
Mario A. Nascimento Timos Sellis
Reynold Cheng Jörg Sander Yu Zheng
Hans-Peter Kriegel Matthias Renz
Christian Sengstock (Eds.)

 123

LN
CS

 8
09

8

13th International Symposium, SSTD 2013
Munich, Germany, August 2013
Proceedings

Advances in Spatial
and Temporal Databases

Lecture Notes in Computer Science 8098
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mario A. Nascimento Timos Sellis
Reynold Cheng Jörg Sander Yu Zheng
Hans-Peter Kriegel Matthias Renz
Christian Sengstock (Eds.)

Advances in Spatial
and Temporal Databases

13th International Symposium, SSTD 2013
Munich, Germany, August 21-23, 2013
Proceedings

13

Volume Editors

Mario A. Nascimento
University ofAlberta, Edmonton,AB, Canada, E-mail: mario.nascimento@ualberta.ca

Timos Sellis
RMIT University, Melbourne, VIC, Australia, E-mail: timos.sellis@rmit.edu.au

Reynold Cheng
The Unversity of Hong Kong, China, E-mail: ckcheng@cs.hku.hk

Jörg Sander
University of Alberta, Edmonton, AB, Canada, E-mail: jsander@ualberta.ca

Yu Zheng
Microsoft Research Asia, Beijing, China, E-mail: yuzheng@microsoft.com

Hans-Peter Kriegel
Matthias Renz
Ludwig Maximilians University, Munich, Germany
E-mail: {kriegel, renz}@dbs.ifi.lmu.de

Christian Sengstock
Ruprecht Karls University, Heidelberg, Germany
E-mail: sengstock@informatik.uni-heidelberg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40234-0 e-ISBN 978-3-642-40235-7
DOI 10.1007/978-3-642-40235-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944578

CR Subject Classification (1998): H.2, H.3, I.2, G.2

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI
© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 13th International Symposium on
Spatial and Temporal Databases (SSTD). Included are research contributions
in the area of spatial and temporal data management and related technologies
presented at SSTD 2013 at the Ludwig-Maximilians-Universität, just beside the
beautiful and world-renowned English Garden, in the wonderful city of Mu-
nich, the capital of the Free State of Bavaria, Germany. The symposium brings
together, for three days, researchers, practitioners, and developers for the pre-
sentation and discussion of current research on concepts, tools, and techniques
related to spatial and temporal databases.

SSTD 2013 was the 13th in a series of biannual events. Previous symposia
were successfully held in Santa Barbara (1989), Zurich (1991), Singapore (1993),
Portland (1995), Berlin (1997), Hong Kong (1999), Los Angeles (2001), Santorini,
Greece (2003), Angra dos Reis (2005), Boston (2007), Aalborg (2009), and Min-
neapolis (2011). Before 2001, the series was devoted solely to spatial database
management, and called The International Symposium on Spatial Databases.
Starting in 2001, the scope was extended in order to also accommodate tempo-
ral database management, in part due to the increasing importance of research
that considers spatial and temporal dimensions of data as complementary.

This year we received 58 submissions from authors in 25 different countries,
which were reviewed by at least three of the 43 Program Committee members,
helped by 44 external reviewers. At the end of a thorough process of reviews
and discussions, 24 submissions were accepted for presentation at the sympo-
sium. After careful evaluation of the top-ranked submissions, the paper “Stream-
Mode FPGA Acceleration of Complex Pattern Trajectory,”co-authored by Roger
Moussalli, Marcos Vieira, Walid Najjar, and Vassilis Tsotras, was selected as
SSTD 2013 best paper.

SSTD 2013 also continued several innovative aspects that have been success-
fully introduced in previous events. In addition to the research paper track, the
conference hosted a demonstrations track and included two vision and challenge
papers. Demonstrations and vision/challenge papers were solicited by separate
calls for papers. While demonstrations proposals had to illustrate running sys-
tems that showcase the applicability of interesting and solid research, the vi-
sion/challenge submissions had to discuss novel ideas that are likely to guide
research in the near future and/or challenge prevailing assumptions. The sub-
missions to the demo and vision/challenge track (9 demonstration submissions
and the 4 vision/challenge papers submissions) were evaluated by dedicated Pro-
gram Committees, recruited by the demonstrations co-chairs.

We are very fortunate to have had two well-accomplished researchers from
academia and industry as keynote speakers opening the first two days of the
conference: Prof. Cyrus Shahabi (University of Southern California) made a

VI Preface

presentation on “A Big-Data Framework for Decision-Making in Transportation
Systems” and Ralf-Peter Schäfer (VP TomTom Traffic Product Unit & Fellow,
Berlin) talked about “Car-Centric Traffic Monitoring and Management Using
Probe-Based Community Data.” Both are very attractive and timely topics,
from the academic and industrial points of view.

The success of SSTD 2013 was the result of a team effort. Special thanks go
to many people for their dedication and hard work, in particular to the Local
Organizers, Publicity Chairs, Proceedings Chair, and Webmasters. Naturally,
we owe our gratitude to a larger range of people, in particular we would like
to thank the authors, irrespectively of whether their submissions were accepted
or not, for supporting the symposium series and for sustaining the high quality
of the submissions. Last but most definitely not least, we are very grateful to
the members of the Program Committees (and the external reviewers) for their
thorough and timely reviews.

Finally, these proceedings reflect the state-of-the-art in the domain of spatio-
temporal data management, and as such we believe they form a strong contri-
bution to the related body of research and literature.

June 2013 Mario A. Nascimento
Timos Sellis

Reynold Cheng
Jörg Sander

Yu Zheng
Hans-Peter Kriegel

Matthias Renz

Organization

Steering Committee

The SSTD Endowment

General Co-chairs

Hans-Peter Kriegel Ludwig Maximilians University Munich,
Germany

Matthias Renz Ludwig Maximilians University Munich,
Germany

Program Co-chairs

Mario A. Nascimento University of Alberta, Canada
Timos Sellis RMIT University, Australia
Reynold Cheng University of Hong Kong

Demo Co-chairs

Jörg Sander University of Alberta, Canada
Yu Zheng Microsoft Research, Asia

Publicity Chair

Thomas Seidl RWTH Aachen University, Germany
Michael Gertz Ruprecht Karls University Heidelberg,

Germany

Sponsorship Chair

Agnès Voisard Freie Universität Berlin, Germany
Erik Hoel ESRI, USA

Proceedings Chair

Christian Sengstock Ruprecht Karls University Heidelberg,
Germany

VIII Organization

Local Arrangements

Peer Kröger Ludwig Maximilians University Munich,
Germany

Matthias Schubert Ludwig Maximilians University Munich,
Germany

Webmaster

Tobias Emrich Ludwig Maximilians University Munich,
Germany

Johannes Niedermayer Ludwig Maximilians University Munich,
Germany

Program Committee

Walid Aref Dan Lin Shashi Shekhar
Spiridon Bakiras Xuemin Lin Kian-Lee Tan
Michela Bertolotto Hua Lu Yufei Tao
Claudio Bettini Nikos Mamoulis Yannis Theodoridis
Michael Böhlen Yannis Manolopoulos Anthony K.H. Tung
Lei Chen Mohamed Mokbel Carola Wenk
Chi-Yin Chow Kyriakos Mouratidis Ouri Wolfson
Maria Luisa Damiani Mirco Nanni Michael Worboys
Ralf Hartmut Güting Enrico Nardelli Xiaokui Xiao
Christian S. Jensen Dimitris Papadias Xing Xie
Panagiotis Karras Spiros Papadimitriou Man Lung Yiu
George Kollios Dieter Pfoser Rui Zhang
Bart Kuijpers Chiara Renso Yu Zheng
Feifei Li Dimitris Sacharidis Xiaofang Zhou
Jianzhong Li Bernhard Seeger

Vision/Challenge Program Committee

Walid Aref Dimitris Papadias Timos Sellis
Spiridon Bakiras Spiros Papadimitriou Richard Snodgrass
Erik Hoel Apostolos Papadopoulos Goce Trajcevski
George Kollios Dimitris Sacharidis Vassilis Tsotras
Nikos Mamoulis Simonas Saltenis Karine Zeitouni
Mirco Nanni Bernhard Seeger

Organization IX

Demo Program Committee

Bertino Elisa Christian S. Jensen Shashi Shekhar
Sanjay Chawla Nikos Mamoulis Goce Trajcevski
Fosca Giannotti Mohamed Mokbel X. Sean Wang
Ralf Hartmut Güting Peter Scheuermann Ouri Wolfson
Yan Huang Cyrus Shahabi Xiaofang Zhou

External Reviewers

Achakeev, Daniar
Armenantzoglou, Nikos
Ayala, Daniel
Behr, Thomas
Bertolaja, Letizia
Bikakis, Nikos
Bouros, Panagiotis
Bozanis, Panayiotis
Camossi, Elena
Cintia, Paolo
Corral, Antonio
Dimokas, Nikos
Efstathiades,

Christodoulos
Evans, Michael
Gounaris, Anastasios

Huang, Jin
Jiang, Jinling
Jiang, Zhe
Kellaris, George
Khodaei, Ali
Kvochko, Andrey
Liagouris, John
Lin, Yimin
Liu, Bin
Ma, Sol
Monreale, Anna
Papadopoulos, Apostolos
Parchas, Panos
Pelekis, Nikos
Qi, Jianzhong
Qi, Shuyao

Riboni, Daniele
Seidemann, Marc
Shang, Shuo
Skoutas, Dimitrios
Stenneth, Leon
Varriale, Roland
Vassilakopoulos, Michael
Wei, Ling-Yin
Xie, Xike
Xu, Bo
Xue, Andy Yuan
Yang, Kwangsoo
Zhang, Chengyuan
Zhang, Jilian
Zhou, Xun
Zhu, Haohan

TransDec: A Big-Data Framework

for Decision-Making in Transportation Systems

Cyrus Shahabi

University of Southern California

shahabi@usc.edu

Abstract. The vast amounts of transportation datasets (traffic flow, in-
cidents, etc.) collected by various federal and state agencies are extremely
valuable in real-time decision-making, planning, and management of the
transportation systems. In this talk, I will argue that considering the
large volume of the transportation data, variety of the data (different
modalities and resolutions), and the velocity of the data arrival, devel-
oping a scalable system that allows for effective querying and analy-
sis of both archived and real-time data is an intrinsically challenging
BigData problem. Subsequently, I will present our end-to-end prototype
system, dubbed TransDec (short for Transportation Decision-Making),
which enables real-time integration, visualization, querying, and analy-
sis of these dynamic and archived transportation datasets. I will then
discuss a GPS navigation application enabled by such a system and
demonstrate its commercialization as a product called ClearPath (see
http://myfastestpath.com). Motivated by ClearPath, we will look under
the hood and focus on a route-planning problem where the weights on
the road-network edges vary as a function of time due to the variability
of traffic congestion. I will show that näıve approaches to address this
problem are either inaccurate or slow, leading to our new approach to
this problem: A time-dependent A* algorithm.

Cyrus Shahabi is a Professor of Computer Science and Electrical Engineering
and the Director of the Information Laboratory (InfoLAB) at the Computer
Science Department and also the Director of the NSF’s Integrated Media Systems
Center (IMSC) at the University of Southern California. He was also the CTO
and co-founder of a USC spin-off and an In-Q-Tel portfolio company, Geosemble
Technologies, which was acquired in July 2012. He received his B.S. in Computer
Engineering from Sharif University of Technology in 1989 and then his M.S. and
Ph.D. Degrees in Computer Science from the University of Southern California
in May 1993 and August 1996, respectively. He authored two books and more
than two hundred research papers in the areas of databases, GIS and multimedia.

Dr. Shahabi has received funding from several agencies such as NSF, NIJ,
NASA, NIH, DARPA, AFRL, and DHS as well as several industries such as
Chevron, Google, HP, Intel, Microsoft, NCR and NGC. He was an Associate
Editor of IEEE Transactions on Parallel and Distributed Systems (TPDS) from

XII C. Shahab

2004 to 2009. He is currently on the editorial board of the VLDB Journal, IEEE
Transactions on Knowledge and Data Engineering (TKDE), ACM Computers
in Entertainment and Journal of Spatial Information Science. He is the founding
chair of IEEE NetDB workshop and also the general co-chair of ACM GIS 2007,
2008 and 2009. He chaired the nomination committee of ACM SIGSPATIAL for
the 2011-2014 terms. He is a PC co-Chair of MDM 2013 and regularly serves on
the program committee of major conferences such as VLDB, ACM SIGMOD,
IEEE ICDE, ACM SIGKDD, and ACM Multimedia.

Dr. Shahabi is a recipient of the ACM Distinguished Scientist award in 2009,
the 2003 U.S. Presidential Early Career Awards for Scientists and Engineers
(PECASE), the NSF CAREER award in 2002, and the 2001 Okawa Foundation
Research Grant for Information and Telecommunications. He was the recipient of
US Vietnam Education Foundation (VEF) faculty fellowship award in 2011 and
2012, an organizer of the 2011 National Academy of Engineering ”Japan-America
Frontiers of Engineering” program, an invited speaker in the 2010 National Re-
search Council (of the National Academies) Committee on New Research Direc-
tions for the National Geospatial-Intelligence Agency, and a participant in the
2005 National Academy of Engineering ”Frontiers of Engineering” program.

Car-Centric Traffic Monitoring and Management

Using Probe-Based Community Data

Ralf-Peter Schäfer

TomTom

ralf-peter.schaefer@tomtom.com

Abstract. With the introduction of TomTom’s historic and real-time
traffic technologies IQ Routes and HD Traffic in 2007 the portfolio has
been implemented in many European countries, North America, South
Africa, Australia and New Zealand.

The backbone of the technology is community data from GPS en-
abled navigation devices, fleet management solutions as well as GSM cell
phone operation. Today, the entire TomTom Traffic Community consists
of more than 140 Mio. users which bring TomTom in a position to get
precise travel time data for the entire road network in the underlying
markets. All the traffic content has been fully integrated into naviga-
tion software of TomTom and is also licensed to external parties for use
in enterprise and government application of traffic information, traffic
planning and traffic management.

The increasing community of connected navigation devices using pre-
cise traffic information is also contributing for a better utilization of the
road network when drivers follow dynamic route guidance. In a Traf-
fic Manifesto the TomTom vision has been published making TomTom’s
traffic information widely available. The availability of traffic informa-
tion and use in dynamic navigation helps to improve the road network
utilization and can contribute to travel behavior changes with positive
impact for the network load and the environment. Even when only 10%
of the entire driver population uses dynamic routes guidance with precise
traffic as HD Traffic they can gain travel time wins of up to 15% toward
a planned destination but also help non-informed users to decrease the
travel time up to 5%.

Connected navigation can help traffic management authorities to make
the road network utilization more efficient at lower costs as installing
more expensive local detection systems. In the presentation the data col-
lection, processing, storage and distribution system will be introduced.
The data fusion engine to provide travel time and jam delay information
is fully based on analytics of billions of real-time GPS probe data col-
lected in 26 markets globally. Real-time and historic traffic information
can be used in a variety of classical traffic management and standard
routing/navigation applications generated in high quality and more cost
efficient as infrastructure based systems using local detection system as
inductive loops. Infrastructure performance measures are available in the
entire road network and give traffic planners and consultants great tools

XIV R.-P. Schäfer

at hand to put the investments at the right spots. TomTom discloses ev-
ery 3 months the Traffic Congestion Report where over 100 cities globally
are analyzed. Traffic delays in rush hour and over the days are computed
against the free flow condition measure over the night hours.

In the most recent report Moscow was analyzed as the most congested
city of all cities in the report. The presentation will also cover how the
index is built.

Since January 2012 Ralf-Peter Schäfer is leading the TomTom Traffic Product
Unit. He is responsible for the global product development for traffic in the
TomTom Group incl. engineering, product and program management as well as
sales and marketing support.

He joined TomTom in August 2006 and started to work in a position of the
Research Director of TomTom’s Mobility Solution Department and the Head
of the TomTom R&D Centre in Berlin. His major scope from 2006 was the
development of the TomTom traffic portfolio incl. algorithms and software for
the realtime traffic information service HD Traffic and the historic speed profile
product IQ Routes. With his team he also developed the dynamic location ref-
erencing technology OpenLR to allow cost efficient transmission and excahnge
of map location.

Ralf-Peter Schäfer studied electrical engineering the the Technical University
of Ilmenau and worked in several research organisations as the German Academy
of Sciences, the German Centre for Computer Science, the German Aerospce
Center (DLR) before he joined TomTom. Main areas of activities in the past
and today include static and dynamic content generation for traffic products,
probe technology development from GPS and GSM sources as well as modeling
and data processing techniques for traffic systems.

Table of Contents

Session 1: Joins and Algorithms

Efficient Top-k Spatial Distance Joins . 1
Shuyao Qi, Panagiotis Bouros, and Nikos Mamoulis

Regional Co-locations of Arbitrary Shapes . 19
Song Wang, Yan Huang, and Xiaoyang Sean Wang

MNTG: An Extensible Web-Based Traffic Generator 38
Mohamed F. Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy,
Amr Magdy, Mohamed Sarwat, Ethan Waytas, and Steven Yackel

Capacity-Constrained Network-Voronoi Diagram: A Summary
of Results . 56

KwangSoo Yang, Apurv Hirsh Shekhar, Dev Oliver, and
Shashi Shekhar

Session 2: Mining and Discovery

Mining Driving Preferences in Multi-cost Networks 74
Adrian Balteanu, Gregor Jossé, and Matthias Schubert

Mining Sub-trajectory Cliques to Find Frequent Routes 92
Htoo Htet Aung, Long Guo, and Kian-Lee Tan

Discovering Influential Data Objects over Time . 110
Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and
Kjetil Nørv̊ag

Finding Traffic-Aware Fastest Paths in Spatial Networks 128
Shuo Shang, Hua Lu, Torben Bach Pedersen, and Xike Xie

Session 3: Indexing

Geodetic Distance Queries on R-Trees for Indexing Geographic Data . . . 146
Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel

Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor
Networks . 165

Mohamed M. Ali Mohamed, Ashfaq Khokhar, and Goce Trajcevski

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 183
Jie Wang, Jian Lu, Zheng Fang, Tingjian Ge, and Cindy Chen

XVI Table of Contents

Session 4: Trajectories and Road Network Data 1

Stream-Mode FPGA Acceleration of Complex Pattern Trajectory
Querying . 201

Roger Moussalli, Marcos R. Vieira, Walid Najjar, and
Vassilis J. Tsotras

Best Upgrade Plans for Large Road Networks . 223
Yimin Lin and Kyriakos Mouratidis

Compact Representation of GPS Trajectories over Vectorial Road
Networks . 241

Ranit Gotsman and Yaron Kanza

Group Trip Planning Queries in Spatial Databases 259
Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and
Lars Kulik

Session 5: Nearest Neighbours Queries

Reverse-k-Nearest-Neighbor Join Processing . 277
Tobias Emrich, Hans-Peter Kriegel, Peer Kröger,
Johannes Niedermayer, Matthias Renz, and Andreas Züfle

DART: An Efficient Method for Direction-Aware Bichromatic Reverse
k Nearest Neighbor Queries . 295

Kyoung-Won Lee, Dong-Wan Choi, and Chin-Wan Chung

User-Contributed Relevance and Nearest Neighbor Queries 312
Christodoulos Efstathiades and Dieter Pfoser

Session 6: Trajectories and Road Network Data 2

Using Hybrid Techniques for Resource Description and Selection in the
Context of Distributed Geographic Information Retrieval 330

Stefan Kufer, Daniel Blank, and Andreas Henrich

Location-Based Sponsored Search Advertising . 348
George Trimponias, Ilaria Bartolini, and Dimitris Papadias

A Group Based Approach for Path Queries in Road Networks 367
Hossain Mahmud, Ashfaq Mahmood Amin, Mohammed Eunus Ali,
Tanzima Hashem, and Sarana Nutanong

STEPQ: Spatio-Temporal Engine for Complex Pattern Queries 386
Dongqing Xiao and Mohamed Eltabakh

Table of Contents XVII

Session 7: Uncertainty

Cost Models for Nearest Neighbor Query Processing over Existentially
Uncertain Spatial Data . 391

Elias Frentzos, Nikos Pelekis, Nikos Giatrakos, and
Yannis Theodoridis

Processing Probabilistic Range Queries over Gaussian-Based Uncertain
Data . 410

Tingting Dong, Chuan Xiao, Xi Guo, and Yoshiharu Ishikawa

Mining Co-locations under Uncertainty . 429
Zhi Liu and Yan Huang

Querying Incomplete Geospatial Information in RDF 447
Charalampos Nikolaou and Manolis Koubarakis

Demonstrations

Link My Data: Community-Based Curation of Environmental Sensor
Data . 451

Heiko Müller, Chris Peters, Peter Taylor, and Andrew Terhorst

CrowdPath: A Framework for Next Generation Routing Services Using
Volunteered Geographic Information . 456

Abdeltawab M. Hendawi, Eugene Sturm, Dev Oliver, and
Shashi Shekhar

Interactive Toolbox for Spatial-Textual Preference Queries 462
Florian Wenzel, Dominik Köppl, and Werner Kießling

Where Have You Been Today? Annotating Trajectories with DayTag . . . 467
Salvatore Rinzivillo, Fernando de Lucca Siqueira, Lorenzo Gabrielli,
Chiara Renso, and Vania Bogorny

TripCloud: An Intelligent Cloud-Based Trip Recommendation
System . 472

Josh Jia-Ching Ying, Eric Hsueh-Chan Lu, Bo-Nian Shi, and
Vincent S. Tseng

The Array Database That Is Not a Database: File Based Array Query
Answering in Rasdaman . 478

Peter Baumann, Alex Mircea Dumitru, and Vlad Merticariu

Reliable Spatio-temporal Signal Extraction and Exploration from
Human Activity Records . 484

Christian Sengstock, Michael Gertz, Hamed Abdelhaq, and
Florian Flatow

XVIII Table of Contents

UniModeling: A Tool for the Unified Modeling and Reasoning in
Outdoor and Indoor Spaces . 490

Sari Haj Hussein, Hua Lu, and Torben Bach Pedersen

The Spatiotemporal RDF Store Strabon . 496
Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta,
George Garbis, Charalampos Nikolaou, Panayiotis Smeros,
Stella Giannakopoulou, Kallirroi Dogani, and Manolis Koubarakis

Author Index . 501

Efficient Top-k Spatial Distance Joins�

Shuyao Qi1, Panagiotis Bouros2,��, and Nikos Mamoulis1

1 Department of Computer Science
The University of Hong Kong
{syqi2,nikos}@cs.hku.hk

2 Department of Computer Science
Humboldt-Universität zu Berlin, Germany

bourospa@informatik.hu-berlin.de

Abstract. Consider two sets of spatial objects R and S, where each ob-
ject is assigned a score (e.g., ranking). Given a spatial distance threshold
ε and an integer k, the top-k spatial distance join (k-SDJ) returns the
k pairs of objects, which have the highest combined score (based on an
aggregate function γ) among all object pairs in R×S which have spatial
distance at most ε. Despite the practical application value of this query,
it has not received adequate attention in the past. In this paper, we fill
this gap by proposing methods that utilize both location and score infor-
mation from the objects, enabling top-k join computation by accessing
a limited number of objects. Extensive experiments demonstrate that a
technique which accesses blocks of data from R and S ordered by the ob-
ject scores and then joins them using an aR-tree based module performs
best in practice and outperforms alternative solutions by a wide margin.

1 Introduction

The spatial join operator retrieves pairs of objects that satisfy a spatial predicate.
Spatial joins have been extensively studied [3,6,17,7,15] due to their applicabil-
ity and potentially high execution cost. Still, this query type only focuses on
spatial attributes, while in many applications spatial objects have additional at-
tributes. For instance, restaurants shown in websites like Foursquare and Yelp are
assigned user-generated ratings. As another example, consider collections of spa-
tial objects created in the context of emerging scientific fields like atmospheric,
oceanographic, and environmental sciences with an expertise that ranges, from
the modeling of global climatic change to the analysis of earth’s tectonics. The
objects in such collections are associated with measurements of several attributes
varying from temperature and pressure to earth’s gravity and seismic activity.

These attributes can be used to derive a ranking for the objects. Ranking
has been considered by the database community in the context of top-k queries
[5,9] and top-k joins [13,8,12,16] where ranked inputs are joined to derive ob-
jects or tuple pairs which maximize an aggregate function on scoring attributes.
Consider, for example, the following top-k join query expressed in SQL:

� Work supported by grant HKU 714212E from Hong Kong RGC.
�� This work was conducted while the author was with the University of Hong Kong.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. Qi, P. Bouros, and N. Mamoulis

r1

r2

r4
r3

s4s3

s2
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
s1

Fig. 1. Example of a top-k spatial distance join

SELECT R.id, S.id

FROM R, S

WHERE R.att = S.att

ORDER BY R.score + S.score DESC

STOP AFTER k;

The result of this query is the k pairs of objects (r, s) with r ∈ R and s ∈ S
that qualify the equality predicate on their common attribute att, having the
highest SUM of their score attributes.

Despite the vast availability of spatial objects associated with scoring at-
tributes, to our knowledge, there exists no join operator that considers both
spatial and score attributes at the same time.1 On an attempt to fill this gap,
we introduce the top-k spatial distance join (k-SDJ) query. Given two collections
of spatial objects R and S that also carry a score attribute, the k-SDJ query
retrieves a k-subset J of R × S such that for every pair of objects (r, s) ∈ J , r
is spatially close to s based on a distance threshold ε (i.e., dist(r, s) ≤ ε, where
dist denotes the distance between the spatial locations of r and s), and for every
(r′, s′) ∈ R × S − J such that dist(r′, s′) ≤ ε, it holds γ(r, s) ≥ γ(r′, s′), where
γ is a monotone aggregate function (e.g., SUM) which combines the scores of
two objects. k-SDJ finds application in tasks like recommending to the visitors
of a city the k best pairs of restaurants and hotels within short distance that
have the top combined ratings, or investigating the correlation between scien-
tific attributes, e.g., identifying locations where earthquakes of high magnitude
take place on a very large depth. For instance, Figure 1 illustrates a set R of
four restaurants and a set S of four hotels. The objects carry a score shown
next to every point. Assuming that the qualifying pairs should have Euclidean
distance at most ε = 0.3 and γ = SUM , the result of 2-SDJ contains pairs
(r2, s3) with aggregate score 7 and (r2, s2) with aggregate score 6. Notice that,
although dist(r4, s4) < ε, pair (r4, s4) is not included in the query result because
γ(r4, s4) < γ(r2, s2) < γ(r2, s3). Further, while being the restaurant with the
highest score, r3 is not included in any result pair, as there is no hotel at a

1 An exception is the work of [11] which, however, is restricted to a specific type of
attributes (probabilities) and a specific aggregation function (product).

Efficient Top-k Spatial Distance Joins 3

distance to r3 smaller than 0.3. Note that k-SDJ is very similar to the top-k join
problem in relational databases (see the example SQL query above); the only
difference is that in k-SDJ the equality join predicate is replaced by a distance
bounding predicate between the spatial locations of objects in R and S.

Contributions. In this paper, we study the efficient evaluation of the k-SDJ
query. In brief, the key contributions of our work are summarized as follows:

– We introduce k-SDJ over two collections of spatial objects with scoring at-
tributes. The k-SDJ query can be used either as a standalone operator or
participate in complex query evaluation plans. For this purpose, we assume
that the input collections are not indexed in advance.

– We present three algorithms, which access and process the data in different
order; (i) the Score-First algorithm (SFA), which accesses the objects from
R and S in decreasing order of their scores, (ii) the Distance-First Algo-
rithm, which gives higher priority to the spatial distance join component of
the query, and (iii) the Block-based Algorithm (BA), which performs block-
wise evaluation, combining the benefits of SFA and DFA, without sharing
their disadvantages. All techniques employ aR-trees [14] (albeit in different
fashions) in order to combine spatial search with score-based pruning.

– We conduct extensive experiments to verify the effectiveness and efficiency
of our proposed methods.

Outline. The rest of the paper is organized as follows. Section 2 reviews the
related work. Section 3 presents algorithms for k-SDJ evaluation. Comprehen-
sive experiments and our findings are reported in Section 4. Finally, Section 5
concludes the paper and discusses directions for future work.

2 Related Work

Our work is related to spatial joins, top-k queries and top-k joins, and spatial
top-k joins. Sections 2.1 to 2.4 summarize related work done in these areas.

2.1 Spatial Joins

There exist two types of spatial distance join queries: the ε-distance and the k-
closest pairs join. Given two collections of spatial objects R and S the ε-distance
join identifies the object pairs (r, s) with r ∈ R, s ∈ S, such that dist(r, s) ≤ ε.
An ε-distance join can be processed similarly to a spatial intersection join [2].
Specifically, assuming that each of the R and S collections are indexed by an
R-tree, the two R-trees are concurrently traversed by recursively visiting pairs
of entries (eR, eS) for which their MBRs have minimum distance at most ε. Min-
imizing the cost of computing the distance between an MBR and an object was
studied in [3]. For non-indexed inputs, alternative spatial join algorithms can be
applied (e.g., the algorithm of [1] based on external sorting and plane sweep).
The k-closest pairs join computes, from two collections R and S, the k object

4 S. Qi, P. Bouros, and N. Mamoulis

pairs (r, s), r ∈ R, s ∈ S, with the minimum spatial distance dist(r, s). Two
different approaches exist for k-closest pairs. In the incremental approach [6,17]
the results are reported one-by-one in ascending order of their spatial distance.
For non-incremental computation of closest pairs, [4] extends the nearest neigh-
bor algorithm of [15] achieving in this way, minimum memory requirements and
better access locality for tree nodes.

2.2 Top-k Queries

Fagin et al. [5] present an analytical study of various methods for top-k ag-
gregation of ranked inputs by monotone aggregate functions. Consider a set of
objects (e.g., restaurants) which have scores (i.e., rankings) at two or more dif-
ferent sources (e.g., different ranking websites). Given an aggregate function γ
(e.g., SUM) the top-k query returns the k restaurants with the highest aggre-
gated scores (from the different sources). Each source is assumed to provide a
sorted list of the objects according to their atomic scores there; requests for ran-
dom accesses of scores based on object identifiers may also be possible. For the
case where both sorted and random accesses are possible, a threshold algorithm
(TA) retrieves objects from the ranked inputs (e.g., in a round-robin fashion)
and a priority queue is used to organize the best k objects seen so far. Let li be
the last score seen in source Si; T = γ(l1, ..., lm) defines a lower bound for the
aggregate score of objects never seen in any Si yet. If the kth highest aggregate
score found so far is no less than T , the algorithm is guaranteed to have found
the top-k objects and terminates. For the case where only sorted accesses are
possible, [12] presents an optimized approach.

2.3 Top-k Joins

The top-k query is a special case of a top-k join query, which performs rank
aggregation on top of relational join results; recall the SQL query example in
the Introduction, where two tables R and S are joined (based on their common
attribute att), but only the top-k join results according to the score attributes
are required to be output.

Ilyas et al. [8] proposed a binary operator, called hash-based rank-join (HRJN)
for top-k joins, which produces results incrementally and therefore can be used
multiple times in an multi-way join evaluation plan. Assume that the tuples of
R and S are accessed incrementally based on their values in the score attribute.
HRJN accesses tuples from R (or S) and joins them using the join key att with
the buffered tuples of S (or R), which have previously accessed (these tuples are
buffered and indexed by a hash-table). Join results are organized in a priority
queue based on their aggregate scores. Let lR, hR (lS , hS) be the lowest and
highest scores seen in R (S) so far; all join results currently in the queue having
aggregate scores larger than T = max{γ(hR, lS), γ(lR, hS)} are guaranteed to
have higher aggregate score than any join result not found so far and therefore
can be output (or pipelined to the operator than follows HRJN). A follow-up
work [16] identifies optimal strategies for pulling tuples from the inputs in a

Efficient Top-k Spatial Distance Joins 5

multi-way top-k join and joining them with the buffered results of other inputs.
An early work on multi-way top-k join evaluation is done by Natsev et al. [13].

The binary top-k join operator (i.e., HRJN) can be adapted to solve k-SDJ;
the only difference is that the equality join predicate in HRJN is replaced by a
spatial distance predicate. In Section 3, we describe our Score-First Algorithm
(SFA), which is based on this idea.

2.4 Spatial Top-k Joins

The term “top-k spatial join” is defined in [19]; however, this problem definition
is very different from what we study in this paper; given two spatial datasets
R and S, the query of [19] retrieves k objects in R intersecting the maximum
number of objects from S. Therefore the ranking criterion based on the number
of spatial intersections and not based on the aggregations of (non-spatial) scores
from the two inputs. The only work to our knowledge, closely related to k-SDJ
is [11], which studies a spatial join between two datasets R and S, containing
spatial data associated with probabilistic values; in this case each object o (e.g.,
a biological cell) is defined by a set of probabilistic locations and it is also as-
signed a confidence po to belong to a specific cell class. Given two objects r and
s from datasets R and S, respectively, a score of the (r, s) pair is defined by
multiplying their confidence probabilities pr and ps, and also considering the
distance dist(r, s) between their uncertain locations. Then, the top-k probabilis-
tic join between R and S returns the top-k object pairs in order of their scores.
Compared to k-SDJ, the problem definition in [11] is different. The aggregate
score function for k-SDJ does not involve the distance of the objects, but the
distance is used in the join predicate. Further, the solution proposed in [11] is
of limited applicability as it is bound to a specific aggregation function and can
efficiently work only with L1 distance.

3 Algorithms

In this section, we study evaluation techniques for k-SDJ. According to the query
definition, the results are object pairs with (i) large aggregate scores and (ii)
nearby spatial locations. First, we discuss two solutions, which extend work on
top-k joins [13,8,12,16] and spatial joins [3,6,17,7,15], respectively, to prioritize
either of the two query components; i.e., they either consider object scores or
spatial distances first, respectively. We present these methods in Sections 3.1 and
3.2; they are optimized to employ aR-trees [14] (in a different fashion) in order
to prune the search space during query evaluation. In Section 3.3, we present a
framework which processes the objects in order of their scores, in a block-wise
fashion and spatially joins the blocks, using bounds to early terminate accessing
of blocks. Figure 2 illustrates the running example that we use to demonstrate
our algorithms; two spatial datasets R = {r1 . . . r8} and S = {s1 . . . s8} with 8
points each. The point coordinates are shown on the left of the figure, while the
two tables on the right show the objects in each collection in descending order
of their scores. Table 1 shows the notation frequently used.

6 S. Qi, P. Bouros, and N. Mamoulis

r1

r2

r4

r3

r6

r8

r7
r5

s6

s4

s3

s5

s1

s2

s7
s8

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

id loc score
r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1
Object collection R

id loc score
s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7
s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2
Object collection S

Fig. 2. Example of two datasets R and S with 8 points each

Table 1. Table of Symbols

Notation Description

R/S Collections with scored spatial objects
k The number of required results
ε The spatial distance threshold
γ A monotone aggregate function
C Candidate/result set of k-SDJ
θ k-th smallest aggregate score in C

3.1 The Score-First Algorithm (SFA)

This method employs the framework of top-k join algorithms [8,16] to com-
pute k-SDJ. In particular, a variant of the HRJN algorithm is applied using the
spatial distance predicate instead of the equality predicate used in the original
algorithm. The Score-First Algorithm (SFA) presumes that both R and S are
ordered based on the object scores (e.g., as shown in Figure 2). This can be
the case if they stem from underlying operators which produce such interesting
orders; otherwise R and S need to be sorted before the application of SFA. SFA
incrementally accesses objects either from R or from S. For each collection (e.g.,
R), it maintains an aR-tree [14] (e.g., AR), which spatially organizes the buffered
objects accessed so far.2 In addition, SFA keeps track of the set C of distance
join pairs found so far with the k highest aggregate scores and uses the lowest
score θ in C as a bound for pruning and termination.

Algorithm 1 is a high-level pseudocode of SFA. After initializing C and the
aR-trees, SFA incrementally accesses objects from R or S (we will shortly discuss
about the access order). Assume that the current object is r accessed from R
(i.e., i = R and o = r at Lines 5 and 7 of the pseudocode); the other case is
symmetric. SFA performs the following steps:

2 The aR-tree has identical structure and update algorithms as the R-tree, however,
each non-leaf entry is augmented with the maximum score of all objects in the
subtree pointed by it. Figure 3 illustrates the structure of two aR-trees for the data
of Figure 2.

Efficient Top-k Spatial Distance Joins 7

Algorithm 1. Score-First Algorithm (SFA)
Input: k, ε, γ, R, S
Output: C
1: initialize a min-heap C:=∅ of candidate results; initialize θ:=−∞
2: sort R and S based on score, if not already sorted
3: initialize aR-trees AR:=∅ and AS:=∅
4: while more objects exist in R and S do
5: i := next input to be accessed //either R or S
6: j := other input //either S or R
7: o := get next(i) //get next object from input i
8: T :=max{γ(hR, lS), γ(lR, hS)} //HRJN termination threshold
9: while (o′ := get next pair(o,Aj , ε, θ)) �= null and T > θ do
10: update C and θ using (o, o′)
11: if T ≤ θ then
12: break //result secured; no need to access more objects
13: insert o to Ai

14: return C

1. It updates T (Line 8)
2. It probes r against the aR-tree AS for S to incrementally retrieve objects s

from AS such that dist(r, s) ≤ ε and γ(r, s) > θ (function get next pair() in
Line 9 retrieves such objects in decreasing order of γ(r, s));

3. For each qualifying pair (r, s) found, it updates C and θ (Line 10);
4. It checks whether the algorithm can terminate (Lines 11–12);
5. It inserts r to the aR-tree AR for R (Line 13)

We now elaborate on the steps above. After each object access, SFA firstly
updates the termination threshold T = max{γ(hR, lS), γ(lR, hS)} (Line 8). From
the description of HRJN in Section 2.3, recall that lR, hR (lS , hS) are lowest
and highest scores seen in R (S) so far (initially they are set as the maximum
score in R (S)). In Step 2, aR-tree search on AS is performed as a score-based
incremental ε-distance range query centered at r (function get next pair() in
Line 9); during search, entries whose MBRs are further than ε from r are pruned
and the remaining ones are prioritized based on their aggregate scores (i.e., the
maximum score of any object indexed under them). Specifically, for each entry
e, γ(r, e.score) is computed (where e.score is the aggregate score for e in the
aR-tree) and if it is found not larger than θ, then the entry is pruned (as it would
not be possible to find an object s ∈ S in the subtree pointed by e, such that
γ(r, s) > θ). Otherwise, the entry is inserted in a priority queue which guides
the aR-tree search to retrieve the spatial join pairs (r, s) in decreasing order of
s.score (note that this results in retrieving pairs in decreasing order of γ(r, s),
since r is fixed).

Whenever a new pair (r, s) is found, C and θ are updated immediately in
order to tighten the θ bound and potentially prune additional aR-tree nodes
during search: if |C| < k, (r, s) is inserted into C regardless of its aggregation
score; otherwise, (r, s) is inserted into C only if γ(r, s) > θ; in this case (r, s)
replaces the k-th pair in C, such that C always keeps the best k pairs found so
far. In either case, θ is updated to the k-th aggregate score in C. During the
computation of new join results, as soon as T ≤ θ, SFA terminates reporting C
as the k-SDJ result. Finally, r is inserted to the aR-tree AR for R, which is used
to probe objects from S.

8 S. Qi, P. Bouros, and N. Mamoulis

We note that at Line 5 SFA chooses as input (R or S) to read the next object
from the collection with the higher last seen score, according to the rationale of
HRJN [8]; this increases the chances that the threshold T drops and that SFA
terminates earlier.

To illustrate SFA, consider the example of Figure 2 and a k-SDJ query with
k = 1, ε = 0.1, and γ = SUM . After the first access (r1 from R), there is no
join result (since AS is currently empty), so r1 is just inserted to AR. Then
s1 is accessed from S; s1 is probed against AR and no match is found (i.e.,
dist(r1, s1) > ε). Then, since lR = 1.0 > lS = 0.9, r2 is accessed and joined (un-
successfully) with AS ; then s2 and s3 are accessed in turn, still without producing
any distance join results. When r3 is accessed, it is joined with AS (now contain-
ing {s1, s2, s3}) and produces the first join result (r3, s3), which is added to C;
now θ = γ(r3, s3) = 1.6. Note that T is currently max{γ(1.0, 0.8), γ(0.8, 0.9)}=
1.8 > θ, which means that a possibly better pair can be found and SFA cannot
terminate yet. The next accessed object is s4, which is joined with AR, finding
result (r3, s4), which is not better than the current top pair (r3, s3) (Note that
in this case get next pair(s4, AR, ε, θ) will not return r3 but just null, because
it uses θ for pruning). Next, both r4 and s5 give no new join pairs. Then s6 is
retrieved but still cannot produce a join pair with score better than θ; therefore
SFA, after having updated T to 1.5, terminates reporting C = {(r3, s3)}.

SFA is expected to be fast, if the join results are found only after few accesses
over the sorted collections R and S. If the best pairs include objects deep in the
sorted collections, the overhead to maintain and probe the aR-trees can be high.

3.2 The Distance-First Algorithm (DFA)

The second evaluation technique extends a spatial distance join algorithm to
compute the object pairs from R and S, which qualify the spatial threshold
θ, incrementally in decreasing order of their aggregate scores. The algorithm
terminates as soon as k pairs have been generated.

For implementing the spatial distance join, we could apply algorithms like the
R-tree join [2], assuming that R and S are already indexed by R-trees, or methods
that spatially join non-indexed inputs, like the (external memory) plane sweep
algorithm [1], which first sortsR and S based on one of their coordinates and then
sweeps a line along the sort axis to compute the results. The above approaches,
however, do not have a way of prioritizing the join result computation according
to the aggregate scores of qualifying distance join pairs.

We now present our optimized approach, which also employs aR-tree indices,
however, it computes k-SDJ in a different way compared to SFA. The Distance-
First Algorithm (DFA) (Algorithm 2) assumes that both R and S are indexed
by two aR-trees AR and AS (if the trees do not exist, DFA bulk-loads them
in a pre-processing phase, using the algorithm of [10]). DFA spatially joins the
two trees by adapting the classic algorithm of [2] to traverse them not in a
depth-first, but in a best-first order, which (1) still prunes entry pairs (eR, eS),
eR ∈ AR, eS ∈ AS for which dist(eR, eS) > ε (dist here denotes the minimum
distance between the MBRs of the two entries), but (2) prioritizes the entry pairs

Efficient Top-k Spatial Distance Joins 9

Algorithm 2. Distance-First Algorithm (DFA)
Input: k, ε, γ, R, S
Output: k-SDJ results incrementally
1: build aR-trees AR on R and AS on S, if not already indexed
2: initialize a max-heap He of aR-tree entry pairs (eR, eS) organized by γ(eR, eS)
3: for each pair (eR, eS) in AR.root× AS.root do
4: if dist(eR, eS) ≤ ε then
5: push (eR, eS) into He

6: while He �= ∅ do
7: (eR, eS) = He.dequeue()
8: if eR and eS are non-leaf node entries then
9: nR := node of AR pointed by eR; nS := node of AS pointed by eS
10: for each entry e′R ∈ nR and each entry e′S ∈ nS do
11: if dist(e′R, e′S) < ε then
12: push (e′R, e′S) into He

13: else
14: output (eR, eS) as next k-SDJ result

to be examined based on γ(eR, eS) (here, γ is applied on the aggregate scores
stored at the entries). In other words, the entry pairs which have the maximum
aggregate score are examined first during the join; this order guarantees that
the qualifying object pairs will be computed incrementally in decreasing order
of their aggregate scores. For this purpose, DFA initially puts in a priority queue
(i.e., max heap) He all pairs of root entries within distance ε from each other in
the two trees (Line 3 of Algorithm 2). Pairs of entries from He are de-heaped
in priority of their aggregate scores γ(eR, eS). Then, the spatial distance join is
evaluated for the corresponding aR-tree nodes and the results are inserted to He

if they are non-leaf entries (branching condition at Line 8). Otherwise, if a leaf
node entry pair (r, s) (i.e., object pair) is de-heaped, it is guaranteed that (r, s)
has higher aggregate score than any other object pair to be found later, since
entry and object pairs are accessed in decreasing order of their γ-scores from
He. Therefore the object pair is output as the next result of the k-SDJ query
(Line 14). DFA terminates after k results have been computed.

As an example of DFA, consider the two aR-trees for the R and S datasets
of Figure 2, as shown in Figure 3. Note that the aR-tree entries are augmented
with the maximum scores of any objects in the subtrees indexed by them (e.g.,
R2 has score 0.6). Assume that k = 1, ε = 0.1, and γ = SUM . DFA begins
by joining the two root nodes of AR and AS , which adds two entry pairs to
He; (R1, S1) and (R2, S2); the other two combinations (R1, S2) and (R2, S1)
are pruned by the ε-distance join predicate. The next pair to be examined is
(R1, S1) because γ(R1, S1) = 1.8 > γ(R2, S2). Thus, the nodes pointed by R1

and S1 are synchronously visited and their ε-distance join adds to He pairs
(R3, S4), (R4, S4), and (R4, S3). The next entry pair to be de-heaped is (R3, S4)
with γ(R3, S4) = 1.7; this results in object pair (r1, s6) being found and added
to He. Next, (R4, S3) is de-heaped and (r3, s3) is added to He. The next pair to
be popped from He is the object pair (r3, s3); note that this is guaranteed to be
the top ε-distance join pair, since it is the first object pair to be extracted from
He, and thus, the algorithm terminates.

10 S. Qi, P. Bouros, and N. Mamoulis

r1

r2

r4

r3

r6

r8

r7
r5

s6

s4

s3
s5

s1

s2

s7

s8

(b)

R4
0.8

R2
0.6

R1
1.0

R6
0.4

R5
0.6

r1
1.0

r2
0.8

r3
0.8

r5
0.6

r7
0.3

r6
0.4

r8
0.3

r4
0.6

R3
1.0

(a) (c)

S4
0.7

S2
0.9

S1
0.8

S6
0.4

S5
0.9

s3
0.8

s4
0.7

s6
0.4

s1
0.9

s2
0.9

s7
0.4

s8
0.2

s5
0.7

S3
0.8

R3

R4

R5

R6

S3

S4

S5

S6

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 3. Two aR-trees for R and S

DFA shares some common elements with the probabilistic spatial join algo-
rithm of [11]. Adapting the solution proposed in [11] for k-SDJ would involve
extending the classic plane-sweep approach to operate on spatially grouped ob-
jects, where group MBRs are annotated by aggregate probability values (used
for pruning group pairs during evaluation). However, our approach is more opti-
mized in the sense that it is applied on hierarchically multiple levels of grouping
(instead of a single grouping level in [11]). Thus, DFA represents the best possi-
ble implementation of the framework of [11] for k-SDJ queries, which as we show
in Section 4 is inferior to our best approach.

DFA is expected to be fast if the locations of objects are correlated with their
atomic scores; in this case, the objects with the highest scores that are close to
each other are identified fast; otherwise, many tree node pairs may have to be
accessed and joined until DFA can terminate. In other words, since the data are
primarily clustered by their locations in the aR-trees, pruning pairs of non-leaf
node entries is mostly due to the spatial predicate while the aggregate scores
may be too uniform to facilitate in this task.

3.3 The Block-based Algorithm (BA)

SFA and DFA both have certain shortcomings; on one hand, SFA fails to exploit
the spatial domain to locate fast spatial join results; on the other hand, DFA does
not necessarily find pairs of objects with high aggregate scores fast. Our third
solution is a Block-based Algorithm (BA), which alleviates these shortcomings.
Like SFA, BA examines the data by prioritizing objects with high scores first,
however, it does not incrementally build and join the aR-trees for them (which
is costly due to the repeated insertion and range query operations); instead it
bulk-loads aR-trees for blocks of objects from R (or S) and spatially joins them
with the blocks from S (or R) read so far, avoiding unnecessary block or node
pair joins based on their score and distance bounds.

Efficient Top-k Spatial Distance Joins 11

Algorithm 3. Block-based Algorithm (BA)
Input: k, ε, γ, R, S
Output: C
1: initialize a min-heap C:=∅ of candidate results; initialize θ:=−∞
2: sort R and S based on score, if not already sorted
3: while more blocks of objects exist in R and S do
4: i := next input to be accessed //either R or S
5: j := other input //either S or R
6: b := get next block(i) //get next block of objects from input i
7: Ab := bulk-load aR-tree for b
8: for each block b′ of j do
9: if γ(bu, b′u) > θ then
10: apply DFA to join Ab with A′

b
11: retrieve results and update C and θ
12: T :=max{γ(buR1, b

l
Slast), γ(b

l
Rlast, b

u
S1)}

13: if T ≤ θ then
14: break //result secured; no need to access more objects
15: return C

More specifically, BA (like SFA) considers R and S sorted by score. It then
divides them into blocks of λ objects each. At each step a block of objects bR
(or bS) is accessed from R (or S) and then, joined with the blocks of S (or R),
which have already been accessed. Thus, BA can be considered as an adaptation
of SFA that operates at the block-level. For example, Figure 4 illustrates the
blocks for collections R and S if λ = 2. BA would, for instance, first read bR1,
then read bS1 and join it with bR1, then read bS2 and join it with bR1, then
read bR2 and join it with bS1 and bS2, etc. Since the objects in R and S are
sorted in decreasing order of their scores, for each block b, there is an upper
score bound bu corresponding to the score of the first object in b. Therefore,
when considering the join between two blocks bR and bS , γ(b

u
R, b

u
S) represents

an upper score bound for all ε-distance join pairs in bR × bS. If we have found
at least k distance join pairs so far, then we know that joining bR with bS is
pointless when γ(buR, b

u
S) ≤ θ, where θ is the k-th best aggregate score. In other

words, the current block, e.g., bR, is only joined with the blocks bS of S for which
γ(buR, b

u
S) > θ. For the block-level join, we employ the DFA algorithm; an aR-tree

is constructed for the current block and joined with the aR-trees of blocks read
from the other input using Algorithm 2.

Algorithm 3 is a high-level pseudocode for BA. Line 4 chooses the input (i.e.,
R or S) from which the next block will be retrieved using the same policy as
SFA (i.e., the input with the highest last seen score). Without loss of generality,
assume that i = R. Then, for the next block b accessed from R, an aR-tree
is created, and b is joined with all blocks b′ from S which have already been
examined using DFA (for these blocks, the corresponding aR-trees have already
been constructed before). The blocks b′ are joined in decreasing order of their
score ranges (e.g., first bS1, then bS2, etc.). Each new ε-distance join pair is used
for updating C and θ (in fact the current θ is used to terminate the block-wise
DFA as soon as the top pair on the heap He has aggregate score at most θ).
After handling b, the termination threshold T is updated (Line 12). Note that
this threshold is the same as in the SFA algorithm: the maximum value between
γ(buR1, b

l
Slast) and γ(blRlast, b

u
S1), where buR1 (buS1) is the highest score in the first

12 S. Qi, P. Bouros, and N. Mamoulis

id loc score

bR1
r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8

bR2
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6

bR3
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4

bR4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1

(a) collection R

id loc score

bS1
s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9

bS2
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7

bS3
s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4

bS4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2

(b) collection S

Fig. 4. Example of BA

block of R (S) (i.e., the score of the very first object in the collection) and blRlast

(blSlast) is the lowest score in the last block of R (S) (i.e., the score of the last
object in it).

As an example of BA, consider the k-SDJ (k = 1, ε = 0.1, γ = SUM) between
collections R and S of Figure 4, which are partitioned into blocks. Initially, bR1

is read and an aR-tree AR1 is created for it. Then, bS1 is accessed, bulk-loaded to
an AS1, and joined using AR1 (Line 10 of BA), producing no spatial join results.
Next, bS2 is accessed and (unsuccessfully) joined with bR1. After reading bR2

the block is joined with bS1 and bS2 (in this order), to generate C = {(r3, s3)}
and set θ = 1.6. The next block bS3 is joined with bR1, but not bR2, because
γ(buR2, b

u
S3) = γ(0.8, 0.7) ≤ θ; this means that in the best case a spatial distance

join between bR2 and bS3 will produce a pair with score 1.5, which is not better
than the current top pair’s (r3, s3) score. The join between bS3 and bR1 does not
improve the current k-SDJ result. At this stage, BA terminates because T = 1.5,
which is not higher than θ = 1.6.

Although BA is reminiscent to SFA in that it examines the records in order of
their scores, BA has two main advantages compared to SFA. First, performing
the joins at the block level is more efficient, because the aR-trees for the blocks
are created just once efficiently by bulk-loading (instead of iterative insertions
as in SFA) and could be used for multiple block joins (e.g., bR1 is joined with
blocks bS1–bS3 in our example). The joins between aR-trees are much faster
compared to the record-by-record probing (i.e., index nested loops) approach of
SFA. Second, in BA, the currently processed block is joined only with a small
number of blocks of the other input (with the help of the upper score bounds of
the blocks), while in SFA the current object is probed against the entire set of
objects buffered from the other input.

4 Experimental Evaluation

In this section, we present an experimental evaluation of our techniques for
k-SDJ. Section 4.1 details the setup of our analysis. Sections 4.2 and 4.3 exper-
imentally prove the superiority of SFA and DFA compared to alternative im-
plementations that follow the score-first, the distance-first evaluation paradigm,
respectively. Section 4.4 carries out a comparison between the SFA, DFA and

Efficient Top-k Spatial Distance Joins 13

Table 2. Experimental parameters

Parameter Values Default value

ε 0.001, 0.005, 0.01, 0.05 0.01
k 1, 5, 10, 50, 100 10
|P | 5, 10, 50, 100 10

λ/|R| 0.0005, 0.001, 0.005, 0.01, 0.02 0.005

BA algorithms. All algorithms involved in this study are implemented in C++
and the experiments were conducted on a 2.3 Ghz Intel Core i7 CPU with 8GB
of RAM running OS X.

4.1 Setup

Our experimental analysis involves two collections of real spatial objects: (1)
FLICKR that contains 1.68M locations associated with photographs taken from
the city of London, UK over a period of 2 years and hosted on the Flickr pho-
tosharing website, and (2) ISLES that contains 20M POIs in the area of the
British isles drawn from the OpenStreetMap project dump. To perform the ex-
periments, every collection is split into two equally sized parts denoted by R
and S. This is to avoid performing a self-join which will produce result pairs
involving exactly the same object. Since real scores for objects were not avail-
able, we generated them as follows. For each part, we first randomly created |P |
seed points (simulating POIs) and generate the object scores with the following

formula: o.score = 1 −
|P |
min
i=1

[dist(o, Pi)]. Intuitively, real life objects are more

likely to have high scores if they are close to a POI [18]. For example, the ho-
tels close to the city center have higher potential to be highly rated for their
convenience. The generated scores are normalized to take values in [0, 1]. In our
study, we vary the total number of seed points created for each of R and S,
from 5 to 100. Larger values of |P | tend to generate more uniform score distri-
butions and higher average scores. Finally, note that we consider SUM as the
score aggregation function γ for our experiments.

To assess the performance of each join method, we measure their response
time that also includes index building cost and all sorting costs, varying (1) the
distance threshold ε, (2) the number of returning pairs k, and (3) the number
of seed points |P |. Further, in case of BA we also vary the ratio λ/|R| of the
block size λ over the size of the collection |R| (|S|). Table 2 summarizes all the
parameters involved in this study. On each experiment, we vary one of ε, k, |P |
and λ/|R| while we keep the remaining parameters fixed to their default values.
Finally, note that both the collections and the indexing structures used by the
evaluation methods are stored in main memory (like relational top-k join studies,
we consider k-SDJ evaluation in main memory), and that we set the page size
for both the R-trees and the aR-trees to 4KB.

14 S. Qi, P. Bouros, and N. Mamoulis

 0

 10

 20

 30

 40

 50

 60

0.001 0.005 0.01 0.05

R
es

p
o

n
se

 t
im

e
(s

ec
)

No-Index
R-tree

SFA

 0

 10

 20

 30

 40

 50

 60

1 5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

No-Index
R-tree

SFA

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

No-Index
R-tree

SFA

ε k |P |
(a) Distance threshold (b) Number of results (c) Number of seed points

Fig. 5. Comparison of the score-first algorithms on FLICKR

4.2 Score-First Algorithms

The first set of experiments demonstrates that our SFA algorithm, as described
in Section 3.1, is an efficient adaptation of the state-of-the-art top-k relational
join algorithm HRJN. Recall that, in SFA, we use aR-trees to index the objects
seen so far from R and S and use an efficient aR-tree search algorithm, which
exploits the aggregate scores stored at intermediate entries to prune the search
space while searching for join pairs for the current object o. In fact, the score-
first paradigm could also be applied without using aR-trees for indexing (in this
case, a scan would be applied against the buffered objects to find the spatial
join pairs), or one could use R-trees instead of aR-trees. Figure 5 compares the
response times of these two alternatives with SFA (denoted by No-Index and
R-tree, respectively), while varying ε, k and |P |. As expected, SFA outperforms
the other two methods since it is able to prune object pairs in terms of both
their spatial distance and their aggregate scores. We also observe that increasing
ε makes the k-SDJ evaluation faster for SFA and No-Index, but not for R-tree.
The reason is the following. As ε increases, more object pairs qualify the spatial
predicate. Since the objects are sorted in descending order of their scores, a
smaller number of pairs needs to be examined. Although this holds also for R-
tree, its time initially increases due to the increasing cost of the range queries
involved. Another important observation is that the response time of SFA is less
affected by the increase of k compared to the other methods. Particularly, for
k = 100, SFA needs 10% more time to compute k-SDJ compared to k = 1, while
in case R-trees or No-Index, this increase is 33% and 45%, respectively. Finally,
with the usage of more seed nodes for score generation, the response time of all
methods decreases since more object pairs have high aggregate scores.

4.3 Distance-First Algorithms

We perform a similar evaluation for DFA, by comparing it against two algorithms
that adopt alternative techniques for a distance-first k-SDJ processing (instead
of building and joining two aR-trees). Thus, one option is to generate and join
two R-trees (on each of R and S), and another option is to sort R and S an apply

Efficient Top-k Spatial Distance Joins 15

 0

 500

 1000

 1500

 2000

 2500

0.001 0.005 0.01 0.05

R
es

p
o

n
se

 t
im

e
(s

ec
)

PlaneSweep
R-tree
DFA

 0

 100

 200

 300

 400

 500

 600

1 5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

PlaneSweep
R-tree
DFA

 0

 100

 200

 300

 400

 500

 600

5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

PlaneSweep
R-tree
DFA

ε k |P |
(a) Distance threshold (b) Number of results (c) Number of seed points

Fig. 6. Comparison of the distance-first algorithms on FLICKR

the plane sweep spatial join technique. Figure 6 compares the three approaches,
showing that their response time is affected only by the increase of the distance
ε and not by k or |P |; this is due to the fact that all methods primarily focus on
the spatial predicate of the k-SDJ, which is independent of the scores. Due to
its ability to use score aggregation bounds, DFA not only outperforms the other
methods (in some cases for more than two orders of magnitude), but it is also
very little affected by the increase of ε.

We also implemented BA with different versions of its block-based join mod-
ule; i.e., the aR-tree based join as described in Section 3.3, and alternatives
based on plane sweep and R-tree join. The results (not included due to space
constraints) confirm that the aR-tree based module for joining blocks is superior
to the other alternatives (the trends are similar to the experiments of Figure 6).

4.4 Comparison of the Evaluation Paradigms

We have already shown that SFA, DFA, and BA, as described in Section 3 are
efficient implementations for the corresponding search paradigms (search-first,
distance-first, and block-based, respectively). We now compare these three algo-
rithms to identify the best evaluation paradigm and algorithm for k-SDJ. Fig-
ure 7 and 8 report on their response time for FLICKR and ISLES3, respectively,
while varying ε, k, |P | and λ/|R|. The figures show that BA outperforms SFA
and DFA in all cases. It is important to also notice that BA is very robust to
the variation of the parameters. Specifically, its response time is always around
350msec for FLICKR and 3.5sec for ISLES. In contrast, SFA is (1) positively
affected by the increase of ε since more object pairs qualify the spatial predicate
and thus, the top-k results can be quickly identified, and (2) negatively by the
increase of k as it needs to examine more object pairs. Further, DFA becomes
slower with ε as it primarily focuses on the spatial predicate of the k-SDJ. BA
manages to combine the above advantages of the score-first paradigm and SFA,
and the distance-first paradigm and DFA, as it examines blocks of objects or-
dered by score and applies the spatial predicate at the block level instead on the
whole collections.

3 In this experiment we used only half of the ISLES collection; i.e., |R| = |S| = 5M.

16 S. Qi, P. Bouros, and N. Mamoulis

 0

 1

 2

 3

 4

 5

0.001 0.005 0.01 0.05

R
es

p
o

n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

 0

 1

 2

 3

 4

 5

1 5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

ε k

(a) Distance threshold (b) Number of results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

 0

 1

 2

 3

 4

 5

0.0005 0.001 0.005 0.01 0.02

R
es

p
o

n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

|P | |λ|/|R|
(c) Number of seed points (d) Block size ratio

Fig. 7. Comparison of SFA, DFA and BA algorithms on FLICKR

 0

 20

 40

 60

 80

 100

 120

0.001 0.005 0.01 0.05

R
es

p
o

n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

ε k

(a) Distance threshold (b) Number of results

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 10 50 100

R
es

p
o
n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.0005 0.001 0.005 0.01 0.02

R
es

p
o

n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

|P | |λ|/|R|
(c) Number of seed points (d) Block size ratio

Fig. 8. Comparison of SFA, DFA and BA algorithms on ISLES

Efficient Top-k Spatial Distance Joins 17

We also performed a scalability experiment, by joining samples R and S of
the ISLES dataset of different sizes |R| and |S|, while setting ε, k, |P | and λ/|R|
to their default values. Figure 9(a) shows the results of the scalability test. We
observe that all methods scale similarly, with BA being 1-2 orders of magnitude
faster than the other methods. Note that even on the full ISLES collection, BA
needs less than 7 seconds to evaluate a k-SDJ query.

In the last experiment, we evaluate the performance of the methods on datasets
of different cardinalities. R and S are samples of the ISLES dataset of varying
cardinality ratio |R| : |S|, while |R| + |S| is fixed to 10M. The result is shown
in Figure 9(b). We observe that the response times of all methods only grow
slightly with the increase of |R| : |S| (the effect is more obvious on SFA). This is
because although the cardinality ratio is changing, the percentage of traversed
records on both size does not change much. Still, maintaining and updating a
larger aR-tree on R costs a little more than what is saved on a smaller aR-tree
for S, leading to the slight cost growth as the ratio increases.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1.25 2.5 5 10

R
es

p
o
n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1:1 2:1 3:1 4:1

R
es

p
o

n
se

 t
im

e
(s

ec
)

SFA
DFA

BA

|R| = |S|(×106) |R| : |S|
(a) Scalability (b) Varying Cardinality

Fig. 9. Scalability and Cardinality test on ISLES

5 Conclusion

In this paper, we proposed and studied top-k spatial distance join (k-SDJ)
queries. Although this operator finds practical application, it has not been stud-
ied in the past, therefore no efficient solutions exist for it, so far. We proposed
three algorithms for k-SDJ queries. SFA accesses the objects from the joined col-
lections incrementally and spatially joins them to find new results, using bounds
to terminate early. DFA incrementally computes the distance join results ordered
by score, by extending a spatial join algorithm to apply on aggregate R-trees
that index the two inputs. BA is a hybrid approach, which considers blocks of
objects from the two inputs, ordered by score, and joins them as necessary, until
a termination condition is reached. Our experimental findings on large datasets
show that BA performs best in practice, while the optimized use of aR-trees in
all methods greatly improves their performance compared to baseline alterna-
tives which rely on simpler indexing schemes. A direction for future work is to
extend our algorithms to compute top-k object pairs according to a combined
distance-based and score-based aggregate function.

18 S. Qi, P. Bouros, and N. Mamoulis

References

1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-
based spatial join. In: VLDB, pp. 570–581 (1998)

2. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins using
R-trees. In: SIGMOD Conference (1993)

3. Chan, E.P.F.: Buffer queries. IEEE Trans. Knowl. Data Eng. 15(4), 895–910 (2003)
4. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair

queries in spatial databases. In: SIGMOD Conference (2000)
5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.

In: PODS, pp. 102–113 (2001)
6. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial

databases. In: SIGMOD Conference (1998)
7. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.

Database Syst. 24(2), 265–318 (1999)
8. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-

tional databases. In: VLDB, pp. 754–765 (2003)
9. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-

niques in relational database systems. ACM Comput. Surv. 40(4) (2008)
10. Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: STR: A simple and efficient

algorithm for R-tree packing. In: ICDE, pp. 497–506 (1997)
11. Ljosa, V., Singh, A.K.: Top-k spatial joins of probabilistic objects. In: ICDE,

pp. 566–575 (2008)
12. Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Efficient top-k aggregation

of ranked inputs. ACM Trans. Database Syst. 32(3) (2007)
13. Natsev, A., Chang, Y.C., Smith, J.R., Li, C.S., Vitter, J.S.: Supporting incremental

join queries on ranked inputs. In: VLDB, pp. 281–290 (2001)
14. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial

data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

15. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD
Conference (1995)

16. Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in
database systems. ACM Trans. Database Syst. 35(1) (2010)

17. Shin, H., Moon, B., Lee, S.: Adaptive multi-stage distance join processing. In:
SIGMOD Conference (2000)

18. Yiu, M.L., Lu, H., Mamoulis, N., Vaitis, M.: Ranking spatial data by quality pref-
erences. IEEE Trans. Knowl. Data Eng. 23(3), 433–446 (2011)

19. Zhu, M., Papadias, D., Lee, D.L., Zhang, J.: Top-k spatial joins. IEEE Trans.
Knowl. Data Eng. 17(4), 567–579 (2005)

Regional Co-locations of Arbitrary Shapes

Song Wang1, Yan Huang2, and Xiaoyang Sean Wang3

1 Department of Computer Science, University of Vermont, Burlington, USA
swang2@uvm.edu

2 Department of Computer Science, University of North Texas, Denton, USA
huangyan@unt.edu

3 School of Computer Science, Fudan University, Shanghai, China
xywangCS@fudan.edu.cn

Abstract. In many application domains, occurrences of related spatial
features may exhibit co-location pattern. For example, some disease may
be in spatial proximity of certain type of pollution. This paper studies
the problem of regional co-locations with arbitrary shapes. Regional co-
locations represent regions in which two spatial features exhibit stronger
or weaker co-location than that in other regions. Finding regional co-
locations of arbitrary shapes is very challenging because: (1) statistical
frameworks for mining regional co-location do not exist; and (2) testing
all possible arbitrarily shaped regions is computational prohibitive even
for very small dataset. In this paper, we propose frequentist and Bayesian
frameworks for mining regional co-locations and develop a probabilistic
expansion heuristic to find arbitrary shaped regions. Experimental re-
sults on synthetic and real world data show that both frequentist method
and Bayesian statistical approach can recover the region with arbitrary
shapes. Our approaches outperform baseline algorithms in terms of F
measure. Bayesian statistical approach is approximately three orders of
magnitude faster than the frequentist approach.

1 Introduction

In Epidemiology, different but related diseases occur in different places. These
disease may exhibit co-location patterns where one type of disease tends to oc-
cur in spatial proximity of another. In Ecology, different types of animals can be
observed in different locations. There exist patterns such as symbiotic relation-
ship and predator-prey relationship. In transportation systems, trip demands
and taxi supplies tend to co-locate. Different types of crimes committed and dif-
ferent types of road accidents may also exhibit co-location. In short, co-location
is a common application scenario in spatial data sets.

In many of these applications, the co-location pattern may be dissimilar at
different regions. Regional co-location refers to regions where co-location pattern
is stronger or weaker than expected. This is possibly due to environmental fac-
tors or provincial social interaction structures. For example, related contagious
respiratory diseases may exhibit stronger regional co-location in more interac-
tive communities. As another example, trip requests and roaming taxis may

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 19–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 S. Wang, Y. Huang, and X.S. Wang

show weaker co-location in over-served or under-served regions. In this paper,
we study the problem of regional co-locations.

Problem Definition. In the regional co-location setting, we are interested in
the interaction of two spatial features a and b given spatial proximity distance
Dist. At each time snapshot, we have a datasetD. In D we have spatial feature a
occurring at a set of discrete spatial locations La and spatial feature b occurring
at another set of discrete spatial locations Lb (La and Lb may overlap). We also
have two baseline location sets Ba and Bb which represent the possible locations
where these two features can occur, respectively. Ba or Bb may correspond to
the underlying locations that can host the occurrence of a feature. For example,
if a is one type of disease, then Ba will be the base population that may be
infected by the disease. For any region S, we use La

S to denote the occurrence
of a that happen inside S and Ba

S to denote the baseline locations/population
located inside S. Lb

S and Bb
S are defined similarly. La, Lb, La

S , L
b
S, B

a
S , and Bb

S

will be used in defining our spatial statistics shortly.
We are interested in finding regional co-locations in a two-dimensional (2D for

short) space and the framework can be extended to 3D easily. The 2D space is
partitioned into an n×n grid G, where n is grid size. Each location l ∈ La∪Lb is
hashed into a grid cell c. Given a user-specified proximity distance Dist, we want
to find regions S ⊆ G where features a and b tend to locate within distance Dist
more often (stronger co-location) or less often (weaker co-location) than those
regions outside S based on pairs of occurrence of features. In the language of
statistics, the null hypothesis H0 is that the two spatial features may or may not
exhibit co-location pattern but the co-location pattern is consistent across the
whole 2D space. The alternative hypotheses H1(S) represent a higher or lower
level of co-location inside S comparing to that outside S. We are interested in
finding S of arbitrary shapes and not confined to rectangular (including squared)
shapes. Because we can handle stronger and weaker regional co-location similarly
in the same framework, we will focus on discussing stronger co-location hereafter
and the discussion of the opposite is straightforward.

Fig. 1. Regional Co-locations of a Rectangle and an Arbitrary Shape: An Example

Figure 1 illustrates a regional co-location of a rectangle on the left and a regional
co-location of an arbitrary shape on the right. The space consists of 15× 15 loca-
tions and is partitioned into 5× 5 grid cells. Note that a grid cell consists of 3× 3
locations. A region is a set of connected grid cells. We assume that the baseline

Regional Co-locations of Arbitrary Shapes 21

location setsBa and Bb contain all locations and spatial proximityDist is a Man-
hattan distance of less than 3. Two spatial features are represented by symbols ◦
and ×. In both cases, the shaded (green) region has a higher level of co-location
than outside. A observant reader may have noticed that while it may be possible
to enumerate all the rectangle regions (

∑n
i=0

∑n
j=0(n− i)(n− j) = O(n4)) [11], it

is very challenging to enumerate all possible arbitrarily shaped regions.Welsh [15]
states that the problem of counting the number of connected sub-graphs is #P-
complete even in the very restricted case (a planar bipartite graph). It is therefore
challenging to find regional co-location with arbitrary shapes.

Contributions. In this paper, we propose a principled statistical framework to
study the arbitrarily shaped regional co-location problem. We develop a frequen-
tist method and a Bayesian statistical method to identify regional co-locations
with arbitrary shapes. This paper makes the following contributions:

– We propose a new spatial statistic for frequentist method (in section 2) and a
Bayesian method (in section 3) to find arbitrarily shaped co-location regions.
To the best of our knowledge, this is the first work that allows finding re-
gional co-locations with arbitrary shapes without requiring extensive domain
knowledge and inputs;

– We propose an effective heuristic region expansion algorithm (in section 4)
to identify arbitrarily shaped regions with stronger (or weaker) co-location.
The expansion heuristic applies to both frequentist method and Bayesian
statistical method;

– Experimental results (in section 5) on both synthetic data sets and real world
taxi data show that both frequentist method and Bayesian statistical method
can recover regions of arbitrarily shaped co-location. Our approaches out-
perform the state-of-art algorithms in terms of F measure. The running time
of Bayesian statistical approach is approximately three orders of magnitude
faster than the frequentist approach. The real data contains locations for
17, 139 taxis with 48.1 million GPS records serving 468,000 trips.

2 Frequentist Method

We first present an overview of the proposed frequentist method. Frequentist
method searches over all possible region S ⊆ G. For each region S, it calculates a
likelihood ratio statistic (defined shortly). The likelihood ratio statistic compares
the “co-location strength” inside S with that of outside S, i.e.G− S. It then com-
pares the likelihood ratio statistic of all regions and finds the region(s) which max-
imize the statistic. For a dataset and the regions with largest ratio statistic, it then
performs a significance testing (detailed in section 2.2). If the test turns out to be
insignificant, we decide that the datamay be generated by the null hypothesisH0of
uniform co-location across space. If not, the data with these regions are considered
to be more likely to be generated by the alternative hypothesis of regional stronger
co-location in those regions. This section focuses on defining the likelihood ratio
statistic for a given region and significance testing used by frequentist method.We
will present the identification of arbitrarily shaped regions in Section 4.

22 S. Wang, Y. Huang, and X.S. Wang

2.1 Likelihood Ratio Statistic

Frequentist method has commonly been used to identify spatial clusters with cer-
tain properties in spatial scan statistics [9]. For clusters, likelihood ratio statistic
can be conveniently defined based on counts in a region. For regional co-locations,
based on the concept of participation index proposed in [6], we propose the fol-
lowing likelihood ratio statistics to be used in our frequentist method for any
region S ⊆ G, namely participation probability ratio statistic.

Participation Probability Ratio Statistic. The participation probability
P a→b
S of spatial feature a to b within spatial proximity distance Dist of a region

S is:

P a→b
S =[probability of a random event of a having an event

of b within distance Dist]
(1)

The participation probability ratio statistic Pa→b
S is defined as Pa→b

S =
Pa→b

S

Pa→b
G−S

.

The estimate P̂ a→b
S can be obtained by:

P̂ a→b
S =

|{l|l ∈ La
S ∧ (∃e, e ∈ Lb ∧ e ∈ Dist(l))}|

|La
S |

, (2)

where Dist(l) is the circle with radius Dist around a location l. In words, the
denominator |La

S | is the total number of occurrences of a inside S and the nomi-
nator is the number of occurrences of a that are inside S and have an occurrence
of b in their neighborhood as well. P̂ a→b

G−S can be estimated in a similar manner

to obtain P̂a→b
S .

For example, in the left side of Figure 1, P̂ x→o
green = 4

4 = 1 since all × has a o

within Dist, P̂ x→o
G−green = 4

7 , and Px→o
green =

Px→o
S

Px→o
G−green

= 7
4 . From hereafter, we use

P statistic to represent participation probability ratio statistic.

2.2 Significance Testing

In order to verify the statistical significance of the statistic obtained for a given
region (or a set of regions) S, we perform significance testing through Monte
Carlo simulation. Specifically, given a dataset D, we first learn the occurrence
rates of a and b, as well as rate of a, b together within Dist with Expectation
Maximization (EM) algorithm described in section 3.3. An occurrence rate refers
to the percentage of a (b or a, b together e.g. b occurs in proximity distance Dist
of a) among the total population. We then generate Rep replica data sets based
on these rates. For each replica C, we enumerate all possible regions and obtain
the region SC that maximizes Pa→b

SC
. For the given dataset D, let the p-value of

SD be Repbeat+1
Rep+1 , where Repbeat is the number of replicas with statistic higher

than that of the region found inD. If this p-value is less than some threshold (e.g.
5%), we conclude that the discovered region S is unlikely to happen by chance
and reject the null hypothesis of uniform co-location level across the space.

Regional Co-locations of Arbitrary Shapes 23

3 Bayesian Statistical Method

3.1 Bayesian Statistic

For a given data set D, Bayesian statistic approach compares the null hypothesis
H0 that spatial features a and b follow the same independent statistical distribu-
tion uniformly across the whole space against the alternative set of hypothesis
H1(S), each representing a higher co-location of features a and b in a region S.
We will need to calculate the posterior probabilities P (H0|D) and P (H1|D) for
a given dataset D. Using Bayesian rule, we have:

P (H0|D) =
P (D|H0)P (H0)

P (D)
, (3)

and

P (H1|D) =
P (D|H1)P (H1)

P (D)
, (4)

where P (D) = P (D|H0)P (H0) +
∑

S P (D|H1)P (H1). To calculate posterior
probabilities P (H0|D) and P (H1|D), we need to know the prior probabilities
P (H1) and P (H0) as well as those conditional probabilities P (D|H0) and
P (D|H1). To calculate P (D|H0) and P (D|H1), the data set is partitioned into
cells with a grid G. For each cell ci, we have a count cai for occurrence of feature
a and count cbi for occurrence of feature b. We use a Bivariate Poisson (BP) dis-
tribution [8] BP ((qa− δ)|Ba|, qb|Bb|− δ|Ba|), δ|Ba|) to describe the data, where
qa, qb are the occurrence rates of spatial feature a and b, respectively; Ba and
Bb are baseline population for a and b, respectively, and δ is the occurrence rate
of a, b outside the region S. The reason that we use BP distribution is because
it is a popular distribution in modelling count data, which fits our problem well.
qa, qb and δ can be learned by an EM algorithm [8]. We use qain and qaout to denote
occurrence rate of feature a inside and outside S, respectively. For a dataset D,
given the counts of a and b in each cell and the BP distribution, conditional
probability P (D|H0) can be computed in equation (5) and P (D|H1) in equation
(6). P (D|H0) assumes all cells ci in G follows the same BP distribution and the

P (D|H0) =
∏
ci∈G

P ((cai , c
b
i) ∼ BP ((qa − δ)|Ba

ci |, q
b|Bb

ci | − δ|Ba
ci |, δ|B

a
ci |)) (5)

P (D|H1) =
∏
ci∈S

P ((cai , c
b
i) ∼ BP ((qain − δin)|Ba

ci
|, qbin|Bb

ci
| − δin|Ba

ci
|, δin|Ba

ci
|))

×
∏

ci∈G−S

P ((cai , c
b
i)∼BP ((qaout − δout)|Ba

ci
|, qbout|Bb

ci
|−δout|Ba

ci
|, δout|Ba

ci
|))

(6)

probability is the product of the probability of all grid cells. P (D|H1) assumes
cells in S follows a stronger co-location and cells in G− S follows the given BP
distribution. Choosing prior probability P (H1) and P (H0) is detailed in Section
3.2 and learning qa, qb using EM algorithm is described in 3.3.

24 S. Wang, Y. Huang, and X.S. Wang

3.2 Estimating Parameters and Choosing Prior

To choose prior, we follow the framework proposed in [11]. We assume that we
know the prior probability of a co-location outbreak p. Then P (H0) = 1−p. We
also assume the probability of the outbreak is equally distributed to all regions.
So, P (H1(S)) = p

NS
where Ns is the number of possible arbitrarily shaped

regions. Since we don’t know Ns, we use the number of rectangular regions as
an approximation. For any given region S, we assume that δin is the occurrence
rate of a, b together inside S. We assume the outbreak will not change qa or qb

inside S but it will increase δin. Therefore, q
a
in = qaout = qa, qbin = qbout = qb,

δout = δ and δin = αδ, where δ is the occurrence rate of a, b outside S. Since we
do not know the exact value of α, we use a discretized uniform distribution for
α, ranging from α = [1, 3] with increment equals 0.2. The posterior probabilities
can be calculated by averaging likelihoods over the distribution of α.

3.3 Learning Bivariate Poisson Distribution Using EM Algorithm

We apply the EM algorithm to learn BP distribution proposed in [8]. BP deals
with random variable X = [X1, X2], where X1 = Y0 + Y1, X2 = Y0 + Y2, Yi, i ∈
[0, 2] are independent Poisson distribution with mean θi. In our context, qa =
θ1, q

b = θ2 and δ = θ0. We have observations for X1, X2 but not for Y0, Y1 and
Y2. Y0 represents the counts of feature a and b occurs in spatial proximity, Y1

and Y2 represent the counts of feature a and b, independently. Our purpose is to
use EM to find out θi, i ∈ [0, 2]. Given the probability density function for BP
as follows:

P (X) = P (X1 = x1, X2 = x2) = exp−(
∑2

i=0 θi) θ
x1
1

x1

θx2
2

x2

min(x1,x2)∑
j=0

(
x1

i

)(
x2

i

)
i!(

θ0
θ1 ∗ θ2

)i

(7)

We are given N samples with observation for X1 and X2. In the E-Step, we
compute the expectations of Y0 based on the observations. At the k-th iteration,
we compute si = E(Yi0|Xi, ti, θ

(k)), where

– ti is the base population for the i-th observation.
– θ(k) is the vector of parameters 〈θ0, θ1, θ2〉 for iteration k.

si is computed as follows:

si = θ0 ∗ ti ∗
P (Xi1 = xi1 − 1, Xi2 = xi2 − 1)

P (Xi)
(8)

P (Xi1 = xi1−1, Xi2 = xi2−1) and P (Xi) (each Xi = (Xi1, Xi2)) are computed
using equation (7). In the M-Step, we update those θs as follows: For θ0:

θ
(k+1)
0 =

∑N
i=1 si∑N
i=1 ti

(9)

Regional Co-locations of Arbitrary Shapes 25

where θ
(k+1)
0 is value of θ0 at iteration k + 1;

∑N
i=1 si is the sum of all si for N

observations computed from E-Step;
∑N

i=1 ti is the sum of populations. For θ1
and θ2, we update as follows:

θ
(k+1)
i =

xi

t
− θ

(k+1)
0 (10)

where θ
(k+1)
i is the value of θ1 and θ2 at iteration k+1; xi is average number of

xi from N observations; t is the average of all population.

4 Finding Arbitrarily Shaped Regional Co-location

We now detail the region expansion heuristic to find regional co-location with
arbitrary shapes. Our region expansion heuristic starts from a rectangular region
S ⊆ G. We compute the statistics of S. After that, during each iteration of region
expansion, we try to expand S by adding grid cells around S into it such that the
statistic is maximized. Here, the statistic could be the aforementioned P statistic
or Bayesian posterior probability. Since for any given S, we can add different
number of cells towards different directions. It is impossible to enumerate all of
them [15]. To make sure that the expansion process has statistical significance,
at each iteration, we add K cells, we fix K at 30 in our current implementation
since it is the smallest size to achieve statistical significance. We also generate
M different groups of K cells and always expanding S by adding the group
that maximizes the statistic score, where M is a user-specified parameter. For
a given rectangular region S, this process repeats until the statistic score of S
does not increase significantly based on user-specified threshold ε. We repeat
this process for all possible rectangular regions and return the expanded region
with maximized statistic as the result of region expansion. An overview of finding
regional co-location with arbitrary shape is described in Algorithm 1 and pseudo
code of the expansion process is presented in Algorithm 2 .

The input to Algorithm 1 is the grid G, grid size n and the spatial proxim-
ity distance Dist. The output is an arbitrarily shaped region with maximum
statistic. Line 7 expand the current rectangular region and returns a score for
the arbitrarily shaped region as expansion result. Following the work in [11], we
only expand rectangular regions with size from 36 cells up to size (n2)

2 cells.
When all rectangular regions with size in this range have been expanded, the
region with the largest statistic score is found.

The input to Algorithm 2 is the rectangular region S, represented as a quadru-
ple of integers, the grid G built from the data set D, number of candidate sets
M , as well as the statistical significance threshold value ε. Line 7 to Line 22
generate one candidate grid cells set. For each candidate grid cells set Rcandidate

generated during the expansion process, we compute its score. Once we have
generated M candidate grid cell sets, we keep the candidate that maximize
the statistic (Line 19). We then check whether the expanded region Rcandidate

has statistic score higher than ε percent of the region currently found Rfound,

26 S. Wang, Y. Huang, and X.S. Wang

Algorithm 1. Expansion Method Overview

Input:grid G, grid size n, spatial distance Dist
Output: Arbitrarily shaped region Gfound

Method:

1: maxScore = 0.0;
2: for xmin = 0 to n/2 do
3: for xmax = xmin + 5 to n/2 do
4: for ymin = 0 to n/2 do
5: for ymax = ymin + 5 to n/2 do
6: S = {xmin, xmax, ymin, ymax};
7: Rfound = expand(S,G,Dist) region S with P statistic or Bayesian

method, as detailed in Algorithm 2
8: if (Rfound > maxScore) then
9: maxScore = Rscore and record maximum scored region Rfound

10: end if
11: end for
12: end for
13: end for
14: end for

if the gain of the statistical score is significant (i.e., higher than ε percent), we
will upgrade Rfound to Rcandidate until we cannot find such Rcandidate (Line 25).

5 Evaluation and Analysis

In this section, we compare our approaches with some baseline approaches that
we propose. The proposed baseline approaches are simply to apply the same
framework to find rectangular regions without arbitrary shape expansion and re-
turn the rectangular region with maximum statistic. Our approaches are termed
P,B, PBase, and BBase. We use P to represent P statistic based method, B
to represent Bayesian statistical method and PBase, and BBase to represent
their corresponding baseline methods.

The purpose of our experiments is to demonstrate the effectiveness of two ap-
proaches in discovering the arbitrarily shaped region with co-location. We show
that for synthetic data, the proposed approaches recover the injected arbitrary
shaped region with high accuracy. In addition, Bayesianmethod is approximately
1,000 times faster than frequentist method for both synthetic and real data. For
real world data, frequentist method can find the region with high accuracy but is
computationally expensive. We also show how our approaches react to arbitrari-
ness of regions. From these experiments, we conclude that frequentist method
works well in both synthetic and real world data sets. However, if computational
power is not available, it is advisable to use Bayesian method to find the region
with high precision.

Performance Metrics. We adopt the well-known precision and recall frame-
work as performance metric. Formally, denote the injected region as Rtrue =

Regional Co-locations of Arbitrary Shapes 27

Algorithm 2. Expansion of Region S

Input:Initial region S = {xmin, xmax, ymin, ymax}, grid G, grid size n, number of
candidate sets to expand M , candidate cell size K, threshold value ε
Output: Arbitrarily shaped region Gfound

Method:

1: Compute initial score Rscore (i.e., P statistics and Bayesian posterior probability)
for S;

2: initialize Rfound = S and find initial set of neighbors V for Rfound

3: while (true) do
4: i = 0;
5: while i < M do
6: V ′ = V and initialize sampled cells set SN = φ;
7: while (true) do
8: sample one grid cell c from V ′

9: if c �∈ SN then
10: SN = SN ∪ c
11: update V by adding valid neighbors of c into V
12: else
13: goto Line 8;
14: end if
15: if |SN | < K then
16: goto Line 7;
17: end if
18: compute score of current extended region R′ = R ∪ SN ,denoted as R′

score

19: if R′
score ≥ Rscore ∗ (1 + ε) then

20: Rscore = R′
score; Rcandidate = R′; Rcandidate.score = R′.score

21: end if
22: end while
23: i = i+ 1 ;
24: end while
25: if (Rcanddiate.score ≥ Rfound.score ∗ (1 + ε)) then
26: Rfound = Rcandidate; Rfound.score = Rcanddiate.score
27: goto line 3
28: else
29: break;
30: end if
31: end while
32: return Rfound and Rfound.score

{c1, c2, ..., cn} and the found region from our methods asRfound = {r1, r2,rm},
where ci, i ∈ [1, n] and rj , j ∈ [1,m] are grid cells inside G.

Precision is defined as: precision =
|Rtrue∩Rfound|

|Rfound| . Recall is defined as:

recall =
|Rtrue∩Rfound|

|Rtrue| . After computing precision and recall, we compute the F

measure in equation (11):

Fmeasure = 2 ∗ precision ∗ recall
precision+ recall

(11)

28 S. Wang, Y. Huang, and X.S. Wang

We also measure the running time for P,B, PBase and BBase. We now detail
a metric to measure the arbitrariness of a region.

Measure of Region Arbitrariness. Formally, assume thatRtrue has bounding
cells indices for x and y as xmin, xmax and ymin, ymax, respectively. The size of
the bounding region for Rtrue can be defined as: BRsize = (xmax − xmin +
1) ∗ (ymax − ymin + 1). Then the arbitrariness of Rtrue is defined as follows:

ArbRatioRtrue = BRsize−|Rtrue|
BRsize

. Intuitively, the arbitrariness of a region is the
ratio of number of grid cells that are not in Rtrue to the total number of grid
cells of the bounding rectangular region.

5.1 Experiment Set-Up

Synthetic Data Experiment Set-Up Parameters and their values used in
synthetic data experiments are listed in Table 1. Default values are in bold. We

Table 1. Synthetic data experiments parameters

n 32,64,128

qaout 0.02, 0.04,0.06,0.08,0.10

qbout 0.02, 0.04,0.06,0.08,0.10

qabout (a.k.a δ) 0.01, 0.02, 0.03,0.04,0.05

qain 0.01, 0.02, 0.03,0.04,0.05

qbin 0.01, 0.02, 0.03,0.04,0.05

qabin 0.03,0.06,0.09,0.12,0.15

number of candidate set M 4,8,12,16,20

arbitrary region size 66,96,126,156, 186

distance Dist 80, 160, 240, 320,400

randomly generate 5 different arbitrary shaped regions with different sizes shown
in Table 1. Occurrence rate of feature a, b outside the injected region are denoted
as qaout, q

b
out and qabout. Each group of qaout, q

b
out, q

ab
out, q

a
in, q

b
in and qabin is defined

as an occurrence rate combination.
For each fixed occurrence rate combination, we pick default region size (126

grid cells as shown in Table 1) and generate five different synthetic data sets.
Similarly, we fix the occurrence rate at default combination, i.e., rate values in
bold in Table 1 and vary the size of arbitrary region, we generate another five
different synthetic data sets. Synthetic data is generate using Algorithm 3. For all
data sets, we fix the population size as 30k. We first generate the coordinates for
each entity (i.e., person in context of Epidemiology) of the whole population. We
then assign for each entity, spatial features a, b based on the input occurrence rate
combination by random sampling. Spatial features a, b can be different types of
disease in the context of Epidemiology and can be different types of accidents in
crash data, etc. Algorithm 3 is straightforward. When those data sets have been
generated, we apply our proposed approaches to find the arbitrary sized region.
For each data set and each fixed parameter setting, we repeat the experiments
5 times. All results reported are based on those 5 independent runs.

Regional Co-locations of Arbitrary Shapes 29

Algorithm 3. Synthetic data generation

Input: occurrence rate qaout, q
b
out, q

ab
out, q

a
in, q

b
in, q

ab
in , total population TP ,range of region

L, spatial proximity distance Dist, Gtrue

Output: data set D
Method:

1: initialize a location array loc[TP];
2: for i = 1 to TP do
3: generate xi and yi uniformly from [1, L] and put 〈xi, yi〉 into loc[i]
4: end for
5: for each person pi do
6: generate a random number r ∈ [0, 1]
7: if pi.〈xi, yi〉 ∈ Gtrue then
8: if r ≤ qain then
9: label pi with event a
10: end if
11: else if r ≤ qaout then
12: label pi with event a
13: end if
14: end for
15: repeat Line 5 to Line 14 by replacing qain with qbin and qaout with qbout, and label pi

with event b.
16: for each person pi with no label do
17: generate a random number r ∈ [0, 1]
18: if pi.〈xi, yi〉 ∈ Gtrue then
19: if r ≤ qa,bin then
20: label pi with event a and find pj inside radius Dist of pi, label as b
21: end if
22: else if r ≤ qa,bout then
23: label pi with event a and find pj inside Dist of pi, label as b
24: end if
25: end for

For frequentist method, we also need to generate replicas in order to do
the Monte Carlo simulation. For this purpose, for each given synthetic data
set, we first apply EM algorithm to learn the overall rate of spatial features:
qaoverall, q

b
overall and qaboverall, we then generate 1000 replica data by replacing

qain = qaout = qaoverall ,q
b
in = qbout = qboverall and qabin = qabout = qaboverall. Meanwhile,

we don’t do region injection for replica data generation, i.e., Line 16 to Line 25
are excluded for replica generation. After that, we apply the frequentist method
on each of those replica data, compute the statistics values for each arbitrar-
ily shaped region returned. Finally, we compute the p-value of the frequentist
method.

Real Data Experiment Set-Up. For real data experiments, we use the taxi
data in Shanghai, China([12]). The data is collected with a frequency of 300
seconds from 12am, May 29, 2009 to 6pm, May 30,2009. It contains locations
for 17, 139 taxis from 3 different taxi companies, which forms over 48.1 million

30 S. Wang, Y. Huang, and X.S. Wang

GPS records of 468,000 trips. It contains location data of taxi and pick-ups for
215 different time intervals. We randomly select 5 data sets from 5 different
time intervals. In this taxi data context, we assume that all the requests have
been met. To model the co-location problem, we assume that spatial feature a
is request, which are pick-up; spatial feature b is empty taxi.Those two features
can be directly read from the taxi data. Our goal is to find a region such that the
co-location of request and empty taxi is the largest in a given spatial proximity.
In other words, we want to find out regions such that the number of taxis is
much larger than the number of requests. Parameters and their values used in
real data experiments are listed in Table 2. Since qaout , q

b
out, and qabout are learned

from a given data set by applying EM algorithm as detailed in section 3.3, we
do not need to provide them. Default values are in bold. Since we model over-
serve colocation, we inject an arbitrarily shaped region into a given snapshot
data, we first pick an arbitrary region and a removal percentage (the maximum
percentage of requests that should be removed), we then remove those requests
based on the removal percentage inside the arbitrarily shaped region randomly.
After that, we run our proposed approaches to recover the injected region. For
each data set and each fixed parameter setting, we repeated our experiments 5
times, all results reported are averaged over those 5 independent runs.

Table 2. Real data experiments parameters

Grid Size n 32,64,128

number of candidate set M 4,8,12,16,20

arbitrary region size 66,96,126,156, 186

distance Dist 40,60,80,100,120

removal percentage 15%, 20%, 25%, 30%, 35%

5.2 Experiment Results and Analysis

We record the total number of rectangular regions to expand based on different
grid size n, the result is presented in Table 3. We expect that the running time
of those methods will increase dramatically with increment in grid size n. It is
intuitive to see that the total number of regions to expands increase with n.

Table 3. Number of Rectangular Regions to Expand

Grid Size n 32 64 128

Total Number of Rect. Regions 8281 164836 3348900

Arbitrariness of Region. The arbitrariness of these 5 regions used in ex-
periments is reported in Figure 2(a). We will show in other result figures that
the higher the arbitrariness of a region is, the worse the performance of our
approaches will be.

Regional Co-locations of Arbitrary Shapes 31

66 96 126 156 186
0.35

0.4

0.45

0.5

Ar
bit

rar
ine

ss
 of

 R
eg

ion

Size of Arbitrary Region

(a) Arbitrariness of Regions

66 96 126 156 186
0

0.5

1

F
M

ea
su

re

Size of Arbitrary Region

P B PBase BBase

(b) Synthetic data: Impact of Size of
Arbitrary Region

Fig. 2. Arbitrariness of Regions

Synthetic Data Results. In this section, we analyze our results on synthetic
data with respect to various parameters including arbitrariness and size of re-
gion,grid size, distance proximity, as well as M .

Impact of Arbitrariness/Size of Region. We present the impact of size
of arbitrary region in Figure 2(b). In general, when the arbitrariness of region
is large, our approaches do not work well. One exception is when region size
equals 156 and arbitrariness increases. However, our method still works very
well, the reason is that when the region is reasonably large, it can tolerate more
false positives. This experiments provide an insight that we need to make the
approaches more robust when the arbitrariness is high.

Impact of Grid Size. Impact of grid size is presented in Figure 3. We fix grid
size equals 32 for all the data sets we generated. We can see that P and B meth-
ods work pretty well in identifying the input arbitrary shaped region. PBase and
BBase do not work very well since the input region is arbitrarily shaped instead of
rectangular. We can observe that all methods do not work well when the grid size
is 64 and 128 . The reason is that the data is partitioned using grid size equals 32.
This result provides an insight that we need to apply those methods with the same
grid size as the data is being partitioned. Figure 3(b) shows the running time of
our methods as well as baseline approaches.We can observe that the running time
for frequentist methods(P,PBase) is approximately 1000 times larger than that of
Bayesian method. When grid size is larger, all methods run longer since there are

32 64 96 128
0

0.5

1

F
M

ea
su

re

Grid Size

P B PBase BBase

(a) F Measure

32 64 128
10

−5

10
0

10
5

10
10

Ru
nn

ing
 T

im
e

Grid Size

P B PBase BBase

(b) Time

Fig. 3. Impact of Grid Size Synthetic Data

32 S. Wang, Y. Huang, and X.S. Wang

more regions to expand. We can observe similar patterns on running time with
variation of other parameters, due to space limit, we only report 3(b).

Impact of Proximity Distance. Figure 4(a) shows the performance of our
approaches with respect to different spatial proximity. We generate data based on
proximity distance 240, but we vary the proximity distance during experiments
in order to investigate the impact of proximity distance on the performance of
those algorithms. For B method, the F measure do not change with variation
on proximity distance since it has no relationship with it. For P method, the F
measure does not change much. The best F measure can be observed at proximity
distance equals 240 since it is the true spatial proximity distance. For baseline
algorithms, they do not work well. This experiment provides an insight that our
approaches are not very sensitive to spatial proximity distance.

80 160 240 320 400
0

0.5

1

F
M

ea
su

re

Spatial Proximity

P B PBase BBase

(a) Impact of Proximity Distance

4 8 12 16 20
0.2

0.4

0.6

0.8

1

F
M

ea
su

re

Number of Candidate Set M

P B PBase BBase

(b) Impact of M

Fig. 4. Experiment Results: Synthetic Data

Impact of M . Performance of our approaches regarding different M values is
shown in Figure 4(b). We can see that P, and B perform well in recovering the
injected arbitrary shaped region. However, for baseline algorithms, they do not
work very well. We can also observe that all approaches are relatively stable
regarding changes of M generated during expansion. This is due to the fact
that our expansion heuristic always pick the group of candidate grid cells that
maximize the score. Meanwhile, the input arbitrarily shaped region is relatively
small and varieties of the candidate sets is then relatively small. Therefore, with
a small number of candidate sets, we can reach similar performance.

Real Data Results. In this section, we analyze our results on real world data
with respect to different parameters: proximity distance, grid size, M . Due to
space limits, we skip presenting the impact of arbitrariness of regions and re-
moval percentage as well as visualization of regions on real data without region
injection, which can be found in real data in an online version1.

Impact of Proximity Distance. We show the impact of proximity distance
in Figure 5(a). Similar to synthetic data, for the input data, we fix proximity
distance at 80 but varies the value in experiments. We can see that B method’s
F measure does not change since it has nothing to do with proximity distance.

1 https://www.dropbox.com/s/gnluegcq2f36ip6/colocationFullVersion.pdf

https://www.dropbox.com/s/gnluegcq2f36ip6/colocationFullVersion.pdf

Regional Co-locations of Arbitrary Shapes 33

P method has high F measure. However, B does not work as well as P. The reason
is that the real data does not necessarily obey bivariate Poisson distribution. We
can see from Figure 5(b) that B method actually achieves the highest precision,
but its recall is not good enough. Therefore, F measure is not good enough. We
can observe similar performance of B method for other parameters. We omit
them due to space limit. In all real data experiments, we can see that P works
better than PBase and B outperforms BBase.

40 60 80 100 120
0

0.2

0.4

0.6

0.8

F
Me

as
ur

e

Spatial Proximity

P B PBase BBase

(a) Impact of Proximity Distance

40 60 80 100 120
0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

Distance Proximity

P B PBase BBase

(b) Impact of Proximity Distance:
Precision

Fig. 5. Experiment Results: Real Data

Impact of Grid Size. We show the impact of grid size in Figure 6(a). Our
injected data are based on grid size 32. We can see that our approaches only
work for grid size 32. This is intuitive since the data is generated with grid size
equals 32. Therefore, we can observe that F measure decreases with increment
of grid size.

32 64 96 128
0

0.2

0.4

0.6

0.8

F
Me

as
ur

e

Grid Size

P B PBase BBase

(a) Impact of Grid Size

4 8 12 16 20
0

0.5

1

F
M

ea
su

re

Number of Candidate Set M

P B PBase BBase

(b) Impact of M

Fig. 6. Experiment Results: Real Data

Impact of M . Performance of our approaches with respect to M is shown in
Figure 6(b). We can observe similar performance as that of grid size that B
method does not work as well as P due to underlying distribution of data. The
reason is the same as summarized in grid size experiments.

6 Related Works

Our work is related to previous works from two main categories: spatial co-
location pattern mining and Bayesian spatial scan statistic.

34 S. Wang, Y. Huang, and X.S. Wang

Spatial Co-location Pattern Mining. Co-location patterns have been stud-
ied extensively in literature ([3], [5],[6],[7], [13],[14],[16]). Given a collection of
boolean spatial features, general spatial co-location pattern mining methods try
to find the subsets of features that are frequently located in spatial proximity.
Finding spatial co-location pattern is an important problem in ecology, epi-
demics, transportation system and others.

An initial summary of results on general spatial co-location mining was pro-
posed in [14]. The authors proposed the notion of user-specified neighborhoods
in place of transactions to specify group of spatial items. By doing so, they can
adopt traditional association rule mining algorithms, i.e., Apriori [1] to find spa-
tial co-location rules. An extended version of their approaches was presented
in [6]. In [7], Huang et. al. proposed algorithms to find co-location rules with-
out using a support threshold, a common term used in association rule mining
algorithms. A novel measure called maximal participation index was proposed.
They found that every confident co-location rule corresponds to a co-location
pattern with a high maximal participation index value. Based on this new mea-
sure, Apriori-like pruning strategies were used to prune co-location rules. These
works on spatial co-location pattern discovery focus on finding global spatial co-
location patterns with a fixed interest measure threshold. Methods for mining
co-location patterns with rare spatial features were studied in [5].

Spatial co-location patterns with dynamic neighborhood constraint was pro-
posed in [13]. The motivation of work in [13] is that existing work for finding
co-location patterns uses static neighborhood threshold. They argue that iden-
tifying the dependence relationship of spatial features and computing the preva-
lence measure of features have different distributions in different areas of the
global space. For this purpose, they postpone the determination of neighbor re-
lations to the prevalence measure computation step and a greedy algorithm is
proposed to find co-location patterns with different neighbors constraints in dif-
ferent areas. A statistical model for co-location that considers auto-correlation
and feature-abundance effect was recently discussed in [2]. The motivation is the
co-location using user specified thresholds for prevalence measures may report
co-locations even if the features are randomly distributed. They first introduce
a new definition of co-location patterns based on statistical test instead of using
global prevalence thresholds. Corresponding algorithm for finding co-location
patterns based on this new statistical test is also proposed.

However, all these co-location methods focus on global co-location patterns,
which are not directly applicable to find regional co-locations. In [3], zonal co-
location pattern find co-location in a subset of the space, i.e.zone or region.
They used repeated specification of zone and interest measure values according
to user preference instead of discovering global spatial co-location patterns with
a fixed interest measure threshold. They propose an algorithm,namely, Zoloc-
Miner to discover regional co-location patterns with dynamic parameters. For
this purpose, a Quadtree index structure is proposed to store co-location pat-
terns to handle dynamic parameters. They assume that the regions and interest
measure for those regions are given beforehand, which requires sophisticated

Regional Co-locations of Arbitrary Shapes 35

domain knowledge. However, domain knowledge is hardly obtainable in real
world applications. Meanwhile, they do not find arbitrary shaped regions.

Those works mentioned before focused on spatial features with categorized
value, i.e., the location of spatial features are not continuous. A framework for
finding regional co-location patterns in continuous valued spatial variables was
proposed in [4]. Their motivation is to find regions in a spatial dataset such
that certain continuous quantities have high concentration (e.g., concentrations
of different chemicals in sets of wells) inside the region than that of outside
areas. It views regional co-location mining as a clustering problem in which an
externally given fitness function has to be maximized. For this purpose, they
propose a framework named CLEVER that uses randomized hill climbing to
discover regional co-location. This work can find arbitrary shaped regions. How-
ever, they also require that extensive domain knowledge be available to find the
initial representative regions for clustering and the co-location pattern is also
available. This is usually not true in real world applications.

To our knowledge, no prior work deals with finding regional patterns with
arbitrary shape without domain knowledge, which is the focus of our work.

Bayesian Spatial Scan Statistic. Spatial scan statistics have been studied
extensively. The purpose of spatial scan statistics was to find spatial clusters
where certain quantity of interest occurs significantly higher than expected. The
state-of-art is based on Kulldorff’s spatial scan statistic ([9]). An extended dis-
cussion of spatial scan statistic was presented in [10]. In [9], Kulldorff defined
a general model for the multidimensional spatial scan statistic. There are three
basic properties of the scan statistic: the geometry of the area being scanned,
the underlying probability distribution generating the observed data under the
null hypothesis and shapes of the scanning window. Calculation of the spatial
scan statistic is based on rigid mathematical inductions based on different un-
derlying probability models. The main idea of the spatial scan statistic was to
calculate the defined statistic from the data being scanned, then a hypothesis
testing against the null hypothesis was conducted by using Monte Carlo sim-
ulation. However, the computational cost of the spatial scan statistic is high.
Furthermore, they only deal with clusters not co-locations.

Recently, a Bayesian spatial scan statistic was proposed to discover spatial
clusters [11]. In disease surveillance systems, it is useful to find spatial regions
with high frequency of certain disease and report an emergent disease outbreak
to save lives. For this purpose, given the number of occurrences of certain diseases
in a spatial region, a Bayesian spatial scan statistic was proposed to examine
the posterior probability of every possible rectangular region under the null hy-
pothesis and the alternative hypothesises. Bayesian spatial scan statistic can find
significant spatial clusters with less running time and higher detection accuracy.

Closely related with epidemics and Bayesian spatial scan statistic are the
Poisson distribution and bivariate Poisson distribution. Poisson distribution are
often used as prior probability model in Bayesian spatial scan statistic. Bivariate
Poisson distribution was widely used to model the count of disease in epidemics.
In this work, our Bayesian statistics based approach uses the bivariate Poisson

36 S. Wang, Y. Huang, and X.S. Wang

distribution and Bayesian spatial scan statistic to discover arbitrarily shaped
regions with co-location patterns.

7 Conclusion

In this paper, we studied the problem of finding regional co-location with arbi-
trary shapes. For this purpose, we proposed two approaches: frequentist method
and Bayesian statistics. We evaluated our approaches in both synthetic and real
world data. Experimental results demonstrate that our two approaches work ef-
fectively. Bayesian method runs approximately three orders of magnitude faster
than frequentist method. When computational power is not available, we can
use Bayesian method to recover the region with high precision; otherwise, it is
better to apply frequentist methods. However, in this work, the expansion pro-
cess is stochastic, it will be interesting to study about deterministic expansion
approaches in the future. Meanwhile, it will be interesting to investigate how to
speed up the expansion process with more sophisticated heuristics.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann Publishers Inc., San
Francisco (1994)

2. Barua, S., Sander, J.: SSCP: Mining statistically significant co-location patterns.
In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar,
S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 2–20. Springer, Heidelberg
(2011)

3. Celik, M., Kang, J.M., Shekhar, S.: Zonal co-location pattern Discovery with dy-
namic parameters. In: ICDM 2007, pp. 433–438. IEEE Computer Society, Wash-
ington, DC (2007)

4. Eick, C.F., Parmar, R., Ding, W., Stepinski, T.F., Nicot, J.-P.: Finding regional
co-location patterns for sets of continuous variables in spatial datasets. In: Pro-
ceedings of the 16th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS 2008, pp. 30:1–30:10. ACM, New York
(2008)

5. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from
spatial data sets. Geoinformatica 10(3), 239–260 (2006)

6. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial
data sets: A general approach. IEEE Trans. on Knowl. and Data Eng. 16(12),
1472–1485 (2004)

7. Huang, Y., Xiong, H., Shekhar, S., Pei, J.: Mining confident co-location rules with-
out a support threshold. In: Proceedings of the 2003 ACM Symposium on Applied
Computing, SAC 2003, pp. 497–501. ACM, New York (2003)

8. Karlis, D.: An em algorithm for multivariate poisson distribution and related mod-
els. Journal of Applied Statistics 30(1), 63–77 (2003)

9. Kulldorff, M.: A spatial scan statistic. Communications in Statistics - Theory and
Methods 26(6), 1481–1496 (1997)

Regional Co-locations of Arbitrary Shapes 37

10. Kulldorff, M.: Spatial scan statistics: Models,calculations, and applications. In:
Glaz, J., Balakrishnan, N. (eds.) Scan Statistics and Applications, Statistics for
Industry and Technology, pp. 303–322. Birkhuser, Boston (1999)

11. Neill, D.B., Moore, A.W., Cooper, G.F.: A bayesian spatial scan statistic. In: NIPS
(2005)

12. Powell, J.W., Huang, Y., Bastani, F., Ji, M.: Towards reducing taxicab cruising
time using spatio-temporal profitability maps. In: Pfoser, D., Tao, Y., Mouratidis,
K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011.
LNCS, vol. 6849, pp. 242–260. Springer, Heidelberg (2011)

13. Qian, F., He, Q., He, J.: Mining spatial co-location patterns with dynamic neigh-
borhood constraint. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 238–253. Springer,
Heidelberg (2009)

14. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

15. Welsh, D.: Approximate Counting. Cambridge University Press (2007)
16. Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial collo-

cations. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 384–393 (2004)

MNTG: An Extensible Web-Based Traffic Generator

Mohamed F. Mokbel1, Louai Alarabi1, Jie Bao1, Ahmed Eldawy1, Amr Magdy1,
Mohamed Sarwat1, Ethan Waytas1, and Steven Yackel2

1 University of Minnesota, Minneapolis, MN 55455, USA
2 Microsoft

{mokbel,louai,baojie,eldawy,amr,sarwat}@cs.umn.edu,
wayt0012@umn.edu, spazard1@live.com

Abstract. Road network traffic datasets have attracted significant attention in the
past decade. For instance, in spatio-temporal databases area, researchers harness
road network traffic data to evaluate and validate their research. Collecting real
traffic datasets is tedious as it usually takes a significant amount of time and ef-
fort. Alternatively, many researchers opt to generate synthetic traffic data using
existing traffic generation tools, e.g., Brinkhoff and BerlinMOD. Unfortunately,
existing road network traffic generators require significant amount of time and
effort to install, configure, and run. Moreover, it is not trivial to generate traffic
data in arbitrary spatial regions using existing traffic generators. In this paper,
we propose Minnesota Traffic Generator (MNTG); an extensible web-based road
network traffic generator that overcomes the hurdles of using existing traffic gen-
erators. MNTG does not provide a new way to simulate traffic data. Instead, it
serves as a wrapper over existing traffic generators, making them easy to use,
configure, and run for any arbitrary spatial road region. To generate traffic data,
MNTG users just need to use its user-friendly web interface to specify an arbi-
trary spatial range on the map, select a traffic generator method, and submit the
traffic generation request to the server. MNTG dedicated server will receive and
process the submitted traffic generation request, and notify the user via email
when finished. MNTG users can then download their generated data and/or visu-
alize it on MNTG map interface. MNTG is extensible in two frontiers: (1) It can
be easily extended to support various traffic generators. It is already shipped with
the two most common traffic generators, Brinkhoff and BerlinMOD, yet, it also
has the interface that can be used to add new traffic generators. (2) It can be easily
extended to support various road network sources. It is shipped with U.S. Tiger
files and Open Street Map, yet, it also has the interface that can be used to add
other sources. MNTG is launched as a web service for public use; a prototype can
be accessed via http://mntg.cs.umn.edu.

1 Introduction

Road network traffic data consist of a set of spatial locations reported by a set of objects
moving over a road network. Traffic data have been already leveraged by researchers
in different areas, e.g., spatial-temporal databases, transportation, urban computing and
data mining. The process of extracting real traffic data requires installing and config-
uring many GPS-enabled devices and continuously monitoring the locations of such
devices, which is a cumbersome task. For instance, GeoLife project [1] took more than

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 38–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mntg.cs.umn.edu

MNTG: An Extensible Web-Based Traffic Generator 39

four years to collect 17,621 trajectories dataset with the involvement of 182 volunteers
in Beijing. Alternatively, many researchers opt to generate synthetic road network traf-
fic data. As a consequence, several efforts have been dedicated to develop road network
traffic generators, e.g., Brinkhoff [2] and BerlinMOD [3].

Even though existing traffic generators are quite useful, nonetheless, most of them
suffer from the following: (1) It may take the user significant amount of effort to install
and configure the traffic generation tool. For example, in order to run BerlinMOD, the
user needs to first install a moving object database, i.e., SECONDO [4], and then get
familiar with the script commands used to install it. After the installation, users still need
to understand an extensive list of configuration parameters for each traffic generator.
(2) It is not trivial to generate traffic data in arbitrary spatial regions using existing
traffic generators. For example, to be able to use Brinkhoff or BerlinMOD generators
for a different city than the default shipped one (Oldenburg and Berlin for Brinkhoff and
BerlinMOD generators, respectively), the user needs to first obtain the road network
information for the city of interest, which is a tedious task by itself. For example, to get
the road network information for the city of Munich, a user may need to understand the
format of OpenStreetMap [5], and then write a program that extracts the road network
of Munich from OpenStreetMap. After obtaining the new road network data, the user
will then need to understand how to modify the obtained format to match the required
one by either Brinkhoff or BerlinMOD. Such set of tedious operations made it hard for
casual users to use these traffic generators for arbitrary spatial areas. As a testimony,
one can observe that almost all the literature that have used these generators for traffic
data have used it for their default cities.

In this paper, we propose Minnesota Traffic Generator (MNTG); an extensible web-
based road network traffic generator that overcomes the hurdles of using existing traffic
generators. MNTG is basically a wrapper around existing traffic generators, with the
mission of enabling an easy usage of all existing traffic generators, and hence help all
researchers worldwide in validating and benchmarking their research techniques against
various workloads of movings objects over real road networks.

MNTG has three main features that significantly help in achieving its goals:
(1) MNTG is a web service with an easy-to-use user-friendly map interface. Behind
the scenes, MNTG carries the burden of configuring and running existing traffic gen-
erators. Thus, MNTG users do not need to install or configure anything on their local
machines. This is in contrast to the traditional usage of Brinkhoff and BerlinMOD gen-
erators that require various installations as mentioned above. (2) MNTG can be used
for any arbitrary city or spatial area worldwide. Users can just navigate through the
map interface, and mark their area of interest with a rectangular area. Once the traffic
generation request is submitted, MNTG is responsible for extracting the road network
information for the requested area and generating the traffic on the extracted area using
one of the existing traffic generators. This is in contrast to the traditional usage of exist-
ing traffic generators that is hard to be tailored for arbitrary cities. (3) MNTG users do
not need to worry about the processing time or computing resources, where MNTG has
its own dedicated server machine that (a) receives a traffic request from the user, (b) in-
ternally processes the request in a multi-core multi-threaded program, and (c) emails
the user back when the requested data is generated. The notifying email includes a link

40 M.F. Mokbel et al.

to download the data as well as an option to visualize the generated data. This is in
contrast to the traditional usage of existing traffic generators that may take significant
portion of the user time and computing resources.

Minnesota Traffic Generator (MNTG) is extensible in two frontiers: (1) It can be eas-
ily extended to support various traffic generators through few deterministic functions.
Currently, MNTG is shipped with the two most common traffic generators, Brinkhoff
and BerlinMOD, yet, it also has the interface that can be used to add new traffic genera-
tors. As a proof of concept, we extend it with a random generator which generates some
kind of random walks over the road network. (2) It can be easily extended to support
various road network sources. It is currently shipped with the support for U.S. Tiger
files [6] and OpenStreetMap [5], yet, it also has the interface that can be used to add
other sources for road network data.

MNTG is equipped with three main components, listed as follows: (1) Road Net-
work Converter: that extracts the road network for the area of interest from either US.
Tiger files or OpenStreetMap, and converts it to match the format of the underlying
traffic generator. (2) Traffic Processor: that schedules and executes the received traffic
generation requests. The traffic processor processes the incoming requests in parallel
using a multi-threading paradigm to increase the overall system throughput. Both the
road network converter and traffic processor provide an interface for the system users
to incorporate a newly developed traffic generator. To plug-in a newly developed traffic
generator, MNTG defines a set of abstract functions that users need to implement. The
implemented functions deal with converting/extracting the road network data, executing
the traffic generator, and preparing the generated traffic output. Once a traffic genera-
tor is plugged-in, users may leverage it to generate traffic data. (3) System Front-End:
which contains a web interface for users to submit traffic generation requests, an email
notifier to send messages or notifications to the user, and a set of tools for the user to
download and visualize the generated traffic data.

A preliminary version of MNTG is launched as a web service for public use; a pro-
totype can be accessed via http://mntg.cs.umn.edu. The preliminary version
supports Brinkhoff, BerlinMOD and the random traffic generators on both U.S TIGER
files and OpenStreetMap data. The extensibility interface for adding more generators
or other road network sources is currently working internally under our support. Yet,
these functionalities will be released to public use in our next version. Since its launch
last month, MNTG has received more than 1000 traffic generation requests from re-
searchers world wide. All requests have been efficiently satisfied, and results were sent
back to the requesting users. We envision that MNTG will be the de facto standard for
generating road network data for researchers in spatial and spatio-temporal databases
worldwide.

The rest of this paper is organized as follows: Section 2 highlights related work. Sec-
tion 3 gives an overview of MNTG. Sections 4 and 5 describe the two main components
in the system back-end; (1) road network converter and (2) traffic models, respectively.
Section 6 provides the description of the system front-end with detailed usage guide.
Finally, Section 7 concludes the paper with pointers to future work.

http://mntg.cs.umn.edu

MNTG: An Extensible Web-Based Traffic Generator 41

Table 1. Existing Moving Objects Generators

Environment Generators
Free Movement Pfoser and Theodoridis [7], Oporto [8], GSDT [9], G-TERD [10]

Road Network
Brinkhoff [2] , BerlinMOD [3] , ST-ACTS [11] , GAMMA [12],

SUMO [13] , Micro Simulators [14]
Multi Environments MWGen [15]

2 Related Work

Road network traffic data (i.e., moving objects data) have been widely used by re-
searchers to test and validate their techniques in various spatio-temporal data man-
agement problems. This includes objects tracking [16], predictive queries [17], range
queries [18], kNN queries [19], continuous queries [20], data uncertainty [21], and lo-
cation privacy [22]. As a consequence, several efforts have focused on creating standard
benchmarks for evaluating research on moving objects data [3, 23–27]. As part of cre-
ating such benchmarks, generating synthetic moving objects data gained considerable
attention in the literature.

Table 1 gives a summary of existing moving objects data generators. Based on the
spatial environment where the objects move on, existing moving objects data generators
can be classified into the following three main categories:

1. Free movement [7–10]. This category assumes that objects can move freely in a
two-dimensional Euclidean space. The GSTD generator [9] generates data for ei-
ther moving points or rectangular regions, where it allows its users to control the
lifetime of each moving object. The GSTD generator is later extended to incorpo-
rate real-life behaviors like group and obstructed movements [7]. G-TERD [10] has
introduced new features to traffic generators, where users can generate arbitrary-
shaped objects with tuning parameters that control object speed, color, and rotation
over time. Unlike all other moving objects generators, Oporto [8] is particularly
concerned with generating the movement of ships, which depends on fishing sce-
narios where ships head to fish shoals and avoid storms.

2. Road networks [2, 3, 28, 11–13, 29, 14]. This category is mainly concerned with
generating moving objects data in a road network environment. Constrained by
the predefined road network paths, they basically generate traffic data based on
real-life trip planning scenarios that simulate the human behavior. Brinkhoff [2],
SUMO [13] and micro simulators [14] depend on short-term observations, where
representative human behavior is observed for short discrete trips. On the other
hand, BerlinMOD [3] and ST-ACTS [11] rely on long-term observations where
human behavior is observed for several consecutive days.

3. Multi-Environments [15]. This category considers moving objects in multi-
environments, e.g., Indoor → walk → Bus → walk. MWGen [15] surpassed the
typical functionality of generating data only for a single environment and extends
it to support multiple environments, i.e., indoors and outdoors, at the same time.

42 M.F. Mokbel et al.

Traffic Processor

US Tiger Files

Traffic Data Users

Traffic Results

Email NotifierWeb Interface
Download/

Visualization
Tools

Traffic Requests

Sy
st

em

Fr
on

te
nd

Sy
st

em

B
ac

ke
nd

Traffic generation request Download/visualize

traffic results

Status Notification

Status Notification

Results

BerlinMOD

Brinkhoff

New Generator

Road Network
Converter

OpenStreetMapsNew Data Source

Traffic Generator
Developers

Road Network Data Sources

Random

Fig. 1. MNTG System Overview

GMOBench simulates a scenario like an employee moving in her work building,
then walks to the parking lot to drive her car all the way to home, then walks again
to enter home and move indoors.

Minnesota Traffic Generator (MNTG) distinguishes itself from all the work mentioned
above as it does not provide yet another technique for traffic data generation. Instead,
it is an extensible wrapper built around any of the existing traffic generators in the
second category mentioned above (road network movement). As an extensible easy-
to-use wrapper, MNTG enables a practical use of all road network traffic generators
developed over the last two decades. Due to its simplicity, MNTG is expected to give a
boost to existing traffic generators by gaining wider user community.

3 System Overview

Figure 1 gives an overview of the MNTG system architecture. A user interacts with
MNTG through its system front-end that includes three main components: (1) Web
Interface, which allows users to submit traffic generation requests by selecting a ge-
ographical area on the map and setting the corresponding parameters in a very intuitive
way, (2) Email Notifier, which retrieves the status updates from the back-end and keeps
users posted on their traffic generation request progress, and (3) Download and Visu-
alization tools, which allow users to download their generated traffic data as a text file
and/or visualize the generated traffic data on the map. The details of the system front-
end, with its three components, will be discussed in Section 6.

MNTG: An Extensible Web-Based Traffic Generator 43

Internally, the system back-end of MNTG processes incoming traffic generation re-
quests and generates traffic data for the system users. The system back-end consists of
the following two main components:

1. Road Network Converter, which is responsible for extracting the road network data
from the traffic generation request. It receives a rectangular spatial area with two
corner coordinates, each represented as a <latitude, longitude>. Then, the road
network converter exploits its underlying road network data source, US Tiger files
or OpenStreetMaps, to extract the information of the selected area, and convert it
into an appropriate format understood by the requested traffic generator. The road
network converter is extensible to support other road network data sources beyond
its default ones, US tiger files and OpenStreetMaps. Details of the road network
converter will be discussed in Section 4.

2. Traffic Processor, which takes the road network data from the road network con-
verter and feed it to the requested traffic generator, which is currently either
Brinkhoff or BerlinMOD. The traffic processor is implemented in a multi-threading
paradigm to: (a) allow multiple requests to be served concurrently, and (b) avoid
the starving of small traffic generation requests waiting for large requests to finish.
The traffic processor is highly extensible as it is equipped with modules that al-
low the traffic model developers to easily plug-in a new traffic generator. Details of
the traffic processor will be discussed in Section 5.

4 Road Network Converter

Despite the abundance of road network data sources, such as US Tiger files and Open-
StreetMap, none of them provides an intuitive way to extract road network paths, i.e.,
nodes and edges, for an arbitrary geographical area. MNTG, on the other hand, needs
to generate road network traffic data for any geographical area selected by the user. To
achieve that, MNTG employs a road network converter that is responsible for extracting
the road network data for each incoming traffic generation request. Moreover, The road
network converter is designed to support a wide variety of road network data sources.

In this section, we first discuss the main idea behind the road network converter.
Then, we provide two detailed case studies featuring two road network data sources,
which are currently implemented in MNTG: US Tiger Files and OpenStreetMap. Fi-
nally, we discuss the extensibility of the road network converter to support new road
network data sources.

4.1 Main Idea

The road network converter is responsible for extracting road network nodes and edges
from different sources and transforming the extracted data into a standard format that
can be utilized by different traffic generators. The functionality of the road network con-
verter does not depend on the underlying traffic model (e.g., Brinkhoff or BerlinMOD).
Instead, it heavily depends on the underlying data source (e.g., US Tiger files or Open-
StreetMap). To achieve its goals, the road network converter performs the following
two steps for each traffic generation request:

44 M.F. Mokbel et al.

1. Step 1. Extracting Road Network. The input to this step is :(a) a rectangular spa-
tial area, defined by two corner <latitude, longitude> coordinates, and (b) the
road network data source (e.g., US Tiger files or OpenStreetMap). The output of
this step is the road network information of the selected area, based on the se-
lected road network data source. This is done through an abstract function, called
ExtractRoadNetwork, that exploits the underlying road network data source
to: (a) prune all information that are outside the selected rectangular spatial area,
and (b) prune the non road network information from the selected rectangular area.
We do so because each road network data source provides data in different formats;
for example, US Tiger Files are stored in a binary format with extra information
about zip codes, rivers, demographics, etc, while OpenStreetMap stores data in an
XML format with extra information about buildings, parks, traffic lights, etc.

2. Step 2. Preparing Standard Output. The input to this step is: (a) The road net-
work information of the selected rectangular spatial area, i.e., the output of the
ExtractRoadNetwork abstract function, and (b) the road network data source.
The output of this step is two standard text road network data files: node.txt
and edge.txt, which contain the final set of nodes and edges in the se-
lected spatial area, respectively. This is done through an abstract function, called
PrepareStandardOutput, that is aware of the data format of the underlying
data source and converts it to our standard output format.

We opt to transform the road network information into a standard text format, to make
it portable to various traffic generators. Each traffic generator uses its own different in-
put file format and perhaps different spatial coordinate system. For example, Brinkhoff
generator uses binary files to store nodes and edges, whereas BerlinMOD expects one
text file with two bracketed locations to represent a road segment. Moreover, Brinkhoff
generator uses its own spatial coordinates system, where the latitude and longitude of a
location are the offsets instead of absolute values.

An example of the standard format of our generated node.txt file is as follows:
Node_ID Lat Lng
54956254019183 44.85923581362268 -92.989281234375
19567871005131 45.032414105220745 -93.2028993984375
27380416518383 44.99418225712112 -93.4431044765625

Node ID is a unique identifier for the node on the road networks, whereas Lat and
Lng are the latitude and longitude coordinates that represent the geographical location
of the node, respectively.

Similarly, an example of our generated edge.txt file is as follows:

Edge_ID Node_1 Node_2 Tags
0 33352568523324 33481417542144 highway
1 35667555893384 38510824242033 oneway
2 34881576878577 35839354585144

Edge ID is a unique identifier for the edge on the road networks, whereas Node 1
and Node 2 are node IDs contained in the node.txt file. It means that the two nodes
(Node 1 and Node 2) are connected by the edge Edge ID. Tags attach extra infor-
mation to road edges which can be used by some generators.

MNTG: An Extensible Web-Based Traffic Generator 45

4.2 Case Study 1: US Tiger File

US Topologically Integrated Geographic Encoding and Referencing (Tiger) Files [6]
are published by US census bureau on a yearly basis to provide the most recent in-
formation about US geographical data, which include city boundaries, road networks,
address information, water features, and many more. In MNTG, we focus on extracting
the road network information from the Road directory of Tiger files.

A very unique feature of US Tiger Files is that the files are partitioned and orga-
nized based on US counties. In other words, all roads in a county are packed in a com-
pressed file with a unique file identifier, e.g., tl_2010_01001_roads.zip, where
tl means tiger line, 2010 indicates the publishing year of the data, 01001 is a unique
identifier for the county (in this case is Autauga, Alabama), and roads represents the
type of data.

The tricky part of the road network conversion with US tiger files is that a user
may select a geographical area that covers multiple counties. This means that the road
network converter needs to access road network data that spans multiple files. Hence,
the most important step here is to find the corresponding counties covered by the
user-selected area. To this end, we extract a minimum bounding box (UpperLat,
UpperLng and LowerLat, LowerLng) for each US county. Then, we create a
database table to store the bounding box corresponding to each county ID.

When a traffic generation request is received, we retrieve the road network data from
US Tiger Files by first selecting all counties that overlap with the spatial region selected
by the user. Then, we load the road network files for all overlapped counties and filter
out the nodes and edges based on the user specified area. Finally, we write the qualified
nodes and edges in the standard output format.

4.3 Case Study 2: OpenStreetMap

OpenStreetMap is a project that aims at digitizing geographical data for the whole world
by providing geographical data that is free to use, distribute, and manipulate. Since it
is maintained by volunteers, data in OpenStreetMap is updated frequently, whereas the
data quality may not be as good as the data extracted from other commercial/official
data sources. OpenStreetMap maintains a very large file, i.e., Planet.osm, to record
all spatial objects in the whole world, e.g., road networks, buildings, rivers, etc. Essen-
tially, planet.osm is one large XML (Extensible Markup Language) file that consists
of the following four primitive data types:

– Node, that represents a spatial point by its latitude and longitude coordinates.
– Way, that consists of a sequence of nodes which, connected together, form a line or

a polygon.
– Relation, that specifies the relation between ways and nodes. For example, two

ways are connected together.
– Tags, that provides description for any of the other data types, node, way, or rela-

tion, using a key-value pair.

46 M.F. Mokbel et al.

We carry out the extraction of OSM data in three phases, namely, parsing, indexing
and querying where the first two phases are offline and the third phase is online. In
the parsing phase, the XML planet.osm file is processed to extract node and edge
files for the whole world in the format discussed in Section 4.1. All nodes are extracted
and stored in one node file. Ways are filtered on the fly based on the associated tags
and only those associated to the road network are extracted. Each way is stored as a se-
quence of edges in one edge file. The indexing phase preprocesses the node and edge
files (56GB and 98GB, respectively) to speedup range queries that selects a particular
area. We initially tried to load them in a PostGIS database with an R-tree index but the
loading process did not finish in a reasonable time (we terminated the process when
it took more than a week). As an alternative solution, we used SpatialHadoop [30],
a MapReduce framework for spatial data, to build an R-tree index in a cluster of 20
machines which took around four hours. The first step is to join the node and edge
files to project coordinates of both ends of an edge, and then build an index over the
edges based on their minimal bounding rectangles (MBRs). Once the R-tree index is
constructed, it is extracted out of the cluster in the format of a master and data files
where the master file stores the region occupied by each data file as an MBR while the
data files store the data records. The node-edge joined file ended in 10,000 data files
with an average file size of 12MB. The final phase is the querying phase in which range
queries are processed on the R-tree to extract node and edge files in a particular area
based on a user traffic request. First, the master file is examined to select the data files
that need to be processed. Next, these data files are processed to generate the node and
edge files that are then processed by the selected generator.

4.4 Extensibility with Other Road Network Data Sources

As was pointed out in Figure 1, MNTG is extensible to support new road network
data sources. Thanks to the modular design of the road network converter, extending
MNTG with another road network data source is as simple as providing the contents
of two abstract functions. Assume a service provider that has a new road network
data source, termed MyRoadNetwork. To include this data into MNTG, we provide
a template java file, where the service provider needs to fill the contents of: (a) the
ExtractRoadNetwork abstract function which will basically select the informa-
tion of the selected area form MyRoadNetwork, as discussed in Section 4.1, and (b) the
PrepareStandardOutput abstract function that outputs the nodes and edges in-
formation of the selected area in the standard output format, as discussed in Section 4.1.

It is important to note that filling the contents of the abstract functions in the tem-
plate does not really have to be by the service provider of the new data source. Instead,
third parties or volunteers can provide this functionality. In other words, crowd sourcing
can play a major role here in extending MNTG to support various road network data
sources. We have started this by providing the abstraction of US Tiger files and Open-
StreetMap, as described above in Sections 4.2 and 4.3, respectively. Yet, we call for
the efforts of research community and volunteers to support more data sources within
MNTG.

MNTG: An Extensible Web-Based Traffic Generator 47

Traffic Model

BerlinMOD

Abstract Class
1.RoadNetworkConvert
2.TrafficGeneration
3 TrafficResultConvert

Brinkhoff Random New Model

Fig. 2. Traffic Model Class

5 Traffic Processor

The Traffic Processor in MNTG is responsible for generating the requested traffic data
based on the selected traffic generator. It takes the extracted road network from the road
network converter component (Section 4) and feeds it to the selected traffic generator.
The challenge here is on how to accommodate the various input formats, parameters,
and running environments for different traffic generators. To this end, the Traffic Pro-
cessor component in MNTG provides an abstract way to accommodate various traffic
generators. It currently includes two famous ones, Brinkhoff and BerlinMOD, however,
its abstract design makes it highly extensible to support more traffic generators. In this
section, we first discuss the main idea behind the traffic processor. Then, we provide
three detailed case studies featuring Brinkhoff, BerlinMOD and random walk traffic
generators. Finally, we discuss the extensibility of the traffic processor to support other
traffic generators.

5.1 Main Idea

To generate the traffic data based on a particular traffic generator, MNTG basically
aims to run the traffic generator as is. However, this is hindered by the fact that differ-
ent traffic generators: (a) employ different execution methods and (b) require different
configuration files and/or parameters. For example, Brinkhoff model is executed with
a java jar file, while BerlinMOD runs with a script file. As the purpose of MNTG is to
enclose various traffic generators, it builds a wrapper around each traffic generator to
make them all look the same when it comes to receiving a traffic generation request and
producing the final result.

The main idea is to create an abstract class Traffic Model in MNTG, as de-
picted in Figure 2. Then, all definitions and functions for each traffic generator has to
be incorporated inside this abstract class. In general, there are four key data structures
that should be inherited by all traffic generators in MNTG:

1. Traffic Request ID, as the traffic request identifier, which is automatically generated
for each submitted request. It is used to link the input/output traffic data to the
corresponding traffic data requester and to send the traffic result as well as the
status notifications to the submitting user.

48 M.F. Mokbel et al.

2. Traffic Model Name, which is another identifier to indicate the type of the selected
traffic generators, e.g., Brinkhoff or BerlinMOD.

3. Traffic Generation Area, which is the user selected rectangular area to generate
traffic data in. The area is represented by two corner points of the form <latitude,
longitude>.

4. Traffic Generation Parameters, which includes the parameters (e.g., number of
moving objects and simulation time), specified by the users, which will be used
for the traffic generation. The parameters may be specified differently for different
traffic generators.

Additionally, there are three main abstract functions that need to be implemented for
each traffic generator to be included in MNTG:

1. RoadNetworkConvert: this function converts the standard road network for-
mat received from the Road Network Converter (Section 4) to the specific format
used by the traffic generator.

2. TrafficGeneration: this function produces the traffic data based on the vari-
ous parameters specified by the user request. MNTG runs the traffic generator with
its own scripts or commands.

3. TrafficResultConvert: this function converts the output of the traffic gen-
eration process into a standard simple output format. The main reason behind this
function is that different traffic generators produce different formats of traffic data,
while users may want to use the same program to analyze them.

An example of the standard output format of the traffic processor is as follows:

OID TS Type Lat Lng
0 0 newpoint 44.986362410452 -93.2982044219971
1 0 newpoint 44.998948892253 -93.1812858581543
2 0 newpoint 44.966607085432 -93.2727378845215
0 1 move 45.031348772862 -93.2991374040413
1 1 move 44.953949943361 -93.3676484298706

where OID is a unique identifier for the moving object. Lat and Lng are latitude and
longitude coordinates that represent the spatial location of the object. TS represents the
time unit at which object OID was at (Lat,Lng) spatial location. Type determines
whether the generated point is a new object or an existing object that has just moved to
a new location.

5.2 Case Study 1: Brinkhoff Model

Brinkhoff traffic generator is one of most widely used traffic generators [2] (cited 650+
per Google Scholar). The general idea behind Brinkhoff generator is to simulate the ob-
ject movements from two random locations using the shortest path. To realize Brinkhoff
generator inside MNTG, we have implemented the three abstract functions (introduced
in Section 5.1), as follows:

MNTG: An Extensible Web-Based Traffic Generator 49

1. RoadNetworkConvert. In this function, we convert the output of the Road Net-
work Converter into two binary files based on the descriptions in Brinkhoff docu-
mentation1, and rename them as request_ID.node and request_ID.edge.

2. TrafficGeneration. In this function, we prepare Brinkhoff configuration file,
i.e., property.txt, where we update the corresponding path for the input files
(the two generated binary road network files) and the output path. Then, we assem-
ble the command using the parameters specified by the user in this request. Finally,
we make the following external call:

java -classpath generator.jar generator2.DefaultDataGenerator RequestID

where the only modification for the original generator is that it now takes the
RequestID, and produces the traffic result accordingly.

3. TrafficResultConvert. In this function, we convert the traffic data pro-
duced by Brinkhoff generator into our standard output format. An example of the
Brinkhoff output is as follows:

Type OID Seq Class TS X Y Speed Next_X Next_Y
newpoint 0 1 0 0 14839.0 10262.0 1093.0 14782 10765
newpoint 1 1 2 0 26319.0 1430.0 922.9 26317 1260
newpoint 2 1 0 0 11443.0 10983.0 1093.0 11431 15703

whereType determines whether the point is a new object or an existing object.
OID is a unique identifier for the moving object. Seq is the sequence number for
the moving object, and Class determines the type of the moving object. TS rep-
resents the time unit during the simulation time. X and Y show the location of the
object, as Brinkhoff employs a different coordinating system that uses the offsets to
represent the location. Speed is the current moving speed of the object. Next X
and Next Y are the locations for the node in the road networks, where the moving
object will pass for the next movement.

As a result, we write a program to: (1) extract only the OID, Type, TS from
the original output, and (2) convert the X and Y to be the latitude and longitude
coordinates. After that, MNTG is able to generate traffic with any road networks
using Brinkhoff model.

5.3 Case Study 2: BerlinMOD

BerlinMOD is another very popular traffic generator [3], where it simulates human
movements during the weekdays and weekends. Users can specify their work and home
areas in the road networks, then the generator simulates the users movements based on
two rules: (1) during the weekdays, a user leaves Home in the morning (at 8 a.m.+ T1),
drives to Work, stays there until 4 p.m.+ T2 in the afternoon, and then returns back
Home, (2) during the weekends, a user has an 0.4 probability to do an additional trip
which may have 1-3 intermediate stops and ends at home.

1 http://iapg.jade-hs.de/personen/brinkhoff/generator/
FormatNetworkFiles.pdf

http://iapg.jade-hs.de/personen/brinkhoff/generator/FormatNetworkFiles.pdf
http://iapg.jade-hs.de/personen/brinkhoff/generator/FormatNetworkFiles.pdf

50 M.F. Mokbel et al.

To run the BerlinMOD traffic generator, a user would need to set up a SECONDO
database [4], and uses a set of script instructions to query it. To realize BerlinMOD
generator inside MNTG, we have implemented the three abstract functions (introduced
in Section 5.1), as follows:

1. RoadNetworkConvert. In this function, we read the standard road network
files and transform it to the format used in BerlinMOD. Ultimately, we produce a
data file named street.data with the following information:

(OBJECT streets ()
(rel (tuple ((Vmax real)(geoData line))))

((50.0(
(-93.276029 45.035464 -93.275936 45.035877)
(-93.275936 45.035877 -93.275764 45.037752)

As a result, BerlinMOD requires us to represent the road segments with a pair of
locations bounded by a set of brackets.

2. TrafficGeneration. In this function, we prepare the script
based on the generation parameters specified by the user,
i.e., BerlinMOD_DataGenerator_RequestID.SEC, to query the un-
derlying SECONDO database. In MNTG, we prepare a generic script for
BerlinMOD and replace its parameters based on the user’s request. Then, we run
the following command line to execute the BerlinMOD generator:
SecondoTTYNT -i BerlinMOD_DataGenerator_RequestID.SEC

3. TrafficResultConvert. In this function, we build a program that converts
the traffic data produced by BerlinMOD into a standard format. An example of the
traffic data generated by BerlinMOD is as follows:

Mid Tid Tstart Tend Xstart Ystart Xend Yend
1 2 2007-05-26 10:34:40 10:34:42 -93.1767 45.0449 -93.1767 45.0448
1 2 2007-05-26 10:34:42 10:34:44 -93.1767 45.0448 -93.1766 45.0446
1 2 2007-05-26 10:34:44 10:34:46 -93.1766 45.0446 -93.1765 45.0444

where Mid is the unique identifer of the moving object, Tid is the trip identifer,
Tstart and Tend represent the start and end timestamps for the record, while
Xstart, Ystart, Xend, and Yend are the corresponding locations when the
object starts and ends during that time period.

As a result, we write a program to: (1) extract only the Mid, Tid, Tstart from
the original output to identify the moving objects, and (2) convert the Xstart and
Ystart to be the latitude and longitude. Then, MNTG is able to generate traffic
with any road networks using BerlinMOD.

5.4 Cast Study 3: Random Generator

As a proof of the concept of generation model extensibility, we implement a ran-
dom generator that generates random walks over the road network. The simplicity of the

MNTG: An Extensible Web-Based Traffic Generator 51

model used in this generator allows it to handle requests with large areas and hundreds
of thousands of objects in a reasonable time. In addition to the road map of the selected
area, the random generator takes as input two user parameters, number of moving ob-
jects and total simulation time. The generator starts by assigning an initial position for
each object by selecting a random node in the road network. At each time step, each
object advances one step by selecting a random edge from the edges adjacent to current
node. To avoid going back and forth between two nodes, the last visited node is stored
and is removed from possible choices of next nodes. If an object cannot find a possible
next node (i.e., the only next node is the last visited node) or if the next node falls off the
grid, the object is removed from the map and a new object is placed in a new random
position. This simulates the event of a vehicle ending its trip and a new vehicle starting
a new trip. This also ensures that the total number of objects in the map is fixed at the
user defined parameter. Although this generation model does not accurately simulate
real life, it is very useful for generating huge traffic data is a very short time which
allows end users to test the scalability of their systems.

5.5 Extensibility with Other Traffic Generators

As was pointed out in Figure 1, MNTG is extensible to support various traffic gen-
erators. Extending MNTG with another traffic generators is as simple as provid-
ing the contents of the three abstract functions, defined in Section 5.1. Assume
that a traffic generator developer has invented a new traffic generator, termed Ran-
domGenerator. To include the RandomGenerator into MNTG, we provide a tem-
plate java file, where the traffic generator developer needs to fill the contents of
the three abstract functions: RoadNetworkConvert, TrafficGeneration, and
TrafficResultConvert, as described in Section 5.1.

Similar to extending MNTG for new data sources, filling the contents of the abstract
functions of a new traffic generator may be done by third parties or volunteers. Again,
crowd sourcing can play a major role here in extending MNTG to support new traffic
generators. We envision that MNTG will act as a vehicle that gives existing and forth-
coming traffic generators a boost to gain wide users community. Thus, it is to the benefit
of the traffic generator developers and to the research community in large to incorporate
new data generation tools within MNTG.

6 System Front-End

The system front-end provides a set of tools for users to generate and visualize their
requested traffic data. As MNTG is deployed as a web service, the system front-end
represents a web interface that users can access over the internet. The web interface is
designed for simplicity where users may generate, download, and visualize traffic data
with few interactive, rather intuitive, steps.

The system front-end consists of three main modules: (1) Web interface, which
allows users to easily interact with MNTG in terms of submitting traffic generation
requests (Section 6.1), (2) Email Notifier, which acknowledges the receipt of the traffic
request as well as notifies the user back when the request is finished with links to

52 M.F. Mokbel et al.

Traffic Generation

Region
Traffic Generation

Parameters

Fig. 3. MNTG Web GUI: Traffic Generation

download and visualize the generated data (Section 6.2), and (3) Download & Visual-
ization tools, which allows the user to download its traffic data in a plain text format
and/or visualize the generated data in an OpenLayers map interface (Section 6.3).

6.1 Web Interface

Figure 3 depicts MNTG web interface. To generate road network traffic data, a user
would perform the following four easy steps:

1. Either drag/zoom the map or write an address in the search field to get the sur-
roundings of the geographical area of interest.

2. Draw a rectangle around the area that you want to generate traffic within. This is
done by two left mouse clicks for rectangle corners.

3. From the drop down menu, select the traffic generator that you want to use as either
Brinkhoff or BerlinMOD traffic generators.

4. Click on the Generate button, and enter the traffic simulation parameters.

6.2 Email Notifier

MNTG may take a while to process a traffic generation request for two main reasons:
(1) Depending on the size of the submitted traffic generation request (e.g., large num-
ber of moving objects or large simulation time), the underlying traffic generator (e.g.,
Brinkhoff or BerlinMOD) may spend significant time in simulating the requested traffic
parameters, (2) Even though MNTG employs a multi-threading paradigm where sev-
eral traffic requests can be processed concurrently, the system may be overloaded when
the number of concurrent requests is more than the number of available threads. In that
case, MNTG employs a waiting queue, where incoming requests have to be enqueued
waiting for a system thread to be available.

MNTG: An Extensible Web-Based Traffic Generator 53

Fig. 4. MNTG Traffic Visualization

To this end, MNTG email notifier has two functionalities: (1) when the user submits
a traffic generation request, the email notifier sends an email back to the user acknowl-
edging the receipt of the request, and (2) Once MNTG finishes processing the user’s
traffic generation request, the email notifier sends a notification message that contains
two links; the first one is where the user can download the generated traffic data as a
text file while the second one is where the user can visualize the generated traffic data
on the map.

6.3 Download and Visualization Tools

As mentioned earlier, MNTG produces its output generated data in a uniform text for-
mat. Users may download the generated traffic data, including object ids, timestamps,
latitude, and longitude coordinates and/or visualize the generated traffic data on the map
using MNTG Map interface. MNTG stores the generated traffic data in the unified for-
mat mentioned above inside a MySQL database. Traffic visualization in OpenStreetMap
is performed using OpenLayers v2.12 API for displaying overlays in HTML. The data
is loaded via Javascript into the web page which then creates an overlay for each time
stamp of the traffic results. Overlays are an OpenLayers concept and can consist of
many different types of data, as shown in Figure 4. In this case, document fragments
are created for each object at a time stamp, which is then added to the overlay for that
time stamp. When the data is being animated, it simply consists of displaying the cor-
responding overlay to the time stamp and hiding the remaining overlays. Overlays are
used instead of traditional markers because of the speed at which they can be loaded in
comparison to the maps built-in markers.

7 Conclusion and Future Work

This paper has proposed Minnesota Traffic Generator (MNTG); an extensible web-
based road network traffic generator. MNTG is basically a wrapper that can be built

54 M.F. Mokbel et al.

around existing traffic generators to make them easy-to-use, configure, and run for any
arbitrary spatial road region. To generate traffic data, MNTG users just need to use its
user-friendly web interface to specify an arbitrary spatial area on the map, select a traffic
generator method as one of the two most highly used traffic generators, Brinkhoff and
BerlinMOD, and submit the traffic generation request to the server. MNTG dedicated
server receives and processes the submitted request, and emails the user back once the
request is fulfilled. Users can then download their generated data and/or visualize it on
MNTG map interface. MNTG is composed of three main components: (1) Road Net-
work Converter that extracts the road network information of the spatial area of interest
from either US Tiger files or OpenStreetMap, (2) Traffic Processor that executes the
submitted request using the selected traffic generator on the extracted road network,
and (3) System Front-End, that includes the web interface, email notifier, and down-
load/visualasion tools for the traffic result. MNTG is highly extensible in two frontiers:
(1) It can be easily extended to support various traffic generators, beyond Brinkhoff and
BerlinMOD, by defining three abstract functions for each new generator, and (2) It can
be easily extended to support various road network sources, beyond US Tiger files and
OpenStreetMap, by defining two abstract functions for each new data source.

MNTG is still an undergoing project in data management lab at the Uni-
versity of Minnesota. Its first release is already available for a public use at
http://mntg.cs.umn.edu, where it has received and fulfilled over 1000 traf-
fic generation requests since its release. Future work of MNTG includes: (a) supporting
more traffic generators beyond the two we have for now, Brinkhoff and BerlinMOD,
and (b) supporting more new data sources beyond US Tiger files and OpenStreetMap.
A distinguishing feature in MNTG is that its future plans can be fulfilled via crowd
sourcing, where interested developers and researchers world wide can enrich the in-
frastructure of MNTG by their contributions of new traffic generators and data sources.
Plug-in functions are available for that purpose. With the increase of volume for traffic
generation requests, we plan to move our server to a more powerful server machine with
GPU cards to support large-volume traffic visualization.

