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Abstract. The wide and increasing availability of collected data in the
form of trajectory has lead to research advances in behavioral aspects
of the monitored subjects (e.g., wild animals, people, vehicles). Using
trajectory data harvested by devices, such as GPS, RFID and mobile de-
vices, complex pattern queries can be posed to select trajectories based
on specific events of interest. In this paper, we present a study on FPGA-
based architectures processing complex patterns on streams of spatio-
temporal data. Complex patterns are described as regular expressions
over a spatial alphabet that can be implicitly or explicitly anchored to
the time domain. More importantly, variables can be used to substan-
tially enhance the flexibility and expressive power of pattern queries.
Here we explore the challenges in handling several constructs of the as-
sumed pattern query language, with a study on the trade-offs between
expressiveness, scalability and matching accuracy. We show an exten-
sive performance evaluation where FPGA setups outperform the current
state-of-the-art CPU-based approaches by over three orders of magni-
tude. Unlike software-based approaches, the performance of the proposed
FPGA solution is only minimally affected by the increased pattern com-
plexity.

1 Introduction

Due to their relative ease of use, general purpose processors are commonly
favored at the heart of many computational platforms. These processors are de-
ployed in environments with varying requirements, ranging from personal elec-
tronics to game consoles, and up to server-grade machines. General purpose
CPUs follow the Von-Neumann model, which execute instructions sequentially.
Nevertheless, in this model performance does not always linearly scale in multi-
processor environments, mostly due to the challenges of data sharing across
cores. As it is non-trivial for these CPUs to satisfy the increasing time-critical
demands of several applications, they are often coupled with application- or
domain-specific parallel accelerators, such as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), which strive given a certain
class of instructions and memory access patterns.
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FPGAs consist of a fully configurable hardware platform, providing the flexi-
bility of software (e.g., programmability) and the performance benefits of hard-
ware (e.g., parallelism). The advantages on performance of such platforms arise
from the ability to execute thousands of parallel computations, relieving the
application at hand from the sequential limitations of software execution on
Von-Neumann based platforms. The processor “instructions” are now the logic
functions processing the input data. Depending on the application, one big ad-
vantage of FPGAs is the ability to process streaming data at wire speed, thus
resulting in a minimal memory footprint. The aforementioned advantages are
shared with Application Specific Integrated Circuits (ASIC). FPGAs, however,
can be reconfigured and are more adaptable to changes in applications and spec-
ifications, and hence exhibit a faster time to market. This comes at a slight cost
in performance and in area, where one functional circuit would run faster on a
tailored ASIC and require fewer gates.

As traditional platforms are increasingly hitting limitations when process-
ing large volumes of streaming data, researchers are investigating FPGAs for
database applications. Recent work has focused on the adoption of FPGAs for
data stream processing in different scenarios. In [18] a stream filtering approach
is presented for XML documents. [30] investigated the speedup of the frequent
item problem using FPGAs. In [33], the FPGA is employed for complex event
detection using regular expressions. [23] proposed a predicate-based filtering on
FPGAs where user profiles are expressed as a conjunctive set of boolean fil-
ters. [16] describes an FPGA-based stream-mode decompression engine targeting
Golomb-Rice encoded inverted indexes.

In this paper, we describe an FPGA-based setup allowing users to query
spatio-temporal databases in a very powerful and intuitive way. Figure 1 depicts
a generic overview of the various steps performed in spatio-temporal querying
setups. Streams of trajectory data are harvested from devices, such as GPS and
cellular devices. Coordinates are then translated into semantic regions that par-
tition the spatial domain; these regions can be grid regions representing areas of
interests (e.g., neighborhoods, school districts, cities). Our work is based on the
FlexTrack framework [31,32], which allows users to query trajectory databases
using flexible patterns. A flexible pattern query is specified as a combination of
sequential spatio-temporal predicates, allowing the end user to search for spe-
cific parts of interests in trajectory databases. For example, the pattern query
“Find all taxi cabs (trajectories) that first were in downtown Munich in the
morning, later passed by the Olympiapark around noon, and then were closest
to the Munich airport” provides a combination of temporal, range and Nearest-
Neighbor (NN) predicates that have to be satisfied in the specific order. Essen-
tially, flexible patterns cover that part of the query spectrum between the single
spatio-temporal predicate queries, such as the range predicate covering certain
time instances of the trajectory life (e.g., “Find all trajectories that passed by
the Deutsches Museum area at 11pm”), and similarity/clustering based queries,
such as extracting similar movement patterns from a trajectories that cover the
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Fig. 1. Generic overview of various steps performed in spatio-temporal querying setups

entire life span of the trajectory (e.g., “Find all trajectories that are similar to
a given query trajectory according to some similarity measure”).

Flexible pattern queries can also have “variable” spatial predicates, and thus
substantially enhancing the flexibility and expressive power of the FlexTrack
framework. An example of a variable-enhanced query is “Find all trajectories
that started in a region, then visited the downtown Munich, then at some later
point returned to the first visited region”.

This work serves as a proof-of-concept on the performance benefits of evalu-
ating flexible pattern queries using FPGAs. Here we focus on the challenges of
supporting hundreds (up to thousands) of variable-enhanced flexible patterns on
FPGAs in streaming (fully-pipelined) fashion. Using FPGAs all pattern query
predicates are evaluated in parallel over sequential streams of trajectories, hence
resulting in over three orders of magnitude speedup over CPU-based approaches.
This performance property also holds even when compared to CPU-based setups
where the pre-processing of trajectories is performed beforehand using special-
ized indexes. To the best of our knowledge, this work is the first detailing FPGA
support for variable-enhanced flexible pattern queries.

