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Abstract. Back in 1964 Williams introduced the binary heap as a basic
priority queue data structure supporting the operations Insert and Ex-
tractMin in logarithmic time. Since then numerous papers have been
published on priority queues. This paper tries to list some of the direc-
tions research on priority queues has taken the last 50 years.

1 Introduction

In 1964 Williams introduced “Algorithm 232” [125]—a data structure later
known as binary heaps. This data structure essentially appears in all introduc-
tory textbooks on Algorithms and Data Structures because of its simplicity and
simultaneously being a powerful data structure.

A tremendous amount of research has been done within the design and analy-
sis of priority queues over the last 50 years, building on ideas originating back to
the initial work of Williams and Floyd in the early 1960s. In this paper I try to
list some of this work, but it is evident by the amount of research done that the
list is in no respect complete. Many papers address several aspects of priority
queues. In the following only a few of these aspects are highlighted.

2 The Beginning: Binary Heaps

Williams’ binary heap is a data structure to store a dynamic set of elements
from an ordered set supporting the insertion of an element (Insert) and the
deletion of the minimum element (ExtractMin) in O(lg n) time, where n is the
number of elements in the priority queue1. Williams’ data structure was inspired
by Floyd’s 1962 paper on sorting using a tournament tree [65], but compared to
Floyd’s earlier work a binary heap is implicit, i.e. the data structure only uses one
array of size n for storing the n elements without using any additional space2. For
a set of size n it is simply an arrayA[1..n] storing the n elements in a permutation
implicitly representing a binary tree satisfying heap order, i.e. A[i] ≤ A[2i] and
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1 We let lg x denote the binary logarithm of x.
2 In the following we denote a data structure storing O(1) words of lg n bits between
the operations also as being implicit. The additional space will be stated explicitly
in these cases.
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A[i] ≤ A[2i+1] for all 1 ≤ i ≤ n (provided 2i ≤ n and 2i+1 ≤ n, respectively).
Williams gave an algorithm for constructing a heap from an array of n elements
in O(n lg n) time [125]. This was subsequently improved by Floyd [66] to O(n).

The average case performance of the operations on a binary heap was studied
in a sequence of papers. Porter and Simon [111] introduced the random heap
model, and proved that random insertions into a random heap require about
1.61 element exchanges. Bollobás and Simon [10] considered inserting a random
sequence of elements into an initially empty binary heap and proved that the
average number of exchanges per element inserted is about 1.7645. Doberkat
studied the average number of exchanges for ExtractMin in a random heap
[38] and for Floyd’s heap construction algorithm [39].

Gonnet and Munro considered the constants in the number of comparisons to
maintain a binary heap [80], and gave upper and lower bounds proving that In-
sert requires lg lgn±O(1) comparisons (the upper bound still requiring O(lg n)
elements to be moved) and ExtractMin requires lg n + lg∗ n± O(1) compar-
isons. An 1.5n − O(lg n) lower bound for the number of comparisons for con-
structing a heap was proved by Carlsson and Chen in [22].

Sack and Strothotte [113] showed how to support the merging of two binary
heaps (Meld) of size n and k in time O(k+lg n · lg k), where k ≤ n. If the heaps
are represented as binary trees using pointers the additive “k” term disappears
from their bound.

It is obvious that the k smallest elements in a heap can be extracted by k
applications of ExtractMin in O(k lg n) time. Frederickson [73] proved that
the partial order given by a binary heap (or more generally, from any heap
ordered binary tree) allows us to select the k smallest elements in O(k) time
(reported in arbitrary order).

3 Reducing the Number of Comparisons

All the results in Section 2 assume the partial order of the original binary heaps
of Williams. In this section we summarize work on lowering the constants in the
number of comparisons by considering priority queues with alternative require-
ments with respect to the order maintained.

Johnson [88] generalized binary heaps to implicit d-ary heaps with O(lgd n)
and O(d lgd n) time for Insert and ExtractMin, respectively. By setting d =
ω(1), d-ary heaps achieve sublogarithmic insertion time. Subsequently many pri-
ority queues achieved constant time Insert and logarithmic time ExtractMin,
surpassing the bounds of Johnson.

