
M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 391–409, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cost Models for Nearest Neighbor Query Processing
over Existentially Uncertain Spatial Data

Elias Frentzos1, Nikos Pelekis2, Nikos Giatrakos3,*, and Yannis Theodoridis1

1 Department of Informatics, University of Piraeus, Piraeus, Greece
2 Department of Statistics & Insurance Science, University of Piraeus, Piraeus, Greece

{efrentzo,npelekis,ytheod}@unipi.gr
3 Dept. of Electronics & Computer Engineering, Technical University of Crete, Crete, Greece

ngiatrakos@softnet.tuc.gr

Abstract. A major challenge posed by real-world applications involving spatial
information deals with the uncertainty inherent in the data. One type of
uncertainty in spatial objects may come from their existence, which is
expressed by a probability accompanying the spatial value of an object
reflecting the confidence of the object’s existence. A challenging query type
over existentially uncertain data is the search of the Nearest Neighbour (NN), as
the likelihood of an object to be the NN of the query object does not only
depend on its distances from other objects, but also from their existence. In this
paper, we present exact and approximate statistical methodologies for
supporting cost models for Probabilistic Thresholding NN (PTNN) queries that
deal with arbitrarily distributed data points and existential uncertainty, with the
aid of appropriate novel histograms, sampling and statistical approximations.
Our cost model can be also modified in order to support Probabilistic Ranking
NN (PRNN) queries with the aid of sampling. The accuracy of our approaches
is exhibited through extensive experimentation on synthetic and real datasets.

Keywords: Spatial Databases, Existential Uncertain Data, Nearest Neighbor
Query Processing.

1 Introduction

In the literature, two types of uncertainty have gained the interest of the research
community, namely the locational and the existential uncertainty. Locationally
uncertain are the objects that do exist but their location is uncertain. This kind of
uncertainty is described by a probability density function. On the other hand,
existentially uncertain objects are those that their uncertainty emanates from their
existence, and this is expressed by a probability Ex accompanying the spatial value of
an object x reflecting the confidence of x’s existence. As a motivating example,
consider the case where an image processing tool extracts some interesting formations
of pixels that may or may not correspond to a predefined type of objects due to low
image resolution. Another example involves semantically-enriched representations of

* Work done during the author’s PhD studies at the Dept. of Informatics, University of Piraeus.

392 E. Frentzos et al.

trajectories of moving objects [8], where a point of interest may be part of a semantic
trajectory of a user if the latter has been predicted to perform an activity at that place.
Existential uncertainty is also natural in the case of fuzzy classification [3], [13].

The related work on existentially uncertain data [3], [13] focuses on two
probabilistic versions of several spatial queries. A thresholding query returns the
objects that satisfy some spatial condition with probability more than a given
threshold t, while a ranking query returns the objects that satisfy a spatial condition in
order of their confidence. Dai et al. [3] proposed search algorithms for the above two
types of spatial range and NN queries, where the existentially uncertain data are
indexed by 2-dimensional R-trees [7] or appropriate augmented variants of them. In
[13] authors also present appropriate algorithms for Spatial Skyline [9], and Reverse
Nearest Neighbor [10] queries, based on the idea of incremental NN search.

In this paper, we focus on the probabilistic thresholding (PTNN) and probabilistic
ranking nearest neighbor (PRNN) queries on existentially uncertain data. In a
nutshell, a PTNN query seeks for spatial objects whose probability of being the NN of
a query object exceeds a given threshold t, while a PRNN query returns only the m
most probable NNs. The motivation is that, this type of query presents a quite
involved search complexity, as the probability of an object to be the NN depends not
only on the location, but also on the existential probability of other objects. Moreover,
compared to the other operators presented in [13], they are more popular with broader
applicability. In [4] we utilized a statistical model in order to estimate the number f of
NNs that are to be retrieved from the database so as to be at least CI % confident (i.e.
CI is a user-defined confidence, e.g. 99%) that the PTNN search will end without the
need to retrieve n > f NNs. The concept is to provide efficient search algorithms, with
predetermined cost, and with custom defined certainty (as high as required) of
resolution. On the other hand, this is a case which can be only applied to uniform data
and existential uncertainty distribution.

We are aware that PTNN2D and PRNN2D are overwhelmed in terms of efficient
query processing by the other schemes proposed in [3], which employ augmented
versions of R-trees and 3D R-trees. However, experience has shown that it is very
difficult for commercial Spatial Database Management Systems (SDBMS) to support
novel proposals, especially when they require altering the data structures used on their
engines. Then again, PTNN2D and PRNN2D while not optimal, they can be directly
employed with conventional 2D R-trees already implemented in commercial SDBMS.
Moreover, the analysis provided in this paper can be easily modified in order to
provide similar results that support all schemes of [3].

Outlining the major issues addressed in this paper, our main contributions are:

• Following the assumption of uniformity regarding the existential uncertainty
distribution, we present an exact statistical-based analysis for the determination
of the discrete distribution probability density function (dpdf), that a PTNN query
terminates after having retrieved exactly n objects; exploiting this analysis, we
present a cost model for the forecasting of the number of disk page accesses
required to process a PTNN query, given that the dataset is indexed by R-trees
[7], as well as it is uniformly distributed in the data space. We further exploit
well-known properties of distribution expected values in order to provide an
approximate model for PTNN and PRNN queries.

 Cost Models for Nearest Neighbor Query Processing 393

• We show how to utilize histograms in order to relax the assumption of uniformly
distributed data points and existential uncertainty and provide an efficient cost
model that predicts the number of disk page accesses required to process PTNN,
over arbitrarily distributed data and existential uncertainty. We also utilize
random sampling so as to achieve better forecasts, as well as, overpass the
problem that is faced regarding an analytical PRNN cost model calculation.
Specifically, we alternately apply the results of our statistical analysis and the
sampling method, over augmented versions of well-known histograms [1],
together with the approach of [11].

