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Abstract. Consider two sets of spatial objects R and S, where each ob-
ject is assigned a score (e.g., ranking). Given a spatial distance threshold
ε and an integer k, the top-k spatial distance join (k-SDJ) returns the
k pairs of objects, which have the highest combined score (based on an
aggregate function γ) among all object pairs in R×S which have spatial
distance at most ε. Despite the practical application value of this query,
it has not received adequate attention in the past. In this paper, we fill
this gap by proposing methods that utilize both location and score infor-
mation from the objects, enabling top-k join computation by accessing
a limited number of objects. Extensive experiments demonstrate that a
technique which accesses blocks of data from R and S ordered by the ob-
ject scores and then joins them using an aR-tree based module performs
best in practice and outperforms alternative solutions by a wide margin.

1 Introduction

The spatial join operator retrieves pairs of objects that satisfy a spatial predicate.
Spatial joins have been extensively studied [3,6,17,7,15] due to their applicabil-
ity and potentially high execution cost. Still, this query type only focuses on
spatial attributes, while in many applications spatial objects have additional at-
tributes. For instance, restaurants shown in websites like Foursquare and Yelp are
assigned user-generated ratings. As another example, consider collections of spa-
tial objects created in the context of emerging scientific fields like atmospheric,
oceanographic, and environmental sciences with an expertise that ranges, from
the modeling of global climatic change to the analysis of earth’s tectonics. The
objects in such collections are associated with measurements of several attributes
varying from temperature and pressure to earth’s gravity and seismic activity.

These attributes can be used to derive a ranking for the objects. Ranking
has been considered by the database community in the context of top-k queries
[5,9] and top-k joins [13,8,12,16] where ranked inputs are joined to derive ob-
jects or tuple pairs which maximize an aggregate function on scoring attributes.
Consider, for example, the following top-k join query expressed in SQL:
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Fig. 1. Example of a top-k spatial distance join

SELECT R.id, S.id

FROM R, S

WHERE R.att = S.att

ORDER BY R.score + S.score DESC

STOP AFTER k;

The result of this query is the k pairs of objects (r, s) with r ∈ R and s ∈ S
that qualify the equality predicate on their common attribute att, having the
highest SUM of their score attributes.

Despite the vast availability of spatial objects associated with scoring at-
tributes, to our knowledge, there exists no join operator that considers both
spatial and score attributes at the same time.1 On an attempt to fill this gap,
we introduce the top-k spatial distance join (k-SDJ) query. Given two collections
of spatial objects R and S that also carry a score attribute, the k-SDJ query
retrieves a k-subset J of R × S such that for every pair of objects (r, s) ∈ J , r
is spatially close to s based on a distance threshold ε (i.e., dist(r, s) ≤ ε, where
dist denotes the distance between the spatial locations of r and s), and for every
(r′, s′) ∈ R × S − J such that dist(r′, s′) ≤ ε, it holds γ(r, s) ≥ γ(r′, s′), where
γ is a monotone aggregate function (e.g., SUM) which combines the scores of
two objects. k-SDJ finds application in tasks like recommending to the visitors
of a city the k best pairs of restaurants and hotels within short distance that
have the top combined ratings, or investigating the correlation between scien-
tific attributes, e.g., identifying locations where earthquakes of high magnitude
take place on a very large depth. For instance, Figure 1 illustrates a set R of
four restaurants and a set S of four hotels. The objects carry a score shown
next to every point. Assuming that the qualifying pairs should have Euclidean
distance at most ε = 0.3 and γ = SUM , the result of 2-SDJ contains pairs
(r2, s3) with aggregate score 7 and (r2, s2) with aggregate score 6. Notice that,
although dist(r4, s4) < ε, pair (r4, s4) is not included in the query result because
γ(r4, s4) < γ(r2, s2) < γ(r2, s3). Further, while being the restaurant with the
highest score, r3 is not included in any result pair, as there is no hotel at a

1 An exception is the work of [11] which, however, is restricted to a specific type of
attributes (probabilities) and a specific aggregation function (product).
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distance to r3 smaller than 0.3. Note that k-SDJ is very similar to the top-k join
problem in relational databases (see the example SQL query above); the only
difference is that in k-SDJ the equality join predicate is replaced by a distance
bounding predicate between the spatial locations of objects in R and S.

Contributions. In this paper, we study the efficient evaluation of the k-SDJ
query. In brief, the key contributions of our work are summarized as follows:

– We introduce k-SDJ over two collections of spatial objects with scoring at-
tributes. The k-SDJ query can be used either as a standalone operator or
participate in complex query evaluation plans. For this purpose, we assume
that the input collections are not indexed in advance.

