time for ExtractMin.
Variations of pairing heaps were considered in [118,51,52], all achieving amor-

tized constant time Insert. Stasko and Vitter [118] achieved that Meld, De-
creaseKey, and ExtractMin all take amortized O(lg n) time. Elmasry in [49]
examined parameterized versions of skew heaps, pairing heaps, and skew-pairing
heaps, both theoretically and experimentally, and in [51] and [52] showed how
to improve the time bound for DecreaseKey to amortized O(lg lg n) and the
time bounds for Meld to amortized O(lg lgn) and amortized O(1), respectively.

8 Distribution Sensitive Priority Queues

Priority queues with distribution-sensitive performance have been designed and
analyzed (similarly to the working-set properties of splay trees for dictionar-
ies [116]). Fischer and Paterson’s fishspear priority queue [64] supports a se-
quence of Insert and ExtractMin operations, where the amortized cost for
handling an element is logarithmic in the “max-depth” of the element, i.e. over
time the largest number elements less than the element simultaneously in the
priority queue. Iacono [86] proved that for pairing heaps ExtractMin on an
element takes amortized logarithmic time in the number of operations performed
since the insertion of the element. The funnel-heap of Brodal and Fagerberg [13]
achieves ExtractMin logarithmic in the number of insertions performed since
the element to be deleted was inserted. Elmasry [50] described a priority queue
where ExtractMin takes time logarithmic in the number of elements inserted
after the element to be deleted was inserted and are still present in the priority
queue. Iacono and Langerman [87] introduced the Queap priority queue where
ExtractMin takes time logarithmic in the number of elements inserted before
the element to be deleted and still present in the priority queue, a property de-
noted “queueish”. Elmasry et al. [54] describe a priority queue with a unified
property covering both queueish and working set properties.

9 RAM Priority Queues

Priority queues storing non-negative integers and where the running time de-
pends on the maximal possible value N stored in the priority queue were pre-
sented by van Emde Boas et al. [60,61], who achieved Insert and ExtractMin
in time O(lg lgN) using space O(N lg lgN) and O(N) in [61] and [60], respec-
tively. Using dynamic perfect hashing, the Y-fast tries of Willard [124] reduces
the space to O(n), by making the time bounds amortized randomized O(lg lgN).



156 G.S. Brodal

Subsequent work initiated by the fusion trees of Fredman and Willard [78] has
explored the power of the RAM model to develop algorithms with o(lg n) time
priority queue operations and being independent of the word size w (assuming
that elements stored are integers in the range {0, 1, . . . , 2w − 1}). Fusion trees
achieve O(lg n/ lg lg n) time Insert and ExtractMin using linear space.

Thorup [120] showed how to support Insert and ExtractMin in O(lg lg n)
time for w-bit integers on a RAM with word size w bits (using superlinear
space or linear space using hashing). Linear space deterministic solutions using
O((lg lgn)2) amortized and worst-case time were presented by Thorup [119] and
Andersson and Thorup [3], respectively. Raman [112] presented a RAM priority
queue supporting DecreaseKey, resulting in an O(m + n

√
lg n lg lg n) time

implementation of Dijkstra’s single source shortest path algorithm.
That priority queues can be used to sort n numbers is trivial. Thorup in [122]

proved that the opposite direction also applies: Given a RAM algorithm that
sorts n words in O(n · S(n)) time, Thorup describes how to support Insert
and ExtractMin in O(S(n)) time, i.e. proving the equivalence between sort-
ing and priority queues. Using previous deterministic O(n lg lgn) time and ex-
pected O(n

√
lg lg n) time RAM sorting algorithms by Han [82] and Han and

Thorup [83], respectively, this implies deterministic and randomized priority
queues with Insert and ExtractMin in O(lg lg n) and expected O(

√
lg lg n)

time, respectively. Thorup [121] presented a RAM priority queue supporting In-
sert and DecreaseKey in constant time and ExtractMin in O(lg lg n) time,
resulting in an O(m + n lg lg n) time implementation of Dijkstra’s single source
shortest path algorithm.

