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Abstract. A major challenge posed by real-world applications involving spatial 
information deals with the uncertainty inherent in the data. One type of 
uncertainty in spatial objects may come from their existence, which is 
expressed by a probability accompanying the spatial value of an object 
reflecting the confidence of the object’s existence. A challenging query type 
over existentially uncertain data is the search of the Nearest Neighbour (NN), as 
the likelihood of an object to be the NN of the query object does not only 
depend on its distances from other objects, but also from their existence.  In this 
paper, we present exact and approximate statistical methodologies for 
supporting cost models for Probabilistic Thresholding NN (PTNN) queries that 
deal with arbitrarily distributed data points and existential uncertainty, with the 
aid of appropriate novel histograms, sampling and statistical approximations. 
Our cost model can be also modified in order to support Probabilistic Ranking 
NN (PRNN) queries with the aid of sampling. The accuracy of our approaches 
is exhibited through extensive experimentation on synthetic and real datasets.  

Keywords: Spatial Databases, Existential Uncertain Data, Nearest Neighbor 
Query Processing. 

1 Introduction 

In the literature, two types of uncertainty have gained the interest of the research 
community, namely the locational and the existential uncertainty. Locationally 
uncertain are the objects that do exist but their location is uncertain. This kind of 
uncertainty is described by a probability density function. On the other hand, 
existentially uncertain objects are those that their uncertainty emanates from their 
existence, and this is expressed by a probability Ex accompanying the spatial value of 
an object x reflecting the confidence of x’s existence. As a motivating example, 
consider the case where an image processing tool extracts some interesting formations 
of pixels that may or may not correspond to a predefined type of objects due to low 
image resolution. Another example involves semantically-enriched representations of 
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trajectories of moving objects [8], where a point of interest may be part of a semantic 
trajectory of a user if the latter has been predicted to perform an activity at that place. 
Existential uncertainty is also natural in the case of fuzzy classification [3], [13]. 

The related work on existentially uncertain data [3], [13] focuses on two 
probabilistic versions of several spatial queries. A thresholding query returns the 
objects that satisfy some spatial condition with probability more than a given 
threshold t, while a ranking query returns the objects that satisfy a spatial condition in 
order of their confidence. Dai et al. [3] proposed search algorithms for the above two 
types of spatial range and NN queries, where the existentially uncertain data are 
indexed by 2-dimensional R-trees [7] or appropriate augmented variants of them. In 
[13] authors also present appropriate algorithms for Spatial Skyline [9], and Reverse 
Nearest Neighbor [10] queries, based on the idea of incremental NN search. 

In this paper, we focus on the probabilistic thresholding (PTNN) and probabilistic 
ranking nearest neighbor (PRNN) queries on existentially uncertain data. In a 
nutshell, a PTNN query seeks for spatial objects whose probability of being the NN of 
a query object exceeds a given threshold t, while a PRNN query returns only the m 
most probable NNs. The motivation is that, this type of query presents a quite 
involved search complexity, as the probability of an object to be the NN depends not 
only on the location, but also on the existential probability of other objects. Moreover, 
compared to the other operators presented in [13], they are more popular with broader 
applicability. In [4] we utilized a statistical model in order to estimate the number f of 
NNs that are to be retrieved from the database so as to be at least CI % confident (i.e. 
CI is a user-defined confidence, e.g. 99%) that the PTNN search will end without the 
need to retrieve n > f NNs. The concept is to provide efficient search algorithms, with 
predetermined cost, and with custom defined certainty (as high as required) of 
resolution. On the other hand, this is a case which can be only applied to uniform data 
and existential uncertainty distribution. 

We are aware that PTNN2D and PRNN2D are overwhelmed in terms of efficient 
query processing by the other schemes proposed in [3], which employ augmented 
versions of R-trees and 3D R-trees. However, experience has shown that it is very 
difficult for commercial Spatial Database Management Systems (SDBMS) to support 
novel proposals, especially when they require altering the data structures used on their 
engines. Then again, PTNN2D and PRNN2D while not optimal, they can be directly 
employed with conventional 2D R-trees already implemented in commercial SDBMS. 
Moreover, the analysis provided in this paper can be easily modified in order to 
provide similar results that support all schemes of [3]. 

Outlining the major issues addressed in this paper, our main contributions are:  

• Following the assumption of uniformity regarding the existential uncertainty 
distribution, we present an exact statistical-based analysis for the determination 
of the discrete distribution probability density function (dpdf), that a PTNN query 
terminates after having retrieved exactly n objects; exploiting this analysis, we 
present a cost model for the forecasting of the number of disk page accesses 
required to process a PTNN query, given that the dataset is indexed by R-trees 
[7], as well as it is uniformly distributed in the data space. We further exploit 
well-known properties of distribution expected values in order to provide an 
approximate model for PTNN and PRNN queries.  
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• We show how to utilize histograms in order to relax the assumption of uniformly 
distributed data points and existential uncertainty and provide an efficient cost 
model that predicts the number of disk page accesses required to process PTNN, 
over arbitrarily distributed data and existential uncertainty. We also utilize 
random sampling so as to achieve better forecasts, as well as, overpass the 
problem that is faced regarding an analytical PRNN cost model calculation. 
Specifically, we alternately apply the results of our statistical analysis and the 
sampling method, over augmented versions of well-known histograms [1], 
together with the approach of [11].  