– We present three algorithms, which access and process the data in different
order; (i) the Score-First algorithm (SFA), which accesses the objects from
R and S in decreasing order of their scores, (ii) the Distance-First Algo-
rithm, which gives higher priority to the spatial distance join component of
the query, and (iii) the Block-based Algorithm (BA), which performs block-
wise evaluation, combining the benefits of SFA and DFA, without sharing
their disadvantages. All techniques employ aR-trees [14] (albeit in different
fashions) in order to combine spatial search with score-based pruning.

– We conduct extensive experiments to verify the effectiveness and efficiency
of our proposed methods.

Outline. The rest of the paper is organized as follows. Section 2 reviews the
related work. Section 3 presents algorithms for k-SDJ evaluation. Comprehen-
sive experiments and our findings are reported in Section 4. Finally, Section 5
concludes the paper and discusses directions for future work.

2 Related Work

Our work is related to spatial joins, top-k queries and top-k joins, and spatial
top-k joins. Sections 2.1 to 2.4 summarize related work done in these areas.

2.1 Spatial Joins

There exist two types of spatial distance join queries: the ε-distance and the k-
closest pairs join. Given two collections of spatial objects R and S the ε-distance
join identifies the object pairs (r, s) with r ∈ R, s ∈ S, such that dist(r, s) ≤ ε.
An ε-distance join can be processed similarly to a spatial intersection join [2].
Specifically, assuming that each of the R and S collections are indexed by an
R-tree, the two R-trees are concurrently traversed by recursively visiting pairs
of entries (eR, eS) for which their MBRs have minimum distance at most ε. Min-
imizing the cost of computing the distance between an MBR and an object was
studied in [3]. For non-indexed inputs, alternative spatial join algorithms can be
applied (e.g., the algorithm of [1] based on external sorting and plane sweep).
The k-closest pairs join computes, from two collections R and S, the k object



4 S. Qi, P. Bouros, and N. Mamoulis

pairs (r, s), r ∈ R, s ∈ S, with the minimum spatial distance dist(r, s). Two
different approaches exist for k-closest pairs. In the incremental approach [6,17]
the results are reported one-by-one in ascending order of their spatial distance.
For non-incremental computation of closest pairs, [4] extends the nearest neigh-
bor algorithm of [15] achieving in this way, minimum memory requirements and
better access locality for tree nodes.

2.2 Top-k Queries

Fagin et al. [5] present an analytical study of various methods for top-k ag-
gregation of ranked inputs by monotone aggregate functions. Consider a set of
objects (e.g., restaurants) which have scores (i.e., rankings) at two or more dif-
ferent sources (e.g., different ranking websites). Given an aggregate function γ
(e.g., SUM) the top-k query returns the k restaurants with the highest aggre-
gated scores (from the different sources). Each source is assumed to provide a
sorted list of the objects according to their atomic scores there; requests for ran-
dom accesses of scores based on object identifiers may also be possible. For the
case where both sorted and random accesses are possible, a threshold algorithm
(TA) retrieves objects from the ranked inputs (e.g., in a round-robin fashion)
and a priority queue is used to organize the best k objects seen so far. Let li be
the last score seen in source Si; T = γ(l1, ..., lm) defines a lower bound for the
aggregate score of objects never seen in any Si yet. If the kth highest aggregate
score found so far is no less than T , the algorithm is guaranteed to have found
the top-k objects and terminates. For the case where only sorted accesses are
possible, [12] presents an optimized approach.

2.3 Top-k Joins

The top-k query is a special case of a top-k join query, which performs rank
aggregation on top of relational join results; recall the SQL query example in
the Introduction, where two tables R and S are joined (based on their common
attribute att), but only the top-k join results according to the score attributes
are required to be output.

Ilyas et al. [8] proposed a binary operator, called hash-based rank-join (HRJN)
for top-k joins, which produces results incrementally and therefore can be used
multiple times in an multi-way join evaluation plan. Assume that the tuples of
R and S are accessed incrementally based on their values in the score attribute.
HRJN accesses tuples from R (or S) and joins them using the join key att with
the buffered tuples of S (or R), which have previously accessed (these tuples are
buffered and indexed by a hash-table). Join results are organized in a priority
queue based on their aggregate scores. Let lR, hR (lS , hS) be the lowest and
highest scores seen in R (S) so far; all join results currently in the queue having
aggregate scores larger than T = max{γ(hR, lS), γ(lR, hS)} are guaranteed to
have higher aggregate score than any join result not found so far and therefore
can be output (or pipelined to the operator than follows HRJN). A follow-up
work [16] identifies optimal strategies for pulling tuples from the inputs in a
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multi-way top-k join and joining them with the buffered results of other inputs.
An early work on multi-way top-k join evaluation is done by Natsev et al. [13].

The binary top-k join operator (i.e., HRJN) can be adapted to solve k-SDJ;
the only difference is that the equality join predicate in HRJN is replaced by a
spatial distance predicate. In Section 3, we describe our Score-First Algorithm
(SFA), which is based on this idea.

