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Preface

This volume contains the papers presented at the 11th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2013), held
during August 29–31, 2013, in Buenos Aires, Argentina.

Timing aspects of systems from a variety of computer science domains have
been treated independently by diferent communities. Researchers interested in
semantics, verification, and performance analysis study models such as timed
automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to
take account of the time taken by controllers to compute their responses after
sampling the environment. Timing-related questions in these separate disciplines
do have their particularities. However, there is a growing awareness that there
are basic problems that are common to all of them. In particular, all these sub-
disciplines treat systems whose behavior depends on combinations of logical and
temporal constraints; namely, constraints on the temporal distances between
occurrences of events.

The aim of FORMATS is to promote the study of fundamental and practical
aspects of timed systems, and to bring together researchers from diferent disci-
plines that share interests in modeling and analysis of timed systems. Typical
topics include (but are not limited to):

-Foundations and Semantics: theoretical foundations of timed systems and
languages; comparison between dierent models (timed automata, timed Petri
nets, hybrid automata, timed process algebra, max-plus algebra, probabilistic
models)

-Methods and Tools: techniques, algorithms, data structures, and software
tools for analyzing timed systems and resolving temporal constraints (schedul-
ing, worst-case execution time analysis, optimization, model-checking, testing,
constraint solving, etc.)

-Applications: adaptation and specialization of timing technology in appli-
cation domains in which timing plays an important role (real-time software,
hardware circuits, and problems of scheduling in manufacturing and telecommu-
nications)
This year FORMATS received 41 submissions. Most submissions were reviewed
by four Program Committee members. The committee decided to accept 18
papers for publication and presentation at the conference. The program also
included an invited talk (together with CONCUR 2013):

Reinhard Wilhelm, Saarland University, Germany: “Performance Analysis:
Multicores, multi problems!”

This time, FORMATS was co-located together with the International Con-
ference on Concurrency Theory (CONCUR), the International Conference on
Quantitative Evaluation of SysTems (QEST), and the International Symposium
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on Trustworthy Global Computing (TGC). We would like to thank the general
organizers, in particular Pedro R. D’Argenio and Hernan Melgratti for their
helpful cooperation.

We would like to thank all the authors for submitting their work to FOR-
MATS. We wish to thank the invited speaker for accepting our invitation. We are
particularly grateful to the Program Committee members and the other review-
ers for their insightful and timely reviews of the submissions and the subsequent
discussions, which were instrumental to getting such an attractive program.

Throughout the entire process of organizing the conference and preparing
this volume, we used the EasyChair conference management system, which pro-
vided excellent support. Finally, we gratefully acknowledge the financial support
provided by the Argentinian National Council of Research (CONICET), and the
Mobility between Europe and Argentina applying Logics to Systems (MEALS),
a mobility project financed by the 7th Framework programme under Marie Curie
International Research Staff Exchange Scheme.

June 2013 Vı́ctor Braberman
Laurent Fribourg
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Back in Time Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Thomas Chatain and Claude Jard

A Mechanized Semantic Framework for Real-Time Systems . . . . . . . . . . . . 106
Manuel Garnacho, Jean-Paul Bodeveix, and Mamoun Filali-Amine

Quantitative Analysis of AODV and Its Variants on Dynamic
Topologies Using Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 121

Peter Höfner and Maryam Kamali

More or Less True: DCTL for Continuous-Time MDPs . . . . . . . . . . . . . . . . 137
David N. Jansen

Incremental Language Inclusion Checking for Networks of Timed
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Willibald Krenn, Dejan Ničković, and Loredana Tec
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Precise Robustness Analysis of Time Petri Nets

with Inhibitor Arcs

Étienne André, Giuseppe Pellegrino�, and Laure Petrucci

Université Paris 13, Sorbonne Paris Cité, LIPN
93430, Villetaneuse, France

Abstract. Quantifying the robustness of a real-time system consists in
measuring the maximum extension of the timing delays such that the
system still satisfies its specification. In this work, we introduce a more
precise notion of robustness, measuring the allowed variability of the
timing delays in their neighbourhood. We consider here the formalism of
time Petri nets extended with inhibitor arcs. We use the inverse method,
initially defined for timed automata. Its output, in the form of a para-
metric linear constraint relating all timing delays, allows the designer
to identify the delays allowing the least variability. We also exhibit a
condition and a construction for rendering robust a non-robust system.

Keywords: Time Petri nets, Quantitative robustness, Parameter
synthesis.

1 Introduction

Formalisms for modelling real-time systems, such as time Petri nets [10] or timed
automata [3], have been extensively used in the past decades, and led to useful
and efficient implementations. Time Petri nets (TPNs for short) are an extension
of Petri nets where firing conditions are given in the form of intervals [a, b]. Each
transition can only fire at least a time units and at most b time units after it
is enabled. ITPNs extend TPNs with inhibitor arcs, i.e. arcs that disable their
outgoing transition if their incoming place is not empty.

However, these formalisms allow for modelling in theory delays arbitrarily
close (or even equal) to zero; this implies that the real system must be arbitrarily
fast, which may be unrealistic in practice, where response times may not be
neglected. These formalisms also allow for simultaneous occurrence of events,
which may not be realistic in practice either, due to slightly different clock rates
of several processors. And similarly, they allow for arbitrary precision, which is
unrealistic: For example, a system where some component performs an action
for e.g. 2 seconds can be implemented with a delay greater but very close to 2
(e.g. 2.0001 s), in which case the formal guarantee may not hold anymore.

The implementation in practice of a real-time system (modelled, e.g. by an
ITPN) can lead in particular to two kinds of undesired consequences: the oc-
currence of behaviours that were proven impossible in theory, and the unlikely
occurrence of behaviours that were proven possible in theory.

� This work is partially supported by an Erasmus grant.

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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t1[1, 2] t2(2, 3]

A

B C

(a) Example of undesired reachability

A

t1[1, 1]

B

t2[1, 1]

C D

t3[0,∞)

E

(b) Example of unlikely reachability

Fig. 1. Examples of non-robust ITPNs

Consider the simple TPN in Fig. 1a (from [2]). According to the semantics
of TPNs (e.g. defined in [13]), place C is unreachable, that is, there exists no
reachable marking such that the number of tokens in C is greater than 0. Indeed,
starting from marking A (i.e. a marking with 1 token in place A), t1 can fire
anytime between 1 and 2 time units after the system start. At time 2, t1 must
fire if it has not yet fired, because its associated interval is about to expire and
no other transition is firable (t2 will be firable right after time 2). Hence, C is
unreachable. Now suppose that the upper bound of the firing interval of t1 is
increased, even by an infinitesimal duration. Then, t2 is firable immediately after
time 2, and C can be reached in some executions.

Now consider the ITPN in Fig. 1b. According to the semantics of ITPNs,
place E is reachable. Indeed, starting from a marking AB (i.e. a marking with 1
token in place A and 1 token in place B), t1 can fire at time 1, giving marking
CB. Then, after a null duration, t3 can fire due to the absence of token in D. This
sequence of transitions is unlikely to happen in practice due to delays exactly
equal to zero; if the bounds of t1 or the lower bound of t3 become slightly larger,
or the bounds of t2 becomes slightly smaller, E becomes unreachable.

In this work, we use techniques based on parameter synthesis to compute a
precise quantitative analysis of the admissible variability of the timing bounds
of an ITPN with respect to linear-time properties. We use PITPNs, that is ex-
tensions of ITPNs where timing bounds are parameters, i.e. unknown constants.
Our contributions are as follows:

1. We define the notion of covering constraint for parametric time Petri nets
with inhibitor arcs (PITPNs), and characterise it;

2. We extend the inverse method to PITPNs (initially defined in the setting
of parametric timed automata [4]), and prove that it preserves linear-time
properties, based on the notion of covering constraint; and

3. We exploit the constraint output to obtain a precise quantitative measure of
the system robustness for linear-time properties.

Given in the form of a constraint on the timing bounds seen as parameters, our
robustness condition allows a designer (i) to relate the variability of the timing
bounds with each other, (ii) to exhibit the critical timing bounds that do not
allow any variability, and (iii) to render a system robust under certain conditions.
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Related Work. Robustness in the setting of timed automata has received much
attention in the past decade (see [9] for a survey). Most previous works (see
e.g. [5,9,8,2,12,6]) consider that all timing constraints can be enlarged by a sin-
gle very small (but positive) variation Δ. This robustness condition considers a
unique positive parameter Δ; hence, roughly speaking, the robustness is guar-
anteed as long as the different clocks remain in intervals [a−Δ, b+Δ] instead of
[a, b]. In a geometrical context, the admissible variability can be seen as a simple
hypercube (called “Δ-cube” from now on) in 2∗n dimensions, with n the number
of timing constraints. In contrast, we give a precise measure of the robustness,
by considering possible local variations of each lower and upper bound of the
firing intervals of a time Petri net. This is given in the form of a polyhedron
in 2∗n dimensions, where n is the number of transitions. Hence, each bound can
vary independently of the others. Our approach has the following advantages: (1)
it identifies the most critical interval bounds, and helps the designer in tuning
them (when possible) so that the system becomes robust; (2) it relates bounds in
a parametric way, identifying bounds that should, for example, remain smaller
than others; (3) it also outputs a constraint even when some bounds cannot tol-
erate any variation, whereas Δ-based approaches would just classify the system
as non-robust (i.e. synthesise a Δ = 0). Since parameter synthesis is undecidable
for PITPNs [13], our algorithm may not terminate in the general case; however,
we give sufficient termination conditions for subclasses of PITPNs.

In [6], it is shown that parameterised robust reachability in timed automata
is decidable, again for a single Δ. In [8], computing the greatest acceptable vari-
ation Δ is proven decidable for flat timed automata with progressive clocks.
In [12], a counter-example refinement approach is used with parametric tech-
niques to evaluate the greatest acceptable variation Δ for parametric timed
automata (although not decidable in the general case). These works share sim-
ilarities with ours in the problem addressed and in the use of parametric tech-
niques. However, beyond the fact that these works consider (a restriction of)
timed automata whereas we consider (an extension of) time Petri nets, the main
difference lies in the number of dimensions, since they all consider a simple Δ.

Recent work also considered robustness issues in time Petri nets. In [2], the
quantification of robustness is performed by considering that the firing intervals
can be enlarged by a (positive) parameter. Two problems are considered: the
robust boundedness of the net (a bounded net remains bounded even in pres-
ence of small time variations) and the robust untimed language preservation (the
untimed language remains preserved in presence of small time variations). Our
work is close to [2], with notable differences. First, we use here a technique
based on parameter synthesis. Second, we give a condition for trace preser-
vation, where traces are defined as alternating markings and actions. Hence,
the robustness condition in our work is different from the boundedness and
language preservation of [2]. Last but not least, the robustness condition in [2]
again considers a unique positive parameter Δ, whereas we compute a polyhe-
dron in 2 ∗ n dimensions. In [1], a more general notion of robustness is used for
time Petri nets, that includes not only a robustness with respect to time, but
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also with constraints on the resources (e.g. memory), scheduling schemes (in a
multi-processor environment) and possible system failures.

Outline. Section 2 recalls PITPNs and related results. In Section 3, we introduce
and characterise covering constraints. In Section 4, we introduce the inverse
method for PITPNs and prove its correctness. In Section 5, we exhibit a precise
quantitative measure of the system robustness, and use it to turn some non-
robust systems robust. We give directions of future research in Section 6.

2 Preliminaries

We denote by N, Q+ and R+ the sets of non-negative integers, non-negative
rational and non-negative real numbers, respectively.

2.1 Firing Times, Parameters and Constraints

Throughout this paper, we assume a set {θ1, θ2, . . . } of firing times. A firing
time is a variable with value in R+, encoding the time remaining before a given
transition fires. In the following, Θ will denote a finite set {θ1, . . . , θH} of firing
times, for some H ∈ N. A firing time valuation is a function ν : Θ → RH

+

assigning a non-negative real value with each firing time.
We also assume a set {λ1, λ2, . . . } of parameters, i.e. unknown constants. In

the following, Λ = {λ1, . . . , λl} denotes a finite set of parameters for some l ∈ N.
A parameter valuation π is a function π : Λ→ R+ assigning with each parameter
a value in R+. A valuation π can be seen as a point (π(λ1), . . . , π(λl)).