The remainder of this paper is organized as follows: related work is described
in Section 2; the FlexTrack query language is detailed in Section 3; the proposed
FPGA-based querying architecture is detailed in Section 4; the experimental
evaluation is provided in Section 5; and the conclusions appear in Section 6.

2 Related Work

Single predicate queries (e.g., Range and NN queries) for trajectory data have
been widely studied in the past (e.g., [2,20,28]). In order to make the query eval-
uation process more efficient [8], trajectories are first approximated using Mini-
mum Bounding Regions (MBR) and then indexed using hierarchical spatiotem-
poral indexing structures, like the MVR-tree [27] and TPR-tree [29]. However,
these solutions are only efficient to evaluate single predicate queries. For moving
object data, patterns have been examined in the context of query language and
modeling issues [5,14,24], as well as query evaluation algorithms [7,4,19].

The FlexTrack system [31,32], which our work is based on, provides a more
general and powerful query framework than previous approaches. In FlexTrack ,
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queries can contain both fixed and variable regions, as well as regular expression
structures (e.g., repetitions, negations, optional structures) and explicit ordering
of the predicates along the temporal dimension. This system uses a hierarchi-
cal region alphabet, where the user has the ability to define queries with finer
alphabet granularity (zoom in) for the portions of greater interest, and higher
granularity (zoom out) elsewhere. In order to efficiently evaluate flexible pattern
queries, FlexTrack employs two lightweight index structures in the form of or-
dered lists in addition to the raw trajectory data. Given these index structures
four different algorithms for evaluating flexible pattern queries are available,
which are detailed in the next section.

The use of hardware platforms for pattern matching has been recently ex-
plored by many studies [26,13,12,33]. Most of these works focus on deep packet
inspection and security as applications of interest. Using FPGAs, speedups of
up to two orders of magnitude is achieved compared to CPU-based approaches,
as every data element in stream can be processed in a single hardware cycle.
The works in [17,15,18] present a novel dynamic programming, push down au-
tomata approach, using FPGAs and GPUs, for matching XML Path and Twig
patterns in XML documents. Using the massively parallel solution running on
parallel platforms, up to three orders of magnitude speedup was achieved versus
state-of-the-art CPU bases approaches.

In [26] an NFA implementation of regular expressions on FPGAs is described.
[13] proposes generating hardware code from Perl Compatible Regular Expres-
sions. The work in [12] focuses on DFA implementations of regular expressions,
while merging commonalities among multiple DFAs. [33] proposes the use of reg-
ular expressions for the representation of spatio-temporal queries. An FPGA im-
plementation is detailed, allowing the sharing of query evaluation engines among
several trajectories, with a minor impact on performance. In [3], it is investigated
the use of GPUs for the fast computation of proximity area views over streams
of spatio-temporal data. Our work mainly differs from all the above works from
the perspective of the query language, described in Section 3. Specifically, we
describe an investigation of the FPGA-based support of variable-enhanced pat-
terns.

3 The FlexTrack System

We now provide a briefly description of the pattern query language syntax,
as well as the key elements in the FlexTrack framework (for more details, see
[31,32]).

3.1 Flexible Pattern Query Language

A trajectory Tid is defined as a list of locations collected for a specific moving
object over an ordered sequence of timestamps, and is stored as a sequence of n
pairs {(ls1, ts1),. . . (lsn, tsn)}, where lsi ∈ R

d is the object location recorded at
timestamp tsi (tsi−1 < tsi).



FPGA Acceleration of Trajectory Querying 205

The FlexTrack uses a set of non-overlapping regions Σl that are derived from
partitioning the spatial domain. Such regions correspond to areas of interest
(e.g. school districts, airports) and form the alphabet language Σ =

⋃
l Σl =

{A,B,C, ...}. The FlexTrack query language defines a spatio-temporal predicate
P by a triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in
Σ or a variable in Γ (R ∈ {Σ ∪ Γ}), op describes the topological relationship
(e.g. meet, overlap, inside) that the trajectory and the spatial region R must
satisfy over the (optional) time interval t := (tfrom : tto) | ts | tr. A predefined
spatial region is explicitly specified by the user in the query predicate (e.g. “the
downtown area of Munich’). In contrast, a variable denotes an arbitrary region
using the symbols in Γ = {@x,@y,@z, ...}. Conceptually, variables work as
placeholders for explicit spatial regions and can be bound to a specific region
during the query evaluation.

The FlexTrack language defines a pattern query Q = (S [∪ D]) as a combi-
nation of a sequential pattern S and an optional set of constraints D. A trajec-
tory matches Q if it satisfies both S and D parts. The D part of Q allows us
to describe general constraints. For instance, constrains can be distance-based
constraints among the variables in S and the predefined regions in Σ. And
S := S.S | P | !P | P# | ?+ | ?∗ corresponds to a sequence of spatio-temporal
predicates, while D represents a collection of constraints that may contain re-
gions defined in S. The wild-card ? is also considered a variable, however it refers
to any region in Σ, and not necessarily the same region if it occurs multiple times
within a pattern S.

The use of the same set of variables in describing both the topological predi-
cates and the numerical conditions provides a very powerful language to query
trajectories. To describe a query in FlexTrack , the user can use fixed regions
for the parts of the trajectory where the behavior should satisfy known (strict)
requirements, and variables for those sections where the exact behavior is not
known but can be described by variables and the constraints between them.