References

1. Zheng, Y., Chen, Y., Xie, X., Ma, W.-Y.: GeoLife2.0: A Location-Based Social Networking
Service. In: MDM, pp. 357–358 (2009)

2. Brinkhoff, T.: A Framework for Generating Network-based Moving Objects. GeoInformat-
ica 6(2), 153–180 (2002)

3. Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: a Benchmark for Moving Object
Databases. VLDB Journal 18(6), 1335–1368 (2009)

4. Güting, R.H., Behr, T., Düntgen, C.: Secondo: A platform for moving objects database re-
search and for publishing and integrating research implementations. IEEE Data Engineering
Bulletin 33(2), 56–63 (2010)

5. OpenStreetMaps, http://www.openstreetmap.org/
6. US TIGER LINES,

http://www.census.gov/geo/maps-data/data/tiger-line.html
7. Pfoser, D., Theodoridis, Y.: Generating Semantics-based Trajectories of Moving Objects.

Computers, Environment and Urban Systems 27(3), 243–263 (2003)

http://mntg.cs.umn.edu
http://www.openstreetmap.org/
http://www.census.gov/geo/maps-data/data/tiger-line.html

MNTG: An Extensible Web-Based Traffic Generator 55

8. Saglio, J.-M., Moreira, J.: Oporto: A realistic scenario generator for moving objects. GeoIn-
formatica 5(1), 71–93 (2001)

9. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the Generation of Spatiotemporal
Datasets. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651,
pp. 147–164. Springer, Heidelberg (1999)

10. Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: On the Generation of Time-
Evolving Regional Data. GeoInformatica 6(3), 207–231 (2002)

11. Gidófalvi, G., Pedersen, T.B.: ST-ACTS: A Spatio-temporal Activity Simulator. In: GIS, pp.
155–162 (2006)

12. Hu, H., Lee, D.-L.: GAMMA: A Framework for Moving Object Simulation. In: Medeiros,
C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 37–54. Springer,
Heidelberg (2005)

13. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: SUMO (Simulation of Urban MObil-
ity): An Open-Source Traffic Simulation. In: Proceedings of the 4th Middle East Symposium
on Simulation and Modelling, pp. 183–187 (2002)

14. SMARTEST: Simulation Modelling Applied to Road Transport European Scheme Tests,
http://www.its.leeds.ac.uk/projects/smartest/

15. Xu, J., Güting, R.H.: MWGen: A Mini World Generator. In: MDM, pp. 258–267 (2012)
16. Tsai, H.-P., Yang, D.-N., Chen, M.-S.: Mining Group Movement Patterns for Tracking Mov-

ing Objects Efficiently. IEEE TKDE 23(2), 266–281 (2011)
17. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A Hybrid Prediction Model for Moving Objects.

In: ICDE, pp. 70–79 (2008)
18. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. In: SIGMOD, pp. 623–634 (2004)
19. Wu, W., Guo, W., Tan, K.-L.: Distributed Processing of Moving K-Nearest-Neighbor Query

on Moving Objects. In: ICDE, pp. 1116–1125 (2007)
20. Mokbel, M.F., Aref, W.G.: SOLE: Scalable On-line Execution of Continuous Queries on

Spatio-temporal Data Sreams. VLDB Journal 17(5), 971–995 (2008)
21. Chung, B.S.E., Lee, W.-C., Chen, A.L.P.: Processing Probabilistic Spatio-temporal Range

Queries Over Moving Objects with Uncertainty. In: EDBT, pp. 60–71 (2009)
22. Hu, H., Xu, J., Lee, D.L.: PAM: An Efficient and Privacy-Aware Monitoring Framework for

Continuously Moving Objects. IEEE TKDE 22(3), 404–419 (2010)
23. Chen, S., Jensen, C.S., Lin, D.: A Benchmark for Evaluating Moving Object Indexes. VLDB

Journal 1(2), 1574–1585 (2008)
24. Laender, A.H.F., Borges, K.A.V., Carvalho, J.C.P., Medeiros, C.B., da Silva, A.S., Davis,

C.A.: Integrating Web Data and Geographic Knowledge into Spatial Databases. In: Spatial
Databases, pp. 23–47 (2005)

25. Shen, C., Huang, Y., Powell, J.W.: The Design of a Benchmark for Geo-stream Management
Systems. In: GIS, pp. 409–412 (2011)

26. Tzouramanis, T.: Benchmarking and Data Generation in Moving Objects Databases. In: En-
cyclopedia of Database Technologies and Applications, pp. 23–28 (2005)

27. Xu, J., Güting, R.H.: GMOBench: A Benchmark for Generic Moving Objects. In: GIS, pp.
410–413 (2012)

28. Güting, R.H., de Almeida, V.T., Ding, Z.: Modeling and Querying Moving Objects in Net-
works. VLDB Journal 15(2), 165–190 (2006)

29. Vazirgiannis, M., Wolfson, O.: A Spatiotemporal Model and Language for Moving Objects
on Road Networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)

30. Eldawy, A., Mokbel, M.F.: A Demonstration of SpatialHadoop: An Efficient MapReduce
Framework for Spatial Data. In: VLDB (2013)

http://www.its.leeds.ac.uk/projects/smartest/

Capacity-Constrained Network-Voronoi

Diagram: A Summary of Results

KwangSoo Yang, Apurv Hirsh Shekhar, Dev Oliver, and Shashi Shekhar

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
ksyang@cs.umn.edu, shekh020@umn.edu, {oliver,shekhar}@cs.umn.edu

Abstract. Given a graph and a set of service centers, a Capacity Con-
strained Network-Voronoi Diagram (CCNVD) partitions the graph into
a set of contiguous service areas that meet service center capacities and
minimize the sum of the distances (min-sum) from graph-nodes to al-
lotted service centers. The CCNVD problem is important for critical
societal applications such as assigning evacuees to shelters and assign-
ing patients to hospitals. This problem is NP-hard; it is computationally
challenging because of the large size of the transportation network and
the constraint that Service Areas (SAs) must be contiguous in the graph
to simplify communication of allotments. Previous work has focused on
honoring either service center capacity constraints (e.g., min-cost flow) or
service area contiguity (e.g., Network Voronoi Diagrams), but not both.
We propose a novel Pressure Equalizer (PE) approach for CCNVD to
meet the capacity constraints of service centers while maintaining the
contiguity of service areas. Experiments and a case study using post-
hurricane Sandy scenarios demonstrate that the proposed algorithm has
comparable solution quality to min-cost flow in terms of min-sum; fur-
thermore it creates contiguous service areas, and significantly reduces
computational cost.

Keywords: Capacity Constrained Network Voronoi Diagram, Pressure
Equalization, Spatial Network Partitioning.

1 Introduction

Given a graph and a set of service centers (e.g., gas stations) with capacity
constraints (e.g., amount of gasoline, size of parking lot, etc.), a Capacity Con-
strained Network-Voronoi Diagram (CCNVD) partitions the graph into a set of
contiguous service areas (SAs) that honor service center capacities and mini-
mize the sum of the distances (min-sum) from graph-nodes to allotted service
centers. Figure 1(a) shows an example input of CCNVD consisting of a graph
with 15 graph-nodes (A,B, . . . , O) and three service centers (X , Y , and Z) with
capacities of 5 each. Figure 1(b) shows an example output of CCNVD where the
graph is partitioned such that 5 graph-nodes are allotted to each service center,
as shown by the distinct colors.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 56–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 57

(a) Input (b) Output

Fig. 1. Example of the Input and Output of CCNVD (Colors show service center
allotment)

The CCNVD problem is important for critical applications such as assigning
consumers to gas stations in the aftermath of a disaster, assigning evacuees to
shelters, assigning patients to hospitals, and assigning students to school dis-
tricts. For example, during hurricane Sandy, New Jersey residents had to wait
for hours to fill up car tanks and containers for home generators [1]. Figure 2(a)
shows vehicles waiting in line for fuel at a gas station and Figure 2(b) shows peo-
ple waiting at a gas station, both in the New York-New Jersey area. Such fuel
shortages serve as a reminder of the importance of resource allotment amid nat-
ural or man-made disasters such as floods, hurricanes, tsunamis, fires, terrorist
acts, and industrial accidents.

(a) Vehicles wait in line for fuel at gas sta-
tion in the New York-New Jersey area, on
Nov. 1, 2012.
(Courtesy: www.bloomberg.com)

(b) Waiting line at a gas station on Nov.
1, 2012 in the New York-New Jersey area.
(Courtesy: Andrew Burton/Getty)

Fig. 2. Long lines at gas station after Hurricane Sandy

CCNVD may also be used for shelter allocation where contiguous service areas
reduce movement conflicts (which raise risk of congestion, stampede, etc.) across
people heading to different shelters.

The CCNVD problem is NP-Hard and its proof is provided in Section 2.1.
Intuitively, this problem is computationally challenging because of the large size
of the transportation network and the constraint that service areas must be
contiguous in the graph to simplify communication of allotments.

58 K. Yang et al.

Fig. 3. Approaches to minimizing the sum
of the distances between nodes and their
allotted service centers

Previous work on minimizing the
sum of the distances between graph-
nodes and their allotted service cen-
ters can be categorized into two
groups: 1) honoring service center ca-
pacity constraints and 2) service area
(SA) contiguity. Prior work on honor-
ing service center capacity constraints
include min-cost flow approaches [2–
18]. However, such approaches do not
always preserve service area contigu-
ity. Previous work on SA contigu-
ity include the creation of Network
Voronoi diagrams (NVDs) by assign-
ing each node to the nearest service
center [19–22]. However, previous NVDs have not been designed to account
for capacity constraints of service centers. By contrast, this paper proposes a
novel approach for creating Capacity Constrained Network Voronoi Diagrams
(CCNVD) that honors both the capacity constraints of service centers and SA
contiguity while reducing the sum of the distances from graph-nodes to their
allotted service centers.

Our Contributions: In this paper, we propose a novel algorithm for creating
a CCNVD based on the idea of pressure equalization (PE). Pressure equaliza-
tion follows three main steps: 1) an initial solution that assigns graph-nodes to
the nearest service centers (e.g., using traditional Network Voronoi Diagrams);
2) construction of a new data structure called the PE-graph that has PE-
nodes, which represent service centers with a pressure attribute and PE-edges,
which connect adjacent service areas (PE-nodes); 3) re-allotment of graph-nodes
from overloaded (excess) service centers to underloaded (deficit) service centers.
Specifically, our contributions are as follows:

– We prove that the CCNVD problem is NP-hard.
– We propose a Pressure Equalizer (PE) algorithm that creates CCNVD.
– We provide a cost model for our proposed approach.
– We experimentally evaluate our proposed algorithm using post-hurricane

Sandy scenarios. Experimental results and a case study demonstrate that the
proposed algorithm has comparable solution quality (in terms of min-sum)
to min-cost flow, creates contiguous service areas, and significantly reduces
the computational cost.

Scope and Outline: In constructing our novel algorithm for CCNVD, we
assume undirected edges, unit demand at each non-service center node (graph-
node), and no edge-capacity constraints. Directed edges, non-uniform node de-
mand, and honoring capacity constraints at edges in the given transportation
network are beyond the scope of this paper and may be addressed in future
work. The rest of the paper is organized as follows: Section 2 provides the prob-
lem definition. Section 3 presents our proposed approach. In Section 4, we give

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 59

a cost model of our proposed approach. Section 5 describes the experiment de-
sign and presents the experimental observations and results. Section 6 reports
a case study using post-hurricane Sandy scenarios. Finally, Section 7 concludes
the paper.

2 Problem Definition

In our problem formulation, a transportation network is represented and ana-
lyzed as an undirected graph composed of nodes and edges. Each node represents
a spatial location in geographic space (e.g., road intersections). Each edge repre-
sents a connection between two nodes and has a travel time. Service centers have
a capacity (supply). The CCNVD(N,E, S, C,D) problem may be formalized as
follows:

Input: A transportation network G with
- a set of graph-nodes N and a set of edges E,
- a set of service centers S ⊂ N ,
- a set of positive integer capacities of service centers C : S → Z+, and
- a set of non-negative real distances of edges D : E → R+

0

Output: Capacity Constrained Network Voronoi Diagram (CCNVD)
Objective:
- Min-Sum: Minimize the sum of the distances from graph-nodes to their allot-

ted service centers.
Constraints:
- Adequate total capacity across all service centers to accommodate all graph-

nodes.
- Service Area (SA) contiguity: If SA(u) = s, then there is a path p(u, s), such

that SA(u) = SA(v) = s for all nodes v in p(u, s), where SA(n) is the allotted
service center for a graph-node n
- G is a k-node-connected graph, where k = |S| to ensure the existence of a

solution [23–25].

Figure 4(a) illustrates the input with a transportation network (15 graph-nodes
(A,B, . . . , O) and three service centers (X , Y , and Z)). Every edge is associated
with a distance (e.g., travel time), as indicated by the number displayed above it.
For simplicity, every graph-node has one unit of demand. Every service center has
a capacity to serve 5 units of graph-nodes. Figure 4(b) shows a Network Voronoi
Diagram (NVD), allotting every graph-node to the nearest (e.g., shortest path)
service center. NVD assigns 8 graph-nodes (color=blue) to service center X , 5
graph-nodes (color=red) to service center Y , and 2 graph-nodes (color=green)
to service center Z. The dotted lines represent the boundary edge between two
adjacent SAs. Although NVD allots every graph-node to the nearest service cen-
ter, it does not account for load balance, which may lead to congestion and delay
at service center X while service center Z may have few graph-nodes. Figure 4(c)
shows one possible example of the min-cost flow approach that minimizes the
sum of the distances from graph-nodes to their allotted service centers. Although

60 K. Yang et al.

it achieves its goal (min-sum), service areas for Y and Z violate SA contiguity.
Figure 4(d) shows an example of the proposed Capacity Constrained Network
Voronoi Diagram (CCNVD). As can be seen, the load is balanced, 5 nodes are
allotted to every service center as shown by distinct colors, and service areas are
contiguous for all service centers.

(a) Input (b) NVD (Output)

(c) Min-Cost Flow without SA contiguity
(min-sum=30)(Output)

(d) CCNVD (min-sum=30) (Output)

Fig. 4. Example of the Input and Output of NVD,Min-Cost Flow, and CCNVD (Colors
show service center allotment)

Solution Existence: The CCNVD problem is related to the connected k-
partition problem [23–27], which is known to be NP-hard. In addition, it is also
known that a solution exists for k-connected graphs, formally stated as follows:
Let G = (N,E) be a k-node-connected graph. Let s1, s2, . . . , sk ∈ N , c = |N |,
and let c1, c2, . . . , ck be positive integers such that c1 + c2 + . . . + ck = c. Then
there exists a k-partition of N(G) such that this partition separates the nodes
s1, s2, . . . , sk, and the partition pi containing si is a connected sub-graph con-
sisting of ci vertices, for i = 1, 2, . . . , k [23–25].

2.1 Problem Hardness

That CCNVD is NP-hard follows from a well-known result about the NP-
hardness of the connected k-partition problem [26–28] that partitions a graph
into k connected sub-graphs where k ≥ 3.

Theorem 1. The CCNVD problem is NP-hard.

Proof. Given a graph G = (N,E), service center nodes s1, s2, . . . , sk ∈ N , and
positive integer capacities for service centers c1, c2, . . . , ck, where c1+c2+. . .+ck =

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 61

|N | (e.g., equal sized sub-graphs), the connected-k-partition (k−CP (N,E, S, C))
problem separates the service center nodes s1, s2, . . . , sk and the partition pi con-
taining si is a connected sub-graph consisting of ci nodes for i = 1, 2, . . . , k. It
has been proved that a connected-k-partition of N is a NP-hard problem [26, 27].
The CCNVD problem clearly belongs to NP since, given an instance of CCNVD
and a maximum bound T , we can take a set of connected sub-graphs such that
the sum of the distances from graph-nodes (N) to their allotted service centers
(S) is lower than T as a valid certification. Let A = (N,E, S, C) be an instance
of a connected-k-partition problem, where N is a set of nodes, E is a set of edges,
S is a set of service center nodes, and C is a set of capacities for service centers.
Let B = (N,E, S, C,D, T) be an instance of the CCNVD problem, where D is a
set of distances of E and T is a maximum bound of the sum of the distances from
graph-nodes (N) to their allotted service centers (S). Then it is easy to show that
a connected-k-partition is a special case of CCNVD, where k is the number of ser-
vice centers S, d ∈ D has zero value of distance, and T is unbounded. Since A is
constructed from B in polynomial time, the proof is complete.

3 Proposed Approach for CCNVD

In this section, we introduce our Pressure Equalizer approach to the CCNVD
problem.

3.1 Pressure Equalizer Algorithm

The Pressure Equalizer (PE) algorithm starts with the partitions of a Network
Voronoi Diagram (NVD) and iteratively adjusts the shelter allotments until ca-
pacity constraints are met for all service centers. A core idea in PE is the Pres-
sure Equalization Graph (PE-Graph), where pressure for a shelter s refers to
the difference between the capacity of s and the number of nodes allotted to s.
Positive values of pressure indicate overload and negative values indicate slack
or available capacity. The PE-nodes of PE-Graph are service centers S in the
transportation network. The PE-nodes are of three types: excess, deficit, and
balanced. Let capacity(s) be the capacity of a PE-node s and allotment(s) be
the number of graph-nodes allotted to s. If allotment(s) > capacity(s), we refer
to s as an excess PE-node and allotment(s)− capacity(s) as the excess of the
PE-node s. On the other hand, if allotment(s) < capacity(s), we refer to s as
a deficit PE-node and capacity(s)− allotment(s) as the deficit of the PE-node
s. We refer to a PE-node s with allotment(s) = capacity(s) as balanced. A
PE-edge from PE-node s1 to PE-node s2 is inserted if any allotted graph-node
on s1 is connected to any allotted graph-node on s2. The collection of allotted
graph-nodes for a PE-node s represents the service area (SA) for s. We refer to
SA(s) as the service area for s.

Figure 5(b) shows the PE-Graph for the Network Voronoi Diagram (NVD)
of Figure 5(a) (reproduced in Figure 4(a)). It has three PE-nodes for service
centers X , Y , and Z. PE-node X has an excess of 3 and PE-node Z has a deficit

62 K. Yang et al.

(a) Graph(N ,E) (NVD) (b) PE-Graph (c) Boundary Graph-Nodes

Fig. 5. PE algorithm: Iteration 1 (Colors show service center allotment)

of 3. There are two PE-edges showing that the service area of Y is adjacent to
the service areas of X and Z.

The PE algorithm tries to satisfy capacity constraints for every service center,
maintain service area contiguity constraints, and reduce the sum of the distances
from graph-nodes to their allotted service centers (PE-nodes). At each step, the
algorithm re-allots a graph-node from an excess PE-node to fulfill the capacity
constraint. The effect of re-allotting a graph-node n from s1 to s2 on an objective
function (min-sum) can be defined using the following cost function:

re−allotmentCost(n, s1, s2) = shortestDist(n, s2)− shortestDist(n, s1), (1)

where shortestDist(n, s) is the length of the shortest path from n to s.
Given a Network Voronoi Diagram (NVD) and two service centers s1 and s2,

the cost for re−allotting(n ∈ SA(s1), s1, s2) can be minimized if n is a boundary
graph-node of SA(s1) and is connected to a boundary node of SA(s2). A key
idea behind the PE algorithm is to first choose the best boundary graph-node
that minimizes the cost of re-allotment and then re-allot this graph-node to
fulfill capacity constraints. Figure 5(c) shows boundary nodes for the NVD of
Figure 5(a). In this example, the best boundary nodes in terms of minimizing
the re-allotment cost are node C for re-allotment from X to Y , node E (or N)
for re-allotment from Y to Z, node D for re-allotment from Y to X , and node
F (or O) for re-allotment from Z to Y .

Challenges during this re-allotment include maintaining contiguity for SAs.
The PE algorithm uses the PE-path that traverses from one excess PE-node, si
to one deficit PE-node, sj, on the PE-Graph and re-allots all the best boundary
graph-nodes on the PE-path (si → sj). This approach smoothly expands (or
shrinks) SAs while minimizing the violation of SA contiguity.

It also terminates in at most O(N) iterations, where N is the number of
graph-nodes since the sum of the excess at all service nodes is bounded by N . In
this example, there is one PE-path (X → Y → Z) to traverse from the excess
PE-node (X) to the deficit PE-node (Z). Thus, the algorithm may re-allot node
C from X to Y and node E from Y to Z to reduce excess(X) by 1 in the
first iteration, This process may be repeated two more times to meet capacity
constraints by moving node (L,H) from X to Y and node (N ,D) from Y to Z.

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 63

A large sized network may have many possible PE-paths. The best way to
minimize the cost for re-allotment is to find the PE-path that has minimum
re-allotment cost across all pairs of excess and deficit PE-nodes. We refer to this
as the best PE-path for the current iteration. A naive approach may use one
shortest path (or cost) algorithm for each pair of excess and deficit PE-nodes and
choose the lowest re-allotment cost pair and PE-path among all pairs. However,
this becomes a bottleneck operation due to the need to apply multiple shortest
path algorithms in every iteration. We can further reduce the computational
cost to a single invocation of a shortest path algorithm by introducing a super-
source and a super-sink node. We first connect the super-source node with all
excess PE-nodes and the super-sink node with all deficit PE-nodes. These new
connections become PE-edges with a re-allotment cost of 0. Finally, one shortest
path algorithm on this transformed PE-Graph can identify the pair of excess
and deficit PE-nodes with the lowest re-allotment cost.

Algorithm 1. Pressure Equalizer (PE) Algorithm (Pseudo-code)

Inputs:
- A transportation network (Graph(N,E)) with a set of graph-nodes N and edges E.
- A set of PE-nodes (service centers) S ⊂ N with their capacity C
- Every edge has a distance d(e)

Outputs: Capacity Constrained Network Voronoi Diagram (CCNV D)
Steps:

1: Compute all shortest distances from N to S.
2: Create Network Voronoi Diagram (NVD) and allot n ∈ N to the nearest service

center s ∈ S.
3: while Any PE-node s ∈ S has excess graph-nodes do
4: Create PE−Graph(S,Epe) where PE-edge epe ∈ Epe connects two adjacent SAs.
5: Find all boundary graph-nodes Nbdy ⊂ N and compute re-allotment cost for

Nbdy .
6: Find the best boundary graph-nodes Nbest−bdy ⊂ Nbdy .
7: Group all excess PE-nodes Sex ⊂ S with a super-source srcex and group all

deficit PE-nodes Sdf ⊂ S with a super-sink sinkdf .
8: Find the best PE-path p in terms of minimizing the sum of re-allotment costs

from srcex to sinkdf without fragmenting any service area (e.g., path and exit).
9: Re-allot the best boundary graph-nodes (nbest−bdy) on the best path p.
10: end while
11: return CCNVD. i.e, final allotment of graph-nodes to their service centers.

Algorithm 1 presents the pseudo-code for PE. First, PE initializes the CC-
NVD with the given NVD (lines 1-2). It then creates a PE-Graph and finds all
boundary graph nodes, as well as the best boundary graph nodes (lines 4-6).
After that, it groups excess PE-nodes using a super-source and deficit PE-nodes
using a super-sink (line 7). Next it searches the PE-graph and finds the best PE-
path (line 8). PE then re-allots the best boundary graph-nodes on the PE-path
(line 9). This process continues until the allotment is in line with the capacity of
the service centers (line 3). Finally, the updated CCNVD with balanced service
centers is returned (line 11).

64 K. Yang et al.

Figures 5–8 show the execution of the proposed PE algorithm on the input
network given in Figure 4(a). PE starts with NVD as an initial solution (Fig-
ure 5(a)) and creates a PE-Graph (Figure 5(b)). In this example, the service
center with an excess is X and the service center with a deficit is Z. PE finds
a PE-path to traverse from X to Z (e.g., X → Y → Z) as well as the best
boundary graph-nodes adjacent to other SAs (e.g., C and E).

(a) Iteration 2: Graph(N ,E) (b) PE-Graph (c) Boundary Graph-Nodes

Fig. 6. PE algorithm: Iteration 2 (Colors show service center allotment)

Next, PE re-allots the best boundary graph-nodes (C and E) to their adja-
cent SAs (Figure 6(a)) and updates the PE-Graph (Figure 6(b)). After three
iterations, PE achieves a balanced allotment (Figure 8(b)) by re-allotting nodes
L and H from X to Y and nodes N and D from Y to Z and the algorithm ter-
minates. Figure 8(a) shows the resulting Capacity Constrained Network Voronoi
Diagram.

(a) Iteration 3: Graph(N ,E) (b) PE-Graph (c) Boundary Graph-Nodes

Fig. 7. PE algorithm: Iteration 3 (Colors show service center allotment)

4 Analysis of the PE Algorithm

The following lemma proves the correctness of the Pressure Equalizer algorithm.

Lemma 1. The PE algorithm terminates after at most n/2 iterations, where n
is the number of graph-nodes

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 65

(a) Iteration 4: Graph(N ,E) (b) PE-Graph

Fig. 8. PE algorithm: Iteration 4 (Colors show service center allotment)

Proof. Each iteration reduces the number of allotted graph-nodes for excess
service centers by one and increases the number of allotted graph-nodes for
deficit service centers by one. The maximum possible number of allotted graph-
nodes for excess service centers is n. Therefore, the maximum iteration is at
most n/2.

Lemma 2. Given a graph node v and two service centers s1 and s2, the cost
for re-allotting v from s1 to s2 is defined by re−allotmentCost(v, s1, s2) =
shortestDist(v, s2)−shortestDist(v, s1), where shortestDist(v, s) is the length
of the shortest path from v to s.

Proof. Let the service center for v be s1. After re-allotting v from s1 to s2, v is
removed from service center s1 and added into service center s2. Therefore, the
increased distance (cost) is defined by shortestDist(v, s2)−shortestDist(v, s1).

Lemma 3. Given a Network Voronoi Diagram (NVD) and two service centers
s1 and s2, the cost for re−allotting(v ∈ NV R(s1), s1, s2) can be minimized if v
is a boundary graph-node of SA(s1).

Proof. By the definition of NVD, the farthest graph-node in SA(s1) from a
service center s1 should be the boundary graph-node. When re-allotting a graph
node v from s1 to s2, the cost can be minimized when shortestDist(v, s1) is
maximum.

Lemma 4. The normal termination of PE meets service center capacity con-
straints and preserves contiguity of service area.

Proof. At termination, there are no excess or deficit PE-nodes on the PE-Graph,
by Lemma 1. Since each re-allotment satisfies SA contiguity constraints, PE
meets service center capacity constraints and preserves contiguity of service area
at termination.

4.1 Algebraic Cost Model of the PE Algorithm

We present cost model for the PE algorithm to estimate its computational cost.
Assume that n is the number of graph-nodes, k is the number of service centers,
m is the number of edges, and nmaxdeg is the maximum node degree. First, PE

66 K. Yang et al.

creates an initial solution, namely NVD, and assigns each node to its nearest
service center. This takes O(k · (n · logn + m)) using a reversed Dijkstra’s al-
gorithm [29]. Then it scans all edges and finds all boundary graph-nodes, as
well as the best boundary graph-nodes. This step takes O(m). At each itera-
tion, the algorithm searches the best PE-path and re-allots graph-nodes on the
path. The search for the shortest path (or cost) takes O(k · log k) using Dijk-
stra’s algorithm with a super source and a super sink. Since the PE algorithm
preserves SA contiguity after re-allotting graph-nodes on the best PE-path, each
relaxation for Dijkstra’s algorithm needs to check the SA contiguity by examin-
ing all edges. Therefore, the search for the best PE-path takes O(m · k · log k).
The re-allotment takes at most O(k) since the length of a path is bounded by
the number of service centers. In the next iteration, we do not need to scan
all edges to find all boundary graph-nodes. Rather, we can simply update the
changed boundary graph-nodes and the best boundary graph-nodes. Since the
number of re-allotted graph-nodes is bounded by O(k) and the maximum num-
ber of incidents is bounded by nmaxdeg, it takes O(k · nmaxdeg). The number of
iterations is bounded by n/2. Therefore the cost model of the PE algorithm is
O(k · (n logn+m) +m+ n · (m · k · log k + k · nmaxdeg)).

Table 1. Algebraic Comparison Computational Cost

Algorithm Computational Capacity Minimize NVR
Cost Constraint odDistances Contiguity

NVD [7, 20] k · (n · log n+m) No Yes No

Min-Cost Flow [7, 9] n · (n log n+ k · n) Yes Yes No
+ k · (n · log n+m)

PE n · (m · k · log k + k · nmaxdeg) Yes Yes Yes
m + k · (n · log n+m)

5 Experimental Evaluation

In this section, we present the experiment design and an analysis of the experi-
ment results.

5.1 Experiment Layout

Figure 9 shows our experimental setup. For the transportation network, we used
a Brooklyn, NY road map consisting of 7, 450 nodes and 22, 377 edges, and a
Monmouth County, NJ road map consisting of 23, 014 nodes and 61, 196 edges,
taken from OpenStreetMap [30]. For the service centers, we used the locations
of gas stations and created a Capacity Constrained Network Voronoi Diagram
(CCNVD). For simplicity, we assumed that all gas stations have the same ca-
pacity and that the gas stations together can serve all people allowed during
time intervals of interest. We tested two different approaches: 1) a min-cost flow
approach and 2) Pressure Equalizer (PE). The algorithms were implemented in

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 67

Transportation Network

Min-Cost
 Flow

Pressure
 Equalizer

Number of Nodes Number of EdgesNumber of Service Centers

Comparative Analysis

Run time
Sum of Distances

SA Contiguity

Run time
Sum of Distances

SA Contiguity

OpenStreetMap

Fig. 9. Experiment Layout

Java 1.7 with a 1 GB memory run-time environment. All experiments were per-
formed on an Intel Core i7-2670QM CPU machine running MS Windows 7 with
8 GB of RAM.

5.2 Experiment Results and Analysis

We experimentally evaluated min-cost flow and PE by comparing the impact
on performance of 1) number of service centers and 2) size of the network (i.e.,
number of graph-nodes). Performance measurements were execution time and
the sum of the distances from graph-nodes to their allotted service centers.

Effect of the Number of Service Centers: We used a Brooklyn, NY road
map consisting of 7, 450 nodes and 22, 377 edges, and varied the number of service
centers. The locations of service centers were chosen based on size favoring larger
capacities. Figure 10(a) gives the execution time. As can be seen, PE outperforms
the min-cost flow approach. As the number of service centers increases, the
performance gap also increases. This is because the effect of the number of
service centers in the cost model for the min-cost approach is higher than for the
PE algorithm. When comparing the sum of the distances from graph-nodes to
their allotted service centers (Figure 10(b)), we see that two algorithms performs
almost identically, although the min-cost flow approach performs slighter better.
As the number of service centers increases, the sum of the distances from the
graph-nodes to their allotted service centers decreases.

Effect of Network Size: We used a Monmouth, NJ road map and created
three road networks with 7.4K, 14.3K, and 23.0K nodes, respectively. We fixed
the number of service centers to 10 and incrementally increased the number of
graph-nodes from 7, 402 to 23, 014. Service center locations were chosen randomly
and execution time were averaged over 50 test runs for each road networks. Fig-
ure 11(a) shows that the PE algorithm outperforms the min-cost flow approach.

68 K. Yang et al.

 1

 10

 100

 1000

5 10 15 20

R
un

tim
e

in
 S

ec
on

ds
 (

lo
g

sc
al

e)

Number of Service Centers

Min-Cost Flow
PE

(a) Run-time Comparison

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25

S
um

 o
f D

is
ta

nc
es

 (
km

)

Number of Service Centers

Min-Cost Flow
PE

(b) Comparison of Sum of Distances

Fig. 10. Effect of the number of service centers on PE and min-cost flow

As the number of graph-nodes increases, so does the performance gap. This is
because the effect of the number of graph-nodes in the cost model for the min-
cost approach is higher than that of the PE algorithm. Figure 11(b) shows that
the min-cost flow approach performs slightly better than PE. As the number of
graph-nodes increases, the sum of the distances from graph-nodes to their allot-
ted service centers also increases. The results of the experiments were that PE
was faster than min-cost flow and had similar, albeit slightly lower performance
in terms of sum of distances.

 10

 100

 1000

7.4 14.3 23.0

R
un

tim
e

in
 S

ec
on

ds
 (

lo
g

sc
al

e)

Number of Graph-Nodes(K)

Min-Cost Flow
PE

(a) Run-time Comparison

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

7.4 14.3 23.0

S
um

 o
f D

is
ta

nc
es

 (
km

)

Number of Graph-Nodes(K)

Min-Cost Flow
PE

(b) Comparison of Sum of Distances

Fig. 11. Effect of the number of graph-nodes

6 Case Study with Brooklyn, NY Road Network

In our case study, we imagined a scenario in which victims of hurricane Sandy
who needed to fuel up their cars were guided to the best gas station during
the chaotic aftermath of the storm. For the transportation network, we used a
Brooklyn, NY road map consisting of 7, 450 nodes and 22, 377 edges. We chose
three different sets of gas stations (with 5, 7, and 10, respectively) and created a
Network Voronoi Diagram (NVD), gas station allotment with the min-cost flow
approach, and a CCNVD with the PE-algorithm. The number of allotted nodes

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 69

for every gas station is represented by the size of the circles in the figures. For
simplicity, we gave all gas stations equal capacity.

6.1 Case Study Results and Analysis

In Section 5, we showed that the PE algorithm incurred much lower computa-
tional cost and created an almost identical solution (min-sum) to the min-cost
flow algorithm. In this section, the goal was to investigate the following: (1)
Are the algorithms able to handle the balanced gas allotment for affected re-
gions? (2) How does the number of service centers affect the SA contiguity of
the algorithms?

Case Study 1: We chose five gas stations and put three of them to the west
side of Brooklyn and two of them to the north of Brooklyn (Figure 12(a)).
In our analysis, the NVD (Figure 12(b)) shows unbalanced allotments, which
may lead to longer wait times for larger regions (e.g., gas station 3 (green), gas
station 4 (purple), and gas station 5 (red)). Figure 12(c) shows that min-cost
flow violates service area contiguity (the three green circles show areas of dis-
contiguity). Figure 12(d) shows the CCNVD produced by our algorithm. We can
see that the CCNVD is able to remove excesses and deficits so that all service
centers are balanced in terms of the number of allotted nodes.

(a) Brooklyn Road Network and Gas Sta-
tions

(b) NVD

(c) Min-Cost Flow Approach (d) CCNVD with PE

Fig. 12. Case Study 1 with 5 gas stations

70 K. Yang et al.

Case Study 2: We chose seven gas stations and put three of them on the
west side of Brooklyn and four in the middle of Brooklyn (Figure 13(a)). Again,
in our analysis, the NVD (Figure 13(b)) shows unbalanced allotments, lead to
longer wait times for larger regions (e.g., gas station 4 (purple), gas station 5
(red), gas station 7(rose)). Figure 13(c) shows that min-cost flow violates service
area contiguity (the two green circles show areas of dis-contiguity). Figure 13(d)
shows the CCNVD produced by our algorithm. As can be seen, all service centers
on the CCNVD are balanced in terms of the number of allotted nodes.

(a) Brooklyn Road Network and Gas Sta-
tions

(b) NVD

(c) Min-Cost Flow Approach (d) CCNVD with PE

Fig. 13. Case Study 2 with 7 gas stations

Case Study 3: We chose ten gas stations and put three of them on the west side
of Brooklyn, five in the middle of Brooklyn, and two on the east side of Brooklyn
(Figure 14(a)). In our analysis, the NVD (Figure 14(b)) shows unbalanced allot-
ments, which may lead to longer wait times for larger regions (e.g., gas station
3 (green), gas station 4 (purple), gas station 8(dark purple), gas station 9(light
yellow), gas station 10(turquoise)). Figure 14(c) shows that min-cost flow vio-
lates service area contiguity (the five green circles show areas of dis-contiguity).
Figure 14(d) shows the CCNVD produced by our algorithm. These preliminary
results show that CCNVD with PE preserves service area contiguity. The NVD
approach shows that as the number of gas stations increases, the imbalance of
gas allotments slightly decreases. The location of gas stations has an effect on
the performance of NVD which has an inherent limitation in honoring capacity
constraint resource allotments. The min-cost flow results show SA discontinuity
is increasing with increasing number of gas stations. In general, min-cost flow
approaches are limited in preserving SA contiguity for CCNVD.

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 71

(a) Brooklyn Road Network and Gas Sta-
tions

(b) NVD

(c) Min-Cost Flow Approach (d) CCNVD with PE

Fig. 14. Case Study 3 with 10 gas stations

Discussion: The proposed Pressure Equalizer algorithm advances the state
of the art in computational techniques for CCNVD. The algorithm achieves a
significant computational performance gain over current techniques. This im-
provement was obtained using three key features: (1) Pressure Equalization, (2)
a PE-graph, and (3) a re-allotment cost function. Given unbalanced allotments
(e.g., NVD), our approach smoothly expands (or shrinks) service areas to meet
capacity constraints. Since we can reduce the sum of distances based on the re-
allotment cost function, the PE algorithm can minimize both min-sum and ser-
vice area dis-contiguity. The computational cost is dramatically reduced because
the iterations in the PE algorithm are bounded by the number of graph-nodes
and the size of the PE-graph is smaller than the min-cost flow graph.

Due to time limitations, we have only used three geographic areas for prelim-
inary evaluation of the proposed algorithm. In the future, we plan to test our
algorithm on a larger number of geographic areas.

7 Conclusion and Future Work

We presented the problem of creating a Capacity Constrained Network Voronoi
Diagram (CCNVD), which is important for assigning evacuees to shelters, as-
signing patients to hospitals, assigning students to school districts, etc. Creating
a CCNVD is challenging because of the large size of the transportation net-
work and the constraint that service areas must be contiguous in the graph
to simplify communication of allotments. In this paper, we introduced a novel

72 K. Yang et al.

Pressure Equalizer (PE) approach for creating a CCNVD to meet the capacity
constraints of service centers while maintaining the contiguity of service areas.
We presented experiments and a case study using post-hurricane Sandy scenarios
which demonstrated that our proposed algorithm had comparable solution qual-
ity to min-cost flow in terms of min-sum, created contiguous service areas, and
significantly reduced computational cost. To simplify the analysis, we assigned
a single unit of demand to each node. In future work, we will study the capacity
(or weight) of the node in terms of the number of consumers, neighboring the
node.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1029711, USDOD under Grant No.
HM1582-08-1-0017, HM1582-07-1-2035, and U-Spatial. We thank to the Univer-
sity of Minnesota Spatial Databases and Spatial Data Mining Research Group
for their comments. We would like to thank Kim Koffolt for improving the read-
ability of this paper.

References

1. ABC News: Hurricane sandy’s aftermath: Long lines at gas stations (2012),
http://goo.gl/omQ62 (retrieved March 2013)

2. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM 19(17), 248–264 (1972)

3. Tomizawa, N.: On some techniques useful for solution of transportation network
problems. Networks 2(17), 173–194 (1971)

4. Daskin, M.: Network and discrete location: models, algorithms, and applications.
Wiley-Interscience series in discrete mathematics and optimization. Wiley (1995)

5. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

6. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. Operations Research 22(1), 1–29 (1997)

7. Ahuja, R., Magnanti, T., Orlin, J.: Network flows: theory, algorithms, and appli-
cations. Prentice Hall (1993)

8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. A.
Springer (2003)

9. Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics.
Springer, Heidelberg (2012)

10. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2(1-2), 83–97 (1955)

11. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial & Applied Mathematics 5(1), 32–38 (1957)

12. Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by successive ap-
proximation. In: Proceedings of the Nineteenth Annual ACM Symposium on The-
ory of Computing, pp. 7–18. ACM (1987)

13. Frank, A.: Connections in combinatorial optimization, vol. 38. Oxford Univ. Pr.
(2011)

14. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Opti-
mization. Wiley Series in Discrete Mathematics and Optimization. Wiley (2011)

http://goo.gl/omQ62

Capacity-Constrained Network-Voronoi Diagram: A Summary of Results 73

15. Johnson, D.S., McGeoch, C.C.: Network flows and matching: first DIMACS imple-
mentation challenge, vol. 12. Amer. Mathematical Society (1993)

16. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive
approximation. Mathematics of Operations Research 15(3), 430–466 (1990)

17. Klein, M.: A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Management Science 14(3), 205–220 (1967)

18. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. Journal of the ACM (JACM) 36(4), 873–886 (1989)

19. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and
applications of Voronoi diagrams, vol. 501. Wiley (2009)

20. Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Com-
putational Methods. Statistics in Practice. Wiley (2012)

21. Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156–163
(2000)

22. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network
voronoi diagrams: Concepts, computational methods, and applications. Interna-
tional Journal of Geographical Information Science 22(9), 965–994 (2008)

23. Győri, E.: On division of graphs to connected subgraphs. In: Combinatorics (Proc.
Fifth Hungarian Colloq., Keszthely, 1976), vol. 1, pp. 485–494 (1976)

24. Lovász, L.: A homology theory for spanning trees of a graph. Acta Mathematica
Academiae Scientiarum Hungarica 30(3-4), 241–251 (1993)

25. Győri, E.: Partition conditions and vertex-connectivity of graphs. Combinator-
ica 1(3), 263–273 (1981)

26. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics 10(2), 139–153 (1985)

27. Diwan, A.A.: Partitioning into connected parts (slide 7) in graph partitioning prob-
lems. In: Research Promotion Workshop on Introduction to Graph and Geometric
Algorithms (January 2011), http://goo.gl/b8fTN

28. Barth, D., Fournier, H.: A degree bound on decomposable trees. Discrete Mathe-
matics 306(5), 469–477 (2006)

29. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) 34(3), 596–615 (1987)

30. OpenStreetMap, http://goo.gl/Hso0 (retrieved January 2013)

http://goo.gl/b8fTN
http://goo.gl/Hso0

Mining Driving Preferences

in Multi-cost Networks

Adrian Balteanu, Gregor Jossé, and Matthias Schubert

Institute for Informatics, Ludwig-Maximilians-Universität München, Oettingenstr. 67,
D-80538 Munich, Germany

{balteanu,josse,schubert}@dbs.ifi.lmu.de

Abstract. When analyzing the trajectories of cars, it often occurs that
the selected route differs from the route a navigation system would pro-
pose. Thus, to predict routes actually being selected by real drivers, tra-
jectory mining techniques predict routes based on observations rather
than calculated paths. Most approaches to this task build statistical
models for the likelihood that a user travels along certain segments of a
road network. However, these models neglect the motivation of a user to
prefer one route over its alternatives. Another shortcoming is that these
models are only applicable if there is sufficient data for the given area
and driver. In this paper, we propose a novel approach which models the
motivation of a driver as a preference distribution in a multi-dimensional
space of traversal costs, such as distance, traffic lights, left turns, conges-
tion probability etc.. Given this preference distribution, it is possible to
compute a shortest path which better reflects actual driving decisions.
We propose an efficient algorithm for deriving a distribution function of
the preference weightings of a user by comparing observed routes to a
set of pareto-optimal paths. In our experiments, we show the efficiency
of our new algorithm compared to a naive solution of the problem and
derive example weighting distributions for real world trajectories.

1 Introduction

When proposing a route to a driver, navigation systems rely on computing the
optimal path between goal and destination. However, when comparing the com-
puted routes to real-world trajectories, it can be observed that drivers often
select paths which are significantly different from the proposed route. One rea-
son for this effect is that the travel time between two places depends on a variety
of time-dependent and uncertain parameters like the behaviour of other vehi-
cles or the synchronization between the travel progress and traffic lights. Thus,
instead of trying to predict the travel time directly, experienced drivers rather
try to select a path based on the trade-off between the risk of being delayed
and the opportunity to reach the destination in minimal time. Consider a risk
averse driver who wants to make certain that he reaches a goal in time but is
not necessarily in a hurry. In this case, our driver would usually prefer to avoid
areas with a large likelihood of congestion and a high density of traffic lights,

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 74–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mining Driving Preferences in Multi-cost Networks 75

even if this route is considerably longer than an alternative route without such
risk factors. On the other hand, a more optimistic driver would surely choose the
shortest path while assuming that delays at traffic lights or due to dense traffic
will not be severe. To conclude, the path a driver actually chooses depends on
personal preferences as well as on the optimality. To capture this effect, the re-
search community has started to build models on the driving behavior of people.
The idea of these approaches is that most of the routes a driver is selecting are
travelled multiple times if they fit the personal preferences of a driver [1], [2],[3].
Thus, it is possible to build statistical models describing the preferred routes of
a driver in a certain area. However, this method cannot be applied if there isn’t
any observed data for a certain area.

In this paper, we propose a new approach modeling driving preferences as a
set of trade-off factors between two cost factors. For example, a route could be
described by the travelled distance, the encountered traffic lights or the likelihood
of a congestion. Our model is based on the assumption that the selection of a
route depends on a combination of at least two cost types instead of a single one.
For example, consider a path having 5 kilometers distance but 10 traffic lights. If
there exists an alternative route having 6 kilometers distance but only 2 traffic
lights, a user might prefer this path over the other because the 8 additional
traffic lights outweigh the additional kilometer.

Formally, the preferences of a driver are captured by the ratio of one cost value
relative to another one. Thus, a driver would select a certain route because it is
optimal w.r.t. the cost combination which is implied by these preferences. How-
ever, since people do not necessarily display consistent preferences, our method
estimates a preference distribution over all available observations. To estimate
this distribution, it is important to distinguish between the cost ratios of the ob-
served routes and the preferences of the driver. Since the observed route might
be the only one connecting the start to the destination, the observed cost ratios
might not even be close to the preferences. To still exploit the observation and
gain knowledge about the preferences, we have to distinguish it from the set of
alternative routes which have not been selected. To derive a reasonable set of al-
ternative routes, we rely on the route skyline [4]. The route skyline contains the
set of paths being optimal under any possible driving preference. Thus, a ratio-
nal driver would always select the element of the route skyline being optimal for
his preferences. To build a model of the preferences of a driver, our new method
requires a set of trajectories and a corresponding multi-cost road network. Each
sample trajectory is now compared to the route skyline for the same start and
destination. Thus, we receive a cost vector for the observed trajectory and a set
of cost vectors for the unselected skyline routes. The cost vectors are mapped into
a preference space, making them independent from the absolute cost values. We
now derive a preference area corresponding to all possible preference values mak-
ing the selected route better than the alternative skyline routes. Now, by adding
up these areas in the preference space, we receive a distribution over the prefer-
ences of a driver. If the preferences are consistent the distribution will display a
rather dense area describing the tolerated trade-off between two types of costs.

76 A. Balteanu, G. Jossé, and M. Schubert

This basic approach has an important drawback. The number of skyline routes
might strongly vary with the distance between start and destination. This leads
to a potentially large computational overhead when computing the route skyline.
However, for determining the preference area of a trajectory it is not necessary
to compute the complete route skyline. Instead we define the set of neighbors
limiting the preference area and provide an algorithm only searching for the
set of neighbors. Thus, adding a new observation to the preference distribution
yields only a small overhead. To conclude, the contribution of this paper are:

– A novel model for describing driving preferences as the set of pairwise trade-
offs between cost factors.

– A method for estimating the preference distribution for a user comparing
observed trajectories with the set of pareto-optimal alternative routes.

– A more efficient algorithm that strongly decreases the computational cost
for the required pareto-optimal routes.

The rest of the paper is organized as follows: In the section 2, we survey related
work on multi-cost routing, route prediction and modelling driving preferences.
Section 3 formalizes our model and describes the problem. The algorithms and
methods for determining the preference distribution are described in section 4
and section 5. The experimental evaluation in section 6 examines the quality of
the derived preference distributions and shows the driving preferences on real
world data. The paper concludes with a summary and an outlook to ongoing
research in section 7.

2 Related Work

In this section, we will shortly review existing work in modeling driving prefer-
ences and route prediction. Furthermore, we will give a short introduction on
routing in multi-cost networks.

In [5] the authors describe one of the first approaches to route prediction for
optimizing a shared fleet of cars. The method assumes that start and destina-
tion are given. Therefore, the setting shares some similarity to the work in this
paper. However, the method does not personalize the prediction. [1] describes
a system that uses GPS tracks to build a hidden Markov model for predicting
routes and destinations. The system strongly relies upon the fact that users tend
to prefer the same set of routes and often travel to the same locations. In [2],
the authors focus on improving the input data by proposing a pipeline from raw
GPS data to map-matched trajectories on a road network. An important aspect
of the approach is that frequently driven routes have to be discovered and outlier
trajectories should not be considered for learning models about preferred routes.
In [3], the authors propose a model for route prediction on patterns of visited
locations. The system is built upon a client server architecture considering the
privacy aspects of the collected trajectory data. The T-Drive system [6,7] is based
on the trajectories of 33,000 taxis in the city of Beijing which were analysed over
a time-period of 3 months. The idea behind this system is to research the routes

Mining Driving Preferences in Multi-cost Networks 77

of professional drivers and build a model which imitates their behaviour when
proposing a route to a driver. Technically, the system exploits the information
by deriving time-dependent traversal times for central road segments. Further-
more, the system generates a landmark graph of preferred road segments called
landmark road segments. The landmarks form the backbone for a specialized
network containing streets being used by the taxi drivers. In combination with
the improved time-dependent travel time estimation, the authors demonstrated
that the system is capable to propose routes which required significantly less time
than the routes being proposed by conventional routing. Though this method
adapts the proposed routes to the preferences of taxi drivers, the system does
not distinguish different preferences. Instead the general assumption in T-Drive
is that all drivers prefer the fastest route and taxi drivers share the joint ex-
perience to achieve this goal. A system which actually models personal driving
preferences is the TRIP system [8]. Similar to T-Drive TRIP is based on ob-
served trajectories but does not join these observations to build a global model
of professional driving behavior. Instead TRIP works with a much smaller set
of personal trajectories and models each driver separately. Similar to T-Drive,
the system employs all observed trajectories to generate time-dependent travel
times. Furthermore, the system computes an inefficiency ratio for each user,
modeling the importance of travel time in his routing decisions. The inefficiency
ratio is then employed to lower the cost of road segments a driver has actually
travelled before. Thus, the proposed route will contain more already known road
segments if the driver has a low efficiency ratio.

Though all of these systems share a common motivation with the work being
proposed in this paper, there is one very important difference. The preferences in
previous approaches of learning driving preferences are modeled w.r.t. preferred
localities in a given area. Thus, all of these approaches cannot be applied in areas
where no trajectories are available. However, this is the case where a navigation
system is most needed.

A major aspect of our method is to compare the observed trajectory to a set of
reasonable alternative route which were rejected by the driver. Using more than
one cost attribute causes the number of route alternatives to increase rapidly. Re-
cently, several researches started to examine multi-cost or multi-attribute trans-
portation networks [9,4,10]. In this type of network, the cost of a path is not
only measured w.r.t. a particular cost function, like travel time. Instead, the cost
of each path is measured by a complete vector of cost criteria like distance, fuel
consumption, toll fees, criminal risks etc.. Considering these additional metrics
enables the computer to find alternatives which are usually not optimal w.r.t.
all criteria, but offer reasonable trade-offs. For example, the system might pro-
pose an alternative which requires 5 minutes of additional driving time, but
might not pass through an area with a high criminal activity. A method that
calculates this type of trade-off routes is route skyline processing proposed in
[4]. A route skyline query processes all pareto-optimal routes between a start
and a destination. In other words, the cost vectors of the result form a skyline
in the multi-dimensional space of cost criteria. Thus, the optimal path for each

78 A. Balteanu, G. Jossé, and M. Schubert

weighting of costs is contained in the skyline. We will formally introduce route
skylines and some of their implications in the next section. In [9], the authors
introduce preference queries in multi-cost networks. In particular, the paper pro-
poses ranking and skyline queries to compute and sort a result set of possible
target destinations in a multi-cost transport network. Though this work is also
based on multi-cost networks, the proposed query returns a skyline of locations.
Thus, the method cannot be employed to determine a set of alternative routes
between two specified locations.

3 Preliminaries

We assume a street network to be representable as a directed, weighted graph
G = (V,E, c, d) which is uniquely defined by its set of nodes V , its set of directed
edges E connecting pairs of nodes in the given order and a cost function c :
E → (R+

0)
d. We restrict ourselves to the case d = 2, i.e. every non-trivial edge

e = (v1, v2), v1 �= v2 ∈ V is assigned a 2-dimensional cost vector consisting of
non-negative values ci(e) := (c(e))i both of which stand for the cost regarding
an occurrence of the pre-selected attributes A1, A2 taken from the set of all
attributes. These attributes may for example be travel distance, travel time,
number of traffic lights, difference in altitude et cetera. A driver might, for
instance, trade off travel distance against number of lights since it is common to
prefer a greater distance over the chance of several red lights.

A set of non-trivial consecutives edges e1, . . . , ek is referred to as a path p. Any
such path can be assigned a unique cost vector, namely c(p) =

(
c1(p), c2(p)

)
:=∑k

j=1 c(ej). For two nodes s �= t, s, t ∈ V, we denote the set of all paths from s
to t by P(s, t).

Let us note that unless otherwise stated, a set of paths or a single path always
refers to a graph G = (V,E, c, 2). Furthermore, we assume start and end nodes
of a path to be distinct, and we presume lower cost values to be more desirable
than higher ones.

Our approach is based upon the plausible assumption that a driver navi-
gates consciously, by himself and does so using knowledge of the various possible
routes. Consider a driver who has selected the path p, then we think of p to
be optimal w.r.t. the personal cost function of the driver which is a trade-off
between the different attributes (number of traffic lights and travel distance, for
instance).

When choosing another route, it is likely that our driver will evaluate the
costs of this new path according to his previously used preference. We model the
driver’s spectrum of preference independent of start and end nodes as well as
from absolute values. Any such preference gradient (as introduced below) can be
used as a weight vector when computing routes. This concept is the mathematical
formalization of weighing different paths’ attributes before selecting a path.

Definition 1. Given a path p and a gradient γ2/γ1, we define the weight vec-
tor as γ :=

(
γ1, γ2

)
and the cost function of p w.r.t. γ as cγ(p) := ‖γ ∗c(p)‖∞,

Mining Driving Preferences in Multi-cost Networks 79

alternative routes
(home area)

navigation
t

observed trajectories

system

driving preferences personalized
route(unknown area)route(unknown area)

Fig. 1. Illustration of the concept of our solution

where ‖(v1,...,vn)‖∞ := max1≤i≤n|vi| denotes the L∞-norm and (· ∗ ·) denotes
pointwise multiplication.

It is important to note that there need not be any correlation as to the locality
of the route the gradient was derived from and the route to be computed from
it. Using Dijkstra’s or the A∗ algorithm where the queue of paths is sorted
ascendingly by the values of the above defined cost function yields a computation
of paths in the order specified by the preference vector.

Although the above stated assumptions are plausible, it is improbable for a
driver to always navigate according to the same preference. This might be due to
different moods (casual driving on weekends as opposed to efficiency-optimized
driving during the week) or simply due to the lack of routes exactly correspond-
ing to the preference. Thus, we assume a preference distribution which the driver
implicitly constitutes over time with every route he chooses. The preference dis-
tribution models his characteristic behavior in traffic, hence any routing decision
may be perceived as drawing a sample from the driver’s distribution and selecting
the shortest route w.r.t. that value. Our concept of deriving driving preferences
and personalized routing suggestions are visualized in figure 1. The goal of our
method is to mine the distributions of pairwise cost trade-offs. Given these dis-
tributions, we can derive personalized cost function for route computation. To
learn the distribution functions, we compare a set of observed paths and com-
pare them to the corresponding route skyline to find out for which trade-off the
observed path was a reasonable selection.

4 Learning Preference Distributions

If a driver chooses a particular path, we refer to it as a trajectory and assume
it is tracked by GPS. The raw GPS data itself, however, does not contain any

80 A. Balteanu, G. Jossé, and M. Schubert

information about the costs of the trajectory (except maybe for the travel time).
This is why it is matched onto a graph representing the street network of the
corresponding region [11], which provides additional information (for instance on
the number of traffic lights or the difference in altitude). In the following, we use
the terms chosen route and trajectory synonymously and mean the map-matched
observation enriched by the information gained from the graph.

Essential to our concept of driving preferences are not only the chosen routes
but also the ones that have not been selected. Without knowledge of the possi-
bilities a driver weighed prior to his decision, no preferences can be deduced. As
an illustration, consider a driver who is, for instance, interested in maximizing
the driving flow but there is no route to his current destination with less than
10 traffic lights. Hence, whichever path he chooses will not properly reflect his
preference due to of the lack of suitable options.

Thus, we transform any chosen route p, connecting s �= t ∈ V , including its
alternatives into the space of cost vectors for paths in P(s, t). Then the costs
of p and those of the non-selected paths are compared, yielding what we refer
to as a preference window of p w.r.t. P(s, t), i.e. a rectangle which reflects the
motives for this particular route selection.

Definition 2. Given a path p (connecting nodes s �= t ∈ V), we introduce the
notion of a preference window w.r.t. p, W (p):

W (p) :=

{(
γ1
γ2

)
∈ (R+

0)
2 | cγ(p) ≤ min

q∈P(s,t)
cγ(q) where γ2 := 1− γ1

}

For given start and end nodes there exist countless possible paths (arbitrarily
long detours), of which definition 2 takes every single one into consideration.
However, it is a plausible assumption that if a driver knew an optimal route
which approximately suits his preference, he would choose it. On the contrary,
he would most likely avoid any path which corresponds to his preference but
has high values in both dimensions. If there is no better alternative within his
preference window, the driver would probably decide in favor of a better route
although it might not comply with his desired preference. Consequently, we
assume a rational driver to always choose an optimal route and thereby reduce
computational costs drastically. Our notion of optimality is defined below.

Definition 3. For a set of paths P (connecting the same nodes s �= t within
a graph G = (V,E, c, d)), we call p ∈ P a skyline path (of P) (or a pareto-
optimum), iff there exists no q ∈ P \ {p} and no 1 ≤ i ≤ d, such that:

∀ j �= i : cj(q) ≤ cj(p) ∧ ci(q) < ci(p).

Given a set of paths (all connecting the nodes s �= t ∈ V), the route skyline,
S(s, d) consists of all the “undominated” paths in the above defined sense.

Figure 2 visualizes the 2-dimensional cost vectors of a set of paths as well as the
skyline paths therein.

In accordance with the aforementioned assumption we restrict ourselves to
comparing the chosen path to the route skyline. Every suboptimal path might

Mining Driving Preferences in Multi-cost Networks 81

Fig. 2. Set of 2-dimensional cost
vectors and skyline paths

Fig. 3. Chosen route and its sky-
line correspondent

indeed reflect a preference ratio but is dominated by at least one skyline path
which might not yield the exact same preference area. However, it is likely that
the skyline path yields a similar ratio as the suboptimal path (cf. figure 3). If a
given trajectory is not pareto-optimal, we map it onto its skyline correspondent.

Definition 4. Let p be a trajectory, then s ∈ S is its skyline correspondent
(where S denotes the set of route skyline connecting the same start and end
nodes as p), iff δ(s) = mint∈S δ(t), where

δ(t) :=

∥∥∥∥c(t)− 〈c(t), c(p)〉
‖c(p)‖

∥∥∥∥.
is the length of the normal vector from p onto the straight line λ · c(s), λ ∈ �.

In order to simplify the presentation of a preference window, we introduce the
so-called preference space which is 1-dimensional, in contrast to the cost space.
Beforehand, we need the concept of lower and upper preference gradients.

Definition 5. Given route skyline S = S(s, d) and a trajectory p ∈ S (connect-
ing s and t) therein, we define the lower and upper preference gradients of
p, α and β respectively, as follows:

β := min

{
γ1
γ2

|
(
γ1
γ2

)
∈ W (p) ∧ γ1

γ2
>

c2(p)

c1(p)

}

α := max

{
γ1
γ2

|
(
γ1
γ2

)
∈ W (p) ∧ γ1

γ2
<

c2(p)

c1(p)

}

Based on this definition, we refer to D(p) := [tan−1(α), tan−1(β)] as the driving
preference w.r.t. p which is a subset of (or in rare special cases equal to) the
preference space [0, π/2].

The reason for the preference space being 1-dimensional, is that the components
of every vector within the preference window add up to 1, i.e. one of the compo-
nents redundant. Figure 5 shows the preference gradients of a chosen route (cf.
figure 4) transferred into the preference space.

82 A. Balteanu, G. Jossé, and M. Schubert

Fig. 4. Chosen route and deduced
preference gradients

Fig. 5. Preference gradients con-
verted into preference space

Our goal is not only to derive a driver’s preference by evaluating one of his
chosen routes but to generate a preference distribution from all recorded trajec-
tories in order to model overall driving behavior. To avoid the computational
costs of a continuous probability distribution, we approximate it with a his-
togram which has a pre-defined number of bins specified by the user. Hence, our
preference distribution is defined as follows. Let us note that the histogram is
normalized such that the sum over all bins equals 1.

Definition 6. Given a set of trajectories P, the joint preference distribution
is an array of reals and of length k ∈ � (input parameter). Let

Ij :=

[
jπ

2k
,
(j + 1)π

2k

]
, 0 ≤ j ≤ k − 1

be a partition of the preference space into k equal-sized intervals. Then the entries
of D(P) are defined as follows:

D(P)[j] :=

∑
p∈P μ(Ij , D(p))∑

0≤j≤k−1

∑
p∈P μ(Ij , D(p))

where μ(Ij , D(p)) :=
λ(Ij ∩D(p))

λ(Ij)

with the 1-dimensional lebesgue measure λ(·).

Before we present our basic algorithm 1 for computing a driving preference
distribution, we need to introduce the concept of left and right skylines which is
illustrated in figure 3.

Definition 7. For a given route skyline S = S(s, d) and a trajectory p ∈ S
(connecting s and t) therein, we define the left and right (route) skyline
w.r.t. p, SL(p) = SL and SR(p) = SR respectively:

SL(p) := {q ∈ S | c1(q) < c1(p)}
SR(p) := {q ∈ S | c1(q) > c1(p)}

Mining Driving Preferences in Multi-cost Networks 83

Algorithm 1. Basic Preference Distribution
Require: set of chosen routes P

for all trajectory p ∈ P connecting some s and t do
compute skyline S = S(s, t) and sort ascendingly by c1
if p �∈ S then

c(p) ← skyline correspondent of c(p)
end if
for all q ∈ SL(p) do

determine trade-off between c(p) and c(q)
remember smallest trade-off

end for
for all q ∈ SR(p) do

determine trade-off between c(p) and c(q)
remember greatest trade-off

end for
add interval between stored trade-offs to distribution

end for

return normalized distribution

The skyline computation can be done efficiently as presented in [4]. Instead
of using the rather abstract definitions 2 and 5 of a preference area, we use the
above mentioned trade-offs. These are defined below and easy to compute. The
following lemma proves that both concepts coincide.

Definition 8. Let p �= q be skyline paths (connecting the same start and end
nodes), then the trade-off (gradient) between p and q is defined as:

t(p, q) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π/2, if c1(q) = 0

tan−1(c2(q)/c1(p)), if c1(p) < c1(q)

tan−1(c2(p)/c1(q)), if c1(q) < c1(p)

0, if c1(p) = 0

Lemma 1. Let S be a route skyline and p a path therein, and let

nL ∈ SL(p) such that t(p, nL) < t(p, q) ∀ SL(p) � q �= nL

nR ∈ SR(p) such that t(p, nR) > t(p, q) ∀ SR(p) � q �= nR

[tan−1 t(p, nR), tan
−1 t(p, nL)] = D(p)

Proof. Let q be any path within the same skyline as p, p �= q. Hence either
c1(q) < c1(p) or c1(p) < c1(q), equality would imply a contradiction to their
distinctiveness. Let us distinguish these two cases:

(i) c1(p) < c1(q) which is equivalent to c2(q) < c2(p). Let γ :=
(
γ1, γ2

)
such

that γ1/γ2 < c2(p)/c1(p), i.e. γ ∈ W (p) and if maximized, it equals α.
‖γ ∗ p‖∞ = ‖γ ∗ q‖∞ holds, if γ2c2(p) = γ1c1(q), since ‖γ ∗ p‖∞ = γ2c2(p)
and ‖γ ∗ q‖∞ = γ1c1(p) by presumption. This equality implies c2(p)/c1(q) =
γ1/γ2, which is maximal, iff q = nR (cf. figure 7).

(ii) c1(p) > c1(q) which is equivalent to c2(q) > c2(p). As before, let γ :=
(
γ1, γ2

)
such that γ1/γ2 < c2(p)/c1(p), i.e. γ ∈ W (p) but now if minimized, it equals
β. ‖γ ∗ p‖∞ = ‖γ ∗ q‖∞ holds, if γ1c1(p) = γ2c2(q), for analogous reasons
as above. This equality implies c2(q)/c1(p) = γ1/γ2, which is minimal, iff
q = nL (cf. figure 7).

Applying tan−1(·) proves the lemma.

84 A. Balteanu, G. Jossé, and M. Schubert

5 An Efficient Algorithm for Computing Preference
Distributions

Computing the entire route skyline may even be costly in 2 dimensions since
its cardinality is merely bounded by the total number of paths. Therefore, we
present an algorithm which only requires a set of at most 2 skyline elements (per
trajectory) to derive a preference area. The novel approach is based upon the
observation made at the end of the section 4. Given a trajectory p, it suffices to
know nL(p) ∈ SL(p) and nR(p) ∈ SR(p) since they already define the preference
area, as proven in lemma 1. From now on, we refer to nL(p) and nR(p) (defined
above) as the left and right neighbors of p, respectively.

In general the set of neighbors will contain 2 elements, i.e. the skyline paths
whose cost vector projections onto one of the axes are closest to and better than
the reference path (cf. Figure 6). Note that the set of neighbors, however, may
also be empty (|S(p)| = 1) or contain only one element (∃ i ∈ {1, 2} : ∀q �= p ∈
S(p) : ci(p) < ci(q)). In the latter case, we extend the preference area to the
according axis, i.e. if i = 1 then D(p) = [α, π/2], conversely if i = 2 D(p) = [0, β].
This reflects the lack of an alternative route w.r.t. to dimension i, therefore the
preference area is not bounded by a trade-off in this direction.

Instead of computing the complete route skyline as in algorithm 1, we now
want to compute only potential neighbors of a given trajectory p. Our algorithm
works similar to the ARSC algorithm introduced in [4] (for more information on
the ARSC see Appendix 7). However, unlike this algorithm, we can stop travers-
ing the graph before the priority queue storing all paths which still have to be
extended is empty. To achieve this performance gain, we first order the queue
of nodes containing unprocessed paths ascendingly by the maximum distance to
c(p). Now, we can guarantee that the skyline results are retrieved w.r.t. to their
closeness to p. Then, we process the skyline and find p or its skyline correspondent.

Fig. 6. Illustration of a set of
neighbors w.r.t. a trajectory

Fig. 7. Visualization of a trajec-
tory, its neighbors and trade-off
gradients

Mining Driving Preferences in Multi-cost Networks 85

The next time the destination node t is on top of the queue, we find a neighbor n
being responsible for the top-ranking within the queue. n is either part of SL(p)
or SR(p). If it is part of SL(p), we found an upper limit l2 for c2. This allows
us to prune all further paths where the forward approximation of c2 is larger
than l2. Correspondingly, we can derive l1 and prune any path whose forward
approximation of c1 is bigger than l1. This pruning area is depicted in figure
7. The algorithm can terminate if the value of the top element of the queue is
larger than max(l1, l2).

In conclusion, both algorithms compute the same driving preference distri-
butions when given a set of trajectories. However, the improved algorithm 2
severely reduces the number of computed paths in comparison to algorithm 1
(cf. 6).

6 Experimental Evaluation

In this section, we describe the results of our experimental evaluation. We exam-
ined three different aspects of the proposed method. The first aspect is whether
the proposed algorithm is capable of reproducing a given preference distribution
based on the preference intervals being observed by our algorithm. The second
aspect is a study of real driving behavior being observed on real trajectories.
The last aspect is a runtime analysis of our proposed fast algorithm compared

Algorithm 2. Fast Preference Distribution
Require: set of chosen routes P

for all trajectory p ∈ P connecting some s and t do
initialize queue Q of nodes sorted by ascending max distance to p
set l1, l2 := ∞ and n1, n2 := null
while ¬Q.isEmpty ∧ Q.topValue < max(l1, l2) do

currentNode = Q.topElement
if currentNode = t then

for all path q ∈ currentNode do
if q = p ∨ q outside of pruning area then

continue
else if c1(q) < c1(p) ∧ c2(q) < l2 then

n1 ← q and l2 ← c2(n1)
else if c1(q) > c1(p) ∧ c1(q) < l1 then

n2 ← q and l1 ← c1(n2)
end if

end for
else

for all path q ∈ currentNode do
if forward approximation of q outside of pruning area then

extensions ← buildExtensions q
remove locally dominated extensions
for all ext ∈ extensions do

update Q with ext.lastNode if better w.r.t. max distance to p
end for

end if
end for

end if
end while
add interval between trade-offs t(p, n1) and t(p, n2) to distribution

end for

return normalized distribution

86 A. Balteanu, G. Jossé, and M. Schubert

0.035

Preference Distribution for mean of 3/1
and standard deviation 0.5 on 200 Paths

0.03

0 02

0.025

0.015

0.02

0.01

0.005

0

va
l>
0.
0

va
l>
1.
0

va
l>
2.
0

va
l>
3.
0

va
l>
4.
0

va
l>
5.
0

va
l>
6.
0

va
l>
7.
0

va
l>
8.
0

va
l>
9.
0

va
l>
10
.0

va
l>
11
.0

va
l>
12
.0

va
l>
13
.0

va
l>
14
.0

va
l>
15
.0

va
l>
16
.0

va
l>
17
.0

va
l>
18
.0

va
l>
19
.0

va
l>
20
.0

va
l>
21
.0

va
l>
22
.0

(a) Mean 3.0

0.016

Preference Distribution for mean of 10/1
and standard deviation 0.5 on 200 Paths

0.014

0.01

0.012

0.008

0.004

0.006

0.002

0

va
l>
0.
0

va
l>
1.
0

va
l>
2.
0

va
l>
3.
0

va
l>
4.
0

va
l>
5.
0

va
l>
6.
0

va
l>
7.
0

va
l>
8.
0

va
l>
9.
0

va
l>
10
.0

va
l>
11
.0

va
l>
12
.0

va
l>
13
.0

va
l>
14
.0

va
l>
15
.0

va
l>
16
.0

va
l>
17
.0

va
l>
18
.0

va
l>
19
.0

va
l>
20
.0

va
l>
21
.0

va
l>
22
.0

(b) Mean 10.0

Fig. 8. Retrieved preference distributions for a mean ratio of 3/1 (left) and 10/1 (right.)

to the basic approach which relies upon computing the complete skyline. We im-
plemented our approach in the MARiO framework [10] which gave us access to
real-world maps from Open Street Map (OSM) 1. We mainly tested our method
on a version of the OSM map of Beijing containing 29747 nodes and 37632 links.
For the real world study, we employed a map of the German city of Bad Toelz
having 8282 nodes and 13620 links. As cost criteria, we employed the traveled
distance and the number of encountered traffic lights which are already available
in MARiO. All experiments were conducted on a laptop having an Intel Centrino
2 processor and 2 Gb of Ram.

In our first experimental setting, we show that our algorithm is capable of
reconstructing driving preferences from observed trajectories. In order to have
a ground truth of known distributions, we generated preference distributions
based on Gaussians with given mean values and standard deviations. In order to
derive a trajectory, a preference vector is drawn from this distribution. Then, the
preference vector used it to compute an optimal path for a randomly select pair
of nodes. Let us note that this setting may allow start and end nodes where only
path exists. For the following tests, we generated 200 random trajectories and
employed our method to reconstruct the distribution function. In a first exper-
iment, we tested the method for different mean values, 3.0 and 10.0 having the
same standard deviation 0.5. The result can be seen in figure 8. In both cases the
derived distribution has its peak on the mean value of generating distribution.
In the next experiment, we tested the tolerance w.r.t. different standard devia-
tions. Therefore, we set the standard deviation to 0.5 as in the example above
and additionally tested a much larger standard deviation of 3.0. The results are
depicted in figure 9. It can be seen that even though the standard deviation is
rather large, the observed preference distribution is still rather similar to the
generating distribution.

1 www.openstreetmap.org

www.openstreetmap.org

Mining Driving Preferences in Multi-cost Networks 87

0.025000

Preference Distribution for mean of 5/1
and standard deviation 0.5 on 200 Paths

0.020000

0.015000

0.010000

0 005000

0.0 0000

0.005000

0.000000

va
l>
0.
0

va
l>
1.
0

va
l>
2.
0

va
l>
3.
0

va
l>
4.
0

va
l>
5.
0

va
l>
6.
0

va
l>
7.
0

va
l>
8.
0

va
l>
9.
0

va
l>
10
.0

va
l>
11
.0

va
l>
12
.0

va
l>
13
.0

va
l>
14
.0

va
l>
15
.0

va
l>
16
.0

va
l>
17
.0

va
l>
18
.0

va
l>
19
.0

va
l>
20
.0

va
l>
21
.0

va
l>
22
.0

(a) Standard Deviation 0.5

0.016000

Preference Distribution for mean of 5/1
and standard deviation 3 on 200 Paths

0.014000

0.010000

0.012000

0.008000

0.004000

0.006000

0.002000

0.000000

va
l>
0.
0

va
l>
1.
0

va
l>
2.
0

va
l>
3.
0

va
l>
4.
0

va
l>
5.
0

va
l>
6.
0

va
l>
7.
0

va
l>
8.
0

va
l>
9.
0

va
l>
10
.0

va
l>
11
.0

va
l>
12
.0

va
l>
13
.0

va
l>
14
.0

va
l>
15
.0

va
l>
16
.0

va
l>
17
.0

va
l>
18
.0

va
l>
19
.0

va
l>
20
.0

va
l>
21
.0

va
l>
22
.0

(b) Standard Deviation 3.0

Fig. 9. Retrieved preference distributions for a mean ratio of 5/1 and standard devia-
tions 0.5 (left) and 3.0 (right.)

In a final setting, we tested our algorithm in order to reconstruct a mixture
of two Gaussians having a common standard deviation of 0.5 and mean values
of 3.0 and 10.0. The weights of both Gaussians are set to 0.5. The results are
shown in figure 10(a). The resulting histogram shows two clear peaks correspond-
ing to the means of the contributing Gaussians. To conclude, the technique of
building histograms from preference areas is capable of reconstructing preference
distributions. Let us note, that we do not provide experiments on the amount
of necessary sample paths. Such experiments would be extremely dependent on
the quality of the employed trajectories and not of their quantity. Since a tra-
jectory having multiple alternative routes yields a much smaller preference area,
even a few well-selected observations might be sufficient to compute a very good
approximation of the preference distribution.

In the next experiment, we wanted to examine the preference distributions
on a real set of trajectories. In order to generate results being as realistic as
possible, we need trajectories and network data of high quality. Though there
is trajectory data publicly available, e.g. from [6], the data is often located in
Beijing. However, the available OSM data for Beijing was rather incomplete
w.r.t. to road segments and traffic lights. Thus, we tested our method on the
OSM network of the German city of Bad Toelz which is more thorough. The used
trajectories are the raw trajectories from OSM which were used to create the
OSM map. We employed a simple topological map-matching approach to map
the trajectories onto the graph. After sorting out cyclic paths (since they where
obviously not driven with the intention to find an efficient path), we gathered 156
trajectories. For those trajectories, we derived a preference distribution which is
depicted in figure 10(b). As cost criteria, we examined the path length in contrast
to the passed traffic lights. The strongest peak of the derived distribution reflects
the decision of driving the shortest path regardless of the number of encountered
traffic lights. However, there are two further peaks in the distribution for values

88 A. Balteanu, G. Jossé, and M. Schubert

0.014

Preference Distribution for means of 3/1 and 10/1
and standard deviation 0.5 on 200 Paths

0.012

0 008

0.01

0.006

0.008

0.004

0.002

0

(a) Mixture Model

0.02

Trade Off Distance vs. Traffic Lights

156 OSM Trajectory Bad Toelz

0.016

0.018
j y

0.012

0.014

0.008

0.01

0.004

0.006

0.002

0.004

0

(b) OSM Trajectories

Fig. 10. Left: Computed distribution for a mixture model of 2 Gaussians with stan-
dard deviation 0.5 and means 3/1 and 10/1. The for each Gaussian was 0.5. Right:
Preference distribution of 156 raw trajectories the OSM map of Bad Toelz is built
upon. The distribution shows 3 different peaks which is natural since the trajectories
are generated by various drivers.

2.8 and 6.2, showing that some of the paths where longer but had less traffic
lights. Let us note that deriving several peaks is not surprising for this data set
because a city in OSM is usually recorded by multiple persons. Unfortunately,
the downloaded GPX file did not contain the owner of the trajectory. Thus,
running tests for a particular person was not possible. To conclude, even for a
group of drivers the preference distribution displays clear peaks which can be
employed for proposing route alternatives which better mirror the trade-offs of
the observed persons.

In a final experiment, we examine the performance increase when employing
the fast algorithm directly determining neighbors in comparison to the basic ap-
proach of employing a given algorithm for route skyline computation. The route
skyline in the basic approach was computed with the ARSC algorithm [4]. Let
us note that though our method consists of more steps than determining the
preference area for one trajectory, this step is the computationally most expen-
sive. We measured the average runtime for computing one preference area and
the amount of visited nodes on the Beijing graph for 1000 queries. Figure 11
shows the average results for one query. The amount of visited nodes was only
70 % percent of the basic approach. However, the ARSC algorithm uses an em-
bedding for making an A∗-like search, when computing the route skyline. Thus,
the amount of visited nodes is already rather small. However, our fast algorithm
is about 6 times faster. This is due to the fact that the overhead for processing
unnecessary paths and their extensions is significantly smaller. For determining
preference areas in the Beijing network our algorithm needed only an average
of 1 second per trajectory. Thus, it would be possible to maintain preference
distributions even in embedded system with computational restrictions.

Mining Driving Preferences in Multi-cost Networks 89

Runtime and visited Nodes of
Basic and Fast Approach for

7000.00

8000.00

pp
computing Preference Areas

6000.00

Fast
Basic

4000.00

5000.00

2000 00

3000.00

1000.00

2000.00

0.00

time per path in ms visited Nodes

Fig. 11. Performance comparison between the basic approach and the fast algorithm
directly generating the neighboring paths on the skyline. The fast algorithm performs
between 5 to 6 times faster when computing the preference area of a trajectory.

7 Conclusions

In this work, we introduce a novel concept for modeling driving behavior. In con-
trast to existing approaches, our work is independent of location and absolute
values of the actual driven routes. Furthermore, it allows and identifies different
driving moods by generating a histogram approximating a driver’s personal pref-
erence distribution. This histogram could serve to predict future driving behavior
as well as to help navigation systems to adapt to the personal bias of certain
cost attributes. Technically, our method relies upon the notion of route skylines
and augments it by the new idea to compute only the required skyline paths.
We propose a fast algorithm which incorporates a much more restrictive abort
criterion significantly reducing the computational cost. Our experiments show
the effectiveness and the efficiency of our algorithmic model. Given a random
distribution, we are able to reproduce the input. The analysis of real-world tra-
jectories implied varying drivers’ trade-offs between travel distance and number
of traffic lights for a group of drivers contributing to open street map.

For future work, we plan to incorporate more use cases from the e-traffic
sector in order to gain insight into the trade-off between energy efficiency and
travel time. This is essential for optimizing route planning for electric cars –
a field which is rapidly gaining significance with rising ecological awareness.
Moreover, we would like to expand our 2-dimensional model to an arbitrary
number of attributes, ideally generating multi-variate preference distributions
to mirror possible multi-attribute preference trade-offs.

Acknowledgements. This research has been supported by the IKT II pro-
gram in the Shared-E-Fleet project. They are funded by the German Federal
Ministry of Economics and Technology under the grant number 01ME12107.
The responsibility for this publication lies with the authors.

90 A. Balteanu, G. Jossé, and M. Schubert

References

1. Simmons, R., Browning, B., Zhang, Y., Sadekar, V.: Learning to predict driver
route and destination intent. In: Proc. of IEEE Intelligent Transportation Systems
Conference (ITSC 2006), pp. 127–132 (2006)

2. Froehlich, J., Krumm, J.: Route prediction from trip observations. In: Society of
Automotive Engineers (SAE) 2008 World Congress (2008)

3. Chen, L., Lv, M., Ye, Q., Chen, G., Woodward, J.: A personal route prediction
system based on trajectory data mining. Inf. Sci. 181(7), 1264–1284 (2011)

4. Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference
path planning approach. In: Proc. of the 26th International Conference on Data
Engineering (ICDE), Long Beach, CA (2010)

5. Karbassi, A., Barth, M.: Vehicle route prediction and time of arrival estimation
techniques for improved transportation system management. In: Proceedings of
the Intelligent Vehicles Symposium 2003, pp. 511–516. IEEE (2003)

6. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: Proc. of the 18th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems
(ACM GIS), San Jose, CA, pp. 99–108 (2010)

7. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: Proc. of the 17th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), San Diego, CA, pp. 316–324 (2011)

8. Letchner, J., Krumm, J., Horvitz, E.: Trip router with individualized preferences
(trip): Incorporating personalization into route planning. In: Proc. of 8th Confer-
ence on Innovative Applications of Artificial Intelligence, AAAI 2006. The AAAI
Press (2006)

9. Mouratidis, K., Lin, Y., Yiu, M.: Preference queries in large multi-cost transporta-
tion networks. In: Proc. of the 26th International Conference on Data Engineering
(ICDE), Long Beach, CA, pp. 533–544 (2010)

10. Graf, F., Kriegel, H.P., Renz, M., Schubert, M.: Mario: Multi attribute routing in
open street map. In: Proc. of the 12th International Symposium on Spatial and
Temporal Databases (SSTD), Minneapolis, MN (2011)

11. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer (2011)

Mining Driving Preferences in Multi-cost Networks 91

APPENDIX: Advanced Route Skyline Computation

Algorithm 3. ARSC
Require: start node s, target node t, network Graph G

initialize queue Qnode of nodes composing skyline candidates, sorted in ascending order w.r.t. a
given score function and list Sroute of fully expanded skyline routes
while ¬Qnode .isEmpty do

v = Qnode .top
for all paths p ∈ v.SRS compute vector p.LB consisting of lower bound estimations for each
path attribute w.r.t. t do

if p.LB is dominated by some route in Sroute // PC 1 then
remove p from v.SRS

else
if ¬p.isProcessed then

p.isProcessed = true
expand p by one hop in each direction and store all new paths in the list pNext
for all p’ in pNext do

if p’ ends at t then
if p’ is not dominated by any route in Sroute then

Sroute .insert(p’) and remove all routes from Sroute that are dominated by p’
end if

else
vNext = p’.lastNode
if p’ is not dominated by any route in vNext.SRS // PC 2 then

vNext.SRS.insert(p’) and remove all sub-routes from vNext.SRS that are
dominated by p’

end if
end if
update Qnode

end for
end if

end if
end for

end while
return Sroute

In accordance with [4], we present the Advanced Route Skyline Computation
algorithm (ARSC) 3. It is based on two pruning criteria:

PC1 Lower bounding forward cost estimation for partially expanded routes: For
arbitrary start and target nodes s, t respectively and sub-routes 〈s, . . . , v〉
the function cLB underestimates the cost for any complement 〈v, . . . , t〉
using the Reference Node Embedding, i.e. c(〈s, . . . , v〉)+ cLB(〈v, . . . , t〉) ≤
c(〈s, . . . , v, . . . , t〉)

PC2 Sub-Route Skyline Criterion: Any sub-route p ending at a node v can be
excluded from further expansion if it is dominated by another route p′

ending at the same node v.

Thus, the ARSC computes route skylines efficiently, being able to prune routes
avoiding costly expansion up to the target node. It requires an updatable priority
queue Qnode of nodes. Every node n maintained in Qnode stores its own sub-route
skyline in a list n.SRS.

Mining Sub-trajectory Cliques

to Find Frequent Routes�

Htoo Htet Aung, Long Guo, and Kian-Lee Tan

School of Computing, National University of Singapore

Abstract. Knowledge of the routes frequently used by the tracked
objects is embedded in the massive trajectory databases. Such knowl-
edge has various applications in optimizing ports’ operations and route-
recommendation systems but is difficult to extract especially when the
underlying road network information is unavailable. We propose a novel
approach, which discovers frequent routes without any prior knowledge
of the underlying road network, by mining sub-trajectory cliques. Since
mining all sub-trajectory cliques is NP-Complete, we proposed two ap-
proximate algorithms based on the Apriori algorithm. Empirical results
showed that our algorithms can run fast and their results are intuitive.

1 Introduction

Advances in location-tracking technologies, such as the GPS, enable access to
spatial-temporal movement data (trajectory data) of the tracked objects in
question. Such movement data are usually archived in Trajectory Databases
(TJDBs) for further analysis to discover actionable knowledge and support deci-
sion making. For instance, the Automatic Identification System (AIS) transmits
the trajectory of a ship to maritime authorities, who use it to track and monitor
the movement of the vessels in their territories. The authorities often archive
the ship trajectories for further studies to obtain actionable knowledge, which
is, in turn, used to optimize their ports’ operations. Similarly, businesses in the
public transportation industry (taxi and bus operators) and those in the logis-
tics industry record and archive the movement data of their fleets in TJDBs for
analysis aiming to improve the quality of their services.

Since spatial-temporal movement data (trajectories) of the tracked objects
are archived in TJDBs, the tracks taken by the entities in question are also
recorded in the TJDBs. Therefore, the knowledge of “frequent routes” — a fre-
quent route can be loosely defined as a path, which many of the tracked objects
take frequently — is embedded in the massive TJDBs and such knowledge is
useful in many applications. For example, maritime authorities can use the fre-
quent routes of vessels to optimize their port operations. Another interesting
application of the knowledge of frequent routes is in route suggestions. Current
traffic navigation systems (marketed as GPS devices) use the shortest-paths in

� An extended version of this paper is available as a technical report at
http://www.comp.nus.edu.sg/~tankl/sstd13.pdf

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 92–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.comp.nus.edu.sg/~tankl/sstd13.pdf

Mining Sub-trajectory Cliques to Find Frequent Routes 93

the road network to navigate their users to reach their destinations. This ap-
proach has several limitations since the shortest route is not necessarily the best
route in terms of time taken to travel. Moreover, the shortest path may not be
suitable for the tourists, when the recommended path passes undesirable areas
such as areas having high crime rates. Knowledge of how to select the best route
is often embedded in locals’ trajectories as frequent routes since the locals know
and often take the best route.

Mining frequent routes from a TJDB is not trivial for the following reasons:

– Firstly, in many applications, the underlying road network (or semantic and
properties of spatial-regions) is not available. For instance, pedestrians are
not confined to road networks and will walk arbitrarily (through buildings
and open-spaces). Therefore, without the information of all the underlying
routes, it is not possible to count the number of time each route is used.

– Secondly, two vehicles travelling along the same road rarely have two identi-
cal sequences of locations reported in the Trajectory Databases because the
spatial space is continuous. Even if the movement is made on the exact same
path, it is still not possible to directly match the sequence of locations (sub-
trajectories) as the movements made may be at different speeds and the two
vehicles may have different GPS sampling rates. Therefore, matching two
sub-trajectories if they are taking the same route is not trivial and needs a
complicate similarity metric.

Contributions. Since a road network or semantic of the regions of the spatial
space the moving objects are traversing is often not available, we explored the
option of grouping similar sub-trajectories together and extracting a frequent
route from each group as this two-step method does not require to have the un-
derlying road networks that the moving entities in question take. Our approach
is different from the approaches proposed in [1–4] because:

– The methods appeared in [1, 2] convert the tracks logged in the TJDB into
a finite sequences of regions (the set of regions is also finite) and perform
sequence mining on the converted tracks using either a prior knowledge of the
spatial-space or a pre-processing step, while our proposed solutions require
neither a prior knowledge or pre-processing. In addition, the end results
obtained from the techniques in [1, 2] contain sequences of regions, which
have lost many subtle but important details of the frequent routes contrary
to the detailed routes our algorithms report.

– The methods appeared in [3, 4] partition the tracks into line-segments and
cluster the line-segments resulting in long frequent routes being reported as
multiple line-segment clusters and, hence, in order to infer these long frequent
routes, a post-processing step on the line-segment clusters is required, while
our proposed solutions directly report long frequent routes.

In order to group similar sub-trajectories, i.e. sub-trajectories taking the same
route, together in the same group, we used Fréchet distance as the similarity

94 H.H. Aung, L. Guo, and K.-L. Tan

measure in grouping sub-trajectories. Since Fréchet distance is indifferent to
speed, independent to the spatial distance between sampling points, and inde-
pendent to sampling frequency, sub-trajectories having taken the same route
belong to the same sub-trajectory group regardless of the speed they travelled,
differences in sequence of locations the corresponding tracked objects reported,
and differences in their GPS sampling rates.

Finding groups of sub-trajectories — or sub-trajectory clusters/cliques — us-
ing Fréchet distance is a known NP-Complete problem and there is no polynomial
approximation for approximation factor less than 2 [5]. We approach the problem
from data-driven perspective by proposing an output-sensitive approximation al-
gorithm based on the Apriori algorithm. In the experiments using real-life data,
our proposed algorithm performs faster and is more accurate than the known
polynomial-time approximation algorithm proposed in [5]. In addition, we pro-
pose a divide and conquer algorithm based on our proposed algorithm both to
maintain the memory requirements under a manageable amount and to achieve
parallelism.

2 Related Works

In order to discover frequent routes, the paths that the tracked objects frequently
use to travel possibly at different points in time, the earlier works [1,2] suggested
to divide the spatial region into regions, transform the trajectories into sequences
of regionsm and perform sequence mining on the resulting sequences. This ap-
proach has two obvious drawbacks. First, they need a pre-processing step and
a prior knowledge of the underlying spatial region in order to divide the entire
map into regions. Secondly, the granularity of resulting frequent route is reduced
depending on the size of the regions. Therefore, they are not suitable in situ-
ations, where a prior knowledge of the spatial region is not available and/or a
high granularity output frequent routes are required.

In the absence of underlying spatial information such as road network data,
however, researchers suggested a two-step methods — (a) group similar sub-
trajectories together and (b) extract a representative route from each group —
to find frequent routes [3–5]. Lee et al [3] suggested to divide the trajectories into
simplified trajectory-segments (line-segments), cluster the trajectory-segments,
and calculate representative trajectories from each cluster. Their method, how-
ever, is not applicable to trajectories that cross each other often [6]. Zhu et
al [4] proposed a similar method, in which partition is performed by a grid of
uniformly sized cells and combining trajectory clusters found across cells.

Buchin et al [5] suggested that one can simply choose an arbitrary sub-
trajectory in a group as its representative route (reference trajectory) if the
group contains only sub-trajectories, which are strictly similar to each other.
They proposed to use Fréchet distance (see below) as the similarity measure to
ensure each sub-trajectory group contains strictly similar sub-trajectories. They
define a sub-trajectory cluster as a set of sub-trajectories such that (a) it contains
m distinct sub-trajectories, (b) the longest of them is not shorter than l, and (c)

Mining Sub-trajectory Cliques to Find Frequent Routes 95

all its sub-trajectories are within a distance r from each other, where m, l, and
r are user-defined parameters. They proved that, given a TJDB of size n and
parameters, r, m, and l, finding longest sub-trajectory clusters is NP-Complete.
They also proposed approximation algorithms having an approximation factor
of 2 for several variants of the problem.

Fréchet Distance. Fréchet distance is regarded as a natural measure to quan-
tify similarity of curves [7]. An early treatment on computing Fréchet distance
for two polygonal curves is given in [8]. It reports that for two curves defined
by p and q points, deciding whether the Fréchet distance between them is less
than a given threshold r needs O(pq) time. They defined a two-dimensional data
structure called Free-space as a set of points that visualize whether a pair of two
points in the given two polygonal curves are within a Euclidean distance of r
and proved that the Fréchet distance between two polygonal curves is not more
than r if and only if there is a monotone curve in the corresponding Free-space.
Their results are extended for a set of polygonal curves in [9].

3 Sub-trajectory Cliques and the Frequent Routes

Definition 1. Trajectory of an Object —The Trajectory of a given object o is
a ordered sequence: trajo = 〈tstart(o), loco(tstart(o))〉, · · · , 〈tend(o), loco(tend(o))〉,
where tstart(o) and tend(o) denote the earliest and latest time-stamps that o reported
its location respectively while loco(t) denotes the location loc ∈ R2 of object o at
time-stamp t.

Definition 2. Sub-trajectory — Given the trajectory of an object trajo and
two time-stamps s and e such that tstart(o) ≤ s ≤ e ≤ tend(o), the sub-trajectory
of o between s and e is the ordered sequence, i.e. 〈s, loco(s)〉, · · · , 〈e, loco(e)〉.

Definition 1 defines a trajectory of an object while Def. 2 defines a sub-trajectory
as a continuous portion of a trajectory. Figure 1(a) shows two example trajec-
tories of two objects, a and b. Trajectory of a is traja = 〈ta1, (xa1, ya1)〉, · · · ,
〈ta5, (xa5, ya5)〉. Without lost of generality, we will assume the time is contin-
uous and there is a method to derive the location of objects in any real time-
stamp t ∈ {ts ∈ R|tstart(o) ≤ ts ≤ tend(o)}. We will also use the same term
“sub-trajectory” to refer to the corresponding route of a sub-trajectory (with-
out time-information). For instance, in Fig. 1(a), sub-trajectory of a between
time-stamp ta2 and ta4 is suba(ta2, ta4) = 〈ta2, (xa2, ya2)〉, · · · , 〈ta4, (xa4, ya4)〉
and its corresponding route is the poly-line: (xa2, ya2), · · · , (xa4, ya4).

Definition 3. FréchetDistance betweenTwoSub-trajectories—Let sta =
suba(sa, ea) and stb = subb(sb, eb) be two sub-trajectories. Also let A = {α|α :
[0, 1] → [sa, ea] and α is monotone.} and B = {β : β : [0, 1] → [sb, eb] and β is
monotone.} be two sets of re-parametrizations.

The Fréchet distance distFr between the two sub-trajectories, suba and subb,
is defined as the minimum distmax over A and B, where distmax(α, β) is the
maximum distance between loca(α(x)) and locb(β(x)) for all x ∈ [0, 1].

96 H.H. Aung, L. Guo, and K.-L. Tan

(a) (b) (c)

Fig. 1. (a) Two Routes and (b) a Possible Re-parametrization Pair of the Routes and
(c) Another Re-parametrization Pair of the Routes

Definition 3 defines a distance measure between two sub-trajectories, known as
Fréchet distance in the literature. Intuitively, the Fréchet distance between two
given routes is the minimum length of leash required for a man and his dog, each
walking on a route. Each is (intelligently) trying to minimize the required leash
length under a constraint that they cannot walk backward (but they may stop
walking to wait for the other).

We are going to briefly discuss how the Fréchet distance of the two example
routes, a and b, in Fig. 1(a)1 is calculated. Let us first assume route a (b) is taken
by the man (his dog). Each re-parametrization α ∈ A (β ∈ B) corresponds to
how the man (his dog) chooses to walk. The Fréchet distance between the two
given routes is the minimum distmax(α, β) of all pairs of (α, β) ∈ A × B. Two
such pairs, (α1, β1) and (α2, β2), are given in Table 1 and some of the location
pairs given by the two re-parametrization pairs are visualized (shown as thin
dotted lines) in Fig. 1(b) and Fig. 1(c).

For each pair (α, β), the continuous function f(α,β) : [0, 1] → R is de-
fined as f(α,β)(x) is the Euclidean distance between loca(α(x)) and locb(β(x)).
The leash length required for each pair of movement is the maximum value
of the image of f . For instance, f(α1,β1)(0.25) = dist(loca(ta2), locb(tb2)) and
f(α2,β2)(0.25) = dist(loca(ta3), locb(tb1)). Thus, the required leash length for the
first pair, distmax(α1, β1), is given by f(α1,β1)(1.00) = dist(loca(ta5), locb(tb5)) —
denoted as “max” in Fig. 1(b) — while that of the second pair, distmax(α2, β2),
is by f(α2,β2)(0.2) = dist(loca(ta3), locb(tb1)) — denoted as “max” in Fig. 1(c).

Hence, we can say that, in the first pair of re-parametrizations (see Fig. 1(b)),
the man and his dog walk in a more synchronized manner requiring shorter
(maximum) leash length than the second pair (see Fig. 1(c)), in which the man

1 The time-stamps in this example are arbitrary, i.e. two time-stamps with the same
numerals do not necessarily equal and the time-interval between two time-stamps
with the same alphabet and consecutive numerals are not necessarily the same.

Mining Sub-trajectory Cliques to Find Frequent Routes 97

Table 1. Two Possible Pairs of Re-parametrizations for the Two Sub-trajectories
Shown in Fig. 1(a)

Re-parametrization Pair 1 Re-parametrization Pair 2
x α1(x) β1(x) x α1(x) β1(x) x α2(x) β2(x) x α2(x) β2(x)

0.00 ta1 tb1 0.50 ta3 tb3 0.00 ta1 tb1 0.50 ta3 tb3
...

...
...

...
...

...
...

...
...

...
...

...
0.01 ta1 tb1 0.51 ta3 tb3 0.01 ta2 tb1 0.51 ta4 tb3

...
...

...
...

...
...

...
...

...
...

...
...

0.02 ta1 tb1 0.75 ta4 tb4 0.02 ta3 tb1 0.75 ta4 tb4
...

...
...

...
...

...
...

...
...

...
...

...
0.25 ta2 tb2 0.76 ta4 tb4 0.25 ta3 tb1 0.76 ta4 tb5

...
...

...
...

...
...

...
...

...
...

...
...

0.26 ta2 tb2 1.00 ta5 tb5 0.26 ta3 tb2 1.00 ta5 tb5
...

...
...

...
...

...

has walked (on route a) far before his dog begins to move (on route b). The
Fréchet distance is the shortest among the (maximum) leash lengths required
for all manners of progressing the man and his dog can make on their routes
(including those depicted in this example).

In essence, Fréchet distance considers only the direction (the man and his
dog are not allowed to walk back) and the shape of the curves (it chooses the
minimum among the leashes for all ways they can walk). Yet, it neither considers
the speed (each parametrization represent a different speed) nor the number of
sampled points (the re-parametrizations are defined as functions to a continuous
range), i.e. the Fréchet distance between two curves in the above example is the
same even if we remove the sample point at ta2 and put multiple sample points
between tb1 and tb2 by linear interpolation. Therefore, we choose the Fréchet
distance to measure the similarity between sub-trajectories.

Definition 4. Sub-trajectory Clique — Consider a Trajectory Database R,
which contains the trajectories of a set of objects O. Given parameters m, l, and
r, a set of sub-trajectories J forms a sub-trajectory clique (Trajcliq) if (i)
each j ∈ J is within r Fréchet distance away from all sub-trajectories j′ ∈ J ,
(ii) the lengths of all sub-trajectories j ∈ J are longer than l and (iii) J contains
at least m non-identical sub-trajectories.

Definition 4 defines a sub-trajectory clique (Trajcliq) which includes m non-
identical sub-trajectories, which are at least l units in spatial length (not time
duration). Two sub-trajectories are non-identical if either they are taken by dif-
ferent tracked objects or, in cases when they are taken by the same object, their
starting points are more than r distance away (measured along the trajectory,
not Euclidean distance). We choose the Fréchet distance, defined in Def. 3, to

98 H.H. Aung, L. Guo, and K.-L. Tan

measure the similarity between routes because Fréchet distance ensures sub-
trajectories in the same clique are spatially close, similar in shape, and similar
in direction. Therefore, all nearby sub-trajectories of similar shape and direction
to a sub-trajectory will belong to the same Trajcliq even though the corre-
sponding movements were taken at different speeds during different time-spans.
In other words, a Trajcliq groups the sub-trajectories, which are on the same
route and, hence, a track-clique containing m sub-trajectories corresponds to a
frequent route taken at least m times.

Figure 2(a) illustrates a TJDB containing trajectories of four objects, a, b,
c, and d. For m = 3, the sub-trajectory of a from ta1 to ta4, another sub-
trajectory of a from ta7 to ta10 and the sub-trajectory of b from tb1 to tb4 form
a Sub-trajectory clique (i.e. suba(ta1, ta4), suba(ta7, ta10), and subb(tb1, tb4) form
a Trajcliq) as the three sub-trajectories are within a Fréchet distance of r.
Note that two sub-trajectories of a single object, i.e. object a, can involve in the
same Trajcliq as they are non-identical (object a has travelled more than r
distance between loca(ta1) and loca(ta7)). However, the sub-trajectory of a from
ta5 to ta6, that of c from tc1 to tc2, and that of d from td1 to td2 do not form a
Trajcliq because the Fréchet distance between the sub-trajectories of c and d
is more than r.

(a) (b)

Fig. 2. (a) A Trajectory Database Containing Four Trajectories and (b) its Corre-
sponding Search-space

Definition 5. Frequent Route — A sub-trajectory clique is closed if and only
if there is no other sub-trajectory clique covering it. The longest sub-trajectory
in a closed sub-trajectory clique is defined as the corresponding Frequent Route
(FreqRo) of the closed sub-trajectory clique.

Definition 5 defines a Frequent Route as the longest sub-trajectory (spatial
length, not time duration) of a closed Trajcliq. A frequently-used route derived
from a non-closed sub-trajectory is useless to the users since its information is
conveyed in the frequent route derived from a closed Trajcliq.

Mining Sub-trajectory Cliques to Find Frequent Routes 99

4 Methods to Mine Sub-trajectory Cliques to Extract
Frequent Routes

Since mining all closed sub-trajectory cliques (Trajcliq) is NP-Complete [5],
we will describe a data-driven exact algorithm to discover all closed Trajcliqs
and extract a corresponding frequent route from each Trajcliq. The exact al-
gorithm is based on the apriori-properties of the Trajcliqs. We will proceed to
discuss why such an algorithm is not feasible and present two new algorithms to
approximate Trajcliqs. The first approximation algorithm has an approxima-
tion factor of 2. The second algorithm divides the TJDB into distinct subsets so
that an instance of the first algorithm can be applied to each subset, reducing
memory requirement and/or enabling parallel processing.

4.1 Apriori-Based Frequent Route Miner

Since mining all closed Trajcliq is an NP-Complete problem, we are going
to analyze the feasibility of using an Apriori-based data-driven algorithm to
discover closed Trajcliqs as intermediate results and extract Frequent Routes
from them. First, we will present the apriori-properties of Trajcliqs.

Lemma 1. Suppose a set of sub-trajectories J = {sub1, · · · , subp} and its subset
J ′ = {sub′1, · · · , sub′q} (p ≥ q). If there is a re-parametrization αi for each sub-
trajectory subi ∈ J such that for any i, j ∈ {1, · · · , p}, distmax(αi, αj) ≤ r, then
there is a re-parametrization α′

k for each sub-trajectory sub′k ∈ J ′ such that for
any i, j ∈ {1, · · · , q}, distmax(α

′
i, α

′
j) ≤ r.

Proof. For a pair of sub-trajectories sub′i, sub
′
j ∈ J ′, suppose there is no pair of

re-parametrizations α′
i and α′

j, which gives the distmax(α
′
i, α

′
j) ≤ r. By definition,

(although not necessarily unique) there is a pair of re-parametrizations that gives
minimum d = distmax(α

′
i, α

′
j) — i.e. r < d.

However, since J ′ ⊆ J , sub′i ∈ J and sub′j ∈ J . Therefore, αi and αj for
sub-trajectories sub′i and sub′j gives distmax(αi, αj) ≤ r < d (contradiction). ��

Using Lemma 1, we can derive the apriori-properties of Trajcliqs as follow:
if a set of sub-trajectories J = {sub1, · · · , subp} containing p sub-trajectories
forms a Trajcliq, there is a re-parametrization αi for each subi ∈ J , which
gives distmax(αi,αj) ≤ r for any subi, subj ∈ J . Following Lemma 1, there is
also (at least) a re-parametrization α′

i for each subi ∈ J ′ ⊆ J , which gives
distmax(α′

i,α
′
j)
≤ r for any i, j ∈ J ′. Therefore, the subset J ′ of a set J of sub-

trajectories forming a Trajcliq also forms a Trajcliq. In other words, J does
not form a Trajcliq if any of its subset does not.

The Apriori-based Frequent Route Miner (A-0), adapted from the Apriori-
algorithm in [10], exploits the apriori-properties of the Trajcliqs to systemati-
cally discover the Trajcliqs formed by (k+1) sub-trajectories only when those
formed by its subsets exist. An outline of the A-0 is given in Algorithm 1. The
function CLIQ(R, l, r, Ok) returns list of Trajcliqs, which may or may not be
closed, formed the k sub-trajectories of the objects in Ok.

100 H.H. Aung, L. Guo, and K.-L. Tan

Algorithm 1. Apriori-based Frequent Route Miner (A-0)

Input: R, r, m and l.
Output: A set of frequent routes F .
1: Set the set of object-lists C1 ← ∅, U ← ∅, F ← ∅ and k ← 2
2: for all (o, o′) ∈ O ×O do
3: Set Object-list O2 ← [o, o′] and Clique-list L(O2)←CLIQ(R, l, r, O2)
4: if L(O2) is not empty then
5: Set C2 ← C2 ∪ {O2}
6: while Ck �= ∅ do
7: for all Ok ∈ Ck do
8: if k ≥ m then
9: Set U ← U ∪ L(Ok)

10: Set the set of Object-lists Ck+1 ← ∅
11: for all Ok, O

′
k ∈ Ck such that k-prefix(Ok) = k-prefix(O′

k) do
12: Set Ok+1 ← append(Ok, last(O

′
k)) and L(Ok+1)← CLIQ(R, l, r, Ok+1)

13: if L(Ok+1) is not empty then
14: Set Ck+1 ← Ck+1 ∪ {Ok+1}
15: Set k ← k + 1
16: Set U ← U − {U |U is not a closed-Trajcliq}.
17: for all Q ∈ U do
18: Set F ← F ∪ {Get-Frequent-Route(U)}

The algorithm A-0 first initializes the Clique-list containing the Trajcliqs
formed by sub-trajectories of all possible pairs of objects (lines 2 - 5). Starting
with k = 2, the Clique-list of Trajcliqs formed by k+1 sub-trajectories of a list
of objects (Ok+1) are built only when those of its sub-lists (Ok and O′

k) sharing
the same k-prefix form Trajcliqs (lines 6 - 15). In doing so, if k ≥ m, then
the Trajcliqs in the Clique-list, which are formed by the k sub-trajectories
of the current Object-list (Ok), are potential closed Trajcliq. Thus, they are
put into the set of Trajcliqs U (lines 7 - 9), which is later filtered to remove
non-closed Trajcliqs (line 16). As the last step, the algorithm A-0 extracts a
frequent route from each closed Trajcliqin U (lines 17 - 18).

In order to allow a Trajcliqto contain two (different) sub-trajectories of
the same object, unlike other Apriori-based algorithms, A-0 uses a list no-
tation for objects, which may contain an object multiple times. Figure 2(b)
shows a portion of the search space the algorithm A-0 traverses to find the
Trajcliqs in the data in Fig. 2(a) for given parameters r, l and m = 3. A-0
starts with finding Trajcliq formed by two sub-trajectories of objects, starting
from the Trajcliqs formed by sub-trajectories of the Object-list [aa]. Since sub-
trajectories suba(ta1, ta4) and suba(ta7, ta10) forms a Trajcliq, it is stored in
the Clique-list L([aa]). It continues to find Trajcliqs formed by all the Object-
lists containing two objects with prefix [a], i.e. [ab], [ac] and [ad]. Then A-0
tries to find Trajcliqs formed by all Object-lists containing two objects with
prefixes [b], [c] and [d], which do not exist in the TJDB depicted in Fig. 2(a).

Mining Sub-trajectory Cliques to Find Frequent Routes 101

The first row (k = 2) of the Table 2 lists the state of the variables after this
initialization step. In the next step (k = 3), A-0 tries to find the Trajcliqs
formed by sub-trajectories of [aaa], [aab], [aac] and [aad] since their subsets are
in C2. It only finds a Trajcliq formed by sub-trajectories of Object-list [aab]
and put [aab] into C3 (see the second row in Tab. 2). Since k ≥ m, L([aab]) is
put into the result set U . The algorithm exits the loop at k = 4 as C4 becomes
empty and output the frequent route extracted from L([aab]).

Table 2. A Trace of A-0 Running on the Trajectory Database in Fig. 2(a)

k Ck L(Ok) U
2 [aa] 〈suba(ta1, ta4), suba(ta7, ta10)〉 —
[ab] 〈suba(ta1, ta4), subb(tb1, tb4)〉,

〈suba(ta7, ta10), subb(tb1, tb4)〉 —
[ac] 〈suba(ta5, ta6), subc(tc1, tc2)〉 —
[ad] 〈suba(ta5, ta6), subd(td1, td2)〉 —

3 [aab] 〈suba(ta1, ta4), suba(ta7, ta10), subb(tb1, tb4)〉 L([aab])
4 φ φ L([aab])

Finding Sub-trajectory Cliques of k Sub-trajectories. In algorithm A-0,
lines 3 and 12 call a sub-routine (CLIQ) in order to find all sub-trajectory cliques
composed of k sub-trajectories. CLIQ uses Free-space (defined below) to extract
the sub-trajectory cliques.

Definition 6. Free-space — Given a distance threshold r and two sub-trajecto-
ries subi and subj containing p and q segments respectively, their corresponding
Free-space is the set: F (i, j) = {(x, y) ∈ [0, p]× [0, q] : dist(loci(x), locj(y)) ≤ r}.

Definition 6 defines a free-space as a two-dimensional map that maintains, which
parts of the two sub-trajectories in questions are within distance r. Figure 3 illus-
trates a Free-space (cell) of two sub-trajectories i and j containing one segment
each for a distance r as the white region. The two points marked by black rect-
angles in the Fig. 3 is closer than the distance r. Therefore the point in the
Free-space that represents these two points of the trajectories falls in the white
region while that of two points marked by black circles, in the grey region. For
sub-trajectories containing p and q segments, their Free-space for a given r is a
two-dimensional array of such Free-space cells.

For two-dimensional GPS trajectories, the white region of a Free-space cell is
always an intersect of an eclipse and a rectangle [8]. The white region, therefore,
is defined by eight points called critical points (illustrated as black stars in Fig.
3). Adjacent Free-space cells share the critical points between them. For example,
the critical points on the right boundary of the Free-space cell at (x − 1, y) is
the same as those on the left of Free-space cell at (x, y).

Alt and Godau [8] proved that the Fréchet distance between two sub-trajecto-
ries is less than r if and only if there is a monotone path in their Free-space.
The sub-routine CLIQ uses a brute-force process to find all monotone paths

102 H.H. Aung, L. Guo, and K.-L. Tan

Fig. 3. Two Sub-trajectories and Their Corresponding Free-space

(monotone in all coordinates) in a k dimensional-space in the k-dimensional Free-
space of the trajectories of k given objects in Ok. However, for k ≥ 3, despite
being polynomial, this process is not feasible for real-life datasets containing
hundreds of trajectories with thousands of segments. In addition, the generalized
process needs k(k − 1)/2 free-space to be kept in the memory for all k ≥ 2.
Therefore, we turn our focus to approximation algorithms.

4.2 Approximation of Sub-trajectory Cliques

We observe that if a set of sub-trajectories J = {sub1, sub2, · · · , subp} forms
a Trajcliq, the Fréchet distance between the first sub-trajectory, sub1, and
other sub-trajectories, sub2, · · · , subp is at most r. We will use this observation
to approximate Trajcliqs formed by k ≥ 3 sub-trajectories. We will denote the
first sub-trajectory in a set of sub-trajectories as the “reference sub-trajectory”
(or simply “reference trajectory”) of the Trajcliq it forms. The approximation
factor of our proposed solution is 2 since Fréchet distance follows triangular
inequality [7].

The approximation algorithm we develop, namely Apriori-based Approximate
Frequent Route Miner (A-1), is essentially following the same steps of A-0. The
only difference between the exact algorithm (A-0) and the approximate one (A-
1) is that A-1 uses an approximation sub-routine instead of the exact CLIQ in
line 12. For the trajectories in Fig. 2(a), A-1 finds the Trajcliqs of Object-list
containing two objects (the same as A-0). Then, for k = 3, it tries to approx-
imate Trajcliqs of sub-trajectories in Object-lists, whose subsets are found
in O2. A-1 finds two (approximate) Trajcliqs, J1 = {suba(ta1, ta4), suba(ta7,
ta10), subb(tb1, tb4)} and J2 = {suba(ta5, ta6), subc(tc1, tc2), subd(td1, td2)} using
suba(ta1, ta4) and suba(ta5, ta6) as their reference trajectories respectively. It does
not find any Trajcliqs for k = 4.

Reducing the Number of False-Positives. Since the Fréchet distance be-
tween the sub-trajectory subc(tc1, tc2) and the sub-trajectory subd(td1, td2) is
larger than r, the set of sub-trajectories J2 that our algorithm A-1 approx-
imates as a Trajcliq is a false positive the approximation introduces. We
further exploit the apriori-properties of Trajcliqs to reduce the number of
false positives in the approximation results. When the approximation sub-
routine builds the Trajcliqs formed by sub-trajectories {s1, s2, · · · , sk+1} of
Ok+1 = [o1, o2, o3, · · · ok+1], it also checks whether {o2, o3, · · · , ok+1} also forms

Mining Sub-trajectory Cliques to Find Frequent Routes 103

Trajcliqs. This simple check prunes false positives as illustrated in the follow-
ing example. Consider the sub-trajectories sa = suba(ta5, ta6), sb = subc(tc1, tc2),
and sd = subd(td1, td2) in Fig. 2(a). The Fréchet distance between sc and sd is
larger than r and sc and sd do not form a Trajcliq. Therefore, before the ap-
proximation sub-routine builds the sub-trajectory cluster 〈sa, sc, sd〉, it checks
whether sc and sd form a Trajcliqand, since they do not, the approximation
sub-routine simply prunes the Trajcliqs 〈sa, sc, sd〉.

This pruning mechanism may not be able to remove all false-positives since
A-1 is still approximating a Trajcliq by checking only the Fréchet distances
between the reference trajectory and the other sub-trajectories in a candidate.
The approximation factor also remains at 2. However, we expect A-1 to have
fewer false-positives in its results compared to other approximation algorithms.

4.3 A Divide and Conquer Scheme

Although the Apriori-based Approximate Frequent Route Miner (A-1) can run
fast, it still needs a large amount of memory both for the Apriori process and
the Free-space it needs to calculate and store. For larger datasets and real-life
computing settings, in which the available main memory is limited, this memory
requirement may become a big challenge. Therefore, we devise a Divide and
Conquer Scheme to mitigate the memory requirement issue of A-1.

We observe that, given an arbitrary bounding box B, all sub-trajectories it
confines (sub-trajectories are completely within it) cannot have a Fréchet dis-
tance less than or equal to r to those sub-trajectories not confined by the bounded
box B′, which is B extended by r on all sides. For instance, in Fig. 4, the whole
trajectory of a is in the shaded bounding box. Therefore, it cannot have its
Fréchet distance with the sub-trajectories of x (such as subx(tx2, tx4)) that goes
beyond the extended bounding box shown by the thick borders. In other words,
any sub-trajectory of a cannot form a Trajcliq with subx(tx2, tx4).

From this observation, we deduce that if we divide the spatial-space into mul-
tiple zones with stripes of width r between them, the (class of) sub-trajectories,
which pass the stripes, cannot form a Trajcliq with the sub-trajectories con-
fined in the zone. In the above example depicted in Fig. 4, there are four zones
and two stripes — one horizontal and one vertical. The sub-trajectories passing
either the horizontal and vertical stripes cannot form Trajcliqs with any sub-
trajectories confined in the four zones, i.e. sub-trajectory subx(tx1, tx4) passes the
vertical strip and, hence, it cannot form a Trajcliq with any sub-trajectories
confined in one of the zones like subx(ta1, ta2), suby(ty4, ty5), and subp(tp1, tp2).

Algorithm A-2 utilizes the Divide and Conquer Scheme and works as follow.
The spatial-space is divided into zones with stripes of width r between the zones
of size λ × λ, starting with λ at the user-defined zone-size λ0. For each zone
z, which has at least a trajectory wholly confined in, the sub-trajectories in its
extended zones z+ are processed using algorithm A-1. After each extended zone
z+ is processed, trajectories wholly contained in z is removed fromR as it cannot
form any more Trajcliqs with other sub-trajectories (passing the strips) in the
next pass. After all zones are processed, the zone-size is enlarged by multiplying

104 H.H. Aung, L. Guo, and K.-L. Tan

Fig. 4. An Illustration of the Divide and Conquer Scheme

λ with user-defined zone-size multiplier θ. When a single zone span the entire
spatial space, A-2 outputs a frequent route for each closed-Trajcliq.

We will illustrate how the algorithm A-2 works using the example trajectories
in Fig. 4. Initially, it divides the spatial-space into four zones. For the top-left
zone, trajectories a and b, and the maximal sub-trajectories of x, y, and z con-
fined in the extended bounded box (shown by thick borders), i.e. suba(ta1, ta3),
subb(tb1, tb3), subx(tx1, tx3), suby(ty1, ty3) and subz(tz1, tz3), are processed us-
ing A-1 and finds the Trajcliq formed by sub-trajectories suba(ta1, ta2) and
subb(tb1, tb2). Before moving on to the next zone, A-2 removes trajectories of
a and b from R. Then, A-2 skips the top-right zone as no trajectory is con-
fined in it. A-2 moves on to bottom-left zone (finds no Trajcliq and removes
trajectory c) and bottom-right zone (finds the Trajcliq U ′

p,q〈subp(tp1, tp3) and
subq(tq1, tq3)〉 and removes trajectory d). After all four zones are processed, the
algorithm A-2 tries to find Trajcliqs formed by sub-trajectories that remain.
In this stage, two Trajcliqs, Trajcliq Ux,y = 〈subx(tx4, tx5), suby(ty4, ty5)〉
and Up,q = 〈subp(tp1, tp4), subq(tq1, tq4)〉 are found. Since Up,q covers U ′

p,q, U
′
p,q

is removed from the results. By design, algorithm A-1 and A-2 give the same
output and, hence, have the same accuracy.

For large Trajectory Databases, A-2 would provide a reasonable trade-off be-
cause it divides both the search space of Apriori processing and the portions
of Free-space needed in the memory to approximate Trajcliqs. Moreover, the
divisions of the TJDBs A-2 provides can be processed independently using A-1
and, hence, A-2 can enable parallel mining of Frequent Routes.

5 Experimental Evaluations

We implemented algorithms, A-1, A-2, Sweep [5], and Traclus [3] in Java. Sweep
is a 2-distant approximation algorithm for mining sub-trajectory cliques, i.e. its

Mining Sub-trajectory Cliques to Find Frequent Routes 105

approximation factor is 2. We made minor changes in Sweep to ensure all sub-
trajectories in each reported approximated Trajcliqs have length l. We ran our
experiments on a Linux server equipped with 2.27GHz Intel Xeon CPU E5607
and 32GB of RAM. We had an R-Tree index for each trajectory-segment.

We used five datasets — Statefair, Orlando, New York, NCSU and KAIST —
of human movement [11] datasets. In addition, we also used datasets, Trucks [12]
consisting of 50 trajectories of trucks moving in Athens and Ships consisting of
458 trajectories of ships moving in Singapore in September 5, 2011. All distance
units are in metre. Table 3 shows the details of the datasets we used.

Table 3. A Summary of the Experiment Settings and Performance of Frequent Route
Mining Algorithms

Dataset Number of Time- Parameters Run-time (seconds)
Objects span m r l λ0 Sweep A-1 A-2 Traclus

Statefair 19 3hr 3 30 500 5,000 22 9 11 870
NCSU 35 21hr 3 30 500 5,000 129 63 65 6,722
New York 39 22hr 3 30 500 5,000 178 103 113 3,427
Orlando 41 14hr 3 30 500 5,000 196 96 101 18,088
KAIST 92 23hr 3 30 500 5,000 2,617 1,237 1,369 71,443
Trucks 50 33 days 3 20 2,000 5,000 5,709 3,323 1,416 88,123
Ships 458 4hr 3 100 1,500 10,000 500 262 610 —

Table 3 shows the default parameters and run-time performance of each al-
gorithm for different datasets. Sweep uses the same set of parameters m, l, and
r as algorithms A-1 and A-2, while, for Traclus, we use all the parameter values
as suggested in [3]. We stopped Traclus for Ships dataset after it took several
days running. In all datasets, we observe that our proposed algorithms, A-1 and
A-2, finished faster than Sweep and Traclus. Traclus took the most time because
the distance measure it uses cannot make use of any spatial index. A-1 and A-2
performed faster than Sweep because of their pruning mechanisms. A-1 took
less time compared to A-2 for all datasets except Trucks because the Free-space
data structure fits in the main memory (favouring A-1) and performance of A-2
depends on the whether the dataset is divided into zones, which can confine as
many (whole) trajectories as possible — hence, on λ0 and θ.

Figure 5(a) shows the frequent routes we extracted from Ships dataset using
algorithm A-1. A-1 reported frequent routes used at least five times in four hour
period, which we consider as significant giving that ships do tend to follow the
exact same routes. Figure 5(b) shows the frequent routes discovered by A-1 in
Trucks dataset. It clearly shows the major road sections in Athens, which the
trucks in the dataset used multiple times. For both datasets, Sweep also reported
a very similar results. However, its results contain more false-positives than A-1
and A-2 as A-1 and A-2 exploits the apriori-properties of TRAJCLIQs to prune
some false-positives while Sweep does not have any pruning mechanism.

106 H.H. Aung, L. Guo, and K.-L. Tan

(a) (b)

Fig. 5. (a) Frequent (Used at least three times and five times) Routes Discovered by
Algorithm A-1 (in colors and in black) Superimposed on all Trajectories (in grey) in
the Ships Dataset and (b) Frequent (Used at least five times) Routes Discovered by
Algorithm A-1 (in black) Superimposed on All Trajectories (in light pink) in the Trucks
Dataset.

Figure 6 compares the significant portions of the results produced by Traclus
with the frequent routes, which were used more than five times, produced by A-1
for the same area. The results produced by Traclus, using its default parameters,
contain a few trajectory clusters, from which we need to extract representative
trajectories. The representative routes are often short and straight lines. Traclus
failed to find longer and more complicated routes like A-1 did — Traclus did not
find the route travelling east to west in the eastern side of the map. The results
of A-1 include frequent routes across junctions (involving turns), which Traclus
failed to find — notice the routes in the western side of the map, which involves
turns and crosses junctions. Through closer inspection, we noticed that, when
A-1 found a longer frequent route crossing multiple junctions, Traclus found only
a portion of that frequent route or no frequent route at all.

To summarize the comparison of the algorithms’ outputs, we learnt that our
proposed algorithms produced results, which agrees to human intuitions. On the
other hand, Traclus, using suggested parameters, failed to find some frequent

(a) (b)

Fig. 6. (a) Trajectory Clusters of the Trucks Discovered by Traclus and (b) Frequent
Routes of the Trucks Discovered by Algorithm A-1 in the Same Area

Mining Sub-trajectory Cliques to Find Frequent Routes 107

routes, which our proposed algorithms found. Since Traclus failed to deliver
intuitive output, we omitted Traclus in further experiments.

Figure 7(a) and Figure 7(b) shows the total running time of algorithms for
datasets, New York and KAIST, using default l and r while varying m. For both
New York and KAIST, A-1 and A-2 finished faster than Sweep, with A-1 being
the fastest. The changes in the value of m did not significantly affect the run-
time of all algorithms although the run-times were slightly reduced when m = 4
as larger m values result in fewer frequent routes required to be outputted.

(a) (b)

Fig. 7. Impact of the Parameter m on the Performance of the Frequent Route Mining
Algorithms Using (a) New York and (b) KAIST

Figure 8(a) and Fig. 8(b) show the total running time for datasets, New
York and KAIST, with default m and r while varying l. For both datasets, as
l increases, the total running time for both A-1 and A-2 decreases, which is
more pronounced for A-2 on KAIST. It is because as l increases, the number of
Trajcliqs and frequent routes decreases and A-1 and A-2 are output sensitive
algorithms. We observed A-1 always performed faster than the others and A-2
performed faster than Sweep except in KAIST when l = 300m. A-2 took longer
time in KAIST for l = 300m because KAIST contains longer trajectories, which
A-2 cannot prune early, forming using a large set of shorter frequent routes A-2
has to wastefully process multiple time.

Figure 9(a) and 9(b) compare the performance of the algorithms for New York
and KAIST using default m and l while using different values for r. We see that
the running times for all algorithms increase when r increases because increasing
r also increases the number of Trajcliqs and, hence, the number of frequent
routes in the results. A-1 and A-2 still outperformed Sweep and the run-time
of Sweep increases faster than A-1 and A-2 when r increases. Regardless of the
value of r given, A-1 finished faster than A-2.

To summarize our experiment results, for real-life settings, our proposed algo-
rithms (A-1 and A-2) provide more intuitive results and perform faster than Tra-
clus. They also perform faster than the polynomial time approximation algorithm

108 H.H. Aung, L. Guo, and K.-L. Tan

(a) (b)

Fig. 8. Impact of the Parameter l on the Performance of the Frequent Route Mining
Algorithms Using (a) New York and (b) KAIST

(a) (b)

Fig. 9. Impact of the Parameter r on the Performance of the Frequent Route Mining
Algorithms Using (a) New York and (b) KAIST

Sweep due to their pruning power based on apriori-properties of Trajcliqs. Al-
though A-1 performed faster than A-2 in our experiments, with larger Trajectory
Databases and limited amount of memory, A-2 would give a reasonable trade-off
between run-time and memory requirements in finding frequent routes.

6 Conclusion

In order to find frequent routes when detailed information of underlying road
network is not available, we had proposed a two-step method, (a) to find cliques
of sub-trajectories using Fréchet distance as the similarity measure and (b) to
extract a frequent routes from each sub-trajectory cliques. We designed two
pragmatic approximation algorithms — the first one based on Apriori algorithm
while the second sub-divides the input (large) TJDB into (smaller) subsets so
that an instance of the first algorithm can process each subset independently. In
the experiments we conducted, both algorithms performed reasonably fast and
provided intuitive results.

Mining Sub-trajectory Cliques to Find Frequent Routes 109

References

1. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2007, pp. 330–339. ACM, New York (2007)

2. Morzy, M.: Mining frequent trajectories of moving objects for location prediction.
In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 667–680. Springer,
Heidelberg (2007)

3. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2007, pp. 593–604. ACM, New York (2007)

4. Zhu, H., Luo, J., Yin, H., Zhou, X., Huang, J.Z., Zhan, F.B.: Mining trajectory
corridors using frèchet distance and meshing grids. In: Zaki, M.J., Yu, J.X., Ravin-
dran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 228–237.
Springer, Heidelberg (2010)

5. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commut-
ing patterns by clustering subtrajectories. In: Hong, S.-H., Nagamochi, H., Fuku-
naga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 644–655. Springer, Heidelberg
(2008)

6. Kashyap, S., Roy, S., Lee, M.L., Hsu, W.: Farm: Feature-assisted aggregate route
mining in trajectory data. In: Proceedings of the 2009 IEEE International Con-
ference on Data Mining Workshops, ICDMW 2009, pp. 604–609. IEEE Computer
Society, Washington, DC (2009)

7. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the frèchet distance for re-
alistic curves in near linear time. In: Proceedings of the 2010 Annual Symposium
on Computational Geometry, SoCG 2010, pp. 365–374. ACM, New York (2010)

8. Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves.
Int. J. Comput. Geometry Appl. 5, 75–91 (1995)

9. Dumitrescu, A., Rote, G.: On the fréchet distance of a set of curves. In: Proceed-
ings of the 16th Canadian Conference on Computational Geometry, CCCG 2004,
pp. 162–165. Concordia University, Montréal (2004)

10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of 20th Inter-
national Conference on Very Large Data Bases, VLDB 1994, pp. 487–499. Morgan
Kaufmann, Santiago de Chile (1994)

11. Jetcheva, J.G., Chun Hu, Y., Palchaudhuri, S., Kumar, A., David, S., Johnson,
B.: Design and evaluation of a metropolitan area multitier wireless ad hoc network
architecture, pp. 32–43 (2003)

12. http://www.rtreeportal.org

http://www.rtreeportal.org

Discovering Influential Data Objects over Time

Orestis Gkorgkas1, Akrivi Vlachou1,2,�, Christos Doulkeridis3,��, and Kjetil Nørvåg1

1 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Institute for the Management of Information Systems, R.C. “Athena”, Athens, Greece

3 Department of Digital Systems, University of Piraeus, Greece
{orestis,vlachou,cdoulk,noervaag}@idi.ntnu.no

Abstract. In applications such as market analysis, it is of great interest to prod-
uct manufacturers to have their products ranked as highly as possible for a signifi-
cant number of customers. However, customer preferences change over time, and
product manufacturers are interested in monitoring the evolution of the popularity
of their products, in order to discover those products that are consistently highly
ranked. To take into account the temporal dimension, we define the continuous
influential query and present algorithms for efficient processing and retrieval of
continuous influential data objects. Furthermore, our algorithms support incre-
mental retrieval of the next continuous influential data object in a natural way. To
evaluate the performance of our algorithms, we conduct a detailed experimental
study for various setups.

1 Introduction

In online marketplaces, top-k queries are typically used to present a limited number
of products ranked according to the user’s preferences. This is extremely helpful for
the user as it enables decision-making, without the need to inspect large amounts of
possibly uninteresting results. In addition, the user is not overwhelmed by the avail-
able information and can retrieve results that satisfy her information need. As a result,
an increasing amount of research has focused on efficient techniques for top-k query
processing lately [6].

From the perspective of the product manufacturers top-k queries are of great interest
as well, since the visibility of a product clearly depends on the number of different top-
k queries for which it belongs to the result set. The reason for this is twofold: 1) users
usually consider only a few highly ranked products and ignore the remaining ones,
and 2) products that appear in the top-k result sets are far more likely to be chosen by a
potential customer, because these products satisfy the customers’ preferences. Recently,
reverse top-k queries [14] were proposed to study the visibility of a given product. A
reverse top-k query returns the set of user preferences (i.e., customers) for which a

� The work of Akrivi Vlachou was supported by the Action “Supporting Postdoctoral Re-
searchers” of the Operational Program “Education and Lifelong Learning” (Action’s Bene-
ficiary: General Secretariat for Research and Technology), and is co-financed by the European
Social Fund (ESF) and the Greek State.

�� The research of Christos Doulkeridis was supported under the Marie-Curie IEF grant number
274063 with partial support from the Norwegian Research Council.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 110–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Discovering Influential Data Objects over Time 111

given product is in the result set of the respective top-k queries. Intuitively, a product
that appears in as many as possible top-k result sets, has a higher visibility and therefore
also a higher impact on the market. This has naturally lead to the definition of the
most influential products based on the cardinality of their reverse top-k result sets [17].
Identifying the most influential products from a given set of products is important for
market analysis, since the product manufacturer can estimate the impact of her products
in the market.

However, an important aspect of a product’s influence that has not been taken into
account yet is its variance over time as the user preferences change. The customers’
criteria can differ significantly over time for various reasons. For example, in online
marketplaces, new customers pose queries and new preferences are collected. In ad-
dition, customers that have already posed queries will disconnect after some time. As
user preferences change over time, a product which appears consistently in the top-k
results of as many customers as possible, thus satisfying many customers’ criteria at
any time, has a higher impact on the market than a product that is absent from those re-
sults. Therefore, these products are the best candidate products to advertise to potential
customers, and it is important to identify such products efficiently.

In this paper, we study for the first time the problem of finding the product that be-
longs consistently to the most influential products over time, the continuous influential
products. This is an important problem for many real-life applications. For example, the
products advertised on the first page of an online marketplace should be the products
that have the greatest impact on the market, i.e., the products that are the most popular
among the customers. Since customers change all the time, the products that consis-
tently belong to the most influential products over time are more probable to attract
many potential customers at any time. It is therefore essential to identify the objects
(products) that have high impact over a period of time and despite the fluctuation of
preferences these objects remain among the most influential objects. From now on we
will use the terms product and object interchangeably.

In the following, we first define formally the problem of continuous influential prod-
ucts and provide a baseline algorithm that sequentially scans all time intervals in or-
der to retrieve the most continuous influential product. Then, we provide a bounding
scheme in order to facilitate early termination of our algorithms and avoid processing
time intervals that do not alter the result set. Summarizing, the main contributions of
this paper are:

– We study, for the first time, the problem of identifying the data object that has the
highest impact over time.

– An appropriate score of influence (called continuity score) based on the reverse
top-k query is defined to capture the product impact over a period of time.

– We derive upper and lower bounds for the continuity score of a given object that
lead to efficient algorithms for retrieving the most continuous influential product.
Two different algorithms are presented that provide early termination based on the
bounds, but follow different strategies in order to terminate as soon as possible.

– We conduct a detailed experimental study for various setups and demonstrate the
efficiency of our algorithms.

112 O. Gkorgkas et al.

The rest of this paper is organized as follows: In Section 2 we provide the necessary pre-
liminaries, while in Section 3 we formulate the problem statement. Section 4 presents
a baseline algorithm for finding the data object that belongs consistently to the most
influential products. Section 5 provides the foundation for our bounding scheme and
describes the two threshold-based algorithms. Our experimental results are presented
in Section 6. Section 7 provides an overview of related work. Finally, in Section 8 we
conclude the paper.

2 Preliminaries

Let D be a dataspace with n dimensions {d1, . . . , dn} and S be a set of data objects on
D. A data object is represented as a point o = {o[1], . . . , o[n]} where o[i] is the value
of the attribute di.

2.1 Time-Invariant Case

Given a monotonic scoring function f : S → R, a top-k query returns the k best objects
o ∈ S ranked based on their scores f(o). The most important and commonly used case
of scoring functions is the weighted sum function, also called linear. For a given data
object o and a weighting vector w, its score fw(o) is equal to the weighted sum of the
individual values of o: fw(o) =

∑n
i=1 w[i]o[i], where w[i] ≥ 0 (1 ≤ i ≤ n). The value

of each dimension w[i] of the vector w is a weighting (preference) score on dimension
di. Without loss of generality we assume that (a) minimum values are preferable, and
(b) for each vector w it holds that

∑n
i=1 w[i] = 1. We denote the result set of top-k

query defined by a weighting vector w as TOPk(w).

Definition 1. (Top-k query): Given a positive integer k and a user-defined weighting
vector w, the result set TOPk(w) of the top-k query is a ranked set of objects such that
TOPk(w) ⊆ S, |TOPk(w)| = k and ∀o, o′ : o ∈ TOPk(w), o′ ∈ S − TOPk(w) it
holds that fw(o) ≤ fw(o

′).

Given a data set S of objects, a set W of weighting vectors, an object q and an integer k,
a reverse top-k query returns all weighting vectors {w} ∈W for which q ∈ TOPk(w).
We denote the result set of weighting vectors {w}, as RTOPk(q) = {w}.

Definition 2. (Reverse top-k query [14]): Given an object q, a positive number k and
two data sets S and W , where S represents data objects and W is a data set of
weighting vectors, a weighting vector w ∈ W belongs to the reverse top-k result set
RTOPk(q) of q, if and only if ∃o ∈ TOPk(w) such that fw(q) ≤ fw(o).

We can also define the influence score of a data object by simply setting a single value
k that determines the scope of the reverse top-k queries that are taken into account for
identifying influential data objects.

Definition 3. (Influence score [17]): Given a positive integer k, a data set S, and a set
of preferences (weighting vectors) W , the influence score of a data object o is defined
as the cardinality |RTOPk(o)| of the reverse top-k query result set of object o.

Discovering Influential Data Objects over Time 113

Based on the definition of influence score, we define the ranked set of m most influential
data objects.

Definition 4. (Top-m most influential data objects [17]): Given a positive integer k, a
data set S, and a set of preferences (weighting vectors) W , the result set ITOPm

k of the
top-m influential query is a ranked set of objects such that ITOPm

k ⊆ S, |ITOPm
k | =

m and ∀o, o′ : o ∈ ITOPm
k , o′ ∈ S − ITOPm

k it holds that |RTOPk(o)| ≥
|RTOPk(o

′)|.

2.2 Temporal Model

We model the time domain T as an ordered set of V disjoint time intervals that cover
the complete domain, i.e., T = {T1, T2, . . . , TV } and Ti

⋂
Tj = ∅ for i �= j. We

denote the start and end of time interval Ti with ts(Ti) and te(Ti) respectively. Then,
it also holds that te(Ti) = ts(Ti+1), and that ts(T1) and te(TV) denote the start and
end of T respectively. Obviously, the number of time intervals V is user-specified and
application-dependent, and its exact value depends on the desired level of detail for
monitoring temporal changes.

In order to model the interval that a user is online, we associate the weighting vector
representing the user preferences with a time interval. Thus, given a weighting vector
w and by abusing notation slightly, we denote the start of this interval as ts(w) and its
end as te(w). We are now ready to define the validity of a weighting vector with respect
to a time domain T that consists of time intervals.

Definition 5. (Validity of weighting vector): Given a time domain T =
{T1, T2, . . . , TV } and a weighting vector w, the validity of w with respect to T is the
interval [ts(Ti), te(Tj)), where ts(w) ∈ Ti and te(w) ∈ Tj .

Based on Definition 5, we consider as the validity period of a weighting vector w the
interval defined by the start and end of the time intervals (Ti and Tj) that enclose ts(w)
and te(w) respectively. Henceforth, we will use ts(w) to refer to ts(Ti) and te(w) to
refer to te(Tj).

3 Problem Formulation

Given a time domain T = {T1, T2, . . . , TV }, we define a total order≺ such that Ti ≺ Tj
if te(Ti) ≤ ts(Tj) for any Ti, Tj ∈ T . Furthermore, we use ITOPm

k (Ti) to refer to the
result set of the top-m most influential objects by taking into account only the weighting
vectors that are valid in the interval Ti.

In order to identify products that are consistently highly ranked for multiple users as
time passes, we define the continuity score of an object o ∈ S.

Definition 6. (Continuity score): Given a data set S, a set of weighting vectors W , and
a time domain T = {T1, T2, . . . , TV }, the continuity score cis(o) of an object o ∈ S is
the maximum number of consequent intervals Ti for which o belongs to the top-m most
influential data objects, i.e., o ∈ ITOPm

k (Ti).

114 O. Gkorgkas et al.

The continuity score of an object is practically a measure of the object’s aggregated
influence over time. As we aim to discover the object with highest continuity score, we
define the most continuous influential data object in a straightforward way.

Definition 7. (Most continuous influential data object): Given a data set S, a set of
weighting vectors W , and a time domain T = {T1, T2, . . . , TV }, the most continuous
influential data object o ∈ S is the object for which it holds that �o′ ∈ S such that
cis(o′) > cis(o).

We are now ready to formally define the problem of discovering the most influential
object over time. Another closely related problem is the one of discovering a ranked set
of the most influential object over time.

Problem 1. (Most continuous influential object): Given a data set S, a set of weight-
ing vectors W , and a time domain T = {T1, T2, . . . , TV }, find the most continuous
influential object o ∈ S.

Problem 2. (Top-N continuous influential objects): Given a data set S, a set of weight-
ing vectors W , a time domain T = {T1, T2, . . . , TV }, and an integer N , find the ranked
set of the N most continuous influential object {o1, o2, . . . , oN} ∈ S.

In this paper, we focus our attention to Problem 1 and present our algorithms for solving
this problem. However, our algorithms can be extended in a straightforward way to
solve also Problem 2. For the sake of simplicity we omit the details here.

4 Sequential Interval Scan

A baseline algorithm for solving Problem 1 is to compute the ITOPm
k (Ti) sets for all

time intervals Ti of T and simply follow a counting approach of the appearance of any
data object o in consequent intervals. Then, the most continuous influential object is
the one that appears in the ITOPm

k (Ti) sets for the maximum number of consequent
intervals. In the following, we refer to this algorithm as Sequential Interval Scan (SIS).

Intuitively, in each iteration (lines 2–10 of Algorithm 1), SIS examines the next con-
sequent interval Ti ∈ T and computes the set of most influential objects ITOPm

k (Ti)
within Ti. For each retrieved object o ∈ ITOPm

k (Ti), we maintain its current continu-
ity score, which is derived based on the processed intervals so far. We use the concept
of alive object to refer to any object retrieved in a previous interval Tj(j ≤ i) that
is influential in all intervals between Tj and Ti and also belongs to the most recently
processed ITOPm

k (Ti) set; we also refer to objects that stopped being influential at
some intermediate interval between T1 and Ti as dead objects. To ensure correctness,
SIS needs to maintain the alive objects in a list A and only a single dead object d, which
is the one with the maximum continuity score among all other dead objects (lines 4–6).
Then, the retrieved influential objects in Ti are examined, and if an object belongs to A
(i.e., was and remains alive) then its score is increased by 1 (line 8), otherwise we add it
to A (line 9). After having examined all intervals, the algorithm terminates and reports
the object with maximum score among the alive objects and the dead object (line 10).

The main shortcoming of SIS is that it needs to evaluate the ITOPm
k query for all

|V | time intervals. In the following, we study how to derive appropriate score bounds,
in order to find the most continuous influential object without processing all queries.

Discovering Influential Data Objects over Time 115

Algorithm 1. Sequential Interval Scan (SIS)
Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 A← ∅, d←null (A: alive objects, d: dead object)
2 for i = 1 . . . V do
3 I ← ITOPm

k (Ti)
4 forall the o ∈ A and o /∈ I do
5 A← A − {o} (remove dead objects)
6 d← objMaxScore({d}

⋃
{o})

7 forall the o ∈ I do
8 if o ∈ A then o.incScore() (increase score)
9 else A← A

⋃
{o} (add new objects)

10 o ← objMaxScore(A
⋃
{d})

11 return o

5 Algorithms with Early Termination

SIS relies on processing multiple consequent intervals of T to produce the most con-
tinuous influential object. In fact, all our algorithms rely on the evaluation of multiple
ITOPm

k queries in different intervals Ti, in order to find the most continuous influential
object, however these intervals are not necessarily consequent. In this sense, our algo-
rithms treat the ITOPm

k computation as black-box, hence any existing techniques that
solve efficiently the problem of indentifying influential objects can be directly exploited
by our algorithms.

Let us assume that at some point during query processing, a subset of (not necessarily
consequent) intervals of T have been processed. We define the following sets for any
retrieved data object o.

Definition 8. Given a data object o, a set of processed intervals {Ti} and a set of
corresponding results sets {ITOPm

k (Ti)}, we define:

– T +(o) is the set of intervals {Ti}, such that Ti ∈ T +(o) if o ∈ ITOPm
k (Ti)

– T −(o) is the set of intervals {Ti}, such that Ti ∈ T −(o) if o /∈ ITOPm
k (Ti)

– LB(o) is a maximal sequence of intervals{Ti, Ti+1, ..., Tj}, such that∀Tz ∈ LB(o) :
Tz ∈ T +(o)

– UB(o) is a maximal sequence of intervals{Ti, Ti+1, ..., Tj}, such that∀Tz ∈ UB(o) :
Tz ∈ T − T −(o)

We emphasize that according to Definition 8, T +(o) and T −(o) are sets of inter-
vals, i.e., they may contain non-consequent intervals. Instead, the sequences LB(o) and
UB(o) contain consequent intervals, and moreover they are of maximal size, i.e., there
exists no other longer sequence of intervals with the same properties respectively.

By exploiting the above sets and sequences, we derive an upper and a lower bound
on the score of any candidate most continuous influential object.

116 O. Gkorgkas et al.

Lemma 1. (Score bounds): The continuity score of object o is bounded by the lower
bound L(o) and the upper bound U(o), i.e., L(o) ≤ cis(o) ≤ U(o), where L(o) =
|LB(o)| and U(o) = |UB(o)| are the lengths of the sequences LB(o) and UB(o) re-
spectively.

Proof. By contradiction. Let us assume that cis(o) < L(o). Then it holds that there ex-
ists a sequence of processed intervals of length |LB(o)| such that for each time interval
Ti of LB(o) it holds that Ti ∈ T and o ∈ ITOPm

k (Ti), which leads to a contradiction
since cis(o) is defined by the sequence of maximum length (according to Definition 6).
Similarly, the assumption cis(o) > U(o) leads to a contradiction, because for each
time interval Ti of the sequence that defines cis(o), it holds that Ti /∈ T −(o) for any
set of processed intervals {Ti}. In other words, the sequence of intervals whose length
defines cis(o) is always smaller or equal to the sequence UB(o) whose length defines
U(o), hence cis(o) ≤ U(o) which is a contradiction.

The lower bound L(o) of o is equal to the continuity score of the object o, if we take into
account only the time intervals that have been processed so far. The upper bound U(o)
of o is the continuity score of the object o, if we assume that for any time interval Ti
that does not belong to T − the object o belongs to ITOPm

k (Ti) (because optimistically
for all unprocessed time intervals, o may belong to the most influential objects).

Theorem 1. (Early termination condition) The data object o is the most continuous
influential object, if for any other data object o′ it holds that L(o) ≥ U(o′).

Proof. By contradiction. Let us assume that o is not the most continuous influential
object, even though it holds that L(o) ≥ U(o′). Thus, there must exist another object o′

which is the most continuous influential object (i.e., cis(o) < cis(o′)). Then, it holds
that L(o) ≤ cis(o) ≤ U(o) and L(o′) ≤ cis(o′) ≤ U(o′). From these inequalities, we
derive that L(o) ≤ cis(o) < cis(o′) ≤ U(o′) and finally that L(o) < U(o′), which is a
contradiction.

The intuition of the above condition for early termination is that if an object has a
continuity score based on some processed time intervals that is definitely higher than
the score of any other object, then it can be safely reported as the most continuous
influential object, because the score of any other object cannot increase sufficiently in
the remaining time intervals.

Algorithm SIS is oblivious of the derived bounds and examines all time intervals
following a brute-force approach. Hence, we propose two algorithms, termed Early
Termination Interval Scan (TIS) and Early Termination Best-First Interval (TBI), that
exploit the bounds to provide early termination. However, despite using the same con-
cept of bounding, TIS and TBI follow different strategies in order to terminate as soon
as possible. TIS aims to maximize as quickly as possible the lower bound of the current
most continuous influential object o and therefore examines time intervals sequentially.
Instead, TBI aims to reduce the upper bound of any object o by breaking the longest
unprocessed sequence of time intervals.

Discovering Influential Data Objects over Time 117

Algorithm 2. Early Termination Interval Scan (TIS)
Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 A← ∅, d←null (A: alive objects, d: dead object)
2 i = 1, upperBound = 0, lowerBound = −1
3 while lowerBound < upperBound do
4 I ← ITOPm

k (Ti)
5 i = i+ 1
6 o ←objMaxScore(A

⋃
{d})

7 lowerBound = o.score()
8 forall the o ∈ A and o /∈ I do
9 A← A − {o} (remove dead objects)

10 d← objMaxScore({d}
⋃
{o})

11 forall the o ∈ I do
12 if o ∈ A then o.incScore() (increase score)
13 else A← A

⋃
{o} (add new objects)

14 o′ ←objMaxScore(A−{o})
15 upperBound= max(o′.score()+(V − i), d.score())

16 return o

5.1 Early Termination Interval Scan

In this section, we describe the Early Termination Interval Scan (TIS) algorithm. Similar
to the SIS algorithm, TIS processes sequentially the time intervals of time domain T .
However, the significant advantage of TIS lies in the fact that it can terminate early and
report the most continuous influential object o without processing the ITOPm

k query
for all V time intervals Ti.

Intuitively, the main objective of TIS is to increase the lower bound of any retrieved
object, by scanning the time intervals sequentially. Notice that only consequent time
intervals may lead to a higher lower bound. TIS takes advantage of the fact that the time
intervals are processed sequentially and computes the L(o) and U(o) without maintain-
ing the sets T −(o) and T +(o). The lower bound is defined as the continuity score of
the current most continuous influential object, which can be computed by maintaining
only the alive and dead objects similar to SIS. For TIS, the upper bound is defined as the
maximum value of the score of the dead object or the second highest score of the alive
objects plus the number of remaining time intervals.