Constraints are defined as a set of inequalities. A (linear) inequality over Θ
and Λ is lt ≺ lt′, where ≺∈ {<,≤}, and lt, lt′ are two linear terms of the form∑

1≤i≤N αizi + d where zi ∈ Θ ∪ Λ, αi ∈ Q+, for 1 ≤ i ≤ N , and d ∈ Q+.
We define similarly inequalities over Θ (resp. Λ). A constraint is a conjunction
of inequalities. In particular, a constraint over the parameters can be seen as a
polyhedron in l dimensions. We denote by L(Λ) the set of all constraints over
the parameters. In the sequel, J denotes an inequality over the parameters, E
a constraint over the firing times, K a constraint over the parameters, and D a
constraint over firing times and parameters. Often, given a PITPN transition ti,
we will denote its parametric lower and upper bounds by λ−

i and λ+
i , respectively.

Given an inequality J of the form lt < lt′ (respectively lt ≤ lt′), the negation
of J , denoted by ¬J , is the inequality lt′ ≤ lt (respectively lt′ < lt).

Given a constraint E and a firing time valuation ν, �E�ν denotes the expression
obtained by replacing each firing time θ in E with ν(θ). A firing time valuation ν
satisfies constraint E (denoted by ν |= E) if �E�ν evaluates to true.

Given a parameter valuation π and a constraint D, �D�π denotes the con-
straint over Θ obtained by replacing each parameter λ in D with π(λ). Likewise,
given a firing time valuation ν, ��D�π�ν denotes the expression obtained by re-
placing each firing time θ in �D�π with ν(θ). We say that a parameter valuation π
satisfies a constraint D, denoted by π |= D, if the set of firing time valuations
that satisfy �D�π is non-empty.
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A parameter valuation π satisfies a constraint K over the parameters, denoted
by π |= K, if the expression obtained by replacing each parameter λ in K
with π(λ) evaluates to true. Given two constraints K1 and K2, K1 is included
in K2, denoted by K1 ⊆ K2, if ∀π : π |= K1 ⇒ π |= K2. We consider true as a
constraint over Λ, corresponding to the set of all possible values for Λ.

We denote by D↓Λ the constraint over Λ obtained by projecting D onto Λ,
i.e. after elimination of the firing times. Formally, D↓Λ = {π | π |= D}.

We finally define intervals as in [13]. An interval I of R+ is a Q+-interval if its
left endpoint ↑I belongs to Q+ and its right endpoint I↑ belongs to Q+ ∪ {∞}.
We denote by I(Q+) the set of Q+-intervals of R+. A parametric time interval
is a function J : Q+

Λ → I(Q+) that associates with each parameter valuation
a Q+-interval. The set of parametric time intervals over Λ is denoted by J (Λ).
As for I, we define ↑J and J↑ as the minimum and maximum bounds of J ,
respectively. They can both be represented using a constraint over Λ.

2.2 Parametric Time Petri Nets with Inhibitor Arcs

Parametric time Petri nets with inhibitor arcs (PITPNs) are a parametric exten-
sion of ITPNs, where the temporal bounds of the transitions can be parameters.
We slightly adapt the notations defined in [13] to fit our setting.

Definition 1. A parametric time Petri nets with inhibitor arcs (PITPN) is a
tuple N = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0〉 where

– P = {p1, . . . , pm} is a non-empty finite set of places,
– T = {t1, . . . , tn} is a non-empty finite set of transitions,
– Λ = {λ1, . . . , λl} is a finite set of parameters,
– •(.) (resp. (.)•) ∈ (NP )T is the backward (resp. forward) incidence function,
– (.)◦ ∈ (NP )T is the inhibition function,
– M0 ∈ NP is the initial marking,
– Js ∈ J (Λ))T is the function that associates a parametric firing interval with

each transition, and
– K0 ∈ L(Λ) is the initial constraint over Λ.

K0 is a constraint over Λ giving the initial domain of the parameters, and must
at least specify that the minimum bounds of the firing intervals are lower than
or equal to the maximum bounds. Additional linear constraints may of course
be given. Sometimes, given a constraint K0, we will denote a PITPN by N (K0)
when clear from the context, and to emphasise the value of K0 in N .

Given a PITPNN and a valuation π, we denote by �N �π the (non-parametric)
ITPN where each occurrence of a parameter has been replaced by its con-
stant value as in π. Formally, given N = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0〉, then
�N �π = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0 ∧Kπ〉, where Kπ =

∧
λ∈Λ

(
λ = π(λ)

)
.

For example, the ITPN in Fig. 2b corresponds to the PITPN in Fig. 2a valuated
with π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 3, λ+
2 → 4, λ−

3 → 1, λ+
3 → 2}.
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A B

t1[λ
−
1 , λ+

1 ] t2[λ
−
2 , λ+

2 ] t3[λ
−
3 , λ+

3 ]

C D E

(a) A PITPN N

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E

(b) A valuated (P)ITPN �N �π

Fig. 2. A PITPN and its valuation

Semantics. We mostly reuse here the definitions and semantics from [13]. The
reachable states of a PITPN are parametric state-classes (or simply classes),
i.e. pairs c = (M,D) where M is a marking of the net and D is a parametric
firing domain, that is, a constraint over Θ and Λ. Given a class c = (M,D), a
transition t is enabled in c if M ≥ •t (i.e. if the number of tokens in M in each
input place of t is greater than or equal to the value on the arc between this
place and the transition). Transition t is inhibited if the place connected to one
of its inhibitor arc is marked with at least as many tokens than the weight of
the considered inhibitor arc between this place and t. Transition t is active if it
is enabled and not inhibited. Transition t is firable if it has been active for at
least ↑Js(t) time units.

For a given class, the firing times in Θ correspond to variables encoding the
time remaining before an active transition can fire. Hence, these variables de-
crease with time. The initial class ofN (K) is c0 = (M0, D0), with D0 = K∧{θk ∈
Js(tk)|(tk ∈ enabled(M0)}, where enabled(M0) denotes the enabled transitions
in M0. For example, suppose that K = λ−

1 ≤ λ+
1 ∧ λ−

2 ≤ λ+
2 ∧ λ−

3 ≤ λ+
3 ; then

the initial class of N in Fig. 2a is:

c0 = (AB, λ−
1 ≤ θ1 ≤ λ+

1 ∧ λ−
2 ≤ θ2 ≤ λ+

2 ∧ λ−
3 ≤ θ3 ≤ λ+

3 ).

We consider a (classical) semantics where a transition must fire before its upper
interval bound, unless another transition fires first and disables it; for example,
in Fig. 2a, t1 must fire before t3 if λ+

1 < λ−
3 , t3 must fire before t1 if λ+

3 < λ−
1 ,

and both orders are possible otherwise. Given a class c = (M,D) and a firable
transition tf , c′ = (M ′, D′) can be reached from c in one step via transition tf

(denoted by c
tf⇒ c′) if the following holds:

– M ′ = M − •tf + t•f
– D′ is computed along the following steps:

1. intersection with the firability constraints: ∀j s.t. tj is active, θf ≤ θj ,
2. variable substitutions for all enabled transitions tj that are active, i.e.

θj = θf + θ′j ,
3. elimination (using for instance the Fourier-Motzkin method) of all vari-

ables relative to transitions disabled by the firing of tf ,
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4. addition of inequalities relative to newly enabled transitions1: ∀tk ∈
NewlyEnabled(M, tf ), ↑Js(tk) ≤ θ′k ≤ Js(tk)↑, with NewlyEnabled(M, tf )
denoting the set of transitions newly enabled by firing the transition tf
from marking M .

The full semantics can be found in [13].

A run of N is a sequence c0
t0⇒ · · · tn−1⇒ cn. Given a run r of N of the form

(M0, D0)
t0⇒ · · · tn−1⇒ (Mn, Dn), the trace associated with r is the alternating

sequence of markings and actions M0
t0⇒ · · · tn−1⇒ Mn. The trace set of N is the

set of all traces associated with the runs of N . This corresponds to the discrete
(or time-abstract) behaviour of N . PostN (K)(C) (resp. PostiN (K)(C)) is the set
of classes reachable from a set C of classes in exactly one step (resp. i steps)
in N (K). Furthermore, we define Post∗N (K)(C) as

⋃
i≥0 Post

i
N (K)(C). We define

Reach(N (K)) as the set of reachable classes of N (K), that is Post∗N (K)({c0}).
Finally, we define G(N (K)) as the parametric reachability graph of N (K), that
is the set of reachable parametric state-classes with the transition relation ⇒.

Results. The following lemma, recalled from [13], states that the projection
onto the parameters of the constraint associated with a class always gets stronger
(i.e. more restricted) along a run of the system.

Lemma 1 (Lemma 14 in [13]). Given a PITPN N , let c = (M,D) and

c′ = (M ′, D′) be two classes in G(N ). If c
t⇒ c′, then D′↓Λ ⊆ D↓Λ.

The following result states that the valuation with π of a class c of N belongs
to the graph of N valuated with π if and only if π belongs to the constraint
associated with c.

Theorem 1 (Theorems 12 and 13 in [13]). Given a PITPN N (K) and
a valuation π |= K, let c = (M,D) be a class in G(N (K)). Then: �c�π ∈
G(�N �π) iff π |= D↓Λ.

3 Covering Constraint

We introduce the notion of covering constraint as the constraint resulting from
the intersection of the projection onto the parameters of the constraints associ-
ated with all the reachable classes of a PITPN.

Definition 2. Let N be a PITPN. The covering constraint of N is:⋂
(M,D)∈Reach(N ) D↓Λ.

In the general case, it is possible that the covering constraint of a PITPN will be
empty, due to the intersection of disjoint constraints over the parameters. But
in the setting of the inverse method (see Section 4), it will not be.

The following lemma relates parametric and non-parametric runs, and derives
from Theorem 1.
1 For sake of simplicity, we only consider here closed intervals of the form [a, b]. For
open intervals (e.g. (2, 3] in Fig. 1a), one should use strict instead of large inequalities.



8 É. André, G. Pellegrino, and L. Petrucci

Lemma 2. Let N be a PITPN, let π be a parameter valuation. Let r be a run
of N reaching a class (M,D) in G(N ). Then there exists an equivalent run in
�N �π reaching class (M, �D�π) in G(�N �π) iff π |= D↓Λ.

Proof. Let (M0, D0)
t0⇒ . . .

tk−1⇒ (Mk, Dk) be a run of N . From Theorem 1, we
have that �(Mk, Dk)�π ∈ �G(N (K))�π iff π |= Dk↓Λ. Now consider transition

(Mk−1, Dk−1)
tk−1⇒ (Mk, Dk) in G(N ). Then, from the semantics of PITPNs, for

all π |= �Dk�π , then (Mk−1, �Dk−1�π)
tk−1⇒ (Mk, �Dk�π) ∈ G(�N �π). The result

then derives from a reasoning by induction on k, with (M,D) = (Mk, Dk). ��

Conversely, the following lemma states that, given a PITPN N , a run in a
valuation of N always has an equivalent run in N .

Lemma 3. Let N (K) be a PITPN, let π be a parameter valuation such that
π |= K. Let r be a run of �N �π. Then there exists an equivalent run in N (K).

Proof. �N �π can be seen as a PITPN (hence parametric) with an initial con-
straint Kπ. Since Kπ ⊆ K, from the semantics of PITPNs, the set of behaviours
of N (K) includes the behaviours of N (Kπ). Hence any run in N (Kπ) has an
equivalent in N (K). ��

We now state below a general result that will be used to prove Lemma 5.

Lemma 4. Let N (K) be a PITPN. Then for all (M,D) ∈ G(N (K)), D↓Λ ⊆ K.

Proof. By induction on Lemma 1, with K0 ⊆ K as the base case. ��

The following result states that, for a PITPN with its own covering constraint
Kcov as initial constraint, the projection onto the parameters of the constraint
associated with a reachable class is always the same, and equal to Kcov .