2.4 Spatial Top-k Joins

The term “top-k spatial join” is defined in [19]; however, this problem definition
is very different from what we study in this paper; given two spatial datasets
R and S, the query of [19] retrieves k objects in R intersecting the maximum
number of objects from S. Therefore the ranking criterion based on the number
of spatial intersections and not based on the aggregations of (non-spatial) scores
from the two inputs. The only work to our knowledge, closely related to k-SDJ
is [11], which studies a spatial join between two datasets R and S, containing
spatial data associated with probabilistic values; in this case each object o (e.g.,
a biological cell) is defined by a set of probabilistic locations and it is also as-
signed a confidence po to belong to a specific cell class. Given two objects r and
s from datasets R and S, respectively, a score of the (r, s) pair is defined by
multiplying their confidence probabilities pr and ps, and also considering the
distance dist(r, s) between their uncertain locations. Then, the top-k probabilis-
tic join between R and S returns the top-k object pairs in order of their scores.
Compared to k-SDJ, the problem definition in [11] is different. The aggregate
score function for k-SDJ does not involve the distance of the objects, but the
distance is used in the join predicate. Further, the solution proposed in [11] is
of limited applicability as it is bound to a specific aggregation function and can
efficiently work only with L1 distance.

3 Algorithms

In this section, we study evaluation techniques for k-SDJ. According to the query
definition, the results are object pairs with (i) large aggregate scores and (ii)
nearby spatial locations. First, we discuss two solutions, which extend work on
top-k joins [13,8,12,16] and spatial joins [3,6,17,7,15], respectively, to prioritize
either of the two query components; i.e., they either consider object scores or
spatial distances first, respectively. We present these methods in Sections 3.1 and
3.2; they are optimized to employ aR-trees [14] (in a different fashion) in order
to prune the search space during query evaluation. In Section 3.3, we present a
framework which processes the objects in order of their scores, in a block-wise
fashion and spatially joins the blocks, using bounds to early terminate accessing
of blocks. Figure 2 illustrates the running example that we use to demonstrate
our algorithms; two spatial datasets R = {r1 . . . r8} and S = {s1 . . . s8} with 8
points each. The point coordinates are shown on the left of the figure, while the
two tables on the right show the objects in each collection in descending order
of their scores. Table 1 shows the notation frequently used.
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id loc score
r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1
Object collection R

id loc score
s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7
s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2
Object collection S

Fig. 2. Example of two datasets R and S with 8 points each

Table 1. Table of Symbols

Notation Description

R/S Collections with scored spatial objects
k The number of required results
ε The spatial distance threshold
γ A monotone aggregate function
C Candidate/result set of k-SDJ
θ k-th smallest aggregate score in C

3.1 The Score-First Algorithm (SFA)

This method employs the framework of top-k join algorithms [8,16] to com-
pute k-SDJ. In particular, a variant of the HRJN algorithm is applied using the
spatial distance predicate instead of the equality predicate used in the original
algorithm. The Score-First Algorithm (SFA) presumes that both R and S are
ordered based on the object scores (e.g., as shown in Figure 2). This can be
the case if they stem from underlying operators which produce such interesting
orders; otherwise R and S need to be sorted before the application of SFA. SFA
incrementally accesses objects either from R or from S. For each collection (e.g.,
R), it maintains an aR-tree [14] (e.g., AR), which spatially organizes the buffered
objects accessed so far.2 In addition, SFA keeps track of the set C of distance
join pairs found so far with the k highest aggregate scores and uses the lowest
score θ in C as a bound for pruning and termination.

Algorithm 1 is a high-level pseudocode of SFA. After initializing C and the
aR-trees, SFA incrementally accesses objects from R or S (we will shortly discuss
about the access order). Assume that the current object is r accessed from R
(i.e., i = R and o = r at Lines 5 and 7 of the pseudocode); the other case is
symmetric. SFA performs the following steps:

2 The aR-tree has identical structure and update algorithms as the R-tree, however,
each non-leaf entry is augmented with the maximum score of all objects in the
subtree pointed by it. Figure 3 illustrates the structure of two aR-trees for the data
of Figure 2.
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Algorithm 1. Score-First Algorithm (SFA)
Input: k, ε, γ, R, S
Output: C
1: initialize a min-heap C:=∅ of candidate results; initialize θ:=−∞
2: sort R and S based on score, if not already sorted
3: initialize aR-trees AR:=∅ and AS:=∅
4: while more objects exist in R and S do
5: i := next input to be accessed //either R or S
6: j := other input //either S or R
7: o := get next(i) //get next object from input i
8: T :=max{γ(hR, lS), γ(lR, hS)} //HRJN termination threshold
9: while (o′ := get next pair(o,Aj , ε, θ)) �= null and T > θ do
10: update C and θ using (o, o′)
11: if T ≤ θ then
12: break //result secured; no need to access more objects
13: insert o to Ai