Although these bound definitions of TIS are simpler than the ones of lower and up-
per bound in Lemma 1, it can be shown that they are equivalent. The reason for their
simplicity is that TIS examines intervals sequentially, which is a special case of interval
selection and the computation of the bounds can be simplified. Instead, the bound defi-
nitions of Lemma 1 and Definition 8 apply in the general case of selecting any interval
for processing next (not necessarily in a sequential manner).

Algorithm 2 contains the pseudocode of TIS. In each iteration, the next interval of
the time domain T is examined and the result set ITOPm

k (Ti) is computed. For each
retrieved object a score is maintained which is the maximum number of consequent

118 O. Gkorgkas et al.

intervals for which this object belongs to the respective ITOPm
k sets. The retrieved

data objects that belong to the most recent ITOPm
k set are considered to be alive,

while we also keep track of the dead object with the highest score.
In more detail, as long as the termination condition does not hold (lines 3-15), the

ITOPm
k set for the next time interval is computed and the alive and dead objects are

updated (lines 8-10, 12, 13), similarly to the case of the SIS algorithm. Furthermore,
in each iteration, the current most continuous influential object o is found (line 6). The
current score of o defines the lower bound (line 7), as any other point must have a
higher score to become the most continuous influential. Also, the alive object o′ with
the second highest score is found (line 14)1. The maximum possible score of any object
(regardless of whether it has been retrieved or not) is equal to maximum value between
the score of the dead object and the score of o′ plus the number of remaining unpro-
cessed intervals. This is because any object that is still alive in the best case scenario
may be in the ITOPm

k set for all remaining time intervals. Also, the score of the dead
object cannot be increased further. Notice that if the same object appears in the ITOPm

k

set, it is considered to be a new alive object. Any new alive object can appear only in the
V − i remaining time intervals. Thus, if the termination condition holds, no object can
exceed the score of the currently most continuous influential object and the algorithm
safely reports this object as the result.

It should be noted that TIS reports the most continuous influential object over a time
domain, however it does not report its score accurately. One can draw parallels with
Fagin’s NRA algorithm [4], which produces the top-k objects from ranked lists but
without guaranteeing accuracy of scores. In order to calculate the exact continuity score
of the most continuous influential object, we need to proceed until we find an interval
where the object does not belong to the ITOPm

k set.

5.2 Early Termination Best-First Interval

In the following, we describe the Early Termination Best-first Interval (TBI) algorithm.
The most important difference to TIS is that TBI follows a different strategy with respect
to interval selection, namely TBI does not process intervals sequentially.

For each retrieved object o, TBI maintains the two sets T +(o) and T −(o) that cor-
respond to the processed time intervals for which o belongs to or not to the most influ-
ential data objects respectively. This information is sufficient to derive the lower bound
L(o) and upper bound U(o) of o. The algorithm first computes the influential objects
ITOPm

k (T1) and ITOPm
k (TV). The following example demonstrates the information

maintained by TBI at this point.

Example 1. Let us assume that V = 6, m = 2, and that ITOPm
k (T1) = {o1, o2} and

ITOPm
k (T6) = {o2, o3}. Then, TBI maintains the following sets: T +(o1) = {T1},

T −(o1) = {T6}, T +(o2) = {T1, T6}, T −(o2) = ∅, T +(o3) = {T6}, T −(o3) = {T1}.
In addition, the derived bounds are: L(o1) = 1, U(o1) = 5, L(o2) = 1, U(o2) = 6,
L(o3) = 1, U(o3) = 5.

1 In the extreme case where A−{o} = ∅ we assume that o′.score = 0.

Discovering Influential Data Objects over Time 119

TBI iteratively selects a time interval that has not been processed yet and computes the
influential objects in the selected time interval. Then, the bounds of retrieved objects
can be updated as indicated in the following.

Example 2. Continuing the previous example, assume that the next interval that is
processed is T3 and ITOPm

k (T3) = {o2, o4}. Then, the following sets are main-
tained: T +(o1) = {T1}, T −(o1) = {T3, T6}, T +(o2) = {T1, T3, T6}, T −(o2) = ∅,
T +(o3) = {T6}, T −(o3) = {T1, T3}, T +(o4) = {T3}, T −(o4) = {T1, T6}. In addi-
tion, the bounds are updated as follows: L(o1) = 1, U(o1) = 2, L(o2) = 1, U(o2) = 6,
L(o3) = 1, U(o3) = 3, L(o4) = 1, U(o4) = 4.

The remaining challenge is how to select the most beneficial time interval for the next
influential query to be processed, i.e., the time interval that will lead the algorithm to
terminate as quickly as possible. TBI follows a best-first approach by selecting the time
interval that will split the longest UB(o) sequence for any o in the queue. Intuitively,
this ”breaks” long sequences of unknown time intervals, in an attempt to reduce the
upper bound of any data object.

In more detail, the next interval to be processed is selected in the following way.
Given a candidate data object o and the corresponding UB(o) = {Ti, ..., Tj}, the mid-
dle time interval Tz is computed such that z = i+

⌈
j−i
2

⌉
. If Tz /∈ T +(o) then Tz is the

next interval. Otherwise it means that Tz has been already processed and in this case
the sequence {Ti, ..., Tz} is tried to be split by finding the middle interval Tz′ of it. If
also Tz′ ∈ T +(o), then the middle interval of {Tz, ..., Tj} is examined if it qualifies
for being the next interval. This is done recursively by examining always the longest
sequence until an interval is found that does not belong to T +(o). Note that it is guar-
anteed that such an interval exists, because otherwise L(o) = U(o) and the algorithm
terminates. Intuitively, computing ITOPm

k (Tz) may break the longest sequence UB(o)
in two smaller sequences if o /∈ ITOPm

k (Tz), thus reducing the upper bound, which
will allow the algorithm to terminate faster.

During query processing, TBI keeps the retrieved data objects in a priority queue.
The queue is sorted in descending order based on the upper bound U(o) of each object
o, so that immediate access to the object with the highest upper bound is provided.
Algorithm 3 presents the pseudocode of TBI. First, the intervals T1 and TV are processed
and the retrieved objects are inserted in the queue (lines 1–4). The lower and upper
bounds are initiated based on the object located at the head of the queue (lines 5, 6). In
each iteration, we remove from the queue the object o (candidate object) with maximum
upper bound U(o) (line 8). Note that the candidate object is not necessary the object
with the highest continuity score based on the processed partitions (which is the lower
bound), and there may exist another object o′ that has a higher score (lower bound)
currently. But it is guaranteed that the algorithm cannot terminate at this iteration even
if o′ was processed next, because it holds that L(o′) ≤ U(o′) and U(o′) ≤ U(o) so that
the termination condition cannot hold. Thus, TBI does not process unnecessary time
intervals.

After selecting the candidate o with the highest upper bound, TBI recursively selects
the middle interval to be processed (line 9) and processes the query (line 10). After-
wards, the queue is updated (line 11), which means that every object in ITOPm

k (Ti)
is either added to the queue (if it is the first time that it was retrieved) or the existing

120 O. Gkorgkas et al.

Algorithm 3. Early Termination Best-first Interval (TBI)
Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 I ← ITOPm
k (T1)

2 queue.update(I)
3 I ← ITOPm

k (TV)
4 queue.update(I)
5 upperBound = U(queue.peek())
6 lowerBound = L(queue.peek())
7 while lowerBound<upperBound do
8 o ← queue.dequeue()
9 i = nextInterval(UB(o)) (find next interval)

10 I ← ITOPm
k (Ti)

11 queue.update(I)
12 upperBound = U(queue.peek())
13 lowerBound = L(o)
14 queue.enqueue(o) (add o back to queue)

15 return o

object is updated by changing the corresponding T + set. Moreover, for every object in
the queue that does not belong in ITOPm

k (Ti), the set T − is updated.
The algorithm terminates when it holds that the candidate object o has L(o) ≥

U(o′), ∀o′ ∈ queue. This is the termination condition (line 7), which means that o has
a higher lower bound than the upper bound of the current head object o′ in the queue.

In principle, we can also free part of the memory during the processing of the algo-
rithm, by evicting candidate points that will never become the most continuous influ-
ential object. The condition for eviction is if a candidate object o has U(o) ≤ L(o′),
where o′ is another candidate object.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All algorithms are
disk-based and implemented in Java, and the experiments run on 2x Intel Xeon X5650
Processors (2.66GHz), 128GB. The index structure used was an R-tree with a buffer
size of 100 blocks and the block size is 4KB.

6.1 Experimental Setup

Data sets. For the data set S we employ both real and synthetic data collections, namely
uniform (UN), correlated (CO) and anticorrelated (AC). For the uniform data set, the
data object values for all n dimensions are generated independently using a uniform dis-
tribution. The correlated and anticorrelated data sets are generated as described in [3].

In addition, we use two real data sets. NBA consists of 17265 5-dimensional tu-
ples, representing a player’s performance per year. The attributes are average values

Discovering Influential Data Objects over Time 121

of: number of points scored, rebounds, assists, steals and blocks. HOUSE (Household)
consists of 127930 6-dimensional tuples, representing the percentage of an American
family’s annual income spent on 6 types of expenditure: gas, electricity, water, heating,
insurance, and property tax.

For the data set W of the weighting vectors, two different data distributions are exam-
ined, namely uniform (UN) and clustered (CL). The clustered data set W is generated
as described in [14] and models the case that many users share similar preferences. In
more detail, first CW cluster centroids that belong to the (n-1)-dimensional hyperplane
defined by

∑
w[i] = 1 are selected randomly. Then, each coordinate is generated on

the (n-1)-dimensional hyperplane by following a normal distribution on each axis with
variance σ2

W , and a mean equal to the corresponding coordinate of the centroid. We con-
sider V = 100 time intervals and assign a vector w to a time interval Ti (i ∈ [1, 100])
uniformly at random.

We conduct a thorough sensitivity analysis varying the dimensionality (2-5d), the
cardinality (10K-100K) of S, the cardinality (100K-500K) of W the value of k (5-
15), the value of m (5-15), and the number of intervals V (50-150). Unless explicitly
mentioned, we use the default setup of: |S| = 50K , |W | = 300K , d=3, k=10, m=10,
V =100, and uniform distribution for S and W . For the clustered data set W we use
CW = 5 and σW = 0.1, and try different values of σW .

Algorithms. We evaluate: a) sequential interval scan (SIS), b) early termination inter-
val scan (TIS), and c) early termination best-first interval (TBI). All algorithms use the
computation of the top-m most influential data objects as a black-box. In particular, the
branch-and-bound algorithm proposed in [17] is employed for the underlying compu-
tation of influential objects.

Metrics. Our metrics include: a) the total execution time, b) the number of I/Os, and
c) the number of processed time intervals by each algorithm. Notice that we do not
measure the I/Os that occur by reading W , since this is the same for every algorithm
and does not affect their comparative performance. For our experiments on synthetic
data, we report the average of each metric over 10 different instances of the data set.
We generate the different instances by keeping the parameters fixed and changing the
seeds of the random number generator. We adopt this approach in order to factor out
the effects of randomization.

6.2 Performance of Query Processing

Effect of Data Set Size |S|. Fig. 1 illustrates the performance of all algorithms when
we vary the data set cardinality. For all metrics, TBI outperforms both TIS and SIS. In
terms of time (Fig. 1(a)), TBI is significantly faster than the other algorithms, and more
importantly its gain increases as the data set size increases. This is strong evidence that
TBI scales gracefully with |S|. Similar observations can be made for the I/O metric
depicted in Fig. 1(b). Fig. 1(c) depicts the number of processed intervals by each algo-
rithm, which is a factor that affects all other metrics. SIS always processes the complete
set of V intervals. TIS improves the performance of SIS, by exploiting the bounds and
allowing for early termination. It should be clarified that TIS cannot process fewer than
V/2 intervals to produce the correct result. Thus, in this setup (V = 100), TIS would in

122 O. Gkorgkas et al.

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

10K 50K 100K

T
im

e

Data-Cardinality

SIS
TIS
TBI

(a) Time

0.0

500.0

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

10K 50K 100K

IO

Data-Cardinality

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

10K 50K 100K

P
er

io
ds

Data-Cardinality

SIS
TIS
TBI

(c) Processed intervals

Fig. 1. Effect of varying data cardinality |S|

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

600.0k

100K 300K 500K

T
im

e

Weight-Cardinality

SIS
TIS
TBI

(a) Time

0.0

500.0

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

100K 300K 500K

IO

Weight-Cardinality

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

100K 300K 500K

P
er

io
ds

Weight-Cardinality

SIS
TIS
TBI

(c) Processed intervals

Fig. 2. Effect of varying cardinality of weighting vectors |W |

best case process 50 intervals. Still, TBI outperforms all other algorithms, which indi-
cates that its best-first strategy for selecting the next interval performs more efficiently.

The advantage in the performance of TIS against SIS lies on the fact that TIS ter-
minates when it is certain that the object with the highest continuity score cannot be
surpassed. The advantage of TBI over TIS lies on the fact that TIS alters the upper and
lower bounds each time by 1 interval while TBI splits the largest unseen interval in
half. In the best case, every 2λ+1 − 1 steps the upper bound will have been reduced to
|V |/(2λ + 1), while for TIS the upper bound in the best case will have been reduced to
|V |− (2λ+1−1). Obviously in the early steps of TBI the upper bound and lower bound
converge faster than in TIS.

Effect of Varying Cardinality of Weighting Vectors |W |. In Fig. 2, we study the
effect of increasing the size of |W |. First, with respect to time (depicted in Fig. 2(a)),
we observe that time increases linearly with |W | for all algorithms. This is expected,
since the size of W determines the number of user preferences, which is the number of
potential top-k queries that may be evaluated. When the induced I/Os are considered, we
see in Fig. 2(b) that all algorithms show a stable performance irrespective of |W |. Recall
that we only measure the I/O induced on data set S, and this metric does not depend on
W . Hence, this explains the stability of the measured I/O values. Fig. 2(c) shows the
processed intervals by each algorithm. Also in this setup, TBI performs better than its
competitors. It can be also observed that the size of W does not affect the number of
processed intervals. The observations made for varying the data cardinality hold also
here. The increased computation cost with respect to time is due to the fact that the
complexity of the ITOPm

k queries increases when the weight cardinality rises.

Discovering Influential Data Objects over Time 123

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k
450.0k

5 10 15

T
im

e

m

SIS
TIS
TBI

(a) Time

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

5 10 15

IO

m

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

5 10 15

P
er

io
ds

m

SIS
TIS
TBI

(c) Processed intervals

Fig. 3. Effect of varying m

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

5 10 15

T
im

e

k

SIS
TIS
TBI

(a) Time

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

5 10 15

IO

k

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

5 10 15

P
er

io
ds

k

SIS
TIS
TBI

(c) Processed intervals

Fig. 4. Effect of varying k

Effect of Varying m. Fig. 3 shows the effect of increasing the number of retrieved
influential objects. TBI has a significant performance advantage over SIS and TIS when
the value of m is relatively small. When m increases, we observe that all algorithms
demonstrate similar performance. The reason for this behavior is that for larger values of
m we observe that there exist data objects that have maximum continuity score equal to
V . In other words, some data objects are influential in all V intervals. In this degenerate
case, no algorithm can perform better than SIS, since all intervals must be processed in
order to safely report the most continuous influential object.

Effect of Varying k. As k increases, all algorithms need more time to produce the
results set as depicted in Fig. 4(a). For smaller values of k, all algorithms perform
similarly because again there exist objects with maximum continuity score, which can
only be reported when all intervals have been processed. For higher values of k, TBI
performs better than all other algorithms.

Effect of Varying V . Based on Fig. 5(a), we observe that TIS has a bigger advantage
over SIS for small number of intervals, while TBI benefits more from large number of
intervals. The reason is that the more the time intervals the smaller the possibility for an
object to be influential in all of them. This fact is exploited by TBI which manages to
reduce the upper bound fast in the first loops of its execution, and thus the lower bound
and the upper bound converge fast and allow TBI to finish earlier that SIS and TIS. Con-
trary to the upper bound, the lower bound is expected to increase slowly when the time
domain is partitioned with high granularity since many objects (including the one with
the highest continuity score) are likely to disappear and re-appear from the ITOPm

k

influential sets, and consequently the convergence between the bounds is delayed.

124 O. Gkorgkas et al.

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

50 100 150

T
im

e

Partitions

SIS
TIS
TBI

(a) Time

0.0

500.0

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

4.0k

50 100 150

IO

Partitions

SIS
TIS
TBI

(b) I/O

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0

50 100 150

P
er

io
ds

Partitions

SIS
TIS
TBI

(c) Processed intervals

Fig. 5. Effect of varying V

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

UN CO AC

T
im

e

Dataset-type

SIS
TIS
TBI

(a) Time

1.0

10.0

100.0

1.0k

10.0k

100.0k

1.0M

UN CO AC

IO

Dataset-type

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

UN CO AC

P
er

io
ds

DatasetType

SIS
TIS
TBI

(c) Processed intervals

Fig. 6. Effect of varying the data distribution of S

Effect of Different Data Distributions of S. Fig. 6 compares the performance of the
three algorithms when the set of data objects S follow different distributions, namely
uniform (UN), correlated (CO) and anti-correlated (AC). Notice that we use log-scale
in Fig. 6(b). Clearly, the cost of all algorithms (in terms of time and I/O) increases
for AC. This is due to the more expensive processing of the underlying computation
for influential data objects in the case of AC. However, as depicted in Fig. 6(c), the
difference between the algorithms is significant in terms of processed intervals. Also,
notice that TBI is not significantly affected by the challenging AC data distribution and
processes comparable number of intervals, irrespective of the data distribution of S.

Effect of Clustered Data Set W . Fig. 7 shows the results of using a clustered data set
W for different values of σW . Smaller values of σW correspond to more clustered data
sets, or in other words the weighting vectors are more compact with respect to the clus-
ter centroids. For smaller values of σW , TBI performs better than the other algorithms.
However, an interesting observation is that when σW increases, the performance of TIS
tends to be similar to TBI.

Table 1. Experimental results of real data sets NBA and HOUSE

NBA data set HOUSE data set
Algorithm Time(sec) I/O Proc. Intervals Time(sec) I/O Proc. Intervals

SIS 822.77 8119 100.0 903.00 9476 100.0
TIS 712.74 6988 85.9 867.33 9189 95.2
TBI 454.60 4508 55.6 865.58 9235 97.1

Discovering Influential Data Objects over Time 125

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

0.01 0.05 0.10

T
im

e

Vector-Distribution

SIS
TIS
TBI

(a) Time

0.0

500.0

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

0.01 0.05 0.10

IO

Vector-Distribution

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.01 0.05 0.10

P
er

io
ds

Vector-Distribution

SIS
TIS
TBI

(c) Processed intervals

Fig. 7. Effect of varying the standard deviation for clustered data set W

0.0

200.0k

400.0k

600.0k

800.0k

1.0M

1.2M

1.4M

1.6M

2 3 4 5

T
im

e

Dimensions

SIS
TIS
TBI

(a) Time

0.0

5.0k

10.0k

15.0k

20.0k

25.0k

30.0k

2 3 4 5

IO

Dimensions

SIS
TIS
TBI

(b) I/O

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

2 3 4 5

P
er

io
ds

Dimensions

SIS
TIS
TBI

(c) Processed intervals

Fig. 8. Effect of varying dimensionality n

Effect of Increasing Dimensionality. Fig. 8 illustrates the results for varying the num-
ber of dimensions. With respect to time (Fig. 8(a)) and I/O (Fig. 8(b)), the performance
of all algorithms degrades with increased dimensionality. However, notice that TBI is
less affected by the increased dimensionality, compared to the other algorithms. With
respect to the number of processed intervals (Fig. 8(c)), we observe that this metric
increases with dimensionality in the case of TIS. When TBI is considered, the met-
ric drops for increased values of n. This means that TBI manages to process fewer
intervals as n grows, however each top-k processing costs on average more for in-
creased n, which explains why both time and I/O increase for TBI too.

Experiments with Real Data Sets. Table 1 shows the results obtained for the two real
data sets employed in our study (NBA and HOUSE). In both cases, the observed values
follow the results and conclusions drawn from synthetic data.TBI outperforms the other
two algorithms for the NBA data set. TBI needs almost half the time of SIS to identify
the most influential object. In the case of HOUSE data set the difference between TIS
and TBI is marginal but both outperform SIS. The higher the dimensionality of the
problem the smaller is the probability that the most influential object will be influential
for a long time interval. This fact reduces the advantage of TBI over TIS and the two
algorithms have similar performance.

7 Related Work

Top-k queries have been well-studied in the last years to enable ranked retrieval of ob-
jects based on user preferences (for a thorough overview we refer to [6]). Recently,

126 O. Gkorgkas et al.

reverse top-k queries [14,15] have been proposed to retrieve the set of users that have
a given object in their top-k list. An improved branch-and-bound algorithm for reverse
top-k queries was proposed in [18], while [5] presents an approach that is beneficial
when a large number of reverse top-k queries need to be processed. Another approach
based on preprocessing all top-k queries for answering reverse top-k queries is pre-
sented in [21]. Moreover, in [16] the authors define the distance-based reverse top-k
query and monitor its result set for mobile devices, when the values of one dimension
(distance) change dynamically as devices move. Reverse queries are also studied in [2]
following a unified approach. The authors examine the Inverse ε-Range, Inverse k−NN
and Inverse Dynamic Skyline queries using a three-filter approach. The first two filters
use only the query points whose number is usually small and the third query accesses
the data points in ascending order of maximum distance from the query points.

Lately, several research initiatives have been proposed to study the influence of data
objects. In this paper, we adopt the definition of influence that was first introduced by
Vlachou et al. [17], where the influential objects are those that appear in the top-k
lists of many users, i.e., have the larger reverse top-k results. A different definition of
influence is used in [1], where the authors try to discover attractive products to users
using the principle of skyline sets [3]. Other approaches try to identify the attributes
of products that maximize its visibility [11] or the region in the space defined by the
products’ attributes where a product can be promoted [19,20].

Jestes et al. [7] study the problem of performing top-k queries on a time window.
They assume that the values of the objects change over time and instead of performing
instant top-k queries they retrieve the top-k objects by ranking them after aggregating
their scores in a query interval. Lee et al. [9] discuss the idea of objects that appear
continuously in top-k queries over data streams. They focus on discovering objects that
appear continuously on a moving window of time. In [13] the authors study techniques
for durable top-k search in document archives, where the aim is to identify documents
that are consistently in the top-k results of a given query. Kontaki et al. [8] study the
problem of discovering the objects that remain the most dominant over a data stream.
Our main difference towards these approaches is that they consider the ranking func-
tions to be static while the values of the objects are changing while we consider the exact
opposite. Other work related to top-k and time includes processing of top-k queries on
temporal data where the aim is finding the top-k objects at a particular time [10], as
well as monitoring top-k queries over sliding windows [12].

8 Conclusions

In this paper, we studied for the first time the problem of finding the most continuous
influential products that belong consistently to the most influential products over time.
To this end, we defined the continuous influential query, where the influence score is
defined based on reverse top-k queries and it changes as user preferences change over
a long time period. In order to be able to efficiently discover the continuous influential
products, we studied the properties of the proposed continuity score and derived appro-
priate upper and lower bounds. In turn, this lead to the design of efficient algorithms
with the salient property of early termination. To evaluate our approach, we conducted
a thorough experimental study that demonstrates the efficiency of our algorithms.

Discovering Influential Data Objects over Time 127

References

1. Arvanitis, A., Deligiannakis, A., Vassiliou, Y.: Efficient influence-based processing of market
research queries. In: Proc. of CIKM, pp. 1193–1202 (2012)

2. Bernecker, T., Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Zhang, S., Züfle, A.:
Inverse queries for multidimensional spaces. In: Pfoser, D., Tao, Y., Mouratidis, K., Nasci-
mento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849,
pp. 330–347. Springer, Heidelberg (2011)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE,
pp. 421–430 (2001)

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc. of
PODS, pp. 102–113 (2001)

5. Ge, S., Hou, U.L., Mamoulis, N., Cheung, D.W.: Efficient all top-k computation: A unified
solution for all top-k, reverse top-k and top-m influential queries. TKDE 25(5), 1015–1027
(2013)

6. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in
relational database systems. ACM Comp. Surv. 40(4) (2008)

7. Jestes, J., Phillips, J.M., Li, F., Tang, M.: Ranking large temporal data. PVLDB 5(11),
1412–1423 (2012)

8. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous top-k dominating queries.
TKDE 24(5), 840–853 (2012)

9. Lee, M.L., Hsu, W., Li, L., Tok, W.H.: Consistent top-k queries over time. In: Zhou, X.,
Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 51–65. Springer,
Heidelberg (2009)

10. Li, F., Yi, K., Le, W.: Top-k queries on temporal data. VLDB Journal 19(5), 715–733 (2010)
11. Miah, M., Das, G., Hristidis, V., Mannila, H.: Standing out in a crowd: Selecting attributes

for maximum visibility. In: Proc. of ICDE, pp. 356–365 (2008)
12. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over slid-

ing windows. In: Proc. of SIGMOD, pp. 635–646 (2006)
13. Hou U, L., Mamoulis, N., Berberich, K., Bedathur, S.J.: Durable top-k search in document

archives. In: Proc. of SIGMOD, pp. 555–566 (2010)
14. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørvåg, K.: Reverse top-k queries. In: Proc. ICDE,

pp. 365–376 (2010)
15. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørvåg, K.: Monochromatic and bichromatic re-

verse top-k queries. TKDE 23(8), 1215–1229 (2011)
16. Vlachou, A., Doulkeridis, C., Nørvåg, K.: Monitoring reverse top-k queries over mobile

devices. In: Proc. of MobiDE, pp. 17–24 (2011)
17. Vlachou, A., Doulkeridis, C., Nørvåg, K., Kotidis, Y.: Identifying the most influential data

objects with reverse top-k queries. PVLDB 3(1-2), 364–372 (2010)
18. Vlachou, A., Doulkeridis, C., Nørvåg, K., Kotidis, Y.: Branch-and-bound algorithm for re-

verse top-k queries. In: Proc. of SIGMOD (2013)
19. Wu, T., Sun, Y., Li, C., Han, J.: Region-based online promotion analysis. In: Proc. of EDBT,

pp. 63–74 (2010)
20. Wu, T., Xin, D., Mei, Q., Han, J.: Promotion analysis in multi-dimensional space.

PVLDB 2(1), 109–120 (2009)
21. Yu, A., Agarwal, P.K., Yang, J.: Processing a large number of continuous preference top-k

queries. In: Proc. of SIGMOD, pp. 397–408 (2012)

Finding Traffic-Aware Fastest Paths

in Spatial Networks

Shuo Shang, Hua Lu, Torben Bach Pedersen, and Xike Xie

Department of Computer Science, Aalborg University, Denmark
{sshang,luhua,tbp,xkxie}@cs.aau.dk

Abstract. Route planning and recommendation have received signifi-
cant attention in recent years. In this light, we propose and investigate
the novel problem of finding traffic-aware fastest paths (TAFP query)
in spatial networks by considering the related traffic conditions. Given
a sequence of user specified intended places Oq and a departure time t,
TAFP finds the fastest path connecting Oq in order to guarantee that
moving objects (e.g., travelers and bags) can arrive at the destination in
time. This type of query is mainly motivated by indoor space applica-
tions, but is also applicable in outdoor space, and we believe that it may
bring important benefits to users in many popular applications, such as
tracking VIP bags in airports and recommending convenient routes to
travelers. TAFP is challenged by two difficulties: (i) how to model the
traffic awareness practically, and (ii) how to evaluate TAFP efficiently
under different query settings. To overcome these challenges, we con-
struct a traffic-aware spatial network Gta(V,E) by analysing uncertain
trajectory data of moving objects. Based on Gta(V,E), two efficient al-
gorithms are developed based on best-first and heuristic search strategies
to evaluate TAFP query. The performance of TAFP has been verified by
extensive experiments on real and synthetic spatial datasets.

1 Introduction

The continuous proliferation of GPS-enabled mobile devices (e.g., car navigation
systems, smart phones and PDAs) and online map services (e.g., Google-maps1,
Bing-maps2 and MapQuest3) enable people to acquire their current geographic
positions in real time and to interact with servers to query spatial information
regarding their trips [23]. In the meantime, with the rapid development of indoor
positioning systems (e.g., Wi-Fi, RFID, and Bluetooth), the movements of ob-
jects in indoor spaces are increasingly tracked and recorded [10] [11], which makes
it possible to plan and optimize the travel routes of moving objects in indoor
spaces. The potential market of these location based services in the near fu-
ture enables many novel applications. An emerging application is traffic-aware
fastest path queries (TAFP for short) in spatial networks, which is designed

1 http://maps.google.com/
2 http://www.bing.com/maps/
3 http://www.mapquest.com

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 128–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://maps.google.com/
http://www.bing.com/maps/
http://www.mapquest.com

Finding Traffic-Aware Fastest Paths in Spatial Networks 129

to find the fastest path that connects a sequence of user intended places in or-
der. This type of query is mainly motivated by indoor space applications, but
is also applicable in outdoor space, and we believe that it may bring important
benefits to users in many popular mobile applications such as tracking VIP bags
in airports and recommending convenient routes to travelers. To give examples,
we describe the following two application scenarios:

Indoor Scenario: At an international airport, bags are collected from travelers
and delivered to the corresponding aircrafts. The movements of bags are con-
strained in a large transfer network, which is made up by hundreds of conveyer
belts, trolleys and buggies. The travel routes of bags are roughly planned when
they are collected, such as “Check-in 8:55am→ Screen machine 9:30am→ Tilt-
tray sorter 9:50am → Flight SK1217 10:20am”. The travel path between any
two adjacent intended places is uncertain. Large amounts of bags may create
many traffic jams in the transfer network and the delivery of some bags may be
delayed. Suppose the travel routes of all bags in delivery are available, our task
is to find the fastest paths for VIP bags to guarantee their arrival times. This
work is motivated by the BagTrack project4, which is dedicated to improving
bag handling in aviation industry globally.

Outdoor Scenario: Trajectory sharing and search are pervasive nowadays.
Travellers can easily upload their trajectories to some specialized web sites such
as Bikely5 and Share-My-Routes6. In practice, most of the existing trajectory
data are stored in compressed format (lossy compression leads to the uncer-
tainty). Compared to original trajectories, compressed trajectories have clear
advantages in data processing, transmitting, and storing [13]. By analysing his-
torical travel trajectories of commuters, it is possible to construct a comprehen-
sive traffic model to describe the traffic conditions in road networks, and to help
users plan a fastest travel route.

The TAFP query is applied in spatial networks, since in a large number of
practical scenarios, objects move in a constraint environment (e.g., transfer net-
works in the indoor scenario, and road networks in the outdoor scenario) rather
than an Euclidean space. TAFP is challenging due to three reasons. First, it
is necessary to construct a practical traffic model to detect the potential traf-
fic jams (time-delays) and describe the traffic conditions in spatial networks,
by analysing uncertain trajectories (i.e., roughly planned routes in the indoor
scenario, and compressed trajectories in the outdoor scenario) of moving ob-
jects. Second, the uncertainty should be taken into account during the uncertain
trajectory reconstruction, thus a probabilistic model and an efficient trajectory
reconstruction algorithm are required. Third, we need to develop efficient algo-
rithms to evaluate the TAFP under different query settings. It worth to note that
TAFP is mainly motivated by indoor space applications and actively uses the
trajectories of currently moving objects. In contrast, T-drive [23] is applicable to

4 http://daisy.aau.dk/bagtrack
5 http://www.bikely.com/
6 http://www.sharemyroutes.com/

http://daisy.aau.dk/bagtrack
http://www.bikely.com/
http://www.sharemyroutes.com/

130 S. Shang et al.

outdoor space and finds fastest paths based on traffic patterns discovered from
the historical taxi trajectories. Thus, these two problems are not comparable.

To overcome these challenges, we construct a traffic-aware spatial network
Gta(V,E) to detect potential time-delays and model traffic conditions in spatial
networks. First, we propose an efficiency algorithm to reconstruct uncertain tra-
jectories. An uncertain trajectory is reconstructed into several possible paths,
and all possibilities are considered. Then, we map these possible paths onto spa-
tial networks. For each vertex v ∈ Gta(V,E), we maintain a set of traffic records
to describe its traffic conditions7. Based on Gta(V,E) , two efficient algorithms
based on best-first and heuristic search strategies are developed to evaluate the
TAFP query. To sum up, the main contributions of this paper are as follows:

– We define a novel type of query: traffic-aware fastest path query according to
the proposed spatio-temporal metrics. It provides new features for advanced
spatio-temporal information systems, and may benefit users in many popular
mobile applications such as path planning and recommendation.

– We propose a comprehensive probabilistic model to evaluate the uncertainty
when reconstructing uncertain trajectories, and a traffic-aware spatial net-
work based on uncertain trajectory data to model the traffic conditions prac-
tically (Section 2 and 3).

– We develop two algorithms based on best-first and heuristic search strategies
to process the TAFP query efficiently (Section 4).

– We conduct extensive experiments on real and synthetic spatial data sets to
investigate the performance of the proposed algorithms (Section 5).

The rest of the paper is organized as follows. Section 2 introduces spatial net-
works and uncertain trajectories used in this paper, as well as uncertain trajec-
tory reconstruction algorithm. The construction of traffic-aware spatial network
is detailed in Section 3. The TAFP query processing is addressed in Section 4,
which is followed by the experimental results in Section 5. This paper is con-
cluded in Section 7 after some discussions of related work in Section 6.

2 Uncertain Trajectory Reconstruction

2.1 Preliminaries

Spatial Networks. (i.e., transfer networks in the indoor space, and road net-
works in the outdoor space) are modeled by a connected and undirected graph
G(V,E), where V is the set of vertices and E is the set of edges. A weight is
assigned to each edge to represent application specific factors such as traveling

7 The concept of traffic-aware spatial network was briefly introduced in our previous
work [17], including the definitions and examples of time-delay and the establishment
of traffic-aware spatial network by using possible paths, which covers the majority
of the contents in Sections 3.1 and 3.2. We improve and perfect the definitions, and
detail the examples in this paper.

Finding Traffic-Aware Fastest Paths in Spatial Networks 131

time. Given two vertices a and b in a spatial network, the network distance be-
tween them is the length of their shortest network path (i.e., a sequence of edges
linking a and b where the accumulated weight is minimal). Data points (e.g.,
trajectory sample points) are embedded in networks and they may be located
in edges. If the network distances to the two end vertices of an edge are known,
it is straightforward to derive the network distance to any point in this edge.
Thus, we assume that all data points are in the vertices for the simplification of
description.

Uncertain Trajectory. There are two categories of uncertain trajectory data:
roughly planned travel routes in the indoor space, and compressed trajectories in
the outdoor spaces. In the indoor space, travel routes of bags are roughly planned
such as “Check-in 8:55am→ Screen machine 9:30am→ Tilt-tray sorter 9:50am
→ Flight SK1217 10:20am”, where sample points (intended places) are the ver-
tices on a spatial network. In the outdoor space, raw trajectory samples obtained
from GPS devices are typically of the form of 〈longitude, latitude, timestamp〉.
How to select historical trajectory data of travelers and how to map the tuple
〈longitude, latitude, timestamp〉 onto a spatial network are interesting research
problems themselves, but they are outside the scope of this paper. We assume
that trajectory data are selected and all trajectory sample points have already
been aligned to the vertices on the spatial network by some map-matching algo-
rithms [2] [3] [7] [20]. Between any two adjacent sample points a and b, the exact
travel path of moving objects is uncertain in both indoor and outdoor spaces.
The spatio-temporal attributes of an uncertain trajectory are defined as follows.

Definition 1: Uncertain Trajectory
An uncertain trajectory τ of a moving object in a spatial network G is a finite
sequence of timestamped positions: τ = 〈p1, p2, ..., pn〉, where pi is a vertex in
G, and pi.t is its timestamp, for i = 1, 2, .., n.

2.2 Uncertain Trajectory Reconstruction Algorithm

Given a spatial network G(V,E), each vertex v ∈ G.V is allocated a threshold
v.k to describe its traffic processing capability. That means at most v.k moving
objects can be processed at vertex v in one minute, and each individual moving
object will take 1

v.k minutes processing time.
Given an uncertain trajectory segment τseg(pi, pj) connecting two adjacent

sample points pi and pj , it is difficult to find the exact path P (pi, pj) between
them due to the rough route planning (indoor) or trajectory compression loss
(outdoor). Here, we propose a random walk based probabilistic model to evaluate
the uncertainty of trajectories, and all possibilities are considered. Conceptually,
we assume that the movement of object o between pi and pj is according to a
random walk, and its moving space is constrained by two thresholds. First, the
maximum moving time between pi and pj is constrained by (pj .t− pi.t), where
pi.t and pj .t are the timestamps of pi and pj , respectively. Second, there should

132 S. Shang et al.

be no loop in P (pi, pj), which means that one vertex cannot appear twice in one
path. The length and probability of path P = 〈p1, ..., pk〉 are defined as follows:

P.length =

k−1∑
i=1

((pi, pi+1).weight+
1

pi+1.k
) (1)

P.prob =

k−1∏
i=1

(pi, pi+1).prob (2)

Here, (pi, pi+1).weight and (pi, pi+1).prob are the weight and probability of edge
(pi, pi+1), respectively. Suppose a moving object o is at vertex pi and it may select
edge (pi, pi+1) as its following moving direction. This probability is defined as
the probability of edge (pi, pi+1).

Algorithm 1. Uncertain Trajectory Reconstruction

Data: two adjacent sample points pi, pj
Result: Pathlist(pi, pj)
path ← null;1

begin2

Procedure(pi)3

for each vertex n ∈ pi.adjacentList do4

if n ∈ path then5

Continue;6

if path.dist+ sd(pi, n) > (pj .t− pi.t) then7

Continue;8

path.vertex ← path.vertex+ n;9

path.lenth ← path.length+ sd(pi, n) + 1/n.k;10

path.prob ← path.prob/pi.validNeighbors.size;11

if n = pj then12

path.add(n);13

Pathlist.add(path);14

path.remove(n);15

Continue;16

Procedure (n);17

path.remove(pi);18

end19

return Pathlist;20

All valid sub-paths of the trajectory segment τseg(pi, pj) can be retrieved
according to Algorithm 1. Here, pi and pj are two adjacent sample points and
Procedure(pi) is a recursive function. A depth-first traversal is conducted to
find all possible sub-paths connecting pi and pj . A network expansion [4] starts
from pi, and all adjacent vertices of pi are scanned iteratively (line 4). For each
vertex n adjacent to pi, we check whether it conflicts the two thresholds: n
cannot appear twice in the same path (lines 5-6), and the path length cannot

Finding Traffic-Aware Fastest Paths in Spatial Networks 133

p1 n1

n4n2

n3

n5
p2

6

7 6

3 8n6

n7

n8
3

7

7

3

3

3
6

P1 = <p1, n1, n2, n4, n5, p2> P1.length= 6 +1+3+1+7+1+3+1+8+1 = 32

p1 n1

n4n2

n3

n5

p2

1/1

n6

n7

n8

1/3

1/1

1/2

1/3

P1 = <p1, n1, n2, n4, n5, p2> P1.prob =1 x⅓ x 1 x ½ x⅓ = 1/18

Fig. 1. Probabilistic model

be greater than (pj .t− pi.t) (lines 7-8). If n satisfies both thresholds, the related
information of path(n) are recorded, including its vertices, length and probability
(lines 9-11). Once the destination pj has been scanned by the expansion, a valid
sub-path is found and stored in Pathlist(pi, pj) (lines 12-16). Otherwise, a new
recursive function based on n will be conducted (line 17). Finally, all the possible
sub-paths connecting pi and pj are returned to users (line 20).

An example of trajectory segment reconstruction is shown in Figure 1, where
p1 and p2 are two adjacent trajectory sample points, and n1, n2, ..., n8 are vertices
in a spatial network G. Each edge is assigned a weight to represent the travel
time along this edge, and each vertex is assigned a threshold to describe its traffic
processing capability. In Figure 1, the traffic processing capability for each vertex
is 1, thus the processing time for each individual object is also 1. The maximum
moving time between p1 and p2 is p2.t− p1.t = 33.

There exist three sub-paths P1, P2 and P3 that satisfy both thresholds men-
tioned above. For P1 = 〈p1, n1, n2, n4, n5, p2〉, according to Equation 1, its length
is computed as P1.length = 6 + 1 + 3 + 1 + 7 + 1 + 3 + 1 + 8 + 1 = 32. The
probability computation is more complex than the length computation. (p1, n1)
is the first edge of P1 and its probability is 1

1 . We assume that the movement
of objects is according to a random walk. At n1, a moving object m has four
choices: {p1, n2, n3, n5} for the next step. Vertex p1 is invalid in this case, since
a loop 〈p1, n1, p1〉 is formed. As a result, the rest three vertices share the same
probability 1

3 . Then, at n2, n4 holds 1
1 probability to be the next vertex, since

n1 will form a loop. Following this procedure, the probability of P1 is computed
based on Equation 2: P1.prob =

1
1×

1
3×

1
1×

1
2×

1
3 = 1

18 . Similarly, we compute the
length and probability of P2 = 〈s1, n1, n5, s2〉 and P3 = 〈s1, n1, n3, n6, n5, s2〉.
P2 has the length 24 and the probability 1

1 ×
1
3 ×

1
4 = 1

12 . P3 has the length 32
and the probability 1

1 ×
1
3 ×

1
1 ×

1
1 ×

1
3 = 1

9 .

134 S. Shang et al.

Other sub-paths that cannot satisfy both thresholds are labeled as invalid
paths and are pruned. Then, we normalize the original probabilities of valid
sub-paths P1, P2, and P3.

Pi.probN =
Pi.prob∑k
i=1 Pi.prob

(3)

Here, Pi.probN is the normalized probability of Pi. Consequently, ProbN (P1) =
1/18
1/4 = 2

9 , ProbN (P2) = 1/12
1/4 = 1

3 and ProbN (P3) = 1/9
1/4 = 4

9 . At this stage,

the trajectory segment Tseg(si, sj) is reconstructed to three possible sub-paths
P1, P2, P3.

After that, we combine the possible sub-paths from different trajectory seg-
ments to create a full path P (s, d) = 〈P1, P2, ..., Pk〉 connecting the source s and
the destination d, where P1, P2, ..., Pk are sub-paths from trajectory segments
τseg1, τseg2, ..., τsegk , respectively. The length and probability of P (s, d) can be

computed as P (s, d).length =
∑k

i=1(Pi.length) and P (s, d).prob =
∏k

i=1 Pi.prob,
respectively.

3 Traffic-Aware Spatial Network

3.1 Time-Delay

For any vertex v in a spatial networkG(V,E), if the number of moving objects to
be processed by v is over its processing capability v.k, a time-delay (or a traffic
jam, depending on the number of objects) will occur. Suppose the processing
capability of v is v.k per minute, and each individual moving object will take
1
v.k minutes processing time. If the gap between any two moving objects is less
than 1

v.k minutes, a time-delay will be triggered. The time-delay for object o at
vertex v is estimated as follows.

Td(o, v, Ta(o, v)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
oi∈Op

oi.prob · (1
v.k

− Ta(o, v)

+Ta(oi, v)) +
∑

oj∈Ow

oj.prob

v.k
if C1

0 if C2

(4)

C1: v is occupied at time point Ta(o, v), and Op is the set of moving objects
being processed by v at this time point. In addition, there are also |Ow| moving
objects waiting to be processed.
C2: v is available at time point Ta(o, v), thus the corresponding time-delay is 0.
Here Ta(o, v) is the arrival time of object o at vertex v.

The total time cost of object o at vertex v is the sum of waiting time (time-
delay) and processing time. Thus the leaving time of moving object o from vertex
v can be computed as follows.

Tl(o, v) = Ta(o, v) + Td(o, v, Ta(o, v)) +
1

v.k
(5)

Finding Traffic-Aware Fastest Paths in Spatial Networks 135

n1

n4

n2

n3

n5
n6

n7 n8
v

1:25

12:26:30

0:55

0:45

12:27:15
0:35

0:30
1:15

0:40 1:05

Fig. 2. Time-delay

An example is shown in Figure 2, where P1 = 〈n1, n2, v, n3, n4〉 and P2 =
〈n5, n6, v, n7, n8〉 are two reconstructed probabilistic trajectories for moving ob-
jects o1 and o2 respectively. P1 has 50% probability while P2 has 75% probabil-
ity. Vertex v is an intersection and its traffic processing capability is v.k = 4 per
minute, which means processing an individual moving object will take 1

4 minute
= 15 seconds. The expected arrival time of o1 at v is 12:28:40, while o2’s expected
arrival time at v is 12:28:45. When o2 arrives at v, the processing of o1 is not
finished until 10 seconds later. Referring to Equations 4 and 5, the time-delay of
moving object o2 at vertex v can be estimated as Td(v, o2) = 50%×0:10 =0:05.
The estimated leaving time of o2 from v is 12:28:45 + 0:05 + 0:15 = 12:29:05,
and the expected arrival time of o2 at vertices n7 and n8 will be delayed corre-
spondingly.

Note that at some time points, there may exist more than one moving object
with the status of “being processed by vertex v” (referring to Equation 4). For
example, in Figure 2, moving object o1 is being processed within the time range
[12:28:40, 12:28:55], and the estimated processing time of o2 is within the time
range [12:28:50, 12:29:05]. In the overlapped time range [12:28:50, 12:28:55], o1
and o2 are both in the status of “being processed by v”. Suppose there is a
new moving object o3, and the arrival time of o3 at v is within the overlapped
time range [12:28:50, 12:28:55], to estimate the time-delay of o3, the influences
from both o1 and o2 should be taken into account. In addition, if more than one
moving object arrive at one vertex at the same time point, we will arrange their
schedules randomly.

3.2 Traffic-Aware Spatial Network

To detect potential time-delays and model traffic conditions practically, we con-
struct a traffic-aware spatial network Gta(V,E) by analysing the uncertain tra-
jectories over spatial networks. In our definition, a traffic-aware spatial network
Gta(V,E) is a spatial network, where each vertex v ∈ Gta.V has been assigned a
threshold v.k to describe its traffic processing capability. There are also a set of
traffic information records attached to v to describe its traffic conditions. Each
record is in the form of (object, probability, expected arrival time, time-delay,
processing time).

Given a spatial networkG(V,E) and a set of uncertain trajectories T , the con-
struction of a traffic-aware spatial network takes two steps. First, we reconstruct

136 S. Shang et al.

s1

n1 n4

n2

n3

n5
s2

n6

d1

d2
17:25:30

17:23:30

2:00
1:30

2:00
1:30

2:30

2:30

2:30

1:30

1:30

2:00

2:00

Fig. 3. Traffic-aware spatial network construction

the uncertain trajectories in T according to a random walk probabilistic model,
and map the reconstructed trajectories (with probability) onto G(V,E). Second,
we sort the vertices in reconstructed trajectories according to their timestamps,
and then refine their time-delays.

An example is shown in Figure 3, where n1, n2, ..., n6 are vertices and their
traffic processing capabilities are all 1 moving object per minute. There are 2
uncertain trajectories τ1 = 〈s1, d1〉 and τ2 = 〈s2, d2〉 of moving objects o1 and
o2, respectively. Trajectory τ1 is reconstructed into two possible paths P1 =
〈s1, n2, n1, n4, d1〉 and P2 = 〈s1, n2, n5, n4, d1〉, and each of them has 50% prob-
ability; while τ2 is reconstructed into two possible paths P3 = 〈s2, n3, n2, n5, d2〉
and P4 = 〈s2, n3, n6, n5, d2〉, and each of them also has 50% probability. Then,
we map all possible paths onto the spatial network, and compute the expected
arrival times (ignore the time-delay) as the timestamps for vertices in all possi-
ble paths. For instance, the departure time of P1 is 17:25:30, and the expected
arrival time of n2, n1, n4 and d1 are 17:27:30, 17:30:00, 17:33:30, and 17:36:30,
respectively.

We maintain a dynamic priority heap containing these timestamps. At each
step, we only refine the timestamp on the top of the heap. In Figure 3, n3 ∈ P3, P4

will be refined firstly, followed by n2 ∈ P1, P2. Then, we detect the first time-
delay at vertex n2 ∈ P3. The expected arrival time of moving object o1 at
n2 is 17:27:30 with 100% probability (P1 and P2), while the expected arrival
time of o2 at n2 is 17:28:00 with 50% probability (P3). Referring to Equations
4 and 5, the time-delay of o2 ∈ P3 at n2 is 0:30, and the estimated leaving
time is 17:29:30. Due to the time-delay at n2, the expected arrival times for
the rest vertices in P3 (i.e., n5 and d2) have to be adjusted correspondingly.

Table 1. Traffic Information Records

vertex traffic records

n1 (o1, 50%, 17:30:00, 0, 1:00)

n2 (o1, 100%, 17:27:30, 0, 1:00), (o2, 50%, 17:28:00, 0:30, 1:00)

n3 (o2, 100%, 17:25:30, 0, 1:00)

n4 (o1, 100%, 17:33:30, 0, 1:00)

n5 (o1, 50%, 17:31:00, 0, 1:00), (o2, 50%, 17:31:30, 0:15, 1:00), (o2, 50%,
17:32:00, 0:22 1

2
, 1:00)

n6 (o1, 50%, 17:29:00, 0, 1:00)

Finding Traffic-Aware Fastest Paths in Spatial Networks 137

The refinement follows this procedure, step by step, until the priority heap is
empty and all time-stamps have been refined. For each vertex v ∈ V , we maintain
a set of traffic records to describe its traffic conditions. The refinement results
of Figure 3 are demonstrated in Table 1.

The complete procedure of establishing a traffic-aware spatial network is de-
tailed in Algorithm 2. Given a spatial network G(V,E) and a set of uncertain
trajectories T , for each uncertain trajectory τ , we reconstruct its possible paths
and map them onto G(V,E) (lines 1-6). In the next, we select the vertex v with
the minimum timestamp and refine it (lines 8-9). If a time-delay is detected,
the timestamps of the rest vertices following v in the same path are updated
correspondingly (lines 10-11).

Algorithm 2. Traffic-Aware Spatial Network Construction

Data: spatial network G(V,E), uncertain trajectory set T
Result: Gta(V,E)
while T �= ∅ do1

τ ← T.pop();2

reconstruct τ ;3

while Pathlist(τ) �= ∅ do4

P ← Pathlist(τ).pop();5

map P onto G(V,E);6

while H �= ∅ do7

v ← Heap.pop();8

refine v;9

if v.delay is triggered then10

update the timestamps of v.rest;11

3.3 Traffic Records Indexing and Search

Each vertex v ∈ Gta(V,E) maintains a set of traffic records to describe its traffic
conditions (refer to Table I). We notice that there may exist a large number of
records (e.g, hundreds of or thousands of records, depending on the number of
uncertain trajectories) at one vertex. Such massive traffic data may prevent the
computation from being addressed in real time. To accelerate the computing pro-
cess, we establish a B-tree for the column “expected arrival time”. Note that the
utilization of the well known B-tree is only for improving the search efficiency.
Other indexing approaches can also be easily adapted. Given a moving object o
and its expected arrival time Ta(o, v) at vertex v, if a moving object oi in the
traffic records of v satisfies Equation 6, it will be labeled as “a waiting object”
(i.e., when moving object o arrives at v, oi is waiting for being processed) and
put into data set Ow . Otherwise, if oi satisfies Equation 7, it will be labeled as
“a processing object” (i.e., when o arrives at v, oi is being processed) and put

138 S. Shang et al.

into data set Op. According to Equation 4, the time-delay of moving object o at
vertex v can be obtained.

Ta(oi, v) < Ta(o, v) < Ta(oi, v) + Td(oi, v, Ta(oi, v)) (6){
Ta(oi, v) + Td(oi, v, Ta(oi, v)) < Ta(o, v)
Ta(o, v) < Ta(oi, v) + Td(oi, v, Ta(oi, v)) +

1
v.k

(7)

4 TAFP Query Processing

In this section, we define a novel type of query: traffic-aware fastest path (TAFP)
query, and develop two algorithms to process it efficiently.

Definition 2: Traffic-Aware Fastest Path Query
Given a traffic-aware spatial network Gta(V,E), a sequence of user intended
places Oq and a departure time t, TAFP query finds the fastest path P that
connects Oq in order, such that ∀P ′ ∈ Pathlist(Oq)(Tt(P, t) ≤ Tt(P

′, t)), where
Pathlist(Oq) is a data set that contain all paths connecting Oq in order.

4.1 Best-First Search Strategy

Dijkstra’s algorithm [4] is a conventional method to address the shortest/fastest
path problem in spatial networks, but it fails to solve TAFP due to the non-
awareness of moving object processing time and time-delay at each vertex in
Gta(V,E). We develop a novel search algorithm named Dp to answer TAFP in
real time, which inherits the best-first search strategy from Dijkstra’s algorithm
(i.e., Dijkstra’s algorithm always selects the vertex with the minimum distance
label for expansion). In Dp, the distance label of each vertex v in a network
expansion tree is defined as

v.dist = c.dist+ w(c, v) + Td(v, (Tl(c) + w(c, v))) +
1

v.k
(8)

where v and c are vertices in Gta(V,E), and c is the parent vertex of v (i.e.,
c = v.pre) in the expansion tree. In contrast to Dijkstra’s algorithm, the distance
label in Dp contains three parts: the weight (travel cost) of edge (c, v), the time-
delay of v at the time point (Tl(c) + w(c, v)), and the individual moving object
processing time at v.

The Dp algorithm is detailed in Algorithm 3. Initially, the distance label
of each vertex v ∈ V is set to +∞ (line 2). Then, we compute the fastest
path P (oi, oi+1) that connects oi, oi+1 ∈ Oq by using Dp. By combining the
computation results, we find the fastest path P that connects Oq in order, and
return the fastest path P (lines 3-7).

The Dp algorithm is designed to find the fastest path between any two vertices
oi, oj ∈ Gta(V,E). The query input ofDp includes a source point oi, a destination
point oj and a departure time t (line 9). In each iteration, we select the vertex

Finding Traffic-Aware Fastest Paths in Spatial Networks 139

Algorithm 3. Finding TAFP using Dp Algorithm

Data: Gta(V,E), Oq and t
Result: P and Tt(P, t)
t0 ← t; P ← ∅; Os ← ∅; P (oi, oi+1) ← ∅, i ∈ [0, |Oq | − 2];1

v.dist ← +∞,∀v ∈ V ;2

for i = 0; i < |Oq | − 1; i++ do3

Dp(oi, oi+1, ti);4

ti+1 ← ti + Tt(P (oi, oi+1), ti);5

P ← P ∪ P (oi, oi+1);6

return P ;7

begin8

Function DP (oi, oj , t)9

Os.push(oi);10

while Qs �= ∅ do11

select v ∈ Os with the minimum v.dist;12

Os.remove(v);13

if v = oj then14

while v.pre �= null do15

P (oi, oj).push(v);16

v ← v.pre;17

Tt(P (oi, oj), t) ← oj .dist− t;18

return P (oi, oj) & Tt(P (oi, oj), t);19

for each vertex n ∈ c.adjacentList do20

Ta(n) ← v.dist+ w(c, v);21

if n.dist > v.dist+ w(v, n) + Td(n, Ta(n)) + 1/n.k then22

n.dist ← v.dist+ w(v, n) + Td(n, Ta(n)) + 1/n.k;23

n.pre ← v;24

Os.push(n);25

end26

v with the minimum distance label v.dist from the heap Os. Once v = oj , the
destination oj has been reached and the fastest path P (oi, oj) is found (lines
14-17). For each adjacent vertex of v, if its current distance label is less than the
new distance label v.dist + w(v, n) + Td(n, Ta(n)) + 1/n.k (i.e., the distance of
the path from oi to n via v), it will be replaced by the new distance label, and
n will be put into the heap Os (lines 20-25).

4.2 Heuristic Search Strategy

Similar to Djkstra’s algorithm,Dp lacks an effective heuristic search strategy that
helps it focus on the paths more likely to be the optimal choice, and constrain
the search space and improve the query performance. We develop a novel Ap

algorithm to further enhance the efficiency of TAFP, which is an extension of
A* algorithm [8]. Ap shares the same structure as Dp, but the distance label of
each vertex v in a network expansion tree is defined as follows.

140 S. Shang et al.

v.dist = c.dist+ w(c, v) + Td(v, Ta(v)) +
1

v.k
+ sd(v, d) (9)

where c is the parent vertex of v in the expansion tree, and sd(v, d) is the shortest
path distance between vertex v and the query destination d (i.e., a sequence of
edges linking v and d where the accumulated weight is minimal).

The distance label of Ap has two parts: (c.dist+w(c, v)+Td(v, Ta(v))+1/v.k)
is to describe the travel cost from the query source to vertex v via c, while
sd(v, d) is the heuristic part to estimate the exact travel cost from vertex v to
the destination d. Intuitively, the value of sd(v, d) is always less than the real
travel cost from v to d, since the moving object processing time and time-delay
are not considered in the value of sd(v, d). Thus the correctness of Ap algorithm
can be guaranteed. The search process of finding TAFP using Ap algorithm is
conducted by substituting Equation 9 into Algorithm 3 (lines 22-23).

To acquire the shortest path distance sd(a, b) between any two vertices a, b ∈
V efficiently, we assume that the network paths between all pairs have been pre-
computed and encoded to reduce storage cost from O(|V |3) to O(|V |1.5) [16].
This encoding takes advantage of the fact that the shortest paths from a vertex u
to all of the remaining vertices can be decomposed into subsets based on the first
edges on the shortest paths to them from u. The simplest way of representing
the shortest path information is to maintain an array A of size |V | × |V |, where
A[u, v] contains the first vertex on the shortest path from u to v. Using A, the
construction of the shortest path between u and v is performed by repeatedly
visiting A[u′, v], where u′ = u for the first time and u′ = A[u′, v] in subsequence,
and the time is proportional to the length to the path.

5 Experimental Results

Next, we conducted extensive experiments on real and synthetic spatial data
sets to demonstrate the performance of TAFP query. The two data sets used in
our experiments were the Beijing Road Network (BRN)8 and synthetic Indoor
Transfer Network (ITN), which contain 28,342 vertices and 6,105 vertices, re-
spectively, stored as adjacency lists. In BRN, we adopted the real trajectory data
collected by MOIR project [12]. In ITN, synthetic trajectory data were used. All
algorithms were implemented in Java and tested on a Linux platform with Intel
Core i7-3520M Processor (2.90GHz) and 8GB memory. The experimental re-
sults were averaged over 20 independent trials with different query inputs. The
main performance metrics were CPU time and the number of visited vertices.
The number of visited vertices was selected as a metric for two reasons: (i) it
can describe the exact amount of data access; (ii) it can reflect the real disk
I/O cost to a certain degree. The parameter settings are listed in Table 2. By
default, the number of uncertain trajectories were 4,000 and 2,000 in BRN and
ITN respectively to construct the traffic-aware spatial network.

8 http://www.iscas.ac.cn/

http://www.iscas.ac.cn/

Finding Traffic-Aware Fastest Paths in Spatial Networks 141

Table 2. Parameter settings

BRN ITN

Uncertain Trajectory Length 2 – 10 2– 10

Number of Reconstructed Paths 10,000 – 40,000
(default 10,000)

10,000 – 40,000
(default 10,000)

Number of Intended Places |Oq | 2 – 10 2 – 10

5.1 Performance of Uncertain Trajectory Reconstruction

First of all, we studied the performance of the uncertain trajectory reconstruction
(UTR) in Algorithm 1 when uncertain trajectory length (the number of sample
points) varies (Figure 4). The length of uncertain trajectory was set from 2 to
10 in both BRN and ITN. Longer trajectories lead to more computation efforts,
thus the CPU time and the number of visited vertices are expected to be higher
in both BRN and ITN. Generally, the maximum CPU time is under 700 ms in
BRN and under 400 ms in ITN, while the maximum number of visited vertices
is less than 2000 in BRN and is around 1500 in ITN.

 0

 200

 400

 600

 800

2 4 6 8 10

C
P

U
-T

im
e
 (

m
s
)

Uncertain Trajectory Length

UTR

(a) BRN

0

500

1,000

1,500

2,000

2,500

2 4 6 8 10

V
is

it
e
d
 V

e
rt

ic
s

Uncertain Trajectory Length

UTR

(b) BRN

 0

 100

 200

 300

 400

 500

2 4 6 8 10

C
P

U
-T

im
e
 (

m
s
)

Uncertain Trajectory Length

UTR

(c) ITN

0

500

1,000

1,500

2 4 6 8 10

V
is

it
e
d
 V

e
rt

ic
s

Uncertain Trajectory Length

UTR

(d) ITN

Fig. 4. Performance of uncertain trajectory reconstruction

5.2 Traffic-Aware Spatial Network Gta(V, E) Construction

Figure 5 demonstrates the performance of Traffic-Aware spatial network
Gta(V,E) construction, including the construction times (Figures 5(a) and 5(c))
and network sizes (Figures 5(b) and 5(d)) in BRN and ITN, respectively. The
number of reconstructed possible paths (reconstructed trajectories) is from

142 S. Shang et al.

10,000 to 50,000 in both BRN and ITN. Obviously, more trajectory data leads to
higher construction time, and larger size of the constructed traffic-aware spatial
network. The traffic-aware spatial network construction is an off-line process
due to the huge amount of possible paths, and the traffic records are stored in
disk. For each vertex v ∈ Gta(V,E), we maintain a pointer pointing to the po-
sitions of the related traffic records in disk. Once the vertex v is scanned by a
network expansion, the related traffic records can be accessed efficiently.

0

500

1,000

1,500

2,000

2,500

10000 20000 30000 40000

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
)

Number of Reconstructed Paths

T-A Network Construction

(a) BRN

0

2,500

5,000

10000 20000 30000 40000
N

e
tw

o
rk

 S
iz

e
 (

M
B

)
Number of Reconstructed Paths

T-A Network Construction

(b) BRN

0

500

1,000

1,500

2,000

2,500

10000 20000 30000 40000

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
)

Number of Reconstructed Paths

T-A Network Construction

(c) ITN

0

2,000

4,000

6,000

10000 20000 30000 40000

N
e
tw

o
rk

 S
iz

e
 (

M
B

)

Number of Reconstructed Paths

T-A Network Construction

(d) ITN

Fig. 5. Performance of traffic-aware spatial network construction

5.3 Performance of TAFP Query Processing

We developed two efficient algorithms named Dp and Ap to evaluate TAFP
query. For the purpose of comparison,Dp was adopted as the baseline algorithm.
The performance of Dp and Ap with varying number of user intended places is
presented in Figure 6. It is clear that the CPU time and the number of visited
vertices required byDp are twice as high as Ap. These results clearly demonstrate
the superiority of the heuristic strategy in the shortest/fastest path search. Note
that (i) the number of visited vertices may be greater than the size of vertex set
V , since a vertex may be visited several times in one query; (ii) the CPU time is
not fully corresponding to the Disk I/O times. In some cases, the increment of
computation cost may offset the benefits from the reduction of Disk I/O times.

6 Related Work

6.1 Shortest Path Queries in Spatial Networks

In static spatial networks, Dijkstra’s algorithm [4] and the A* algorithm [8]
are two classical methods to address the shortest path problem. In Dijkstra’s

Finding Traffic-Aware Fastest Paths in Spatial Networks 143

0

500

1,000

1,500

2,000

2 4 6 8 10

C
P

U
-T

im
e
 (

m
s
)

Number of Intended Places

Ap
Dp

(a) BRN

0

5,000

10,000

15,000

2 4 6 8 10

V
is

it
e
d
 V

e
rt

ic
e
s
 N

u
m

b
e
r

Number of Intended Places

Ap
Dp

(b) BRN

 0

 250

 500

2 4 6 8 10

C
P

U
-T

im
e
 (

m
s
)

Number of Intended Places

Ap
Dp

(c) ITN

0

500

1,000

1,500

2 4 6 8 10
V

is
it
e
d
 V

e
rt

ic
e
s
 N

u
m

b
e
r

Number of Intended Places

Ap
Dp

(d) ITN

Fig. 6. Performance of TAFP query processing

algorithm, an expansion wavefront is expanded from the source s. A priority heap
H is adopted to maintain the unscanned vertexes. At each expansion, vertex v
with the minimum distance label (usually the network distance from s to v) will
be selected, and removed from the priority heap, and labeled as scanned vertex.
In the next, all the unscanned neighbor vertex to v will be put into H , until the
destination d has been reached and the shortest path from s to d is found. In
A* algorithm, the value of sd(vs, v)+dE(v, vd), where dE(v, vd) is the Euclidean
distance between v and vd, is used as the distance label of vertex v, to estimate
the network distance from vs to vd via v. A* algorithm is an heuristic searching
approach, and its performance is greater than Dijkstra’s algorithm in general.

Time-dependent road network [5] and probabilistic road network [9] are two
representative dynamic spatial networks. A time-dependent road network can be
established according to the speed pattern, which motivates the-time dependent
shortest path query [5]. Time-dependent shortest path query is a variant of
dynamic shortest path problem, which is designed to find the best departure time
for users, to minimize the global traveling time from a source to a destination
over a large road network, where the traffic conditions are dynamically changing
from time to time. The challenge of this problem lies in the dynamic edge delay.
In probabilistic road networks, each edge is assigned a set of probabilistic data to
describe the traveling cost along this edge, and probabilistic shortest path queries
[9] ask for (i) the fastest path constrained by a probability threshold, and (ii)
the path with the highest probability constrained by a travel time threshold.

Despite the bulk of literature on shortest path queries [4] [8] [14] [1] [6]
[5] [9], none of the existing work can address the proposed TAFP query due
to two reasons: Dijkstra’s algorithm and A* algorithm are not aware of the

144 S. Shang et al.

time-delay and moving object processing time, and time-dependent and proba-
bilistic shortest path queries are based on different traffic models from ours.

In our previous study [17], we briefly introduced the concept of a traffic-aware
spatial network, as well as gave the definition of estimating travel time along a
user specified path in traffic-aware spatial networks.

6.2 Uncertain Trajectory Data Management

Uncertain trajectory data management [21] [22] [15] [19] [24] has received sig-
nificant attention in recent ten years. Wolfson et al. [21] [22] addressed the up-
date problem of moving objects by proposing an information cost model that
captured the uncertainty, deviation and communication. Pfoser et al. [15] pro-
posed a formal quantitative approach to the aspect of uncertainty in modeling
moving objects. Massive uncertain trajectory data enabled many novel spatial
queries. Trajcevski et al. introduced continuous range queries [19] and nearest
neighbor queries [18] on uncertain trajectories. Zhang et al. [24] devised an ef-
ficient location-prediction method, and integrated it into an effective indexing
structure designed for uncertain moving objects. Zheng et al. [25] presented the
probabilistic range queries on uncertain trajectories in road networks and the
corresponding efficient solutions.

7 Conclusions and Future Directions

In this work, we proposed and studied a novel problem called traffic-aware fastest
path (TAFP) query. Given a sequence of user intended places Oq and a departure
time, the TAFP query finds the fastest path that connects Oq in order. We
believe that this type of query can bring significant benefits to users in many
popular applications, such as path planning and recommendation. To detect
potential time-delays and model traffic conditions practically, we constructed a
traffic-aware spatial network Gta(V,E) by analysing uncertain trajectory data
of moving objects. Based on Gta(V,E), we developed two algorithms using best-
first and heuristic search strategies respectively to address the TAFP query in
real time. Finally, we conducted extensive experiments on real and synthetic
datasets to demonstrate the performance of the TAFP query. In the future,
it is of interest to consider objects moving patterns in the uncertain trajectory
reconstruction, and to consider parallel computing techniques in the construction
of traffic-aware spatial networks.

References

1. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutellà, M.G.: Dynamic shortest paths
minimizing travel times and costs. Networks 41(4), 197–205 (2003)

2. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. In: SODA, pp.
589–598 (2003)

3. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: VLDB, pp. 853–864 (2005)

Finding Traffic-Aware Fastest Paths in Spatial Networks 145

4. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische
Math. 1, 269–271 (1959)

5. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: EDBT, pp. 205–216 (2008)

6. George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing
algorithms: A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.)
SSTD 2007. LNCS, vol. 4605, pp. 460–477. Springer, Heidelberg (2007)

7. Greenfeld, J.: Matching gps observations to locations on a digital map. In: 81th
Annual Meeting of the Transportation Research Board (2002)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2), 100–107 (1968)

9. Hua, M., Pei, J.: Probabilistic path queries in road networks: traffic uncertainty
aware path selection. In: EDBT, pp. 347–358 (2010)

10. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: Mobile
Data Management, pp. 122–131 (2009)

11. Jensen, C.S., Lu, H., Yang, B.: Indexing the trajectories of moving objects in sym-
bolic indoor space. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent,
I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 208–227. Springer, Heidelberg (2009)

12. Liu, K., Deng, K., Ding, Z., Li, M., Zhou, X.: Moir/mt: Monitoring large-scale road
network traffic in real-time. In: VLDB, pp. 1538–1541 (2009)

13. Muckell, J., Hwang, J.-H., Lawson, C., Ravi, S.: Algorithms for compressing gps
trajectory data: An empirical evaluation. ACM GIS (2010)

14. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

15. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS,
vol. 1651, p. 111. Springer, Heidelberg (1999)

16. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of SIGMOD, pp. 43–54 (2008)

17. Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in
spatial networks. In: MDM, 4 pages (2013)

18. Trajcevski, G., Tamassia, R., Ding, H., Scheuermann, P., Cruz, I.F.: Continuous
probabilistic nearest-neighbor queries for uncertain trajectories. In: EDBT, pp.
874–885 (2009)

19. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty
in moving objects databases. ACM Trans. Database Syst. 29(3), 463–507 (2004)

20. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed:
Localizing globalb curve-matching algorithms. In: SSDBM (2006)

21. Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost and imprecision
in modeling the position of moving objects. In: ICDE, pp. 588–596 (1998)

22. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying
databases that track mobile units. Distributed and Parallel Databases 7(3), 257–
387 (1999)

23. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)

24. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing un-
certain moving objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)

25. Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries
for uncertain trajectories on road networks. In: EDBT, pp. 283–294 (2011)

Geodetic Distance Queries on R-Trees
for Indexing Geographic Data

Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel

Ludwig-Maximilians-Universitt Mnchen
Oettingenstr. 67, 80538 Mnchen, Germany
{schube,zimek,kriegel}@dbs.ifi.lmu.de

http://www.dbs.ifi.lmu.de

Abstract. Geographic data have become abundantly available in the re-
cent years due to the widespread deployment of GPS devices for example
in mobile phones. At the same time, the data covered are no longer re-
stricted to the local area of a single application, but often span the whole
world. However, we do still use very rough approximations when indexing
these data, which are usually stored and indexed using an equirectangu-
lar projection. When distances are measured using Euclidean distance in
this projection, a non-neglibile error may occur. Databases are lacking
good support for accelerated nearest neighbor queries and range queries
in such datasets for the much more appropriate geodetic (great-circle)
distance. In this article, we will show two approaches how a widely known
spatial index structure – the R-tree – can be easily used for nearest neigh-
bor queries with the geodetic distance, with no changes to the actual
index structure. This allows existing database indexes immediately to
be used with low distortion and highly efficient nearest neighbor queries
and radius queries as well as window queries.

1 Introduction

Nowadays, we are much more used to seeing maps than using a globe. But once
we look at maps of the world, all map projections have some error: they cannot
preserve the three components of geographical information, distance, area, and
angles, equally well. The projections that we are most used to are the Mercator
projection and the even simpler equi-rectangular projection. Google maps, for
example, is based upon the Mercator projection. Figure 1 shows three differ-
ent projections used for maps. Figure 1a is a variation of the usual Mercator
projection, which has a huge influence on our understanding of the world. Fig-
ure 1b is an alternate projection developed 1923 by John Paul Goode, which is
an equal-area projection. The difference in the ability to preserve area can in
particular be seen for the Antarctica, but also Greenland, Canada, Alaska and
Russia show massive area distortions in the Mercator projection. The Mercator
projection is obtained by wrapping a cylinder around the earth and projecting
the earth surface onto this cylinder. This yields a good map where the cylinder
touches or intersects the earth, but along the axis of the cylinder the distor-
tion is infinite – the north and south poles do not project to the cylinder at

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 146–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.dbs.ifi.lmu.de

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 147

(a) Mercator projection

(b) Goode homolosine projection

(c) Equirectangular projection

Fig. 1. Three different projections of the earth surface. Images from Wikimedia Com-
mons, by user “Strebe”1

all. Therefore, Mercator maps are commonly truncated at the poles. Figure 1a
for example is truncated to a latitude of ±82◦. While the Mercator projection
does not preserve area and distances, it preserves the shapes quite well – but
even more importantly, it preserves angles, which makes it useful for navigation
and this probably is the main reason for the popularity of this projection. The
equirectangular projection (Figure 1c) is probably the simplest projection, where
latitude and longitude translate directly into y and x. In contrast to Mercator,
it does not preserve angles. However, being able to trivially translate latitude
and longitude to pixels on this map projection makes it a popular choice in GIS
raster applications, and this is the default projection for placing custom texture
overlays on the earth surface, e.g. in Google Earth and NASA WorldWind.

There are hundreds of geodetic reference datums, some of which are historic,
but many are still in use for good reasons, e.g. for land survey. We tend to assume
that any geographic position is well-defined, but for example due to tectonic
plate shift we have to accept the fact that even the largest mountains move with
respect to each other over time. The most popular geographic coordinate system
is that of geographic latitude and longitude, with respect to the World Geodetic
System 1984 (WGS84) reference ellipsoid. Geographic position is then measured
with three components, known as latitude, longitude, and elevation. Elevation is
commonly given with respect to the reference ellipsoid’s surface, so that values
of 0 are approximately at sea level. In the following, we will use λ to denote
latitude and φ to denote longitude. We will not be using elevation, since it often
is not available for a data set. Furthermore, in order to fully specify position, one
would also need to take the time of the measurement into account. For all these
reasons, we have to live with some error in geo positioning and, thus, distance

1 For detailed copyright information on these images (CC-BY-SA 3.0), see
https://commons.wikimedia.org/wiki/Category:Images_of_map_projections

https://commons.wikimedia.org/wiki/Category:Images_of_map_projections

148 E. Schubert, A. Zimek, and H.-P. Kriegel

computations. There exist several reference models of the earth. The simplest is
that of a sphere with radius r = 6371 km, but there exist more complex models
such as the GRS80 (Geodetic Reference System 1980) and the WGS84 ellipsoids;
the latter is commonly used with the global positioning system GPS.

In many applications, Euclidean distance is chosen to measure distances on
such data. If the variables stored are latitude and longitude, this equals measur-
ing distances in the plate carrée (equirectangular) projection – which preserves
neither distances nor area nor angles. The errors resulting from this are consid-
erably larger than one might assume, even at short distances: For example at
45◦N , the latitude of Minneapolis, Turin and Bordeaux, 1◦ of longitude equals,
in Euclidean distance, approximately 0.707◦ of latitude (traveling 1◦ north is
approximately 111 km, traveling 1◦ east is just 78.7 km). Therefore, this naïve
approach leads to a non-negligible distortion for nearest neighbor and radius
queries in large parts of Europe and the US. Transforming the data to a differ-
ent local geodetic system can reduce this error significantly if we need a small
part of the world only, but this approach does not work for global data sets.

A much more adequate choice for computing distances is the great-circle dis-
tance, also known as orthodromic distance and called geodetic distance when
using the Earth’s radius. This is the shortest distance on the surface of a sphere
(or ellipsoid). In the simpler case of a sphere of radius r – not an ellipsoid – it
can be computed using Δλ := |λ1 − λ2|:

darccos(φ1, λ1, φ2, λ2) :=r arccos (sinφ1 sinφ2 + cosφ1 cosφ2 cos(Δλ))

For increased precision and support for spheroid models such as WGS84, it may
be desirable to use the haversine formula [1] or Vincenty’s formula [2].

Additionally to computing distances between points, one could also want to
compute distances between points and a desired track: the so called “cross-track
distance” (XTD, also “cross track error”) is the sideways deviation from a desired
path of travel, for example due to wind affecting an airplane. In the simpler,
spherical, model, it can be computed as

dxtd := r arcsin
(
sin(dsp/r) · sin(θsp − θsd)

)
, (1)

where dsp is the distance from the starting point s to the current position p, θsp
is the initial bearing from the starting point s to the current position p, and θsd
is the initial bearing from the starting point s to the desired destination d.

The bearing (or forward azimuth) is the initial direction one needs to travel
to the destination on the great-circle path (i.e., on the shortest path). Note that,
when traveling along this path, the measured direction will actually change, so
it does matter at which point we compute the bearing. The spherical formula
for the bearing from a to b is:

θab = arctan
sin(Δλ) cosφb

cosφa sinφb − sinφa cosφb cos(Δλ)
(2)

The Cross-Track-Distance is visualized in Figure 2 for a track from Munich to
New York City. The left image, Figure 2a is the equirectangular projection used

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 149

(a) Equirectangular projection (b) Google Earth projection

Fig. 2. Cross-Track-Distance from the course Munich to New York

by the visualization and may appear distorted. But when the map is projected
onto the sphere, as done in Figure 2b using Google Earth, it appears regular
as expected. Red colors indicate a deviation to the left or a position along the
track before the starting point, which are often represented by negative numbers.
Black lines indicate contours of 1/36 the earth circumference.

In the following, we discuss aspects of the problem w.r.t. existing work and
state our contributions (Section 2). We introduce our method in Section 3 and
present an experimental evaluation in Section 4. We conclude in Section 5.

2 Related Work

Considering the background, state-of-the-art, and open problems, we discuss
three aspects: first, data indexing methods proposed in scientific literature; sec-
ond, the functionality commonly available in actual database engines; third, more
specifically the problems of geodetic data when combined with these indexes.

2.1 Data Indexing in Scientific Work

Among the simplest index structures for spatial data are quadtrees [3], that
recursively split an overflowing cell into four parts (by splitting in the middle of
the x and y axes) until the cells contain at most the desired number of objects.
A similar idea is the base of k-d trees [4], which split into two parts similar to a
B-tree, but rotate through the d axes at each level. By splitting at the median
(on an optimal tree) instead of the middle, a k-d tree can be a balanced tree.
However, it does not allow easy dynamical rebalancing. Repeated insertion may
cause the tree to become unbalanced and require the index to be rebuilt to retain
good performance. Hierarchical Triangular Mesh [5] can be seen as an adoption
of quadtrees to indexing the surface of a sphere. The initial approximation is
an octahedron, and each triangle is then repeatedly decomposed into the four
smaller triangles obtained by splitting each edge in half. While quadtrees can be
linearized and then stored efficiently in a B+-tree (which effectively turns the
quadtree into a Z-curve [6]), these indexes do not make native use of the block

150 E. Schubert, A. Zimek, and H.-P. Kriegel

structure of harddisks. The R-tree [7] and its variants (such as the R*-tree [8])
are very popular spatial index structures for the use in databases, since they
offer three main benefits over k-d trees: primarily, they are designed with paged
memory in mind, and thus can easily be implemented as disk-based indexes.
Secondly, they also consider non-singular objects with a spatial extent of their
own, such as polygons. But even more importantly, they allow for dynamical
rebalancing when inserting and deleting data.

In this respect, the R*-tree [8] is an important extension of the R-tree when
handling dynamic data, since its focus is on rebalancing and, this way, on op-
timizing the tree. The SS-tree [9] is similar to the R-tree, but uses bounding
spheres instead of rectangles for its bounding volume hierarchy. The M-tree [10]
includes the distance to each child in the parent page and uses the triangle
inequality to prune search candidates. Both do not rely on projections or co-
ordinates, but index the data solely by their distances. However, this requires
the tree being built for the specific distance function to be used for querying; It
can not be used to answer queries with arbitrary distance functions. While the
query process is quite straightforward, the construction and incremental update
of these trees is much harder than in the case of the coordinate-oriented R-trees.
The SS+-tree [11] uses k-means clustering to find a good split; however k-means
only optimizes for (squared) Euclidean distance, and does not search for a min-
imum cover, but minimizes in-cluster variances. A bulk-loading strategy [12] for
the M-tree is based on sampling and k-means style clustering to avoid having
to compute all pairwise distances. The Slim-Tree [13,14] suggests the use of the
minimum spanning tree to split nodes and uses R*-tree-inspired reorganization
techniques to “slim down” the tree. These difficulties of efficiently computing a
good split constitute the largest drawback of the M-tree. There are also hybrid
techniques, such as an R-tree which also stores the center and radius of the page
(SR-Tree [15]). Here, the split strategies of the R-tree can be used, and the cov-
ering radius serves as an additional pruning heuristic. Again, this radius can be
only used for a specific distance function, chosen at index construction time.

2.2 Data Indexing in Practical Use

Not all of the techniques discussed above are used in practise. The most used
techniques probably are Quadtrees (because of their simplicity and the ability
to map them to existing B+-tree indices for harddisk storage) and R*-trees.
However, while many database engines (including but not limited to Oracle,
IBM Informix, Microsoft SQL Server, PostgreSQL, SQLite) list these indices
on their feature sheets, the actual support for using them in query evaluation
varies. The main functionality that seems to be widely supported is that of
multidimensional range queries, which is for example useful when displaying
parts of a map. Few seem to allow index-accelerated distance-based queries, and
it is even more unclear, if they do, which distance functions are supported. Most
database engines support only Euclidean distance queries.

Microsoft SQL Server uses a multi-level grid-based approach closely related
to Quadtrees that requires filter refinement that can (since SQL Server 2012)

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 151

also accelerate nearest neighbor queries [16,17] (at least for Euclidean distance).
PostGIS/PostgreSQL have support for R-trees and M-trees implemented on top
of their GiST architecture. However, these indexes can currently only be used
with bounding box-based operators and not with queries that use Euclidean
ST_Distance [18], yet the spherical ST_Distance_Sphere. Built-in operators of
the database such as <#> and <-> also appear to support Euclidean distances
only. IBM Informix [19] uses a data partitioning scheme with a predefined set
of Voronoi cells (see also [20]), based on the population density of the areas.
Furthermore, it supports the R-tree with custom strategy functions via an API.
It is not clear from the documentation whether the nearest neighbor search
functions are provided for any of the predefined geodetic data types. However,
the algorithms presented in this paper can be implemented straightforwardly in
this API. Oracle Spatial supports quadtrees and R-trees. Only the latter can
be used for geodetic distance queries. An empirical evaluation at Oracle found
R-trees to “consistently outperform quadtrees by a factor of 3” [21] for distance
queries on the GIS data used in the study and to offer equivalent or better
performance in almost all cases without parameter tuning. According to [22],
the approach used by Oracle is to project the data into a 3 dimensional, “earth-
centered-earth-fixed” (ECEF) coordinate system space and index the data there,
but details on the exact method used do not seem to be available.

2.3 Handling Geodetic Data with Non-geodetic Indexes

As we have seen, many popular index structures are either designed or imple-
mented only with Euclidean distance in mind. When geodetic data are naïvely
stored in such an index, it will result in errors in distance computations. In
Section 1 we already noted that the error at 45◦N , the latitude of Minneapolis,
Turin and Bordeaux, the same Euclidean distance going east is just 70.7% of that
when going south instead. Therefore, we should not use Euclidean distance with
data in the non-Cartesian coordinate system of latitude and longitude. Many
widely available index structures will only support such distance functions.

In order to get a more reasonable precision using Euclidean distance, the data
must be transformed into a locally equidistant projection such as European
Datum 1987 (ED87) or the European Terrestrial Reference System (ETRS) for
data in Europe. Close to the fundamental point of these coordinate systems, the
Euclidean distance can be reasonably used without large distortion. However,
on a global data set there exists no optimal fundamental point, and distortions
will occur when using the Euclidean distance.

2.4 Summary and Contributions

Indexing of spatial data is not a new domain. Many methods have been around
for a long time. A method that clearly has proved itself in the “test of time” is
the R*-tree, which seems to be used by every major database engine. Yet, when
processing geodetic data, the index support in common database engines is often
surprisingly limited. The R*-tree is – in contrast to the M-tree – actually distance

152 E. Schubert, A. Zimek, and H.-P. Kriegel

agnostic and by no means limited to the Euclidean distance or Lp norms. The R*-
tree implementations in ELKI [23] for example also support Canberra distance,
Histogram intersection distance, and Cosine similarity as long as the data does
not contain the origin. In the following we will introduce two approaches to index
data with respect to the geodetic distance based on R-trees. Both approaches
have strengths and weaknesses, some of which we will look at in detail.

For the simpler approach (which likely is similar to what Oracle Spatial uses
[22,24]), we can project the data into a 3-dimensional ECEF coordinate system
and use an R-tree or M-tree with Euclidean distance. The Euclidean distance
then is a lower bound for the geodetic distance, and we can therefore get a
good approximation of the query set, which then can be refined with geodetic
distance. The main drawback of this approach is that the resulting tree is less
useful when querying map sections based on a latitude/longitude rectangle; it
also needs additional memory to index the data this way.

The second approach we introduce will work on the unmodified data (i.e.
latitude and longitude coordinates) and an unmodified R-tree. What is needed
to enable this kind of queries is the minimum distance from a query point to
an index rectangle, which is a key contribution of this paper. The main benefits
of this approach are that the same index can be used to answer typical map
window queries that consist of latitude and longitude ranges, allowing for a
dual-use index. Furthermore, since the index is using the original, 2D data, it
requires less memory (and thus less I/O) than the other approach. The drawback
is that, since it involves trigonometric computations, it is more CPU intensive.

Both approaches can easily be implemented in any existing database that
already supports the R-tree: there are no changes needed to the index or index
construction. In the first approach the index only needs to be able to accelerate
3D Euclidean distance queries. In the second approach it needs to allow for
custom distance functions.

3 Indexing Geodetic Data

Some index structures such as the M-tree can be built for any metric distance
function. Being the shortest path on the surface, the great-circle distance is a
proper metric. We will discuss two alternate approaches here.

3.1 Indexing Geodetic Data Using 3D Euclidean Coordinates

While the geographic latitude and longitude are probably the most popular da-
tum for geographic positions, there exist other coordinate systems. One of these
sticks out because it actually uses Cartesian coordinates – which is also the main
drawback, because it is not at all map oriented. Instead of giving coordinates
on the earth surface, it uses three axes originating from the Earth’s centre of
mass. The x and y axes span the equatorial plane, with the x-axis pointing to
the prime meridian, the y-axis pointing to 90◦E, the z-axis pointing straight
north, i.e. it coincides with the average rotational axis of the Earth. Figure 3a

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 153

z

yx

(a) ECEF coordinate system: x is to
0◦N, 0◦E, y is to 0◦N, 90◦E, z to 90◦N

GeodeticEuclidean distance
A

B

Earth center

(b) Euclidean distance is a lower bound
for geodetic (great-circle) distance

Fig. 3. ECEF Cartesian index space

visualizes the axes with respect to the earth sphere. This coordinate system can
be referred to as earth-centered earth-fixed (ECEF) or simply “XYZ” coordinate
system. The name originates from the coordinate system being centered on the
earth mass point and fixed to be invariant to the earths rotation.

While Euclidean distances in this coordinate system do not follow the Earth’s
surface, they have an interesting property. As sketched in Figure 3b, the Eu-
clidean distance is the chord length in the great circle used by the geodetic
distance. This yields two important properties of the ECEF coordinate system:
– Euclidean distance in ECEF is a lower bound for the geodetic distance:

L2,ECEF(a, b) ≤ dgeodetic(a, b) (3)

– Euclidean distance in ECEF is strictly monotone to geodetic distances, i.e.

L2,ECEF(a, b) < L2,ECEF(x, y)⇔ dgeodetic(a, b) < dgeodetic(x, y) (4)

The first property guarantees that for a query radius r, all objects (although
also some more) are found that are in the desired range the geodetic distance.
The second property gives an even stronger guarantee for retrieving the k near-
est neighbors: here, no additional objects should be included (notwithstanding
numerical issues).

Therefore any index that can support Euclidean distance in 3 dimensions
can be used to index geodetic data, after transformation into ECEF Cartesian
coordinates. This includes (but is not limited to) gridfiles, octrees, the M-tree,
and the R-tree family. For our experiments, we will focus on the M-tree and R-
trees. This approach is probably not novel. In [22,24] the authors mention that
Oracle Spatial uses a 3D R-tree to index geodetic data, but without giving further
details or properties – it might as well be a 3D R-tree on latitude, longitude and
elevation. IBM Informix documentation also mentions 3D bounding boxes for
geodetic data, but only mentions intersection queries. Therefore it is not clear if
above properties have been realized and are used yet. The PostgreSQL pgSphere
project seems to include this transformation, but does not appear to make use
of it for indexing yet.

154 E. Schubert, A. Zimek, and H.-P. Kriegel

3.2 Indexing Geodetic Data Using 2D Geodetic Coordinates

The alternative approach we introduce here is designed with the R-tree in mind,
although the obtained equations could also prove useful with other indexes such
as grid-files, Quad-trees, and VA-File [25] indexes. A key benefit of this approach
is that it can use a regular R-tree [7], R*-tree [8], or any of its many variants, as
index without modifications to the actual index structure. In particular, the index
is built on the latitude and longitude coordinates, and can therefore be used for
window queries that frequently arise in map applications. Similarly, the search
can trivially be bounded with such a window. In contrast to the M-tree [10],
which needs to be built for a specific distance function, the R-tree family of
indexes are unspecific, but index the coordinates using bounding boxes. Because
the same tree can be used with very different distance functions, R-trees can be
considered general purpose spatial indexes, whereas M-trees are highly specific.

Each object as well as each index page in an R-tree is represented by a min-
imum bounding rectangle (MBR), which in this case means it is represented
by a quadruple (λmin, φmin, λmax, φmax) (plus other attributes, if present; in the
following we will assume to only index latitude and longitude). In order to query
the R-tree, we need to compute a lower bound for the distance of the query point
to an arbitrary – unknown – object within the given rectangle. For Lp norms,
this distance computation is very efficient, which makes the R-tree attractive to
use. But also for other – even some non-metric – distances, such a lower bound
can be specified. For Lp norms, the minimum distance can be computed using
simple case distinctions in each dimension:

mindistLp(o,MBR) :=

⎛
⎜⎝∑

i

⎧⎪⎨
⎪⎩
(min(MBR, i)− oi)

p if oi < min(MBR, i)

(oi −max(MBR, i))p if oi > max(MBR, i)

0 otherwise

⎞
⎟⎠

1/p

Unfortunately, in geodetic data, the formula will become more complicated. This
is largely due to the fact that an MBR in the equirectangular projection – which
does not preserve distances – when projected to the surface of the earth yields a
much more complex shape. However, to compute the minimum distance, we will
still need to distinguish the same 3× 3 cases, just as for the Lp norms. The 3× 3
case distinction in 2-dimensional Euclidean space is shown in Figure 4a: if the
query point is inside the rectangle – area 0 – the minimum distance will be 0. In
the areas N , E, S and W , the shortest path is along the normal vector to the
closest edge, while in the corner areas 1 . . . 4, the shortest path is to the nearest
corner of the MBR. The transfer of this model to geodetic data is shown in
Figure 4b for an example on the northern hemisphere. The north and south edges
of the rectangle are parallels of the equator, while the east and west edges are
meridians. Note that the north and south poles in the equirectangular projection
are not a single point, but actually the complete northern and southern edges
of the projected map. At first, the situation appears to be highly asymmetric.
However this largely is an artifact of the geographic coordinate system and the
equirectangular projection, in which great-circle paths are only straight lines if

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 155

3 S 4

W 0 E

1 N 2

(a) Case distinction in Euclidean data

3 S 4

W 0 E

1 N 2

North pole

Equator

(b) Case distinction in geodetic data (c) Spherical interpretation

Fig. 4. Case distinctions for point-to-MBR distance in geodetic data

3 S 4

W 0 E

1 N 2

q
α2

α1

Fig. 5. Angle-based test in Euclidean space

initial bearing

act
ua

l p
ath

equator

90◦ 90◦

Fig. 6. Case distinctions for point-to-MBR distance in geodetic data, detail

they are meridians or the equator, and curves of the type y = arctan360(a ·
sin(x−x0)) otherwise. While it is not evident from the 2D projection of the case
distinction (Figure 4b), the N and S areas are actually also triangular, since
the north and south edge of the projection represent a single point each. When
mapped onto a sphere, the regions look approximately similar, as visualized in
Figure 4c. Note that the four triangles (N , S vs. W , E) nevertheless do not have
the same mathematical properties: only the east and west edges of the MBR are
on great-circles, while the north and south edges are lines of constant latitude.
So from the point of view of spherical geometry, the north and south triangles
have one bent edge each.

156 E. Schubert, A. Zimek, and H.-P. Kriegel

Algorithm 1. Min. Dist. Point to MBR by Azimuth (non-optimized)
Data: c circumference of earth (spherical model)
Data: (φq, λq) query point
Data: (φl, λl, φh, λh) index MBR
if φl ≤ φq ≤ φl then

if λq ≤ λl then return c · (λl − λq)/360
◦ ; /* South of MBR */

if λq ≥ λt then return c · (λq − λt)/360
◦ ; /* North of MBR */

return 0 ; /* Inside MBR */
else if mod360(φl − φq) ≤ mod360(φq − φh) then /* West of MBR */

θh ← Azimuth(φl, λh, φq, λq);
if θh ≥ 270◦ then /* North-West */

return Great-Circle-Distance(φl, λh, φq, λq)
end
θl ← Azimuth(φl, λl, φq, λq);
if θl ≤ 270◦ then /* South-West */

return Great-Circle-Distance(φl, λl, φq , λq)
end
return |Cross-Track-Distance(φl, λl, φl, λh, φq, λq)| ; /* West */

else /* East of MBR */
θh ← Azimuth(φh, λh, φq, λq);
if θh ≤ 90◦ then /* North-East */

return Great-Circle-Distance(φh, λh, φq, λq)
end
θl ← Azimuth(φh, λl, φq, λq);
if θl ≥ 90◦ then /* South-East */

return Great-Circle-Distance(φh, λl, φq, λq)
end
return |Cross-Track-Distance(φh, λh, φh, λl, φq, λq)| ; /* East */

end

Fortunately, both the test and the distance computation for points in areas
N and S remains as simple as for Euclidean distance – the shortest great-circle
path to the rectangle is a meridian. In order to distinguish the other cases, we
first need to test whether we are on the left or on the right side by rotating the
mean longitude of the rectangle by 180◦ – the meridian opposite of the rectangle.
The key to distinguishing the cases 1, W and 3 (and, identically, 2, E, 4) then
is the azimuth (north-based, also referred to as bearing) from the two corners
towards the query point. The azimuth plays roughly the role of the angle in
Euclidean geometry. In order to test whether a point is in area W in Euclidean
space, we can compute the angle at the north-west and south-west corners of the
MBR. This idea is sketched in Figure 5: only if the angles at the south-west α1

are larger than 90◦ and the angle at the north-west corner α2 is less than 90◦,
then the query point is in area W . By substituting the azimuth for the angle,
we can perform the same test in the spherical domain:

A shortest path to the west edge of the MBR must be a great circle path
that arrives at an azimuth of 90◦ to the edge. If and only if the azimuth at the

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 157

south corner is larger than 90◦ and the azimuth at the north corner is smaller
than 90◦, then there exists a point on the meridian in between where the course
is exactly 90◦. The difference between Euclidean space and spherical geometry
shows when we travel a path that started at an initial bearing of 90◦: it will not
be a straight line in the equirectangular projection. This is visualized in Figure 6:
with an initial bearing of 270◦ (to north, 90◦ with respect to the south pole!) –
indicated by the red lines – the blue curves are obtained. Conversely, for points
on the blue lines, an initial bearing of 270◦ is obtained for one of the corners.

Algorithm 1 uses this idea to compute the minimum distance from the query
point to an MBR by using the azimuth for case distinction. Note that for prac-
tical use, this pseudocode should be optimized by inlining the great-circle and
cross-track distances in order to share all redundant trigonometric computations.
When implementing this in a database, the number of trigonometric computa-
tions must be kept low as they are rather expensive. However, we can further
improve this algorithm: we do not need the exact values of the azimuth, but
we only need to know whether it will be smaller or larger than 90◦. If we can
compute the blue lines in Figure 6 directly, we can easily test whether a point
is between the two blue lines. As noted before, each great-circle (that is not a
meridian) can be expressed as λ = arctan360(a · sin360(φ− φ0)). If we know the
parameters φ0 and a we can easily test whether a point is north or south of
these lines. φ0 is the longitude where the great-circle crosses the equator, and
the maximum longitude is achieved when φ − φ0 = 90◦, with λ = arctan360(a).
Since we want the curves to be orthogonal to the meridian, this is where they
must have a maximum or minimum. Therefore, we can choose φ0 = φr − 90 and
a = tan360(λr) for a given reference point r. A point q is south of the great-circle
path that goes orthogonally to the meridian through (φr , λr) if

λq < arctan360(tan360(λr) · sin360(φq − φr + 90))

or, equivalently,

tan360(λq) < tan360(λr) · cos360(φr − φq),

in which we can reuse tan360(λr) for the second test and preserve numerical
precision slightly better. Since this test is faster to compute (since it involves
fewer trigonometric functions), it allows for a further optimized version of the
algorithm, which is given in Algorithm 2. For points close to the rectangle, we can
just test whether they are above the great-circle through the upper corner of the
MBR, below the great-circle through the lower corner, or in between. However,
these two lines will intersect when crossing the equator at Δφ = 90◦ from the
MBRs edge. Starting at this distance, we will instead look at the great-circle
through the middle of the MBR, and use this for distinguishing the remaining
two cases: at this distance we know that one of the two corners must be closest.

Figure 7 visualizes the minimum distance from an example bounding box
around Bavaria. Again, in the equirectangular projection in Figure 7a, it appears
to be irregular, but projected onto the sphere in Figure 7b the shape of rectangles
with increasingly rounded corners becomes visible.

158 E. Schubert, A. Zimek, and H.-P. Kriegel

(a) Equirectangular projection (b) Google Earth projection

Fig. 7. Minimum distance from a bounding box around Bavaria

3.3 Non-spherical Earth Models

The equations we presented were so far all for a spherical earth model for sim-
plicity. For geographic data it is however a best practise to use for example a
spheroid model such as WGS84. For some of the equations, formulas for the
spheroid model are readily available, for others they are not. For the new algo-
rithm, the minimum distance to the MBR, it may be simpler and more efficient
to stick to a spherical model, and just use the minimum radius of the spheroid
model to obtain a slightly less tight minimum distance. This will underestimate
the minimum bound by at most 0.3% and thus should have negligible impact on
the pruning power of the tree; while saving many trigonometric computations.

4 Experiments

4.1 Test Environment

We implemented the distance functions in ELKI [23], which can be easily ex-
tended with custom distance functions for R*-tree queries and includes ready-
to-use query benchmarking classes. The test machines have AMD Phenom II X4
3.0 GHz CPUs and 8GB of RAM.

4.2 Data Sets

For our benchmarking experiments we use data from DBpedia 3.7, a parsed
version of Wikipedia. From this data set we obtained 442775 points of interest
around the world, and for 109577 of these we also obtained a region of interest
which we use as query radius. The second data set we use is road accidents data
set from the UK government, spanning the years 2005 to 2011 containing data
on 1.2 million road accidents in the UK. The third data set consists of 6.3 million
radiation measurements taken in Japan after the Fukushima nuclear disaster.2

2 The data sets are publicly available at http://dbpedia.org/, http://data.gov.uk/
and http://safecast.org/

http://dbpedia.org/
http://data.gov.uk/
http://safecast.org/

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 159

Algorithm 2. Optimized Minimum Distance Point to MBR
Data: c circumference of earth (spherical model)
Data: (φq, λq) query point
Data: (φl, λl, φh, λh) index MBR
if φl ≤ φq ≤ φl then

if λq ≤ λl then return c · (λl − λq)/360
◦ ; /* South of MBR */

if λq ≥ λt then return c · (λq − λt)/360
◦ ; /* North of MBR */

return 0 ; /* Inside MBR */
else if mod360(φl − φq) ≤ mod360(φq − φh) then /* West of MBR */

τ ← tan360(λq);
if mod360(φl − φq) ≥ 90◦ then /* Large Δφ */

if τ ≤ tan360((λl + λh)/2) cos360(φl − φq) then
return Great-Circle-Distance(φl, λh, φq, λq) ; /* North-West */

else
return Great-Circle-Distance(φl, λl, φq, λq) ; /* South-West */

end
end
if τ ≥ tan360(λh) cos360(φl − φq) then

return Great-Circle-Distance(φl, λh, φq, λq) ; /* North-West */
if τ ≤ tan360(λl) cos360(φl − φq) then

return Great-Circle-Distance(φl, λl, φq , λq) ; /* South-West */
return |Cross-Track-Distance(φl, λl, φl, λh, φq, λq)| ; /* West */

else /* East of MBR */
τ ← tan360(λq) ;
if mod360(φq − φh) ≥ 90◦ then /* Large Δφ */

if τ ≤ tan360((λl + λh)/2) cos360(φh − φq) then
return Great-Circle-Distance(φh, λh, φq, λq) ; /* North-East */

else
return Great-Circle-Distance(φh, λl, φq, λq) ; /* South-East */

end
end
if τ ≥ tan360(λh) cos360(φh − φq) then

return Great-Circle-Distance(φh, λh, φq, λq) ; /* North-East */
if τ ≤ tan360(λl) cos360(φh − φq) then

return Great-Circle-Distance(φh, λl, φq, λq) ; /* South-East */
return |Cross-Track-Distance(φh, λh, φh, λl, φq, λq)| ; /* East */

end

4.3 Efficiency

To study the behavior of the 2D- and the 3D-model in existing index structures,
we use the R*-tree (both incrementally built and bulk loaded) and the M-tree
(incrementally built only). Since the M-tree supports any metric distance func-
tion – and the geodetic distance is metric – it can be used with the geodetic
distance. Figure 8 shows the results for 100 nearest neighbor and range queries
on the DBpedia data set. From a mere CPU perspective (Figure 8a and Fig-
ure 8b), the 3-dimensional ECEF approach appears to be best, due to the rather

160 E. Schubert, A. Zimek, and H.-P. Kriegel

costly trigonometric functions needed for the direct indexing approach. However,
this may be misleading in an actual database context, because for larger data
sets the input and output cost must be taken into account. And with this, the
reduced memory requirements of the direct indexing approach pay off, which al-
low storing about 40% more objects per page. Figure 8c and Figure 8d show the
I/O cost (in number of page accesses times page size, to make values across dif-
ferent page sizes more comparable) for querying the trees. The stronger pruning
power of the 2D rectangles manifests itself in requiring fewer distance computa-
tions (Figure 8e and Figure 8f). Figure 8g shows the time needed to build the
index, while Figure 8h visualizes the resulting index sizes. Note that the bulk
loading actually has less work to do (fewer sorting passes) with larger page sizes,
while for the M-tree construction, which requires the computation of all pairwise
distances, construction time grows quadratically.

Except for the expensive build time of the M-tree implementation we used, all
indexes offered a significant performance improvement over a linear scan which
took 176.6 ms CPU time per 100NN query, 442775 distance computations and
needs to read about 9 MB of data. The bulk-loaded geodetic R*-tree with 512
b pages (i.e. storing up to 9 entries on directory pages, 12 objects on leaf pages,
13 MB total size) took on average just 0.222 ms CPU per query, 344 distance
computations and read (uncached) 12 kB (23 pages) of data.

4.4 Accuracy

The UK traffic accidents and the Safecast data sets are good examples for region-
ally constrained data sets that can reasonably be handled with an appropriate
local projection: for the traffic accidents we can use for example the UK Ord-
nance Survey 1936 (OSGB36) datum or UTM Zone 30N, which is a transversal
Mercator projection that is expected to have low error in the UK. For the Safe-
cast data set, UTM Zone 54S covers this part of Japan well. The projection
library PROJ.43 we used for transforming the data refused to project coordi-
nates outside of their design range (i.e. would not project the traffic accidents
data to UTM 54S or SafeCast data to UTM 30N). For DBpedia, neither could be
used. We compare the nearest neighbors obtained by a linear scan over the data
using geodetic distance to the nearest neighbors found using different settings:
Euclidean distance in (non-Cartesian) latitude and longitude coordinates, but
also after the transformation to the local coordinate system. Furthermore, we
also used our index with geodetic distance. For a sample of 100000 objects, we
computed the 100 nearest neighbors each and compute precision with respect to
the ground truth from a linear scan. Table 1 gives the precision as well as aver-
age query CPU times. It can clearly be seen that the naïve Euclidean approach
suffers from significant distortion. Where applicable, the approaches based on a
localized Cartesian coordinate system work well – at least within their design
range of 6◦ of longitude (in fact, they probably are more accurate than the simple

3 Available at http://trac.osgeo.org/proj/

http://trac.osgeo.org/proj/

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 161

 0.1

 1

 10

 100

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

C
PU

 ti
m

e
pe

r
qu

er
y

[m
s]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(a) In-memory runtime for 100NN

 0.1

 1

 10

 100

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

C
PU

 ti
m

e
pe

r
qu

er
y

[m
s]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(b) In-memory runtime for RQ

 10

 100

 1000

 10000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

A
vg

. I
/O

 (
Pa

ge
 a

cc
es

se
s

x
pa

ge
 s

iz
e)

 [
kb

]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(c) I/O cost for 100NN

 10

 100

 1000

 10000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

A
vg

. I
/O

 (
Pa

ge
 a

cc
es

se
s

x
pa

ge
 s

iz
e)

 [
kb

]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(d) I/O cost for RQ

 100

 1000

 10000

 100000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

A
vg

. D
is

ta
nc

e
C

om
pu

ta
tio

ns

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(e) Distance computations for 100NN

 100

 1000

 10000

 100000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

A
vg

. D
is

ta
nc

e
C

om
pu

ta
tio

ns

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(f) Distance computations for RQ

 1

 10

 100

 1000

 10000

 100000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

In
de

x
co

ns
tr

uc
tio

n
[s

]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(g) Construction time of index

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

¼ ½ ¾ 1 1½ 2 3 4 6 8 12 16

In
de

x
si

ze
 [

kb
]

Pagesize [kb]

Bulk Geodetic R*−Tree
Geodetic R*−Tree
Geodetic M−Tree

Bulk ECEF R*−Tree
ECEF R*−Tree
ECEF M−Tree

(h) Size of index

Fig. 8. Results for 100NN and range queries on DBpedia data set

162 E. Schubert, A. Zimek, and H.-P. Kriegel

Table 1. Precision of different approaches to 100NN search

Method DBpedia Places Traffic Accidents SafeCast
Linear Scan (WGS84 Spheroid) n/a 9.10 ms n/a 17.4 ms n/a 84.3 ms
Euclidean on Longitude, Latitude 0.903 0.78 ns 0.868 0.80 ns 0.956 1.14 ns
Euclidean on OSGB36 n/a 1.000 0.76 ns n/a
Euclidean on UTM Zone 54S n/a n/a 0.986 0.90 ns
ECEF R*-Tree (WGS84 Spheroid) 1.000 1.28 ns 1.000 1.16 ns 1.000 1.63 ns
LatLng R*-Tree (Spherical) 1.000 1.77 ns 1.000 1.74 ns 1.000 2.08 ns
LatLng R*-Tree (WGS84 Spheroid) 1.000 4.59 ns 1.000 4.12 ns 1.000 4.79 ns

spherical earth model we used as reference). Such a transformation is not avail-
able for the DBpedia data set. The two proposed indexing approaches produce
accurate results with respect to this distance function even on the global DB-
pedia data set. The CPU runtime of the direct indexing approach is higher due
to the additional trigonometric computations, but the I/O cost and memory
needed will be lower.

5 Conclusions

In this article we discussed two approaches for indexing geographic data with
support for geodetic distance queries (both nearest neighbor and radius queries).
One approach is based on the well-known ECEF transformation of the data set
into a 3-dimensional coordinate system, exploiting that the Euclidean distance
is a monotone lower bound of the geodetic distance there. The other approach
is even more elegant: it uses an R*-tree built on the raw geographic data in lon-
gitude, latitude coordinates that is also useful for example for window queries.
However, the use of trigonometric formulas instead of the much simpler Eu-
clidean distance results in higher CPU query cost. At the same time, the smaller
index reduces the I/O cost due to the lower dimensionality.

The missing piece of the puzzle to using 2D R*-trees for geodetic distance was
the accurate lower-bound distance for point-to-rectangle distance computations
introduced in this article. It was not obvious that the existing R*-trees could be
as easily reused without further modifications even without taking the spheroid
nature of the earth into account at index construction time. This does, however,
not rule out that a modified tree may sometimes perform better. For example
when indexing data for the United States, a few objects in Alaska will be beyond
the 180◦ boundary. Instead of inserting these objects in the far East – where they
may end up sharing data pages with objects from Maine on the east coast to
ensure minimum page fill – it may for example be beneficial to insert them in the
far West. Similarly, there might exist an improved split strategy that produces
a more efficient page structure. For bulk loading, it may be desirable to put
extra emphasis on the longitude. But the benefits of these modifications may be

Geodetic Distance Queries on R-Trees for Indexing Geographic Data 163

highly application dependent and not be of general use, whereas the introduced
distance computation lays the foundation for querying the resulting indexes, no
matter how they were constructed.

References

1. Sinnott, R.: Virtues of the haversine. Sky and Telescope 68, 158–159 (1984)
2. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with appli-

cation of nested equations. Survey Review 23(176), 88–93 (1975)
3. Finkel, R.A., Bentley, J.L.: Quad trees. A data structure for retrieval on composite

keys. Acta Informatica 4(1), 1–9 (1974)
4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), 509–517 (1975)
5. Kunszt, P., Szalay, A., Thakar, A.: The hierarchical triangular mesh. Mining the

Sky, 631–637 (2001)
6. Morton, G.M.: A computer oriented geodetic data base and a new technique in file

sequencing. Technical report, International Business Machines Co. (1966)
7. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc.

SIGMOD, pp. 47–57 (1984)
8. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient

and robust access method for points and rectangles. In: Proc. SIGMOD, pp. 322–331
(1990)

9. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In: Proc. ICDE,
pp. 516–523 (1996)

10. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity
search in metric spaces. In: Proc. VLDB, pp. 426–435 (1997)

11. Kurniawati, R., Jin, J.S., Shepherd, J.A.: The SS+-tree: An improved index struc-
ture for similarity searches in a high-dimensional feature space. In: Proc. SPIE,
vol. 3022, pp. 110–120 (1997)

12. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. ADC (1998)
13. Traina Jr., C., Traina, A., Seeger, B., Faloutsos, C.: Slim-trees: High performance

metric trees minimizing overlap between nodes. In: Zaniolo, C., Grust, T., Scholl,
M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 51–65. Springer,
Heidelberg (2000)

14. Traina Jr, C., Traina, A., Faloutsos, C., Seeger, B.: Fast indexing and visualization
of metric data sets using slim-trees. IEEE TKDE 14(2), 244–260 (2002)

15. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional
nearest neighbor queries. In: Proc. SIGMOD, pp. 369–380 (1997)

16. Microsoft Corporation: Whitepaper New Spatial Features in SQL Server 2012 (2012)
17. Fang, Y., Friedman, M., Nair, G., Rys, M., Schmid, A.E.: Spatial indexing in

microsoft sql server 2008. In: Proc. SIGMOD, pp. 1207–1216 (2008)
18. PostGIS project: Postgis 2.0 manual, http://postgis.net/docs/manual-2.0/
19. IBM Informix: IBM Informix Geodetic DataBlade Module User’s Guide
20. Lukatela, H.: Hipparchus geopositioning model: An overview. In: Proc. Auto. Car-

tography, vol. 8, pp. 87–96 (1987)

http://postgis.net/docs/manual-2.0/

164 E. Schubert, A. Zimek, and H.-P. Kriegel

21. Kothuri, R.K.V., Ravada, S., Abugov, D.: Quadtree and R-tree indexes in oracle
spatial: a comparison using GIS data. In: Proc. SIGMOD, pp. 546–557 (2002)

22. Hu, Y., Ravada, S., Anderson, R.: Geodetic point-in-polygon query processing in
oracle spatial. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel,
M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 297–312.
Springer, Heidelberg (2011)

23. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with
3d-parallel-coordinate-trees. In: Proc. SIGMOD (2013)

24. Hu, Y., Ravada, S., Anderson, R., Bamba, B.: Topological relationship query pro-
cessing for complex regions in oracle spatial. In: Proc. ACM GIS, pp. 3–12 (2012)

25. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In: Proc. VLDB,
pp. 194–205 (1998)

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 165–182, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Energy Efficient In-Network Data Indexing
for Mobile Wireless Sensor Networks

Mohamed M. Ali Mohamed1, Ashfaq Khokhar1, and Goce Trajcevski2

1 University of Illinois at Chicago, ECE Department, USA
{mali25,ashfaq}@uic.edu

2 Northwestern University, EECS Department, USA
goce@eecs.northwestern.edu

Abstract. In-network indexing is a challenging problem in wireless sensor
networks (WSNs), particularly when sensor nodes are mobile. In the past,
several indexing structures have been proposed for WSNs for answering in-
network queries, however, their maintenance efficiency in the presence of
mobile nodes is relatively less understood. Assuming that mobility of the nodes
is driven by an underlying mobility control algorithm or application, we present
a novel distributed protocol for efficient maintenance of distributed hierarchical
indexing structures. The proposed protocol is generic, in the sense that it is
applicable to any hierarchical indexing structure that uses binary space
partitioning (BSP), such as k-d trees, Quadtrees and Octrees. It is based on
locally expanding and shrinking convex regions such that update costs are
minimized. Based on SIDnet-SWANS simulator, our experimental results
demonstrate the effectiveness of the proposed protocol under different mobility
models, mobility speeds, and query streams.

Keywords: Distributed Algorithms, Mobility, Wireless Sensor Networks, Data
Indexing, Query Processing.

1 Introduction

Wireless Sensor Networks (WSNs) have been proposed as effective and efficient
distributed systems for monitoring varieties of phenomena in different application
domains [1]. In particular, the ability of sensor nodes in WSNs to self organize and
provide coverage for monitoring a given region or activity makes them highly useful
for scenarios involving harsh conditions or remote surveillance. Typically, individual
sensor nodes cooperate in real-time monitoring of phenomena over a given
geographic region in two end-of-spectrum modalities: (1) either periodically reporting
the sensed values to a given sink (possibly coupled with in-network aggregation); or
(2) reporting detections of pre-defined events, i.e., exceeding of a certain temperature-
threshold – possibly over spatial extents. Broadly speaking, the purpose of indexing
structures in WSN is to facilitate the process of collaboration for monitoring the
sensed field, the detection/reporting events of interest, as well as providing in-network
storage for answering queries about the sensed phenomena.

166 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Mobile sensor nodes [2, 21] greatly increase the adaptability of the WSNs from
different perspectives: (1) ensuring a level of Quality of Service (QoS) in response to
phenomena fluctuation, in the sense of providing better spatial resolution of sampling
in desired/targeted areas; (2) enabling a control over (balancing) the levels of
connectivity and coverage. We note that the motion of the nodes may vary in different
applications but, from a general perspective, it can be predictable [3], random [4], or
controlled [5]. For example, in the data coverage problem in WSN [22], controlled
mobility of the sensor nodes is utilized in different applications to achieve more
efficacious coverage.

An illustrating example of the motivation for this work is shown in Fig. 1. In Fig.
1(a), a sensed field with randomly deployed sensor nodes is shown. Part (b) of the
same figure shows the nodes location distribution, after the occurrence of an event of
interest in the southeast corner of the field, where the application or mobility control
algorithm (as [29]) has steered more sensor nodes towards that corner, in order to
collect more precise information, while still maintaining coverage and network
connectivity across the region. Due to this mobility of the nodes required by the
application, the underlying distributed indexing structure may become highly skewed,
unless it is adjusted to reflect the new distribution of the nodes in a balanced way. The
main question addressed in this work is how to efficiently adapt the indexing
structures that manage in-network query processing and aggregation in such mobility
scenarios, in response to the change of nodes’ distribution, such that the overall
maintenance cost is minimized. We emphasize that the actual mobility information as
to which nodes should move in what direction is given by the application. Also, it is
the application responsibility to guarantee minimum number of nodes needed to
provide connectivity and coverage. In order to show our work, we use [29] as the
dictating application for mobility.

Existing data indexing approaches in WSNs, centralized [6] (i.e., all the data are
gathered to one centralized sink node), or distributed [7, 8] – presume that the sensor
nodes are static, i.e., their locations do not change. Being centralized, they have two-
fold disadvantage: (1) increasing traffic towards the sink node, which creates a
communication bottleneck; and (2) decreasing the network lifetime, especially in the

(a) (b)

Fig. 1. Part (a) - a set of sensor nodes randomly deployed. Part (b) – nodes distribution after
occurrence of an event of interest in the southeast corner.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 167

vicinity of the sink node. Some data gathering algorithms employ mobile sink node(s)
that traverses the network to gather the data [9-11]. However, a potential drawback of
such approaches is the latency/delay.

Organizing the network information across a distributed indexing structure, while
knowing that the reporting nodes are not necessarily in the location they reported
information from is highly challenging, particularly when the nodes’ resources, such as
storage, computing power, communication range/bandwidth, and battery capacity are
limited. In order to accommodate mobility of the nodes in a general indexing framework,
the indexing structure should adapt to the vicissitude of nodes distribution across the
field. Once the mobility information for each node is available, the indexing structure
should adapt to the change in a distributed fashion to avoid skewed, unbalanced
structures. Furthermore, such adaptation should induce minimal overhead.

In this paper we present a novel protocol that enables several existing in-network data
indexing structures to incorporate mobile nodes with high transparency. Our approach is
applicable to data structures that use Binary Space Partitioning (BSP) [12, 13], where the
field is divided into contiguous, non-overlapping, convex regions (e.g., k-d trees,
Quadtrees, Octrees [23]). The proposed protocol runs in a distributed fashion, resolving
the consequences of the nodes mobility (i.e., relocation) within their regions by locally
shrinking or expanding the convex regions, reducing the need to transfer information
about this motion across the network or the indexing structure. After a small “transient
regime”, in the worst case scenario the message cost to re-stabilize the index over the
geographic field of interest is linear in the number of the indexing structure nodes. Our
simulation results on SIDnet-SWANS simulator [24] show that the cost of maintaining
the indexing structure under different mobility scenarios remains sub-linear. In our
experiments, over 83% of the mobility in the field is resolved locally, without the need of
informing the rest of the network with this mobility. The results also show an overall
improvement in the latency of data queries. Note that we do not compare our work to the
solutions that use mobile sink nodes, because they use different energy optimization
functions which include the consumed energy of mobility. Besides that these solutions
focus on data gathering rather than indexing.

The rest of the paper is organized as follows. In Section 2, we start with a
preliminary discussion on BSP based hierarchical structure, and outline one such
structure that we have used for in network indexing of static WSNs [27, 28]. We use
this indexing structure to explain our proposed mobility management protocol. The
details of the proposed protocol and its performance analysis are presented in Section
3, followed by a discussion of the applied experiments and simulation results in
Section 4, followed by a discussion of related work in section 5. Section 6 concludes
the paper and discusses future work.

2 Preliminaries

To better understand the proposed mobility management protocol, we now briefly
overview the features of BSP based hierarchical indexing structures. In such
structures, recursive splitting is applied to a given space into convex sets via

168 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

hyper-planes. As a hierarchical data structure, each node in the BSP tree represents a
space that is subdivided among its child nodes. At each level, the number of children
of each node represents the fan out, denoted as k. The root node of the tree represents
first split of the whole space, and the deeper a node in the tree is, the more local
(smaller) space split it represents. Each level in the tree contains nodes that embody
the whole space partitioned at a certain level of detail. A higher level in the tree
represents coarser partitioning (i.e, smaller number of larger subspaces), whereas a
lower level in the tree represents more detailed finer scale partitioning (i.e, larger
number of smaller subspaces).

In our previous work [27, 28], we have developed efficient abstractions of data and
spatial fields in a hierarchical BSP framework. These abstractions are performed for
representing the sensed values and positions of the sensor nodes, which we call
physical-space abstraction and data-space abstraction, respectively, both rooted at the
corresponding sink. Figures 2 and 3 depict numerical examples of physical-space
indexing at a leaf node of the indexing tree, as well as assembling/compressing the
data in intermediate non-leaf nodes at a given level in a fixed-size array (see [28] for
details). We used Wavelet Transform (WT) [30] to combine and compress the data
from the children-nodes.

Fig. 2. Processing of sensed values at indexing tree leaf node (Local Cluster Head)

Fig. 3. Processing of sensed values at indexing tree intermediate node(s)

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 169

Similarly, the data-space in each region is distributed among a group of nodes
managing that region. At the lowest level, the sibling leaf nodes in each locality
categorize the reported sensor nodes locations according to data range. Each inner
(non-leaf) node receives maps from the nodes in the lower level covering the same
data range, having multiple maps received for the same data range across a group of
contiguous regions. Fig. 4 shows an example of the process of creating hierarchical
maps for the data range (26 – 50) in a given region, and zooming it out to upper level
of the hierarchy with a 1:4 factor.

Fig. 4. Data space abstraction process. A set of sensed values in a region (to the left) have a
map created for the data range [26-50], then zoomed out twice with 1:4 factor.

Queries to the WSN originate at the sink node, which has a coarse representation
for the physical-space and data-space of the whole field, with a specific level of
accuracy. If the accuracy requirement for the given query cannot be satisfied by the
sink node, it forwards it to its child node(s) according to the query constraints of the
physical-space and/or data-space, and the process is recursively repeated until a
node(s) is reached capable of providing answer with a required level of accuracy. At
this stage the query response is backtracked across the same route in the indexing tree
[27, 28].

3 Managing Index Structures with Mobile Nodes

We now proceed with the details of the protocol for adapting the hierarchical indexing
structure to capture the mobility of the nodes. The protocol has three distinct stages
for which we present the corresponding algorithms and discuss the respective
complexities.

3.1 Initial Configuration

Assume that logically there are two types of nodes, senor nodes that sense the field
and indexing structure nodes that contain the keys to help maintain the indexing
structure. Physically, a node can be a sensor node as well as a node in the indexing
structure. Further assume that the number of nodes in the indexing structure is n, and
the fan-out of each inner node is k, such that the height of the indexing structure is
O(logk n). The initial setup of the protocol assigns an integer rank for each

170 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

border/hyperplane corresponding to node in the indexing BSP tree , equal to the depth
of the node in the tree (i.e., its level-distance from the root). Fig. 5 illustrates a field
with randomly deployed sensor with the corresponding borders rank (color-coded
with the same colors according to the splitting order). Each leaf node is responsible
for (the sensed values of) a group of m sensor nodes within its vicinity. Sensor nodes
periodically (with fixed cycle length) report their sensed values and locations to their
respective cluster head.

Fig. 5. The field contains (n = 103) randomly deployed (small size/red color) sensor nodes.
Example indexing structure in this figure is based on orthogonal bisections, performed
recursively, such that 16 (thin solid line/green color) local cluster heads are at the first level.
Second level of the indexing structure consists of four (thicker dashed line/blue color)
intermediate level cluster heads. Last is the (thickest dotted line/yellow color) sink node.
Border line shapes follow same nodes drawing/color. In this (initial) configuration, an event of
interest is observed in the South-East corner.

We reiterate that the motion/displacement of the nodes occurs due to a specific
objective (e.g., better coverage due to an observed event in a given geographic region)
and, as a result, some leaf node(s) in the indexing structure finds more sensor nodes
entering to its vicinity and requesting to join. For example, an event of interest may
require more sensor nodes to be moved towards, in order to monitor and report more
precise data, as depicted in Fig. 5. Also, note that sibling or child/parent node may not be
within single hop of each other. In such case, multihop routing of message will be
assumed.

3.2 Processing a Request to Incorporate New Mobile Node

Each leaf node has a specified capacity m' > m. A leaf node will accept the joining of
new sensor nodes coming into its vicinity until reaching the threshold m'. Congestion
happens when a new join request is received at leaf node that has reached its
maximum capacity m'. The leaf node then initiates a request to reduce the size of its

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 171

space of responsibility by changing the position of one of its surrounding
borders/hyperplanes.

The process of border change starts with a communication aiming at changing the
spatial splitting locally. The leaf node in the indexing structure experiencing
congestion starts by locating the border of its surrounding sides corresponding to the
lowest rank convex region. It sends to its sibling node(s) on the other side of the
lowest rank border, a change_border_request. When sibling leaf node receives the
change_border_request message, it starts assessing if it can change the specified
border in order to accommodate some of the sensor nodes currently managed by the
requesting sibling. The calculation in this case is based on the capacity of the leaf
node that received the request. A response is sent back to the requesting node after the
calculation. If all the involved leaf nodes have large populations, then they cannot
accommodate more incoming sensor nodes, causing them to reject the request. In
such case, since the change cannot be handled locally, a new request for changing
borders is propagated in the hierarchy to the node corresponding to the next higher
rank - i.e., the requesting leaf node sends the request message to its parent node. Upon
receiving the request, the parent node checks if the total number of sensor nodes
covered by its children is at the capacity limits. If not, it initiates a request to its
sibling on the other side of the smallest rank border of its region. The same
assessment algorithm runs at the sibling node, which consequently sends the response
back. In case of rejection, the same process is recursively applied - in the worst case,
reaching the root of the hierarchy (the sink). The algorithm executed locally by the
participating node is formalized below:

Algorithm 1: Forward Mobility Request
Input: Rank of the border required to change, The count of sensor nodes associated to the
requesting indexing node (or its subtree for non-leaf nodes)
Output: A border_change_response OR, in case the whole region is congested, it issues a new
border_change_request (if request is received from a child node).

Receive border_change_request (Receiver, Sender.Rank, Sender.nodesCount)

 If (Sender.depth == Receiver.depth) // If the request is received from a sibling node

 extraNodesCount = Sender.nodesCount - Receiver.optimalNodesCountForCluster

 If (Receiver.nodesCount + extraNodesCount < Receiver.maximumNodesCountForCluster)

 newBorderLocation = calculateNewBorderLocation(Sender.Rank, extraNodexCount)

 send border_change_response(Sender, accepted, Rank, newBorderLocation)

 apply border_change_inform(This, Rank, newBorderLocation)

 Else

 send border_change_response(Sender, rejected, Rank, Receiver.nodeCount)

 EndIf

 Else // If the request is received from a child node

 Receiver.UpdateNodesCount(Sender, Sender.nodesCount)

 If(Receiver.nodeCount < Receiver.maximumNodesCountForCluster)

 newBorderLocation = calculateNewBorderLocation(Sender.Rank)

 send border_change_response(Sender, accepted, Rank, newBorderLocation)

 Foreach childNode other than Sender

172 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

 send border_change_inform(childNode, Rank, newBorderLocation)

 Else

 Rank = Sender.Rank + 1

 send border_change_request (Sibling, Rank, Receiver.nodesCount)

 requestingBorderChange = True

 EndIf

 EndIf

End_Receive border_change_request
e,ii

The local behavior of the nodes participating in the border-adjustment is
formalized in Algorithm 2 below.

Algorithm 2: Receive Mobility Response
Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.

Receive border_change_response (Receiver, response, Rank, newBorderLocation)

 if (response == accepted)

 apply border_change_inform(This, Rank, newBorderLocation)

 requestingBorderChange = False

 Else

 Rank = Sender.Rank + 1

 nodeCount = Sender.nodeCount + Receiver.nodesCount

 send border_change_request (Parent, Rank, nodesCount)

 EndIf

EndReceive border_change_response

Complexity: In the worst-case scenario, the request needs to be propagated all the
way to the sink node. For a BSP indexing tree consisting of n nodes, with a fan-out
factor k, at each level, at most k – 1 request message(s) will be transmitted to change
the lowest rank border, and k – 1 rejection message(s) will be received. In the 2D
planar case, k = 2 for k-d trees and k = 4 if quadtrees are used.

Since, by construction, the height of the BSP with n nodes and fan-out factor k is
logk n, the number of messages required 2 * (k –1) * (logk n – 1), bounding the
message complexity of the forwarding stage to O(logk n). We note that the overall
network-wide running time complexity is the same, since each participating node is
executing constant operations to check its current capacity.

3.3 Response Propagation

When a border change decision is taken in non-leaf nodes, all their affected child-
nodes are notified, recursively propagating the changes until the affected leaf nodes.
Leaf nodes, in turn, inform the affected sensor nodes to change their reporting
destination. While this border change information message is flowing through the

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 173

structure, each recipient node recalculates its population according to the new change
to ensure that it is within its capacity. If not, the node finding congestion in its region
initiates a new change_border_request message and sends it to its sibling node. The
important observation is that this particular message is guaranteed to affect borders
that are in the sub-tree of the originally changed border, which caused this new
congestion, because the capacity has already been checked/verified at the parent or
ancestor node.

The determining of the new border location is based on the population size of the
requesting (congested) and responding nodes. For that, we rely on the structural
properties of the tree’s boundary between the nodes at the same level. Namely, we
move the border of the node that has a capacity to incorporate new sensors in a
direction perpendicular to the current border’s position towards the requesting node
position, resulting in shrinking the requesting node's area, and accordingly getting
more sensor nodes out of its region towards the accepting node's region. The new
border location in the low level requests (i.e, requests between leaf nodes) is
determined by the requesting node, which knows exactly the location of all its sensor
nodes. In higher level requests, the border location change is proportional to the
desired new population size of the congested region. After the change takes place, the
node that asked for the border change recalculates its new population to ensure it is
within its capacity limits. If not, the node reissues a new border_change_request,
accordingly. Fig. 6 shows the reconfiguration of the borders after sensor nodes have
moved towards an event of interest in the southeast corner of the field.

Fig. 6. Borders reconfiguration after sensor nodes are moved towards an event of interest in the
southeast corner of the field

The last step of the protocol involves notifying the mobile motes about the new
borders of the tree, so that they know which node-ID to use when reporting the sensed
values. This if formalized below:

174 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Algorithm 3: Apply and Propagate Mobility Response
Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.

Receive border_change_inform (Receiver, Rank, newBorderLocation)

 Receiver.border[Rank] = newBorderLocation

 If (Receiver.depth == MaximumDepth) // Leaf node

 Foreach sensorNode

 If sensorNode.Location is out of leaf node new region

 send detach_sensor(sensorNode)

 EndIf

 Else // Non-leaf node

 Foreach childNode other than Sender

 send border_change_inform(childNode, Rank, newBorderLocation)

 EndIf

EndReceive border_change_inform

Complexity: Algorithm 3 executes when Algorithms 1 and 2 have terminated, and is
applied to all the children of the subtree rooted at the node at which Algorithm 2 has
terminated. In the worst-case scenario, the execution of Algorithms 1 and 2, will
cause the request to be forwarded all the way to the sink node. This, in turn, means
that each of the n nodes in the tree will have to be notified about borders change (and,
eventually, decide upon the new border’s location). Assuming an average of h hops
communication between the nodes participating in the tree, the total message-
complexity of Algorithm 3 is O(hn). On the other hand, the computation complexity
is bounded by O(log m) – the capacity of each node. Namely, in the worst case, the
neighboring nodes (siblings) will have a difference of m – 1 motes (assuming at least
one mote for a minimal occupancy). Sorting the nodes according to the common-
boundary coordinate will take O(log m), plus the constant time for placing the new
boundary.

We note that the mobility scenario that would make the protocol for adjusting the
tree incur its maximum cost, is having sensor nodes oscillating around the highest
rank border, in a way such that their majority moves towards one side of the border
within one update cycle causes the indexing nodes to discover congestion and issue
border_change_request(s). In the next update cycle, the sensor nodes return back to
the other side of the border. In such a scenario, starting from a balanced state, the
algorithm behavior would start by a first request at the node(s) adjacent to the highest
rank border to change their lowest rank border, which gets accepted at the same level.
After the accepting node(s) reach their capacity, while sensor nodes are still crossing
the highest rank border towards the adjacent cluster(s), the next request will need to
be elevated on level in the indexing tree. On the higher level, the same operation will
take place until the managed region is congested.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 175

3.4 Data Indexing under Mobility

The aim of a in-network data indexing system is to arrange and store the sensed data
in a distributed fashion. Indexing tree manages the sensor nodes where each group of
sensors report their sensed values and positions to a node of the indexing tree. The
recipient indexing nodes store the received information, process them, and elevate
approximate constructs across the indexing hierarchy. Mobility causes some of the
sensor nodes to move apart from their reporting node(s) of the indexing structure, and
hence, get into other node(s) vicinity. This causes unbalance in number of senor nodes
reporting to the nodes of the indexing structure. Such unbalance results in the reported
data across the indexing structure.

In physical-space abstraction, two approaches can be followed. The first approach
is to increase the size of the update message according to the count of the sensor
nodes population attached to each node of the indexing structure, in order to keep
same sampling distance between the update message values. This would not increase
the overall size of physical-space update messages traversed, because the total
number of sensor nodes in the field is the same. However, it will create a skew in the
size flowing in each branch of the indexing tree, where the larger population branches
will have larger size update messages than the other branches. The second approach is
keeping the update messages size unchanged, at the expense of increase in the
accuracy loss across the indexing hierarchy. In other words, upon receiving a
physical-space query, there might be a bigger chance of not being able to satisfy its
accuracy requirements from the higher level nodes of the indexing tree, and having to
forward the query to next level(s) for achieving the required accuracy. The advantage
for physical-space abstraction because of the mobility handling algorithm is that the
change in number of nodes is bounded by the capacity of each leaf node in the
indexing tree m'.

In data-space abstraction, the change occurring is not because of the motion of
sensor nodes, but rather because of the modification of borders location to balance the
indexing tree. Due to this change, the bitmap constructs used to represent each data-
space are increased/decreased in size, in order to represent the new cluster space.
Contrary to the physical-space abstraction, which has its skew factor bounded by the
capacity of the indexing structure leaf nodes m', the area of a single cluster can
increase to approach the size of the whole field. This can only be bounded with the
logic of the mobility algorithm, physical constraints of the sensors (i.e., robots
moving them), and the field physical barriers. In such extreme case, the large regions
can be represented with lower granularity, so the cell size would be coarser than the
same level other nodes. This would require high accuracy queries for this region to be
forwarded all the way to the leaf nodes. The other solution is to forward the update of
such lower level large size cluster(s) as an array of positions rather than a bitmap, and
insert them into the bitmap in the higher level node(s) of the indexing tree.

4 Experimental Results

The proposed mobility management protocol was implemented on SIDnet-SWANS
simulator for WSN [24]. IEEE 802.15.4 protocol is used for the MAC layer, and

176 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Shortest Geographical Path Routing for the routing layer. The power consumption
characteristics are based on Mica2 Motes specifications, MPR500CA. Each sensor
node is assumed to have a GPS to obtain the location information. In this section, we
present the simulation results and discuss the performance.

The simulations were run for a 300-nodes network, where nodes were randomly
deployed in a 500x500 square meters geographic area. The nodes’ mobility was
assumed under two different mobility models: random and controlled. The controlled
mobility refers to a scenario where sensor nodes are moved based on an underlying
application requirement. For our simulations we used the algorithm presented in [29]
to compute the coordinates of mobile nodes at each step. In the case of random
mobility the new location of each node is computed using a random direction. In
addition, we also tested the mobility management protocol under different speeds,
ranging from 0.5 m/s to 2 m/s, which is practically used in several WSN systems [25,
26]. In our future work we plan to simulate higher speed nodes as well.

For our experiments, we have constructed a K-D tree based hierarchical indexing
structure over the sensed field. The index nodes are considered to be static, but would
rather be moved according to the borders change, to maintain connectivity with the
other nodes in their region. The cycle time in our simulations is 5 seconds, i.e., every
5 seconds, nodes inform their value as well positions to their immediate cluster heads
(indexing tree leaf nodes).

We measure the performance of the protocol in terms of following parameters:
mobility request latency, mobility resolution factor, and query latency. Mobility request
latency refers to the time it takes for the protocol to adjust the structure to reflect the
nodes new positions. Mobility resolution factor (MRF) reflects the percentage of requests
that required changes beyond the first level of the indexing hierarchy.

Fig. 7 plots the average mobility request latency under different mobility speeds.
The performance of both mobility cases is quite stable, where the latency is almost
consistent with the change of sensor nodes velocity. The mobility request latency for
the controlled mobility scenario (i.e. nodes move towards an events of interest while
maintaining coverage [29]) is around 15% higher than the random mobility request
latency. This is because the number of mobility request received by the cluster heads
in the case of controlled mobility is higher, compared to the random mobility. Note
that in the case of random mobility, overall more sensor nodes maybe moving.
However, a significant number of consecutive mobility steps may cancel each other,
thus keeping the sensor nodes within the same local region. On the other side, in the
controlled mobility scenario each sensor node is moving on a specific path towards
the target point. Accordingly, with each time step, a node progresses towards moving
into or outside of a specific local region, thus requiring mobility adjustment in the
indexing structure.

In Fig. 8, MRF is shown for different mobility scenarios. The general trend of the
MRF is larger for the controlled mobility algorithm, as the nodes following a specific
path are able to cause more disturbance in all the regions they pass by, which creates
unbalance in multiple local regions. Because of this unbalance, adjustment to mobility
may require adjustment at more than one of the hierarchy. The maximum MRF shown

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 177

Fig. 7. Average latency of incorporating mobile node in the indexing structure Vs. sensor node
speed

for all cases is less than 17%. Which means that the mobility management protocol is
able to resolve successfully over 83% of the mobility requests at the lowest level of
the indexing tree, without the need of having this mobility information traverse the
whole indexing structure.

Fig. 8. Mobility Resolution Factor (MRF): The percentage of mobility requests that the
mobility protocol is unable to resolve at the lowest level of the indexing structure

Figures 9 and 10 compare the latency of different data queries to the mobility
managed structure (under random and controlled mobility) and the static structure
where the indexing structure does not change itself to accommodate mobility and thus
becomes relatively unbalanced. We present results for three different types of queries.

Physical-space queries inquire values sensed in a specific region. Data-space
queries inquire locations of sensor nodes sensing data in a specific data range. A
hybrid query inquires either sensed values, or sensor nodes locations, giving
constraints of both region and data range. In approximate querying, the user defines a

178 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

desired level of accuracy to be met in the response. An example of an approximate
hybrid query is:

 SELECT TEMPRATURE_VALUES inquiring sensed values
 BETWEEN 70º TO 80º with data range constraint
 INSIDE RECTANGLE {[0,0],[30,50]} and a regional constraint
 WITH ACCURACY = 80% at a desired accuracy level

Fig. 9a shows the difference in data-space query latency for static as well mobility
manages structures under different mobility scenarios. The static case shows higher
costs for achieving more accurate results. This is because on the lower level of the
indexing structure, the static scenario would have a higher memory footprint for the
congested regions, which requires more processing and communication time. In Fig.
9b, physical space query latency of the static indexing structure almost matches the
mobility managed structure under the random mobility scenario for lower accuracy
levels, which is slightly higher than the controlled mobility scenario. However for
exact queries (i.e., 100% accuracy), which require the indexing structure to get the
data from its leaf nodes, static scenario incurs higher query latency costs.

(a) (b)

Fig. 9. Query latency for (a) data- and (b) physical-space queries Vs. required query response
accuracy

In Fig. 10, the hybrid query latency can be viewed as a combination of latencies of
both physical-space and data-space queries, where it is clear that the incurred latency
is higher for the static case when requiring higher accuracy level. These results show
the efficiency of appropriately handling mobility, and its effect on query latency for
most cases of mobility scenario, where the static indexing would not be able to
provide same latency for queries inquiring higher accuracy, especially for the queries
inquiring exact responses.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 179

Fig. 10. Query latency for hybrid queries Vs. required accuracy

5 Related Work

Data indexing in WSN has been studied over the past decade, and several algorithms
with different perspectives were proposed to solve it. The vast majority of these
algorithms did not consider the mobility of sensor nodes. Centralized solutions, as in
[6], proposed transmitting data across paths in the network using lifting technique and
wavelet based compression. In such methods the network usually suffers from
congestion around the sink node, which creates a communication bottleneck, and
decreases the lifetime of the nodes in the area around the sink node. Several
distributed data indexing algorithms were proposed [7, 8, 14]. In [7], a hierarchical
data structure is constructed and data is mapped to the indexing structure using
geographic hash tables (GHT). This algorithm creates redundancy in data
transmission, where the same raw data is reported to multiple nodes in the indexing
structure. Meliou et al.[9] proposed an algorithm with a novel idea for data indexing
of sensed values in a hierarchical data structure using approximate modeling.
Gaussian models were used in this system to abstract large amount of sensed values
and elevate them across the hierarchy, leading to more efficient reporting at the cost
of accuracy loss across the hierarchy. Such system lacks the representation of sensor
nodes positions, and assumes that Gaussian models are suitable for all types of sensed
phenomena, which is not generic enough for a wide range of sensed phenomena not
of Gaussian distribution nature. Also, Gaussian models are successful in representing
the average behavior of a region, but they lose the information about the extreme
(maximum and minimum) sensed values, which are of high interest for many WSN
applications. Another distributed algorithm proposed by Xiao et al.[14] which indexes
the WSN data across a spanning tree according to a key for each node of the spanning
tree. However this algorithm supports mobility of sensor nodes, it falls short in the
maintenance cost of the data updates, as a sensor node may have to update its
information at an indexing node that is far from its location. On the other side, if the
key is arranged in a way that favors position of sensor node for local region reporting,
the system doesn't support data-space indexing efficiently. Monitoring the WSN for

180 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

events have been studied in [15], where an algorithm is proposed to use an optimal
number of monitoring nodes and minimize false alarms. Such algorithms are useful
for event based monitoring applications, which do not consider aggregating the
network data as much as answering specific predicates.

Mobile WSN sink node idea in has taken good consideration in recent research.
Controlled mobility have been exploited in several works [16-20], in which the – one
or multiple – sink node(s) moves in the field and gathers the sensed data. Non-
hierarchical solutions, as [16-19], study the optimal path to move across the field, in
order to minimize latency. In [20], Xing et al. propose at two tier system of mobile
sink node(s) which collects data from static rendezvous points that collect sensed data
locally within their vicinity. This clustered data gathering approach increases the
efficiency of data gathering and scheduling for sink node(s) mobility, however it
doesn't provide a full hierarchical solution. It does not present a distributed data
indexing solution, but rather an optimized data gathering algorithm based on
clustering. Moreover, the energy minimization criteria is significantly different in
such solutions, because the amount of energy spent on mobility is orders of
magnitude higher than the energy spent on communication and computation.

6 Conclusion and Future Work

In this paper we presented a protocol to manage and maintain in-network indexing
structures in WSN under the constraint of mobile nodes. The protocol is applicable to
BSP tree structures, where it is based on assigning incrementing values for space
splitting borders of the BSP tree. The protocol is based on shrinking and expanding
the indexed regions according to the residing number of nodes, in order to keep a
balanced load for the indexing structure. The complexity of the proposed solution
does not exceed a linear order in the size of the indexing structure. Our results show
the capability of handling over 83% of mobility within their local regions of
occurrence, without the need of communicating this information across the network.
The average latency of balancing the structure in the presence of mobility is in
reasonable range. The results also show improvement for query latency results,
especially for the higher accuracy queries. In our future work, we plan to incorporate
mobility models that involve higher mobility speed and uniform direction. In addition,
we also plan to study mobility management under higher dimensional indexing
structures that do no involve orthogonal bisections. An extension of our work is to
consider the mobility of the nodes participating in the indexing structure itself.
Another extension is to incorporate the aspect of optimizing the coverage for
multiple-events monitoring.

Acknowledgments.This research has been supported in part by the NSF grants CNS
0910988, 0910952 and III 1213038.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 181

References

1. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach.
Morgan Kaufmann (2004)

2. Ekici, E., Gu, Y., Bozdag, D.: Mobility-Based Communication in Wireless Sensor
Networks. IEEE Comm. Magazine 44(7), 56–62 (2006)

3. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-Tier
Architecture for Sparse Sensor Networks. In: 2003 IEEE Workshop Sensor Network
Protocols and Applications, SNPA 2003 (May 2003)

4. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using Predictable Observer Mobility for
Power Efficient Design of Sensor Networks. In: Proc. 2nd International Workshop on
Information Processing in Sensor Networks (2003)

5. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile Element Scheduling for
Efficient Data Collection in Wireless Sensor Networks with Dynamic Deadlines. In: Proc.
25th IEEE International Real-Time System Symposium (2004)

6. Ciancio, A., Pattem, S., Ortega, A., Krishnamachari, B.: Energy-Efficient Data
Representation and Routing for Wireless Sensor Networks Based on a Distributed Wavelet
Compression Algorithm. In: Proceedings of the 5th International Conference on
Information Processing in Sensor Networks, IPSN 2006, pp. 309–316 (2006)

7. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: DIFS: A Distributed
Index for Features in Sensor Networks. Ad Hoc Networks 1, 333–349 (2003)

8. Meliou, A., Guestrin, C., Hellerstein, J.: Approximating Sensor Network Queries Using In-
Network Summaries. In: Proceedings of the International Conference on Information
Processing in Sensor Networks, IPSN 2009, pp. 229–240 (2009)

9. Goldenberg, D., Lin, J., Morse, A., Rosen, B., Yang, Y.: Towards Mobility as a Network
Control Primitive. In: Proc. ACM MobiHoc (2004)

10. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility for
Maximizing Sensor Networks Lifetime. In: Proc. 38th Ann. Hawaii Int’l Conf. System
Sciences, HICSS 2005 (2005)

11. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile Base Stations. In: Proc. IEEE Global
Telecomm. Conf., GlobeCom 2003 (2003)

12. Fuchs, H., Kedem, Z., Naylor, B.: On Visible Surface Generation by A Priori Tree
Structures. SIGGRAPH 1980 Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 124–133. ACM, New York (1980)

13. Thibault, C., Naylor, F.: Set operations on polyhedra using binary space partitioning trees.
In: SIGGRAPH 1987 Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 153–162. ACM, New York (1987)

14. Xiao, L., Ouksel, A.: Scalable Self-Configuring Integration of Localization and Indexing
in Wireless Ad-hoc Sensor Networks. In: IEEE International Conference on Mobile Data
Management, MDM, vol. 151 (2006)

15. Liu, C., Cao, G.: Distributed Monitoring and Aggregation in Wireless Sensor Networks.
In: Proc. of Infocom, pp. 1–9 (2010)

16. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile Base Stations. In: Proc. IEEE Global
Telecomm. Conf., GlobeCom 2003 (2003)

17. Luo, J., Hubaux, J.: Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor
Networks. In: Proc. IEEE INFOCOM (2005)

182 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

18. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility for
Maximizing Sensor Networks Lifetime. In: Proc. 38th Ann. Hawaii Int’l Conf. System
Sciences, HICSS 2005 (2005)

19. Hanoun, S., Creighton, D., Nahavandi, S.: Decentralized mobility models for data
collection in wireless sensor networks. In: IEEE International Conference on Robotics and
Automation, ICRA (2008)

20. Xing, G., Li, M., Wang, T., Jia, W., Huang, J.: Efficient rendezvous algorithms for
mobility-enabled wireless sensor networks. IEEE Transactions on Mobile Computing
(2012)

21. Pileggi, F., Fernandez-Llatas, C., Meneu, T.: Evaluating mobility impact on wireless
sensor network. In: UkSim 13th International Conference on Modelling and Simulation,
pp. 461–466. IEEE (2011)

22. Mulligan, R., Ammari, H.: Coverage in Wireless Sensor Networks: A Survey. Network
Protocols and Algorithms 2(2) (2010)

23. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley (1990)
24. Ghica, O., Trajcevski, G., Scheuermann, P., Bischoff, Z., Valtchanov, N.: Sidnet-swans: A

simulator and integrated development platform for sensor networks applications. ACM
SenSys (2008)

25. Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L., Yu, Y.,
Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Networked
Infomechanical Systems: A Mobile Embedded Networked Sensor Platform. In: Proc.
Fourth Int’l Symp. Information Processing in Sensor Networks, IPSN 2005 (2005)

26. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.: Robomote:
Enabling Mobility in Sensor Networks. In: Proc. Fourth Int’l Symp. Information
Processing in Sensor Networks, IPSN 2005 (2005)

27. Mohamed, M., Khokhar, A.: Dynamic indexing system for spatio-temporal queries in
wireless sensor networks. In: 12th IEEE International Conference on Mobile Data
Management MDM, vol. 2, pp. 35–37 (2011)

28. Mohamed, M., Khokhar, A., Trajcevski, G., Ansari, R., Ouksel, A.: Approximate hybrid
query processing in wireless sensor networks. In: Proceedings of the 20th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2012), pp.
542–545. ACM, New York (2012)

29. Caicedo, C., Zefran, M.: A coverage algorithm for a class of non-convex regions. In: IEEE
Conference on Decision and Control, pp. 4244–4249 (2008)

30. Chui, C.: An Introduction to wavelets. Academic Press Prof. Inc., San Diego (1992)

PL-Tree: An Efficient Indexing Method
for High-Dimensional Data

Jie Wang, Jian Lu, Zheng Fang, Tingjian Ge, and Cindy Chen

Department of Computer Science,
University of Massachusetts Lowell,

Olsen Hall, 198 Riverside St., Lowell, MA 01854, U.S.
http://cs.uml.edu

Abstract. The quest for processing data in high-dimensional space has resulted
in a number of innovative indexing mechanisms. Choosing an appropriate index-
ing method for a given set of data requires careful consideration of data prop-
erties, data construction methods, and query types. We present a new indexing
method to support efficient point queries, range queries, and k-nearest neighbor
queries. Our method indexes objects dynamically using algebraic techniques, and
it can substantially reduce the negative impacts of the “curse of dimensionality”.
In particular, our method partitions the data space recursively into hypercubes of
certain capacity and labels each hypercube using the Cantor pairing function, so
that all objects in the same hypercube have the same label. The bijective property
and the computational efficiency of the Cantor pairing function make it possible
to efficiently map between high-dimensional vectors and scalar labels. The par-
titioning and labeling process splits a subspace if the data items contained in it
exceed its capacity. From the data structure point of view, our method constructs
a tree where each parent node contains a number of labels and child pointers, and
we call it a PL-tree. We compare our method with popular indexing algorithms
including R∗-tree, X-tree, quad-tree, and iDistance. Our numerical results show
that the dynamic PL-tree indexing significantly outperforms the existing indexing
mechanisms.