• Finally, we report the results of a comprehensive set of experiments, which
demonstrates the correctness and accuracy of our analysis.

To the best of our knowledge, our work is the first on these topics. The rest of the
paper is structured as follows: Section 2 overviews the background work. Section 3
describes the statistical analysis of PTNN queries based on the assumption of
uniformly distributed data and existential uncertainty. In Section 4, we present the
details of an efficient cost model for PTNN and PRNN queries that supports arbitrary
distributions regarding the problem parameters, Section 5 evaluates the accuracy of
our model through an extensive experimental study over several datasets, while,
Section 6 provides conclusions and interesting research directions.

2 Background

2.1 Probabilistic NN Search over Spatial Data with Existential Uncertainty

Formally, a PTNN query takes as input a query object q and a probability threshold t,
while the data are represented as tuples of the form (x, Ex). As proposed by Dai et al.
[3], the 2-dimensional PTNN (PTNN2D) algorithm, illustrated in Figure 1, iteratively
retrieves spatially nearest objects in a Best-First (BF) mode [6], and terminates only
after the value of Pfirst becomes smaller than the given threshold t. The PTNN2D
algorithm iteratively calculates the value of Pfirst, which is the probability that no
object retrieved before the current object x is the actual NN, according to [3]:

()
1

1

1
n

first

x i
i

P E
−

=

= −∏ , (1)

where n-1 is the number of objects that are closer to the query object than the current
object x, i.e., the number of objects retrieved from the BF algorithm before x, and Ei
their existential uncertainty. Then, the probability that x is the actual NN, is [3]:

first

x x xP E P= ⋅ (2)

The intuition behind the PTNN2D algorithm is that once Pfirst < t, we are sure that the
subsequent nearest objects, even if they exist with 100% probability, they cannot be
the NN of q, so the algorithm can safely terminate. Note also that PTNN2D algorithm
utilizes R-tree indexes so as to incrementally retrieve the k-th NN; as such, the R-tree
can be replaced by other access method supporting incremental NN search.

394 E. Frentzos et al.

 1.
 2.
 3.
 4.
 5.
 6.

Algorithm PTNN2D(q, 2D R-tree on S, t)
 Pfirst=1;
 While Pfirst ¥ t and more objects in S do
 x:=next NN of q in S (use BF [7]);
 Px:= P

firstÿEx;
 If Px ¥ t then output (x, Px);
 Pfirst= Pfirstÿ(1-Ex);

Fig. 1. Probabilistic NN on a 2D R-tree with thresholding

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.

Algorithm PRNN2D(q, 2D R-tree on S, m)
 Pfirst:=1;
 H = ∅; /*Heap of m objects with highest Px*/
 Pm:=0; /* Px of m-th object in H*/
 While Pfirst ≥ Pm and more objects in S do
 x:=next NN of q in S (use BF [7]);
 Px:= P

first ⋅ Ex;
 If Px ≥ Pm then
 Update H to include x;
 Pm:= m-th probability in H;
 Pfirst:= Pfirst ⋅ (1-Ex);

Fig. 2. Probabilistic NN on a 2D R-tree with ranking

Similarly, a ranking spatial query returns the objects which qualify the spatial
predicates of the query, in order of their confidence. Ranking queries can be also
thresholded by a parameter m returning thus the m most confident objects. Therefore,
a probability ranking NN (PRNN) query takes as input a query object q and the
number of objects required with the highest probability, over data of the same form,
i.e., (x, Ex). Dai et al. [3], also propose the 2-dimensional PRNN (PRNN2D)
algorithm, illustrated in Figure 2, which iteratively retrieves spatially nearest objects x
in a Best-First (BF) mode iteratively calculating Px and Pfirst using Eq.1 and Eq.2
respectively. The difference here is that the output is a heap H containing the m most
probable NN objects. Therefore the threshold used to terminate is based on Pm which
is the Px of the m-th object in the heap H and the algorithm terminates only after the
value of Pfirst becomes smaller than Pm.

2.2 Cost Models for NN Search over Conventional Spatial Data

Tao et al. [11] present an efficient cost model for the optimization of NN queries in
low and medium-dimensional spaces. They provide a closed formula for the
estimation of (a) the average nearest distance Dk from the query point q to its k-th NN
and (b) the number of tree nodes whose MBRs intersect the vicinity circle Θ(q, Dk)
with center q and radius Dk, which is equal with the average number of node accesses
NA(k) required by an R-tree to retrieve the k-th NN. Specifically, the analysis of [6]
shows that the average nearest distance Dk is estimated by:

() 12
1 1

d

k

V

kD
NC

≈ − −
 
 
 

 (3)

 Cost Models for Nearest Neighbor Query Processing 395

()[] 1

/ 2 1
V

d

C
d

π
=

Γ +
 (4)

where d is the dimensionality and N denotes the cardinality.
These formulas work only with uniformly distributed data in the search space. On

the other hand, real-world data employ arbitrary distributions; as such Tao et al. [11],
provide an extension of the model presented above, by using MinSkew histograms.

Specifically, the MinSkew technique proposed by Acharya et al. [1], is a binary
space partitioning (BSP) technique employing the spatial skew definition provided in
[1]. Each MinSkew Histogram HS can be seen as a set of spatial disjoint buckets Bi

that cover the whole data space:

() (){ }:i i iHS B B S B= = ∧ = ∅ 

and

{ }, , , ,, , ,i i L i U i L i UB x x y y   =     . The main advantage of this technique is that the area

grouped together within the same bucket has small spatial skew, i.e., objects are
almost uniformly distributed inside it; as a result, it is usually assumed that the data
distribution inside each bucket Bi is uniform.

