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Abstract. Anatomical structures and tissues are often hard to be seg-
mented in medical images due to their poorly defined boundaries, i.e., low
contrast in relation to other nearby false boundaries. The specification
of the boundary polarity and the usage of shape constraints can help
to alleviate part of this problem. Recently, an Oriented Image Forest-
ing Transform (OIFT) has been proposed. In this work, we discuss how
to incorporate Gulshan’s geodesic star convexity prior in the OIFT ap-
proach for interactive image segmentation, in order to simultaneously
handle boundary polarity and shape constraints. This convexity con-
straint eliminates undesirable intricate shapes, improving the segmenta-
tion of objects with more regular shape. We include a theoretical proof of
the optimality of the new algorithm in terms of a global maximum of an
oriented energy function subject to the shape constraints, and show the
obtained gains in accuracy using medical images of thoracic CT studies.

Keywords: graph search algorithms, image foresting transform, graph-
cut segmentation, geodesic star convexity.

1 Introduction

Image segmentation, such as to extract an object from a background, is very
useful for medical and biological image analysis. However, in order to guarantee
reliable and accurate results, user supervision is still required in several seg-
mentation tasks, such as the extraction of poorly defined structures in medical
imaging, due to their intensity non-standardness among images, field inhomo-
geneity, noise, partial volume effects, and their interplay [1]. The high-level,
application-domain-specific knowledge of the user is also often required in the
digital matting of natural scenes, because of their heterogeneous nature [2]. These
problems motivated the development of several methods for semi-automatic seg-
mentation [3,4,5,6], aiming to minimize the user involvement and time required
without compromising accuracy and precision.

One important class of interactive image segmentation comprises seed-based
methods, which have been developed based on different theories, supposedly
not related, leading to different frameworks, such as watershed [6], random
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walks [7], fuzzy connectedness [8], graph cuts [4], distance cut [2], image forest-
ing transform [9], and grow cut [10]. The study of the relations among different
frameworks, including theoretical and empirical comparisons, has a vast litera-
ture [11,12,13,14]. These methods can also be adapted to automatic segmentation
whenever the seeds can be automatically found [15].

In this paper, we pursue our previous work on Oriented Image Foresting
Transform (OIFT) [16], which extends popular methods [9,8], by incorporat-
ing the boundary orientation (boundary polarity) to resolve between very sim-
ilar nearby boundary segments by exploring directed weighted graphs. OIFT
presents an excellent trade-off between time efficiency and accuracy, and is ex-
tensible to multidimensional images. In this work, we discuss how to incorpo-
rate Gulshan’s geodesic star convexity (GSC) prior in the OIFT approach. This
convexity constraint eliminates undesirable intricate shapes, improving the seg-
mentation of objects with more regular shape. We include a theoretical proof of
the optimality of the new algorithm in terms of a global maximum of an energy
function subject to the shape constraints. The proposed method GSC-OIFT can
simultaneously handle boundary polarity and shape constraints with improved
accuracy for targeted image segmentation [17].

The next sections give a summary of the relevant previous work of the Image
Foresting Transform [9] and OIFT [16]. The proposed extensions are presented
in Section 5. In Section 6, we evaluate the methods, and state our conclusions.

2 Image Foresting Transform

An image can be interpreted as a weighted graph G = (I,A, w) whose nodes
are the image pixels in its image domain I ⊂ Zn, and whose arcs are the pixel
pairs (s, t) in A (e.g., 4-neighborhood, or 8-neighborhood, in case of 2D images).
The adjacency relation A is a binary relation on I. We use t ∈ A(s) and (s, t) ∈
A to indicate that t is adjacent to s. Each arc (s, t) ∈ A has a fixed weight
w(s, t) ≥ 0. In this work, higher arc weights across the object’s boundary should
be considered, such as a dissimilarity measure between pixels s and t (e.g.,
w(s, t) = |I(t) − I(s)| for a single channel image with values given by I(t)).
The graph is undirected weighted if w(s, t) = w(t, s) for all (s, t) ∈ A, otherwise
we have a directed weighted graph.