14: return C

1. It updates T (Line 8)
2. It probes r against the aR-tree AS for S to incrementally retrieve objects s

from AS such that dist(r, s) ≤ ε and γ(r, s) > θ (function get next pair() in
Line 9 retrieves such objects in decreasing order of γ(r, s));

3. For each qualifying pair (r, s) found, it updates C and θ (Line 10);
4. It checks whether the algorithm can terminate (Lines 11–12);
5. It inserts r to the aR-tree AR for R (Line 13)

We now elaborate on the steps above. After each object access, SFA firstly
updates the termination threshold T = max{γ(hR, lS), γ(lR, hS)} (Line 8). From
the description of HRJN in Section 2.3, recall that lR, hR (lS , hS) are lowest
and highest scores seen in R (S) so far (initially they are set as the maximum
score in R (S)). In Step 2, aR-tree search on AS is performed as a score-based
incremental ε-distance range query centered at r (function get next pair() in
Line 9); during search, entries whose MBRs are further than ε from r are pruned
and the remaining ones are prioritized based on their aggregate scores (i.e., the
maximum score of any object indexed under them). Specifically, for each entry
e, γ(r, e.score) is computed (where e.score is the aggregate score for e in the
aR-tree) and if it is found not larger than θ, then the entry is pruned (as it would
not be possible to find an object s ∈ S in the subtree pointed by e, such that
γ(r, s) > θ). Otherwise, the entry is inserted in a priority queue which guides
the aR-tree search to retrieve the spatial join pairs (r, s) in decreasing order of
s.score (note that this results in retrieving pairs in decreasing order of γ(r, s),
since r is fixed).

Whenever a new pair (r, s) is found, C and θ are updated immediately in
order to tighten the θ bound and potentially prune additional aR-tree nodes
during search: if |C| < k, (r, s) is inserted into C regardless of its aggregation
score; otherwise, (r, s) is inserted into C only if γ(r, s) > θ; in this case (r, s)
replaces the k-th pair in C, such that C always keeps the best k pairs found so
far. In either case, θ is updated to the k-th aggregate score in C. During the
computation of new join results, as soon as T ≤ θ, SFA terminates reporting C
as the k-SDJ result. Finally, r is inserted to the aR-tree AR for R, which is used
to probe objects from S.
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We note that at Line 5 SFA chooses as input (R or S) to read the next object
from the collection with the higher last seen score, according to the rationale of
HRJN [8]; this increases the chances that the threshold T drops and that SFA
terminates earlier.

To illustrate SFA, consider the example of Figure 2 and a k-SDJ query with
k = 1, ε = 0.1, and γ = SUM . After the first access (r1 from R), there is no
join result (since AS is currently empty), so r1 is just inserted to AR. Then
s1 is accessed from S; s1 is probed against AR and no match is found (i.e.,
dist(r1, s1) > ε). Then, since lR = 1.0 > lS = 0.9, r2 is accessed and joined (un-
successfully) with AS ; then s2 and s3 are accessed in turn, still without producing
any distance join results. When r3 is accessed, it is joined with AS (now contain-
ing {s1, s2, s3}) and produces the first join result (r3, s3), which is added to C;
now θ = γ(r3, s3) = 1.6. Note that T is currently max{γ(1.0, 0.8), γ(0.8, 0.9)}=
1.8 > θ, which means that a possibly better pair can be found and SFA cannot
terminate yet. The next accessed object is s4, which is joined with AR, finding
result (r3, s4), which is not better than the current top pair (r3, s3) (Note that
in this case get next pair(s4, AR, ε, θ) will not return r3 but just null, because
it uses θ for pruning). Next, both r4 and s5 give no new join pairs. Then s6 is
retrieved but still cannot produce a join pair with score better than θ; therefore
SFA, after having updated T to 1.5, terminates reporting C = {(r3, s3)}.

SFA is expected to be fast, if the join results are found only after few accesses
over the sorted collections R and S. If the best pairs include objects deep in the
sorted collections, the overhead to maintain and probe the aR-trees can be high.

3.2 The Distance-First Algorithm (DFA)

The second evaluation technique extends a spatial distance join algorithm to
compute the object pairs from R and S, which qualify the spatial threshold
θ, incrementally in decreasing order of their aggregate scores. The algorithm
terminates as soon as k pairs have been generated.

For implementing the spatial distance join, we could apply algorithms like the
R-tree join [2], assuming that R and S are already indexed by R-trees, or methods
that spatially join non-indexed inputs, like the (external memory) plane sweep
algorithm [1], which first sortsR and S based on one of their coordinates and then
sweeps a line along the sort axis to compute the results. The above approaches,
however, do not have a way of prioritizing the join result computation according
to the aggregate scores of qualifying distance join pairs.