Fig. 3. Estimating the “radius” of the vicinity rectangle Lr [11]

[11] provides an algorithm that works over an input histogram HS and a query
point q. The algorithm employs the notion of the vicinity rectangle that approximates
the vicinity circle so as to minimize the number of complex (vicinity) circle-
(histogram) rectangle intersection discoveries, and reduces them to less expensive
rectangle – rectangle inspections. The algorithm initially determines the distances that
q needs to travel along each dimension so as to reach the boundaries of each
histogram bucket (cf. Figure 3), and stores them in a heap. Then, utilizing the
histogram, the algorithm iterates by computing the expected number of points En
found inside the vicinity rectangle formed by the next distance in the heap; if En is
smaller than k, i.e., the number of requested nearest neighbors, the appropriate
vicinity radius is calculated (reduced) according to the formula:

() ()
1

d d d
old old

r

old

L k En L k En
L

En En

− − −
≈

−

 
 
 

 (5)

where L is the “diameter” (i.e., side length) of the current vicinity rectangle, while Lold
and Enold are the respective diameter and expected number of points found inside the
vicinity rectangle in the previous iteration, respectively. In the case En is smaller than

396 E. Frentzos et al.

k, the algorithm proceeds with the next distance in the heap until En becomes greater
than k. Finally, Dk is obtained by Dk =Lr/Cv.

After obtaining Dk the cost model developed for uniform data is applied.
Specifically, the query cost in terms of node accesses NA(k) is provided by the
following equation:

() ()
log 2

1
0

2 2

1

f

N
d

f
i i i

i
i i

L L sN
NA k

sf +
=

− +
= ⋅

−

  
      

 (6)

where N is the cardinality of the dataset, f is the average node fanout, si the extent of
a level-i node and Li calculated as a function of Dk and the respective si. We have also
to note that N is determined based on the local density provided by the histogram in
the area “near” the query point. The interested reader is cited to [11] for more details.

In our approach, we make use of the techniques proposed in [11], so as to estimate
the radius of the vicinity circle Dk required to be browsed in order to process PTNN
and PRNN queries. Specifically, both PTNN2D and PRNN2D browse the database
according to the distance of the query to the dataset objects until a probabilistic
criterion is met. Both algorithms perform a number of iterations, continuously
requesting, in each iteration, the next nearest object in an incremental way. The
number of iterations is actually equal to the number of nearest objects to the query
that have to be retrieved from the database. Consequently, when utilizing an R-tree, as
PTNN2D and PRNN2D suggests, and given that the analysis of [11] estimates the
number of node accesses NA(k) as a function of Dk and known R-tree parameters, our
problem can be reduced to the problem of providing a good estimation of Dk.

Table 1. Table of notations

Notation Description
x, Ex A data point and its existential probability

S A dataset of tuples (x, Ex)

q, t, m
The query object, threshold probability of a PTNN query and number of

requested objects of a PRNN query

Pfirst
The probability that no object retrieved before the current object x is the

actual NN

first
nP The probability that no object retrieved before the n-th iteration is the

actual NN
Px The probability that an object x is the actual NN

Pexact(n)
The probability that the PTNN algorithm terminates after having

retrieved exactly n objects
H A heap used in the PRNN algorithm
Pm the Px of the m-th object in the heap H

EV(u) The expected (average) value of a given variable u
Dk The nearest distance from the query point q to its k-th NN

 Cost Models for Nearest Neighbor Query Processing 397

3 Statistical Analysis of PTNN Queries

In this section, aiming at a statistical analysis of probabilistic thresholding NN
queries, we initially calculate the expected number of iterations EV(n) needed for the
PTNN2D algorithm to terminate, and then we make use of existing work on cost
models so as to determine the average number of node accesses NA(EV(n)) needed in
order to process such queries over conventional R-trees. In the sequel, due to the
difficulty of extending the exact solution to support such queries over arbitrary
distributed data, we present an approximate solution regarding PTNN queries. We
close the section by discussing the extension of this model in the case of PRNN
queries. In this first approach, we make two assumptions regarding the data
distribution:

• data uniformity assumption: points xi are uniformly distributed in the data space,
• uncertainty uniformity assumption: the existential uncertainty Ex of all objects in

S is uniformly distributed inside the unit interval [0,1].

Both assumptions are relaxed in the subsequent section where an efficient cost model
is presented. Table 1 summarizes the notation used in the rest of the paper.

3.1 Exact Statistical Analysis of PTNN Queries

To start with, we provide a lemma from which a cost model for PTNN queries is
straightforwardly devised in the case of uniformly distributed data and existential
uncertainty. More specifically, the first step towards a cost model for the PTNN2D
Algorithm 3, is to determine the dpdf that the algorithm terminates after exactly n
iterations, i.e., the distribution of the number of objects retrieved before Pfirst becomes
less than the given threshold t. Formally, we provide the following lemma:

Lemma 1: The dpdf that the PTNN2D algorithm terminates after exactly n iterations,
under the uncertainty uniformity assumption, is given by the following formula:

() () ()
()

1 1
1 ln

1 !

n n

exact

t t
P n

n

− −−
=

−
 (7)

where t is the algorithm threshold.

Proof: Our goal is to determine the dpdf Pexact(n), such that, the algorithm terminates
after having retrieved exactly n objects. For this we distinguish between two cases,
namely n = 1 and n > 1. In the first case, the algorithm terminates with a single

iteration iff the value of () ()
1

2 1
1

1 1first

i

i

P E E
=

= − = −∏ calculated at the end of the first

iteration (i.e., line 7 in Figure 1) is less than the given threshold t. Thus, from the
uncertainty uniformity assumption, it holds that Pexact(1) = P(1−E1 § t) = P(E1 ¥ 1−t)
= t. Given that -10 = (ln(t))0 = 0! = 1 we have proved Lemma 1 in the case where
n = 1.