Lemma 5. Let N (K) be a PITPN, let Kcov be the covering constraint of N (K).
Then for all (M,D) ∈ G(N (Kcov )) : D↓Λ = Kcov .

Proof. If Kcov is empty, G is empty too and the result trivially holds. Suppose
Kcov is non-empty. Let c = (M,D) ∈ G(N (Kcov )). Let π |= D↓Λ. By Lemma 4,
D↓Λ ⊆ Kcov . By construction of Kcov , we have that Kcov ⊆ K. Hence π |=
D↓Λ ⇒ π |= K. Since π |= D↓Λ, from Lemma 2, there exists an equivalent run
in �N �π reaching class (M, �D�π) in G(�N �π). Since π |= K, from Lemma 3,
there exists an equivalent run in N (K) reaching class (M,D′) for some D′.

Let π′ |= Kcov . By construction, Kcov ⊆ D′↓Λ, hence π′ |= D′↓Λ. By Lemma 4,
D↓Λ ⊆ K, hence π′ |= K. Since π′ |= K and π′ |= D′↓Λ, applying Theorem 1
to N (K) gives that �c�π′ ∈ G(�N �π′ ). Since π′ |= Kcov by hypothesis, and
�c�π′ ∈ G(�N �π′ ), then applying Theorem 1 to N (Kcov ) gives that π′ |= D↓Λ.
Hence Kcov ⊆ D↓Λ. (Lemma 4 gives the other direction.) ��

Finally, Theorem 2 states that the trace set of a PIPTN valuated with any
parameter valuation satisfying its covering constraint Kcov is the same as the
trace set of this PITPN with Kcov as initial constraint.
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Theorem 2. Let N be a PITPN, let Kcov be the covering constraint of N . Let
π |= Kcov . Then the trace sets of N (Kcov) and �N �π are equal.

Proof. Let π |= Kcov . Consider a run of N (Kcov ) reaching a class (M,D) in
G(N (Kcov )). By Lemma 5, it holds that D↓Λ = Kcov . Since π |= Kcov , then
π |= D↓Λ. Hence, by Lemma 2, there exists an equivalent run in G(�N �π).
Conversely, since π |= Kcov , by lemma 3, any run in �N �π has an equivalent run
in N (Kcov). ��

We can derive from Theorem 2 that the trace set of a PIPTN with any parameter
valuation satisfying its covering constraint is always the same. This result will
be used to prove the correctness of the inverse method (see Section 4).

Corollary 1. Let N be a PITPN, let Kcov be the covering constraint of N .
Then for all π, π′ |= Kcov , the trace sets of �N �π and �N �π′ are equal.

4 The Inverse Method for Time Petri Nets

We extend to PITPNs the inverse method initially proposed for timed au-
tomata [4]. The algorithm relies on the following definition of π-compatibility.

Definition 3. Given a parameter valuation π, a class (M,D) is said to be π-
compatible if π |= D↓Λ, and π-incompatible otherwise.

4.1 Principle

We introduce in Algorithm 1 IMPN (i.e. the Inverse Method for time Petri
Nets with inhibitor arcs). It uses 3 variables: an integer i measuring the depth
of the state space exploration, the current constraint Kc, and the set C of ex-
plored classes. Starting from the initial class c0, IMPN iteratively computes
classes. When a π-incompatible class is found, an incompatible inequality is non-
deterministically selected within the projection of the constraint onto Λ (line 5);

Algorithm 1: IMPN (N , π)

input : PITPN N of initial class c0 and initial constraint K0, valuation π
output: Constraint Kr

1 i← 0 ; Kc ← K0 ; C ← {c0}
2 while true do
3 while ∃ π-incompatible classes in C do
4 Select a π-incompatible class (M,D) of C
5 Select a π-incompatible J in D↓Λ
6 Kc ← Kc ∧ ¬J ; C ← ⋃i

j=0 Post
j
N (Kc)

({c0})
7 if PostN (Kc)(C) ⊆ C then return Kr ←

⋂
(M,D)∈C D↓Λ

8 i← i+ 1 ; C ← C ∪ PostN (Kc)(C)
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its negation is then added to Kc (line 6). The set of reachable classes is then
updated. When all successor classes have already been reached (line 7), IMPN
returns the intersection Kr of the projection onto Λ of the constraints associated
with all the reachable classes.

4.2 Results

Lemma 6. Let N be a PITPN, and π be a parameter valuation. Suppose that
algorithm IMPN (N , π) terminates with output Kr. It holds that π |= Kr.

Proof. By construction, at the end of the inner while loop, all classes of C are
π-compatible, that is for all (M,D) ∈ C, π |= D. As a consequence, π |= D↓Λ.
Recall that Kr =

⋂
(M,D)∈C D↓Λ. Hence π |= Kr. ��

The correctness of IMPN mainly relies on the fact that Kr is the covering
constraint of N . Hence, the results of Section 3 can be applied.

Theorem 3 (Correctness). Let N be a PITPN, and π be a parameter valua-
tion. Suppose IMPN (N , π) terminates with output Kr. Then:

1. π |= Kr, and
2. ∀π′ |= Kr, �N �π′ and �N �π have the same trace set.

Proof. Item 1 comes from Lemma 6. For item 2, since Kr is the covering con-
straint of N , then we can apply Corollary 1, which gives the result. Also note
that the covering constraint cannot be empty since π |= Kr. ��

Non-termination. Parameter synthesis is undecidable for PITPNs [13] and
IMPN may not always terminate. Consider the PITPN N in Fig. 3a; then,
IMPN applied to N and a reference valuation with all parameters equal to 0
will generate an infinite set of classes with constraints of the form i ∗ λ−

1 ≤ λ+
2 ,

with i infinitely growing. Intuitively, t1 can fire an arbitrary number of times
before t2 fires. Of course, this is a typical Zeno-behaviour (an infinite number of
transitions within a null duration) and, in the case of non-null reference parame-
ter valuations, an inequality i ∗λ−

1 ≤ λ+
2 will eventually be π-incompatible, thus

ensuring termination. Also note N is a bounded L/U (lower/upper bounds)
PTPN [13], showing that termination of IMPN is not guaranteed for general
bounded L/U PTPNs (although emptiness and reachability problems are decid-
able in theory). Studying the decidability of this problem, and adapting IMPN
to ensure termination in this case is the subject of ongoing work.

We can exhibit subclasses for which IMPN terminates. This is obviously the
case of loopless PITPNs (in which no syntactical loop exists in the model). This
is also the case of parametric sequential TPNs [2]; this subclass of TPNs is such
that each time a discrete transition is fired, each transition that is enabled in
the new/resulting marking is newly enabled. Hence, the problem of infinitely
concurrent loops such as in Fig. 3a cannot happen.

Non-confluence and Non-completeness. Due to the non-deterministic se-
lection of an inequality, IMPN is non-confluent (i.e. different applications of the
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Fig. 3. Counter-examples PITPNs

algorithm can yield different outputs). As a consequence, it is also non-complete
(i.e. the resulting constraint may not be the maximal one). Formally:

Proposition 1 (Non-completeness). There may exist π′ �|= Kr such that
�N �π′ and �N �π have the same trace set.

An example for non-completeness is the PITPN N in Fig. 3b, with the reference
parameter valuation π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 1, λ+
2 → 3, λ−

3 → 2, λ+
3 → 4}.

In �N �π , either t2 or t3 can fire first, but not t1, due to the fact that we have
both ↑I(t1) > I↑(t2) and ↑I(t1) > I↑(t3).

When applying the inverse method to N and π, a class will be generated
with BC as a marking, and an associated constraint containing in particular
inequalities λ−

1 ≤ λ+
2 ∧ λ−

1 ≤ λ+
3 . Since both are π-incompatible, the algorithm

can add to the current constraint either λ−
1 > λ+

2 or λ−
1 > λ+

3 . Either of them
is sufficient to prevent BC to be reachable. Then the result of the application
of IMPN to N and π is both non-confluent and non-complete. Also note that,
due to the absence of inhibitor arc in N , the non-completeness of IMPN also
holds for PTPNs.

Nevertheless, it can be shown (as it was the case for timed automata [4])
that a sufficient (but non-necessary) condition for completeness is that IMPN
does not perform non-deterministic selections of inequalities, i.e. at most one
π-incompatible class is met at each iteration.

5 Precise Robustness Analysis

5.1 Local Robustness

Throughout this section, we assume an ITPN N , as well as a parameterised
versionN of N where each lower (resp. upper) bound of a transition ti is replaced
with a fresh parameter λ−

i (resp. λ+
i ). Let π be the reference valuation such that

�N �π = N . We assume that IMPN (N , π) terminates with output Kr.
We will exploit Kr to characterise the precise robustness of the system, i.e. the

admissible variability of each timing bound. The original trace set is preserved
by any valuation satisfying Kr. Hence, any linear-time (LTL) property that is
true in �N �π is also true in �N �π′ , for π′ |= Kr. Thus, if the correctness is given
in the form of an LTL property, the timing delays can safely vary as long as they
satisfy Kr.
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We use here several examples in order to better illustrate the notions. For
the PITPN in Fig. 2a, with π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 3, λ+
2 → 4, λ−

3 →
1, λ+

3 → 2} as a reference valuation, IMPN outputs the constraint Kr = λ−
1 ≤

λ+
1 ∧λ−

2 ≤ λ+
2 ∧λ−

3 ≤ λ+
3 ∧λ+

3 < λ−
1 . For a parameterised version of the ITPN in

Fig. 1a, IMPN outputs the constraint Kr = λ−
1 ≤ λ+

1 ∧λ−
2 ≤ λ+

2 ∧λ−
2 ≥ λ+

1 . For
a parameterised version of the ITPN in Fig. 1b, IMPN outputs the constraint
Kr = λ−

1 ≤ λ+
1 ∧ λ−

2 ≤ λ+
2 ∧ λ−

3 = 0 ∧ 0 ≤ λ+
3 ∧ λ+

1 = λ−
2 .

Definition 4. An ITPN N is robust with respect to linear-time properties (or
LT-robust) if there exists γ > 0 such that for any linear time property ϕ, N ′ |= ϕ
if and only if N |= ϕ, where N ′ is an ITPN similar to N where each timing
bound c can be replaced with any value within [c− γ, c + γ].

For example, the ITPN in Fig. 2a is LT-robust (with e.g. γ = 1), whereas the
ITPNs in Fig. 1 are not.

Local Robustness. The resulting constraint Kr is given in the form of a convex
(possibly unbounded) polyhedron. For each interval bound λi in N , its local
robustness LR(λi) is defined as the distance between π(λi) and the closest border
of the polyhedral representation of Kr. For example, in Fig. 2a, LR(λ−

1 ) = 1.
In Fig. 1a, LR(λ−

1 ) = 1 whereas LR(λ+
1 ) = 0, showing that this latter bound

renders the system non-robust. The following lemma follows from Definition 4,
from the definition of LR and the correctness of IMPN .

Lemma 7. If for each parameter λ in N , LR(λ) > 0, then N is LT-robust.

Ranging Interval. For each interval bound λi in N , its ranging interval RI (λi)
is defined as its minimum and maximum admissible values within Kr. It is
computed by valuating all parameters but λi in Kr, and converting the resulting
inequality in the form of an interval. For example, in Fig. 2a, RI (λ−

1 ) = (2, 6].
In Fig. 1a, RI (λ+

1 ) = [1, 2].
The local lower (resp. upper) variability is defined as the distance between

the parameter valuation and the lower (resp. upper) bound of RI ; formally,
given RI (λi) = (a, b), LLV (λi) = π(λi) − a and LUV (λi) = b − π(λi). Note
that the local robustness can be obtained from the local variability: LR(λi) =
min(LLV (λi),LUV (λi)).

