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Abstract. Social Network Services are known as a effective marketing
platform in that the customers trust the advertisement provided by their
friends and neighbors. Viral Marketing is a marketing technique that uses
the pre-constructed social networks to perform maketing with small cost
while maximizing the spread. Therefore, which seed user to select is the
primary concern in viral marketing. Influence maximization problem is
a well known problem to find the top-k seed users who can maximize the
spread of information in a social network.

Since obtaining the global optimal solution for the influence maximiza-
tion problem is proven to be NP-Hard, many greedy as well as heuristic
approach has been researched. However, greedy approaches take to much
time to obtain the seed node, whereas the heuristic approaches show poor
performance. To remedy such problems, we exploit the community struc-
tures in the social network to enhance the performance of the heuristic
approaches. We perform markov clustering to find the natural commu-
nities in the social network and consider the most influential user in
the community as the candidate for the top-k seeds. Also, we propose a
novel attractor identification algorithm that finds the influential nodes in
the community with reduced runtime, and 3 new hybrid approaches for
influence maximization problem. Experiments show that the proposed
algorithms are more scalable than the greedy approaches, whereas the
influence spread obtained by those outperforms the heuristic approaches.

Keywords: Influence Maximization, Markov Clustering.

1 Introduction

Recently, Social Network Services(SNS) such as Facebook1 or Twitter2are aris-
ing and its users are constantly increasing. Users of SNS services can interact
with other users and form a community disregardin any temporal or geological
constraints. SNS services serve as a medium to spread information, influence
and ideas throughout the users, and therefore acknowled as a successful adver-
tisement platform. With such tendency, viral marketing using pre-constructed
social networks became a prominent figure.

1 http://www.facebook.com
2 http://www.twitter.com

B. Hong et al. (Eds.): DASFAA Workshops 2013, LNCS 7827, pp. 112–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.facebook.com
http://www.twitter.com


Influence Maximization Algorithm Using Markov Clustering 113

Viral marketing is a marketing methodology that uses the word-of mouth ef-
fect among the SNS users to perform advertisement about a specific product. For
example, Hotmail3 included an advertisment phrase saying “Get your private,
free email at http://www.hotmail.com” in the e-mail of Hotmail users. With such
advertisement, Hotmail could naturally spread the advertisement among the pre-
constructed e-mail network. As the result of the viral marketing, Hotmail has
gathered 1,200 users in 2 years[16]. Nowadays, social commerce companies such
as groupon4 use viral marketing to attract customers. Viral marketing aims to
achieve maximum advertisement effect within a given budget. For efficient mar-
keting outcome, it is needed to carefully select the seed users who will initiate
the marketing process.

To resolve the problem, Influence Maximization Problem aims to find the k
people who will maximize the marketing outcome when selected as seed users.
Many researches until recently have proposed numerous algorithms for solv-
ing the Influence Maximization Problem, either by improving the greedy algo-
rithm or proposing new heuristics. However, there are shortcommings in both
approaches that the greedy algorithms’ runtime are too large and the heuris-
tics do not take the prominent community structures of the social network. Our
contributions in this paper are in threefolds. First, we propose a novel heuristic
approach that takes the community structures into account. Second, to further
improve the runtime, we propose a novel algorithm to detect the influential node
of each community without executing the whole graph clustering algorithm. Last,
we propose two hybrid algorithms that combines the attractor detection algo-
rithm with the existing greedy algorithm and the heuristics.

2 Problem Definition

2.1 Social Network Graph

The social network is represented as a weighted directed graph where nodes
represent members of the social network and the edges represent relationships
or interactions among them.

A weighted directed graph G = (V, E) is comprised of tuples between the set
of nodes, V , and the set of edges, E. An edge e ∈ E can be represented as a
pair of two nodes u, v ∈ V e = (u, v), and the direction from u to v. e = (u, v)
has cu, v, the number of interaction between two nodes as weight. The set of
neighbors of u ∈ V , NG(u), is defined as follows.

NG(u) = { v inV | ∃(u, v) ∈ E } (1)

The weight of each edge is normalized by dividing each edge weights by the sum
of weights.

Pr(v‖u) = (u, v).weight
∑

w∈NG(u)(u, v).weight
(2)

3 http://www.hotmail.com
4 http://www.groupon.com/

http://www.hotmail.com
http://www.groupon.com/
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2.2 Information Spread Model

There are numerous information diffusion models to simulate the spread of infor-
mation among a network. [1] [4] [10] [9] [13] discuss the “word-of-mouth effect”
in the real world. Two of the most basic and widely-studied models will be con-
sidered in this paper. Firstly, [10] [9] [15] proposes the Independent Cascade(IC)
Model. Each edge in the social network has same probability to influence the
target node. The information diffusion under the IC model is simulated as fol-
lows.