1 Introduction

Large-scale applications on high-dimensional data need efficient querying mechanisms
to quickly retrieve information. These data objects may contain tens and even hun-
dreds of dimensions. Reducing dimensionality is a standard approach, which has met
with certain success in applications where the most significant information resides on a
small number of dimensions. However, dimensionality cannot always be reduced with-
out losing critical information; even if it can be reduced, the remaining data objects may
still contain tens of dimensions. A number of indexing mechanisms have been devel-
oped for indexing multidimensional data. Among them, the R∗-trees [2] and X-trees [4]
which are evolved from R-trees [11], have become the dominating indexing methods
because they are geometrically suited for spatial data. R-trees suffer from exponential
blowups of MBRs as the dimensionality increases. Attempts at reducing overlapping
bounded boxes have resulted in R∗-trees; attempts at avoiding splits have resulted in

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 183–200, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://cs.uml.edu

184 J. Wang et al.

X-trees. However, there are often significant overlaps among the sibling nodes in these
indices, especially when the dimensionality is high. The Quadtree [22] is another com-
monly used indexing mechanism that is based on the hierarchical decomposition of
data space. The Quadtree structure is overlap free and partitions the d-dimensional data
space recursively into 2d hypercubes.

We note that breaking the spell of the “curse of dimensionality” for indexing high-
dimensional data is not impossible with a new line of thinking and our attempt is an
algebraic approach. In particular, we present a new indexing method to support effi-
cient point queries, range queries, and k-nearest neighbor (KNN) queries. Our method,
called PL-tree (Partition and Label tree), is designed to substantially reduce the nega-
tive impacts of the “curse of dimensionality”, with the following additional properties:

1. Overlap free. It partitions the data space into hypercubes and maps each hypercube
to a unique label.

2. Strong scalability. It scales up well in terms of both dimensionality and data size,
measured by the number of pages accessed and the total elapsed time for queries.

3. Distribution insensitivity. It works well regardless of the distribution of the data
being indexed.

The main idea of the PL-tree is to partition the space recursively and map multiple
dimensional vectors into scalar labels. It works as follows: (1) partition the original
space into hypercubes, also called subspaces; (2) map objects in a subspace to a unique
fixed point; (3) label each object in a subspace using the Cantor pairing function [6] on
the fixed point of the subspace so that all objects in the same subspace have the same
label and objects in different subspaces have different labels; (4) if the number of data
objects contained in a subspace is greater than a pre-determined bound (e.g. the size of
a database page), continue this process recursively. The structure of a PL-tree is a tree
of labels with a number of children at each node, where each label uniquely identifies
the set of objects contained in the same subspace of the node. PL-tree indexing cuts
down searching redundancy substantially for range queries, and is especially suited for
indexing large volumes of high-dimensional data. The uniqueness property of labeling
plays a critical role in processing range queries efficiently (which cannot be achieved by
hashing). Moreover, label generation using the Cantor pairing function is time efficient,
and incurs little space overhead.

In this paper we present algorithms to construct a PL-tree and carry out point queries,
range queries, and KNN queries. For dynamic data sets we also present algorithms for
inserting and deleting data. We carry out detailed performance evaluations through a
large number of experiments and show that PL-trees on high-dimensional synthetic and
real-world data outperform the popular indexing methods.

The rest of the paper is organized as follows. We provide a brief overview of the
background and related work in Section 2. In Section 3, we describe the PL-tree and
present algorithms for constructing PL-trees, carrying out queries, and inserting (delet-
ing) data to (from) an existing PL-tree. We show experiment results and performance
analysis in Section 4. We conclude the paper with final remarks in Section 5.

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 185

2 Related Work

In the past several decades, many indexing methods for multidimensional data have
been proposed.

R-Tree-Based Methods. The R-tree family is the most popular indexing structure
including many multidimensional indexing methods [1, 2, 4, 11, 15, 20, 25]. An R-tree
is a dynamic, balanced indexing structure which models data partition using Mini-
mal Bounding Rectangles (MBRs). A node in an R-tree is split into two nodes if it
contains too many MBRs. The splitting method with different heuristic optimizations
varies among different R-tree variants. R-trees [11] split an MBR by minimizing the
areas of the resulting MBRs, while R∗-trees [2] also consider the overlaps. Hilbert R-
trees [15] group similar MBRs using a ”good” ordering based on the Hilbert curve.
PR-trees [1] use priority rectangles on bulk loaded data where rectangles are repre-
sented as 4-dimensional points. However, these R-tree variants are mainly for indexing
low-dimensional data. Several R-tree-based structures such as TV-trees and X-trees are
designed to handle high-dimensional data. TV-trees [20] reduce dimensionality by or-
dering dimensions on their importance so that only important information among data
objects is stored. X-trees [4] introduce the concept of supernodes to minimize overlaps
in high dimensional space which keeps the directory as hierarchical as possible and at
the same time avoids splits in the directory.

Space-Partition Methods. In addition to R-tree-based methods using MBRs to model
the space partition, many methods employ the regular-partitioning of multidimensional
data space. The Quadtree [24] is such a method which recursively divides the d-dimens-
ional data space into 2d sub-spaces. The Grid File [21] partitions space into buckets for
indexing k-dimensional data, using a directory which contains a k-dimensional array
and k one-dimensional arrays. The VA-File [27] (Vector Approximation File) is an
array of b-bit strings which divides the data space into 2b rectangular cells and uses a
b-bit string for each cell. The Pyramid technique [3] is proposed to support efficient
range queries which is based on a special partitioning strategy and is optimized for
high-dimensional data. However, Fonseca and Jorge [9] point out that if the database
is not uniformly distributed, the efficiency of range queries using Pyramid Technique
cannot be guaranteed.

Feature-Based Methods. The feature-based similarity search is also an important search
paradigm in database applications. SS-trees [28] are proposed for this purpose, which
use Minimum Bounding Spheres (MBSs) rather than MBRs as bounding regions. SR-
trees [16] are proposed to retain the advantages of what MBSs and MBRs can offer,
but require more storage space for storing information of both MBRs and MBSs. A-
trees [23] apply Relative Approximation to the hierarchical structure of SR-trees by
introducing the concept of VBRs (Virtual Bounding Rectangles) which contain approx-
imated MBRs and data objects.

Metric-Based Methods. There are also metric-based indexing structures [29] [7]. The
metric-based methods differ from other indexing mechanisms in that they are based
only on the relative distance between the data points. The VP-tree [29] is a static in-
dexing method using binary tree based on the omni search strategy, where data points

186 J. Wang et al.

are indexed according to their distance to a set of vantage points. The M-tree [7] is the
most efficient metric-based indexing structure known so far. It follows the idea of the
Bisector Tree (BST) and the Geometric Near-Neighbor Access Tree (GNAT) to group
data points around a set of representatives.

Dimension-Reducing Methods. In iMinMax(θ) [22], a data point in d-dimension is
mapped to a 1D line using its maximum or minimum value of all dimensions. A query
to the d-dimensional data is then mapped into d subqueries, with one query for each di-
mension. The NB-trees [9] calculate the Euclidean norm of a n-dimensional data point
and inserts it into a B+-tree. The iDistance [14] index is also based on B+-Tree. The
iDistance [14] index improves the efficiency of kNN queries by reducing dimensional-
ity. It uses a clustering algorithm to choose reference points, and calculates the distance
between each point and its closest reference point. This distance and an additional scal-
ing value is called iDistance. However, iDistance only works well with point data.

We have discussed many indexing methods above, some methods are only suited to
the point data and some can handle both point and spatial objects. Surveys of common
indexing methods can be found in [5, 10]. The index can be constructed in different
ways: If data are mostly static such as GIS databases, an efficient index of good struc-
ture can be constructed using bulkloading algorithms. For instance, Kim and Patel [17]
showed that for kNN queries, STR bulkloaded [19] R∗-trees outperform Quadtree,
but the dynamic constructed R∗-trees perform worse than Quadtree. However, some
database applications are highly dynamic, such as stock or moving object databases.
These databases need to be constructed using a dynamic algorithm. Moreover, many
previous works evaluate different indices on particular queries. Kothuri et al. [18] com-
pare R-trees and Quadtrees using a variety of range queries on 2D GIS spatial data
and show that R-trees outperform Quadtrees in general. Hoel and Samet [13] evalu-
ate the performance of traditional spatial overlap join on various R-tree variants and
the Quadtree, and show that R+trees and Quadtrees outperform R∗-trees using 2D GIS
spatial data. Corral et al. [8] compare R∗-trees, X-trees, and VA-File, and show that
R∗-trees outperform X-trees and VA-File on closet pair queries.

3 PL-Tree Indexing

In this section, we first introduce our dimensionality reduction method that maps mul-
tiple dimensional data into a scalar value. Secondly, we present PL-tree indexing algo-
rithms on point data. Finally in Sect. 3.6, we explain how to construct PL-tree on spatial
data and how to answer queries.

3.1 Multidimensional Space Mapping

Without loss of generality, we assume that data in a k-dimensional space are in the
non-negative quadrant of a coordinate system; we refer to this coordinate system as the
home system. Let R0 and N denote the sets of non-negative real numbers and integers,
D = (d1, . . . , dk) be a point in the home system where di ∈ R0 for i = 1, . . . , k. and
U = (u1, . . . , uk) be a rescaling vector, where ui ∈ R0 for i = 1, . . . , k. A scaling
function SU : Rk

0 → Nk is defined to map a real vector D to an integral vector:

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 187

SU (D) = (�d1/ui�, . . . , �dk/ui�), i = 1, . . . , k.

A paring function is a bijection from integral k-dimensional points to integers and the
Cantor paring function is a standard and commonly used paring function. We define the
Cantor paring function fk : Nk → N as follows:

fk(i1, . . . , ik) =

{
f2(i1, fk−1(i2, . . . , ik)), if k > 2,
1
2 (i1 + i2)(i1 + i2 + 1) + i1, if k = 2.

By using the scaling function and the pairing function we reduce a k-dimensional data
point D to an integer by L = fk(SU (D)). Based on such reduction, we present the
algorithms for PL-tree indexing in the following sections, and we also discuss the choice
of the re-scaling vector U .

3.2 PL-Tree Index Structure

A leaf node of a PL-tree index contains a bounding box B and the multidimensional
data identifiers included in B. Directory (non-leaf) nodes are in the form of (U,B,E),
where U is a re-scaling vector; B is the bounding box of the hypercube represented by
the node; and E is a list of entries of form (L, ptr), sorted by the value of L (L is an
integer label and ptr points to node). In PL-tree nodes, the following processes may be
operated in the home system of the corresponding hyperspace.

Partitioning. When the number of objects contained in a hypercube exceeds the limit
(i.e., a page’s capacity), we partition it into smaller sub-hypercubes according to the
re-scaling vector U , so that the side length of a sub-hypercube is ui units on the i-th
dimension. Then we re-scale the sub-hypercubes into unit hypercubes consisting of 1
unit on each side in a new coordinate system. We refer to this new coordinate system as
a U -system.

Mapping. Let Cl = (l1, . . . , lk) be the lowest corner point of a hypercube C in the
U-system. In the home system, for any point (p1, . . . , pk) in C, we define non-upper-
boundary points as points satisfying ui · li ≤ pi < ui · (li + 1). Let D = (d1, . . . , dk)
be a non-upper-boundary point, by the scaling function we obtain that Cl = SU (D).
It follows that all non-upper-boundary points in C can be mapped to the same fixed
point Cl. In Fig. 1, the 3 points in the middle cube are mapped to the point(3,3) which
is Cl = (1, 1) in the U -system.

Labeling. We define CL = {D | SU (D) = Cl} as the set of non-upper-boundary
points in C. According to the pairing function, we can label all points in CL with a
label L = fk(Cl), then the point set CL becomes the child node with the label of L.
Since fk is a bijection, it is straightforward to show that L is unique with respect to CL.

Re-coordination. When we move from a hypercube into its sub-hypercubes, we con-
sider the sub-hypercube as a new home-system, by a re-coordinating process. For any
D in a sub-home with a re-scaling vector U , we re-coordinate it to: Dr = (d1 − d′1 ·
u1, . . . , dk − d′k · uk), where d′i = �di/ui� = li, for i = 1, . . . , k. For example, in
Fig. 1 the 3 points in the middle are re-coordinated to (1,2), (2.5,1.5), and (1.2,0.5) in
the home system of the middle sub-square.

188 J. Wang et al.

Fig. 1. PL-tree partition. The figure illustrates a PL-tree of 7 points in a 2D space, where each
node can contain at most 2 points. In the home system of the root node U = (3.0, 3.0) is used,
and the home system of the middle square uses U = (1.5, 1.5).

3.3 Point Data Indexing

Static Data Indexing

Given a dataset, we take the procedure of partitioning, mapping, labeling, and re-
coordinating on the data space. The data with the same label become the children of
the parent node. The procedure is repeated recursively on each hypercube until all the
points of a sub-hypercube can fit in a page. Fig. 1 demonstrates the PL-tree partitioning
and one of its sub-hypercube as a child node in a 2D space.

Dynamic Data Indexing

Searching The search algorithm traverses the tree from the root using Alg.1. In the
worst case, the number of node accesses for a single search is O(h) where h is the
expected height of the tree (see Sect. 3.5). Note that the labels at a node are compact
and sorted. Thus, a particular label can be located very fast through a binary search.

Insertion. The insertion algorithm (see Alg. 2) is similar to searching. It inserts a
data entry D into a leaf node if D is found in a leaf, or it creates a new leaf including
D if the label of D is not found in a directory node. There is also an overflow treatment
when a leaf is full.

Deletion. To remove a data record from a PL-tree, a similar searching algorithm is
invoked; once the record is found in a leaf node, it is removed from the leaf node. We
remove the leaf node and its label from its parent node if the left node becomes empty.
A merge process may be executed after a deletion.

Query Processing

A point query on PL-tree is straightforward according to the search algorithm (see
Alg. 1). For range queries which ask for a particular range (or hyper cuboid) of data
points, let Q denote the query range. Hypercubes in the home system that intersect with
Q can be classified into innerblocks and outerblocks. An innerblock is a hypercube
that is fully contained in Q, while an outerblock partially intersects with Q. We devise
a procedure RQP (Algorithm. 3) to carry out range queries. Given a query range Q,
RQP identifies the innerblocks and outerblocks by checking the coordinates of each

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 189

Algorithm 1. Search(PLTNode N , Data D)

1: if N is a leaf node then
2: Compare all entries N.E with D
3: else
4: L ← N.Label(D)
5: pos ← N. Search in children(L)
6: if L is found then
7: re-coordinate D
8: return Search(N.E[pos].ptr, D)
9: else

10: return False
11: end if
12: end if

label in the U-system. For each innerblock, RQP returns all the data points in it; For
each outerblock, RQP casts the intersected portion as a range query on the correspond-
ing sub-hypercube and processes the query recursively.

Given a query point p and a value k, a kNN query returns k data points which are
closet to the query point p based on a distance function. We use a similar algorithm
described in [12] to carry out kNN queries in PL-trees. The algorithm in [12] is imple-
mented using R-trees; we adapted it to use PL-trees. To find the k-nearest neighbors for
a query point p, PL-trees maintain a priority queue consisting of objects sorted based
on their MINDIST from p. When the next object is retrieved from the priority queue, if
it is the bounding box of a node, it is expanded by pushing its children into the priority
queue; if it is a data entry, the data entry is reported as the next nearest neighbor to p.
This process is repeated until k data entries are reported. According to the analysis in
[12], the expected number of leaf node accesses is O(k+

√
k) and the expected number

of objects in the priority queue is O(
√
k).

3.4 Compact PL-Tree Storage

In our insertion algorithm, while splitting a leaf node, if the data in the leaf are evenly
distributed, the algorithm will create many new leaves with each leaf node containing
only a few data points. These new ”sparse” leaves seriously affect the efficiency of range
queries, because too many ”sparse” pages are accessed during the query. The problem
becomes worse with increasing dimensionality. Hence we propose a compact storage
which significantly reduces such ”sparse” effect.

The basic idea is to store many leaf nodes in the same page. As a result, we need to
store labels of the hypercubes corresponding to these nodes to identify each node. We
refer to the labels that identify nodes as home labels, which indicates the location of
the node with an offset value. We refer to the original labels with child pointers as child
labels. Fig.2 illustrates the compact node structure, there are two arrays of entries, child
label entries and home label entries. In a practical implementation, the two arrays of
directory nodes grow respectively from the two ends of the page. Fig.3 is an example of
a PL-tree and the corresponding compact pages, the value of offseti indicate the location

190 J. Wang et al.

Algorithm 2. Insert(PLTNode N , Data D)

1: if N is a leaf node then
2: Insert D.id into N
3: if N.full() then
4: N.U = U-Calculator()
5: for all data d in N do
6: re-coordinate d and Insert(N , d)
7: end for
8: end if
9: else

10: L ← N.Label(D)
11: pos ← N. Search in children(L)
12: if L is found then
13: re-coordinate D
14: Insert(N.E[pos].ptr,D)
15: else
16: create NewChild with L in N
17: Insert(NewChild, D)
18: end if
19: end if

Algorithm 3. RQP(PLTNodeN , RangeQ)

1: Res ← empty set
2: if N is a leaf node then
3: check all data in N and add the inter-

sected ones into Res
4: else
5: for all E in N.E do
6: Cl ← N. DeLabel(E.L)
7: let B be unit hypercube based on Cl

8: if B is in Q in U -system then
9: Res = Res∪ FetchAll(E.ptr)

10: else
11: if B intersects Q in U -system

then
12: Res = Res∪ RQP(E.ptr, Q)
13: end if
14: end if
15: end for
16: end if
17: RETURN Res

of the first entry of the node with the home label Li. In leaf nodes, we store the home
label for each data entry.

The compact structure slightly complicates the PL-tree algorithms. For example, if
we search for D = O6 in the PL-tree of Fig.3, we need one more parameter of home
label for each search. Starting from the root node using Search(root, D, 0), the Search
algorithm calculates the label 3 of D in root. Then Search(directory-node, D, 3) is
called, and we calculate label 10 and find it from [5,10,97]. In the leaf node, we compare
D with the objects with home label of 10 (O6-O9) and finally find O6 as the result.
Nonetheless, the compact structure significantly improves the performance of queries
(see Section 4.6).

3.5 Re-scaling Vector and Algorithm Performance

An interesting parameter of PL-trees is the re-scaling vector U . Our goal is to choose
U such that the PL-tree is as height balanced as possible.

Height Estimation of PL-trees. Considering the points in a k-dimensional space, we
assume that the root space is a hypercube with edges of the same lengthL and the small-
est distance between any two points is l. If each time a PL-tree partitions hypercubes
by splitting each dimension into d parts, then for a node of depth h, the diagonal of the
node should be larger than l since a node must contain at least one point. Thus, we have√
k(L

dh−1)2 ≥ l and it follows that h ≤ logd
√
kL
l + 1, which is O(logL/l) if L/l is

much larger than k. Hence in the worst case, the height of the PL-tree is logarithmic to
the ratio of L to l. That is, the height of PL-trees is related to the density of the data.

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 191

Fig. 2. Structure of PL-Tree Nodes Fig. 3. Compact PL-tree with 7 nodes

Binwidth Optimization. If we partition the space randomly in PL-Trees, the hyper-
cubes with dense data will be of deep height. Also, there are many blank areas in the
hyperspace for non-uniformly distributed data. To make PL-trees as height balanced
as possible, we choose U to partition the data of the hypercube as evenly as possible.
Our partition strategy is, by choosing a proper U , the hypercube is partitioned into sub-
hypercubes such that the sub-hypercubes have about the same number of data entries.
Considering the data projections onto each dimension, choosing ui for the i-th dimen-
sion is a binwidth optimization problem. Let X = x1, . . . , xn be a data set, the binwidth
optimization is to find an optimal Δ such that the range of X is divided into N bins of
width Δ. Let ki be the number of elements in X that fall in the i-th bin. We first cal-
culate the value of N that minimizes the MISE (Mean Integrated Squared Error) [26],
which is a measure of the goodness-of-the-fit of the bin histogram to an unknown data
rate. Then we choose the optimal N∗ from 2 to N to minimize the modified variance-
to-mean ratio V/M and the optimal ui is max(X)−min(X)

N∗ , where M = 1
N ′

∑N
i=0 ki,

V = 1
N ′

∑
i-th bin is not empty (ki −M)2, and N ′ is the number of non-empty bins.

3.6 Spatial Data Indexing

Spatial data can be considered as a k-dimensional spatial object represented by an MBR
denoted by R. R can be uniquely determined by its lowest corner point Rl and highest
corner point Rh, written as: Rl = (a1, . . . , ak), and Rh = (b1, . . . , bk).

Static Spatial Data Indexing

Alg. 4 shows the pseudocode for creating a PL-tree index from static spatial data. The
process is recursive, similar to point data, but has the following changes:

Partitioning. We need to consider the size of the object while determining U to
ensure each object covers at most 2k hypercubes. Let SI denote a static set of spa-
tial objects. We calculate U as follows: calculate U ′ according to Section 3.5 and
U ′′ = {u1, . . . , uk},where ui = max(Rl,Rh)∈SI

(bi− ai), then let U = max{U ′, U ′′}.

192 J. Wang et al.

Algorithm 4. CreateIndex Cuboid(PLTNode N , DataSet A)

1: N.U ← U-Calculator(A)
2: for all data in A do
3: if data is huge then
4: N.HList.add(data)
5: else
6: L ← N.Label(data)
7: pos ← N.Search in children(L)
8: if L is not found then
9: temp ← new PLTNode

10: insert (L, temp) to N.E
11: temp.add data(data)
12: else
13: temp ← N.E[pos].ptr
14: temp.add data(data)
15: end if
16: end if
17: end for
18: for all child of N do
19: if child.size > split threshold then
20: CreateIndex Cuboid(child, child.dataset)
21: end if
22: end for
23: return N

It ensures that every R must be confined in a region consisting of 2k adjacent hyper-
cubes that share a common point in the center of the region.

Mapping & Labeling. For any R = (Rl, Rh) ∈ SI , we map R to a label L using
R′ = (SU ((a1, . . . , ak)), SU ((b1, . . . , bk))) = ((a′1, . . . , a

′
k), (b

′
1, . . . , b

′
k)) = (R′

l, R
′
h)

and L = f2(R
′
l, R

′
h). The calculation still follows the bijective property of fk such that

the mapping from bounding boxes to labels is bijective.

Re-coordination. Instead of re-coordinating a single point, we re-coordinate both Rl

and Rh for a bounding box R.

Huge Objects. Even if we choose a big U for indexing spatial data, it is still possible
that there are relatively huge objects (e.g. one object is of half size of the hypercube).
Thus, we use an extra link list (HugeObjectList) to store such huge objects.

Dynamic Spatial Data Indexing

When the insertion algorithm dynamically inserts a new spatial data entry R into the
existing index structure, R may be too large for the size of U . We could re-calculate
U and re-coordinate all existing data, but this is time consuming. Instead, we logically
cut R, along the lines of the existing hypercubes, into several smaller hyper cuboids.
We then logically replace R with the derived smaller hyper cuboids for indexing. A
logical cut implies that the cut does not physically generate smaller objects to replace
the original object. Each derived smaller hyper cuboid is simply a pointer to the original

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 193

object. The coordinates of each derived hyper cuboid are calculated on the fly, which
may be disposed after indexing. Thus, what we finally get is a set of pointers at differ-
ent positions in the index pointing to the same original data. The original data will not
be indexed. Alg. 5 and 6 show the pseudocodes of insertion and deletion for handling
dynamic spatial data. We omit the search algorithm as it is similar to point data. Com-
pared to the algorithms for indexing point data, inserting a spatial data may cost much
more due to the extra insertions from the logical cut and the maintainance of HugeOb-
jectList.

Query Processing

The query processing for spatial data is similar to that for point data; the only difference
is that the objects in HugeObjectsList of each nodes are also considered. Due to space
constraints, we do not provide the detailed algorithms here. Moreover, due to the logical
cut, there may be some duplicate object pointers in the result for range queries and kNN
queries. Therefore, we need to remove the duplicates before returning the result.

4 Performance Evaluation

In this section, we present the experimental results on point, range and kNN queries
for multidimensional data. All indices are constructed using dynamic indexing meth-
ods. We compare PL-trees with R∗-trees and X-trees. The R∗-tree is the most common
method for indexing multidimensional data, while the X-tree is an improved variant of
the R∗-tree for high-dimensional data. We also compare PL-trees with Quadtrees and
some other indexing methods.

4.1 Data Sets and Configurations

We use both synthetic and real world data. For synthetic data, we generate a uniformly
distributed data set containing 1,000,000 points in 15-dimensional space. Moreover, we
use the following real world data for different evaluations:

1. USPP. A Point data set containing 15,206 populated places in the U.S.
2. TIGER (http://www.census.gov/geo/www/tiger/). A spatial dataset containing 556,

696 non-uniformly distributed polygons.
3. LLMPP. A High-dimensional data set from Lymphoma/Leukemia Molecular Pro-

filing Project (http://llmpp.nih.gov/lymphoma/), which contains 1,843,200 items of
17 integer and 15 float attributes. We only took the 15 float attributes and randomly
select 500,000 data points.

4. MAPS. The MAPS Catalog data containing photometric and astrometric data from
the Palomar Observatory Sky Survey (http://aps.umn.edu/catalog/). It has 90 mil-
lion items of 39 integer attributes, and we select one field P105 (40,398 points).

We implement the algorithms in C++ on an Intel Core i5 2.53G machine running Win-
dows 7 with a 4GB memory. We apply LRU for buffer pool which is in the size of 1000
pages. The page size is 4KB for data sets of dimensionality no more than 8 and 8KB
for higher dimensionalities. We focus on the following evaluation metrics: number of
pages accessed, index size, and total query time.

194 J. Wang et al.

Algorithm 5 . Insert Cuboid(PLTNode N ,
DATA data)

1: if data has larger size than N.U then
2: LogicalCuts ← partition(data, N.U)
3: for all lc in LogicalCuts do
4: Insert Cuboid(N, lc)
5: end for
6: else
7: if N is a leaf node then
8: N .add data(data, L)
9: if IsHuge(data, N.U) then

10: N.HList.add(data)
11: else
12: insert data into N.E
13: if N is full then
14: IndexCreate Cuboid(N ,N.E)
15: end if
16: end if
17: else
18: L ← N. Label(data)
19: pos ← N. Search in children(L)
20: if L is not found then
21: temp ← new PLTNode
22: insert (L, temp) into N
23: Insert Cuboid(temp, data)
24: else
25: Insert Cuboid(N.E[pos].ptr, data)
26: end if
27: end if
28: end if

Algorithm 6 . Delete Cuboid(PLTNode N ,
DATA data)

1: if data has larger size than N.U then
2: LogicalCuts ← partition(data, N.U)
3: for all lc in LogicalCuts do
4: Delete Cuboid(N, lc)
5: end for
6: else
7: if N is a leaf node then
8: if data IsHuge(N.U) then
9: remove data from N.HList

10: else
11: remove data from N.E
12: end if
13: if N.E and N.HList are empty then
14: remove N from N.parent
15: end if
16: else
17: L ← N. Label(data, N.U)
18: pos ← N .Search in children(L)
19: if L is not found then
20: return NOT FOUND
21: else
22: Delete Cuboid(N.E[pos].ptr, data)
23: end if
24: end if
25: end if

4.2 Index Size

One of the great features of a PL-Tree is that the size of index is dimensionality inde-
pendent since PL-Trees store scalar labels instead of the multi-dimensional information.
R-Tree-based methods store MBRs whose size increases linearly with dimensionality.
By contrast, a label is a constant size. We create indices on synthetic points with differ-
ent dimensionalities (D = 2, 3, 4, 5, 6, 8, 10, 12) and compare the sizes of index files.
Fig. 4(a) shows that the index size of R-Tree-based indices increases about linearly with
dimensionality. As expected, the size of a PL-Tree index is dimensionality independent.
A PL-tree for the 2-dimensional dataset is 18872 KB, which is 0.62 times as large as an
R∗-Tree; while for the 12-dimensional dataset it is 14274 KB, which is only 0.08 times
as large as an R∗-Tree.

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 195

(a) Index size (b) Number of pages accessed (c) Total query time

Fig. 4. Performance Comparisons on Synthetic Datasets

4.3 Results for Point Queries

We evaluate point queries using synthetic data sets of various dimensionalities. We fix
the data size at 500,000 records and create indices with different dimensionalities. We
then randomly select 10,000 points to carry out point queries. For point queries on a
hierarchical tree index, the query cost directly corresponds to the height of the tree.
However, this is only true if there is no overlap between hypercubes of directory nodes.
Due to the overlap of R-tree-based indices, Fig.4(b) shows that R∗-Trees incur 50 times
as many page accesses as PL-Trees for D = 12. X-Trees are designed as the hybrid
of linear array-like and hierarchical R-Tree-like directory, and provide a much better
performance by avoiding the splits to reduce overlaps. PL-Trees guarantee that there is
only one path from root to leaf for a single point query, which implies that the number
of page access only corresponds to the depth of the leaf nodes.

4.4 Results for Range Queries

Synthetic Datasets

In the first experiment, we compare the performance of range queries on synthetic data.
We fix the selectivity to 0.1%, and carry out 10 random range queries. By varying the
number of data points and the dimensionality respectively, we evaluate the impact of
data size and data dimensionality on the range query performance. We measure both
the number of page accesses and the total elapsed time.

We first fix the dimensionality to 12 and vary the data size from 100,000 to 1,000,000
records. Fig. 5(a) shows that PL-trees always perform much better than R∗-trees and
slightly better than X-trees on larger datasets. Then, we fix the data size to 1,000,000
and vary the dimensionality (D = 3, 6, 9, and 12). Fig. 5(b) shows that X-trees perform
slightly better when D is 6 or lower, but PL-tree performs better when D is higher. The
reason is that, for relatively low dimensionalities, X-trees have significantly less overlap
than R*-trees, and less intersection check than PL-trees. However, for high dimension-
alities (D = 9 and 12) we observed that the performance of X-Trees decreases rapidly
while PL-trees maintain a rather smooth curve despite the dimensionality growth. The
results show that PL-trees scale well on both size and dimensionality.

196 J. Wang et al.

(a) Performance over Data Size (b) Performance over Data Dimensionality

Fig. 5. Range Query Performance on Synthetic Datasets

(a) TIGER2D Overview (b) Query Times on TIGER (c) Query Times on LLMPP

Fig. 6. Range Query Performance on Real-World Datasets

Real-World Datasets

We also evaluate indices on TIGER and LLMPP data sets to further examine the perfor-
mance of PL-trees for various dimensionalities. We vary the selectivities from 0.001%
to 20%. Fig.6 shows that as expected, PL-trees still outperform R∗-Trees and X-Trees,
especially for high selectivity. This is because a larger query range tends to incur more
overlaps for R*-trees and X-trees, which lead to more I/O costs. The speedup factor of
PL-trees over R∗-trees and X-Trees reaches up to 7.5 and 3.6, respectively, when the
selectivity is 20%.

(a) Results on MAPS2D (b) Results on MAPS4D (c) Results on MAPS6D

Fig. 7. kNN Query Performance on Real-World Datasets

4.5 Results for kNN Queries

In this section, we compare the performance of PL-trees with R*-trees on kNN queries.
We use the first 2, 4, and 8 attributes of MAPS data to get three real datasets: MAPS2D,

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 197

Table 1. Comparisons with Quadtrees

Quadtree PL-tree Ratio
Creating Time (sec.) 0.368 4.700 11.2
Creating Disk I/O 40027 738871 54.15%
Avg. Read I/O of PQ 5.829 4.194 76.33%
Avg. Read I/O of kNN 99.07%
Avg. Time of RQ (sec.) 0.4234 0.2211 0.522
Avg. IntrCheck of RQ 77324 17265.8 22.32%
Avg. Read I/Oof RQ 71076.8 41375.8 58.21%

Fig. 8. Compact PL-trees

(a) v.s. GridFile (b) v.s. S-Scan

Fig. 9. Comparison to GridFile and S-Scan

(a) Build Time (b) Query Time

Fig. 10. Comparison to iDistance

MAPS4D, and MAPS6D. We randomly generate 1000 points for kNN queries and
count the number of pages accessed. Fig .7, shows that the numbers of page accesses are
proportional to the values of k, and PL-trees outperform R*-trees in that their numbers
of accessed pages are only 83.6%-98.4%, 41.2%-81.3%, and 28.0%-50.5% of those of
the R*-trees for 2D, 4D, and 6D datasets, respectively. We also observe that the perfor-
mance of PL-trees over R∗-trees increases with dimensionality.

4.6 Comparison with Quadtree

Quadtrees bear some similarity with PL-trees. However, PL-trees enjoy flexibilities in
space partitioning and have a novel usage of Cantor pairing functions for labels. In this
section, we evaluate these two indices on USPP data. We create indices on USPP using
different page sizes (from 256B to 4KB). For point queries, we select 1% points of the
data sets and search them in indices. To carry out kNN queries, we randomly gener-
ate 1000 points for processing kNN queries with different k. We use different selective
factors from 0.1% to 30% for evaluating range queries. Table 1 shows that PL-trees
need less disk I/O but much more CPU times due to the calculation of U , and perform
better than Quadtrees on point queries but similarly on kNN queries. For range queries,
PL-trees outperform Quadtrees in all metrics. Especially, PL-trees require significantly
less intersection checking since inner-blocks are not checked (see Section 3.3). More-
over, to illustrate the benefit introduced by the compact structure (see Section 3.4), we
also compare the performance on range queries for PL-trees with and without the com-
pact structure. Fig.8 shows the ratio of page accessed number of PL-trees to that of
the Quadtree, it shows that PL-trees outperform Quadtrees with the compact structure,
but not without the compact structure. This verifies that the compact structure is very
effective in improving performance.

198 J. Wang et al.

4.7 Comparison with Other Methods

We also compare PL-trees with the GridFile, S-Scan, and iDistance. We first com-
pare PL-trees with the GridFile, we create the index for 10,000 randomly generated
data points with the dimensionality ranging from 2 to 14 and compare the index sizes.
Fig. 9(a) shows that the space overhead of the GridFile increases dramatically especially
for high dimensional data. We also evaluate the range query performance of PL-trees
and pure sequential scans (S-Scan) on 100,000 synthetic data points in different dimen-
sions with selectivity of 0.1%. Fig. 9(b) shows that PL-trees are far superior to S-Scan.
Finally, we also compare PL-trees with iDistance. which is of high efficiency for point
queries and kNN queries. We create the indices on 6-dimensional point data in different
sizes from 50,000 to 300,000 points. We randomly select 1000 points to evaluate the
performance of point queries on PL-trees and iDistance. Fig. 10 shows that the build
time of an iDistance index is much longer but iDistance outperforms PL-tree for point
queries. However, iDistance has a serious drawback that it only works for point data.

5 Conclusions

In this paper, we propose a new indexing method for high dimensional data. PL-trees la-
bel objects in high-dimensional space by using the Cantor pairing function which maps
a high-dimensional vector into a scalar label bijectively. Due to the ”curse of dimension-
ality”, many existing indexing methods do not perform well for high dimensional data.
Our indexing employs a novel usage of the Cantor paring functions to cope with high
dimensionalities. Crucially, one can restore the corresponding multidimensional data
from a scalar value since the Cantor pairing function is invertible. Our results show
that our new indexing method scales up nicely with dimensionality and data size, and
outperforms the state-of-the-art indexing methods in many ways.

Acknowledgments. Jie Wang was supported in part by the NSF, under the grants CCF-
0830314, CNS-1018422, and CNS-1247875. Tingjian Ge was supported in part by the
NSF, under the grants IIS-1149417 and IIS-1239176.

References

1. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree: A practically efficient
and worst-case optimal R-tree. In: Proceedings of ACM/SIGMOD Annual Conference on
Management of Data (SIGMOD), pp. 347–358 (2004)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and ro-
bust access method for points and rectangles. In: Proceedings of ACM/SIGMOD Annual
Conference on Management of Data (SIGMOD), pp. 322–331 (1990)

3. Berchtold, S., Böhm, C., Kriegel, H.-P.: The pyramid-technique: Towards breaking the curse
of dimensionality. In: Proceedings of ACM/SIGMOD Annual Conference on Management
of Data (SIGMOD), pp. 142–153 (1998)

4. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: An index structure for high-
dimensional data. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 28–39 (1996)

PL-Tree: An Efficient Indexing Method for High-Dimensional Data 199

5. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373
(2001)

6. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers. Dover, New
York (1955); Original year was 1915

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search
in metric spaces. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 426–435 (1997)

8. Corral, A., Cañadas, J., Vassilakopoulos, M.: Processing distance-based queries in multidi-
mensional data spaces using r-trees. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.)
PCI 2001. LNCS, vol. 2563, pp. 1–18. Springer, Heidelberg (2003)

9. Fonseca, M.J., Jorge, J.A.: Indexing high-dimensional data for content-based retrieval in
large databases. In: Proceedings of International Conference on Database Systems for Ad-
vanced Applications (DASFAA), pp. 267–274 (2003)

10. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2),
170–231 (1998)

11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of
ACM/SIGMOD Annual Conference on Management of Data (SIGMOD), pp. 47–57 (1984)

12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database
Syst. 24(2), 265–318 (1999)

13. Hoel, E.G., Samet, H., Tree, R.: Benchmarking spatial join operations with spatial output.
In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 606–618
(1998)

14. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based
indexing method for nearest neighbor search. ACM Trans. Database Syst. 30, 364–397 (2005)

15. Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree using fractals. In: VLDB,
pp. 500–509 (1994)

16. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest neigh-
bor queries. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data
(SIGMOD), pp. 369–380 (1997)

17. Kim, Y.J., Patel, J.: Performance comparison of the r*-tree and the quadtree for knn and dis-
tance join queries. IEEE Transactions on Knowledge and Data Engineering 22(7), 1014–1027
July

18. Kothuri, R.K.V., Ravada, S., Abugov, D.: Quadtree and r-tree indexes in oracle spatial: a com-
parison using gis data. In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2002, pp. 546–557. ACM, New York (2002)

19. Leutenegger, S., Lopez, M., Edgington, J.: Str: a simple and efficient algorithm for r-tree pack-
ing. In: Proceedings of the13th International Conference on Data Engineering, pp. 497–506
(April 1997)

20. Lin, K.-I., Jagadish, H.V., Faloutsos, C.: The TV-tree: An index structure for high-
dimensional data. VLDB Journal 3(4), 517–542 (1994)

21. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric multi-
key file structure. ACM Trans. Database Syst. 9(1), 38–71 (1984)

22. Ooi, B.C., Tan, K.-L., Yu, C., Bressan, S.: Indexing the edges - a simple and yet efficient
approach to high-dimensional indexing. In: Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2000, pp. 166–174.
ACM, New York (2000)

23. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: The A-tree: An index structure for
high-dimensional spaces using relative approximation. In: Proceedings of International Con-
ference on Very Large Data Bases (VLDB), pp. 516–526 (2000)

200 J. Wang et al.

24. Samet, H., Webber, R.E.: Storing a collection of polygons using quadtrees. ACM Trans.
Graph. 4(3), 182–222 (1985)

25. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for multi-
dimensional objects. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 507–518 (1987)

26. Shimazaki, H., Shinomoto, S.: Kernel bandwidth optimization in spike rate estimation. Jour-
nal of Computational Neuroscience 29(1-2), 171–182 (2010)

27. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: Proceedings of International Con-
ference on Very Large Data Bases (VLDB), pp. 194–205 (1998)

28. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In: Proceedings of International
Conference on Data Engineering (ICDE), pp. 516–523 (1996)

29. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general met-
ric spaces. In: Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 311–321 (1993)

Stream-Mode FPGA Acceleration

of Complex Pattern Trajectory Querying

Roger Moussalli1, Marcos R. Vieira2, Walid Najjar1, and Vassilis J. Tsotras1

1 University of California, Riverside, USA
{rmous,najjar,tsotras}@cs.ucr.edu

2 IBM Research, Brazil
mvieira@br.ibm.com

Abstract. The wide and increasing availability of collected data in the
form of trajectory has lead to research advances in behavioral aspects
of the monitored subjects (e.g., wild animals, people, vehicles). Using
trajectory data harvested by devices, such as GPS, RFID and mobile de-
vices, complex pattern queries can be posed to select trajectories based
on specific events of interest. In this paper, we present a study on FPGA-
based architectures processing complex patterns on streams of spatio-
temporal data. Complex patterns are described as regular expressions
over a spatial alphabet that can be implicitly or explicitly anchored to
the time domain. More importantly, variables can be used to substan-
tially enhance the flexibility and expressive power of pattern queries.
Here we explore the challenges in handling several constructs of the as-
sumed pattern query language, with a study on the trade-offs between
expressiveness, scalability and matching accuracy. We show an exten-
sive performance evaluation where FPGA setups outperform the current
state-of-the-art CPU-based approaches by over three orders of magni-
tude. Unlike software-based approaches, the performance of the proposed
FPGA solution is only minimally affected by the increased pattern com-
plexity.

1 Introduction

Due to their relative ease of use, general purpose processors are commonly
favored at the heart of many computational platforms. These processors are de-
ployed in environments with varying requirements, ranging from personal elec-
tronics to game consoles, and up to server-grade machines. General purpose
CPUs follow the Von-Neumann model, which execute instructions sequentially.
Nevertheless, in this model performance does not always linearly scale in multi-
processor environments, mostly due to the challenges of data sharing across
cores. As it is non-trivial for these CPUs to satisfy the increasing time-critical
demands of several applications, they are often coupled with application- or
domain-specific parallel accelerators, such as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), which strive given a certain
class of instructions and memory access patterns.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 201–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

202 R. Moussalli et al.

FPGAs consist of a fully configurable hardware platform, providing the flexi-
bility of software (e.g., programmability) and the performance benefits of hard-
ware (e.g., parallelism). The advantages on performance of such platforms arise
from the ability to execute thousands of parallel computations, relieving the
application at hand from the sequential limitations of software execution on
Von-Neumann based platforms. The processor “instructions” are now the logic
functions processing the input data. Depending on the application, one big ad-
vantage of FPGAs is the ability to process streaming data at wire speed, thus
resulting in a minimal memory footprint. The aforementioned advantages are
shared with Application Specific Integrated Circuits (ASIC). FPGAs, however,
can be reconfigured and are more adaptable to changes in applications and spec-
ifications, and hence exhibit a faster time to market. This comes at a slight cost
in performance and in area, where one functional circuit would run faster on a
tailored ASIC and require fewer gates.

As traditional platforms are increasingly hitting limitations when process-
ing large volumes of streaming data, researchers are investigating FPGAs for
database applications. Recent work has focused on the adoption of FPGAs for
data stream processing in different scenarios. In [18] a stream filtering approach
is presented for XML documents. [30] investigated the speedup of the frequent
item problem using FPGAs. In [33], the FPGA is employed for complex event
detection using regular expressions. [23] proposed a predicate-based filtering on
FPGAs where user profiles are expressed as a conjunctive set of boolean fil-
ters. [16] describes an FPGA-based stream-mode decompression engine targeting
Golomb-Rice encoded inverted indexes.

In this paper, we describe an FPGA-based setup allowing users to query
spatio-temporal databases in a very powerful and intuitive way. Figure 1 depicts
a generic overview of the various steps performed in spatio-temporal querying
setups. Streams of trajectory data are harvested from devices, such as GPS and
cellular devices. Coordinates are then translated into semantic regions that par-
tition the spatial domain; these regions can be grid regions representing areas of
interests (e.g., neighborhoods, school districts, cities). Our work is based on the
FlexTrack framework [31,32], which allows users to query trajectory databases
using flexible patterns. A flexible pattern query is specified as a combination of
sequential spatio-temporal predicates, allowing the end user to search for spe-
cific parts of interests in trajectory databases. For example, the pattern query
“Find all taxi cabs (trajectories) that first were in downtown Munich in the
morning, later passed by the Olympiapark around noon, and then were closest
to the Munich airport” provides a combination of temporal, range and Nearest-
Neighbor (NN) predicates that have to be satisfied in the specific order. Essen-
tially, flexible patterns cover that part of the query spectrum between the single
spatio-temporal predicate queries, such as the range predicate covering certain
time instances of the trajectory life (e.g., “Find all trajectories that passed by
the Deutsches Museum area at 11pm”), and similarity/clustering based queries,
such as extracting similar movement patterns from a trajectories that cover the

FPGA Acceleration of Trajectory Querying 203

Fig. 1. Generic overview of various steps performed in spatio-temporal querying setups

entire life span of the trajectory (e.g., “Find all trajectories that are similar to
a given query trajectory according to some similarity measure”).

Flexible pattern queries can also have “variable” spatial predicates, and thus
substantially enhancing the flexibility and expressive power of the FlexTrack
framework. An example of a variable-enhanced query is “Find all trajectories
that started in a region, then visited the downtown Munich, then at some later
point returned to the first visited region”.

This work serves as a proof-of-concept on the performance benefits of evalu-
ating flexible pattern queries using FPGAs. Here we focus on the challenges of
supporting hundreds (up to thousands) of variable-enhanced flexible patterns on
FPGAs in streaming (fully-pipelined) fashion. Using FPGAs all pattern query
predicates are evaluated in parallel over sequential streams of trajectories, hence
resulting in over three orders of magnitude speedup over CPU-based approaches.
This performance property also holds even when compared to CPU-based setups
where the pre-processing of trajectories is performed beforehand using special-
ized indexes. To the best of our knowledge, this work is the first detailing FPGA
support for variable-enhanced flexible pattern queries.

The remainder of this paper is organized as follows: related work is described
in Section 2; the FlexTrack query language is detailed in Section 3; the proposed
FPGA-based querying architecture is detailed in Section 4; the experimental
evaluation is provided in Section 5; and the conclusions appear in Section 6.

2 Related Work

Single predicate queries (e.g., Range and NN queries) for trajectory data have
been widely studied in the past (e.g., [2,20,28]). In order to make the query eval-
uation process more efficient [8], trajectories are first approximated using Mini-
mum Bounding Regions (MBR) and then indexed using hierarchical spatiotem-
poral indexing structures, like the MVR-tree [27] and TPR-tree [29]. However,
these solutions are only efficient to evaluate single predicate queries. For moving
object data, patterns have been examined in the context of query language and
modeling issues [5,14,24], as well as query evaluation algorithms [7,4,19].

The FlexTrack system [31,32], which our work is based on, provides a more
general and powerful query framework than previous approaches. In FlexTrack ,

204 R. Moussalli et al.

queries can contain both fixed and variable regions, as well as regular expression
structures (e.g., repetitions, negations, optional structures) and explicit ordering
of the predicates along the temporal dimension. This system uses a hierarchi-
cal region alphabet, where the user has the ability to define queries with finer
alphabet granularity (zoom in) for the portions of greater interest, and higher
granularity (zoom out) elsewhere. In order to efficiently evaluate flexible pattern
queries, FlexTrack employs two lightweight index structures in the form of or-
dered lists in addition to the raw trajectory data. Given these index structures
four different algorithms for evaluating flexible pattern queries are available,
which are detailed in the next section.

The use of hardware platforms for pattern matching has been recently ex-
plored by many studies [26,13,12,33]. Most of these works focus on deep packet
inspection and security as applications of interest. Using FPGAs, speedups of
up to two orders of magnitude is achieved compared to CPU-based approaches,
as every data element in stream can be processed in a single hardware cycle.
The works in [17,15,18] present a novel dynamic programming, push down au-
tomata approach, using FPGAs and GPUs, for matching XML Path and Twig
patterns in XML documents. Using the massively parallel solution running on
parallel platforms, up to three orders of magnitude speedup was achieved versus
state-of-the-art CPU bases approaches.

In [26] an NFA implementation of regular expressions on FPGAs is described.
[13] proposes generating hardware code from Perl Compatible Regular Expres-
sions. The work in [12] focuses on DFA implementations of regular expressions,
while merging commonalities among multiple DFAs. [33] proposes the use of reg-
ular expressions for the representation of spatio-temporal queries. An FPGA im-
plementation is detailed, allowing the sharing of query evaluation engines among
several trajectories, with a minor impact on performance. In [3], it is investigated
the use of GPUs for the fast computation of proximity area views over streams
of spatio-temporal data. Our work mainly differs from all the above works from
the perspective of the query language, described in Section 3. Specifically, we
describe an investigation of the FPGA-based support of variable-enhanced pat-
terns.

3 The FlexTrack System

We now provide a briefly description of the pattern query language syntax,
as well as the key elements in the FlexTrack framework (for more details, see
[31,32]).

3.1 Flexible Pattern Query Language

A trajectory Tid is defined as a list of locations collected for a specific moving
object over an ordered sequence of timestamps, and is stored as a sequence of n
pairs {(ls1, ts1),. . . (lsn, tsn)}, where lsi ∈ Rd is the object location recorded at
timestamp tsi (tsi−1 < tsi).

FPGA Acceleration of Trajectory Querying 205

The FlexTrack uses a set of non-overlapping regions Σl that are derived from
partitioning the spatial domain. Such regions correspond to areas of interest
(e.g. school districts, airports) and form the alphabet language Σ =

⋃
l Σl =

{A,B,C, ...}. The FlexTrack query language defines a spatio-temporal predicate
P by a triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in
Σ or a variable in Γ (R ∈ {Σ ∪ Γ}), op describes the topological relationship
(e.g. meet, overlap, inside) that the trajectory and the spatial region R must
satisfy over the (optional) time interval t := (tfrom : tto) | ts | tr. A predefined
spatial region is explicitly specified by the user in the query predicate (e.g. “the
downtown area of Munich’). In contrast, a variable denotes an arbitrary region
using the symbols in Γ = {@x,@y,@z, ...}. Conceptually, variables work as
placeholders for explicit spatial regions and can be bound to a specific region
during the query evaluation.

The FlexTrack language defines a pattern query Q = (S [∪ D]) as a combi-
nation of a sequential pattern S and an optional set of constraints D. A trajec-
tory matches Q if it satisfies both S and D parts. The D part of Q allows us
to describe general constraints. For instance, constrains can be distance-based
constraints among the variables in S and the predefined regions in Σ. And
S := S.S | P | !P | P# | ?+ | ?∗ corresponds to a sequence of spatio-temporal
predicates, while D represents a collection of constraints that may contain re-
gions defined in S. The wild-card ? is also considered a variable, however it refers
to any region in Σ, and not necessarily the same region if it occurs multiple times
within a pattern S.

The use of the same set of variables in describing both the topological predi-
cates and the numerical conditions provides a very powerful language to query
trajectories. To describe a query in FlexTrack , the user can use fixed regions
for the parts of the trajectory where the behavior should satisfy known (strict)
requirements, and variables for those sections where the exact behavior is not
known but can be described by variables and the constraints between them.

In addition to the query language defined previously, we introduce the variable
region set constraint defined in D. A region set constraint (e.g., {@x : A,D,E})
is optional per variable, and can be only applied to variable predicates, having
the purpose of limiting the region values that a given variable can take in Σ.

Consider the following query pattern and region set over @x, Q = (S =
{A.B.@x.C.?+.@x}, D = {@x : A,D,E}). Here, @x is constrained by the re-
gions {A,D,E}. In practice, a variable can be limited to the neighboring regions
of the fixed query predicates. Other constraints can be set by the user, hence,
limiting the number of matches of interest. From a performance perspective,
the use of variable region set constraints greatly simplifies hardware support for
variable predicates separated by wildcards ?+ or ?∗, as detailed in Section 4.

3.2 Flexible Pattern Query Evaluation

The FlexTrack system employs two lightweight index structures in the form of
ordered lists that are stored in addition to the raw trajectory data. There is one
region-list (R-list) per region in Σ, and one trajectory-list (T-list) per trajectory

206 R. Moussalli et al.

in the database. The R-list LI of a given region I ∈ Σ acts as an inverted index
that contains all trajectories that passed by region I. Each entry in LI contains
a trajectory identifier Tid, the time interval (ts-entry:ts-exit] during which the
trajectory was inside I, and a pointer to the T-list of Tid. Entries in a R-list are
ordered first by Tid, and then by ts-entry.

In order to fast prune trajectories that do not satisfy pattern S the T-list
is used. For each trajectory Tid in the database, the T-list is its approximation
represented by the regions it visited in the partitioning spaceΣ. Each entry in the
T-list of Tid contains the region and the time interval (ts-entry:ts-exit] during
which this region was visited by Tid, ordered by ts-entry. In addition, entries
in T-list maintain pointers to the ts-entry part in the original trajectory data.
With the above described index structures, there are four different strategies for
evaluating flexible pattern queries:

1. Index Join Pattern (IJP): This method is based on a merge join operation
performed over the R-lists for every fixed predicate in S. The IJP uses the
R-lists for pruning and the T-lists for the variable binding. This method
is the one chosen as comparison to our proposed solution, since it usually
achieves better performance for a wide range of different types of queries;

2. Dynamic Programming Pattern (DPP): This method performs a subsequence
matching between every predicate in S (including variables) and the trajec-
tory approximations stored as the T-lists. The DPP uses mainly the T-lists
for the subsequence matching and performs an intersection-based filtering
with the R-lists to find candidate trajectories based on the fixed predicates
in S;

3. Extended-KMP (E-KMP): This method is similar to DPP, but uses the
Knuth-Morris-Pratt algorithm [11] to find subsequence matches between the
trajectory representations and the query pattern;

4. Extended-NFA (E-NFA): This is anNFA-based approach to deal with all pred-
icates of our proposed language. This method also performs an intersection-
based pruning on the R-lists to fast prune trajectories that do not satisfy the
fixed spatial predicates in S.

4 Proposed Hardware Solution

4.1 Compiling Queries to Hardware

In this work, pattern queries are evaluated in hardware on an FPGA device. As
trajectories are compared against hundreds, and potentially thousands, of pat-
tern queries, manually developing custom hardware code becomes an extremely
tedious (and error prone) task. Unlike software querying platforms, where a sin-
gle (or set of) generic kernel can be used for the evaluation of any query pattern,
hardware is at an advantage when each query pattern is mapped to a customized
circuit. Customized circuitry has the benefits of only utilizing the needed re-
sources out of all (limited) on-chip resources. Furthermore, the throughput of

FPGA Acceleration of Trajectory Querying 207

Fig. 2. Query-to-hardware tool flow

the query evaluation engines is limited by the operational frequency (hardware
clock) which can in-turn be optimized to maximize performance.

For this purpose, a software tool written in C++ was developed from scratch
(more than 6,500 lines of code), taking as input a set of user-specified pattern
queries Q, and automatically generating a customized Hardware Description
Language (HDL) circuit description (see Fig. 2). A set of compiler options can
be specified, such as the degree of matching accuracy (reducing/eliminating false
positives), and whether to make use of certain resource utilization (common
prefix) and performance (clustering) optimizations.

Utilizing a query compiler provides the flexibility of software (ease of ex-
pression of queries from a user perspective), and the performance of hardware
platforms (higher throughput), while no compromises are introduced.

4.2 High Level Architecture Overview

As depicted in Fig. 2, assuming an input stream of pairs 〈location, timestamp〉,
the first step consists of translating the location onto semantic data; specifically,
the region-IDs are of interest, using which the query patterns are expressed.
The computational complexity of translating locations to regions depends on
the nature of the map, and are discussed below:

1. Regions defined by a grid map: in this case, simple arithmetic operations
are performed on the locations. These can be performed at wire speed (no
stalling) on an FPGA;

2. Polygon-shaped regions: in this case, there are several well-defined point-
in-polygon algorithms and their respective hardware implementations avail-
able (e.g., see [6,9,10,25]). However, none of these can operate at wire speed
when the number of polygons is large. Here, the locations of vertices are
stored off-chip in carefully designed data structures. The latter are traversed
to locate the minimal set of polygons against which to test the presence of
the locations.

208 R. Moussalli et al.

As the design of an efficient location-to-region-ID block is orthogonal to pattern
query matching, in this work a grid map is assumed, and the location-to-region-
ID conversion is abstracted away and computed offline. The input stream to the
FPGA consists of 〈region-ID, timestamp〉 pairs. A high level overview of the
generated FPGA-based architecture is depicted at the right-hand side of Fig. 2.

An event detector controller translates the 〈region-ID, timestamp〉 pairs to
〈region-ID, ts-entry, ts-exit〉 tuples. The latter are then passed to decoders which
transform the region-ID into a one-hot signal, and evaluate comparisons on entry
and exit timestamps as needed by pattern queries. Making use of decoders greatly
reduces resource utilization on the FPGA, as computations are centralized and
redundancies are eliminated.

Next, a set of flexible pattern query evaluation engines are deployed, providing
performance benefits through the following two parallelization opportunities:

1. Inter-pattern parallelism: where the evaluation of all pattern queries is
achieved in parallel. This parallelism is available due to the embarrassingly
parallel nature of the pattern matching problem;

2. Intra-pattern parallelism: where the match states of all nodes within a
pattern are evaluated in parallel.

The throughput of pattern query matching engines is limited to one event per
cycle. Given the current assumed streaming mechanism, events are less frequent
than region-IDs.

Lastly, once a trajectory is done being streamed into the FPGA, the match
state of each pattern query is stored in a separate buffer. This in turn allows the
match states to be streamed out of the FPGA from the buffer as a new trajectory
is queried (streamed in), hence, exploiting one more parallelism opportunity.

A description of the hardware query matching engines follows. While the
discussion focuses on predicate evaluation, timing constraints are evaluated in a
similar manner in the region-ID decoder, and are hence left-out of the discussion
for brevity.

4.3 Evaluating Patterns with No Variables

We now describe the case of pattern queries with no variables. This approach is
borrowed from the NFA-based regular expression evaluation as proposed in [13,26].
Figure 3(a) depicts the matching engine respective to the pattern queryA.B.?∗.A,
and Fig. 3(b) details the matching steps of that query given a stream of region-ID
events. Each query node is implemented as:

1. A one-bit buffer (implemented using a flip-flop, depicted in grey in Fig. 3(b)),
indicating whether the pattern has matched up to this node. All nodes are
updated simultaneously, upon each region-ID event detected at the input
stream;

2. Logic preceding this buffer, to update the match state (buffer contents).

As each buffer indicates whether the pattern has matched up to that predicate,
a query node can be in a matched state if, and only if:

FPGA Acceleration of Trajectory Querying 209

(a) (b)

Fig. 3. (a) Query matching engines respective to the pattern query A.B.?∗.A, and (b)
an event-by-event overview of the matching of the query.

1. All previous (non-wildstars ?∗) predicates up to itself have matched. Wild-
stars are an exception since they can be skipped by definition (zero or more).
To perform this check, it suffices to check the match state of the first previous
non-wildstar node (see the node bypass in Fig. 3(a));

2. The current event (as noted by the region-ID decoder) relates to the region
of that respective node. Wildcards are an exception, since by definition,
they are not tied to a region-ID. Centralizing the comparisons and making
use of a decoder helps considerably reducing the FPGA resource utilization
respective to this inter-node logic (see the AND-gates in Fig. 3(a)). This
is in contrast to reading the multi-bit encoded region-ID and performing a
comparison locally;

3. It is a wildstar/wildplus (?∗/?+), and it was in a match state at some point
earlier. Wildstar and wildplus are aggregation nodes that, once matched,
will hold that match state (see the OR-gate prior to the ?∗ node in Fig. 3(a)).

Looking closer at Fig. 3(b), each cell reflects the match state of a query node.
All cells in a column are updated in parallel upon an event at the input stream.
A ‘1’ in a cell indicates that the query has matched up to that node; for a
query to be marked as matched, a ‘1’ should propagate from the first node (top
row) to the last node (bottom row). As wildstar (and wildplus) nodes act as
aggregators, they hold a matched state once activated; hence, a ‘1’ can propagate
“horizontally” only at wildstar (and wildplus) nodes. Grey cell contents indicate
matched states that did not contribute to the detected matched query state in
red color, but could contribute to later matches. The ‘1’ depicted in red color in
Fig. 3(b) indicates that the query was detected in the input stream.

4.4 Evaluating Patterns with Variables and without
Wildstar/Wildplus Predicates

Supporting variables in pattern query matching requires an added level of mem-
ory saving. The basic rule of variables is that all instances of a given variable
need to match the same region-ID for a variable to be in a match state. When
no aggregator nodes ?+/?∗ are used, the distance between these two region-IDs
occurring is the number of nodes between the variable instances in the query.

210 R. Moussalli et al.

(a) (b)

Fig. 4. Query matching engines respective to the pattern query A.@x.B.@x, (a) with-
out and (b) with a region set constraint {C,D,E} on @x. To handle variables in
hardware, the first instance of a given variable in a query forwards, alongside the in-
coming match state, (a) the event detector’s output encoded (multi-bit) region-ID,
and (b) a one-hot signal consisting of bits respective to each region in the set of the
variable. Every later instance of that variable in the query (here, the last query node)
would match the event detector’s ((a) encoded, and (b) multiple decoded) region-ID
to the forwarded region-ID. If these match, then the region-ID is again forwarded, and
the variable instance indicates a matched state.

One possible way for software systems to handle this would be to store, at each
variable node (in a matched state), all the region-IDs encountered throughout
the stream. A post-processing step would carefully intersect, for each variable,
all stored region-IDs vectors. While that is a valid approach, storing region-
IDs for each variable node of each pattern query is problematic as streams are
longer. Furthermore, this is not needed unless aggregator nodes ?+/?∗ occur in
between variable occurrences; these cases are detailed in Sections 4.5 and 4.6.
As FPGAs allow the deploying of custom matching engines for each pattern,
matching pattern queries at streaming (no-stall) mode can be achieved here,
with no post processing.

To handle variables in hardware, the first instance of a given variable in a
pattern query forwards the event detector’s output encoded (multi-bit) region-
ID alongside the incoming match state (see the second node in Fig. 4(a)). Some
cycles later (depending on the location of variable instances in the pattern),
every instance of that variable in the query would match the event detector’s
region-ID to the forwarded region-ID. If these match, then the region-ID is again
forwarded, and the variable instance indicates a matched state. Stated in other
terms, at a variable node (instance) in a query, a match state is indicated if the
current region was encountered earlier (given a fixed implied distance), and all
match state propagation checks in between were valid (implying the distance).

Note that an encoded region-ID is used since it is smaller in bit size than a
decoded ID, and any region can potentially satisfy the pattern query variable
(i.e., variables are essentially a subset of wildcards). Also note that non-variable
predicates buffer the forwarded region-ID, though no manipulation of the latter
is required. Additionally, one set of region-ID buffers is required per variable,
starting from the first occurrence of that variable.

FPGA Acceleration of Trajectory Querying 211

(a) (b)

Fig. 5. (a) Query matching engine respective to the pattern query A.@x.B.@x {@x :
C,D,E}, such that the variable region set constraint is implemented as a “relaxed” OR.
This relaxation helps save considerable hardware resources (compare to Fig. 4(b)). (b)
An event-by-event overview of the matching of the query resulting in a false positive,
due to the OR-based implementation of the variable region set constraint.

The same solution is applicable to pattern queries containing variables with
region sets. Figure 4(b) shows the matching logic for the pattern A.@x.B.@x
where @x is constrained by the regions {C,D,E}. Here, instead of storing the
encoded region-ID in the variable buffers, the latter would hold, for each region
in the set, a single bit. At the first occurrence of a variable, the buffer holds
a one-hot vector, because input stream events are relative to one region only.
Upon later instances of that variable, AND-ing the incoming region set buffer
with specific bits of the region-ID decoder output will help indicating for which
regions (if any) the pattern matches.

The above approach is similar to replicating the matching engine for each
region in the variable region set constraint. For instance, the query in Fig. 4(b)
can be seen as three queries, namely A.C.B.C, A.D.B.D and A.E.B.E. How-
ever, the above approach offers much better scalability when multiple variables
are used per pattern: replicating the pattern for each combination of variable
regions would result in an exponential increase in resource utilization versus em-
ploying the aforementioned style of propagating buffers. Another advantage of
the propagating region set variable buffers, when dealing with wildstar/wildplus
pattern predicates, is described in the following.

We now describe an alternative “relaxed” implementation of the variable re-
gion set constraint, with the goal of saving considerable hardware resources,
though at the expense of introducing false positives. Instead of keeping a propa-
gating buffer holding information on each region in the set, the match state can
be updated if any of the regions in the set are decoded using a simple OR-gate.
Figure 5(a) depicts the gate-level implementation of the query A.@x.B.@x {@x :
C,D,E}, such that the variable region set constraint is implemented as an
OR. Thus, history keeping is minimized, as no exact region information is kept
per variable. While this mechanism introduces false positives (as described in
Fig. 5(b)), the latter can be tolerable depending on the application. Otherwise,
a post-processing software step can be performed only on the patterns marked as
matched by the FPGA hardware. This approach, however, helps fitting substan-
tially more query engines on the FPGA, a benefit accentuated as the number of
variables and the variable region sets’ size increase.

212 R. Moussalli et al.

(a) (b)

Fig. 6. Event-by-event matching of the pattern query @x.@y.?+.@x.@y {@x :
A,B,C,D} {@y : A,B,C,D}. The resulting match in (a) is a false positive; whereas
enough state is saved in (b) at the aggregator node (?+) to eliminate that false positive.

4.5 Evaluating Patterns with a Single Variable and with
Wildstar/Wildplus Predicates

The remainder of this discussion is applicable to both wildplus and wildstar
query nodes. As detailed earlier (Fig. 3(a)), wildplus nodes act as aggregator
nodes. When no variables are used, the only propagating information across
nodes is a single bit value. In that case, a simple OR gate would suffice for
aggregation (state saving).

When a wildplus predicate is located in between two instances of a variable,
all values of the region-ID buffer should be stored, and forwarded to the next
stages (nodes). Keeping that history is required in order to not result in false
negatives. However, due to performance and resource utilization constraints,
storing all that history is not desired. Using variable region set constraints, this
limitation can be overcome by simply OR-ing the propagating buffer similarly
to the match state buffer. This approach would store the information needed,
and no history is lost. No false positives are generated, thus pattern evaluation
is achieved at streaming mode.

4.6 Evaluating Patterns with Multiple Variables and with
Wildstar/Wildplus Predicates

When more than one variable predicate is used in a pattern query, and with
wildplus nodes in between instances of both these variables, the previous mech-
anism can lead to false positve matches, as even more state should be saved
than discussed earlier. Figure 6(a) shows an event-by-event example of a pat-
tern matching resulting in a false positive match. Each cell in the grid holds the
values stored inside each respective variable buffer. Buffers for the variable @x
are used at each pattern node, whereas buffers for the variable @y span from
the second pattern node (i.e. the first @y node), up to the last pattern node.

FPGA Acceleration of Trajectory Querying 213

As described earlier, the wildplus node is the only node in the pattern query
allowing horizontal propagation of matched states. This is due to the nature of
wildplus nodes which hold a matched state. As the variable buffers are OR-ed
at that wildplus node, they will store the information of the union of all variable
buffers encountered at that node. Looking at the ?+ row in Figure 6(a), notice
that the variable buffers for both @x and @y hold an increasing number of
regions. That level of stored information is not sufficient, as it will be shortly
shown to result in a false positive.

Upon theD event, both variable buffers did not propagate to the second instance
of @x. That is because the @x variable buffer does not reflect that the previous
instance of @x held the value ofD (yet). However, on the next eventA, the variable
buffers propagated, and the @x variable buffer was masked with the event region.
Hence,B was removed from the @x variable buffer. The@y variable buffer remains
unmodified, since the @x node is not allowed to modify it.

Finally, at the last event C, focusing at the second instance of @y (i.e. the
last pattern predicate), a match is shown for @x=A and @y=C. While @x and
@y did hold these values at some point, looking closer at the input stream, A
and C were initially separated by B, though the query requires that the distance
between @x and @y is 1 (back-to-back regions visited).

In order to not result in false positives, the level of history kept at the aggre-
gator node has to be increased. Instead of only storing the union of all variable
buffers, the information at the wildplus node should be the set of all variable
buffers encountered. To reduce storage, that solution can be simplified such
that, for each @x variable value, a list of all corresponding @y values are stored
(as shown in Fig. 6(b)). Focusing on the aggregator row, every value of @x is
associated with a list of @y values. These can be deduced from the propagat-
ing variable buffers into the wildplus node. Note that @x=A is associated with
@y=B. Therefore, the tuple @x=A, @y=C cannot result in a match, as is the
case in Fig. 6(a).

Nonetheless, implementing this solution in hardware is extremely costly in
terms of resource utilization (and impact on the critical path/performance),
especially with larger region sets and many variables per pattern. Furthermore,
this solution does not scale with many variables, and does not hold with more
aggregator nodes.

Another approach to eliminate false positives in such cases is a brute-force
implementation of each query using all variable region-set combinations. For
instance, the query S = @x.@y.?+.@x.@y {@x : A,B}{@y : C,D} can be
implemented as four simpler queries, namely:

1. S1 = A.C.?+.A.C
2. S2 = A.D.?+.A.D
3. S3 = B.C.?+.B.C
4. S4 = B.D.?+.B.D

This approach is encouraging when the number of variables and the size of the re-
gion sets is relatively small. Otherwise, the implied resource utilization increases

214 R. Moussalli et al.

too much, even though each query is built using simple matching engines (no
propagating variable buffers). Nonetheless, the common prefix (among similar
pattern queries) optimization helps with the scalability.

In order to better evaluate the benefits of each of the above approach, a
study on the resulting false positives versus resource utilization is performed in
Section 5. In summary, when pattern queries make use of two or more variables,
and with an aggregator node in between the occurrences of these variables, the
proposed approaches are:

1. Making use of propagating variable buffers: this approach results in
the least false positives;

2. Implementing region set constraints as an OR: the number of false
positives here is a superset of the above case, and resource utilization is
minimal. False positives are a superset, since the condition (OR check) to
allow a match to propagate through a variable node is a superset of the first
approach’s variable node conditions (propagating buffers);

3. A brute-force mapping approach: this approach map each query as the
combination of all variable region-sets. It has no false positives, but does not
scale well with more variables and larger region sets.

5 Experimental Evaluation

We now present an extensive experimental evaluation of the proposed hardware
architecture. We first describe the datasets used in the experiments, followed by
the experimental setup. We then detail a thorough design space exploration on
the proposed architecture, alongside a study on matching accuracy. Finally, we
show the performance evaluation between the proposed architecture solutions
with the CPU-based software approach.

5.1 Dataset Description

In our experimental evaluation, we use four real trajectory datasets. The first
two datasets are the Trucks and Buses from [1]. Both datasets represent moving
objects in the metropolitan area of Athens, Greece. The Trucks dataset has 276
trajectories of 50 trucks where the longest trajectory timestamp is 13,540 time
units. The Buses dataset has 145 trajectories of school buses with maximum
timestamp 992. The third dataset, CabsSF, consists of GPS coordinates of 483
taxi cabs operating in the San Francisco area [22] collected over a period of almost
a month. The fourth dataset, GeoLife, contains GPS trajectory data generated
from people that participated in the GeoLife project [34] during a period of over
three years. This dataset has 17,621 trajectories with a total distance of about
1.2 million kilometers and duration of more than 48,000 hours.

5.2 Experiments Setup

For simplicity of the experimental evaluation, we partition the spatial domain in
uniform grid sizes. These grid cells become the alphabet for our pattern queries.

FPGA Acceleration of Trajectory Querying 215

In order to generate relevant pattern queries for each dataset, we randomly
sample and fragment the original trajectories using a custom trajectory query
generator. The length and location of each fragment are randomly chosen. These
fragments are then concatenated to create a pattern query. We generate up to
2,048 pattern queries with different number of predicates, variables, and wild-
cards. The location of each variable and wildcard inside the query are randomly
chosen.

Our FPGA platform consists of a Pico M-501 board connected to an Intel
Xeon processor via 8 lanes of PCI-e Gen. 2 [21]. We make use of one Xilinx
Virtex 6 FPGA LX240T, a low to mid-size FPGA relative to modern standards.
The PCIe hardware interface and software drivers are provided as part of the
Pico framework. The hardware engines communicate with the input and output
PCIe interfaces through one stream each way, with dual-clock BRAM FIFOs in
between our logic and the interfaces. Hence, the clock of the filtering engine is
independent of the global clock. The PCIe interfaces incur an overhead of ≈8%
of available FPGA resources.

The RAM on the FPGA board is not residing in the same virtual address
space of the CPU RAM. Data is streamed from the CPU RAM to the FPGA.
Since the proposed solution does not require memory offloading, RAM on the
FPGA board is not used. Xilinx ISE 14 is used for synthesis and place-and-route.
Default settings are set.

5.3 Design Space Exploration

Here we discuss the resource utilization and achievable performance (through-
put) of the hardware engines. Figure 7(a) shows the resource utilization, and
Fig. 7(b) shows the respective frequencies of the hardware engines, such that
the number of queries (varying from 32, 64, 128, ... up to 2,048 queries), the
query length (4 and 8 predicates), and number of variables in a pattern query
(0 and 1 variable, in this last case a variable with a region set of 5 regions is
assumed).

As the query compiler applies the common prefix optimization, and further
resource sharing techniques are exercised by the synthesis/place-and-route tools,
resource utilization does not double as the number of queries is doubled. Rather,
a penalty of approximately 70% occurs.

Similarly, as the query length is doubled, an average increase of 80% in re-
sources is found. However, adding one variable to each query results in, on aver-
age, doubling resource utilization. Note that the propagating buffer approach is
employed for variable matching, and that these buffers propagate from the first
occurrence of the variable to the last.

Overall, up to several thousands of query matching engines can fit on the
target Xilinx V6LX240T FPGA, a mid- to low-size FPGA. While these numbers
address the scalability of the proposed matching engines, Fig. 7(b) details the
respective achievable performance in terms of:

216 R. Moussalli et al.

(a) (b)

Fig. 7. (a) Resource utilization and (b) respective frequencies/throughput of the hard-
ware engines, such that the number of queries is doubled, the query length is doubled,
and variable predicate is present or not in the pattern query

1. Operational frequency (MHz): measured as a function of the critical
path, i.e., the longest wire connection of the FPGA circuit. This number is
obtained post the place-and-route process of the FPGA tools;

2. Throughput (GB/s): as the query matching engines process one 〈region-
ID, timestamp〉 pair per hardware cycle, the FPGA throughput can be de-
duced from the circuit’s operational frequency, given that the size of each
input pair is 8 Bytes (2 integers). Nonetheless, this computed throughput is
respective to the FPGA circuitry, and might not reflect the end-to-end (CPU-
FPGA and back) performance, which is platform dependent. The end-to-end
measurements are discussed in the sequence.

As the number of queries increases, frequency/throughput is initially around
the 250MHz/2GBs mark. Fluctuations are due to the heuristic-based nature
of the FPGA tools, though generally a trend is deduced. As the number of
queries becomes too large, frequency drops considerably for queries with vari-
ables. The drop is not as steep for queries with no variables; the reason being
that queries with variables can be thought of as longer queries (due to the prop-
agating buffers). This drop in frequency occurs because of the large fan-out from
the region-ID decoder to the many sinks, being the query nodes and propagating
buffers.

Replicating the region-ID decoder (and event detector) helps reducing fan-
out, and will potentially eliminate it. Each region-ID decoder is then connected
to a set of queries. We refer to a region-ID decoder and its connected queries
as a cluster. Note that each query belongs to exactly one cluster. The query
compiler is developed to take as input parameter the cluster size, as a function
of query nodes. Thorough experimentation shows that clusters need not hold
less than 1,024 or even 512 query nodes (data omitted due to lack of space).
Larger clusters result in performance deterioration; smaller clusters do not offer

FPGA Acceleration of Trajectory Querying 217

Fig. 8. Scalability of the each of the following three implementations of 100 queries of
length 6 holding variables: variable as OR, propagating buffer, and all combina-
tions

any benefits in performance, rather present an increase in resource utilization
(due to the replication of the region-ID decoder and event detector per cluster).

5.4 Query Engine Implementations and False Positives

As described in previous sections, a query holding variables can be evaluated in
one of three ways, namely:

1. Variable as OR: implementing the region set constraints as ORs (resulting
in most false positives);

2. Propagating buffer: making use of propagating buffers (false positives
arise only when using multiple variables alongside wildstar/wildplus nodes);

3. All combinations: brute-force mapping of each query as the combination
of all variable region sets (no false positives).

Figure 8 illustrates the resource utilization of 100 queries of length 6 holding vari-
oftheaforementionedthreeapproaches.Thevaried
factors are the number of variables in each pattern query, and the respective
region set size.

When implementing a variable as OR, each variable node is replaced with a
simpler OR node. Thus, as expected (see Fig. 8), increasing the number of vari-
ables has almost no effect on resource utilization. The same applies to increasing
the region set size. On the other hand, the propagating buffer technique starts off
as utilizing slightly less than double the resources of the variable as the OR ap-
proach. Furthermore, doubling the region set size results in a 50% area penalty.
Doubling the number of variables per pattern query exhibits similar behavior.

Finally, when transforming a query into a set of queries based on all combina-
tions of the region sets, resource utilization starts off as more than double that
of the propagating buffer technique. Doubling the number of variables naturally

218 R. Moussalli et al.

Fig. 9. Matching accuracy (100-false positives %) for each implementation of 100 long
queries, over three datasets, namely Trucks, Buses and CabsSF

has a steeper effect than doubling the region set size on resource utilization. Note
that the common prefix optimization helps with the scalability of this approach.
Nonetheless, when using two variables with region set size of 15, the resulting
circuitry did not fit on the FPGA. Practically, it is best to make use of this
approach for critical pattern queries where false positives are not tolerated.

We now evaluate the number of false positive matches for each of the three
query engine implementations previously discussed. In this experiment, as shown
in Fig. 9, the matching accuracy (100-false positives %) is recorded for each
implementation of 100 long queries, over three datasets, namely Trucks, Buses
and CabsSF (the results for the GeoLife dataset follow the same pattern).
Queries are generated using our query generator tool, where each query con-
tains two variables, as well as one or more aggregator (?∗/?+) nodes. Note that
the Propagating buffers approach does not result in any false positives, unless
multiple variables are used alongside aggregators.

As expected by its design, the All combinations approach results in no false
positives. However, while the Variable as OR technique results in the most false
positives (as expected), the matching accuracy varies from high (93.2%), to
somewhat low (48.8%). On the other hand, matching accuracy is close to perfect
(> 99.8%) for the Propagating buffers implementation, even as false positives
increase as a result of the Variable as OR implementation. No false positives are
recorded on the Trucks dataset when making use of the propagating buffers.

While the mileage of the Variable as OR implementation may vary, its scala-
bility is key. Even when false positives are not tolerable, query matching engines
can employ this technique, where the FPGA would be used as a pre-processing
step with the goal of reducing the query set. The same applies for the propa-
gating buffers implementation technique, where the query set would be reduced
the most. Since the performance of CPU-based software approaches scales lin-
early with the number of pattern queries, reducing the query set has desirable
advantages, especially that the time required for this pre-processing FPGA step
is negligible.

FPGA Acceleration of Trajectory Querying 219

Fig. 10. End-to-end (CPU-RAM to FPGA and back) throughput of queries of length
4 with 1 variable. The throughput of the FPGA filtering core is drawn in red line.

(a) Trucks (b) Geolife

Fig. 11. FlexTrack (software) IJP throughput (MB/s) resulting from matching for
2,048 queries with varying properties on the (a) Trucks and (b) GeoLife datasets. In-
creasing query complexity (adding variables/wildcards) greatly decreases throughput.

5.5 Performance Evaluation

In the last set of experiments, we compare the performance evaluation between
our proposed architecture solutions and the CPU-based software approach. Fig-
ure 10 shows the end-to-end (CPU-RAM to FPGA and back) throughput of
length 4 queries with 1 variable. Throughput is lower from the FPGA filtering
core for smaller trajectory files since steady state is not reached, and commu-
nication setup penalty is not hidden. For larger files, throughput is closer to
the FPGA core’s, given the physical limitations. Note that the throughput of
the FPGA setup is independent of the trajectory file contents, as well as query
structure (given a certain operational circuit frequency).

Figure 11 depicts the FlexTrack (software) IJP throughput (MB/s) result-
ing from matching for 2,048 queries with varying properties on the Fig. 11(a)
Trucks and Fig. 11(b) GeoLife datasets. Pre-processing (index building) time
is excluded. When considering simple queries, throughput is initially higher for

220 R. Moussalli et al.

the larger dataset (GeoLife), where processing steady-state is reached. Increas-
ing query complexity (adding variables/wildcards) greatly decreases throughput.
Note that where the FPGA end-to-end execution time is in the milliseconds
range, software operates in the tens of seconds (up to several minutes) range,
and is greatly affected by the query structure and dataset contents; hence the
considerable speedup (over three orders of magnitude) and benefits of the FPGA
setup. It should be noted that the proposed FPGA solution does not result in
false positive matches for any of the queries considered in Fig. 11.

6 Conclusions

The wide and increasing availability of collected data in the form of trajectory
has lead to research advances in behavioral aspects of the monitored subjects.
Using trajectory data harvested by devices, such as GPS, RFID, and mobile de-
vices, complex pattern queries can be posed to select trajectories based on spe-
cific events of interest. However, as the complexity of the posed pattern queries
increases, so do computational requirements, which are not easily met using
traditional CPU-based software platforms.

In this paper, we present the first proof-of-concept study on FPGA-based
architectures for matching variable-enhanced complex patterns, with a focus
on stream-mode (single pass) filtering. We describe a tool for automatically
generating hardware constructs using a set of pattern queries, abstracting away
ramifications of hardware code development and deployment. A thorough design
space exploration of the hardware architectures shows that the proposed solution
offers good scalability, fitting thousands of pattern query matching engines on
a Xilinx V6LX240T FPGA, a mid- to low-size FPGA. Increasing the number
of variables and wildcards is shown to have linear effect on the resulting circuit
size, and negligible on performance. This behavior does not happen in CPU-
based solutions, since performance is greatly affected from such pattern query
characteristics.

When handling pattern queries with (a) no variables, (b) one variable, or (c)
no wildcards with two or more variables, the proposed hardware architecture is
able to process the trajectory data in a single pass. When two or more variables
occur in a pattern query alongside wildcards, the proposed solution may have
the drawback of resulting in false positive matches (though these are minimal
in practice). Nonetheless, a no-false-positive solution is proposed, though being
limited in scalability.

As part of our future research, we are working on enhancing the proposed
framework to allow online pattern query updates. In this way, the deployed
generic pattern query engines will support any pattern query structure and
node values. A stream of bits forwarded to the FPGA will program the con-
nections between deployed pattern query nodes. It should be noticed that this
approach is different to the Dynamic Partial Reconfiguration (DPR), where the
bit configuration of the FPGA itself is updated.

FPGA Acceleration of Trajectory Querying 221

Acknowledgments. This work was partially supported by NSF grants IIS-
1144158 and IIS-1161997.

References

1. Chorochronos (2013), http://www.chorochronos.org
2. Aggarwal, C., Agrawal, D.: On nearest neighbor indexing of nonlinear trajectories.

In: Proc. ACM Symp. on Principles of Database Systems (PODS), pp. 252–259
(2003)

3. Cazalas, J., Guha, R.: GEDS: GPU Execution of Continuous Queries on Spatio-
Temporal Data Streams. In: IEEE/IFIP Int’l Conf. on Embedded and Ubiquitous
Computing (EUC), pp. 112–119 (2010)

4. du Mouza, C., Rigaux, P., Scholl, M.: Efficient evaluation of parameterized pattern
queries. In: Proc. ACM Int’l Conf. on Information and Knowledge Management
(CIKM), pp. 728–735 (2005)

5. Erwig, M., Schneider, M.: Spatio-Temporal Predicates. IEEE Trans. Knowl. Data
Eng. 14(4), 881–901 (2002)

6. Fender, J., Rose, J.: A High-Speed Ray Tracing Engine Built on a Field-
Programmable System. In: Proc. IEEE Int’l Conf. on Field-Programmable Tech-
nology (FPT), pp. 188–195 (2003)

7. Hadjieleftheriou, M., Kollios, G., Bakalov, P., Tsotras, V.J.: Complex Spatio-
temporal Pattern Queries. In: Proc. Intl. Conf. on Very Large Data Bases (VLDB),
pp. 877–888 (2005)

8. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing Spa-
tiotemporal Archives. VLDB J. 15(2), 143–164 (2006)

9. Heckbert, P.S.: Graphics Gems IV, vol. 4. Morgan Kaufmann (1994)
10. Kim, S.-S., Nam, S.-W., Lee, I.-H.: Fast Ray-Triangle Intersection Computation

Using Reconfigurable Hardware. In: Computer Vision/Computer Graphics Collab-
oration Techniques, pp. 70–81 (2007)

11. Knuth, D., Morris, J., Pratt, V.: Fast Pattern Matching in Strings. SIAM J. Com-
put. 6(2), 323–350 (1977)

12. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to Accel-
erate Multiple Regular Expressions Matching for Deep Packet Inspection. In: ACM
SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 339–350 (2006)

13. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for Accelerating
SNORT IDS. In: ACM/IEEE Symp. on Architecture for Networking and Commu-
nications Systems (ANCS), pp. 127–136 (2007)

14. Mokhtar, H., Su, J., Ibarra, O.: On Moving Object Queries. In: Proc. ACM Symp.
on Principles of Database Systems (PODS), pp. 188–198 (2002)

15. Moussalli, R., Halstead, R., Salloum, M., Najjar, W., Tsotras, V.J.: Efficient XML
Path Filtering Using GPUs. In: Workshop on Accelerating Data Management Sys-
tems, ADMS (2011)

16. Moussalli, R., Najjar, W., Luo, X., Khan, A.: A High Throughput No-Stall Golomb-
Rice Hardware Decoder. In: IEEE Annual Int’l Symp. on Field-Programmable
Custom Computing Machines, FCCM (2013)

17. Moussalli, R., Salloum, M., Najjar, W., Tsotras, V.: Accelerating XML Query
Matching through Custom Stack Generation on FPGAs. In: Patt, Y.N., Foglia,
P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS,
vol. 5952, pp. 141–155. Springer, Heidelberg (2010)

http://www.chorochronos.org

222 R. Moussalli et al.

18. Moussalli, R., Salloum, M., Najjar, W., Tsotras, V.J.: Massively Parallel XML
Twig Filtering Using Dynamic Programming on FPGAs. In: Proc. IEEE Int’l Conf.
on Data Engineering (ICDE) (2011)

19. Mouza, C., Rigaux, P.: Mobility Patterns. Geoinformatica 9(4), 297–319 (2005)
20. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approaches in Query Processing

for Moving Object Trajectories. In: Proc. Intl. Conf. on Very Large Data Bases
(VLDB), pp. 395–406 (2000)

21. Pico Computing M-Series Modules (2012),
http://picocomputing.com/m-series/m-501

22. Piorkowski, M., Sarafijanovoc-Djukic, N., Grossglauser, M.: A Parsimonious Model
of Mobile Partitioned Networks with Clustering. In: Int’l Communication Systems
and Networks and Workshops (2009)

23. Sadoghi, M., Labrecque, M., Singh, H., Shum, W., Jacobsen, H.-A.: Efficient
Event Processing Through Reconfigurable Hardware for Algorithmic Trading.
Proc. VLDB Endow. 3(1-2), 1525–1528 (2010)

24. Attia Sakr, M., Güting, R.H.: Spatiotemporal Pattern Queries in Secondo. In:
Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009.
LNCS, vol. 5644, pp. 422–426. Springer, Heidelberg (2009)

25. Schmittler, J., Woop, S., Wagner, D., Paul, W.J., Slusallek, P.: Realtime Ray
Tracing of Dynamic Scenes on an FPGA Chip. In: Proc. ACM Conf. on Graphics
Hardware (HWWS), pp. 95–106 (2004)

26. Sidhu, R., Prasanna, V.K.: Fast Regular Expression Matching Using FPGAs. In:
Proc. the Annual IEEE Symp. on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 227–238 (2001)

27. Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporal Access Method for Times-
tamp and Interval Queries. In: Proc. Intl. Conf. on Very Large Data Bases (VLDB),
pp. 431–440 (2001)

28. Tao, Y., Papadias, D., Shen, Q.: Continuous Nearest Neighbor Search. In: Proc.
Intl. Conf. on Very Large Data Bases (VLDB), pp. 287–298 (2002)

29. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal
Access Method for Predictive Queries. In: Proc. Intl. Conf. on Very Large Data
Bases (VLDB), pp. 790–801 (2003)

30. Teubner, J., Müller, R., Alonso, G.: FPGA Acceleration for the Frequent Item
Problem. In: Proc. IEEE Int’l Conf. on Data Engineering (ICDE), pp. 669–680
(2010)

31. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Querying Trajectories Using Flexi-
ble Patterns. In: Proc. Int. Conf. on Extending Database Technology (EDBT),
pp. 406–417 (2010)

32. Vieira, M.R., Bakalov, P., Tsotras, V.J.: FlexTrack: a System for Querying Flexible
Patterns in Trajectory Databases. In: Proc. Int’l Symp. on Advances in Spatial and
Temporal Databases (SSTD), pp. 475–480 (2011)

33. Woods, L., Teubner, J., Alonso, G.: Complex Event Detection at Wire Speed with
FPGAs. Proc. VLDB Endow. 3(1-2), 660–669 (2010)

34. Zheng, Y., Xie, X., Ma, W.-Y.: GeoLife: A Collaborative Social Networking Service
AmongUser, Location andTrajectory. IEEEData Engineering Bulletin 33(2), 32–40
(2010)

http://picocomputing.com/m-series/m-501

Best Upgrade Plans for Large Road Networks

Yimin Lin and Kyriakos Mouratidis

School of Information Systems
Singapore Management University

80 Stamford Road, Singapore 178902
{yimin.lin.2007,kyriakos}@smu.edu.sg

Abstract. In this paper, we consider a new problem in the context of road net-
work databases, named Resource Constrained Best Upgrade Plan computation
(BUP, for short). Consider a transportation network (weighted graph) G where a
subset of the edges are upgradable, i.e., for each such edge there is a cost, which
if spent, the weight of the edge can be reduced to a specific new value. Given
a source and a destination in G, and a budget (resource constraint) B, the BUP
problem is to identify which upgradable edges should be upgraded so that the
shortest path distance between source and destination (in the updated network) is
minimized, without exceeding the available budget for the upgrade. In addition
to transportation networks, the BUP query arises in other domains too, such as
telecommunications. We propose a framework for BUP processing and evaluate
it with experiments on large, real road networks.

1 Introduction

Graph processing finds application in a multitude of domains. Problems in transporta-
tions, telecommunications, bioinformatics and social networks are often modeled by
graphs. A large body of research considers queries related to reachability, shortest path
computation, path matching, etc. One of the less studied topics, which however is of
large practical significance, is the distribution of available resources in a graph in or-
der to achieve certain objectives. Here we consider road networks in particular, and the
objective is to minimize the traveling time (shortest path distance) from a source to a
destination by amending the weights of selected edges.

As an example, consider the transportation authority of a city, where a new hospital
(or an important facility of another type) is opened, and the authority wishes to upgrade
the road network to ease access to this facility from another key location (e.g., from
the airport). While several road segments (network edges) may be amenable to physical
upgrade, this comes at a monetary cost. The Resource Constrained Best Upgrade Plan
problem (BUP) is to select some among the upgradable edges so that the traveling time
between source and destination is minimized and at the same time the summed upgrade
cost does not exceed a specific budget (resource constraint).

Another, more time-critical application example is an intelligent transportation sys-
tem that monitors the traffic in the road network of a city, and schedules accordingly the
traffic lights in road junctions in real-time. Assume that a major event is taking place in
the city and heavy traffic is expected from a specific source (e.g., a sports stadium) to

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 223–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 Y. Lin and K. Mouratidis

a specific destination (e.g., the marina). With appropriate traffic light reconfiguration,
the driving time across some edges in the network can be reduced, at the cost of longer
waits for walkers at affected pedestrian crosses. Assuming that along with each upgrad-
able edge there is a cost associated to capture the burden imposed to pedestrians, a BUP
could indicate which road segments to favor in the traffic light schedule so that (i) the
traveling time from the stadium to the marina is minimized and (ii) the summed cost
against pedestrian priority does not exceed a certain value.

Although we focus on transportation networks, BUP finds application in other do-
mains too. Consider for example a communication network, where on-demand dynamic
allocation of bandwidth and QoS parameters (e.g., latency) is possible for some links
between nodes (routers). In the usual case of leased network infrastructure in the Inter-
net Protocol (IP) layer, upgrading a link in terms of capacity or QoS access parameters
would incur a monetary cost. When a large volume of time-sensitive traffic (e.g., VoIP)
is expected between two nodes, BUP would indicate to the network operators which
links to upgrade in order to minimize the network latency between the two nodes, sub-
ject to the available monetary budget.

Figure 1 shows an example of BUP query in a road network. The edges drawn as
dashed lines are upgradable. Each upgradable edge is associated with a triplet of num-
bers (e.g., 〈9|10|16〉), indicating respectively the new weight (if the edge is chosen for
upgrade), the cost for the upgrade, and the original weight of the edge. For normal,
non-upgradable edges, the number associated with them indicates their (unchangeable)
weight; weights are only illustrated for edges that affect our example (all the rest are
assumed to have a weight of 15).

The input of the query is a source node s and a destination node t in the network,
plus a resource constraint B. Let U be the set of upgradable edges. The objective in

s

t

a1

a2 a3 a4

a5
a6

b1

b2

b3 b4

b5

b6

source/destination

upgradable edge

 edge

node

10 9|10|16

12|5|19
5

6
6

5|9|12

6

8

7
7 9|10|16

15

6

upgraded weight |cost |original weight 9|10|16

5

15

9 7

10
16

16 7

6
15

19

6

8 5

12

5

4

1

5
10

14|22|16

4|10|12

Fig. 1. Example of BUP query

Best Upgrade Plans for Large Road Networks 225

BUP is to select a subset of edges from U which, if upgraded, will lead to the minimum
possible shortest path distance from s to t, while the sum of their upgrade costs does
not exceed B. Assuming a resource constraint B = 20, the output of BUP in our
example includes edge (b4, b5) and leads to a shortest path distance of 58 via path
{s, b1, b2, b3, b4, b5, b6, t}. The resource consumption in this case is 10, i.e., smaller than
B, and thus permissible. Note that if B were larger, an even shorter distance could be
achieved (namely, 53) by upgrading edges (a1, a2), (a2, a3) and (a6, at). This however
would incur a cost of 24 that exceeds our budget B.

There are several bodies of research that are related to BUP, such as methods to
construct from scratch or modify the topology of a network to serve a specific objec-
tive [1–3]. Currently, however, there is no work on BUP, while algorithms for related
problems cannot be adapted to address it.

In this paper, we formalize BUP and propose a suite of algorithms for its efficient
processing. As will become clear in Section 3, the main performance challenge in BUP
is the intractability of the search space and the need for numerous shortest path com-
putations. We develop techniques that limit both these factors with the aim of efficient
processing. To demonstrate the practicality of our framework, we conduct an extensive
empirical evaluation using large, real road networks.

2 Related Work

There are several streams of work related to BUP query. In this section, we give a brief
overview of these streams and indicate their differences from our problem.

2.1 Road Network Databases

There has been considerable research in the area of road network databases, including
methods for network storage and querying (e.g., ranges and nearest neighbors) [4–6],
the processing of queries that involve a notion of dominance based on proximity [7],
continuous versions of proximity queries [8], etc. There have also been several studies
on materialization with the purpose of accelerating shortest distance/path queries [9, 10].
All these techniques focus on data organization and querying mechanisms on a network
that is used as-is, i.e., they do not consider the selective amendment of edge weights.
The closest related piece in this area is [11], which considers shortest path computation
over time-dependent networks, i.e., where the weight of each edge is given by a function
of time. Again, there is no option to select edges for upgrade nor any control over edge
weights.

2.2 Network Topology Modification

Another related body of work includes methods to modify the network topology in
order to meet specific optimization objectives.

Algorithms on network topology optimization and network design compute/derive
a topology for nodes and edges in a network (e.g., number of nodes, placement of
nodes and edges, etc) to meet certain goals. Literature on this topic falls under wireless

226 Y. Lin and K. Mouratidis

networks [12, 13], wired backbone networks [14–17] and service overlay networks [18–
21]. These methods design the topology of the network, affecting its very structure. In
BUP, instead, the topology is preserved and the question is which edges to upgrade
within a specific budget (the budget not being a consideration among methods in this
category).

In the network hub allocation problem the purpose is to locate hubs and allocate
demand nodes to hubs in order to route the traffic between origin-destination pairs
[22]. There are different lines of work: p−hub median techniques, p−hub center algo-
rithms, hub covering, and hub allocation methods with fixed costs. These are essentially
location-allocation problems, and far from the BUP setting.

2.3 Resource Allocation and Network Improvement

In this section, we review work which does not seek to modify the network topology,
but is intended to allocate resources or select certain nodes/edges from the network to
meet specific optimization objectives.

The resource allocation problem in networks is to efficiently distribute resources to
users, such as bandwidth and energy, in order to achieve certain goals, like upholding
QoS contracts. Most of the work in this field focuses on pricing and auction mechanisms
[1, 23, 24]. Game theory is the main vehicle to address these problems, whose objectives
differ from BUP.

Probably the closest related topic to BUP is the network improvement problem. The
setting is similar to BUP, with an option to lower the weights of edges, but the objective
is to reduce the diameter of the network, i.e., the maximum distance between any pair of
nodes. In [2], the authors discuss the complexity of the problem with budget constraints.
Budget constraints are also considered in [25], which proposes methods to minimize
the diameter of a tree-structured network. [26] addresses the q−upgrading arc problem,
where q edges are selected for upgrading to minimize the diameter of the graph. In [3]
the problem is to identify the non-dominated paths in a space where each is represented
by its upgrade cost and the overall improvement achieved in traveling time across a
set of source-destination pairs if the path is upgraded. The problem definitions in this
body of work are fundamentally different from BUP, and the proposed algorithms are
inapplicable to it.

In a resource constrained shortest path problem, there are different types of re-
sources required to cross each edge and the goal is to identify the shortest path that
does not exceed the available budget in each resource type [27–30]. Restricted shortest
path is another example where each edge is associated with a cost and a delay. The ob-
jective is to identify the path which incurs the minimum cost while the delay along the
path does not exceed a specific time limit. Both exact and approximate methods have
been proposed [31–33]. In both aforementioned problems, the choice is whether to pass
through a certain edge or not, as opposed to choosing whether to upgrade it.

3 Problem Formalization

We first formalize the problem and identify the key challenges in its processing.

Best Upgrade Plans for Large Road Networks 227

Let G = 〈V,E〉 be a road network (weighted graph), where V is the set of nodes
(vertices) and E is the set of edges (arcs). Every edge e = (vi, vj) in E is associated
with a weight e.w that models the traveling time from vi to vj via e. For simplicity,
we assume an undirected network (but our methods can be easily extended to directed
ones too). A subset U of the network’s edges are upgradable. That is, every e ∈ U is
also associated with an upgrade cost e.c (where e.c > 0), and a new weight value e.w′

(where e.w′ < e.w), indicating that if e.c is spent, the weight of e can drop to e.w′. In
this graph G, the BUP problem is defined as follows.

Given a budget (resource constraint) B, a source node s ∈ V , and a destination node
t ∈ V , the BUP problem is to select a subset R of the edges in U for upgrade so that
(i) the summed upgrade cost in R does not exceed budget B and (ii) the shortest path
distance between s and t in the updated network is minimized. Formally, the output R
of BUP is the result of the following optimization problem:

argmin
R⊆U

SP (s, t, R)

subject to
∑
e∈R

e.c ≤ B

where SP (s, t, R) is the (traveling time along the) new shortest path between s and t
when edges in R are upgraded. If there are multiple subsets R that abide by the resource
constraint and lead to the same smallest traveling time between s and t, BUP reports
the one with the smallest total cost.

We now define some terms and establish conventions. Any subset R ⊆ U is called
a plan. The total cost of R is denoted by C(R), i.e., C(R) =

∑
e∈R e.c. If C(R) is no

greater than B, we say that R is a permissible plan. For brevity, we call length of a path
the total traveling time along it. For ease of presentation, we use SP (s, t, R) to refer
both to the shortest path (between s and t in the updated network) and to its length,
depending on the context. Table 1 summarizes frequently used notation.

To provide an idea about the difficulty of the problem, and to identify directions to
tackle it, we consider a straightforward BUP processing method. A naı̈ve approach is
to consider all possible subsets of U . For each subset R, we check whether it is permis-
sible, and if so, we evaluate it. That is, we compute the shortest path SP (s, t, R) when
the edges in R (and only those) are upgraded. After considering all possible subsets, we
report the permissible plan R that leads to the smallest SP (s, t, R).

The number of all possible subsets of U is 2|U| (technically, the set of all subsets of
U is called power-set). The problem of the naı̈ve approach is that it needs to examine an
excessive number of alternative plans, and for each (permissible) of them, to perform
a shortest path computation. To give an example, if |U | = 20, the number of possible
plans is 1,048,576, which are too many to even enumerate, let alone to evaluate.

In the following, we center our efforts on a twofold objective, i.e., we aim to reduce
(i) the number of evaluated plans and (ii) the cost to evaluate each of them. We refer
to item (i) as the search space of the problem. Item (ii) is bound to the cost of shortest
path search and is directly dependent on the size of the graph (which we aim to re-
duce). Towards this dual goal, we propose graph reduction techniques in Section 4 and
elaborate algorithms in Section 5. Graph reduction techniques assist towards both our

228 Y. Lin and K. Mouratidis

Table 1. Notation

Symbol Meaning
G = 〈V,E〉 Road network with node set V and edge set E

U Set of upgradable edges (U ⊆ E)
|U | The cardinality of U
B Resource constraint (budget)
R Edges chosen for upgrade (R ⊆ U)
e.w Original weight of edge e

e.c, e.w′ Upgrade cost and upgraded weight of e ∈ U
s, t Source and destination nodes

C(R) Sum of upgrade costs (across all edges) in R
SP (s, t,R) Shortest path (length) after upgrades in R

Gc Concise graph, BUP-equivalent to G (Section 4)
Rtemp A permissible, heuristic BUP solution (Section 4)
A(Gc) Augmented version of Gc (Section 5.1)
Uc Set of upgradable edges in Gc (Section 5.2)

length(p,R) Length of path p after upgrade R (Section 5.2)
Rmax Maximum improvement set (Section 5.3)

I(Rmax) Total weight improvement in Rmax (Section 5.3)

design goals, while our algorithms are targeted at search space reduction in particular
(i.e., limiting the number of evaluated plans).

4 Graph-Size Reduction Techniques

In this section, we propose two orthogonal methods to reduce G into a concise graph
Gc, which is BUP-equivalent to G, i.e., the BUP solution R on (the much smaller) Gc

is guaranteed to be the solution of BUP on the original network G. The first method is
graph shrinking by edge pruning. The second is a resource constraint preserver tech-
nique that abstracts the remaining part of G (after pruning) into a concise graph which
is BUP-equivalent to the original G.

4.1 Graph Shrinking via Edge Pruning

Our intuition is that any edge (upgradable or not) that lies too far from s and t cannot
affect BUP processing and, thus, is safe to prune, i.e., to remove from G. We start with
two important lemmas.

Lemma 1. Let R be the BUP result and SP (s, t, R) be the achieved shortest path in
the updated network. R includes only upgradable edges along the path SP (s, t, R).

Proof. The lemma is based on our problem definition, and specifically on the fact that
among permissible plans that lead to the same (minimal) distance between s and t, BUP
reports the lowest-cost one. We prove it by contradiction. Suppose that the BUP result
R includes an upgradable edge e which is not along SP (s, t, R). If we apply upgrade
set R−{e}, the shortest path between s and t will pass through exactly the same edges

Best Upgrade Plans for Large Road Networks 229

as with R, and we will have achieved the same shortest path distance at a cost reduced
by e.c, which contradicts the hypothesis that R is the BUP result.

Lemma 2. Let R be the BUP solution in G. Any subgraph of G that includes all the
edges along SP (s, t, R) is BUP-equivalent to G.

Proof. Consider the subgraph Gsp of G that comprises only the (upgradable and non-
upgradable) edges along path SP (s, t, R). A direct implication of Lemma 1 is that if
we solved BUP on Gsp, we would derive the same result R. In turn, this means that any
subgraph of G that is a supergraph of Gsp is BUP-equivalent to G.

Lemma 2 asserts that we can safely prune any edge, upgradable or not, that does not be-
long to SP (s, t, R) (where R is the BUP solution). We show how edges can be pruned
safely, without knowing R in advance.

Consider the fully upgraded network G, i.e., where all edges in U are upgraded.
SP (vi, vj , U) denotes the distance between a pair of nodes vi, vj in this graph. By
definition, SP (vi, vj , U) is the lower bound of the distance between vi and vj after any
possible upgrade plan R ⊆ U .

Let T be the length of SP (s, t, R), where R is the BUP solution, and assume that
we somehow know T in advance. We will show that certain edges (be them upgradable
or not) lie too far from s and t to belong to R, and are therefore safe to prune.

Lemma 3. It is safe to prune every edge e = (vi, vj) for which:
(i) SP (s, vi, U) + w + SP (vj , t, U) > T and
(ii) SP (s, vj , U) + w + SP (vi, t, U) > T
where w equals e.w′ if e is upgradable, or simply e.w if e is not upgradable.

Proof. The shortest possible path between s and t that passes through edge e is the one
that corresponds to a fully upgraded G. The length of that path is either SP (s, vi, U)+
w + SP (vj , t, U) or SP (s, vj , U) + w + SP (vi, t, U), whichever is smaller. If that
minimum value is greater than T , edge e could not possibly belong to SP (s, t, R)
(where R is the final BUP result) and, therefore, e can be safely pruned.

Value T is not known in advance. However, Lemma 3 can be applied if T is replaced
by any number that is greater than or equal to T . The closer that number to T , the
more effective the lemma. We use SP (s, t, Rtemp) instead of T , where Rtemp is a
permissible (suboptimal) plan that leads to a sufficiently short distance from s to t.

Effective Rtemp Selection: To derive Rtemp quickly and effectively, we first compute
the shortest path SP (s, t, U) in the fully upgraded graph. Next, we form Rtemp us-
ing only the upgradable edges included in SP (s, t, U). If Rtemp exceeds the resource
constraint, we execute a knapsack algorithm [34] to derive the subset of Rtemp that
achieves the minimum sum of weights along path SP (s, t, Rtemp) without violating
B. Note that this is different from a BUP problem, because we essentially fix the path
to SP (s, t, Rtemp) and seek the permissible subset of its upgradable edges that mini-
mizes the path length along the specific path only. The result of the knapsack algorithm
is used as the Rtemp for pruning.

230 Y. Lin and K. Mouratidis

s

t

a1

a2 a3 a4

a5
a6

b1

b2

b3 b4

b5

b6

10 9|10|16

12|5|19
5

6
6

5|9|12

6

8

7
7 9|10|16

15

6

5

15

9 7

10
16

16 7

6
15

19

6

8 5

12

5

4

1

5
10

14|22|16

4|10|12

remaining nodes
and edges after
pruning

Fig. 2. Example of edge pruning

Figure 2 continues the running example of Figure 1. Assuming a weight of 15 units
for every edge whose weight is not explicitly illustrated, and a SP (s, t, Rtemp) distance
of 60, Lemma 3 prunes every edge out of the inner (green-border) closed curve.

Implementation: To implement pruning, we perform two Dijkstra expansions [34]
from s and t on the fully upgraded graph. Each expansion reaches up to distance
SP (s, t, Rtemp) from its start node (s and t, respectively). All edges that are not en-
countered or encountered by only one of the expansions, are pruned. Each of the re-
maining edges is checked against Lemma 3 and pruned (or not) accordingly.

4.2 Resource Constraint Preserver

In this section, we propose the resource constraint preserver technique, which trans-
forms the remaining part of G (after pruning) into a concise graph Gc that is BUP-
equivalent to G, i.e., a much smaller graph whose BUP solution (for the same s, t, B
input) is guaranteed to be identical to the original road network. The concepts of key
nodes and plain paths are central to this technique.

Definition 1. Key node. A node v ∈ V is a key node iff it is s, t, or end-node of an
upgradable edge.

Definition 2. Plain path. A path is plain if it does not include any key nodes (except
for its very first and very last nodes).

We construct the network abstractionGc as follows. First, we compute the shortest plain
path for any pair of key nodes. The shortest plain path between key nodes vi and vj is

Best Upgrade Plans for Large Road Networks 231

the shortest among the plain paths that connect them. Computing this path can be done
using any standard shortest path algorithm, by treating key nodes other than vi and vj
as non-existent (thus preventing the reported path from including any intermediate key
node). The second step to produce Gc is to replace each shortest plain path by a virtual
edge, whose weight is equal to the length of the path. The edge set of Gc comprises
only virtual and upgradable edges; the non-upgradable edges of the original graph are
discarded. The node set of Gc includes only key nodes.

Lemma 4. Gc is BUP-equivalent to the original network G.

Proof. Let R be the BUP solution in G. Consider the sequence of key nodes in SP (s, t,
R) in order of appearance (from s to t). For every pair of consecutive key nodes vi, vj
in this sequence, either vi, vj are the end-nodes of the same upgradable edge, or they
are connected by a plain path. In the latter case, that plain path between vi, vj is also the
shortest (by definition, every sub-path of a shortest path, is the shortest path between the
intermediate nodes it connects). Thus, SP (s, t, R) is a sequence of upgradable edges
and shortest plain paths. Since Gc preserves the upgradable edges and includes all short-
est plain paths between key nodes (in the form of equivalent virtual edges), it contains
all edges comprising SP (s, t, R). Hence, by Lemma 2, Gc is BUP-equivalent to G.

Further Shrinking: If the majority of edges are not upgradable, the preserver method
will reduce the graph size. However, creating a fully connected graph among key nodes
introduces many virtual edges, most of which unnecessary. To cure the problem, we
apply Lemma 3 to each virtual edge before inclusion into Gc and prune it if the lemma
permits.

Implementation: To accelerate the construction of Gc, we incorporate Lemma 3 into
the computation of shortest plain paths. Specifically, for each key node vi we perform
a Dijkstra search (with source at vi). When another key node vj is encountered (i.e.,
popped by the Dijkstra heap), we add a virtual edge between vi and vj to Gc. However,
we do not expand vj (i.e., we do not push into the heap the adjacent nodes of vj) so as to
ensure plain paths. Let M be the smallest of SP (s, vi, U) and SP (vi, t, U) (both these
values are known since the pruning stage). The Dijkstra search can safely terminate if
it has reached up to distance SP (s, t, Rtemp) −M from vi (any virtual edge longer
than that threshold is useless according to Lemma 3), where Rtemp is the heuristic
(suboptimal) BUP solution from Section 4.1.

Figure 3 shows the Gc abstraction derived in our running example by the resource
constraint preserver technique.

5 BUP Processing Algorithms

In this section, we present algorithms to compute the BUP solution onGc, i.e., the graph
resulting after the application of the edge pruning and resource preserver techniques
from Section 4. Gc includes upgradable and virtual edges. For brevity, in the following
we refer to virtual edges simply as edges. We denote by Uc the set of upgradable edges
in Gc (since some edges in U have been pruned, Uc ⊆ U).

232 Y. Lin and K. Mouratidis

21

s

t

38

22

37

28

12

21

17

 virtual edge

Fig. 3. The resulting graph Gc

Even with a smaller set of candidate edges for upgrade, the approach of evaluating
arbitrary subsets of Uc is not only impractical, but not very meaningful either. That is,
Lemma 1 suggests that the BUP solution R includes only upgradable edges along the
shortest path from s to t (in the updated network). If candidate plans (subsets of Uc)
were arbitrarily chosen for evaluation, in the majority of cases, their upgradable edges
would fall at random and irrelevant locations, rather than on the shortest path from s to
t. This observation motivates our processing methodology, which is path-centered.

Our approach is to iteratively compute alternative paths (from s to t) in increasing
order of length, and evaluate them in this order. We distinguish three variants of this
general approach, depending on which version of Gc is used for the incremental path
exploration; it could be the original Gc, the fully upgraded Gc, or another version of Gc

that we call augmented. Regardless of the underlying graph, we use the path ranking
method of [35] to incrementally produce paths from s to t in increasing length order.

5.1 Augmented Graph Algorithm

Our first technique relies on the augmented version of Gc, denoted as A(Gc), to which
it also owes its name, i.e., Augmented Graph algorithm (AG). The augmented graph has
the same node set as Gc, but its edge set is a superset of Gc. Specifically, every edge e
in Gc becomes an edge in A(Gc), retaining its original weight e.w (be it upgradable or
not). Additionally, for every e ∈ Uc, the augmented graph also includes a second edge
e′ between the same end-nodes as e, but with weight equal to e.w′ (i.e., the new weight
if e is upgraded).

Figure 4 gives an example, showing the originalGc on the left and its augmented ver-
sion A(Gc) on the right. For the sake of the example, assume that non-upgradable edges
have a unit weight. All edges of Gc appear in A(Gc) with their original weights. Since
edges e1, e2, e3 are upgradable in Gc, graph A(Gc) additionally includes e′1, e

′
2, e

′
3 with

the respective upgraded weights (shown next to the edge labels).
AG calls the path ranking algorithm of [35] in A(Gc), and iteratively examines paths

in increasing length order. In our example, assume that the budget is B = 20. The
shortest path in A(Gc) is p1 = {s, d1, d2, f1, t} via e′2 and e′3 (both are upgraded links).
The length of p1 is 21. It passes via upgraded edges e′2 and e′3, thus requiring a total

Best Upgrade Plans for Large Road Networks 233

(a) Original Gc (b) Augmented Gc

Fig. 4. Augmented graph example

cost of e2.c+ e3.c = 26. That cost exceeds B and the path is ignored. The path ranking
algorithm is probed again to produce the next best path, that is p2 = {s, c1, c2, f1, t}
via e′1 and e′3. Its length is 22, but its cost e1.c + e3.c = 21 exceeds B. Hence, this
path is ignored too, and the path ranking algorithm is probed to produce the next best
path, which is p3 = {s, d1, d2, f1, t} via e′2 and e3 (upgraded and non-upgraded link,
respectively). Its length is 24. The path passes via one upgraded edge, e′2, which means
that the total path cost is e2.c = 10. That is within our budget, and AG terminates here
with result R = {e2}, achieving SP (s, t, R) = 24.

Observe that every path p output by path ranking in A(Gc) corresponds to a specific
upgrade plan, namely, to the plan that includes all upgraded links e′ that p passes from.
Consider a pair of paths p and p′ in A(Gc) that are identical, except that p passes via
edge e, while p′ passes from that edge’s upgraded counterpart e′. For what path ranking
in A(Gc) is concerned, these are two different paths (since e and e′ are modeled as
different edges) corresponding to different upgrade plans.

Correctness: Path ranking, if probed enough times, will output all possible paths be-
tween s and t in A(Gc). Hence, SP (s, t, R) is guaranteed to be among them (where R
is the BUP result), as long as AG does not terminate prematurely. AG stops probing the
path ranking process when the latter outputs the first path p that abides by resource con-
straint B. Since path ranking outputs paths in increasing length order, p is guaranteed
to be the shortest permissible path, i.e., to coincide with SP (s, t, R).

Note that, in the worst case, path ranking will need to output all possible paths be-
tween s and t in A(Gc). This is still preferable to evaluating all subsets of Uc, because
AG essentially considers only combinations of upgradable edges along acyclic paths
from s to t. For example, in Figure 4(b), path ranking would never output a path that
includes both e′1 and e′2, while a blind evaluation of Uc subsets would consider (and
waste computations for the evaluation of) plan {e′1, e′2}.

5.2 Fully Upgraded Graph Algorithm

In this section, we present the Fully Upgraded Graph algorithm (FG). FG runs path
ranking on the fully upgradedGc, where all edges e ∈ Uc have their upgraded (reduced)

234 Y. Lin and K. Mouratidis

weight e.w′. On this graph, each path p from s to t has the minimum possible length
under any upgrade plan (permissible or not); we denote this length as length(p, Uc)
and use it as a lower bound for the length of p under any plan.

For every path p output by the path ranking algorithm, if the summed cost along its
upgradable edges exceeds B, we perform a process similar to the computation of Rtemp

in Section 4.1. That is, we execute a knapsack algorithm among the upgradable edges
along the specific path, and report their subset that minimizes the length of p under
budget constraint B. Let Rp be the result of the knapsack algorithm, and length(p,Rp)
be the length of p under plan Rp. The knapsack process asserts that Rp is permissible,
and therefore length(p,Rp) is an achievable traveling time from s to t. In a nutshell,
FG treats each path p output by path ranking as an umbrella construct representing all
possible upgrade plans among the upgradable edges in p, and from these plans it keeps
the best permissible plan, Rp.

While the path ranking algorithm iteratively reports new paths, we keep track of
the one, say, p∗ (and the respective Rp∗ set) that achieves the smallest length(p,Rp)
among all paths considered so far.1 Once path ranking reports a path p whose length
(on the fully upgraded graph) is greater than length(p∗, Rp∗), FG terminates with Rp∗

as the BUP result (achieving length SP (s, t, Rp∗) = length(p∗, Rp∗)).
Referring to our example in Figure 4, the fully upgraded Gc would look like Fig-

ure 4(a) with weights 12, 11, and 8 for edges e1, e2, and e3, respectively. Path rank-
ing would first report path p1 = {s, d1, d2, f1, t} with length 21. A knapsack algo-
rithm on its set of upgradable edges (i.e., on set {e2, e3}) with resource constraint
B = 20 reports Rp1 = {e2} and length(p1, Rp1) = 24. The next path output by
path ranking is p2 = {s, c1, c2, f1, t} with length 22. If that length were larger than
length(p1, Rp1) = 24, FG would terminate. This is not the case, so a knapsack process
on the upgradable edges along p2 reports that Rp2 = {e1} with length(p2, Rp2) = 25.
Path ranking is probed again, but reports NULL (i.e., all paths from s to t have been
output) and FG terminates with result R = Rp1 = {e2}.
Correctness: If probed enough times, path ranking in the fully upgraded Gc will re-
port all possible paths from s to t on this graph. The paths are reported in increasing
length(p, Uc) order. Our termination condition guarantees that all paths not yet output
by path ranking have length(p, Uc) greater than length(p∗, Rp∗), and therefore could
not lead to a shorter traveling time between s and t under any plan (permissible or not).

A note here is that every path output by path ranking in the augmented graph A(Gc)
(in Section 5.1) corresponds to an upgrade plan. In FG, instead, each path p output by
path ranking in the fully upgraded Gc leads to the consideration of all possible upgrade
plans along p (this is essentially what the knapsack-modeled derivation of Rp does).

5.3 Original Graph Algorithm

The Original Graph algorithm (OG) executes path ranking in the original Gc, i.e., as-
suming that no edge is upgraded. For every path p output by path ranking, it solves a
knapsack problem to derive the subset Rp of the upgradable edges along p that achieves
the minimum path length length(p,Rp) without violating the resource constraint B.

1 In case of tie between two alternative paths, we keep as p∗ the one with the smallest C(Rp∗).

Best Upgrade Plans for Large Road Networks 235

While new paths are being output by path ranking, OG maintains the path p∗ (and the
respective Rp∗ set) that achieves the smallest length(p,Rp) so far.

Regarding the termination condition of OG, we introduce the maximum improvement
set Rmax. Among all permissible subsets of Uc, Rmax is the one that achieves the
maximum total weight reduction (regardless of where the contained edges are located
or whether they contribute to shorten the traveling time from s to t). We denote the total
weight reduction achieved by Rmax as I(Rmax). The latter serves as an upper bound
for the length reduction in any path under any permissible plan.

In the example of Figure 4(a), to derive Rmax (and I(Rmax)), we solve a knapsack
problem on Uc = {e1, e2, e3}. Their individual weight reductions (i.e., values e.w′ −
e.w) are 7, 5, 3 and their costs (e.c) are 5, 10, 16. The knapsack problem uses limit B =
20 for the total cost. The result is Rmax = {e1, e2} with total reduction I(Rmax) = 12.

Returning to OG execution, let p be the next best path output by path ranking in
the original (un-updated) Gc. Under any permissible upgrade plan, the length of p can
be reduced at maximum by I(Rmax), i.e., under any upgrade plan the new length of
p cannot be lower than length(p, ∅) − I(Rmax). If the latter value is greater than
length(p∗, Rp∗), OG can safely terminate with BUP result R = Rp∗ .

In the original Gc in Figure 4(a), edges e1, e2, and e3 have weights 19, 16, and 11,
respectively. Path ranking would first report path p1 = {s, d1, d2, f1, t} with length 29.
For p1 we derive (via a knapsack execution on its upgradable edges) Rp1 = {e2} and
length(p1, Rp1) = 24. The next path output by path ranking is p2 = {s, c1, c2, f1, t}
with length 32. Before we even solve a knapsack problem for p2, we know that un-
der any permissible plan its length cannot drop below length(p2, ∅) − I(Rmax) =
32 − 12 = 20. If that last value were greater than length(p1, Rp1) = 24, OG would
terminate. This is not the case, so a knapsack process on p2 reports Rp2 = {e1} with
length(p2, Rp2) = 25. Path ranking is probed again, reports NULL (since all paths
from s to t have been output), and OG terminates with BUP result R = Rp1 = {e2}.
Correctness: The correctness of OG relies on similar principles to FG. First, path rank-
ing, if probed enough times, will output all paths from s to t. For each of these paths
p, OG computes the best permissible plan along its edges, i.e., Rp. Therefore, it will
discover the optimal plan R at some point, unless terminated prematurely. Since path
ranking in the original Gc outputs paths p in increasing length(p, ∅) order, the termi-
nation condition of OG guarantees that all paths not yet output, even if improved to the
maximum possible degree (i.e., I(Rmax)), cannot become shorter than p∗.

6 Experimental Evaluation

In this section, we first experimentally evaluate the effectiveness of our graph-size re-
duction techniques (from Section 4). Then proceed to compare the efficiency of our
processing algorithms (from Section 5).

As default network G we use the road network of Germany, which has 28,867 nodes,
30,429 edges, and a diameter (i.e., maximum distance between any pair of nodes) of
14,383. The network is available at: www.maproom.psu.edu/dcw/. We study the impact
of three parameters: (original) path length between source and destination; upgrade
ratio; and resource ratio. The upgrade ratio indicates the ratio of upgradable edges over

236 Y. Lin and K. Mouratidis

their total number (i.e., |U |/|E|). Upgradable edges are selected randomly from E.
Their new weight is set to e.w′ = x · e.w, where x is a random number between 0.5
and 1. The upgrade cost is set to e.c = y · e.w, where y is a random number from 0 to
1. The resource ratio indicates how strict the budget B is. Specifically, for each query
we compute the sum of upgrade costs of all upgradable edges in the shortest path from
s to t in the original network; let this sum be C. We set B to a fraction of this cost. The
resource ratio equals B/C. Table 2 shows the parameter values tested and their default
(in bold). In every experiment, we vary one parameter and set the other two to their
default. Each measurement is the average over 20 queries. We use an Intel Core 2 Duo
CPU 2.40GHz with 2GB RAM and keep the networks in memory.

Table 2. Experiment parameters

Parameter Value Range
Path length 1000, 2000, 4000, 6000

Upgrade ratio 0.04, 0.06, 0.08, 0.1
Resource ratio 0.2, 0.4, 0.6, 0.8

6.1 Evaluation of Graph-Size Reduction Methods

In this section, we leave aside BUP processing, and evaluate our graph-size reduction
methods in three aspects: reduction of number of nodes, reduction of number of edges,
and running time. We report results for pruning (from Section 4.1) when applied alone,
and when applied in tandem with the preserver method (from Section 4.2).

Effect of Path Length: In Figure 5, we vary the path length and plot the number of re-
maining nodes/edges with each approach. We also present their running times; for each
method (“Pruning” and “Pruning+Preserver”) we include its full-fledged version (with
all optimizations described in Section 4) and its version without the implementation
optimization in the last paragraph of Section 4.1.

The original network has 28,867 nodes and 30,429 edges, out of which fewer than
500 nodes and 800 edges remain after pruning, achieving a vast reduction. The latter are

 0

 100

 200

 300

 400

 500

1000 2000 4000 6000

#
 o

f
re

m
a

in
in

g
 n

o
d

e
s

Path length

Pruning
Pruning+Preserver

 0

 200

 400

 600

 800

1000 2000 4000 6000

#
 o

f
re

m
a

in
in

g
 e

d
g

e
s

Path length

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

1000 2000 4000 6000

T
im

e
 [

m
s]

Path length

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 5. Effect of path length

Best Upgrade Plans for Large Road Networks 237

further reduced by the preserver technique to fewer than 60 and 100, respectively, low-
ering down the problem size dramatically, even for the most distant source-destination
pairs we tried. The number of remaining nodes/edges grows with the path length, be-
cause SP (s, t, Rtemp) increases and, hence, Lemma 3 prunes fewer edges (recall that
Rtemp is a permissible, heuristic BUP solution, and SP (s, t, Rtemp) is the length of the
shortest path from s to t under plan Rtemp). In terms of running time, both approaches
take longer for larger path lengths, because the reduced graph is larger. The optimized
versions of the algorithms are very efficient, requiring fewer than 250msec in all cases.

Effect of Upgrade Ratio: In Figure 6, we vary the upgrade ratio from 0.04 to 0.1,
i.e., 4% to 10% of the network edges are upgradable. Lemma 3 is applied on the fully
upgraded G, considering for each edge e its shortest possible distance from s and t,
in order to guarantee correctness. Hence, a higher upgrade ratio implies looser pruning
(equivalently, more remaining nodes and edges).

 0

 100

 200

 300

0.04 0.06 0.08 0.1

#
 o

f
re

m
a

in
in

g
 n

o
d

e
s

Upgrade ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

0.04 0.06 0.08 0.1

#
 o

f
re

m
a

in
in

g
 e

d
g

e
s

Upgrade ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

0.04 0.06 0.08 0.1

T
im

e
 [

m
s]

Upgrade ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 6. Effect of upgrade ratio

Effect of Resource Ratio: In Figure 7, we vary the resource ratio from 0.2 to 0.8
– that is, B ranges from 20% to 80% of C (described in the beginning of the ex-
periment section). A greater ratio implies a larger budget B and, therefore, a smaller
SP (s, t, Rtemp). In turn, this means more extensive pruning by Lemma 3.

 0

 100

 200

 300

0.2 0.4 0.6 0.8

#
 o

f
re

m
a

in
in

g
 n

o
d

e
s

Resource ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

0.2 0.4 0.6 0.8

#
 o

f
re

m
a

in
in

g
 e

d
g

e
s

Resource ratio

Pruning
Pruning+Preserver

 0

 100

 200

 300

 400

 500

0.2 0.4 0.6 0.8

T
im

e
 [

m
s]

Resource ratio

Pruning
Pruning+Preserver

Pruning (no optimization)
Pruning+Preserver (no optimization)

(a) No. of remaining nodes (b) No. of remaining edges (c) Processing time

Fig. 7. Effect of resource ratio

238 Y. Lin and K. Mouratidis

 0

 100

 200

 300

 400

 500
T

im
e
 [
m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500
T

im
e
 [
m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500

T
im

e
 [
m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 100

 200

 300

 400

 500

T
im

e
 [
m

s]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 2

 4

 6

 8

 10

T
im

e
 [

se
c]

 Pruning Pruning+Preserver

Original
Full

Augmented

 0

 2

 4

 6

 8

 10

T
im

e
 [

se
c]

 Pruning Pruning+Preserver

Original
Full

Augmented

(a) San Joaquin County (b) Germany (c) India

Fig. 8. Running time of BUP algorithms on different networks

 1

 10

 100

1000 2000 4000 6000

T
im

e
 [

m
s]

Path length

Original
Full

 0

 10

 20

 30

0.04 0.06 0.08 0.1

T
im

e
 [

m
s]

Upgrade ratio

Original
Full

 0

 10

 20

 30

 40

0.2 0.4 0.6 0.8

T
im

e
 [

m
s]

Resource ratio

Original
Full

(a) Effect of path length (b) Effect of upgrade ratio (c) Effect of resource ratio

Fig. 9. Performance of OG and FG in Germany network

6.2 Evaluation of BUP Processing Algorithms

Given a reduced graph Gc (produced either by “Pruning” or “Pruning+Preserver”), in
this section we evaluate the three BUP algorithms from Section 5. For understandability,
in the plots we label AG as “Augmented”, FG as “Full”, and OG as “Original”.

In Figure 8, in addition to Germany, we use two other real road networks; one smaller
(San Joaquin County, with 18,263 nodes and 23,874 edges, from www.cs.utah.edu/
∼lifeifei/SpatialDataset.htm) and the other larger (India, with 149,566 nodes and
155,483 edges, from www.maproom.psu.edu/dcw/). For each road network, we present
the processing time of all three BUP algorithms, assuming reduction by “Pruning” or
“Pruning+Preserver”, for the default parameter values in Table 2.

We observe that OG consistently outperforms alternatives, with FG being the runner-
up. An interesting fact is that the running time of all algorithms in India is longer.
This is irrelevant to the size of the network. A path length of 4,000 (default) in India
corresponds to paths with much more edges than paths of the same length in the other
two networks2. To see this, after “Pruning” in Germany the remaining nodes/edges are
238 and 331, while for India the corresponding numbers are 711 and 1,087.

Having established the general superiority of OG, in Figure 9 we examine the ef-
fect of path length, upgrade ratio and resource ratio on its running time, plotting also
measurements for the runner-up (FG) for the sake of comparison. The experiments use
our default network (Germany) after reduction by “Pruning+Preserver”. We observe a

2 We did not apply any normalization on edge weights across the three networks in order to
retain their original distance semantics.

Best Upgrade Plans for Large Road Networks 239

direct correlation between the running time of the BUP algorithms and the size of the
reduced graph (investigated in Section 6.1) – for example, performance in Figure 9(a)
follows the trends in Figures 5(a) and 5(b). This verifies that indeed the size of graph
Gc is a major performance determinant and justifies our design effort in Section 4 to
reduce it.

7 Conclusion

In this paper, we study the Resource Constrained Best Upgrade Plan query (BUP). In a
road network where a fraction of the edges are upgradable at some cost, the BUP query
computes the subset of these edges to be upgraded so that the shortest path distance
for a source-destination pair is minimized and the total upgrade cost does not exceed a
user-specified budget. Our methodology centers on two axes: the effective reduction of
the network size and the efficient BUP processing in the resulting graph. Experiments
on real road networks verify the effectiveness of our techniques and the efficiency of
our framework overall. A direction for future work is the consideration of multiple
concurrent constraints (on different resource types). Another is BUP processing when
the optimization goal involves multiple source-destination pairs instead of a just one.

References

1. Jain, R., Walrand, J.: An efficient nash-implementation mechanism for network resource
allocation. Automatica 46(8), 1276–1283 (2010)

2. Zhang, L.: Upgrading arc problem with budget constraint. In: 43rd Annual Southeast Re-
gional Conference, vol. 1, pp. 150–152 (2005)

3. Nepal, K.P., Park, D., Choi, C.H.: Upgrading arc median shortest path problem for an urban
transportation network. Journal of Transportation Engineering 135(10), 783–790 (2009)

4. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB, pp. 802–813 (2003)

5. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for
k-nearest neighbor search in moving object databases. GeoInformatica 7(3), 255–273 (2003)

6. Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road net-
works. In: GIS, pp. 1–8 (2003)

7. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In:
ICDE, pp. 796–805 (2007)

8. Stojanovic, D., Papadopoulos, A.N., Predic, B., Djordjevic-Kajan, S., Nanopoulos, A.: Con-
tinuous range monitoring of mobile objects in road networks. Data Knowl. Eng. 64(1), 77–
100 (2008)

9. Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical graph embedding for effi-
cient query processing in very large traffic networks. In: Ludäscher, B., Mamoulis, N. (eds.)
SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)

10. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured
topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5) (2002)

11. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In:
EDBT, pp. 205–216 (2008)

12. Hills, A.: Mentor: an algorithm for mesh network topological optimization and routing. IEEE
Transactions on Communications 39(11), 98–107 (2001)

240 Y. Lin and K. Mouratidis

13. Amaldi, E., Capone, A., Cesana, M., Malucelli, F.: Optimization models for the radio plan-
ning of wireless mesh networks. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C.,
de McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 287–298. Springer, Hei-
delberg (2007)

14. Boorstyn, R., Frank, H.: Large-scale network topological optimization. IEEE Transactions
on Communications 25(1), 29–47 (1977)

15. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-aware overlay construc-
tion and server selection. In: INFOCOM (2002)

16. Kershenbaum, A., Kermani, P., Grover, G.A.: Mentor: an algorithm for mesh network topo-
logical optimization and routing. IEEE Transactions on Communications 39(4), 503–513
(1991)

17. Minoux, M.: Networks synthesis and optimum network design problems: Models, solution
methods and applications. Networks 19, 313–360 (1989)

18. Li, Z., Mohapatra, P.: On investigating overlay service topologies. Computer Networks 51(1),
54–68 (2007)

19. Capone, A., Elias, J., Martignon, F.: Models and algorithms for the design of service overlay
networks. IEEE Transactions on Network and Service Management 5(3), 143–156 (2008)

20. Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study
of reconfiguration policies. In: INFOCOM (2006)

21. Roy, S., Pucha, H., Zhang, Z., Hu, Y.C., Qiu, L.: Overlay node placement: Analysis, algo-
rithms and impact on applications. In: ICDCS, p. 53 (2007)

22. Alumur, S.A., Kara, B.Y.: Network hub location problems: The state of the art. European
Journal of Operational Research 190(1), 1–21 (2008)

23. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game. Math. Oper.
Res. 29(3), 407–435 (2004)

24. Maillé, P., Tuffin, B.: Multi-bid auctions for bandwidth allocation in communication net-
works. In: INFOCOM (2004)

25. Ben-Moshe, B., Omri, E., Elkin, M.: Optimizing budget allocation in graphs. In: CCCG
(2011)

26. Campbell, A.M., Lowe, T.J., Zhang, L.: Upgrading arcs to minimize the maximum travel
time in a network. Networks 47(2), 72–80 (2006)

27. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Net-
works 10, 293–309 (1980)

28. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path prob-
lem. Networks 19, 379–394 (1989)

29. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson, M. (ed.)
ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)

30. Ribeiro, C.C., Minoux, M.: A heuristic approach to hard constrained shortest path problems.
Discrete Applied Mathematics 10(2), 125–137 (1985)

31. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper.
Res. 17(1), 36–42 (1992)

32. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest
path problem. Operations Research Letters 28(5), 213–219 (2001)

33. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the
weight-constrained shortest path problem. Networks 42, 135–153 (2003)

34. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
The MIT Press and McGraw-Hill Book Company (2001)

35. Martins, E.Q.V., Pascoal, M.M.B.: A new implementation of yen’s ranking loopless paths
algorithm. 4OR 1(2) (2003)

Compact Representation of GPS Trajectories

over Vectorial Road Networks

Ranit Gotsman and Yaron Kanza

Department of Computer Science,
Technion – Israel Institute of Technology
{ranitg,kanza}@cs.technion.ac.il

Abstract. Many devices nowadays record traveling routes, of users, as
sequences of GPS locations. With the growing popularity of smartphones,
millions of such routes are generated each day, and many routes have to
be stored locally on the device or transmitted to a remote database. It
is, thus, essential to encode the sequences, to decrease the volume of the
stored or transmitted data. In this paper we study the problem of coding
routes over a vectorial road network (map), where GPS locations can be
associated with vertices or with road segments. We consider a three-step
process of dilution, map-matching and coding. We present two methods
to code routes. The first method represents the given route as a sequence
of greedy paths. We provide two algorithms to generate a greedy-path
code for a sequence of n vertices on the map. The first algorithm has
O(n) time complexity, and the second one has O(n2) time complexity,
but it is optimal, meaning that it generates the shortest possible greedy-
path code. Decoding a greedy-path code can be done in O(n) time. The
second method codes a route as a sequence of shortest paths. We provide
a simple algorithm to generate a shortest-path code in O(kn2 log n) time,
where k is the length of the produced code, and we prove that this code is
optimal. Decoding a shortest-path code also requires O(kn2 log n) time.
Our experimental evaluation shows that shortest-path codes are more
compact than greedy-path codes, justifying the larger time complexity.

1 Introduction

Many devices, such as smartphones, contain a GPS receiver that allows users to
record their locations, as they travel. Recording sequences of locations generates
trajectories that can be used by various applications. Trajectories can be shared
to recommend travel routes to users [1] or to find significant locations [2]. They
can be used to determine similarity between users [3] or specify user behav-
ior [4, 5]. They can be collected and analyzed to provide statistics about travels
of individuals or of groups of people. Such statistics can be utilized by urban
planners and policy makers in municipal, provincial and federal decision making.

An emerging problem is how to efficiently code these data sets in a world
where millions of these trajectories are generated each day, and all have to be
stored or transmitted for future processing in remote servers. Previous solutions

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 241–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

242 R. Gotsman and Y. Kanza

were based on sampling and dilution [6–9]. In this paper, we consider the rep-
resentation of trajectories over a road network, and we present a comprehensive
approach that uses the topology of the road network to provide a compact rep-
resentation of the traveled route—a representation that is much more compact
than the mere result of the dilution.

We present in this paper a three-step process that starts by applying dilution
of the trajectory using the standard Douglas-Peucker polyline-simplification al-
gorithm [10]. Then, we apply map-matching to provide a route over the road
network. Once a route is generated based on the GPS trajectory, it may be rep-
resented as a path in a planar graph, namely, a sequence of vertices in the graph.
A compact representation of the route is computed using the topology and the
geometry of the network. The proposed approach allows applying the dilution
prior to the map matching, e.g., in cases where the dilution is conducted in a
mobile device that does not hold a map of the area.

Our main contribution is two novel ways to compactly represent a path in a
planar graph, and efficient algorithms to compute these compact representations.
In both methods, we represent the path as a subsequence of vertices such that
this path can be uniquely reconstructed from the vetrtices by computing for
each pair of consecutive vertices a well-defined path and concatenating these
paths. For example, given a path, we seek to decompose it into the smallest
possible sequence of shortest paths. Then, given the subsequence of vertices and
the graph, the route may be recovered by generating a shortest path between
every two consecutive vertices in the code.

In Section 2 we define the problem and provide an overview of the approach.
The dilution phase is described in Section 3. The map-matching step is presented
in Section 4. Computing compact codes for the paths produced by the map
matching is presented in Section 5. Experimental evaluation over real data is
provided in Section 6. In Section 7, we conclude and discuss future work.

2 Framework

A vectorial road network is a representation of a road map as a directed planer
graph G = (V,E) comprising a set V of vertices and a set E of edges, with a
geometry X . The edges of the graph represent road segments and the vertices
represent junctions. Each vertex v of G is associated with its real-world location,
denote by X(v). In this paper we consider recordings of travel routes over a
vectorial road networks.

Devices with an embedded GPS allow recording user locations. Based on
recorded locations, travel routes of users can be represented as sequences of
points (locations). Each sequence has the form (x1, . . . , xn) where for each i < j,
point xi is a location that was visited and recorded prior to point xj . We refer
to such a sequence as a trajectory.

Trajectories are raw sequences of locations. Over a road network, our aim is
to represent each sequence as a path on the graph. A path in G is a sequence of
vertices (v1, . . . , vm) of V such that each two consecutive vertices are connected

Compact Representation of GPS Trajectories over Vectorial Road Networks 243

by an edge. To represent a sequence of points as a sequence of vertices, we
first need to map the points of the sequence to the graph, namely, apply map
matching. This produces the actual travel path on G. Then, we can compute
a compact representation of the path. In this paper, we consider a compact
representation of a path P = v1, . . . , vm to be a subsequence C = (vi1 , . . . , vik)
of P such that there is a known method to restore P from C.

Problem Definition: Given a trajectory as a sequence of points, the goal is
to provide a compact representation, as short as possible, of the path of G that
matches the given trajectory.

Our general approach is to apply the following three steps, for a given sequence
of n location points. (1) Dilute the sequence, to remove unnecessary redundant
points. (2) Apply map matching to associate the remaining points to vertices
(junctions) of the road network. (3) Compute a compact representation of the
sequence of vertices. In the following sections we describe these steps.

3 Trajectory Dilution

The first step of our method is to dilute (or simplify) the trajectory by removing
redundant points. A redundant point is a point that is “almost” on the line con-
necting the points before and after it, as it does not add much new information
about the location of the user. Since our map-matching step is not very sensitive
to differences in the density of the GPS trajectory versus the density of vertices
of the network, dilution does not reduce the accuracy of the matching.

Given a trajectory of points X = (x1, x2, . . . , xn), removal of redundant
points can be done using the Douglas-Peucker (DP) polyline-simplification algo-
rithm [10] which has O(n2) time complexity. The DP algorithm is controlled by
a single parameter—the distance a point is allowed to deviate from a straight
line. The algorithm discards most of the points and marks just those to be kept.
The algorithm proceeds recursively as follows: Initially it starts with the pair
of indices (1, n), representing the sequence of all the points x1, x2, . . . , xn of the
trajectory. It automatically marks the indices 1 and n to be kept. It then finds
the index i of the point xi that is furthest from the line segment between x1 and
xn. If the point is closer than ε to that line segment, then all points with indices
2, . . . , n− 1 may be discarded without the diluted trajectory being further than
ε from the line segment, and the recursion terminates. If the point is further
than ε, then index i is marked to be kept. The algorithm then calls itself twice
recursively, first with the pair (1, i) and then with the pair (i, n). When the
procedure is complete, the generated trajectory consists of all (and only) those
points whose indices have been marked to be kept.

Simplifying a trajectory can typically reduce the number of points signifi-
cantly, say from 1,000 in an extremely dense trajectory to a mere 30 points
while preserving the geometric integrity of the trajectory. A slightly better re-
duction can be achieved by taking into account the heading of the travel and
the distances between adjacent points, as shown in [8]. The DP simplification

244 R. Gotsman and Y. Kanza

Fig. 1. Noisy GPS read-
ings (green) and the associ-
ated polyline (blue). Black
arrows show road match-
ing options for the GPS
points

Fig. 2. Each of the (green)
GPS trajectory points is
“snapped” to the closest
map edge (orange points),
leading to an incorrect
map-match

Fig. 3. The orange points
connected by the red poly-
line are the corresponding
map-matched route com-
puted by our algorithm

algorithm also helps in removing redundant trajectory points which accumulate
while a vehicle stops in a traffic jam or at a traffic light. These points contain
no additional information and just introduce noise because of GPS inaccuracy.

4 Map Matching

The second step after dilution is applying map matching. Map-matching has
been studied for more than a decade, and the algorithms have evolved from
very simple to quite sophisticated. Many papers studied this topic and it is not
the focus of this paper, thus we do not present all the previous work in this
area. Yet, so that the paper will be self contained, we present the map matching
method we used, which is an adaptation of existing methods to handle well
diluted trajectories. For a review of existing algorithms, we refer the reader to
the comprehensive surveys of White, Bernstein, & Kornhauser [11], Quddus,
Ochieng, Zhao, & Noland [12] and Quddus, Ochieng, & Noland [13].

4.1 Map Matching and HMM

Many recent map-matching algorithms are based on a Hidden-Markov Model
(HMM) probabilistic approach [14]. Treating a GPS trajectory of edges T =
(t1, t2, . . . , tn) as a sequence of empirical observations (i.e. measurements), they
attempt to compute the most likely sequence of map edges traversed given that
sequence of observations.

A key principle in the HMM approach is that the algorithm must work simul-
taneously on the two inputs: the map and the GPS trajectory, hence operates in
a state space consisting of states which are pairs of entities, one from the map
and one from the GPS trajectory. Thus solving the HMM involves building a
trellis, which is a replication of the map n times (one per each GPS trajectory
point). Each replica is a layer of the trellis, containing all map edges and rep-
resents a trajectory edge. Thus, in this layered trellis graph, each trellis node

Compact Representation of GPS Trajectories over Vectorial Road Networks 245

represents a pair: an edge from the GPS trajectory and an edge from the map,
and each trellis edge represents a connection between two map edges relevant to
that edge of the trajectory. A trellis node (ti, ej) is connected to a trellis node
(ti+1, ek) if and only if the two map edges ej and ek are relevant (i.e. sufficiently
close) to the GPS trajectory edges ti and ti+1 and connected one to the other.
Note that trellis edges exist only between two adjacent layers of the trellis. Each
trellis node (ti, ej) has an emission probability that estimates the correlation
between the GPS measurement ti and the edge ej based on (Euclidean) distance
between them. The trellis edge connecting node (ti, ej) to node (ti+1, ek) has a
transition probability that estimates the distance between the two map edges
ej and ek. In essence, the original HMM algorithm [14] proceeds monotonically
along the temporal axis described by T , namely, along the horizontal dimension
of the trellis, essentially traversing the map edges while traversing the trajec-
tory, following the shortest weighted path through the trellis. The weight of a
path is derived from the emission and transition probabilities of the vertices and
edges along that path. The fact that there are no edges within layers allows effi-
cient computation of this shortest path using the Viterbi dynamic programming
algorithm [15]. The result is a list of map edges, which is the map-matched route.

The original HMM algorithm was designed primarily for the scenario of dense
(but perhaps noisy) GPS trajectories. By “dense”, we mean that, on the average,
there are many GPS points per map edge. This means that the horizontal di-
mension of the trellis will be much larger than the vertical dimension, and there
will be many edges in the shortest path computed through the trellis which will
“march” along the same map edge. This precludes the opposite scenario—that
of sparse GPS trajectories. In sparse trajectories, the trellis has a very small
horizontal dimension, and many map edges should be traversed for a single tra-
jectory edge. Since there are no edges within a trellis layer, this is not supported
well, and the shortest path through the trellis is meaningless.

The variants of the HMM algorithm of Newson & Krumm [16] for map match-
ing, attempts to modify the algorithm to deal also with the case of sparse GPS
trajectories. For each trajectory edge, all the map edges in its vicinity—those
that are not further away than some radius r are considered. An edge is added
between two adjacent layers of the trellis corresponding to explicit shortest paths
computed between any pair of map edges in adjacent vicinities. This way there
are still no edges within trellis layers, but it is possible to move between layers,
each layer corresponding to a GPS trajectory point, even if these points are quite
far apart. While this modified HMM algorithm is now capable of map-matching
sparse trajectories, the main problem is that it requires the computation of many
shortest paths on the map, related to many of the trajectory edges, in order to
construct the trellis in the first place. This can be time consuming.