In addition to the query language defined previously, we introduce the variable
region set constraint defined in D. A region set constraint (e.g., {@x : A,D,E})
is optional per variable, and can be only applied to variable predicates, having
the purpose of limiting the region values that a given variable can take in Σ.

Consider the following query pattern and region set over @x, Q = (S =
{A.B.@x.C.?+.@x}, D = {@x : A,D,E}). Here, @x is constrained by the re-
gions {A,D,E}. In practice, a variable can be limited to the neighboring regions
of the fixed query predicates. Other constraints can be set by the user, hence,
limiting the number of matches of interest. From a performance perspective,
the use of variable region set constraints greatly simplifies hardware support for
variable predicates separated by wildcards ?+ or ?∗, as detailed in Section 4.

3.2 Flexible Pattern Query Evaluation

The FlexTrack system employs two lightweight index structures in the form of
ordered lists that are stored in addition to the raw trajectory data. There is one
region-list (R-list) per region in Σ, and one trajectory-list (T-list) per trajectory
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in the database. The R-list LI of a given region I ∈ Σ acts as an inverted index
that contains all trajectories that passed by region I. Each entry in LI contains
a trajectory identifier Tid, the time interval (ts-entry:ts-exit ] during which the
trajectory was inside I, and a pointer to the T-list of Tid. Entries in a R-list are
ordered first by Tid, and then by ts-entry.

In order to fast prune trajectories that do not satisfy pattern S the T-list
is used. For each trajectory Tid in the database, the T-list is its approximation
represented by the regions it visited in the partitioning spaceΣ. Each entry in the
T-list of Tid contains the region and the time interval (ts-entry:ts-exit ] during
which this region was visited by Tid, ordered by ts-entry. In addition, entries
in T-list maintain pointers to the ts-entry part in the original trajectory data.
With the above described index structures, there are four different strategies for
evaluating flexible pattern queries:

1. Index Join Pattern (IJP): This method is based on a merge join operation
performed over the R-lists for every fixed predicate in S. The IJP uses the
R-lists for pruning and the T-lists for the variable binding. This method
is the one chosen as comparison to our proposed solution, since it usually
achieves better performance for a wide range of different types of queries;

2. Dynamic Programming Pattern (DPP): This method performs a subsequence
matching between every predicate in S (including variables) and the trajec-
tory approximations stored as the T-lists. The DPP uses mainly the T-lists
for the subsequence matching and performs an intersection-based filtering
with the R-lists to find candidate trajectories based on the fixed predicates
in S;

3. Extended-KMP (E-KMP): This method is similar to DPP, but uses the
Knuth-Morris-Pratt algorithm [11] to find subsequence matches between the
trajectory representations and the query pattern;

4. Extended-NFA (E-NFA): This is anNFA-based approach to deal with all pred-
icates of our proposed language. This method also performs an intersection-
based pruning on the R-lists to fast prune trajectories that do not satisfy the
fixed spatial predicates in S.

4 Proposed Hardware Solution

4.1 Compiling Queries to Hardware

In this work, pattern queries are evaluated in hardware on an FPGA device. As
trajectories are compared against hundreds, and potentially thousands, of pat-
tern queries, manually developing custom hardware code becomes an extremely
tedious (and error prone) task. Unlike software querying platforms, where a sin-
gle (or set of) generic kernel can be used for the evaluation of any query pattern,
hardware is at an advantage when each query pattern is mapped to a customized
circuit. Customized circuitry has the benefits of only utilizing the needed re-
sources out of all (limited) on-chip resources. Furthermore, the throughput of
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Fig. 2. Query-to-hardware tool flow

the query evaluation engines is limited by the operational frequency (hardware
clock) which can in-turn be optimized to maximize performance.

For this purpose, a software tool written in C++ was developed from scratch
(more than 6,500 lines of code), taking as input a set of user-specified pattern
queries Q, and automatically generating a customized Hardware Description
Language (HDL) circuit description (see Fig. 2). A set of compiler options can
be specified, such as the degree of matching accuracy (reducing/eliminating false
positives), and whether to make use of certain resource utilization (common
prefix) and performance (clustering) optimizations.

Utilizing a query compiler provides the flexibility of software (ease of ex-
pression of queries from a user perspective), and the performance of hardware
platforms (higher throughput), while no compromises are introduced.

4.2 High Level Architecture Overview

As depicted in Fig. 2, assuming an input stream of pairs 〈location, timestamp〉,
the first step consists of translating the location onto semantic data; specifically,
the region-IDs are of interest, using which the query patterns are expressed.
The computational complexity of translating locations to regions depends on
the nature of the map, and are discussed below:

1. Regions defined by a grid map: in this case, simple arithmetic operations
are performed on the locations. These can be performed at wire speed (no
stalling) on an FPGA;

2. Polygon-shaped regions: in this case, there are several well-defined point-
in-polygon algorithms and their respective hardware implementations avail-
able (e.g., see [6,9,10,25]). However, none of these can operate at wire speed
when the number of polygons is large. Here, the locations of vertices are
stored off-chip in carefully designed data structures. The latter are traversed
to locate the minimal set of polygons against which to test the presence of
the locations.
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As the design of an efficient location-to-region-ID block is orthogonal to pattern
query matching, in this work a grid map is assumed, and the location-to-region-
ID conversion is abstracted away and computed offline. The input stream to the
FPGA consists of 〈region-ID, timestamp〉 pairs. A high level overview of the
generated FPGA-based architecture is depicted at the right-hand side of Fig. 2.