398 E. Frentzos et al.

In the second case, i.e., n > 1, the algorithm terminates iff 1
first

nP + , which is

calculated at the end of the nth iteration (i.e., line 7 in Figure 1), becomes less than t
after exactly n iterations. In other words, we must first determine the conditional
probability that Pfirst becomes less than t after n iterations, given also that it must not
terminate before reaching n iterations:

() () ()
1 1

1 | 1 , 1
n m

cond i i
i i

P n P E t E t m n
= =

 = − ≤ − > ∀ ≤ − 
 
∏ ∏ (8)

Then, the total probability that the algorithm terminates after having retrieved exactly
n objects can be obtained by multiplying Pcond with the probability that the algorithm
has not terminated until reaching n iterations:

() () ()
1

1 , 1
m

exact cond i
i

P n P n P E t m n
=

 = ⋅ − > ∀ ≤ − 
 
∏ (9)

Moreover, since 0 § E1 § 1 ‹ 0 § 1 - E1 § 1, it also holds that

() () ()
2 1

1
1 1

1 .. 1 1
n n

i i

i i

E E E
− −

= =

− ≥ ≥ − ≥ −∏ ∏ . Therefore, given that ()
1

1

1
n

i

i

E t
−

=

− >∏ , it stands

that ()
1

1 , 2
m

i

i

E t m n
=

− > ∀ ≤ −∏ ; then, (8) and (9) can be rewritten as follows:

() () ()
1

1 1

1 | 1
n n

cond i i
i i

P n P E t E t
−

= =

= − ≤ − > 
 
 
∏ ∏ (10)

() () ()
1

1

1
n

exact cond i
i

P n P n P E t
−

=

= ⋅ − > 
 
 
∏ (11)

Since the values of Ex follow the uniform distribution, the same also stands for 1-Ex;
as such the product of the n uniformly distributed values of 1-Ex should follow the
uniform product distribution, i.e., the distribution of the product of n uniformly
distributed uncorrelated variables x1, x2,.. xn, with pdf given by [12]:

() ()
()

()
1 2

1

1

..

1
ln

1 !n

n

n

x x xP u u
n

−
−−

=
−

 (12)

where u is the product ix∏ .

In our case, we first set as u the product ()
1

1

1
n

i
i

E
−

=

−∏ , and then determine the

amount of objects X ∈ S, such that () ()
1

1 1
n

i n
i

E E u t
=

− = − ⋅ ≤∏ which leads to:

()1 nE t u− ≤ (13)

 Cost Models for Nearest Neighbor Query Processing 399

Given that (1−En) is also uniformly distributed, it should hold that the amount of
objects fulfilling the above expression Vn is

nV t u= (14)

Known the above, we can calculate the probability Pcond(n) by summing up (i.e.,
integrating) the amount of objects Vn for each value of u, weighted by the value of the
distribution of u, and divided by the respective sum (i.e., integral) of the distribution

of u. Moreover, since it is known that ()
1

1

1
n

i

i

u E t
−

=

= − ≥∏ , the above integrals should

involve only the values of u between t and 1. Summarizing:

()
()

()

1

1

1

1

nt

cond

nt

t
P u du

uP n
P u du

−

−

=



 (15)

Moreover, the total probability that the algorithm has not been terminated until

reaching n iterations (i.e, ()
1

1

1
n

i

i

E t
−

=

− >∏), can be easily calculated, using the pdf of the

product of n-1 uniformly distributed variables:

()
1

1

1
1

1 ()
n

i nt
i

P E t P u du
−

−
=

− > = 
 
 
∏  (16)

Finally, by substituting (15) and (16) into (11) and performing the necessary
calculations, we have proved Lemma 1 in the case where n > 1 

Lemma 1 provides us with the dpdf that the algorithm terminates after exactly n
iterations. The dpdf expressed by (7) is a closed formula, since it involves only the
logarithm of the threshold t and the factorial of n. Obviously, the density of the
probability obtained from (7) for several values of n, is dominated by the factorial of
n-1; as such, it is expected that as the number of iterations grows, the respective
probability density will tend to zero very fast. In the sequel we present a corollary
derived from Lemma 1, which helps us to determine the cost model for PTNN queries
over existentially uncertain data that follow the uncertainty uniformity assumption.

Corollary 1: The expected number of iterations in the execution of the PTNN2D
algorithm, under the uncertainty uniformity assumption, is:

() ()1 lnEV n t= − (17)

Proof: The expected number of iterations needed from the PTNN2D algorithm to
terminate is actually the mean value of (7) for each n ∈ N. As such, EV(n) can be
calculated by averaging the dpdf Pcond(n) over all possible values of n.