Definition 1. Every node can be either active or inactive. An active node rep-
resents an influenced user in the social network. The seed set of active nodes
is defined as A0. Newly activated nodes in the ith iteration are defined as Ai.
in the i + 1th iteration, a node u in Ai tries to activate its inactive neighbor v
with probabiltiy of pu, v. when u successfully influences v, v is added to Ai+1 and
becomes active. Such iteration is repeated until Ai+1 = ∅. The probability of u
influencing v, pu, v, is defined as follows.

pu, v = 1− (1− p)cu, v (3)

p in the above formula represents the propagation probability, which is the prob-
abilty of u influencing v with one interaction.

In the IC Model, nodes with high degree have high probability both to influ-
ence its neighbor and to be influenced by them. But in some application, nodes
with high degree can be less influenced by its neighbor. For example, a person
with 100 friends is not easily influenced by one of his friends. However, a per-
son with only one friend can be easily influenced by his only friend. With such
intuition, [11] proposed the Weighted Cascade(WC) Model.

Definition 2. In the WC model, the probability of u influencing v, pu, v, is
defined as follows.

pu, v =
cu, v∑

i∈NG(v) ci, v
(4)

2.3 Influence Maximization Problem

Domingos and Richardson[7][18] were the first to define the Influence Maxi-
mization Problem as a probablistic algorithm problem. Kempe[11] defined the
Influence Maximization Problem as an optimization problem, and proved that
such problem is NP-Hard under the IC Model and the WC Model. The Influence
Maximization Problem defined by Kempe[11] is as follows.

Definition 3. Given a graph G = (V,E) and the weights for each (u, v) ∈
E representing the probability of u influencing v, the Influence Maximization
Problem finds a set of nodes S ⊆ V that maximizes the influence function f(S)
and ‖S‖ = k.
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3 Related Work

3.1 Greedy Approach

The greedy approach proposed by Kempe calculates the expected influence of
each nodes using the Monte-Carlo simulation and adds the node with the highest
expected value to the seed set, S. The result of the greedy algorithm guarantees
the influence spread within (1 - 1 / e) of the optimal solution under IC and WC
models[11]. Algorithm 1 describes the greedy alogithm.

Algorithm 1. GeneralGreedy(G, k)

Require: graph G = (V, E), k for the number of seeds to be selected
Ensure: the set S that maximizes the influence spread
1: S = ∅
2: for i = 1 to k do
3: for each vertex v ∈ V \S do
4: sv = 0
5: for i = 1 to R do
6: sv += |f(S ∪ {v})|
7: end for
8: sv = sv / R
9: end for
10: S = S ∪ {arg maxv∈V \S{sv}}
11: end for
12: return S

However, the greedy approach’s runtime is slow because the expected influence
for each nodes are calculated using Monte-Carlo simulation. Since the process
of influence spread is defined with probabilistic models, the influence of a node
can only be measured by simulating the influence spread multiple times and
obtaining the approximate value. More runs of Monte-Carlo simulation can im-
proves the approximation, but also takes more time to complete the Monte-Carlo
simulations.

To remedy such shortcoming, [14] proposed a method to reduce the runtime
by minizing the calculation of influence spread f(u) of a node u. [14] uses a pri-
ority queue to recalculate the influnce spread of influential nodes (Cost-Effective
Lazy Forward). Only the influence of the node with the highest influence is recal-
culated. When the recalculated influence spread is still greater than other nodes’
influence spread, that node is added to the seed set. However, in the first itera-
tion, influence spread of all nodes still need to be calculated. Therefore it is still
inefficient in a large social network graph. [5] also proposed an algorithm that
pre-eliminates the edges to calulate the influence spread of all nodes proportional
to the node size for one Monte-Carlo Simulation. However, multiple Monte-Carlo
Simulation need to be run to obtain more approximate influence spreads. The
runtime increases as the number of Monte-Carlo Simulation increases.
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3.2 Heuristic Approach

As the greedy algorithms’ running time is still large despite the improvements
introduced in previous sections, they may not be suitable for large social network
graphs. Heuristic Approaches prove to be efficient alternatives for the Influence
Maximization Problem.