Computation of Δ. Our approach also allows to retrieve the value of the “Δ”
of Δ-based approaches. It is defined as the minimum over the set of parameters of
the distance between a parameter and the closest border of the polyhedron. For-
mally, Δ = min

(
mini∈Δ− LLV (λi),mini∈Δ+ LUV (λi)

)
, where Δ− (resp. Δ+)

denotes the set of parameters appearing in an interval lower (resp. upper) bound.
This distinction is necessary, since Δ-based approaches only consider the posi-
tive enlarging of intervals. For the ITPN in Fig. 2a, the maximum possible Δ is
1.5 (see Section 5.3). And, obviously, Δ = 0 for the ITPNs in Fig. 1.
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5.2 Improving the System Robustness

Identifying Critical Timing Bounds. Our approach allows to exhibit critical
timing bounds: critical timing bounds are those rendering the system non-robust,
i.e. with a null local robustness. For example, in Fig. 1a, λ+

1 and λ−
2 are the

critical timing bounds. In Fig. 1b, λ+
1 , λ−

2 and λ−
3 are the critical timing bounds.

Relaxing Bounds. For some systems, it is possible to refine the values of the
critical timing bounds so that the system becomes robust, with the same discrete
behaviour. In practice, this may in particular be the case of hardware systems,
where the timing bounds come from the traversal time of micro components:
One can change the timing bounds by replacing a component with another one.
In software, one can also refine the values of some timers if needed.

In that case, one can exploit the precise robustness analysis to synthesise
values for the timing bounds so that the system is robust. A system is said to be
potentially robust if all timing bounds λi have a ranging interval non-reduced
to a point (even if their local robustness may possibly be null, i.e. LR(λi) = 0).

Definition 5. An ITPN N is potentially robust if, for all timing bounds λi,
LLV (λi) �= LUV (λi).

This notion of potential robustness is a sufficient condition so that an ITPN
becomes robust with the same discrete behaviour.

Theorem 4. If N is potentially robust, then there exists πR such that �N �πR is
LT-robust, and has the same trace set as N .

Proof. By Lemma 7, only the timing bounds λi such that LR(λi) = 0 render N
non-LT-robust. For all λi such that LR(λi) > 0, we set πR(λi) = π(λi). Now
consider a λi such that LR(λi) = 0. By definition of LR, either LLV (λi) = 0 or
LUV (λi) = 0. Consider the former case (the latter case is dual). Let πR(λi) =
π(λi) +

(
LLV (λi) + LUV (λi)

)
/2. Since N is potentially robust, LLV (λi) �=

LUV (λi); hence LLV (λi) < πR(λi) < LUV (λi). As a consequence, in πR, we
have LR(λi) > 0. By construction, and from the convexity of Kr, πR(λi) is
in Kr; hence, from Theorem 3, �N �πR and �N �π have the same trace set. ��

Note that this is a sufficient but non-necessary condition, since the notion of
potential robustness is based on LLV and LUV , that come from Kr, which is
non-complete. Furthermore, one can find further conditions (and constructions)
to render a system robust. For example, the ITPN in Fig. 1b is not potentially
robust; but it can be made robust with the same discrete behaviour, e.g. by
replacing the intervals associated with both t1 and t2 with [0, 1].

5.3 Comparison with Δ-Based Approaches

The main drawback of our approach is that it does not terminate in the gen-
eral case, although we exhibited cases for which termination is guaranteed (see
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Fig. 4. Graphical comparison for the example in Fig. 2a

Section 4.2). In contrast, related work show that deciding only whether a sys-
tem is robust is decidable in most cases. However, beside the fact that we give a
quantitative measure of the robustness in the form of a constraint in 2∗n dimen-
sions (with n the number of transitions), our approach is particularly interesting
in the case of a non-robust system. First, we exhibit which timing bounds are
responsible for the non-robustness. Second, we give a condition to render the
system robust without changing its discrete behaviour.

Furthermore, our approach may output a significantly larger constraint than
the Δ-cube output by Δ-based approaches. Actually, when the result of IMPN is
complete, the resulting polyhedron is necessarily at least as large as the Δ-cube.
Consider again the example in Fig. 2a. In order to enable a graphical comparison
in 2 dimensions, we assign all parameters but λ−

1 and λ+
3 to their value as in π.

Hence the constraint becomes λ−
1 ≤ 6 ∧ 1 ≤ λ+

3 ∧ λ+
3 < λ−

1 . This constraint
is depicted in Fig. 4a. As of Δ-based approaches, they cannot compute a value
for Δ greater than 1.5 in this situation. Indeed, with Δ = 1.5, λ+

3 becomes
λ+
3 + Δ = 3.5, λ−

1 becomes λ−
1 −Δ = 3.5, in which case the discrete behaviour

becomes different (t1 can fire before t3). This Δ is given in Fig. 4b.
The interpretation of the much larger parametric domain covered by Kr com-

pared to the Δ-cube can be explained as follows: (1) The parametric domain
below λ+

3 = 2 and above λ−
1 = 5 is not covered by the Δ-cube, because Δ-

based approaches consider a positive parameter Δ ≥ 0. Hence, it is not possible
to study, e.g. by how much an upper bound can be decreased. (2) The con-
straint Kr allows to relate parameters. Whereas the value of Δ prevents λ−

1 and
λ+
3 to vary by more than 1.5, the inequality λ+

3 < λ−
1 states that λ−

1 may vary
by more than 1.5, as long as λ+

3 varies less (i.e. λ+
3 < λ−

1 ). This is of particular
interest in systems where some bounds are more likely to vary than others. (3)
This small example is a “good” example for Δ-based approaches. In the case
where at least one parameter cannot vary, Δ would be inevitably equal to 0,
whereas Kr would still give an output for other dimensions. This is the case of
the ITPNs in Fig. 1.

6 Final Remarks

In this paper, we extended the inverse method to PITPNs and showed how
to exploit its output to obtain a precise quantitative measure of the system
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robustness for linear-time properties. This paper considers the quantification of
the system robustness with respect to linear-time (hence time-abstract) proper-
ties only. Nevertheless, timed properties can also be considered, by adding an
observer net. This observer synchronises with the system ITPN, and can reduce
timed properties to time-abstract properties.

Our algorithms should be implemented and compared with similar tools, such
as Shrinktech [11]. Finally, we only addressed here the variability of the timing
delays (Δ), but not the admissible variations of the clock speed (usually called
“ε”). Our approach could be extended to this setting using extensions of the
inverse method for parameterised hybrid systems [7], by adding for each clock
two additional parameters ε−i and ε+i measuring the admissible decrease and
increase speed rate.

Acknowledgment. We are grateful to an anonymous reviewer for his/her very
detailed comments.
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Abstract. Various problems about probabilistic and non-probabilistic
timed automata (computing probability density, language volume or en-
tropy) can be naturally phrased as iteration of linear operators in Banach
spaces. Convergence of such iterations is guaranteed whenever the oper-
ator’s spectrum has a gap. In this article, for operators used in entropy
computation, we use the theory of positive operators to establish the
existence of such a gap. This allows to devise simple numeric algorithms
for computing the entropy and prove their exponential convergence.

1 Introduction

This work emerged from our study of entropy of timed regular languages. En-
tropy can be seen as a measure of the size of a language or of the information
content of its words. We have related it to Kolmogorov complexity [5] and to
capacity of timed communication channels [2].

In our previous works [4,5], we devised several techniques for computing that
entropy but they required some technical hypotheses and numerical convergence
was not ensured. In this paper, we present new techniques of analysis of timed
automata based on theory of positive linear operators. These techniques allow,
in particular, simple and converging algorithms for computing entropy under a
very general setting.

Positive linear operators (represented by matrices with non-negative elements)
are extensively used in the analysis of finite-state systems (automata and Markov
chains). The main technical tool is Perron-Frobenius theorem, which guarantees,
under certain hypotheses, that positive operators have a particular structure of
the spectrum: they have one simple real eigenvalue ρ with maximal modulus and
eigenvector v, and all other (complex) eigenvalues have smaller moduli, thus they
are separated from the maximal one by a gap. When such an operator is applied
many times to any non-negative vector x, the result Anx converges in direction
to v, and its length behaves roughly as ρn. The most-known consequences of this
result are existence of (and convergence to) steady state probability in Markov
chains and a characterization of the entropy of a regular language.

In [4], following the same approach and generalizing the notion of adjacency
matrix, we have introduced an operator Ψ associated to a timed automaton and
stated that the logarithm of its spectral radius equals the entropy of the language.
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This operator was used in [3]: the generating function of a timed language can
be obtained using the resolvent of Ψ . This operator acts in a Banach space of
infinite dimension, and thus its study is much more complicated than for finite
automata. In particular, analogs of Perron-Frobenius theorem are more involved
and in previous works we had no spectral gap properties and no algorithms with
guaranteed convergence for computing entropy.

In this paper, we show that any timed deterministic automaton with finite
entropy (after some preprocessing and decomposition) has an operator Ψ with a
spectral gap. As a consequence, simple iterative numeric procedures can be used
to compute entropy and they converge with exponentially small error bound.
The proof is rather technical, and is only sketched.

Related Works. As mentioned, this work generalizes classical studies on en-
tropy of regular languages [10] and on finite Markov chains, all based on Perron-
Frobenius theorem (see [17,14] and reference therein). We strongly use a chapter
of functional analysis – theory of positive linear operators, generalizing Perron-
Frobenius theory, presented in detail in the monograph [13].

As far as we know, linear operators have not been explicitly considered by
other authors in the context of timed automata, however [9,16,15] are very close
in spirit and in fact proceed by iteration of some integral operators.

Paper Structure. In Sect. 2 we recall classical recipes for finite automata and
finite-dimensional operators. In Sect. 3 we recall the notion of entropy of timed
languages and proceed with some preprocessing of timed automata. In Sect. 4
we recall how to associate an operator to a timed automaton and characterize
the entropy. In Sect. 5 we sketch the proof of the main result: the operator has
a spectral gap. In Sect. 6 we apply the main result to compute the entropy of
timed languages with a guaranteed convergence. In Sect. 7 we conclude with
some perspectives.

2 Linear Operators and Finite Automata

In this first preliminary section, we recall a typical application of linear operators
to finite automata and regular languages (in the rest of the paper these results
are extended to timed regular languages). More details can be found in [14,17].

Consider a deterministic finite automaton A = (Q,Σ, δ, q1, F ), with states
q1, q2, . . . , qs such that every state is reachable from q1 and F is reachable from
any state. Let L be the language accepted, and Ln its sublanguage containing
all its words of length n. In most cases, its cardinality #Ln depends on n ex-
ponentially, and the entropy of L (or of A) is defined as the growth rate of this
cardinality: H(L) = lim supn→∞

log#Ln

n . We recall how this entropy (which is
an important size and information measure) is related to linear operators.

Let Li,n be the set of all n-letter words accepted by A when starting at the
state qi, and xi,n its cardinality. From usual language equations

Li,0 =

{
{ε}, if qi ∈ F
∅, otherwise;

Li,n+1 =
⋃

(qi,a,qj)∈δ

aLj,n
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Fig. 1. Left: non-strongly-connected automaton. Right: periodic automaton.

one passes to equations on cardinalities

xi,0 =

{
1, if qi ∈ F
0, otherwise;

xi,n+1 =
∑

(qi,a,qj)∈δ

xj,n,

or, in vector notation, x0 = xF and xn+1 = Axn, with the vector xn =
(x1,n, . . . , xs,n) ∈ Rs and the s × s matrix A = (ai,j) such that ai,j is the
number of transitions in A leading from qi to qj . In other words, A is the ad-
jacency matrix of the automaton A. We conclude with the explicit formula for
cardinalities: xn = AnxF . Thus size analysis of the automaton A is phrased as
iteration of the linear operator A on Rs. In particular, the entropy is the growth
rate of the first coordinate x1,n.

Exploration of the matrix A is simplified by non-negativity of its elements.
Using Perron-Frobenius theory, the entropy can be characterized as follows:

Proposition 1. It holds that H(A) = log ρ(A), where ρ(A) stands for the spec-
tral radius, i.e. the maximal modulus of eigenvalues of A.

2.1 Two Decompositions

To rule out pathological behaviors where the iterations of A would not converge,
the automaton must be decomposed, first, in strongly-connected components,
then in aperiodic components.