• Finally, we report the results of a comprehensive set of experiments, which 
demonstrates the correctness and accuracy of our analysis.  

To the best of our knowledge, our work is the first on these topics. The rest of the 
paper is structured as follows: Section 2 overviews the background work. Section 3 
describes the statistical analysis of PTNN queries based on the assumption of 
uniformly distributed data and existential uncertainty. In Section 4, we present the 
details of an efficient cost model for PTNN and PRNN queries that supports arbitrary 
distributions regarding the problem parameters, Section 5 evaluates the accuracy of 
our model through an extensive experimental study over several datasets, while, 
Section 6 provides conclusions and interesting research directions. 

2 Background 

2.1 Probabilistic NN Search over Spatial Data with Existential Uncertainty 

Formally, a PTNN query takes as input a query object q and a probability threshold t, 
while the data are represented as tuples of the form (x, Ex). As proposed by Dai et al. 
[3], the 2-dimensional PTNN (PTNN2D) algorithm, illustrated in Figure 1, iteratively 
retrieves spatially nearest objects in a Best-First (BF) mode [6], and terminates only 
after the value of Pfirst becomes smaller than the given threshold t. The PTNN2D 
algorithm iteratively calculates the value of Pfirst, which is the probability that no 
object retrieved before the current object x is the actual NN, according to [3]: 
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=

= −∏ , (1)

where n-1 is the number of objects that are closer to the query object than the current 
object x, i.e., the number of objects retrieved from the BF algorithm before x, and Ei 
their existential uncertainty. Then, the probability that x is the actual NN, is [3]: 

first

x x xP E P= ⋅  (2)

The intuition behind the PTNN2D algorithm is that once Pfirst < t, we are sure that the 
subsequent nearest objects, even if they exist with 100% probability, they cannot be 
the NN of q, so the algorithm can safely terminate. Note also that PTNN2D algorithm 
utilizes R-tree indexes so as to incrementally retrieve the k-th NN; as such, the R-tree 
can be replaced by other access method supporting incremental NN search. 
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Algorithm PTNN2D(q, 2D R-tree on S, t) 
   Pfirst=1; 
   While Pfirst ¥ t and more objects in S do 
     x:=next NN of q in S (use BF [7]); 
     Px:= P

firstÿEx; 
     If Px ¥ t then output (x, Px); 
     Pfirst= Pfirstÿ(1-Ex); 

  

Fig. 1. Probabilistic NN on a 2D R-tree with thresholding 
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Algorithm PRNN2D(q, 2D R-tree on S, m)
   Pfirst:=1; 
   H = ∅; /*Heap of m objects with highest Px*/ 
   Pm:=0; /* Px of m-th object in H*/ 
   While Pfirst ≥ Pm and more objects in S do 
     x:=next NN of q in S (use BF [7]); 
     Px:= P

first ⋅ Ex; 
     If Px ≥ Pm then  
        Update H to include x; 
        Pm:= m-th probability in H; 
     Pfirst:= Pfirst ⋅ (1-Ex);  

Fig. 2. Probabilistic NN on a 2D R-tree with ranking 

Similarly, a ranking spatial query returns the objects which qualify the spatial 
predicates of the query, in order of their confidence. Ranking queries can be also 
thresholded by a parameter m returning thus the m most confident objects. Therefore, 
a probability ranking NN (PRNN) query takes as input a query object q and the 
number of objects required with the highest probability, over data of the same form, 
i.e., (x, Ex). Dai et al. [3], also propose the 2-dimensional PRNN (PRNN2D) 
algorithm, illustrated in Figure 2, which iteratively retrieves spatially nearest objects x 
in a Best-First (BF) mode iteratively calculating Px and Pfirst using Eq.1 and Eq.2 
respectively. The difference here is that the output is a heap H containing the m most 
probable NN objects. Therefore the threshold used to terminate is based on Pm which 
is the Px of the m-th object in the heap H and the algorithm terminates only after the 
value of Pfirst becomes smaller than Pm.  

2.2 Cost Models for NN Search over Conventional Spatial Data 

Tao et al. [11] present an efficient cost model for the optimization of NN queries in 
low and medium-dimensional spaces. They provide a closed formula for the 
estimation of (a) the average nearest distance Dk from the query point q to its k-th NN 
and (b) the number of tree nodes whose MBRs intersect the vicinity circle Θ(q, Dk) 
with center q and radius Dk, which is equal with the average number of node accesses 
NA(k) required by an R-tree to retrieve the k-th NN. Specifically, the analysis of [6] 
shows that the average nearest distance Dk is estimated by: 
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where d is the dimensionality and N denotes the cardinality. 
These formulas work only with uniformly distributed data in the search space. On 

the other hand, real-world data employ arbitrary distributions; as such Tao et al. [11], 
provide an extension of the model presented above, by using MinSkew histograms.  