The most basic approach is the degree centrality heuristic[19]. Intuitively, a
user with many friends are influential in a social network. Using such intuition,
the degree centrality heuristic selects k nodes that have the highest degree. This
heuristic is frequently used in sociology to mine the most influential individual in
a social network. [12] expertimentally shows that the degree centrality heuristic
outperforms other heuristics in the Influence Maximization problem. But the
nodes selected by the degree centrality heuristic only consider its neighbors and
therefore cannot be guaranteed to select the optimal seed set. When nodes with
high degree are positioned nearly, the influence spread only affects nodes within
a certain region.

To remedy such shortcomming, [5] proposes the degree discount heuristic.
When a node u is selected as a member of the seed set, the degree of the nodes
in NG(u) are discounted by one. In the next iteration, the node with the highest
degree after the discount is selected as a member of the seed set. k iterations
are performed to select k nodes with the highest degree. Although degree dis-
count heuristic finds node with larger influence spread than the conventional
degree centrality heuristic, it still disregards the community structure of the so-
cial network and therefore is apt to select nearby placed nodes. Lastly, [6] uses
eigenvector centrality heuristic to select the k influential nodes. When a social
network is represented as a transitional matrix, PageRank values for each node
are calculated, and the k nodes with the highest PageRank values are selected
as seed set.

Heuristic approaches are faster than the greedy approaches, but the seed set
tend to be less influential, meaning that the influence spread of the obtained seed
set is lower than those of the greedy approaches. Therefore we aim to improve
the performance of the heuristic approaches.

4 Influence Maximization Using Markov Clustering

4.1 Markov Clustering

[8] first proposed the Markov Clustering which is a frequently used graph clus-
tering algorithm in Bioinformatics. Markov Clustering divides the graph with a
simple intuition. Assume that there exist multiple communities in a social net-
work. When a k-step random walk is performed from a node in the graph, it is
usual for the random walker to stop at one of the nodes within the community
where u belongs to rather than nodes outside the community. Markov Cluster-
ing(MCL) uses such intuition and clusters the nodes whose random walker stops
in the same node.
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MCL performs two iterative operations repeatedly to find clusters of a graph.
Each operations are named as Expansion and Inflation. One successive expansion
and inflation operation is called as one iteration. MCL calculates the probability
of a randomwalker stopping at a certain node using the expansion operation. The
expansion operation multiplies the transition matrix of a social network graph
with itself to calculate the transition probability with twice the random walk step
as before. After the expansion operation, MCL uses inflation opration to speed
up the conversion. Inflation operation increases the transitional probability of
an edge with high weight, whereas decreases the transitional probability of an
edge with low weight. Inflation operation modifies the transitional probability by
firstly computing the transitional probability to the power of inflation rate. If the
newly calculated value is below a certain threshold, that edge is removed and the
whole transitional matrix is re-normalized. Expansion and Inflation operations
are repeated until the transitional matrix becomes doubly idempotent, in other
words, until the transitional matrix of ith iteration and i+1th iteration becomes
identical.

The resulting transitional matrix contains the information about attractors
and the nodes that are attached to the attractors. The column of the resulting
transitional matrix are the starting nodes, whereas the rows are the result nodes.
If a node u is attached to the attractor v, the value in the transitional matrix
M[u][v] has a value larger than 0. Therefore, a row that contains more than one
non-zero values is an attractor, and the number of nodes that are attached to
the attractor is the size of the cluster.

4.2 Attractor Detection Using MCL

MCL’s main aim is to divide a graph in multiple clusters. However in the Influ-
ence Maximization Problem, it is more important to obtain the attractors fastly,
as the attractors are the most influential node in the cluster. Therefore we pro-
pose a novel algorithm that uses MCL to obtain the attractors fastly. MCL uses
matrix multiplication for the expansion operation and therefore has a time com-
plexity of O(n3) for each iteration. Furthermore, MCL has to perform multiple
iterations repeatedly until convergence. When investigating the MCL process,
the attractors are moslty identified in the early iterations, but has to complete
the remaining iterations until convergence. As explained before, obtaining the
attractors is more important in the Influence Maximization Prolem, the remain-
ing iterations can be skipped when most of the attractors are already identified.
Algorithm 2 shows the pseudo code for the attractor detection algorithm.