Examples: why decompose. Consider first an example of a non-strongly-connected
automaton, in Fig. 1, left. It has three strongly connected components. The ma-

trix is A =

⎛⎝3 1 0
0 2 2
0 0 3

⎞⎠ with two positive eigenvalues (3, which is double, and

2), and three positive eigenvectors (those of the standard basis). When we iter-
ate the operator (i.e. compute Anx for some initial non-negative vector x), the
growth rate can be 3n (e.g. if we start with x = (1, 1, 1)) which corresponds to
the spectral radius, but it can also be 2n (if we start with x = (0, 1, 0)).

The second automaton, on the right of Fig. 1, is strongly connected but peri-
odic. It has four eigenvalues with maximal modulus: 2; 2i;−2;−2i. Iterating the
operator leads to a fast rotating sequence of vectors: (1, 0, 0, 0)�, (0, 2, 0, 0)�,
(0, 0, 4, 0)�, (0, 0, 0, 8)�, . . .
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SCC decomposition. The automaton A, considered as a graph, can be decom-
posed into strongly connected components. We will distinguish non-trivial
components Ac (containing a cycle) from transient states (i.e single-state com-
ponents without self-loops). For every Ac we consider the corresponding matrix
Ac (which is a submatrix of A, i.e the matrix is obtained by selecting rows,
then columns corresponding to states in Ac). Computation of the entropy of A
reduces to those of Ac thanks to the following result.

Proposition 2. ρ(A) = maxc ρ(Ac) and thus H(A) = maxcH(Ac).

Thus, we can restrict ourselves to the study of operators of strongly connected
automata, which constitutes our first decomposition.

Periodic decomposition. Given a strongly-connected automaton A, we define its
period p as the greatest common divisor of the lengths of its cycles. Then the
following decomposition is possible (see e.g. [11]).

Proposition 3. The set Q can be split into p periodic components Q0, . . . , Qp−1

satisfying the following properties:

– any path visits cyclically in turn all the components Q0, . . . , Qp−1;
– hence, any path of length p starts and ends in the same component;
– there exists a natural b such that any two states within the same Qi are

connected by some path of length bp.

The space Rs is naturally split into a direct sum of subspaces Ei for i ∈ 0..p− 1
corresponding to periodic components. Each Ei consists of vectors in Rs with
coordinates vanishing outside of Qi.

Operator A maps each Ei to Ei−1 mod p; hence each Ei is invariant under Ap.
We denote the restriction of Ap to Ei by Ap

i (which is a submatrix of Ap).

Proposition 4. For all i ∈ 0..p− 1, ρ(Ap
i ) = ρ(Ap).

We conclude that for a strongly connected automaton ρ(A) = ρ(Ap)1/p =
ρ(Ap

i )1/p for any i ∈ 0..p − 1. Thus we can concentrate our effort on the op-
erator restricted to one periodic component: Ap

i .

2.2 Spectral Gap and Its Consequences

Consider now the operator for one periodic component B = Ap
i . It has particular

properties. In terms of Perron-Frobenius theory it is irreducible. All its powers
Bn with n ≥ b (with b as in Prop. 3) are matrices with all positive elements.
It follows from Perron-Frobenius theory that the operator B has a spectral gap
β ∈ (0, 1), in the following sense:

1. ρ(B) is a positive simple1 eigenvalue of B;
2. the rest of the spectrum of B belongs to the disk {z | |z| ≤ (1− β)ρ(B)};

1 An eigenvalue λ is simple if its generalized eigenspace has dimension 1.
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Fig. 2, left, illustrates the spectrum of such an operator.
Due to this gap, iterations of B on any positive vector behave in a very

regular way, and numerical computation of ρ(B) and of the eigenvector v become
particularly easy.

Proposition 5. For any positive vector x:

– the vector Bnx converges in direction to v;
– the ratio |Bn+1x|/|Bnx| converges to ρ(B);
– the error in both cases converges in O((1 − β)n).

Re

Im

λ ρ

Re

Im

ρ

Γζ

Fig. 2. Left: spectrum of an operator with β-gap. Right: finding δ for Lem. 6; the
spectrum of the perturbed operator cannot cross the ring Γ .

3 Timed Automata, Volumes and Entropy

In this second preliminary section, we recall the notions of volume and entropy
of timed languages from [5,4], describe a form of region graph from [4] and a
characterization of languages with non-vanishing entropy from [8].

3.1 Geometry, Volume and Entropy of Timed Languages

A timed word of length n over an alphabet Σ is a sequence t1a1 . . . tnan, where
ai ∈ Σ, ti ∈ R≥0. Here ti represents the delay between the events ai−1 and ai.
For every timed language L ⊆ Σ∗ and word w = w1 . . . wn ∈ Σn we define
PL
w = {(t1, . . . , tn) | t1w1 . . . tnwn ∈ L}. For a fixed n, we define the n-volume

of L as follows: Vn(L) =
∑

w∈Σn VolPL
w , where Vol stands for the standard

Euclidean volume in Rn. In case of regular timed languages, the sets PL
w are

union of polytopes, and hence their volumes (finite or infinite) are well-defined.
For a timed language L(A) recognized by a timed automaton A we will just
write Vn(A) (or even Vn) instead of Vn(L(A)).

Similarily to the discrete case, the (volumetric) entropy of a timed language
L is defined as H(L) = lim supn→∞

log Vn

n .
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3.2 Bounded Deterministic Timed Automata

We briefly fix notations and recall definitions about timed automata ([1]).
We fix a natural constant M which upper bounds all the constants in the

automaton. A clock is a variable ranging over R≥0. A clock constraint over a set
of clocks C is a finite conjunction of inequalities of the form x ∼ c or x ∼ y,
where x and y are clocks, ∼∈ {<,≤,=,≥, >} and c ∈ 0..M . A clock reset r is
a function RC → RC which sets to 0 the clocks in some fixed subset of C and
does not modify the values of the others.

A timed automaton (TA) is a tuple A = (Q,Σ,C,Δ, q0, F ). Its elements are
respectively the finite set of locations, the finite alphabet, the finite set of clocks
(let its cardinality be d), the transition relation, the initial location, and the final
condition. A state of A is a pair (q,x) of a control location q ∈ Q and a vector
of clock values x ∈ Rd. An element of Δ is written as δ = (q, a, g, r, q′) meaning
a transition from q to q′ with label a, guard g (which is a clock constraint) and
reset r. An element of F has a form (q, g) meaning that an accepting run can
terminate by a transition to q with clocks respecting the clock constraint g.

A run of A along a path π = δ1 . . . δn ∈ Δn has the form (qi0 ,x0)
t1a1−−−→

(qi1 ,xi1 )
t2a2−−−→ · · · tnan−−−→ (qin ,xn) where for all j ∈ 1..n, δj = (qij−1 , aj , g, r, qij ) ∈

Δ, xj−1 + tj1 |= g and xj = r(xj−1 + tj1). In this case we use the notation

x1
t1...tn,π−−−−−→ xn to say that such a run exists.

When qi0 = q0 is the initial state, x0 = 0 and F contains a couple (q, g)
with qin = q and xn satisfying g, then the timed word t1a1 . . . tnan is said to be
accepted by A. The set of all such words is the language L(A) accepted by A.

Several objects are naturally associated with a path. Given a path and two clock
vectors, a polytope of all the timings of the path can be defined: P (π,x,x′) =

{t | x t,π−−→ x′}. We also define the reachability relation: Reach(π) = {(x,x′) |
∃t,x t,π−−→ x′}.

A TA is deterministic if for any two transitions with the same source and the
same label the guards are disjoint. It is bounded whenever every guard upper
bounds at least one clock.

In the rest of the paper, we compute volumes and entropy for regular timed
languages recognized by deterministic timed automata (DTA). Moreover, if some
guards in the automaton were unbounded, the volume would be infinite, which
is beyond the reach of our approach. Thus we concentrate on Bounded Deter-
ministic Timed Automata (BDTA).

Remark 1. Most of known techniques to compute entropy of untimed regular
languages work on deterministic automata. In fact, these techniques count paths
in the automaton, and only in the deterministic case their number coincides with
the number of accepted words. The same is true for volumes in timed automata.

3.3 A Running Example

To illustrate the notions of volume and entropy, we consider the languages rec-
ognized by the BDTA E on the left of Fig. 3.
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p q

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

p
x ∈ (0; 1)
y = 0

q
x = 0

y ∈ (0; 1)

a, 0 < y < x < 1/x := 0

b, 0 < x < y < 1/y := 0

p0

x = 0
y = 0

a, 0 < x = y < 1/x := 0

Fig. 3. A simple timed automaton E (left) and its fleshy region-split form (right)

The language recognized by this automaton contains the words of the form
t1at2bt3at4b . . . with ti + ti+1 ∈ [0; 1]. Notice that the automaton has two clocks
that are never reset together. The geometric form of possible delay vectors
(t1 . . . tn) in Rn is defined by overlapping constraints ti + ti+1 ∈ [0; 1]. A sys-
tematic method to compute the volume of this polytope is described below in
Sect. 4.1. It gives the sequence of volumes: 1; 1/2; 1/3; 5/24; 2/15; 61/720; 17/315;
277/8064; . . . As shown in [4], the entropy of this language is log(2/π).

3.4 Preprocessing Timed Automata

In order to compute volumes Vn and entropy H of the language of a BDTA, we
first transform this automaton into a normal form, a (timed) variant of the region
graph defined in [1]. We recall that a subset of Rd defined by a clock constraint
is called a zone. Smallest (by inclusion) zones are called regions. We say that a
BDTA A = (Q,Σ,C, δ, q0, F ) is in a region-split form if properties B1-3, below,
hold. Furthermore, with additional property B4, such an automaton is called
fleshy.

B1. Each location and each transition of A is visited by some accepting run.
B2. For every location q ∈ Q a unique clock region rq (called its entry region)

exists, such that the set of clock values with which q is entered is exactly
rq. For the initial location q0, its entry region is the singleton {0}.

B3. The guard g of every transition δ = (q, a, g, r, q′) ∈ Δ is just one region. All
the clock values satisfying g are time-reachable from rq.

B4. For every transition δ its guard g has no constraints of the form x = c.

By the fundamental property of region abstraction, any path of the underlying
graph of a region-split TA is realizable as a run that follows the same edges.

Proposition 6 ([4]). Given a BDTA accepting a language L, a fleshy region-
split TA accepting a language L′ ⊂ L with Vn(L′) = Vn(L) and H(L′) = H(L)
can be constructed.

From now on, we suppose w.l.o.g. that the automaton A is in a fleshy region-split
form (see Fig. 3, right).
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3.5 Thick Languages and Forgetful Automata

A timed language is called thin if its entropy is −∞ and thick otherwise (H >
−∞). In [8] we have characterized timed automata recognizing thick languages
in the following way. A path π is called forgetful if Reach(π) = r×r′. Informally,
after reading (t, π) from a state s0, the reached state s does not depend on s0 (π
forgets its starting state). Forgetful paths satisfy the progress condition: along
these paths each clock is reset at least once. We will use the key characterization
of thickness in terms of forgetfulness:

Theorem 1 ([8]). For a BDTA in region split form, H > −∞ if and only if
there exists a forgetful cycle.

The automaton of the running example is thick; one of its forgetful cycles is ab.
The proof of Thm. 1 is based on a kind of pumping lemma (also used below).

Theorem 2 ([8]). For every BDTA A and η > 0, there exists Nη such that
any path π longer than Nη with Vol(Lπ) ≥ η|π| contains a forgetful cycle.

This means any long path with non-vanishing volume contains a forgetful cycle.

4 Timed Automata: Operators

We adapt several definitions and results of [4] to our more general setting.

4.1 Recurrent Equations on Volume Functions

Given a BDTA A, we want to compute its entropy based on its n-volumes Vn.
In order to obtain recurrent equations on these volumes, we need to take into
account all possible initial locations and clock configurations. For every state
(q,x), let L(q,x) be the set of all the timed words corresponding to the runs of
the automaton starting at this state, let Ln(q,x) be its sublanguage consisting
of its words of length n, and vn(q,x) the volume of this sublanguage. Similarly
we define for a path π its volume function, vπ(x) = Vol(Lπ(x)).

By definition of runs of a timed automaton, we obtain the following language
equations for q ∈ Q and x ∈ rq:

L0(q,x) = {ε} if q is final; L0(q,x) = ∅ otherwise;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈Δ

⋃
τ :x+τ∈g

τaLk(q′, r(x + τ)).