A general technique to convert non-meldable priority queues with Insert op-
erations taking more than constant time to a corresponding data structure with
constant time Insert operations was presented by Alstrup et al. [2]. A general
technique was described by Mendelson et al. [100] to convert non-meldable pri-
ority queues without DecreaseKey into a priority queue supporting Meld in
constant time and with an additive α(n) cost in the time for the Delete op-
eration, i.e. the operation of deleting an arbitrary element given by a reference.
Here α is the inverse of the Ackermann function.

Brodnik et al. studied the power of the RAMBO model (random access ma-
chine with byte overlap). In [18] they showed how to support Insert and Ex-
tractMin in constant time (and in [19] they showed how to perform constant
time queries and updates for the dynamic prefix sum problem).

10 Hierarchical Memory Models

Early work on algorithm design in the 60s and 70s made the (by then realistic)
assumption that running time was bound by the number of instructions per-
formed, and the goal was to construct algorithms minimizing the number of in-
structions performed. On modern computer architectures the running time of an
algorithm implementation is often not dominated by the number of instructions
performed, but by other factors such as the number of cache faults, page faults,



A Survey on Priority Queues 157

TLB misses, and branch mispredictions. This has lead to computational models
such as the I/O-model of Aggarwal and Vitter [1] and the cache-oblivious model
Frigo et al. [79], modeling that the bottleneck in a computation is the number
of cache-line or disk-block transfers performed by an algorithm. The I/O-model
assumes that the parameters M and B are known to the algorithm, where M
and B are the capacity in elements of the memory and a disk block, respectively.
In the cache-oblivious model the block and memory parameters are not known
by the algorithm, with the consequence that a cache-oblivious algorithm with
good I/O-performance automatically achieves good I/O-performance on several
levels.

Fadel et al. [62] described an amortized I/O-optimal priority queue by adopt-
ing binary heaps to external memory by letting each node store Θ(M) elements
and the degree of each node be Θ(M/B). An alternative solution with the same
amortized performance was achieved by Arge [4] using a “buffer tree”. An ex-
ternal memory priority queue with worst-case bounds matching the previous
structures amortized bounds was presented in [15].

Cache-oblivious priority queues were presented by Arge et al. [5] and Brodal
and Fagerberg [13]. External memory and cache oblivious priority queues sup-
porting an adapted version of DecreaseKey to solve the single source shortest
path problem on undirected graphs with O(n+ m

B lg m
B ) I/Os were presented by

Kumar and Swabe [97] and Brodal et al. [14], respectively.
Fischer and Paterson [64] introduced the Fishspear priority queue designed

for sequential storage such as a constant number of stacks or tapes, and using
amortized O(lg n) time per Insert and ExtractMin operation.

11 Priority Queues for Sorting with Limited Space

Since the seminal paper by Munro and Patterson [102] on sorting and selection
for read-only input memory with a limited read-write working space (and write-
only output memory for the case of sorting), a sequence of papers have presented
priority queues for sorting in this model. Frederickson [72] achieved a time-space
product of O(n2 lgn) for sorting, and [107] and [7] achieved an O(n2) time-space
product for a wide-range of working space sizes, which was proven to be optimal
by Beame [9].

12 Empirical Investigations

Many experimental evaluations of priority queues have been done, e.g.
[20,90,98,30,75,29,44]. The importance of cache misses were observed in [98],
and an implementation adopted to be cache efficient based on merging sorted
lists and making efficient use of registers was presented by Sanders [114].

Modern machines are complex and an efficient implementation is not neces-
sarily an implementation performing the fewest possible instructions. As men-
tioned, other parameters that are important to reduce are e.g. the number of
cache misses, number of TLB misses, number of branch mispredictions, and



158 G.S. Brodal

number of branches performed. Memory hierarchy issues can be addressed on
the algorithm design level, other issues such as branch mispredictions can be
reduced by using special CPU instructions such as predicated instructions such
as conditional move instruction (e.g. the CMOV instruction available on the In-
tel Pentium II and later processors), and exploiting parallelism using e.g. SIMD
instructions. Some recent work considering priority queues in this context was
done by Edelkamp et al. [42].

13 Concluding Remarks

As stated in the introduction, this paper lists some of the research done related
to priority queues, but the list is not expected to be complete. A lot of branches
of related work have not been discussed. Examples are: Work on discrete event
simulation that makes heavy use of priority queues, and where a lot of work
on specialized priority queues has been done; priority queues in parallel models,
both practical and theoretical work; concurrency issues for parallel access to a
priority queue; results on sorting based on priority queues; just to mention few.