Specifically, the MinSkew technique proposed by Acharya et al. [1], is a binary 
space partitioning (BSP) technique employing the spatial skew definition provided in 
[1]. Each MinSkew Histogram HS can be seen as a set of spatial disjoint buckets Bi 

that cover the whole data space:
 

( ) ( ){ }:i i iHS B B S B= = ∧ = ∅ 
 

and 

{ }, , , ,, , ,i i L i U i L i UB x x y y   =     . The main advantage of this technique is that the area 

grouped together within the same bucket has small spatial skew, i.e., objects are 
almost uniformly distributed inside it; as a result, it is usually assumed that the data 
distribution inside each bucket Bi is uniform.  

 

Fig. 3. Estimating the “radius” of the vicinity rectangle Lr [11] 

[11] provides an algorithm that works over an input histogram HS and a query 
point q. The algorithm employs the notion of the vicinity rectangle that approximates 
the vicinity circle so as to minimize the number of complex (vicinity) circle- 
(histogram) rectangle intersection discoveries, and reduces them to less expensive 
rectangle – rectangle inspections. The algorithm initially determines the distances that 
q needs to travel along each dimension so as to reach the boundaries of each 
histogram bucket (cf. Figure 3), and stores them in a heap. Then, utilizing the 
histogram, the algorithm iterates by computing the expected number of points En 
found inside the vicinity rectangle formed by the next distance in the heap; if En is 
smaller than k, i.e., the number of  requested nearest neighbors, the appropriate 
vicinity radius is calculated (reduced) according to the formula: 
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where L is the “diameter” (i.e., side length) of the current vicinity rectangle, while Lold 
and Enold are the respective diameter and expected number of points found inside the 
vicinity rectangle in the previous iteration, respectively. In the case En is smaller than 
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k, the algorithm proceeds with the next distance in the heap until En becomes greater 
than k. Finally, Dk is obtained by Dk =Lr/Cv. 

After obtaining Dk the cost model developed for uniform data is applied. 
Specifically, the query cost in terms of node accesses NA(k) is provided by the 
following equation: 
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where N is the  cardinality of the dataset, f is the average node fanout, si the extent of 
a level-i node and Li calculated as a function of Dk and the respective si. We have also 
to note that N is determined based on the local density provided by the histogram in 
the area “near” the query point. The interested reader is cited to [11] for more details. 

In our approach, we make use of the techniques proposed in [11], so as to estimate 
the radius of the vicinity circle Dk required to be browsed in order to process PTNN 
and PRNN queries. Specifically, both PTNN2D and PRNN2D browse the database 
according to the distance of the query to the dataset objects until a probabilistic 
criterion is met. Both algorithms perform a number of iterations, continuously 
requesting, in each iteration, the next nearest object in an incremental way. The 
number of iterations is actually equal to the number of nearest objects to the query 
that have to be retrieved from the database. Consequently, when utilizing an R-tree, as 
PTNN2D and PRNN2D suggests, and given that the analysis of [11] estimates the 
number of node accesses NA(k) as a function of Dk and known R-tree parameters, our 
problem can be reduced to the problem of providing a good estimation of Dk. 

Table 1. Table of notations 

Notation Description 
x, Ex A data point and its existential probability  

S A dataset of tuples (x, Ex) 

q, t, m 
The query object, threshold probability of a PTNN query and number of 

requested objects of a PRNN query 

Pfirst 
The probability that no object retrieved before the current object x is the 

actual NN 

first
nP  The probability that no object retrieved before the n-th iteration is the 

actual NN 
Px The probability that an object x is the actual NN 

Pexact(n) 
The probability that the PTNN algorithm terminates after having 

retrieved exactly n objects 
H A heap used in the PRNN algorithm 
Pm the Px of the m-th object in the heap H 

EV(u) The expected (average) value of a given variable u 
Dk The nearest distance from the query point q to its k-th NN 
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3 Statistical Analysis of PTNN Queries 

In this section, aiming at a statistical analysis of probabilistic thresholding NN 
queries, we initially calculate the expected number of iterations EV(n) needed for the 
PTNN2D algorithm to terminate, and then we make use of existing work on cost 
models so as to determine the average number of node accesses NA(EV(n)) needed in 
order to process such queries over conventional R-trees. In the sequel, due to the 
difficulty of extending the exact solution to support such queries over arbitrary 
distributed data, we present an approximate solution regarding PTNN queries. We 
close the section by discussing the extension of this model in the case of PRNN 
queries. In this first approach, we make two assumptions regarding the data 
distribution: 

• data uniformity assumption: points xi are uniformly distributed in the data space,  
• uncertainty uniformity assumption: the existential uncertainty Ex of all objects in 

S is uniformly distributed inside the unit interval [0,1].  

Both assumptions are relaxed in the subsequent section where an efficient cost model 
is presented. Table 1 summarizes the notation used in the rest of the paper. 