For a given image graph G = (I,A, w), a path πt = 〈t1, t2, . . . , t〉 is a sequence
of adjacent pixels with terminus at a pixel t. A path is trivial when πt = 〈t〉.
A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc (s, t). A
predecessor map is a function P that assigns to each pixel t in I either some
other adjacent pixel in I, or a distinctive marker nil not in I — in which case
t is said to be a root of the map. A spanning forest is a predecessor map which
contains no cycles — i.e., one which takes every pixel to nil in a finite number of
iterations. For any pixel t ∈ I, a spanning forest P defines a path πt recursively
as 〈t〉 if P (t) = nil, and πs · 〈s, t〉 if P (t) = s �= nil.

A connectivity function computes a value f(πt) for any path πt, usually
based on arc weights. A path πt is optimum if f(πt) ≤ f(τt) for any other
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path τt in G. By taking to each pixel t ∈ I one optimum path with termi-
nus t, we obtain the optimum-path value V (t), which is uniquely defined by
V (t) = min∀πt in G{f(πt)}. The image foresting transform (IFT) [9] takes an
image graph G = (I,A, w), and a path-value function f ; and assigns one op-
timum path πt to every pixel t ∈ I such that an optimum-path forest P is
obtained — i.e., a spanning forest where all paths are optimum. However, f
must be smooth [9], otherwise, the paths may not be optimum.

The cost of a trivial path πt = 〈t〉 is usually given by a handicap value H(t),
while the connectivity functions for non-trivial paths follow a path-extension
rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), w(s, t)} (1)

fsum(πs · 〈s, t〉) = fsum(πs) + δ(s, t) (2)

feuc(πs · 〈s, t〉) = ‖t−R(πs)‖2 (3)

fw(πs · 〈s, t〉) = w(s, t) (4)

where w(s, t) ≥ 0 is a fixed arc weight, δ(s, t) ≥ 0 is a dissimilarity measure,
R(πt) is the origin/root of a path πt, and fw is a non-smooth function, which
has important relations with the fmax smooth function [18,12].

We consider image segmentation from two seed sets, So and Sb (So ∩Sb = ∅),
containing pixels selected inside and outside the object, respectively. The search
for optimum paths (usually considering fmax) is constrained to start in S =
So ∪ Sb (i.e., H(t) = −1 for all t ∈ S, and H(t) = +∞ otherwise). The image is
partitioned into two optimum-path forests — one rooted at the internal seeds,
defining the object, and the other rooted at the external seeds, representing the
background [18]. A label, L(t) = 1 for all t ∈ So and L(t) = 0 for all t ∈ Sb, is
propagated to all unlabeled pixels during the computation [9].

In the case of undirected weighted graphs, the connectivity functions fmax

(under the conditions stated in [18]) and fw give a global optimum segmentation
according to an energy function of the cut boundary [13,14]. They maximize the
graph-cut measure E defined by Equation 5 among all possible segmentation
results satisfying the hard constraints (seeds).

E(L,G = (I,A, w)) = min
∀(s,t)∈A| L(s) �=L(t)

w(s, t) (5)

3 Oriented Image Foresting Transform (OIFT)

In the case of directed graphs, an important thing to note is that there are two
different types of cut for each object boundary: an inner-cut boundary composed
by edges that point toward object pixels Ci(L) = {∀(s, t) ∈ A| L(s) = 0, L(t) =
1}, and an outer-cut boundary with edges from object to background pixels
Co(L) = {∀(s, t) ∈ A| L(s) = 1, L(t) = 0}. Consequently, we have two different
kinds of energy, Ei(L,G) and Eo(L,G):

Ei(L,G = (I,A, w)) = min
∀(s,t)∈Ci(L)

w(s, t) (6)

Eo(L,G = (I,A, w)) = min
∀(s,t)∈Co(L)

w(s, t) (7)
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As demonstrated in [16], the following non-smooth connectivity functions f bkg
i,max

and f bkg
o,max in the IFT algorithm (which we denote as OIFT) lead to optimum

cuts that maximize Eq. 6 and Eq. 7, respectively. The handicap values of f bkg
i,max

and f bkg
o,max for trivial paths are defined as before (i.e., H(t) = −1 for all t ∈ S,

and H(t) = +∞ otherwise). The undirected weights w(s, t) are converted to
directed arcs by multiplying them by an orientation factor (1+α) if I(s) > I(t),
and by (1− α) otherwise (e.g., α = 0.5).