Acknowledgment. The author would like to thank Rolf Fagerberg, Andy
Brodnik, Jyrki Katajainen, Amr Elmasry, Jesper Asbjørn Sindahl Nielsen and
the anonymous reviewers for valuable input.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Alstrup, S., Husfeldt, T., Rauhe, T., Thorup, M.: Black box for constant-time
insertion in priority queues (note). ACM Trans. Algorithms 1(1), 102–106 (2005)

3. Andersson, A., Thorup, M.: Tight(er) worst-case bounds on dynamic searching
and priority queues. In: Proc. 32nd ACM Symposium on Theory of Computing,
pp. 335–342. ACM (2000)

4. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37, 1–24 (2003)

5. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An
optimal cache-oblivious priority queue and its application to graph algorithms.
SIAM J. Comput. 36(6), 1672–1695 (2007)

6. Arvind, A., Rangan, C.P.: Symmetric min-max heap: A simpler data structure
for double-ended priority queue. Inf. Process. Lett. 69(4), 197–199 (1999)

7. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-
only data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS,
vol. 7876, pp. 32–41. Springer, Heidelberg (2013)

8. Atkinson, M.D., Sack, J.R., Santoro, N., Strothotte, T.: Min-max heaps and gen-
eralized priority queues. Commun. ACM 29(10), 996–1000 (1986)

9. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20(2), 270–277 (1991)



A Survey on Priority Queues 159

10. Bollobás, B., Simon, I.: Repeated random insertion into a priority queue. J. Al-
gorithms 6(4), 466–477 (1985)

11. Brodal, G.S.: Fast meldable priority queues. In: Sack, J.-R., Akl, S.G., Dehne, F.,
Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 282–290. Springer, Heidelberg
(1995)

12. Brodal, G.S.: Worst-case efficient priority queues. In: Proc. 7th ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 52–58. SIAM (1996)

13. Brodal, G.S., Fagerberg, R.: Funnel heap - a cache oblivious priority queue. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 219–228. Springer,
Heidelberg (2002)

14. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data struc-
tures and algorithms for undirected breadth-first search and shortest paths. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 480–492.
Springer, Heidelberg (2004)

15. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority
queues. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 107–118. Springer,
Heidelberg (1998)

16. Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict Fibonacci heaps. In: Proc. 44th
ACM Symposium on Theory of Computing, pp. 1177–1184. ACM (2012)

17. Brodal, G.S., Okasaki, C.: Optimal purely functional priority queues. J. Funct.
Program. 6(6), 839–857 (1996)

18. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Systems and Software 78(3), 249–256 (2005)

19. Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi,
L., Kohayakawa, Y. (eds.) Fourth IFIP International Conference on Theoretical
Computer Science, TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston (2006)

20. Brown, M.R.: Implementation and analysis of binomial queue algorithms. SIAM
J. Comput. 7(3), 298–319 (1978)

21. Carlsson, S.: The deap - a double-ended heap to implement double-ended priority
queues. Inf. Process. Lett. 26(1), 33–36 (1987)

22. Carlsson, S., Chen, J.: The complexity of heaps. In: Proc. 3rd ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 393–402. SIAM (1992)

23. Carlsson, S., Chen, J., Strothotte, T.: A note on the construction of data structure
“deap”. Inf. Process. Lett. 31(6), 315–317 (1989)

24. Carlsson, S., Munro, J.I., Poblete, P.V.: An implicit binomial queue with constant
insertion time. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318,
pp. 1–13. Springer, Heidelberg (1988)

25. Chan, T.M.: Quake heaps: a simple alternative to Fibonacci heaps. Manuscript
(2009)

26. Chang, S.C., Du, M.W.: Diamond deque: A simple data structure for priority
deques. Inf. Process. Lett. 46(5), 231–237 (1993)

27. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type
complexity. J. ACM 47(6), 1028–1047 (2000)

28. Chazelle, B.: The soft heap: an approximate priority queue with optimal error
rate. J. ACM 47(6), 1012–1027 (2000)

29. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and mono-
tone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999)

30. Cho, S., Sahni, S.: Weight-biased leftist trees and modified skip lists. ACM J.
Experimental Algorithmics 3, 2 (1998)