Since the automaton is deterministic, the union over transitions (the first
⋃

in
the formula) is disjoint. Hence, it is easy to pass to volumes:

v0(q,x) = 1F (q,x);

vk+1(q,x) =
∑

(q,a,g,r,q′)∈Δ

∫
τ :x+τ∈g

vk(q′, r(x + τ)) dτ, (1)

where 1F is the indicator function of the final states F .
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4.2 Operator Ψ and Its Link to Volumes and Entropy

The recurrent formula (1) has the form vk+1 = Ψvk, (and hence vn = Ψn1F ),
where Ψ is the operator defined by the equation:

Ψf(q,x) =
∑

(q,a,g,r,q′)∈Δ

∫
x+τ∈g

f(q′, r(x + τ)) dτ. (2)

Now we must define the functional space where the function vn lies and where
the operator acts. We slightly modify the functional space of [4]. We define S
as the disjoint union of all the (closures of) entry regions of all the states of A.
Formally, S = {(q,x) | x ∈ r̄q}. The elements of the space F are continuous
functions from S to R. The uniform norm ‖u‖ = supξ∈S |u(ξ)| can be defined
on F , yielding a Banach space structure. We can compare two functions in F
pointwise, thus we write u ≤ v if ∀ξ ∈ S : u(ξ) ≤ v(ξ). For a function f ∈ F
we sometimes denote f(p, x) by fp(x). Thus, any function f ∈ F can be seen
as a finite collection of functions fp defined on entry regions r̄p of locations of
A. When restricted to one location q the volume functions x �→ vn(q,x) are
polynomial on rq [4] and can thus be prolongated to its closure r̄q. We conclude
that vn ∈ F for all n ∈ N.

Proposition 7. The operator Ψ is a linear bounded positive operator on the
Banach space F .

The problem of computing volumes and entropy is now phrased as studying
iterations of operator Ψ on a functional space F . The theory of positive operators
guarantees, that under some hypotheses, vn is close in direction to a positive
eigenvector v∗ of Ψ , corresponding to its leading eigenvalue ρ. Moreover, values of
vn will grow/decay exponentially like ρn. The eigenvalue ρ and the corresponding
eigenvector can be computed using natural iterative procedures. In the sequel
we apply this general scheme to the operator Ψ , referring to the book [13] when
a result concerning positive operators is needed.

The following theorem was the main result of [4], it still holds for our more
general class of timed automata.

Theorem 3 (adapted from [4]). For any BDTA H = log ρ(Ψ).

The concluding result of the present paper is a procedure to compute the spectral
radius of Ψ and thus the entropy H based on the spectral gap. To prove existence
of this spectral gap we will use the kernel form of path operators and properties
of thick automata.

4.3 Path Operators and Their Kernel Form

Equation (2) can be rewritten as:

(Ψf)q(x) =
∑

δ=(q,...,q′)∈Δ

(ψδfq′)(x). (3)
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where for δ = (q, a, g, r, q′) the operator ψδ acts from the space C(r̄q′ ) (of con-
tinuous functions on the target region) to the space C(r̄q). It is defined by the
integral: ψδf(x) =

∫
x+τ∈g

f(r(x + τ)) dτ. Iterating (3), we obtain a formula for
powers of operator Ψ

(Ψkf)p(x) =
∑

δ1...δk from p to p′

(ψδ1 . . . ψδkfp′)(x). (4)

For a path π = δ1 . . . δk ∈ Δk starting in a state p and leading to a state
q, we define ψπ = ψδ1 . . . ψδk , this operator acts from C(r̄q) to C(r̄p). Let D
be the dimension of rq. When the path π satisfies the progress condition, for
(x,x′) ∈ rp×rq the polytope P (π,x,x′), is either empty or of dimension (n−D),
and we denote by vπ(x,x′) its (n−D)-dimensional volume. We have the following
representation of ψπ.

Theorem 4 (kernel form,[7]). When π is a progress path, the function vπ is
a kernel for ψπ:

ψπ(f)(x) =

∫
rq

vπ(x,x′)f(x′)dμq(x′). (5)

The kernel vπ is piecewise polynomial, strictly positive and continuous on
Reach(π); it is zero outside of Reach(π).

The measure μq(x′) in the theorem is a D-dimensional Lebesgue measure on
rq. For example, if rq is defined by the clock constraint 0 = x1 < x2 − 1 =

x3 − 1 < x4 − 2 < 1 then
∫
rq
f(x)dμq(x) =

∫ 2

1

(∫ 3

x2+1 f(0, x2, x2, x4)dx4

)
dx2.

The theorem applied to forgetful paths ensures that vπ(x,x′) > 0 on rp × rq.

Example 1. Let us apply the theorem to the forgetful cycle ab of our running

example. We have x
t1at2b−−−−→ x′ if and only if (x, t1, t2, x

′) satisfy the set of in-
equations (I) = {0 < x < 1, 0 < t1, 0 < t2, x + t1 < 1, t1 + t2 < 1} and
x′ = t1 + t2. We instantiate (I) with t1 = x′ − t2, and obtain the set of in-
equations (I ′) = {t2 < x′, 0 < t2, x + x′ − 1 < t2}. The kernel of ψab is
vab(x, x

′) = Vol{t2 | (x, t2, x
′) |= (I ′)} = min(x′, 1 − x). Thus ψab(f)(x) =∫ 1

0
min(x′, 1− x)f(x′)dx′ = (1− x)

∫ 1

1−x
f(x′)dx′ +

∫ 1−x

0
x′f(x′)dx′.

4.4 Two Decompositions Again

As in the untimed case (Sect. 2.1) we decompose the automaton and the op-
erator. First we partition the location set Q (and thus the automaton A) in
strongly connected components. We only consider non-trivial (i.e. containing a
cycle) components Ac. The following result mimics Prop. 2.

Proposition 8 ([6,8]). H(A) = maxcH(Ac).

Thus, like in the discrete case, we can restrict ourselves to the study of operators
of strongly connected automata. Since the entropy of thin SCC is −∞, we will
only consider thick components.
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Given a strongly-connected (region-split fleshy) timed automatonA, we define
its period p as the greatest common divisor of the lengths of its cycles. Then,
as in Prop. 3, the location set Q can be split into p periodic components Qi,
for i ∈ 0..p− 1, and the Banach space F into a direct sum of the corresponding
subspaces Fi. Each Fi consists of functions in F vanishing outside of Qi.

Operator Ψ maps each Fi to Fi−1 mod p; hence each Fi is invariant under Ψp.
We denote the restriction of Ψp to Fi by Ψp

i . The following result mimics Prop. 4.

Proposition 9. For all i ∈ 0..p− 1, ρ(Ψp
i ) = ρ(Ψp).

Thus we can concentrate our effort on the operator restricted to one periodic
component: Ψp

i .

5 Spectral Gap

It is well-known that computation of the spectral radius of an operator (as well
as other convergence properties) is substantially simplified by the existence of
spectral gap in the operator, as defined in Subsect. 2.2. Here we show that every
periodic component of the operator Θ = Ψp

i with p the period of the automaton
has such a gap. This result will be used in the next section to ensure convergence
of a numerical algorithm for entropy computation.

We are ready to formulate the main result of this article.

Theorem 5 (spectral gap). For any region-split strongly connected thick timed
automaton A of period p the operator Θ = Ψp

i has a spectral gap.

The proof of this result is quite technical, and we only present the logical struc-
ture of the proof and some of its ideas. The proof is based on Perron-Frobenius
theory for acute operators as in [13].

The idea of acuteness can be explained as follows. Let v be a non-zero vector
in the functional space F , and let h be a non-zero covector (a functional) in the
dual space F . The angle α between them can be naturally defined as follows:

cosα =
〈h, v〉

‖h‖ · ‖v‖ with 0 ≤ α ≤ π

(for h and v two vectors in Euclidean Rn this is the usual angle). For non-negative
h and v the angle is always between 0 and π/2.

A linear positive operator A : F → F is called acute if applying it to any
non-negative non-zero h and v yields A∗h and Av forming an acute angle smaller
than some fixed acute φ. Formally, we say that A is acute with a cosine cosφ
where φ ∈ (0, π/2) whenever

∀ non-zero h, v ≥ 0 : cosφ ≤ 〈A∗h,Av〉
‖A∗h‖ · ‖Av‖ . (6)

We are interested in acuity since it is a sufficient condition for existence of a
spectral gap:
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Lemma 1 ([13], Thm. 12.3). A positive acute operator A with cosine cosφ
has a β-gap with β = 1− tanφ/2 (i.e. β = Ω(cosφ) whenever cosφ is small).

In order to prove that the operator Ψ has a spectral gap we first concentrate on
two adjacent forgetful paths π1 and π2, and prove that the angle between ψ∗

π1
h

and ψπ2v is acute, and its cosine admits an exponential lower bound.

Lemma 2 (angle between two forgetful paths). Let π1 and π2 be forgetful
paths of length n from p to q and from q to r respectively. Let h ∈ C∗(rp) and
v ∈ C(rr) be both non-negative and non-zero. Then, for some α > 0 depending
only on the automaton, the following inequality holds:〈

ψ∗
π1
h, ψπ2v

〉∥∥ψ∗
π1
h
∥∥ · ‖ψπ2v‖

≥ αn. (7)

We give a very rough idea of the proof using the kernel form given by Thm. 4.
We sketch the proof of the following sufficient condition for (7):

∀x ∈ rp, ∀z ∈ rr,

∫
rq
vπ1(x,y)vπ2 (y, z)dy∫

rq
vπ1(x,y)dy supy∈rq vπ2(y, z)

≥ αn. (8)

For each timed run following the path π1π2 from x ∈ rp to z ∈ rq, we consider
separately its first part, over path π1, and its second part, over π2. We transform
the first part so that it reaches a point inside some shrunk version r−q of the
clock region at the end of π1, closer to its barycenter (it is important that
this transformation does not change too much the volumes). Then we change
its second part, making it start from the point of the shrunk region that would
minimize path volumes over π2. After this transformation, the integral correspon-
ding to the numerator splits into a product of two factors

∫
r−q

vπ1(x,y)dy and

miny∈r−q vπ2(y, z) proportional to the two factors of the denominator. Thus the

fraction simplifies and we get the required estimate.
Now the properties of the periodic decomposition enter into the play.

Lemma 3. In any periodic component of a strongly connected and thick automa-
ton, there exists a natural � (multiple of the period), such that for every states p
and q in this component there exists a forgetful path θpq of length exactly �.

We call a path π of length n good if its last n−� transitions form a forgetful path
(where � comes from the previous lemma). Of course, a good path is forgetful.

As we know from Eq. (4), restricted to one periodic component, the operator
Θn admits the following matrix representation:

(Θnf)p = ((Ψp
i )nf)p =

∑
p

π→q,|π|=np

ψπfq,

where locations p and q belong to the periodic component Qi and f ∈ Fi. We
will split it into two operators: Θn = Φn + Ξn where Φn corresponds to good
paths and Ξn to bad ones.
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The following lemma states that the huge majority of paths are good.

Lemma 4 (size of good and bad paths). Bad paths have a volume smaller
than any exponent, while good are at least exponential:

Bad are small: For every ι > 0 there exists N such that for all n > N it holds
that ‖Ξn‖ < ιn.

Good are large: There exists ν > 0 and N such that for all n > N it holds
that ρ(Φn) > νn.

The first item is an immediate corollary of Thm. 2.
We know from Lemma 2, that operators corresponding to two adjacent forget-

ful paths form an acute angle. It is possible to deduce that operator Φn (which
is a sum of many operators of forgetful paths) is also acute:

Lemma 5 (good part is acute). The operator Φn is acute, and its cosine
admits an exponential lower bound: cosφ = Ω(γn) with some γ > 0.