3.1 Exact Statistical Analysis of PTNN Queries 

To start with, we provide a lemma from which a cost model for PTNN queries is 
straightforwardly devised in the case of uniformly distributed data and existential 
uncertainty. More specifically, the first step towards a cost model for the PTNN2D 
Algorithm 3, is to determine the dpdf that the algorithm terminates after exactly n 
iterations, i.e., the distribution of the number of objects retrieved before Pfirst becomes 
less than the given threshold t. Formally, we provide the following lemma: 

Lemma 1: The dpdf that the PTNN2D algorithm terminates after exactly n iterations, 
under the uncertainty uniformity assumption, is given by the following formula: 
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where t is the algorithm threshold. 

Proof: Our goal is to determine the dpdf Pexact(n), such that, the algorithm terminates 
after having retrieved exactly n objects. For this we distinguish between two cases, 
namely n = 1 and n > 1. In the first case, the algorithm terminates with a single 

iteration iff the value of ( ) ( )
1

2 1
1

1 1first

i

i

P E E
=

= − = −∏  calculated at the end of the first 

iteration (i.e., line 7 in Figure 1) is less than the given threshold t. Thus, from the 
uncertainty uniformity assumption, it holds that Pexact(1) = P(1−E1 § t) = P(E1 ¥ 1−t) 
= t. Given that -10 = (ln(t))0 = 0! = 1 we have proved Lemma 1 in the case where  
n = 1. 
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In the second case, i.e., n > 1, the algorithm terminates iff 1
first

nP + , which is 

calculated at the end of the nth iteration (i.e., line 7 in Figure 1), becomes less than t 
after exactly n iterations. In other words, we must first determine the conditional 
probability that Pfirst becomes less than t after n iterations, given also that it must not 
terminate before reaching n iterations:  

( ) ( ) ( )
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n m
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i i

P n P E t E t m n
= =

 = − ≤ − > ∀ ≤ − 
 
∏ ∏  (8)

Then, the total probability that the algorithm terminates after having retrieved exactly 
n objects can be obtained by multiplying Pcond with the probability that the algorithm 
has not terminated until reaching n iterations: 
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Moreover, since 0 § E1 § 1 ‹ 0 § 1 - E1 § 1, it also holds that 
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Since the values of Ex follow the uniform distribution, the same also stands for 1-Ex; 
as such the product of the n uniformly distributed values of 1-Ex should follow the 
uniform product distribution, i.e., the distribution of the product of n uniformly 
distributed uncorrelated variables x1, x2,.. xn, with pdf given by [12]: 
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where u is the product ix∏ . 

In our case, we first set as u the product ( )
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Given that (1−En) is also uniformly distributed, it should hold that the amount of 
objects fulfilling the above expression Vn is  

nV t u=  (14)

Known the above, we can calculate the probability Pcond(n) by summing up (i.e., 
integrating) the amount of objects Vn for each value of u, weighted by the value of the 
distribution of u, and divided by the respective sum (i.e., integral) of the distribution 

of u. Moreover, since it is known that ( )
1

1

1
n

i

i

u E t
−

=

= − ≥∏ , the above integrals should 

involve only the values of u between t and 1. Summarizing: 
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Moreover, the total probability that the algorithm has not been terminated until 

reaching n iterations (i.e, ( )
1

1

1
n

i
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− >∏ ), can be easily calculated, using the pdf of the 

product of n-1 uniformly distributed variables:  
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Finally, by substituting (15) and (16) into (11) and performing the necessary 
calculations, we have proved Lemma 1 in the case where n > 1         

Lemma 1 provides us with the dpdf that the algorithm terminates after exactly n 
iterations. The dpdf expressed by (7) is a closed formula, since it involves only the 
logarithm of the threshold t and the factorial of n. Obviously, the density of the 
probability obtained from (7) for several values of n, is dominated by the factorial of 
n-1; as such, it is expected that as the number of iterations grows, the respective 
probability density will tend to zero very fast. In the sequel we present a corollary 
derived from Lemma 1, which helps us to determine the cost model for PTNN queries 
over existentially uncertain data that follow the uncertainty uniformity assumption. 

Corollary 1: The expected number of iterations in the execution of the PTNN2D 
algorithm, under the uncertainty uniformity assumption, is: 

( ) ( )1 lnEV n t= −  (17)

Proof: The expected number of iterations needed from the PTNN2D algorithm to 
terminate is actually the mean value of (7) for each n ∈ N. As such, EV(n) can be 
calculated by averaging the dpdf Pcond(n) over all possible values of n.  
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Equation (18) cannot be straightforwardly evaluated since it involves infinity; 
however, we may calculate its limit: 
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which after the necessary calculations turns into: 
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Finally, by substituting (20) into (18) we have proved Corollary 1         

Obviously, the expected number of iterations EV(n) needed from the PTNN2D in 
order to terminate, is equal with the number of NNs needed to be retrieved from an 
existentially uncertain spatial database queried with a query point and a given 
threshold t. Thus, we may employ the analysis presented in [11], so as to estimate the 
average radius Dk on which the EV(n)-th NN will be found, under the data uniformity 
assumption. Apparently, this model can be applied in our case where the 
dimensionality d is 2 and the value of Γ(d/2+1) is Γ(2/2+1)=1; then, by substituting 
the expected number of n produced by (17) into the number of k NNs requested, (3) 
can be rewritten as follows: 