4.2 Our Variation of the Map-Matching Algorithm

We now describe our map-matching algorithm, also based on a trellis graph,
which deals correctly and naturally with sparse GPS trajectories. In contrast to

246 R. Gotsman and Y. Kanza

the HMM algorithm of Newson & Krumm [16], it does not require to construct
all the explicit shortest paths between map edges.

The key idea behind our algorithm is to allow the map and the GPS trajectory
to play completely symmetric roles. The algorithm advances along the trajectory
T and map edges in parallel, allowing each to advance at the correct speed,
slowing down if necessary by staying put at a specific trajectory edge or map
edge. This is ultimately formulated as a shortest path problem on the same type
of trellis graph used by other HMM algorithms, whose nodes are pairs of edges—
one from the GPS trajectory and one from the map. An edge exists between two
trellis nodes, (i, j) and (k, l) (i and k are indices of GPS trajectory edges and j
and l are indices of map edges) if and only if edge k is a successor of edge i in
the trajectory and l is a neighboring edge of j on the map. The main difference
between our trellis and the standard HMM trellis is that ours contains edges
within layers. The weight of a trellis edge is a combination of the directionality
of the comprised edges and the Euclidean distance between them. Note that the
trellis graph is very sparse. A solution to the map-matching problem is the path
with the minimal length among the following paths: the shortest paths between
(t1, ei) and (tn, ej), where edge ei is an edge within a radius r of the edge t1 and
edge ej is an edge within radius r of the edge tn (we found that r = 20m gives
good results). If there are no edges within this radius r, then r will be increased,
until there is some minimal number (typically 5) of edges to consider (both for
the starting edges and for the ending edges).

Constructing the Trellis Graph. Given a map M with m edges and a GPS
trajectory of edges T = (t1, t2, . . . , tn), we build a trellis graph G, with O(nm)
nodes. As mentioned before, each node is a pair of edges, one (t) from T , and
one from the edges in the vicinity of t in M . As we will see, G is very sparse
since every node is connected to very few other nodes. Graph G has the same
trellis structure as the graph used by the standard HMM algorithms, namely,
can be viewed as n layers of the edges of the map M . Trellis edges within a
layer correspond to neighboring edges (i.e. two edges where the target vertex
of the first edge coincides with the source vertex of the second edge) within a
single vicinity in the map, and edges between layers correspond to graph edges
connecting between the vicinities of trajectory edges. Thus, movement within
each layer corresponds to movement within the map at a given trajectory edge,
and movement between layers corresponds to movement along the trajectory.
Algorithm 4 describes this construction in detail.

The values dir1 and dir2 are the direction of edge ti relative to edge e and
the direction of edge x relative to edge y, respectively. The parameter d1 is
the minimum among (1) the distance from the source of ti to e and (2) the
distance from the source of e to ti. The parameter d2 is defined similarly—
the minimum between (1) the distance from the source of x to y and (2) the
distance from the source of y to x. The parameters d1, d2, tLen1, tLen2,mLen1

and mLen2 measure the distances between all the edges, as illustrated in Fig. 6.
The dominant weight is the distance between the map edge and the trajectory
edge, since if this distance is large, then there is a smaller chance that the true

Compact Representation of GPS Trajectories over Vectorial Road Networks 247

Trellis-Graph Construction

Input: GPS trajectory T = (t1, t2, . . . , tn),
a table Neighbors of map-edge adjacencies
Output: Trellis graph G

1: for i = 1 to n do
2: J is the group of relevant edges from the map in the vicinity of ti
3: for each edge e ∈ J do
4: for each x ∈ {ti, ti+1} do
5: if x = ti then
6: N ← Neighbors(e)
7: else
8: N ← {e} ∪Neighbors(e)
9: for each edge y ∈ N do
10: add ē = ((ti, e), (x, y)) to G

11: assign a weight of
(d1+d2)∗(tLen1+tLen2+mLen1+mLen2)

dir1∗dir2
to ē

12: return G

Fig. 4. Constructing the trellis graph G

route passed through that edge. Using these weights allows the algorithm to
take into account how far the map edges and the trajectory edges are from each
other. Fig. 5 shows a trellis graph constructed by the algorithm in Fig. 4.

After constructing the trellis graph G, we choose a couple of choices for the
source edge on the map and a couple of choices for the target edge on the map.
This is done by taking all the map edges that fall within a small radius r from
the first and last point of the trajectory.

Computing the Matching. The last step of the algorithm is to find the weighted
shortest path from a pair (t1, e) to a pair (tn, e

′), where e is an optional starting
edges and e′ is an optional ending edge of G. The resulting path P will consist
of pairs (t, e′′), where t ∈ T and e′′ is an edge of the map. The map-matched
route of the GPS trajectory to the map will be the ordered map edges of P
after deleting consecutive duplicates of map edges. For example, in Fig. 5, P
(the bold red path) is ((A, e1), (B, e3), (B, e10), (C, e11), (C, e12)), corresponding
to the map-matched route (e1, e3, e10, e11, e12).

The algorithm fails if no shortest path can be found. This usually means that
either the map is not connected in the region we are working on, or that we did
not extract enough map edges to support such a path during the extraction of
relevant data. In such case, we may run the algorithm again on larger trajectory
edge vicinities.

248 R. Gotsman and Y. Kanza

Fig. 5. Illustration of our map-matching algorithm. (Left) Sparse GPS trajectory.
(Right) The trellis graph constructed by our algorithm from the map and trajectory.
The bold blue path is the shortest path between e1 and e12 through the trellis, corre-
sponding to bold red path in the input graph, which is the resulting map-match of the
GPS trajectory.

5 Path Codes

Once a route is generated based on a GPS trajectory, it may be represented as
a path in a planar graph, namely, a sequence of vertices in the graph, implying
edges between every two consecutive vertices, which translates to a sequence of
vertex IDs. Thus, storing (or transmitting) long paths could be quite costly. In
applications which involve building large databases of user paths, these costs
could be prohibitive.

Thus, we present two novel ways to compactly represent a path in a planar
graph, and efficient algorithms to compute these compact representations. Our
methods represent the path as a subsequence of vertices from which the path can
be uniquely reconstructed as a sequence of well-defined paths between each two
consecutive vertices. In this representation, given the subsequence of vertices and
the graph, the route may be recovered by generating the relevant paths between
each two consecutive vertices of the code.

5.1 Greedy-Path Coding

Our first method of representing a path in a graph is as a sequence of consecutive
greedy paths.

Definition 1 (Greedy Path). Given a planar graph G = (V,E) with geometry
X (i.e., a mapping of vertices to geographic locations), a path P = (i1, i2, . . . , im)
is a greedy path from vertex i1 to vertex im when the sequence of Euclidean dis-
tances ||X(i1)−X(im)||, ||X(i2)−X(im)||, . . . , ||X(im−1)−X(im)|| is monoton-
ically decreasing.

Compact Representation of GPS Trajectories over Vectorial Road Networks 249

Fig. 6. Edge ((ti, e), (x, y)) in
the trellis graph

Fig. 7. Greedy paths

Intuitively, a greedy path between vertex v and vertex u is one where each
vertex w along the path is closer to u than pred(w) (the predecessor of w). This
defines a greedy path in a weak sense, and we add another condition to define a
greedy path in a stronger sense.

Definition 2. Given a planar graph G = (V,E) with geometry X , a path P =
(i1, i2, . . . , im) is a greedy path from vertex i1 to vertex im in G iff the sequence
of Euclidean distances ||X(i1)−X(im)||, ||X(i2)−X(im)||, . . . , ||X(im)−X(im)||
is monotonically decreasing and for all 1 ≤ k < m, the following holds: ik+1 =
argminj∈neighbors(ik)(||X(j)−X(im)||).

The extra condition implies that not only is each vertex w along the path closer
to u than pred(w), but is the closest to u among all neighbors of pred(w). A greedy
path in the strong sense can be viewed as the discrete equivalent of a gradient
descent path from v to u when considering the Euclidean distance function from
u. The motivation for this extra condition is that under mild conditions on the
graph, the greedy path in the strong sense will be unique, as opposed to the
greedy path in the weak sense, which is typically not unique. As we will see
later, uniqueness is important for the path coding application.

Note that a greedy path (in the weak sense, and certainly in the strong sense)
between two given vertices in a planar graph is not always guaranteed to exist,
even if the graph is connected. This can happen, for example, if a greedy walk
from v to u gets stuck at a vertex w from which no neighbors are closer to u than
w. This is the equivalent of getting stuck at a local minimum when performing
gradient descent in the continuous case. For some specific planar graphs, the
situation is better, for example, it is known that a greedy path in the weak sense
exists between any two vertices of a Delaunay triangulation [17]. Such greedy
paths are used extensively for routing in embedded networks, where messages
are greedily forwarded towards their destination. Fig. 7 shows some examples of
greedy paths in the weak and strong senses in a planar graph. In Fig. 7 (Left), the
green path is a greedy path in the weak sense between A and B1, and the orange
path is the greedy path in the strong sense. In Fig. 7 (Right), a greedy path
in the weak sense exists between A and B2 (depicted in green), but no greedy
path in the strong sense exists. This is evident from the fact that a greedy walk
proceeds along the orange path and reaches a dead end (i.e. a local minimum of

250 R. Gotsman and Y. Kanza

the Euclidean distance function from B2). From this point onwards, we will use
just the term greedy path to mean greedy in the strong sense.

It is easy to decide whether a given path is a greedy path by simply checking
the definition. It is not too difficult either to compute a greedy path (if it exists)
between vertex i1 and vertex im using the following greedy algorithm. Start from
vertex i1. When at ik, choose as ik+1 the neighbor of ik which is the closest to
the final destination im and also closer than ik to im (if the latter condition is
not satisfied, then the algorithm is stuck at a local minimum and fails). Then
continue in the same manner from ik+1.

Given a path P = (i1, i2, . . . , im), a greedy-path code of P is a subsequence
Q = (j1, j2, . . . , jk) of P such that i1 = j1, im = jk, and P is identical to the
concatenation of the greedy paths between jt and jt+1 for 1 ≤ t < k, namely,
if jt = ir and jt+1 = is then the sub-path (ir, . . . , is) of P is a greedy path.
An optimal greedy path code of P is a shortest possible Q (as measured by
k). The objective is to produce a code such that greedy paths indeed exist
between the code vertices. These greedy paths will be unique because of the
extra (strengthening) condition.

We now describe two algorithms to compute a greedy path code of a path
in a graph. The first is the simplest possible, running in linear time, but not
necessarily generating an optimal greedy path code. The second algorithm is
less efficient, but optimal. Note that in the worst case, the greedy path code of
a path is the path itself.

Both algorithms take advantage of the fact that greedy paths have the suffix
property, namely, any suffix of a greedy path is also a greedy path, which is a
trivial consequence of the definition of a greedy path. It also means that given a
graph G and a target vertex t, the uniqueness of the greedy paths implies that
all greedy paths from all other vertices of G to t (if they exist) form a greedy
tree rooted at t (after reversing the direction of the edges). This tree does not
span the entire vertex set of G, rather only those vertices from which a greedy
path to t exists.

Given a greedy path code of a path (i1, i2, . . . , im), it may be decoded in time
complexity O(m) by simply computing the greedy paths in the graph between
each two consecutive vertices of the code. The uniqueness of the greedy path
guarantees that the decoding is correct, i.e. indeed recovers the original path.
The linear complexity assumes that all vertices have a bounded valence, thus
computing the correct neighbor of a vertex in a greedy path requires O(1) time.

5.2 Simple Greedy-Path Coding Algorithm

The simple greedy-path coding algorithm, presented in Fig. 8, starts from im,
and proceeds checking backwards if the path is greedy. A codeword (an index of
a vertex in the graph) is generated when the path ceases to be a greedy path,
and the procedure repeats from there.

The suffix property of the greedy paths allows to check greediness in Line 4
by checking just the current s at each step, saving checking the greediness of
the entire subpath between s and t. This algorithm has O(m) time complexity,

Compact Representation of GPS Trajectories over Vectorial Road Networks 251

Simple Greedy-Path Coding

Input: Path P = (i1, i2, . . . , im) in the planar graph G = ((V,E), X),
Output: Greedy path code of the path P

1: C ← (im)
2: t ← m, s ← m− 1
3: while t > 1 do
4: while s > 1 and is = argmin

j∈neighbors(is−1)
(||X(j)−X(it)||) and ||X(is)−

X(it)|| < ||X(is−1)−X(Xit)|| do
5: s ← s− 1
6: insert is at the beginning of C
7: t = s
8: return C

Fig. 8. Algorithm for computing a simple greedy-path coding

Fig. 9. Simple greedy-
path code. The code is
the 5 purple points.

Fig. 10. Graph R and the
shortest path between 1 and 6,
in purple, (see Fig. 12)

Fig. 11. Optimal greedy
path code. The code is the
3 purple points.

where m is the number of vertices in the input path. The linear complexity
assumes that all vertices have a bounded valence, thus checking the greediness
of an edge in the path requires O(1) time. Unfortunately, this algorithm is not
guaranteed to find the shortest possible greedy path code. See Figures 9, 10 and
11 for an example of greedy-path coding in a graph G consisting of a single path.
A path of 6 vertices (which is also the entire graph G) is coded into 5 points
using the simple greedy path coding algorithm, but using the optimal algorithm
to be described next results in a greedy path code of 3 points.

5.3 Optimal Greedy-Path Coding Algorithm

The optimal greedy-path coding algorithm, presented in Fig. 12, computes an
optimal greedy-path code—a code with a minimal number of points. It is some-
what similar to the Imai-Iri algorithm [18] for simplifying a polyline. It starts
by building a graph on the input points where an edge (v, u) represents the ex-
istence of a greedy path between v and u. Then, it computes a shortest path in

252 R. Gotsman and Y. Kanza

Optimal Greedy-Path Coding

Input: Path P = (i1, i2, . . . , im) in the planar graph G = ((V,E), X),
Output: Optimal greedy-path code of the path P

1: create a graph R with m nodes and no edges
2: for t = 2 to m do
3: s ← t
4: while s > 1 and is = argmin

j∈neighbors(is−1)
(||X(j)−X(it)||) and ||X(is)−

X(it)|| < ||X(is−1)−X(Xit)|| do
5: add the edge (s, t) to R
6: s ← s− 1
7: add the edge (s, t) to R
8: Find the shortest path, S, from Node 1 to Node m in R
9: return S

Fig. 12. Algorithm for computing an optimal greedy-path coding

this graph between the first and last vertices. This generates a greedy-path code
with the minimal number of vertices.

The time complexity of this algorithm is O(m2), since the outer loop (on t)
iterates m times, and the inner loop can add up to t edges, resulting in a graph R
containing m vertices and O(m2) edges. Thus the shortest path computation in
Line 8 also requires O(m2) time when using Djikstra’s algorithm with Fibonacci
heaps [19].

The optimal greedy path coder relies on finding a shortest path in the graph R
(Line 8 of Fig. 12). In order to guarantee a unique coding (e.g. in order to deter-
mine if two paths are identical based only on their codes), this shortest path of
R must be unique, i.e. independent of the shortest-path algorithm (e.g. Dijkstra,
Bellman-Ford) used by the encoder. Since a priori there is no reason that the
shortest path should be unique, we achieve this by slightly modifying the content
of the graph R in a way that guarantees uniqueness without compromising the
true shortest path, as described by Mehlhorn [20]. Essentially, the weight of edge
(ir, is) will be wrs = 1+m−2(s− r)2, where m is the number of points in P .

Using these perturbed weights will have the effect of generating shortest paths
with a similar number of edges. Among all such codes, it will prefer those whose
greedy path segments have approximately the same number of edges. This is
because all candidate codes have the same number k of greedy path segments,
representing the same total number of edges m (as in the input path). Denoting
by xi the number of edges in the i-th greedy path segment, minimizing the sum
of the squares

∑k
i=1(xi)

2 prefers uniform distribution of the xi’s, as the following
lemma formalizes.

Lemma 1. The solution to min
∑k

i=1(xi)
2 subject to

∑k
i=1 xi = m (m is a

positive constant) is xi = m/k for i = 1, . . . , k.

The proof of the lemma is straightforward using Lagrange multipliers.

Compact Representation of GPS Trajectories over Vectorial Road Networks 253

5.4 Shortest-Path Coding

Greedy-path coding seeks to find the subsequence of points of P that segments P
into a number of sub-paths, which are greedy paths between consecutive points
of the subsequence. Greedy-path coding is relatively simple and decoding is
extremely fast. It relies on the extrinsic geometry (i.e. coordinates of the embed-
ding) of the graph. However, more compact codes are possible. In this section
we explore shortest path coding, i.e. representing P as the subsequence of points
of P which segments P into a number of sub-paths which are shortest paths
between consecutive points of the subsequence. As we will see, these codes will
be more difficult to compute and decoding them will be slower, but they will be
more compact.

Define the length of a path to be the sum of the Euclidean lengths of the
edges in the path. A shortest path between Vertex i and Vertex j is the path
between the two vertices whose length is the shortest possible. This path can be
computed using Dijkstra’s algorithm and its many variants [21, 22]. As such, it
relies only on the intrinsic geometry (edge lengths) of the graph.

In contrast with the greedy-path coding algorithms, shortest-path coding re-
quires considering a larger portion of the graph than just the given path P and
its neighboring edges—an entire bounding box of the path. Since the algorithm
relies on computation of shortest paths between vertices, we need a much broader
view of the region.

5.5 Optimal Shortest-Path Coding Algorithm

Shortest paths have the sub-path property, namely, any sub-path between vertex
u and vertex v within a shortest path is necessarily also a shortest path between
u and v. In particular, this implies the prefix property and the suffix property,
that any prefix or suffix of a shortest path is a shortest path. The prefix property
implies the well-known fact that given a graph G and a source vertex s all
shortest paths from s to all other vertices form a spanning tree of G rooted
at s. Using the suffix property, it is possible to prove that the following simple
(i.e. greedy in the algorithmic sense) shortest-path coding algorithm is in fact
optimal. The algorithm is presented in Fig. 13. Essentially, it is similar to the
simple greedy-path coding algorithm, except that it proceeds in the forward
direction, as opposed to the reverse direction. It checks incrementally whether
sub-paths of the input path are shortest paths, taking advantage of the suffix
property to save computations. We assume that all path lengths are different
real numbers. This is needed to guarantee that the shortest path tree computed
in Line 4 is unique, to allow the decoder to reconstruct the original path from
the code. The optimality of the algorithm follows from the next proposition.

Proposition 1. Any shortest-path code C′ of a path P in graph G will have
length greater than or equal to the length of C—the output of the algorithm.

Proof. Let C = (i1, . . . , ik) be the output of the algorithm in Fig. 13 and C′ =
(j1, . . . , jr) be the output of any other shortest-path coding algorithm. It suffices

254 R. Gotsman and Y. Kanza

Optimal Shortest-Path Coding

Input: Path P = (i1, i2, . . . , im) in the planar graph G = ((V,E), X),
Output: Optimal shortest-path code of P

1: C ← (i1)
2: s ← 1
3: while s < m do
4: compute the shortest-path tree, rooted at is, whose leaves are all vertices it

where s < t ≤ m
5: t ← s+ 1
6: let vb be the vertex before it in the shortest path between is and it
7: while t ≤ m and vb = it−1 do
8: t ← t+ 1
9: set vb to be the vertex before it in the shortest path between is and it
10: append it−1 to C
11: s ← t− 1
12: return C

Fig. 13. Algorithm for computing an optimal shortest-path coding

Fig. 14. Illustration of the proof of Proposition 1. Purple points are the optimal coding
C. Cyan points are some of the code C′. The path (is, . . . , is+1) does not contain any
element of C′. If the path (jp, . . . , jp+1) is a shortest path, then the suffix property
implies that (is, . . . , jp+1) is also a shortest path.

to prove that each of the k − 1 segments (is, . . . , is+1) contains at least one
element of C′ for all 1 ≤ s ≤ k − 1, since then k ≤ r.

Note that the claim holds trivially for the first segment (s = 1) since i1 = j1.
So, assume 1 < s < k. Now assume by way of contradiction that the segment
(is, . . . , is+1) does not contain any element of C′. Let jp be the largest element of
C′ such that jp < is and jp+1 the next element of C′ (in the “worst case”, p = 1).
By the assumption, jp+1 ≥ is+1. Now, by definition, (jp, . . . , jp+1) is a shortest
path, so the suffix property implies that (is, . . . , jp+1) is also a shortest path, in
contradiction to the fact that (is, . . . , is+1) is the longest possible shortest path
starting at is. (See illustration in Fig. 14.)

Note that this proof does not hold for the simple greedy-path coding algorithm
(Fig. 8), because the algorithm does not guarantee the final contradiction—
that (is, . . . , is+1) is the longest possible greedy path starting at is, since the
algorithm operates in reverse.

Compact Representation of GPS Trajectories over Vectorial Road Networks 255

The complexity of the algorithm is O(k(n+n log n+m)) where n is the number
of edges/nodes in the effective graph M (the path bounding box) and k is the
number of points in the code. In general, n is O(m2), since this is the relationship
between the number of edges in a one-dimensional path and the number of edges
in a two dimensional region whose boundary length is O(m), giving a complexity
of O(km2 logm). The decoding also has O(km2 logm) time complexity due to
the need to compute the shortest path between each consecutive pair in the code
(there are k − 1 pairs).

6 Experiments

To test the effectiveness of our methods, we implemented them and tested them
experimentally. We implemented our map-matching algorithm in an interactive
browser-based system, using the Google Maps Javascript API and the Open
Street Map digital database. The system was written in Javascript for the client
side and uses JSP/Servlets on the server side. The algorithms were implemented
in MATLAB and compiled to run independently on the server by JSP/Servlet
calls. The machine we used contained an Intel i7 CPU with 8GB RAM.

We used the dataset of GPS trajectories of the ACM SIGSPATIAL Cup 2012
contest (see http://depts.washington.edu/giscup/) and the GPS trajectory
dataset used in [16], recorded in the Seattle area, to test our algorithms. These
trajectories consist of GPS recording at a frequency of 1Hz through urban and
rural areas (highways, small streets and intersections), which translates to a
recording every 5-20 meters, depending on the vehicle velocity. These are con-
sidered dense recordings. The noise level was σ = 10m. A typical GPS tra-
jectory contained 500 points. We also used a number of GPS trajectories we
recorded ourselves using a smartphone application, while driving in the city of
Haifa. These trajectory recordings were made such that at least 10 seconds and
at least 10 meters elapsed between two successive recordings. These are quite
sparse recordings. Here too the noise level was σ = 10m. In all the experiments,
a grid-based spatial index was used for an efficient retrieval of road segments
that are in a certain area or in the vicinity of a certain point.

Figures 15, 16 and 17 compare the different types of codes. They illustrate
typical compact representations of a path. The coding points are depicted in
purple and the other removed points appear in orange. Note that by using the
optimal shortest-path code only 5 points are required to represent a path of
214 points. In general, the difference between the simple greedy-path code and
the optimal greedy-path code is relatively small, but the shortest-path code is
typically much more compact than the other two codes.

We ran statistics on a set of 33 routes that were map-matched (using our al-
gorithm) from the GPS trajectories in the ACM SIGSPATIAL Cup 2012 dataset
and the GPS trajectory dataset used in [16], to determine the average coding
ratio and running time of the various algorithms. A typical path contains ap-
proximately 125 vertices after the dilution and the map-matching phases. The
results are shown in Fig. 18 and Fig. 19. As evident there, the simple greedy-
path coding algorithm reduces the number of vertices to 7.3% of the original on

256 R. Gotsman and Y. Kanza

Fig. 15. Simple greedy-
path code (19 points out of
214 original points).

Fig. 16. Optimal greedy-
path code (15 points out of
214 original points)

Fig. 17. Optimal shortest
path code (5 points out of
214 original points)

Fig. 18. Coding ratios of the three algo-
rithms. Each data point is a path in the
dataset.

Fig. 19. Running times. Each
point is a path in the dataset.

the average, the optimal greedy-path coding algorithm reduces slightly more, to
7.1%. The shortest-path coding algorithm reduces to 4.5%, on the average.

Typically, it is important that the decoder will be efficient since the process
of decoding is done many times (essentially every time a route is extracted from
a database) and in real-time, as opposed to the encoding process which usually
happens only once, and is typically done in an offline process. Decoding of the
greedy path codes takes O(m) time and decoding of the more compact shortest
path code takes O(km2 logm) time (where k is the length of the code).

In some applications it is important to code a path online (as it is being
generated). This would seem to be impossible for the two greedy-path coding
algorithms, since they operate in reverse. Nonetheless, it is possible to modify
these algorithms to run in forward order, paying a penalty in time complexity. In
contrast, the optimal shortest-path encoding algorithm can be executed online
with a lag of just one path vertex, i.e. it is possible to decide whether a path
vertex is part of the shortest path code only after the next route vertex has been
seen. There will also be a running-time penalty to implement this in practice.

Compact Representation of GPS Trajectories over Vectorial Road Networks 257

7 Conclusions

We study the problem of computing a compact coding of routes over a vectorial
road network. Given a trajectory as a sequence of GPS measurements, it is
shown how to represent it compactly, in a three-step process: (1) diluting the
sequence, (2) applying map-matching to receive a sequence of map vertices, and
(3) generating a compact representation of the traveled route.

For the classical problem of map-matching, the paper presents an adaptation
of an HMM-based method. The aim is to handle effectively scenarios where
the GPS measurements are sparse and noisy. This ability is lacking in many
existing approaches. The result of the map-matching is a route in the form of a
sequence of vertices of the road network. We present two approaches to represent
a route compactly—as a sequence of greedy paths or as a sequence of shortest
paths. We provide two algorithms for computing the sequence of greedy paths.
One algorithms is simple and highly efficient, having O(n) time complexity, over
a sequence of n points, and the second algorithm has O(n2) time complexity,
however, it computes the optimal greedy-path code. Decoding a greedy-path
code can be done in O(n) time. For generating the sequence of shortest paths,
we provide an algorithm with O(kn2 logn) time complexity, where k is the length
of the (output) code. Decoding a shortest-path code also has O(kn2 logn) time
complexity. Experimentally, when applying our algorithm to real-world data sets,
we observed that shortest-path codes are more compact than greedy-path codes
but it takes more time to compute them. Evidently, our representation is more
compact than merely applying dilution and map-matching.

Compact coding of routes on a map, coupled with a very fast decoding al-
gorithm, is important for storage and transmission of this type of data from
large (online) databases, especially as these databases become more and more
widespread in the connected mobile world. An important related question is
when is it possible to perform computations on routes in their coded form, i.e.
without explicitly decoding them. For example, is it possible to intersect two
routes by intersecting their greedy path or shortest path codes without decoding
the two routes first? Similarly, is it possible to determine proximity of a given
map vertex to a coded route, without decoding the route? These questions re-
main as future work. Future work also includes the question of how to use the
timestamps of the GPS measurements, for improving the representation, and
how to recover times when reconstructing a route.

References

1. Zheng, Y., Zhang, L., Ma, Z., Xie, X., Ma, W.Y.: Recommending friends and
locations based on individual location history. ACM Trans. Web 5(1), 5:1–5:44
(2011)

2. Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from gps
data. Proc. VLDB Endow. 3(1-2), 1009–1020 (2010)

3. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity
based on location history. In: Proc. of the 16th ACM SIGSPATIAL GIS (2008)

258 R. Gotsman and Y. Kanza

4. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S.,
Trasarti, R.: Unveiling the complexity of human mobility by querying and mining
massive trajectory data. The VLDB Journal 20, 695–719 (2011)

5. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based
on gps data. In: Proceedings of the 10th International Conference on Ubiquitous
Computing, pp. 312–321 (2008)

6. Meratnia, N., de By, R.A.: Spatiotemportal compression techniques for moving
point objects. In: Proc. of the 9th International Conference on Extending Database
Technology (2004)

7. Muckell, J., Hwang, J.H., Patil, V., Lawson, C.T., Ping, F., Ravi, S.S.: Squish: an
online approach for gps trajectory compression. In: Proc. of the 2nd COM.Geo.
COM.Geo 2011, pp. 13:1–13:8. ACM (2011)

8. Chen, Y., Jiang, K., Zheng, Y., Li, C., Yu, N.: Trajectory simplification method
for location-based social networking services. In: Proc. of the 2009 International
Workshop on Location Based Social Networks, LBSN 2009, pp. 33–40 (2009)

9. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer (2011)
10. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica: Inter. Journal
for Geographic Information and Geovisualization 10(2), 112–122 (1973)

11. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms
for personal navigation assistants. In: Transportation Research Part C: Emerging
Technologies, vol. 8, pp. 91–108 (2000)

12. Quddus, M.A., Ochieng, W., Zhao, L., Noland, R.B.: A general map matching
algorithm for transport telematics applications. GPS Solution 7(3) (2003)

13. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms
for transport applications: State-of-the art and future research directions. In:
Transportation Research Part C: Emerging Technologies, pp. 312–328 (2007)

14. Hummel, B.: Map matching for vehicle guidance. In: Dynamic and Mobile GIS:
Investigating Space and Time, pp. 437–438. CRC Press (2006)

15. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. Transactions on Information Theory 13(2), 260–269 (1967)

16. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparse-
ness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 336–343 (2009)

17. Bose, P., Morin, P.: Online routing in triangulations. SIAM Journal of Comput-
ing 33, 937–951 (2004)

18. Imai, H., Iri, M.: Computational-geometric methods for polygonal approximations
of a curve. Comp. Vision, Graphics, and Image Processing 36(1), 31–41 (1986)

19. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. In: Proc. of the 25th Annual Symposium on Foundations
of Computer Science, pp. 338–346. IEEE (1984)

20. Mehlhorn, K.: Unique shortest paths. In: Selected Topics in Algorithms: Course
Notes (2009)

21. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1),
87–90 (1958)

22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

Group Trip Planning Queries in Spatial Databases

Tanzima Hashem1, Tahrima Hashem2,
Mohammed Eunus Ali1, and Lars Kulik3

1 Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

{tanzimahashem,eunus}@cse.buet.ac.bd
2 Department of Computer Science and Engineering

Dhaka University, Dhaka, Bangladesh
tahrimacsedu14@gmail.com

3 Department of Computing and Information System
University of Melbourne, VIC 3010, Australia

lkulik@unimelb.edu.au

Abstract. Location-based social networks grow at a remarkable pace. Current
location-aware mobile devices enable us to access these networks from anywhere
and to connect to friends via social networks in a seamless manner. These net-
works allow people to interact with friends and colleagues in a novel way, for
example, they may want to spontaneously meet in the next hour for dinner at a
restaurant nearby followed by a joint visit to a movie theater. This motivates a new
query type, which we call a group trip planning (GTP) query: the group has an in-
terest to minimize the total travel distance for all members, and this distance is the
sum of each user’s travel distance from each user’s start location to destination via
the restaurant and the movie theater. Formally, for a set of user source-destination
pairs in a group and different types of data points (e.g., a movie theater versus a
restaurant), a GTP query returns for each type of data points those locations that
minimize the total travel distance for the entire group. We develop efficient algo-
rithms to answer GTP queries, which we show in extensive experiments.

Keywords: Group nearest neighbor queries, Group trip planning queries,
Location-based services, Location-based social networks, Spatial Databases.

1 Introduction

Location-based social networks such as Facebook [1], Google+ [2], and Loopt [3] en-
able a group of friends to remain connected from virtually anywhere at any time via
location aware mobile devices. In these networks users can share their locations with
others and interact with other users in a novel way. For example, a group of friends may
want to spontaneously meet in the next hour for dinner at a restaurant nearby followed
by a joint visit to a movie theater. The users are typically at different places, e.g., on
a late afternoon all of them may still be at their offices and workplaces. Before going
home in the evening, they would still like to organise a group dinner and movie event.
Usually, all users would like to meet at a restaurant and movie theater that is nearby. To
enable users to arrange a trip with a minimum total travel distance, we introduce a new
type of query called a group trip planning (GTP) query.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 259–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

260 T. Hashem et al.

Specifically, for a set of user source-destination pairs in a group and different types
of data points (e.g., a movie theater versus a restaurant), a GTP query returns for each
type of data points those locations that minimize the total travel distance for the entire
group. The total travel distance of a group is the sum of each user’s travel distance
from source to destination via the data points. Figure 1 shows an example, where the
pair of data points (p′′1 , p′2) minimizes the total travel distance for the group trip. The
group may fix the order of the planned locations (e.g., first the movie theater, then the
restaurant) or keep the order flexible (e.g., the group is happy to visit the movie theater
and the restaurant in any order). We call the former type ordered GTP queries and the
latter flexible GTP queries. In this paper, we develop algorithms to evaluate both type
of GTP queries.

p1
'

p1
'''

p1
''

s2 s3
s1

d 1

Fig. 1. An example scenario

Query processing for a group of users instead of a single user involves high computa-
tional overhead because this query has to be evaluated with respect to a set of locations
instead of a single location. Existing studies [4,5] show that iteratively applying algo-
rithms that are designed for a single user incur large query processing overheads if they
are used to evaluate group queries. Thus, the development of efficient algorithms for
processing group nearest neighbor (GNN) queries [4,5] and its variants [6,7] has re-
cently evolved into an important research area. A GNN query finds the data point that
minimizes the aggregate distance with respect to the locations of the users in the group.
In this paper, we address group trip planning queries. Though trip planning queries for
a single user have been addressed [8,9] in the literature, GTP queries have not yet been
explored.

A GTP query can be mapped to a GNN query, if a group meets at a single location
during their trip; existing GNN algorithms can be applied to the GTP query to find the
data point that minimizes the total travel distance for a set of source and destination lo-
cations of the group members. However, if the group stops at least at two different types
of locations, we show that applying GNN algorithms [4,5] to evaluate GTP queries in-
creases the query processing cost significantly. Such a technique evaluates GNN queries
multiple times and requires multiple independent searches on the database. We develop
an efficient algorithm for processing GTP queries that finds the data points with a single
traversal on the database. The key idea of our algorithm is to reduce the search space,

Group Trip Planning Queries in Spatial Databases 261

i.e., to avoid the computation of total travel distances for data points that cannot be part
of the query answer. We develop a set of pruning techniques to eliminate the data points
from the search while evaluating GTP queries.

In summary, we make the following contributions:

– We propose a new type of query, the group trip planning (GTP) query and propose
the first solution to process the query.

– We develop an efficient algorithm to evaluate GTP queries. Our algorithm can eval-
uate both ordered and flexible GTP queries.

– We perform an extensive experimental study to show the efficiency of our proposed
algorithms, including a detailed comparative analysis.

The rest of the paper is organized as follows. Section 2 presents the problem setup and
Section 3 reviews existing works related to this problem. In Section 4, we propose our
algorithms to evaluate GTP queries and in Section 5, we present extensive experiments
to validate the efficiency of our algorithms. Section 6 concludes the paper with future
research directions.

2 Problem Overview

In a group trip planning (GTP) query, a group of users specify their source and desti-
nation locations, the types of data points that they want to visit together while traveling
from their source to destination locations. For a group of n users let S represent the set
of source locations {s1,s2, . . . ,sn} and D the set of destination locations {d1,d2, . . . ,dn}.
The source and destination locations of a user ui are denoted as si and di, respectively.
A set of data points of type t in a 2-dimensional space is denoted by Dt . If a group
plans a trip with m different types of data points along their trip, the GTP query re-
turns a set of data points {p1, p2, . . . , pm}, pt ∈ Dt , such that an aggregate function
f (S,D, p1, p2, . . . , pm) is minimal. The function f (S,D, p1, p2, . . . , pm) represents the
total travel distance for the group trip as

(
∑n

i=1 Dist(si, p1)+ n×∑m−1
i=1 Dist(pi, pi+1)+

∑n
i=1 Dist(di, pm)

)
, where Dist(., .) is the Euclidean distance between two locations. In

general, a group trip planning (GTP) query is formally defined as follows:

Definition 1. (Group Trip Planning (GTP) Queries). Given a set of source locations
S, a set of destination locations D, sets of m types of data points {D1,D2, . . . ,Dm}, and
an aggregate function f the GTP query returns a set of data points {p1, p2, . . . , pm},
pt ∈ Dt, that minimizes f .

For a set of data points {p1, p2, . . . , pm}, in an ordered GTP query, the group deter-
mines the order in which the group plans to visit the m data points. The parameters
p1, p2, . . . , pm in the aggregate function f are passed in the order specified by the group.
In a flexible GTP query, however f is evaluated for every possible order of the data
points p1, p2, . . . , pm.

A group may be interested in k sets of data points {p1
1, p1

2, . . . , p1
m}, {p2

1, p2
2, . . . , p2

m},
. . . , {pk

1, pk
2, . . . , pk

m} that have the k smallest total travel distances for the group trip.
The group then select one set by considering other factors such as cost and recommen-
dations. If a group queries for k sets of data points for a group trip then the query is

262 T. Hashem et al.

called a k group trip planning (kGTP) query. In Section 4, we develop algorithms to
evaluate kGTP queries.

The symbols used in this paper are summarized in Table 1.

Table 1. Symbols

Symbol Meaning
si and di Source and destination locations of a user ui

S = {s1,s2, . . . ,sn} A set of source locations of n users in the group
D = {d1,d2, . . . ,dn} A set of destination locations of n users in the group
{pk

1, pk
2, . . . , pk

m} A set of data points that has kth

minimum distance for the group trip
Dist(., .) The Euclidean distance between two locations

f (S,D, p1, p2, . . . , pm) A function that returns the total travel distance as
{∑n

i=1Dist(si, p1)+n×Dist(p1, p2)+ · · ·+n×Dist(pm−1, pm)
+∑n

i=1Dist(di, pm)}

3 Related Work

Most of the existing techniques for processing spatial queries assume that data points
are indexed, e.g., using an R-tree [10] or its variant R∗-tree [11]. In an R-tree, nearby
objects are grouped together with minimum bounding rectangles (MBRs). These MBRs
are organized in a hierarchical way such that the root MBR covers the whole data space
and the MBR of a parent node covers the MBRs of all of its children. In this paper, we
use separate R∗-trees, to index different types of data points.

The most popular query type in spatial database is nearest neighbor queries that
return the nearest data point with respect to a given location. A well known approach to
evaluate the k NNs is to traverse the R∗-tree in a best-first (BF) [12] manner, which is
called the best-first search (BFS). In BFS, the search starts from the root of the tree, and
the child nodes are recursively accessed in the increasing order of their distances from
the query point. The search process terminates as soon as the k nearest data points are
retrieved from the tree.

A group nearest neighbor (GNN) query [4,5,13], a variant of the NN query, finds the
nearest data point with respect to all user locations of the group. A GNN query mini-
mizes the aggregate distance for the group, where an aggregate distance is measured as
the total, minimum or maximum distance of the data point from the group. Papadias et
al. [4,5] have proposed three techniques: multiple query method (MQM), single point
method (SPM), and minimum bounding method (MBM), to evaluate GNN queries. All
of these three variants use the BFS technique to traverse the R∗-tree. Among these three
techniques, MBM performs the best as it traverses the R∗-tree once and takes the area
covering the users’ location into account. We use MBM for evaluating GNN queries
in our approach. In [13], Li et al. have developed exact and approximation algorithms
for GNN queries that minimize the maximum distance of the group. In this paper, we
require GNN algorithms that minimize the total travel distance.

Recently, some variants of GNN queries have been proposed [6,7]. In [6], Deng
et al. have proposed a group nearest group (GNG) query that finds a subset of data

Group Trip Planning Queries in Spatial Databases 263

points, as opposed to a single data point in a GNN query, from the dataset such that the
aggregate distance from the group to the subset is minimum. The aggregate distance
is computed as the summation of all Euclidean distances between a query point and
the nearest data point in the subset. In [7], Li et al. have proposed a flexible aggregate
similarity search that finds the nearest data point and the corresponding subgroup for a
fixed subgroup size; for example, a group may query for the nearest data point to 50%
of group members. In this paper, we introduce a group based trip planning query, which
is different from the above mentioned variants.

Trip planning queries [9,8,14,15] have been studied in the literature with respect to
a single user. In [9], Li et al. have developed approximation algorithms for finding a
set of data points that minimize the total travel distance for the trip. The travel distance
starts from the source location, passes through the set of data points, and ends at the
destination location of the user, where each data point corresponds to a type (e.g., a
restaurant) specified by the user. In [8], Sharifzadeh et al. have developed algorithms to
evaluate a optimal sequenced route (OSR) query that returns a route with the minimum
length passing through a set of data points in a particular order from the source location
of a user, where both order and type of data points are specified by the user. Chen et
al. [14] have proposed a generalization of the trip planning query, called multi-rule par-
tial sequenced route (MRPSR) query. A MRPSR query provides a uniform framework
to evaluate both of the above mentioned variants [9,8] of trip planning queries. All these
existing techniques assume a single user, and thus are not suitable for a group trip.

A large body of research works focus on developing algorithms for processing a route
planing query and its variants [16,17,18,19]. A route planning query finds a suitable
route that minimizes the desire function such as travel time, shortest path, cost, etc. for
a single source and destination pair. Route planing queries do not include data points in
the route and are applicable for a single user. On the other hand, we propose an efficient
solution for a kGTP query that finds different types of data points for a group trip that
minimize the total travel distance of the group.

4 Algorithms

In this section, we present algorithms to process kGTP queries. A straightforward way
to evaluate kGTP queries would be applying a trip planning algorithm [14] for every
user in the group independently and determining the group travel distance for every
computed set of data points. The process continues to incrementally determine the sets
of data points that minimize the total travel distance of every user in the group until the
set of data points with the minimum group travel distance have been identified. How-
ever, this straightforward solution is not scalable and incurs very high query processing
overhead as same data points are accessed by multiple users separately. Instead, we first
propose an iterative algorithm as baseline method that does not evaluate the trip planing
query independently for every user but still requires to access same data multiple times.

To avoid the limitation of the baseline method, we develop an efficient hierarchi-
cal algorithm that evaluates kGTP queries with a single traversal of the database and
incurs less processing overhead. The input to the algorithm for a group of n users
are source locations S = {s1,s2, . . . ,sn}, destination locations D = {d1,d2, . . . ,dn},

264 T. Hashem et al.

m types of data points for m > 0, and the number k of required sets of data
points. The output of the algorithm is A that consists of k sets of data points
{p1

1, p1
2, . . . , p1

m},{p2
1, p2

2, . . . , p2
m},. . . ,{pk

1, pk
2, . . . , pk

m} having the k smallest total travel
distances for the group trip. We assume that each type of data points are indexed us-
ing a separate R∗-tree [11] in the database. Let R1,R2, . . . ,Rm represent the R∗-trees to
index the set of data points in D1,D2, . . . ,Dm, respectively. Note that, our algorithms
can also be adopted if a single R∗-tree is used to index all types of data points. We
present our two approaches, i.e., iterative and hierarchical, for processing kGTP queries
in Section 4.1 and Section 4.2, respectively.

4.1 Iterative Approach

The basic idea of our iterative approach to evaluate a kGTP query is to use group nearest
neighbor (GNN) queries. A kGNN query returns the locations of k data points that have
the k smallest total travel distances for the group. For ease of understanding, we start
the discussion of the iterative algorithm for the number of data type, m = 1, m = 2, and
then generalize the algorithm for any value of m.

For m = 1, the iterative approach can evaluate the kGTP query answer with a single
iteration using any existing kGNN algorithm [4,5]. The iterative approach determines
the kGTP query answer p1

1, p2
1, . . . , pk

1 as k GNNs (group nearest neighbors) from D1

with respect to {S∪D}.
Consider the case m = 2, where the group specifies the order of visit as {1,2}, i.e.,

the group visits the data point of type 1 before the data point of type 2. The iterative
approach determines the 1st GNN as p1 from D1 with respect to S and the 1st GNN as
p2 from D2 with respect to {p1∪D}. For the pair of data points p1 and p2, the iterative
algorithm determines the total travel distance for the group trip. Then the algorithm
determines the 2nd GNN as p′2 from D2 with respect to {p1∪D} and computes the total
travel distance for the group trip for p1 and p′2. The process continues until the kth group
nearest data point as p2 from D2 with respect to {p1∪D} has been determined.

In the next iteration, the algorithm determines the 2nd GNN as p1 from D1 with
respect to S and repeats the same procedure mentioned above for the 1st GNN from D1.
The iteration continues to incrementally determine the GNNs from D1 with respect to S
until the algorithm finds k pairs of data points that have k smallest total travel distances
for the group trip.

Algorithm 1 shows the pseudocode to iteratively evaluate the ordered kGTP query
for 2 stops, i.e., m = 2. Function FindGNN(l,S) is used in Algorithm 1 to compute the
lth GNN that has lth smallest total distance with respect to a set of points S.

In each iteration (l = 1,2, . . .), the algorithm computes k pairs of data points using
FindGNN (see Lines 1.5 - 1.12). For each pair p1 and p2, p1 is evaluated as the lth GNN
of S and p2 is evaluated as jth GNN of {p1∪D}, where j ranges from 1 to k. For each
of these k pairs of data points, the algorithm determines the total travel distance for the
group trip as CurrentDist. We use an array MinDist[1..k] of k entries to prune the pair
of data points that cannot be the part of the answer set A and to check the termination
condition of the algorithm. Each entry MinDist[i] represents the ith smallest distance
of total travel distances for the group trip computed so far. The entries of MinDist are
initialized to ∞ and then checked for update after every computation of CurrentDist.

Group Trip Planning Queries in Spatial Databases 265

Algorithm 1. 2S-Ordered-kGTP-IA(S,D,k)
Input : S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, and k.
Output: A = {{p1

1, p1
2},{p2

1, p2
2},. . . ,{pk

1, pk
2}}.

A← /01.1

MinDist[1..k]← {∞}1.2

l← 11.3

repeat1.4

p1← FindGNN(l,S)1.5

j← 11.6

while j ≤ k do1.7

p2← FindGNN(j,{p1 ∪D})1.8

CurrentDist← f (S,D, p1, p2)1.9

if CurrentDist ≤MinDist[k] then1.10

U pdate(CurrentDist,MinDist,A)1.11

j← j+11.12

l← l +11.13

until ∑n
i=1Dist(si, p1)≤MinDist[k]1.14

return A1.15

If CurrentDist ≤MinDist[k], p1 and p2 become one of the k pairs that have k smallest
total travel distance among the explored pairs of data points so far and the function
U pdate is called to update MinDist and A (Line 1.11).

The parameter l is initialized to 1 and is incremented by 1 at every iteration until
k pairs of data points that minimize the total travel distances for the group trip have
been determined. We use the following lemma to check the terminating condition of
Algorithm 1.

Lemma 1. Let p1 be the lth group nearest neighbor with respect to the set of source
locations S and MinDist[k] be the kth smallest total travel distances for the group trip
computed so far. The k pairs of data points that minimize the total travel distance for
the group trip have been found by the algorithm if ∑n

i=1Dist(si, p1)> MinDist[k].

Proof. For any tth group nearest neighbor p′1 with respect to S, where t > l,
we have ∑n

i=1Dist(si, p′1) > ∑n
i=1Dist(si, p1) > MinDist[k]. Thus, if the condition

∑n
i=1Dist(si, p1)> MinDist[k] becomes true then there can be no other unexplored pair

of data points that can further minimize the total travel distance for the group trip. �

The proof of Lemma 1 also shows the correctness of our proposed nested algorithm,
i.e., the answer set, A includes k pairs of data points that have k smallest total travel
distances with respect to S and D of a group.

Algorithm 1 also works for a flexible GTP query with slight modifications. For a
flexible GTP query we have to execute Algorithm 1 twice considering both orders, first
p1 then p2 and the reverse order, i.e., first p2 and then p1. The evaluation of kGTP
queries for each order computes k group trips; among these 2k group trips we have to
select k group trips with k smallest total travel distances.

266 T. Hashem et al.

Algorithm 2. 3S-kGTP-IA(S,D,k)
Input : S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, and k.
Output: A = {{p1

1, p1
2, p1

3},{p2
1, p2

2, p2
3},. . . ,{pk

1, pk
2, pk

3}}.
A← /02.1

MinDist[1..k]← {∞}2.2

l← 12.3

repeat2.4

p1← FindGNN(l,S)2.5

u← 12.6

repeat2.7

p2← FindNN(u, p1)2.8

v← 12.9

while v≤ k do2.10

p3← FindGNN(j,{p2 ∪D})2.11

CurrentDist← f (S,D, p1, p2, p3)2.12

if CurrentDist ≤MinDist[k] then2.13

U pdate(CurrentDist,MinDist,A)2.14

v← j+12.15

u← v+12.16

until ∑n
i=1Dist(si, p1)+n×Dist(p1, p2)≤MinDist[k]2.17

l← l +12.18

until ∑n
i=1Dist(si, p1)≤MinDist[k]2.19

return A2.20

Consider the case for m = 3. Assume that the group specifies the order of visit
as {1,2,3}. Algorithm 2 shows the pseudocode for evaluating ordered kGTP queries
for m = 3. Algorithm 1 works in a similar way to Algorithm 1. The only difference
for Algorithm 2 is the addition of an intermediary step using existing nearest neigh-
bor algorithms [20,12]. We use function FindNN to evaluate nearest neighbors (Line
2.8). Similarly, Algorithm 2 can be generalized for ordered kGTP queries with m types
of data points by adding m− 2 intermediary steps using FindNN. For flexible kGTP
queries with m types of data points, the query evaluation requires to consider all possi-
ble combinations of orderings of the data points and adds additional query processing
overheads.

For m≥ 2, the limitation of the iterative approach is its high computational overhead.
To determine the sets of data points that minimize the total travel distance for the group
trip, the iterative approach requires to traverse the same data sets multiple times and the
overhead increases with the increase of m.

Group Trip Planning Queries in Spatial Databases 267

4.2 Hierarchical Approach

In this section, we present an efficient hierarchical approach to evaluate a kGTP query in
a single traversal of R∗-trees R1,R2, . . . ,Rm. The base idea of our hierarchical algorithm,
GTP-HA, is to exploit the hierarchical properties of R∗-trees and use a modified best
first search (BFS) on R1,R2, . . . ,Rm to find k sets of data points that minimize the total
travel distances for the group trip.

Algorithm 3. GTP-HA(S,D,k)
Input : S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, and k.
Output: A = {{p1

1, p1
2, . . . , p1

m},{p2
1, p2

2, . . . , p2
m},. . . ,{pk

1, pk
2, . . . , pm

2 })}.
end← 03.1

A← /03.2

MinDist[1..k]← {∞}3.3

i← 13.4

Enqueue(Qp,root1,root2, . . . ,rootm,0,dmax(root1,root2, . . . ,rootm))3.5

while Qp is not empty and end = 0 do3.6

{r1,r2, . . . ,rm,dmin(r1,r2, . . . ,rm),dmax(r1,r2, . . . ,rm)}← Dequeue(Qp)3.7

if r1, r2, . . . , rm are data points then3.8

{pi
1, pi

2, . . . , pi
m}← {r1,r2, . . . ,rm}3.9

if i = k then3.10

end← 13.11

i← i+13.12

else3.13

W ← FindSets(r1,r2, . . . ,rm)3.14

for each (w1,w2, . . . ,wm) ∈W do3.15

Compute dmin(w1,w2, . . . ,wm) and dmax(w1,w2, . . . ,wm)3.16

if dmin(w1,w2, . . . ,wm)≤MinDist[k] then3.17

Enqueue(Qp ,w1,w2, . . . ,wm,dmin(w1,w2, . . . ,wm),dmax(w1,w2, . . . ,wm))3.18

if dmax(w1,w2, . . . ,wm)≤MinDist[k] then3.19

U pdate(MinDist,dmax(w1,w2, . . . ,wm))3.20

return A3.21

Algorithm 3 shows the steps for GTP-HA. The notations that we have used for hier-
archical approach are summarized below:

– r j: a data point or a minimum bounding rectangle of a node of R j.
– {w1,w2, . . . ,wm}: A set of entities, where each entity wj represents a data point r j

or a minimum bounding rectangle of a child node of r j.
– Distmin(., .)(Distmax(., .)): a function that returns the minimum (maximum) distance

between two parameters, where a parameter can be either a point or a minimum
bounding rectangle of a R∗-tree node.

– dmin(w1,w2, . . . ,wm): the distance computed as ∑n
i=1Distmin(si,w1) + n ×

Distmin(w1,w2)+ · · ·+ n×Distmin(wm−1,wm)+∑n
i=1Distmin(di,wm)

268 T. Hashem et al.

– dmax(w1,w2, . . . ,wm): the distance computed as ∑n
i=1Distmax(si,w1) + n ×

Distmax(w1,w2)+ · · ·+ n×Distmax(wm−1,wm)+∑n
i=1Distmax(di,wm)

– MinDist[k]: The kth smallest distance of already computed dmax(w1,w2, . . . ,wm)s.

The algorithm starts the search from the root nodes of R1,R2, . . . ,Rm. The algorithm
inserts the root nodes of R1,R2, . . . ,Rm together with their dmin and dmax into a priority
queue Qp. The elements of Qp are ordered in order of dmin. In each iteration of the
search, the algorithm dequeues r1,r2, . . . ,rm from Qp. If all r1,r2, . . . ,rm are data points
then the data points are added to A (Line 3.9). Otherwise, the algorithm computes W us-
ing the function FindSets. The input parameters of FindSets are r1,r2, . . . ,rm. FindSets
determines all possible sets {w1,w2, . . . ,wm}s, where wj represents either one of the
child node of r j or the data point r j. In case of an ordered GTP query, FindSets only
computes ordered set of data points/R∗-tree nodes, whereas in case of a flexible GTP
query, FindSets considers all combination of data points/R∗-tree nodes. Consider an
example, where r1,r2,r3 represent data points. If a group specifies the order of visit-
ing types of data points as {3,1,2} then the computed set is {r3,r1,r2}, i.e., w1 = r3,
w2 = r1, and w3 = r2. If the group is flexible then the computed sets are {r1,r2,r3},
{r1,r3,r2}, {r2,r1,r3}, {r2,r3,r1}, {r3,r1,r2}, and {r3,r2,r1}.

For each set {w1,w2, . . . ,wm} in W , the algorithm computes dmin(w1,w2, . . . ,wm) and
dmax(w1,w2, . . . ,wm). Similar to the iterative approach, we use an array MinDist[1..k]
to check whether R∗-tree nodes/data points can be pruned using the following lemma:

Lemma 2. A set of data points or R∗-tree nodes {w1,w2, . . . ,wm} can be pruned if
dmin(w1,w2, . . . ,wm)> MinDist[k].

If the condition of Lemma 2 is satisfied for any set {w1,w2, . . . ,wm}, then
{w1,w2, . . . ,wm} or any set computed from the child nodes of w1,w2, . . . ,wm can never
be part of A. If the condition of Lemma 2 is not satisfied for {w1,w2, . . . ,wm}, i.e.,
dmin(w1,w2, . . . ,wm)≤MinDist[k], then the algorithm inserts (w1,w2, . . . ,wm) into Qp

and updates MinDist if dmax(w1,w2, . . . ,wm) ≤MinDist[k]. The search continues until
k sets of data points have been added to A.

The following theorem shows the correctness of the hierarchical algorithm.

Theorem 1. Let A be the answer set returned by GT P−HA. A includes k sets of data
points that have k smallest total travel distances with respect to S and D of a group.

Proof. (By contradiction) Assume that a set of data points, {p j
1, p j

2, . . . , p j
m}, have jth

(1 ≤ j ≤ k) minimum total travel distance with respect to S and D of a group. The set
of data points {p j

1, p j
2, . . . , p j

m}, may not have been included in A for two reasons: (i)
the set of data points {p j

1, p j
2, . . . , p j

m} or R∗-tree nodes {w1,w2, . . . ,wm} containing the
set of data points {p j

1, p j
2, . . . , p j

m} have been pruned or (ii) the algorithm has terminated

before the set of data points {p j
1, p j

2, . . . , p j
m} have been included in A.

We know that the total travel distance of a set {p j
1, p j

2, . . . , p j
m} is within

dmin(w1,w2, . . . ,wm) and dmax(w1,w2, . . . ,wm), where w1,w2, . . . ,wm represent
p j

1, p j
2, . . . , p j

m or a minimum bounding rectangle of R∗-tree node containing

p j
1, p j

2, . . . , p j
m, respectively. In the algorithm, Mindist[k] represents the current

Group Trip Planning Queries in Spatial Databases 269

kth smallest distance of already computed dmax(w1,w2, . . . ,wm)s and remains same
or decreases with the execution of the algorithm. According to the assumption,
dmin(w1,w2, . . . ,wm)≤Mindist[k]. However, in the algorithm, (w1,w2, . . . ,wm) is only
pruned if dmin(w1,w2, . . . ,wm)> Mindist[k], which contradicts the assumption.

Further, the algorithm terminates when k sets of data points have been dequeued from
Qp, where elements of Qp are maintained in order of dmins. If {p j

1, p j
2, . . . , p j

m} is not
included in A then according to our algorithm {p j

1, p j
2, . . . , p j

m} has not been dequeued
as one of k sets of data points and has total travel distance larger than the kth smallest
total travel distance, which again contradicts the assumption. �

To further improve the pruning capabilities of our hierarchical algorithm, we can first
determine the upper bound of the kth minimum total travel distance for the group trip
and use it to prune data points/R∗-tree nodes while computing the optimal total travel
distance. We use the following heuristics to determine the upper bound of the kth mini-
mum total travel distance for the group trip.

p1
'

p1
'''

p1
''

s2

s3

s1

d 1

p1
'

p1
''' p1

''s2

s3

s1

d 1

(a) (b)

Fig. 2. Two example scenarios (a) and (b) for k = 1 and m = 2, where Heuristics 1 and Heuristic 2
are applied, respectively, to compute the upper bound

Heuristic 1. Let p1 be the GNN with respect to S, p j be the nearest neighbor from
p j−1 for 2 ≥ j < m, and pm be the kth GNN with respect to pm−1 ∪D. The upper
bound of the kth minimum total travel distance for the group trip is computed as
f (S,D, p1, p2, . . . , pm).

Heuristic 2. Let p1 be the GNN with respect to S∪D, p j be the GNN with respect
to p j−1 ∪D for 2 ≥ j < m, and pm be the kth GNN with respect to pm−1 ∪D. The
upper bound of the kth minimum total travel distance for the group trip is computed as
f (S,D, p1, p2, . . . , pm).

In Heuristic 1, the upper bound is computed based only on the distance, whereas in
Heuristic 2, the direction of D from S in addition to the distance are used for upper
bound computation. Depending on the distribution of locations of sources, destinations
and data points, Heuristic 1 or Heuristic 2 can provide the smaller upper bound of
the kth total travel distance. Figure 2 shows example scenarios for k = 1 and m = 2,
where Heuristics 1 and Heuristic 2 provide smaller upper bound in Figure 2(a) and 2(b),

270 T. Hashem et al.

respectively. In Figure 2(a), the upper bound is computed for the pair (p′′′1 , p′2) using
Heuristics 1 and in Figure 2(b), the upper bound is computed for the pair (p′′1, p′2) using
Heuristics 2.

Algorithm 4. UpperBound MinDist(S,D,k)
Input : S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, and k.
Output: The upper bound of the kth minimum total travel distance.
// Heuristic 1

p1← FindGNN(1,S)4.1

i← 24.2

for i < m do4.3

pi← FindNN(1, pi−1)4.4

pm← FindGNN(k, pm−1 ∪D)4.5

Dist1← f (S,D, p1, p2, . . . , pm)4.6

// Heuristic 2

p1← FindGNN(1,S∪D)4.7

i← 24.8

for i < m do4.9

pi← FindGNN(1, pi−1 ∪D)4.10

pm← FindGNN(k, pm−1 ∪D)4.11

Dist2← f (S,D, p1, p2, . . . , pm)4.12

if Dist1 ≤Dist2 then4.13

return Dist14.14

else4.15

return Dist24.16

Algorithm 4 shows the steps for computing the upper bound of the kth minimum
total travel distance for the group trip. The algorithm determines the upper bound us-
ing Heuristic 1 and Heuristic 2 separately (Line 4.3 and Line 4.6, respectively) and
returns the smaller upper bound of the kth total travel distance. Note that the func-
tions FindGNN and FindNN used in Algorithm 4 to compute the GNN and the nearest
neighbor are the same function used in Algorithm 2.

After computing the upper bound, in Algorithm 3, MinDist[k] is initialized with the
upper bound of the kth minimum total travel distance for the group trip instead of ∞
(Line 3.3) and used to prune data points/R∗-tree nodes using Lemma 2 (Line 3.17).

5 Experiments

In this section, we evaluate the performance of our proposed algorithm kGTP-HA with
the base line algorithm kGTP-IA through an extensive set of experiments. In our exper-
iments, we use two variants of our hierarchical algorithms: one without upper-bound of
kth minimum total travel distance, called kGTP-HA1, and the other with pre-computed
upper-bound, called kGTP-HA2. We use both real and synthetic data sets in our exper-
iments. The real data set C is taken from 62,556 points of interests (i.e., data points)

Group Trip Planning Queries in Spatial Databases 271

of California. We generate synthetic data sets using a uniform (U) and a Zipfian (Z)
distribution, respectively. We vary the size of U and Z as 5000, 10,000, 15,000, and
20,000 point locations. For all data sets, the data space is normalized into a span of
10,000× 10,000 square units. Since we need m categories of data points, we equally
divide the set of data points of a dataset and index them using R*-trees. We run the
experiments on a desktop with a Intel Core 2 Duo 2.40 GHz CPU and 4 GBytes RAM.

In realistic scenarios where a group of users plans a trip that involves different types
of data objects, the number of different data points is typically limited to 2 or 3. A
group may want to go to dinner, enjoy a movie at a cinema afterwards, and possibly
go later to a pub, but it is unlikely that a group trip will be planned in advance for a
larger number of places, i.e., data points. Thus we set the number of data types (m) to
2 and 3 in our experiments. A group will usually know in advance in which order they
will visit the different places. This also motivates to consider ordered kGTP queries in
our experiments. Note that our algorithm works with any number of data types for both
ordered and flexible kGTP queries.

We vary different parameters: the group size (n), the number of required sets of data
points (k), the query area, i.e., the minimum bounding rectangle covering the source
and destination locations (M), and the dataset size in different sets of experiments. In
all experiments, we measure IO costs and the query processing time to measure the
efficiency of our algorithms. Table 2 summarizes the values used for each parameter in
our experiments and their default values.

Table 2. Experiment Setup

Parameter Range Default
Group size 4, 16, 64, 256 64

Query area M 2%, 4%, 8%, 16% 4%
k 2, 4, 8, 16 4

Data set size (Synthetic) 5K, 10K, 15K, 20K -

We first present the experimental results for two types of data points (i.e., m = 2),
which we call a 2 stops GTP (2S-kGTP) query. Then we present the results for three
types of data points (i.e., m = 3), which we call a 3 stops GTP (3S-kGTP) query.

5.1 2S-kGTP Queries

In this section, for each set of experiments, we execute 100 2S-kGTP queries and show
the average results. These queries are generated randomly in the total space.

Effect of Group Size. Figures 3(a) and 3(b) show the IOs and the processing time,
respectively, required by 2S-GTP-IA, 2S-GTP-HA1, and 2S-GTP-HA2 for different
group sizes. Both IOs and the processing time increase with the increase of group size
for all three approaches. Figure 3(a) shows that 2S-GTP-IA requires on average two
order of magnitude more IOs than that of both 2S-GTP-HA1 and 2S-GTP-HA2. We
observe in Figure 3(b) that the processing time of 2S-GTP-IA is on average an order of

272 T. Hashem et al.

magnitude higher than that of 2S-GTP-HA. We also observe that 2S-GTP-HA2 takes
on average 20% less IOs and 27% less processing time than 2S-GTP-HA1, which is
expected due to a tighter upper-bound of the termination condition of 2S-GTP-HA2.

10
3

10
4

10
5

10
6

 256 64 16 4

IO
s

Group Size

10
0

10
1

10
2

10
3

 256 64 16 4
T

im
e
 (

s
e
c
)

Group Size

(a) (b)

Fig. 3. Effect of group size (data set C)

10
3

10
4

10
5

10
6

 16 8 4 2

IO
s

k

101

102

103

 16 8 4 2

T
i
m
e

(
s
e
c
)

k

(a) (b)

Fig. 4. Effect of k (data set C)

Effect of k. In this set of experiments, we vary the value of k as 2, 4, 8, and 16. In
Figure 4(a), we observe that the IO cost slightly increases with the increases of k for
2S-GTP-IA and remains almost constant for 2S-GTP-HA1 and 2S-GTP-HA2. From the
experimental results, we find that 2S-GTP-IA requires at least two orders of magnitude
times more IOs than that of both 2S-GTP-HA1 and 2S-GTP-HA2, and 2S-GTP-HA2
takes on average 4% less IOs than that of 2S-GTP-HA1.

Figure 4(b) shows that the processing time of 2S-GTP-IA is at least one order of
magnitude higher than that of both 2S-GTP-HA1 and 2S-GTP-HA2. On the other hand,

Group Trip Planning Queries in Spatial Databases 273

the processing time of 2S-GTP-HA2 is on average 13% lower than that of 2S-GTP-
HA1, which is expected as 2S-GTP-HA2 uses a tighter upper-bound to facilitate more
pruning capabilities.

10
3

10
4

10
5

10
6

 16 8 4 2

IO
s

Area of M(%)

10
1

10
2

10
3

 16 8 4 2

T
im

e
(s

e
c
)

Area of M(%)

(a) (b)

Fig. 5. Effect of query area M(data set C)

Effect of Query Area (M). In this set of experiments, we vary the query area M as
2%, 4%, 8%, and 16% of the data space. Figures 5(a) and 5(b) show the IO cost and
the processing time, respectively, required by 2S-GTP-IA, 2S-GTP-HA1, and 2S-GTP-
HA2 for different M. The IO cost and the processing time increase with the increase of
M area for all three algorithms as for a larger M we need retrieve to access more data
points from R*-trees than that of a smaller M.

Figure 5(a) shows that 2S-GTP-IA requires at least two orders of magnitude more
IOs than that of both 2S-GTP-HA1 and 2S-GTP-HA2, and 2S-GTP-HA2 takes 14%
less IOs than that of 2S-GTP-HA1. Similarly, Figure 5(b) shows that the processing
time of 2S-GTP-IA is on average one order of magnitude higher than that of both 2S-
GTP-HA1 and 2S-GTP-HA2, and 2S-GTP-HA2 takes on average 25% less processing
time than that of 2S-GTP-HA1.

Effect of Data Set Size. In this set of experiments, we vary the dataset size as 5000,
10000, 15000, and 20000 for both uniform (U) and Zipfian (Z) distributions.

Figures 6(a) and 6(b) show the IO cost and processing time, respectively, for dif-
ferent data set sizes with U distribution. The experimental results show that both 2S-
GTP-HA1 and 2S-GTP-HA2 outperform 2S-GTP-IA in a greater margin for a larger
dataset in terms of both IOs and processing time. Figures 7(a) and 7(b) show the IO
cost and processing time, respectively, for different data set sizes with Z distribution
and we observe that the experimental results for Z distribution follow similar trends to
U distribution.

274 T. Hashem et al.

10
2

10
3

10
4

10
5

 20 15 10 5

IO
s

Dataset size (in K)

10
0

10
1

10
2

10
3

 20 15 10 5

T
im

e
 (

s
e
c
)

Dataset size (in K)

(a) (b)

Fig. 6. Effect of dataset size (dataset U)

10
2

10
3

10
4

10
5

 20 15 10 5

IO
s

Dataset size (in K)

10
0

10
1

10
2

10
3

 20 15 10 5

T
im

e
 (

s
e
c
)

Dataset size (in K)

(a) (b)

Fig. 7. Effect of dataset size (dataset Z)

5.2 3S-kGTP Queries

From the experimental results of 2S-kGTP queries, we observe that both of our hierar-
chical approaches significantly outperform the iterative approach. Thus, in the next set
of experiments for 3S-kGTP queries, we only evaluate the performance of two variants
of our hierarchical approaches, 3S-GTP-HA1 and 3S-GTP-HA2. In these experiments,
we vary different parameters such as group size, k, M, and dataset size. Figures 8(a)
and 8(b) show the effect of varying group size on IO cost and processing time, respec-
tively, for California dataset. The experimental results show that 3S-GTP-HA2 always
outperforms 3S-GTP-HA1 in terms of both IOs and processing time for any group size.
We observe in Figures 8(a) that the processing time of 3S-GTP-HA2 is on average 55%
less than that of 3S-GTP-HA1. Similarly, 3S-GTP-HA2 requires on average 64% less

Group Trip Planning Queries in Spatial Databases 275

10
3

10
4

 256 64 16 4

IO
s

Group Size

10
1

10
2

10
3

10
4

 256 64 16 4

T
im

e
 (

s
e
c
)

Group Size

(a) (b)

Fig. 8. Effect of group size (data set C)

IOs than that of 3S-GTP-HA1. The results also show that 3S-GTP-HA2 outperforms
3S-GTP-HA1 in a greater margin for a larger group size.

We omit the experimental results for other parameters (e.g., k, M, and dataset sizes)
for space constraint. The results show similar behavior as of 2S-GTP queries evaluation
presented in the previous section. However, the processing time and IOs of 3S-GTP
queries are higher than those of 2S-GTP queries, which is expected. Since in realistic
scenarios, the number of different data points is typically limited to 2 or 3 for a kGTP
query, the trend of increased processing overheads for a larger value of m would not
effect the applicability of our algorithms.

6 Conclusion

In this paper, we introduced a new query type: the k group trip planning (kGTP) query.
This query has many real world applications, in particular with the increased use of
location-based social networks. We proposed an efficient hierarchical algorithm to eval-
uate kGTP queries. Our hierarchical algorithm evaluates the query with a single search
on the database. We also developed an iterative approach as baseline method, which
transforms kGTP queries into group nearest neighbor queries. We performed extensive
experiments to show the efficiency of our algorithms and benchmark our hierarchical
approach against the baseline method. The hierarchical algorithm performs on average
an order of magnitude time faster and requires on average two orders of magnitude less
IOs than the iterative approach. In the future, we plan to evaluate GTP queries in road
networks. We also aim to protect the location privacy [21,22] of users while evaluating
GTP queries, i.e., we will study scenarios where the group of users does not reveal their
locations among each other.

276 T. Hashem et al.

Acknowledgments. This research has been done in the department of Computer Sci-
ence and Engineering, Bangladesh University of Engineering and Technology (BUET).
The work is supported from the research grant by BUET.

References

1. Facebook, http://www.facebook.com
2. Google+, http://plus.google.com
3. Loopt, http://www.loopt.com
4. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE,

p. 301 (2004)
5. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spa-

tial databases. TODS 30(2), 529–576 (2005)
6. Deng, K., Sadiq, S.W., Zhou, X., Xu, H., Fung, G.P.C., Lu, Y.: On group nearest group query

processing. IEEE TKDE 24(2), 295–308 (2012)
7. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: SIGMOD,

pp. 1009–1020 (2011)
8. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query. The

VLDB Journal 17(4), 765–787 (2008)
9. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning queries in

spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS,
vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

10. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD,
pp. 47–57 (1984)

11. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust
access method for points and rectangles. SIGMOD Rec. 19(2), 322–331 (1990)

12. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: International Symposium on
Advances in Spatial Databases, pp. 83–95 (1995)

13. Li, F., Yao, B., Kumar, P.: Group enclosing queries. IEEE TKDE 23(10), 1526–1540 (2011)
14. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced route

query. In: GIS, pp. 10:1–10:10(2008)
15. Ohsawa, Y., Htoo, H., Sonehara, N., Sakauchi, M.: Sequenced route query in road network

distance based on incremental euclidean restriction. In: Liddle, S.W., Schewe, K.-D., Tjoa,
A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 484–491. Springer, Heidel-
berg (2012)

16. Malviya, N., Madden, S., Bhattacharya, A.: A continuous query system for dynamic route
planning. In: ICDE, pp. 792–803 (2011)

17. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: ICDE,
pp. 900–911 (2011)

18. Geisberger, R., Kobitzsch, M., Sanders, P.: Route planning with flexible objective functions.
In: ALENEX, pp. 124–137 (2010)

19. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an
efficiency study. In: SIGMOD, pp. 255–266 (2010)

20. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71–79
(1995)

21. Hashem, T., Kulik, L., Zhang, R.: Privacy preserving group nearest neighbor queries. In:
EDBT, pp. 489–500 (2010)

22. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for location ser-
vices without compromising privacy. In: VLDB, pp. 763–774 (2006)

http://www.facebook.com
http://plus.google.com
http://www.loopt.com

Reverse-k-Nearest-Neighbor Join Processing�

Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Johannes Niedermayer,
Matthias Renz, and Andreas Züfle

Institute for Informatics, Ludwig-Maximilians-Universität München
{emrich,kriegel,kroeger,niedermayer,renz,zuefle}@dbs.ifi.lmu.de

Abstract. A reverse k-nearest neighbour (RkNN) query determines the objects
from a database that have the query as one of their k-nearest neighbors. Pro-
cessing such a query has received plenty of attention in research. However, the
effect of running multiple RkNN queries at once (join) or within a short time
interval (bulk/group query) has only received little attention so far. In this pa-
per, we analyze different types of RkNN joins and discuss possible solutions for
solving the non-trivial variants of this problem, including self and mutual pruning
strategies. The results indicate that even with a moderate number of query objects
(|R| ≈ 0.0007|S|), the performance (CPU) of the state-of-the-art mutual prun-
ing based RkNN-queries deteriorates and hence algorithms based on self pruning
without precomputation produce better results. During an extensive performance
analysis we provide evaluation results showing the IO and CPU performance of
the compared algorithms for a wide range of different setups and suggest appro-
priate query algorithms for specific scenarios.

1 Introduction

A Reverse k-Nearest Neighbor (RkNN) query retrieves all objects from a multidimen-
sional database having a given query object as one of their k nearest neighbors. Vari-
ous algorithms for efficient RkNN query processing have been studied under different
conditions due to the query’s relevance in a wide variety of domains — applications
include decision support, profile-based marketing and similarity updates in spatial and
multimedia databases.

An important problem in database environments that has not received much attention
so far is the scenario where the query does not consist of a single point but instead of a
whole set of points, for each of which an RkNN query has to be performed. This setting
is often referred to as group query, bulk query or simply join of two sets R and S. This
problem frequently arises in the strategic decision making process of companies that
supply products to clients which are typically shops (cf. Figure 1). Consider a supplier
(e.g. supplying video stores) that has a set of products R (e.g. videos each described
by a given set of features like genre, length, etc.). Each client (e.g. video store) also
has a portfolio S (e.g. a set of videos) which typically include different groups of prod-
ucts (videos) satisfying different preferences and, thus, different groups of customers.
In order to judge which products should be offered by the supplier to a given client,
the supplier needs information about which objects in R fit to the characteristics of the
client’s portfolio S and/or would be a good supplement to extend this portfolio. From

� Part of this work was supported by the DFG under grant number KR 3358/4-1.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 277–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 T. Emrich et al.

Legend

products of client (set S)

new products of supplier (set R)ur
e
2

new products of supplier (set R)

bad fit

perfect fit
Fe
at
u

fit to extend portfolio

Feature 1

Fig. 1. Application of RkNN join between two sets of products R and S for product (set) recom-
mendation

the supplier’s point of view it is particularily important to know about the data charac-
teristics. Thus, many companies rely on the following process in order to recommend
updates for their clients: First, for each product s in S the kNNs are computed. Second,
for each product r in R, it is examined whether or not r is amongst the kNN of which
product s. In other words, for each r, an RkNN query in S is launched. If r has a lot of
RkNNs in S, this indicates that r fits well to a corresponding group within the data dis-
tribution of s (although this usually needs additional inspection). If r has no RkNNs in
S, r obviously does not fit well. In addition, if many products ri have the same s as their
RkNN and s is so far an outlier in S, the products ri may be a good addition to extend
the portfolio (probably depending on the current success of s). Analogously, RkNN
joins can also be employed for solving inverse queries [1] where the task is to find for a
given set of query objects the set of database objects, having all (/most) query objects in
their kNN set. Furthermore, the RkNN join operation plays a key role in updating pat-
terns derived by almost all data mining algorithms that rely on kNN information after
changes to the database, e.g. shared-neighbor clustering [2,3] and kNN-based outlier
detection [4,5].

For evaluating single RkNN queries, two groups of algorithms have evolved over
time. Self pruning approaches (e.g. [6,7,8]) have to perform costly precomputations in
order to materialize kNN-spheres for all database objects. These kNN-spheres are used
for pruning candidates during query execution. In contrast, mutual pruning approaches
(e.g. [9,10,11]) do not perform any precomputations. This results in more flexibility
in terms of updates and the choice of k because materialized results need not to be
updated each time the database changes. Furthermore, in contrast to self pruning ap-
proaches, mutual pruning approaches do not require the parameter k to be known prior
to index generation. However, mutual pruning introduces costly refinement of candi-
dates, resulting in higher overall cost.

Recently, we sketched a mutual pruning approach for RkNN join processing in [12].
In this paper, we discuss how self pruning approaches adapt to RkNN joins and we
compare their performance to the existing mutual pruning approach. We will show that
the overhead of performing a traditional RkNN-query for each point in the query set
R separately cannot be justified, even if R is small. Additionally, we will see that with
increasing size of R self pruning approaches that compute kNN spheres on the fly
become more useful than approaches based on mutual pruning.

Reverse-k-Nearest-Neighbor Join Processing 279

Beside an overview of general related work (cf. Section 3), the key contributions of
this paper are as follows:

– We provide a formal overview over variants of the RkNN join, showing that the
monochromatic RkNN join addressed within this paper is a non-trivial instance of
the RkNN join problem (cf. Section 2).

– We suggest an algorithm for performing monochromatic RkNN joins based on self-
pruning in Section 4. It does not rely on materialized information but computes
necessary information on the fly. Thus, this approach features great flexibility in
terms of database updates and the choice of k.

– A systematic comparison in Section 5 shows that the performance of classic al-
gorithms for single RkNN queries deteriorates even for relatively small query sets
(|R| ≈ 0.0007|S|). Furthermore, the proposed solution outperforms the mutual-
pruning solution of [12] by orders of magnitude.

Section 6 concludes the paper.

2 Problem Definition

In this section, we recap the definition of RkNN queries and formally define the RkNN
join and important variants.

2.1 Background

Given a finite multidimensional data set S ⊂ Rd (si ∈ Rd) and a query point r ∈ Rd, a
k-nearest neighbor (kNN) query returns the k nearest neighbors of r in S:

kNN(r, S) = {s ∈ S : |{s′ ∈ S : dist(s′, r) < dist(s, r)}| < k}

A monochromatic RkNN query, where r and s ∈ S have the same type, can be defined
by employing the kNN query:

RkNN(r, S) = {s ∈ S|r ∈ (k + 1)NN(s, S ∪ {r})}

Thus, an RkNN query returns all points si ∈ S that would have r as one of its nearest
neighbors. In Figure 2 (a) an R2NN query is shown. Arrows denote a subset of the
2NN relationships between points from S. Since r is closer to s2 than its 2NN s1, the
result set of an R2NN query with query point r is {s2}. s3 is not a result of the query
since its 2NN s2 is closer than r. Note that the RkNN query is not symmetric, i.e. the
kNN result kNN(r,S) �= RkNN(r, S), because the 2NNs of r are s2 and s3. Therefore
the result of an RkNN(r,S) query cannot be directly inferred from the result of a kNN
query kNN(r,S).

Although similar, the bichromatic RkNN query is slightly different. In this case, two
sets R and S are given. The goal is to compute all points in S for which a query point
r ∈ R is one of the k closest points from R [13]:

BRkNN(r, R, S) = {s ∈ S|r ∈ kNN(s,R)}

Both variants of RkNN queries vary in the data set on which the kNN-query is per-
formed: for an RkNN query the kNN-query is (with some modifications) performed on
S, whereas for a BRkNN-query it is performed on R.

280 T. Emrich et al.

Fig. 2. Monochromatic R2NN Query (a), Monochromatic R1NN Join(b)

2.2 The RkNN Join

In this paper, we address the problem of RkNN joins. Given two sets R and S, the goal
of a monochromatic RkNN join is to compute, for each point r ∈ R its monochromatic
RkNNs in S.

Definition 1 (Monochromatic RkNN join [12]). Given finite sets S ⊂ Rd and R ⊂
Rd, the monochromatic RkNN join R

MRkNN

�� S returns a set of pairs containing for each

r ∈ R its RkNN from S:R
MRkNN

�� S = {(r, s)|r ∈ R ∧ s ∈ S ∧ s ∈ RkNN(r, S)}

An example for k = 1 can be found in Figure 2 (b). The result for both objects from R

in this example is R1NN(r1) = R1NN(r2) = {s2}, i.e. R
MRkNN

�� S = {(r1, s2), (r2, s2)}.
Note that the elements r1 and r2 from R do not influence each other, i.e., r1 cannot
be a result object of r2 and vice versa. This follows directly from the definition of the

MRkNN join. A variant of the RkNN join is the bichromatic join R
BRkNN

�� S where for
all r ∈ R a bichromatic RkNN query is performed:

Definition 2 (Bichromatic RkNN join).Given two finite sets S ⊂ Rd and R ⊂ Rd,

the bichromatic RkNN join R
BRkNN

�� S returns a set of pairs containing for each r ∈ R its

BRkNN from S:R
BRkNN

�� S = {(r, s)|r ∈ R ∧ s ∈ S ∧ s ∈ BRkNN(r, R, S)}

A BRkNN join can be expressed with a kNN join. Based on the definition of the
BRkNN query, the BRkNN join can be converted:

R
BRkNN

�� S = {(r, s) : r ∈ R ∧ s ∈ S ∧ r ∈ kNN(s,R)}

The kNN join can be defined as:

S
kNN

�� R = {(s, r) : s ∈ S ∧ r ∈ R ∧ r ∈ kNN(s,R)}

⇔ R
BRkNN

�� S = S
kNN

�� R

Hence, a BRkNN join can be performed by reusing the techniques from kNN research,
such as [14,15]. Furthermore, this problem has already been solved for an incremental
setting in [16].

Last but not least let us analyze the special case where R = S. The monochromatic
RkNN-self-join can be defined as follows:

Reverse-k-Nearest-Neighbor Join Processing 281

Definition 3 (Monochromatic RkNN Self Join). Given a finite set S ⊂ Rd, the mono-

chromatic RkNN self join is defined as S
MRkNN

�� S.

Performing a monochromatic RkNN-self-join is trivial, since it is possible to perform a
self-kNN-join on S:

S
MRkNN

�� S = {(r, s)|r ∈ S ∧ s ∈ S ∧ r ∈ (k + 1)NN(s, S ∪ {r})}

= {(r, s)|r ∈ S ∧ s ∈ S ∧ r ∈ kNN(s, S)}

The resulting pairs (r, s) of the kNN-join just have to be inverted to produce the result
of the RkNN join. Notice that with a self RkNN join, a query point always returns itself
as one of its RkNNs.

In summary, we observe that the monochromatic RkNN join where R �= S cannot be
matched to existing well-addressed problems. Therefore, we will address the processing
of this problem in this paper.

3 Related Work

The problem of performing multiple RkNN queries at a time, i.e., a RkNN join, has
hardly been addressed. The authors of [16] deal with incremental bichromatic RkNN
joins as a by-product of incremental kNN joins, aiming at maintaining a result set over
time instead of performing bulk evaluation of large sets. Since it does not address the
problem of a monochromatic join, it solves a different problem. In [12] we employed
a mutual pruning approach for RkNN joins. In this paper however, we will investigate
self pruning approaches for RkNN joins.

Contrary to RkNN joins, the problem of efficiently supporting RkNN queries has
been studied extensively in the past years. Existing approaches for Euclidean RkNN
search can be classified as self pruning approaches or mutual pruning approaches. Since
these approaches are the foundations of RkNN join processing, we review them in the
following.

Self pruning approaches like the RNN-Tree [6] and the RdNN-Tree [7] are usually
designed on top of a hierarchically organized tree-like index structure. They try to con-
servatively or exactly estimate the kNN distance of each index entry e. If this estimate
is smaller than the distance of e to the query q, then e can be pruned. Thereby, self prun-
ing approaches do not usually consider other entries (database points or index nodes)
in order to estimate the kNN distance of an entry e, but simply pre-compute kNN dis-
tances of database points and propagate these distances to higher level index nodes. The
major limitation of these approaches is that the pre-computation and update (in case of
database changes) of kNN distances is time consuming, the storage of these distances
wastes memory and, thus, these methods are usually limited to one specific or very few
values of k. Approaches like [8,17] try to overcome these limitations by using approx-
imations of kNN distances but this in turn yields an additional refinement overhead
during query processing – or only approximate results.

Mutual pruning approaches such as [9,10,11,18] use other points to prune a given
index entry e. The most general and efficient approach called TPL is presented in [11].

282 T. Emrich et al.

It uses any hierarchical tree-based index structure such as an R-Tree to compute a near-
est neighbor ranking of the query point q. The key idea is to iteratively construct Voronoi
hyper-planes around q w.r.t. to the points from the ranking. Points and index entries that
are beyond k Voronoi hyper-planes w.r.t. q can be pruned and do not have to be consid-
ered for Voronoi construction anymore.

A combination of self- and mutual pruning is presented in [19]. It obtains conser-
vative and progressive distance approximations between a query point and arbitrarily
approximated regions of a metric index structure. A further specialization of this ap-
proach to Euclidean data is proposed in [20] exploiting geometric properties to achieve
a higher pruning power.

Beside solutions for Euclidean data, solutions for general metric spaces (e.g. [8,17])
usually implement a self pruning approach. Typically, metric approaches are less effi-
cient than the approaches tailored for Euclidean data because they cannot make use of
the Euclidean geometry.

Furthermore, there exist approximate solutions for the RkNN query problem that
aim at reducing the query execution time at the cost of accuracy (e.g. [10,21]).

4 A Self Pruning Approach

4.1 General Idea

As the key contribution of this paper, we developed a self pruning approach that does
not rely on materialized information as existing self pruning techniques but computes
kNN distances on the fly. For single RkNN queries, such a self pruning approach ob-
viously suffers from this overhead. However, intuitively, these on the fly computations
may amortize for a large number of queries, i.e., a large outer set R (and we will see
in the experiments that the break even point is surprisingly small). Thus, the idea of
the following solution provides a dedicated algorithm to perform an RkNN join us-
ing the techniques of self pruning. In the following, we still assume that R and S are
aR∗-tree representations of R and S, respectively. Let us first decompose the defini-
tion of the RkNN join into smaller pieces. The RkNN query returns all pairs of points
(r ∈ R, s ∈ S) such that r is located in the kNN-spheres of s. Therefore, as a first
step we simply compute the kNN-spheres of all points in S. This can be done by per-
forming a self-(k+1)NN-join on S.1 Then, for each of the resulting kNN-spheres, the
set of points in R that is enclosed by this sphere has to be returned. This can be done
by performing an ε-range query for each kNN-sphere on the set R. Note that the later
query does not correspond to an ε-range-join, since the kNN-spheres of each s ∈ S will
usually have different radii. Rather, a “varying-range-join” needs to be applied. This in-
troduces some interesting possibilities of optimization when pruning subtrees inR. We
will address this problem in Section 4.3. To summarize, an RkNN join can be performed
by combining a self-(k+1)NN-join of S with a varying-range-join, a generalization of
the ε-range-join. We will now introduce algorithms for computing the kNN-join and the
varying-range-join.

1 Each point will have itself in its kNN set, thus we need a k + 1NN-join to find the kNNs of
each point in S.

Reverse-k-Nearest-Neighbor Join Processing 283

4.2 Implementing the Self-kNN-Join

A variety of researchers addressed the problem of efficiently computing the result of a
kNN-Join. In our implementation we decided to evaluate two different approaches. One
of them is a sequential second-order nested-loop join, that does not directly facilitate
the structure of the underlying index, however it exploits the spatial proximity of points
in leaf nodes of the tree. The other one is a hierarchical join that fully utilizes the index
to reduce the number of unnecessary comparisons. Both of them shall be introduced in
this section. In Section 5 we will also investigate which of the suggested algorithms fits
best for specific data sets. For the sake of clarity, we assume to have two virtual copies
Sl and Sr of S in the following. An entry from Sl is denoted by eSl and an entry from
Sr as eSr .

Sequential Self-kNN-Join. For the sequential self-kNN-join we implemented a cache-
aware nested-block loop join that takes the specific properties of the self-join, and the
spatial proximity of values in the leaf nodes of a tree-structured index into account. It
is based on the implementation in the ELKI-framework [22]. The algorithm basically
takes a leaf from the index S, performs a self-join within the same leaf first in order
to initialize its maximum kNNDist (MaxKNNDisttemp) as its pruning distance. The
pruning distance is used to prune whole leaf pages later on without processing the points
contained in them. Then it sequentially accesses all leaf nodes of the index and joins
them with the currently processed node. This version is not only easy to implement, it
also enables to return partial results at each time where a page eSl has been processed
such that memory can be freed after directly performing a varying-range-join on the
partial result.

For each leaf node eSl from Sl, the algorithm proceeds as follows. First, a sequential
self-kNN-join of eSl is performed in order to initialize the MaxKNNDisttemp() of
eSl . The kNN-join basically collects for each point in p ∈ eSl the k points from eSr
that are closest to p. Note that the actual kNN’s are not relevant, just the distances of
current kNN-candidates have to be tracked and hence the memory consumption can be
reduced significantly compared to traditional kNN join processing. In a second step,
each leaf eSr �= eSl of Sr is traversed in arbitrary, but deterministic, order. The page
eSr can be pruned if MINDIST (eSr , e

S
l) > MaxKNNDisttemp(e

S
l). If the page

cannot be pruned, each point from eSl is joined with each point from eSr . After joining
the contained points, the pruning distance MaxKNNDisttemp(e

S
l) is updated when

necessary. After finishing the join of eSl , the kNN-distances of points in this page can be
returned as a partial result. The join of the following leaf node eSl′ of Sl is again joined
with itself first, however the join of remaining nodes is performed in opposite order. The
intention of this proceeding is that some nodes from the last traversal are still stored in
the page cache such that they do not have to be reloaded, reducing the number of page
accesses.

Hierarchical Self-kNN-Join. The hierarchical kNN-Join is based on the best-first
kNN search algorithm from [15], however with some minor adaptions to fit the special
properties of our setting, a self-kNN-join. Actually, this join is only semi-hierarchical
since it does not join two trees but rather joins each leaf from one tree with another
tree, yielding an asymptotic complexity of O(|S| log(|S|)) for a self join in contrast to
O(|S|2) for the sequential self-join described in the section before. In contrast to a fully

284 T. Emrich et al.

hierarchical approach this algorithm enables the possibility to return partial results each
time a page eSl has been processed; we will exploit this property when processing the
varying-range-join.

For each leaf node eSl taken from Sl, the tree Sr is traversed starting with the root
node in best-first order according to the MINDIST of the current group and the cur-
rently processed sub-tree. For this purpose, the root entry of Sr is inserted into a priority
queue. The priority queue is ordered by increasingMINDIST to eSl . MINDIST be-
tween two overlapping entries is always zero, however a bigger overlap is usually better
than a smaller one since this can reduce the MaxKNNDisttemp of the currently pro-
cessed page more effectively. Therefore eSl that overlap eSr more than other pages are
preferred. The algorithm pops the first entry eSr from the priority queue and checks if
MINDIST (eSr , e

S
l) ≤ MaxKNNDisttemp. Entries with MINDIST (eSr , e

S
l) >

MaxKNNDisttemp are pruned as in the sequential approach. If an entry cannot be
pruned, the corresponding node has to be accessed. If the node is an intermediate node,
all its children that cannot be pruned are inserted into the priority queue, i.e., the page
is resolved. If the node is a leaf node, the page is joined. Joining is similar to the pro-
ceeding of the sequential join, however it employs some additional improvements from
[15]: points ri ∈ eSr with MINDIST (eSl , ri) > kNNDisttemp(e

S
l) and all points

li ∈ eSl with NNDist(li) < MINDIST (li, e
S
r) can be pruned during an initial scan

of the processed pages. This preprocessing reduces the quadratic cost of comparing
all entries from one node with all entries from the other node. After finishing the join
MaxKNNDisttemp is updated when necessary.

4.3 Implementing the Varying-Range-Join

A trivial solution for performing a varying-range-join would be to sequentially search
the set R for each s ∈ S to find {r ∈ R|dist(r, s) < kNNDist(s)}. This oper-
ation returns the subset of R that would contain s as one of its RkNN-results. As
a first improvement, the tree structure of R can be exploited to reduce the asymp-
totic complexity to a logarithmic one by performing a depth-first traversal: Only nodes
eR of R that intersect the kNN-sphere of s need to be considered, i.e., subtrees with
MINDIST (eR, s) > kNNDist(s)) can be pruned. For reducing the number of disc
accesses, e.g. if a slow HDD is used instead of a fast SSD, it would be a good idea to
traverse R less often with a larger subset of S. Since both self-kNN-join algorithms
join pages eS of objects, partial results show spatial proximity. This spatial proximity
can be used to prune subtrees fromR that cannot contain result candidates for any point
in eS , greatly speeding up the range query. This technique can even be extended. The
straightforward approach for computing an RkNN join-result would be to materialize
all kNN-spheres first and then perform a range query for each of the spheres on R.
However, in order to keep the memory consumption for storing kNN-spheres low, a
readily kNN-joined page can be directly range-joined withR such that the correspond-
ing kNN-spheres of the page do not have to be stored further.

This varying-range-join is implemented in form of a depth-first index traversal. It
receives a set eS containing points from S in combination with their kNN-distances
and R. The algorithm first checks each child of the root node of R whether or not it
has to be accessed, i.e., if this page could contain a varying-range-join result of any

Reverse-k-Nearest-Neighbor Join Processing 285

Algorithm 1. VaryingRangeJoin(Entry eR, Set eS)
if R is LeafNode then

for all r ∈ eR do
for all s ∈ eS do

if dist(r, s) ≤ kNNDist(s) then
report (r, s) as a result tuple

end if
end for

end for
else

for all eR1 ∈ eR do
if PossibleCandidate(eS ,eR1) then

VaryingRangeJoin(eR1 ,eS)
end if

end for
end if

Fig. 3. Comparison of MS(eS) and CMBR(eS) in an (a) average, (b) worst, and (c) best case

point in eS . If the child has to be accessed, it proceeds in a depth-first order, accessing
its children and testing them recursively. The pseudo code is depicted in Algorithm 1.
Checking if any child from eR might have a point from eS as an RkNN is evaluated
in the function PossibleCandidate(eS, eR1). Checking can be achieved in two ways, by
employing the Minkowski sum, or by laying an MBR around all kNN-spheres contained
in eS :

– Use the Minkowski sum MS(eS), following the idea of [7]: This method checks
whether the MBR of eR has a distance of more than max

s∈eS
kNNDist(s) to the

MBR of the points in eS and can be evaluated by checking whether
MINDIST (MBR(eR1),MBR(eS)) is less than or equal to max

s∈eS
kNNDist(s)

– Build a bounding box around all kNN-spheres, following [6]: Let
CMBR(eS) = MBR(∪

s∈eS
kNNSphere(s)). eR1 has to be evaluated if

CMBR(eS) ∩MBR(eR1) �= ∅. The MBR CMBR(eS) can be calculated as:

CMBR(eS).mini = min
pj∈eS

{pj[i]− kNNDist(pj)}

CMBR(eS).maxi = max
pj∈eS

{pj[i] + kNNDist(pj)}

where 0 ≤ i ≤ d.

286 T. Emrich et al.

While the first check is quite simple to perform and for traditional range-joins even very
restrictive, the second approach is usually better when the diameter of kNN-spheres dif-
fers. An example for both bounding boxes is shown in Figure 3 (a). However, note that
none of the checks is the best solution for all scenarios. There exist special cases where
the Minkowski sum fits the contained spheres tighter than CMBR(eS). For example
if |eS | = 1, the volume covered by a Minkowski sum is smaller than CMBR(eS)
(cf. Figure 3 (b)). More general, the worst case for CMBR(eS) happens if at each
face of MBR(eS) there is a point p with kNNDist(p) = max

s∈eS
kNNDist(s). In this

case there is MS(eS) ⊂ CMBR(eS) and hence the Minkovski sum shows higher
pruning power. The best case (Figure 3 (c)) happens if for each point p ∈ eS there is
kNNSphere(p) \MBR(eS) = ∅, i.e., points with large kNN-spheres are close to the
center of MBR(eS). In this scenario,CMBR(eS) performs better than the Minkowski
sum approach.

5 Experiments

We evaluate the mutual pruning approach from [12] (referred to as UL due to its use
of update lists), and our self pruning variants (kNN∗) in comparison to the state-of-the-
art single RkNN query processor TPL in an RkNN join setting within the Java-based
KDD-framework ELKI [22]. As performance indicators we chose the CPU time and
the number of page accesses. Note that we did not evaluate existing mutual-pruning
techniques such as [7] since these are only applicable if the value of k is fixed over all
performed RkNN queries.

It should be noted that, for estimating the CPU time of a particular algorithm, we
measured the thread time of the corresponding Java thread and performed dry runs
before executing the actual simulations in order to keep the impact of garbage collection
and Just-In-Time compilation on the results low. A test run was aborted if it lasted at
least 20 times longer than executing a self pruning based RkNN join with the same
set of variables. For measuring the number of page accesses, we assumed that a given
number of pages fit into a dedicated cache. If a page has to be accessed but is not
contained in the page cache, it has to be reloaded. If the cache is already full and a
new page has to be loaded, an old page is kicked out in LRU manner. The page cache
only manages data pages from secondary storage, remaining data structures have to
be stored in main memory. In order to avoid everything being stored in memory, we
employed a restrictive approach, assuming that only node- and entry-IDs can be stored
in main memory. Therefore, each time information about an entry, e.g. an MBR or a data
point, has to be accessed, the corresponding data page has to be reloaded into the cache.
We chose this restrictive strategy because all algorithms employ different methods on
processing data. While a sequential kNN-join processes only two data pages at once,
mutual pruning based approaches like TPL and UL process the whole tree at a time by
facilitating lists of entries, e.g. the TPL entry heap. These data structures are principally
unbounded, such that storing whole entries in memory could lead to a situation where
the whole tree can be accessed without reloading any page from disk. This would bound
the number of page accesses to the tree size, which is unrealistic in large database
environments. We set the cache size to fit about 5% of all nodes in the default setting.

Reverse-k-Nearest-Neighbor Join Processing 287

We chose the underlying synthetic data sets from R and S to be normally distributed
with equivalent mean and a standard deviation of 0.15. We set the default size of R
to |R| = 0.01|S|, since the performance of TPL degenerates with increasing |R|. For
each of the analyzed algorithms we used exactly the same data set given a specific set
of input variables in order to reduce skewed results. As an index structure for querying
we employed an aggregated R*-tree (aR*-Tree [23]). During performance analysis, we
analyzed the impact of k, the number of data points in R and S, the dimensionality
d, the overlap o between the data sets R and S, the page size p and the cache size c
on the performance of the evaluated algorithms keeping all but one variable at a fixed
default value while varying a single independent variable. Input values for each of the
analyzed independent variables can be found in Table 1. Furthermore, we investigated
empirically for which sizes of the sets R and S TPL and kNN∗-algorithms show equiv-
alent performance. This experiment is of great practical relevance since it gives hints
on which specific algorithm to use in a specific setting.

Table 1. Values for the evaluated independent variables. Default values are denoted in bold.

Variable Values Unit

k 5, 10, 100, 500, 1000 points
d 2, 4, 6, 8, 10 dimensions
|R| 10, 100, 1000, 10000, 20000, 40000 points
|S| 10, 1000, 10000, 20000, 40000, 80000 points
o 0.0, 0.2, 0.4 |μS − μR|
p 512, 1024, 2048, 4096, 8192 bytes
c 4096, 16364, 32768, 65536, 131072 bytes

TPL was implemented as suggested in [11], however we did not incorporate the clip-
ping step since this technique increased the computational performance of the algorithm
and had only a marginal effect on the page accesses (especially when d > 2). Instead we
implemented the decision criterion from [24] to enable pruning on intermediate levels
of the indexes.

Concerning the nomenclature of the algorithms we use the following notation. UL
is the mutual pruning based algorithm from [12]. The additional subscript S (Single)
means that every single point of R was queried on its own. With ULG (Group), a whole
set of points, a leaf page, was queried at once. ULP (Parallel) traversed both indexes
for R and S in parallel. For the kNN algorithms we employ a similar nomenclature
kNNABC:

– A ∈ {H,S} denotes whether a hierarchical or sequential nearest neighbor join is
used(compare Section 4).

– B ∈ {S,G}: S denotes whether the whole kNN join is processed first and then
each resulting kNN sphere is used to perform a single range query on R. G (group)
denotes that after the kNNs of a single page from S is computed, the correspond-
ing page is used to perform a varying-range-query on the tree of R. The second
method can be employed to keep the number of intermediate results low and avoid
swapping these intermediate results to disk. Furthermore both methods vary in the
algorithm used for the range-join, i.e., whether each point is queried separately or
groups of points are queried together.

288 T. Emrich et al.

Fig. 4. Performance (CPU time), synthetic dataset. Time is measured in seconds.

– C ∈ {C,M} indicates how the MBR is computed when performing a group range-
join (C: CMBR, M : Minkovski sum, compare Section 4).

5.1 Experiments on Synthetic Data

Varying k. In a first series of experiments, we varied the parameter k. While the exe-
cution time of the self pruning based kNN∗ increases moderately with k, the remaining
mutual pruning approaches become already unusable with low values for k (cf. Fig-
ure 4 a). The runtime of TPL increases considerably fast. The runtime of the UL al-
gorithms degenerates similar to TPL; the main problem with this family of algorithms
is their use of update lists whose size increases with k, compare [12]. The runtime be-
haviour of all kNN-based algorithms increases more moderate with increasing k. The
performance of the hierarchical join is more stable w.r.t. different values of k, on the
one hand side because the hierarchical version of the join can prune whole subtrees
on the index level, and on the other hand because the hierarchical join employs further
optimizations when joining leaf pages. Furthermore, note that the effect of performing
a single/group varying-range join and using different MBRs is quite small. The more
sophisticated approach kNN HGC is indeed the best one, however the difference in ex-
ecution time compared to the simpler solutions kNN HGM and kNN HS is quite low
because in this setting |R| is too small.

Concerning the number of page accesses, the picture is quite similar (cf. Figure 5 a).
TPL and UL show a worse performance than the kNN-based solutions. However, inter-
estingly the curves of the sequential and hierarchical kNN-join intersect if k becomes
rather large, making the sequential join a better choice. This shows that with large
values of k the pruning of whole subtrees of the index-based approach fails such that
the overhead for traversing the index nodes of the tree cannot be justified any more.

Reverse-k-Nearest-Neighbor Join Processing 289

Fig. 5. Performance (page acesses), synthetic dataset

Varying the Dimensionality (d). Taking a look at the performance of the different algo-
rithms with varying dimensionality offers other interesting results. Note that the scale of
these graphs is logarithmic (cf. Figure 4 b and 5 b). The UL approaches scale worse than
the other approaches, because the pruning power of index-level pruning decreases with
increasing dimensionality. TPL and the hierarchical join variants scale similarly, how-
ever, in this specific setting, the TPL based join performs by over a magnitude worse than
the hierarchical join. Comparing sequential and hierarchical join, the performance of the
index used by the hierarchical join degenerates with higher dimensionality, such that the
sequential join is able to outperform all remaining approaches if the number of dimen-
sions becomes higher than 6. This behaviour is most likely well explained by the “curse
of dimensionality” and the degradation of spatial index structures in high dimensions.

The results in terms of the number of Disk accesses look very similar, therefore
they shall not be further investigated. However note that the UL approaches show much
better performance in terms of the number of disk accesses if the dimensionality is low.
Therefore, we recommend to use UL for spatial applications (i.e. 2D data).

Varying the Size of R (|R|). Varying |R| shows a negative effect on the mutual pruning
approaches TPL and UL (cf Figure 4 c). Especially TPL and ULS scale linearly with
|R|. Although the execution time of the join-based algorithms grows with |R| as well,
this increase is moderate. Note that with a larger |R| the difference between the different
range-join algorithms becomes more obvious. If |R| is very large, the CMBR method
become by about 30% better than the more simple Minkowsky MBRs. Furthermore, the
epsilon-range-join where each kNN-sphere is queried on its own is outperformed by its
group-based counterparts. Recall that we set the default size of R to |R| = 100. In this
case even linearily scanning R for a kNN-sphere from S would not lead to a significant
loss in performance. However, if |R| becomes larger, the logarithmic performance of a
hierarchical join becomes visible, and pruning subtrees earlier can further speed up the
query such that the choice of an MBR falls clearly on the CMBRs.

290 T. Emrich et al.

Taking a look at the number of disk accesses (illustrated in Figure 5 c) shows that
performing an epsilon-range query for each kNN-sphere from S is not a good idea if R
becomes large. In this scenario, many of the pages fromR have to be reloaded during each
of the |S| queries, putting high load on the secondary storage. However, if neighboured
values are queried in groups as done in the HGM and HGC algorithms, the cache can be
used more efficiently even though these approaches mutually loadR andS into the cache.

Varying the Size of S (|S|). Next we analyzed the effect of different values for |S|
regarding the CPU time (cf Figure 4 d). Again, the hierarchical join variants perform
best, followed directly by the sequential join. On the other hand, the UL variants per-
form worst. However, the UL variant that queries a single point from R during each
iteration performs best since this enables highest pruning power. Most importantly the
shape of the TPL algorithm looks totally different. It increases faster than the curve of
the kNN-join variants first, but then intersects them for higher values of |S|, indicating
the different asymptotic complexity of the different algorithms. Not taking into account
the epsilon-range join, the asymptotic complexity of the sequential join is O(|S|2) while
the complexity of the hierarchical join is about O(|S| log(|S|)) which is in accordance
to the empirical results. To the best of our knowledge the theoretical runtime complex-
ity of the TPL algorithm has not been analyzed so far, however the structure of the
algorithm suggests a logarithmic complexity for a single query point. For the number
of disk accesses the picture is similar which can be observed in Figure 5 d. However
the break even point is shifted towards larger values of |S|.

Thinking further, the point of intersection between TPL and the kNN-join variants
is determined by the size of R since a new value in R introduces a new TPL-query –
which is expensive – but only a single more point as a possible range-query result for
the kNN algorithms – which is cheap. Specifically given a fixed set |S|, there exists a
set Re for which TPL and the hierarchical join algorithms show similar performance.
In a practical setting the size of |Re| for a given set |S| is of great value, since this
knowledge can be used to decide whether to use TPL or a kNN join for performing the
query. Therefore we ran an additional experiment showing the size ofRe for a given size
of |S| where both algorithms have an equal runtime. The results can be found in Figure
6(a). Due to the quadratic complexity of the sequential join, the size of Re increases
superlinear with the size of S. In contrast the size of Re increases sublinear for the
hierarchical kNN-join, suggesting this algorithm for large databases. Given a database
with 1 million points, for the hierarchical join there is Re ≈ 0.0007|S| and for the
sequential join Re ≈ 0.003|S|. Thus as a rule of thumb it is strongly recommendable
to use a self pruning based approach if |R| > 0.01 · |S|.
Varying the Overlap between R and S (o). Until now we assumed that the normally
distributed sets of values R and S overlap completely, i.e. both sets have the same mean.
This assumption is quite intuitive for example if we assume thatR and S are drawn from
the same distribution. In this experiment however, we aim at analyzing what happens
if R and S are taken from different distributions. We do so by varying the mean of R
and S, i.e. by decreasing the overlap of the two sets (o = mean(R)−mean(S)). First
of all, the runtime performance of the join-based algorithms stays pretty much constant
(cf Figure 4 e). Although this might seem counter-intuitive in the beginning, recall that
the kNN-join is only performed on the set S. Therefore the distance between R and S

Reverse-k-Nearest-Neighbor Join Processing 291

(a) Equilibrium (b) Varying the cache size.

Fig. 6. Given a set S of size |S|, the left figure visualizes the size of set Re for which TPL and
the kNN-based joins have the same computational performance. The right figure visualizes the
results for varying cache size. Note the logarithmic scale on the y-Axis.

Fig. 7. Performance (CPU time in seconds, page accesses), real dataset (HSV)

does not affect this cost of the RkNN join. Furthermore, the set R is small in our setting,
hence the cost for the varying-range-join can be neglected. However only this varying-
range-join is affected by a different overlap between R and S. All remaining variants
can take severe profit from lower overlap between the sets R and S. All of them employ
pruning to avoid descending into subtrees that do not have to be taken into account to
answer the query. If the overlap decreases, subtrees can be pruned earlier, reducing the
CPU-time and number of page accesses (cf Figure 5 e).

Varying the Cache Size (c). For analyzing the cache size (see Figure 6(b)) we only
provide an insight into the impact on the number of page accesses since the cache does
not affect the CPU time. Both kNN-join variants are barely affected by the size of the
cache, the gain of all of these approaches is about 30%. In contrast, the mutual prun-
ing based algorithms behave by over an order of magnitude (TPL) and two orders of
magnitude (UL) better for larger cache sizes. The results show that in a scenario where
the accessible memory is large (about 10% of the index), the UL algorithms can be a
useful choice. Although they show a higher computational complexity, this disadvan-
tage is compensated by the low number of disc accesses performed by this group of
algorithms. If the cache size is relatively small, e.g. due to a multi-user environment,
the kNN-based algorithms are the matter of choice.

Varying the Page Size (p). The effect of an increasing page size is twofold. While the
UL and hierarchical kNN-join approaches take mainly profit from a larger page size,

292 T. Emrich et al.

the graph of the TPL and sequential kNN algorithms drops until the page size reaches
about 1kB and then increases again regarding the CPU cost (cf Figure 4 f). For the
sequential join, smaller page sizes imply more leaf nodes. A large number of leaf nodes
introduces many comparisons and distance calculations, increasing the CPU time of a
kNN sequential join. However, if the page size grows too big, many pages have to be
visited since they fall into the kNN-circles of a query point. This increases the execution
time for large page sizes.

Concerning the number of disk accesses (cf Figure 5 f), the kNN-join variants take
profit from larger page sizes. If the page size is small, the number of points processed
during one iteration of the join is small as well, since one iteration computes the kNN
for one leaf from S. Therefore many iterations are necessary for computing the whole
join result, and each of these iterations involves reloading pages into the cache.

5.2 Real Data Experiments
Now let us take a look at experiments driven with real data. As an input, we employed
3D HSV color feature vectors extracted from the caltech data set2. We split the input
data set containing 29639 feature vectors into two sets R and S such that |R| + |S| =
29639, varying the size of R. The results can be found in Figure 7. Notice the two dif-
ferent behaviours of the self- and mutual pruning techniques. Concerning the CPU time,
the self pruning approaches show better performance if R is large and S is small. The
reason for this behaviour is that a self-join is always a quite expensive operation. For
the hierarchical kNN self-join the complexity in the best case is about O(|S| log(|S|))
while for the sequential join the complexity is about O(|S|2). Combined with the
varying-range-join we have an overall complexity of O(|S| log(|S|) + |S| log(|R|))
or O(|S|2 + |S| log(|R|)). Now if |S| is large (and |R| can be neglected), this leads
to a complexity of O(|S| log(|S|)) and O(|S|2), respectively. On the other hand, if |S|
can be neglected, we have a complexity of O(log(|R|)) in both cases. This also ex-
plains why the hierarchical and sequential techniques show the same performance if
|S| becomes small. For TPL, the behaviour is different: its complexity in |S| is sublin-
ear but for each r ∈ R a separate query has to be performed, such that its complexity
increases linear with |R|. Therefore the performance of TPL is better for small R (and
large S), but worse for large R (and small S). For the UL approaches the results can be
explained equivalently. Further note that the the ULS approach in this scenario shows
a significantly lower number of page accesses than ULG and ULP

5.3 Comparing CPU-Cost and IO-Cost

Last but not least let us shortly analyze whether the techniques are IO- or CPU-bound.
For this purpose, we reuse the results from the experiment where we varied the cache
size. From the number of IO operations we computed the resulting IO time, assuming
an SSD with page access time of 0.1ms (given a HDD, the IO time is higher)[25]. The
graph in Figure 8 shows the amount of IO time and CPU time for sample approaches
of the self- and mutual pruning approaches. Note that in this setting, most algorithms
are IO-bound. For the self pruning approaches this is the case even if the cache size is
very high. In contrast, the UL approaches (which have been optimized to greatly reduce

2 http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Reverse-k-Nearest-Neighbor Join Processing 293

Fig. 8. CPU and IO time in seconds when varying the cache size

the number of page accesses), these approaches become CPU-bound if the cache size
becomes very large.

6 Conclusions

In this paper, we addressed the problem of running multiple RkNN-queries at a time,
a.k.a RkNN join. For this purpose, we formally classified variants of the RkNN join,
including monochromatic and bichromatic scenarios as well as self joins. We proposed
a dedicated algorithm for RkNN join queries based on the well-known self pruning
paradigm for single RkNN queries. In our experiments, we evaluated the proposed ap-
proach against existing work on RkNN joins and RkNN queries. To summarize the
contribution of these experiments, we suggest different scenarios for RkNN query pro-
cessing: First, if the database is relatively static and many RkNN queries are run ex-
pecting low latency, preprocessing as used in [6,7] is a useful choice since self pruning
is usually more selective than mutual pruning. This avoids computing the kNN-spheres
each time a query is performed as done with our join algorithms. Note that precomputa-
tion usually can only be used if k is fixed. Second, if the database is dynamic and RkNN
queries are performed in a bulk, our proposed join algorithms, especially the self prun-
ing variant clearly performs best. The technique is also preferable if an RkNN join of
intermediate query results has to be computed. Furthermore, our self-pruning algorithm
could be easily adapted to performing RkNN joins when each of the objects in R has
another value of k. For low-dimensional data, such as 2D geo-spatial data, the mutual
pruning RkNN join algorithm from [12] is the matter of choice. Third, if the database
is highly dynamic and single RkNN-queries have to be performed immediately, single
RkNN queries based on mutual pruning like TPL [11] are the method of choice. This is
also the case where the database is static but the self join of the whole set S cannot be
justified by a low number of RkNN queries.

References

1. Bernecker, T., Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Zhang, S., Züfle, A.:
Inverse queries for multidimensional spaces. In: Pfoser, D., Tao, Y., Mouratidis, K., Nasci-
mento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
330–347. Springer, Heidelberg (2011)

2. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neigh-
bors, vol. C-22(11) (1973)

294 T. Emrich et al.

3. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering points to identify
the clustering structure. In: Proc. SIGMOD (1999)

4. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neighbor graph.
In: Proc. IPCR (2004)

5. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric neighborhood
relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS
(LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)

6. Korn, F., Muthukrishnan, S.: Influenced sets based on reverse nearest neighbor queries. In:
Proc. SIGMOD (2000)

7. Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest neighbor queries. In:
Proc. ICDE (2001)

8. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-
nearest neighbor search in arbitrary metric spaces. In: Proc. SIGMOD (2006)

9. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: Proc. DMKD (2000)

10. Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest neighbor
queries. In: Proc. CIKM (2003)

11. Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality. In: Proc.
VLDB (2004)

12. Emrich, T., Kriegel, H.-P., Kröger, P., Niedermayer, J., Renz, M., Züfle, A.: A mutual-pruning
approach for RKNN join processing. Proc. BTW (2013)

13. Wu, W., Yang, F., Chan, C.-Y., Tan, K.: FINCH: Evaluating reverse k-nearest-neighbor
queries on location data. In: Proc. VLDB (2008)

14. Böhm, C., Krebs, F.: The k-nearest neighbor join: Turbo charging the KDD process. In:
KAIS, vol. 6(6) (2004)

15. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial
databases. In: Proc. SSDBM (2004)

16. Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional KNN joins with incremental
updates. Geoinformatica 14(1) (2010)

17. Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search in metric spaces. IEEE
TKDE 18(9) (2006)

18. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: Efficiently processing reverse
k nearest neighbors queries. In: Proc. ICDE (2011)

19. Achtert, E., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Reverse k-nearest neighbor search
in dynamic and general metric databases. In: Proc. EDBT (2009)

20. Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A., Katzdobler, A.: Reverse k-nearest neighbor
search based on aggregate point access methods. In: Winslett, M. (ed.) SSDBM 2009. LNCS,
vol. 5566, pp. 444–460. Springer, Heidelberg (2009)

21. Xia, C., Hsu, W., Lee, M.L., Joxan, J., Xia, C., Hsu, W.: Erknn: efficient reverse k-nearest
neighbors retrieval with local knn-distance estimation. In: Proc. CIKM (2005)

22. Achtert, E., Hettab, A., Kriegel, H.-P., Schubert, E., Zimek, A.: Spatial outlier detection:
Data, algorithms, visualizations. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A.,
Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 512–516.
Springer, Heidelberg (2011)

23. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data ware-
houses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, p. 443. Springer, Heidelberg (2001)

24. Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On
optimal pruning of mbrs. In: Proc. SIGMOD (2010)

25. Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: On the impact of flash SSDS
on spatial indexing. In: Proc. DaMoN (2010)

DART: An Efficient Method

for Direction-Aware Bichromatic Reverse k
Nearest Neighbor Queries

Kyoung-Won Lee1, Dong-Wan Choi2, and Chin-Wan Chung1,2

1 Division of Web Science Technology,
Korea Advanced Institute of Science & Technology, Korea

2 Department of Computer Science,
Korea Advanced Institute of Science & Technology, Korea

{kyoungwon.lee,dongwan}@islab.kaist.ac.kr, chungcw@kaist.edu

Abstract. This paper presents a novel type of queries in spatial
databases, called the direction-aware bichromatic reverse k nearest neigh-
bor(DBRkNN) queries,which extend thebichromatic reverse nearest neigh-
bor queries. Given two disjoint sets,P andS, of spatial objects, and a query
object q in S, the DBRkNN query returns a subset P ′ of P such that k
nearest neighbors of each object in P ′ include q and each object in P ′ has
a direction toward q within a pre-defined distance. We formally define the
DBRkNN query, and then propose an efficient algorithm, called DART,
for processing the DBRkNN query. Our method utilizes a grid-based in-
dex to cluster the spatial objects, and the B+-tree to index the direction
angle. We adopt a filter-refinement framework that is widely used in many
algorithms for reverse nearest neighbor queries. In the filtering step, DART
eliminates all the objects that are away from the query object more than
the pre-defined distance, or have an invalid direction angle. In the refine-
ment step, remaining objects are verified whether the query object is actu-
ally one of the k nearest neighbors of them. From extensive experiments,
we show that DART outperforms an R-tree-based naive algorithm in both
indexing time and query processing time.

Keywords: reverse nearest neighbor, direction-aware, query optimiza-
tion.

1 Introduction

Recently, with the rapid dissemination of mobile devices and location-based ser-
vices(LBSs), various applications have started utilizing spatial databases for mo-
bile users. Bichromatic reverse nearest neighbor(BRNN) queries extended from
reverse nearest neighbor(RNN) queries are one of the most popular and impor-
tant queries for spatio-temporal information, and widely used in many applica-
tions. For example, in the case of mobile advertising, an advertiser can promote a
product to specifically targeted customers who are close to the advertiser based
on each customer’s location by searching BRNNs of the advertiser. Many re-
searches addressed that one of the future challenges of location-based services is

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 295–311, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 K.-W. Lee, D.-W. Choi, and C.-W. Chung

Fig. 1. An example of BRNN query with a direction constraint

personalization [5,12,15], which provides more customized services, based on the
user’s implicit behaviour and preferences, and explicitly given details. In order
to achieve personalization in LBSs, considering only location is not sufficient to
retrieve more accurate results in terms of the user’s intention.

In that respect, the direction is another important feature that represents
user’s intention as there exist extensive researches that consider the direction to
predict moving object’s future location [17]. Each mobile user can have a certain
direction with respect to his/her movement or sight, and the direction can be
easily obtained by a mobile device with GPS and a compass sensor [18]. However,
there are only a few researches that considers a direction-aware environment, and
existing studies only focus on user-centric query processing, not objective-centric
query processing.

Considering the above, BRNN queries without the direction constraints can
be ineffective in many applications to find targeted users in the sense that users
looking(or moving) in the opposite direction are less influenced by the query
objects even if they are close to the query object. For example, there are many
customers in a marketplace, and they are moving around and looking for some
products they need. In this situation, a restaurant manager may want to find
potential customers who have an intention to enter the marketplace, and hang
around the restaurant, because the manager wants to reduce the advertisement
budget and does not want to be regarded as a spammer to customers. There are
also other kinds of applications where a direction property needs to be considered
such as providing a battle strategy to a moving military squad during the war. In
these applications, the direction as well as the location are important properties
to obtain more accurate results in terms of the targets’ intention.

Fig. 1 shows an example of the BRNN query with a direction constraint. Con-
sider a set P = {p1, p2, p3, p4, p5, p6} of customers and a set S = {s1, s2, s3, s4} of
advertisers. Given a querying advertiser s4, the usual BRNN query returns p2, p3
and p4 since their closest advertiser is q (i.e., s4). However, the customers whose
directions (represented by arrows) are not toward q do not need to be considered
because they are not effective advertising targets. Thus, although customer p2
has q as its nearest advertiser, p2 should be discarded from the final result in
the direction-aware environment since the direction of p2 is toward s3, not q.

DART: An Efficient Method for DBRkNN Queries 297

Furthermore, in order to maximize the effectiveness of advertising, it is better
to consider the distance. If we adjust a maximum distance on p4, it also can be
discarded depending on the maximum distance, even if their nearest advertiser
is q. Therefore, only p3 can be an answer for the BRNN query with the direction
constraint.

There have been extensive algorithms studied for processing RNN queries
[1,10,19,22] and BRNN queries [14,21,25,26], based on various effective pruning
techniques using objects’ locations. However, the straightforward adaptation of
these algorithms are inefficient to solve the problem of finding BRNNs with
the direction constraint. This is because each object has an arbitrary direction,
which does not have any correlation with its location.

In this paper, we present a novel type of queries, called direction-aware bichro-
matic reverse k nearest neighbor queries(DBRkNN), in spatial databases, which
extends the previous BRNN query by considering the direction as well as the
location. Moreover, we propose an efficient algorithm, called DART, for our
DBRkNN queries to overcome the difficulties of pruning in a direction-aware
environment. DART attempts to minimize pre-processing time by using only a
grid-based index to access the set of spatially clustered objects and the B+-tree
to index objects’ directions. In common with many previous studies, we follow
a filter-refinement framework. In specific, in the filtering step, DART returns
a set of candidates, each of which has q as one of its k nearest neighbors and
a direction toward q within a pre-defined distance, while the refinement step
removes false hits from the set of candidates.

The contributions of this paper are as follows:

– We propose a novel type of query, the direction-aware bichromatic reverse
k nearest neighbor (DBRkNN) query, which is an interesting variant of the
bichromatic reverse nearest neighbor query. The DBRkNN query is useful in
many applications which require to process a large amount of spatial objects
with arbitrary directions.

– We propose an efficient algorithm, namely DART, to process DBRkNN
queries specially focusing on a direction-aware pruning technique. To ef-
fectively prune unnecessary objects, DART uses simple index structures and
yet significantly reduces the pre-processing time.

– We experimentally evaluate the proposed algorithm by using synthetic data-
sets. Experimental results show that our proposed algorithm is on the aver-
age 6.5 times faster for the indexing time, and 6.4 times faster for the query
processing time than an R-tree-based naive algorithm.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents the formal definition of the DBRNN query. The proposed
algorithm for the DBRNN query is explained in Section 4. Section 5 experimen-
tally evaluates the proposed algorithm. Finally, Section 6 concludes the paper
with some directions for future work.

298 K.-W. Lee, D.-W. Choi, and C.-W. Chung

(a) An example of TPL algorithm (b) An example of Voronoi diagram

Fig. 2. An example of the false hits/false dismisses of the previous works

2 Related Work

We first examine existing studies [1,2,4,9–11,14,19–24,26] about the RNN query,
which has received considerable attention due to its importance and effectiveness
in many applications. The first algorithm for processing the RNN query was
proposed by Korn, F. et al [10]. However, this algorithm requires to index all
data points, and to pre-compute their nearest neighbors which is inefficient in
dynamic database environments. Stanoi et al. [19] proposed “60-degree-pruning”,
which maintains only an index tree without any pre-processing structure. They
divide the space around the query point into six equal regions having 60◦ at the
query point, and the answers are retrieved by selecting a candidate point from
each region. The TPL algorithm was proposed by Tao et al [22], which utilizes
the perpendicular bisector between the query point and each point to maximize
the pruning area.

The above algorithms for RNN queries, however, are inefficient to process the
DBRkNN query since they do not consider the direction constraint for the query
processing. For example, Fig. 2(a) shows the false hits/false dismisses of the TPL
algorithm for the DBRkNN query. There is a bisector between the query object
q (i.e., s3) and object s1, so p2, p3, and p5 are selected as candidates since they
reside in the half-plane containing q. Although the object p3 and p5 are the
BRNNs of q, these are not the DBRNNs of q because their directions are not
toward q. Moreover, the pruned object p4 that is located in the opposite half-
plane to q can be an answer in the DBRNN query, because its direction is toward
q across the bisector.

The traditional RNN queries have been further branched out into the bichro-
matic RNN (BRNN) query, which is the closest to our DBRNN query. Given
two disjoint sets, P and S, of points, and a query point which is one of the
points in S, the BRNN query retrieves a set of points in P that have q as their
nearest neighbor. There are some researches [9, 14, 20, 25] on the BRNN query,

DART: An Efficient Method for DBRkNN Queries 299

and all their solutions are basically focusing on finding the Voronoi polygon that
contains the query point by using a Voronoi diagram.

However, the above methods for the BRNN query are not efficient in our envi-
ronment. For example, Fig. 2(b) shows an example of using Voronoi diagram to
solve BRNN query. There are seven Voronoi polygons each of which is generated
by an object in S. In the case of p2 and p6, they are the BRNN of q (i.e., s7),
but the directions of them are toward the opposite side of q, which makes them
to be false hits/false dismisses. Similarly, although p4 and p1 are not the BRNN
of q, they are the DBRNN of q because their directions are toward q.

For other types of RNN queries, there has been many researches for processing
the continuous RNN (CRNN) [2–4,6,9,21] query and the stream RNN [11] query.
The goal of each type of queries is basically to find the RNN with regard to the
query object in a specific environment. However, the solutions for these queries
are neither applicable nor relevant to the DBRkNN query due to the properties
of the query.

By focusing on the influence of obstacles on the visibility of objects, there
are works on a different type of RNN queries [7, 16, 27]. Gao et al. [7] first
introduced the visible reverse nearest neighbor (VRNN) search, which considers
the visibility and the obstacle that significantly affect the result of RNN queries.
However, the visibility is defined only for the query object to verify objects
that are not influenced by the presence of obstacles while the direction in the
DBRNN query is defined for each object to represent its movement or sight.
Furthermore, we also adjust the maximum distance to give a flexibility on the
spatial environment.

Recently, Li et al. [13] proposed the direction-aware spatial keyword search,
called DESKS, that finds the k nearest neighbors satisfying both keyword and
direction constraints to the query. They assumed that the direction is given and
addressed that the existing methods on the spatial keyword search are inefficient
to solve the spatial keyword search with a direction constraint. However there is
a big difference between this work and ours in the sense that we focus on RkNN
queries (not kNN), and every object has a direction in our environment while
only the query object has a direction in DESKS.

3 Problem Formulation

In this section, we formally define the DBRNN query along with the DBRkNN
query. Table 1 summarizes the notations frequently used.

3.1 Problem Definition

We consider two disjoint sets, P and S, of spatial objects, and a query object
q in S. Each object in P , called a customer object, includes its location and
a direction which is represented by a counterclockwise angle from the positive
x-axis (i.e., the direction of 3 o’clock is 0◦), and has a fan-shaped region, called a
valid area, based on its direction’s angle. On the other hand, objects in S, called

300 K.-W. Lee, D.-W. Choi, and C.-W. Chung

Table 1. The notation of the DBRkNN

Symbol Description

P = {p1, ..., pn} the set of customer objects with directions

S = {s1, ..., sm} the set of advertiser objects

p a customer object with a direction in P

s an advertiser object in S

q the query object selected from advertiser objects in S

r the maximum distance

d the direction angle (0◦ ∼ 359◦)

θ the valid angle range

(a) An illustration of the DBRNN query (b) An illustration of the DBRkNN
query (k = 2)

Fig. 3. An illustration of the DBRNN query and the DBRkNN query

advertiser objects, have only locations, and one of the advertiser objects can be
a query object. We first define the notion “valid area” which is an important
concept for selecting candidates and verifying answers as follows:

Definition 1 (Valid Area). Let p denote an object in P . Then the valid area
of p is represented by a fan-shaped region, which has the following properties:

– A valid area consists of angle θ and radius r, both of which are pre-defined
by a system.

– θ is a viewing angle, and r is the maximum distance to discard an object the
distance of which is greater than r.

Now, based on Definition 1, we define the DBRNN query as follows:

DART: An Efficient Method for DBRkNN Queries 301

Definition 2 (Direction-aware Bichromatic Reverse Nearest Neighbor
Query). Given two disjoint sets, P and S, the direction-aware bichromatic re-
verse nearest neighbor query retrieves the subset P ′ of P such that each object
in P ′ has q ∈ S as its nearest neighbor, and contains q in its valid area.

Fig. 3(a) illustrates the basic concept of the DBRNN query. The object p1 has
a valid area based on the maximum distance r, the direction’s angle d and the
valid angle range θ. If the query is invoked on s2, p1 is the DBRNN of s2 even
though s1 is closer than s2 since only s2 is located within the valid area of p1.
Similar to Definition 2, the DBRkNN query can be defined as follows:

Definition 3 (Direction-aware Bichromatic Reverse k Nearest Neigh-
bor Query). Given two disjoint sets, P and S, the direction-aware bichromatic
reverse k nearest neighbor query retrieves the subset P ′ of such P that each ob-
ject in P ′ has q ∈ S as one of its k nearest neighbors, and contains q in its valid
area.

Fig. 3(b) shows an illustration of the DBRkNN query. Let us assume that k is 2,
and the query is invoked on s4. If the value of k is 1, there is no answer for the
query. However, in this case, although s5 is the nearest neighbor of p3 as well as
a DBRkNN of q, because q is the second-nearest neighbor of p3.

Problem Statement. In this paper, our goal is to find an efficient method that
gives the set of exact answers for the DBRNN query and the DBRkNN query.
Specifically, we focus on minimizing both the indexing time and the query time.

4 The DART Algorithm

In this section, we present our proposed algorithm, called DART, that solves
DBRNN queries. First, we overview our proposed method, and then explain the
details of DART.

4.1 Overview

Essentially, our solution is based on a grid-based index to access the spatially
clustered objects and the B+-tree to index the direction’s angles. We adopt
a filter-refinement framework that is widely used in many algorithms for RNN
queries. In the filtering step, DART eliminates all the objects that are more than
the maximum distance away from the query object or have an invalid direction’s
angle. After that, in the refinement step, the remaining objects are verified to
check whether the query object is actually the nearest neighbor of each object.
The important features of DART are explained as follows:

302 K.-W. Lee, D.-W. Choi, and C.-W. Chung

(a) An example of the grid-based space
partitioning

(b) An example of the Valid Direction
Angle Degree

Fig. 4. The key elements for DART

The Grid-Based Space Partitioning. The whole space is divided into a grid
of the equal-sized cells that are represented by rectangles of r×r size (recall that
r is the maximum distance). The number of rows and columns depends on the
width and height of the space. Each cell has a unique id number that represents
its location. Fig. 4(a) shows an example of our space partitioning scheme using
grid cells. For each cell, we not only maintain two lists of objects (advertiser
object and customer object) that are located in the area of the cell but also
index the direction’s angle of each customer object by using the B+-tree. Note
that this space partitioning takes just linear time while an R-tree takes at least
O(n log n) time complexity for indexing n spatial objects [8].

Direction Angle Index. The directions’ angles are indexed by the B+-tree to
reduce unnecessary checks for the objects that are toward the wrong direction.
In this structure, there are at most 360 keys which represent degrees of the
directions’ angles. For each key, we maintain a list of the objects that have the
same direction angle degree as the key value. Similar to the grid-based space
partitioning, the construction of this B+-tree can be done in linear time, since
each insertion requires only O(log 360) time (i.e., a constant time).

Valid Direction Angle Range. Each grid cell has a static valid direction
angle range (hereafter called “valid angle range”) that guarantees, if the direction
angle of an object is not within the valid angle range, the object cannot have
an appropriate direction toward the query object. Fig. 4(b) shows an example
of the valid angle range. When the query is posed, we first figure out which grid
cell contains the query object, and then retrieve neighboring cells around the
grid cell that has the query object. For each neighboring cell, we define the valid
angle range accordingly. As we discussed in Section 3, we use counterclockwise
angles; the 3 o’clock position is 0◦ and the 6 o’clock position is 270◦.

DART: An Efficient Method for DBRkNN Queries 303

Let us first consider the valid angle range of cell (i− 1, j − 1). In an extreme
case, an object in P in cell (i−1, j−1) can be located at the bottom right corner
of the cell and the query object can be located at the top right corner or the
bottom left corner of cell (i, j). In this case, the valid angle range of an object
in P should cover the top or left boundary of cell (i, j) to have the query object
within its valid area. Therefore, the valid angle range of cell (i− 1, j− 1) should

be (0◦, θ2
◦
) and (270◦− θ

2

◦
, 360◦] as depicted in Fig. 4(b). The valid angle range

of other three corner cells (i.e., (i − 1, j + 1), (i + 1, j − 1), and (i + 1, j + 1))
are defined in a similar way. On the other hand, the cells on the cross line (i.e.,
(i−1, j), (i, j−1), (i, j+1), (i+1, j)) are defined in a different manner due to the
positional characteristics. For example, in an extreme case of an object in P in
cell (i− 1, j) can be located at the bottom left or bottom right corner of the cell
and the query object can be located at the opposite side of the object in the cell
(i, j). In this case, the valid angle range of an object in P should cover the top
boundary of cell (i, j) to have the query object within its valid area. Therefore,

the valid angle range of cell (i − 1, j) should be (0◦, θ
2

◦
) and (180◦ − θ

2

◦
, 360◦].

Similar to the corner cells, the other cells on the cross line have similar valid
angle ranges. The specific ranges of the valid angle ranges are shown in Table 2.

Table 2. The Valid Angle Range of each cell

Cell No. Valid Angle Degree

(i− 1, j − 1) (0◦, θ
2

◦
) and (270◦ − θ

2

◦
, 360◦]

(i− 1, j) (0◦, θ
2

◦
) and (180◦ − θ

2

◦
, 360◦]

(i− 1, j + 1) (180◦ − θ
2

◦
, 270◦ + θ

2

◦
)

(i, j − 1) (0◦, 90◦ + θ
2

◦
) and (270◦ − θ

2

◦
, 360◦]

(i, j) (0◦, 360◦]

(i, j + 1) (90◦ − θ
2

◦
, 270◦ + θ

2

◦
)

(i+ 1, j − 1) (0◦, 90◦ + θ
2

◦
) and (180◦ − θ

2

◦
, 360◦]

(i+ 1, j) (0◦, 180◦ + θ
2

◦
) and (360◦ − θ

2

◦
, 360◦]

(i+ 1, j + 1) (90◦ − θ
2

◦
, 180◦ + θ

2

◦
)

4.2 DART for DBRNN Query Processing

Based on the above key features, DART follows a two-step framework, where a
set of candidate objects are returned and then false hits are verified to retrieve
the exact solution. Our algorithm does not index the exact locations of the
objects, but use a grid-based structure to access the set of spatially clustered
objects efficiently. Moreover, our method inserts the object’s direction’s angle
degree into the B+-tree to maintain the object’s direction’s angle.

304 K.-W. Lee, D.-W. Choi, and C.-W. Chung

Algorithm 1. The construction of the basic structure

Input: Sets of objects P and S
Output: A set G of grid cell’s list and the B+-tree

1 G ← ∅;
2 foreach obj in P ∪ S do
3 cellId ← Assign(obj.x, obj.y) ;
4 list ← lists[cellId].;
5 list.add(obj);
6 G.add(list);
7 if obj ∈ P then
8 d ← obj.d;
9 Btree ← Btrees[cellId];

10 Btree.insert(d, obj);

11 end

12 end
13 return G;

Index Construction Step. Algorithm 1 shows the process of constructing the
basic structures. When an object is inserted, the assignment algorithm deter-
mines which grid cell contains the object (Line 3). In addition, the method just
adds the object into the proper list and stores the list for the corresponding cell
(Lines 4-6). For the two types of objects, we maintain two lists of objects sep-
arately. In addition, DART also maintains a B+-tree to index direction’s angle
degree for each cell (Lines 8-10). As mentioned earlier, the entire construction
process can performed in linear time.

Filtering Step. In the filtering step, DART eliminates unnecessary objects by
considering the maximum distance and the valid angle range based on the location
and angle of the object. The overall algorithm flow is shown in Algorithm 2.

First, the method gets the grid cell number that contains the query object by
using assign function. In this function, it is easy to retrieve the neighboring cells
by using the width and height of the space (Lines 2-3). Because the size of each
cell is determined by the maximum distance, we do not have to consider other
cells except for the neighboring cells. By doing this, we can prune numerous
objects whose distances from the query object are larger than the maximum
distance.

Next, for each cell, DART selects the candidate set by processing the range
search on the B+-trees on directions’ angles of objects located in the cell(Lines
5-7). Note that this range search requires only a constant time since there are at
most 360 keys. As we discussed the valid angle range in Section 4.1, we can easily
find the objects whose directions’ angles are within the valid angle ranges of the
corresponding cells (See Table 2). Before we put an object into the candidate
set, we double check the actual distance and the angle degree between the query
object and the object (Lines 8-13). The reason for doing this step is to guarantee

DART: An Efficient Method for DBRkNN Queries 305

Algorithm 2. The filtering step of DART

Input: The query object q
Output: A set of candidates

1 candidate ← ∅;
2 CellId ← Assign(query.x, query.y);
3 neighbor[] ←getNeighbor(CellId);
4 for i ← 0 to size of neighbor[] do
5 Btree ← neighbor[i].Btree;
6 range ← neighbor[i].V alidAngleRange;
7 list[] ← Btree.rangequery(range);
8 for j ← 0 to size of list[] do
9 angle ← getAngle(q, list[j]);

10 if getDistance(list[j], q) ≤ r AND |(angle− list[j].d)| ≤ θ
2
then

11 candidate.add(list[j]);
12 end

13 end

14 end
15 return candidate

that the candidate set contains only objects whose valid area cover the query
object. If the distance between the two objects is within the maximum distance
and the difference of the two directions’ angles (angle degree between two objects
and the object’s direction angle degree) is less than θ

2 , then we finally add the
object to the candidate set.

Refinement Step. After the termination of the filtering step, we have a candi-
date set that contains all the objects whose valid area contain the query object. In
the refinement step, we verify that the actual nearest neighbor of each candidate
object is the query object. Algorithm 3 shows the flow of the refinement step.
Basically, the method confirms the answer set by checking the nearest neighbor
of each candidate. For candidate object p, if there is an advertiser object si closer
than the query object, it is possible that si is the nearest neighbor of p and is
within the valid area of p. To determine this, for all the advertiser objects in
S that are contained in neighboring cells, the method calculates the distance
between the candidate object and each advertiser object (Line 7). Moreover, if
there is an advertiser object closer than the query object, we check the actual
angle degree (Lines 7-13). Similar to the above procedure, if the difference is
smaller than half of θ, it means that the direction’s angle is also facing the ob-
ject si, and the nearest neighbor of the candidate object is not the query object
(Lines 9-12). Otherwise, the candidate object can be an answer of the DBRNN
query.

306 K.-W. Lee, D.-W. Choi, and C.-W. Chung

Algorithm 3. The refinement step of DART for the DBRNN query

Input: A candidate set C
Output: a set of answers Answer

1 neighbor[] ← getNeighborGrid();
2 list ←getObjectS(neighbor[]);
3 Answer ← C;
4 for i ← 0 to size of C do
5 distance ← getDistance(q, C[i]);
6 for j ← 0 to size of list[] do
7 if distance > getDistance(C[i], list[j]) then
8 angleS ← getAngle(C[i], list[j]);

9 if |(angleS − C[i].d)| ≤ θ
2
then

10 Answer.remove(C[i]);
11 break;

12 end

13 end

14 end

15 end
16 return Answer

4.3 DART for the DBRkNN Query Processing

In this section, we extend the algorithm for DBRNN queries to process DBRkNN
queries for an arbitrary value of k, which means the query result should be all the
customer objects that have q within k nearest neighbors (k is a positive integer,
typically small). For processing DBRkNN queries, although the arbitrary value
k is added, the overall flow is almost the same. The filtering step does not need
to be changed, because we prune the unnecessary objects only considering the
distance and angle constraints. In the refinement step, DART should be slightly
modified so that k advertiser objects can be checked when finding advertiser
objects closer than the query object (Lines 10-11 in Algorithm 3).

5 Experiments

In this section, we evaluate the performance of our proposed algorithm for the
DBRNN query and the DBRkNN query by using four synthetic datasets. In
particular, we generate synthetic datasets for both spatial object sets, P and
S, under the uniform distribution. We set the size of the dataset for spatial
objects in P to be from 10,000 to 10,000,000 and that in S to be |P |/100 on
the 2-dimensional 1,000 × 1,000 euclidean space. For experimental parameters,
we vary the valid angle range, the maximum distance, and the cardinality of the
dataset. The values of parameters are presented in Table 3.

The experiment investigates the index time and query time for varying values
of parameters such as the valid angle range, the maximum distance, and the
cardinality. For comparison, we also implement a naive method that utilizes an

DART: An Efficient Method for DBRkNN Queries 307

Table 3. The values of parameters

Parameter The range of values

Valid angle range 30 - 90 degree

(60 degree by default)

Maximum distance 50 - 200

(100 by default)

Cardinality of P 10,000 - 10,000,000

(1,000,000 by default)

R-tree on the objects’ locations because the existing methods for RNN queries
and BRNN queries cannot guarantee the exact solution for DBRNN queries,
which implies that the methods are not applicable to DBRNN queries and the
DBRkNN queries (See Fig. 2). Similar to the proposed algorithm, the naive
method also prunes the objects outside of the circular range that has a radius
equal to a maximum distance. After that, this method conducts the same proce-
dure as the refinement step to remove false hits. The only difference from DART
is that the direction pruning is not performed in the filtering step. All algorithms
are implemented in Java, and the experiments are conducted on a PC equipped
with Intel Core i7 CPU 3.4GHz and 16GB memory.

5.1 Experimental Results of DBRNN Query

Fig. 5 shows the performance of DART and the naive method when processing
DBRNN queries with varying values of experimental parameters. Fig. 5(a), 5(c),
and 5(e) represent the index time of each experiment, and Fig. 5(b), 5(d), and
5(f) represent the query time. For all results on the index and query processing,
DART shows a superior performance compared to the naive method.

First, we conduct an experiment with varying the valid angle range varying
from 30 degree to 90 degree. According to Fig. 5(a), the grid-based clustering
and the B+-tree indexing on the direction’s angles do not need heavy indexing
time while the R-tree based indexing is time consuming. We can observe that
the grid-based clustering takes less time than the R-tree to maintain the object’s
location. Moreover, the direction angle indexing time is not a big issue in the
whole pre-processing step because we have at most 360 angle degrees so that
there are at most 360 keys as we mentioned earlier. On the other hand, Fig.
5(b) shows an increasing gap between the query time of DART and that of the
naive method. The reason that the naive method shows an increasing curve as
the valid angle range increases is due to the total candidates of answer objects.
For instance, DART filters irrelevant objects with its valid angle range, and then
conducts refinement on a candidate set. However, the naive method just filters
objects which have a longer distance than the maximum distance by conducting
range search on the R-tree, and checks for the direction’s angle for each object.

308 K.-W. Lee, D.-W. Choi, and C.-W. Chung

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

30 40 50 60 70 80 90

In
de

x
tim

e
(M

ill
is

ec
on

ds
)

The valid angle range

DART
Naïve

(a) Index time for varying valid angle
range

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

30 40 50 60 70 80 90

Q
ue

ry
 ti

m
e

(M
ill

is
ec

on
ds

)

The valid angle range

DART
Naïve

(b) Query time for varying valid angle
range

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 150 200

In
de

x
tim

e
(M

ill
is

ec
on

ds
)

The maximum distance

DART
Naïve

(c) Index time for varying maximum dis-
tance

0.00

100.00

200.00

300.00

400.00

500.00

600.00

50 100 150 200

Q
ue

ry
 ti

m
e

(M
ill

is
ec

on
ds

)

The maximum distance

DART
Naïve

(d) Query time for varying maximum
distance

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

0 2000000 4000000 6000000 8000000 10000000

In
de

x
tim

e
(M

ill
is

ec
on

ds
)

Cardinality of P

DART
Naïve

(e) Index time for varying cardinality

1.00

10.00

100.00

1000.00

10000.00

100000.00

0 2000000 4000000 6000000 8000000 10000000

Q
ue

ry
 ti

m
e

(M
ill

is
ec

on
ds

)

Cardinality of P

DART
Naïve

(f) Query time for varying cardinality

Fig. 5. Experimental Results of DBRNN Query

In this step, the naive method generates more candidates as the valid angle range
gets wider, and hence the number of total candidates increases.

According to Fig. 5(c), indexing time is almost similar to the result of the
valid angle range, and Fig. 5(d) indicates that the query processing time shows
a steady gap between DART and the naive method. There is a little increasing
line for DART for the maximum distance from 50 to 100, because the number
of total candidates is quite small for the data3 dataset.

In Fig. 5(e) and Fig. 5(f), we conduct experiments with varying the cardi-
nality by using all the datasets. Both index time and query time show similar
increasing curves as the cardinality becomes bigger, however, the difference of
the performance is upto 10 times between DART and the naive method. In our

DART: An Efficient Method for DBRkNN Queries 309

0.00

100.00

200.00

300.00

400.00

500.00

600.00

k=2 k=4 k=8 k=16

Q
ue

ry
 ti

m
e

(M
ill

is
ec

on
ds

)
DART
Naïve

Fig. 6. Experimental Results of DBRkNN Query

observation, DART can handle bigger sized datasets more efficiently than the
naive method, even though the dataset reaches 10 millions of objects.

5.2 Experimental Results of DBRkNN Query

Fig. 6 shows the performance of DART and the naive method for the DBRkNN
queries. For the arbitrary k value, we start from k = 2 and exponentially increase
k until 16. The experimental results show that the query times for the cases are
almost uniformly distributed. In our observation, this is due to the maximum
distance and the direction constraint. Only a small computation is increased
because the constraints limit the boundary for the DBRkNN search. From this
result, we can claim that our proposed algorithm is also much more efficient for
processing the DBRkNN query than the naive method.

5.3 Summary

In summary, we have shown through extensive experiments that DART outper-
forms the naive method in both indexing time and query processing time. We
conducted several experiments by changing the values of parameters, namely the
valid angle area, the maximum distance, and the cardinality to show the effect
of those parameters on the performances. The results indicate that DART can
handle more than 10 million objects within a minute. Therefore, DART is suit-
able for a snapshot query with at most one minute time interval to secure index
time and query time. In addition, although DART approximately prunes irrel-
evant objects by using a grid-based space partitioning(while the naive method
prunes certain objects whose distance are longer than the maximum distance),
its direction angle pruning technique makes up the time of double checking for
the maximum distance.

310 K.-W. Lee, D.-W. Choi, and C.-W. Chung

6 Conclusion

In this work, we presented a novel type of the RNN query that has a direction
constraint, and proposed an efficient query processing algorithm called DART.
Our algorithm utilizes the grid-based object clustering and the direction angle
indexing with the B+-tree to improve both index time and query time. We
also experimentally showed that the proposed algorithm outperforms the naive
algorithm that utilizes the R-tree based range query pruning.