400 E. Frentzos et al.

() () ()
()

1 1

1

1 ln

1 !

i i

i

t t
EV n i

i

− −∞

=

−
= ⋅

−
 (18)

Equation (18) cannot be straightforwardly evaluated since it involves infinity;
however, we may calculate its limit:

() ()
()

() ()
()

1 1 1 1

1 1

1 ln 1 ln
lim

1 ! 1 !

i i i i
n

n
i i

t t t t
i i

i i

− − − −∞

→∞
= =

− −
⋅ = ⋅

− −
  (19)

which after the necessary calculations turns into:

() ()
()

()
1 1

1

1 ln
1 ln

1 !

i i

i

t t
i t

i

− −∞

=

−
⋅ = −

−
 (20)

Finally, by substituting (20) into (18) we have proved Corollary 1 

Obviously, the expected number of iterations EV(n) needed from the PTNN2D in
order to terminate, is equal with the number of NNs needed to be retrieved from an
existentially uncertain spatial database queried with a query point and a given
threshold t. Thus, we may employ the analysis presented in [11], so as to estimate the
average radius Dk on which the EV(n)-th NN will be found, under the data uniformity
assumption. Apparently, this model can be applied in our case where the
dimensionality d is 2 and the value of Γ(d/2+1) is Γ(2/2+1)=1; then, by substituting
the expected number of n produced by (17) into the number of k NNs requested, (3)
can be rewritten as follows:

()1 ln2
1 1

k

t
D

Nπ

−
≈ − −

 
 
  

 (21)

From this point on, the analysis of [6] that estimates the number of node accesses
NA(EV(n)) in the case of uniform data distribution (which is identical with our data
uniformity assumption) remains unaffected; the single modification to be made is to
calculate Dk using (21) instead of (3), and then apply Eq.(6) accordingly. Concluding,
the cost model for PTNN queries over existentially uncertain data that follow both the
uncertainty uniformity and the data uniformity assumptions is based on (21), which
estimates the distance from the query point that has to be browsed from the database
so as to answer such a query; then, the required node accesses NA(EV(n)) can be
straightforwardly estimated by replacing the Dk into the analysis of [11].

3.2 Approximate Statistical Analysis of PTNN Queries

Unfortunately, the extension of the above-described theoretical model in the case of
arbitrarily distributed data is not straightforward at all. Histograms widely used in
order to provide statistical estimations in DBMS, pose insuperable problems to this
extension due to their discrete nature. Specifically, given the simplest case where a

 Cost Models for Nearest Neighbor Query Processing 401

1-dimensional histogram { }1 1 2 10, , , , .., ,1mHS E E E E −=            is used to describe the

existential uncertainty distribution in a given point in space, the distribution of the
exact number of iterations following the methodology of Lemma 1 would be given as
a function defined in mn parts. This is due to the fact that the resulted distribution
would be calculated as the product of n sets containing m spaces each. Obviously,
such an approach is not practical. On the other hand, we may provide an approximate
solution which utilizes the notion of the expected value of the probability of a random
object retrieved in the n-th iteration to be included in the query results. More
formally, we provide the following Lemma 2.

Lemma 2: The number of iterations n required for the expected value Pfirst of the
PTNN2D algorithm to become equal to the threshold t, is given by:

() () ()11
x

first

n EV EEV P t n Log t−=  = + (22)

where EV(Ex) is the expected value of existential uncertainty Ex of a random x in S.

Proof: Our main objective is to express EV(Pfirst) as a function of known values.
Towards this goal, we know that the expected (mean) value of a random variable
produced as the product of two other random variables, is equal to the product of the
expected value of the two variables. Formally, given two random variables u and v the
following stands:

() () ()EV u v EV u EV v⋅ = ⋅ (23)

From the definition of Pfirst (1) and from (23), we have that the expected value
EV(Pfirst) after n iterations is:

() ()() 1
1

nfirst

n xEV P EV E
−

= − (24)

Now, in order for (24) to become equal to t we have:

()() () ()1

11 1
x

n

x EV EEV E t n Log t
−

−− =  − =

which proves Lemma 2. 

0.2 0.8 1

2

10

12

14

6

4

ev(pfirst)

8

0.4 0.6
threshold

Fig. 4. Estimating the number of iterations of PTNN2D over uniform data by exact (solid line)
and approximate solutions (doted line)

402 E. Frentzos et al.

It is clear that Lemma 2 can be utilized in order to provide an approximate
estimation for the number of iterations needed by the PTNN2D algorithm in order to
terminate. It certainly does not provide the exact value of EV(n) as Corollary 1 does,
however, it provides strong evidence that the algorithm may terminate when n
becomes greater than the value provided. What is more, Lemma 2 does not utilize the
uncertainty uniformity assumption; as such it can be applied over data with arbitrary
distributed existential uncertainty, relaxing therefore our uncertainty uniformity
assumption. Also interestingly when employing Lemma 2 under the uncertainty
uniformity assumption, where EV(Ex)=0.5, (22) results in ()0.51n Log t= + . A

comparison between this result and (17) is given in Figure 4. It is clear that the
approximate solution always overestimates n, with its difference from the exact
solution increasing when the value of t becomes less than 0.2 (and the number of
iterations increases above 3).

3.3 Discussion on PRNN Queries

One may suggest that Lemma 1 and its Corollary 1 can be easily extended to cover
the case of PRNN queries, processed by the PRNN2D algorithm, since their main
difference is on their termination condition, i.e., the continuously evolving value of
Pm employed instead of the constant value of t. Towards this goal, we could utilize the
fact that the expected (mean) value of a random variable produced as the product of
two independent random variables, is equal with the product of the expected value of
the two variables. However, the calculation of a theoretical value for Pm is a very hard
task which involves order statistics [2]. Specifically, even in the – simplest – case of
m=2, the expected value of the m – th Px inside H, is determined by distinguishing
between two cases regarding the order of values in H, i.e., {P1, P2}, {P2, P1}:

• In the case where E1≥0.5, since 1 1firstP = , it follows that P1≥0.5,

2 1(1) 0.5firstP E= − < and P2 <0.5. Therefore the order of Pi inside H will be {P1,

P2}. Now, given from the uncertainty uniformity assumption that

EV(P1)=EV(E1)=0.5 and () ()2 2 2
firstEV P EV P E= = () ()2 2

firstEV P EV E =

0.25 0.5 0.125⋅ = ,

H={0.5,0.125} and EV(Pm)=0.125.
• In the case where E1<0.5, it follows that P1<0.5 and 2 1(1) 0.5firstP E= − > ;

therefore for P2>P1 it should hold that ()2 1 11E E E> − , and

EV(Pm)=EV(P1)=0.25. However, in the case of ()2 1 11E E E< − it follows that

P1>P2, and EV(Pm)=EV(P2), a value that cannot be straightforwardly calculated.