An event detector controller translates the 〈region-ID, timestamp〉 pairs to
〈region-ID, ts-entry, ts-exit〉 tuples. The latter are then passed to decoders which
transform the region-ID into a one-hot signal, and evaluate comparisons on entry
and exit timestamps as needed by pattern queries. Making use of decoders greatly
reduces resource utilization on the FPGA, as computations are centralized and
redundancies are eliminated.

Next, a set of flexible pattern query evaluation engines are deployed, providing
performance benefits through the following two parallelization opportunities:

1. Inter-pattern parallelism: where the evaluation of all pattern queries is
achieved in parallel. This parallelism is available due to the embarrassingly
parallel nature of the pattern matching problem;

2. Intra-pattern parallelism: where the match states of all nodes within a
pattern are evaluated in parallel.

The throughput of pattern query matching engines is limited to one event per
cycle. Given the current assumed streaming mechanism, events are less frequent
than region-IDs.

Lastly, once a trajectory is done being streamed into the FPGA, the match
state of each pattern query is stored in a separate buffer. This in turn allows the
match states to be streamed out of the FPGA from the buffer as a new trajectory
is queried (streamed in), hence, exploiting one more parallelism opportunity.

A description of the hardware query matching engines follows. While the
discussion focuses on predicate evaluation, timing constraints are evaluated in a
similar manner in the region-ID decoder, and are hence left-out of the discussion
for brevity.

4.3 Evaluating Patterns with No Variables

We now describe the case of pattern queries with no variables. This approach is
borrowed from the NFA-based regular expression evaluation as proposed in [13,26].
Figure 3(a) depicts the matching engine respective to the pattern queryA.B.?∗.A,
and Fig. 3(b) details the matching steps of that query given a stream of region-ID
events. Each query node is implemented as:

1. A one-bit buffer (implemented using a flip-flop, depicted in grey in Fig. 3(b)),
indicating whether the pattern has matched up to this node. All nodes are
updated simultaneously, upon each region-ID event detected at the input
stream;

2. Logic preceding this buffer, to update the match state (buffer contents).

As each buffer indicates whether the pattern has matched up to that predicate,
a query node can be in a matched state if, and only if:
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(a) (b)

Fig. 3. (a) Query matching engines respective to the pattern query A.B.?∗.A, and (b)
an event-by-event overview of the matching of the query.

1. All previous (non-wildstars ?∗) predicates up to itself have matched. Wild-
stars are an exception since they can be skipped by definition (zero or more).
To perform this check, it suffices to check the match state of the first previous
non-wildstar node (see the node bypass in Fig. 3(a));

2. The current event (as noted by the region-ID decoder) relates to the region
of that respective node. Wildcards are an exception, since by definition,
they are not tied to a region-ID. Centralizing the comparisons and making
use of a decoder helps considerably reducing the FPGA resource utilization
respective to this inter-node logic (see the AND-gates in Fig. 3(a)). This
is in contrast to reading the multi-bit encoded region-ID and performing a
comparison locally;

3. It is a wildstar/wildplus (?∗/?+), and it was in a match state at some point
earlier. Wildstar and wildplus are aggregation nodes that, once matched,
will hold that match state (see the OR-gate prior to the ?∗ node in Fig. 3(a)).

Looking closer at Fig. 3(b), each cell reflects the match state of a query node.
All cells in a column are updated in parallel upon an event at the input stream.
A ‘1’ in a cell indicates that the query has matched up to that node; for a
query to be marked as matched, a ‘1’ should propagate from the first node (top
row) to the last node (bottom row). As wildstar (and wildplus) nodes act as
aggregators, they hold a matched state once activated; hence, a ‘1’ can propagate
“horizontally” only at wildstar (and wildplus) nodes. Grey cell contents indicate
matched states that did not contribute to the detected matched query state in
red color, but could contribute to later matches. The ‘1’ depicted in red color in
Fig. 3(b) indicates that the query was detected in the input stream.

4.4 Evaluating Patterns with Variables and without
Wildstar/Wildplus Predicates

Supporting variables in pattern query matching requires an added level of mem-
ory saving. The basic rule of variables is that all instances of a given variable
need to match the same region-ID for a variable to be in a match state. When
no aggregator nodes ?+/?∗ are used, the distance between these two region-IDs
occurring is the number of nodes between the variable instances in the query.
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(a) (b)

Fig. 4. Query matching engines respective to the pattern query A.@x.B.@x, (a) with-
out and (b) with a region set constraint {C,D,E} on @x. To handle variables in
hardware, the first instance of a given variable in a query forwards, alongside the in-
coming match state, (a) the event detector’s output encoded (multi-bit) region-ID,
and (b) a one-hot signal consisting of bits respective to each region in the set of the
variable. Every later instance of that variable in the query (here, the last query node)
would match the event detector’s ((a) encoded, and (b) multiple decoded) region-ID
to the forwarded region-ID. If these match, then the region-ID is again forwarded, and
the variable instance indicates a matched state.

One possible way for software systems to handle this would be to store, at each
variable node (in a matched state), all the region-IDs encountered throughout
the stream. A post-processing step would carefully intersect, for each variable,
all stored region-IDs vectors. While that is a valid approach, storing region-
IDs for each variable node of each pattern query is problematic as streams are
longer. Furthermore, this is not needed unless aggregator nodes ?+/?∗ occur in
between variable occurrences; these cases are detailed in Sections 4.5 and 4.6.
As FPGAs allow the deploying of custom matching engines for each pattern,
matching pattern queries at streaming (no-stall) mode can be achieved here,
with no post processing.