f bkg
i,max(πs · 〈s, t〉) =

{
max{f bkg

i,max(πs), 2× w(t, s) + 1} if R(πs) ∈ So

max{f bkg
i,max(πs), 2× w(s, t)} if R(πs) ∈ Sb

(8)

f bkg
o,max(πs · 〈s, t〉) =

{
max{f bkg

o,max(πs), 2× w(s, t) + 1} if R(πs) ∈ So

max{f bkg
o,max(πs), 2× w(t, s)} if R(πs) ∈ Sb

(9)

4 Geodesic Star Convexity (GSC)

A point p is said to be visible to c via a set O if the line segment joining p to c lies
in the set O. An object O is star-convex with respect to center c, if every point
p ∈ O is visible to c via O [19]. It is also possible to define a discrete version of
this constraint directly in the image domain, by considering a shortest path in
the image graph, returned by the IFT (e.g., using feuc, 8-connected adjacency,
H(c) = 0, and H(t) = +∞ for all t �= c), as the line segment.

In the case of multiple stars, a computationally tractable definition, was pro-
posed in [20]. The previous notion of the line segment (shortest path) joining
the single star center c to p, is extended to a line segment joining the set of star
centers C = {c1, c2, . . . , cn} to p, which is taken as the shortest path between the
point p and set C. In interactive segmentation, the set of star centers is usually
taken to coincide with the internal seeds (i.e., C = So), and, in the discrete
version, the line segments form a spanning forest rooted at the internal seeds,
where each line segment corresponds to a path in the graph.

In [20], the authors proposed the usage of a different notion of star convexity
with shortest path from Euclidean to geodesic (fsum). We use H(t) = −1 for all

t ∈ So (H(t) = +∞ otherwise), and δ(s, t) = [w(s, t) + 1]
β − 1 + ‖t− s‖ in the

path-extension rule for fsum, where ‖t − s‖ is the Euclidean distance between
pixels s and t, and β controls the forest topology in the returned predecessor map,
which we will denote by Psum. For lower values of β (β ≈ 0.0), δ(s, t) approaches
‖t − s‖, and it imposes more star regularization to the object’s boundary. For
higher values, [w(s, t)+1]β dominates the expression, allowing a better fit to the
curved protrusions and indentations of the boundary.

5 OIFT with Geodesic Star Convexity (GSC-OIFT)

An object O is geodesic star convex (GSC) with respect to a set of centers C,
if every point p ∈ O is visible to C via O (i.e., the shortest path joining p to
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C in Psum lies in the set O). In this work, we want to constrain the search for
optimum results, that maximize the graph-cut measures Ei(L,G) (Eq. 6) and
Eo(L,G) (Eq. 7), only to segmentations that satisfy the geodesic star convexity
constraint.

First, we compute the optimum forest Psum for fsum by the regular IFT
algorithm, using only So as seeds, for the given directed graph G = (I,A, w).
Let’s consider the following two sets of arcs ξiPsum

= {∀(s, t) ∈ A| s = Psum(t)}
and ξoPsum

= {∀(s, t) ∈ A| t = Psum(s)}. We have the following Lemma 1:

Lemma 1. For a given segmentation L, we have Co(L) ∩ ξoPsum
�= ∅, if and

only if there is a violation of the geodesic star convexity constraint. We have
Ci(L)∩ξiPsum

�= ∅, if and only if there is a violation of the geodesic star convexity
constraint.

Proof. We will demonstrate it for Co(L) ∩ ξoPsum
�= ∅, but the demonstration for

Ci(L) ∩ ξiPsum
�= ∅ is essentially identical. By definition, a violation of geodesic

star convexity constraint with respect to a set of centers C = So, will be given
if there exists a point p ∈ O = {∀t|L(t) = 1} that is not visible to C via O (i.e.,
there is a pixel r in the shortest path joining p to C in Psum, and r /∈ O).