It is clear that the calculation of EV(Pm) for arbitrary values of m is a very demanding
task. However, the usefulness of such a calculation can be argued, since by
approximate sampling methods as those described in the next section, we may obtain
good estimates of the expected number of iterations.

 Cost Models for Nearest Neighbor Query Processing 403

4 A Cost Model for PTNN and PRNN Queries

In the exact analysis of Section 3, we assumed that both data points and their
existential uncertainty are uniformly distributed in their space. In this section, we
relax both assumptions and apply our approach to arbitrarily distributed data with
the employment of augmented histograms. The presence of the histogram is to
provide (a) local estimations regarding the density of existentially uncertain spatial
objects in the neighborhood of the query point, and, (b) statistics that can be used in
order to estimate the number of iterations needed from the PTNN2D algorithm to
terminate.

4.1 Augmented Histograms

The proposal of Acharya et al. [1], may be easily extended in order to support our
scenario of existentially uncertain spatial objects, by augmenting it in a third
dimension describing the existential uncertainty. Formally, the proposed histogram is

() [] (){ }: 0,1i i iHS B B S B= = × ∧ = ∅  and { }, , , , , ,, , , , ,i i L i U i L i U i L i UB x x y y E E=            ,

and the data distribution inside each 3D bucket Bi is considered as uniform. The
histogram is created using the methodology of [1] by simply treating the existential
uncertainty dimension as an additional spatial dimension.

4.2 A Sampling-Based Approximation Method

The above proposed histogram, besides its conventional use, i.e., to estimate the local
density of data, it can be used in order to produce a 1D histogram of the data points’
existential uncertainty distribution in the area “near” the query point. Subsequently,
random values of existential uncertainty can be produced following the local
distribution provided by the 1D histogram, and then, used to simulate the behavior of
the PTNN2D algorithm. The basic dilemma that is posed towards a good estimation
following such a technique is to provide an efficient termination condition for the
sampling process. This condition can be provided by computing the standard
deviation of the sampled mean value:

mean
N

σ
σ = (25)

where σ is the sample standard deviation and N the sample size. Then, by using the
hypothesis that n follows the normal distribution, and a confidence interval CI=95%,
the expected number of iterations EV(n) is:

()1.96 1.96n nn EV n n
N N

σ σ
− ≤ ≤ + (26)

404 E. Frentzos et al.

where N is the number of observations (number of PTNN2D simulation runs), σn the
(computed so far) standard deviation of n and 1.96 is the approximate value of the
97.5 percentile point of the normal distribution, used in the construction of
approximate 95% confidence interval.

Figure 5 illustrates the algorithm SamplePTNN2D which summarizes the proposed
methodology regarding the estimation of the number of iterations of the PTNN2D
algorithm using sampling. The algorithm utilizes a 1D histogram HS describing the
existential uncertainty distribution in the local query area, the algorithm’s threshold t,
and the precision p (e.g., 5%) of the expected value of n. The precision is used instead
of an absolute value of standard deviation in order to compute it as a percentage of the
calculated mean value. The algorithm begins by instantiating km, i.e. the calculated
mean of the number of iterations needed by the PTNN2D algorithm to terminate, and
kt, which is the standard deviation of the calculated mean. After that (lines 4-6), the
algorithm instantiates Pfirst, N (i.e. the number of PTNN2D simulations) and n (i.e.,
the number of iterations of the PTNN2D algorithm in the current run). In lines 7-11,
the PTNN2D algorithm is simulated and the number of iterations n in its current run is
determined. The histogram HS is used in line 8 in order to produce random values
based on the local area’s existential uncertainty distribution. After simulation, the
algorithm calculates the new mean value of the number of iterations required in every
run, as well as the mean’s standard deviation (line 13). The algorithm eventually
terminates and returns the calculated mean value of iterations when there is 95%
probability (which is included in the area 1.96 × kt) that the mean differs by at most p
regarding its accurate value.

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.

10.
11.
12.
13.
14.
15.

Algorithm SamplePTNN2D(HS 1D Histogram, threshold t, precision p)
 km:=0; //calculated mean iterations
 kt:=+∞; // calculated stdev of mean iterations
 While pÿkm<1.96ÿkt do
 N:=N+1; //num of runs
 Pfirst:=1;
 n:=0; //run’s iterations
 While Pfirst¥t do // simulate PTNN2D
 n:=n+1;
 Ex:=ProduceRandomValue(HS);
 Pfirst:= Pfirstÿ(1-Ex);
 End While;
 km:=Mean(n);
 kt:=Stdev(n)/Sqrt(N);
 End While;
 Return km;

Fig. 5. Sampling algorithm for estimating the number of iterations of PTNN2D

Interestingly, the method of sampling can be directly applied with limited only
modifications in the case of PRNN queries. The respective SamplePRNN2D algorithm
is illustrated in Figure 6. The algorithm utilizes the same ideas as SamplePTNN2D
with the only difference that PRNN2D is simulated (instead of PTNN2D) between
lines 9-17, with Pm calculated and eventually tested so as to be used as a termination
condition. This observation enables us to introduce a cost model for PRNN queries as
well, as described in the following section.