The attractor detection algorithm runs similar to the conventional MCL al-
gorithm. It repeats Expansion and Inflation operations to find the attractors of
each clusters. The MCL algorithm can be divided into two phases, namely the
growing phase and the shrinking phase. The growing phase of the MCL algo-
rithm is when the number of non-zero values of the transitional matrix increases,
and the shrinking phase is when the number of non-zero values decreases. As
the expansion operation performs random walks, the transitional probability can
become from zero to non-zero when a node becomes reachable after additional
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Algorithm 2. AttractorDetection(G, r)

Require: normalized graph G = (V, E), inflation parameter r
1: M = M(G)
2: GrowingPhase = true
3: repeat
4: prevNNZ = nnz(M)
5: M = M2

6: for i ∈ V do
7: for j ∈ V do
8: M [i][j] = M [i][j]r

9: end for
10: for do
11: if M [i][j] < θ then
12: M [i][j] = 0
13: end if
14: end for
15: for j ∈ V do
16: M [i][j] = M[i][j]∑

k∈V M[i][k]

17: end for
18: end for
19: if nnz(M) < prevNNZ then
20: GrowingPhase = false
21: AC ← diag(M)
22: end if
23: until GrowingPhase == true
24: AC = ∅
25: for i = 0toM.length do
26: if M[i][i] > AC[i] then
27: AC ∪ i
28: end if
29: end for
30: return AC

random walk steps. On the contrary, the Inflation operation eliminates non-zero
values if it does not exceed the given threshold. When the number of the newly
created edges exceeds the number of the eliminated edges, MCL algorithm is in
the growing phase, and otherwise in the shrinking phase.

In the shrinking phase, the transitional probability towards the atrractors in-
creases due to the fact that the Inflation operation increases the transitional
probability of edges that already have high transitional probability. Also, the
transitional probability of edges to the non-attractors decreases upon the rep-
etition of the two operations. Therefore, if an self-looping edge’s transitional
probability increases in the shrinking phase, that node is likely to become an
attractor. With such intuition, we proposed a novel algorithm that stores the
transitional probability of self-loops in the last iteration of the growing phase,
and compares it with the values of the first iteration of the shrinking phase. The
nodes whose transitional probability increased are selected as the “Attractor
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Candidate”. The detected attractor candidates can be used as candidates of the
influential nodes in the Influence Maximization Problem.

4.3 Hybrid Algorithms for Influence Maximization Problem

We propose a novel heuristics for the Influence Maximization Problem using the
attractor detection algorithm. First, MCL heuristic selects k attractors with the
biggest cluster sizes. Assuming that an attractor will influence most of the nodes
in the cluster, selecting k attractors with the biggest cluster size can maximize the
influence spread. Algorithm 3 shows the pseudo code for the MCL heuristic. The
AttractorDetection function refers to the before-mentioned attractor detection
algorithm.

Algorithm 3. MCL Heuristic(G, k, r)

Require: graph G = (V, E), k for the number of seeds to be selected, inflation rate r
Ensure: the set S that maximizes the influence spread
1: S = ∅
2: AC = AttractorDetection(G,r)
3: for i = 1tok do
4: select u = argmaxv{clusterSize(v)|v ∈ AC\S}
5: S = S ∪ u
6: end for
7: return S

Secondly, MCL Greedy heuristic applies the greedy algorithm only to the at-
tractor candidates obtained by the attractor detection algorithm. Conventional
greedy algorithm need to calculate the influence spread of each nodes and there-
fore have large runtimes. However, the MCL Greedy heuristic only calculates the
influence spread of attractor candidates, and therefore can reduce the runtime.
But as the number of attractor candidates increases, the runtime of MCL Greedy
heuristic also increases due to the fact that it uses Monte-Carlo simulations to
simulate the influence spread for the attractor candidates.

Lastly, the MCL Degree Discount heuristic combines the attractor detection
algorithm and the degree discount heuristics which shows the best performance
among the heuristics. MCL Degree Discount heuristic considers the commu-
nity structure of the social network, but does not simulate the influence spread.
Therefore it can achieve better performance while running faster than the con-
ventional greedy algorithm.

5 Experiment

5.1 Datasets

Three datasets are used for the experiment. The ‘High Energy Physics - The-
ory Collaboration Network’ dataset proposed in [11] [12] [5] are the mostly



120 C. Kim et al.

used dataset in the literature. Also, ‘Computational Geometry Collaboration
Network’[2] is also used. Both datasets are co-authorship networks. Since real-
world dataset of facebook or twitter are large in size and therfore greedy algo-
rithm cannot be run on such datasets. However the co-authorship networks of
various sizes are open to public and are known to imply the features of general
social networks[17]. Both graphs have authors as nodes and edges when two au-
thors have co-authored a paper. The weight of the edge is the number of papers
that the two authors co-written. Each dataset will be referred to HEPT and
GEOM in the following sections. Lastly a small-sized real world social network
dataset is used to demonstrate the effect of the novel heuristices. This dataset
consists of 9 communities and were open to public at NodeXL Graph Gallery5.
This dataset will be referred as FB. The statistics of each dataset are as follows.