The weak heaps of Peterson and Dutton [108,41] are not completely implicit
like binary heaps. They store the input elements in one array and require one
additional bit per element. Edelkamp and Wegener [47] proved that sorting n
elements using a weak heap uses n lgn + 0.09n comparisons, getting very close
to the information theoretic lower bound of n lgn − 1.44n comparisons [67]. A
refinement of weak heap sorting performs at most n lgn−0.9n comparisons [46].
Edelkamp et al. [43] studied variations of weak heaps, in particular they reduced
the cost of Insert to be constant.
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Elmasry et al. [56] studied how to reduce the number of comparisons for pri-
ority queues to get close to the optimal number of comparisons, and presented a
pointer based spriority queue implementation supporting Insert with O(1) com-
parisons and ExtractMin with lg n+ O(1) comparisons. Edelkamp et al. [45]
recently achieved the same bounds by an implicit priority queue using O(1) extra
words of lgn bits.

4 Double-Ended Priority Queues

Atkinson et al. [8] generalized the partial order of binary heaps and introduced
the implicit Min-Max heaps supporting both ExtractMin and ExtractMax
in logarithmic time and having linear construction time. Essentially Min-Max
heaps and all the following double-ended priority queues maintain a Min-heap
and a Max-heap for some partition of the elements stored.

Carlsson introduced the implicit Deap [21] as an alternative to Min-Max
heaps, improving the number of comparisons for ExtractMin/ExtractMax
from 3

2 lg n+ lg lgn to lgn+ lg lg n. Carlsson et al. [23] gave a proof that a Deap
can be constructed in linear time.

General techniques to convert single ended priority queues into double-
ended priority queues were presented by Chong and Sahni [32] and El-
masry et al. [57]. Alternative implementations of implicit double-ended queues
include [106,26,37,99,6]. Ding and Weiss [35] presented an implicit double-ended
priority queue for multi-dimensional data.

Double-ended priority queues supporting Meld were presented by Ding and
Weiss [36], Khoong and Leong [96], and Cho and Sahni [31], which are based on
min-max heaps, binomial queues, and leftist trees, respectively.

5 Implicit Data Structures

The original implicit heaps of Williams require O(lg n) worst-case time for In-
sert and ExtractMin. Similar bounds are achieved by several of the above
mentioned implicit double-ended priority queues. Carlsson et al. [24] described
an implicit heap with O(1) time Insert and O(lg n) time ExtractMin, storing
O(1) extra words of lg n bits between operations. Edelkamp et al. [45] presented
an implicit priority queue with the same time bounds and also using O(1) extra
words, but only requiring lg n + O(1) comparisons per ExtractMin. A pri-
ority queue with amortized O(1) time Insert and O(lg n) time ExtractMin
was presented by Harvey and Zatloukal [84], that does not store any additional
information between operations.

The existence of efficient implicit priority queue data structures implied the
canonical question if efficient implicit dynamic dictionaries also existed. The
study of implicit dynamic dictionaries was initiated by Munro and Suwanda [104]
who proved tight Θ(

√
n) bounds on implicit dictionaries satisfying a fixed partial

order. The bounds for implicit dictionaries were subsequently improved by Fred-
erickson [71] who achieved logarithmic time searches and O(n

√
2/ lg n · lg3/2 n)
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time updates, and the first polylogarithmic bounds were given by Munro in [101]
achieving O(lg2 n) time for both updates and searches by encoding the bits of
pointers for an AVL-tree by the relative order of pairs of elements. Munro and
Poblete [103] presented a semi-dynamic implicit dictionary with O(lg2 n) time
insertions and O(lg n) time searches. Subsequently update time was improved to
O(lg2 n/ lgn) by implicit B-trees [69], and eventually logarithmic time bounds
where obtained by Franceschini and Grossi [68]. Franceschini and Munro [70]
furthermore reduced the number of exchanges to O(1) while keeping the number
of comparisons per operation logarithmic (update bounds being amortized).

6 DecreaseKey and Meld

Dijkstra’s single source shortest paths algorithm makes essential use of priority
queues, and in particular the primitive of lowering the priority of an existing
element in the priority queue. Fredman and Tarjan [77] introduced the De-
creaseKey operation for this and presented Fibonacci heaps, supporting De-
creaseKey in amortized constant time implying a running time of O(m+n lg n)
for Dijkstra’s algorithm, improving the previous bound of O(m lgm/n n) achieved
using anm/n-ary heap [89]. Fibonacci heaps also resulted in improved algorithms
for computing minimum trees in weighted graphs with running time O(m lg∗ n).
Fibonacci heaps are a generalization of the binomial queues of Vuillemin [123],
which achieve the same performance as Fibonacci heaps except for the De-
creaseKey operation. In particular both data structures support Meld in
amortized constant time. The worst-case time for Meld in a binomial queue
is Θ(lg n), but the amortized time was proven to be constant by Khoong and
Leong [96].