We have thus decomposed the operator Θn into an acute operator Φn and a
small operator Ξn. By Lemma 1, Φn has a spectral gap. We need some results
from perturbation theory to establish that the influence of Ξn on the spectrum
is negligible and thus Ψn

A also has a gap.
For an operator A with β-gap and spectral radius ρ consider a ring on the

complex plane: Γ = {ζ|(1 − 3β/4)ρ ≤ |ζ| ≤ (1 − β/4)ρ} (see Fig. 2, right). By
definition of the gap, all ζ in this ring do not belong to the spectrum of A, thus
the resolvent operator (A − ζ)−1 is well defined. Let δ be the maximal norm of
this resolvent: δ = supζ∈Γ

∥∥(A− ζ)−1
∥∥ .

Lemma 6 (small perturbation preserves spectral gap). Let A be a linear
operator with gap β. Let B satisfy ‖B‖ < δ−1. Then A + B also has a gap β/2.

This is a well-known fact of perturbation theory (see e.g. [12]).
It turns out that for an acute operator the parameter δ can be estimated.

This allows combining Lemmata 1, 6.

Lemma 7 (resolvent norm for acute operators). Let A be a linear positive
acute operator with cosine cosφ and spectral radius ρ. Then the parameter δ
described above satisfies δ = O((cosφ)−6ρ−1).

Lemma 8. For a thick strongly connected BDTA A there exists N such that for
all n ≥ N the operator Θn has a spectral gap.

We have proved the gap property for the automaton operator in high powers:
Θn for n ≥ N . Based on the following lemma, we can deduce the same property
for Θ (this ends the proof of Thm. 5).

Lemma 9. Let A be a positive operator. If both operators AN and AN+1 have
gaps then operator A also has a gap.
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Table 1. Iterative algorithm: approximating H

1. Transform A into the fleshy region-split form.
2. Decompose it into strongly-connected components Ac.
3. For every thick Ac find its operator Ψc and period pc
4. Compute the sequence of functions gc,0 = 1; gc,n+1 = Ψpc

c gc,n.
5. Compute the approximations ρc,n = ‖gc,n+1‖/‖gc,n‖.
6. Compute H = maxc{log ρc/pc} ≈ maxc{log ρc,n/pc}.

6 Computing the Entropy

In this section, we present a typical application of spectral gap results (Thm. 5):
a very simple procedure for numeric approximation of the entropy of any BDTA,
as characterized in Thm. 3.

Let A be a positive aperiodic linear operator with a spectral gap larger than
β. Our aim is to compute its spectral radius. For this we iterate the operator:
g0 = 1; gn+1 = Agn. An approximation of ρ(A) can be computed as follows:
ρn = ‖gn+1‖/‖gn‖. As stated in [13, (15.16)], for some constant C, the following
exponential error estimate holds: |ρn − ρ(A)| < C(1− β)n.

Combining with the results of the Sect. 4 we obtain the algorithm to compute
the entropy of a timed automaton presented in Table 1. We summarize with the
following result:

Theorem 6. The algorithm in Table 1 computes the entropy of a BDTA with
an exponentially small error (wrt the number of iterations n).

Example 2. Applying the method to the running example, we first restrict the
study to the cycle ab which is the only non-trivial strongly connected component.
Its period is 2 and thus we must compute Ψ2n(1) for n = 0, 1, 2, . . . restricted
to one periodic component p (or q). Table 2 contains the four first iterations of
Ψ2. In this table we present gn(x) = Ψ2n(1)(p, x) = ψ(ab)n(1)(x) = v(ab)n(x), its
norm and ρn−1 = ‖gn‖/‖gn−1‖ (which is an approximation of ρ(Ψ2) = ρ(Ψ)2.
This yields the following approximation of the entropyH ≈ (log ρ3)/2 ≈ −0.6512
which is close to the true value (see [4]) H = log(2/π) ≈ −0.6515.

7 Perspectives

We believe that the techniques based on linear operators and their spectral gaps
can be applied to other problems on timed automata, such as convergence of
probabilistic timed automata to steady-state distributions, but this will be the
subject of further research.
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Table 2. Iterating the operator Ψ2 of the running example

n gn(x) = v(ab)n(x) ‖gn‖ ρn−1

0 1 1

1 1− x− (1− x)2/2 1/2 0.5

2 (1− x)/3 + (1− x)4/24− (1− x)3/6 5/24 0.41667

3 2
15
(1− x)− (1− x)6/720 + (1− x)5/120− (1− x)3/18 61/720 0.40667

4 17
315
(1− x) + (1− x)8/40320 − (1− x)7 /5040+

(1− x)5 /360 − (1− x)3 /45 277/8064 0.40544
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Abstract. Weighted timed automata extend timed automata with cost
variables that can be used to model the evolution of various quantities.
Although cost-optimal reachability is decidable (in polynomial space) on
this model, it becomes undecidable on weighted timed games. This paper
studies cost-optimal reachability problems on weighted timed automata
and games under robust semantics. More precisely, we consider two per-
turbation game semantics that introduce imprecisions in the standard
semantics, and bring robustness properties w.r.t. timing imprecisions to
controllers. We give a polynomial-space algorithm for weighted timed
automata, and prove the undecidability of cost-optimal reachability on
weighted timed games, showing that the problem is robustly undecidable.

1 Introduction

Weighted timed automata. Weighted timed automata [4,7] are timed automata [2]
enriched with observer variables whose values grow with given constant deriva-
tives in each location. This allows one to describe systems with timing constraints
while specifying the evolution of some resources, such as energy. The cost-optimal
reachability problem was studied in [4,7,8], and the problem was shown to be
PSPACE-complete [8]. The model naturally extends to timed games. Although
some partial decidability results for weighted timed games have been proposed
in [1,10], the problem is undecidable in the general case [13,9] even for a fixed
number of clocks.

Robustness. Timed automata and their extensions are abstract formalisms to de-
scribe models of real-time systems. Consequently, these formalisms make idealistic
assumptions, such as the perfect continuity of the clocks, their high precision, and
instantaneous reaction of the system. One side effect of such idealistic semantics is
that they allow easily encoding of undecidable problems. In fact, the undecidabil-
ity proofs on weighted timed games of [13,9] rely on the ability of timed automata
to distinguish infinitely precise clock values, and modify these values with high
precision. It is believed that some of the undecidability results in the literature
can be overcome by introducing fuzziness in the semantics, making it impossible
to encode complex (undecidable) languages, see for instance [3,5,18].

In this paper, we investigate how adding imprecisions to the semantics affects
the (un)decidability of the cost-optimal reachability problem in weighted timed
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automata and games. We consider two prominent perturbation semantics
from [15,11,23], where perturbations are modeled as a game between a controller
which chooses delays and edges, and an environment which perturbs the chosen
delay by a (parametrized) bounded amount. The problem consists in deciding
whether the controller has a winning strategy ensuring a given objective for a suffi-
ciently small value of the parameter. Such a winning strategy is then robust, since
it can ensure winning even if the moves it suggests are perturbed by a bounded
amount. Two variants have been considered: in the excess-perturbation semantics,
the controller is only required to suggest delays and edges whose guards are satis-
fied after the delay, while the guard can be violated after perturbations. This se-
mantics allows one to design systems with simple timing constraints (for instance,
using equalities), and synthesize robust strategies afterwards, taking into account
new behaviors due to imprecisions. The conservative perturbation semantics re-
quires the guards to be satisfied after any perturbation. This semantics appears
naturally for instance in applications where lower and upper bounds on task exe-
cution times are given and need to be respected strictly.

For timed automata, robust reachability is EXPTIME-complete for the excess-
perturbation semantics [11], while robust reachability and safety are PSPACE-
complete for the conservative perturbation semantics [23]. Here, we apply both
semantics to weighted timed automata and games and study the problem of de-
ciding an upper bound on the limit-cost of a winning strategy for reachability
objectives for the controller. The limit-cost refers to the limit of the cost achieved
by a given strategy, when the bound δ on the perturbations goes to zero. In fact,
the cost of a given path can slightly increase (or decrease) due to perturbations on
the delays, but only by an amount proportional to δ. Thus, the limit-cost allows us
to concentrate on the bound that could be achieved if this effect is discarded. On
weighted timed automata, we prove that the problem is PSPACE-complete in the
conservative perturbation semantics, by adapting the corner-point abstraction [8].
In the excess-perturbation semantics, we show, perhaps surprisingly, that the prob-
lem becomes undecidable on weighted timed automata. On weighted timed games,
our results are negative: in both excess- and conservative perturbation seman-
tics, cost optimal reachability remains undecidable on weighted timed games, even
when the number of clocks is fixed and the constants are bounded. We also prove
the undecidability of the problem for fixed parameter δ on weighted timed games.
Hence, similarly to “robust undecidability” results of [20] on timed automata, we
establish that cost-optimal reachability on weighted timed games is robustly un-
decidable, for the considered semantics.

Related Work. The work [19] attempted to introduce fuzziness in the seman-
tics of timed automata, via a topological semantics, with the hope of extending
the decidability results. However timed language inclusion turned out to be still
undecidable [20]. Another related line of work is that of [21,17,16], which con-
sists in modeling imprecisions by enlarging all clock constraints of the automa-
ton by some parameter δ, transforming each constraint of the form x ∈ [a, b]
into x ∈ [a − δ, b + δ]. One analyzes the resulting system with a worst case ap-
proach. The game semantics we consider allow the system to observe and react to
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perturbations. The dual notion of shrinking was considered in [22] in order to
study whether any significant behavior is lost when guards are shrunk.

The long version [12] of this paper contains the detailed proofs.

2 Preliminaries

Game structures. A (two-player) game structure is a tuple T = (S, s0,M1,M2,
T1, T2, jt), where S is a set of states, s0 ∈ S is the initial state, Mi is the set
of moves of Player i, Ti ⊆ S ×Mi is the enabling condition for Player i, and
jt : S ×M1 ×M2 → S the joint transition function. We assume that each Mi con-
tains a distinguished element ⊥ called the empty move, and that jt(s,⊥,⊥) = s
for any s ∈ S. A run of T is a finite or infinite sequence q1e1q2e2 . . . of alternat-
ing states qi ∈ S, and pairs of moves ei = (m1,m2) ∈ M1 ×M2, such that for
all i ≥ 1, we have (qi,mι) ∈ Tι for ι ∈ {1, 2}, and qi+1 = jt(qi, ei). For any finite
run ρ, let |ρ| denote its length, that is, the number of states it contains. For any
natural number 1 ≤ i ≤ |ρ|, let statei(ρ) the i-th state of ρ, and transi(ρ) its i-th
transition. We let first(ρ) = state1(ρ), and last(ρ) = state|ρ|(ρ). We also denote
by ρi...j the sub-run of ρ between states of indices i and j.

A strategy for Player i is a function f that maps each finite run h to a move Mi,
such that (last(h), f(h)) ∈ Ti. A run ρ is compatible with strategies f and g of
Players 1 and 2, if statei+1(ρ) = jt(ρ1...i, (f(ρ1...i), g(ρ1...i))) for all i ≥ 1. Given
strategies f and g for Players 1 and 2 resp., the outcome of the pair (f, g) in T ,
denoted by OutcomeT (f, g) is the unique infinite run that is compatible with
both strategies. Let Si(T ) denote the set of the strategies of Player i in T .

Weighted timed automata and games. Given a finite set of clocks C, we call valu-
ations the elements of RC

≥0. For a subset R ⊆ C and a valuation ν, ν[R← 0] is
the valuation defined by ν[R← 0](x) = ν(x) for x ∈ C \ R and ν[R← 0](x) = 0
for x ∈ R. Given d ∈ R≥0 and a valuation ν, the valuation ν + d is defined by
(ν+d)(x) = ν(x)+d for all x ∈ C. We extend these operations to sets of valuations
in the obvious way. We write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC
for the set of guards built on C.

Definition 1. A weighted timed game (WTG)A is a tuple (L, �0, C, I, E1, E2,S),
where L is a finite set of locations, C is a finite set of clocks, I : L → ΦC assigns
an invariant to every location, E1, E2 ⊆ L×ΦC × 2C ×L are sets of edges, �0 ∈ L
is the initial location, and S : L → Z is the slope function1. For any edge e =
(�, g, R, �′), g is the guard of the edge, and R its reset set. An edge e = (�, g, R, �′)

is also written as �
g,R−−→ �′. A weighted timed automaton (WTA) is a WTG of the

form (L, �0, C, I, E1, ∅,S).

