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Abstract. Benchmark data sets consisting of image pairs and ground truth ho-
mographies are used for evaluating fundamental computer vision challenges, such
as the detection of image features. The mostly used benchmark provides data
with only low resolution images. This paper presents an evaluation benchmark
consisting of high resolution images of up to 8 megapixels and highly accurate
homographies. State of the art feature detection approaches are evaluated using
the new benchmark data. It is shown that existing approaches perform differently
on the high resolution data compared to the same images with lower resolution.

1 Introduction

The detection of features is a fundamental step in many computer vision applications.
Standing at the beginning of a processing pipeline, the accuracy of such an application
is often determined by the accuracy of the detected features. Thus, the development and
the evaluation of feature detectors is of high interest in the computer vision community.

The evaluations of feature detectors and descriptors [1,2,3,4,5,6,7] are based on im-
age pairs showing planar scenes and corresponding homographies which determine the
mapping between an image pair. This data serves as ground truth for the accuracy eval-
uation. The mostly used reference data set is proposed by Mikolajczyk et al. [3]. In this
set, a sequence consists of 6 images showing the same scene undergoing different types
of distortion, such as scale or viewpoint change, illumination, or coding artefacts. The
evaluation criterion for feature detectors is the repeatability. The evaluation protocol
counts the number of correctly detected feature pairs. A correctly detected feature pair
is determined by using a threshold for the overlap error [3]. The threshold controls the
demanded accuracy of the evaluation.

The evaluation benchmark [3] has some deficiencies regarding the images as well as
the homographies. The image resolution is only 0.5 megapixels. Many images of the
data set are not restricted to a plane which is a violation of the homography assumption
as shown in Figure 1. For some images, scene content moves between the capturing
process (leaves in the Trees sequence). It appears that radial distortion is not considered
for the benchmark generation which is another violation of the mapping assumption.
For the computation of the ground truth homographies, features are used1. This is not
desirable because the data is used for the evaluation of feature detectors. Finally, the
authors concede that the homographies are not perfect [8]. However, the data set is used

1 www.robots.ox.ac.uk/˜vgg/research/affine/det eval files/
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(a) Graffiti image 3 (b) Mapped image 1 (c) Differences between
(a) and (b)

(d) Trees image 3 (e) Mapped image 1 (f) Differences between
(d) and (e)

Fig. 1. Part of the mapped images 1 and image 3 of the Graffiti sequence (top row) and the Trees
sequence (bottom row). For the mapping of image 1, the ground truth homographies are used.
Large errors occur due to the car in the foreground (Graffiti) and the moving leaves because
of wind (Trees). The bottom part of the Graffiti wall indicates a violation of the homography
assumption. The error is shown in the images 1(c) and 1(f) (cf. equation (6)).

as ground truth for high-accuracy evaluations, sometimes using very small overlap error
thresholds [3,8,9]. Apart from feature evaluation there are applications [10] which use
a dense representation of the images. In this case, the mapping errors would spoil the
evaluation significantly. Hence, the data set is useless for applications with dense image
representations.

Nowadays, consumer cameras provide image resolutions of 8 megapixels or more.
The question arises, if feature detector evaluations based on data with 0.5 megapixels
are valid for high resolution images. In [3], the evaluated detectors provide scale invari-
ant properties. On the other hand, the localization accuracy of a scale invariant feature
may be dependent on the detected scale [11], because its position error in a certain pyra-
mid layer is mapped to the ground plane of the scale space pyramid. In high resolution
data, more features are expected to be detected in higher scales of the image pyramid.
Thus, a small localization error of a detector may become significant in high resolution
image data.

An improved homography benchmark is provided in [12] with image resolutions of
1.5 megapixels per image. In addition, the accuracy of the Mikolajczyk benchmark is
slightly increased using a dense image representation instead of image features.

We use the RAW camera data from the images of the data set [12]. The proposed
technique exploits the ground truth data from [12] for initializing an evolutionary opti-
mization for the computation of ground truth homographies between image pairs with
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resolutions of up to 8 megapixels. This technique is called homography upscaling. The
data is validated using the evaluation protocol invented by [3]. For the comparison be-
tween low-resolution and high-resolution benchmark data, the same detectors [3] are
evaluated: MSER [13], Hessian-Affine [1], Harris-Affine [8], intensity extrema-based
regions (IBR) [14], and edge-based regions (EBR) [15].