By the definitions of ξoPsum
and Co(L), we have Co(L) ∩ ξoPsum

= {∀(s, t) ∈
A|L(s) = 1, L(t) = 0 and t = Psum(s)}. For any edge (s, t) ∈ Co ∩ ξoPsum

we have
t = Psum(s), which means that there exists a shortest path πs = πt · 〈t, s〉 in
Psum rooted at the internal seeds So (i.e., line segment between s and So). But
(s, t) ∈ Co(L) implies that L(t) = 0 (i.e., t /∈ O), and hence s is not visible to So

through πs = πt · 〈t, s〉 in Psum. Thus, Co ∩ ξoPsum
�= ∅ implies in a violation of

the geodesic star convexity constraint.
On the other hand, if we have a violation of the geodesic star convexity

constraint, it means that ∃s ∈ O (i.e., L(s) = 1), which is not visible to So

via the shortest path πs in Psum, so that there is a pixel pi /∈ O in πs =
〈p1, . . . , pi, . . . , pn = s〉, with Psum(pi+1) = pi and pi+1 ∈ O. Hence, (pi+1, pi) ∈
Co ∩ ξoPsum

, which implies that Co ∩ ξoPsum
�= ∅.

Therefore, we have Co ∩ ξoPsum
�= ∅, if and only if there is a violation of the

geodesic star convexity constraint.

Theorem 1 (Inner/outer-cut boundary optimality). For a given image
graph G = (I,A, w), consider a modified weighted graph G′ = (I,A, w′), with
weights w′(s, t) = −∞ for all (s, t) ∈ ξoPsum

, and w′(s, t) = w(s, t) otherwise.
For two given sets of seeds So and Sb, the segmentation computed over G′ by the
IFT algorithm for function f bkg

o,max defines an optimum cut in the original graph
G, that maximizes Eo(L,G) among all possible segmentation results satisfying
the shape constraints by the geodesic star convexity, and the seed constraints.

Similarly, the segmentation computed by the IFT algorithm for function f bkg
i,max,

over a modified graph G′ = (I,A, w′); with weights w′(s, t) = −∞ for all
(s, t) ∈ ξiPsum

, and w′(s, t) = w(s, t) otherwise; defines an optimum cut in the
original graph G, that maximizes Ei(L,G) among all possible segmentation re-
sults satisfying the shape constraints by the geodesic star convexity, and the seed
constraints.
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Proof. We will prove the theorem in the case of function f bkg
o,max the other case

having essentially identical proof. Since we assign the worst weight to all arcs
(s, t) ∈ ξoPsum

in G′ (i.e., w′(s, t) = −∞), any segmentation L̃ with Co(L̃) ∩
ξoPsum

�= ∅ will receive the worst energy value (Eo(L̃, G
′) = −∞) 1. From the

Theorem in [16], we know that the IFT with f bkg
o,max overG

′ maximizes the energy
Eo(L,G

′) in the graph G′, consequently, it will naturally avoid in its outer-cut
boundary any edge from ξoPsum

. Since, there is always a solution that does not
violate the GSC constraint (e.g., we could take O = So), and from Lemma 1, we
have that the computed solution cannot violate the GSC constraint.

Since w(s, t) ≥ 0, ∀(s, t) ∈ A, and from Lemma 1, we have that any candidate
segmentation L̈ satisfying the GSC constraint must have Eo(L̈, G

′) ≥ 0. More-
over, since its weights for the arcs in Co(L̈) were not changed in G′, we also have
that Eo(L̈, G

′) = Eo(L̈, G). Hence, all results satisfying the GSC constraint were
considered in the optimization, and therefore Theorem 1 holds, as we wanted to
prove.

6 Experiments and Conclusions

We conducted quantitative experiments, using a total of 40 image slices of 10
thoracic CT studies to segment the liver. All methods, including the power wa-
tershed algorithm (PWq=2) [14], were assessed for accuracy employing the mean
performance curve (Dice coefficient) and ground truth data obtained from an
expert of the radiology department at the University of Pennsylvania.