We now present our optimized approach, which also employs aR-tree indices,
however, it computes k-SDJ in a different way compared to SFA. The Distance-
First Algorithm (DFA) (Algorithm 2) assumes that both R and S are indexed
by two aR-trees AR and AS (if the trees do not exist, DFA bulk-loads them
in a pre-processing phase, using the algorithm of [10]). DFA spatially joins the
two trees by adapting the classic algorithm of [2] to traverse them not in a
depth-first, but in a best-first order, which (1) still prunes entry pairs (eR, eS),
eR ∈ AR, eS ∈ AS for which dist(eR, eS) > ε (dist here denotes the minimum
distance between the MBRs of the two entries), but (2) prioritizes the entry pairs
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Algorithm 2. Distance-First Algorithm (DFA)
Input: k, ε, γ, R, S
Output: k-SDJ results incrementally
1: build aR-trees AR on R and AS on S, if not already indexed
2: initialize a max-heap He of aR-tree entry pairs (eR, eS) organized by γ(eR, eS)
3: for each pair (eR, eS) in AR.root× AS.root do
4: if dist(eR, eS) ≤ ε then
5: push (eR, eS) into He

6: while He �= ∅ do
7: (eR, eS) = He.dequeue()
8: if eR and eS are non-leaf node entries then
9: nR := node of AR pointed by eR; nS := node of AS pointed by eS
10: for each entry e′R ∈ nR and each entry e′S ∈ nS do
11: if dist(e′R, e′S) < ε then
12: push (e′R, e′S) into He

13: else
14: output (eR, eS) as next k-SDJ result

to be examined based on γ(eR, eS) (here, γ is applied on the aggregate scores
stored at the entries). In other words, the entry pairs which have the maximum
aggregate score are examined first during the join; this order guarantees that
the qualifying object pairs will be computed incrementally in decreasing order
of their aggregate scores. For this purpose, DFA initially puts in a priority queue
(i.e., max heap) He all pairs of root entries within distance ε from each other in
the two trees (Line 3 of Algorithm 2). Pairs of entries from He are de-heaped
in priority of their aggregate scores γ(eR, eS). Then, the spatial distance join is
evaluated for the corresponding aR-tree nodes and the results are inserted to He

if they are non-leaf entries (branching condition at Line 8). Otherwise, if a leaf
node entry pair (r, s) (i.e., object pair) is de-heaped, it is guaranteed that (r, s)
has higher aggregate score than any other object pair to be found later, since
entry and object pairs are accessed in decreasing order of their γ-scores from
He. Therefore the object pair is output as the next result of the k-SDJ query
(Line 14). DFA terminates after k results have been computed.

As an example of DFA, consider the two aR-trees for the R and S datasets
of Figure 2, as shown in Figure 3. Note that the aR-tree entries are augmented
with the maximum scores of any objects in the subtrees indexed by them (e.g.,
R2 has score 0.6). Assume that k = 1, ε = 0.1, and γ = SUM . DFA begins
by joining the two root nodes of AR and AS , which adds two entry pairs to
He; (R1, S1) and (R2, S2); the other two combinations (R1, S2) and (R2, S1)
are pruned by the ε-distance join predicate. The next pair to be examined is
(R1, S1) because γ(R1, S1) = 1.8 > γ(R2, S2). Thus, the nodes pointed by R1

and S1 are synchronously visited and their ε-distance join adds to He pairs
(R3, S4), (R4, S4), and (R4, S3). The next entry pair to be de-heaped is (R3, S4)
with γ(R3, S4) = 1.7; this results in object pair (r1, s6) being found and added
to He. Next, (R4, S3) is de-heaped and (r3, s3) is added to He. The next pair to
be popped from He is the object pair (r3, s3); note that this is guaranteed to be
the top ε-distance join pair, since it is the first object pair to be extracted from
He, and thus, the algorithm terminates.
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Fig. 3. Two aR-trees for R and S

DFA shares some common elements with the probabilistic spatial join algo-
rithm of [11]. Adapting the solution proposed in [11] for k-SDJ would involve
extending the classic plane-sweep approach to operate on spatially grouped ob-
jects, where group MBRs are annotated by aggregate probability values (used
for pruning group pairs during evaluation). However, our approach is more opti-
mized in the sense that it is applied on hierarchically multiple levels of grouping
(instead of a single grouping level in [11]). Thus, DFA represents the best possi-
ble implementation of the framework of [11] for k-SDJ queries, which as we show
in Section 4 is inferior to our best approach.

DFA is expected to be fast if the locations of objects are correlated with their
atomic scores; in this case, the objects with the highest scores that are close to
each other are identified fast; otherwise, many tree node pairs may have to be
accessed and joined until DFA can terminate. In other words, since the data are
primarily clustered by their locations in the aR-trees, pruning pairs of non-leaf
node entries is mostly due to the spatial predicate while the aggregate scores
may be too uniform to facilitate in this task.