The main motivation of this paper is the question if the well known results for the
accuracy of feature detectors are still valid for high resolution data. Furthermore, the
newly generated high resolution ground truth data set will be provided to the computer
vision community for feature detector evaluation or for applications using a dense rep-
resentation of the images, such as [10].

In the following Section 2, the computation of the new high resolution benchmark
is explained. Section 3 shows the accuracy results of the benchmark compared to [12]
and the feature evaluation using the repeatability criterion. In Section 4, the paper is
concluded.

2 Homography Upscaling

We make use of the RAW image data from [12]. In [12], the benchmark is created
using subsampled images of size 1536 × 1024 (1.5 megapixels). We use the images
with the same scene content at higher resolution. The radial distortion is removed in a
preprocessing step. Our objective is to create ground truth homographies with image
resolutions of up to 3456× 2304 (8 megapixels), which is the maximum resolution of
the utilized Canon EOS 350D camera.

Since the homography for the image pair at resolution R1 is approximately known,
it can be used for a reasonable initialization for the optimization at resolution R2 as
shown in Section 2.1. The optimization is based on a cost function which computes the
mapping error of the homography HR2 at resolution R2. The minimization of the cost
function is explained in Section 2.2.

2.1 Upscaling a Homography Analytically

Let the homography between two images at resolution R1 = MR1 ×NR1 be given as
HR1 . Then, a point pR1 of the first image can be identified in the second image with
coordinates p′

R1
by

p′
R1

= HR1 · pR1 (1)

The pixel coordinates of a corresponding image point pair pR1 ↔ p′
R1

in homoge-
neous coordinates [16] are normalized to the resolution R0 = [−1; 1] × [−1; 1]. This
mapping in the left and right image is determined by:

pR1 = AR1 · xR0 and p′
R1

= AR1 · x′
R0

(2)

with the matrix AR1 =

⎛
⎜⎝

MR1−1

2 0
MR1−1

2

0
NR1−1

2

NR1−1

2
0 0 1

⎞
⎟⎠.
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From equations (1) and (2), it follows:

AR1 · x′
R0

= HR1 · AR1 · xR0 (3)

The desired homography at image resolution R2 = MR2 × NR2 is HR2 . If all image
positions from resolutions R1 and R2 are normalized to R0, their coordinates xR0 are
identical (cf. equations (2)):

xR0 = A−1
R2

· pR2 and x′
R0

= A−1
R2

· p′
R2

(4)

By exchanging xR0 and x′
R0

in equation (3) with equations (4), it follows:

p′
R2

= AR2 · A−1
R1

· HR1 · AR1 · A−1
R2︸ ︷︷ ︸

HR2

·pR2 (5)

Hence, the homography HR2 can be computed by a matrix multiplication consisting of
the known matrix HR1 and the resolutions MR1 ×NR1 and MR2 ×NR2 of the left and
right image, which build the matrices AR1 and AR2 .

2.2 Optimization Using Differential Evolution

The approximate homography at resolution R2 is computed from the homography at
resolution R1 as explained in Section 2.1. Due to inaccuracies in HR1 , the matrix HR2

has to be refined by minimizing a cost function. In the following, we denote the homog-
raphy in the desired resolution with H := HR2 . Then, the cost function E(H) is [12]:

E(H) =
1

J

J∑
j=1

dRGB(H · pj ,p
′
j) , (6)

using the RGB values of the left and the right image I1, I2. The homography H maps a
pixel pj , j ∈ [1; J ] from the left image I1 to the corresponding pixel p′

j in right image
I2. If the homography is accurate, the color distance dRGB(·) is small. The color distance
dRGB(·) is determined as:

dRGB(pi,pj) =
1

3
· (|r(pi)− r(pj)|+ |g(pi)− g(pj)|+ |b(pi)− b(pj)|) (7)

using the RGB values (r(pi), g(pi), b(pi)) of an image point pi. For the extraction of
the color values, a bilinear interpolation is used. If a mapped point pj falls outside the
image boundaries, it is neglected.

Due to lighting and perspective changes between the images, the cost function is
likely to have several local minima. Hence, a Differential Evolution (DE) optimizer is
used for the minimization of E(H) with respect to H in the cost function (6). Evolu-
tionary optimization methods have proved impressive performance for parameter esti-
mation challenges finding the global optimum in a parameter space with many local
optima. Nevertheless, limiting the parameter space with upper and lower boundaries,
increases the performance of these optimization algorithms significantly. For setting
the search space boundaries, the approximately known solutions for the homographies
at lower resolution are used. With equation (5), the search space centers are computed.
Then, a Differential Evolution (DE) optimizer is performed using common parameter
settings [17].
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3 Experimental Results

For the benchmark generation, 5 sequences are used. Each of the sequences contains 6
images like in the reference benchmark [3]. In Section 3.1, the resulting cost function
values of different resolutions are compared. In Section 3.2 the evaluation protocol [3]
is performed on the new data.