Figure 1a shows the mean accuracy curves for all the images assuming different
seed sets obtained by eroding and dilating the ground truth. The undirected arc
weights were computed as w(s, t) = |I(t)−I(s)|. For the directed weighted graphs
we considered α = 0.5, and we used β = 0.0. For higher values of β, GSC-OIFT
imposes less shape constraints, so that the accuracy tends to decrease (Fig. 1b-
d). Figure 2 shows some results in the case of user-selected markers for the liver,
and Figure 3 shows one example in 3D.
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Fig. 1. (a) The mean accuracy curves of all methods for the liver segmentation for
various values of β: (a) β = 0.0, (b) β = 0.2, (c) β = 0.5, and (d) β = 0.7

1 The GSC restrictions are embedded directly into the graph G′.
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(a) (b) (c) (d)

Fig. 2. Results for user-selected markers: (a) IRFC (IFT with fmax), (b) OIFT (fbkg
o,max

with α = 0.5), (c) GSC-IFT (β = 0.7, α = 0.0), and (d) GSC-OIFT (β = 0.7, α = 0.5)

(a) (b) (c)

Fig. 3. Example of 3D skull stripping in MRI: (a) IRFC (IFT with fmax), (b) GSC-IFT
(β = 0.3, α = 0.0), and (c) GSC-OIFT (β = 0.3, α = 0.5), for the same user-selected
markers

In conclusion, we developed extensions to the OIFT algorithm [16], by incorpo-
rating the geodesic star convexity constraint in its formulation. The results were
proved to be optimum according to an energy functional of the cut boundary,
and were shown to improve the accuracy in practice. GSC-OIFT only requires
twice the computational time of a conventional IFT. As future work, we intend
to combine it with statistical models for automatic segmentation.

Acknowledgment. The authors thank FAPESP (2012/06911-2), CNPq
(305381/2012-1), and CAPES for the financial support, and Dr. J. K. Udupa
(MIPG-UPENN) for the images.

References

1. Madabhushi, A., Udupa, J.: Interplay between intensity standardization and in-
homogeneity correction in MR image processing. IEEE Transactions on Medical
Imaging 24(5), 561–576 (2005)

2. Bai, X., Sapiro, G.: Distance cut: Interactive segmentation and matting of images
and videos. In: Proc. of the IEEE Intl. Conf. on Image Processing, vol. 2, pp.
II-249–II-252 (2007)

3. Falcão, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch, B., Lotufo, R.: User-
steered image segmentation paradigms: Live-wire and live-lane. Graphical Models
and Image Processing 60(4), 233–260 (1998)



Image Segmentation by Oriented Image Foresting Transform 579

4. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Intl.
Journal of Computer Vision 70(2), 109–131 (2006)

5. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Intl. Journal
of Computer Vision 1, 321–331 (1987)

6. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings,
shortest path forests, and topological watersheds. Trans. on Pattern Analysis and
Machine Intelligence 32, 925–939 (2010)

7. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anaysis
and Machine Intelligence 28(11), 1768–1783 (2006)

8. Ciesielski, K., Udupa, J., Saha, P., Zhuge, Y.: Iterative relative fuzzy connectedness
for multiple objects with multiple seeds. Computer Vision and Image Understand-
ing 107(3), 160–182 (2007)

9. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: Theory, algo-
rithms, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26(1), 19–29 (2004)

10. Vezhnevets, V., Konouchine, V.: “growcut” - interactive multi-label N-D image
segmentation by cellular automata. In: Proc. Graphicon., pp. 150–156 (2005)

11. Sinop, A., Grady, L.: A seeded image segmentation framework unifying graph cuts
and random walker which yields a new algorithm. In: Proc. of the 11th International
Conference on Computer Vision, ICCV, pp. 1–8. IEEE (2007)

12. Miranda, P., Falcão, A.: Elucidating the relations among seeded image segmen-
tation methods and their possible extensions. In: XXIV Conference on Graphics,
Patterns and Images, Maceió, AL (August 2011)
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