( )1 ln2
1 1

k

t
D

Nπ

−
≈ − −

 
 
  

 (21)

From this point on, the analysis of [6] that estimates the number of node accesses 
NA(EV(n)) in the case of uniform data distribution (which is identical with our data 
uniformity assumption) remains unaffected; the single modification to be made is to 
calculate Dk using (21) instead of (3), and then apply Eq.(6) accordingly. Concluding, 
the cost model for PTNN queries over existentially uncertain data that follow both the 
uncertainty uniformity and the data uniformity assumptions is based on (21), which 
estimates the distance from the query point that has to be browsed from the database 
so as to answer such a query; then, the required node accesses NA(EV(n)) can be 
straightforwardly estimated by replacing the Dk into the analysis of [11]. 

3.2 Approximate Statistical Analysis of PTNN Queries 

Unfortunately, the extension of the above-described theoretical model in the case of 
arbitrarily distributed data is not straightforward at all. Histograms widely used in 
order to provide statistical estimations in DBMS, pose insuperable problems to this 
extension due to their discrete nature. Specifically, given the simplest case where a  
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1-dimensional histogram { }1 1 2 10, , , , .., ,1mHS E E E E −=             is used to describe the 

existential uncertainty distribution in a given point in space, the distribution of the 
exact number of iterations following the methodology of Lemma 1 would be given as 
a function defined in mn parts. This is due to the fact that the resulted distribution 
would be calculated as the product of n sets containing m spaces each. Obviously, 
such an approach is not practical. On the other hand, we may provide an approximate 
solution which utilizes the notion of the expected value of the probability of a random 
object retrieved in the n-th iteration to be included in the query results. More 
formally, we provide the following Lemma 2. 

Lemma 2: The number of iterations n required for the expected value Pfirst of the 
PTNN2D algorithm to become equal to the threshold t, is given by: 

( ) ( ) ( )11
x

first

n EV EEV P t n Log t−=  = +  (22)

where EV(Ex) is the expected value of existential uncertainty Ex of a random x in S. 

Proof: Our main objective is to express EV(Pfirst) as a function of known values. 
Towards this goal, we know that the expected (mean) value of a random variable 
produced as the product of two other random variables, is equal to the product of the 
expected value of the two variables. Formally, given two random variables u and v the 
following stands: 

( ) ( ) ( )EV u v EV u EV v⋅ = ⋅  (23)

From the definition of Pfirst (1) and from (23), we have that the expected value 
EV(Pfirst) after n iterations is:  

( ) ( )( ) 1
1

nfirst

n xEV P EV E
−

= −  (24)

Now, in order for (24) to become equal to t we have: 

( )( ) ( ) ( )1

11 1
x

n

x EV EEV E t n Log t
−

−− =  − =  

which proves Lemma 2.               
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Fig. 4. Estimating the number of iterations of PTNN2D over uniform data by exact (solid line) 
and approximate solutions (doted line) 



402 E. Frentzos et al. 

It is clear that Lemma 2 can be utilized in order to provide an approximate 
estimation for the number of iterations needed by the PTNN2D algorithm in order to 
terminate. It certainly does not provide the exact value of EV(n) as Corollary 1 does, 
however, it provides strong evidence that the algorithm may terminate when n 
becomes greater than the value provided. What is more, Lemma 2 does not utilize the 
uncertainty uniformity assumption; as such it can be applied over data with arbitrary 
distributed existential uncertainty, relaxing therefore our uncertainty uniformity 
assumption. Also interestingly when employing Lemma 2 under the uncertainty 
uniformity assumption, where EV(Ex)=0.5, (22) results in ( )0.51n Log t= + . A 

comparison between this result and (17) is given in Figure 4. It is clear that the 
approximate solution always overestimates n, with its difference from the exact 
solution increasing when the value of t becomes less than 0.2 (and the number of 
iterations increases above 3). 

3.3 Discussion on PRNN Queries 

One may suggest that Lemma 1 and its Corollary 1 can be easily extended to cover 
the case of PRNN queries, processed by the PRNN2D algorithm, since their main 
difference is on their termination condition, i.e., the continuously evolving value of 
Pm employed instead of the constant value of t. Towards this goal, we could utilize the 
fact that the expected (mean) value of a random variable produced as the product of 
two independent random variables, is equal with the product of the expected value of 
the two variables. However, the calculation of a theoretical value for Pm is a very hard 
task which involves order statistics [2]. Specifically, even in the – simplest – case of 
m=2, the expected value of the m – th Px inside H, is determined by distinguishing 
between two cases regarding the order of values in H, i.e., {P1, P2}, {P2, P1}:  

• In the case where E1≥0.5, since 1 1firstP = , it follows that P1≥0.5, 

2 1(1 ) 0.5firstP E= − <  and P2 <0.5. Therefore the order of Pi inside H will be {P1, 