160 G.S. Brodal

31. Cho, S., Sahni, S.: Mergeable double-ended priority queues. Int. J. Found. Com-
put. Sci. 10(1), 1–18 (1999)

32. Chong, K., Sahni, S.: Correspondence-based data structures for double-ended
priority queues. ACM J. Experimental Algorithmics 5, 2 (2000)

33. Clancy, M.J., Knuth, D.E.: A programming and problem-solving seminar.
Tech. Rep. Technical Report STAN-CS-77-606, Computer Science Department,
Stanford University (1977)

34. Crane, C.A.: Linear lists and priority queues as balanced binary trees. Ph.D.
thesis, Stanford University, Stanford, CA, USA (1972)

35. Ding, Y., Weiss, M.A.: The K-D heap: An efficient multi-dimensional priority
queue. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709,
pp. 302–313. Springer, Heidelberg (1993)

36. Ding, Y., Weiss, M.A.: The relaxed min-max heap. Acta Inf. 30(3), 215–231 (1993)
37. Ding, Y., Weiss, M.A.: On the complexity of building an interval heap. Inf. Pro-

cess. Lett. 50(3), 143–144 (1994)
38. Doberkat, E.E.: Deleting the root of a heap. Acta Inf. 17, 245–265 (1982)
39. Doberkat, E.E.: An average case analysis of floyd’s algorithm to construct heaps.

Information and Control 61(2), 114–131 (1984)
40. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: An al-

ternative to Fibonacci heaps with applications to parallel computation. Commun.
ACM 31(11), 1343–1354 (1988)

41. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
42. Edelkamp, S., Elmasry, A., Katajainen, J.: A catalogue of algorithms for building

weak heaps. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 249–262.
Springer, Heidelberg (2012)

43. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap data structure: Vari-
ants and applications. J. Discrete Algorithms 16, 187–205 (2012)

44. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap family of priority
queues in theory and praxis. In: Proc. 18th Computing: The Australasian Theory
Symposium, CRPIT, vol. 128, pp. 103–112. Australian Computer Society (2012)

45. Edelkamp, S., Elmasry, A., Katajainen, J.: Ultimate binary heaps (submitted,
2013)

46. Edelkamp, S., Stiegeler, P.: Implementing HEAPSORT with (n log n− 0.9n) and
QUICKSORT with (n log n+0.2n) comparisons. ACM J. Experimental Algorith-
mics 7, 5–24 (2002)

47. Edelkamp, S., Wegener, I.: On the performance of weak-heapsort. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–266. Springer, Heidelberg
(2000)

48. Elmasry, A.: Layered heaps. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004.
LNCS, vol. 3111, pp. 212–222. Springer, Heidelberg (2004)

49. Elmasry, A.: Parameterized self-adjusting heaps. J. Algorithms 52(2), 103–119
(2004)

50. Elmasry, A.: A priority queue with the working-set property. Int. J. Found. Com-
put. Sci. 17(6), 1455–1466 (2006)

51. Elmasry, A.: Pairing heaps with O(log log n) decrease cost. In: Proc. 20th ACM-
SIAM Symposium on Discrete Algorithms, pp. 471–476. SIAM (2009)

52. Elmasry, A.: Pairing heaps with costless meld. In: de Berg, M., Meyer, U. (eds.)
ESA 2010, Part II. LNCS, vol. 6347, pp. 183–193. Springer, Heidelberg (2010)

53. Elmasry, A.: The violation heap: A relaxed Fibonacci-like heap. In: Thai, M.T.,
Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 479–488. Springer,
Heidelberg (2010)



A Survey on Priority Queues 161

54. Elmasry, A., Farzan, A., Iacono, J.: A priority queue with the time-finger property.
J. Discrete Algorithms 16, 206–212 (2012)

55. Elmasry, A., Jensen, C., Katajainen, J.: On the power of structural violations in
priority queues. In: Proc. 13th Computing: The Australasian Theory Symposium,
CRPIT, vol. 65, pp. 45–53. Australian Computer Society (2007)

56. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues. ACM Trans.
Algorithms 5(1) (2008)

57. Elmasry, A., Jensen, C., Katajainen, J.: Two new methods for constructing
double-ended priority queues from priority queues. Computing 83(4), 193–204
(2008)