An interesting direction for future work is to extend our work to process the
larger size of data more efficiently and to develop an algorithm that efficiently
prunes unnecessary objects in S. Moreover, for the DBRkNN query, we plan to
work on not only query optimization, but also finding more new characteristics
of the direction constraint that can speed up algorithms.

Acknowledgments. This work was supported in part by WCU (World Class
University) program under the National Research Foundation of Korea funded
by the Ministry of Education, Science and Technology of Korea (No. R31-30007),
and in part by the National Research Foundation of Korea grant funded by the
Korean government (MSIP) (No. NRF-2009-0081365).

References

1. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient
reverse k-nearest neighbor search in arbitrary metric spaces. In: Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data, SIGMOD
2006, pp. 515–526. ACM, New York (2006)

2. Benetis, R., Jensen, S., Karciauskas, G., Saltenis, S.: Nearest and reverse nearest
neighbor queries for moving objects. The VLDB Journal 15(3), 229–249 (2006)

3. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y.: Efficiently processing snapshot
and continuous reverse k nearest neighbors queries. VLDB Journal 21(5), 703–728
(2012)

4. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k
nearest neighbors queries in euclidean space and in spatial networks. The VLDB
Journal 21(1), 69–95 (2012)

5. Dhar, S., Varshney, U.: Challenges and business models for mobile location-based
services and advertising. Commun. ACM 54(5), 121–128 (2011)

6. Emrich, T., Kriegel, H.P., Kröger, P., Renz, M., Xu, N., Züfle, A.: Reverse k-nearest
neighbor monitoring on mobile objects. In: Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
2010, pp. 494–497. ACM, New York (2010)

7. Gao, Y., Zheng, B., Chen, G., Lee, W.C., Lee, K.C.K., Li, Q.: Visible reverse k-
nearest neighbor query processing in spatial databases. IEEE Trans. on Knowl.
and Data Eng. 21(9), 1314–1327 (2009)

8. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Datam, SIGMOD 1984, pp. 47–57. ACM, New York (1984)

9. Kang, J.M., Mokbel, M.F., Shekhar, S., Xia, T., Zhang, D.: Continuous evaluation
of monochromatic and bichromatic reverse nearest neighbors. In: ICDE (2007)

DART: An Efficient Method for DBRkNN Queries 311

10. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2000, pp. 201–212. ACM, New York (2000)

11. Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse nearest neighbor aggregates
over data streams. In: Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB 2002, pp. 814–825. VLDB Endowment (2002)

12. Krumm, J.: Ubiquitous advertising: The killer application for the 21st century.
IEEE Pervasive Computing 10(1), 66–73 (2011)

13. Li, G., Feng, J., Xu, J.: Desks: Direction-aware spatial keyword search. In:
Kementsietsidis, A., Salles, M.A.V. (eds.) ICDE, pp. 474–485. IEEE Computer
Society (2012)

14. Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search
over uncertain databases. In: Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2008, pp. 213–226. ACM,
New York (2008)

15. Mokbel, M.F., Levandoski, J.J.: Toward context and preference-aware location-
based services. In: Proceedings of the Eighth ACM International Workshop on
Data Engineering for Wireless and Mobile Access, MobiDE 2009, pp. 25–32. ACM,
New York (2009)

16. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neigh-
bor queries. IEEE Trans. on Knowl. and Data Eng. 22(5), 665–681 (2010)

17. Qiao, S., Tang, C., Jin, H., Long, T., Dai, S., Ku, Y., Chau, M.: Putmode: predic-
tion of uncertain trajectories in moving objects databases. Applied Intelligence 33,
370–386 (2010)

18. Qin, C., Bao, X., Roy Choudhury, R., Nelakuditi, S.: Tagsense: a smartphone-based
approach to automatic image tagging. In: Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, Mobisys 2011, pp. 1–
14. ACM, New York (2011)

19. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 44–53 (2000)

20. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets in
frequently updated databases. In: Proceedings of the 27th International Conference
on Very Large Data Bases, VLDB 2001, pp. 99–108. Morgan Kaufmann Publishers
Inc., San Francisco (2001)

21. Taniar, D., Safar, M., Tran, Q.T., Rahayu, W., Park, J.H.: Spatial network rnn
queries in gis. Comput. J. 54(4), 617–627 (2011)

22. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004, vol. 30, pp. 744–755. VLDB Endowment (2004)

23. Tao, Y., Papadias, D., Lian, X., Xiao, X.: Multidimensional reverse knn search.
The VLDB Journal 16(3), 293–316 (2007)

24. Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search in metric spaces.
IEEE Trans. on Knowl. and Data Eng. 18(9), 1239–1252 (2006)

25. Tran, Q.T., Taniar, D., Safar, M.: Bichromatic reverse nearest-neighbor search in
mobile systems. IEEE Systems Journal 4(2), 230–242 (2010)

26. Vlachou, A., Doulkeridis, C., Kotidis, Y., Norvag, K.: Monochromatic and bichro-
matic reverse top-k queries. IEEE Trans. on Knowl. and Data Eng. 23(8),
1215–1229 (2011)

27. Wang, Y., Gao, Y., Chen, L., Chen, G., Li, Q.: All-visible-k-nearest-neighbor
queries. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012,
Part II. LNCS, vol. 7447, pp. 392–407. Springer, Heidelberg (2012)

User-Contributed Relevance

and Nearest Neighbor Queries

Christodoulos Efstathiades1 and Dieter Pfoser2,3

1 Knowledge and Database Systems Laboratory
National Technical University of Athens, Greece

cefstathiades@dblab.ece.ntua.gr
2 Research Center “Athena”, Maroussi, Greece

pfoser@imis.athena-innovation.gr
3 George Mason University, Fairfax, VA, USA

dpfoser@gmu.edu

Abstract. Novel Web technologies and resulting applications have lead
to a participatory data ecosystem that when utilized properly will lead to
more rewarding services. In this work, we investigate the case of Location-
based Services and specifically of how to improve the typical location-
based Point-Of-Interest (POI) request processed as a k-Nearest-Neighbor
query. This work introduces Links-of-interest (LOI) between POIs as a
means to increase the relevance and overall result quality of such queries.
By analyzing user-contributed content in the form of travel blogs, we es-
tablish the overall popularity of a LOI, i.e., how frequently the respective
POI pair is mentioned in the same context. Our contribution is a query
processing method for so-called k-Relevant Nearest Neighbor (k-RNN)
queries that considers spatial proximity in combination with LOI infor-
mation to retrieve close-by and relevant (as judged by the crowd) POIs.
Our method is based on intelligently combining indices for spatial data
(a spatial grid) and for relevance data (a graph) during query process-
ing. An experimental evaluation using real and synthetic data establishes
that our approach efficiently solves the k-RNN problem when compared
to existing methods.

1 Introduction

Location-based Services have been at the forefront of mobile computing as they
provide an answer to the simple question as to what is around me. A lot of effort
has been dedicated to improving such services typically by improving the selec-
tivity of each request. Rating sites augment POIs with quality criteria. Prefer-
ences, when available, add further user specific parameters to a request. Context
limits the available information based on situational choices. However, what has
not been captured yet are user experiences per se, i.e., assessing what people
want in terms of what people in the same situation have done in the past. Our
objective is to provide location-based services, specifically relevant k-NN search
based on the crowdsourced choices and experiences other users had in the past.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 312–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

User-Contributed Relevance and Nearest Neighbor Queries 313

This work focusses on semantically enriching k-RNN search by taking user
experience into account. Specifically, we introduce the concept of a Link-of-
interest (LOI) between two POIs to express respective relevance, i.e., find related
nearest POIs to my location. Relevance is inferred by extracting pairs of POIs
that are frequently mentioned together in the same context by users. In our work,
we extract this information (co-occurrence of POI pairs) by parsing travel blogs
and using the page structure to derive relevance. This relevance information can
be represented by means of a graph in which POIs represent nodes and LOIs
are links. At the same time, we need to capture the spatial properties of POIs.
The challenge in this work will be as to how we efficiently combine relevance
captured by a graph and the spatial properties captured by a spatial index.

While existing work addresses spatio-textual search, i.e., introducing a spa-
tial aspect to (Web) search, thus, enabling it to index and retrieve documents
according to their geographic context, to the best of our knowledge, the exact
problem of combining user experience (expressed as relevance) with spatial prox-
imity in the form of k-RNN search (R stands for Relevance) has not been studied
in literature. In this work, we are trying to solve the problem of how to com-
bine searching a graph structure with a spatial index so as to efficiently process
k-RNN queries. The spatial aspect is indexed by a static spatial grid, while the
relevance is captured by a graph. We propose two methods, (i) GR-Sync (GR
= Grid/Graph), which expands the two indexes separately, but synchronizes
their search at certain steps and (ii) GR-Link, which uses a tighter integration
in that spatial search results are seeded to the graph search so as to minimize
costly (and most often unnecessary) expansions. Experimentation shows that
the performance of GR-Link is best since it examines smaller portions of the
data.

The outline of the remainder of this work is as follows. Section 2 discusses
related work. Section 3 provides background on the data (spatial+relevance),
queries (k-RNN), and the basic access methods that we use. The respective k-
RNN query processing approaches are outlined in Section 4. Section 5 details
the experimental evaluation and Section 6 concludes and provides directions for
future research.

2 Related Work

To the best of our knowledge, the exact problem of combining user experience
(expressed as relevance) with spatial proximity has not been studied in literature.
Our methods are somewhat related to the research on Spatio-Textual Search. Ac-
cording to [16], studies in this area try to make web search geographically-aware,
thus enabling it to index and retrieve documents according to their geographic
context. Current research focusses on combining spatial and textual indexes and
proposes hybrid methods to support geographical awareness. Current approaches
are dealing with merging R-trees, regular grids, and space-filling curves with a
textual index such as inverted files or signature files. One of the first works
in Spatio-Textual indexing was conducted in the context of the SPIRIT search

314 C. Efstathiades and D. Pfoser

engine [16]. SPIRIT facilitates the use of regular grids as spatial indexes and
inverted files for the indexing of the documents. Following this idea, Zhou et al.
[17] present hybrid indexing approaches comprising of R*-trees [1] for spatial
indexing and inverted files for text indexing. Several approaches following the
combination of R*-trees and inverted files followed [17,4,15]. Chen et al. [3] use
space-filling curves for spatial indexing, whereas in [5], R-trees are combined
with signature files in the internal nodes of the tree, so that a combined index
is created. The algorithm in [9] is used for incremental nearest neighbor queries.
Cong et al. [4] propose the IR-tree index, creating an inverted file for each node
of an R-tree, again using [9]. Here, linear interpolation is used [13], in order
for the spatial distance to be combined with the textual distance and therefore
produce a combined score. In our work, we use a similar approach when com-
bining the relevance score with spatial distance. A very related approach to [4]
is presented in [11]. Recently, Rocha-Junior et al. [15] propose the hybrid index
S2I, which uses aR-Trees [14]. The authors claim to outperform all other pro-
posed approaches in this problem domain. Our work differs significantly in that
we do not consider textual similarity, but use the co-occurrence of POIs in text
as an indicator for relevance. This relevance information (and no actual textual
information) is then combined with the spatial aspect of the POIs to retrieve
relevant nearest neighbors.

To the best of our knowledge, the most related work that combines user
experiences and spatial data is [2], which introduces the notion of prestige to
denote the textual relevance between nearby to the query point objects. It also
uses a graph, but the way it is constructed is based on the spatial distance
between the objects as opposed to our method of using relevance. The prestige
from a given query point is propagated through the graph, an information that
is later used to extend the IR-tree [4]. Compared to our work, our index does
not include a factor of randomness in our relevance score calculation as this is
the case with PageRank-based algorithms. In general, the notion of relevance in
[2] is based on different measures that are query dependent (textual relevance),
a fact that is not being considered in our work. Our query considers only the
location of a query point. Relevance is only derived from the collected dataset.

The problem of combining relevance and spatial distance is closely related to
the problem of computing top-k queries that are based on different subsystems
such as studied by Fagin et al. [7,8]. The difference to our approach is that we
have a specific focus on spatial data and on how to combine the result sets. Also,
in our final k-RNN list we have the exact scores, compared to the approximate
scores of the NRA algorithm.

Finally, in this work relevance is computed by counting the co-occurrences of
POIs in the same paragraphs of texts. In spite of the simplicity of this metric,
recent results show that POIs co-occur in documents when they are spatially
close, have similar properties, or interact with each other [12]. Essentially, these
observations are a confirmation of Tobler’s first law of geography that states
that “everything is related to everything else, but near things are more related
than distant things.”

User-Contributed Relevance and Nearest Neighbor Queries 315

3 Data and k-RNN Queries

With the proliferation of the Internet as the primary medium for data publishing
and information exchange, we have seen an explosion in the amount of online
content available on the Web. In addition to professionally-produced material
being offered free on the Internet, the public has also been encouraged to make
its content available online to everyone as User-Generated Content (UGC). We,
in the following describe the data we want to utilize and how to exploit it to
provide k-RNN queries.

3.1 Data

Web-based services and tools can provide means for users through attentional
(e.g., geo-wikis, geocoding photos) or un-attentional efforts (e.g., routes from
their daily commutes) to create vast amounts of data concerning the real world
that contain significant amounts of information (“crowdsourcing”). The simplest
possible means to generate content is by means of text when (micro) blogging.
Any type of text content may contain geospatial data such as the mentioning of
POIs, but also data characterizing the relationship between two POIs, e.g., the
Red Cross hospital is next to the St. Basil church.

In this work, what we try to discover in these data sources are collections
of POIs. Consider the example of Figure 1a. In the specific text snippet of
a travel blog, three distinct spatial objects are mentioned, O1 = {Acropolis},
O2 = {Plaka}, and O3 = {Ancient Agora}. We introduce the concept of Link-
of-Interest (LOI) as a means to express relevance between two POIs. Assuming
O = {O1, . . . , On} is the set of all discovered POIs, then a text paragraph Px ⊂
O, i.e., contains a set of POIs. It also holds that O =

⋃
P . We state that there

exists a LOI Li,j between two POIs Oi and Oj , if both POIs are mentioned in
the same text paragraph Px. The set of all LOIs is defined as follows.

L = {L(Oi, Oj)|∃Px ∈ P : Oi ∈ Px ∧Oi ∈ Px} (1)

Do note that the definition of relevance is a very simple one, i.e., co-occurrence
in the same paragraph. In future work, we intend to exploit the entire document
structure as well as use sentiment information. However, any of these consid-
erations will only affect the way we compute relevance and not the presented
techniques for computing the specific type of query.

3.2 k-RNN Queries

Combining relevance information with spatial distance will allow us to provide
better query results, i.e., POIs that are close-by and relevant.

Let D be a spatial database that contains spatial objects O and Links of
Interests L. Each spatial object is defined as Oi = (Oi.id, Oi.loc) and each LOI
as Lk = (Oi.id, Oj .id, r), O.id is a unique object identifier, O.loc captures the
object location in two-dimensional space, and r provides the relevance (score)

316 C. Efstathiades and D. Pfoser

(a) POIs in text (b) POIs on a map

Fig. 1. “Closeby” Points Of Interest

of a LOI existing between two POIs oi and oj . The relevance r is computed as
the number of times a specific POI pair appears in different paragraphs, i.e., the
more often, the higher r and the higher the relevance of this specific LOI.

We introduce the k-RNN query as follows. Given a query point that is repre-
sented as a POI, find the k relevant nearest neighbors by taking into account,
both, spatial proximity and relevance. An example is given in Figure 2 for a 1-
RNN neighbor. Essentially, the query takes into account how relevant a close-by
POI is to the query point and combining this information with the spatial prox-
imity between the two POIs computes a combined k-RNN score denoting the
Spatio-Relevance Distance between the two points, i.e., the smaller the distance
(score), the better.

(a) Map (b) Relevance graph

Fig. 2. Relevance Graph and spatial “map” data

Equation 2 provides a means to compute a combined k-RNN score srnn that
considers, both, spatial distance and relevance.

srnn =
α ∗ sr(Q,O)

sr.max
+

(1− α) ∗ sd(Q,O)

sd.max
(2)

User-Contributed Relevance and Nearest Neighbor Queries 317

with 0 ≤ α ≤ 1 and where Q is the query point, O is the spatial object for which
we compute the score with respect to Q, sr is a score that takes into account
the relevance score between two points and can be any kind of metric, sr.max is
the maximum possible relevance score, sd is the Euclidean distance between Q
and O and sd.max is the maximum possible value the Spatial Distance can take
and depends of course on the query space. Parameter α is used to denote the
importance of each distance function (Relevance or Spatial) and can be tuned
according to the user’s needs.

In the next sections, detailed explanations are given as to the calculation of
the Relevance Score and the computation of k-RNN queries.

3.3 Access Methods

Given a query and trying to define an efficient method for solving it in a data
management context, typically access methods are used to speed up processing.
In the following, we will discuss some methods that, either on their own, or, by
combining them, efficiently solve the given query processing problem. When con-
sidering efficiency, we will also argue for the simplicity of a method, as the more
complex a proposed access method is, the bigger is the challenge in implementing
it in a given data management infrastructure.

Indexing Space and Relevance. Following this approach, we try to utilize
spatial indexing methods with graph data structures. A regular spatial grid is
used for indexing the locations of our POIs. The reason for using a regular grid
instead of other types of access methods such as the R-tree is that (i) it can
be updated in O(1) time, (ii) there are no limitations to the index size (whole
planet), (iii) k-NN queries can be processed incrementally by radiating out from
the query point (see in the following), and (iv) it is a data structure that serves
as a simple and elegant way of showing how a spatial index can be combined
with others to index, e.g., space + relevance. The disadvantages of the method
are that (a) space is divided into grid cells, which are considered to be disk pages
and because of the static and non-uniform nature of the spatial data, pages will
be underutilized and (b) the query time is not competitive when compared to
other methods such as the R-tree and its more efficient variants.

However, in this work we do not consider the efficiency of our approach based
merely on the use of the spatial index, but on how to create a hybrid method
to answer k-RNN queries. Therefore, any type of spatial index can be used to
replace the regular grid without having to change the algorithms used in our
approach.

The Relevance Graph is defined as a graph G(V,E), where V is the set of
vertices that correspond to the POIs found in the set of documents, and E is
the set of edges that correspond to links-of-interest (LOIs) between the POIs.
The edge weights denote the relevance score r between a pair of vertices.

We consider a pair of POIs to be related if there is at least one co-occurrence
in a paragraph and the relevance is derived from the number of co-occurrences.
For example, in Figure 2, we can see that the Acropolis Metro Station (O1) and

318 C. Efstathiades and D. Pfoser

Parthenon (O3) appear 6 distinct times in the same paragraphs, therefore their
relevance score is 6.

Index Creation and Maintenance. Both indices are built incrementally dur-
ing a pre-processing phase. In general, we consider that the data to be inserted
concern one document/description at a time. Therefore, the input to the insert
and update procedures are POIs and LOIs.

In the case of the Spatial Grid, considering its static nature, the correspond-
ing grid cell is located based on the POI’s coordinates and it is added to the
respective node (corresponding to a cell). Since we aim for having a one-to-one
correspondence between nodes and pages, should the node reach is maximum
capacity, an overflow page is added.

For the Relevance Graph, we have to update the graph (add new points/ver-
tices) and also update the relationships expressed as edge weights. Therefore,
with the input of a list of points, as well as the identified LOIs, if a POI has not
been previously added to the graph, we add it and also add the possible relations
to other POIs. To perform this operation efficiently, a separate data structure is
used to store the edges of the graph, so that they can be updated or added in
O(1) time.

4 k-RNN Query Processing

Having outlined structures to index the data, the major contribution of this work
is how to integrate those methods so as to efficiently support the processing of
k-RNN queries.

4.1 Index Synchronization

In order to tackle efficient k-RNN processing, we first define a basic query pro-
cessing method, termed GR-Sync (derived from Grid/Graph synchronization)
that combines the results of the two separate indices in order to answer k-RNN
queries. GR-Sync consists of two separate methods for identifying the k-RNN
candidates in the Spatial Grid and in the Relevance Graph, respectively. The
intuition behind this approach is an intermixed, stepwise execution of the search
in both indexes. After each step of the so-called expansion process in both data
structures, the results (current list of respective k-NN neighbor candidates) are
combined. If the neighbors found are guaranteed to be the k-RNN neighbors,
then the procedure stops, otherwise it continues until the k-RNN neighbors are
guaranteed to have been found.

Spatial Search. The Spatial Expansion algorithm uses a Spatial Grid that
divides the surface of the earth into equal-sized grid cells as shown in Figure 2a.
For each inserted POI we store four distances to the respective sides of the cell.
Figure 3 shows an example of how the algorithm behaves for eight expansions
beginning from a query POI. The algorithm first locates the grid cell of the query

User-Contributed Relevance and Nearest Neighbor Queries 319

point. Given that this algorithm tries to establish the relevance and proximity
between POIs (“Where to go next?”), the query point is recruited from the set of
POIs. The objective of the spatial expansion is to discover the nearest-neighbor

(a) Steps 1-4 (b) Steps 5-8

Fig. 3. Spatial expansion

POIs of the query point. We do so, by retrieving close-by POIs in neighboring
cells in a step-wise fashion. As we will see, this results in snail-like expansion .
The order in which the cells are retrieved depends on the location of the query
point within its containing cell. Consider the example of Figure 3a. The query
point is closest to the bottom side of the cell (arrow labeled “1”). To guarantee
that all POIs have been examined that are within distance 1, only the cell of the
query point needs to be loaded (indicated also by the circle around the query
point and of radius “1”). However, for the case of distance “2” also the points of
the bottom cell (labeled 2) need to be retrieved. This snail-like expansion next
retrieves two cells labeled “3” and then two cells labeled “4”. While we also
retrieve points that are further away than d4, we are also certain that we have
not missed any candidates.

The points that are not within the maximum distance are added to a re-
trievedPoints list, whereas the points that are within the maximum distance are
added to the k-NN list based on Euclidean distance.

With increasing distance, the search expands to neighboring cells as shown in
the example of Figure 3b. As expected, the larger the distance from the query
point, the more points are retrieved in each step, e.g., 4 cells in Step 8.

Computing the Relevance Score. To retrieve the relevance score sr, we have
to examine the Relevance Graph. Our method orients itself on the Breadth-First
graph traversal. It starts with the query point and in a first step examines all
adjacent nodes in the Relevance Graph. Subsequent steps examine all neighbors
of the initially-visited nodes and so on.

320 C. Efstathiades and D. Pfoser

To compute a Relevance Score, we use the following recursive formula that
computes the score of a node k based on the score of its predecessor, or, parent
node p. For the initial expansion p = q.

sr(k) = 1− wp,k∑N
i=1 wp,i

+ sr(p) + sh(k) (3)

sh(k) = sh(p) + h(k) (4)

where sr is the Relevance Score for node k, wp,k is the weight from the parent
node p to k, N is the number of the parent’s one-hop neighbors, the number of
nodes that are expanded during the same step, sr(p) is the parent’s relevance
score, and sh(k) is a score derived from the number of hops needed to reach k
from q. sh(k) is based on the respective score of the parent node and increases
with the distance of k from d. This also ensures that any node l with h(l) > h(k)
will have a higher relevance score than node k, i.e., sr(l) > sr(k) : h(l) >
h(k). Observe that, both, the Relevance Score and also the Spatial Score are a
penalizing score as they reflect distance, i.e., the higher sr, the less relevant a
node k with respect to q.

Figure 4 depicts an example of the calculation of the Relevance Score for
the neighbors of a query point. First, the sum of the weights of the edges that
connect the query point to its neighbors is calculated. In this example Σ(0) =
28. To compute each one-hop neighbor’s Relevance Score sr, we need to get
the intermediate score of each neighbor node based on the edge weight, i.e.,
1 − (wp,k/

∑N
i=1 wp,i). For example, node B has an intermediate score of 1 −

3/28 = 0.89. Applying the rest of Equation 3, with sr(p) = 0, since p = q
and h = 0 with the hop count starting at 0, sr(B) = 0.89. Continuing the
expansion, i.e., retrieving the two-hop neighbors, for example for node F, sr(F) =
(1− 2/6)+ 0.89+ 1 = 2.56 (the edge that connects the neighbor to its parent is
not taken into consideration). It should be noted that in the case of computing
the score of a node, we consider the closest path as far as the number of hops
from the query point is considered. Additionally, should a node be reachable by
the same number of hops through multiple nodes, we consider the lowest scoring
node as a parent node.

Synchronizing Expansion. To compute the k-RNN score, both, the spatial
search and the relevance graph search need to be synchronized and their scores
combined. The following approach computes combined scores and evaluates the
status of the search at fixed intervals determined by the number of expansions
performed in each index. As described earlier, “expansions” are performed to
retrieve k-RNN candidates. In the Spatial Grid, this results in a snail-like ex-
pansion and retrieval of cells surrounding the query point, and in the Relevance
Graph, a BFS-like expansion of increasing distance to the query point is used.
After each expansion step, the two lists contain the closest in terms of spatial
and relevance score neighbors, respectively. The two scores in both lists need to
be combined to assess k-RNN candidates. To synchronize the spatial expansion
in the grid with the expansion of the Relevance Graph, we define a respective

User-Contributed Relevance and Nearest Neighbor Queries 321

Fig. 4. Graph expansion and Relevance Score

rate of expansion steps. The expansion ratio χ determines the ratio of spatial
to relevance graph expansions. χ will typically be in the range of 4 to 16, as
spatial expansions are considerably cheaper. Each search maintains a list of ex-
panded POIs and their respective score. After each expansion cycle (considering
the expansion ratio), the two lists are checked and the common POIs, i.e., ap-
pearing in both lists, are identified. Using Equation 2, their combined score srnn
is computed. All POIs with such a score are added to a queue sorted by srnn
essentially containing all top k-RNN neighbors that have been identified at this
point, i.e., POIs that have been examined in both data structures.

To define a termination criterion for the search, we have to guarantee that all
k-RNN POIs have been found, i.e., further search will not reveal any POIs with
a better score than the ones already identified. Each search keeps an open list
for each set of respective POIs found so far recording the corresponding k-RNN
score. If a POI is found in only one index, to compute its score, we use a best-
case estimate for the missing score, i.e., that it will be found during the next
expansion. For example, assuming a POI was retrieved in the spatial search but
not yet in the relevance search, the relevance score will be the lowest possible
score after the next expansion (relevance score is dominated by number of hops
= expansion steps). Similarly, should the spatial score be missing, we assume
the best case, i.e., that the POI will be discovered during the next round of
expansion with a distance from the query point just beyond the current search
distance. As the searches progress, the scores of the POIs, and thus the open
lists, will be updated based on current number of hops and search distance.
The GR-Sync algorithm is shown in Figure 5. GR-Sync uses sdrnn and srrnn as
the minimum predicted combined k-RNN scores for nodes with no valid spatial,
or relevance score, respectively. If s∗rnn = min(sdrnn, s

r
rnn), the minimum score

that still could be found, is less than max(srnn), i.e., the maximum score of
identified rnn candidates, it means that the POIs in the (top-k) result list are
guaranteed to be the top k-RNN neighbors (Line 17). This condition can be used
as termination criterion.

322 C. Efstathiades and D. Pfoser

GR-Sync(q, k)

1 RG � Relevance Graph
2 SG � Spatial Grid
3 rg � Discovered POIs in RG
4 sg � Discovered POIs in SG
5 rnn � k-RNN result list
6 n � Relevance Graph step count
7 χ � Expansion ratio Spatial Grid
8 while ¬ complete
9 SpatialExpansion(q, k, (n× χ), SG, sg)

10 SemanticExpansion(q, k, n,RG, rg)
11 rnn = sg ∩ rg � NN results with complete score
12 srrnn = MinScore(rg) � Min. predicted score, Relevance Graph
13 sdrnn = MinScore(sg) � Min. predicted score, Spatial Grid
14 s′rnn = Min(sdrnn, s

r
rnn) � Min. expected score

15 s∗r = MaxScore(rnn) � Max. score in current result list
16 � if the max kth RNN distance found so far is less than the min predicted distance
17 complete = (|rnn| ≥ k ∧ s∗r < s′rnn)

Fig. 5. GR-Sync k-RNN algorithm

4.2 Index Linking

The k-RNN query processing algorithm presented so far does not actually com-
bine the two indices (spatial and relevance) in any way, but only evaluates the
results at times with the expansion steps used as a means of synchronization.
An inherent problem with this method is the search in the Relevance Graph,
which after the first hops becomes very costly. Big expansions in the Relevance
Graph (empirically observed for hops > 3) retrieve a lot of data and, hence, incur
disk activity. To address this problem, we have devised a variation of our query
processing technique that manages to bound the expansion in the Relevance
Graph, i.e., to compute the Relevance Scores without expanding large potions
of the graph. In this GR-Link method, termed as such since it combines the two
indexes (Grid/Graph linking), we use the results of the spatial search as seed
elements to the search in the Relevance Graph. The intuition is that many 1-hop
expansions (spatial search seeds) are “cheaper” than a single n-hop expansion
of the query point. POIs retrieved by the spatial search (and not discovered yet
in the relevance search) are expanded in the Relevance Graph (cf. Figure 6) The
intuition is that the graph searches of (i) the seeded POIs and (ii) the query
point will meet eventually and, thus, we can compute a POI’s relevance score.
Without seeding the search, we would have to wait until the query point expan-
sion reaches a POI. The simplified example of Figure 6 should illustrate that the
POIs expanded are much fewer than the POIs that would have been retrieved if
a second expansion step from the query point would have been performed.

The GR-Link approach also allows us to better bound the estimates of miss-
ing scores. Placing a POI on the Relevance Graph, we know for sure that if

User-Contributed Relevance and Nearest Neighbor Queries 323

Fig. 6. GR-Link method using Grid POIs in Graph search

their expansions (POI and query point) do not meet, the base for their score
computation is at least the sum of the two expansions plus one hop (since they
did not meet). Therefore, the predicted sr score for such a point is larger than
what it would have been in the non-hybrid case.

The pseudo code for this method is shown in Figure 7. The difference from
the GR-Sync algorithm are the statements in Lines 11-14, which seed POIs to
the Relevance Search.

As the experimental section will show, the intuition of choosing many small
Relevance Graph expansions over one large expansion pays off and the GR-Link
method shows superior performance in terms IO when compared to the GR-Sync
solution.

5 Experimental Evaluation

Did the previous sections define our approach to the processing of k-RNN queries,
so will we in the following establish its efficiency. An empirical study using
real and synthetic datasets will assess the performance of the query processing
methods in terms of accessed data (disk I/O operations) under varying parameter
settings. Overall, we compare three methods, (i) the GR-Sync method (naive
method), (ii) the GR-Link method and (iii) an hypothetic ideal method (see
below for an explanation). What we expect from the experiments is to see a
well-performing GR-Link method that comes close to the performance of the
ideal method.

5.1 Data

The experimentation relies on real and synthetic datasets. The real data con-
sists 120k POIs and 670k LOIs extracted from a corpus of 120k documents. The

324 C. Efstathiades and D. Pfoser

GR-Link(q, k)

1 RG � Relevance Graph
2 SG � Spatial Grid
3 rg � Discovered POIs in RG
4 rg′ � Discovered POIs in RG - spatial seeds
5 sg � Discovered POIs in SG
6 rnn � k-RNN result list
7 n � Relevance Graph step count
8 χ � Expansion ratio Spatial Grid
9 while ¬ complete

10 SpatialExpansion(q, k, (n× χ), SG, sg)
11 for each poi ∈ sg
12 SemanticExpansion(poi, 1, RG, rg′)
13 SemanticExpansion(q, n, RG, rg)
14 rg = Connect(rg, rg′) � Combine graph expansions
15 rnn = sg ∩ rg � NN results with complete score
16 srrnn = MinScore(rg) � Min. predicted score, Relevance Graph

17 sdrnn = MinScore(sg) � Min. predicted score, Spatial Grid
18 s′rnn = Min(sdrnn, s

r
rnn) � Min. expected score

19 s∗r = MaxScore(rnn) � Max. score in current result list
20 � if max kth RNN distance found so far is less than min predicted distance
21 complete = (|rnn| ≥ k ∧ s∗r < s′rnn)

Fig. 7. GR-Link k-RNN algorithm

documents were collected from three different travelblog sites (travelblog, trav-
eljournals, travelpod) as described in [6]. The texts were pre-processed to collect
the necessary information for the index: (i) identification of POIs, (ii) geocoding
of POIs (spatial position), and (iii) location within the document (paragraph id
and offset).

To improve the significance of the experiments, we also generate a larger-in-size
synthetic dataset. The procedure for generating the data follows simple heuristic
rules derived from the characteristics of the real data, i.e., generating hotspots
(cities) with POIs and links between these hotspots. We generate center points
(cities, attractors) in an area of 30×30 degrees (approximately 3300 × 3300km)
using a uniform distribution. For each center point, using a normal (gaussian) dis-
tribution, we generate neighboring points (POIs). We then generate relationships
(LOIs) between POIs using a normal distribution, i.e., the neighbors that are spa-
tially closer to a POI in question are more likely to be linked to it than the ones fur-
ther away (Tobler’s spatial bias). On average, we generate 30 LOIs per POI (max-
imum = 50). The edge weights (denoting the number of common paragraphs) are
generated randomly based on observations from our real dataset and vary between
0 and 500. Our synthetic dataset consists of 1 million POIs that form a Relevance
Graph with a total of 6.5 million edges (LOIs). It is considerably larger than the
Relevance Graph derived from the real data and, thus, should allow us to provide
a more conclusive experimental evaluation.

User-Contributed Relevance and Nearest Neighbor Queries 325

5.2 Experimental Setup

We evaluate the various query processing methods not only with different datasets
but also a varying set of parameters including (i) the number of RNN neighbors
k and (ii) the preference parameter α emphasizing either spatial distance or
relevance.

The performance is assessed in terms of number of page accesses (I/O) per-
formed to retrieve the data from disk for each query. In each case, we performed
100 queries and computed the average I/O shown in the respective charts. An
important aspect is the spatial grid used to index the data. We use a regular grid
with a spacing of 0.02 degrees (approximately 2km) in longitude and latitude.
The synthetic dataset consists of 1 million POIS covering an area of 30 degrees
longitude and latitude, respectively, an extent somewhat comparable to Europe.
The 1M POIs are grouped into 160k cells amounting to an average space uti-
lization of 6, but not exceeding 30. Keep in mind that we only consider occupied
cells in our index. The real dataset contains 120k points that are scattered all
over the globe. Here, 80k cells contain at least one POI. This amounts to an
average space utilization of < 2, with few cells containing more than 5 POIs.
Essentially, we used this dataset as a template for the synthetic data generation.
Still, we wanted to present the results of the performance study, to see whether
the trends with respect to the indexing methods persist.

The expansion ratio χ was set to 12, i.e., for each expansion in the Relevance
Graph, 12 expansions in the Spatial Grid are performed.

5.3 k-RNN Query Performance

In our experimental setup, we first vary the number of sought nearest neighbors
k to see how scalable our algorithms are in terms of I/O. In this experiment,
the parameter α is fixed to 0.5, i.e., considering the spatial and relevance score
equally important.

As we can see in Figure 8a, the GR-Link approach outperforms the GR-Sync
method by an order of magnitude. This is due to the fact that GR-Sync needs
to search large parts of, both, the Spatial Grid and the Relevance Graph in
order to guarantee the result. Therefore, when POIs are found in one of the
two indices, it needs to keep searching the other to find the combined k-RNN
score. This causes the algorithm to access a lot of unnecessary pages. On the
other hand, the GR-Link method uses the results of the Spatial Search to limit
the expansions in the Relevance Graph. Hence, this method has a considerably
better performance.

While a comparison to the naive GR-Sync approach does not pose a challenge,
so does the next experiment relate the performance of GR-Link to an “ideal”
approach (cf. Figure 8b). The ideal approach simulates a Relevance Graph search
that terminates as soon as the k-RNN POIs are found, i.e., we have a-priori
knowledge of the results and are only expanding the graph until “discovered”.
As such this method is unrealistic, but should just serve as a lower-bound for
the performance of the hybrid index. Figure 8b shows that the GR-Link method

326 C. Efstathiades and D. Pfoser

examines more data than the ideal approach (albeit little data overall). Still, in
terms of comparison to the baseline approach, the hybrid index’s performance
is close to that of the ideal method.

(a) GR-Sync vs. GR-Link vs. Ideal (b) GR-Link vs. Ideal

Fig. 8. Naive, Hybrid and Ideal Index I/O performance

5.4 Spatial Grid vs. Graph Partitioning

All POI data is kept on disk. The assumption so far is that each populated
Spatial Grid cell constitutes a page on disk. This approach has the disadvantage
of taking into consideration only the spatial characteristics without taking into
account that the nearest-neighbor search explores not only the spatial grid but
the Relevance Graph as well. The more the points discovered in the Relevance
Search (graph expansion) are spatially spread out, the more pages need to be re-
trieved, thus, increasing the I/O cost. Our approach in extending the current disk
layout is now to group POIs together based on the proximity in the Relevance
Graph. This is achieved by partitioning the Relevance Graph using the METIS
graph partitioning tool [10]. However, the grid-based partitioning is essential
for spatial search and the underlying expansion mechanism. Using (relevance)
graph-based partitioning, we mapped the spatial grid cells to graph partitioning.
I.e., does the spatial search request a specific cell, the respective one or more
graph partitions are fetched. Figure 9a shows that graph-partitioning does not
provide an advantage over the static spatial partitions. What is interesting to
see is that the performance advantage of the ideal method when compared to
GR-Link is diminished for the case of graph partitioning. An explanation here
could be that the expansion solely relies on the graph and, hence, a respective
partitioning would provide some (respective) advantage for this method. Overall
however, the ideal method performs best in the case of the Spatial Grid, which
is evident when comparing Figures 8b and 9b.

5.5 Score Balance

The preference parameter α balancing the effect of spatial distance vs. relevance
on the query result is not only a critical factor for the quality of the result, but

User-Contributed Relevance and Nearest Neighbor Queries 327

10 20 30 40 50 60
20

30

40

50

60

70

80

90

k

I/O
 p

ag
e

ac
ce

ss
es

Spatial
Graph

(a) GR-Link: Spatial Grid vs.
Graph Partitioning

(b) Graph Partitioning: GR-Link
vs. Ideal

Fig. 9. Partitioning: Spatial Grid vs. Relevance Graph

also affects the query processing cost. With α = 0.1 it favors the Spatial Score
and with α = 0.9 it favors the Relevance Score. The two charts of Figure 10 show
that the query cost does not change significantly with α. It seems that with an
emphasis on Relevance (α > 0.5), the cost slightly decreases due to fewer spatial
expansions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

alpha

I/O
 p

ag
e

ac
ce

ss
es

Spatial
Graph

(a) k=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

alpha

I/O
 p

ag
e

ac
ce

ss
es

Spatial
Graph

(b) k=60

Fig. 10. Varying preference parameter α

5.6 Real Dataset Experiments

The number of page accesses when compared to the experiments with the syn-
thetic dataset appear to be orders of magnitude greater in number because of the
many spatial expansions that need to be performed in order for the algorithms to
guarantee the k-RNN result in a sparse dataset. Overall, this experiment shows
the same trends observed for synthetic data.

328 C. Efstathiades and D. Pfoser

Fig. 11. Real Dataset: varying k

5.7 Summary

The experiments showed that one can provide an efficient indexing mechanism
and query processing method for combining spatial and graph-based search by
interlinking index traversal in both “spaces”. The GR-Link method performs
very close to an “ideal” method and an order of magnitude better than the
naive GR-Sync method.

6 Conclusions

The motivation for this work was to find an efficient method to process k-RNN
queries, i.e., a version of the NN problem that also considers the relevance be-
tween query points. Relevance in our case is defined as co-occurrence of POIs in
texts (Links of Interests - LOI). While a rather simplistic measure, it is adequate
to define and evaluate the proposed approach. To solve the k-RNN problem, we
define two query processing methods that rely on a spatial grid and a graph
to capture the respective data aspect. Experimentation shows that GR-Link is
an efficient method that performs significantly better than a naive method and
comes close to the performance of a hypothetical ideal method. This work out-
lines a first approach to combining spatial and graph search and consequently
directions for future work are plenty. They include using more efficient spatial ac-
cess methods, optimizing the search in the graph, and adding graph information
to the spatial index. We aim also in performing an “interestingness” evaluation
in order to measure the usefulness of the k-RNNquery to the users.

Acknowledgements. The research leading to these results has received funding
from the European Union Seventh Framework Programme - Marie Curie Actions,
Initial Training Network GEOCROWD (http://www.geocrowd.eu) under grant
agreement No. FP7-PEOPLE-2010-ITN-264994.

User-Contributed Relevance and Nearest Neighbor Queries 329

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient
and robust access method for points and rectangles. In: Proc. SIGMOD Conf.,
pp. 322–331 (1990)

2. Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial
web objects. PVLDB 3(1-2), 373–384 (2010)

3. Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: Proc. SIGMOD Conf., pp. 277–288 (2006)

4. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2(1), 337–348 (2009)

5. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
Proc. 24th ICDE Conf., pp. 656–665 (2008)

6. Drymonas, E., Pfoser, D.: Geospatial route extraction from texts. In: Proc. 1st
Workshop on Data Mining for Geoinformatics, pp. 29–37 (2010)

7. Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci. 58(1), 83–99 (1999)

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

9. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.
on Database Syst. 24(2), 265–318 (1999)

10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

11. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D., Wang, X.: IR-tree: An ef-
ficient index for geographic document search. IEEE Trans. on Knowl. and Data
Eng. 23(4), 585–599 (2011)

12. Liu, Y., Wang, F., Kang, C., Gao, Y., Lu, Y.: Analyzing relatedness by toponym
co-occurrences on web pages. Transactions in GIS (to appear, 2013)

13. Martins, B., Silva, M.J., Andrade, L.: Indexing and ranking in geo-ir systems. In:
Proc. Geographic Information Retrieval Workshop, pp. 31–34 (2005)

14. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial
data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

15. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849,
pp. 205–222. Springer, Heidelberg (2011)

16. Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geo-
graphical search on the web. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005)

17. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for
location-based web search. In: Proc. 14th CIKM Conf., pp. 155–162 (2005)

Using Hybrid Techniques for Resource

Description and Selection in the Context
of Distributed Geographic Information Retrieval

Stefan Kufer, Daniel Blank, and Andreas Henrich

University of Bamberg, D-96047, Germany
{stefan.kufer,daniel.blank,andreas.henrich}@uni-bamberg.de

http://www.uni-bamberg.de/minf/

Abstract. The amount of media items on the web is increasing tremen-
dously, especially regarding personal media items. To effectively collab-
orate over and share these massive amounts of media objects, there is a
strong need for adequate indexing and search techniques. Trends like so-
cial networks, large-storage mobile devices and high-bandwidth networks
make peer-to-peer (P2P) information retrieval systems of deep interest.

Hence, resource selection based on compact resource descriptions is
used to efficiently determine promising peers w.r.t. a query. To design
effective media search applications, multiple search criteria need to be
addressed. Subsequently, besides text or visual media content, geospatial
data is frequently used.

We propose techniques to summarize and select collections of georefer-
enced media items in P2P systems. Generally, these summarization tech-
niques can be divided into geometric and space partitioning approaches.
This paper presents and evaluates techniques of a third category, hybrid
approaches that combine features of geometric and space partitioning
techniques.

1 Introduction

During the last years, the amount of (especially personal) media data accessible
via the World Wide Web has vastly increased. People write blogs, twitter about
events or their lifes, use remote photo or video communities and share media con-
tent in social networks. Therefore, people not only store these personal media
objects, but also interact with each other through them, for example by collabo-
ratively tagging or commenting on various items. Consequently, online resources
varying in size, media type and update frequency have to be administered [1].

Additionally, the availability—and with it the usefulness—of geospatial meta-
data has increased dramatically in recent times. Nowadays, digital cameras as
well as mobile phones are often equipped with GPS sensors at reasonable costs.
Hence, these devices are able to capture georeferenced information to enrich
media data in many situations, like shooting videos or taking pictures. Sup-
plementary, geo-tagging tools with rich user interfaces have emerged in several
domains and there are large geo-tagging initiatives attempting to georeference

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 330–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.uni-bamberg.de/minf/

Using Hybrid Techniques for Resource Description 331

textual resources such as Wikipedia. Taken en masse, the increased importance
of geospatial information in the context of searches can be recognized.

Obviously, geospatial information is not the only search criterion. Other crite-
ria such as textual content, timestamps and (low-level) audio and visual content
information can be used when searching for media items as well. An integra-
tive combination of these criteria with spatial filter or ranking conditions can
facilitate an effective retrieval of text, image, audio and video documents.

Our search scenario assumes a P2P system maintaining personal media archi-
ves. P2P systems are formed by computers (potentially) distributed all over the
world, the peers, which can act as both clients and servers. By applying a scal-
able P2P IR protocol, a service of equals for the administration of media items
can be established, without the requirement to maintain expensive infrastruc-
ture. In our scenario, the media items administered in a personal archive are
stored locally on the peer (that is to the user’s personal device), without the
need to store media items on remote servers hosted by service providers such
as Flickr or YouTube, reducing the dependency on service providers as infor-
mational gatekeepers. To facilitate retrieval, media items can be described by
four criteria: 1) textual content, 2) low-level content features, 3) timestamps and
4) a geographic footprint. Hence, personal media archives can be represented by
four corresponding resource descriptions (summaries). Each summary represents
a feature aggregation in terms of the media items a resource (peer) maintains,
for example an aggregation over all the geographic coordinates of all the media
items a peer administers. As a scalable P2P protocol, Rumorama [2] is applied
in our scenario, and establishes hierarchies of PlanetP-like [3] networks. In a
PlanetP-like network, every peer knows all the resource descriptions of every
other peer inside the network, enabling routing decisions while query processing
(that is contacting the most promising peers, according to the summaries and
with respect to a certain query, first). The distribution of resource descriptions
in the network is assured by randomized rumor spreading [3].

The present paper studies novel techniques with respect to resource descrip-
tion and resource selection considering geographic metadata and thus continues
work presented in [4]. There we examined techniques falling into either the cate-
gory of geometrical approaches or the category of space partitioning approaches
(cf. Sect. 2). The current paper introduces a third category, hybrid approaches
combining features of the two previous approaches, and evaluates them with
respect to [4].

2 Resource Description and Selection for Geographic
Queries

Generally, in our scenario every peer maintains a chunk of images as media
items, where every image is described by a single pair of lat/long-coordinates.
These geocoordinates are basically treated as point data in a plane for resource
description and selection. Consequently, distances are approximated using the
Euclidean distance, since investigations in [5] showed that the usage of distance

332 S. Kufer, D. Blank, and A. Henrich

Fig. 1. Visualization of the simple MBR approach (on the left) and the RecMARk

technique with k=3 (on the middle) respectively k=6 (on the right) as examples for
geometric approaches. The blue points denote the data points of the sample peer.

measures better suited for distance calculations between two points on earth
(like Haversine distance [6] or Vincenty distance [7]) do not conduct noticeable
changes in case of our data collection (cf. Sect. 3.1).

Resource selection is performed by ranking peers based on their resource de-
scriptions, the query location and maybe some additional information such as
reference points. The peer ranking defines the order in which peers get contacted
during query processing. When searching for the k closest images with respect to
a query location, the peer ranking should reflect that peers with a higher proba-
bility of administering a bigger fraction of the top-k images receive a higher rank
than peers maintaining a smaller fraction of the top-k images. Our scenario re-
quires a reasonable trade-off between the expressiveness of a resource description
(allowing better selectivity) and its storage requirements for its representation.
For the techniques presented in the following, differences in evaluation time are
negligible compared to the time needed for accessing peers and will therefore not
be considered.

The remainder of this section shortly presents the two classes of summary
types evaluated in [4] and also describes the two most promising approaches
found in these studies (cf. Sect. 2.1 and Sect. 2.2). Next, the class of hybrid
approaches and the specific techniques examined in this paper (cf. Sect. 2.3)
get introduced. Finally, the resource ranking algorithms will be described in
Sect. 2.4.

2.1 Geometric Approaches

The first class of summary types computes a single or multiple geometrical shapes
to enclose the set of point data a peer administers. Calculating approximated,
concise representations of complex forms (a peer’s point cloud in our case) is
a standard problem in many computer science domains [8], therefore plenty of
computational geometry algorithms exist and are applicable for this category of
summaries. Figure 1 (on the left) shows one of the most basic techniques in this
field, as it simply encloses all of a peer’s data points into a minimum bounding
rectangle (MBR) to describe its data, requiring two pairs of lat/long-coordinates
to be stored.

In [4], we found the most promising technique of this class to be an ap-
proach where a peer’s point cloud is described by several so-called minimum area

Using Hybrid Techniques for Resource Description 333

rectangles (MARs). The computation algorithm is based on work from Becker
et. al. [8] to summarize a set of bounding boxes by two bounding boxes which
minimize the area that is covered. This algorithm has been adjusted to point
data and was transformed into a recursive version, continuing the disassembly
until a predefined maximum of k MARs has been computed or a certain thresh-
old dist has been undercut, which is taking the distance between the center of
a MAR and the most distant of its associated data points into account. The
threshold needs to be adjusted with respect to the underlying data collection to
achieve appealing results. This technique, denoted RecMARk, shows excellent
selectivity (that is the fraction of peers contacted to retrieve the relevant images)
while keeping summary sizes at a reasonable level, since the algorithm allocates
more MARs for peers with “complex” point data and less MARs for peers with
less “complex”, spatially narrowed point clouds. See Fig. 1 on the middle and
on the right for a visualization of RecMARk.

2.2 Space Partitioning Approaches

The second category of summary types globally segments the data space into a
certain number of subspaces. Thus, the segmentation is the same for all peers.
This allows storing the information if a peer maintains data points for a cer-
tain subspace (or not) in the very peer’s summary. Basically, there are three
approaches to store information for a subspace: storing how many data points
are contained in a cell (using integer values), storing whether at least one data
point is contained in a subspace or not (using bits), or storing some kind of
distance information concerning a peer’s data points in a subspace (for example,
the maximum distance between any data point being located in a certain sub-
space and the subspace’s center, using float values). Figure 2 on the left shows
the simplest space partitioning technique, mapping the lat/long-coordinates to a
uniform grid (which results in non-uniform grid cell sizes on the sphere). The yel-
low highlighted cells contain data points, the related information can be stored
in any of the aforementioned ways in a peer’s summary.

Our experiments in [4] reveal the so-called Ultra Fine-grained Summaries
(UFSn) to be best when taking both description selectivity and summary sizes
into account. The data space gets segmented based on n predetermined refer-
ence points invoking a Voronoi-like space partitioning (see Fig. 2 on the right).
Therefore, a data point is assigned to the cell of the reference point being clos-
est to it. To attain convincing results, we found data space segmentation has
to be adjusted with respect to the underlying data collection (yielding smaller
subspaces for areas with high global point density and bigger subspaces for low
density areas). This can be achieved by randomly choosing reference points out
of the underlying collection, or (simulating cases where this is not possible) from
an external source where data points are similarly distributed as in the data col-
lection. Using UFSn, for each peer and each cell there is only binary information
(1 or 0) stored depending on whether there is at least one data point inside a
certain cell or not, allowing compression techniques to greatly reduce summary

334 S. Kufer, D. Blank, and A. Henrich

Fig. 2. Visualization of the simple grid (on the left) and the UFSn technique (on
the right), invoking a Voronoi-diagram-like space partitioning with 32 subspaces, as
examples for space partitioning approaches. The black crosses on the right denote the
reference points of the Voronoi diagram.

sizes. We compress the summaries using Java’s standard gzip implementation1.
To gain selectivity, the number of data cells can be increased. In [4], this ap-
proach results in very selective resource descriptions while keeping the average
description size at a very low level.

2.3 Hybrid Approaches

This subsection introduces a third category of summary types, the hybrid approa-
ches. These techniques combine characteristics of both geometric and space par-
titioning approaches, using geometric shapes as well as space segmenting to
describe the location(s) of a peer’s data. Basically, this category can be further
distinguished into two subclasses, whether the techniques are using the geomet-
ric approach as first data description tool and affiliate some space partitioning
method, or if they are doing it the other way round—some space segmentation
followed by the usage of geometric shapes—. The first two techniques presented
in the following are using geometric shapes as primary and space partitioning
as secondary technique, while the subsequent two approaches are utilizing space
partitioning primary and geometric shapes secondary.

MBRGridr. The first technique combines the basic geometric and space seg-
mentation approaches presented earlier in the present paper. Initially, an MBR
containing all of a peer’s data points is computed. In a second step, the enclosed
area gets segmented into subspaces by utilizing a uniform grid to partition the
corresponding space. The number of subspaces can be adjusted by a parameter
r, representing the number of rows on the grid. For this local segmentation, we
did likewise as in [4] or [9] for global space segmentation, setting the number of

1 The summaries of the hybrid summary types have been compressed the same way.
For RecMARk, compression resulted in higher average summary sizes, therefore for
this technique uncompressed summary sizes are taken into account when compar-
isons between the different techniques are drawn.

Using Hybrid Techniques for Resource Description 335

Fig. 3. Visualization of the MBRGridr summaries with r=2 (on the left), respectively
r=8 (on the right) for the interior grid

Fig. 4. Visualization of the KMARGridr
k summaries with k=3 (computation of up to

three enclosing rectangles) and r=1 (on the left), respectively r=2 (on the right) for
the particular interior grids

columns twice as big as the number of rows. Adjusting the number of rows and
columns according to, for example, the height/width-ratio of the enclosing MBR
is conceivable and could be part of future work. See Fig. 3 for a visualization of
an MBRGridr summary.

A peer’s summary is represented by a bit vector. First, the values encoding
the two lat/long-coordinate pairs of the enclosing MBR are incorporated. Origi-
nally, the MBR bounds are captured as float values and get converted into binary
information for summary inclusion (4 · 32 bits). The summary’s remainder con-
sists of values 1 or 0, indicating whether the corresponding subspace contains
at least one data point or not. If all of a peer’s data points share (exactly) the
same lat/long-coordinates, only the values specifying the MBR are encoded.

KMARGridr
k. Unsurprisingly, KMARGridrk takes the RecMARk algorithm as

a starting point to compute up to k MARs containing all of a peer’s data points.
The second step is similar to MBRGridr, except that in each MAR there is a
Grid to be invoked. Again, grid granularity is determined by a parameter r,
yielding r rows and 2 · r columns for a MAR’s grid. See Fig. 4 for a visualization
of a KMARGridrk summary.

A bit vector represents a peer’s summary as well. The grid-divided MARs are
encoded one after another, with each using 4 · 32 bits for the rectangle extents
and r · 2r bits to indicate cell occupancy for the respective interior grid.

336 S. Kufer, D. Blank, and A. Henrich

potential
data region

(e.g. a
grid cell)

actual
data region

coded actual
data region

0
0

3

3

9

9

15

15

Fig. 5. Coding of an actual data region. The blue circles are the data points to be
described (adapted from [14]).

GridMBRb
r. GridMBRb

r is the first of two approaches doing it the alternative
way, that is first segmenting the (whole) data space and afterwards using geo-
metric shapes in a second step. GridMBRb

r initially segments the data space by
imposing a regular grid onto the data space similar to the simple partitioning
approach presented earlier. In the second step, for each occupied cell, an approx-
imated MBR containing all the cell’s data points is computed, pursuing an idea
presented in [14].

Here a distinction between a potential data region (being the cell of a spatial
access structure) and an actual data region is made, the latter being an MBR
containing all the data points being located in the potential data region (that
is a certain grid cell in our case). In [14], to reduce storage spent on encoding
these interior MBRs, a technique originally introduced with the buddy-tree [15]
is used, exploiting the presence of potential data regions. For encoding a MBR,
generally four values need to be stored, specifying the lower left and upper right
corner. Let’s say b bits shall be used to encode one of these values. With this, we
can distinguish 2b different positions on an axis of a data cell. These positions
can be used to encode an approximated MBR (also called the coded actual data
region), being larger than the true MBR (the actual data region), but requiring
significantly less storage than encoding the true MBR with float values. Figure
5 illustrates this for two-dimensional data with b=4.

For GridMBRb
r, the parameter b is used to determine how much storage shall

be used to encode one of the four required MBR bounding values, using b bits to
encode a value (for example if b=3, eight different positions on each cell axis can
be distinguished). Likewise as for example MBRGridr, a parameter r specifies
the number of rows (r) and the number of columns (2 · r) of the global grid.

As a peer’s summary, a bit vector is used. Grid cells which do not contain any
data point are encodedwith 0, cells that contain at least one data point are encoded
with 1. After an 1 representing an occupied cell, there follow 4 · b bits encoding the
four required values specifying lower left and upper right of the interior MBR. See
Fig. 6 for an illustration of GridMBRb

r summaries for the sample peer.

Using Hybrid Techniques for Resource Description 337

Fig. 6. Visualization of the GridMBRb
r summaries with r=4 (resulting in 32 grid cells)

and b=2 (on the left) respectively b=4 (on the right), resulting in four respectively 16
possibilities on each axis to encode the interior MBRs

Fig. 7. Visualization of the non-uniform data space partitioning of K-D-MBRb
n with

n=32 subspaces and b=2 (on the left) respectively b=4 (on the right) for encoding the
cell-interior MBRs

K-D-MBRb
n. The last hybrid approach takes the k-d-tree-like data space par-

titioning, called GFBun in [4], as starting point. Using this technique, the data
space gets segmented into rectangular cells of different sizes. Training data is
used to learn a segmentation adjusted to the underlying data collection, while
sources for training data are the same as for the reference points of the UFSn
summaries, that is directly out of the data collection or from an external source
with similar point distribution. At the beginning of the training process, the data
space consists of only one cell or bucket. Training data points are sequentially
inserted into this bucket, until a bucket-overflow occurs followed by splitting the
bucket into two parts. Afterwards, further data points are inserted into the data
structure. The whole process is repeated until the desired amount of n buckets
has been reached.

As a second step after space partitioning, an approximated MBR is encoded
for each cell containing at least one data point. The MBR computation is ac-
complished the same way as for GridMBRb

r, that is there is a parameter b again,
to adjust the amount of storage used to encode the MBR. Figure 7 illustrates
this for the sample peer. For the summaries, bit vectors are used in the same
way as for GridMBRb

r.

338 S. Kufer, D. Blank, and A. Henrich

2.4 Ranking

Ranking of peers is conducted based on the information supplied by the sum-
maries. For the hybrid approaches, all the ranking algorithms operate on the
same principle. Note that all these approaches at the very end encode informa-
tion of rectangular areas in which a peer’s data points are located.

To rank peers, for each peer the algorithm extracts the peer’s summary in-
formation to construct all the rectangles containing the peer’s data points. This
is done in an offline phase. At query time, the minimum distance between each
rectangle and the query location is calculated (a query point located inside a
rectangle results in a distance of 0 for this rectangle). For each rectangle, dis-
tance information and the area covered by the rectangle are stored in a so-called
R-Entry. All R-Entries of a peer are arranged in a queue, sorted by distance in
ascending order. If the distance of two R-Entries is the same, the one with the
smaller area covered is favored.

To determine a ranking between two peers, the sorted R-Entries are compared
one after another. If the first R-Entry of peer pa is closer to the query location
than the first R-Entry of peer pb, pa is ranked higher than pb and vice versa. If
both R-Entries yield the same distance, pa is ranked higher than pb, if pa’s R-
Entry covers a smaller area than pb’s R-Entry and vice versa. If the area covered
is the same for both R-Entries, the next entries from the queues are compared,
etc. (until a decision can be made)2. If the R-Entry comparison does not lead to
a decision, a random ranking choice is made.

For RecMARk evaluated in [4], ranking works the exact same way. The UFSn
ranking shows a little variation due to the computational complexity for cal-
culating Voronoi cell boarders. There, the reference points cj (j ∈ {0;n − 1})
are sorted in ascending order with respect to the distance to the query location.
The first element of the sorted list L corresponds to the cluster center being
closest to the query (called query cluster). If peer pa administers documents in
this query cluster (that is 1 is set for the cluster in the peer’s summary) while
peer pb does not (that is 0 is set), pa is ranked higher than pb and vice versa.
If both peers feature the same value for the query cluster, the next element out
of L is chosen and both peers are ranked according to their summary values for
this very cluster. This procedure continues until a decision favoring one of the
peers can be made or the end of L is reached, resulting in a random decision.

3 Evaluation

In this section, we will give an intital brief description of the data collection
used for the evaluation (cf. Sect. 3.1). For comparability with previous evaluated
approaches, we use the experimental setting conducted in [4], but only apply

2 Obviously, not all the peers hold the same number of rectangular areas containing
data points. In this case, for the peer represented by fewer rectangular areas, dummy
entries are generated, whose values have the most unfavorable impact (that is infinite
distance and infinite area) on the ranking for the respective peer.

Using Hybrid Techniques for Resource Description 339

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
ro

fi
m
ag
es

pe
rp

ee
r

Peers ordered by decreasing number of images

1 image
2-3 images
4-9 images
10-27 images
>27 images

Fig. 8. Number of images per peer (left) and geographic distribution of images locations
(right) for the evaluated data collection

one query mode (cf. Sect. 3.2), since results are very similar for different query
point sources in [4]. Afterwards, the experimental results will be displayed and
discussed in Sect. 3.3.

3.1 Data Collection

During 2007, a large amount of publicly available, georeferenced images uploaded
to Flickr (http://www.flickr.com) was crawled. In our scenario, every Flickr user
operates a peer of its own. Thus, we assign images to peers by means of the Flickr
user ID. After some data cleansing, the collection consisted of 406,450 geo-tagged
images from 5,951 different users/peers. The distribution of the number of images
per peer (see Fig. 8) is very skewed which is typical for many P2P settings [3].
Few peers administer large amounts of the collection (“big peers”), while there
are also many peers which store only few images (“small peers”). See [9] for a
more detailed analysis. On the right, Fig. 8 illustrates the geographic distribution
of the image locations, revealing an uneven spread with image hotspots in North
America, Europe and Japan.

3.2 Experimental Setting

We use 500 image locations chosen in a two-step process as queries. First a
random peer is selected, second we choose a random geo-location from this peer.
This ensures the same likelihood that a query originates from an arbitrary peer
regardless of its size, thus not favoring big peers in the ranking.

For parameterization, k for RecMARk and KMARGridrk is set to 3, 6 and
9. For space partitioning approaches and hybrid techniques relying primarily
on space partitioning, we choose the number of subspaces to be 512, 2,048 and
8,192, resulting in r being set to 16, 32 and 64 for MBRGridr and GridMBRb

r.
For interior grids (used by MBRGridr and KMARGridrk), r is set to 8, 16, 32 and
64. To encode approximated interior MBRs for GridMBRb

r and K-D-MBRb
n, we

vary b from 2 to 4 to 6, corresponding to the bits used to encode one of the four
required MBR values, respectively. These parameters are generally applicable to
our or similarly distributed data collections. For significantly differing data sets,
the parameters will have to be reconsidered.

340 S. Kufer, D. Blank, and A. Henrich

To adjust space partitioning to our data collection for UFSn and K-D-MBRb
n,

we use the same two strategies as in [4]. The first strategy is to choose refer-
ence points, respectively training data from the underlying data collection at
random. The second strategy is to select the data from the Geonames gazetteer
(http://www.geonames.org), employing Gross Domestic Product (GDP) per
country statistics from Worldmapper (http://www.worldmapper.org) to approx-
imate the data distribution of our collection (see [9] for details why we choose
this approach)3. Since the space partitioning is affected by the randomly cho-
sen training data, we run ten experiments with different seeds for the random
number generators to minimize the effects of outliers.

For RecMARk and KMARGridrk, we use the same dist value (cf. Sect. 2.1)
deployed in [4] for RecMAR Qk, meaning the 0.75-quantile of the top-50 data
point distances determined for 500 queries.

Space efficiency of different resource descriptions is measured by analyzing
summary sizes (cf. Sect. 3.3). Remember we apply Java’s gzip implementation
with default parameters if summary compression is beneficial (which is the case
for all summary types except RecMARk). The measurements include 27 byte
serialization overhead necessary in order to distribute the resource descriptions
within the network. To assess the selectivity of different approaches, we calculate
the fraction of peers that needs to be contacted on average in order to retrieve
the 50 image locations closest with respect to a given lat/long-pair as query
location. Summary sizes are strongly dependent on the techniques used, so it is
not possible to report the selectivity for specific given summary sizes.

To determine the 50 nearest neighbors, a k-nearest neighbors (kNN) algo-
rithm, implemented as a range query with decreasing query radius, is used. First,
all peers are ranked according to the ranking algorithms (cf. Sect. 2.4). For each
of the ten best ranked peers, the 50 image locations closest to the query location
are requested. Out of this set, the 50 closest image locations are determined to
form the current intermediate top 50 results4. Afterwards, the already consid-
ered peers are removed from the set of peers yet to look at. The distance of the
fiftieth closest image location is the query radius for the next round, in which
ten further peers will be contacted. Peers which can be pruned from search,
due to their resource description, the query location and the query radius, are
removed from the set of peers still to consider. A renewed ranking is not con-
ducted, meaning the set of peers is only ranked once in the first query round. In
each round, the ten best ranked peers of the remaining set are enquired for their
50 closest image locations according to the query location, possibly leading to
a substitution of (some of) the current top 50’s images. Afterwards, these peers

3 For differentiation, we expand e to the respective technique acronym if data was
chosen from the Geonames gazetteer as external source, for example UFSn e.

4 The consideration of ten peers at once is done to exploit the parallelism of our
scenario. Nevertheless, the determination of the top 50 image location’s retrieval
time (meaning the fraction of peers which had to be visited in order to retrieve the
top 50 image locations) is captured on a single peer basis, meaning the contacting
position of the appropriate peer is captured on a single step base and not on a ten
step base.

Using Hybrid Techniques for Resource Description 341

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

r=8 r=16 r=32 r=64

fr
ac
ti
on
 o
f
av
g
co
nt
ac
te
d
pe
er
s MBRGrid

0

10

20

30

40

50

60

70

80

90

r=8 r=16 r=32 r=64

av
g

su
mm
ar

y
si
ze

 i
n
by
te

MBRGrid

Fig. 9. Development of selectivity (on the left) and summary sizes (on the right) when
varying parameter r for MBRGridr

are removed from the set of peers to consider. This procedure continues until the
set of peers to consider is empty, meaning the 50 nearest neighbors with respect
to the query location have been determined.

3.3 Experimental Results

In this section, we will evaluate the different techniques. For our 500 queries, an
average of 8.234 peers maintain relevant image loactions, resulting in a fraction
of 0.138% of the 5,951 peers. As a naive baseline it is interesting to note, that
if all peers would directly transfer a (zipped) byte array containing all of their
data points, average summary sizes would be 265.85 byte (cf. Table 3.3 at the
end of this chapter).

In Fig. 9, retrieval performance and summary sizes are depicted for MBRGridr
with varying parameter r. There is a degressive improvement in selectivity with
the increase of r, as the areas containing a peer’s data points are described more
precisely. At the same time, compression keeps summary size growth moderate.
If r is altered from 8 to 64, selectivity is more than four times better while
summaries are about 19% bigger on average. Also, selectivity growth is still
disproportionate to summary size growth when increasing r from 32 to 64, mak-
ing MBRGrid64 the best choice when pondering between the two superordinate
goals.

For KMARGridrk, selectivity can obviously be enhanced by both increasing
either one or both parameters k and r. Figure 10 on the left shows a degres-
sive improvement as greater values for k and r are chosen. Combining geometric
shapes with space partitioning seems very beneficial with respect to selectivity,
since KMARGrid83 is almost as good as RecMAR9 (cf. Table 3.3), though it has
to be admitted that the former requires about 13 byte extra storage on average.
Generally, it can be seen that a decomposition into more MARs yields greater
benefits for selectivity than a finer resolution of the interior grids. The utmost
gains are attained by increasing k from 3 to 6. Afterwards, a further increase
of k from 6 to 9 is not as beneficial, as our stopping criterion for further MAR
decomposition comes into play, resulting in few peers to be described by the

342 S. Kufer, D. Blank, and A. Henrich

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

0,30%

0,35%

0,40%

0,45%

0,50%

k=3 k=6 k=9

fr
ac

ti
on

 o
f

av
g

co
nt

ac
te

d
pe

er
s KMARGrid

r=8

r=16

r=32

r=64

0

20

40

60

80

100

120

140

k=3 k=6 k=9

av
g

su
mm
ar

y
si
ze

 i
n
by
te

KMARGrid

r=8

r=16

r=32

r=64

Fig. 10. Development of selectivity (on the left) and summary sizes (on the right) when
varying parameters k and r for KMARGridr

k

maximum of nine or a matching amount of MARs. On the other hand, altering
k from 6 to 9 leads to a rather moderate average summary size growth. The
required average storage space is depicted in Fig. 10 on the right. Increasing k
results in degressive summary size growth, while increasing r results in progres-
sive summary size growth. When searching for the best compromise between
selectivity and average summary sizes, we compare percentual selectivity gains
and percentual average summary size growth when increasing our parameters k
and r5. As long as percentual selectivity gains are higher than percentual sum-
mary size growth, we say it is beneficial to raise the parameters. Taking this
into account, KMARGrid329 results as best parameterization for this technique.
Generally, at the beginning of the parameter rise (that is from k=3 and r=8
on), selectivity gains are vigorously disproportionate compared to average sum-
mary size growth, flattening during the further procedure until it is only slightly
disproportionate or even slightly underproportionate.

The results for GridMBRb
r are shown in Fig. 11. A relatively precise encoding

of interior MBRs in coarse grids results in high selectivity gains in comparison to
increasing the number of subspaces. Taking for example GridMBR2

32 as a basis
and increasing parameters r, respectively b to the next level, GridMBR4

32 shows
a better selectivity compared to GridMBR2

64, since GridMBR4
32 only contacts

a peer fraction of 0.94% while GridMBR2
64 contacts 1.19% of the peers. At the

same time, increasing b also results in more space efficient summary sizes (for
example 58.2 byte for GridMBR4

32 vs. 60.7 byte for GridMBR2
64). Generally, it

is beneficial to increase both r and b since the selectivity gain is still heavily dis-
proportionate to summary size growth when comparing for example GridMBR6

64

to both GridMBR6
32 and GridMBR4

64.
Results for both variants of K-D-MBRb

n are depicted in Fig. 12. Generally,
selectivity increases most when raising b from 2 to 4, but also raising n from
512 to 2048 yields vast selectivity gains, both clearly disproportionate compared
to summary size growth. A further parameter increment (b=6 and n=8,192)
results in only slightly disproportionate or even underproportionate selectivity

5 Obviously, the importance of selectivity and storage requirements has to be weighted
for a concrete application scenario.

Using Hybrid Techniques for Resource Description 343

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

r=16 r=32 r=64

fr
ac

ti
on

 o
f

av
g

co
nt

ac
te

d
pe

er
s GridMBR

b=2

b=4

b=6

0

10

20

30

40

50

60

70

r=16 r=32 r=64

av
g

su
mm
ar

y
si
ze

 i
n
by
te

GridMBR

b=2

b=4

b=6

Fig. 11. Development of selectivity (on the left) and summary sizes (on the right) when
varying parameters r and b for GridMBRb

r

gains. Overall, it is very promising to encode interior MBRs for space parti-
tioning with uneven cell sizes, as the larger subspaces often contain data points
in only a narrow area. Thus, the data point occurrence areas can be described
much more precisely. Likewise for MBRGridbr, increasing b is more beneficial
than increasing the number of subspaces (parameter n here). Generally, when
comparing K-D-MBRb

n to K-D-MBRb
n e, the same behavior observed for UFSn

and UFSn e in [4] can be noted. The e-variant shows worse selectivity but lower
required storage space, since space partitioning is less fitted to the underlying
data collection, resulting in less subspaces to be occupied with a peer’s data
points on average. This reduces the amount of interior MBRs which need to be
encoded. Overall, selectivity gains area slightly better for the e-variant when
increasing n and b, as the inferior base accuracy causes a higher gain poten-
tial. When comparing percentual selectivity gain with percentual summary size
growth, different parameterizations are best for the respective variants. For train-
ing data right from the underlying data collection, K-D-MBR6

2048 emerges as best
compromise, while for training data from an external source, K-D-MBR6

8192 e
arises as most reasonable solution. It is worth mentioning that K-D-MBR6

2048

outperforms K-D-MBR6
8192 e both with respect to selectivity and summary size.

Comparing the different techniques on their respective best parameterization
(cf. Fig. 12 and Table 3.3), both MBRGrid64 and GridMBR6

64 are significantly
worse with respect to selectivity in comparison to the more complex hybrid
approaches (and RecMAR9 and UFS8192 as well), even though for both the
most precise examined parameterization has been chosen (cf. Fig. 13). Only
UFS8192 e with its just approximately fitted space partitioning is outperformed
by MBRGrid64 and GridMBR6

64. However, GridMBR6
64 requires significantly

less storage than MBRGrid64 and less storage than any other technique except
UFS8192 e, which is clearly outperformed by GridMBR6

64 with respect to selec-
tivity. Thus, GridMBRb

r could be worthwhile if somehow there is no possibility
to adjust techniques with respect to the underlying data collection (which all of
the other techniques except MBRGridr to some extent do, may it be the use of
stopping criteria or adapted space partitioning), as selectivity is still neat with
very small average summary sizes.

344 S. Kufer, D. Blank, and A. Henrich

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

n=512 n=2048 n=8192

fr
ac
ti
on
 o
f
av
g
co
nt
ac
te
d
pe
er
s K-D-MBR

b=2

b=4

b=6

0

10

20

30

40

50

60

70

80

90

n=512 n=2048 n=8192

av
g

su
mm
ar

y
si
ze

 i
n
by
te

K-D-MBR

b=2

b=4

b=6

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

n=512 n=2048 n=8192

fr
ac

ti
on

 o
f

av
g

co
nt

ac
te

d
pe

er
s K-D-MBR_e

b=2

b=4

b=6

0

10

20

30

40

50

60

70

80

90

n=512 n=2048 n=8192

av
g

su
mm
ar

y
si
ze

 i
n
by
te

K-D-MBR_e

b=2

b=4

b=4

Fig. 12. Development of selectivity (on the left) and summary sizes (on the right) when
varying parameters n and b for K-D-MBRb

n(e)

The K-D-MBR6
2048(e)-variants both significantly outperform their respective

UFS8192(e)-variants in terms of selectivity, despite a four times lower amount
of subspaces, due to their usage of cell-interior MBRs. This is achieved by only
slightly bigger average summary sizes. Even more surprisingly, K-D-MBR4

2048

(not shown in Fig. 13) can outperform UFS8192 both on selectivity and summary
sizes, making K-D-MBRb

n the overall superior technique compared to UFSn. In
terms of selectivity, K-D-MBR6

2048 is yet slightly topped by KMARGrid329 , which
is closing up to 0.04% with respect to the theoretical optimum (cf. Table 3.3).
On the other hand, average summary sizes are almost 60% greater compared
to K-D-MBR6

2048. Generally, it can be seen that for the hybrid techniques, seg-
menting space first and computing geometric shapes second, results in far smaller
summary sizes while selectivity is about equal compared to the alternative way
(when matching GridMBRb

r to MBRGridr and K-D-MBRb
n to KMARGridrk).

Taking both selectivity and average summary sizes into account, K-D-MBRb
n

with its training data directly chosen from the underlying data collection seems
best as it offers almost prime selectivity combined with still very small aver-
age summary sizes, clearly outperforming the former state-of-the-art approaches
UFSn and RecMARk. Furthermore, K-D-MBRb

n is much more insensitive in case
training data origins from an external source than UFSn. Considering pure se-
lectivity, KMARGridbk constitutes an advance as well, though at the cost of big
summary sizes.

Interestingly, selectivity is not directly related to the data space area spanned
on average by the different summarization techniques (cf. Table 3.3). This can be
seen as RecMAR9 and both K-D-MBR6

2048 and K-D-MBR6
8192 offer much better

Using Hybrid Techniques for Resource Description 345

0

20

40

60

80

100

120

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

av
g

su
mm
ar

y
si
ze

 i
n
by
te

fr
ac

ti
on
 o

f
av
g

co
nt
ac
te

d
pe

er
s

UFS8192_e
MBR

Grid64
Grid
MBR64

RecMAR9
K-D-

MBR8192_e
UFS8192

K-D-
MBR2048

KMAR
Grid96 6 6 32

Fig. 13. Overview of evaluated techniques sorted by selectivity (light gray bars) and
additionally showing average summary sizes (dark gray bars)

Table 1. Result table for our experiments (summary size values Sx in bytes), uncom-
pressed summary size values are marked with *

Approach Ø frac. of peers in % SØ Smin Smax Ø area covered

UFS8192 e 0.665 60.5 49.8 295.3 not calculated
MBRGrid64 0.498 81.3 53 414 0.984
GridMBR6

64 0.495 65.6 55 329 0.630
RecMAR9 0.386 69.3* 43* 171* 2.933
UFS8192 0.276 66.88 48 467.4 not calculated

K-D-MBR6
8192 e 0.234 73.7 48.1 947.5 0.900

K-D-MBR6
2048 0.208 69.5 46.45 577.5 1.015

KMARGrid32
9 0.178 111.2 53 994 0.024

Baselines 0.138 265.8 53 43064 –

selectivity, while the area on average overlaid by the respective descriptions is
(in case of RecMAR9 clearly) larger compared to MBRGrid64 and GridMBR6

64.
It seems that in areas with low point density, taller delineated descriptions are
acceptable if in high density areas the descriptions are subsequently more precise.

4 Related Work

This paper introduced and evaluated techniques to summarize geospatial data.
The techniques presented predominantly orientate themselves towards approa-
ches known from spatial index structures (cf. [10]), like for example the R-tree
[11], the k-d tree [12], Voronoi-diagram-based techniques (for example [13]) or
the LSDh-tree [14].

At the very end our hybrid techniques are all based on describing rectangular
areas containing data points. In the context of spatial index structures, other

346 S. Kufer, D. Blank, and A. Henrich

hybrid techniques have been proposed, ultimately describing much more irregular
areas, like [16] depicting how to combine MBRs with Voronoi-diagram-based
space partitioning.

Our summary based P2P scenario constitutes the general frame to evaluate
different geospatial summary techniques against one another. Alternatively, es-
pecially in the context of two-dimensional geo-data, it could be compelling to
employ other P2P systems. Structured P2P systems might be suitable. There
every peer is responsible for a certain subspace. New data to be administered
within the P2P network is transferred in compliance with these responsibilities,
reducing the autonomy of the peers [17]. At the same time, query processing
can be achieved with logarithmic costs by using structured approaches [17]. An
extensive overview of P2P technologies is given in [18].

Within the presented scenario, queries related to geographic data were pro-
cessed independently from other summary types. It could be worthwhile to not
only consider summary techniques in an isolated way, but also in cooperation.
Effective searches of, for example, an image showing a sunset at the Grand
Canyon, could be achieved this way. Currently, summaries for both—low level
visual content and geographic information—would lead to two independent re-
source rankings. Both rankings would have to be combined into one with ap-
propriate techniques (for example [19]). In [20], an approach aggregating several
summary types into one summary to consider interdependency is presented. A
further consideration of these combinations would be of value.

5 Conclusion and Outlook

This paper focuses on resource selection based on geographic information. It
introduces a novel category of sumarization techniques besides the geometric
approaches and space partitioning approaches in this context. Hybrid approa-
ches combine features of the two former approaches. In terms of selectivity, the
two more complex hybrid techniques (KMARGridrk and K-D-MBRb

n) presented
in this paper can outperform the best techniques from the geometric and space
partitioning approaches. While KMARGridrk achieves this at the cost of signifi-
cantly greater summary sizes, K-D-MBRb

n even outperforms the former state-of-
the-art approaches with respect to summary size. Future work will mainly adress
the evaluation of all these techniques on collections which are not extracted from
a social network with its typical long tail distribution and therefore offer a more
uniform allocation with respect to the number of image locations per resource.
Furthermore, we plan to investigate the adaption of the resource summarization
techniques for other application fields, such as index structures.

References

1. Thomas, P., Hawking, D.: Server selection methods in personal metasearch: a com-
parative empirical study. Information Retrieval 12(5), 581–604 (2009)

Using Hybrid Techniques for Resource Description 347

2. Müller, W., Eisenhardt, M., Henrich, A.: Scalable summary based retrieval in P2P
networks. In: Intl. Conf. on Information and Knowledge Management, pp. 586–593
(2005)

3. Cuenca-Acuna, F., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using gossiping
to build content addressable peer-to-peer information sharing communities. In:
IEEE Intl. Symp. on High Performance Distributed Computing, pp. 236–246 (2003)

4. Kufer, S., Blank, D., Henrich, A.: Techniken der Ressourcenbeschreibung und -
auswahl für das geographische Information Retrieval. In: Proceedings of the IR
Workshop at LWA 2012, pp. 1–8 (2012)

5. Blank, D., Henrich, A.: Describing and Selecting Collections of Georeferenced Me-
dia Items in Peer-to-Peer Information Retrieval Systems. In: Diaz, L., Granell, C.,
Huerta, J. (eds.) Discovery of Geospatial Resources: Methodologies, Technologies,
and Emergent Applications, pp. 1–20 (2012)

6. Sinnott, R.: Virtues of the haversine. Sky and Telescope 68(2), 159 (1984)
7. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with appli-

cation of nested equations. Suvery Review 22(176), 88–93 (1975)
8. Becker, B., Franciosa, P.G., Gschwind, S., Ohler, T., Thiemt, G., Widmayer, P.:

An Optimal Algorithm for Approximating a Set of Rectangles by Two Minimum
Area Rectangles. In: Bieri, H., Noltemeier, H. (eds.) CG-WS 1991. LNCS, vol. 553,
pp. 22–29. Springer, Heidelberg (1991)

9. Blank, D., Henrich, A.: Description and Selection of Media Archives for Geographic
Nearest Neighbor Queries in P2P Networks. In: Inf. Acc. for Pers. Media Archives
at ECIR 2010, pp. 22–29 (2010)

10. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47–57 (1984)

12. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Comm. ACM 18(9), 509–517 (1975)

13. Kolahdouzan, M., Shahabi, C.: Multidimensional binary search trees used for as-
sociative searching. In: Proc. of the 30th Intl. Conf. on Very Large Data Bases,
pp. 840–851 (2004)

14. Henrich, A.: The LSDh-tree: An Access Structure for Feature Vectors. In: Proc. of
the 14th Intl. Conf. on Data Engineering, pp. 262–369 (1998)

15. Seeger, B., Kriegel, H.-P.: The buddy-tree: an efficient and robust access method
for spatial data base systems. In: Proc. of th 13th Intl. Conf. on VLDB, pp. 590–601
(1990)

16. Sharifzadeh, M., Shahabi, C.: VoR-tree: R-trees with Voronoi diagrams for effi-
cient processing of spatial nearest neighbor queries. Proc. VLDB Endow. 3(1-2),
1231–1242 (2010)

17. Doulkeridis, C., Vlachou, A., Nrvag, K., Vazirgiannis, M.: Part 4: Distributed Se-
mantic Overlay Networks. Handbook of Peer-to-Peer Networking, 1st edn. Springer
Science+Business Media (2009)

18. Shen, X., Yu, H., Buford, J., Akon, M.: Handbook of Peer-To-Peer Networking,
1st edn. Springer Publishing (2009)

19. Belkin, N.J., Kantor, P., Fox, E.A., Shaw, J.A.: Combining the evidence of multiple
query representations for information retrieval. Inf. Processing and Management
31(3), 431–448 (1995)

20. Hariharan, R., Hore, B., Mehrotra, S.: Discovering gis sources on the web using
summaries. In: Proc. of the 8th ACM/IEEE Joint Conf. on Digital Libraries, JCDL
2008, pp. 94–103 (2008)

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 348–366, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Location-Based Sponsored Search Advertising

George Trimponias1, Ilaria Bartolini2, and Dimitris Papadias1

1 Department of Computer Science and Engineering,
Hong Kong University of Science and Technology
{trimponias,dimitris}@cse.ust.hk

2 Department of Computer Science and Engineering,
University of Bologna

i.bartolini@unibo.it

Abstract. The proliferation of powerful mobile devices with built-in
navigational capabilities and the adoption in most metropolitan areas of fast
wireless communication protocols have recently created unprecedented
opportunities for location-based advertising. In this work, we provide models
and investigate the market for location-based sponsored search, where
advertisers pay the search engine to be displayed in slots alongside the search
engine’s main results. We distinguish between three cases: (1) advertisers only
declare bids but not budgets, (2) advertisers declare budgets but not bids, and
(3) advertisers declare both bids and budgets. We first cast these problems as
game theoretical market problems, and we subsequently attempt to identify the
equilibrium strategies for the corresponding games.

Keywords: Location-based advertising, Game theory, Nash equilibrium.

1 Introduction

The growing popularity of powerful and ubiquitous mobile devices has recently
created an immense potential for location-based advertising (LBA) [5]. Smartphone
use is rapidly increasing in all parts of the world; in the US only, its penetration is
currently approaching 50% of all mobile subscribers, while around 60 percent of the
new phones in 2011 were smartphones1. This development has certainly been
facilitated by the adoption of broadband wireless protocols, e.g., 3G/4G networks, and
the prevalence of Wi-Fi hotspots. Moreover, modern mobile devices possess built-in
navigational functionalities using variations of sophisticated technologies such as
triangulation, GPS, and cell-ID [5]. Advertisers can utilize this positional information
to send advertising material to relevant consumers, which has in turn created an
exciting market for LBA with companies such as AdMob (acquired by Google) and
Quattro Wireless (acquired by Apple) leading the charge.

Location-based advertising, especially in its mobile form, is poised for tremendous
growth because of its special characteristics [1]. First, it enables personalization:

1 See http://www.informationweek.com/news/mobility/business/
231602163

 Location-Based Sponsored Search Advertising 349

a mobile device is associated with the identity of the user so the advertising material
can be individually tailored. For example, users can state their preferences, or even
specify the kind of advertising messages they are interested in. Second, it is context-
aware, i.e., the advertising messages can take into account the context such as time
and location. Third, mobile devices are portable and allow instant access: users carry
their device most of the time, and advertisers can target interesting consumers any
time of the day. Finally, mobile advertising can be interactive since it is possible to
engage the user to discussions with the advertiser; this can also serve as a means of
market research. As a result of the aforementioned reasons, marketers can reach their
audience of interest in a much more targeted, personal and interactive manner, and
thus increase their advertising campaign’s success.

On the other hand, currently the most profitable and thriving business model for
online advertising is sponsored search advertising; Google’s total revenue alone in
fiscal year 2010 was $29.3 billion and mainly came from advertising2. Sponsored
search consists of three parties [12]: (i) users pose keyword queries with the goal of
receiving relevant material; (ii) advertisers aim at promoting their product or service
through a properly designed ad, and target relevant users by declaring to the search
engine a set of keywords that capture their interest; (iii) the search engine mediates
between users and advertisers, and facilitates their interaction. As several advertisers
may match a given user query, an auction is run by the search engine every time a
user poses a query to determine the winners as well as the price per click. Concretely,
each advertiser declares to the engine a priori its bid for a given keyword, so the
auction assigns ad slots to advertisers based on their bids.

In this work, inspired both by the success of sponsored search advertising and the
immense potential for LBA, we study the promising area of location-based sponsored
search advertising. In particular, we examine how the spatial component can be
incorporated into the current sponsored search models, and investigate algorithms for
selling advertising opportunities to advertisers. Similar to prior literature on
conventional sponsored search advertising [8], in order to model the advertisers we
distinguish between the three following cases: (1) the advertisers declare a maximum
amount of money that they are willing to pay per click, but are not bounded by a total
daily budget, (2) the advertisers have a maximum daily budget at their disposal, but
do not have an upper bound on the amount of money that they are willing to pay per
click, and (3) the advertisers have both a total daily budget and a maximum amount of
money that they are willing to pay per click. We will explicitly show how the
introduction of the spatial component affects the underlying sponsored search auction
in each of the cases above by using tools and techniques from game theory.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 provides a general model for location-based sponsored search. Sections 4-6
investigate three interesting settings for location-based sponsored search: (1)
advertisers declare only bids (Section 4), (2) advertisers declare only budgets (Section
5), and (3) advertisers declare both bids and budgets (Section 6). Using tools from
game theory, we analyze the three different cases and provide the Nash equilibrium
strategies when possible. Finally, Section 7 concludes the paper providing interesting
directions for future research.

2 See http://investor.google.com/financial/2010/tables.html

350 G. Trimponias, I. Bartolini, and D. Papadias

2 Related Work

2.1 Location-Based Advertising

Location-based advertising (LBA) involves delivering advertising material to users
based on their location. It follows two different modes of operation [3]: pull-based
(also termed query-based) and push-based. The former provides advertising
information only upon specific request by the user, e.g., when a car driver asks for the
nearest gas stations. The latter delivers marketing material to users within a specified
geographical area, without their explicit request; for instance, shops in a mall seeking
to promote their new product may target all shoppers by delivering the corresponding
advertising information. Moreover, push-based advertising is further divided into two
types: opt-in, where users receive relevant advertising material by determining in
advance the kind of ads they are interested in, and opt-out, where users receive
marketing messages until they explicitly declare they do not wish to receive any
further material.

LBA presents immense opportunities for higher return on investment compared to
other traditional advertising avenues because it enables contextually relevant
advertising [5]. Moreover, the ability to instantaneously connect users to places or
resources of interest in their immediate vicinity can offer an unrivaled user experience
and satisfaction. Interestingly, LBA can also serve as a subtle tool for market
research: consumers constantly provide information about their behavior through their
mobile activity, which can be subsequently used to increase the effectiveness of a
marketing campaign. Despite its obvious benefits, consumer’s privacy is still a major
cause of concern for LBA. Advertisers need to be very clear about how they utilize,
process, and store user information; data breaches, for instance, can be especially
detrimental to the advertiser’s reputation and long-term success, since they can reveal
personal information. A second major concern stems from the intrusive nature of
some forms of LBA, in particular push-based that occurs without the user’s explicit
request. Among the two modes, opt-out is associated with a higher intrusion risk and
is thus used more rarely; opt-in, in contrast, is permission-based advertising and may
be used to effectively rule out unsolicited marketing messages (i.e., spamming) [18].

2.2 Sponsored Search Advertising

Sponsored search advertising is the most profitable form of online advertising. It
constitutes a large and rapidly growing source of revenue for search engines.
Currently, the most prominent players in the sponsored search market are Google’s
AdWords [22], and Bing Ads [21]. In sponsored search advertising, advertisers place
properly designed ads to promote their product or service. They target interesting
users by declaring to the search engine a list of keywords that a relevant user may
search for. For each keyword, they additionally specify their maximum cost per click
(maximum CPC), also known as maximum bid, which corresponds to the maximum
amount of money they are willing to spend to appear on the results page for a given
keyword. Note that bidding takes place continuously. Moreover, advertisers may be

 Location-Based Sponsored Search Advertising 351

limited by budget constraints, so they may declare a maximum daily budget as well.
Every time a user enters a query, a limited number of paid (also, sponsored) links
appears on top or to the right side of the unpaid (also, organic or algorithmic) search
results. In order to determine the winning advertisers as well as the price they need to
pay, an auction occurs in an automated fashion. In practice, large search engines also
compute a quality score (QS) for every advertiser which measures how relevant the
keyword, ad text and landing page are to a user.

Concretely, sponsored search advertising consists of three stages. (i) Ad retrieval
returns all ads that are relevant to the user’s query, and is usually performed by
sophisticated machine learning algorithms. An ad’s relevance is measured by several
metrics, such as ad-query lexical and semantic similarity. To match an ad against a
query, the search engine needs to take into account all ad information, including the
bid phrase it is associated with, its title and description, the landing page it leads to, its
URL, etc. Moreover, query substitution and query rewriting are frequently used to
find relevant ads. As the ad pool may consist of millions of ads, efficient indexing
techniques have been proposed to improve the performance of the first stage. (ii)
After retrieving relevant ads, the search engine performs ad ranking. Ads are sorted in
decreasing order of their rank, where the ad rank is determined by both the bid placed
by the advertiser on the keyword, and the quality of the ad. The ad with the highest
rank appears in the first position, and so on down the page, until all slots have been
filled. Google AdWords3, for instance, defines the ad rank as the product CPC·QS.
(iii) The last stage is ad pricing through properly designed auctions to determine the
price per click that the advertiser will be charged whenever the user clicks on their ad
(pay per click model). The natural method would be to make bidders pay what they
bid (i.e., generalized first-price auction), but that leads to several instabilities and
inefficiencies. Instead, all large search engines currently employ a generalized
second-price auction (GSP) [7][19]. A GSP auction charges an advertiser the
minimum amount required to maintain their ad’s position in search results, plus a tiny
increment. For instance, suppose that ranking is based on Google’s AdRank and that
K slots are available, and are numbered 1, …, K, starting from the top and going
down. Moreover, let the advertiser i at position i have a maximum bid bi and a quality
score QSi. In GSP, the price for a click for advertiser i is determined by the advertiser
i+1, and given by bi+1·QSi+1/QSi, which is the minimum that i would have to bid to
attain its position. Note that in this pricing scheme, a bidder’s payment does not take
into consideration its own bid. Also, prices per click can be computed in linear time in
the number of advertisers O(N) for a fixed number of slots K.

Despite its prevalence as the standard auction format, GSP is not truthful (also
known as incentive-compatible): advertisers have no incentive to declare their true
valuations to the search engine. Stated equivalently, reporting the true bids may not
constitute a Nash equilibrium [7]. As a result, advertisers may devote considerable
resources to manipulate their bids, potentially paying less attention to ad quality and
other campaign goals. Interestingly, we can alleviate this shortcoming by altering the

3 See https://adwords.google.com/support/aw/bin/answer.py?hl=en&
answer=6111

352 G. Trimponias, I. Bartolini, and D. Papadias

payment scheme: instead of paying the minimum amount of money required to win its
position, an advertiser is requested to pay an amount of money equal to the
externalities that it imposes on the others, i.e., the decreases in the valuations of other
bidders because of its presence. This payment scheme yields the Vickrey-Clarke-
Groves (VCG) auction, named after William Vickrey [20], Edward H. Clarke [4], and
Theodore Groves [11]. Contrary to GSP, VCG gives bidders an incentive to bid their
true value, and is socially optimal, i.e., the bidder with the highest valuation acquires
the slot at the highest position, the bidder with the second-highest valuation receives
the slot at the second-highest position, etc. Note that GSP rather than VCG is used in
practice, even though the latter would (at least theoretically) diminish incentives for
strategizing and facilitate the advertisers’ task. We believe that the introduction of the
ad quality score QS has also played a role in the wide adoption of GSP. Indeed, ad
quality scores are now an integral part of both the ranking and pricing protocols; even
if advertisers manipulate their bids, it is very difficult to game the system as they have
no control over the ad quality scores.

3 Models for Location-Based Sponsored Search

Assume N advertisers and K slots 1, …, K, where 1 is the top slot, 2 the second, and
so on. There is ample evidence in the literature that higher slots are associated with
higher revenues. There are numerous ways to model this; perhaps the easiest way is to
characterize each slot with the click through rate, which denotes the probability that a
user will actually click on an ad that is placed in that slot. In this work, we follow the
same approach by assuming that whenever an ad is displayed in slot l, 1≤l≤K, it has a
probability cl, 0≤cl≤1, of being clicked. To incorporate the fact that higher slots are
more valuable, we further assume that cl>cl´ whenever l<l´. Whether a user clicks on
an ad or not depends on numerous factors including the other ads (ad externalities),
but for the sake of simplicity we do not consider them here; i.e., an ad located at slot l
is clicked with probability cl independent of the rest of the slots [15]. To keep the
model simple, we also do not consider quality scores for advertisers.

A salient feature of our work is that advertisers value users according to their
location. To model this, we assume that the space is partitioned with a grid of L cells.
There are (in expectation) Mj queries per day in cell j, which can be estimated based
on historical data. Advertisers have different valuations for the different grid cells.
For instance, a typical advertiser would have high valuations for cells nearby and
lower valuations for more distant cells. We denote with wi,j the valuation of advertiser
i per click inside cell j. Calculating the valuation is a difficult marketing/operational
research problem, beyond the scope of our work. Finally, advertiser i may be bounded
by a maximum daily budget Bi. We can assume that the advertisers are only aware of
their own budget and valuations, which they declare to the search engine. Besides the
budgets and valuations per click, the search engine has knowledge of relevant
statistical information such as number of queries per cell, or percentage of total clicks
that a slot receives, etc. We consider that advertisers are interested in exactly the same
(unique) keyword; how keyword interactions affect our market is an interesting
research topic in its own right, and can be explored in future work.

 Location-Based Sponsored Search Advertising 353

Finally, note that the valuation of an advertiser for a given cell is fixed for all
points inside the cell. The grid granularity involves an inherent trade-off between
valuation expressivity and search engine revenue. On the one hand, small cells allow
advertisers to better capture their cells of interest, as opposed to coarse grid
granularities that would force an advertiser to declare interest for the entire cell even
if they were interested in just a small part. On the other hand, small cells may take a
serious toll on the search engine’s revenue because the expected number of
advertisers expressing interest in a given cell decreases as the grid granularity
becomes finer. In the worst case scenario, a cell could attract interest from just a
single advertiser and would yield poor income for the search engine. For instance,
assume a cell that attracts only one advertiser. The commonly used GSP protocol
when advertisers only declare bids will then assign any query inside the cell to that
advertiser for a price equal to 0, compromising the search engine’s revenue goals.
Determining the proper grid granularity is thus a critical factor of success for location-
based sponsored search.

In the following sections, we discuss location-based sponsored search advertising
focusing on three cases [8], depending on the advertiser input and constraints. In the
first bids-only case, each advertiser i is not bounded by a daily budget, i.e., Bi=∞, and
is willing to pay up to its valuation per click wi,j in cell j, i.e., its maximum bid per
click for cell j is equal to wi,j. In the second budgets-only case, each advertiser i is
bounded by a finite daily budget Bi, but is indifferent to the price per click that it is
asked to pay, i.e., its maximum bid per click for any cell is unbounded. Finally, in the
third bids-and-budgets case, each advertiser i is bounded by a finite daily budget Bi,
and is willing to pay up to its valuation per click wi,j in cell j. We first cast all three
cases as game theoretical problems, and we subsequently attempt to identify the
equilibrium strategies for the corresponding games. Table 1 illustrates common
symbols used in the rest of the paper.

Table 1. Frequent symbols

Symbol Meaning

N, L, K Number of advertisers, grid cells, and ad slots

Bi Total daily budget of advertiser i

Bi,j Part of total budget Bi that advertiser i allocates into cell j
wi,j Valuation per click of advertiser i for cell j
Mj Expected number of queries per day for cell j
cl Probability that an ad located at slot l will get clicked

Ui,j / Ui Total daily utility of advertiser i from cell j / from all cells
Ci Set of cells where advertiser i has the highest valuation per click
 Upper concave envelope of U
Yj Sum of budgets that have been allocated to cell j by all advertisers

pj Price per click in cell j (for case 3)

sj Permutation of advertisers such that , is decreasing in i

 Second-highest valuation per click in cell j (for case 3)

354 G. Trimponias, I. Bartolini, and D. Papadias

4 Bids-Only Case

Bids-only is the simplest case, as it constitutes a straightforward generalization of the
conventional sponsored search framework. Whenever the search engine receives a
query from a cell, it runs an auction where each advertiser is assumed to bid an
amount of money equal to its valuation per click for that particular cell. We can
utilize any auction format, such as the GSP or the VCG (see Section 2.2), to
determine the K winners that will fill the slots, as well as the prices per click that they
have to pay. These two auctions have been extensively studied in the literature, and as
mentioned earlier truthfully reporting the bids constitutes a Nash equilibrium for the
VCG auction, but is in general not an equilibrium for the GSP procedure. Note that
the actual number of queries per cell does not matter: every single time a user issues a
query, a new auction will play out in an automated way; cells with high workload will
simply involve more auctions compared to cells with lower traffic.

Next, we discuss some useful metrics focusing on the GSP framework. A very
interesting notion in auction theory concerns an advertiser’s payoff, which refers to the
net utility the advertiser receives from being advertised. In sponsored search auctions,
an advertiser’s payoff is defined in terms of a quasi-linear model: the payoff per click
is equal to the valuation/utility vi per click the advertiser i gets minus the price per click
pi that it must pay, i.e., vi – pi = vi – bi+1, where the bids bi are in descending order. We
can also define the expected payoff per day if we know the average number of queries
per day M. Since slot l receives a cl percentage of the total clicks, the expected payoff
per day for slot l is M·cl·(vi – bi+1). Non-winning advertisers get a payoff equal to 0.
Finally, we define the search engine’s (cumulative) profit per click simply as p1 + … +
pK = b2 + … + bK+1 (similarly for the cumulative profit per day). It is now
straightforward to generalize the above metrics in the location-based framework. For
instance, the expected payoff per day that advertiser i gets in cell j if it gets assigned to
slot l is Mj·cl·(wi,j – wi+1,j) (where wi,j are in decreasing order for cell j).

5 Budgets-Only Case

In case 2, advertiser i declares a maximum daily budget Bi, as well as its valuations
per click wi,j for each cell j. As opposed to case 1, where wi,j is the maximum amount
that i is willing to pay per click, for case 2 the payments per click are bounded only by
Bi, and the cell valuations are used just to determine the relative importance of cells.
For simplicity, we initially consider a single slot (K=1) with probability of being
clicked c1=1, and deal with more slots later. Since case 2 only involves budget
constraints, it is convenient to assume a Fisher market model [2]: under this model,
money does not bear any intrinsic value and every advertiser is willing to burn their
entire budget; note that this is different from the quasi-linear model that we assumed
in Section 4. Our goal is to assign to every advertiser a probability that their ad will be
displayed in any given cell, whenever a user in that cell issues a relevant query.
Therefore, no auction takes place and we do not have a winner selection and price
determination phase.

Based on the declared budgets and cell valuations, the system computes for each
cell the probability that any advertiser will be chosen as a response to user query.

 Location-Based Sponsored Search Advertising 355

In conventional sponsored search with only one slot, the optimal solution to this
problem displays an advertiser with a probability that is proportional to its budget
[8][14][13]. So, the advertiser with the highest budget has the highest probability of
being displayed, which is equal to its budget divided over the sum of all budgets; and
so on for the rest of the advertisers. This rule is called proportional sharing, and,
intuitively, it guarantees fairness.

In location-based sponsored search, on the other hand, advertisers declare a total
daily budget for all cells, but do not specify how this budget should be allocated
among the various cells. Now, assume that the advertiser (somehow) decides how to
allocate its budget into the cells, so that each cell has a non-negative budget and the
sum of budgets over all cells does not exceed the advertiser’s total budget. If such an
allocation were known for every advertiser, then we could simply apply the
proportional sharing rule: in a given cell, an advertiser is advertised with a probability
proportional to its budget for this specific cell. But then a natural question arises: how
should every advertiser allocate its budget?

To answer this question, we will resort to the proportional-share allocation market by
Feldman et al. [10]. Concretely, assume a budget allocation for advertiser i such that it
assigns Bi,j≥0 to cell j and the sum of its allocations over all cells does not exceed Bi.
The probability that i will be displayed in cell j is Bi,j/Yj, where Yj is the sum of budgets
that have been allocated to cell j by all advertisers. The utility for advertiser i in cell j is
then Ui,j= wi,j·Mj·Bi,j/Yj, since it gets a value wi,j for every query in j when displayed with
a probability Bi,j/Yj, and there are Mj queries in total in cell j. We assume additive
utilities, so i’s total utility Ui is the sum of its utilities Ui,j over all cells: ∑ , ,∑ , . Note that the payoff of advertiser i is equal to its utility, because of

the Fisher market model assumption (money bears no intrinsic value to the advertiser).
A given set of budget allocations will give rise to different corresponding utilities

for the advertisers. So, how should advertisers allocate their budget? Ideally, we
would like to allocate every individual budget in a way that maximizes the
advertiser’s utility. But since the advertisers compete against each other, one’s gain
may translate into another’s loss. To come up with proper budget allocations, we thus
utilize the notion of Nash equilibrium. The set of agents consists of the advertisers,
while the strategy space for advertiser i is the convex, bounded and closed set
{(Bi,1, …, Bi,L) | Bi,j ≥ 0 and ∑1≤j≤LBi,j = Bi}, i.e., the set of all valid budget allocations.
From advertiser’s i perspective, a best response strategy is simply a strategy
Bi = (Bi,1, …, Bi,L) that maximizes its utility given the other advertisers’ budget
allocations, i.e., the solution to the following optimization problem:

maximize Ui(B1,1, …, B1,L, …, BN,1, …, BN,L)
subject to ∑1≤j≤LBi,j = Bi and Bi,j ≥ 0.

A Nash equilibrium then corresponds to the stable state where no advertiser has an
incentive to deviate from their strategy given that the other advertisers stick to their
strategy as well. Stated equivalently, every advertiser plays a best response strategy to
the rest of the advertisers. Formally, a set of valid strategies , …, form a Nash
equilibrium if for any other valid strategy Bi, 1≤i≤N, we have:

Ui(, …, , …,)≥ Ui(, …, Bi, …,).

356 G. Trimponias, I. Bartolini, and D. Papadias

It turns out that the above game does not always accept a Nash equilibrium. To
demonstrate this, consider two advertisers 1 and 2 with budgets B1, B2 > 0, and two cells
1 and 2 with expected number of queries per day M1, M2 > 0. Advertiser 1 is interested
in both cells, whereas advertiser 2 is only interested in cell 1. For player 2, the best
strategy would obviously be to allocate its entire budget B2 to cell 1 to gain the
maximum possible proportion of ads. For advertiser 1, on the other hand, the best
strategy would be to allocate a tiny amount ε > 0 to cell 2 (and win all advertising
opportunities in 2) and spend the rest B1 – ε on cell 1 (and maximize its share in cell 1 as
well). Unfortunately, there is no optimal value of ε, since (1) it must be positive to
ensure 1 gets all ads in cell 2, and (2) as small as possible so that 1 wins the largest
possible share in cell 1. Alternatively, consider the simpler case with a single player 1
with B1 > 0, interested in a single cell 1 with M1 > 0. As before, player 1 should allocate
the smallest possible positive ε > 0 on cell 1, but such an ε does not exist.

The root of the non-existence of a Nash Equilibrium in the examples above is due
to the discontinuity of the utility functions at point 0. This problem can be
circumvented in two different ways. First, we can enforce a reserve price, which is
defined as the minimum possible price that an advertiser must pay per click. Indeed, a
reserve price means that the advertiser cannot buy any click with an arbitrarily small
budget, and the discontinuity at 0 ceases to exist. Second, we can restrict our attention
to so called strongly competitive games [10], i.e., games where for a given cell there
are at least two advertisers with positive valuations. Indeed, strong competition
implies that if only one advertiser would allocate a tiny budget on a given cell, then
any other advertiser who has non-zero valuation for that cell will have an incentive to
also allocate (a tiny) budget in that cell to guarantee a percentage of ads [10].

Computing the Nash equilibrium is the next source of concern. There are 2 classes
of algorithms for this purpose. The best response algorithm iteratively updates the
budget allocations of every player to reflect the other players’ current strategies. This
algorithm simulates the best response dynamics of the game and thus has a very
natural interpretation. We describe it in Figure 1; the interested reader is referred to
[10] for further details. Note that its time complexity is dominated by the sorting
procedure, so it is O(NlogN). Theoretically, the best-response dynamics does not
necessarily converge to a Nash equilibrium of the game; nevertheless, in practice the
algorithm performs very well.

Repeat for each advertiser i, 1≤i≤N
1. Sort the cells according to ,∑ , in decreasing order, where 1≤j≤L

2. Compute the largest k such that , ∑ ,∑ , ∑ , , , 0

3. Set Bi,j=0 for j>k, and for 1≤j≤k set

, , ∑ ,∑ , ∑ , , ,

until convergence.

Fig. 1. Best-response dynamics for K=1 and strong competition

 Location-Based Sponsored Search Advertising 357

The alternative to best response dynamics is the local greedy adjustment method
[10]. Under this algorithm, we first identify for every advertiser the two cells that
provide the highest and lowest marginal utilities. We then move a fixed small amount
of money from the cell with the lowest marginal utility to the cell with the highest
one. This strategy aims to adjust the budget allocations so that the marginal values in
each cell are the same. For concave utility functions (as ours), this is a sufficient
condition for an optimal allocation. However, the method suffers from lower
convergence rates.

As a last remark, note that contrary to case 1, the actual query distribution is now
important. To understand why, assume the advertiser has a high valuation for cell 1
and a low valuation for cell 2. However, a small number of queries are issued in cell
1, whereas several queries are issued in cell 2. In bids-only sponsored search, a
separate auction occurs every time a query is issued, so the advertiser can bid high for
cell 1 and low for cell 2; since there are far more queries in cell 2 the advertiser will
obviously participate in the auction for cell 2 far more times, but has no reason not to
bid high for cell 1 and low for cell 2. In the budgets-only setting, however, query
distribution has a profound effect on the budget allocation. In the above example, the
advertiser may have to allocate a large part of its budget to cell 2 just because there
are far too many queries in that cell.

Multiple Slots: We can generalize the above discussion in the case of several slots,
by assuming for simplicity that a given advertiser may appear with non-zero
probability in more than one slots (as opposed to the bids-only case). This assumption
is necessary for a straightforward and simple generalization. Indeed, the idea is that
every advertiser allocates part of its budget into all slots in every cell. The utility that
advertiser i extracts from being advertised at slot l in cell j is , , ,∑ , , , where

Bi,j,l the amount of money that i allocates in slot l of cell j. Similar to before, we can
assume additive utilities, so that the total utility of advertiser i the sum of its utilities
over all slots and over all cells. Using the above techniques, we can then find budget
allocations that constitute a Nash equilibrium.

6 Bids-and-Budgets Case

In this setting, advertiser i declares a maximum daily budget Bi as before, but contrary
to case 2, i is now not willing to spend more than wi,j per click in cell j. Stated
equivalently, the price that advertiser i pays per click in a given cell j cannot exceed
its declared valuation wi,j for that cell. The valuations thus act as maximum bids per
click, and we also refer to case 3 as bids-and-budgets case. We only deal with the case
of a single slot, i.e., K=1 with c1=1, and we assume again that money bears no
intrinsic value to the advertisers (Fisher market model). The case of several slots is
more complex, and can be investigated in future work.

Before dealing with the location-based setting, we first explore how conventional
sponsored search addresses the case where both budgets and maximum bids per click
are declared. In particular, we will attempt to highlight how this setting is inherently
more complex than the budgets-only case. We focus on cell j with Mj queries per day

358 G. Trimponias, I. Bartolini, and D. Papadias

and budget allocations in it B1,j, …, BN,j. First, assume that every advertiser receives a
share of the total ads proportional to its budget. Then, the price per click would be
equal to pj = (B1,j + … + BN,j)/Mj. As long as this quantity is not greater than all
valuations per click w1,j, …, wN,j, no problem occurs. But if an advertiser i exists with
wi,j < pj, this advertiser would not be willing to pay as much as pj per click, so the
proportional allocation framework of Section 5 cannot be directly applied. To
alleviate this problem, we need to come up with a price such that all advertisers
who can afford that price have sufficient budgets to purchase all the advertising
opportunities. Figure 2 presents the price-setting mechanism by Feldman et al. [9][8]
that determines that price . It is essentially a price-descending mechanism: the price
keeps falling until is reached. Moreover, it has the desired property of being
truthful.

1. Assume w.l.o.g. that w1,j>w2,j> … >wN,j ≥ 0.

2. Let k* be the first bidder such that , ∑ , . Set price min ∑ , , , .
3. Allocate Bi,j/ ads to each advertiser i ≤ k* − 1. Allocate Mj − ∑ , / ads to advertiser

k*. Allocate 0 ads to the rest of the bidders.

Fig. 2. The price-setting mechanism in cell j for K=1 slot in the bids-and-budgets case

Now, recall that in the case where only budgets are available, the price per query in

cell j would be equal to ∑ , . Obviously, pj is linear in its arguments

Bi,j (1≤i≤N) and continuous. On the other hand, the price-setting mechanism in Figure
2 yields prices that are clearly more complex. First, we notice the price pj for a
given cell j will again be an argument of only the budget allocations for that cell
B1,j, …, BN,j. However, it does not have the simple linear form as in the case of only
budgets. To get a flavor of the price function, consider a setting with only 2
advertisers 1 and 2 with maximum bids w1,j and w2,j (with w1,j>w2,j) for cell j that has
Mj queries per day. Figure 3 depicts how the price varies according to the budgets B1,j
and B2,j that the advertisers allocate in cell j. In particular, if B1,j≥Mj·w2,j, then k*=1 and
the price is determined as the minimum of B1,j/Mj and w1,j. When B1,j≥Mj·w1,j then the
price is equal to w1,j (region I), while when B1,j<Mj·w1,j, the price is equal to B1,j/Mj
(region II). On the other hand, when B1,j<Mj·w2,j, then k*=2 and the price is the
minimum of w2,j and (B1,j+B2,j)/Mj; for B1,j+B2,j≥Mj·w2,j the price is w2,j (region III),
while for B1,j+B2,j<Mj·w2,j, the price is (B1,j+B2,j)/Mj (region IV). Inside a region, the
price can be either constant or linear. We first observe that the price function is
everywhere continuous; the boundaries of the regions are carefully chosen so that the
price is continuous as we move from one region to the other. Note also that the price
function for the price-setting mechanism is bounded: it achieves a minimum value of
0 at the origin (0,0), and it can never get larger than w1,j. On the contrary, the price per
click in the budgets-only case is unbounded: it can get arbitrarily large as the budgets
that the advertisers allocate grow larger.

 Location-Based Sponsored Search Advertising 359

Fig. 3. Price pj and utilities U1,j and U2,j in cell j when the number of advertisers is N=2

The above example captures some important properties of the price function in the
case of both maximum bids and budgets. The price setting mechanism decomposes
the budget space into N regions (one for each of the N possible k*), and then further
divides that region into two subregions: the price is constant inside one of them and
linear in the other. In the following, we state several results. The proofs of all results
are available in our technical report [17]. For every cell j, we consider the permutation
sj that reorders the bids in decreasing order, i.e., , , , 0

for every cell j. Moreover, all budget allocations Bi,j are non-negative: Bi,j≥0.

Lemma 1: The price function pj(B1,j, …, BN,j) is continuous in (B1,j, …, BN,j).

Let’s now try to formalize the location-based setting where advertisers have
valuations over the various cells. Similar to the previous case, we will be looking for a
budget allocation Bi = (Bi,1, …, Bi,L) for every advertiser i, 1≤i≤N. For a given
allocation, denote zi,j the share of ads that advertiser i gets in cell j. Then, its utility
from cell j is wi,j·zi,j; its total utility from all cells simply is ∑ , , . In order to
compute the share zi,j, we will exploit the price-setting mechanism, assuming that , , , 0. If 2 , 1 , / , then =1 and the price

is min{ , / , , }. On the other hand, if 2 , 1 , / , we continue by
checking whether , , , / . If the latter is true, then =2 and
the price = min{ , , / , , }. If it is false, we proceed in exactly

the same way, until we come up with the proper , and subsequently compute the
price . Figure 3 depicts the utility functions in cell j in the case of N=2 advertisers.

Next, we compare the above utility function with the simpler utility function in the
case where only budgets are declared: , , ,∑ , . Clearly, the latter function is

concave in Bi,j, gets a minimum value of 0 for Bi,j=0, and asymptotically converges to

B1,j

B2,j

Mjw2,j

Mjw2,j Mjw1,j

pj=w1,j

U1,j=w1,jMj

U2,j=0

pj=w2,j

U1,j=w1,j(B1,j/w2,j)
U2,j=w2,j(Mj-B1,j/w2,j)

pj=B1,j/Mj

U1,j=w1,jMj

U2,j=0

pj=(B1,j+B2,j)/Mj

U1,j=w1,jMjB1,j/(B1,j+B2,j)
U2,j=w2,jMjB2,j/(B1,j+B2,j)

0

IIIIIIIV

360 G. Trimponias, I. Bartolini, and D. Papadias

wi,j·Mj as Bi,j tends to infinity. In other words, the advertiser will get allocated all ads
in cell j as its budget gets infinitely large, given that the other advertisers’ budgets for
this cell are fixed. But can we say something similar for the utility function in the
more complex setting when both budgets and maximum bids per click are declared? It
turns out that the answer to that question is negative: the utility function Ui,j for the
price-setting mechanism is not concave in Bi,j anymore, as we later show (e.g., see
Figure 4). However, Ui,j is monotonically increasing in Bi,j:

Lemma 2: Ui,j(Bi,j) is monotonically increasing in Bi,j.

Since Ui,j is monotonically increasing in Bi,j, it will also be quasi-concave in Bi,j. On
the other hand, ∑ , . It turns out that when Ui,j are quasi-concave, but not
concave in Bi,j, then their sum is not quasi-concave in (Bi,1, …, Bi,L) [6]. This is a
worrisome result, in the sense that existence theorems for Nash equilibria usually
assume concave or, at least, quasi-concave utility functions.

There are, however, two special cases where we can easily show that a Nash
equilibrium exists. First, assume that the sum of the advertisers’ budgets is
sufficiently small, i.e., ∑ , , for every cell j. In this case, independent of
the budget allocation, we have in any cell j that ∑ ,1 , , so the price setting
mechanism will allocate to every advertiser a percentage of advertising opportunities
proportional to the budget that they allocate in every cell. But this is identical to case
2, and it thus always admits a Nash equilibrium if 1) there is a reserve price, or 2)
there is strong competition. Second, assume that every advertiser has sufficiently
large budget, and that there is strong competition in every cell. For any advertiser i,
consider the set of cells Ci where i has the highest valuation per click among all
advertisers, i.e., Ci = {j|wi,j=max1≤i´≤N{wi´,j}} (for some advertisers this set may be
empty). For advertiser i, we then define the following budget allocation strategy:
allocate 0 to cell j if j∈Ci, else allocate an amount of money equal to or greater than
Mj , where 0 the second highest valuation per click in cell j (it is positive

because of the strong competition assumption). This is always possible if ∑ ∈ , for every advertiser i. It is easy to verify that the above sets of budget
allocations correspond to Nash equilibria, since any advertiser cannot increase its
utility by deviating to a different budget allocation. Indeed, with the previous budget
allocation every advertiser i wins all ads for the cells that belong to Ci. Obviously, i
cannot gain a higher utility by changing its budget allocation for cells j∈Ci. On the
other hand, even if i allocates a positive budget in cells j∉Ci, it will still gain 0
advertising opportunities, since the first advertiser has adequate budget and valuation
to buy all ads in that cell. In fact, a Nash equilibrium in the case of sufficiently large
budgets can be given by the following rule: in every cell the advertiser with the
highest valuation per click pays a price per click equal to the valuation per click of the
second highest advertiser, and wins all ads for that cell. But what we have just
described is the GSP procedure. Stated equivalently, the GSP auction for sufficiently
large budgets results in a Nash equilibrium.

We have thus observed how the bids-and-budgets case encompasses the simpler
bids-only and budgets-only cases for sufficiently small or large budgets, respectively.

 Location-Based Sponsored Search Advertising 361

On the other hand, when only one advertiser has a positive valuation for a cell j, then
using the same line of arguments as in Section 5 we can see that its utility function is
discontinuous at 0, and the game accepts no Nash equilibrium. It is however possible
to slightly modify the game in a way that makes the discontinuity at 0 disappear,
similar to [10][13]. In this direction, we will introduce a fictitious advertiser N+1 who
allocates a tiny budget Bε > 0 in every cell, but has an arbitrarily large valuation per
click for every cell. We call the perturbed game with the additional player G. So, what
is the impact of the additional player N+1 on the game structure? Essentially, the
arbitrarily large valuation per click for every cell implies that advertiser N+1 will have
the highest valuation per click in every cell and will thus be able to pay any price that
the price mechanism sets. On the other hand, we set Bε to be very small so that player
N+1 has a negligible impact. Note that the introduction of the fictitious player serves
the same purpose as the reserve price of the budgets-only case, namely to smooth out
the utility function and tackle the discontinuity at 0.

In the general case, we are currently not aware whether game G always accepts a
Nash equilibrium since each advertiser’s utility function is not quasi-concave.
Although we cannot answer whether a Nash equilibrium exists, we can nevertheless
find a budget allocation such that the maximum utility that an advertiser can gain by
deviating is known.

In this direction, we will consider the upper concave envelope , of the utility Ui,j,
for any advertiser i and any cell j. Formally, we will be looking for the infimum of all
functions that are concave and are greater than or equal to Ui,j for any Bi,j. This is, in
general, not an easy task, but as we shall see the upper concave envelope for the
utility functions that arise in the bids-and-budgets setting has a relatively simple form.

We focus on advertiser i and cell j, 1≤i≤N and 1≤j≤L. Assume the rest of the
advertisers’ budgets for cell j are fixed and equal to B1,j, ..., Bi−1,j, Bi+1,j, …, BN,j. Also,
w.l.o.g. assume that w1,j>…>wN,j. We are interested in the first advertiser k* such

that 1, ∑ ,1 as Bi,j varies. Let k*=k0 when Bi,j = 0. If k0 < i, then no matter how

much budget i allocates, the price setting mechanism allocates no advertising
opportunities to them, because advertisers 1, …, k0 have sufficient budget to buy all
ads at a price that is higher than what i can afford; thus Ui,j = 0 and, subsequently, , , 0. If, on the other hand, k0≥i, then the utility function Ui,j will have the
form that we depict in Figure 4. In particular, we can form the i−k0+1
regions Rk, i≤k≤k0, such that that the first advertiser in region Rk with the property that , ∑ , is k. In particular, when Bi,j=0 then k*=k0 and we get the leftmost

region ; as Bi,j grows larger k* eventually becomes i and remains so thereafter.
Points P, P1, P2, and P3 in Figure 4 correspond to budget allocations Bi,j equal to B,
B1=wk+1,j·Mj−Sk,j−Bk,j, B2=wk,j·Mj−Sk,j−Bk,j, and B3=wk,j·Mj−Sk,j, respectively.

We will now determine the upper concave envelope of Ui,j by focusing on regions
Rk, with i≤k≤k0. Define Sk,j = ∑ ,´ ∑ ,´ (for k=i this expression gives
Si,j = ∑ ,´). Region Ri (rightmost region in Figure 4) consists of a concave part

which corresponds to the utility function , , , ,∑ ´,´ for

Bi,j∈[wi+1,j·Mj−Si,j−Bi, wi,j·Mj−Si,j], followed by a constant part for Bi,j ≥ wi,j·Mj−Si,j

362 G. Trimponias, I. Bartolini, and D. Papadias

(the constant part corresponds to the maximum possible advertising opportunities that
advertiser i may get); the utility function in region Ri is thus already concave so we do
not need to focus more on it. Every other region Rk, i<k≤k0, will consist of the
concave part , ,∑ ´,´ for Bi,j∈[wk+1,j·Mj−Sk,j−Bk,j, wk,j·Mj−Sk,j−Bk,j], followed by

the linear part , ,, for Bi,j∈[wk,j·Mj−Sk,j−Bk,j,, wk,j·Mj−Sk,j]. Of course Bi,j≥0, so if any

of the endpoints of the aforementioned intervals is negative we simply replace it with
0. From Lemma 1, we can easily derive that Ui,j(Bi,j) is continuous in the domain
Bi,j≥0. It is also differentiable everywhere except for the points where the utility
function transitions from the concave part to the linear part, and vice versa.

Fig. 4. Utility function Ui,j when k0≥i and its upper concave envelope

We now examine the derivatives in regions Rk, i≤k≤k0. For region Ri, i.e., when
k=i, the derivative in (wi+1,j·Mj−Si,j−Bi,j, wi,j·Mj−Si,j) is , ,, , , while it is 0 for

Bi,j>wi,j·Mj−Si,j. For region Rk, with i≤k≤k0,the derivative in (wk+1,j·Mj−Sk,j−Bk,j,
wk,j·Mj−Sk,j−Bk,j) is , , ,, , , , while the derivative in (wk,j·Mj−Sk,j−Bk,j,,

wk,j·Mj−Sk,j) is wi,j/wk,j. Although Ui,j is not differentiable at the transition points, the
left , and right , derivatives obviously exist. We now state the following two
results.

Lemma 3: , , , , , , , , , for i≤k<k0.

Lemma 4: , , , , , , , , , for i<k≤k0.

Lemma 3 implies that whenever we make a transition from the linear to the concave
part (e.g., point P1 in Figure 4) the first derivative gets lower, and concavity is

Bi,j

Ui,j(Bi,j)

...

wk+1,j·Mj−
Sk,j− Bk,j

wk,j·Mj−
Sk,j

wk,j·Mj−
Sk,j−Bk,j

P1

P2

P3

P

B

Region Ri

Region Rk

Region Rk0

(ε1)

(ε2)

wi+1,j·Mj−Si,j wi,j·Mj−Si,j

 Location-Based Sponsored Search Advertising 363

maintained. In contrast, Lemma 4 suggests that when we move from the concave to
the linear part (e.g., point P2), the first derivative gets higher; this in turn violates
concavity. We will show how to tackle this by considering region Rk, i≤k≤k0, in
Figure 4. The idea is to draw a line ε1 from P3 to the point P in the concave part of
region Rk so that the line ε1 is tangent to the curve. Based on our previous discussion,

the derivative at P is , , ,, , 2. On the other hand, the slope of ε1 is

, , , , , , . Thus, we are looking for a B such that

, , ,, , , , , , . But B3 = wk,j·Mj−Sk,j, so the previous equation

becomes after some algebraic manipulations: , 2 , , , , , , , , , , , 0 (1)

Equation (1) is a quadratic equation, which accepts the two solutions

, , , , , , , , , ,, . First, note that Mj·wk,j > Sk,j (since

B4>0), so the solutions are real numbers. Second, we keep the solutions with the
minus because it is lower than B3=Mj·wk,j−Sk,j and even B2=Mj·wk,j−Sk,j−Bk,j. Indeed,
after performing some algebraic manipulations we get , , , , , , , , , ,

, , , , , ,, , which is true. Now, there are 2 cases. If the solution is greater than ,, , (see point P1 in Figure 4), then we draw the line ε1 from P to P3 as we show
in Figure 4. Else, we draw the line from P1 to P3 (we illustrate such a scenario with line
ε2 in region 0 in Figure 4). We summarize the two cases by writing max , , , , , , , , , ,, , , , , .

We will now prove that the slope of ε1 is greater than the right derivative at

P3. Indeed, the slope of ε1 is , , ,, , 2. The right derivative at P3, on the other

hand, is , ,, 2. But then , , ,, , , ,, ,

, ,, , , , , , , , , which proves our claim. Moreover, it

is easy to see that the slope of ε1 is lower than the left derivative at P1, since the
opposite would imply that the line segment P2-P3 has a slope wi,j/wk,j that is greater
than the left derivative at P1 wi,j/wk+1,j, which is untrue given that wk,j>wk+1,j.

We repeat the process described above in all regions. At the end of this process, we
derive a utility function , that is continuous everywhere, differentiable everywhere
except for the points where it changes slope, and the left and right derivatives (which
exist for all Bi,j≥0) are monotonically non-increasing in the allocated budget Bi,j. But
then , will be concave in terms of Bi,j. Now, recall that ∑ ,1 . If we repeat
the above process for every Ui,j, 1≤j≤L, we can eventually form the function ; ∑ , , ; , (where denotes the vector of budget allocations

364 G. Trimponias, I. Bartolini, and D. Papadias

of all advertisers but i). The function ; is the sum of concave functions, so it
is also concave in i’s strategy Bi. In the end, the new utility functions ; ,
1≤i≤N, possess two important properties: (1) each ; is continuous
in ; , and (2) each ; is concave in Bi for any fixed value of .
Moreover, the strategy space of every advertiser is convex, closed and bounded.
Consequently, based on Rosen’s theorem [16] we can immediately derive that a Nash
equilibrium exists. We denote that equilibrium by 1, … , . Moreover, we call

 the new game when the utility functions are replaced by their upper-concave
envelopes.

Note that may not be an equilibrium of game G. This means that there may be
players in game G who have an incentive to deviate if the strategy vector is chosen.
However, the following lemma shows that we can bound the maximum utility that a
player can gain by deviating.

Lemma 5: Let the strategy vector be a Nash equilibrium of game . Then the
maximum utility that player i can gain by deviating from in game G is ;; .

Essentially, the above result says that we can find a set of budget allocations such
that we can know exactly the maximum utility that an advertiser may gain by
deviating. Note that in the special case where the Nash equilibrium of game falls
into the parts of that are equal to , then the Nash equilibria of game are also
Nash equilibria of game G.

7 Conclusion

The market for location-based advertising is set to witness an unprecedented growth
over the next years. The massive proliferation of modern mobile phones with
embedded geo-positioning functionality and the development of fast wireless
communication protocols have created exciting opportunities for advertisers to reach
the user base that is most relevant to them. On the other hand, sponsored search
advertising has been a thriving market in the last decade for advertisers who want to
advertise their product or service to online users posing relevant queries. Inspired by
the enormous success of sponsored search and the immense potential for LBA, we
address the market for location-based sponsored search advertising. We provide
models that build on prior work in sponsored search advertising, but we additionally
consider that advertisers are characterized by location-dependent valuations. We
distinguish between three cases: (1) bids-only case, (2) budgets-only case, and (3)
bids-and-budgets case, and analyzed the equilibrium strategies in the corresponding
markets using game theoretical tools.

There are several research directions that we would like to pursue with regard to
the market for location-based sponsored search advertising. First, we would like to
extend our model so that it takes into account the more subtle issues that are involved
in the sponsored search market such as the externalities between the displayed ads, or
the more realistic scenario of advertisers who are interested in several keywords.

 Location-Based Sponsored Search Advertising 365

Second, our model assumed offline ad slot scheduling [9], where we estimate the
number of queries in every cell, and then allocate to every advertiser a percentage of
the ads in every cell. It would be interesting to deal with the more challenging
problem of online ad slot scheduling, where the number of expected queries per cell is
not available in advance. Finally, we would like to fully explore the equilibrium
strategies in the bids-and-budgets case, as our current work provides equilibrium
strategies only for the case where advertisers have sufficiently small or large budgets.

Acknowledgements. This work was supported by grant RPC11EG01 from HKUST.
We thank the anonymous reviewers for their valuable comments.

References

1. Banerjee, S., Dholakia, R.: Does location-based advertising work? International Journal of
Mobile Marketing 3(1) (2008)

2. Brainard, W., Scarf, H.: How to compute equilibrium prices in 1891. Cowles Foundation
Discussion Paper 1270 (2000)

3. Bruner, G., Kumar, A.: Attitude toward location-based advertising. Journal of Interactive
Advertising 7(2) (2007)

4. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
5. Dhar, S., Varshney, U.: Challenges and business models for mobile location-based services

and advertising. Communications of the ACM 54(5), 121–129 (2011)
6. Debreu, G., Koopmans, T.C.: Additively decomposed quasiconvex functions.

Mathematical Programming 24(1), 1–38 (1982)
7. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second

price auction: Selling billions of dollars worth of keywords. American Economic
Review 9(1), 242–259 (2007)

8. Feldman, J., Muthukrishnan, S.: Algorithmic methods for sponsored search advertising. In:
Performance Modeling and Engineering, Springer, Heidelberg, pp. 91–124. Springer,
Heidelberg (2008)

9. Feldman, J., Muthukrishnan, S., Nikolova, E., Pál, M.: A truthful mechanism for offline ad
slot scheduling. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997,
pp. 182–193. Springer, Heidelberg (2008)

10. Feldman, M., Lai, K., Zhang, L.: The proportional-share allocation market for
computational resources. IEEE Transactions on Parallel and Distributed Systems 20(8),
1075–1088 (2009)

11. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)
12. Jansen, B., Mullen, T.: Sponsored search: an overview of the concept, history, and

technology. Int. J. Electronic Business 6(2), 114–131 (2008)
13. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game.

Mathematics of Operations Research 29(3), 407–435 (2004)
14. Kelly, F.: Charging and rate control for elastic traffic. European Transactions on

Telecommunications 8, 33–37 (1997)
15. Kempe, D., Mahdian, M.: A cascade model for externalities in sponsored search. In: 4th

International Workshop on Internet and Network Economics, pp. 585–596 (2008)
16. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games.

Econometrica 33(3), 520–534 (1965)

366 G. Trimponias, I. Bartolini, and D. Papadias

17. Trimponias, G., Papadias, D., Bartolini, I.: Location-based sponsored search advertising.
Technical Report,
http://www.cse.ust.hk/~dimitris/PAPERS/SSTD13-TR.pdf

18. Unni, R., Harmon, R.: Perceived effectiveness of push vs. pull mobile location-based
advertising. Journal of Interactive Advertising 7(2), 28–40 (2007)

19. Varian, H.: Position auctions. International Journal of Industrial Organization 25(6),
1163–1178 (2007)

20. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Finance 16,
8–27 (1961)

21. http://advertise.bingads.microsoft.com/en-us/home
22. http://adwords.google.com/support/aw/?hl=en

A Group Based Approach for Path Queries

in Road Networks

Hossain Mahmud1, Ashfaq Mahmood Amin1, Mohammed Eunus Ali1,
Tanzima Hashem1, and Sarana Nutanong2

1 Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{hossain.mahmud,ashfaq.m.amin}@gmail.com,

{eunus,tanzimahashem}@cse.buet.ac.bd
2 Department of Computer Science, Johns Hopkins University, Maryland, USA

nutanong@cs.jhu.edu

Abstract. The advancement of mobile technologies and map-based
applications enables a user to access a wide variety of location-based
services that range from information queries to navigation systems. Due
to the popularity of map-based applications among the users, the ser-
vice provider often requires to answer a large number of simultaneous
(or contemporary) queries. Thus, processing queries efficiently on spatial
networks (i.e., road networks) have become an important research area in
recent years. In this paper, we focus on path queries that find the short-
est path between a source and a destination of the user. In particular,
we address the problem of finding the shortest paths for a large num-
ber of simultaneous path queries in road networks. Traditional systems
that consider one query at a time are not suitable for many applications
due to high computational and service cost overhead. We propose an
efficient group based approach that provides a practical solution with
reduced cost. The key concept of our approach is to group queries that
share a common travel path and then compute the shortest path for the
group. Experimental results show the effectiveness and efficiency of our
group based approach.

Keywords: Spatial query processing, Road networks, Clustering.

1 Introduction

With the proliferation of GPS-enabled mobile technologies, users access a wide
variety of location-based services (LBSs) from different service providers. These
LBSs range from simple information queries such as finding the nearest restau-
rant to navigational queries such as finding the shortest path to a destination.
In this paper, we focus on the shortest path computation problem. In partic-
ular, we address the problem of finding the shortest paths for a large number
of simultaneous (or contemporary) path queries in road networks. For example,
tourists from nearby hotels may issue path queries to different sightseeing places
at the same time. Traditional systems that evaluate one query at a time are not
suitable for many applications as these systems cannot guarantee a cost-effective

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 367–385, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

368 H. Mahmud et al.

and real-time response to the user in high load conditions [16,29]. We propose an
efficient group based approach that provides a practical solution for path queries
with reduced cost.

In a road network, users are often interested in a path to the destination that
can be reached in minimum travel time. For such a scenario, travel times on road
segments are considered as edge weights of the road network graph during the
shortest (or fastest) path computation. Since travel time on a road segment is
highly dynamic and depends on various real-time traffic conditions [8], it is not
possible to accurately compute the travel time based on the network distance.
To answer such user queries, an LBS provider needs to gather real time traffic
conditions of the underlying road networks. However, it may not be possible
for every LBS provider to have their own monitoring infrastructure for traffic
updates due to high cost. Hence, to process queries on road networks, LBS
providers subscribe to map services such as Google Maps [13], MapQuest [20],
and Bing Maps [4] for traffic updates.

Due to huge client bases and popularity of map-based services, an LBS server
often require to respond to a large number of simultaneous user queries. Thus,
efficient processing of a large number of queries in road networks have become
an important research topic. Specially, when an LBS server needs to call the
map based services for every user request, it becomes a major bottleneck in
providing a cost-effective and real-time response to the user [29] due to the
following limitations. First, map based web services charge on per request basis
(e.g., in Google Maps [13], an evaluation user can submit 2,500 requests per day
and a licensed business user can submit 100,000 requests per day [1]) and thus the
number of requests that one can make to obtain real-time traffic information is
limited. Second, each map web service call incurs a significant delay in response,
e.g., a web service call to fetch the travel time from the Microsoft MapPoint web
service to a database engine takes 502 ms [16]. In addition to these limitations,
well known approaches (e.g., Dijkstra [30] and A* Algorithm [21]) for the shortest
path computation require expensive graph traversal operations, and thus incur
huge computational overhead especially for a large number of queries.

In this paper, we propose a shared execution approach to process a large
number of path queries simultaneously. The key idea of our shared execution
approach to path queries comes from the path coherence properties of road
networks. That is, two shortest paths originated at spatially close set of locations
S and terminated at another spatially close set locations E are likely to share
a common path of a significant length l and l tends to increase as the distances
from S to E increase [24].

Based on the path coherence concept, we first group similar queries into
clusters based on the similarities of the shortest path estimates called Q-lines.
Specifically, a Q-line, is defined as the straight line vector connecting the source
to the destination of a given path query. Each cluster, represented as a pair of
source-destination regions, essentially is a group of path queries who have high
probabilities of sharing a common travel path in their answers. Then, we execute

A Group Based Approach for Path Queries in Road Networks 369

each group as a single path query, that finds the best path from the source region
to the destination region of the cluster.

Our group based heuristic to answer the shortest paths for a large number
of simultaneous path queries significantly reduces the computational overhead.
Note that, though the group based approach does not guarantee optimal shortest
paths for all queries, the deviation from the optimal paths is found negligible.
Extensive experimental studies in a real road network show that our group based
approach is on average 9 times faster than the straightforward approach that
evaluates each path query independently, in return of sacrificing the accuracy by
0.25%, which is acceptable for most of the users.

In summary, the contributions of this paper are as follows:

– We formulate the problem of group based path queries in road networks.
– We develop an efficient clustering technique to group path queries based on

similarities of Q-lines that form the base of our efficient solution to process
a large number simultaneous path queries in a road network.

– We conduct an extensive experimental study to show the efficiency and the
effectiveness of our approach.

2 Related Works

To handle a large number of queries in modern database systems, shared execu-
tion of queries have recently received a lot of attention [2,9,28,29]. The core idea
of all these approaches is to group similar queries (i.e., who share some common
execution path) and then execute the group as a single query in the system.
These approaches are found to be effective for many applications in handling
high load conditions, whereas traditional systems that consider one query at a
time fail to deliver the required performance for such applications. In this pa-
per, we propose a shared execution approach for path queries on road networks,
which is the first attempt of this kind.

The problem of finding the shortest path from a source to a destination on
a graph (or spatial/road network) has been extensively studied in literature
(e.g., [6,21,26,27,30]). Dijkstra’s [30] algorithm is the most well-known approach
for computing a single source shortest path with non-negative edge cost. Dijk-
stra [30] incrementally expands the search space, starting from the source, along
network edges until the destination is reached. Hence, Dijkstra’s algorithm re-
quires to visit nodes and edges that are far away from the actual destination.
Over the past two decades, a plethora of techniques have been proposed to ad-
dress the limitations of Dijkstra’s algorithm [3,11,12]. An alternative school of
thought employs hill climbing algorithms, A* search [21] and RBFS [22], that use
heuristics, e.g., Euclidian distances, to prune the search space. However, both Di-
jkstra’s and hill climbing algorithms incur expensive graph traversal operations
and require complete recomputation on every update. The above approaches as-
sume that the road conditions will remain static. To address the dynamic load
conditions of road networks, several approaches have been proposed [15,17].

370 H. Mahmud et al.

Some techniques [3,11,12,23] rely on graph preprocessing under the assump-
tion of static conditions (e.g., landmark) to accelerate query response times.
Reach based routing [12] enhances responses by adding shortcut edges to reduced
nodes’ reaches during preprocessing. Landmark indexing [11] and transit node
routing [3] boost run time query performance by using precomputed distances
between certain set of landmarks chosen according to the algorithms. An adap-
tation of landmark based routing in dynamic scenarios [7] yields improved query
times but requires a link’s cost not to drop below its initial value. A dynamic
variant of highway node routing [25] gives fast response times but can handle a
very small number of edge weight changes. Several algorithms such as spatially
induced linkage cognizance (SILC) [23], and path-coherent pairs decomposition
(PCPD) [24] based on spatial path coherence have been proposed recently. These
algorithms have high pre-computation overhead and space complexity.

An approach for all-time-shortest path queries have been proposed recently
in [14]. For a single source and destination pair and a time interval, all-time-
shortest path finds shortest paths for every start time in the given interval as for
the same source-destination pair the shortest path may be different at different
time of the day. Since two shortest paths for two different start times may share a
common path, independent evaluation of a path query for each start time results
in many redundant computation. To reduce this redundancy, [14] proposed a
concept of critical time points, the time when two paths of two different start
times get apart from each other.

A recent approach [19] continuously updates a user if the shortest path for
a given source-destination pair changes due to dynamic traffic. Rather than
recomputing on every update, this technique sends the user a new route only
when delays change significantly.

All of the above approaches for path queries consider one query at a time,
which is both costly and computationally expensive for an LBS server, espe-
cially in high load conditions. In this paper, we propose a novel clustering tech-
nique that finds similarities among path queries and executes similar queries as a
group. There are several clustering algorithms [10], which use properties such as
density, similarity, etc. to cluster nodes, lines and trajectories. However, the
use of clustering techniques in shortest path calculation has not been addressed
so far.

3 Group Based Path Queries (GBPQ)

We propose an efficient group based approach to compute path queries on road
networks. A path query takes a source and a destination as inputs and returns a
sequence of road segments that minimizes the total travel cost (e.g., travel time)
from the source to the destination. Given a set of path queries, group based path
queries (GBPQ) cluster n queries into m groups, where n m, and evaluate
each group of path queries collectively.

A Group Based Approach for Path Queries in Road Networks 371

3.1 Intuition

The basic idea of our approach is developed based on a key observation of road
networks, i.e., path coherence. Path coherence is a property where the shortest
paths originated from spatially close set of locations S and terminated at another
spatially close set of locations E are likely to share a common path of a significant
length l and l has a tendency to increase as the distances from S to E increase.
Thus, by grouping these source-destination pairs that share a common path
for shared execution, reduce the computational overhead significantly. To group
these source-destination pairs, we use the query line (Q-line) similarities based
on perpendicular, parallel, and angular distances. A Q-line is a straight line
vector connecting a source (e.g., s1) to a destination (e.g., d1). Based on the
path coherence properties, it is highly likely that queries who have similar Q-
lines will have a large portion of common travel path. Hence, we propose a
group based approach that groups source and destination pairs based on their
similarities of Q-lines and execute similar queries as a group in a road network.

3.2 Solution Overview

Our approach, GBPQ, groups source destination pairs of path queries into dif-
ferent clusters based on the similarities of Q-lines. We introduce the distance
function and the areas of influence that form the base of our clustering algo-
rithm. Fig. 1 illustrates our solution overview for eight path queries: (a) obtaining
Q-lines from initial source and destination points of path queries, (b) cluster-
ing Q-lines and creating source-destination region pairs {R1

s, R
1
d} and {R2

s, R
2
d}

based on the distance function and influence areas, (c) finding the shortest path
between two regions, and (d) adding up internal paths inside a region to obtain
the complete path.

Fig. 1. An example of finding shortest paths in a group based framework

Note that since we have considered the shortest path between a source region
and its corresponding destination region for a group, this path may not be the
best path for every source-destination point pairs that belong to this group.
Thus some path queries in GBPQ may result in a slightly larger path then the
optimal shortest path. Our extensive evaluation shows the deviation of the path
returned by GBPQ from the optimal path is only about 0.25% in the average
case, which is within the acceptable limit of the users.

372 H. Mahmud et al.

Algorithm 1. Evaluate GBPQ(SD)

Input : SD = {(s1, d1), (s2, d2), . . . , (sn, dn)}
Output: P = {p1, p2, . . . , pn}

1.1 for each (si, di) ∈ SD do
1.2 li ← getStraightLineV ector(si, di)

1.3 C ← Cluster Queries (l1, l2, . . . , ln)
1.4 Compute {(R1

s, R
1
d), (R

2
s, R

2
d), . . . , (R

m
s , Rm

d)}
1.5 for each (Rj

s, R
j
d) ∈ R do

1.6 SPj ← ShortestPaths (Rj
s, R

j
d)

1.7 for each (si, di) ∈ SD do

1.8 Find j such that si ∈ Rj
s and di ∈ Rj

d

1.9 pi ← Construct Path (si, di, SPj)

4 Algorithm

In this section, we present our algorithm for group-based path queries (GBPQ).
The input to the algorithm is a set of n path queries, SD = {(s1, d1), (s2, d2),
. . . , (sn, dn)}, where (si, di) represents a path query from a source si to a desti-
nation di for 1 ≤ i ≤ n, and the output of the algorithm is a set of approximate
shortest paths, P = {p1, p2, . . . , pn}, where pi represents the approximate short-
est path for the path query (si, di). We propose a shared execution strategy that
group similar queries using some key features of road networks. The algorithm
first finds a common shortest path with respect to each group of path queries
and then computes the approximate shortest path for each individual path query
(si, di) based on the common shortest path of the group. Our approach sacrifices
the accuracy of the query answers slightly, i.e., computes a slightly larger path
than the optimal one, in turn for significant savings in computational overhead.

Algorithm 1, Evaluate GBPQ, gives the pseudo code for processing GBPQ.
The algorithm finds the set of shortest paths, P , in three steps: (i) Q-line forma-
tion (Lines 1.1–1.2), (ii) Q-line clustering and region formation (Lines 1.3–1.4)
and (iii) path calculation (Lines 1.5–1.9). We discuss the details of three steps
in the following sections.

4.1 Q-Line Formation

We define Q-line, li, as the straight line vector connecting the source si to the
destination di of a path query. The concept of Q-line is used to predict the
similarity of path queries, whose answers share common paths. The algorithm
computes the set of Q-lines, L = {l1, l2, . . . , ln} in Line 1.2, which is used for
clustering the path queries in the second step of the algorithm.

4.2 Query Clustering and Region Formation

In this phase, we first cluster the path queries based on the similarities of
Q-lines and then compute the source and destination region pair for each cluster.

A Group Based Approach for Path Queries in Road Networks 373

A source and destination region pair consists of a source region and a destination
region, where the source region (destination region) of a cluster is a minimum
bounding rectangle (MBR) containing the locations of sources (destinations) of
all Q-lines in the cluster.

Algorithm 1 finds a set of clusters C = {c1, c2, . . . , cm} using the function
Cluster Queries (Line 1.3), where m ≤ n. After clustering the queries, Algo-
rithm 1 (Line 1.4) computes the set of source and destination region pairs, R
= {(R1

s, R
1
d), (R

2
s, R

2
d), . . . , (R

m
s , Rm

d)}, where Rj
s and Rj

d represent source region
and destination region, respectively, of cluster cj for 1 ≤ j ≤ m.

Algorithm 2 shows the steps for Cluster Queries. The detailed discussion of
function Cluster Queries is given at the end of this section. To measure the
similarity among Q-lines, we define two metrics: (i) distance function, and (ii)
areas of influence, which are used in Function Cluster Queries. Thus, we next
explain distance function and areas of influence.

Distance Function: As a similarity measure of two Q-lines, the distance be-
tween two Q-lines l1 and l2 is defined as an aggregate measure consisting of the
following three distances.

1. Parallel distance d‖: the length difference between the projection of l1 onto
l2 and l2 itself.

2. Perpendicular distance d⊥: the mean length of two perpendicular distances
measured from two corner points of l1 onto l2.

3. Angular distance dθ: the angle between l1 and l2 weighted by the length of
the longer Q-line.

We calculate the distance between two Q-lines by using the following formula:

distance = w⊥d⊥ + w‖d‖ + wθdθ (1)

The weight values w⊥, w‖ and wθ are used to control the effective contribution
of three components on the overall distance. For example, a larger w‖ value
reduces the length difference between a Q-line and its projection on the other
Q-line. Similarly, a larger value of w⊥ keeps the endpoints of two queries closer
to each other. Likewise, a larger wθ value gives more emphasis on the angular
distance of two Q-lines. In our experiments, we keep all these weights to unity,
so that all the three components of the distance function have equal effect on
overall distance. Based on the distance function two path queries can be grouped
together if their distance is less than a threshold value ψ. The formal definitions
and impact of parallel, perpendicular and angular distances [10] are discussed
below. Symbols used in these definitions are shown in Fig. 2a.