P2}. Now, given from the uncertainty uniformity assumption that 

EV(P1)=EV(E1)=0.5  and ( ) ( )2 2 2
firstEV P EV P E= = ( ) ( )2 2

firstEV P EV E =
 
0.25 0.5 0.125⋅ = , 

H={0.5,0.125} and EV(Pm)=0.125. 
• In the case where E1<0.5, it follows that P1<0.5 and 2 1(1 ) 0.5firstP E= − > ; 

therefore for P2>P1 it should hold that ( )2 1 11E E E> − , and 

EV(Pm)=EV(P1)=0.25. However, in the case of ( )2 1 11E E E< −  it follows that 

P1>P2, and EV(Pm)=EV(P2), a value that cannot be straightforwardly calculated. 

It is clear that the calculation of EV(Pm) for arbitrary values of m is a very demanding 
task. However, the usefulness of such a calculation can be argued, since by 
approximate sampling methods as those described in the next section, we may obtain 
good estimates of the expected number of iterations.  
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4 A Cost Model for PTNN and PRNN Queries 

In the exact analysis of Section 3, we assumed that both data points and their 
existential uncertainty are uniformly distributed in their space. In this section, we 
relax both assumptions and apply our approach to arbitrarily distributed data with 
the employment of augmented histograms. The presence of the histogram is to 
provide (a) local estimations regarding the density of existentially uncertain spatial 
objects in the neighborhood of the query point, and, (b) statistics that can be used in 
order to estimate the number of iterations needed from the PTNN2D algorithm to 
terminate.  

4.1 Augmented Histograms 

The proposal of Acharya et al. [1], may be easily extended in order to support our 
scenario of existentially uncertain spatial objects, by augmenting it in a third 
dimension describing the existential uncertainty. Formally, the proposed histogram is 

( ) [ ] ( ){ }: 0,1i i iHS B B S B= = × ∧ = ∅   and { }, , , , , ,, , , , ,i i L i U i L i U i L i UB x x y y E E=            , 

and the data distribution inside each 3D bucket Bi is considered as uniform. The 
histogram is created using the methodology of [1] by simply treating the existential 
uncertainty dimension as an additional spatial dimension. 

4.2 A Sampling-Based Approximation Method 

The above proposed histogram, besides its conventional use, i.e., to estimate the local 
density of data, it can be used in order to produce a 1D histogram of the data points’ 
existential uncertainty distribution in the area “near” the query point. Subsequently, 
random values of existential uncertainty can be produced following the local 
distribution provided by the 1D histogram, and then, used to simulate the behavior of 
the PTNN2D algorithm. The basic dilemma that is posed towards a good estimation 
following such a technique is to provide an efficient termination condition for the 
sampling process. This condition can be provided by computing the standard 
deviation of the sampled mean value: 

mean
N

σ
σ =  (25)

where σ is the sample standard deviation and N the sample size. Then, by using the 
hypothesis that n follows the normal distribution, and a confidence interval CI=95%, 
the expected number of iterations EV(n) is: 

( )1.96 1.96n nn EV n n
N N

σ σ
− ≤ ≤ +  (26)
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where N is the number of observations (number of PTNN2D simulation runs), σn the 
(computed so far) standard deviation of n and 1.96 is the approximate value of the 
97.5 percentile point of the normal distribution, used in the construction of 
approximate 95% confidence interval.  

Figure 5 illustrates the algorithm SamplePTNN2D which summarizes the proposed 
methodology regarding the estimation of the number of iterations of the PTNN2D 
algorithm using sampling. The algorithm utilizes a 1D histogram HS describing the 
existential uncertainty distribution in the local query area, the algorithm’s threshold t, 
and the precision p (e.g., 5%) of the expected value of n. The precision is used instead 
of an absolute value of standard deviation in order to compute it as a percentage of the 
calculated mean value. The algorithm begins by instantiating km, i.e. the calculated 
mean of the number of iterations needed by the PTNN2D algorithm to terminate, and 
kt, which is the standard deviation of the calculated mean. After that (lines 4-6), the 
algorithm instantiates Pfirst, N (i.e. the number of PTNN2D simulations) and n (i.e., 
the number of iterations of the PTNN2D algorithm in the current run). In lines 7-11, 
the PTNN2D algorithm is simulated and the number of iterations n in its current run is 
determined. The histogram HS is used in line 8 in order to produce random values 
based on the local area’s existential uncertainty distribution. After simulation, the 
algorithm calculates the new mean value of the number of iterations required in every 
run, as well as the mean’s standard deviation (line 13). The algorithm eventually 
terminates and returns the calculated mean value of iterations when there is 95% 
probability (which is included in the area 1.96 × kt) that the mean differs by at most p 
regarding its accurate value. 

 
  

 1. 
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 8. 
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10. 
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13. 
14. 
15. 