A sequence of priority queues achieves the same amortized performance as
Fibonacci heaps. Peterson [108] gave a solution based on AVL-trees, Driscoll
et al. [40] presented the rank-relaxed heaps, Kaplan and Tarjan [94] presented
the thin heaps, Chan [25] presented the quake heaps, Haeupler et al. [81] pre-
sented the rank-pairing heaps, and Elmasry [53] presented the violation heaps.
Høyer [85] presented a general technique to construct different data structures
achieving time bounds matching those of Fibonacci heaps, using red-black, AVL-
trees and (a, b)-trees. Elmasry improved the number of comparisons of Fibonacci
heaps by a constant factor [48].

A direction of research has been to develop priority queues with worst-case time
guarantees for the operations supportedbyFibonacci heaps.The run-relaxedheaps
by Driscoll et al. [40] achieve worst-case constant timeDecreaseKey operations,
but Meld takes logarithmic time. The same result was achieved by Kaplan and
Tarjan [93] with fat heaps. Elmasry et al. presented two-tier relaxed heaps [58] in
which the number of comparisons forExtractMin is reduced to lg n+3 lg lgn+
O(1). Elmasry et al. [55] achieve similar bounds whereDecreaseKey operations
are supported with lgn + O(lg lg n) comparisons by introducing structural vio-
lations instead of heap order violations. The first priority queue with worst-case
o(lg n) timeMeldwas a generalization of binomial queues by Fagerberg [63], sup-
portingMeld in o(lg n) time and ExtractMin in time ω(lgn). A priority queue
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with constant time Insert and Meld, and logarithmic time ExtractMin and
DecreaseKey was presented byBrodal [11]. A purely functional implementation
of [11] (withoutDecreaseKey) was given by Brodal and Okasaki in [17].

Comparison based priority queues with worst-case constant time Insert, De-
creaseKey and Meld and logarithmic time ExtractMin were presented by
Brodal [12], assuming the RAM model. Similar bounds in the RAM model were
achieved by Elmasry and Katajainen [59]. Brodal et al. [16] recently achieved
matching bounds in the pointer machine model.

Common to many of the priority queues achieving good worst-case bounds
for Meld and/or DecreaseKey are that they use some redundant counting
scheme [33] to control the number of trees in a forest of heap ordered trees, the
number of structural violations and/or heap order violations.

Kaplan et al. [92] emphasized the requirement that the DecreaseKey op-
eration as arguments must take both the element to be deleted and a reference
to the priority queue containing this element, since otherwise FindMin, De-
creaseKey, or Meld must take non-constant time.

Chazelle [28] introduced the soft heap, a priority queue specialized toward
minimum spanning tree computations that is allowed to perform a limited num-
ber of internal errors. A simplified version of soft heaps was given by Kaplan and
Zwick [95]. Minimum spanning tree algorithms using soft heaps were presented
by Chazelle [27] and Pettie and Ramachandran [110], where [110] is an optimal
minimum spanning tree algorithm but with unknown complexity.

Mortensen and Pettie [43] presented an implicit priority queue supporting
Insert and DecreaseKey in amortized constant time and ExtractMin in
logarithmic time, using O(1) words of extra storage.

7 Self-adjusting Priority Queues

Crane [34] introduced the leftist heaps. The leftist heaps of Crane are height
balanced heap ordered binary trees, where for each node the height of the left
subtree is at least the height of the right subtree. Cho and Sahni [30] introduced
a weight-balanced version of leftist trees. Okasaki [105] introduced maxiphobic
heaps as a very pedagogical and easy to understand priority queue where oper-
ations are based on the recursive melding of binary heap ordered trees.

Sleator and Tarjan introduced the skew heaps [117] as a self-adjusting version
of leftist heaps [34], i.e. a data structure where no balancing information is
stored at the nodes of the structure and where the structure is adjusted on each
update according to some local updating role. A tight analysis was given in
[91,115] for the amortized number of comparisons performed by ExtractMin
and Meld in a skew heap, showing that the amortized number of comparisons
is approximately lgφ n, where φ = (

√
5 + 1)/2 is the golden ratio. The upper

bound was given by Kaldewaij and Schoenmakers [91] and the matching lower
bound was given by Schoenmakers [115].