Table 1. Datasets

graph data name # of nodes # of edges

HEPT 15,233 58,891

GEOM 7,343 11,898

FB 367 3,728

5.2 Experiment Setup

We compare the proposed heuristics with the new greedy algorithm proposed in
[5], degree discount heuristic, random selection, and lastly eigenvector centrality
heuristic[3]. This experiment measures the influence spread of each algorithms
for the datasets under the IC model and the WC model. The size of the seed set,
k, is varied from 1 to 10. The restart probability for the eigenvector centrality
heuristic is set to 15%. To measure the influence spread of each node, 1000
Monte-Carlo simulations are executed.

5.3 Effect of Attrator Detection Algorithm

In this experiment, we aim to show the effect of the attractor detection algorithm.
Let us define the attractors obtained by fully executing the MCL algorithm as
MCL, and the attractors obtained with the attractor detection algorithm as
eMCL(early-terminated MCL). The recall and precision for the two datasets
are calculated using Eq.5.

precision =
eMCL ∩MCL

eMCL
, recall =

eMCL ∩MCL

MCL
(5)

The precision and recall values for the HEPT and the GEOM datasets are as
follows.

5 http://www.nodexlgraphgallery.org/Pages/Graph.aspx?graphID=584

http://www.nodexlgraphgallery.org/Pages/Graph.aspx?graphID=584
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Table 2. precision & recall

graph data name precision recall

HEPT 0.7692 0.7135

GEOM 0.8495 0.8234

As the result of the experiment shows, attractors with about 80% precision
and 76% recall in average are obtained with the attractor detection algorithm.
This is due to the fact that the attractor detection algorithm only detects at-
tractor candidates and not the precise clusters. The runtime of each algorithm
are shown the table 3.

Table 3. runtime comparison (sec)

graph data name MCL eMCL

HEPT 1058.97 235.11

GEOM 118.73 29.76

eMCL in comparison to MCL terminates about 7.45 times faster in HEPT
dataset and 4.87 times faster in GEOM dataset. When finding the top 10 nodes
that maximizes the influence spread, 8 of the nodes obtained with eMCL were
identical to the node obtained with MCL in HEPT dataset. In GEOM dataset,
all 10 nodes were identical. The performance comparison between eMCL and
MCL will be explained in the next experiment. Shown that the eMCL finds
most of the attractors that MCL finds, it is shown that the attractor detection
algorithm is efficient that it terminates faster than MCL.

5.4 Influence Spread Comparison

In this experiment, the size of the seed set k is varied under IC model and WC
model to demonstrate the effectiveness of each algorithm. Also, runtime of each
algorithms are compared for a given value of k which being 10.

Figure 1 shows the influence spread of each algorithm for the three datasets.
For all datasets, random selection heuristic show the lowest influence spread and
the eigenvector centrality heuristic show second lowest. Degree discount heuris-
tic outperforms other heuristics, but shows slightly lower influence spread than
the MCL, eMCL, eMLC Greedy and eMCL Degreee Discount heuristics. The
conventional greedy algorithm shows similar influence spread as the proposed
heuristics.

For the HEP dataset, the eMCL heuristic, eMCL Greedy heuristic, eMCL De-
gree Discount heuristic have influence spread that are slightly larger compared
to the Degree Discount heuristics. The newly proposed heuristics influence about
95% of the nodes that are influenced by the greedy algorithm. For the GEOM
dataset, the hybrid heuristics show 9.3% 20.7% increase in the influence spread.
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Fig. 1. Influence spread comparison under the IC Model

The eMCL Greedy heuristic influences about 92.1% compared to the greedy al-
gorithm, whereas the eMCL Degree Discount and the eMCL heuristic slightly
outperform the greedy algorithm. It can be also seen that eMCL heurisitic influ-
ences as much nodes as the MCL heuristic. The result for the facebook dataset
proves that regarding the community structure in the Influence Maximization
Problem can improve the influence spread in the social network. As the size
of the seed set increases, the newly proposed heuristics select influential nodes
that do not belong to the same community. When k is set to 10, eMCL Greedy
and eMCL Degree Discount show similar influence spread as the greedy algo-
rithm. MCL and eMCL heuristic shows 2.9% and 3% increase in the influence
spread. However, the Degree Discount heuristic only shows 77.1% compared to
the greedy algorithm.