Algorithm SamplePTNN2D(HS 1D Histogram, threshold t, precision p) 
   km:=0; //calculated mean iterations 
   kt:=+∞; // calculated stdev of mean iterations 
   While pÿkm<1.96ÿkt do  
     N:=N+1; //num of runs 
     Pfirst:=1;  
     n:=0; //run’s iterations 
     While Pfirst¥t do // simulate PTNN2D 
       n:=n+1; 
       Ex:=ProduceRandomValue(HS); 
       Pfirst:= Pfirstÿ(1-Ex); 
     End While; 
     km:=Mean(n); 
     kt:=Stdev(n)/Sqrt(N); 
   End While; 
   Return km; 

  

Fig. 5. Sampling algorithm for estimating the number of iterations of PTNN2D 

Interestingly, the method of sampling can be directly applied with limited only 
modifications in the case of PRNN queries. The respective SamplePRNN2D algorithm 
is illustrated in Figure 6. The algorithm utilizes the same ideas as SamplePTNN2D 
with the only difference that PRNN2D is simulated (instead of PTNN2D) between 
lines 9-17, with Pm calculated and eventually tested so as to be used as a termination 
condition. This observation enables us to introduce a cost model for PRNN queries as 
well, as described in the following section. 
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Algorithm SamplePRNN2D(HS 1D Histogram,# objects m, precision p) 
   km:=0; //calculated mean iterations 
   kt:=+∞; // calculated stdev of mean iterations 
   While pÿkm<1.96ÿkt do  
     Pfirst:=1;  
     N:=N+1; //num of runs 
     H:=«;  
     Pm:=+∞;  
     n:=0; //run’s iterations 
     While Pfirst¥Pm do //simulate PRNN2D 
       n:=n+1; 
       Ex:=ProduceRandomValue(HS); 
       Px:=PfirstÿEx; 
       If Px¥ P

m then  
          Update H to include x; 
          Pm:= m-th probability in H; 
       Pfirst:= Pfirstÿ(1-Ex); 
     End While; 
     km:=Mean(k); 
     kt:=Stdev(k)/Sqrt(k); 
   End While; 
   Return km;  

Fig. 6. Sampling algorithm for estimating the number of iterations of PRNN2D 

4.3 An Effective Cost Model for PTNN and PRNN Queries 

In this section we present an effective cost model for PTNN queries that works over 
arbitrarily distributed spatial data with existential uncertainty. The proposed cost 
model is calculated using the algorithm presented in Figure 7, which employs several 
ideas presented in [12]. In particular, algorithm EstimateThresholdDk takes as input a 
simple spatial histogram, an augmented histogram, a query point q and a threshold t, 
and estimates the radius Dk of the vicinity circle that has to be browsed by the 
PTNN2D algorithm. The radius Dk is then applied over Eq.(6) so as to estimate the 
number of node accesses NA that are needed in order to answer the query. The 
algorithm initially (lines 2-4) determines the critical vicinity rectangle “radiuses”, i.e., 
the rectangle’s half-side, on which the object’s density changes. These radiuses  
 

Algorithm EstimateThresholdDk(Histogram HS, Augmented Histogram AHS, point q, threshold t) 
 1. 
 2. 
 3. 
  
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

HP = new min-Heap 
for each bucket B in HS; 
    Determine the radius that is needed for a rectangle 
    with center q to reach B and add it to HP 
end for 
EnOld=:0; lOld:=0; 
While true do // algorithm eventually terminates at line 13 
   l=:HP.pop; 
   En=:HS.Density(q,l)*(4*l*l);//calculate # objects inside rec 
   m=:AHS.MeanValue(q,l) 
   k=:Log(t)/Log(1-m)+1 
   If k<En then 
      Compute Lr by equation (5) 
      Return Lr/Sqrt(PI) 
   Else 
      lOld=l;EnOld=En; 
   End if 
End while 

  

Fig. 7. Algorithm EstimatedThresholdDk for computing Dk 
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are determined by simply calculating the distance that q needs to travel along each 
axis so as to reach each bucket’s boundaries. After their calculation, these values are 
inserted into a min-heap so as to be used in incremental order. 

Then, the algorithm iteratively retrieves candidate critical distances l on which the 
vicinity rectangle’s density is changed (via the min heap), and calculates (line 8) the 
expected number of objects En found inside it, by simply multiplying the local 
density produced by HS by the area of the respective vicinity rectangle. It also 
determines in line 9 via the augmented histogram, the mean value m of the existential 
uncertainty of objects found inside the vicinity rectangle, using as input the query 
point q as well as the radius l of the vicinity rectangle. The value m is eventually used 
in line 10 to calculate the (approximated) number of nearest neighbors k that must be 
retrieved in order for the PTNN2D algorithm to terminate. Then, in line 11, the values 
of k and En are compared, in order to determine whether the number of required 
nearest neighbors k is less than the objects contained inside the (so far calculated) 
vicinity rectangle. If it is not so, the algorithm stores l in lOld and En in EnOld to be 
used by Eq.5 in a subsequent iteration, and performs another iteration, so as to use a 
greater critical radius l (which are stored in the minheap). Eventually, the algorithm 
terminates by computing Lr via Eq.(5), and returning Dk (lines 12-13) when the 
iteratively increasing radius of the vicinity rectangle, produces an approximate 
number of objects contained inside the respective vicinity rectangle, greater than k.  