To handle variables in hardware, the first instance of a given variable in a
pattern query forwards the event detector’s output encoded (multi-bit) region-
ID alongside the incoming match state (see the second node in Fig. 4(a)). Some
cycles later (depending on the location of variable instances in the pattern),
every instance of that variable in the query would match the event detector’s
region-ID to the forwarded region-ID. If these match, then the region-ID is again
forwarded, and the variable instance indicates a matched state. Stated in other
terms, at a variable node (instance) in a query, a match state is indicated if the
current region was encountered earlier (given a fixed implied distance), and all
match state propagation checks in between were valid (implying the distance).

Note that an encoded region-ID is used since it is smaller in bit size than a
decoded ID, and any region can potentially satisfy the pattern query variable
(i.e., variables are essentially a subset of wildcards). Also note that non-variable
predicates buffer the forwarded region-ID, though no manipulation of the latter
is required. Additionally, one set of region-ID buffers is required per variable,
starting from the first occurrence of that variable.
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(a) (b)

Fig. 5. (a) Query matching engine respective to the pattern query A.@x.B.@x {@x :
C,D,E}, such that the variable region set constraint is implemented as a “relaxed” OR.
This relaxation helps save considerable hardware resources (compare to Fig. 4(b)). (b)
An event-by-event overview of the matching of the query resulting in a false positive,
due to the OR-based implementation of the variable region set constraint.

The same solution is applicable to pattern queries containing variables with
region sets. Figure 4(b) shows the matching logic for the pattern A.@x.B.@x
where @x is constrained by the regions {C,D,E}. Here, instead of storing the
encoded region-ID in the variable buffers, the latter would hold, for each region
in the set, a single bit. At the first occurrence of a variable, the buffer holds
a one-hot vector, because input stream events are relative to one region only.
Upon later instances of that variable, AND-ing the incoming region set buffer
with specific bits of the region-ID decoder output will help indicating for which
regions (if any) the pattern matches.

The above approach is similar to replicating the matching engine for each
region in the variable region set constraint. For instance, the query in Fig. 4(b)
can be seen as three queries, namely A.C.B.C, A.D.B.D and A.E.B.E. How-
ever, the above approach offers much better scalability when multiple variables
are used per pattern: replicating the pattern for each combination of variable
regions would result in an exponential increase in resource utilization versus em-
ploying the aforementioned style of propagating buffers. Another advantage of
the propagating region set variable buffers, when dealing with wildstar/wildplus
pattern predicates, is described in the following.

We now describe an alternative “relaxed” implementation of the variable re-
gion set constraint, with the goal of saving considerable hardware resources,
though at the expense of introducing false positives. Instead of keeping a propa-
gating buffer holding information on each region in the set, the match state can
be updated if any of the regions in the set are decoded using a simple OR-gate.
Figure 5(a) depicts the gate-level implementation of the query A.@x.B.@x {@x :
C,D,E}, such that the variable region set constraint is implemented as an
OR. Thus, history keeping is minimized, as no exact region information is kept
per variable. While this mechanism introduces false positives (as described in
Fig. 5(b)), the latter can be tolerable depending on the application. Otherwise,
a post-processing software step can be performed only on the patterns marked as
matched by the FPGA hardware. This approach, however, helps fitting substan-
tially more query engines on the FPGA, a benefit accentuated as the number of
variables and the variable region sets’ size increase.
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(a) (b)

Fig. 6. Event-by-event matching of the pattern query @x.@y.?+.@x.@y {@x :
A,B,C,D} {@y : A,B,C,D}. The resulting match in (a) is a false positive; whereas
enough state is saved in (b) at the aggregator node (?+) to eliminate that false positive.

4.5 Evaluating Patterns with a Single Variable and with
Wildstar/Wildplus Predicates

The remainder of this discussion is applicable to both wildplus and wildstar
query nodes. As detailed earlier (Fig. 3(a)), wildplus nodes act as aggregator
nodes. When no variables are used, the only propagating information across
nodes is a single bit value. In that case, a simple OR gate would suffice for
aggregation (state saving).

When a wildplus predicate is located in between two instances of a variable,
all values of the region-ID buffer should be stored, and forwarded to the next
stages (nodes). Keeping that history is required in order to not result in false
negatives. However, due to performance and resource utilization constraints,
storing all that history is not desired. Using variable region set constraints, this
limitation can be overcome by simply OR-ing the propagating buffer similarly
to the match state buffer. This approach would store the information needed,
and no history is lost. No false positives are generated, thus pattern evaluation
is achieved at streaming mode.

4.6 Evaluating Patterns with Multiple Variables and with
Wildstar/Wildplus Predicates

When more than one variable predicate is used in a pattern query, and with
wildplus nodes in between instances of both these variables, the previous mech-
anism can lead to false positve matches, as even more state should be saved
than discussed earlier. Figure 6(a) shows an event-by-event example of a pat-
tern matching resulting in a false positive match. Each cell in the grid holds the
values stored inside each respective variable buffer. Buffers for the variable @x
are used at each pattern node, whereas buffers for the variable @y span from
the second pattern node (i.e. the first @y node), up to the last pattern node.
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As described earlier, the wildplus node is the only node in the pattern query
allowing horizontal propagation of matched states. This is due to the nature of
wildplus nodes which hold a matched state. As the variable buffers are OR-ed
at that wildplus node, they will store the information of the union of all variable
buffers encountered at that node. Looking at the ?+ row in Figure 6(a), notice
that the variable buffers for both @x and @y hold an increasing number of
regions. That level of stored information is not sufficient, as it will be shortly
shown to result in a false positive.