58. Elmasry, A., Jensen, C., Katajainen, J.: Two-tier relaxed heaps. Acta Inf. 45(3),
193–210 (2008)

59. Elmasry, A., Katajainen, J.: Worst-case optimal priority queues via extended
regular counters. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.)
CSR 2012. LNCS, vol. 7353, pp. 125–137. Springer, Heidelberg (2012)

60. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

61. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an effi-
cient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

62. Fadel, R., Jakobsen, K.V., Katajainen, J., Teuhola, J.: Heaps and heapsort on
secondary storage. Theoretical Computer Science 220(2), 345–362 (1999)

63. Fagerberg, R.: A generalization of binomial queues. Inf. Process. Lett. 57(2),
109–114 (1996)

64. Fischer, M.J., Paterson, M.: Fishspear: A priority queue algorithm. J. ACM 41(1),
3–30 (1994)

65. Floyd, R.W.: Algorithm 113: Treesort. Commun. ACM 5(8), 434 (1962)
66. Floyd, R.W.: Algorithm 245: Treesort3. Commun. ACM 7(12), 701 (1964)
67. Ford Jr., L.R., Johnson, S.M.: A tournament problem. The American Mathemat-

ical Monthly 66(5), 387–389 (1959)
68. Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-

oblivious search trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)

69. Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit B-trees: a new data
structure for the dictionary problem. J. Comput. Syst. Sci. 68(4), 788–807 (2004)

70. Franceschini, G., Munro, J.I.: Implicit dictionaries with O(1) modifications per
update and fast search. In: Proc. 17th ACM-SIAM Symposium on Discrete Algo-
rithm, pp. 404–413. SIAM (2006)

71. Frederickson, G.N.: Implicit data structures for the dictionary problem. J.
ACM 30(1), 80–94 (1983)

72. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selec-
tion. J. Comput. Syst. Sci. 34(1), 19–26 (1987)

73. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Com-
put. 104(2), 197–214 (1993)

74. Fredman, M.L.: On the efficiency of pairing heaps and related data structures. J.
ACM 46(4), 473–501 (1999)

75. Fredman, M.L.: A priority queue transform. In: Vitter, J.S., Zaroliagis, C.D. (eds.)
WAE 1999. LNCS, vol. 1668, pp. 244–258. Springer, Heidelberg (1999)

76. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: A
new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

77. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)



162 G.S. Brodal

78. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

79. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious al-
gorithms. In: Proc. 40th Foundations of Computer Science, pp. 285–297. IEEE
(1999)

80. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–971
(1986)

81. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM J. Comput. 40(6),
1463–1485 (2011)

82. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. In: Proc.
34th ACM Symposium on Theory of Computing, pp. 602–608. ACM (2002)

83. Han, Y., Thorup, M.: Integer sorting in O(n
√
log log n) expected time and linear

space. In: Proc. 43rd Foundations of Computer Science, pp. 135–144. IEEE (2002)
84. Harvey, N.J.A., Zatloukal, K.C.: The post-order heap. In: Proc. 3rd International

Conference on Fun with Algorithms (2004)
85. Høyer, P.: A general technique for implementation of efficient priority queues. In:

Proc. 3rd Israel Symposium on Theory of Computing and Systems, pp. 57–66.
IEEE (1995)

86. Iacono, J.: Improved upper bounds for pairing heaps. In: Halldórsson, M.M. (ed.)
SWAT 2000. LNCS, vol. 1851, pp. 32–45. Springer, Heidelberg (2000)

87. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)
88. Johnson, D.B.: Priority queues with update and finding minimum spanning trees.

Inf. Process. Lett. 4(3), 53–57 (1975)
89. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J.