Figure 2 show the influence spread of each algorithm for the three datasets.
The overall result are similar to the experiment conducted on the IC model.
For all datasets, random selection heuristic show the lowest influence spread
and the eigenvector centrality heuristic follows. Degree discount heuristic show
larger influence spread than other heuristics, but smaller compared to the MCL,
eMCL, eMLC Greedy and eMCL Degreee Discount heuristics. The conventional
greedy algorithm shows similar influence spread as the proposed heuristics. For
the HEP dataset, it is shown that the newly proposed heuristics have influence
spread that are about 7.9% 13% larger compared to the Degree Discount heuris-
tics. The newly proposed heuristics influence about 94.8% of the nodes with the
eMCL heuristic, and 96.9% with eMCL Greedy and eMCL Degree Discount
compared to the greedy algorithm. It is shown that for the GEOM dataset the
hybrid heuristics show 5%, increase in the influence spread in average. Under the
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Fig. 2. Influence spread comparison under the WC Model

WC model, the newly proposed heuristics largely outperformed the degree dis-
count heuristic in the GEOM dataset. All three heuristics showed about 96.9%
of the influence spread compared to the greedy algorithm. Similar to the experi-
ment under the IC model, regarding community strutures under the WC model
improves the influence spread. For the Facebook dataset it is observable that
regarding the community structure improves the influence spread. As the size of
the seed set increases, the newly proposed heuristics’ influence spread outper-
forms the conventional heuristics. eMCL Greedy shows similar influence spread
as the greedy algorithm. eMCL Degree Discount heuristic shows about 94.9%
influence spread, whereas the MCL and eMCL heuristics show 85.1% and 81.2%
influence spread. The Degree Discount heuristic only shows 68.7% compared to
the greedy algorithm.

5.5 Runtime Comparison

The greedy algorithm’s runtime under the IC model takes longest to complete
and the eMCL Greedy heuristics follows. Greedy algorithms runtime depends
on multiple factors such as size of the graph, number of Monte-Carlo simula-
tion, and the size of the seed set. As the size of the seed set, k, increases, the
greedy algorithm will take longer to terminate. The eMCL and eMCL Degree
Discount heuristics proposed in this paper terminates about 15 times faster than
the greedy algorithm whereas their influence spread are similar to the greedy al-
gorithm. The eMCL Greedy heuristic terminates 11 time faster than the greedy
algorithm. The greedy algorithm’s runtime also takes longest under the WC
model. eMCL Greedy heuristics terminates 24.4 times faster than the greedy
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algorithm. Lastly, eMCL and eMCL Degree Discount heuristics terminates 46
times faster than the greedy algorithm in average. whereas their influence spread
are similar to the greedy algorithm.

Fig. 3. runtime comparison

The last experiment is to show the scalability of each algorithm. Figure 4
shows the increase in runtime while varying the network size from 3000 to 15000.
Simple heuristics such as Degree Discount heuristic or Random selection show
almost insignificant increase in the runtime. However, greedy algorithm’s run-
time tend to drastically increase as the network size increases. On the contrary,
the increase in the newly proposed heuristics are up to 4 times less than the
greedy algorithm, and therefore is more scalable. As the network size increases,
hybrid heuristics can handle larger networks than the greedy algorithm in limited
timespan.
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Fig. 4. comparison of runtime varying the network size

6 Conclusion

In this paper, we proposed novel heuristics for the Influence Maximization Prob-
lem that regards the inherent community structures in a social network. Also,
we proposed an efficient algorithm that only selects the influential nodes in each
communities as candidate nodes for the seed set. The efficiency of the attractor
detection algorithm is experimentally shown in the experiment section. Using
the attractor detection algorithm, we propose three hybrid heuristics for the In-
fluence Maximization Problem. Our heuristics are advantageous in the means
that it is more scalable than the conventional greedy algorithm, whereas shows
larger influence spread than currently existing heuristics.

There are several future directions for this reserach. First, if MCL can be run
in parallel, the scalability of the proposed heuristics will also improve. Extending
the MCL to run parallely will be one of the directions. Secondly, extending the
attrator detection algorithm to let the user choose its termination point. For
example, a user might want more precise attractor candidates while sacrificing
the runtime or vice versa. This extention would allow the user to choose what
he/she values more, either the performance of the algorithm or the runtime.
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11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM,
New York (2003)
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