Pairing heaps [76] were introduced as a self-adjusting version of Fibonacci
heaps, but the exact asymptotic amortized complexity of pairing heaps remains
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unsettled. Stasko and Vitter [118] did an early experimental evaluation show-
ing that DecreaseKey was virtually constant. Fredman later disproved this
by showing a lower bound of amortized time Ω(lg lg n) for the DecreaseKey
operation on pairing heaps [74]. Iacono [86] gave an analysis of pairing heaps
achieving amortized constant Insert and Meld, and logarithmic ExtractMin
andDecreaseKey operations. Pettie [109] proved an upper bound of amortized
O(22

√
lg lgn) time for Insert, Meld and DecreaseKey, and amortized O(lg n)

time for ExtractMin.
Variations of pairing heaps were considered in [118,51,52], all achieving amor-

tized constant time Insert. Stasko and Vitter [118] achieved that Meld, De-
creaseKey, and ExtractMin all take amortized O(lg n) time. Elmasry in [49]
examined parameterized versions of skew heaps, pairing heaps, and skew-pairing
heaps, both theoretically and experimentally, and in [51] and [52] showed how
to improve the time bound for DecreaseKey to amortized O(lg lg n) and the
time bounds for Meld to amortized O(lg lgn) and amortized O(1), respectively.

8 Distribution Sensitive Priority Queues

Priority queues with distribution-sensitive performance have been designed and
analyzed (similarly to the working-set properties of splay trees for dictionar-
ies [116]). Fischer and Paterson’s fishspear priority queue [64] supports a se-
quence of Insert and ExtractMin operations, where the amortized cost for
handling an element is logarithmic in the “max-depth” of the element, i.e. over
time the largest number elements less than the element simultaneously in the
priority queue. Iacono [86] proved that for pairing heaps ExtractMin on an
element takes amortized logarithmic time in the number of operations performed
since the insertion of the element. The funnel-heap of Brodal and Fagerberg [13]
achieves ExtractMin logarithmic in the number of insertions performed since
the element to be deleted was inserted. Elmasry [50] described a priority queue
where ExtractMin takes time logarithmic in the number of elements inserted
after the element to be deleted was inserted and are still present in the priority
queue. Iacono and Langerman [87] introduced the Queap priority queue where
ExtractMin takes time logarithmic in the number of elements inserted before
the element to be deleted and still present in the priority queue, a property de-
noted “queueish”. Elmasry et al. [54] describe a priority queue with a unified
property covering both queueish and working set properties.

9 RAM Priority Queues

Priority queues storing non-negative integers and where the running time de-
pends on the maximal possible value N stored in the priority queue were pre-
sented by van Emde Boas et al. [60,61], who achieved Insert and ExtractMin
in time O(lg lgN) using space O(N lg lgN) and O(N) in [61] and [60], respec-
tively. Using dynamic perfect hashing, the Y-fast tries of Willard [124] reduces
the space to O(n), by making the time bounds amortized randomized O(lg lgN).
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Subsequent work initiated by the fusion trees of Fredman and Willard [78] has
explored the power of the RAM model to develop algorithms with o(lg n) time
priority queue operations and being independent of the word size w (assuming
that elements stored are integers in the range {0, 1, . . . , 2w − 1}). Fusion trees
achieve O(lg n/ lg lg n) time Insert and ExtractMin using linear space.

Thorup [120] showed how to support Insert and ExtractMin in O(lg lg n)
time for w-bit integers on a RAM with word size w bits (using superlinear
space or linear space using hashing). Linear space deterministic solutions using
O((lg lgn)2) amortized and worst-case time were presented by Thorup [119] and
Andersson and Thorup [3], respectively. Raman [112] presented a RAM priority
queue supporting DecreaseKey, resulting in an O(m + n

√
lg n lg lg n) time

implementation of Dijkstra’s single source shortest path algorithm.
That priority queues can be used to sort n numbers is trivial. Thorup in [122]

proved that the opposite direction also applies: Given a RAM algorithm that
sorts n words in O(n · S(n)) time, Thorup describes how to support Insert
and ExtractMin in O(S(n)) time, i.e. proving the equivalence between sort-
ing and priority queues. Using previous deterministic O(n lg lgn) time and ex-
pected O(n

√
lg lg n) time RAM sorting algorithms by Han [82] and Han and

Thorup [83], respectively, this implies deterministic and randomized priority
queues with Insert and ExtractMin in O(lg lg n) and expected O(

√
lg lg n)

time, respectively. Thorup [121] presented a RAM priority queue supporting In-
sert and DecreaseKey in constant time and ExtractMin in O(lg lg n) time,
resulting in an O(m + n lg lg n) time implementation of Dijkstra’s single source
shortest path algorithm.