ACM 24(1), 1–13 (1977)
90. Jones, D.W.: An empirical comparison of priority-queue and event-set implemen-

tations. Commun. ACM 29(4), 300–311 (1986)
91. Kaldewaij, A., Schoenmakers, B.: The derivation of a tighter bound for top-down

skew heaps. Inf. Process. Lett. 37(5), 265–271 (1991)
92. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In:

Proc. 34th ACM Symposium on Theory of Computing, pp. 573–582. ACM (2002)
93. Kaplan, H., Tarjan, R.E.: New heap data structures. Tech. Rep. TR-597-99, De-

partment of Computer Science, Princeton University (1999)
94. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Trans. Algorithms 4(1)

(2008)
95. Kaplan, H., Zwick, U.: A simpler implementation and analysis of chazelle’s soft

heaps. In: Proc. 20th ACM-SIAMSymposium onDiscrete Algorithms, pp. 477–485.
SIAM (2009)

96. Khoong, C.M., Leong, H.W.: Double-ended binomial queues. In: Ng, K.W.,
Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS,
vol. 762, pp. 128–137. Springer, Heidelberg (1993)

97. Kumar, V., Schwabe, E.J.: Improved algorithms and data structures for solving
graph problems in external memory. In: Proc. 8th Symposium on Parallel and
Distributed Processing, pp. 169–177. IEEE (1996)

98. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of heaps.
ACM J. Experimental Algorithmics 1, 4 (1996)

99. van Leeuwen, J., Wood, D.: Interval heaps. Comput. J. 36(3), 209–216 (1993)
100. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding priority queues.

ACM Trans. Algorithms 2(4), 535–556 (2006)
101. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search

in O(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)



A Survey on Priority Queues 163

102. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

103. Munro, J.I., Poblete, P.V.: Searchability in merging and implicit data structures.
BIT 27(3), 324–329 (1987)

104. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J.
Comput. Syst. Sci. 21(2), 236–250 (1980)

105. Okasaki, C.: Alternatives to two classic data structures. In: Proc. 36th SIGCSE
Technical Symposium on Computer Science Education, pp. 162–165. ACM (2005)

106. Olariu, S., Overstreet, C.M., Wen, Z.: A mergeable double-ended priority queue.
Comput. J. 34(5), 423–427 (1991)

107. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proc. 39th
Foundations of Computer Science, pp. 264–268. IEEE (1998)

108. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Tech.
Rep. GIT-ICS-87-23, School of Informatics and Computer Science, Georgia Insti-
tute of Technology (1987)

109. Pettie, S.: Towards a final analysis of pairing heaps. In: Proc. 46th Foundations
of Computer Science, pp. 174–183. IEEE (2005)

110. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM 49(1), 16–34 (2002)

111. Porter, T., Simon, I.: Random insertion into a priority queue structure. IEEE
Trans. Software Eng. 1(3), 292–298 (1975)

112. Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In:
Dı́az, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg
(1996)

113. Sack, J.R., Strothotte, T.: An algorithm for merging heaps. Acta Inf. 22(2),
171–186 (1985)

114. Sanders, P.: Fast priority queues for cached memory. ACM J. Experimental Al-
gorithmics 5, 7 (2000)

115. Schoenmakers, B.: A tight lower bound for top-down skew heaps. Inf. Process.
Lett. 61(5), 279–284 (1997)

116. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3),
652–686 (1985)

117. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69
(1986)

118. Stasko, J.T., Vitter, J.S.: Pairing heaps: experiments and analysis. Commun.
ACM 30(3), 234–249 (1987)

119. Thorup, M.: Faster deterministic sorting and priority queues in linear space. In:
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 550–555. SIAM
(1998)

120. Thorup, M.: On RAM priority queues. SIAM J. Comput. 30(1), 86–109 (2000)
121. Thorup, M.: Integer priority queues with decrease key in constant time and the

single source shortest paths problem. J. Comput. Syst. Sci. 69(3), 330–353 (2004)
122. Thorup, M.: Equivalence between priority queues and sorting. J. ACM 54(6)

(2007)
123. Vuillemin, J.: A data structure for manipulating priority queues. Commun.

ACM 21(4), 309–315 (1978)
124. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space

Θ(N). Inf. Process. Lett. 17(2), 81–84 (1983)
125. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)


	A Survey on Priority Queues
	1 Introduction
	2 The Beginning: Binary Heaps
	3 Reducing the Number of Comparisons
	4 Double-Ended Priority Queues
	5 Implicit Data Structures
	6 DecreaseKey and Meld
	7 Self-adjusting Priority Queues
	8 Distribution Sensitive Priority Queues
	9 RAM Priority Queues
	10 Hierarchical Memory Models
	11 Priority Queues for Sorting with Limited Space
	12 Empirical Investigations
	13 Concluding Remarks
	References