 Cost Models for Nearest Neighbor Query Processing 405

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Algorithm SamplePRNN2D(HS 1D Histogram,# objects m, precision p)
 km:=0; //calculated mean iterations
 kt:=+∞; // calculated stdev of mean iterations
 While pÿkm<1.96ÿkt do
 Pfirst:=1;
 N:=N+1; //num of runs
 H:=«;
 Pm:=+∞;
 n:=0; //run’s iterations
 While Pfirst¥Pm do //simulate PRNN2D
 n:=n+1;
 Ex:=ProduceRandomValue(HS);
 Px:=PfirstÿEx;
 If Px¥ P

m then
 Update H to include x;
 Pm:= m-th probability in H;
 Pfirst:= Pfirstÿ(1-Ex);
 End While;
 km:=Mean(k);
 kt:=Stdev(k)/Sqrt(k);
 End While;
 Return km;

Fig. 6. Sampling algorithm for estimating the number of iterations of PRNN2D

4.3 An Effective Cost Model for PTNN and PRNN Queries

In this section we present an effective cost model for PTNN queries that works over
arbitrarily distributed spatial data with existential uncertainty. The proposed cost
model is calculated using the algorithm presented in Figure 7, which employs several
ideas presented in [12]. In particular, algorithm EstimateThresholdDk takes as input a
simple spatial histogram, an augmented histogram, a query point q and a threshold t,
and estimates the radius Dk of the vicinity circle that has to be browsed by the
PTNN2D algorithm. The radius Dk is then applied over Eq.(6) so as to estimate the
number of node accesses NA that are needed in order to answer the query. The
algorithm initially (lines 2-4) determines the critical vicinity rectangle “radiuses”, i.e.,
the rectangle’s half-side, on which the object’s density changes. These radiuses

Algorithm EstimateThresholdDk(Histogram HS, Augmented Histogram AHS, point q, threshold t)
 1.
 2.
 3.

 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.

HP = new min-Heap
for each bucket B in HS;
 Determine the radius that is needed for a rectangle
 with center q to reach B and add it to HP
end for
EnOld=:0; lOld:=0;
While true do // algorithm eventually terminates at line 13
 l=:HP.pop;
 En=:HS.Density(q,l)*(4*l*l);//calculate # objects inside rec
 m=:AHS.MeanValue(q,l)
 k=:Log(t)/Log(1-m)+1
 If k<En then
 Compute Lr by equation (5)
 Return Lr/Sqrt(PI)
 Else
 lOld=l;EnOld=En;
 End if
End while

Fig. 7. Algorithm EstimatedThresholdDk for computing Dk

406 E. Frentzos et al.

are determined by simply calculating the distance that q needs to travel along each
axis so as to reach each bucket’s boundaries. After their calculation, these values are
inserted into a min-heap so as to be used in incremental order.

Then, the algorithm iteratively retrieves candidate critical distances l on which the
vicinity rectangle’s density is changed (via the min heap), and calculates (line 8) the
expected number of objects En found inside it, by simply multiplying the local
density produced by HS by the area of the respective vicinity rectangle. It also
determines in line 9 via the augmented histogram, the mean value m of the existential
uncertainty of objects found inside the vicinity rectangle, using as input the query
point q as well as the radius l of the vicinity rectangle. The value m is eventually used
in line 10 to calculate the (approximated) number of nearest neighbors k that must be
retrieved in order for the PTNN2D algorithm to terminate. Then, in line 11, the values
of k and En are compared, in order to determine whether the number of required
nearest neighbors k is less than the objects contained inside the (so far calculated)
vicinity rectangle. If it is not so, the algorithm stores l in lOld and En in EnOld to be
used by Eq.5 in a subsequent iteration, and performs another iteration, so as to use a
greater critical radius l (which are stored in the minheap). Eventually, the algorithm
terminates by computing Lr via Eq.(5), and returning Dk (lines 12-13) when the
iteratively increasing radius of the vicinity rectangle, produces an approximate
number of objects contained inside the respective vicinity rectangle, greater than k.

The previously presented algorithm provides a good approximation of the number
of objects that have to be retrieved from the database in order for the PTNN2D to
terminate. However, this can be also achieved via sampling, as described in the
previous section. Specifically, lines 9-10 of the EstimatedThresholdDk can be
replaced with (a) the calculation of a 1-dimensional histogram, AHS, and (b)
algorithm SamplePTNN (cf. Figure 5) that estimated k based on a 1-dimensional
histogram of existential uncertainty. Similarly, by replacing lines 9-10 with the
calculation of the 1D histogram and the algorithm SampleRTNN used to estimate the
number of iterations of PRNN2D, algorithm EstimatedThresholdDk may be also used
as a cost model for PRNN search.

Summarizing, the proposed cost model based on the EstimatedThresholdDk
algorithm, can be used for estimating the radius of the vicinity circle, used for both
PTNN and PRNN queries.

5 Experimental Study

Our experimental study is based on real point datasets. In particular, as in [13], we
used the San Francisco roads’ dataset (SF) dataset. Due to the lack of a real spatial
dataset with objects having existential probabilities, we generated probabilities for the
objects, using the following methodology. As [13] suggests, we first generated K = 10
anchor points on the map in positions of high data density. These points model
locations around which there is large certainty for the existence of data. For each
point x of the dataset, we find the closest anchor and we assign an existential
probability inversely proportional to its distance from it. Thus, the distribution of

 Cost Models for Nearest Neighbor Query Processing 407

probabilities around the anchors is a Zipfian one. The probabilities are normalized
w.r.t. the maximum probability.

We conducted our experiments on a Windows XP workstation with AMD Athlon
II X4 640 3GHz processor CPU. All evaluated methods were implemented using the
.NET framework. Two statistical measures were used so as to demonstrate the

behavior of our model. The average radius of the vicinity circle D , the average

estimated radius of the vicinity circle eD , and the average error in the estimation of

the vicinity circle DS . Formally, these measures are defined as:

1..