Upon theD event, both variable buffers did not propagate to the second instance
of @x. That is because the @x variable buffer does not reflect that the previous
instance of @x held the value ofD (yet). However, on the next eventA, the variable
buffers propagated, and the @x variable buffer was masked with the event region.
Hence,B was removed from the @x variable buffer. The@y variable buffer remains
unmodified, since the @x node is not allowed to modify it.

Finally, at the last event C, focusing at the second instance of @y (i.e. the
last pattern predicate), a match is shown for @x=A and @y=C. While @x and
@y did hold these values at some point, looking closer at the input stream, A
and C were initially separated by B, though the query requires that the distance
between @x and @y is 1 (back-to-back regions visited).

In order to not result in false positives, the level of history kept at the aggre-
gator node has to be increased. Instead of only storing the union of all variable
buffers, the information at the wildplus node should be the set of all variable
buffers encountered. To reduce storage, that solution can be simplified such
that, for each @x variable value, a list of all corresponding @y values are stored
(as shown in Fig. 6(b)). Focusing on the aggregator row, every value of @x is
associated with a list of @y values. These can be deduced from the propagat-
ing variable buffers into the wildplus node. Note that @x=A is associated with
@y=B. Therefore, the tuple @x=A, @y=C cannot result in a match, as is the
case in Fig. 6(a).

Nonetheless, implementing this solution in hardware is extremely costly in
terms of resource utilization (and impact on the critical path/performance),
especially with larger region sets and many variables per pattern. Furthermore,
this solution does not scale with many variables, and does not hold with more
aggregator nodes.

Another approach to eliminate false positives in such cases is a brute-force
implementation of each query using all variable region-set combinations. For
instance, the query S = @x.@y.?+.@x.@y {@x : A,B}{@y : C,D} can be
implemented as four simpler queries, namely:

1. S1 = A.C.?+.A.C
2. S2 = A.D.?+.A.D
3. S3 = B.C.?+.B.C
4. S4 = B.D.?+.B.D

This approach is encouraging when the number of variables and the size of the re-
gion sets is relatively small. Otherwise, the implied resource utilization increases
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too much, even though each query is built using simple matching engines (no
propagating variable buffers). Nonetheless, the common prefix (among similar
pattern queries) optimization helps with the scalability.

In order to better evaluate the benefits of each of the above approach, a
study on the resulting false positives versus resource utilization is performed in
Section 5. In summary, when pattern queries make use of two or more variables,
and with an aggregator node in between the occurrences of these variables, the
proposed approaches are:

1. Making use of propagating variable buffers: this approach results in
the least false positives;

2. Implementing region set constraints as an OR: the number of false
positives here is a superset of the above case, and resource utilization is
minimal. False positives are a superset, since the condition (OR check) to
allow a match to propagate through a variable node is a superset of the first
approach’s variable node conditions (propagating buffers);

3. A brute-force mapping approach: this approach map each query as the
combination of all variable region-sets. It has no false positives, but does not
scale well with more variables and larger region sets.

5 Experimental Evaluation

We now present an extensive experimental evaluation of the proposed hardware
architecture. We first describe the datasets used in the experiments, followed by
the experimental setup. We then detail a thorough design space exploration on
the proposed architecture, alongside a study on matching accuracy. Finally, we
show the performance evaluation between the proposed architecture solutions
with the CPU-based software approach.

5.1 Dataset Description

In our experimental evaluation, we use four real trajectory datasets. The first
two datasets are the Trucks and Buses from [1]. Both datasets represent moving
objects in the metropolitan area of Athens, Greece. The Trucks dataset has 276
trajectories of 50 trucks where the longest trajectory timestamp is 13,540 time
units. The Buses dataset has 145 trajectories of school buses with maximum
timestamp 992. The third dataset, CabsSF, consists of GPS coordinates of 483
taxi cabs operating in the San Francisco area [22] collected over a period of almost
a month. The fourth dataset, GeoLife, contains GPS trajectory data generated
from people that participated in the GeoLife project [34] during a period of over
three years. This dataset has 17,621 trajectories with a total distance of about
1.2 million kilometers and duration of more than 48,000 hours.

5.2 Experiments Setup

For simplicity of the experimental evaluation, we partition the spatial domain in
uniform grid sizes. These grid cells become the alphabet for our pattern queries.
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In order to generate relevant pattern queries for each dataset, we randomly
sample and fragment the original trajectories using a custom trajectory query
generator. The length and location of each fragment are randomly chosen. These
fragments are then concatenated to create a pattern query. We generate up to
2,048 pattern queries with different number of predicates, variables, and wild-
cards. The location of each variable and wildcard inside the query are randomly
chosen.

Our FPGA platform consists of a Pico M-501 board connected to an Intel
Xeon processor via 8 lanes of PCI-e Gen. 2 [21]. We make use of one Xilinx
Virtex 6 FPGA LX240T, a low to mid-size FPGA relative to modern standards.
The PCIe hardware interface and software drivers are provided as part of the
Pico framework. The hardware engines communicate with the input and output
PCIe interfaces through one stream each way, with dual-clock BRAM FIFOs in
between our logic and the interfaces. Hence, the clock of the filtering engine is
independent of the global clock. The PCIe interfaces incur an overhead of ≈8%
of available FPGA resources.