3.3 The Block-based Algorithm (BA)

SFA and DFA both have certain shortcomings; on one hand, SFA fails to exploit
the spatial domain to locate fast spatial join results; on the other hand, DFA does
not necessarily find pairs of objects with high aggregate scores fast. Our third
solution is a Block-based Algorithm (BA), which alleviates these shortcomings.
Like SFA, BA examines the data by prioritizing objects with high scores first,
however, it does not incrementally build and join the aR-trees for them (which
is costly due to the repeated insertion and range query operations); instead it
bulk-loads aR-trees for blocks of objects from R (or S) and spatially joins them
with the blocks from S (or R) read so far, avoiding unnecessary block or node
pair joins based on their score and distance bounds.
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Algorithm 3. Block-based Algorithm (BA)
Input: k, ε, γ, R, S
Output: C
1: initialize a min-heap C:=∅ of candidate results; initialize θ:=−∞
2: sort R and S based on score, if not already sorted
3: while more blocks of objects exist in R and S do
4: i := next input to be accessed //either R or S
5: j := other input //either S or R
6: b := get next block(i) //get next block of objects from input i
7: Ab := bulk-load aR-tree for b
8: for each block b′ of j do
9: if γ(bu, b′u) > θ then
10: apply DFA to join Ab with A′

b
11: retrieve results and update C and θ
12: T :=max{γ(buR1, b

l
Slast), γ(b

l
Rlast, b

u
S1)}

13: if T ≤ θ then
14: break //result secured; no need to access more objects
15: return C

More specifically, BA (like SFA) considers R and S sorted by score. It then
divides them into blocks of λ objects each. At each step a block of objects bR
(or bS) is accessed from R (or S) and then, joined with the blocks of S (or R),
which have already been accessed. Thus, BA can be considered as an adaptation
of SFA that operates at the block-level. For example, Figure 4 illustrates the
blocks for collections R and S if λ = 2. BA would, for instance, first read bR1,
then read bS1 and join it with bR1, then read bS2 and join it with bR1, then
read bR2 and join it with bS1 and bS2, etc. Since the objects in R and S are
sorted in decreasing order of their scores, for each block b, there is an upper
score bound bu corresponding to the score of the first object in b. Therefore,
when considering the join between two blocks bR and bS , γ(b

u
R, b

u
S) represents

an upper score bound for all ε-distance join pairs in bR × bS. If we have found
at least k distance join pairs so far, then we know that joining bR with bS is
pointless when γ(buR, b

u
S) ≤ θ, where θ is the k-th best aggregate score. In other

words, the current block, e.g., bR, is only joined with the blocks bS of S for which
γ(buR, b

u
S) > θ. For the block-level join, we employ the DFA algorithm; an aR-tree

is constructed for the current block and joined with the aR-trees of blocks read
from the other input using Algorithm 2.

Algorithm 3 is a high-level pseudocode for BA. Line 4 chooses the input (i.e.,
R or S) from which the next block will be retrieved using the same policy as
SFA (i.e., the input with the highest last seen score). Without loss of generality,
assume that i = R. Then, for the next block b accessed from R, an aR-tree
is created, and b is joined with all blocks b′ from S which have already been
examined using DFA (for these blocks, the corresponding aR-trees have already
been constructed before). The blocks b′ are joined in decreasing order of their
score ranges (e.g., first bS1, then bS2, etc.). Each new ε-distance join pair is used
for updating C and θ (in fact the current θ is used to terminate the block-wise
DFA as soon as the top pair on the heap He has aggregate score at most θ).
After handling b, the termination threshold T is updated (Line 12). Note that
this threshold is the same as in the SFA algorithm: the maximum value between
γ(buR1, b

l
Slast) and γ(blRlast, b

u
S1), where buR1 (buS1) is the highest score in the first
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id loc score

bR1
r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8

bR2
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6

bR3
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4

bR4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1

(a) collection R

id loc score

bS1
s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9

bS2
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7

bS3
s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4

bS4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2

(b) collection S

Fig. 4. Example of BA

block of R (S) (i.e., the score of the very first object in the collection) and blRlast

(blSlast) is the lowest score in the last block of R (S) (i.e., the score of the last
object in it).

As an example of BA, consider the k-SDJ (k = 1, ε = 0.1, γ = SUM) between
collections R and S of Figure 4, which are partitioned into blocks. Initially, bR1

is read and an aR-tree AR1 is created for it. Then, bS1 is accessed, bulk-loaded to
an AS1, and joined using AR1 (Line 10 of BA), producing no spatial join results.
Next, bS2 is accessed and (unsuccessfully) joined with bR1. After reading bR2

the block is joined with bS1 and bS2 (in this order), to generate C = {(r3, s3)}
and set θ = 1.6. The next block bS3 is joined with bR1, but not bR2, because
γ(buR2, b

u
S3) = γ(0.8, 0.7) ≤ θ; this means that in the best case a spatial distance

join between bR2 and bS3 will produce a pair with score 1.5, which is not better
than the current top pair’s (r3, s3) score. The join between bS3 and bR1 does not
improve the current k-SDJ result. At this stage, BA terminates because T = 1.5,
which is not higher than θ = 1.6.