The previously presented algorithm provides a good approximation of the number 
of objects that have to be retrieved from the database in order for the PTNN2D to 
terminate. However, this can be also achieved via sampling, as described in the 
previous section. Specifically, lines 9-10 of the EstimatedThresholdDk can be 
replaced with (a) the calculation of a 1-dimensional histogram, AHS, and (b) 
algorithm SamplePTNN (cf. Figure 5) that estimated k based on a 1-dimensional 
histogram of existential uncertainty. Similarly, by replacing lines 9-10 with the 
calculation of the 1D histogram and the algorithm SampleRTNN used to estimate the 
number of iterations of PRNN2D, algorithm EstimatedThresholdDk may be also used 
as a cost model for PRNN search. 

Summarizing, the proposed cost model based on the EstimatedThresholdDk 
algorithm, can be used for estimating the radius of the vicinity circle, used for both 
PTNN and PRNN queries.  

5 Experimental Study 

Our experimental study is based on real point datasets. In particular, as in [13], we 
used the San Francisco roads’ dataset (SF) dataset. Due to the lack of a real spatial 
dataset with objects having existential probabilities, we generated probabilities for the 
objects, using the following methodology. As [13] suggests, we first generated K = 10 
anchor points on the map in positions of high data density. These points model 
locations around which there is large certainty for the existence of data. For each 
point x of the dataset, we find the closest anchor and we assign an existential 
probability inversely proportional to its distance from it. Thus, the distribution of 
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probabilities around the anchors is a Zipfian one. The probabilities are normalized 
w.r.t. the maximum probability. 

We conducted our experiments on a Windows XP workstation with AMD Athlon 
II X4 640 3GHz processor CPU. All evaluated methods were implemented using the 
.NET framework. Two statistical measures were used so as to demonstrate the 

behavior of our model. The average radius of the vicinity circle D , the average 

estimated radius of the vicinity circle eD , and the average error in the estimation of 

the vicinity circle DS . Formally, these measures are defined as: 

1..

1
i

i n

D D
n =

=  , 
1..

1 e

e i
i n

D D
n =

=  , and, 
1..

1 e

i i
i n

DS D D
n =

= −   

where n is the number of executed queries, Di the actual distance of the vicinity circle 

from the i-th query, and e

iD  the estimated radius of the vicinity circle via the 

respective cost model. We distinguish between, D  and DS , in order to disclose the 
details of the behavior of our model, as will be shown in the following experiments. 
In order to test the accuracy of the proposed model, we performed 500 PTNN queries 
in locations selected driven by the dataset density, under various threshold values and 
counted the actual number of iterations that the algorithm performed. We also 
compared the values gathered from the experiment with the one calculated using our 
model. The corresponding results are illustrated in Figure 8(a) and (b), regarding the 
PTNN2D algorithm with estimates gathered via Lemma 2 and sampling, respectively. 

It is clear that the values D and e

iD displayed in both bars (actual and estimated 

vicinity circle radiuses) are almost identical, meaning that the estimation gathered by 
our model is very accurate, with an error that never exceeds 12%, regarding the 

average number of iterations for all 500 queries. Moreover, the mean deviation DS  
(i.e., the average unsigned error of the estimation in each individual query), illustrated 
by the error bars, is between 20% and 50% in all experimental settings, increasing 
with the threshold. This is actually an expected result since the increase of threshold  
 

 
` (a) (b) (c) 

Fig. 8. Average actual and estimated search radius of the PTNN2D algorithm scaling the 
threshold using (a) mean probability, (b) Sampling, and (c) the PRNN2D algorithm scaling the 
number of objects requested  
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results in decreasing the number of iterations of the PTNN2D algorithm, which leads 
to the deviation growth. A comparison between the two alternative ways of 
estimation, i.e., Lemma 2 and sampling, results that the latter performs slightly better. 

Similar results are exposed regarding the PRNN2D algorithm, illustrated in Figure 
8(c), where our estimations are once again accurate, with an error that never exceeds 
15%, except of the case where small cardinalities of objects are requested, i.e., 
smaller than 10, where the error reaches 25%. 

6 Conclusions and Future Work 

In this paper, we have worked on the problem of performing probabilistic 
thresholding nearest neighbor and probabilistic ranking nearest neighbor queries 
over existentially uncertain spatial point datasets [3],[13]. Following a statistical 
approach, we estimate the average number of the nearest neighbors required for 
processing PTNN queries as a function of the threshold t and then, utilizing existing 
approaches [6], we propose a cost model for such queries. We have also provided 
approximate solutions for the same problem, which turn out to be applicable over 
arbitrarily distributed data. Our experimental study proves the effectiveness and 
efficiency of the proposed techniques. There are numerous interesting research 
directions arising from this work, including the application of our model in data 
spaces of higher dimensionality, its extension in order to support reverse nearest 
neighbor, and spatial skyline queries according to [13], as well as objects with time-
varying existential uncertainty. 
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