The RAM on the FPGA board is not residing in the same virtual address
space of the CPU RAM. Data is streamed from the CPU RAM to the FPGA.
Since the proposed solution does not require memory offloading, RAM on the
FPGA board is not used. Xilinx ISE 14 is used for synthesis and place-and-route.
Default settings are set.

5.3 Design Space Exploration

Here we discuss the resource utilization and achievable performance (through-
put) of the hardware engines. Figure 7(a) shows the resource utilization, and
Fig. 7(b) shows the respective frequencies of the hardware engines, such that
the number of queries (varying from 32, 64, 128, ... up to 2,048 queries), the
query length (4 and 8 predicates), and number of variables in a pattern query
(0 and 1 variable, in this last case a variable with a region set of 5 regions is
assumed).

As the query compiler applies the common prefix optimization, and further
resource sharing techniques are exercised by the synthesis/place-and-route tools,
resource utilization does not double as the number of queries is doubled. Rather,
a penalty of approximately 70% occurs.

Similarly, as the query length is doubled, an average increase of 80% in re-
sources is found. However, adding one variable to each query results in, on aver-
age, doubling resource utilization. Note that the propagating buffer approach is
employed for variable matching, and that these buffers propagate from the first
occurrence of the variable to the last.

Overall, up to several thousands of query matching engines can fit on the
target Xilinx V6LX240T FPGA, a mid- to low-size FPGA. While these numbers
address the scalability of the proposed matching engines, Fig. 7(b) details the
respective achievable performance in terms of:
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(a) (b)

Fig. 7. (a) Resource utilization and (b) respective frequencies/throughput of the hard-
ware engines, such that the number of queries is doubled, the query length is doubled,
and variable predicate is present or not in the pattern query

1. Operational frequency (MHz): measured as a function of the critical
path, i.e., the longest wire connection of the FPGA circuit. This number is
obtained post the place-and-route process of the FPGA tools;

2. Throughput (GB/s): as the query matching engines process one 〈region-
ID, timestamp〉 pair per hardware cycle, the FPGA throughput can be de-
duced from the circuit’s operational frequency, given that the size of each
input pair is 8 Bytes (2 integers). Nonetheless, this computed throughput is
respective to the FPGA circuitry, and might not reflect the end-to-end (CPU-
FPGA and back) performance, which is platform dependent. The end-to-end
measurements are discussed in the sequence.

As the number of queries increases, frequency/throughput is initially around
the 250MHz/2GBs mark. Fluctuations are due to the heuristic-based nature
of the FPGA tools, though generally a trend is deduced. As the number of
queries becomes too large, frequency drops considerably for queries with vari-
ables. The drop is not as steep for queries with no variables; the reason being
that queries with variables can be thought of as longer queries (due to the prop-
agating buffers). This drop in frequency occurs because of the large fan-out from
the region-ID decoder to the many sinks, being the query nodes and propagating
buffers.

Replicating the region-ID decoder (and event detector) helps reducing fan-
out, and will potentially eliminate it. Each region-ID decoder is then connected
to a set of queries. We refer to a region-ID decoder and its connected queries
as a cluster. Note that each query belongs to exactly one cluster. The query
compiler is developed to take as input parameter the cluster size, as a function
of query nodes. Thorough experimentation shows that clusters need not hold
less than 1,024 or even 512 query nodes (data omitted due to lack of space).
Larger clusters result in performance deterioration; smaller clusters do not offer
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Fig. 8. Scalability of the each of the following three implementations of 100 queries of
length 6 holding variables: variable as OR, propagating buffer, and all combina-
tions

any benefits in performance, rather present an increase in resource utilization
(due to the replication of the region-ID decoder and event detector per cluster).

5.4 Query Engine Implementations and False Positives

As described in previous sections, a query holding variables can be evaluated in
one of three ways, namely:

1. Variable as OR: implementing the region set constraints as ORs (resulting
in most false positives);

2. Propagating buffer: making use of propagating buffers (false positives
arise only when using multiple variables alongside wildstar/wildplus nodes);

3. All combinations: brute-force mapping of each query as the combination
of all variable region sets (no false positives).

Figure 8 illustrates the resource utilization of 100 queries of length 6 holding vari-
oftheaforementionedthreeapproaches.Thevaried
factors are the number of variables in each pattern query, and the respective
region set size.

When implementing a variable as OR, each variable node is replaced with a
simpler OR node. Thus, as expected (see Fig. 8), increasing the number of vari-
ables has almost no effect on resource utilization. The same applies to increasing
the region set size. On the other hand, the propagating buffer technique starts off
as utilizing slightly less than double the resources of the variable as the OR ap-
proach. Furthermore, doubling the region set size results in a 50% area penalty.
Doubling the number of variables per pattern query exhibits similar behavior.

Finally, when transforming a query into a set of queries based on all combina-
tions of the region sets, resource utilization starts off as more than double that
of the propagating buffer technique. Doubling the number of variables naturally
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Fig. 9. Matching accuracy (100-false positives %) for each implementation of 100 long
queries, over three datasets, namely Trucks, Buses and CabsSF

has a steeper effect than doubling the region set size on resource utilization. Note
that the common prefix optimization helps with the scalability of this approach.
Nonetheless, when using two variables with region set size of 15, the resulting
circuitry did not fit on the FPGA. Practically, it is best to make use of this
approach for critical pattern queries where false positives are not tolerated.