Although BA is reminiscent to SFA in that it examines the records in order of
their scores, BA has two main advantages compared to SFA. First, performing
the joins at the block level is more efficient, because the aR-trees for the blocks
are created just once efficiently by bulk-loading (instead of iterative insertions
as in SFA) and could be used for multiple block joins (e.g., bR1 is joined with
blocks bS1–bS3 in our example). The joins between aR-trees are much faster
compared to the record-by-record probing (i.e., index nested loops) approach of
SFA. Second, in BA, the currently processed block is joined only with a small
number of blocks of the other input (with the help of the upper score bounds of
the blocks), while in SFA the current object is probed against the entire set of
objects buffered from the other input.

4 Experimental Evaluation

In this section, we present an experimental evaluation of our techniques for
k-SDJ. Section 4.1 details the setup of our analysis. Sections 4.2 and 4.3 exper-
imentally prove the superiority of SFA and DFA compared to alternative im-
plementations that follow the score-first, the distance-first evaluation paradigm,
respectively. Section 4.4 carries out a comparison between the SFA, DFA and



Efficient Top-k Spatial Distance Joins 13

Table 2. Experimental parameters

Parameter Values Default value

ε 0.001, 0.005, 0.01, 0.05 0.01
k 1, 5, 10, 50, 100 10
|P | 5, 10, 50, 100 10

λ/|R| 0.0005, 0.001, 0.005, 0.01, 0.02 0.005

BA algorithms. All algorithms involved in this study are implemented in C++
and the experiments were conducted on a 2.3 Ghz Intel Core i7 CPU with 8GB
of RAM running OS X.

4.1 Setup

Our experimental analysis involves two collections of real spatial objects: (1)
FLICKR that contains 1.68M locations associated with photographs taken from
the city of London, UK over a period of 2 years and hosted on the Flickr pho-
tosharing website, and (2) ISLES that contains 20M POIs in the area of the
British isles drawn from the OpenStreetMap project dump. To perform the ex-
periments, every collection is split into two equally sized parts denoted by R
and S. This is to avoid performing a self-join which will produce result pairs
involving exactly the same object. Since real scores for objects were not avail-
able, we generated them as follows. For each part, we first randomly created |P |
seed points (simulating POIs) and generate the object scores with the following

formula: o.score = 1 −
|P |
min
i=1

[dist(o, Pi)]. Intuitively, real life objects are more

likely to have high scores if they are close to a POI [18]. For example, the ho-
tels close to the city center have higher potential to be highly rated for their
convenience. The generated scores are normalized to take values in [0, 1]. In our
study, we vary the total number of seed points created for each of R and S,
from 5 to 100. Larger values of |P | tend to generate more uniform score distri-
butions and higher average scores. Finally, note that we consider SUM as the
score aggregation function γ for our experiments.

To assess the performance of each join method, we measure their response
time that also includes index building cost and all sorting costs, varying (1) the
distance threshold ε, (2) the number of returning pairs k, and (3) the number
of seed points |P |. Further, in case of BA we also vary the ratio λ/|R| of the
block size λ over the size of the collection |R| (|S|). Table 2 summarizes all the
parameters involved in this study. On each experiment, we vary one of ε, k, |P |
and λ/|R| while we keep the remaining parameters fixed to their default values.
Finally, note that both the collections and the indexing structures used by the
evaluation methods are stored in main memory (like relational top-k join studies,
we consider k-SDJ evaluation in main memory), and that we set the page size
for both the R-trees and the aR-trees to 4KB.
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Fig. 5. Comparison of the score-first algorithms on FLICKR

4.2 Score-First Algorithms

The first set of experiments demonstrates that our SFA algorithm, as described
in Section 3.1, is an efficient adaptation of the state-of-the-art top-k relational
join algorithm HRJN. Recall that, in SFA, we use aR-trees to index the objects
seen so far from R and S and use an efficient aR-tree search algorithm, which
exploits the aggregate scores stored at intermediate entries to prune the search
space while searching for join pairs for the current object o. In fact, the score-
first paradigm could also be applied without using aR-trees for indexing (in this
case, a scan would be applied against the buffered objects to find the spatial
join pairs), or one could use R-trees instead of aR-trees. Figure 5 compares the
response times of these two alternatives with SFA (denoted by No-Index and
R-tree, respectively), while varying ε, k and |P |. As expected, SFA outperforms
the other two methods since it is able to prune object pairs in terms of both
their spatial distance and their aggregate scores. We also observe that increasing
ε makes the k-SDJ evaluation faster for SFA and No-Index, but not for R-tree.
The reason is the following. As ε increases, more object pairs qualify the spatial
predicate. Since the objects are sorted in descending order of their scores, a
smaller number of pairs needs to be examined. Although this holds also for R-
tree, its time initially increases due to the increasing cost of the range queries
involved. Another important observation is that the response time of SFA is less
affected by the increase of k compared to the other methods. Particularly, for
k = 100, SFA needs 10% more time to compute k-SDJ compared to k = 1, while
in case R-trees or No-Index, this increase is 33% and 45%, respectively. Finally,
with the usage of more seed nodes for score generation, the response time of all
methods decreases since more object pairs have high aggregate scores.