A general technique to convert non-meldable priority queues with Insert op-
erations taking more than constant time to a corresponding data structure with
constant time Insert operations was presented by Alstrup et al. [2]. A general
technique was described by Mendelson et al. [100] to convert non-meldable pri-
ority queues without DecreaseKey into a priority queue supporting Meld in
constant time and with an additive α(n) cost in the time for the Delete op-
eration, i.e. the operation of deleting an arbitrary element given by a reference.
Here α is the inverse of the Ackermann function.

Brodnik et al. studied the power of the RAMBO model (random access ma-
chine with byte overlap). In [18] they showed how to support Insert and Ex-
tractMin in constant time (and in [19] they showed how to perform constant
time queries and updates for the dynamic prefix sum problem).

10 Hierarchical Memory Models

Early work on algorithm design in the 60s and 70s made the (by then realistic)
assumption that running time was bound by the number of instructions per-
formed, and the goal was to construct algorithms minimizing the number of in-
structions performed. On modern computer architectures the running time of an
algorithm implementation is often not dominated by the number of instructions
performed, but by other factors such as the number of cache faults, page faults,
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TLB misses, and branch mispredictions. This has lead to computational models
such as the I/O-model of Aggarwal and Vitter [1] and the cache-oblivious model
Frigo et al. [79], modeling that the bottleneck in a computation is the number
of cache-line or disk-block transfers performed by an algorithm. The I/O-model
assumes that the parameters M and B are known to the algorithm, where M
and B are the capacity in elements of the memory and a disk block, respectively.
In the cache-oblivious model the block and memory parameters are not known
by the algorithm, with the consequence that a cache-oblivious algorithm with
good I/O-performance automatically achieves good I/O-performance on several
levels.

Fadel et al. [62] described an amortized I/O-optimal priority queue by adopt-
ing binary heaps to external memory by letting each node store Θ(M) elements
and the degree of each node be Θ(M/B). An alternative solution with the same
amortized performance was achieved by Arge [4] using a “buffer tree”. An ex-
ternal memory priority queue with worst-case bounds matching the previous
structures amortized bounds was presented in [15].

Cache-oblivious priority queues were presented by Arge et al. [5] and Brodal
and Fagerberg [13]. External memory and cache oblivious priority queues sup-
porting an adapted version of DecreaseKey to solve the single source shortest
path problem on undirected graphs with O(n+ m

B lg m
B ) I/Os were presented by

Kumar and Swabe [97] and Brodal et al. [14], respectively.
Fischer and Paterson [64] introduced the Fishspear priority queue designed

for sequential storage such as a constant number of stacks or tapes, and using
amortized O(lg n) time per Insert and ExtractMin operation.

11 Priority Queues for Sorting with Limited Space

Since the seminal paper by Munro and Patterson [102] on sorting and selection
for read-only input memory with a limited read-write working space (and write-
only output memory for the case of sorting), a sequence of papers have presented
priority queues for sorting in this model. Frederickson [72] achieved a time-space
product of O(n2 lgn) for sorting, and [107] and [7] achieved an O(n2) time-space
product for a wide-range of working space sizes, which was proven to be optimal
by Beame [9].

12 Empirical Investigations

Many experimental evaluations of priority queues have been done, e.g.
[20,90,98,30,75,29,44]. The importance of cache misses were observed in [98],
and an implementation adopted to be cache efficient based on merging sorted
lists and making efficient use of registers was presented by Sanders [114].

Modern machines are complex and an efficient implementation is not neces-
sarily an implementation performing the fewest possible instructions. As men-
tioned, other parameters that are important to reduce are e.g. the number of
cache misses, number of TLB misses, number of branch mispredictions, and
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number of branches performed. Memory hierarchy issues can be addressed on
the algorithm design level, other issues such as branch mispredictions can be
reduced by using special CPU instructions such as predicated instructions such
as conditional move instruction (e.g. the CMOV instruction available on the In-
tel Pentium II and later processors), and exploiting parallelism using e.g. SIMD
instructions. Some recent work considering priority queues in this context was
done by Edelkamp et al. [42].

13 Concluding Remarks

As stated in the introduction, this paper lists some of the research done related
to priority queues, but the list is not expected to be complete. A lot of branches
of related work have not been discussed. Examples are: Work on discrete event
simulation that makes heavy use of priority queues, and where a lot of work
on specialized priority queues has been done; priority queues in parallel models,
both practical and theoretical work; concurrency issues for parallel access to a
priority queue; results on sorting based on priority queues; just to mention few.
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