(a) Colors (b) Grace (c) Posters (d) There (e) Underground

Fig. 2. First images of the input image sequences. The resolution is up to 3456 × 2304.

3.1 High-Resolution Benchmark Generation

The resulting cost function values E(H) for the resolutions R1 = 1536 × 1024 and
R2 = 3456× 2304 are shown in Table 1. Two example sequences are selected, Grace
and Underground. Due to the high accuracy of the computed homographies at resolution
R2, E(H) increases only slightly compared to resolution R1. The generally larger error
for the Underground sequence is due to the higher amount of light reflection from the
surface of the wall. Nevertheless, the accuracies of the new homographies are high.

Table 1. Comparison of cost function values E(H) for the homographies for image resolutions
1536×1024 (cf. [12] for Grace) and the new data set with resolution 3456×2304. The resulting
cost function values for each image pair are approximately the same.

E(H) Grace Underground
1-2 1-3 1-4 1-5 1-6 1-2 1-3 1-4 1-5 1-6

1.5 megapixels 3.44 4.62 6.02 8.21 9.99 7.23 8.31 12.52 19.07 28.64
8.0 megapixels 3.93 5.20 6.60 8.73 10.46 7.46 8.63 12.67 19.20 28.73

3.2 Repeatability Comparison

To validate the usability of the new data set, the benchmark protocol provided in [3] is
used. Like in Section 3.1, we compare results for resolution R1 = 1536 × 1024 with
R2 = 3456 × 2304 for the sequences Grace (Figure 4) and Underground (Figure 3).
Like in the majority of evaluation papers, the overlap error threshold is set to 40 %. The
evaluated feature detectors are chosen from the reference paper [3].

Regarding the Underground sequence, the results for R2 are consistent with the re-
sults obtained for the smaller resolution R1. MSER performs best followed by Hessian-
Affine and IBR, very similar to the evaluation in [3] for the viewpoint change scenario.
But, each of the detectors loose between 1 % and 9 % in repeatability.

For the Grace sequence, the results are different for each detector. While Harris-
Affine and Hessian-Affine perform like in the Underground sequence, MSER and IBR
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(a) Repeatability (1.5 megapixels)
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(b) Repeatabality (8.0 megapixels)
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(c) Correspondences (1.5 megapixels)
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(d) Correspondences (8.0 megapixels)

Fig. 3. Repeatability results (top row) and the number of correctly detected points (bottom row)
for the Underground sequence with different resolutions

significantly loose repeatability score. The repeatability rate of IBR decreases between
12 % and 15 % and MSER looses up to 25 % for large viewpoint changes. Interest-
ingly, the EBR gains about 4 % for small viewpoint changes, but looses about 5 %
for large viewpoint changes. Generally, none of the detectors can really improve their
performance using high resolution images.

4 Conclusions

In this paper, high-resolution image data of up to 8 megapixels is presented together
with highly accurate homographies. This data can be used as a benchmark for computer
vision tasks, such as feature detection. In contrast to the mainly used benchmark, our
data provides high-resolution, fully planar scenes with removed radial distortion and
a feature independent computation of the homographies. They are determined by the
global optimization of a cost function using a dense representation of the images. The
optimization is initialized with values inferred from the solution of lower resolution
images.

The evaluation shows that none of the standard feature detection approaches can
improve in repeatability on higher resolution images. On the contrary, their performance
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(a) Repeatability (1.5 megapixels)
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(b) Repeatability (8.0 megapixels)
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(c) Correspondences (1.5 megapixels)
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(d) Correspondences (8.0 megapixels)

Fig. 4. Repeatability results (top row) and the number of correctly detected points (bottom row)
for the Grace sequence with different resolutions

decreases. Dependent on the approach, the repeatability looses up to 25 %, but gains
only 4 % in maximum. It follows, that feature detectors should be evaluated using high
resolution images. The presented benchmark provides the necessary data to do this.

The data set resulting from this work with all five sequences is available at:
http://www.tnt.uni-hannover.de/project/feature_evaluation/
The provided resolutions include versions with 1.5 megapixels, 3 megapixels,
6 megapixels, and 8 megapixels for each sequence.
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