4.3 Distance-First Algorithms

We perform a similar evaluation for DFA, by comparing it against two algorithms
that adopt alternative techniques for a distance-first k-SDJ processing (instead
of building and joining two aR-trees). Thus, one option is to generate and join
two R-trees (on each of R and S), and another option is to sort R and S an apply
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Fig. 6. Comparison of the distance-first algorithms on FLICKR

the plane sweep spatial join technique. Figure 6 compares the three approaches,
showing that their response time is affected only by the increase of the distance
ε and not by k or |P |; this is due to the fact that all methods primarily focus on
the spatial predicate of the k-SDJ, which is independent of the scores. Due to
its ability to use score aggregation bounds, DFA not only outperforms the other
methods (in some cases for more than two orders of magnitude), but it is also
very little affected by the increase of ε.

We also implemented BA with different versions of its block-based join mod-
ule; i.e., the aR-tree based join as described in Section 3.3, and alternatives
based on plane sweep and R-tree join. The results (not included due to space
constraints) confirm that the aR-tree based module for joining blocks is superior
to the other alternatives (the trends are similar to the experiments of Figure 6).

4.4 Comparison of the Evaluation Paradigms

We have already shown that SFA, DFA, and BA, as described in Section 3 are
efficient implementations for the corresponding search paradigms (search-first,
distance-first, and block-based, respectively). We now compare these three algo-
rithms to identify the best evaluation paradigm and algorithm for k-SDJ. Fig-
ure 7 and 8 report on their response time for FLICKR and ISLES3, respectively,
while varying ε, k, |P | and λ/|R|. The figures show that BA outperforms SFA
and DFA in all cases. It is important to also notice that BA is very robust to
the variation of the parameters. Specifically, its response time is always around
350msec for FLICKR and 3.5sec for ISLES. In contrast, SFA is (1) positively
affected by the increase of ε since more object pairs qualify the spatial predicate
and thus, the top-k results can be quickly identified, and (2) negatively by the
increase of k as it needs to examine more object pairs. Further, DFA becomes
slower with ε as it primarily focuses on the spatial predicate of the k-SDJ. BA
manages to combine the above advantages of the score-first paradigm and SFA,
and the distance-first paradigm and DFA, as it examines blocks of objects or-
dered by score and applies the spatial predicate at the block level instead on the
whole collections.

3 In this experiment we used only half of the ISLES collection; i.e., |R| = |S| = 5M.
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Fig. 7. Comparison of SFA, DFA and BA algorithms on FLICKR
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We also performed a scalability experiment, by joining samples R and S of
the ISLES dataset of different sizes |R| and |S|, while setting ε, k, |P | and λ/|R|
to their default values. Figure 9(a) shows the results of the scalability test. We
observe that all methods scale similarly, with BA being 1-2 orders of magnitude
faster than the other methods. Note that even on the full ISLES collection, BA
needs less than 7 seconds to evaluate a k-SDJ query.

In the last experiment, we evaluate the performance of the methods on datasets
of different cardinalities. R and S are samples of the ISLES dataset of varying
cardinality ratio |R| : |S|, while |R| + |S| is fixed to 10M. The result is shown
in Figure 9(b). We observe that the response times of all methods only grow
slightly with the increase of |R| : |S| (the effect is more obvious on SFA). This is
because although the cardinality ratio is changing, the percentage of traversed
records on both size does not change much. Still, maintaining and updating a
larger aR-tree on R costs a little more than what is saved on a smaller aR-tree
for S, leading to the slight cost growth as the ratio increases.
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Fig. 9. Scalability and Cardinality test on ISLES

5 Conclusion

In this paper, we proposed and studied top-k spatial distance join (k-SDJ)
queries. Although this operator finds practical application, it has not been stud-
ied in the past, therefore no efficient solutions exist for it, so far. We proposed
three algorithms for k-SDJ queries. SFA accesses the objects from the joined col-
lections incrementally and spatially joins them to find new results, using bounds
to terminate early. DFA incrementally computes the distance join results ordered
by score, by extending a spatial join algorithm to apply on aggregate R-trees
that index the two inputs. BA is a hybrid approach, which considers blocks of
objects from the two inputs, ordered by score, and joins them as necessary, until
a termination condition is reached. Our experimental findings on large datasets
show that BA performs best in practice, while the optimized use of aR-trees in
all methods greatly improves their performance compared to baseline alterna-
tives which rely on simpler indexing schemes. A direction for future work is to
extend our algorithms to compute top-k object pairs according to a combined
distance-based and score-based aggregate function.
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