Parallel Distance: Let sj and dj be the two endpoints of the Q-line lj .
If the projection of sjdj over li is pspd, then the parallel distance d‖ is de-
fined as maximum of the Euclidean distance of si to ps and di to pd, i.e.,
d‖ = MAX(sips, pddi).

Perpendicular Distance: Let l⊥1 and l⊥2 be the distance components of
two Q-lines li and lj as shown in Fig. 2a. Then the perpendicular distance d⊥ of

374 H. Mahmud et al.

these two Q-lines is defined with second order Lehmer mean [5] of l⊥1 and l⊥2,

i.e., d⊥ =
l2⊥1+l2⊥2

l⊥1+l⊥2
.

Angular Distance: Let θ be the smaller intersecting angle between Q-lines li
and lj . Then their angular distance dθ is defined as the product of sin component
of the larger Q-line, i.e., dθ = MAX{li, lj} × sinθ.

For clustering queries, similarities among Q-lines are measured using the distance
function. However, computing the similarities for every pair of Q-lines will be
prohibitively expensive, specially for a large number of Q-lines. We formulate a
branch-and-bound approach that tremendously reduces the computational afford
to identify clusters of similar Q-lines. Specifically, we introduce the concept of
areas of influence to help prune a large number of Q-lines while forming clusters
of queries and thus reduces the computational overhead significantly.

Length of one side
of an area of influence

(a) (b)

Fig. 2. (a) Components of the distance function, (b) Areas of influence of a Q-line

Areas of Influence: We define the areas of influence of a Q-line as a pair of
regions, represented as two squares centering the two endpoints of the Q-line. If
another Q-line has its source and destination inside these two squares, respec-
tively, then we compute the distance between these two Q-lines to check whether
they belong to the same cluster. This is because, there is a high probability that
the distance between those two Q-lines is smaller than the threshold value ψ.

We define the side length of both squares as 2Δ, which denotes the size of the
areas of influence. A larger value of Δ results in many unwanted Q-lines to be
included for distance calculations and a smaller value results in a large number
of small clusters. Since the appropriate value of Δ depends on the query set,
we choose a suitable Δ through a empirical study in the experiment. Fig. 2b
shows areas of influence using a pair of rectangles. Note that one can choose
other types of shapes such as rectangle, circle or ellipse for its influence areas.
Our approach is independent to the shape of the influence area.

Query Clustering: We use the concept of the distance function and the areas of
influence to cluster similar queries in Algorithm 2. The input to algorithm is the
set L = {l1, l2, . . . , ln} of nQ-lines, and the output is a setC = {c1, c2, . . . , cm} of
m clusters. For each Q-line l ∈ L, we first find the set of Q-lines I that are inside

A Group Based Approach for Path Queries in Road Networks 375

l’s areas of influence (Line 2.4). Then we compute the initial representative Q-
line, r, of the set I (Line 2.5). The representative Q-line of a given set of Q-lines
is the average direction vector of those Q-lines. Average direction vector I of the
set I = {l1, l2, . . . , lj} is calculated with the following equation: I =

l1+l2+...+lj
|I| ,

where |I| is the cardinality of set I.

Algorithm 2. Cluster Queries(L)

Input : A set of Q-line L = {l1, l2, . . . , ln}
Output: A set of clusters of queries C = {c1, c2, . . . , cm}

2.1 L′ ← Null
2.2 for each l ∈ L do
2.3 cnew ← Null
2.4 I ← subsetWithinAreaOfInfluence(L, l)
2.5 r ← representativeQ-line(I)
2.6 for each i ∈ I do
2.7 if distance(r, i) ≤ ψ then
2.8 cnew ← cnew ∪ i
2.9 Update(r)

2.10 Remove i from L

2.11

2.12 if size(cnew) ≥ μ then
2.13 C ← C ∪ cnew

2.14 else
2.15 L′ ← cnew

2.16

2.17 for each q ∈ L′ ∪ L do
2.18 for each c∈C do
2.19 if distance(representativeQ-line(c),q) ≤ ψ and q is not classified

then
2.20 c ← c ∪ q
2.21 Update(r)
2.22 Mark q as classified

2.23

2.24 if q is not classified then
2.25 C ← C ∪ {q}
2.26 Remove q from L′ or L

Now, for each element i ∈ I, we first calculate its distance from the current
representative Q-line, r. If the value is less than or equal to ψ, i is added to
a new cluster cnew. The representative Q-line r is then again updated to add
the effect of newly added Q-line i (Lines 2.6 - 2.10) in cnew. We use the moving
average process to update r, i.e., if r currently represents a cluster of j queries,
when a new Q-line i is added into the cluster the value of r will be updated as
r∗j+i
j+1 . The reason for updating r with the moving average is as follows.

376 H. Mahmud et al.

Initial set I of Q-lines, formed based on the influence set of a Q-line l ∈ L,
may contain queries that belong to more than one cluster. Since the initial
representative Q-line r is the average of all Q-lines in the set, Q-lines of all
probable clusters may have less distance than ψ and thus all Q-lines may have
been wrongly clustered into a single cluster. Now, if we take a particular order
(e.g., bottom-up or top-down) of Q-lines of I and update r for every i ∈ I that
is included in cnew, r is shifted towards the cluster cnew . Thus, other Q-lines
in I that have higher distances from the updated r are excluded from cnew .
The Q-lines included in cnew are removed from L. If cnew does not have enough
number of Q-lines (i.e., size(cnew) < μ), Q-lines of cnew are inserted into a new
list L′ (Lines 2.12 - 2.15).

After finishing the initial clustering process (Lines 2.6- 2.15), we have some
Q-lines left which are not included in any cluster. Some Q-lines are not clustered
because the representative Q-line was initially at a greater distance than ψ and
later it did not fall into others’ areas of influence, i.e., the remaining elements of
the set L. The other set of Q-lines L′ may be left unclustered because there are
not sufficient amount of queries to form a new cluster (Line 2.15). For all these
queries, we initially check them whether they fit into already created clusters.
For a Q-line, if we find a cluster with a distance less than ψ, we add the query
into that cluster and update the representative Q-line of the cluster. Otherwise,
a new cluster is created and the Q-line is removed from L or L′ (Lines 2.17- 2.26).

At this stage we havem clusters of Q-lines. Next for each cluster cj , where 1 ≤
j ≤ m, we compute a source-destination region pair (Rj

s, R
j
d), where R

j
s contains

the source points and Rj
d contains the destination points of all path queries (or

Q-lines) of that cluster. We represent Rj
s and Rj

d with two minimum bounding
rectangles (MBRs), a source MBR and a destination MBR, respectively.

4.3 Path Calculation

The final step of Algorithm 1 is to compute the shortest path for every path
query, which is done in two phases. The algorithm first computes the shortest
path for each cluster for its source-destination region pairs as shown in Fig. 3a.
Then the algorithm finds the approximate shortest path for each individual path
query in the cluster using Function Construct Path as shown in Fig. 3b. The
details of Construct Path is summarized in Algorithm 3.

The first phase, i.e., region to region shortest path is computed as follows.
Essentially, as discussed earlier, a region pair consists of two MBRs, a source
MBR and a destination MBR. For a source region, exit points of the region are
identified by considering the outgoing edges of the region. On the other hand,
for a destination region, entry points are identified by considering the incoming
edges to the region. These regions act like virtual super-nodes, where exit (or
entry) paths from the regions are the edges of those nodes. Then we apply
a heuristic based approach, A* search algorithm, to find the k-shortest paths
{SP 1

i , SP
2
i , ..., SP

k
i } between a source region Ri

s to a destination region Ri
d.

The motivation of using k-shortest paths instead of a single shortest path is
as follows. There can be scenarios, where a single shortest path between Ri

s and

A Group Based Approach for Path Queries in Road Networks 377

Ri
d may result in a large path deviation for some path queries in this cluster.

Thus, if we have multiple routes through different exit (entry) points of source
(destination) regions, it is more likely that these k paths may serve well all path
queries in the cluster. While computing k shortest paths, we take a different
strategy than traditional k-shortest paths approach (i.e., k paths for a fixed
source and destination pair). We choose k paths on the basis of different com-
binations of exit points of source and destination regions. For example, the first
shortest path is essentially the actual shortest path between two regions (i.e.,
two super nodes). Thus for consecutive shortest paths, there should be at least
one different exit point from source or destination region.

Source MBR

Destination MBR

Source MBR

Destination MBR

(a) (b)

Fig. 3. (a) Finding the weighted shortest path, (b) Constructing shortest path by
adding road segments within regions

The second phase of connecting source and destination points to the cor-
responding region’s shortest path is computed as follows. For each query s ∈
Ri

s, d ∈ Ri
d in a cluster ci, we find a path sp ∈ SPi that gives the minimum

overall shortest path for connecting s and d.
For some path queries, none of the k region to region shortest paths provide

good answers. These queries need to be executed independently to ensure better
paths for them. To identify such queries, we propose a heuristic based on the
influence region, which can be defined as follows. If the path fragment from
a source point s (destination point d) to the starting point (ending point) of
all of the k paths is greater than 2

√
2Δ, we evaluate the query independently.

Basically, 2
√
2Δ is the maximum Euclidian distance of between two points of

an influence region Δ (Section 4.2). The intuition behind this heuristic is that
if it takes a long path to travel from a query source (destination) to region exit
(entry) path, it is more likely that there may exist an alternative better path for
such queries.

4.4 Maximum Error Bound

In this section, we derive the maximum error bound of the path returned by our
approach for a given source s and destination d pair. Let us assume that s and d
belongs to the cluster ci represented as source destination region pair (Ri

s, R
i
d).

Let pi be the shortest path (k = 1) between Ri
s and Ri

d, where psi and pdi is the
starting and ending points of the path pi, respectively. The minimum path that
a source and destination pair belong to this cluster need to travel is pi. Now, if

378 H. Mahmud et al.

Algorithm 3. Construct Path (s, d, SPi)

Input : A source s, a destination d, weighted k-shortest paths
SPi = {SP 1

i , SP
2
i , ..., SP

k
i }

Output: A path p
3.1 p ← ∞
3.2 for each sp ∈ SPi do
3.3 f1 ← shortest path between s and start point of sp
3.4 f2 ← shortest path between d and end point of sp

3.5 if f1 <= 2
√
2Δ and f2 <= 2

√
2Δ then

3.6 p ← Min(p, f1 + sp+ f2)
3.7

3.8 if p = ∞ then
3.9 p ← Dist(s, d)

3.10 return p

the distance from s to psi and the distance from pdi to d is less or equal to 2
√
2Δ

(Lines 3.5-3.6, Algorithm 3), we use pi as the connecting path for s and d. Thus
the maximum path that a source and destination pair need to travel through
pi is pi + 4

√
2Δ. Thus the maximum error for a path query can be bounded by

4
√
2Δ. Note that, queries that are evaluated independently return the actual

shortest path and thus have zero error.

4.5 Discussion

In this paper, we have assumed that there are n submitted queries in the system
for our clustering algorithm. We then apply our clustering technique to group
these n queries into different subgroups. However, the value of n can be dynam-
ically chosen based on the user given threshold, i.e., how long a user can wait
for the query answer. The detailed study of finding a suitable n and other opti-
mization such as re-using the cluster for future incoming queries in the system
is the scope of future study.

Note that, since our main focus in this paper is to show the effectiveness of
group based approach compared to one query at a time approach, we limit our
experiments using a well known shortest path algorithm A*. However, any other
state-of-the-art shortest path algorithms (e.g., [3,27]) can be used.

5 Experimental Study

In this section, we evaluate the performance of our proposed algorithm by varying
a wide range of parameters. We compare our group based path queries (GBPQ)
approach with the naive approach that executes each query at a time using A*
algorithm [21]. We have also used A* for our region to region shortest path in
GBPQ. Since the improvement of our approach over the naive approach comes
from clustering similar queries, the superiority of GBPQ still holds if we compare

A Group Based Approach for Path Queries in Road Networks 379

GBPQ with any other shortest path algorithms. We simulate our experiment on
a system with Intel core i5 2.86 GHz processor and 4 GB memory running
Windows 7 ultimate. C++ is used to implement our algorithms.

A road network dataset of North America with 175,813 nodes, 179,179 edges,
and a diameter of 18,579 units is used. At the beginning, the entire map data
is loaded into the memory. For a single path query we need to select a source-
destination pair on the map. However to simulate a group behavior we first
partition the entire data space into a number of square windows. Then, we choose
two random windows, one as a source region and the other as a destination region
for a group of path queries, who have their source locations and destination
locations inside the source and destination regions, respectively. Within a region,
query points are generated using Gaussian and Zipf distributions.

Before moving on to the performance evaluation, we first discuss the perfor-
mance of our clustering algorithm.

5.1 Cluster Generation

The performance of GBPQ largely depends on how accurately our clustering
algorithm (Algorithm 2) can group similar queries. The performance of our
clustering algorithm depends on a number of parameters. Thus, we have first
conducted a wide range of experiments to determine suitable values of these
parameters for our experiments.

Parameter Pruning: The efficiency of our clustering algorithm depends on
three pruning parameters: i) half length of an areas of influence Δ, ii) minimum
distance threshold ψ, iii) minimum number of queries μ in a cluster. Half length
of an area of influence defines two surrounding regions around source and des-
tination points. Queries in the same areas of influence have higher probabilities
of belonging to the same cluster. Moreover, as per our distance measure, the
maximum distance allowed between two Q-lines increases with the increase of
Δ. The performance of GBPQ also depends on the distance threshold value ψ.
The parameters ψ and Δ are also correlated as a higher value of ψ allows us to
take a larger Δ. The other parameter μ determines the minimum cluster size,
and thus has an impact on the number of clusters. However, choosing suitable
values of these parameters is a challenge and may vary with the data sets. Thus,
we resort to detailed experimental study [18] to choose default values of these
parameters as Δ = 80, ψ = 160 and μ = 30 for experiments in Section 5.2.

Number of Clusters: We vary the number of queries n, the minimum query
distance dc, i.e., the distance between the source and the destination of each
query, and the window size ω, and measure the number of clusters identified our
algorithm. In our system, we aim to minimize the number of clusters, since the
number of clusters negative affect the performance of the algorithm.

Figures 4a and 4b show the number of identified clusters using our algorithm
for varying number of queries for Gaussian and Zipfian distribution, respectively.
Figures show that the number of clusters increases as the number of queries

380 H. Mahmud et al.

2 4 6 8 10
0

5

10

15

20

Number of queries n (×104)

N
u

m
b

e
r

o
f

cl
u

st
e

rs
 (

×1
02)

2 4 6 8 10
0

5

10

15

20

Number of queries n (×104)

N
u

m
b

e
r

o
f

cl
u

st
e

rs
 (

×1
02)

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Query distance coefficient d
c

N
u
m

b
e
r

o
f
cl

u
st

e
rs

 (
×1

02)

1 2 4 10 20 50100
0

10

20

50

70

ω(x102)[log
2
 scale]

N
u

m
b

e
r

o
f

cl
u

st
e

rs
 (

×1
02)

(a) (b) (c) (d)

Fig. 4. Number of clusters for varying (a) number of queries (Gaussian) (b) number
of queries (Zipfian)(c) query distance (d) window length

increases. In Fig. 4c, we can see that the number of clusters decreases as the
query distances increase, which is expected.

Figure 4d shows the number of identified clusters for varying window length ω
for a fixed number of 50,000 queries. As we increase ω, the number of identified
clusters also increases. This is because for a larger window size the queries are
randomly distributed in a wider space. For example, when there is only one
window (i.e., the window size is same as the dataspace size), all queries are
randomly distributed throughout the entire data space. However, even in this
worst case, our algorithm identifies 7,216 clusters from 50000 queries generated in
the entire data space. With the increased number of windows (i.e., for a smaller
window size), the clusters become more apparent and the algorithm is able to
identify them more efficiently.

Effectiveness of Clustering: The effectiveness of the clustering algorithm is
measured as the percentage in which the paths generated from that cluster stay
within the predefined error bound and need not be evaluated independently. In
this set of experiments, we show the percentage of queries needed to be evaluated
independently, i.e., the queries that cannot be served by the group’s shortest
path (Algorithm 3). Figures 5a and 5b show the percentage of query needs to be
evaluated independently for different number of queries for Gaussian and Zipfian

2 4 6 8 10
0

2

4

6

8

Number of queries n (×104)

In
d

e
p

e
n

d
e

n
t

q
u

e
rie

s
(in

 %
)

2 4 6 8 10
0

2

4

6

8

Number of queries n (×104)

In
d

e
p

e
n

d
e

n
t

q
u

e
rie

s
(in

 %
)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

Query distance coefficient d
c

In
d
e
p
e
n
d
e
n
t
q
u
e
rie

s
(in

 %
)

1 2 4 10 20 50100
0

2

4

6

8

ω(x102)[log
2
 scale]

In
d

e
p

e
n

d
e

n
t

q
u

e
rie

s
(in

 %
)

(a) (b) (c) (d)

Fig. 5. Number of independent queries for varying (a) number of queries (Gaussian)
(b) number of queries (Zipfian)(c) query distance (d) window length

A Group Based Approach for Path Queries in Road Networks 381

distribution, respectively. Results show the percentage of independent evaluation
ranges from 2% to 9% having an average of 5.44%. Figures 5c and 5d show the
percentage of independent query evaluation for varying dc and ω, respectively
for Gaussian distribution. In summary, we can see that our clustering algorithm
can always serve more than 90% of the queries using the corresponding group
shortest paths.

5.2 Performance Evaluation

In this section, we show the performance of our algorithm based on the two per-
formance metrics: processing time and the average percentage of deviation of the
answer from actual shortest path. Processing time is the total query response
time including the clustering time for a given number of queries. Clustering time
is about 6 seconds on average for 50,000 queries and shows a linear relation-
ship with number of queries for the selected parameter values. To compare our
approach with the naive approach, We vary the following parameters: (i) the
number n of queries; (ii) the minimum query distance dc, i.e., the distance be-
tween the source point and destination point of each query; (iii) the window size
ω; and (iv) the value of k. We calculate dc as a function of ω.

Effect of Number of Queries: We vary the number n of queries in the range
of 10,000 to 100,000 with a step size of 10,000 units. For both Gaussian and
Zipf distributions we see that the processing time for GBPQ rises slightly with
the increase of the values of n (Fig. 6a, 6c). Whereas, for the naive approach,
the processing time increases significantly with the increase in the number of
queries. When the value of n is 10,000, the processing times for GBPQ and
the naive approach are approximately 100 and 1200 seconds, respectively. With
an increased value n of 100000, the processing times for GBPQ and the naive
approach are approximately 900 and 12600 seconds, respectively. GBPQ is on
average 14 times faster than the naive approach, in our experiments. Moreover,
our experimental results show that on an average the deviation of the path
returned by GBPQ from the actual shortest path is only around 0.21% in case
of Gaussian distribution (Fig. 6b) and around 0.27% in case of Zipf (Fig. 6d).
Maximum deviation reported on about 75 run of different setup is 9.88% with
the average of 7.43% and standard deviation of 1.78.

2 4 6 8 10
0

2

4

6

8

10

12

14

Number of queries n (×104)

P
ro

ce
ss

in
g
 t
im

e
 (

×1
03)

GBPQ
Naive A*

2 4 6 8 10
0

0.1

0.2

0.3

0.4

Number of queries n (×104)

P
e
rc

e
n
ta

g
e
 o

f
d
e
vi

a
tio

n

2 4 6 8 10
0

2

4

6

8

10

12

14

Number of queries n (×104)

P
ro

ce
ss

in
g
 t
im

e
 (

×1
03)

GBPQ
Naive A*

2 4 6 8 10
0

0.1

0.2

0.3

0.4

Number of queries n (×104)

P
e
rc

e
n
ta

g
e
 o

f
d
e
vi

a
tio

n

(a) (b) (c) (d)

Fig. 6. Effect of number of queries (a-b) Gaussian and (c-d) Zipf distributions

382 H. Mahmud et al.

Effect of Query Distance: In this set of experiments, we vary the minimum
query distance coefficient dc for generating queries. Figure 7a shows the results
for Gaussian distribution of query points. We see from the figure that for GBPQ
the processing time slowly increases as the value of dc increase. On the other
hand, the processing time increases significantly for the naive approach as the
value of dc increases. This is because two reasons, (i) a higher value of dc corre-
sponds to a longer distance between the source and destination; (ii) the number
of nodes traversed for such a query is higher than that of the query which has a
smaller dc. The accuracy of our GBPQ increases as dc increases. The percentage
of average deviation of the answered path from the actual path reduces from
0.32% to 0.11% when the query distance increases from 1,000 units to 10,000
units (Fig. 7b). Maximum deviation found in these experiments is 9.22% where
the set of maximum deviation has an average of 5.73% and standard deviation
of 2.30. The results for Zipf query distribution (not included in figure) shows
similar behavior as Gaussian distribution.

0.2 0.4 0.6 0.8 1
0
1
2
3
4
5
6
7
8
9

Query distance coefficient d
c

P
ro

ce
ss

in
g

 t
im

e
 (

×1
03)

Naive A*
GBPQ

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Query distance coefficient d
c

P
e
rc

e
n
ta

g
e
 o

f
d
e
vi

a
tio

n

10502010421
0
1
2
3
4
5
6
7
8
9

ω (×102) [log
2
 scale]

P
ro

ce
ss

in
g
 t
im

e
 (

×1
03)

GBPQ
Naive A*

1 2 4 10 20 50100
0

0.1

0.2

0.3

0.4

ω(x102)[log
2
 scale]

P
e
rc

e
n
ta

g
e
 o

f
d
e
vi

a
tio

n

(a) (b) (c) (d)

Fig. 7. Effect of the minimum query distance, (a) processing time (b) percentage of
deviation; Effect of window size, (c) processing time (d) percentage of deviation

Effect of Window Size: In this set of experiments, we vary the window
length ω and compare the performance of our approach with the naive approach.
Figure 7c shows the processing time of GBPQ and the naive approach for Gaus-
sian distribution of query points. The processing time increases as ω increases,
e.g., when the window size is equal to the data space, the processing time
of GBPQ is 62.3% lower then the naive approach. When the window size is
100× 100, the processing time of GBPQ is 92% lower than the naive approach.

Figure 7d shows the deviations of GBPQ’s answers for different values of
ω. We find that the average deviation ranges from 0.11% to 0.56%. Maximum
deviation found in this experiments is 12.85%. When the value of ω is high,
the queries are scattered in the query space more randomly, thus more clusters
are formed. This is the reason that processing is increases when the value of ω
increases. Similarly, as the queries are more sparse on the query space, average
deviation also increases. The results for Zipf query distribution (not included in
figure) shows similar behavior as Gaussian distribution.

Effect of the Number k of Alternative Paths: So far, we have only con-
sidered a single path from a source region to a destination region (i.e., k = 1).

A Group Based Approach for Path Queries in Road Networks 383

1 2 3 4 5
0

2

4

6

8

10

k

N
a
iv

e
 t

im
e
/G

B
P

Q
 t

im
e

1 2 3 4 5
0.228

0.232

0.236

0.240

0.244

0.248

0.252

k

P
e

rc
e

n
ta

g
e

 o
f

d
e

vi
a

tio
n

(a) (b)

Fig. 8. Effect of k on (a) processing time (b) percentage of deviation

In this set of experiments, we vary the value of k as 1, 2, 3, 4, and 5, and see the
effect on the performance of the system. As discussed in Section 4.3, a larger k
can be used to provide alternative routes and hence to improve the accuracy of
individual shortest path query. However, higher k means more path calculation,
and thus requires more time to process the query. Figure 8 shows that with the
increase of k, the gain in processing time by GBPQ to Naive A* decreases. Fig-
ure 8 also shows that the accuracy of path queries increases approximately 7.7%
for an increase of k value from 1 to 2.

6 Conclusion

We have proposed a group based approach for processing a large number of
simultaneous path queries in a road network. Our approach is based on a novel
clustering technique that groups queries based on the similarities of their Q-lines.
We introduce two concepts: the distance function and the areas of influence, that
help us to effectively cluster similar queries and execute them as a group. Our
group based approach to evaluate a large number of path queries provides a cost-
effective solution with reduced computational overhead. Our experiments have
shown that on an average our shared execution approach is 9 times faster than
a traditional approach, where each path query is evaluated independently. Our
approach achieves this significant improvement at the cost of sacrificing 0.25%
accuracy in the average case. Besides query optimization for an LBS server, our
proposed technique can be used in many applications such as car sharing and
the support of intermodal transport that need clustering similar paths.

Acknowledgments. This research has been conducted at the department of
Computer Science and Engineering (CSE), Bangladesh University of Engineering
and Technology (BUET). This work is supported by BUET and CodeCrafters-
Investortools Research Grant.

384 H. Mahmud et al.

References

1. Google maps/google earth apis terms of service,
http://code.google.com/apis/maps/terms.htm

2. Ali, M.E., Tanin, E., Zhang, R., Kulik, L.: A motion-aware approach for efficient
evaluation of continuous queries on 3d object databases. VLDB J. 19(5), 603–632
(2010)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: ALENEX (2007)

4. BingMaps, http://www.bing.com/maps/

5. Bullen, P.S.: Handbook of means and their inequalities (1987)

6. Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in
road networks. In: ATMOS, pp. 52–63 (2011)

7. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer,
Heidelberg (2007)

8. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient K-nearest neighbor
search in time-dependent spatial networks. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 432–449. Springer,
Heidelberg (2010)

9. Giannikis, G., Alonso, G., Kossmann, D.: Shareddb: Killing one thousand queries
with one stone. PVLDB 5(6), 526–537 (2012)

10. Lee, J.G., Han, J.: Trajectory clustering: A partition-and-group framework. In:
SIGMOD, pp. 593–604 (2007)

11. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A search meets graph
theory. In: SODA, pp. 156–165 (2005)

12. Goldberg, A.V., Kaplan, H., Werneck3, R.F.: Efficient point-to-point shortest path
algorithms. Tech. Report (2005)

13. GoogleMaps, http://maps.google.com

14. Gunturi, V.M.V., Nunes, E., Yang, K., Shekhar, S.: A critical-time-point approach
to all-start-time lagrangian shortest paths: A summary of results. In: Pfoser, D.,
Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y.
(eds.) SSTD 2011. LNCS, vol. 6849, pp. 74–91. Springer, Heidelberg (2011)

15. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artificial Intelli-
gence 155, 93–146 (1968)

16. Levandoski, J.J., Mokbel, M.F., Khalefa, M.E.: Preference query evaluation over
expensive attributes. In: CIKM, pp. 319–328 (2010)

17. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic
A*: An anytime, replanning algorithm. In: ICAPS (2005)

18. Mahmud, H., Amin, A.M., Ali, M.E., Hashem, T.: Shared execution of path queries
on road networks. CoRR, abs/1210.6746 (2012)

19. Malviya, N., Madden, S., Bhattacharya, A.: A continuous query system for dynamic
route planning. In: ICDE, pp. 792–803 (2011)

20. MapQuest, http://www.mapquest.com

21. Nilson, N.J., Hart, P.E.: A formal basis of the heuristic determination of minimum
cost paths 4(2), 100–107 (1968)

22. Russell, S., Norvig, P.: Artificial Intelligence a modern approach, 2nd edn. (2006)

23. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: SIGMOD, pp. 43–54 (2008)

http://code.google.com/apis/maps/terms.htm
http://www.bing.com/maps/
http://maps.google.com
http://www.mapquest.com

A Group Based Approach for Path Queries in Road Networks 385

24. Sankaranarayanan, J., Samet, H., Alborzi, H.: Path oracles for spatial networks.
PVLDB 2(1), 1210–1221 (2009)

25. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

26. Terrovitis, M., Bakiras, S., Papadias, D., Mouratidis, K.: Constrained shortest
path computation. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 181–199. Springer, Heidelberg (2005)

27. Terrovitis, M., Bakiras, S., Papadia, D., Mouratidis, K.: Shortest path and distance
queries on road networks: An experimental evaluation. In: PVLDB, pp. 406–417
(2012)

28. Thomsen, J.R., Yiu, M.L., Jensen, C.S.: Effective caching of shortest paths for
location-based services. In: SIGMOD, pp. 313–324 (2012)

29. Zhang, D., Chow, C.-Y., Li, Q., Zhang, X., Xu, Y.: SMashQ: spatial mashup frame-
work for k-nn queries in time-dependent road networks. Distributed and Parallel
Databases, 259–287 (2013)

30. Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

STEPQ: Spatio-Temporal Engine

for Complex Pattern Queries

Dongqing Xiao and Mohamed Eltabakh

Worcester Polytechnic Institute, MA 01604, USA
{dxiao,meltabakh}@cs.wpi.edu

Abstract. With the increasing complexity and wide diversity of
spatio-temporal applications, the query processing requirements over
spatio-temporal data go beyond the traditional query types, e.g., range,
kNN, and aggregation queries along with their variants. Most applica-
tions require support for evaluating powerful spatio-temporal pattern
queries (STPQs) that form higher-order correlations and compositions of
sequences of events to infer real-world semantics of importance to the tar-
geted application. STPQs can be supported by neither traditional spatio-
temporal databases (STDBs) nor by modern complex-event-processing
systems (CEP). While the former lack the expressiveness and process-
ing capabilities for handling such complex sequence pattern queries, the
later mostly focus on the Time dimension as the driving dimension,
and hence lack the power of the special-purpose processing technologies
established in STDBs over the past decades. In this paper, we propose an
efficient and scalable spatio-temporal engine for complex pattern queries
(STEPQ). STEPQ has several innovative features and ideas that will
open the research in the area of integration between spatio-temporal
databases and complex event processing.

1 Introduction

The recent advances and wide-spread popularity of mobile devices, wireless
cellular phones, and Global Positioning Systems (GPS) have enabled spatio-
temporal applications in various domains to continuously monitor and track
all objects of interest. Thus with the increasing complexity and wide diversity
of spatio-temporal applications, the query and data exploration requirements
go beyond the traditional spatio-temporal query types, e.g., range, k — nearest-
neighbor (kNN), and aggregation queries [3,4], to more expressive and semantics-
rich spatio-temporal pattern queries (or STPQ) that require higher-order
correlation among events. In Table 1, we illustrate several of STPQs from differ-
ent applications. Evidently, STPQs are prevalent in many applications as they
capture real-world semantics that otherwise would have been lost or delegated
to the application layer for ad-hoc and inefficient processing. It is not meaningful
to assume that a suspicious criminal activity in Q1 or the alert condition for a
patient in Q3 depend solely on a single data instance (or even snapshot) of the
data stream - rather separate snapshots of instances in the high-speed stream
must be trapped at the right moments of time and synchronized to determine
the correct match of such a complex STPQ query.

In this paper, we envision the STEPQ system—Spatio-Temporal Engine for
complex Pattern Queries— that addresses the unique challenges of handling

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 386–390, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

STEPQ: Spatio-Temporal Engine for Complex Pattern Queries 387

Table 1. Examples of spatio-temporal pattern queries (STPQs)

Q1 Report child-abuse criminals who stay in a school area A1 for more than x minutes and

then move to a suspicious area A2 within one hour (E.g.,suspicious criminal activity).

Q2 Report cars that stay in my kNN over interval T and continuously are getting closer to my moving car.

Q3 Send alert to patient P, if she stays in contact (within distance D for at least interval T) with a patient

having a transferable disease (E.g., health threat).

Q4 For consecutive areas A1, A2, and A3, report speeding cars (over the speed limit for at least x mins)

in A1 and A3 but not in A2 (E.g., testing effect of radar signs over A2 on drivers’ behavior).

Q5 Report restaurants located in kNN of two moving cars and getting closer to both cars over interval

T (E.g., find common nearby restaurants in direction of moving cars).

STPQs, including: (1) They embed powerful semantics not captured by cur-
rent spatio-temporal query types, (2) Unlike traditional query types that can
be evaluated on each instance of the database in isolation, STPQs require corre-
lation among spatio-temporal events (both in time and in space) over multiple
instances of the database, (3) They require a full-fledged query engine equipped
not only with efficient event-processing techniques but also with effective spatio-
temporal processing capabilities, and (4) Unlike state-of-art event-processing
techniques (CEP) that have no control over the input stream of events, the
STPQs generate these streams of events, and hence crucial optimization strate-
gies can be deployed to control which higher-order events to generate and when.
These challenges combined make the state-of-art in complex event processing
(CEP), e.g., [8], not applicable since CEP techniques cannot process traditional
range or kNN queries efficiently, also state-of-art in spatio-temporal databases
(STDBs), e.g., [2,7], fall short since they lack the expressiveness power and
processing capabilities of handling complex pattern queries.

2 Limitations of State-of-Art Techniques

Conceptually, STPQs can be viewed as two-layered queries where the first
layer runs traditional spatio-temporal queries, e.g., range and kNN, on top of
the raw input stream coming from moving objects (we refer to these queries
as base queries). The second layer runs complex pattern-matching queries on
top of the results generated from the base queries. Thus, with the state-of-art
technology, there are two possible approaches to support STPQs, namely
application-level and middleware-level as depicted in Figures 1(a) and (b).
In the application-level approach, all of the pattern matching and event
correlation is done at the application level to impose the query semantics, which
is clearly an ad-hoc and inefficient solution since (1) each application applies its
own semantics independently, (2) mobile devices usually have limited power and
processing capabilities, and (3) STDBs may send streams of unnecessary results
plus the lack of many possible optimizations that could have been performed by
the execution engine. The middleware-level approach, which consists of loosely
coupled CEP systems, e.g., [8,1,5] and STDBs is a more feasible approach.
However, it has serious drawbacks and limitations including:

(1) Coupling Hurdles: There are several linking problems that emerge
between the STDB and CEP layers such as: (a) STDBs deploy incremental

388 D. Xiao and M. Eltabakh

• 

• 

• 

Fig. 1. Possible architectures for supporting spatio-temporal pattern queries

evaluation techniques for purposes of efficiency and scalability whereas CEP
systems do not handle incremental updates, and (b) The base queries can
themselves be moving objects, e.g., Queries Q2, Q3, and Q5 in Table 1, and
hence CEP systems need to get as input not only the query answer, but also
the query points.

(2) Optimization Hurdles: Since STPQs generate both the base queries
and the pattern-matching queries, then several optimization opportunities arise
that cannot be leveraged with loosely coupled STDB and CEP layers. For
example, in Query Q4, the three range queries over areas A1, A2, and A3 will
be concurrently running, although queries over A2 and A3 should run only if
there is a match in the previous areas.

(3) Synchronization and Transformation Hurdles: A STPQ may require
not only executing multiple base queries to generate events, but also synchro-
nizing their execution. For example, Query Q5 in Table 1 requires synchronizing
the execution of two moving kNN queries and then intersecting their results.
Such synchronization and transformation over the event streams are not feasible
in the middleware-level approach and not even supported by current STDBs.

3 STEPQ System: Vision and Challenges

Given the above limitations, it is clear that engineering existing systems to
handle STPQs is not the right approach. In the following we envision the archi-
tecture of the proposed STEPQ system and the involved challenges. The system
consists of two standard layers; compilation/optimization and execution layers
as illustrated in Figures 1(c). In the compilation/optimization layer, the pattern-
query compiler & optimizer (PQ-CompilerOptimizer) component, which is the

STEPQ: Spatio-Temporal Engine for Complex Pattern Queries 389

central component of the system, is responsible for compiling and optimizing
the entire query. Given a spatio-temporal pattern query, PQ-CompilerOptimizer
decomposes it into one or more traditional queries (the base queries) and pattern-
matching queries. The individual base queries are compiled and optimized using
an extended spatio-temporal compiler & optimizer (ST-CompilerOptimizer) that
works under the control of the PQ-CompilerOptimizer. In contrast, pattern-
matching queries are fully compiled by PQ-CompilerOptimizer. The base
queries will be executed by the extended spatio-temporal execution engine
(ST-ExecutionEngine), while the pattern-matching queries will be executed by
the pattern-matching execution engine (PM-ExecutionEngine). The continuously
generated results from the base queries will drive the progress of the pattern-
matching queries. The key characteristics and challenges in STEPQ are (More
details and examples can be found in [6]):

• Leveraging & Extending State-of-Art in STDBs: It is crucial to
leverage the existing technology in STDBs. This is achieved by the ST-
CompilerOptimizer and ST-ExecutionEngine components that retain all the in-
novations in STDBs such as continues and incremental evaluation, spatial-aware
operators and access methods, and scalable execution. Moreover, base queries
will be subject to new optimizations triggered by PQ-CompilerOptimizer.

• Coherent Integration between Spatio-Temporal and Pattern-
Matching Techniques: This is achieved by having a single system with
interacting components orchestrated by the PQ-CompilerOptimizer. Such in-
tegration allows the sharing of base queries across multiple pattern-matching
queries, activating/suppressing base queries when needed, and seamless flow
between the generated streams from the base queries to the pattern-matching
queries.

• Cross-Cutting Optimizations: This is achieved by the PQ-
CompilerOptimizer component that enables PM-ExecutionEngine to provide
feedback information to ST-ExecutionEngine to control the execution of the
base queries depending on the progress of the pattern queries. Cross-cutting
optimizations require new communication mechanisms (and feedback loop)
between the pattern-matching and base queries to control what events to
generate and when.

• Synchronized Query Processing: STPQs may require not only executing
multiple base queries, but also synchronizing their execution and jointly process-
ing their results. Hence, new execution plans and synchronization strategies need
to be integrated in the evaluation of both spatio-temporal and pattern-matching
queries.

• Event Model and Query Language: New—possibly extensible—query
languages and event models are needed to meet the diverse requirements of
STPQs. For example, new concepts such as event sets need to be introduced to
provide logical grouping of events produced from the base queries. The signifi-
cance of event sets is two-fold. First, each answer set produced from a base query
can be pipelined and processed as one unit, and hence further operations, e.g.,
synchronization and transformation, can be applied on the event sets. Second,
event sets provide an efficient mechanism for anticipating when events should
occur in the future, and hence they enable continuity/persistency operations.

390 D. Xiao and M. Eltabakh

References

1. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-based event specification and
detection for active databases. TKDE 59(1), 139–165 (2006)

2. Behr, T., Guting, R.H.: Fuzzy Spatial Objects: An Algebra Implementation in SEC-
ONDO. In: Proceedings of the International Conference on Data Engineering, ICDE,
pp. 1137–1139 (2005)

3. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest Neighbor and Re-
verse Nearest Neighbor Queries for Moving Objects. In: Proceedings of the Inter-
national Database Engineering and Applications Symposium, IDEAS, pp. 44–53
(2002)

4. Cai, Y., Hua, K.A., Cao, G.: Processing Range-Monitoring Queries on Heteroge-
neous Mobile Objects. In: Proceedings of the International Conference on Mobile
Data Management, MDM (2004)

5. Demers, A., Gehrke, J., Panda, B.: Cayuga: A general purpose event monitoring
system. In: CIDR, pp. 412–422 (2007)

6. Eltabakh, M.: STEPQ: Extensible Spatio-Temporal Engine for Complex Pattern
Queries. Technical Report WPI-CS-TR-13-02

7. Gedik, B., Liu, L.: MobiEyes: Distributed Processing of Continuously Moving
Queries on Moving Objects in a Mobile System. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

8. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 407–418 (2006)

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 391–409, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cost Models for Nearest Neighbor Query Processing
over Existentially Uncertain Spatial Data

Elias Frentzos1, Nikos Pelekis2, Nikos Giatrakos3,*, and Yannis Theodoridis1

1 Department of Informatics, University of Piraeus, Piraeus, Greece
2 Department of Statistics & Insurance Science, University of Piraeus, Piraeus, Greece

{efrentzo,npelekis,ytheod}@unipi.gr
3 Dept. of Electronics & Computer Engineering, Technical University of Crete, Crete, Greece

ngiatrakos@softnet.tuc.gr

Abstract. A major challenge posed by real-world applications involving spatial
information deals with the uncertainty inherent in the data. One type of
uncertainty in spatial objects may come from their existence, which is
expressed by a probability accompanying the spatial value of an object
reflecting the confidence of the object’s existence. A challenging query type
over existentially uncertain data is the search of the Nearest Neighbour (NN), as
the likelihood of an object to be the NN of the query object does not only
depend on its distances from other objects, but also from their existence. In this
paper, we present exact and approximate statistical methodologies for
supporting cost models for Probabilistic Thresholding NN (PTNN) queries that
deal with arbitrarily distributed data points and existential uncertainty, with the
aid of appropriate novel histograms, sampling and statistical approximations.
Our cost model can be also modified in order to support Probabilistic Ranking
NN (PRNN) queries with the aid of sampling. The accuracy of our approaches
is exhibited through extensive experimentation on synthetic and real datasets.

Keywords: Spatial Databases, Existential Uncertain Data, Nearest Neighbor
Query Processing.

1 Introduction

In the literature, two types of uncertainty have gained the interest of the research
community, namely the locational and the existential uncertainty. Locationally
uncertain are the objects that do exist but their location is uncertain. This kind of
uncertainty is described by a probability density function. On the other hand,
existentially uncertain objects are those that their uncertainty emanates from their
existence, and this is expressed by a probability Ex accompanying the spatial value of
an object x reflecting the confidence of x’s existence. As a motivating example,
consider the case where an image processing tool extracts some interesting formations
of pixels that may or may not correspond to a predefined type of objects due to low
image resolution. Another example involves semantically-enriched representations of

* Work done during the author’s PhD studies at the Dept. of Informatics, University of Piraeus.

392 E. Frentzos et al.

trajectories of moving objects [8], where a point of interest may be part of a semantic
trajectory of a user if the latter has been predicted to perform an activity at that place.
Existential uncertainty is also natural in the case of fuzzy classification [3], [13].

The related work on existentially uncertain data [3], [13] focuses on two
probabilistic versions of several spatial queries. A thresholding query returns the
objects that satisfy some spatial condition with probability more than a given
threshold t, while a ranking query returns the objects that satisfy a spatial condition in
order of their confidence. Dai et al. [3] proposed search algorithms for the above two
types of spatial range and NN queries, where the existentially uncertain data are
indexed by 2-dimensional R-trees [7] or appropriate augmented variants of them. In
[13] authors also present appropriate algorithms for Spatial Skyline [9], and Reverse
Nearest Neighbor [10] queries, based on the idea of incremental NN search.

In this paper, we focus on the probabilistic thresholding (PTNN) and probabilistic
ranking nearest neighbor (PRNN) queries on existentially uncertain data. In a
nutshell, a PTNN query seeks for spatial objects whose probability of being the NN of
a query object exceeds a given threshold t, while a PRNN query returns only the m
most probable NNs. The motivation is that, this type of query presents a quite
involved search complexity, as the probability of an object to be the NN depends not
only on the location, but also on the existential probability of other objects. Moreover,
compared to the other operators presented in [13], they are more popular with broader
applicability. In [4] we utilized a statistical model in order to estimate the number f of
NNs that are to be retrieved from the database so as to be at least CI % confident (i.e.
CI is a user-defined confidence, e.g. 99%) that the PTNN search will end without the
need to retrieve n > f NNs. The concept is to provide efficient search algorithms, with
predetermined cost, and with custom defined certainty (as high as required) of
resolution. On the other hand, this is a case which can be only applied to uniform data
and existential uncertainty distribution.

We are aware that PTNN2D and PRNN2D are overwhelmed in terms of efficient
query processing by the other schemes proposed in [3], which employ augmented
versions of R-trees and 3D R-trees. However, experience has shown that it is very
difficult for commercial Spatial Database Management Systems (SDBMS) to support
novel proposals, especially when they require altering the data structures used on their
engines. Then again, PTNN2D and PRNN2D while not optimal, they can be directly
employed with conventional 2D R-trees already implemented in commercial SDBMS.
Moreover, the analysis provided in this paper can be easily modified in order to
provide similar results that support all schemes of [3].

Outlining the major issues addressed in this paper, our main contributions are:

• Following the assumption of uniformity regarding the existential uncertainty
distribution, we present an exact statistical-based analysis for the determination
of the discrete distribution probability density function (dpdf), that a PTNN query
terminates after having retrieved exactly n objects; exploiting this analysis, we
present a cost model for the forecasting of the number of disk page accesses
required to process a PTNN query, given that the dataset is indexed by R-trees
[7], as well as it is uniformly distributed in the data space. We further exploit
well-known properties of distribution expected values in order to provide an
approximate model for PTNN and PRNN queries.

 Cost Models for Nearest Neighbor Query Processing 393

• We show how to utilize histograms in order to relax the assumption of uniformly
distributed data points and existential uncertainty and provide an efficient cost
model that predicts the number of disk page accesses required to process PTNN,
over arbitrarily distributed data and existential uncertainty. We also utilize
random sampling so as to achieve better forecasts, as well as, overpass the
problem that is faced regarding an analytical PRNN cost model calculation.
Specifically, we alternately apply the results of our statistical analysis and the
sampling method, over augmented versions of well-known histograms [1],
together with the approach of [11].

• Finally, we report the results of a comprehensive set of experiments, which
demonstrates the correctness and accuracy of our analysis.

To the best of our knowledge, our work is the first on these topics. The rest of the
paper is structured as follows: Section 2 overviews the background work. Section 3
describes the statistical analysis of PTNN queries based on the assumption of
uniformly distributed data and existential uncertainty. In Section 4, we present the
details of an efficient cost model for PTNN and PRNN queries that supports arbitrary
distributions regarding the problem parameters, Section 5 evaluates the accuracy of
our model through an extensive experimental study over several datasets, while,
Section 6 provides conclusions and interesting research directions.

2 Background

2.1 Probabilistic NN Search over Spatial Data with Existential Uncertainty

Formally, a PTNN query takes as input a query object q and a probability threshold t,
while the data are represented as tuples of the form (x, Ex). As proposed by Dai et al.
[3], the 2-dimensional PTNN (PTNN2D) algorithm, illustrated in Figure 1, iteratively
retrieves spatially nearest objects in a Best-First (BF) mode [6], and terminates only
after the value of Pfirst becomes smaller than the given threshold t. The PTNN2D
algorithm iteratively calculates the value of Pfirst, which is the probability that no
object retrieved before the current object x is the actual NN, according to [3]:

()
1

1

1
n

first

x i
i

P E
−

=

= −∏ , (1)

where n-1 is the number of objects that are closer to the query object than the current
object x, i.e., the number of objects retrieved from the BF algorithm before x, and Ei
their existential uncertainty. Then, the probability that x is the actual NN, is [3]:

first

x x xP E P= ⋅ (2)

The intuition behind the PTNN2D algorithm is that once Pfirst < t, we are sure that the
subsequent nearest objects, even if they exist with 100% probability, they cannot be
the NN of q, so the algorithm can safely terminate. Note also that PTNN2D algorithm
utilizes R-tree indexes so as to incrementally retrieve the k-th NN; as such, the R-tree
can be replaced by other access method supporting incremental NN search.

394 E. Frentzos et al.

 1.
 2.
 3.
 4.
 5.
 6.

Algorithm PTNN2D(q, 2D R-tree on S, t)
 Pfirst=1;
 While Pfirst ¥ t and more objects in S do
 x:=next NN of q in S (use BF [7]);
 Px:= P

firstÿEx;
 If Px ¥ t then output (x, Px);
 Pfirst= Pfirstÿ(1-Ex);

Fig. 1. Probabilistic NN on a 2D R-tree with thresholding

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.

Algorithm PRNN2D(q, 2D R-tree on S, m)
 Pfirst:=1;
 H = ∅; /*Heap of m objects with highest Px*/
 Pm:=0; /* Px of m-th object in H*/
 While Pfirst ≥ Pm and more objects in S do
 x:=next NN of q in S (use BF [7]);
 Px:= P

first ⋅ Ex;
 If Px ≥ Pm then
 Update H to include x;
 Pm:= m-th probability in H;
 Pfirst:= Pfirst ⋅ (1-Ex);

Fig. 2. Probabilistic NN on a 2D R-tree with ranking

Similarly, a ranking spatial query returns the objects which qualify the spatial
predicates of the query, in order of their confidence. Ranking queries can be also
thresholded by a parameter m returning thus the m most confident objects. Therefore,
a probability ranking NN (PRNN) query takes as input a query object q and the
number of objects required with the highest probability, over data of the same form,
i.e., (x, Ex). Dai et al. [3], also propose the 2-dimensional PRNN (PRNN2D)
algorithm, illustrated in Figure 2, which iteratively retrieves spatially nearest objects x
in a Best-First (BF) mode iteratively calculating Px and Pfirst using Eq.1 and Eq.2
respectively. The difference here is that the output is a heap H containing the m most
probable NN objects. Therefore the threshold used to terminate is based on Pm which
is the Px of the m-th object in the heap H and the algorithm terminates only after the
value of Pfirst becomes smaller than Pm.

2.2 Cost Models for NN Search over Conventional Spatial Data

Tao et al. [11] present an efficient cost model for the optimization of NN queries in
low and medium-dimensional spaces. They provide a closed formula for the
estimation of (a) the average nearest distance Dk from the query point q to its k-th NN
and (b) the number of tree nodes whose MBRs intersect the vicinity circle Θ(q, Dk)
with center q and radius Dk, which is equal with the average number of node accesses
NA(k) required by an R-tree to retrieve the k-th NN. Specifically, the analysis of [6]
shows that the average nearest distance Dk is estimated by:

() 12
1 1

d

k

V

kD
NC

≈ − −

 (3)

 Cost Models for Nearest Neighbor Query Processing 395

()[] 1

/ 2 1
V

d

C
d

π
=

Γ +
 (4)

where d is the dimensionality and N denotes the cardinality.
These formulas work only with uniformly distributed data in the search space. On

the other hand, real-world data employ arbitrary distributions; as such Tao et al. [11],
provide an extension of the model presented above, by using MinSkew histograms.

Specifically, the MinSkew technique proposed by Acharya et al. [1], is a binary
space partitioning (BSP) technique employing the spatial skew definition provided in
[1]. Each MinSkew Histogram HS can be seen as a set of spatial disjoint buckets Bi

that cover the whole data space:

() (){ }:i i iHS B B S B= = ∧ = ∅

and

{ }, , , ,, , ,i i L i U i L i UB x x y y = . The main advantage of this technique is that the area

grouped together within the same bucket has small spatial skew, i.e., objects are
almost uniformly distributed inside it; as a result, it is usually assumed that the data
distribution inside each bucket Bi is uniform.

Fig. 3. Estimating the “radius” of the vicinity rectangle Lr [11]

[11] provides an algorithm that works over an input histogram HS and a query
point q. The algorithm employs the notion of the vicinity rectangle that approximates
the vicinity circle so as to minimize the number of complex (vicinity) circle-
(histogram) rectangle intersection discoveries, and reduces them to less expensive
rectangle – rectangle inspections. The algorithm initially determines the distances that
q needs to travel along each dimension so as to reach the boundaries of each
histogram bucket (cf. Figure 3), and stores them in a heap. Then, utilizing the
histogram, the algorithm iterates by computing the expected number of points En
found inside the vicinity rectangle formed by the next distance in the heap; if En is
smaller than k, i.e., the number of requested nearest neighbors, the appropriate
vicinity radius is calculated (reduced) according to the formula:

() ()
1

d d d
old old

r

old

L k En L k En
L

En En

− − −
≈

−

 (5)

where L is the “diameter” (i.e., side length) of the current vicinity rectangle, while Lold
and Enold are the respective diameter and expected number of points found inside the
vicinity rectangle in the previous iteration, respectively. In the case En is smaller than

396 E. Frentzos et al.

k, the algorithm proceeds with the next distance in the heap until En becomes greater
than k. Finally, Dk is obtained by Dk =Lr/Cv.

After obtaining Dk the cost model developed for uniform data is applied.
Specifically, the query cost in terms of node accesses NA(k) is provided by the
following equation:

() ()
log 2

1
0

2 2

1

f

N
d

f
i i i

i
i i

L L sN
NA k

sf +
=

− +
= ⋅

−

 (6)

where N is the cardinality of the dataset, f is the average node fanout, si the extent of
a level-i node and Li calculated as a function of Dk and the respective si. We have also
to note that N is determined based on the local density provided by the histogram in
the area “near” the query point. The interested reader is cited to [11] for more details.

In our approach, we make use of the techniques proposed in [11], so as to estimate
the radius of the vicinity circle Dk required to be browsed in order to process PTNN
and PRNN queries. Specifically, both PTNN2D and PRNN2D browse the database
according to the distance of the query to the dataset objects until a probabilistic
criterion is met. Both algorithms perform a number of iterations, continuously
requesting, in each iteration, the next nearest object in an incremental way. The
number of iterations is actually equal to the number of nearest objects to the query
that have to be retrieved from the database. Consequently, when utilizing an R-tree, as
PTNN2D and PRNN2D suggests, and given that the analysis of [11] estimates the
number of node accesses NA(k) as a function of Dk and known R-tree parameters, our
problem can be reduced to the problem of providing a good estimation of Dk.

Table 1. Table of notations

Notation Description
x, Ex A data point and its existential probability

S A dataset of tuples (x, Ex)

q, t, m
The query object, threshold probability of a PTNN query and number of

requested objects of a PRNN query

Pfirst
The probability that no object retrieved before the current object x is the

actual NN

first
nP The probability that no object retrieved before the n-th iteration is the

actual NN
Px The probability that an object x is the actual NN

Pexact(n)
The probability that the PTNN algorithm terminates after having

retrieved exactly n objects
H A heap used in the PRNN algorithm
Pm the Px of the m-th object in the heap H

EV(u) The expected (average) value of a given variable u
Dk The nearest distance from the query point q to its k-th NN

 Cost Models for Nearest Neighbor Query Processing 397

3 Statistical Analysis of PTNN Queries

In this section, aiming at a statistical analysis of probabilistic thresholding NN
queries, we initially calculate the expected number of iterations EV(n) needed for the
PTNN2D algorithm to terminate, and then we make use of existing work on cost
models so as to determine the average number of node accesses NA(EV(n)) needed in
order to process such queries over conventional R-trees. In the sequel, due to the
difficulty of extending the exact solution to support such queries over arbitrary
distributed data, we present an approximate solution regarding PTNN queries. We
close the section by discussing the extension of this model in the case of PRNN
queries. In this first approach, we make two assumptions regarding the data
distribution:

• data uniformity assumption: points xi are uniformly distributed in the data space,
• uncertainty uniformity assumption: the existential uncertainty Ex of all objects in

S is uniformly distributed inside the unit interval [0,1].

Both assumptions are relaxed in the subsequent section where an efficient cost model
is presented. Table 1 summarizes the notation used in the rest of the paper.

3.1 Exact Statistical Analysis of PTNN Queries

To start with, we provide a lemma from which a cost model for PTNN queries is
straightforwardly devised in the case of uniformly distributed data and existential
uncertainty. More specifically, the first step towards a cost model for the PTNN2D
Algorithm 3, is to determine the dpdf that the algorithm terminates after exactly n
iterations, i.e., the distribution of the number of objects retrieved before Pfirst becomes
less than the given threshold t. Formally, we provide the following lemma:

Lemma 1: The dpdf that the PTNN2D algorithm terminates after exactly n iterations,
under the uncertainty uniformity assumption, is given by the following formula:

() () ()
()

1 1
1 ln

1 !

n n

exact

t t
P n

n

− −−
=

−
 (7)

where t is the algorithm threshold.

Proof: Our goal is to determine the dpdf Pexact(n), such that, the algorithm terminates
after having retrieved exactly n objects. For this we distinguish between two cases,
namely n = 1 and n > 1. In the first case, the algorithm terminates with a single

iteration iff the value of () ()
1

2 1
1

1 1first

i

i

P E E
=

= − = −∏ calculated at the end of the first

iteration (i.e., line 7 in Figure 1) is less than the given threshold t. Thus, from the
uncertainty uniformity assumption, it holds that Pexact(1) = P(1−E1 § t) = P(E1 ¥ 1−t)
= t. Given that -10 = (ln(t))0 = 0! = 1 we have proved Lemma 1 in the case where
n = 1.

398 E. Frentzos et al.

In the second case, i.e., n > 1, the algorithm terminates iff 1
first

nP + , which is

calculated at the end of the nth iteration (i.e., line 7 in Figure 1), becomes less than t
after exactly n iterations. In other words, we must first determine the conditional
probability that Pfirst becomes less than t after n iterations, given also that it must not
terminate before reaching n iterations:

() () ()
1 1

1 | 1 , 1
n m

cond i i
i i

P n P E t E t m n
= =

 = − ≤ − > ∀ ≤ −

∏ ∏ (8)

Then, the total probability that the algorithm terminates after having retrieved exactly
n objects can be obtained by multiplying Pcond with the probability that the algorithm
has not terminated until reaching n iterations:

() () ()
1

1 , 1
m

exact cond i
i

P n P n P E t m n
=

 = ⋅ − > ∀ ≤ −

∏ (9)

Moreover, since 0 § E1 § 1 ‹ 0 § 1 - E1 § 1, it also holds that

() () ()
2 1

1
1 1

1 .. 1 1
n n

i i

i i

E E E
− −

= =

− ≥ ≥ − ≥ −∏ ∏ . Therefore, given that ()
1

1

1
n

i

i

E t
−

=

− >∏ , it stands

that ()
1

1 , 2
m

i

i

E t m n
=

− > ∀ ≤ −∏ ; then, (8) and (9) can be rewritten as follows:

() () ()
1

1 1

1 | 1
n n

cond i i
i i

P n P E t E t
−

= =

= − ≤ − >

∏ ∏ (10)

() () ()
1

1

1
n

exact cond i
i

P n P n P E t
−

=

= ⋅ − >

∏ (11)

Since the values of Ex follow the uniform distribution, the same also stands for 1-Ex;
as such the product of the n uniformly distributed values of 1-Ex should follow the
uniform product distribution, i.e., the distribution of the product of n uniformly
distributed uncorrelated variables x1, x2,.. xn, with pdf given by [12]:

() ()
()

()
1 2

1

1

..

1
ln

1 !n

n

n

x x xP u u
n

−
−−

=
−

 (12)

where u is the product ix∏ .

In our case, we first set as u the product ()
1

1

1
n

i
i

E
−

=

−∏ , and then determine the

amount of objects X ∈ S, such that () ()
1

1 1
n

i n
i

E E u t
=

− = − ⋅ ≤∏ which leads to:

()1 nE t u− ≤ (13)

 Cost Models for Nearest Neighbor Query Processing 399

Given that (1−En) is also uniformly distributed, it should hold that the amount of
objects fulfilling the above expression Vn is

nV t u= (14)

Known the above, we can calculate the probability Pcond(n) by summing up (i.e.,
integrating) the amount of objects Vn for each value of u, weighted by the value of the
distribution of u, and divided by the respective sum (i.e., integral) of the distribution

of u. Moreover, since it is known that ()
1

1

1
n

i

i

u E t
−

=

= − ≥∏ , the above integrals should

involve only the values of u between t and 1. Summarizing:

()
()

()

1

1

1

1

nt

cond

nt

t
P u du

uP n
P u du

−

−

=

 (15)

Moreover, the total probability that the algorithm has not been terminated until

reaching n iterations (i.e, ()
1

1

1
n

i

i

E t
−

=

− >∏), can be easily calculated, using the pdf of the

product of n-1 uniformly distributed variables:

()
1

1

1
1

1 ()
n

i nt
i

P E t P u du
−

−
=

− > =

∏ (16)

Finally, by substituting (15) and (16) into (11) and performing the necessary
calculations, we have proved Lemma 1 in the case where n > 1

Lemma 1 provides us with the dpdf that the algorithm terminates after exactly n
iterations. The dpdf expressed by (7) is a closed formula, since it involves only the
logarithm of the threshold t and the factorial of n. Obviously, the density of the
probability obtained from (7) for several values of n, is dominated by the factorial of
n-1; as such, it is expected that as the number of iterations grows, the respective
probability density will tend to zero very fast. In the sequel we present a corollary
derived from Lemma 1, which helps us to determine the cost model for PTNN queries
over existentially uncertain data that follow the uncertainty uniformity assumption.

Corollary 1: The expected number of iterations in the execution of the PTNN2D
algorithm, under the uncertainty uniformity assumption, is:

() ()1 lnEV n t= − (17)

Proof: The expected number of iterations needed from the PTNN2D algorithm to
terminate is actually the mean value of (7) for each n ∈ N. As such, EV(n) can be
calculated by averaging the dpdf Pcond(n) over all possible values of n.

400 E. Frentzos et al.

() () ()
()

1 1

1

1 ln

1 !

i i

i

t t
EV n i

i

− −∞

=

−
= ⋅

−
 (18)

Equation (18) cannot be straightforwardly evaluated since it involves infinity;
however, we may calculate its limit:

() ()
()

() ()
()

1 1 1 1

1 1

1 ln 1 ln
lim

1 ! 1 !

i i i i
n

n
i i

t t t t
i i

i i

− − − −∞

→∞
= =

− −
⋅ = ⋅

− −
 (19)

which after the necessary calculations turns into:

() ()
()

()
1 1

1

1 ln
1 ln

1 !

i i

i

t t
i t

i

− −∞

=

−
⋅ = −

−
 (20)

Finally, by substituting (20) into (18) we have proved Corollary 1

Obviously, the expected number of iterations EV(n) needed from the PTNN2D in
order to terminate, is equal with the number of NNs needed to be retrieved from an
existentially uncertain spatial database queried with a query point and a given
threshold t. Thus, we may employ the analysis presented in [11], so as to estimate the
average radius Dk on which the EV(n)-th NN will be found, under the data uniformity
assumption. Apparently, this model can be applied in our case where the
dimensionality d is 2 and the value of Γ(d/2+1) is Γ(2/2+1)=1; then, by substituting
the expected number of n produced by (17) into the number of k NNs requested, (3)
can be rewritten as follows:

()1 ln2
1 1

k

t
D

Nπ

−
≈ − −

 (21)

From this point on, the analysis of [6] that estimates the number of node accesses
NA(EV(n)) in the case of uniform data distribution (which is identical with our data
uniformity assumption) remains unaffected; the single modification to be made is to
calculate Dk using (21) instead of (3), and then apply Eq.(6) accordingly. Concluding,
the cost model for PTNN queries over existentially uncertain data that follow both the
uncertainty uniformity and the data uniformity assumptions is based on (21), which
estimates the distance from the query point that has to be browsed from the database
so as to answer such a query; then, the required node accesses NA(EV(n)) can be
straightforwardly estimated by replacing the Dk into the analysis of [11].

3.2 Approximate Statistical Analysis of PTNN Queries

Unfortunately, the extension of the above-described theoretical model in the case of
arbitrarily distributed data is not straightforward at all. Histograms widely used in
order to provide statistical estimations in DBMS, pose insuperable problems to this
extension due to their discrete nature. Specifically, given the simplest case where a

 Cost Models for Nearest Neighbor Query Processing 401

1-dimensional histogram { }1 1 2 10, , , , .., ,1mHS E E E E −= is used to describe the

existential uncertainty distribution in a given point in space, the distribution of the
exact number of iterations following the methodology of Lemma 1 would be given as
a function defined in mn parts. This is due to the fact that the resulted distribution
would be calculated as the product of n sets containing m spaces each. Obviously,
such an approach is not practical. On the other hand, we may provide an approximate
solution which utilizes the notion of the expected value of the probability of a random
object retrieved in the n-th iteration to be included in the query results. More
formally, we provide the following Lemma 2.

Lemma 2: The number of iterations n required for the expected value Pfirst of the
PTNN2D algorithm to become equal to the threshold t, is given by:

() () ()11
x

first

n EV EEV P t n Log t−= = + (22)

where EV(Ex) is the expected value of existential uncertainty Ex of a random x in S.

Proof: Our main objective is to express EV(Pfirst) as a function of known values.
Towards this goal, we know that the expected (mean) value of a random variable
produced as the product of two other random variables, is equal to the product of the
expected value of the two variables. Formally, given two random variables u and v the
following stands:

() () ()EV u v EV u EV v⋅ = ⋅ (23)

From the definition of Pfirst (1) and from (23), we have that the expected value
EV(Pfirst) after n iterations is:

() ()() 1
1

nfirst

n xEV P EV E
−

= − (24)

Now, in order for (24) to become equal to t we have:

()() () ()1

11 1
x

n

x EV EEV E t n Log t
−

−− = − =

which proves Lemma 2.

0.2 0.8 1

2

10

12

14

6

4

ev(pfirst)

8

0.4 0.6
threshold

Fig. 4. Estimating the number of iterations of PTNN2D over uniform data by exact (solid line)
and approximate solutions (doted line)

402 E. Frentzos et al.

It is clear that Lemma 2 can be utilized in order to provide an approximate
estimation for the number of iterations needed by the PTNN2D algorithm in order to
terminate. It certainly does not provide the exact value of EV(n) as Corollary 1 does,
however, it provides strong evidence that the algorithm may terminate when n
becomes greater than the value provided. What is more, Lemma 2 does not utilize the
uncertainty uniformity assumption; as such it can be applied over data with arbitrary
distributed existential uncertainty, relaxing therefore our uncertainty uniformity
assumption. Also interestingly when employing Lemma 2 under the uncertainty
uniformity assumption, where EV(Ex)=0.5, (22) results in ()0.51n Log t= + . A

comparison between this result and (17) is given in Figure 4. It is clear that the
approximate solution always overestimates n, with its difference from the exact
solution increasing when the value of t becomes less than 0.2 (and the number of
iterations increases above 3).

3.3 Discussion on PRNN Queries

One may suggest that Lemma 1 and its Corollary 1 can be easily extended to cover
the case of PRNN queries, processed by the PRNN2D algorithm, since their main
difference is on their termination condition, i.e., the continuously evolving value of
Pm employed instead of the constant value of t. Towards this goal, we could utilize the
fact that the expected (mean) value of a random variable produced as the product of
two independent random variables, is equal with the product of the expected value of
the two variables. However, the calculation of a theoretical value for Pm is a very hard
task which involves order statistics [2]. Specifically, even in the – simplest – case of
m=2, the expected value of the m – th Px inside H, is determined by distinguishing
between two cases regarding the order of values in H, i.e., {P1, P2}, {P2, P1}:

• In the case where E1≥0.5, since 1 1firstP = , it follows that P1≥0.5,

2 1(1) 0.5firstP E= − < and P2 <0.5. Therefore the order of Pi inside H will be {P1,

P2}. Now, given from the uncertainty uniformity assumption that

EV(P1)=EV(E1)=0.5 and () ()2 2 2
firstEV P EV P E= = () ()2 2

firstEV P EV E =

0.25 0.5 0.125⋅ = ,

H={0.5,0.125} and EV(Pm)=0.125.
• In the case where E1<0.5, it follows that P1<0.5 and 2 1(1) 0.5firstP E= − > ;

therefore for P2>P1 it should hold that ()2 1 11E E E> − , and

EV(Pm)=EV(P1)=0.25. However, in the case of ()2 1 11E E E< − it follows that

P1>P2, and EV(Pm)=EV(P2), a value that cannot be straightforwardly calculated.

It is clear that the calculation of EV(Pm) for arbitrary values of m is a very demanding
task. However, the usefulness of such a calculation can be argued, since by
approximate sampling methods as those described in the next section, we may obtain
good estimates of the expected number of iterations.

 Cost Models for Nearest Neighbor Query Processing 403

4 A Cost Model for PTNN and PRNN Queries

In the exact analysis of Section 3, we assumed that both data points and their
existential uncertainty are uniformly distributed in their space. In this section, we
relax both assumptions and apply our approach to arbitrarily distributed data with
the employment of augmented histograms. The presence of the histogram is to
provide (a) local estimations regarding the density of existentially uncertain spatial
objects in the neighborhood of the query point, and, (b) statistics that can be used in
order to estimate the number of iterations needed from the PTNN2D algorithm to
terminate.

4.1 Augmented Histograms

The proposal of Acharya et al. [1], may be easily extended in order to support our
scenario of existentially uncertain spatial objects, by augmenting it in a third
dimension describing the existential uncertainty. Formally, the proposed histogram is

() [] (){ }: 0,1i i iHS B B S B= = × ∧ = ∅ and { }, , , , , ,, , , , ,i i L i U i L i U i L i UB x x y y E E= ,

and the data distribution inside each 3D bucket Bi is considered as uniform. The
histogram is created using the methodology of [1] by simply treating the existential
uncertainty dimension as an additional spatial dimension.

4.2 A Sampling-Based Approximation Method

The above proposed histogram, besides its conventional use, i.e., to estimate the local
density of data, it can be used in order to produce a 1D histogram of the data points’
existential uncertainty distribution in the area “near” the query point. Subsequently,
random values of existential uncertainty can be produced following the local
distribution provided by the 1D histogram, and then, used to simulate the behavior of
the PTNN2D algorithm. The basic dilemma that is posed towards a good estimation
following such a technique is to provide an efficient termination condition for the
sampling process. This condition can be provided by computing the standard
deviation of the sampled mean value:

mean
N

σ
σ = (25)

where σ is the sample standard deviation and N the sample size. Then, by using the
hypothesis that n follows the normal distribution, and a confidence interval CI=95%,
the expected number of iterations EV(n) is:

()1.96 1.96n nn EV n n
N N

σ σ
− ≤ ≤ + (26)

404 E. Frentzos et al.

where N is the number of observations (number of PTNN2D simulation runs), σn the
(computed so far) standard deviation of n and 1.96 is the approximate value of the
97.5 percentile point of the normal distribution, used in the construction of
approximate 95% confidence interval.

Figure 5 illustrates the algorithm SamplePTNN2D which summarizes the proposed
methodology regarding the estimation of the number of iterations of the PTNN2D
algorithm using sampling. The algorithm utilizes a 1D histogram HS describing the
existential uncertainty distribution in the local query area, the algorithm’s threshold t,
and the precision p (e.g., 5%) of the expected value of n. The precision is used instead
of an absolute value of standard deviation in order to compute it as a percentage of the
calculated mean value. The algorithm begins by instantiating km, i.e. the calculated
mean of the number of iterations needed by the PTNN2D algorithm to terminate, and
kt, which is the standard deviation of the calculated mean. After that (lines 4-6), the
algorithm instantiates Pfirst, N (i.e. the number of PTNN2D simulations) and n (i.e.,
the number of iterations of the PTNN2D algorithm in the current run). In lines 7-11,
the PTNN2D algorithm is simulated and the number of iterations n in its current run is
determined. The histogram HS is used in line 8 in order to produce random values
based on the local area’s existential uncertainty distribution. After simulation, the
algorithm calculates the new mean value of the number of iterations required in every
run, as well as the mean’s standard deviation (line 13). The algorithm eventually
terminates and returns the calculated mean value of iterations when there is 95%
probability (which is included in the area 1.96 × kt) that the mean differs by at most p
regarding its accurate value.

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.

10.
11.
12.
13.
14.
15.

Algorithm SamplePTNN2D(HS 1D Histogram, threshold t, precision p)
 km:=0; //calculated mean iterations
 kt:=+∞; // calculated stdev of mean iterations
 While pÿkm<1.96ÿkt do
 N:=N+1; //num of runs
 Pfirst:=1;
 n:=0; //run’s iterations
 While Pfirst¥t do // simulate PTNN2D
 n:=n+1;
 Ex:=ProduceRandomValue(HS);
 Pfirst:= Pfirstÿ(1-Ex);
 End While;
 km:=Mean(n);
 kt:=Stdev(n)/Sqrt(N);
 End While;
 Return km;

Fig. 5. Sampling algorithm for estimating the number of iterations of PTNN2D

Interestingly, the method of sampling can be directly applied with limited only
modifications in the case of PRNN queries. The respective SamplePRNN2D algorithm
is illustrated in Figure 6. The algorithm utilizes the same ideas as SamplePTNN2D
with the only difference that PRNN2D is simulated (instead of PTNN2D) between
lines 9-17, with Pm calculated and eventually tested so as to be used as a termination
condition. This observation enables us to introduce a cost model for PRNN queries as
well, as described in the following section.

 Cost Models for Nearest Neighbor Query Processing 405

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Algorithm SamplePRNN2D(HS 1D Histogram,# objects m, precision p)
 km:=0; //calculated mean iterations
 kt:=+∞; // calculated stdev of mean iterations
 While pÿkm<1.96ÿkt do
 Pfirst:=1;
 N:=N+1; //num of runs
 H:=«;
 Pm:=+∞;
 n:=0; //run’s iterations
 While Pfirst¥Pm do //simulate PRNN2D
 n:=n+1;
 Ex:=ProduceRandomValue(HS);
 Px:=PfirstÿEx;
 If Px¥ P

m then
 Update H to include x;
 Pm:= m-th probability in H;
 Pfirst:= Pfirstÿ(1-Ex);
 End While;
 km:=Mean(k);
 kt:=Stdev(k)/Sqrt(k);
 End While;
 Return km;

Fig. 6. Sampling algorithm for estimating the number of iterations of PRNN2D

4.3 An Effective Cost Model for PTNN and PRNN Queries

In this section we present an effective cost model for PTNN queries that works over
arbitrarily distributed spatial data with existential uncertainty. The proposed cost
model is calculated using the algorithm presented in Figure 7, which employs several
ideas presented in [12]. In particular, algorithm EstimateThresholdDk takes as input a
simple spatial histogram, an augmented histogram, a query point q and a threshold t,
and estimates the radius Dk of the vicinity circle that has to be browsed by the
PTNN2D algorithm. The radius Dk is then applied over Eq.(6) so as to estimate the
number of node accesses NA that are needed in order to answer the query. The
algorithm initially (lines 2-4) determines the critical vicinity rectangle “radiuses”, i.e.,
the rectangle’s half-side, on which the object’s density changes. These radiuses

Algorithm EstimateThresholdDk(Histogram HS, Augmented Histogram AHS, point q, threshold t)
 1.
 2.
 3.

 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.

HP = new min-Heap
for each bucket B in HS;
 Determine the radius that is needed for a rectangle
 with center q to reach B and add it to HP
end for
EnOld=:0; lOld:=0;
While true do // algorithm eventually terminates at line 13
 l=:HP.pop;
 En=:HS.Density(q,l)*(4*l*l);//calculate # objects inside rec
 m=:AHS.MeanValue(q,l)
 k=:Log(t)/Log(1-m)+1
 If k<En then
 Compute Lr by equation (5)
 Return Lr/Sqrt(PI)
 Else
 lOld=l;EnOld=En;
 End if
End while

Fig. 7. Algorithm EstimatedThresholdDk for computing Dk

406 E. Frentzos et al.

are determined by simply calculating the distance that q needs to travel along each
axis so as to reach each bucket’s boundaries. After their calculation, these values are
inserted into a min-heap so as to be used in incremental order.

Then, the algorithm iteratively retrieves candidate critical distances l on which the
vicinity rectangle’s density is changed (via the min heap), and calculates (line 8) the
expected number of objects En found inside it, by simply multiplying the local
density produced by HS by the area of the respective vicinity rectangle. It also
determines in line 9 via the augmented histogram, the mean value m of the existential
uncertainty of objects found inside the vicinity rectangle, using as input the query
point q as well as the radius l of the vicinity rectangle. The value m is eventually used
in line 10 to calculate the (approximated) number of nearest neighbors k that must be
retrieved in order for the PTNN2D algorithm to terminate. Then, in line 11, the values
of k and En are compared, in order to determine whether the number of required
nearest neighbors k is less than the objects contained inside the (so far calculated)
vicinity rectangle. If it is not so, the algorithm stores l in lOld and En in EnOld to be
used by Eq.5 in a subsequent iteration, and performs another iteration, so as to use a
greater critical radius l (which are stored in the minheap). Eventually, the algorithm
terminates by computing Lr via Eq.(5), and returning Dk (lines 12-13) when the
iteratively increasing radius of the vicinity rectangle, produces an approximate
number of objects contained inside the respective vicinity rectangle, greater than k.

The previously presented algorithm provides a good approximation of the number
of objects that have to be retrieved from the database in order for the PTNN2D to
terminate. However, this can be also achieved via sampling, as described in the
previous section. Specifically, lines 9-10 of the EstimatedThresholdDk can be
replaced with (a) the calculation of a 1-dimensional histogram, AHS, and (b)
algorithm SamplePTNN (cf. Figure 5) that estimated k based on a 1-dimensional
histogram of existential uncertainty. Similarly, by replacing lines 9-10 with the
calculation of the 1D histogram and the algorithm SampleRTNN used to estimate the
number of iterations of PRNN2D, algorithm EstimatedThresholdDk may be also used
as a cost model for PRNN search.

Summarizing, the proposed cost model based on the EstimatedThresholdDk
algorithm, can be used for estimating the radius of the vicinity circle, used for both
PTNN and PRNN queries.

5 Experimental Study

Our experimental study is based on real point datasets. In particular, as in [13], we
used the San Francisco roads’ dataset (SF) dataset. Due to the lack of a real spatial
dataset with objects having existential probabilities, we generated probabilities for the
objects, using the following methodology. As [13] suggests, we first generated K = 10
anchor points on the map in positions of high data density. These points model
locations around which there is large certainty for the existence of data. For each
point x of the dataset, we find the closest anchor and we assign an existential
probability inversely proportional to its distance from it. Thus, the distribution of

 Cost Models for Nearest Neighbor Query Processing 407

probabilities around the anchors is a Zipfian one. The probabilities are normalized
w.r.t. the maximum probability.

We conducted our experiments on a Windows XP workstation with AMD Athlon
II X4 640 3GHz processor CPU. All evaluated methods were implemented using the
.NET framework. Two statistical measures were used so as to demonstrate the

behavior of our model. The average radius of the vicinity circle D , the average

estimated radius of the vicinity circle eD , and the average error in the estimation of

the vicinity circle DS . Formally, these measures are defined as:

1..

1
i

i n

D D
n =

= ,
1..

1 e

e i
i n

D D
n =

= , and,
1..

1 e

i i
i n

DS D D
n =

= −

where n is the number of executed queries, Di the actual distance of the vicinity circle

from the i-th query, and e

iD the estimated radius of the vicinity circle via the

respective cost model. We distinguish between, D and DS , in order to disclose the
details of the behavior of our model, as will be shown in the following experiments.
In order to test the accuracy of the proposed model, we performed 500 PTNN queries
in locations selected driven by the dataset density, under various threshold values and
counted the actual number of iterations that the algorithm performed. We also
compared the values gathered from the experiment with the one calculated using our
model. The corresponding results are illustrated in Figure 8(a) and (b), regarding the
PTNN2D algorithm with estimates gathered via Lemma 2 and sampling, respectively.

It is clear that the values D and e

iD displayed in both bars (actual and estimated

vicinity circle radiuses) are almost identical, meaning that the estimation gathered by
our model is very accurate, with an error that never exceeds 12%, regarding the

average number of iterations for all 500 queries. Moreover, the mean deviation DS
(i.e., the average unsigned error of the estimation in each individual query), illustrated
by the error bars, is between 20% and 50% in all experimental settings, increasing
with the threshold. This is actually an expected result since the increase of threshold

` (a) (b) (c)

Fig. 8. Average actual and estimated search radius of the PTNN2D algorithm scaling the
threshold using (a) mean probability, (b) Sampling, and (c) the PRNN2D algorithm scaling the
number of objects requested

408 E. Frentzos et al.

results in decreasing the number of iterations of the PTNN2D algorithm, which leads
to the deviation growth. A comparison between the two alternative ways of
estimation, i.e., Lemma 2 and sampling, results that the latter performs slightly better.

Similar results are exposed regarding the PRNN2D algorithm, illustrated in Figure
8(c), where our estimations are once again accurate, with an error that never exceeds
15%, except of the case where small cardinalities of objects are requested, i.e.,
smaller than 10, where the error reaches 25%.

6 Conclusions and Future Work

In this paper, we have worked on the problem of performing probabilistic
thresholding nearest neighbor and probabilistic ranking nearest neighbor queries
over existentially uncertain spatial point datasets [3],[13]. Following a statistical
approach, we estimate the average number of the nearest neighbors required for
processing PTNN queries as a function of the threshold t and then, utilizing existing
approaches [6], we propose a cost model for such queries. We have also provided
approximate solutions for the same problem, which turn out to be applicable over
arbitrarily distributed data. Our experimental study proves the effectiveness and
efficiency of the proposed techniques. There are numerous interesting research
directions arising from this work, including the application of our model in data
spaces of higher dimensionality, its extension in order to support reverse nearest
neighbor, and spatial skyline queries according to [13], as well as objects with time-
varying existential uncertainty.

Acknowledgements. Elias Frentzos was supported by the Greek States Scholarships
foundation. Nikos Pelekis and Yannis Theodoridis were supported by the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
n°270833, ICT project DATASIM (www.datasim-fp7.eu).

References

1. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. In:
Proceedings of the ACM SIGMOD Int’l Conference on Management of Data (SIGMOD
1999), pp. 13–24 (1999)

2. Balakrishnan, N., Rao, C.R. (eds.): Order Statistics: Applications. Elsevier, Amsterdam
(1998)

3. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on
Existentially Uncertain Data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

4. Frentzos, E., Pelekis, N., Theodoridis, Y.: Cost Models and Efficient Algorithms on
Existentially Uncertain Spatial Data. In: Proceedings of the 12th Panhellenic Conference in
Informatics (PCI 2008), Samos, Greece (2008)

5. Frentzos, E., Gratsias, K., Theodoridis, Y.: On the Effect of Location Uncertainty in
Spatial Querying. IEEE Trans. Knowl. Data Eng. 21(3), 366–383 (2009)

 Cost Models for Nearest Neighbor Query Processing 409

6. Hjaltason, G., Samet, H.: Distance Browsing in Spatial Databases. ACM Transactions in
Database Systems 24(2), 265–318 (1999)

7. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: Rtrees: Theory
and Applications. Springer (2005)

8. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V.,
Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.:
Semantic Trajectories Modeling and Analysis. ACM Computing Surveys (2013)

9. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB), Seoul, Korea (2006)

10. Stanoi, I., Agrawal, D., Abbadi, A.: Reverse Nearest Neighbor Queries for Dynamic
Databases. In: Proceedings of the SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (2000)

11. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization
of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans.
Knowledge and Data Eng. 16(10), 1169–1184 (2004)

12. Weisstein, E.W.: Uniform Product Distribution. From MathWorld. A Wolfram Web
Resource

13. Yiu, M., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient Evaluation of Probabilistic
Advanced Spatial Queries on Existentially Uncertain Data. IEEE Trans. Knowledge and
Data Eng. 21(1) (2009)

Processing Probabilistic Range Queries

over Gaussian-Based Uncertain Data

Tingting Dong1, Chuan Xiao1, Xi Guo2, and Yoshiharu Ishikawa1

1 Nagoya University, Japan
{dongtt,chuanx,y-ishikawa}@nagoya-u.jp

2 The Chinese University of Hong Kong, China
guoxi@se.cuhk.edu.hk

Abstract. Probabilistic range query is an important type of query in
the area of uncertain data management. A probabilistic range query
returns all the objects within a specific range from the query object with
a probability no less than a given threshold. In this paper we assume
that each uncertain object stored in the databases is associated with a
multi-dimensional Gaussian distribution, which describes the probability
distribution that the object appears in the multi-dimensional space. A
query object is either a certain object or an uncertain object modeled
by a Gaussian distribution. We propose several filtering techniques and
an R-tree-based index to efficiently support probabilistic range queries
over Gaussian objects. Extensive experiments on real data demonstrate
the efficiency of our proposed approach.

1 Introduction

In recent years, uncertain data management has received considerable attention
in the database community. It involves a large variety of real-world applications,
ranging from mobile robotics, sensor networks to location-based services.

Among all the problems in the area of uncertain data management, probabilis-
tic range query is an important one for processing uncertain data in real-world
applications. A probabilistic range query returns all the data objects that appear
within the given search region with probabilities no less than a given probability
threshold.

For instance, consider a self-navigated mobile robot moving in a wireless en-
vironment. The robot builds a map of the environment by observing nearby
landmarks through devices such as sonar and laser range finders. Due to the
inherent limitation brought about by sensor accuracy and signal noises, the lo-
cation information acquired from measuring devices is not always precise. At the
same time, the robot also conducts probabilistic localization [19] to estimate its
own location autonomously by integrating its movement history and the land-
mark information. This can cause impreciseness in the location of the robot, too.
In consequence, probability queries have evolved to tackle such impreciseness;
e.g., “find landmarks lying within 5 meters from my current location with a
probability at least 80%”.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 410–428, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 411

Typically for such applications, uncertain objects are stored in the databases
and associated with probability distributions. A commonly used distribution for
such a purpose is a multi-dimensional Gaussian distribution which is widely
adopted in statistics, pattern recognition [7] and localization in robotics [19].

In this paper we study the case where the locations of data objects are un-
certain, whereas the location of the query object is either exact or uncertain.
Specifically, data object are described by Gaussian distributions with differ-
ent parameters to indicate their differences in uncertainty. A query object can
be either a certain point in the multi-dimensional space or an uncertain lo-
cation represented by a multi-dimensional Gaussian distribution. We solve the
probabilistic range query problem according to the above setup.

A straightforward approach to this problem is to compute the appearance
probability [18] for each data object and output it if this probability is no less
than the threshold. However, the probability computation usually requires costly
numerical integration for accurate result [16], rendering it prohibitively expensive
to compute for all the data objects and check if the query constraint is satisfied.
Thus, such computations should be reduced as much as possible.

There have been solutions to probabilistic range queries that can handle
Gaussian-based uncertain data, yet based on specific assumptions. For example,
U-tree [16] assumes that each uncertain object is located within a pre-defined
uncertainty region. It constructs an index for all objects based on this region to
reduce the number of candidates that require the expensive numerical integra-
tion. Besides, Gauss-tree [3] is proposed for probabilistic identification queries,
but the Gaussian distributions they follow must be independent in each dimen-
sion. When these assumptions are violated, these solutions no longer work. One
problem of U-tree is that it is not easy to decide a suitable extent of the un-
certainty region for a real world object. In this paper we solve these problems
with generic Gaussian distributions without any of these assumptions; i.e., the
objects can locate in an infinite space as opposed to U-tree, or have correlations
between dimensions as opposed to Gauss-tree.

Furthermore, we propose filtering techniques to generate candidate Gaussian
objects and only compute probability integration for these candidates. Equipped
with the filtering techniques, an R-tree-based indexing method is proposed to
accelerate query processing. The index structure is inspired by the idea of TPR-
tree [21], of which the (Minimum Bounding Box) MBBs vary with time. The
difference is that in our index, a parent MBB not only varies with the probability
threshold but also tightly encloses all the child MBBs.

In our preliminary work [10], we propose query processing algorithms for
probabilistic range queries, assuming that only the location of the query object is
uncertain and modeled by a Gaussian distribution, but data objects are certain
multi-dimensional points. An R-tree can be used to manage these certain data
points and process queries, which is different from the situation here. In this
paper, we extend the uncertainty to data objects and propose novel solutions.
A precedent report of this work has appeared in [11]. The approach proposed
in [11] approximates the Gaussian distribution by an upper-bounding function

412 T. Dong et al.

which is in a simple exponential form. An R-tree-like hierarchical index structure
is proposed and an exponential summary function is defined to cover multiple
upper-bounding functions or summary functions. Nevertheless, the summary
function is so sensitive to child functions that it will become dramatically large
if child Gaussians are sparsely distributed in the space or one of them has big
variances, leading to loose index structure and weak filtering power.

Our contributions are summarized as follows:

1. We formalize two types of probabilistic range queries with respect to the
query object: a certain point and an uncertain location represented by a
Gaussian distribution, while data objects are represented by Gaussian dis-
tributions with different parameters.

2. For the two types of queries, we propose several effective filtering techniques
to prune unpromising objects.

3. We design a novel R-tree-based index structure to support probabilistic range
queries on Gaussian objects.

4. We demonstrate the efficiency of our approach through comprehensive ex-
perimental performance study.

The rest of the paper is organized as follows. Section 2 defines our problem.
We present our filtering strategies in Section 3. Section 4 describes our index
structure. We discuss the extension of our approach to support other models and
queries in Section 5. Experiment results and analyses are covered by Section 6.
Section 7 reviews related work. Section 8 concludes the paper.

2 Problem Definition

In this section, we first define Gaussian objects, and then define probabilistic
range queries on two types of query objects: point objects and Gaussian objects.

2.1 Gaussian Objects

The Gaussian distribution, also known as the normal distribution, is a continuous
probability distribution defined by a bell-shaped probability density function
described with a mean value and a standard deviation. In this paper, we assume
that data objects are modeled by Gaussian distributions in a d-dimensional
space. A point x referred in the paper, by default, is in a d-dimensional numerical
space, namely, x = (x1, . . , xd)t.

Definition 1 (Gaussian objects). A Gaussian object o is represented by its
possible locations (points) and the probability density it appears at each loca-
tion. Formally, the probability density that o is located at xo is captured by a
d-dimensional Gaussian probability density function

po(xo) =
1

(2π)
d
2 |Σo|

1
2

exp

[
−1

2
(xo − μo)

tΣ−1
o (xo − μo)

]
. (1)

μo is the mean location (center) of o. Σo is a d × d covariance matrix. |Σo|
(resp. Σ−1

o) is the determinant (resp. inverse matrix) of Σo.

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 413

2.2 Probabilistic Range Queries on Gaussian Objects

Given a dataset of Gaussian objects D, a query object q, a distance threshold
δ, and a probability threshold θ, a probabilistic range query (PRQ) on Gaussian
objects retrieves all the data objects o ∈ D such that the distance between o and
q is no more than δ with a probability no less than θ.

In this paper, we consider two types of query objects for q:

1. The query object is a point, namely, q = (x1
q , x

2
q, . . , x

d
q)

t.
2. The query object is a Gaussian object, namely,

pq(xq) =
1

(2π)
d
2 |Σq|

1
2

exp

[
−1

2
(xq − μq)

tΣ−1
q (xq − μq)

]
.

The probabilistic range query with point query object (PRQ-P) is formally defined
as

PRQ-P(q,D, δ, θ) = {o | o ∈ D,Pr(‖xo − q‖ ≤ δ) ≥ θ},

where ‖xo − q‖ represents the Euclidean distance between xo and q. We call
the region consisting of the points with distance no more than δ from the query
object the query region. Pr(‖xo − q‖), the probability integration within the δ
range of the query, is computed by

Pr(‖xo − q‖ ≤ δ) =

∫
χδ(xo, q) · po(xo)dxo, (2)

where

χδ(xo, q) =

{
1, ‖xo − q‖ ≤ δ;

0, otherwise.
(3)

The integration in Eq. 2 is not in a closed-form and hence cannot be computed
directly. Numerical solutions such as Monte Carlo methods can be employed
to evaluate the probability. We use the importance sampling [15] in this paper.
Specifically, we generate xo as per the probability function po(xo), and increment
the count when Eq. 3 is satisfied. Finally, the value of the integration can be
obtained by dividing the count by the number of samples generated. Generally
speaking, however, Monte Carlo methods are only accurate only if the number
of samples is sufficiently large (at the order of 106) [16]. Therefore, integral
computation induces expensive cost.

Fig. 1 illustrates the PRQ-P query in a 2-dimensional space. The Gaussian
object o exists in the space with decreasing probability density as it spreads
from the center μo. We project the probability surface of o to a plane and show
the diminishing trend with gradient colors. A PRQ-P query finds the Gaussian
objects located in the proximity of the query point with a required probability.
Computing the probability using Eq. 2 corresponds to integrating the probability
density function of o within the shaded area around q.

414 T. Dong et al.

Fig. 1. PRQ-P Query

Similar to PRQ-P, the probabilistic range query with Gaussian query object
(PRQ-G) is defined as

PRQ-G(q,D, δ, θ) = {o | o ∈ D,Pr(‖xo − xq‖ ≤ δ) ≥ θ},

where Pr(‖xo − xq‖ ≤ δ) is computed by

Pr(‖xo − xq‖ ≤ δ) =

∫∫
χδ(xo,xq) · po(xo) · pq(xq)dxodxq, (4)

where

χδ(xo,xq) =

{
1, ‖xo − xq‖ ≤ δ;

0, otherwise.

To compute the integration in Eq. 4, although we can simply generate random
numbers for two Gaussian distributions po(xo) and pq(xq) respectively, a more
efficient method is shown in [11]. It constructs a 2d-dimensional Gaussian dis-
tribution by combining the two d-dimensional Gaussian distributions.

3 Filtering Based on Approximated Region

A näıve algorithm to answer PRP-P or PRP-G queries is to pair the query
object with every data object and perform integration check with either Eq. 2 or
Eq. 4. The algorithm becomes prohibitively expensive for large datasets. So we
develop our approach based on a filter-and-refine paradigm; i.e., to obtain a set
of candidate objects and then compute the integration for the candidates only.

In this section, we first introduce the notion of ρ-region that leverages the two
thresholds δ and θ, and then propose the ρ-region-based filtering techniques to
handle PRP-P and PRP-G queries.

3.1 ρ-Region

Definition 2 (ρ-region). Consider a Gaussian object o and the integra-
tion of its probability density function po(xo) over an ellipsoidal region

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 415

(xo − μo)
tΣ−1

o (xo − μo) ≤ r2. Let rρ be the value of r within which the
result of the integration equals ρ:∫

(xo−μi)
tΣ−1

o (xo−μo)≤r2ρ

po(xo)dxo = ρ.

We call the ellipsoidal region

(xo − μo)
tΣ−1

o (xo − μo) ≤ r2ρ

the ρ-region of o.

In Fig. 1, the dotted ellipsoidal curve illustrates a ρ-region. Because the prob-
ability density of a Gaussian distribution decreases as we move away from the
center of the object, if the query object is distant enough from the center, the
probability integration within the query region will not reach the probability
threshold θ. In other words, it is possible to determine whether a data object
can satisfy the query condition by deriving a suitable ρ-region with the threshold
θ (will be introduced in Section 3.3 and Section 3.4) and examining whether the
ρ-region intersects the query region.

To compute rρ with a given ρ, we borrow the approach proposed in our pre-
vious work [10]. It transforms the integration over an ellipsoidal region to an
integration over a d-dimensional sphere region. By assigning μo = 0 and Σo = I
in Eq. 1, we have the normalized Gaussian distribution

pnorm(x) = N (0, I) =
1

(2π)d/2
exp

[
−1

2
‖x‖2

]
.

Based on this probability density function, the following property can be derived.

Property 1. [10] Consider integration of pnorm(x) over ‖x‖2 ≤ r2. For a given ρ
(0 < ρ < 1), let r̃ρ be the radius within which the integration becomes ρ:∫

‖x‖2≤r̃2ρ

pnorm(x)dx = ρ.

Then rρ = r̃ρ holds.

The preceding property indicates that we can compute r̃ρ and hence rρ for a given
ρ value. Therefore, we can construct a (ρ, rρ)-table offline (numerical integration
is necessary) and obtain the ρ-region by looking up the corresponding rρ from
this table. If there is no matched entry for a given ρ, we conservatively return
the corresponding rρ of the smallest value greater than ρ, so correctness of the
result can be guaranteed.

The ellipsoidal shape of a ρ-region renders it difficult to quickly examine
whether the ρ-region intersects the query region as well as develop an indexing
scheme based on prevalent spatial indexes such as R-tree. Hence we will study
the minimum bounding box (MBB) which tightly bounds the ρ-region.

416 T. Dong et al.

3.2 Minimum Bounding Box of ρ-Region

Fig. 2 shows the MBB of a ρ-region of a 2-dimensional Gaussian object o. Let wj

denote the length of its edge along the j-th dimension. The following property
holds [10].

Fig. 2. MBB of ρ-Region

Property 2. The value of wj (j = 1, . . . , d) is given as

wj = σjrρ (5)

where σj corresponds to the standard deviation for the j-th dimension

σj =
√
(Σo)jj

where (Σo)jj represents the (j, j)-th element of the matrix Σo.

For a data object o, since σj can be calculated from the covariance matrix Σo,
the scale of the MBB is determined uniquely by rρ, and hence ρ. Consequently,
in order to establish the filtering conditions utilizing the MBBs, it is essential
to explore the relation between ρ and the probability threshold θ. Next we will
present our filtering techniques for PRQ-P and PRP-G, respectively.

3.3 Filtering Policies for PRQ-P Queries

Our filtering policies to process PRP-P queries are divided into two cases: θ < 0.5
and θ ≥ 0.5.
Case 1: θ < 0.5. Consider the four data objects o1, o2, o3, o4 shown in Fig. 3(a).
bbi(ρ) denotes the MBB of oi’s ρ-region.

First, let’s consider o4. Since the probability that o4 is located inside its ρ-
region is ρ, the probability of being outside the ρ-region’s MBB, is definitely less
than 1− ρ. Furthermore, given the line symmetry of the Gaussian distribution,
the probability that o4 exists inside the query region is at most (1−ρ)/2. Hence,
if ρ = 1 − 2θ, and bb4(ρ) and the query region do not overlap, the probability
that o4 lies in query region must be less than θ. Second, for objects o1 and o3,
since their mean locations are inside the query region, it is obvious that their
MBBs intersect the query region. Therefore, we include them into the candidate
set without examining their MBBs. Third, for object o2, we check and find its
MBB intersects the query region, and then it becomes a candidate.

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 417

(a) θ < 0.5 (b) θ ≥ 0.5

Fig. 3. Filtering for PRQ-P Queries

In summary, when θ < 0.5, a data object is a candidate only if its bbi(1− 2θ)
intersects the query region.

Case 2: θ ≥ 0.5. We show our idea in Fig. 3(b). If the probability that a data
object exists in the query region reaches a θ no less than 0.5, it is necessary
that its mean location lies inside the query region. In this way, o2 and o4 can be
pruned, whereas o1 and o3 are considered as candidates.

Moreover, for all candidates, let ρ = θ and compute their bbi(θ)s. If the query
region fully contains bbi(θ); e.g., o3, the probability that this object lies within
the query region is definitely greater than θ. We validate it as a result without
computing the numerical integration.

3.4 Filtering Policies for PRQ-G Queries

For PRQ-G queries, since both the query object q and the data object o are in
Gaussian distributions, we obtain both of their MBBs of ρ-regions.

As shown in Fig. 4(a), assume the distance between the two MBBs is exactly
δ. The probability that q and oi are both located inside their ρ-regions at the
same time is ρ2, assuming q and oi are independent. Therefore, the probability
that the distance between q and oi is no more than δ is at most 1 − ρ2. For
a given probability threshold θ, let 1 − ρ2 = θ; i.e., ρ =

√
1− θ. We exclude

oi from the candidate set if the minimum distance between bbi(ρ) and bbq(ρ) is
more than δ.

Moreover, let ρ2 = θ; i.e., ρ =
√
θ. If the maximum distance of bbi(ρ) and

bbq(ρ) is less than δ, as shown in Fig. 4(b), oi is guaranteed to be located inside

(a) Filtered Object (b) Validated Object

Fig. 4. Filtering for PRQ-G Queries

418 T. Dong et al.

the query region with a probability no less than θ, and becomes a result without
computing the exact probability integration.

4 Indexing Data Objects

The filtering conditions introduced in the previous section need to know the
value of θ and hence ρ to generate candidates. In order not to scan all the
data objects and compute the MBBs of the ρ-regions on the fly with the given
θ, an immediate solution is to index the MBBs for a sufficiently large ρmax.
Because the MBB with a larger ρ always consumes the one with a smaller ρ,
it can support all the queries such that the ρ values computed from θ satisfy
the condition ρ ≤ ρmax. However, the efficiency of the index is compromised for
small ρ values. This method serves as a baseline algorithm (we use an R-tree
to index MBBs and name it FR-tree), and will be compared in the experiment
with the indexing technique we are going to present.

Inspired by the TPR-tree [21], we propose an R-tree-based index structure
which stores the MBBs in a parametric fashion. It works for arbitrary probability
thresholds and range thresholds, and there is no no need to assume the two
thresholds are given prior to index construction. The MBBs can be dynamically
computed as we traverse the index. Furthermore, the bounding box of a node (at
both leaf and non-leaf levels) tightly encloses all its children’s bounding boxes
regardless of the θ value, as opposed to the TPR-tree within which all child
bounding boxes are bounded in a loose manner.

Our index is a balanced, multi-way tree with the structure of an R-tree. Each
entry in leaf nodes contains a data object in the form of oi = (idi,μi,Σi), where
idi is the object id, μi,Σi are the mean location and the covariance matrix of
the Gaussian distribution. In a non-leaf node, each entry has a pointer to a child
node and the bounding box enclosing all the bounding boxes from the child
node.

Consider an object oi with mean location (x1
i , . . , x

d
i)

t. Its MBB is a rectangle
parameterized with rρ. From Eq. 5, the extent of the MBB in the j-th dimension
can be represented by

[xj
i − wj

i , x
j
i + wj

i] = [xj
i − σj

i rρ, x
j
i + σj

i rρ]. (6)

Seeing the MBBs grow with rρ, in order to tightly bound the MBBs (or bound-
ing boxes) in child nodes, it is necessary to search each dimension for the left-
most and the rightmost MBBs under varying ρ. We illustrate this problem in
Fig. 5(a). It shows the changing bounding box that encloses the MBBs of four
2-dimensional objects’ ρ-regions as rρ increases. When rρ is less than r1, the
left edge is determined by o1, and it becomes o3 when rρ exceeds r1. The right
bound is determined by o4 when rρ < r2, and o2 otherwise.

Fig. 5(b) shows how the four MBBs changes horizontally with rρ. For each
object, a pair of symmetrical lines describe the left and the right coordinations
of the MBB. The lines have different slopes due to the difference in the stan-
dard deviations of the objects. The bold polylines illustrate the left and right

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 419

(a) Bounding Box of MBBs (b) Left and Right Edges of
MBBs

Fig. 5. Bounding Box with Varying ρ

coordinations of the bounding box. Therefore the problem becomes how to find
the bold polylines. To this end, a bounding box can be represented by several
segments with respect to rρ.

We store in the index the j-th dimension of a bounding box in the form of

(〈xj
1, σ

j
1, r1〉, . . , 〈x

j
k, σ

j
k,+∞〉).

For example, for the four objects in Fig. 5(a), the left and the
right coordinations of the bounding box are (〈xj

1, σ
j
1, r1〉, 〈x

j
3, σ

j
3,+∞〉) and

(〈xj
4, σ

j
4, r2〉, 〈x

j
2, σ

j
2,+∞〉), respectively.

We can find all the segments in the j-th dimension through a sort on the coor-
dinations first and then a linear scan from the object whose standard deviation
has the value on the j-th dimension. The time complexity is O(n logn), where
n is the number of its child nodes. The number of segments in a bounding box
is at most n.

To process a query, θ is converted to ρ, and then rρ with the pre-computed
(ρ, rρ) table. Starting with the root node, for PRQ-P we compare the query
region (MBB of the query object for PRQ-G) with the bounding box, and check
the filtering condition. Given an rρ, we scan the stored jth-dimension of the
bounding box and find α such that rα−1 ≤ rρ < rα. Then the extent of the
bounding box on the j-th dimension can be computed through Eq. 6 using
values xα, σα, and ρ.

Note that our index is different from TPR-tree: (1) The bounding boxes of
TPR-tree change towards one direction in a rate (velocity), while our bounding
boxes change towards two opposite directions symmetrically with rρ. (2) The
bounding boxes of TPR-tree are tight only when an update occurs, while our
bounding boxes are always tight.

5 Discussion

In this section, we discuss the extension of our approach to other types of
uncertainty models and queries.

420 T. Dong et al.

5.1 Model Extension: Gaussian Mixture Model

A Gaussian Mixture Model (GMM) describes a probability model using a fi-
nite combination of Gaussian distributions. Its probability density function is
represented as a weighted sum of several Gaussian component densities. Each
leaf node in our index structure is a collection of Gaussian objects and can be
considered as a GMM. Therefore, our index structure is extendible to manage
GMM-based data. Moreover, theoretical results have shown that GMMs can
approximate any continuous distribution arbitrarily. Hence, GMMs have been
widely used in many real-world applications such as biometric recognition, image
retrieval and finance analysis. It means that our index structure can be applied
to applications with various types of data.

5.2 Probabilistic Nearest Neighbor Queries

Although we focus on probabilistic range queries in this paper, our index struc-
ture can also support other types of queries such as probabilistic nearest neighbor
queries. A common approach to answer a probabilistic nearest neighbor query
is based on the minimal maximum distance. It states that if the minimum dis-
tance of the bounding box of a data object or a set of bounding boxes from
the query object is greater than the minimal maximum distance of all current
bounding boxes from the query object, this data object or set of bounding boxes
can be excluded from the searching list of this query. By defining appropriate
query processing strategies, our index structure can answer probabilistic nearest
neighbor queries as well.

6 Experiments

We report our experiment results and analyses in this section.

6.1 Experimental Setup

We design two baseline approaches for experimental evaluation. One baseline ap-
proach is to sequentially scan the dataset and compute probability integration
with the query. We name it Scan and evaluate our filtering techniques by com-
paring candidate number and query processing time with it. The other baseline
approach indexes the MBBs of the ρ-region with ρmax = 0.99. Because the MBB
with a larger ρ always consumes the one with a smaller ρ, it can support all the
queries such that the ρ values computed from θ satisfy ρ ≤ ρmax. We equip this
index with our filtering techniques and name it FR-tree, and evaluate our index
structure by comparing filtering time and IO access with it. Our proposed index
is referred to as G-tree.

Three real datasets are used in our experiments. MG and LB are two
2-dimensional datasets of Montgomery and Long Beach road networks (39K and

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 421

52K respectively)1. Airport is a 3-dimensional dataset containing latitudes, lon-
gitudes and elevations of 41K airports in the world 2. All datasets are normalized
to [0, 1000]d. LB is used by default.

We randomly generate PRQ-P and PRQ-G queries. The probability threshold
θ lies within [0.01, 0.99], and the query range δ is randomly chosen from [10, 100]
for MG and LB, and [100, 200] for Airport. We randomly generate covariance
matrices for both data Gaussian objects and query Gaussian objects.

We implemented the index structure by extending the spatial index library
SaiL 3 [9]. It is a generic framework that integrates spatial and spatio-temporal
index structures and supports user-defined datatypes and customizable spatial
queries. We conducted experiments using a PC with Intel Core 2 Duo CPU
E8500 (3.16GHz), RAM 4GB, running Fedora 12. We construct an index of all
data objects for both PRQ-P and PRQ-G, and store it in the secondary memory.

6.2 Query Performance Evaluation

The average query response time of 200 PRQ-P (resp. PRQ-G) queries (10K
samples are used for numerical integration) is 0.242 seconds (1.250 seconds resp.
PRQ-G) for G-tree, and 120.764 seconds (236.725 seconds resp. PRQ-G) for
Scan, almost 500 (190 resp. PRQ-G) times that of G-tree. Among the overall
response time, the integral computation takes up 0.237 seconds (1.246 seconds
resp. PRQ-G) for G-tree, and 120.692 seconds (236.577 seconds resp. PRQ-G)
for Scan. This indicates that probability integration dominates the overall query
processing and is computationally expensive. Consequently, it is important to
reduce candidate objects which need to perform integration as much as possible.

Among 50,747 objects in LB, the average candidate number of G-tree is 93
for PRQ-P (335 for PRQ-G). The number of validated objects by integration
is 65 for PRQ-P (156 for PRQ-G). So for PRQ-P 69.9% (46.6% for PRQ-G) of
the candidates identified by our approach are real results. This demonstrates the
effectiveness of our proposed filtering techniques.

In the sequel, we exclude the integral part from query processing and focus
on evaluating the filtering and indexing performance of FR-tree and G-tree.

We run the two algorithms to process 10K queries on the three datasets
and show the average filtering time and IO access of PRQ-P (resp. PRQ-G)
in Fig. 6(a) – 6(b) (resp. Fig. 6(d) – 6(e)). For PRQ-P, the filtering time of
G-tree is half of that of FR-tree, because the IO access of G-tree is 90% less
than that of FR-tree, though the segmented bounding boxes in G-tree are more
complex to process than those in FR-tree. The reduction on PRQ-G is more
substantial. The filtering time of G-tree on MG and LB is 71% less than that
of FR-tree, and 61% on Airport. The IO access of G-tree of three datasets is 6%
that of FR-tree.

As a ρmax is adopted to process queries with any θ, the bounding boxes
in FR-tree are very loose. This causes more IO accesses and increases filtering

1 http://www.census.gov/geo/www/tiger
2 http://www.ourairports.com/data
3 http://libspatialindex.github.com/

http://www.census.gov/geo/www/tiger
http://www.ourairports.com/data
http://libspatialindex.github.com/

422 T. Dong et al.

0

2

4

6

8

10

MG LB Airport

Fi
lte

rT
im

e
(m

s)
FR-tree
G-tree

(a) PRQ-P: Filtering time

0

0.2

0.4

0.6

0.8

MG LB Airport

IO
Ac

ce
ss

 (K
)

FR-tree
G-tree

(b) PRQ-P: IO access

0

1

2

3

MG LB Airport

Ca
nd

.R
at

io
 (‰

)

(c) PRQ-P: Cand. ratio

0

5

10

15

MG LB Airport

Fi
lte

rT
im

e
(m

s)

FR-tree
G-tree

(d) PRQ-G: Filtering time

0

0.2

0.4

0.6

0.8

1

MG LB Airport

IO
Ac

ce
ss

 (K
)

FR-tree
G-tree

(e) PRQ-G: IO access

0

2

4

6

8

10

MG LB Airport

Ca
nd

.R
at

io
 (‰

)

(f) PRQ-G: Cand. ratio

Fig. 6. Performance of PRQ-P and PRQ-G Queries

time. On the other hand, since the bounding boxes in G-tree are constructed
in a parametric fashion, they can be calculated dynamically for arbitrary θ and
hence are compact. Another interesting observation is that the IO access almost
resembles the candidate number, indicating most IOs are spent on retrieving
data objects.

Fig. 6(c) and Fig. 6(f) shows the candidate ratio of PRQ-P and PRQ-G, which
is calculated by dividing the candidate number by the total number of objects.
The candidate number of FR-tree and G-tree is the same since we equip FR-tree
with our filtering techniques.

0

5

10

0.2 0.4 0.6 0.8 1.0

Fi
lte

rT
im

e
(m

s)

|D|

FR-tree

(a) PRQ-P: Filtering time

0

0.5

1

0.2 0.4 0.6 0.8 1.0

IO
Ac

ce
ss

 (K
)

|D|

FR-tree
G-tree

(b) PRQ-P: IO access

Fig. 7. Varying |D|: Filtering time and IO access (PRQ-P)

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1.0

Ca
nd

.R
at

io
 (‰

)

|D|

(a) PRQ-P: Candidate ratio

5

6

7

0.2 0.4 0.6 0.8 1.0

Ca
nd

.R
at

io
 (‰

)

|D|

(b) PRQ-G: Candidate ratio

Fig. 8. Varying |D|: Candidate ratio

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 423

The candidate ratio is around 2‰ for PRQ-P and 6‰ for PRQ-G on the
three datasets. This reveals that only a very small percentage of data objects
will become candidates owing to our filtering techniques.

Varying Dataset Size. To evaluate the scalability of our approach, we ran-
domly extract 20%, 40%, 60%, 80% and 100% of LB dataset and show the fil-
tering time and IO access of two methods in Fig. 7(a) – 7(b) on PRQ-P queries.
The performance on PRQ-G queries reveals a similar trend and hence is omitted
here due to space limit. As the dataset size becomes larger, the filtering time and
IO access of FR-tree almost increase linearly. G-tree displays a steady increasing
trend and always outperforms FR-tree.

As shown in Fig. 8(a) – 8(b), the candidate ratio of PRQ-P retains 2‰ when
varying the dataset size |D|, and 6.5‰ for PRQ-G, demonstrating the steadiness
and scalability of our approach with respect to the dataset size.

Varying Query Range. We vary the query range δ from 10 to 100 by 10 and
show the performance on PRQ-P queries in Fig. 9(a) – 9(b). The performance on
PRQ-G queries is similar and hence omitted. As δ increases, FR-tree consumes
much more time and more IO accesses on filtering processing. In contrast, G-
tree exhibits much slower increasing trends. Fig. 10(a) – 10(b) shows that the
candidate ratio of both PRQ-P and PRQ-G also increases with δ, but for PRQ-P
it is only 3.4‰ (11.6‰ for PRQ-G) even if δ achieves 100.

Varying Probability Threshold. We vary θ from 0.1 to 0.9 and show the
performance in Fig. 11(a) – 12(b) for both PRQ-P and PRQ-G queries. For
PRQ-P, the filtering time and IO access of both FR-tree and G-tree decreases
gradually with θ when it is less than 0.5. When θ exceeds 0.5, the filtering time

0

10

20

30

10 20 30 40 50 60 70 80 90 100

Fi
lte

rT
im

e
(m

s)

δ

FR-tree
G-tree

(a) PRQ-P: Filtering time

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

IO
Ac

ce
ss

 (K
)

δ

FR-tree
G-tree

(b) PRQ-P: IO access

Fig. 9. Varying δ: Filtering time and IO access (PRQ-P)

0

1

2

3

4

10 20 30 40 50 60 70 80 90 100

Ca
nd

.R
at

io
 (‰

)

δ
(a) PRQ-P: Candidate ratio

0

5

10

15

10 20 30 40 50 60 70 80 90 100

Ca
nd

.R
at

io
 (‰

)

δ
(b) PRQ-G: Candidate ratio

Fig. 10. Varying δ: Candidate ratio

424 T. Dong et al.

2

7

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fi
lte

rT
im

e
(m

s)

θ

FR-tree
G-tree

(a) PRQ-P: Filtering time

0

0.5

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IO
Ac

ce
ss

 (K
)

θ

FR-tree
G-tree

(b) PRQ-P: IO access

2

7

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fi
lte

rT
im

e
(m

s)

θ

FR-tree
G-tree

(c) PRQ-G: Filtering time

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IO
Ac

ce
ss

 (K
)

θ

FR-tree
G-tree

(d) PRQ-G: IO access

Fig. 11. Varying θ: Filtering time and IO access

slightly rebounds. This is consistent with our filtering condition which assigns
ρ = 1 − 2θ if θ < 0.5 and ρ = θ if θ ≥ 0.5. Because when θ < 0.5, ρ decreases
when θ moves towards larger values, and bounding boxes shrink. So most of
non-candidates can be filtered quickly and and less IO accesses are needed, and
hence it accelerates filtering.

On the contrary, when θ ≥ 0.5, ρ increases with θ, each bounding box enlarges
and consequently the filtering time and IO access rises. However, an object needs
to satisfy the constraint that the center must be located within the query region,
and thus the increase in filtering time is not obvious in this case. The reason
also accounts for the trend of G-tree on candidate ratio in Fig. 12(a).

For PRQ-G queries, as we set ρ =
√
1− θ for filtering, the bounding boxes

of both data objects and query objects shrink gradually as θ increases. Conse-
quently, filtering time, IO access and candidate ratio all reduce slightly.

Despite the variation of θ, G-tree constantly outperforms FR-tree. In the case
of PRQ-P, the filtering time of FR-tree amounts to 2.4 times that of G-tree on
average and 9.4 times on average for IO access. This contrast is more evident on
PRQ-G queries, where the filtering time of FR-tree is 3.8 times that of G-tree on
average and 18.4 times on average for IO access.

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ca
nd

.R
at

io
 (‰

)

θ
(a) PRQ-P: Candidate ratio

5

6

7

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ca
nd

.R
at

io
 (‰

)

θ
(b) PRQ-G: Candidate ratio

Fig. 12. Varying θ: Candidate ratio

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 425

0

0.1

0.2

0.3

2 3 4 5

Fi
lte

rT
im

e
(m

s)

d

FR-tree
G-tree

(a) PRQ-P: Filtering time

0

0.1

0.2

0.3

2 3 4 5

Fi
lte

rT
im

e
(m

s)

d

FR-tree
G-tree

(b) PRQ-G: Filtering time

0

2

4

6

2 3 4 5

Ca
nd

.R
at

io
 (‰

)

d

(c) PRQ-P: Candidate ratio

0

5

10

15

20

2 3 4 5

Ca
nd

.R
at

io
 (‰

)

d

(d) PRQ-G: Candidate ratio

Fig. 13. Varying d: Filtering time and Candidate ratio

Varying Dimensionality. We also study the impact of dimensionality using
randomly generated synthetic datasets with the size 20K and the query range
within [100, 200]. Fig. 13 shows the scalability of FR-tree and G-tree against
dimensionality.

As shown in Fig. 13(a) and Fig. 13(b), in both cases of PRQP and PRQG, the
filtering time of two trees reduces with increasing d because the object density
decreases with d. This can be confirmed by the decreasing trend of candidate
ratio of both PRQP and PRQG in Fig. 13(c) and Fig. 13(d).

It is also notable that the filtering performance of FR-tree begin to exceed
that of G-tree at d = 5. The explanation is that candidate retrieval becomes less
frequent as the object density decreases, and hence the operation of comparing
the query region with node MBBs dominates the filtering procedure. While FR-
tree’s MBBs can be obtained directly from the index structure, G-tree needs to
compute the exact MBBs from scratch for all nodes.

Index Construction. We evaluate the index construction on the Airport
dataset. The node capacities of the indexes are selected to optimize query per-
formance for both FR-tree and G-tree.

The index size of FR-tree is 10.0MB, and the construction time is 5 seconds
on average. G-tree has a size of 10.7MB, slightly larger than FR-tree due to
the segmented bounding boxes in its entries. It takes 60 seconds on average to
build. Although G-tree needs more construction time, considering the superior
query performance and the index construction can be done offline, the index
construction is in an affordable manner.

7 Related Work

Uncertain Data Management. We focus on research work in the area of
unertain data management that is closely related to our work. A number of

426 T. Dong et al.

approaches for managing uncertain data have been proposed. Early research
primarily focuses on queries in a moving object database model [6,14,20,22].
[5] classifies and proposes solutions to several types of probabilistic queries
including probabilistic range queries, where their target is merely the one-
dimensional space.

A range query processing method for the case where both data objects and
query object are imprecise is proposed in [4]. But they assume that each object
exists within a rectangular area. [24] models a fuzzy object by a fuzzy set where
each element is characterized by its probability of membership. (The sum of all
probabilities is not necessarily one.) For efficient query processing, they propose
the notion of α-cut, the subset of elements whose probabilities are no less than
a user-specified probability threshold α, to filter elements of the fuzzy object.
However, the rationales of computing the filtering region of two algorithms are
different.

As an index structure for Gaussian distributions, Gauss-tree [3] is proposed
for probabilistic identification query. It assumes all Gaussian distributions are
probabilistically independent in each dimension. This imposes heavy restriction
on the generality of the approach and the overall accuracy of the query result
is limited. In [12], Lian et al. propose a generic framework to tackle the local
correlations among uncertain data.

Indexing Uncertain Data for Range Queries. [1] presents various
structures on uncertain data that support range queries in the one-dimensional
case. In terms of probabilistic range queries in a multi-dimensional space, Tao et
al. propose U-tree [16]. Uncertain objects are assumed to follow arbitrary proba-
bility distributions within uncertainty regions. Zhang et al. propose a quadtree-
based index structure U-Quadtree [23] for range searching on multi-dimensional
uncertain data. They mainly focus on representing uncertainty by discrete
instances inside a minimal bounding box. The difference lies in that we take
advantage of specific properties of Gaussian distribution and index uncertain
objects distributed in an infinite space.

Spatial Data Indexing. The traditional spatial database has been well studied
and many indexing methods have been proposed [2,8,13] to support spatial query
processing. The well-known ones are R-tree [8] and its extension R*-tree [2],
which index objects by deriving their minimum bounding rectangle (MBR).
TPR-tree [21] and TPR*-tree [17] are proposed to index moving objects. But
none of them can be applied directly to index Gaussian objects for our problem.

8 Conclusion

In this paper, we study the probabilistic range queries over uncertain data.
We assume that the location of the query object is either fixed or follows a
multi-dimensional Gaussian distribution. The locations of data objects are rep-
resented by Gaussian distributions. Given these assumptions, we define two types
of probabilistic range queries with respect to the query object. To expedite

Processing Probabilistic Range Queries over Gaussian-Based Uncertain Data 427

query processing, we propose several filtering techniques to effectively reduce
non-candidate objects. We further propose a novel R-tree-based index struc-
ture to efficiently process queries. We conduct experiments on real datasets to
evaluate our proposed approach.

Acknowledgement. This research is supported by the FIRST program, Japan.

References

1. Agarwal, P.K., Cheng, S.-W., Yi, K.: Range searching on uncertain data. ACM
Trans. Algorithms 8(4), 43:1–43:17 (2012)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. In: Proc. ACM SIGMOD
(1990)

3. Böhm, C., Pryakhin, A., Schubert, M.: The Gauss-tree: Efficient object identifica-
tion in databases of probabilistic feature vectors. In: Proc. ICDE (2006)

4. Chen, J., Cheng, R.: Efficient evaluation of imprecise location-dependent queries.
In: Proc. ICDE (2007)

5. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over
imprecise data. In: Proc. ACM SIGMOD (2003)

6. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. IEEE TKDE 16(9), 1112–1127 (2004)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2000)
8. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc.

ACM SIGMOD, pp. 47–57 (1984)
9. Hadjieleftheriou, M., Hoel, E., Tsotras, V.J.: Sail: A spatial index library for effi-

cient application integration. GeoInformatica 9, 367–389 (2005)
10. Ishikawa, Y., Iijima, Y., Yu, J.X.: Spatial range querying for Gaussian-based im-

precise query objects. In: Proc. ICDE, pp. 676–687 (2009)
11. Kodama, K., Dong, T., Ishikawa, Y.: An index structure for spatial range querying

on Gaussian distributions. In: Proc. Fifth International Workshop on Management
of Uncertain Data (MUD 2011), pp. 1–7 (2011)

12. Lian, X., Chen, L.: A generic framework for handling uncertain data with local
correlations. PVLDB 4(1), 12–21 (2010)

13. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees:
Theory and Applications. Springer (2005)

14. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS,
vol. 1651, pp. 111–131. Springer, Heidelberg (1999)

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipies:
The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007)

16. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-
dimensional uncertain data with arbitrary probability density functions. In: Proc.
VLDB (2005)

17. Tao, Y., Papadias, D., Sun, J.: The TPR∗-tree: An optimized spatio-temporal
access method for predictive queries. In: Proc. VLDB, pp. 790–801 (2003)

18. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional uncertain data.
ACM TODS 32(3) (2007)

428 T. Dong et al.

19. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press (2005)
20. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty

in moving objects databases. ACM TODS 29(3), 463–507 (2004)
21. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions

of continuously moving objects. In: Proc. ACM SIGMOD, pp. 331–342 (2000)
22. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying

databases that track mobile units. Distributed and Parallel Databases 7(3), 257–
287 (1999)

23. Zhang, Y., Zhang, W., Lin, Q., Lin, X.: Effectively indexing the multi-dimensional
uncertain objects for range searching. In: EDBT, pp. 504–515 (2012)

24. Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects.
VLDB Journal 21(5), 729–751 (2012)

Mining Co-locations under Uncertainty

Zhi Liu and Yan Huang

Computer Science and Engineering
University of North Texas

zhiliu@my.unt.edu, huangyan@unt.edu

Abstract. A co-location pattern represents a subset of spatial features
whose events tend to locate together in spatial proximity. The certain
case of the co-location pattern has been investigated. However, location
information of spatial features is often imprecise, aggregated, or error
prone. Because of the continuity nature of space, over-counting is a major
problem. In the uncertain case, the problem becomes more challenging.
In this paper, we propose a probabilistic participation index to measure
co-location patterns based on the well-known possible world model. To
avoid the exponential cost of calculating participation index from all pos-
sible worlds, we prove a lemma that allows for instance centric counting,
avoids over-counting, and produces the same results as using possible
world based counting. We use this property to develop efficient mining
algorithms. We observed through both algebraic analysis and extensive
experiments that the feature tree based algorithm outperforms uncertain
Apriori algorithm by an order of magnitude not only for co-locations of
large sizes but also for datasets with high level of uncertainty. This is an
important insight in mining uncertainty co-locations.

1 Introduction

A co-location represents a subset of spatial features whose events frequently
appear together in spatial proximity. In Epidemiology, incidents of different but
related diseases occur in different places. These diseases may exhibit co-location
patterns where some types of diseases tend to occur in spatial proximity. In
Ecology, different types of animals can be observed in different locations. There
exist patterns such as symbiotic relationship and predator-prey relationship.
Different types of crimes committed and different types of road accidents may
also exhibit co-location. Many spatial data are uncertain with approximations
and errors in real world. In Epidemiology, the occurrence of a disease may not
be geo-located precisely and may be often associated with several locations,
e.g. home and work place. In Ecology, observation of spices is often imprecise.
Finding co-locations under uncertainty is useful for these domains.

In the problem of mining certain co-locations, a set S of spatial features is
given and each spatial feature s is associated with a set of events s.E. The
spatial feature of a given event e is denoted as s(e). A set of events E is sup-
porting a subset of spatial feature S′ ⊆ S if: (1) E forms a clique using a
user given distance threshold; (2) for any e1 ∈ E, e2 ∈ E and e1 �= e2, we

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 429–446, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

430 Z. Liu and Y. Huang

Fig. 1. Example Co-location. Three spatial features: {s1, s2, s3}. s1 has three events,
s2 has four events, and s3 has two events.

have s(e1) �= s(e2); (3) ∪e∈E{s(e)} = S′. The participation ratio PR(s, S′)
of a spatial feature s in a subset of spatial feature S′ ⊆ S is the probabil-
ity of an event of s participating in a supporting clique of S′. For example,
in Figure 1, there are three spatial features S = {s1, s2, s3}. Two events of
different spatial features are connected if their distance is less than a user
specified threshold. Feature s2 has four events and three of them participate
in a clique supporting {s1, s2, s3}. So PR(s2, {s1, s2, s3}) is 3/4. Then partici-
pation index PI(S′) is defined as PI(S′) = mins∈S′{PR(s, S′)}. In Figure 1,
PI(s1, s2, s3) = min{2/3, 3/4, 2/2} = 2/3. The problem of co-location mining
is to find all subsets of spatial features with participation indices above a user
defined threshold.

When an event is uncertain, there are two main challenges: (1) How to define
participation ratio and participation index in a probabilistic manner? (2) How
to efficiently find co-locations when the number of uncertain events is large? Let
us assume a simple dataset of 5 spatial features. Let each spatial feature have 4

events and each event has 3 possible locations. Then we will be 34
5
= 3.49× 109

possible worlds.

Contributions

– We formulate a framework for mining uncertainty co-locations. The frame-
work is based on possible world model. The participation index to measure
co-location with uncertainty is defined in a probabilistic manner;

– We prove a lemma that allows an instance centric algorithm to be developed
which is significantly faster than using all possible worlds to compute the
participation index;

– We propose an Uncertain Apriori co-location mining algorithm (UApriori)
and an Uncertain Feature Tree based algorithm (UFTree) to efficiently mine
co-locations under uncertainty; we further propose event-based optimizations
and table search techniques for optimizing these algorithms;

– Algebraic analysis and experiments on a large Shanghai taxi trajectory
dataset and synthetic datasets show the effectiveness and efficiency of our

Mining Co-locations under Uncertainty 431

proposed model and algorithms. We observed that the UFTree algorithm
outperforms UApriori by an order of magnitude not only for co-locations of
large sizes but also for datasets with high level of uncertainty. This is an
important insight in mining uncertainty co-locations.

2 Problem Definition

We follow the commonly used uncertainty model Block-Independent Disjoint
Scheme [3] to define the problem of uncertainty co-location. A probabilistic spa-
tial feature s is given by a set of uncertain events s = {e1, e2, . . .}. An uncertain
event ei is represented by a set of d-dimensional points u1, u2, . . . reflecting all
possible instances of ei. Each instance uk is assigned with a probability P (uk)
denoting the probability that ei appears at uk. Let h be a user given distance
threshold. In Figure 2(a), there are three spatial features. Spatial feature s1 has
three uncertain events, spatial feature s2 has four uncertain events, and spatial
feature s3 has two uncertain events. Each instance of an uncertain event of s1,
s2, and s3 is represented by a circle, a square, and a plus sign respectively. Prob-
abilities are assigned to instances of an uncertain event that sums up to 1 within
the event. Two instances of different spatial features that are within a user given
threshold h are connected by a line. In this example, s1, s2, s3 may be three
animal species, e.g. s1 = Egyptian plover, s2 = Nile crocodile, and s3 = monitor
lizard. An event of s1 represents a particular Egyptian plover, e.g. plover Smith.
And the instance of the plover Smith is an location where Smith is spotted.

A possible world ws = us
1, u

s
2, . . . of a spatial feature s is a set of instances

containing one instance from each event of s and occurring with a probabil-
ity of P (ws) =

∏
k P (us

k). Let Ws be the set of all possible worlds for s,
then

∑
w∈Ws

P (w) = 1. We are given a set n of probabilistic spatial features
S = {s1, s2, . . . , sn}, a possible world wS is given by the combination of a pos-
sible world of each spatial feature, i.e. ws1 , ws2 , . . . , wsn with a probability of
P (wS) =

∏
i P (wsi). Obviously, let WS be the set of all possible world for S,

then
∑

w∈WS
P (w) = 1 as well.

Definition[Complete Possible World] Given a subset of probabilistic spatial
features S, W c

S includes all the instances of all the events of S and is called
the complete possible world with respect to S. For any instance, we use e(u) to
denote the event associated with u and use s(u) to denote the spatial feature of
u.

All of the instances in Figure 2(a) is an example of complete possible world
of {s1, s2, s3}.
Definition[Supporting Clique] A set of instances c in the complete world wc

S′ is
supporting a subset of spatial feature S′ ⊆ S if: (1) c forms a clique using a user
given distance threshold; (2) s(u1) �= s(u2) (which also implies e(u1) �= e(u2))
for any u1 ∈ c, u2 ∈ c and u1 �= u2 ; (3) ∪u∈U{s(u)} = S′. c is called a supporting
clique of S′.

In Figure 2(a), {s1, s2, s3} has 6 supporting cliques. However, not all of them
can appear together in the same possible worlds as explained later.

432 Z. Liu and Y. Huang

(a) Example of Uncertainty Co-location (b) Instance Centric Counting

Fig. 2. In 2(a), feature s1 has three uncertain events, i.e. {s1.e1, s1.e2, s1.e3}. Event
s1.e1 has three uncertain instances.

The participation ratio and index are used to prune the co-locations with
low prevalence. Different from certain cases, the participation ratio can not be
directly calculated by counting the instances participating in a supporting clique.
In an uncertain case, the participation ratio of an instance will be determined by
both the probability of possible worlds and the supporting cliques it participates.

Definition[Participation Ratio of an Instance] For a subset S′ of S and a user
given distance threshold, the participation ratio of an instance u of spatial feature
si in S′ is defined as the sum of probabilities of all the possible worlds that
instance si.u participates in a supporting clique of S′ and this can be calculated
as:

PR(u, S′) =
∑

{w|∃c,u∈c,c⊆w,w∈WS′,c supports S′}
p(w) (1)

In Figure 2(b), PR(s1.e2.u2, {s1, s2, s3}) is the sum of the probabilities of all the
possible worlds that contain at least one supporting clique of {s1, s2, s3} with
s1.e2.u2 participating. In this example, it includes all of the worlds that con-
tain one or more of the three supporting cliques that s1.e2.u2 participates in the
figure. Since s1.e2, s2.e1, s3.e2 and s2.e3 have 3, 2, 2, 3 possible instances respec-
tively, the total number of possible world should be 36. Among those, 3 possible
worlds have a supporting clique of {s1.e2.u2, s2.e1.u1, s3.e2.u1}, 3 contain that of
{s1.e2.u2, s2.e1.u1, s3.e2.u2}, and 2 contain that of {s1.e2.u2, s2.e3.u1, s3.e2.u1}.
Given equal probability of instances, all of the possible worlds have the same
probability of 1/36. However, one possible world contains both of the cliques

Mining Co-locations under Uncertainty 433

{s1.e2.u2, s2.e1.u1, s3.e2.u1} and {s1.e2.u2, s2.e3.u1, s3.e2.u1}. So there are to-
tally 3 + 3+ 2− 1 = 7 possible worlds that s1.e2.u2 participates in a supporting
clique of {s1, s2, s3}. The participation ratio of s1.e2.u2 should be PR(s1.e2.u2) =
7× (1/36).

Definition[Probabilistic Participation Ratio] Let si.U be all possible instances
of si where si ∈ S′ and |si| be the number of events of si. The probabilistic
participation ratio (short as participation ratio or PR here after) of si is:

PR(si, S
′) =

1

|si|
∑

u∈si.U

PR(u, S′) (2)

Definition[Probabilistic Participation Index] For a subset S′ ⊆ S, the proba-
bilistic participation index (short as participation index or PI) PI(S′) of S′ is
defined as follows:

PI(S′) = minPR(si, S
′) (3)

The problem of mining co-location under uncertainty is to find all subsets of
spatial features with participation indexes above a user given threshold θ.

3 Instance Centric Counting

The naive way to calculate the participation ratio of an instance in S′ is to
enumerate all the possible worlds and then sum up the probabilities of the worlds
where the instance participates in a supporting clique of S′. However this method
is very expensive as the number of possible worlds is very large. We propose an
instance centric calculation of the participation ratio, taking supporting cliques
involved into consideration. However, in this method, avoiding over-counting is
a challenge. We prove a Lemma to allow instance centric counting which will
enable efficient algorithms to be developed. Using this method, we can get the
same result as summing up possible worlds above. We first define the relationship
between a possible world and a clique.

Definition[Clique Probability] For a supporting clique c of S′, the probability
P (c) is the sum of the probability of all of the worlds which contains the clique
c. And it can be represented as:

P (c, S′) =
∑

{w|w∈WS′ ,c∈w}
P (w) (4)

Finding all the possible worlds that contain c is very expensive. However, it is
easy to prove the lemma 1. The proof is similar of that of lemma 2 and is omitted
due to space constraint.

Lemma 1. For a supporting clique c of S′, the probability P (c, S′) is equivalent
to:

P (c, S′) =
∏
u∈c

P (u) (5)

434 Z. Liu and Y. Huang

If an instance u only participates in one supporting clique, then the participation
ratio of u is the probability of the clique. However, an instance can participate in
multiple cliques in the same world, resulting in over counting if we simply sum
up the probabilities of all the supporting cliques that u participates (naive PR
calculation). For example, Figure 2(b) is a subset of Figure 2(a) which includes
all events and cliques that relate to s1.e2.u2. The two instances of s3.e2 cannot
happen at the same time (yellow lines and green lines could not happen in the
same world). So not all three cliques can happen in the same world. However,
clique {s1.e2.u2, s2.e1.u1, s3.e2.u1} and {s1.e2.u2, s2.e3.u1, s3.e2.u1} can co-exist,
resulting in over counting of the worlds that contain both if we use the naive PR
calculation.

Definition[Coexistence] Two supporting cliques c1 and c2 of S′ can coexist, de-
noted as !(c1, c2) = 1, in the same possible world under the following condition:
∀u1 ∈ c1, u2 ∈ c2, if e(u1) = e(u2), then u1 = u2, where e(u) denotes the event
associated with the instance u.

Definition[Coexistence of a Set of Supporting Cliques] A set of supporting
cliques C can coexist and is denoted as !(C) = 1 if every pair of the cliques can
coexist.

Definition[Probability of Coexisting Clique Set] The probability of a set of
coexisting supporting cliques C of S′ is the sum of the probabilities of those
possible worlds in which C happens:

P (C, S′) =
∑

{w|∀c∈C,c⊆w,w∈WS′}
P (w) (6)

Lemma 2. The probability of a set of coexisting supporting cliques C of S′ can
be calculated as:

P (C, S′) =
∏
u∈I

P (u) (7)

where I is the union of all instances of the events of the cliques in C.

Proof: Let E be the set of all events. For any E′ ⊆ E, it is easy to see that
the sum of the probabilities of all possible worlds WE′ that include an instance
from each event in E′ is 1. The probability of coexisting clique set is the sum of
all possible worlds which contain the coexisting supporting clique set C. We can
divide E into two parts: E1 is the set of events having an instance in the coexist-
ing cliques and E2 is the complementary set. So a possible world that contains
C can also contain any other possible worlds of E2. So the summation can be
calculated as

∏
u∈I P (u)× (

∑
w∈WE2

P (w)). We know that
∑

w∈WE2
P (w) = 1,

so the probability of a set of coexisting supporting cliques is
∏

u∈I P (u).
From lemma 1 we know that the probability of a clique c1 is the sum of all

of the possible worlds that contain the clique. However, those possible worlds
can contain both cliques c1 and c2. So the probabilities of the possible worlds
which contain both cliques will be counted two times if they can coexist when

Mining Co-locations under Uncertainty 435

counting the participation ratio of an instance. To summarize, when there are
coexisting cliques and they contribute to the participation of the same instance,
over counting will happen. We define such cliques as star supporting cliques.

Definition[Star Supporting Clique Set] All the supporting cliques of S′ that an
instance u participates is called the star supporting clique set of u in S′ and is
denoted as �(u, S′).

Lemma 3. To an instance si.uk in a complete possible world, the star support-
ing clique set �(si.uk, S

′) of S′ can be used to calculate the participation ratio of
the instance as follows where l = | � (si.uk, S

′)|:

PR(si.uk, S
′) =

∑
cj∈�(si.uk,S′)

P (cj , S
′)

−
∑

c1∈�(si.uk,S′),c2∈�(si.uk,S′),�(c1,c2)

P (c1 ∪ c2, S
′) + . . .

+ (−1)l+1
∑

c1∈�(si.uk,S′),..cl∈�(si.uk,S′),�(c1,..cl)

P (c1.. ∪ cl, S
′)

(8)

Proof: From the definition of participation ratio, PR(uk) =
∑

wi∈WS′ P (wi),
where WS′ is the set of possible worlds which instance uk participates in form-
ing a supporting cliques of S′. So we can prove lemma 3 by checking whether
the probability of each possible world in WS′ has been counted and only counted
once. For each wi in WS′ , let us assume that wi has n coexisting cliques
{c1, c2...cn}. From the definition of the probability of coexisting clique set, we
know that every time we calculate P (C, S′), we count the probability of wi once.
Here C represents any possible combinations of coexisting cliques in wi. So when
we calculate P (c1) as well as P (c1 ∪ c2) and any other combinations, we count
P (wi) once. In lemma 3, for wi, each of P (c1)...P (cn) is added to the probability
of wi once. Each of P (c1∪c2)...P (cn−1∪cn) subtracts P (wi) once. So P (wi) has
been counted C1

n − C2
n + ...(−1)n+1Cn

n = 1 times.

Lemma 4. (Anti-monotone Property) The participation index is anti-monotone
with respect to the number of features in the co-location.

Proof: Let l, l′ be two co-locations and l′ ⊆ l. We useWl andWl′ to represent the
set of possible worlds which have supporting cliques of these two co-locations. For
each possible world w in Wl, w contains supporting cliques of l. Because l′ ⊆ l,
w will also has supporting cliques of l′. So if w ∈ Wl, then wi ∈ Wl′ . Therefore,
Wl ⊆Wl′ . From the definition of participation index, PI(l) =

∑
w∈Wl

P (w) and
PI(l′) =

∑
w∈Wl′

P (w), we can conclude that PI(l′) ≥ PI(l).

4 Mining Co-location from Uncertain Data

In this section, we describe the framework of mining uncertain co-locations.
While participation ratio can be calculated by counting supporting cliques [10]

436 Z. Liu and Y. Huang

in the certain case, the participation ratio of uncertain co-locations is calcu-
lated by the probabilities of instances. Thus we divide the process of mining
co-location in two steps, (1) finding uncertainty co-locations and their support-
ing cliques; (2) calculating the participation ratios. In section 4.1, we propose
an Apriori based algorithm to generate supporting cliques under uncertainty.
Section 4.2 will present the feature tree driven method combined with maxi-
mal clique method. We propose event-based pruning and clique-feature table
searching to reduce the computational cost. In section 4.3, we will present the
algorithm for calculating participation ratios and section 4.4 presents algebraic
analysis of the computational complexity.

In the following part, we use Ck to represent a set of size k cliques, use Lk to
represent a set of size k co-locations and use CM to represent a set of maximal
cliques.

4.1 Uncertain Apriori (UApriori) Co-location Miner

We first propose an Apriori like algorithm in the instance level and will present
event level pruning in section 4.1. We process in the uncertain instance level
to generate the supporting cliques for each co-location. Algorithm 1 shows the
process of how to generate uncertainty co-location by Apriori algorithm. Here
we use an example to illustrate. Figure 3(a) is the Apriori-gen process for the
example in figure 2(b). We use plane sweep algorithm to get the neighbor re-
lation of between the instances of S1, S2, S1, S3 and S2, S3 (the first three ta-
bles). They are also the supporting cliques C2 of size-2 co-locations L2. Assum-
ing all of them have a participation index greater than the threshold, we can
generate size-3 co-locations by them. First we generate the supporting cliques
for the co-location {s1, s2, s3} from C2 through joins. For example, we use the
size-2 cliques {s1.e2.u2, s2.e1.u1} and {s1.e2.u2, s3.e2.u1} in C2 to generate the
size-3 supporting clique {s1.e2.u2, s2.e1.u1, s3.e2.u1}. When generating the new
supporting clique, we calculate the distance between s2.e1.u1 and s3.e2.u1 by
their coordinates instead of searching the c2 table to find the record of clique
{s2.e1.u1, s3.e2.u1}.

Algorithm 1 . Generating co-locations from searching table

Apply plane sweep algorithm to generate instance neighbor relation C2

Generate size 2 co-locations L2 by the neighbor relation
k = 2
while Lk �= ∅ do

k = k + 1
Generate supporting cliques Ck from Ck−1 for co-location Lk

Calculate the participation index of each size k co-location
Generate size k co-location set Lk

end while
Return L2 ∪ L3... ∪ Lk−1

Mining Co-locations under Uncertainty 437

(a) Process of Apriori-gen

<= h
>h

<=h

>h

e1
e2

e4

e3

h

(b) Event Level Pruning

Fig. 3. Example for the process of UApriori

Event Level Pruning (UApriori-E). However in uncertainty, each event of
a feature may have many uncertain instances. Both algebraic and experiments
show that with large number of instances, the join process to generate cliques
become inefficient. To optimize this process, we propose an event level pruning
approach to apply event neighbor relation checking first and only proceed to
instance level join when the minimal distance between two events are within
user given distance.

There are three relations between two events: the minimum distance larger
than threshold h, the maximal distance less than h, and DistanceMax > h ∩
DistanceMin < h. For the first case, such as e1 and e4 in figure 3(b), we can
prune e4 directly. For the second, such as e1 and e2, all instances in e2 can form
neighbor relation with instances in e1 without calculating the distances between
them. We only need to calculate the distance between instances in the third case.

4.2 Uncertain Feature Tree Co-location Miner (UFTree)

Feature tree has been used in mining long pattern association rules. However,
the main challenge in using the same structure in co-location mining is the lack
of given set of transactions. In this paper, we propose feature tree based methods
in mining uncertain co-locations that deal with the lack of transactions. In the
first step, we use the plane sweep algorithm and the Bron-Kerbosch algorithm [4]
to find all maximal cliques in the complete possible world (optimization will be
discussed shortly) and add them into CM . A naive way to generate the support-
ing cliques is to enumerate all sub-cliques of every maximal clique and map them
into different co-locations. But without a pruning process, the cost is prohibitive
especially when some large size cliques exist. Here we build a searching table
to help generating the supporting cliques and the co-location set. Algorithm 2
describes the framework of this process.

438 Z. Liu and Y. Huang

Algorithm 2. Generating co-locations from searching table

L = ∅
while S �= ∅ do

To si ∈ S, for each instances of si, get maximal cliques contain this instance from
CM

Build searching table for si with other features in S
Table searching, generating co-location and adding into L
Remove si from S

end while

Figure 4 is an example for building searching table. {c1, c2, ..c6} is the set of
maximal cliques CM and {s1, s2, ..s6} is the set of features S. For s1 in S, we
first get the maximal cliques containing instances of s1: {c1, c2, c3, c4, c5}. Then
those maximal cliques will be mapped into the searching table in figure 4. After
the co-location generating step, s1 will be removed from S and will not appear
in the searching table built after this. For example, when we build the searching
table for s2, instances from s1 will not be included in the table.

 :

: { . , . , . , . } : { . , . , . } : { . , . , . } : { . , . , . } : { . , . , . } : { . , . , . , . }

Fig. 4. Searching Table

To search this table and generate co-locations, we introduce the searching
strategy on a tree-based structure. The breadth first searching with follow set
pruning approach.

Uncertainty Feature Tree Searching with Follow Set Pruning (UFTree-
FP Algorithm). We introduce the follow set searching strategy to generate
co-locations on the table. We first present key definitions for this strategy.

Definition[Pre-Node Set] Node N is a node in the feature tree. The pre-node
set Pre{N} of N is the set of nodes which have the same father node as N and
at the left side of N in the feature tree.

Definition[Follow set] The follow set of node N is a set of features which may
form co-locations with the features in node N .

For example, for the root node of the tree in figure 5(a), the set of {s2, s3, s4, s5}
is the follow set of this root node. Feature s1 will be combined with each of them
to generate new co-locations in the next level of this tree.

Mining Co-locations under Uncertainty 439

(a) Searching tree

e1
e2

e4

e3

h

e5

(b) Finding maximal
cliques at event level

Fig. 5. Strategie on searching the table

Algorithm 3 describes the process of breadth-first search to generate co-
locations related to si. When searching the table, we will generate the follow
set for each node. First we set the follow set of the root node as Ssi − si and
add the root node to the node list. Then we process each node in the node list.
For every node, we combine the feature set of the node with each feature SFi in
the follow set and get a new co-location. If the participation index of the new
co-location is greater than the threshold, this node will be added into the node
list and the feature SFi will be added into the follow sets of every pre-node of
this node.

Algorithm 3 . The breadth-first searching algorithm

Set co-location set L = ∅
Node list NL = ∅
Add root node to NL
Set the follow set of root node as Ssi − si
i = 0
while i ≤ NL.size do

N = NL[i]
Combine the feature set of N with each feature sFi in the follow set and generate
a new co-location ln
Calculate the participation index PI
if PI ≥ threshold then

Add N ′ to the node list, the feature set of N ′ composed by the features in ln
and the follow set is node N ’s follow set besides sFi

Add sFi to the follow sets of each pre-node of N ′
L = L ∪ ln

end if
end while
Return L

Figure 5 (b) is an example for breadth-first search. During the search for the
node of {s1, s3}, if the participation ratio is greater than the threshold, s3 will
be added into the follow set of node {s1, s2}. The participation ratio of {s1, s4}
is less than the threshold, so the sub-tree of this node {s1, s4, s5} will be pruned

440 Z. Liu and Y. Huang

and s4 will not be added into the follow sets of the pre-nodes of {s1, s4}. So the
node of {s1, s2, s4} and {s1, s3, s4} will also be pruned.

The process of finding maximal cliques can be computational expensive with
high density of instances. To avoid this, we generated maximal cliques in the
event level at first and used this as an index to generate instance level cliques used
in the searching table. For example, in the figure 5(b), there are four maximal
event cliques: {e1, e2, e3}, {e2, e4}, {e3, e5} and {e4, e5}.

4.3 Calculating the Participation Index

We have proposed lemma 3 to calculate the participation ratio of each possi-
ble instance. If there was no coexisting cliques, lemma 3 can be represented as:
PR(si.uk, S

′) =
∑

cj∈�(si.uk,S′) P (cj , S
′). So we can calculate all the participa-

tion ratios of possible instances by calculating the probability of each supporting
clique and add the probability to the ratio of the instances belonging to this
clique. If ci and cj are two coexisting cliques and {u1, u2...un} are their common
possible instances, to these instances, their participation ratios PR(u) will be
deducted by P (ci ∪ cj) according to the lemma 3. So we need to calculate the
probabilities of different combinations of coexisting cliques and add or subtract
the results to the ratios of instances shared by those cliques according to lemma
3. After getting all of the participation ratios, we can calculate the participation
indexes of co-locations by the method described in the definition of probabilistic
participation ratio and participation index.