1
i

i n

D D
n =

=  ,
1..

1 e

e i
i n

D D
n =

=  , and,
1..

1 e

i i
i n

DS D D
n =

= −

where n is the number of executed queries, Di the actual distance of the vicinity circle

from the i-th query, and e

iD the estimated radius of the vicinity circle via the

respective cost model. We distinguish between, D and DS , in order to disclose the
details of the behavior of our model, as will be shown in the following experiments.
In order to test the accuracy of the proposed model, we performed 500 PTNN queries
in locations selected driven by the dataset density, under various threshold values and
counted the actual number of iterations that the algorithm performed. We also
compared the values gathered from the experiment with the one calculated using our
model. The corresponding results are illustrated in Figure 8(a) and (b), regarding the
PTNN2D algorithm with estimates gathered via Lemma 2 and sampling, respectively.

It is clear that the values D and e

iD displayed in both bars (actual and estimated

vicinity circle radiuses) are almost identical, meaning that the estimation gathered by
our model is very accurate, with an error that never exceeds 12%, regarding the

average number of iterations for all 500 queries. Moreover, the mean deviation DS
(i.e., the average unsigned error of the estimation in each individual query), illustrated
by the error bars, is between 20% and 50% in all experimental settings, increasing
with the threshold. This is actually an expected result since the increase of threshold

` (a) (b) (c)

Fig. 8. Average actual and estimated search radius of the PTNN2D algorithm scaling the
threshold using (a) mean probability, (b) Sampling, and (c) the PRNN2D algorithm scaling the
number of objects requested

408 E. Frentzos et al.

results in decreasing the number of iterations of the PTNN2D algorithm, which leads
to the deviation growth. A comparison between the two alternative ways of
estimation, i.e., Lemma 2 and sampling, results that the latter performs slightly better.

Similar results are exposed regarding the PRNN2D algorithm, illustrated in Figure
8(c), where our estimations are once again accurate, with an error that never exceeds
15%, except of the case where small cardinalities of objects are requested, i.e.,
smaller than 10, where the error reaches 25%.

6 Conclusions and Future Work

In this paper, we have worked on the problem of performing probabilistic
thresholding nearest neighbor and probabilistic ranking nearest neighbor queries
over existentially uncertain spatial point datasets [3],[13]. Following a statistical
approach, we estimate the average number of the nearest neighbors required for
processing PTNN queries as a function of the threshold t and then, utilizing existing
approaches [6], we propose a cost model for such queries. We have also provided
approximate solutions for the same problem, which turn out to be applicable over
arbitrarily distributed data. Our experimental study proves the effectiveness and
efficiency of the proposed techniques. There are numerous interesting research
directions arising from this work, including the application of our model in data
spaces of higher dimensionality, its extension in order to support reverse nearest
neighbor, and spatial skyline queries according to [13], as well as objects with time-
varying existential uncertainty.

Acknowledgements. Elias Frentzos was supported by the Greek States Scholarships
foundation. Nikos Pelekis and Yannis Theodoridis were supported by the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
n°270833, ICT project DATASIM (www.datasim-fp7.eu).

References

1. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. In:
Proceedings of the ACM SIGMOD Int’l Conference on Management of Data (SIGMOD
1999), pp. 13–24 (1999)

2. Balakrishnan, N., Rao, C.R. (eds.): Order Statistics: Applications. Elsevier, Amsterdam
(1998)

3. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on
Existentially Uncertain Data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

4. Frentzos, E., Pelekis, N., Theodoridis, Y.: Cost Models and Efficient Algorithms on
Existentially Uncertain Spatial Data. In: Proceedings of the 12th Panhellenic Conference in
Informatics (PCI 2008), Samos, Greece (2008)

5. Frentzos, E., Gratsias, K., Theodoridis, Y.: On the Effect of Location Uncertainty in
Spatial Querying. IEEE Trans. Knowl. Data Eng. 21(3), 366–383 (2009)

 Cost Models for Nearest Neighbor Query Processing 409

6. Hjaltason, G., Samet, H.: Distance Browsing in Spatial Databases. ACM Transactions in
Database Systems 24(2), 265–318 (1999)

7. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: Rtrees: Theory
and Applications. Springer (2005)

8. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V.,
Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.:
Semantic Trajectories Modeling and Analysis. ACM Computing Surveys (2013)

9. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB), Seoul, Korea (2006)

10. Stanoi, I., Agrawal, D., Abbadi, A.: Reverse Nearest Neighbor Queries for Dynamic
Databases. In: Proceedings of the SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (2000)

11. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization
of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans.
Knowledge and Data Eng. 16(10), 1169–1184 (2004)

12. Weisstein, E.W.: Uniform Product Distribution. From MathWorld. A Wolfram Web
Resource

13. Yiu, M., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient Evaluation of Probabilistic
Advanced Spatial Queries on Existentially Uncertain Data. IEEE Trans. Knowledge and
Data Eng. 21(1) (2009)

	Cost Models for Nearest Neighbor Query Processing
over Existentially Uncertain Spatial Data

	1 Introduction

	2 Background

	2.1 Probabilistic NN Search over Spatial Data with Existential Uncertainty

	2.2 Cost Models for NN Search over Conventional Spatial Data

	3 Statistical Analysis of PTNN Queries

	3.1 Exact Statistical Analysis of PTNN Queries
	3.2 Approximate Statistical Analysis of PTNN Queries

	3.3 Discussion on PRNN Queries

	4 A Cost Model for PTNN and PRNN Queries

	4.1 Augmented Histograms
	4.2 A Sampling-Based Approximation Method

	4.3 An Effective Cost Model for PTNN and PRNN Queries

	5 Experimental Study
	6 Conclusions and Future Work
	References