We now evaluate the number of false positive matches for each of the three
query engine implementations previously discussed. In this experiment, as shown
in Fig. 9, the matching accuracy (100-false positives %) is recorded for each
implementation of 100 long queries, over three datasets, namely Trucks, Buses
and CabsSF (the results for the GeoLife dataset follow the same pattern).
Queries are generated using our query generator tool, where each query con-
tains two variables, as well as one or more aggregator (?∗/?+) nodes. Note that
the Propagating buffers approach does not result in any false positives, unless
multiple variables are used alongside aggregators.

As expected by its design, the All combinations approach results in no false
positives. However, while the Variable as OR technique results in the most false
positives (as expected), the matching accuracy varies from high (93.2%), to
somewhat low (48.8%). On the other hand, matching accuracy is close to perfect
(> 99.8%) for the Propagating buffers implementation, even as false positives
increase as a result of the Variable as OR implementation. No false positives are
recorded on the Trucks dataset when making use of the propagating buffers.

While the mileage of the Variable as OR implementation may vary, its scala-
bility is key. Even when false positives are not tolerable, query matching engines
can employ this technique, where the FPGA would be used as a pre-processing
step with the goal of reducing the query set. The same applies for the propa-
gating buffers implementation technique, where the query set would be reduced
the most. Since the performance of CPU-based software approaches scales lin-
early with the number of pattern queries, reducing the query set has desirable
advantages, especially that the time required for this pre-processing FPGA step
is negligible.
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Fig. 10. End-to-end (CPU-RAM to FPGA and back) throughput of queries of length
4 with 1 variable. The throughput of the FPGA filtering core is drawn in red line.

(a) Trucks (b) Geolife

Fig. 11. FlexTrack (software) IJP throughput (MB/s) resulting from matching for
2,048 queries with varying properties on the (a) Trucks and (b) GeoLife datasets. In-
creasing query complexity (adding variables/wildcards) greatly decreases throughput.

5.5 Performance Evaluation

In the last set of experiments, we compare the performance evaluation between
our proposed architecture solutions and the CPU-based software approach. Fig-
ure 10 shows the end-to-end (CPU-RAM to FPGA and back) throughput of
length 4 queries with 1 variable. Throughput is lower from the FPGA filtering
core for smaller trajectory files since steady state is not reached, and commu-
nication setup penalty is not hidden. For larger files, throughput is closer to
the FPGA core’s, given the physical limitations. Note that the throughput of
the FPGA setup is independent of the trajectory file contents, as well as query
structure (given a certain operational circuit frequency).

Figure 11 depicts the FlexTrack (software) IJP throughput (MB/s) result-
ing from matching for 2,048 queries with varying properties on the Fig. 11(a)
Trucks and Fig. 11(b) GeoLife datasets. Pre-processing (index building) time
is excluded. When considering simple queries, throughput is initially higher for
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the larger dataset (GeoLife), where processing steady-state is reached. Increas-
ing query complexity (adding variables/wildcards) greatly decreases throughput.
Note that where the FPGA end-to-end execution time is in the milliseconds
range, software operates in the tens of seconds (up to several minutes) range,
and is greatly affected by the query structure and dataset contents; hence the
considerable speedup (over three orders of magnitude) and benefits of the FPGA
setup. It should be noted that the proposed FPGA solution does not result in
false positive matches for any of the queries considered in Fig. 11.

6 Conclusions

The wide and increasing availability of collected data in the form of trajectory
has lead to research advances in behavioral aspects of the monitored subjects.
Using trajectory data harvested by devices, such as GPS, RFID, and mobile de-
vices, complex pattern queries can be posed to select trajectories based on spe-
cific events of interest. However, as the complexity of the posed pattern queries
increases, so do computational requirements, which are not easily met using
traditional CPU-based software platforms.

In this paper, we present the first proof-of-concept study on FPGA-based
architectures for matching variable-enhanced complex patterns, with a focus
on stream-mode (single pass) filtering. We describe a tool for automatically
generating hardware constructs using a set of pattern queries, abstracting away
ramifications of hardware code development and deployment. A thorough design
space exploration of the hardware architectures shows that the proposed solution
offers good scalability, fitting thousands of pattern query matching engines on
a Xilinx V6LX240T FPGA, a mid- to low-size FPGA. Increasing the number
of variables and wildcards is shown to have linear effect on the resulting circuit
size, and negligible on performance. This behavior does not happen in CPU-
based solutions, since performance is greatly affected from such pattern query
characteristics.

When handling pattern queries with (a) no variables, (b) one variable, or (c)
no wildcards with two or more variables, the proposed hardware architecture is
able to process the trajectory data in a single pass. When two or more variables
occur in a pattern query alongside wildcards, the proposed solution may have
the drawback of resulting in false positive matches (though these are minimal
in practice). Nonetheless, a no-false-positive solution is proposed, though being
limited in scalability.

As part of our future research, we are working on enhancing the proposed
framework to allow online pattern query updates. In this way, the deployed
generic pattern query engines will support any pattern query structure and
node values. A stream of bits forwarded to the FPGA will program the con-
nections between deployed pattern query nodes. It should be noticed that this
approach is different to the Dynamic Partial Reconfiguration (DPR), where the
bit configuration of the FPGA itself is updated.
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