4.4 Computational Complexity

Table 1 summarizes the parameters used in complexity analysis as well as in
the experiment section. In the UApriori algorithm, when generating size(k+1)
co-locations from size k, the worst case is: for each supporting clique, we have to
see if they have k−1 instances in common with other cliques. If we define NC(k)

as the number of supporting cliques of size k co-locations, the cost of generating
supporting cliques is: O(

∑w−1
k=2 (k − 1) | NC(k) |). For the uncertain feature tree

algorithm, the cost of generating step can be divided into three parts: finding out
all maximal cliques, building searching table, and generating supporting cliques.
Finding maximal cliques is a NP problem [4]. Thus we propose to do this step on
event level in our approach to avoid high computational cost. For each feature,
we use NCL as the average number of supporting cliques of each co-location and
NFi as the number of cliques related to each feature. So the cost of building
the searching table is | F | NFiNCL . To generate supporting cliques for each co-
location set, we need to search a line of the searching table and the worst case
is O(NFi). So the cost of UFTree algorithm is O(| F | NFiNCL + NFi

∑w
k=2 |

C(k) |).

Mining Co-locations under Uncertainty 441

Table 1. Parameters

Ns Number of Features

OL The overlapping ratio of co-locations

I Average number of instances of an event

NL Number of co-locations

L Average length of co-locations

E Average number of events of each feature

C Average number of supporting cliques of a co-location in event level

5 Experiments

In this section, we will first compare the algorithms on different synthetic datasets
to show the influence of parameters. Since there were no algorithms solving the
same problem with us, here we only compared our own method and analysis
the results. Then we will use the Shanghai taxi trip dataset to illustrate the
application of our algorithms in real world.

5.1 Synthetic Data Generation

Our model of the synthetic data is similar of that of paper [10]. Parameters in
table 1 are used to generate synthetic data. We generated uncertainty datasets
with a broad range of values for the chosen parameters to evaluate the per-
formance of those algorithms. The length of co-location, the average number
of supporting cliques, and the average number of instances in an event will be
picked from three Poisson distributions P (L), P (C) and P (I). The generating
step will be divided into three steps: 1. Generating a co-location; 2. Generating
event level supporting cliques for this co-location; 3. Transforming each event
into possible instances using a Poisson distribution in an area of given size. We
generated the datasets by setting different values for L (from 2 to 11), E (from
3 to 16), I (from 2 to 8), and setting 5 values for OL : 0, 20%, 40%, 60%, 80%.

5.2 Performance on Synthetic Data

Figure 6 presents the running time of the algorithms under different values of
those parameters. We first compare those algorithms by changing the value of
E and I. The results are shown in figure 6(a) and 6(b). Figure 6(a) shows
the influence of E. E has little influence on the UFTree algorithm. However,
with the increasing value of E, the advantage of event pruning process becomes
significant between UApriori and UApriori-E algorithms. In figure 6(b), we can
see that with the increase of the average number of instance, the running times
of both UApriori-E and UApriori algorithm increase quickly. But the UFTree
algorithm still use a very short time. This phenomenon illustrates that generating
cliques in the searching table performs much better than the Apriori-gen process.

442 Z. Liu and Y. Huang

From figure 6(c), we can conclude that the overlapping ratio has litter influence
on those algorithms. In figure 6(d), we tested the influence of the threshold of
participation ratio on running time.

The UFTree algorithm performs much better due to its fast matching pro-
cess and searching strategy. To illustrate this phenomenon, we can simplify the
expression of the computational complexity and just concentrate on the gener-
ating process to analyze the computational cost. For UApriori, UApriori-E and
UFTree algorithms, the worst case of generating the supporting cliques can be

represented by O((k−1)+(E×I)2), O((k−1)+E
2
+E× (I)2) and O((E×I)2)

in generating the supporting cliques of a size k co-locations. But with different
values of parameters, the costs of UApriori and UFTree algorithm are typically
far less than that. For example, if event from one feature can only form one event
pair with another event and there is only one instance pair between them, the

cost of UApriori and UFTree will become O((k−1)+E
2
+E×I

2
) and O(E). So

with the increase of L, the UApriori Algorithm becomes much more slower and
the UFTree algorithms provides a much better performance. We can see that in
the results of figure 6(e).

Tree based algorithm has been used in long pattern association rule mining.
A significant advantage of this algorithm is its subset pruning strategy. For
example, when we get {S1, S2, S3}, we need not to test {S2, S3} due to the anti-
monotone property. In our experiment mentioned above (figure 6(a) to 6(e)), we
didn’t use this strategy. In figure 6(f), we compared the UFTree algorithm with
and without the subset pruning: UFTree-Subset Pruning and UFTree algorithm.
The results show that subset pruning can improve the performance especially in
mining co-locations of large sizes. The reason is larger sized co-locations contain
more subsets (equal to the number of power set). From the results, we can see
that when the size of co-locations is larger than 8, the UTFree-Subset Pruning
method made a significant improvement.

5.3 Experiments on Real Data

Data for the framework is based on trips of 17,000 Shanghai taxis for one day
(May 29, 2009); the dataset contains 432,327 trips. Each trip includes the starting
and destination coordinates and the start/end time. Our real data experiment
is based on the premise that if people from two or more areas often take taxi
to some other common areas, these two or more areas may have some potential
characteristics in common. For example, they may be all university areas or
residential areas. Of course, people from adjacent areas also tend to have the
same destinations because adjacent areas tend to have similar characteristics.
But the taxi trips start and end coordinates can be different even when they
have the same start and destination areas. For example, a university may have
several entrances and people can get on or off taxis at any entrance. So it becomes
an uncertainty co-location problem. The university area is an event and each
entrance can be a possible instance in our uncertainty co-location model.

We generate the dataset according to our uncertainty model from the real
world taxi trips. Firstly, we divided the region of Shanghai into 500 × 300m

Mining Co-locations under Uncertainty 443

4 6 8 10 12 14 16
0

100

200

300

400

500
R

u
n

n
in

g
 T

im
e

 (
se

c)

Average number of events

UApriori

UApriori−E

UFTree

(a) NL = 10k, L = 4, E : 4 ∼ 16, I = 4

3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

R
u

n
n

in
g

 T
im

e
 (

se
c)

Average number of instances

UApriori

UApriori−E

UFTree

(b) NL = 20k, L = 4, E = 5, I : 3 ∼ 8

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

R
u

n
n

in
g

 T
im

e
 (

se
c)

Overlapping ratio (in percentage)

UApriori

UApriori−E

UFTree

(c) NL = 20k, L = 5, E = 3, I = 3, over-
lapping ratio(%) : 0 ∼ 80

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

200

400

600

800

1000

1200

1400

R
u

n
n

in
g

 T
im

e
 (

se
c)

Threshold of participation index (in percentage)

UApriori

UApriori−E

UFTree

(d) NL = 20k, L = 6, E = 3, I = 3,PI
threshold(%) : 0.02 ∼ 0.1

3 3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

600

700

R
u

n
n

in
g

 T
im

e
 (

se
c)

Average length of co−locations

UApriori

UApriori−E
UFTree

(e) NL = 20k, L : 3 ∼ 7, E = 3, I = 2

4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700

800

900

R
u
n
n
in

g
 T

im
e
 (

S
e
c)

Average length of co−locations

UFTree−SP

UFTree

(f) NL = 20k, L : 4 ∼ 12, E = 3, I = 3

Fig. 6. Experiment results on synthetic data

rectangles. Top 680 areas with more than 300 trip starting points are chosen as
feature areas. Each area is a spatial feature. For each feature s, an area e with a
trip starting in s and ending in e is an event of s. The trip ending points in an
event e of s is then clustered into small groups, each representing an instance
with probability as the ratio of the number of trip ending points in the small
group over that in e.

444 Z. Liu and Y. Huang

Fig. 7. Four example co-locations from top 10 co-locations on the taxi trip dataset.
Rectangle areas represent the spatial features. Their trip ends are represented by a
triangle, circle and pentagram respectively.

We ran the mining algorithms on the taxi trips dataset with instance distance
threshold as 100 meters. Figure 7 shows 4 example results from the top 10
co-locations. Table 2 describes the feature areas of the co-locations in figure 7
and gives the possible reasons for the co-locations. Feature areas in example 1
and 2 have the same characteristics (residences, school zones). Example 3 and
4 show three adjacent features. Especially in example 4, People’s Square and
People’s Park are famous tourism attractions in Shanghai. People often visit
them together.

6 Related Work

Co-location patterns [10,15,11] and efficient algorithms have been studied by
various researchers. An initial summary of results on general spatial co-location
mining was proposed in [12]. The authors proposed the notion of user-specified
neighborhoods in place of transactions to specify group of spatial items. By doing
so, they can adopt traditional association rule mining algorithms, i.e., Apriori
[2] to find spatial co-location rules. An extended version of their approaches was
presented in [10]. Fast mining algorithms are proposed in [15]. The algorithms
combine the discovery of spatial neighborhoods with the mining process. The
algorithms work on a given pattern, star, clique, or generic, and calculate the
participation index using an extension of a spatial join algorithm. Others have
considered complex co-location patterns including negative co-locations [11] and

Mining Co-locations under Uncertainty 445

Table 2. Examples of real data co-location

Co-location Samples with Top Rank Participation Index

1. {Chengxi Flower Garden }, { Shanxin Apartment},
{Zongtongwan Garden}
Explanation: All of those three areas are large and up-scale neighborhoods with
many community facilities and amenities.

2. {Shanghai Longbai Middle School, Longbai Rainforest Preschool},
{Longbai No.1 Elementary School, Xijiao Apartment},
{Shanghai Tianshan Middle School}
Explanation: These three areas largely overlap with a school zone.

3. {Hongxian Unit, Xinle Unit}, {Hongxian Unit}, {Xianxia Villa}
Explanation: Three adjacent residential areas.

4. {People’s Square, Shanghai Grand Theatre},{People’s Square},
{People’s Park}
Explanation: Three famous adjacent entertainment and tourism areas in Shanghai.

zonal co-locations [6] with dynamic parameters, i.e., repeated specification of
zone and interest measure values according to user preferences. The problem of
mining co-location patterns with rare spatial features has been studied in [9].
The authors applied a new measure which considers the maximum participation
ratio of the co-location patterns.

In [1], the authors study the problem of frequent pattern mining with uncer-
tain data. They extend the Apriori-based, hyper-structure based, and pattern
growth approaches and conclude that experimental behaviour of different classes
of algorithms is very different in the uncertain case as compared to the determin-
istic case. In [13], the authors studied on the probabilistic spatially co-locations
and proposed a dynamic programming algorithm which is suitable for parallel
computation. They proposed the uncertainty model by introducing the concept
of existential probability of an instance. The probability of a possible world can
be calculated as the product of the probabilities of presence or absence of all
uncertainty instances. By multiplying the probability of possible worlds and the
participation index under certain case together, they can get the finial partici-
pation index. This model is only considers the probability of existence while our
model considers the possible locations of all instances.

The lexicographic tree (enumeration tree) has been used in mining maximal or
long pattern association rules. The counting [14] and pruning [5,16,8] methods in
the search tree to generate association rules are not applicable to our problem. In
[14], the authors presented the maximal clique generation method. They modified
the Bierstone’s algorithm [7] and used the concept of α-related to weaken the
clique generation process to avoid the edge density is too high.

446 Z. Liu and Y. Huang

7 Conclusion

In this paper, we formulated the framework for mining co-locations in uncertain
database and defined the notion of participation index in the uncertain case.
We presented the UApriori algorithm to mining co-locations in uncertain data
and proposed event level pruning (UApriori-E) to make it more efficient. We
presented the uncertain feature tree co-location algorithms and introduced dif-
ferent searching and pruning methods. Our experiment showed that in mining
large size co-locations or dealing with datasets with high level of uncertainty, the
feature tree algorithm with follow set pruning provided the best performance.
In future, we will generalize our model to account for distributions of instances
instead of the possible instance model used in this paper.

References

1. Aggarwal, C.C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain
data. In: Proceedings of the 15th ACM SIGKDD (2009)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. VLDB (1994)

3. Bernecker, T., Emrich, T., Kriegel, H.-P., Renz, M., Zankl, S., Züfle, A.: Efficient
probabilistic reverse nearest neighbor query processing on uncertain data. In: Proc.
VLDB Endow. (2011)

4. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM (1973)

5. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: a maximal
frequent itemset algorithm. In: TKDE (2005)

6. Celik, M., Kang, J.M., Shekhar, S.: Zonal co-location pattern discovery with dy-
namic parameters. In: Proceedings of the Seventh IEEE ICDM (2007)

7. Corneil, D.G., Mulligan, G.D.: Corrections to bierstone’s algorithm for generating
cliques. Commun. ACM (1972)

8. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: ICDM
(2001)

9. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from
spatial data sets. Geoinformatica (2006)

10. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial
data sets: A general approach. In: TKDE (2004)

11. Munro, R., Chawla, S., Sun, P.: Complex spatial relationships. In: Proceedings of
the Third IEEE ICDM (2003)

12. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

13. Wang, L., Wu, P., Chen, H.: Finding probabilistic prevalent colocations in spatially
uncertain data sets. In: IEEE TKDE (2013)

14. Zaki, M.J.: Scalable algorithms for association mining. In: TKDE (2000)
15. Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial colloca-

tions. In: ACM SIGKDD (2004)
16. Zou, Q., Chu, W.W., Lu, B.: Smartminer: a depth first algorithm guided by tail

information for mining maximal frequent itemsets. In: ICDM (2002)

Querying Incomplete Geospatial Information
in RDF�

Charalampos Nikolaou and Manolis Koubarakis

National and Kapodistrian University of Athens, Greece
{charnik,koubarak}@di.uoa.gr

1 Introduction

Incomplete information has been studied in-depth in relational databases and
knowledge representation. It is also an important issue in Semantic Web frame-
works such as RDF, description logics, and OWL 2. In [6], we introduced RDFi,
an extension of RDF for representing incomplete information using constraints.
We defined a semantics for RDFi and studied SPARQL query evaluation in
this framework. Given the current interest in publishing geospatial datasets as
linked data (e.g., by Ordnance Survey in the UK), RDFi is an excellent frame-
work for encoding, possibly incomplete, qualitative and quantitative geospatial
information which is found in these published datasets. RDFi is also interesting
because when the constraint language used can express the topological relations
of RCC-8 [8], the recent OGC standard GeoSPARQL [7] for querying geospatial
information expressed in RDF, becomes a special case of RDFi.

In this paper, we propose the problem of implementing an efficient query pro-
cessing system for incomplete temporal and geospatial information in RDFi as
a challenge to the SSTD community. For the case of incomplete temporal infor-
mation in relational databases, two such systems have been implemented in the
past [1,3], but their query languages are rather limited. There is also the paper
[2] which studies a closely related problem, temporal relationships in databases,
but which has no related implementations. Finally, the knowledge representation
language Telos [5] allows the modelling of incomplete temporal knowledge but
well-known implementations such as ConceptBase have not implemented this
functionality. To the best of our knowledge, no such relational database system
or RDF store exists for the geospatial case, although there are some description
logic reasoners that come close in terms of functionality [11]. In the rest of the
paper, we present the RDFi framework and outline the hard problems that have
to be solved if such a query processing system is to become a reality. As in the
theoretical foundation of [6], we concentrate on geospatial information only.

2 RDFi by Example

RDFi [6] is a framework that extends RDF in a general way with the ability
to represent and query incomplete information. Incomplete information often
� This work was supported by the European FP7 project TELEIOS (257662) and the

Greek NSRF project SWeFS (180).

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 447–450, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

448 C. Nikolaou and M. Koubarakis

gag:Region rdfs:subClassOf geo:Feature. gag:WestGreece rdf:type gag:Region.

gag:Municipality rdfs:subClassOf geo:Feature. gag:OlympiaMuni rdf:type gag:Municipality.

noa:Hotspot rdfs:subClassOf geo:Feature. noa:hotspot rdf:type noa:Hospot.

noa:Fire rdfs:subClassOf geo:Feature. noa:fire rdf:type noa:Fire.

gag:OlympiaMuni geo:hasGeometry ex:oGeo. ex:oGeo rdf:type sf:Polygon.

ex:oGeo geo:asWKT "POLYGON((..))"^ ĝeo:wktLiteral.

noa:hotspot geo:hasGeometry ex:rec. ex:rec geo:asWKT "POLYGON((..))"^ ĝeo:wktLiteral.

gag:WestGreece geo:sfContains gag:OlympiaMuni. noa:hotspot geo:sfContains noa:fire.

Fig. 1. RDFi database using the vocabulary of GeoSPARQL

arises when sensing the real-world due to the inherent imprecision of measur-
ing devices. For example, in wild-fire monitoring applications, satellite images
are analyzed to detect hotspots (i.e., pixels of the image corresponding to geo-
graphic regions that are probably on fire). Due to the medium resolution of the
satellite images, these hotspots correspond to rectangles that are 3km by 3km
wide. Thus, a useful representation of the real world situation of a hotspot is to
state that there is a geographic region with unknown exact coordinates where a
fire is taking place, and that region is included in the known geometry for the
hotspot. Such information is usually combined with other relevant sources, such
as administrative boundaries, to aid decision makers in managing the fire.

This scenario is captured by the RDFi database of Fig. 1 using the vocabulary
offered by GeoSPARQL (namespace geo). This database contains data about the
hotspot, the fire, the administrative region of West Greece, and the municipality
of Olympia in which the hotspot has been detected. To make the example more
interesting, we have assumed that the exact administrative boundary for West
Greece is unknown. The second set of triples in Fig. 1 encode the geometries of
Olympia and the hotspot using the Well-Known Text standard format, while the
last two triples state the containment relations that hold between West Greece
and the municipality of Olympia, and the hotspot and fire.

RDFi uses the concept of e-literals to represent property values that exist
but are unknown or partially known. Partial knowledge about property values
is expressed by a quantifier-free formula of a first-order constraint language. For
simplicity, we have not used the more powerful syntax of RDFi to capture our
partial knowledge about West Greece and the hotspot. Instead we have expressed
it as triples as in GeoSPARQL (last two triples of Fig. 1). The following is a
SPARQL query that uses the topology vocabulary extension of GeoSPARQL to
query the database of Fig. 1 for fires that are inside the region of West Greece.

SELECT ?f WHERE {?f rdf:type noa:Fire. gag:WestGreece geo:sfContains ?f.}

The specification of GeoSPARQL does not propose a semantics or algorithm
for computing the answer to such a query, although the answer is entailed by
the triples of Fig. 1. The answer can be computed by computing the entail-
ment of relation geo:sfContains between gag:WestGreece and noa:hotspot
from the fact that the geometry of the hotspot is contained in the geometry
of Olympia, and then include it in the computation of the transitive closure for
relation geo:sfContains to derive the triple gag:WestGreece geo:sfContains
noa:fire. In contrast, SPARQL query evaluation over RDFi databases as stud-
ied in [6] gives an algorithm for computing such entailments.

Querying Incomplete Geospatial Information in RDF 449

3 Query Processing Challenges
As the example of the previous section shows, and as we have shown more gener-
ally in [6, Theorem 2], the challenge with which a system is faced for answering
queries such as the above is the efficient computation of the entailment rela-
tion Φ |= Θ where Φ,Θ are quantifier-free first-order formulae of a constraint
language that is capable of expressing the topological relations of various frame-
works such as RCC-8, DE-9IM, OGC Simple Features, etc. Computing such an
entailment usually reduces to checking the consistency of constraint networks
that involve qualitative spatial relations among regions identified by a URI and
constant ones. This combination of qualitative and quantitative constraints has
been studied in detail for temporal constraints but similar results do not exist for
spatial constraints. Only recently there has been some work on topological rela-
tions among polygonal regions, but is limited to atomic and complete constraint
networks, which are far away from real datasets.

RDF stores supporting linked geospatial data are expected to scale to billions of
triples like their non-spatial counterparts and recent work in this area is encourag-
ing [4]. Can this level of scalability be achieved when qualitative spatial relations
come into play? A good approach here might be to start with algorithms with low
polynomial complexity and try to implement them as efficiently as possible. In the
temporal case, this approachhas been followed successfully by temporal reasoners.
In addition, there might be cases where network structure can be exploited (e.g.,
hierarchical organization of geographical regions).

To answer the above question, we have compared the performance of check-
ing the consistency of tractable RCC-8 constraint networks using the well-known
Path Consistency (PC) algorithm as implemented in the state of the art quali-
tative spatial reasoners Renz Solver [9], PyRCC-8 and PyRCC-8

�
[10], and a

relational counterpart of the PC algorithm of [9] as a SQL program in Post-
greSQL only to reach the same conclusion. Our findings were that none of the
implementations scale so as to be qualified for use in implementations of query
processing algorithms for the entailment problem described above.

Fig. 2a shows the performance of these implementations using real-world
linked geospatial datasets containing only qualitative spatial relations from RCC-
8 (this is a much simpler problem than the one considered in Fig. 1). Each
dataset is presented in increasing order of its size, while the sizes range from
1500/2000 nodes/edges to 276728/590443 nodes/edges. For the last dataset there
are no measurements for any of the implementations, because they all crass ei-
ther immediately (reasoners) or after some amount of time (PostgreSQL) due
to memory allocation errors1. For the first case, this is because they allocate
a two-dimensional array to represent the input constraint network. This array
is of size N2 where N is the number of nodes. Thus, even for medium-sized
graphs, these implementations fail to run, a drawback that is not present in the
relational-based implementation which can complete one or two iterations of PC.

The most interesting observation for such graphs is that they are sparse, hence
representations of the input graph that are based on two-dimensional arrays are

1 Setup: Intel Xeon E5620, 2.4 GHz, 12MB L3, 48GB RAM, RAID 5, Ubuntu 12.04.

450 C. Nikolaou and M. Koubarakis

 0.01

 0.1

 1

 10

 100

 1000

gag nuts admingeo gadm-geovocab

el
ap

se
d

tim
e

-
m

in
ut

es
 (

lo
gs

ca
le

)

dataset

Timeout PostgreSQL
Renz

PyRCC8
PPyRCC8

(a)

100

101

102

103

104

105

106

100 101 102 103 104 105

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Degree (logscale)

Power-law with α = 2.1

(b)

Fig. 2. (a) Performance of PC for various datasets (b) Degree distribution for gadm-
geovocab

not appropriate. This fact is depicted in Fig. 2b where the degree distribution
among the nodes of the largest dataset is shown. Fig. 2b shows that the in-
put RCC-8 constraint network is sparse following a power-law distribution. The
primary characteristic of such graphs is that most of the nodes have very low
degree, while only a small number of the nodes have high degree number leading
to star-shaped graphs. Another observation is that real datasets comprise con-
straint graphs with edges of three kinds: (non-)tangential proper part, externally
connects, or equals. Such kind of edges reflect networks that are composed of
components with a hierarchical structure which calls for further optimization.

References
1. Brusoni, V., Console, L., Terenziani, P., Pernici, B.: Later: Managing temporal

information efficiently. IEEE Expert 12(4), 56–64 (1997)
2. Chaudhuri, S.: Temporal relationships in databases. In: VLDB, pp. 160–170 (1988)
3. Griffiths, A., Theodoulidis, B.: SQL+i: Adding temporal indeterminancy to the

database language SQL. In: Morrison, R., Kennedy, J. (eds.) BNCOD 1996. LNCS,
vol. 1094, pp. 204–221. Springer, Heidelberg (1996)

4. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospa-
tial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS,
vol. 7649, pp. 295–311. Springer, Heidelberg (2012)

5. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing knowl-
edge about information systems. ACM Trans. Inf. Syst. 8(4), 325–362 (1990)

6. Nikolaou, C., Koubarakis, M.: Incomplete information in RDF. In: RR (2013)
7. Open Geospatial Consortium: OGC GeoSPARQL - A geographic query language

for RDF data. OGCR© Implementation Standard (2012)
8. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.

In: KR (1992)
9. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. Journal of

Artificial Intelligence Research (JAIR) 15, 289–318 (2001)
10. Sioutis, M., Koubarakis, M.: Consistency of Chordal RCC-8 Networks. In: ICTAI

(2012)
11. Stocker, M., Sirin, E.: PelletSpatial: A hybrid RCC-8 and RDF/OWL reasoning

and query engine. In: OWLED (2009)

Link My Data: Community-Based Curation

of Environmental Sensor Data

Heiko Müller, Chris Peters, Peter Taylor, and Andrew Terhorst

Intelligent Sensing and Systems Laboratory, CSIRO, Hobart, Australia
{heiko.mueller,chris.peters,peter.taylor,andrew.terhorst}@csiro.au

Abstract. One of the biggest obstacles to reuse of third-party sensor
data is a lack of knowledge about data properties (e. g., provenance and
quality) leading to a lack of trust in the data. Link My Data (lmd) is
a first step towards overcoming this problem. lmd provides a platform
for data curation that allows users to share knowledge about individual
sensors and sensor observations. The system supports annotation and
transformation of sensor data on the Web to improve data quality and
(re-)usability. Transformations, for example, allow to remove gaps or
change the temporal resolution for time series of sensor observations.
Transformation results are stored as views on the original data and made
available for other users. Within this demonstration we present the main
features of lmd. We show how lmd makes it easy to curate other people’s
data. The audience is welcome to interact with lmd’s web-based user
interface to share their knowledge about sensor data on the Web.

1 Motivation

Sensors play an important role in environmental monitoring and modelling. The
recent years have seen a vast increase in the amount of environmental sensor
data being published on the Web. Data (re-)use, however, is cumbersome for
various reasons: First, sensor data comes in different types (e. g., aggregated,
instantaneous, cumulative) and often has different temporal and spatial scales
requiring transformation to homogenise the data. Second, data quality is often
varying and a lack of knowledge about data properties (e. g., the environment in
which a sensor is deployed, or awareness of events like flooding that temporarily
deteriorate the quality of observations) hampers our ability to decide whether a
given piece of data is fit for its purpose.

Link My Data (lmd) is a first step towards overcoming this problem by
creating a common platform for sharing knowledge about sensor data on the
Web. The goal is to leverage the collective knowledge of data users to improve
data quality and (re-)usability. lmd achieves this through use of a flexible anno-
tation system. Annotations are either free form text, elements from controlled
vocabularies, or references to other objects or resources on the Web. Tempo-
ral annotations highlight events that influence a sensor and the quality of its
observations. Examples of annotations include descriptions of time series inter-
polation types or highlighting regions of missing data. Annotations help making
data properties explicit and are a first step towards improving data (re-)usability.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 451–455, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

452 H. Müller et al.

lmd has a strong focus on historic time series data from terrestrial sensors, like
stream gauges or automatic weather stations, used for example in data-driven
modelling [7]. Users often fix quality flaws in historic data individually, e. g., they
eliminate gaps in the data when using the data. Currently, such modifications
are not shared with other users. lmd addresses this problem by allowing users
to define and share modified, and annotated, versions of online data. We pro-
vide a set of transformation operators that allow users to define transformation
programs for time series data on the Web. Transformation results are stored as
virtual or materialised views on the original data and are published on the Web.
We thereby ensure that users can benefit from data cleaning efforts of previous
users and avoid redoing modifications over and over again.

lmd is among the first approaches towards active user participation in sensor
data curation. It is inspired by current trends towards semantically-enriched
sensor data [6], crowdsourcing [3], and collaborative data management [4,2]. We
describe the overall system architecture and main features of lmd in Section 2.
The proposed demonstration is outlined in Section 3.

2 System Overview

The overall architecture of lmd is shown in Figure 1. The system is imple-
mented in Java and run as a web service using Apache Tomcat. Data is stored in
a dedicated data store. There are four main components in the architecture: The
Data Access Layer provides data access and abstracts from the underlying data
store. We currently use MongoDB1, mainly for its scalability and its flexibility
in storing objects with similar but varying schema. The Query Engine allows
searching for objects with specific annotations (e.g., sensors in a region that ob-
serve rainfall in a specified data format). The Time Series Engine is responsible
for executing data transformation programs. The system is accessible via a Web
API. All data is represented in json.

lmd has several features that distinguish it from other systems for annotation
(see [5,8] for surveys) and collaborative data curation (e. g., [1,4,2]). In lmd, any
resource with a uniform resource identifier (uri) can be annotated. The system
itself provides resolvable resource locators (using http urls) for all system
generated objects. In lmd, there are three types of annotations: literals, links
and temporal annotations. Literals and links are similar to triples in rdf, i. e.,
labeled edges in a graph connecting resources and values. Values, however, can
be structured, i. e., json documents. Temporal annotations support definition of
intervals and points in time that are of importance to a resource (e. g., the period
during which a sensor was out of order or calibration events). Given that all
annotations have urls, we can annotate them as well, e. g., to provide references
to further information about an event or to maintain provenance information.

Time series in lmd are sequences of (time, value)-pairs that are published as
(part of) structured documents on the Web. Each document may contain multi-
ple time series. lmd allows users to define source descriptions that specify how

1 http://www.mongodb.org

Link My Data 453

Fig. 1. Architecture of the Link My Data platform

to extract time series from documents. Source descriptions are format-specific.
We currently support json, xml, and csv as document formats. For xml and
json, we use path expressions to specify the elements that belong to individual
time series in the document. lmd represents time series as sequences of json
objects and assigns unique identifiers to them, thus allows annotation.

lmd is equipped with a set of operators for transforming time series data.
This allows users to manipulate existing data and share the results. Given that
we cannot update existing data directly (it may be stored anywhere on the
Web), we store transformation results as virtual or materialised views in our
data store. The current set of operators supports temporal aggregation, update
of observed values, automatic annotation generation (e. g., gap detection), as
well as concatenation and merging of time series. Operators take one or more
time series as input and produce a time series as output. Operators are chained
together to form a data transformation pipeline. These pipelines are specified
either programmatically or using a simple scripting language (see Figure 2).

A special operator allows generation of transformation pipelines on-the-fly
from time series annotations. This operator can be used to define generic trans-
formation pipelines that are applicable to different time series. We then associate
such transformers with certain annotations. For example, if a time series is an-
notated as of type cumulative rainfall then a script is applicable that transforms
cumulative rainfall into hourly proceeding total. Generic transformers follow the
idea of ‘active objects’, i. e., objects that present users with a set of actions that
are applicable to them.

3 Demonstration

lmd comes with a Java library for application development. We used this library
to implement a graphical user interface (see Figure 2). A current prototype is
available at http://lmd.it.csiro.au.

454 H. Müller et al.

Fig. 2. Screenshot showing annotations and a transformation script for a rainfall ob-
servation time series

In our demonstration we show how lmd makes it easy to create, update,
and delete annotations. We demonstrate lmd’s search and query capability that
enables searching for annotated resources based on keywords and conditions over
annotations. lmd’s ability to annotate annotations is another powerful feature.
We show how provenance information about annotations can be represented
as annotations and used to validate an annotation, i. e., detect changes to the
original data that cause an existing annotation to become obsolete.

To demonstrate lmd’s capability to manipulate existing sensor data, we use
sensor data collected by the South Esk Hydrological Sensor Web (sesk)2. An-
notations are used to highlight quality flaws in the data. We show how to derive
transformation scripts from these annotations to provide clean views on the data.
A particular example is shown in Figure 2. Here, we first update existing values

2 http://www.csiro.au/sensorweb/sesk

Link My Data 455

in a time series of cumulative rainfall observations. We then aggregate the data
to produce a time series representing hourly rainfall totals.

Annotation scripts can be defined manually for individual time series. The
full power of lmd’s transformation capability, however, is shown when defining
generic scripts that apply to different time series and are parameterised by exist-
ing annotations. We give examples of such generic scripts in our demonstration,
e. g., to transform cumulative rainfall into hourly, daily, or monthly totals.

We use sensor observations from several web data services such as sesk and
the Australian Cosmic Ray Sensor Network3 in our demonstration. We demon-
strate how to add new source descriptions to extract time series data. Partici-
pants are encouraged to interact with the system at any time to provide anno-
tations or define data transformations. We are interested in setting up source
descriptions for data services that are of interest to participants to allow them to
make the data available for annotation and transformation and thereby enhance
data quality and (re-)usability by others.

Acknowledgements. The Intelligent Sensing and Systems Laboratory and the
Tasmanian node of the Australian Centre for Broadband Innovation is assisted
by a grant from the Tasmanian Government which is administered by the Tas-
manian Department of Economic Development, Tourism and the Arts.

References

1. Auer, S., Dietzold, S., Lehmann, J., Riechert, T.: Ontowiki: A tool for social, se-
mantic collaboration. In: Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC) (2007)

2. Buneman, P., Cheney, J., Lindley, S., Müller, H.: The database wiki project:
a general-purpose platform for data curation and collaboration. SIGMOD
Record 40(3), 15–20 (2011)

3. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

4. Liang, S., Chen, S., Huang, C.Y., Li, R.Y., Chang, D.Y., Badger, J., Rezel, R.:
Geocens: Geospatial cyberinfrastructure for environmental sensing. In: GIScience
2010, Zurich, Switzerland (2010)

5. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: Proceedings of the
2005 ACM symposium on Applied computing, SAC 2005, pp. 1634–1638 (2005)

6. Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Comput-
ing 12(4), 78–83 (2008)

7. Solomatine, D., See, L., Abrahart, R.: Data-driven modelling: Concepts, approaches
and experiences. Practical Hydroinformatics 68, 17–30 (2008)

8. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: Requirements and
a survey of the state of the art. Web Semant 4(1), 14–28 (2006)

3 http://waterml2.csiro.au/cosmoz

CrowdPath: A Framework for Next Generation Routing
Services Using Volunteered Geographic Information

Abdeltawab M. Hendawi, Eugene Sturm, Dev Oliver, and Shashi Shekhar

Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455, USA

{hendawi,oliver,shekhar}@cs.umn.edu, sturm049@umn.edu

Abstract. Our proposed system CrowdPath is based on the hypothesis that peo-
ple know their commute area better than conventional routing services that use
traditional digital roadmaps and shortest path algorithms. The knowledge and ex-
periences of drivers reflected in volunteered commute routes may provide better
routes. By leveraging such available volunteered geographic information (VGI),
our goal is to investigate next-generation routing services to further reduce travel
time, fuel consumption, and improve navigation. Previous related work summa-
rizes GPS tracks into a landmark graph which is used for answering routing
queries. In contrast, CrowdPath directly queries a collection of map-matched GPS
tracks to recommend paths from a source location to a destination. Our evaluation
using real GPS tracks illustrates the promise of CrowdPath in significantly reduc-
ing travel time compared to routes from common routing providers. In the future,
CrowdPath may be extended to adapt route recommendations by start time and
provide safe paths using volunteered crime and accident reports.

1 Introduction

Given a source location, a destination, and a user preference function (e.g., minimize
travel time, fuel consumption), routing services provide a set of paths from source to
destination that optimizes the user preference function. Examples of routing services
include in-car GPS devices, web-based applications, cellphones, etc.

The proliferation of volunteered geographic information (VGI) such as GPS tracks
donated by individuals via forums such as OpenStreetMap [3] has created an opportu-
nity for providing next generation routing services. Next-generation routing is important
for critical societal applications such as further reducing fuel consumption, commute
time, and traffic congestion, as well as improving navigation. Preliminary evidence for
the transformative potential of next-generation routing includes the experience of UPS,
which saves millions of gallons of fuel by simply avoiding left turns [2]. Such turn mod-
eling information (as well as traffic light synchronization, slowdowns at curves) may be
gleaned from the volunteered commute routes of individuals.

This problem is challenging because accurate modeling of driving conditions such
as traffic delays, potholes, traffic light synchronization, and weather conditions, is very
difficult. Accurate modeling of user behavior and recent changes in maps is also chal-
lenging.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 456–461, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

CrowdPath: A Framework for Next Generation Routing Services 457

Fig. 1. The CrowdPath System Architecture

Previous related work summarizes GPS tracks into a landmark graph which is used
for answering routing queries. For example, T-Drive [4] considers GPS tracks for taxis
where the tracks are sampled every five minutes. This approach is able to offer rush hour
vs non rush hour routing services for high cab-traffic areas. Edges in the landmark graph
correspond to a sequence of segments in the roadmap used to pose routing queries.

In contrast, the proposed CrowdPath system directly queries a collection of
map-matched GPS tracks to recommend paths from a source location to a destination.
CrowdPath is based on the hypothesis that people know their commute area better than
conventional routing services that use traditional digital roadmaps and shortest path al-
gorithms. In fact, individuals examine many paths using alternate preference functions
(e.g., minimize travel time, minimize fuel consumption, avoid potholes, scenic routes)
from their home to work until they find their favorite ones. This may be seen in the way
some people do not completely follow directions given by routing providers in certain
nearby areas where they have more experience. Based on this observation, CrowdPath
collects volunteered GPS tracks for people’s daily trips from different sources such as
OpenStreetMap [3]. These tracks are analyzed to extract only the valid ones that do
not contain unreasonable behavior such as speed limit violations, e.g., speeds above 90
miles per hour on highways. The travel time and distance costs of all possible sub-trip
combinations inferred from the valid tracks are compared to the ones recommended by
routing providers.

Scope and Outline: A comparison with T-Drive and shortest path algorithms is lim-
ited to a conceptual discussion. A detailed comparison is outside the scope of this work.
We assume that GPS commute routes are donated and issues such as privacy are beyond
the scope of the present research. These limitations may be investigated in future work.

2 System Overview

System Architecture: The architecture of the CrowdPath system is given in Figure 1.
CrowdPath has three main types of data sources, namely, public GPS traces, rout-
ing providers, and risk reports. The system has three main components, namely, the

458 A.M. Hendawi et al.

Fig. 2. Attributed Time Aggregated Graph (ATAG)

attributed time aggregated graph (ATAG) data structure, the Data Analysis and Main-
tenance module, and the Query Processing module. This section discusses the data
sources and system components.

Data Sources: The proposed framework relies on data extracted from three main
sources. (1) Public GPS Traces. Our main source of volunteered data is OpenStreeMap
(OSM) which allows the download of volunteered GPS traces filtered by areas of in-
terest. We use a tool provided on the OSM wiki called JOSM which allows us to view
OSM data and collect the GPS traces for a specified area. For example, in Minneapolis,
Minnesota, USA, we found about 326 GPS tracks consisting of hundreds of thousands
of GPS points. (2) Routing Services. This data source accesses three major mapping and
routing services, namely, Google Maps, Bing Maps, and MapQuest to extract direction,
distance cost, and travel time cost for their recommended paths between the start and
end points of a user trip. The data is accessed by sending http requests to each provider
to get the recommended path between start and end points. The time and distance costs
are then obtained from the returned path. (3) Risk Reports. The final data source con-
tains data about car accidents and crime linked to their locations and times during the
day. This source will be included in future versions with more routing preference func-
tions.

ATAG Data Structure: To save all the data in a way that allows us to compute the
shortest path from a given source location to a destination, we introduce the attribute
time aggregated graph (ATAG). Potentially ATAG may be used to support other prefer-
ence routing functions, e.g., less fuel consumption, less car accidents, less pollution, or
paths with more services. This graph data structure is an adapted version of the existing
time aggregated graph (TAG) [1] in which intersections are represented as nodes and
roads as edges, and each edge can have multiple weights. The existing TAG graph car-
ries values for only one feature or attribute such as travel time cost. By contrast, each
edge in the ATAG data structure can have more than one attribute, e.g., distance, time,
risk; for each edge, we store multiple weights in different time slots. Figure 2 illustrates
the idea of storing multiple attributes for each single edge in the ATAG data structure.
As can be seen in the figure, each edge has three different attributes (i.e., distance, travel
time, and risk) and each attribute can have either one value like the distance attribute
or many values like the travel time attribute which has values in ten different time in-
stances. The edge between (N1,N3) has a weight of one distance unit for all times of
the day, four units for travel time starting at the sixth time slot (weights for travel time

CrowdPath: A Framework for Next Generation Routing Services 459

do not exist during the first five time slots), and four units for risk starting on the first
time slot of the day. The main difference between ATAG and the landmark graph [4] is
that the latter summarizes GPS tracks into the main road segments. In contrast, ATAG
directly maps the GPS tracks to their equivalent road edges in the underlying road net-
work graph. Also, the advantage of introducing ATAG over the traditional time-series
graph [1] is that the former does not need to replicate the data which in turns saves
storage and reduces I/O cost.

Analysis and Maintenance Module: The main function of this module is to extract and
store valid GPS tracks from the set of all tracks obtained. These valid tracks are made
available to the query processor for answering routing queries. The analysis and main-
tenance module only extracts the tracks that do not violate certain validation checks
(e.g., speed limit). The module then map matches the points inside each track to their
corresponding nodes in ATAG. After that, the costs, e.g., travel time or distance, be-
tween each pair of points are used to update the weights of the equivalent edges at the
same time slot of the day. Another potential technique is to store valid tracks as a whole
and retrieve them without requiring further computation. This can be done using a three
dimensional matrix (start, destination, time slot), however, the matrix will be sparse.

Query Processing Module: The dynamic nature of the underlying road network is
captured through ATAG where each edge could have multiple weights at different time
slots of the day. Traditional shortest path algorithms that assume one weight for each
edge are not suitable for answering routing queries in our dynamic graph. The main
challenge here is to design efficient, valid, and expandable query processing algorithms
to take into consideration the spatio-temporal aspects of the network while evaluating
routing queries. An efficient algorithm reduces computation cost, a correct algorithm
returns a valid path, and an expandable routing algorithm answers potential queries
using the multiple attributes on edges in just one traversal, e.g., finding shortest paths
with less fuel consumption. To this end, we leverage the SP-TAG algorithm [1] to find
the optimal path between two nodes given a graph structure with multi-weight edges.

3 Demonstration

The goal of this demonstration is to solicit audience feedback on how to improve the
CrowdPath system to include other routing preference functions (e.g., fuel consump-
tion, pollution, services on roads, potential coupons and sales, safety, etc.). We plan to
prioritize these preference functions based on the feedback we get.

Our demonstration will include the following. First, the user can interact with the
CrowdPath system to browse the available GPS-tracks and examine the structure of
associated .gpx files (basic format for storing GPS tracks). The user is also able to
examine the validation techniques we applied to the volunteered GPS-tracks to elimi-
nate the tracks with issues (e.g., speed limit violations and topologically unreasonable
tracks). The audience will see a sample of the valid tracks versus the invalid ones. In ad-
dition, we will present some of the GPS-tracks that are similar to the routes given by the
conventional routing services and show how we do the analysis and comparison. Fur-
thermore, we will present a coverage map to illustrate the distribution of the obtained

460 A.M. Hendawi et al.

Fig. 3. The CrowdPath Main GUI (Best in color)

volunteered GPS-tracks in different areas on the map. Moreover, the user is able to
upload new GPS tracks from which the system extracts valid tracks and sub-tracks. Fi-
nally, the user can examine the main GUI of the CrowdPath system, Figure 3, to ask for
a routing service by entering the start and destination locations, specified as latitude and
longitude or as an exact address. The user will be able to compare the routes returned
by conventional routing providers (blue line) and the route recommended based on the
volunteered GPS tracks (red line) in terms of the total travel time and distance. For
example, consider the start location 3308 California St NE, Minneapolis, MN 55418,
USA and the destination University of Minnesota Transit way, St Paul, MN 55114, USA.
A traditional routing service recommends a route that has a travel time of 19 minutes
whereas the route recommended by CrowdPath has a travel time of 14 minutes. In this
test case, the CrowdPath route is faster and saves about 26% of the total driving time,
which may reduce fuel consumption and the impact on both the environment and traffic.

4 Conclusion

In this demonstration paper we investigated the problem of next generation routing ser-
vices using volunteered commute routes. This problem is important for critical societal
applications such as further reducing travel time, and fuel consumption. We presented
the CrowdPath system that is based on the hypothesis that people know their commute
area better than conventional routing services that use traditional digital roadmaps and
shortest path algorithms. CrowdPath directly queries a collection of map-matched GPS
tracks to recommend paths from a source location to a destination. We presented an
evaluation using real GPS tracks that demonstrates the promise of CrowdPath in signif-
icantly reducing travel time compared to routes from common routing providers.

CrowdPath: A Framework for Next Generation Routing Services 461

In future work, we plan to elaborate further on the system details (e.g., data structures
and algorithms). We also plan to extend CrowdPath to adapt route recommendations by
start time and provide safe paths using volunteered crime and accident reports.

References

1. George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms:
A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 460–477. Springer, Heidelberg (2007)

2. Lovell, J.: Left-hand-turn elimination (December 2007), http://goo.gl/3bkPb
3. OSM. Public GPS traces (January 2013), http://www.openstreetmap.org/traces
4. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions

based on taxi trajectories. In: ACM SIGSPATIAL GIS, California, USA (November 2010)

http://goo.gl/3bkPb
http://www.openstreetmap.org/traces

Interactive Toolbox for Spatial-Textual

Preference Queries

Florian Wenzel, Dominik Köppl, and Werner Kießling

Department of Computer Science, University of Augsburg
D-86135 Augsburg, Germany

{wenzel,koeppl,kiessling}@informatik.uni-augsburg.de

Abstract. Spatial-textual data is ubiquitous on websites such as
OpenStreetMap or Wikipedia and is published progressively by Open
Government Data Initiatives. Those data sources provide the base for
novel mashup applications for Location-Based Services. We present a
mobile prototype for the San Francisco area based on Preference SQL
that allows an intuitive expression of spatial keyword queries. Search
can further be extended towards temporal, categorical, and numerical
attributes. Our demo provides a fully flexible toolbox for generating ex-
tended spatial-textual queries in non-metric spaces which are evaluated
using a Best-Matches-Only query model. Spatial relevance is defined by
an asymmetric routing distance supporting complex geometries. Textual
relevance is determined using the Apache Lucene library.

1 Introduction

Websites such as Tripadvisor or Wikipedia provide spatial-textual data in the
form of geo-tagged content. Additionally, Open Government Data Initiatives
lead to the publication of large amounts of public spatial data by cities such as
San Francisco or Berlin. All these data sources are a base for up-and-coming
mobile mashup applications that combine base information to provide novel
Location-Based Services (LBS). These integrated applications require a dynamic
combination of different data sources in form of temporary relations. Addition-
ally, numerical, categorical, and temporal attributes are of importance. Spatial
Keyword (SK) Queries have to be extended towards this end to combine all
these attributes in a semantically intuitive fashion in order to provide high qual-
ity personalized search results. These preconditions render the use of current
index-based approaches inapplicable. Furthermore, the heterogeneity of spatial
and textual data among data sources demands a flexible query and data model.
The representation of spatial resources as a mix of points and complex geome-
tries asks for a flexible spatial relevance definition. As asymmetric distances
occur through one-way streets and terrain topology, distance axioms have to
be relaxed towards non-metric spaces to allow queries based on net distances.
Semi-structured and unstructured text pose additional demands on textual rel-
evance determination. The Preference SQL System [2] provides a rich toolbox
for developers that meets these new challenges. Base preference constructors can

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 462–466, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{wenzel,koeppl,kiessling}@informatik.uni-augsburg.de

Preference SQL 463

be combined in a flexible fashion via complex preference constructors to form
personalized Preference SQL queries. Spatial relevance is evaluated using an
asymmetric routing distance. Textual relevance is determined using the Apache
Lucene library. We illustrate how developers can employ Preference SQL for
innovative LBS by presenting a mobile LBS application for the San Francisco
area. This research prototype illustrates how base preferences can be defined
and combined without knowledge of any query syntax based on three provided
use cases. Movie scenes, restaurants, or landmarks can be retrieved according
to their spatial, textual, temporal, numerical, and categorical attributes. Fur-
thermore, the individual importance of base preferences can be modified to form
complex Preference SQL queries. To the best of our knowledge, there is no other
framework to treat this kind of extended SK queries on non-metric spaces.

2 Preference SQL Overview

The presented demo application relies on the Preference SQL system as under-
lying representation of preferences as strict partial orders [1]. Preference SQL
enhances the SQL standard by a PREFERRING clause that specifies preferences
by means of preference constructors given in [2]. These preferences are evaluated
as soft constraints on base of the results generated by SQL hard constraints.
The syntax allows for further post-filtering.

Preference evaluation follows a Best-Matches-Only query model , that
defines for a preference P = (A,<P) on a relation R = (A1, · · · , An) ⊇ A the
preference selection operator by

σ[P] (R) := {t ∈ R| � ∃t′ ∈ R : t.A <P t′.A} .

The Preference SQL system is implemented as Java-middleware on top of conven-
tional database systems such as Oracle or Postgres and provides a JDBC driver
for seamless integration into applications. The system implements a parser,
heuristic and cost based optimizer, and efficient evaluation algorithms such as
BNL, BNL++, LESS, SFS, and Hexagon [2].

2.1 Constructor-Based Approach

The system follows a constructor based approach by dividing preferences into
base preferences operating on attributes, and complex preferences that combine
multiple preferences. For an overview of the corresponding query syntax we
refer to [2]. Base preference constructors displayed in a ’is-a’-hierarchical view
in Figure 1 provide a flexible toolbox for the expression of base preferences
on spatial, textual, temporal, numerical, and categorical domains. All displayed
base preferences are sub-constructors of the SCOREd preference, which generates
a preference order using a scoring function f(x) as follows:

x <P y iff fd(x) > fd(y) with fd(x) =

{⌈
f(x)
d

⌉
if d > 0

f(x) else

464 F. Wenzel, D. Köppl, and W. Kießling

The optional d-parameter can be used to form equivalence classes of equally
important f(x) values. Numerical preferences define f(x) based on deviation
from a desired input value. In the case of BETWEEN, numerical values within
a user-defined interval are preferred. Categorical preferences such as LAYERED

define f(x) based on sets of preferred domain values.

POS NEG LOWESTd HIGHESTd

POS/POS POS/NEG AROUNDd

LAYEREDm BETWEENd

SCOREd

CONTAINS SPATIALd

NEARBYd WITHINd

BUFFERdONROUTEd

Fig. 1. Taxonomy of base preference constructors

Complex preference constructors provide the ability to either combine multi-
ple preferences or to fine-tune the behavior of a preference. The dual operator δ is
such a complex preference. It reverses a preference order, i.e. a <P δ b :⇔ b <P a.
Equal importance of base preferences is achieved by applying a Pareto construc-
tor that performs Skyline evaluation. The Prioritization constructor determines
the first mentioned preference as more important. Only in cases of equality or
indifference considering the first preference, the second preference is evaluated.
Ranked importance can be implied by using the RANKF constructor which per-
forms ranking according to a ranking function F .

2.2 Toolbox of Spatial-Textual Preference Constructors

The presented system provides full flexibility for developers to generate intuitive
Preference SQL queries. Within this toolbox, spatial and textual constructors
are key components and are thus highlighted consecutively. In contrast to query
engines using an exact match query model, spatial-textual preference queries are
evaluated as soft constraints following the Best-Matches-Only query model.

� Spatial Preferences: Given a query geometry gq preferred by the user, spa-
tial preferences determine those data geometries di of a database relation that
are best matches according to the spatial relevance defined by the preference
constructor. The query model uses Keyhole Markup Language (KML) to define
gq. The data model supports geometry types of underlying PostGIS or Oracle
Spatial database extensions. As shown in Figure 1, NEARBY, WITHIN, ONROUTE

and BUFFER can be used to express spatial preferences which define relevance
based on distance. WITHIN describes a preference on an attribute A # di fa-
voring geometric objects that are within or close to a region gq. A geometric
object di is better than dj if dist(gq, di) < dist(gq, dj). Applicable distances are
described below. In the given query model, relevance can be expressed by using

Preference SQL 465

a point, a region, or a line as query geometries gq. Hence, the preferences NEARBY
and ONROUTE follow the concept of WITHIN, but differ in the fact that NEARBY

accepts a point and ONROUTE a linestring instead of a region for gq. A more
comprehensive intention can be expressed with the BUFFER constructor which
also accepts a region and treats geometries closer to gq as more favorable, but
geometries within gq are considered as least favorable.

As sub-constructors of SCORE, the preference order is induced by a scoring
function fdist(x) := dist(gq, x). dist can be substituted with ST MaxDistance,

ST Distance and net dist. ST Distance calculates the minimal distance be-
tween two geometries, whereas ST MaxDistance computes the maximal distance:

ST Distance(A,B) := min
a∈A,b∈B

‖a− b‖2

ST MaxDistance(A,B) := max
a∈A,b∈B

‖a− b‖2
Here, ‖·‖2 is the classic Euclidean norm and A,B are geometric objects regarded
as a set of points. Both functions correspond to the SQL/MM standard and are
executed by the database system. Alternatively, net dist is a distance propri-
etary to Preference SQL as it employs a distance calculated using PgRouting,
based on a road network from OpenStreetMap. In contrast to Euclidean dis-
tance, the routing result is inherently asymmetric. In urban environments, one-
way streets lead to asymmetric results. Using costs such as duration, asymmetry
gets even more apparent in mountainous areas where terrain topology becomes of
importance. Preference SQL further accounts for transport modality by letting
users define routing to be performed for cars or pedestrians.

� Textual Preferences: The CONTAINS constructor is provided for textual do-
mains. Apache Lucene is used for evaluation by using Lucene’s Score as scor-
ing function, consequently the query model provides full Lucene functionality
with respect to search keywords, including wildcards and fuzzy search. These
scores can be customized by using implemented similarity distances like tf–idf
or by defining new ones. Considering the data model, language stemmer and
tokenizer for semi-structured data like Wikipedia entries can be specified. This
functionality provides a powerful means to state preferences on unstructured or
semi-structured text presented on websites in the form of reviews or descriptions.
Furthermore, text-search functionality can be combined with any other kind of
base preference constructors with the help of complex preference constructors.

3 Showcase Application

We present a dynamic HTML5 application based on the jQuery Mobile frame-
work which communicates with Preference SQL via JDBC. Based on use cases
in the San Francisco area, we demonstrate how Preference SQL can be used by
developers to provide users with an intuitive preference based LBS. Spatial pref-
erences can be defined by drawing query geometries on a map. Additional icons
allow to express those preferences with the dual operator applied. In a drop-
down list, preferred city districts can be selected which are also visualized on a
map. The top of the screen defines the three consecutively described operations.

466 F. Wenzel, D. Köppl, and W. Kießling

(a) Spatial Preference Selection (b) Complex Preference Composition

�Define: A pop-up lets users select one of the following use cases: (U1) combines
movie locations listed by the SF Data Project1 with movie data from the IMDB
database2. (U2) combines restaurant inspection results from the SF Data Project
with reviews from Tripadvisor3. (U3) joins geometry data and tags of Points and
Regions of Interest (POI/ROI) from OpenStreetMap4 with geo-tagged content
from Wikipedia5. For each use case, a form pop-up provides input for individual
base preferences on attributes of the joined data sources. A text-search function-
ality further allows input of complex search terms. Aliases are assigned to each
base preference which are displayed in an overview overlay.

� Compose: A pop-up allows users to compose complex preferences. Initially,
three levels are displayed in which base preferences can be dragged from the
overview. Levels are arranged in order of importance, with the most important
level at the top of the list. As soon as a preference is placed in the lowest level, an
additional level is created underneath. Levels are combined using the Prioritiza-
tion constructor. Preferences within a level are interpreted as equally important
by the use of the Pareto constructor. Ranking and further Prioritization can be
applied to each level. The generated Preference SQL query is displayed instantly.

� Search: After clicking the search button, the generated query is evaluated by
the Preference SQL system and best-matching results are shown.

References

[1] Kießling, W.: Foundations of Preferences in Database Systems. In: Proceedings of
28th Int. VLDB Conference, pp. 311–322. Morgan Kaufmann (2002)

[2] Kießling, W., Endres, M., Wenzel, F.: The Preference SQL System - An Overview.
IEEE Data Engineering Bulletin 34(2), 11–18 (2011)

1 http://www.datasf.org
2 http://www.imdb.com/interfaces
3 http://www.tripadvisor.com
4 http://www.openstreetmap.org
5 http://www.wikipedia.org

http://www.datasf.org
http://www.imdb.com/interfaces
http://www.tripadvisor.com
http://www.openstreetmap.org
http://www.wikipedia.org

Where Have You Been Today?

Annotating Trajectories with DayTag

Salvatore Rinzivillo1, Fernando de Lucca Siqueira2, Lorenzo Gabrielli1,
Chiara Renso1, and Vania Bogorny2

1 ISTI - CNR, Pisa, Italy
2 Universidade Federal de Santa Catarina, Florianopolis, Brazil

Abstract. Traditionally, the information about human mobility behav-
ior, called diary, is acquired from volunteers by means of paper-and-
pencil surveys. These diaries, representing the mobile activities of
individuals, are semantically rich, but lack in spatial and temporal pre-
cision. An alternative way is collecting diaries by annotating with ac-
tivities the GPS tracks of individuals. This is more accurate from a
spatio-temporal point of view, but the manual annotation becomes a
burdensome work for the user. The tool we propose, called DayTag, is
designed as a personal assistant to help an individual to reconstruct
her/his diary from the GPS tracks collected by a smartphone. The user
interacts through the software to visualize and annotate the trajectories,
thus resulting in a simple way to get user diaries.

1 Introduction

The study of the mobility behavior of people in urban areas is essential in any
transportation management and planning scenario. For this reason, traditionally
this information is collected by means of paper-and-pencil surveys, that are filled
in by a limited number of selected volunteers. These surveys detail a typical day
of a citizen moving in a city, thus reporting the main trips including the location
and time of the daily activities (go to work, go shopping, etc).

Diaries manually collected are semantically very rich and can be very useful
for mobility data analysis, since the user may express specific activities he/she
performed at the stopped locations. However, this kind of collection lacks in spa-
tial and temporal accuracy, relying only on the user memory. Also, people tend
not to report small movements like stopping at the ATM to get cash or at a coffe
shop for a coffee, just limiting the reporting to the main activities. Furthermore,
these diaries usually represent one specific day and not a typical behavior of
the individual over a longer period. Moreover, they miss several spatio-temporal
essential information such as the georeferenced location where the user stopped,
the route covered during the movement, the duration of the single trips and the
single stops. On the other hand, collecting diaries by semantically annotating
the traces of individuals automatically gathered by GPS-enabled devices offers
a cheap and easy way to collect accurate spatio-temporal information. Almost
any modern smartphone can be used as a GPS tracker, thus getting a precise

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 467–471, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

468 S. Rinzivillo et al.

location of the movements. However, the downside is that the manual annota-
tion of activities from a GPS track is a burdensome work and it can cause errors
because of user mistaking the annotations.

Since the GPS track collections are becoming more and more common and
useful in several application domains, we propose a tool, called DayTag, designed
as a personal assistant to help an individual to annotate GPS trajectories with
activities, thus reconstructing her/his daily diary. The GPS logs are analyzed
to extract the visited location (the stops) together with the background geo-
graphical information. The system offers a graphical interface by automatically
highlighting the relevant visited locations and the time spent during the visit.
The user interacts with the software to visualize, correct, complete and annotate
her/his trajectories. This results in a simple and quick way to get reliable diaries.
We provide a demo of the software using traces of volunteers collected in GPX
format with commercial smartphones.

Other tools for diaries collection are available in the literature as applications
to be installed on the smartphone and thus the annotation results ”online”. For
example, Easytracker [3] allows the manual real time annotation providing a first
phase of automatic segmentation of the trajectory and a second phase to manu-
ally annotate each segment with the transportation mode. Another example of
smartphone application is TripZoom [2] for monitoring the mobile behavior of
the user sensing not only his/her movements, but also taking into account the
behavior of the social network of the user. Both applications offer an annota-
tion task in real time at the smartphone level, while the approach of DayTag
is to offer an a-posteriori semi-automatic annotation at desktop level. To the
best of our knowledge, DayTag is the first tool enabling the user to annotate
his/her own trajectory in a a-posteriori fashion using a desktop application. The
advantages are manifold: during the movement the user may find the annota-
tion difficult (e.g. while driving a car) or forget to annotate the activity on the
smartphone in real time; or the annotation capabilities are limited by the smart-
phone interface. A desktop application highlighting the trajectories and the main
stops allows the user to be more accurate in the description of the context like
the place, the motivation of the movement, the transportation mode and other
contextual information like the weather.

2 The DayTag Tool

User diaries are essentially annotated trajectories. The annotation can be done
at several levels like the places that people visit, the activity or purpose of
the visit (e.g. go to shopping, go to work), the transportation means used dur-
ing the movement, but also other contextual information like the weather, the
temperature, events.The choice of the annotation dimensions is inspired from a
conceptual model for semantic trajectories called COnSTANT [1], in turn based
on the move (the segment of a trajectory where the user is changing the posi-
tion) and stop (the part of a trajectory where the individual does no change the
spatial position) model [6]. In DayTag we support the annotation of both stops

Where Have You Been Today? 469

and moves: the user can annotate each segment specifying the following start
and end date and time of the stop (or the move), the purpose for the movement
- or activity, the transportation mean and the weather conditions.

The trajectory annotation using a state-of-the-art GPS data viewer is not
a simple task for a user. Consider the traces of a volunteer collected during a
day in Figure 1. We can see that while the spatial component is quite clear
the other annotation attributes of the diary are still difficult to be grasped. For
example, how much time does it take for the user to move from one stop to the
successive one? A manual annotation procedure may include the collection of
the user annotations in a separate file and then manually join these annotation
with the spatio-temporal data coming from the GPS device.

Fig. 1. Visualization of a raw trajectory collected by a smartphone in the area of Pisa,
with no annotations. Screenshot of the annotation file to be filled in manually by the
user. The link between the annotation information and the GPS track have to be done
manually.

With the purpose of supporting the user in annotating her/his own diary from
the GPS tracks, we developed DayTag offering a visual interface and trajectory
mining algorithms to compute stop places. DayTag is developed in Java and it
exploits available Open Gis Consortium standards to represent and store spatial
data on a DBMS. Indeed, the persistence layer is based on the PostgreSQL with
PostGIS extension [4]. The graphical interface is developed using Swing libraries.
The tools allows the user to load the raw GPS tracks and to preprocess them
by removing noise points and by automatically detect stops and moves. Once
the mobility episodes are extracted, the user can annotate her activities. The
annotated trajectories are then stored in a DB. DayTag graphical user interface
is composed of two linked displays: the Time Display and the Map Display (see
Figure 2). The Time Display shows the temporal evolution of the movement,
while The Map Display renders the raw GPS points and the visited locations on
a map. The Time Display shows the user position with respect to a conceptual
reference system of visited locations. To detect such places, the system analyzes
the GPS trace of the user to automatically split the sequence of points into

470 S. Rinzivillo et al.

moves and stops [5, 6]. When two stops are geographically close to each other
they are represented by a unique location. This generalization enables the user
to abstract from the actual GPS coordinates and to focus only on the relevant
visited places. The Time Display shows a time line oriented horizontally and,
for each location, it shows a distinct axis. The position of the user along time is
presented with a linestring along the same location axis, i.e. the user stays in the
corresponding location, or with a line connecting two location axes. By default,
the moves (oblique segments) and stops (horizontal segments) are rendered as
gray lines as they are not annotated. When a user annotates a move (or stop)
with an activity the line color changes based on the selected activity type. In
Figure 2 (left), the first movement goes from location 0 to location 1 and it is
annotated with the activity work (code 1 in our internal representation). The
movement starts at 7:45:05 and stops at 08:15:25. Then the user stops in location
1 for almost four hours and then moves to location 2 with activity type Social
(code 3). After a hour and a half he/she goes back to work to location 1. At this
stage the locations are labeled by default with progressive numbers, however the
user can specify mnemonic names for future references.

The Map Display depicts the geographic context of the user movements. The
map is browsable by the user with operations like pan and zoom. The stop
locations drawn on this panel are linked with the locations represented in the
Time Panel. When the user selects the location on the Time Panel the extent
of the Map Display is adjusted in order to show the selected location. Similarly,
when the user click on a move (stop) on the Time Display, the corresponding
trajectory (location) are zoomed in the Map Display.

3 The SSTD 2013 Demo

During the SSTD 2013 conference we intend to show the whole process of anno-
tating personal trajectories first showing the difficulties of manual annotations
and, in second step, we will demonstrate how our tool can significantly simplify
this task.

We present two screenshots of the annotation process in Figure 2. From the
Time Display it is easy to identify the moves (respectively stops) that are not yet
annotated, since they are rendered with gray color. When a move (resp. stop) is
selected with the mouse, a dialog box appears to select the context information.
The dialog box is shown in Figure 2. We can notice that some of the attributes
of the selected move (resp. stop) are already filled: the start and end time,
the origin location and the destination location can be derived from the GPS
data preprocessed during the loading phase of the data. Other information, like
weather condition can be inserted by the user or are proposed by default from the
attributes specified in the previous activities. The goal attribute specifies which
activity - selected from a predefined menu - is performed with the selected move
(resp. stop). During the conference, we will provide a set of GPS traces already
collected by our volunteers that will be annotated and analysed on site. The
attendees of the conference may also voluntary provide their own GPS traces

Where Have You Been Today? 471

Fig. 2. DayTag interface (left) and how to annotate a trajectory (right)

to visualize and annotate their own movements. DayTag will be available for
downloading after the conference so each attendee can later exploit the system
to annotate his/her movements in other contexts. The attendee participating in
the demo will be asked to fill-in a questionnaire to collect user’s feedback on tool
usage and interface comprehension.

Acknowledgments. The work was mainly supported by EU project FP7-
PEOPLE-SEEK (No. 295179), FP7-FET-DATASIM (270833) and CNR-CNPQ
Bilateral Project 2012.

References

1. Bogorny, V., Renso, C., de Aquino, A.R., de Lucca Siqueira, F., Alvares, L.O.:
Constant – a conceptual data model for semantic trajectories of moving objects.
Transactions in GIS (2013)

2. Broll, G., Cao, H., Ebben, P., Holleis, P., Jacobs, K., Koolwaaij, J., Luther, M.,
Souville, B.: Tripzoom: an app to improve your mobility behavior. In: Proc. of the
11th Int. Conf. on Mobile and Ubiquitous Multimedia, pp. 57:1–57:4 (2012)

3. Doulamis, A., Pelekis, N., Theodoridis, Y.: Easytracker: An android application for
capturing mobility behavior. In: Panhellenic Conference on Informatics (2012)

4. The Open Source Geospatial Foundation. PostGIS, http://postgis.net/
5. Tietbohl Palma, A., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based

approach for discovering interesting places in trajectories. In: SAC (2008)
6. Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J., Porto, F., Vangenot,

C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

http://postgis.net/

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 472–477, 2013.
© Springer-Verlag Berlin Heidelberg 2013

TripCloud: An Intelligent Cloud-Based
Trip Recommendation System

Josh Jia-Ching Ying1, Eric Hsueh-Chan Lu2, Bo-Nian Shi1, and Vincent S. Tseng1,*

1 Department of Computer Science and Information Engineering
National Cheng Kung University

No.1, University Road, Tainan City 701, Taiwan (R.O.C.)
2 Department of Computer Science and Information Engineering

National Taitung University
No.684, Sec. 1, Zhonghua Rd., Taitung City, Taitung County 95002, Taiwan (R.O.C.)

{jashying,ericlu416,bernie_0914}@gmail.com,
tsengsm@mail.ncku.edu.tw

Abstract. With the advance of Location-Based Services (LBS), researches on
trip recommendation have attracted extensive attentions. Among them, one
active topic is trip planning. In the previous studies on trip planning, various
user constraints such as travel time, travel budget, attraction categories, etc.,
have been considered and users’ past travel logs were analyzed for travel
recommendation. However, such kind of trip planning approaches cause the
computational complexity to increase significantly. Hence, in this paper, we
demonstrate a cloud-based travel recommendation system named TripCloud,
which is built by extending our previous work, Personalized Trip
Recommendation (PTR), for meeting user’s multiple constraints with efficient
trip planning. TripCloud encapsulates several data mining techniques and a
cloud-based trip planning model to rate the interestingness of each attraction
and plan an interesting trip, respectively. Visualization interface is also
provided to exhibit the recommended trips based on the characteristics of user
constraints.

Keywords: Trip Planning, Recommendation Techniques, Cloud Computing,
Location-Based Social Network, Data Mining.

1 Introduction

Traveling is one of the most important entertainments in a modern society.
Traditionally, before traveling to an unfamiliar city, one of possible ways of trip
planning for tourists is to ask travel agencies to schedule a trip or directly buy a tour
package. For example, the trip planned by travel agencies usually includes some
famous attraction such as Stature of Liberty and Time Square when the targeted city
is New York City. However, such popular trip may not be satisfied by everyone. With
the advances of intelligent mobile devices and Web 2.0 techniques, many kinds of

* Corresponding author.

 TripCloud: An Intelligent Cloud-Based Trip Recommendation System 473

applications on web services and Location-Based Services (LBSs) such as Gowalla,
FourSquare and Facebook have been developed. Based on these approaches, users can
easily record and share their daily lives and travel experiences via their mobile
devices. Hence, another possible way of trip planning is to search the travel
information from websites and plan the trip. This information benefits tourists to add
or remove some attractions for planning a personalized trip. Take a scenario as an
example. Suppose a tourist wants to travel to New York City. He/She may not know
which attractions are worth visiting because this is the first time he visits New York
City. He may search for the attractions in New York City by the travel guide websites
such as Lonely Planet and Yahoo Travel and schedule a travel trip by some trail
recommenders [4]. However, the whole procedure takes lots of time for planning a
personalized trip since the amount of travel information is very huge. Although the
user can additionally search some travel blogs and check the comments about the
attractions, it takes more time to search the information and to put them together for
trip planning.

In our previous work, we have developed a framework named Personalized Trip
Recommendation (PTR) [2] that can meet multiple user requirements for travel
recommendation. However, the computation cost is quite high in real applications.
Although PTR have modified the trip planning algorithm Trip-Mine [3] by panel
computing architecture, the algorithm cannot satisfy real applications still when the
number of attractions is very large. To efficiently plan a personalized trip with user’s
multiple requirements, in this paper, we demonstrate a novel system named TripCloud,
which extends PTR to a cloud-based architecture for efficiently making travel
recommendation. The core idea here is to view trip planning as a combination of
different queries, where each query performs an attraction retrieval task. These queries
are done separately and then the answer is obtained by combining all the results of
queries. Finally, an efficient algorithm named Trip-Mine [3] is adopted to plan the
optimal trip based on the combined results of queries. Inherently, this search-and-
combine process could be realized by MapReduce techniques [1] of cloud computing.

2 Personalized Trip Recommendation

In this section, we briefly introduce our previous work, named Personalized Trip
Recommendation (PTR). As mentioned earlier, tourists may ask travel agencies to
plan a trip or directly buy a tour package before traveling to an unfamiliar city.
However, popular trip may not be satisfied by everyone. With the advance of
Location-Based Social Network (LBSN) such as Gowalla, FourSquare and Facebook,
users can record and share their travel experiences via such social media. Hence,
another possible way of trip planning is to search the travel information from websites
and plan the trip. However, it is hard to distinguish that which attractions are suitable
to visit since the travel constraints specified by tourists are different. Take a scenario
as an example, suppose that Tom has only 8 hours and 100 dollars to travel New
York. The intuitive idea is to choose the interesting attractions, e.g. Metropolitan
Museum of Art and Times Square, from social websites and arrange them to the most
interesting trip that satisfies the multiple user-specific constraints, e.g., travel time and
travel budget. The temporal properties of attractions need to be considered. For

474 J.J.-C. Ying et al.

example, the opening time of Metropolitan Museum of Art is only in the morning and
afternoon. Thus it is incorrect to arrange this attraction in the evening. On the
contrary, Times Square is more suitable to be arranged in the evening. However, such
idea is inefficient since there are thousands of attractions in large cities such as New
York. Therefore, it is essential to develop a personalized travel recommendation
system which can automatically recommend the suitable attractions at suitable time
for tourists and the most interesting trip that satisfies the multiple user constraints.

To provide an efficient and personalized travel recommendation system with multi-
constraints, we have proposed the Personalized Trip Recommendation (PTR)
framework to plan a personalized trip that satisfies multiple user-specific constraints.
In PTR, we design an attraction scoring component to evaluate the personalized score
of attraction by considering user preferences. The proposed attraction scoring
component consists of two aspects: 1) User-based attraction score for measuring how
interesting the attraction is for a specific user. For example, although Times Square
and Metropolitan Museum of Art are very famous in New York, the score of Times
Square may be higher than that of Metropolitan Museum of Art for the tourist who is
interested in fashion or shopping. 2) Temporal-based attraction score for measuring
how suitable users visit the attraction at a specific time. Different attractions may
have different suitable time periods. For example, Times Square in New York is more
suitable to be visited in the evening. Finally, two kinds of scores are fused by a user-
specific weight parameter as the final score. Besides, the personalized score is
evaluated by using check-in logs and attraction information.

In PTR, we extract valuable attraction information from LBSNs as knowledge
bases to support an efficient and personalized travel recommendation system that
considers multi-constraints at the same time. The key contributions are summarized as
follows: 1) We propose the Personalized Trip Recommendation (PTR) framework, a
new approach for trip planning which considers multi-constraints, user preferences
and temporal properties, simultaneously. The problems and ideas have not been well
explored in the research community. 2) We propose an attraction scoring component
for automatically estimating the interesting score of attraction by considering user
preferences and temporal properties.

3 Cloud-Based Trip Planning

In this section, we continue to descript the system architecture and major components
of TripCloud. In order to efficiently response users’ queries, the TripCloud system
employs MapReduce techniques [1] of cloud computing to process trip planning task.
As Fig. 1 shows, the system architecture consists of three phases: user interface,
cloud-based trip planning and attraction interestingness learning. In the user interface,
we utilize the webpage for intermedia between users and our system. A user can
submit his/her requirements (i.e., queries) to our system and receive the result from
our system. The attraction interestingness learning phase follows our previous work,
PTR [2], to estimate user-based and temporal-based scores of each attraction for each
user from the Gowalla data.

 TripCloud: An Intelligent Cloud-Based Trip Recommendation System 475

 (a) (b)

Fig. 1. System Architecture and User Interface of TripCloud

As mentioned earlier, adopting cloud computing architecture could enable our
travel recommendation to achieve a real application. Thus, the main contribution of
this demonstration is extending our previous work, PTR [2], in cloud computing
architecture. To do so, in Trip Planning Phase, we can view trip planning problem as
a problem of combination of different queries, each query is a search processes of
interesting attractions. Therefore, we could divide the trip planning problem into
several parallel search processes of interesting attractions and adopt our previous
work Trip-Mine [3] to select and merge these interesting attractions.

To perform the cloud-based search, we use Hadoop as a basic framework to construct
the TripCloud system. Hadoop is a software framework that supports distributed
computing, it enables applications to use thousands of computers to process a big data and
achieve high performance. HDFS (Hadoop Distributed File System) is a distributed and
scalable file system for the Hadoop framework. HDFS will split a file into several blocks
and store these blocks on different nodes, it is more efficient when we want to read a file
on HDFS. HBase is a non-relational distributed database, and provides all functions of
Google BigTable [9][10] based on the framework of HDFS. To realize cloud computing, a
distributed computing framework, named MapReduce, in Hadoop could utilize HBase and
process dataset on a lot of computers. MapReduce consists of map and reduce:

• “Map” step: The master node divides the input data into smaller data, and assigns
them to nodes. The worker nodes process these data and send the result of
processing back to the master node. For our work, the input data of search process
of interesting attraction contains all the attractions in the attraction database, and
then the data is split by the different query terms into many partitions and loaded
by mappers. For each map task, it will find the top k attractions based on the
attraction interestingness that is the weighted average of user-based and Temporal-
based interestingness. Here, the weight is specified by users.

• “Reduce” step: The master node collects the results from workers and combines
them in pre-defined way to generate the answer to the original problem. For our
work, the input data are the <key, value> pairs obtained from the map function,
key is attraction id and value is the weighted average of user-based and temporal-
based interestingness. Reduce task collects all the attractions into a set, form trips
with the top k interestingness by performing our previous work, Trip-Mine [3],
and output the trips, which are the recommended trips.

476 J.J.-C. Ying et al.

4 Demonstration

In our system, an user can specify his/her start location, start time, time constraint,
budget constraint, weight of temporal feature and weight of category feature. To
represent the recommendation result, we not only provide the description of trips in
text but also illustrate the visualization in map. Fig. 1 (b) shows the web interface of
TripCloud. The interface displays six parts: (a) the common query input, (b) the
weight of temporal feature for attraction choosing, (c) the weight of category diversity
while trip ranking, (d) the trip recommendation list and computation time, (e) the
visualization of the trip with Google Maps API, (f) the detail information for each
attraction. This system could be accessed through the hyper link,
http://140.116.247.182:9999/tripPlan/. We can observe that our system not only
allows users to specify multiple requirements but also computes the recommendation
result efficiently.

To build our TripCloud, we use a cloud-based framework which provides efficient
computation. Fig. 2 shows the extra power brought by the cloud can do to trip
recommendation. As shown in Fig. 2, we query the system 100 times user different
number of nodes of cloud server. Indeed, we can observe that more data nodes bring
more computation efficiency in cloud computing. This result strongly suggest that
cloud-based framework is one of possible way to solve trip planning problem,
especially, such trip planning problem has been theoretically categorized a kind of NP
hard problem.

Fig. 2. System Architecture and User Interface of TripCloud

5 Conclusion

This paper describes TripCloud, a system for travel recommendation meeting user’s
multiple requirements. Through extending PTR to cloud computing architecture, our
TripCloud system not only allows users to specify multiple requirements but also
computes the recommendation result efficiently. TripCloud thus contributes towards
better travel recommendation satisfied users’ multiple requirements.

 TripCloud: An Intelligent Cloud-Based Trip Recommendation System 477

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Sixth
Symposium on Operating System Design and Implementation (OSDI 2004) (2004)

2. Lu, E.H.-C., Chen, C.-Y., Tseng, V.S.: Personalized Trip Recommendation with Multiple
Constraints by Mining User Check-in Behaviors. In: Proceedings of The 20th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS), Redondo Beach, California, November 6-9 (2012)

3. Lu, E.H.-C., Lin, C.-Y., Tseng, V.S.: Trip-Mine: An Efficient Trip Planning Approach with
Travel Time Constraints. In: Proceedings of IEEE International Conference on Mobile Data
Management (MDM), Lulea, Sweden, June 6-9 (2011)

4. Yoon, H., Zheng, Y., Xie, X., Woo, W.: Social Itinerary Recommendation from User-
generated Digital Trails. In: Personal and Ubiquitous Computing. Springer (2011)

The Array Database That Is Not a Database:

File Based Array Query Answering in Rasdaman

Peter Baumann, Alex Mircea Dumitru, and Vlad Merticariu

Jacobs University, Bremen 28759, Germany
firstNameInitial.lastName@jacobs-university.de

Abstract. Array DBMSs extend the set of supported data structures
in databases with (potentially large) multi-dimensional arrays. This in-
formation category actually comprises a core data structure in many
scientific applications.

When it comes to Petabyte archives, storage costs prohibit importing
(i.e., copying) such data into a database. Therefore, in-situ processing of
database queries is required, that is: evaluating queries on the original
files, without previous insertion into the database. We have implemented
such an in-situ feature for the rasdaman Array DBMS. In this demonstra-
tion, we show with rasdaman how query processing in array databases
can simultaneously rely on arrays stored in the database — as usual —
and in operating system files, like preexisting archives.

1 Introduction

While scientific data convey a significant diversity of data structures, the high
volume parts often consist of n-D spatio-temporal or statistical arrays; examples
include confocal microscopy images in the Life Sciences, satellite imagery in the
Earth Sciences, climate simulation output, and telescope and simulation data in
Space science. Due to the lack of array support by standard databases, scientists
tend to employ proprietary file-based implementations for serving and analyzing
such data.

Array DBMSs like rasdaman [6], SciDB [5], and SciQL [11] close this gap
by extending the set of supported data structures in databases with unlimited-
size multi-dimensional arrays. In our work with large-scale data centers we use
rasdaman, the historically first and “comprehensively implemented” [12] Array
DBMS. As it turns out, the massive amounts of such data often cannot be
imported into a database due to storage costs. Therefore, in-situ processing of
database queries is required, that is: evaluating queries on the original files,
without previous insertion into the database.

We have implemented such an in-situ feature for the rasdaman Array DBMS.
In this demonstration, we show how query processing in array databases can
simultaneously rely on arrays stored in the database — as usual — and out of
the array in operating system files. Examples are taken from real-life large-scale
data center offerings and use cases.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 478–483, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Array Database That Is Not a Database 479

2 In-situ Query Processing in rasdaman

In rasdaman [6][13], arrays are modeled as functions mapping coordinates from
an n-dimensional interval to some value set, which can consist of atomic values
(such as greyscale pixels) or composite values (such as RGB or horizontal /
vertical windspeed). The conceptual model of rasdaman introduces a new column
type, array, which is parameterized with array cell (“pixel”, “voxel”) type and
array extent. The rasdaman query language, rasql, allows the composition of
expressions on arrays embedded into the SELECT/FROM/WHERE style of
SQL. Simplified, rasql adds n-dimensional signal and image processing operators
to SQL while remaining set-oriented.

In the server, arrays get partitioned into so-called tiles [6] which form the unit
of storage. In the original implementation, a tile is mapped to a relational BLOB
and also forms the unit of access for the query engine — in other words, a BLOB
tile is always read as a whole. The rasdaman engine, during piecewise ingest or
update, automatically splits data into the previously defined tiling structure.
This target structure can be preset through a storage layout sub-language which
extends the INSERT statement [7].

The in-situ mechanism allows to register and de-register external files contain-
ing array data. A core design decision was to reference files on the level of tiles so
that a file resembles a tile; not only is the resulting solution more scalable, it also
allows to use the preexisting tile access and processing methods. Additionally,
this allows to mix file and database tiles to accommodate “hot spots” through
dedicated database structures.

2.1 Conceptual Extensions

The rasdaman query language offers fully fledged SELECT, INSERT, UPDATE,
and DELETE statements in the tradition of SQL.

For registering files, the VALUES clause in the INSERT statement is substi-
tuted by a REFERENCING clause which we introduce by way of example. To
this end, we assume grayscale TIFF images g1.tiff, g2.tiff, g3.tiff, and
g4.tiff, each of extent 100*100 and all sitting in directory /my/tiff/images.
The following query imports them as component tiles of one array in table
MyImages:

INSERT INTO MyImages REFERENCING (GreyImage)

"file://my/tiff/images/g1.tiff" [0:99, 0:99],

"file://my/tiff/images/g2.tiff" [100:199, 0:99],

"file://my/tiff/images/g3.tiff" [0:99, 100:199],

"file://my/tiff/images/g4.tiff" [100:199, 100:199]

The cast operation, (GreyImage), tells the system about the pixel type of the
images. Four images are registered, each one sitting in one corner of a square.
The resulting object covers the whole square, which has an extent of { 0, ..., 199
} × { 0, ..., 199 }. Input files may sit on the local file system or may be fetched
via some other supported protocol, such as http. This way, files can even sit on
a remote server allowing a greater level of flexibility in the partitioning of data.

480 P. Baumann, A.M. Dumitru, and V. Merticariu

De-registering is done during DELETE of an array. When affecting collections
that contain referenced files, the operation only removes the metadata associ-
ated with the files leaving the data on the file system untouched. This prevents
accidental deletion of archive data and is consistent with the in-situ way of
delegating the archive maintenance to system administrators.

2.2 Implementation

In addition to the pre-existing database access classes reading database BLOBs,
an access variant has been added which accesses the previously registered files.
File format independence is achieved by using the Geospatial Data Abstraction
Library (GDAL) [2].

Relying on files accessed by processes outside the DBMS’s control is inherently
dangerous, as the database engine cannot expect that the file contents at query
time is the same as has been at registration time. As the files are completely out-
side DBMS control, they might change their contents, structure, or even might be
removed at all. This has been addressed by adding plausibility checks at access
time. An initial check is done at insert time to verify that the file exists and that
it can be read properly by the rasdaman engine. Upon each read a check is per-
formedwhether the file still exists and is coherent with the array type; verifications
include in particular the array cell type and the number of cells in each dimension.
This allows a greater degree of freedom as other tools can perform modifications
on the file, either at metadata level (think of adding a tag in a tiff file) or at data
level (think value correction) as long as the structure remains coherent.

All further processing inside the server is identical. Thereby, all features of
rasdaman remain available without any restriction, including query optimization
and parallel tile evaluation.

While thorough performance evaluation is a next step to be undertaken, pre-
liminary observations reveal that there is no significant difference between ac-
cessing files or database tiles. Processing in the engine is the same anyway, so
the only effect remaining is from potentially inadequate tiling structures – such
as defining horizontal slices and performing vertical access.

It depends on the data format chosen whether such effects can be remedied
by an appropriate tiling structure. Consider a 3-D x/y/t image timeseries. While
TIFF, as a 2-D format, would result in a slice-by-slice structure which is good for
extracting timeslices but disastrous for cuts along time, a genuinely 3-D format
like NetCDF can indeed store 3-D cubes, which would yield overall good access
performance in all directions. This effect will also be shown in the demonstration.

3 Related Work

A standard describing database integration of external files is SQL/MED (Man-
agement of External Data) [3]. Applications are enabled to access tuple data in
both databases and DBMS-external files. Several commercial systems support
storage of data in external files. For example, Oracle offers the BFILE concept [4]

The Array Database That Is Not a Database 481

where a pointer to a file is stored. Like with rasdaman, access is read-only re-
flecting the fact that these files are not under DBMS control. However, there are
two distinct differences: BFILEs constitute a specific column type visible to the
query writing user; moreover, BFILEs cannot be involved in regular tuple set
operations — in plain words, a BFILE is not a replacement for a table, but a
semantic-less BLOB without regular query processing support.

Semantic support is introduced by Alagiannis et al. [9] who have coined the
term in-situ for database processing directly on the file system, without previous
database import. They call such a DBMS a “NoDB” system. Their own NoDB
implementation, a modified version of PostgreSQL 9.0 called PostgresRaw, is
able combine tuples stored in a file with those stored in the database. While the
approach is similar to ours in that file-based query evaluation takes place, the
data structure setup is rather different as rasdaman operates on arrays rather
than on tuple sets. As Array DBMS implementation shows [5,6] array query
processing is quite distinct from tuple processing.

Array DBMSs are emerging; while rasdaman has been the only such system
since 1994 [6], recently several projects have been started, such as SciDB [5]
and SciQL [11]. While SciDB does not support in-situ features, this issue is
being addressed in SciQL; Ivanova et al. [10] describe a method to answer array
queries on image files. At query time they load these files into the database so
that, with the next incoming query addressing the same file, data, indexes, etc.
are already available. Obviously, their approach differs fundamentally from ours
in that they still rely on database loading whereas rasdaman circumvents this
step completely. According to users the main shortcoming of such an approach
is not so much the overhead of the first loading, but the duplication of storage
when it comes to realistically large archive sizes.

4 Demonstration

In the demonstration we will provide a laptop with a set of data files obtained
from Earth Science data centers participating in the EarthServer initiative [1].

Fig. 1. Four-layer map pro-
duced by a rasdaman query

A first set of files will consist of satellite scenes
which together from one mosaic — that is, they
contain the same spectral channels and together
cover some area.

A second scenario consists of 2-D and 3-D data
files over the same region. The 2-D files will be
satellite imagery again, the 3-D file contains rain-
fall and temperature data. We will show how a join
combines both objects while reading from files.
Some queries convey a comparable performance,
for others a difference in performance behavior is
directly observable. An example for the former
case is a trim operation: reading a tile vs read-
ing a file does not make a significant difference.

482 P. Baumann, A.M. Dumitru, and V. Merticariu

An example for the latter case is timeseries analysis where file-based access re-
quires opening every timeslice while the database can establish tiles as time
sequences, controlled by the rasdaman storage layout language.

A third demonstration combines, in a join operation, objects sitting in the
database with in-situ objects and applies additional operations, thereby under-
lining that the in-situ objects are fully integrated into query processing. Such
a use case is given by map browsing in the style of the OGC Web Map Ser-
vice (WMS) standard [8]. Figure 1 shows a map overlay where four layers are
generated coming from four different database objects1.

At the bottom, there is an airborne image (in greyscale), it is copied as is. Two
layers constitute water areas and water lines; they come from binary maps where
the zero values are mapped to transparent and the ones are colored according
to an RGB value provided in the query. The top layer is derived from a Digital
Elevation Model (DEM); in this example, a traffic light classification has been
performed to highlight areas endangered by a potential flooding. Altogether, this
constitutes a nontrivial query with high practical relevance.

Participants can try out these and other queries themselves in an ad hoc
fashion on these and other data available.

5 Conclusion

We introduce the implementation of in-situ data processing through a data-
base query engine, with the specific focus on Array Databases. Data centers in
the Earth Sciences require such capabilities to avoid copying massive amounts
of data. Our approach of adding references to the files instead of on-demand
importing fits well with their requirements.

For the future we plan to extend the in-situ capabilities with more flexibility
and specific optimizations; in particular, we want to allow array objects to be
composed of both database tiles and files. Further, we will perform large-scale
evaluations, as several superscale data centers have expressed interest in offering
query-based services while not having to change their backends.

References

1. EarthServer - Big Earth Data Analytics (seen on March 8, 2013)
2. GDAL - Geospatial Data Abstraction Library (seen on March 8, 2013)
3. ISO/IEC 9075-9:2008 Information technology - Database languages - SQL - Part

9: Management of External Data (SQL/MED)
4. Oracle bfile (seen on March 8, 2013)
5. Scidb (seen on March 8, 2013)
6. Baumann, P.: On the management of multi-dimensional discrete data. VLDB Jour-

nal 4(3), 401–444 (1994)
7. Baumann, P., Feyzabadi, S., Jucovschi, C.: Putting pixels in place: A storage layout

language for scientific data. In: Proc. 10th ICDM, December 14, pp. 194–201 (2010)

1 Data courtesy Geoinformation Brandenburg.

The Array Database That Is Not a Database 483

8. Baumann, P., Jucovschi, C., Stancu-Mara, S.: Efficient map portrayal using a
general-purpose query language. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.)
DEXA 2009. LNCS, vol. 5690, pp. 153–163. Springer, Heidelberg (2009)

9. Alagiannis, I., et al.: NoDB: efficient query execution on raw data files. In: Proc.
ACM SIGMOD, May 20, pp. 241–252. ACM (2012)

10. Ivanova, M., Kersten, M., Manegold, S.: Data vaults: A symbiosis between data-
base technology and scientific file repositories. In: Ailamaki, A., Bowers, S. (eds.)
SSDBM 2012. LNCS, vol. 7338, pp. 485–494. Springer, Heidelberg (2012)

11. Kersten, M., Zhang, Y., Ivanova, M., Nes, N.: SciQL, a query language for science
applications. In: Proc. Workshop on Array Databases, March 25 (2011)

12. Machlin, R.: Index-based multidimensional array queries: safety and equivalence.
In: Proc. ACM PoDS, pp. 175–184 (2007)

13. Widmann, N., Baumann, P.: Performance evaluation of multidimensional array
storage techniques in databases. In: Proc. IDEAS, pp. 408–413 (1999)

Reliable Spatio-temporal Signal Extraction

and Exploration from Human Activity Records

Christian Sengstock, Michael Gertz, Hamed Abdelhaq, and Florian Flatow

Database Systems Research Group, Heidelberg University
{sengstock,gertz,abdelhaq,flatow}@informatik.uni-heidelberg.de

Abstract. Shared multimedia, microblogs, search engine queries, user
comments, and location check-ins, among others, generate an enormous
stream of human activity records. Such records consist of information in
the form of text, images, or videos, and can often be traced in time and
space using associated time/location information. Over the past years
such spatio-temporal activity streams have been heavily studied with
the aim to extract and explore spatio-temporal phenomena, like events,
place descriptions, and geographical topics. Despite the clear intuition
and often simple techniques to extract such knowledge, the amount of
noise, sparsity, and heterogeneity in the data makes such tasks non-trivial
and erroneous. This demonstration offers a visual interface to compare,
combine, and evaluate spatio-temporal signal extraction and exploration
approaches from large-scale sets of human activity records.

1 Introduction

Today huge and steadily increasing streams of human activity records can be
accessed, such as shared multimedia, microblogs, search engine queries, user
comments, and location check-ins. Besides a timestamp, a growing number of
these records contain information about where the activity happened. Such
spatio-temporal activity streams are becoming a valuable resource to extract
and explore spatio-temporal phenomena, such as the identification of events and
place descriptions [1, 2], hurricane trajectories [3], and geographical topics [4–6].
Those works are motivated by treating the information contained in user activity
records as proxy observations of the real world. A record at a particular location
and time can hence be seen as an implicit vote for or against a phenomenon
[7]. Extracted spatio-temporal phenomena from user activities are particularly
important as covariates for predictive models in political and social sciences,
market research, or ecology [7, 8]. In turn, modeling the spatio-temporal dis-
tribution of human activities can also be used to predict the spatio-temporal
context of activities when context information is missing [9, 10].

Inherent issues in processing such data are the huge amount of spatial het-
erogeneity (some regions have large amounts of observations while large parts
have very few or none), spatio-temporal noise (location and time information is
imprecise or incorrect), and feature sparsity (records are represented by only a
small subset of a potentially large set of noisy and redundant features) [2, 3, 6].

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 484–489, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reliable Spatio-temporal Signal Extraction and Exploration 485

In fact, by neglecting statistical significance in the context of those issues, one
easily draws wrong conclusions from the activity distributions.

In this work we present a framework that allows to implement approaches to
extract and explore spatio-temporal phenomena from huge, noisy and heteroge-
neous activity sources in a unifying way. The framework is designed to process
millions of spatio-temporal records and can easily be used in a streaming en-
vironment. We demonstrate a visual interface built on top of the framework
that allows to compare, combine, and evaluate different signal extraction and
exploration approaches. Known phenomena distributions can be loaded into the
system as phenomena layers to evaluate extracted signals against ground truth
knowledge. We use large-scale Twitter and Flickr data sets consisting of several
millions of activity records to demonstrate the results of different approaches.

2 Definitions and Methodology

We generally treat geo-located Twitter posts and Flickr images as sets of human
activity records. A source of human activity records is represented by a set of
observations O = {o1, . . . , on}. Each observation o = (u,X, l, t) is performed by
a user u ∈ U , consists of a set of discrete features X ⊆ X , has an associated point
location l ∈ L, and a timestamp t ∈ T . We collapse l and t into a spatio-temporal
context variable c = (l, t) describing the observations in context space C and use
C either to denote a subset or a random variable of that space. For Twitter, we
have observations consisting of a set of extracted textual features (terms). For
Flickr, we have observations consisting of a set of image tags. The features might
also be weak labels obtained from a classifier predicting if an observation contains
evidence for a particular phenomenon or not, as in [3]. This includes heuristic
classifiers indicating evidence or non-evidence of a phenomenon by checking if
an observation contains one or several features, as in [2] and [8].

A spatio-temporal phenomenon can be any social, cultural, or physical entity
or process distributed in geographic space and/or time. For example, a festival
occurring at a location during a certain time interval, the likelihood of road acci-
dents, or a hurricane. The strength of the phenomenon E in a context subset C
can be modeled by a probability distribution P (C|E). By this, any phenomenon
is represented as a spatio-temporal signal spreading its mass in context space,
and the characteristics of the underlying distribution indicates the type of the
phenomenon. For instance, we might think of a bridge as a distribution with
equal mass at all locations and time points where the bridge exists, and of a
hurricane trajectory as a path in spatio-temporal context space with equal mass
at all points of the path.

The aim of signal extraction is to estimate a distribution P (C|OE), describing
the signal of phenomenon E given the positive and negative proxy observations
OE . Recent work in signal extraction include the extraction of road accidents
[2], and the extraction of hurricane trajectories in [3], both using Twitter data
and appropriate classifiers to obtain the weak labels.

486 C. Sengstock et al.

Table 1. Implemented Extraction, Exploration, and Signal Processing Routines

Extraction Lit. Exploration Lit. Signal Processing

Raw Counts [1] Bump/Burst Detection [1] Gaussian Smoothing
Count Transformations [6] LATM [4] Baseline Extraction
Binom Model (BM) [9, 10] Geo-temporal Clusters [5] Baseline-aware Smoothing
BM / Uniform Prior own Lat Geo Feature Extraction [6]
BM / Adaptive Beta Prior own

The aim of signal exploration is to find meaningful signals P (C|E1,...,k) in
observations O. Interesting signals might appear in the distribution of a sin-
gle feature x ∈ X , described by P (C|X = x). E.g., in [1], several techniques
to extract representative event and place tags are described. This task can be
formulated as finding features whose distribution P (C|X = x) has peaks in
context space C. Due to feature sparsity, meaningful phenomena signals might
only be found by looking at distributions formed by a combination of features
X = x1, . . . , xp. This can be formalized by introducing a set of latent variables,
Z = Z1,...,k, k < p, representing both, distributions over features P (X |Z1,...,k)
and distributions in context space P (C|Z1,...,k). The variables are assumed to
represent underlying phenomena that generate the data P (O|Z), reducing the
problem to estimate the latent variables Z. The discovery of spatio-temporal
phenomena based on feature combinations using latent variable models, dimen-
sionality reduction, and clustering has been studied in [4, 6, 5].

3 System Overview

Our system consists of (1) a data layer, (2) a functionality layer for signal pro-
cessing, extraction, and exploration routines, and (3) a user interface. In the
following we shortly describe the three components.

The data layer holds the spatio-temporal feature counts in a sparse 2D matrix,
called sparse feature field S|C|×|X |. The spatial and temporal dimensions are dis-
cretized (see [6, 9, 10]) and projected into a single context dimension C spanning
the rows, while the features X span the columns. The discretization bin-width
of the spatial and the temporal domain is treated as a resolution parameter.
The data layer provides a set of low level routines to manage the data: Spatial
and temporal projection, aggregation, and context/feature slicing. Because of
the sparse nature of the activity counts in context space, we are able to process
datasets with millions of records and hundred thousands of features in high reso-
lution context spaces efficiently in main memory. Starting with a high resolution
grid, we can lower the resolution (re-parametrize) using fast convolution-based
smoothing or matrix multiplication-based cell merging operations.

Signal processing, extraction and exploration routines are implemented in the
functionality layer. The routines are functions f : S $→ S′, taking a sparse feature
field as argument and returning a transformed instance. Hence, extracted phe-
nomena signals are instances of a sparse feature field themselves and the routines
are easily re-useable for different tasks. For our demonstration, we implemented

Reliable Spatio-temporal Signal Extraction and Exploration 487

Feature Statistics Table Spatio-temporal Signal
Extraction / Exploration Geo-temporal View Geo View

Fig. 1. Visual User Interface: Selected views to analyze and explore extracted signals

existing and novel extraction and exploration approaches, among basic signal
processing routines (see Table 1).

The visual user interface allows to perform extraction and exploration tasks.
The resulting signals and standard errors can be analyzed and visualized in
different ways: Geographic distribution on a map, geo-temporal distribution on
a geo-temporal grid, temporal distribution, and feature statistics tables (see
Figure 1). Moreover, phenomena distributions can be loaded as sparse feature
field layers allowing to evaluate extracted signals against ground truth using
statistical hypothesis/model tests (Likelihood-ratio, Perplexity) and similarity
measures (Mean Squared Error, Kullback-Leiber Divergence, Cosine Similarity).

4 Demonstration

We demonstrate the significance of our system by three tasks. (1) Record Feature
Engineering and Parametrization Impact : We extract different types of textual
record features from the Twitter and Flickr data (raw terms, stemmed terms,
term types, weak labels) and analyze their respective signals. We demonstrate
the importance of appropriate parametrization by using different strengths of
Gaussian smoothing (corresponding to different resolutions) and demonstrate
the impact of minimum activity count thresholds. (2) Extraction and Exploration
Comparison: We compare the geographic and geo-temporal distributions of ex-
tracted signals using various approaches (see Table 1 for different techniques and
Figure 2 for an example of different signal extraction results). We demonstrate
that raw counts and the binomial model fail in finding reliable signals due to the
spatio-temporal trend and the spatial heterogeneity by analyzing their respective
standard errors. We also compare the results of four implemented exploration
routines and show how resolution and normalization can be used as user-based
parameters in the analysis. (3) Ground Truth Evaluation: We compare extracted

488 C. Sengstock et al.

(a) Logged Activity Counts (b) Logged Activity Counts ’bridge’

(c) Binom Model (BM) ’bridge’ (d) BM ’bridge’ w/ adaptive beta prior

Fig. 2. Extracted Twitter signals from 5 million tweets covering the San Francisco area.
Plot (a) shows the overall distribution of activity and (b),(c), and (d) show extracted
signals for tweets containing the term ’bridge’ (heuristic classifier).

signals with ground truth layers (buildings, regions, festivals, etc.) using different
metrics. We show ranked lists of extraction and exploration routines for given
phenomena on the basis of those metrics.

5 Conclusions

In this demonstration we present a visual user interface to perform spatio-
temporal signal extraction and exploration tasks on large-scale sets of noisy
and heterogeneous human activity records. The system allows to study the pros
and cons of various approaches by user-based exploratory analysis and quanti-
tative evaluation against ground truth knowledge. The demonstration provides
insights in the particular problems of noise and sparsity within spatio-temporal
human activity data sets, and the impact of preprocessing and parametrization
to various extraction and exploration approaches. The system is built on top of
a flexible data layer that allows to implement and re-use various approaches in
a unifying way and to process millions of activity records efficiently.

References

1. Rattenbury, T., Naaman, M.: Methods for Extracting Place Semantics from Flickr
Tags. ACM Transactions on the Web 3(1), 1–30 (2009)

2. Xu, J.-M., Bhargava, A., Nowak, R., Zhu, X.: Socioscope: Spatio-temporal Signal
Recovery from Social Media. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 644–659. Springer, Heidelberg
(2012)

Reliable Spatio-temporal Signal Extraction and Exploration 489

3. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake Shakes Twitter Users: Real-time
Event Detection by Social Sensors. In: Proc. of WWW 2010, pp. 851–860 (2010)

4. Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.: Geographical Topic Discovery and
Comparison. In: Proc. of WWW 2011, pp. 247–256 (2011)

5. Zhang, H., Korayem, M., You, E., Crandall, D.J.: Beyond Co-occurrence: Discover-
ing and Visualizing Tag Relationships from Geo-spatial and Temporal Similarities.
In: Proc. of WSDM 2012, pp. 33–42 (2012)

6. Sengstock, C., Gertz, M.: Latent Geographic Feature Extraction from Social Media.
In: Proc. of GIS 2012, pp. 149–158 (2012)

7. Jin, X., Gallagher, A., Cao, L., Luo, L., Han, J.: The Wisdom of Social Multimedia:
Using Flickr For Prediction and Forecast. In: Proc. of MM 2010, pp. 1235–1244
(2010)

8. Zhang, H., Korayem, M., Crandall, D.J., Lebuhn, G.: Mining Photo-sharing Web-
sites to Study Ecological Phenomena. In: Proc. of WWW 2012, pp. 749–758 (2012)

9. Wing, B.P., Baldridge, J.: Simple Supervised Document Geolocation with Geodesic
Grids. In: Proc. of ACL 2011, pp. 955–964 (2011)

10. OHare, N., Murdock, V.: Modeling Locations with Social Media. Journal of Infor-
mation Retrieval 16(1), 30–62 (2012)

UniModeling: A Tool for the Unified Modeling
and Reasoning in Outdoor and Indoor Spaces�

Sari Haj Hussein��, Hua Lu, and Torben Bach Pedersen

Department of Computer Science, Aalborg University, Denmark
{sari,luhua,tbp}@cs.aau.dk

Abstract. This paper demonstrates UniModeling; a tool for the unified modeling
and reasoning in outdoor and indoor spaces. UniModeling supports constructing
unified graph models of outdoor and indoor spaces and RFID deployments in
these spaces. It enables probabilistic incorporation of RFID data that facilitates
the tracking of moving objects and enables the search for them to be optimized.
Furthermore, UniModeling is empowered with three reasoning applications that
pertain to the positioning of RFID readers in outdoor and indoor spaces and the
points of potential traffic (over)load in these spaces. The utility of UniModeling is
demonstrated in concrete steps through applying it to the modeling and reasoning
about RFID deployment and baggage handling in an example airport.

1 Introduction

Ubiquitous receptor devices (e.g., RFID readers, and wireless sensor networks) are in-
creasingly deployed in outdoor and indoor spaces (OI-spaces [1]) to enable new classes
of so-called receptor-based applications. These applications need to span seamlessly
both outdoor (O-) and indoor (I-) spaces in order to deliver their functionality. However,
related work has mostly focused on the modeling of indoor spaces [2–5]. Related work
that proposes ontologies for representing and reasoning about outdoor and indoor en-
vironments is either designed for navigation, or is ill-suited for reasoning about RFID-
tracked moving objects [6, 7]. To compensate for the aforementioned lack, this paper
demonstrates UniModeling; a tool for creating unified graph models of OI-spaces and
RFID deployments in these spaces. This tool is empowered with a probabilistic transla-
tor that enhances and complement the knowledge about the locations of RFID-tracked
moving objects in OI-spaces. UniModeling can also perform high-level reasoning about
the positioning of RFID readers in OI-spaces and the locations of potential traffic load
in these spaces, so-called bottleneck points (BPs).

The remainder of this paper is organized as follows. Section 2 presents the UniMod-
eling system architecture. Section 3 concretizes the implementation and application
details of UniModeling. The demonstration scenario is lastly given in Section 4. For a
full description of the modeling foundations, translation, and reasoning applications in
UniModeling, the reader is referred to [8, 9].

� This work was supported by the BagTrack project sponsored by the Danish National Advanced
Technology Foundation under grant 010-2011-1.

�� Corresponding author.

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 490–495, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

UniModeling: A Tool for the Unified Modeling and Reasoning 491

Fig. 1. The UniModeling system architecture

2 System Architecture

The UniModeling system encompasses four modules (Figure 1). The modeling mod-
ule creates the OI-space and RFID deployment graphs. These graphs are stored in
an OrientDB graph database (http://www.orientdb.org/), and they can be visualized in
UniModeling and/or Gephi (http://gephi.org/). The stream module registers RFID data
streams whose source is a flat file, a database table, or a network connection. The of-
fline and online translation modules incorporate RFID data streams. The former module
reads from a flat file or a database table, whereas the latter one reads from network feeds.
The reasoning module delivers three reasoning applications; (1) route observability: A
measure of the extent to which a given route1 is covered by RFID readers. (2) static
BP estimate: It determines the static, time-independent likelihood that a semantic loca-
tion2 is a BP. (3) dynamic BP estimate: It has the same role as the static BP estimate;
however, it achieves this role by incorporating timestamped RFID data streams.

3 System Implementation

The real-world baggage handling plan in Aalborg Airport is used as a running example.
This plan comprises two sub-plans; the I-space and O-space plans in Aalborg Airport
hall (Figure 2) and apron3 respectively. UniModeling is nonetheless applicable to any
OI-space in which motion is partially constrained (e.g., due to the presence of obstacles
in O-spaces and floor plans in I-spaces).

Modeling an OI-Space and an RFID Deployment: Relying on the space plan (Fig-
ure 2), the OI-space graph is created. A modeler delineates semantic locations (using
geometric shapes) and specify binary sub-routes (using arrow shapes). In Figure 2, the
check-in desks (CD) and check-in conveyor (CC) are locations, and (CD,CC) is a
binary sub-route indicating motion from CD to CC. UniModeling automatically recog-
nizes (CD|CC) as a connection point. Next, UniModeling converts the locations into
vertices and sub-routes into edges (an edge direction matches the motion direction and
the order of the sub-route). Furthermore, UniModeling labels the edges using sets taken

1 A particular sequence of locations followed by a moving object in an OI-space.
2 A location that has a meaningful interpretation to the RFID-based application.
3 The open part of an airport in which airplanes are parked, fueled, boarded by passengers, and

loaded with baggage.

492 S. Haj Hussein, H. Lu, and T. Bach Pedersen

Fig. 2. The I-space plan in Aalborg Airport hall overlaid with the graph models

Fig. 3. An ongoing translation of Aalborg Airport RFID data

from the power set of the connection points. In Figure 2, CD and CC are converted
into vertices, and (CD,CC) is converted into an edge connecting between these two
vertices. The edge (CD,CC) is directed from CD to CC and labeled CD|CC.

Next the OI-space graph is transformed into an RFID deployment graph. A modeler
places the RFID readers in their positions on the space plan (Figure 2). Based on this
placement, UniModeling labels the vertices and edges in the RFID graph. In Figure 2,
r1 is positioned inside MC away from any connection point. Therefore, r1 is added to
label(MC). However, r2 and r3 are adjacently positioned at SMC|TTS, and r2 reads
before r3 when moving from SMC to TTS across SMC|TTS. Thus, (r2, r3) is added
to label(SMC,TTS). UniModeling can extend the RFID graph into a property graph
[10] by allowing the vertices and edges to have various properties (key/value pairs)
from the physical hall and apron environments. An important property to the route

UniModeling: A Tool for the Unified Modeling and Reasoning 493

Table 1. Tables (a) and (b) show the appearance and intermediate records of bag1 during [t1, t8]
respectively (s-time and e-time are the start and end time of an appearance)

(a) Appearance records

ar-id obj-id reader-id s-time e-time

ar1 bag1 r1 t1 t2
ar2 bag1 r2 t5 t6
ar3 bag1 r3 t7 t8

(b) Intermediate records

ar-id obj-id loc s-time e-time

ar1 bag1 MC t1 t2
ar2 bag1 SMC t5 t6
ar2 bag1 TTS t5 t6
ar2 bag1 TTS t5 t6
ar2 bag1 TTS t5 t6
ar3 bag1 SMC t7 t8
ar3 bag1 TTS t7 t8
ar3 bag1 TTS t7 t8
ar3 bag1 TTS t7 t8

Table 2. Tables (a) and (b) show the probabilistic and inferred records of bag1 during [t1, t8]
respectively (prob-loc and infer-loc are probability distributions on the set of semantic locations)

(a) Probabilistic records

obj-id prob-loc s-time e-time

bag1 [MC : 1] t1 t2
bag1 [SMC : .25, TTS : .75] t5 t6
bag1 [SMC : .25, TTS : .75] t7 t8

(b) Inferred records

obj-id infer-loc s-time e-time

bag1 [MC : 1] t1 t2
bag1 [MC : .39, SMC : .40,TTS : .21] t3 t4
bag1 [SMC : .30, TTS : .70] t5 t6
bag1 [SMC : .14, TTS : .86] t7 t8

observability reasoning application (Section 2) is the coverage weight of RFID readers
among locations. This vertex property specifies the quotient of the overlap between a
reader reading zone and a location area. For a location l and a reader r, this means:
cw(l) =

ZONE(r)∩AREA(l)
ZONE(r) : ZONE(r) ∩ AREA(l) �= ∅ .

Incorporating RFID Data: The translator in the offline and online translation modules
incorporates uncleansed RFID data (Figure 3) using three essential steps:
1) Condensing: UniModeling condenses RFID readings into appearance records4 by
employing a pre-processing module [11]. See Table 1(a) for instance.
2) Probabilistic translation: UniModeling translates the appearance into probabilistic
records using the vertex and edge labels in the RFID graph. In Table 1(a) and Figure 2,
ar1 .reader -id = r1 ∈ label(MC), which yields record 1 in Table 1(b). However,
ar2 .reader -id = r2 ∈ label(SMC,TTS) & label(TTS,TTS), which yields records
2-5 in Table 1(b). UniModeling executes an SQL query on Table 1(b) to obtain the prob-
abilistic records in Table 2(a). To show the effect of this query,TTS appears three times
in records 3-5 in Table 1(b), therefore TTS probability is .75 in record 2 of Table 2(a).
3) Inferring the information gaps: UniModeling infers the information gap [t3, t4] in Ta-
ble 2(a) via a dynamic Bayesian network (DBN) [12] whose beliefs are updated using
the Estimated Posterior Importance Sampling algorithm for Bayesian Networks (EPIS-
BN) [13]. Applying EPIS-BN to Table 2(a) yields the inferred records in Table 2(b).
Note that the knowledge obtained from the translator is both (1) complete and (2) more
informative about the locations of baggage in transit. To clarify (1), Table 2(b) commu-
nicates full observability of bag1 during [t1, t8], whereas the observability delivered is
only partial in Table 1(a) during the same period (note the information gap [t3, t4]). To
give an example on (2), ar3 in Table 1(a) tells that bag1 passed under r3 during [t7, t8].

4 A record that stores the first and last detection of an RFID tag by a reader.

494 S. Haj Hussein, H. Lu, and T. Bach Pedersen

Due to the adjacent positioning of r2 and r3 (Figure 2), this information piece is defi-
cient and possibly inaccurate. Contrary to this, record 4 in Table 2(b) tells that bag1 is
highly likely to be at TTS and less likely to be at SMC during [t7, t8]. All in all, the
translator better facilitates baggage tracking and enables the search for lost baggage to
be optimized.

Reasoning about RFID Deployment and Baggage Handling: The route observabil-
ity is tested using the example route MC → SMC → TTS in Figure 2. The coverage
weights along this route are cw(MC) ={r1 → 1}, cw(SMC) ={r2→ 0.8, r3 → 0.2},
and cw(TTS) ={r2 → 0.2, r3 → 0.8} respectively. UniModeling determines the
observability (3.2221) using5: obs(MC . . .TTS) =

∑
l∈(MC...TTS)

∑
cw(l) log(cw(l) + 1) . Uni-

Modeling also indicates that 3.2221 is less than the maximum, attainable observability
which is 4.1699 (the obs bounds are derived in [9]). This suggests a possibility to ad-
just Aalborg Airport RFID deployment in order to improve the reading environment and
thereby reduce or even eliminate the occurrence of RFID anomalies. Next, the static BP
estimate is tested using the location TTS in Figure 2. TTS’s degree6 is 4, and double
the number of edges in the OI-space graph is 14. UniModeling takes the ratio of these
two quantities and reports the static BP estimate 0.29 in Figure 2. Note in Figure 2 that
TTS estimate is higher than that for the rest of the locations. This necessitates careful
planning for RFID deployment at TTS. Finally, the dynamic BP estimate is tested. The
translated Aalborg Airport RFID data (Table 2(b)) is used as an input to an algorithm
(see [9]) that determines the dynamic BP estimates over different monitoring periods in
different days. These estimates constitute a good model that highlights congestion by
baggage and ranks the standard of each responsibility area in Aalborg Airport.

4 Demonstration Scenario

The running example in this paper (the real-world baggage handling plan in Aalborg
Airport) will be used as a demonstration case. First, the OI-space and RFID graphs
of Aalborg Airport will be created. Then, a few routes used for transporting baggage
will be marked on the graphs. The observabilities of these routes will be determined.
This is followed by varying the placement of readers and monitoring the change in the
observabilities. Next, the statis BP estimate will be computed for the airport locations
(the graph vertices). Aalborg Aiport RFID data will then be translated into inferred
records. Congestion problems will next be monitored through plotting the dynamic BP
estimates over different monitoring periods in different days. Important messages about
RFID deployment and baggage handling quality in Aalborg Airport will last be given.

References

1. Worboys, M.: Modeling indoor space. In: ISA (2011)
2. Hagedorn, B., Trapp, M., Glander, T., Döllner, J.: Towards an indoor level-of-detail model

for route visualization. In: MDM (2009)

5 Logarithms are to the base 2.
6 The number of edges whose head or tail is TTS; the loop is counted twice.

UniModeling: A Tool for the Unified Modeling and Reasoning 495

3. Li, D., Lee, D.L.: A lattice-based semantic location model for indoor navigation. In: MDM
(2008)

4. Li, X., Claramunt, C., Ray, C.: A grid graph-based model for the analysis of 2d indoor spaces.
Computers, Environment and Urban Systems 34(6) (2010)

5. Lu, H., Cao, X., Jensen, C.S.: A foundation for efficient indoor distance-aware query pro-
cessing. In: ICDE (2012)

6. Yang, L., Worboys, M.: A navigation ontology for outdoor-indoor space (work-in-progress).
In: ISA (2011)

7. Niu, W.T., Kay, J.: Personaf: framework for personalised ontological reasoning in pervasive
computing. User Modeling and User-Adapted Interaction 20(1), 1–40 (2010)

8. Hussein, S.H., Lu, H., Pedersen, T.B.: Towards a unified model of outdoor and indoor spaces.
In: GIS (2012)

9. Hussein, S.H., Lu, H., Pedersen, T.B.: Reasoning about rfid-tracked moving objects in sym-
bolic indoor spaces. In: SSDBM (2013)

10. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of ASIS&T 36(6)
(2010)

11. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: MDM (2009)
12. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT

Press (2009)
13. Yuan, C., Druzdzel, M.J.: An importance sampling algorithm based on evidence pre-

propagation. In: UAI (2003)

The Spatiotemporal RDF Store Strabon

Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta, George Garbis,
Charalampos Nikolaou, Panayiotis Smeros, Stella Giannakopoulou,

Kallirroi Dogani, and Manolis Koubarakis

National and Kapodistrian University of Athens, Greece
{kkyzir,mk,Konstantina.Bereta,ggarbis}@di.uoa.gr,

{charnik,psmeros,sgian,kallirroi,koubarak}@di.uoa.gr

Abstract. Strabon is a very scalable and efficient RDF store for storing
and querying geospatial data that changes over time. We present the
geospatial and temporal features of Strabon and we demonstrate their
utilization in the fire monitoring and the burn scar mapping applications
of the National Observatory of Athens.

1 Introduction

In this paper we present the spatiotemporal features of the system Strabon1 and
their utilization in the fire monitoring and the burn scar mapping applications
of the National Observatory of Athens (NOA), which have been developed in
the context of the project TELEIOS2.

Strabon is a semantic geospatial DBMS for storing and querying geospatial
data that changes over time. It implements the data model stRDF, the query
language stSPARQL and the respective part of the OGC standard GeoSPARQL
[1]. The data model stRDF is an extension of the W3C standard RDF for rep-
resenting time-varying geospatial data. The query language stSPARQL is an
extension of the query language SPARQL 1.1 and it has been implemented in
Strabon offering scalability to billions of stRDF triples. The initial versions of the
data model stRDF and the query language stSPARQL have been described in
[5]. The geospatial features of the most recent versions of stRDF and stSPARQL,
and their implementation in Strabon have been presented in [7]. This work also
presents the architecture of the system, the optimizations followed for storing
and querying geospatial data, and an experimental evaluation which shows that
Strabon in most cases performs better than any other geospatial DBMS that
has been competed with. The valid time dimension of the data model stRDF
and the query language stSPARQL has been described in detail in [2].

We were motivated by the fire monitoring application of NOA to extend RDF
and SPARQL 1.1 with the ability to store and query geospatial information that
changes over time. In the fire monitoring service stRDF is used to represent satel-
lite image metadata (e.g., time of acquisition, geographical coverage), knowledge

1 http://strabon.di.uoa.gr/
2 http://www.earthobservatory.eu/

M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 496–500, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://strabon.di.uoa.gr/
http://www.earthobservatory.eu/

The Spatiotemporal RDF Store Strabon 497

extracted from satellite images (e.g., a certain image region is a hotspot) and auxil-
iary geospatial datasets encoded as linked data. The hotspot products are encoded
to stRDF, so that they can be combined with auxiliary linked geospatial data. In
this application, the user-defined time dimension is used as the detection time of
hotspots.

The burn scar mapping (BSM) application of NOA motivated us to design
the valid time dimension of stRDF and stSPARQL and extend Strabon with
valid time support, in order be able to retrieve the evolution of the land cover
of areas though time. Strabon is one of the very few RDF stores that supports
storing and quering the valid time of triples.

This document is structured as follows. In Section 2 we describe the function-
alities and the architecture of the system Strabon. In Section 3 we present the use
of Strabon in the fire monitoring application of NOA and in Section 4 we present
the use of Strabon in the burn scar mapping application of NOA. In Section 5
we describe the scenarios that will be used to demonstrate the spatiotemporal
functionalities of the system.

2 The Spatiotemporal Features of Strabon

The system Strabon implements the most recent versions of stRDF and
stSPARQL. In the new version of stRDF, we use the widely adopted OGC stan-
dards Well Known Text (WKT) and Geography Markup Language (GML) to
represent geospatial data as literals of datatype strdf:geometry3. The new ver-
sion of stSPARQL extends SPARQL 1.1 with the machinery of the OGC-SFA
standard. We achieve this by defining one URI for each of the SQL functions
defined in the standard and use them in SPARQL queries. Similarly, we have de-
fined a Boolean SPARQL extension function for each topological relation defined
in OGC-SFA (topological relations for simple features), [4] (Egenhofer relations)
and [3] (RCC-8 relations). In this way stSPARQL supports multiple families
of topological relations our users might be familiar with. Using these functions
stSPARQL can express topological relations between geometry objects in the
select or in the filter part of the query.

To be able to represent periods, we have also introduced the strdf:period

datatype. The valid time annotation of a triple can be added at the end of the
triple and it can be either a literal of the strdf:period or the xsd:dateTime

datatypes. The temporal constants NOW and UC (i.e, “Until Changed”) are also
introduced. The first denotes the current timestamp and the second the time
persistence of a triple when placed as the ending time of a period. The query
language stSPARQL also defines a wide variety of temporal functions to express
relations between intervals, or instants and intervals. Period constructors and
temporal aggregates are also defined. A full reference of the spatial and temporal
functions provided in stSPARQL can be found online4.

Strabon 3.0 is a fully-implemented, open-source, storage and query evalua-
tion system for stRDF/stSPARQL and the corresponding subset of GeoSPARQL.

3 http://strdf.di.uoa.gr/ontology
4 http://www.strabon.di.uoa.gr/stSPARQL

http://strdf.di.uoa.gr/ontology
http://www.strabon.di.uoa.gr/stSPARQL

498 K. Kyzirakos et al.

Strabon

Repository

SAIL

Query Engine

Parser

Optimizer

Transaction Manager

Storage Manager

RDBMS

Evaluator

stSPARQL to
SPARQL 1.1 Translator

Named Graph
Translator PostgreSQL

MonetDB

GeneralDB

PostGIS

PostgreSQL
Temporal

Fig. 1. Architecture of the system Strabon

Strabon has been implemented by extending the well-known RDF store Sesame
transparently so that it can be compatible with most recent versions of Sesame. It
also uses a DBMS as a backend, which can be a spatially and temporally enabled
PostgreSQL database. MonetDB can also serve as backend for the geospatial fea-
tures only. As Figure 1 shows, Strabon also consists of the storage manager and
the query engine.

The storage manager stores stRDF triples using the per predicate scheme of
Sesame and dictionary encoding. For each predicate table, two B+ tree two-
column indices are created. For each dictionary table a B+ tree index on the
id column is created. The geometries of spatial literals are stored as values of
the geometry datatype in a separate table that uses an R-tree-over-GiST spatial
index on the respective geometry column. Similarly, literals of the strdf:period
datatype are stored in a separate table with a GiST index on values of the PERIOD
datatype, which is a primitive provided by PostgreSQL Temporal. The Named
Graph Translator translates the temporal triples of stRDF to standard RDF
triples following the named graphs approach as discussed in [2].

In the query engine, the optimizer and the evaluator have been implemented
by modifying the corresponding components of Sesame to be able to evaluate
spatial and temporal functions efficiently. The main idea is to push the evaluation
of spatial and temporal extension function to the database level, so that the
respective indices should be used to increase performance. The stSPARQL to
SPARQL 1.1 Translator translates the temporal triple patterns to triple patterns
using the named graph approach.

3 The Fire Monitoring Application

NOA operates an MSG/SEVIRI satellite acquisition station, and has developed
a real-time fire hotspot detection service for effectively monitoring a fire-front. As
soon as the images are acquired (every 5 or 15 minutes), they are stored as arrays
in MonetDB. Then they are cropped and georeferenced using the SciQL query
language and hotspots are detected producing shapefiles that are then translated
into the stRDF data model. A number of refinement steps as stSPARQL update
operations are then performed to increase the accuracy of the resulting products,
i.e., false alarms and omission errors are detected and proper corrections are
made, producing the final products of the processing chain. The stSPARQL
update operations that take place in the fire monitoring processing chain are
described in [6]. In the fire monitoring application described in [6], only the

The Spatiotemporal RDF Store Strabon 499

refined results are eventually presented to the user. In the application that we
present here, the user can also execute the refinement steps using the graphical
user interface. Finally, we enrich the dataset that derives from the processing
chain by combining it with the following two datasets (both compiled in the
context of TELEIOS): (i) the dataset describing the coastline of Greece5, and
(ii) the dataset describing the Greek environmental landscape6.

Strabon can also expose results in KML or GeoJSON and the results of each
query posed can be depicted in a different layer of a map and overlay the retrieved
data. This feature is very important for Earth Observation (EO) experts, as they
can execute queries that retrieve EO data enriched with additional geospatial
information from the Linked Open Data Cloud and visualize them in a map.

4 The Burn Scar Mapping Application

The Burn Scar Mapping (BSM) is another application of the National Observa-
tory of Athens. It involves the damage assessment using Landsat images, i.e. the
estimation of the burned areas after wildfires. The products of the BSM service
are in the form of shapefiles that contain information about the burned areas,
i.e., their id, geometry, etc. We translate the shapefiles into stRDF graphs. The
valid time dimension of the data model stRDF is also used to annotate triples
to encode that an area has a respective land cover in a specific time period.
The geospatial features of Strabon allow us to generate burned area maps auto-
matically and enrich the displayed geometries with auxiliary information from
other geospatial datasets or from the linked data cloud. The temporal features
of Strabon allow us to express queries regarding the evolution of the land cover
of an area that got burned at one or more time points of the time line. The final
products of the BSM processing chain can be exploited into this direction, as
they allow us to perform a time-series analysis since 1984.

5 Demonstration

The demonstration of the system is divided into two parts. The first part shows
the fire monitoring application of NOA that uses the geospatial features of Stra-
bon combined with the user-defined time dimension. Firstly, the service is ini-
tialized and the user can see a map depicting the current hotspots and then she
can navigate into archive data and select hotspots from previous fire seasons and
varying time ranges and display them in the map, as in Figure 2(a). Then she
will execute the respective stSPARQL query and update operations that take
part in the processing chain of the fire monitoring application.

The second part of the demonstration shows the burn scar mapping appli-
cation of NOA that uses the geospatial features combined with the valid time
dimension of Strabon. Similar to the fire monitoring application, the user will be
able to execute queries against Strabon asking for burned areas and then these

5 http://geo.linkedopendata.gr/coastline_gr/
6 http://geo.linkedopendata.gr/corine/

http://geo.linkedopendata.gr/coastline_gr/
http://geo.linkedopendata.gr/corine/

500 K. Kyzirakos et al.

(a) (b)

Fig. 2. (a) Fire monitoring application of NOA (b) Strabon endpoint

areas will be displayed at a separate layer on the map. The dataset that will be
used in this demo will contain the burned areas from the shapefiles provided by
NOA combined with the CORINE land cover dataset. By this way, the user will
be able to execute a query to retrieve the evolution of the land cover of an area
that got burned at one or more points in the timeline. The user will be provided
with a Strabon endpoint where she will be able to see and execute some pre-
defined queries, as in Figure 2(b) and then write similar queries in the textarea
of the endpoint and execute them against the Strabon backend. For example, a
user could pose a query to retrieve the previous land cover of burned area or the
geometries of areas that were initially coniferous forests and then got burned.

References

1. Open Geospatial Consortium. OGC GeoSPARQL - A geographic query language
for RDF data. OGC Candidate Implementation Standard (2012)

2. Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time of
triples in linked geospatial data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 259–274. Springer, Heidelberg
(2013)

3. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative Spatial Representation and
Reasoningwith theRegionConnectionCalculus.Geoinformatica1(3), 275–316 (1997)

4. Egenhofer, M.J.: A Formal Definition of Binary Topological Relationships. In:
Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS, vol. 367, pp. 457–472. Springer,
Heidelberg (1989)

5. Koubarakis,M.,Kyzirakos,K.:ModelingandQueryingMetadata in theSemanticSen-
sor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo, L., An-
toniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T.
(eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)

6. Kyzirakos, K., Karpathiotakis, M., Garbis, G., Nikolaou, C., Bereta, K., Sioutis,
M., Papoutsis, I., Herekakis, T., Mihail, D., Koubarakis, M., Kontoes, C.: Real
Time Fire Monitoring Using Semantic Web and Linked Data Technologies. In: 11th
International Semantic Web Conference, Boston, USA (2012)

7. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial
DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649,
pp. 295–311. Springer, Heidelberg (2012)

Author Index

Abdelhaq, Hamed 484
Alarabi, Louai 38
Ali, Mohammed Eunus 259, 367
Amin, Ashfaq Mahmood 367
Aung, Htoo Htet 92

Bach Pedersen, Torben 128, 490
Balteanu, Adrian 74
Bao, Jie 38
Bartolini, Ilaria 348
Baumann, Peter 478
Bereta, Konstantina 496
Blank, Daniel 330
Bogorny, Vania 467
Bouros, Panagiotis 1

Chen, Cindy 183
Choi, Dong-Wan 295
Chung, Chin-Wan 295

de Lucca Siqueira, Fernando 467
Dogani, Kallirroi 496
Dong, Tingting 410
Doulkeridis, Christos 110
Dumitru, Alex Mircea 478

Efstathiades, Christodoulos 312
Eldawy, Ahmed 38
Eltabakh, Mohamed 386
Emrich, Tobias 277

Fang, Zheng 183
Flatow, Florian 484
Frentzos, Elias 391

Gabrielli, Lorenzo 467
Garbis, George 496
Ge, Tingjian 183
Gertz, Michael 484
Giannakopoulou, Stella 496
Giatrakos, Nikos 391
Gkorgkas, Orestis 110
Gotsman, Ranit 241
Guo, Long 92
Guo, Xi 410

Haj Hussein, Sari 490
Hashem, Tahrima 259
Hashem, Tanzima 259, 367
Hendawi, Abdeltawab M. 456
Henrich, Andreas 330
Huang, Yan 19, 429

Ishikawa, Yoshiharu 410

Jossé, Gregor 74

Kanza, Yaron 241
Karpathiotakis, Manos 496
Khokhar, Ashfaq 165
Kießling, Werner 462
Köppl, Dominik 462
Koubarakis, Manolis 447, 496
Kriegel, Hans-Peter 146, 277
Kröger, Peer 277
Kufer, Stefan 330
Kulik, Lars 259
Kyzirakos, Kostis 496

Lee, Kyoung-Won 295
Lin, Yimin 223
Liu, Zhi 429
Lu, Eric Hsueh-Chan 472
Lu, Hua 128, 490
Lu, Jian 183

Magdy, Amr 38
Mahmud, Hossain 367
Mamoulis, Nikos 1
Merticariu, Vlad 478
Mohamed, Mohamed M. Ali 165
Mokbel, Mohamed F. 38
Mouratidis, Kyriakos 223
Moussalli, Roger 201
Müller, Heiko 451

Najjar, Walid 201
Niedermayer, Johannes 277
Nikolaou, Charalampos 447, 496
Nørv̊ag, Kjetil 110
Nutanong, Sarana 367

502 Author Index

Oliver, Dev 56, 456

Papadias, Dimitris 348
Pelekis, Nikos 391
Peters, Chris 451
Pfoser, Dieter 312

Qi, Shuyao 1

Renso, Chiara 467
Renz, Matthias 277
Rinzivillo, Salvatore 467

Sarwat, Mohamed 38
Schubert, Erich 146
Schubert, Matthias 74
Sengstock, Christian 484
Shang, Shuo 128
Shekhar, Apurv Hirsh 56
Shekhar, Shashi 56, 456
Shi, Bo-Nian 472
Smeros, Panayiotis 496
Sturm, Eugene 456

Tan, Kian-Lee 92
Taylor, Peter 451

Terhorst, Andrew 451
Theodoridis, Yannis 391
Trajcevski, Goce 165
Trimponias, George 348
Tseng, Vincent S. 472
Tsotras, Vassilis J. 201

Vieira, Marcos R. 201
Vlachou, Akrivi 110

Wang, Jie 183
Wang, Song 19
Wang, Xiaoyang Sean 19
Waytas, Ethan 38
Wenzel, Florian 462

Xiao, Chuan 410
Xiao, Dongqing 386
Xie, Xike 128

Yackel, Steven 38
Yang, KwangSoo 56
Ying, Josh Jia-Ching 472

Zimek, Arthur 146
Züfle, Andreas 277

	Preface
	Organization
	Table of Contents
	Session 1: Joins and Algorithms
	Efficient Top-k Spatial Distance Joins
	1 Introduction
	2 Related Work
	2.1 Spatial Joins
	2.2 Top-k Queries
	2.3 Top-k Joins
	2.4 Spatial Top-k Joins

	3 Algorithms
	3.1 The Score-First Algorithm (SFA)
	3.2 The Distance-First Algorithm (DFA)
	3.3 The Block-based Algorithm (BA)

	4 Experimental Evaluation
	4.1 Setup
	4.2 Score-First Algorithms
	4.3 Distance-First Algorithms
	4.4 Comparison of the Evaluation Paradigms

	5 Conclusion
	References

	Regional Co-locations of Arbitrary Shapes
	1 Introduction
	2 Frequentist Method
	2.1 Likelihood Ratio Statistic
	2.2 Significance Testing

	3 Bayesian Statistical Method
	3.1 Bayesian Statistic
	3.2 Estimating Parameters and Choosing Prior
	3.3 Learning Bivariate Poisson Distribution Using EM Algorithm

	4 Finding Arbitrarily Shaped Regional Co-location
	5 Evaluation and Analysis
	5.1 Experiment Set-Up
	5.2 Experiment Results and Analysis

	6 Related Works
	7 Conclusion
	References

	MNTG: An Extensible Web-Based Traffic Generator
	1 Introduction
	2 Related Work
	3 SystemOverview
	4 Road Network Converter
	4.1 Main Idea
	4.2 Case Study 1: US Tiger File
	4.3 Case Study 2: OpenStreetMap
	4.4 Extensibility with Other Road Network Data Sources

	5 Traffic Processor
	5.1 Main Idea
	5.2 Case Study 1: Brinkhoff Model
	5.3 Case Study 2: BerlinMOD
	5.4 Cast Study 3: Random Generator
	5.5 Extensibility with Other Traffic Generators

	6 System Front-End
	6.1 Web Interface
	6.2 Email Notifier
	6.3 Download and Visualization Tools

	7 Conclusion and Future Work
	References

	Capacity-Constrained Network-VoronoiDiagram: A Summary of Results
	1 Introduction
	2 Problem Definition
	2.1 Problem Hardness

	3 Proposed Approach for CCNVD
	3.1 Pressure Equalizer Algorithm

	4 Analysis of the PE Algorithm
	4.1 Algebraic Cost Model of the PE Algorithm

	5 Experimental Evaluation
	5.1 Experiment Layout
	5.2 Experiment Results and Analysis

	6 Case Study with Brooklyn, NY Road Network
	6.1 Case Study Results and Analysis

	7 Conclusion and Future Work
	References

	Session 2: Mining and Discovery
	Mining Driving Preferencesin Multi-cost Networks
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Learning Preference Distributions
	5 An Efficient Algorithm for Computing Preference Distributions
	6 Experimental Evaluation
	7 Conclusions
	References

	Mining Sub-trajectory Cliquesto Find Frequent Routes
	1 Introduction
	2 Related Works
	3 Sub-trajectory Cliques and the Frequent Routes
	4 Methods to Mine Sub-trajectory Cliques to Extract Frequent Routes
	4.1 Apriori-Based Frequent Route Miner
	4.2 Approximation of Sub-trajectory Cliques
	4.3 A Divide and Conquer Scheme

	5 Experimental Evaluations
	6 Conclusion
	References

	Discovering Influential Data Objects over Time
	1 Introduction
	2 Preliminaries
	2.1 Time-Invariant Case
	2.2 Temporal Model

	3 Problem Formulation
	4 Sequential Interval Scan
	5 Algorithms with Early Termination
	5.1 Early Termination Interval Scan
	5.2 Early Termination Best-First Interval

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Performance of Query Processing

	7 Related Work
	8 Conclusions
	References

	Finding Traffic-Aware Fastest Pathsin Spatial Networks
	1 Introduction
	2 Uncertain Trajectory Reconstruction
	2.1 Preliminaries
	2.2 Uncertain Trajectory Reconstruction Algorithm

	3 Traffic-Aware Spatial Network
	3.1 Time-Delay
	3.2 Traffic-Aware Spatial Network
	3.3 Traffic Records Indexing and Search

	4 TAFP Query Processing
	4.1 Best-First Search Strategy
	4.2 Heuristic Search Strategy

	5 Experimental Results
	5.1 Performance of Uncertain Trajectory Reconstruction
	5.2 Traffic-Aware Spatial Network
	5.3 Performance of TAFP Query Processing

	6 Related Work
	6.1 Shortest Path Queries in Spatial Networks
	6.2 Uncertain Trajectory Data Management

	7 Conclusions and Future Directions
	References

	Session 3: Indexing
	Geodetic Distance Queries on R-Treesfor Indexing Geographic Data
	1 Introduction
	2 Related Work
	2.1 Data Indexing in Scientific Work
	2.2 Data Indexing in Practical Use
	2.3 Handling Geodetic Data with Non-geodetic Indexes
	2.4 Summary and Contributions

	3 Indexing Geodetic Data
	3.1 Indexing Geodetic Data Using 3D Euclidean Coordinates
	3.2 Indexing Geodetic Data Using 2D Geodetic Coordinates
	3.3 Non-spherical Earth Models

	4 Experiments
	4.1 Test Environment
	4.2 Data Sets
	4.3 Efficiency
	4.4 Accuracy

	5 Conclusions
	References

	Energy Efficient In-Network Data Indexingfor Mobile Wireless Sensor Networks
	1 Introduction
	2 Preliminaries
	3 Managing Index Structures with Mobile Nodes
	3.1 Initial Configuration
	3.2 Processing a Request to Incorporate New Mobile Node
	3.3 Response Propagation
	3.4 Data Indexing under Mobility

	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

	PL-Tree: An Efficient Indexing Methodfor High-Dimensional Data
	1 Introduction
	2 Related Work
	3 PL-Tree Indexing
	3.1 Multidimensional Space Mapping
	3.2 PL-Tree Index Structure
	3.3 Point Data Indexing
	3.4 Compact PL-Tree Storage
	3.5 Re-scaling Vector and Algorithm Performance
	3.6 Spatial Data Indexing

	4 Performance Evaluation
	4.1 Data Sets and Configurations
	4.2 Index Size
	4.3 Results for Point Queries
	4.4 Results for Range Queries
	4.5 Results for kNN Queries
	4.6 Comparison with Quadtree
	4.7 Comparison with Other Methods

	5 Conclusions
	References

	Session 4: Trajectories and Road Network Data 1
	Stream-Mode FPGA Accelerationof Complex Pattern Trajectory Querying
	1 Introduction
	2 Related Work
	3 TheFlexTrack System
	3.1 Flexible Pattern Query Language
	3.2 Flexible Pattern Query Evaluation

	4 Proposed Hardware Solution
	4.1 Compiling Queries to Hardware
	4.2 High Level Architecture Overview
	4.3 Evaluating Patterns with No Variables
	4.4 Evaluating Patterns with Variables and without
	4.5 Evaluating Patterns with a Single Variable and with Wildstar/Wildplus Predicates
	4.6 Evaluating Patterns with Multiple Variables and with

	5 Experimental Evaluation
	5.1 Dataset Description
	5.2 Experiments Setup
	5.3 Design Space Exploration
	5.4 Query Engine Implementations and False Positives
	5.5 Performance Evaluation

	6 Conclusions
	References

	Best Upgrade Plans for Large Road Networks
	1 Introduction
	2 Related Work
	2.1 Road Network Databases
	2.2 Network TopologyModification
	2.3 Resource Allocation and Network Improvement

	3 Problem Formalization
	4 Graph-Size Reduction Techniques
	4.1 Graph Shrinking via Edge Pruning
	4.2 Resource Constraint Preserver

	5 BUP Processing Algorithms
	5.1 Augmented Graph Algorithm
	5.2 Fully Upgraded Graph Algorithm
	5.3 Original Graph Algorithm

	6 Experimental Evaluation
	6.1 Evaluation of Graph-Size Reduction Methods
	6.2 Evaluation of BUP Processing Algorithms

	7 Conclusion
	References

	Compact Representation of GPS Trajectoriesover Vectorial Road Networks
	1 Introduction
	2 Framework
	3 Trajectory Dilution
	4 Map Matching
	4.1 Map Matching and HMM
	4.2 Our Variation of the Map-Matching Algorithm

	5 PathCodes
	5.1 Greedy-Path Coding
	5.2 Simple Greedy-Path Coding Algorithm
	5.3 Optimal Greedy-Path Coding Algorithm
	5.4 Shortest-Path Coding
	5.5 Optimal Shortest-Path Coding Algorithm

	6 Experiments
	7 Conclusions
	References

	Group Trip Planning Queries in Spatial Databases
	1 Introduction
	2 Problem Overview
	3 Related Work
	4 Algorithms
	4.1 Iterative Approach
	4.2 Hierarchical Approach

	5 Experiments
	5.1 2S-kGTP Queries
	5.2 3S-kGTP Queries

	6 Conclusion
	References

	Session 5: Nearest Neighbours Queries
	Reverse-k-Nearest-Neighbor Join Processing
	1 Introduction
	2 Problem Definition
	2.1 Background
	2.2 The RkNN Join

	3 Related Work
	4 A Self Pruning Approach
	4.1 General Idea
	4.2 Implementing the Self-join
	4.3 Implementing the Varying-Range-Join

	5 Experiments
	5.1 Experiments on Synthetic Data
	5.2 Real Data Experiments
	5.3 Comparing CPU-Cost and IO-Cost

	6 Conclusions
	References

	DART: An Efficient Methodfor Direction-Aware Bichromatic Reverse kNearest Neighbor Queries
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Problem Definition

	4 The DART Algorithm
	4.1 Overview
	4.2 DART for DBRNN Query Processing
	4.3 DART for the DBRkNN Query Processing

	5 Experiments
	5.1 Experimental Results of DBRNN Query
	5.2 Experimental Results of DBRkNN Query
	5.3 Summary

	6 Conclusion
	References

	User-Contributed Relevanceand Nearest Neighbor Queries
	1 Introduction
	2 Related Work
	3 Dataandk-RNN Queries
	3.1 Data
	3.2 k-RNN Queries
	3.3 Access Methods

	4 k-RNN Query Processing
	4.1 Index Synchronization
	4.2 Index Linking

	5 Experimental Evaluation
	5.1 Data
	5.2 Experimental Setup
	5.3 k-RNN Query Performance
	5.4 Spatial Grid vs. Graph Partitioning
	5.5 Score Balance
	5.6 Real Dataset Experiments
	5.7 Summary

	6 Conclusions
	References

	Session 6: Trajectories and Road Network Data 2
	Using Hybrid Techniques for ResourceDescription and Selection in the Contextof Distributed Geographic Information Retrieval
	1 Introduction
	2 Resource Description and Selection for Geographic Queries
	2.1 Geometric Approaches
	2.2 Space Partitioning Approaches
	2.3 Hybrid Approaches
	2.4 Ranking

	3 Evaluation
	3.1 Data Collection
	3.2 Experimental Setting
	3.3 Experimental Results

	4 Related Work
	5 Conclusion and Outlook
	References

	Location-Based Sponsored Search Advertising
	1 Introduction
	2 Related Work
	2.1 Location-Based Advertising
	2.2 Sponsored Search Advertising

	3 Models for Location-Based Sponsored Search
	4 Bids-Only Case
	5 Budgets-Only Case
	6 Bids-and-Budgets Case
	7 Conclusion
	References

	A Group Based Approach for Path Queriesin Road Networks
	1 Introduction
	2 Related Works
	3 Group Based Path Queries (GBPQ)
	3.1 Intuition
	3.2 Solution Overview

	4 Algorithm
	4.1 Q-Line Formation
	4.2 Query Clustering and Region Formation
	4.3 Path Calculation
	4.4 Maximum Error Bound
	4.5 Discussion

	5 Experimental Study
	5.1 Cluster Generation
	5.2 Performance Evaluation

	6 Conclusion
	References

	STEPQ: Spatio-Temporal Enginefor Complex Pattern Queries
	1 Introduction
	2 Limitations of State-of-Art Techniques
	3 STEPQ System: Vision and Challenges
	References

	Session 7: Uncertainty
	Cost Models for Nearest Neighbor Query Processingover Existentially Uncertain Spatial Data
	1 Introduction
	2 Background
	2.1 Probabilistic NN Search over Spatial Data with Existential Uncertainty
	2.2 Cost Models for NN Search over Conventional Spatial Data

	3 Statistical Analysis of PTNN Queries
	3.1 Exact Statistical Analysis of PTNN Queries
	3.2 Approximate Statistical Analysis of PTNN Queries
	3.3 Discussion on PRNN Queries

	4 A Cost Model for PTNN and PRNN Queries
	4.1 Augmented Histograms
	4.2 A Sampling-Based Approximation Method
	4.3 An Effective Cost Model for PTNN and PRNN Queries

	5 Experimental Study
	6 Conclusions and Future Work
	References

	Processing Probabilistic Range Queriesover Gaussian-Based Uncertain Data
	1 Introduction
	2 Problem Definition
	2.1 Gaussian Objects
	2.2 Probabilistic Range Queries on Gaussian Objects

	3 Filtering Based on Approximated Region
	3.1 p-Region
	3.2 Minimum Bounding Box of
	3.3 Filtering Policies for PRQ-P Queries
	3.4 Filtering Policies for PRQ-G Queries

	4 Indexing Data Objects
	5 Discussion
	5.1 Model Extension: Gaussian Mixture Model
	5.2 Probabilistic Nearest Neighbor Queries

	6 Experiments
	6.1 Experimental Setup
	6.2 Query Performance Evaluation

	7 Related Work
	8 Conclusion
	References

	Mining Co-locations under Uncertainty
	1 Introduction
	2 Problem Definition
	3 Instance Centric Counting
	4 Mining Co-location from Uncertain Data
	4.1 Uncertain Apriori (UApriori) Co-location Miner
	4.2 Uncertain Feature Tree Co-location Miner (UFTree)
	4.3 Calculating the Participation Index
	4.4 Computational Complexity

	5 Experiments
	5.1 Synthetic Data Generation
	5.2 Performance on Synthetic Data
	5.3 Experiments on Real Data

	6 Related Work
	7 Conclusion
	References

	Querying Incomplete Geospatial Informationin RDF
	1 Introduction
	2 i RDF by Example
	3 Query Processing Challenges
	References

	Demonstrations
	Link My Data: Community-Based Curationof Environmental Sensor Data
	1 Motivation
	2 System Overview
	3 Demonstration
	References

	CrowdPath: A Framework for Next Generation RoutingServices Using Volunteered Geographic Information
	1 Introduction
	2 SystemOverview
	3 Demonstration
	4 Conclusion
	References

	Interactive Toolbox for Spatial-TextualPreference Queries
	1 Introduction
	2 Preference SQL Overview
	2.1 Constructor-Based Approach
	2.2 Toolbox of Spatial-Textual Preference Constructors

	3 Showcase Application
	References

	Where Have You Been Today?Annotating Trajectories with DayTag
	1 Introduction
	2 TheDayTagTool
	3 The SSTD 2013 Demo
	References

	TripCloud: An Intelligent Cloud-BasedTrip Recommendation System
	1 Introduction
	2 Personalized Trip Recommendation
	3 Cloud-Based Trip Planning
	4 Demonstration
	5 Conclusion
	References

	The Array Database That Is Not a Database:File Based Array Query Answering in Rasdaman
	1 Introduction
	2 In-situ Query Processing in rasdaman
	2.1 Conceptual Extensions
	2.2 Implementation

	3 Related Work
	4 Demonstration
	5 Conclusion
	References

	Reliable Spatio-temporal Signal Extractionand Exploration from Human Activity Records
	1 Introduction
	2 Definitions and Methodology
	3 System Overview
	4 Demonstration
	5 Conclusions
	References

	UniModeling: A Tool for the Unified Modelingand Reasoning in Outdoor and Indoor Spaces
	1 Introduction
	2 System Architecture
	3 System Implementation
	4 Demonstration Scenario
	References

	The Spatiotemporal RDF Store Strabon
	1 Introduction
	2 The Spatiotemporal Features of Strabon
	3 The Fire Monitoring Application
	4 The Burn Scar Mapping Application
	5 Demonstration
	References

	Author Index