1 We do not introduce discrete weights on transitions, but all our results would also
hold in that setting.
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Weighted timed games define game structures similarly to timed games [6]:
the guards of the edges enable or disable the transitions, and the reset set deter-
mines the update after the transition is taken by resetting the clocks belonging
to the set. Intuitively, the edges Ei are controlled by Player i. Moreover, the
state space contains the value of a cost variable, denoted cost, which grows with
derivative S(�) at any location �.

In this paper, we assume that all clocks are bounded above by a constant, i.e.,
the invariant at each location imposes some upper bound on all clocks.

Formally, the exact semantics of a WTG A is a game structure �A� =
(S, s0,M1,M2, T1, T2, jt). The state space is S = {(�, ν, c) | � ∈ L, ν ∈ RC

≥0, c ∈
R, ν |= I(�)}. The initial state is s0 = (�0,0, 0). The moves are defined by
Mi = R × Ei ∪ {⊥} whose components are pairs of a delay and a Player-
i edge. A pair (d, e) ∈ R × Ei is said enabled at (�, ν) ∈ L × RC

≥0 when-
ever, writing e = (�1, g, R, �2), we have � = �1, ν |= I(�1), ν + d |= I(�1),
ν+d |= g, and (ν + d)[R ← 0] |= I(�2). The enabling condition Ti((�, ν, c), (d, e))
holds if, and only if (d, e) is enabled at (�, ν). Note that Ti((�, ν, c),⊥) holds
at any state (�, ν, c). The joint transition function is defined as follows. Given
di ≥ 0, and edges ei = (�, gi, Ri, �i) ∈ Ei, we have jt((�, ν, c), (d1, e1), (d2, e2)) =
(�i0 , (ν + di0)[Ri0 ← 0], c + di0S(�)), where i0 = 1 if d1 ≤ d2, and i0 = 2 other-
wise. Moreover, jt((�, ν, c), (d1, e1),⊥) = (�1, (ν + d1)[R1 ← 0], c + d1S(�)), and
symmetrically.

Example 1. Figure 1 displays an example of a weighted timed game. Plain (resp.
dashed) arrows are for Player 1 (resp. Player 2) edges. The slopes are indicated
above each state. A strategy for Player 1 is to suggest a delay of 1 and choose
the edge from �1 to �2. This prevents Player 2 from going down to location �5,
where the cost of accepting is 12− o(δ). From location �2, Player 1 can go to �4,
from where a target location is reached with cost 7.

Regions, Vertices. We assume familiarity with regions (see [2]). We recall that the
region automaton of a timed automaton A is a finite automaton, denoted R(A),
with states (�, r), where � is a location, and r a region. Let us write loc((�, r)) = �.

There is a transition (�, r)
delay−−−→ (�, r′) iff some valuation in r′ can be reached

by a time delay from some valuation in r. We have (�, r)
e−→ (�′, r′), for an

edge e = (�, g, R, �′) iff all valuations of r satisfy g, and r′ = r[R ← 0]. A path
of R(A) is a sequence q1t1q2t2 . . . where for all i ≥ 1, qi = (�i, ri) for some
location �i and region ri, and ti is either an edge or delay. We say that a run ρ ofA
follows a path π = q1t1 . . . of R(A) if for any i ≥ 1, if we write (�i, ri) = statei(π),

�1

0

�5

6 0

�2

0
�3

10

�4

7

0

0

x≥1

y:=0

x>1

x≥3

2≤x≤3∧y<1

2≤x≤3∧1≤y

x≥4

x≥4

Fig. 1. Example of a WTG
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then statei(ρ) = (�i, νi) for some νi ∈ ri, and moreover, transi(π) = delay implies
that transi(ρ) ∈ R≥0, and transi(π) = transi(ρ) otherwise.

A valuation with integer coordinates is called a vertex. For any region r, let
us denote by V(r) the set of vertices that belong the topological closure of r.
A region is non-punctual if for some ν ∈ r, and ε > 0, ν + [−ε, ε] ⊆ r. It is
punctual otherwise. A non-punctual path of the region automaton is a path
of R(A) where all regions reached after a delay are non-punctual.

3 Robust Cost-Optimal Reachability

We now define two perturbed semantics for weighted timed games. These se-
mantics were first studied in [14,11] for timed automata and games in order to
synthesize robust strategies. We adapt these here to WTG and formalize cost-
optimal reachability problems.

Perturbed semantics. We will call Player 1 Controller, and Player 2 Perturbator.
The idea behind the perturbed semantics is to give Perturbator the additional
power of perturbing the delays chosen by Controller by some bounded amount δ
(in that sense, the perturbed semantics becomes asymmetric). In this setting,
a winning strategy for Controller is then robust to perturbations in the time
delays. Informally, at any state (�, ν, c), both players suggest a delay and an
edge. If Perturbator suggests a shorter delay, then the suggested delay and edge
is taken. If Controller suggests the shorter delay d and edge e, then the system
moves to an intermediate state (�, ν, c, d, e), from which Perturbator chooses
ε ∈ [−δ, δ], and the edge e is taken after a delay of d+ ε; the cost then increases
by (d + ε) · S(�). We require both players to only suggest delays no smaller
than δ, to model the fact that the system is not infinitely fast. We will formally
define two perturbed semantics based on the above ideas; they will differ on the
satisfaction or not of the guards after the delay has been perturbed by ε.

Formally, given δ > 0, the δ-excess perturbation semantics of a WTG A =
(L, �0, C, I, E1, E2,S) is a game structure Ge

δ (A) = (S′, s′0,M
′
1,M

′
2, T

′
1, T

′
2, jt

′),
where S′ = S ∪ S × R≥0 × E1, with S = {(�, ν, c) | � ∈ L, ν ∈ RC

≥0, c ∈ R,
ν |= I(�)}. The initial state is s′0 = (�0,0, 0). We have M ′

1 = [δ,∞) × E1, and
M ′

2 = [δ,∞)×E2∪ [−δ, δ]. The enabling conditions T ′
i are as follows. For any i ∈

{1, 2}, from any state (�, ν, c) ∈ S′, we have ((�, ν, c), d, e) ∈ T ′
i for any d ≥ δ and

e ∈ Ei whenever (d, e) is enabled at (�, ν). We also have (�, ν, c),⊥) ∈ T ′
i . For

states (�, ν, c, d, e) ∈ S′, we have ((�, ν, c, d, e),⊥) ∈ T ′
1 and ((�, ν, c, d, e), ε) ∈ T ′

2

for any ε ∈ [−δ, δ]. The joint transition function δ respects the shorter delay:

jt′((�, ν, c), (d1, e1), (d2, e2)) =

{
(�, ν, c, d1, e1) if d1 ≤ d2,
(�2, (ν + d2)[R′ ← 0], c + d2 · S(�)) if d1 > d2.

Moreover, in case one player plays ⊥, we let jt′((�, ν, c), (d, e1),⊥) = (�, ν, c, d, e1)
and jt′((�, ν, c),⊥, (d′, e2)) = (�2, (ν+d′)[R′ ← 0], c+d′ ·S(�)), as expected. Last,
we let jt′((�, ν, c, d, e1),⊥, ε) = (�1, (ν + d + ε)[R← 0], c + (d + ε) · S(�)).

Thus, the cost variable grows with derivative S(�) at location �, and the
sojourn time is either the delay suggested by Perturbator if it is shorter, or the
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delay suggested by Controller and perturbed by Perturbator otherwise. Notice
that, in this semantics the guard of an edge that is taken need not be satisfied
after a perturbation (hence the term excess).

We also consider another natural semantics for perturbation, which we call the
δ-conservative perturbation semantics and denote Gc

δ(A). This semantics is de-
fined similarly with the only difference that the enabling condition for Controller
from states (�, ν, c) are defined as follows. From any state (�, ν, c) ∈ S′, we have
((�, ν, c), d, e) ∈ T ′

1 for any d ≥ δ and e ∈ E1 whenever (d + ε, e) is enabled at
(�, ν) for every ε ∈ [−δ, δ]. In other terms, Controller should only suggest delays
and edges whose guards are enabled under any perturbation of the delay. Conse-
quently, this semantics forbids equality constraints, since these are never enabled.

Example 2. Figure 2 explains the differences between our two perturbation se-
mantics: Controller has to suggest a delay such that the resulting valuation does
not end up in the grey area; Perturbator can then shift this delay by [−δ, δ].
In the conservative semantics, no new behaviors are added, because the final
delay chosen by Perturbator will satisfy the guard; in the excess semantics, new
behaviors may occur because neighboring regions can be reached.

Example 1 (Cont’d). We come back to the WTG of Fig. 1, to illustrate the
differences between the two perturbed semantics. Under the excess-perturbation
semantics, as in the exact case, Controller can suggest a delay of 1 and choose
the edge from �1 to �2. The location �5 can thus be avoided. Now, one can
see that the move of Perturbator determines the next location to be visited:
if Perturbator adds a positive perturbation (i.e. if the delay is in [1, 1 + δ]),
then only location �3 is reachable. Conversely, a negative perturbation enables
only location �4. To maximize the cost, Perturbator will force the play to �3, so
Controller can only ensure a cost of 10 + Θ(δ).

We now focus on the conservative semantics. The above strategy is no more
valid since in this case, Controller can only suggest delays of at least 1 + δ. Then
Perturbator can force the play to �5. Here, the cost of winning is 12 + Θ(δ).

Cost-optimal reachability. We define cost-optimal reachability problems that take
into account the perturbed semantics. We are interested in computing strategies
for reachability which minimize the cost when the parameter δ goes to 0.

First notice that S1(Ge
δ (A)) does not depend on δ, since Controller only has

to suggest moves that satisfy the guards (a winning strategy will depend on δ

x=3

y=1
δ

δ
x=3

y=1

Fig. 2. The conservative- (left) and excess semantics (right) for a transition guarded
with x ≤ 3 ∧ y ≥ 1. The grey area corresponds to forbidden delays, the bullet corre-
sponds to the choice of Controller, and the segment indicates the possible choices for
Perturbator.
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though). In contrast, S1(Gc
δ (A)) does depend on δ since Controller is required to

satisfy the guards even after perturbations. It is easy to see that S1(Gc
δ (A)) ⊆

S1(Gc
δ′ (A)) for any δ′ < δ. We denote S1(Gc(A)) =

⋃
δ>0 S1(Gc

δ(A)).
Let us write (�, ν, c)|cost = c, and (�, ν, c, d, e)|cost = c, the projection of a

state to the cost value. For any run ρ of the exact or perturbed semantics,
we define the cost of ρ w.r.t. a location � as, cost�(ρ) = inf{statei(ρ)|cost |
1 ≤ i < |ρ|+ 1, loc(statei(ρ)) = �} (Note that the definition includes the case
where |ρ| = ∞). Hence, if � is never reached, then the cost is ∞. Otherwise it is
the infimum of the costs observed at location �. Given δ > 0, a pair of strategies
(σ, σ′) ∈ S1(Ge

δ (A)) × S2(Ge
δ (A)), and location �, we define cost�σ,σ′(Ge

δ (A)) =

cost�(OutcomeGe
δ (A)(σ, σ

′)). We define similarly cost�σ,σ′(Gc
δ(A)). Given a strat-

egy σ ∈ S1(Ge
δ (A), we define the limit-cost of σ as lim-costexsσ (A, �) =

limδ→0 supσ′∈S2(Ge
δ (A)) cost

�
σ,σ′(Ge

δ (A))). The limit is well defined since strategy

σ is valid for any δ > 0. Similarly, for σ ∈ Gc
δ0

(A), we let lim-costconsσ (A, �) =

lim δ→0
0<δ<δ0

supσ′∈S1(Gc
δ(A)) cost

�
σ,σ′(Gc

δ (A)). Here, we take the limit for 0 < δ < δ0,

such that σ ∈ S2(Gc
δ0

(A)) so that the strategy is valid for any considered δ. Thus,
the limit-cost of a Controller’s strategy σ is the cost it guarantees in the limit,
against any strategy of Perturbator, when δ goes to 0.

We are interested in deciding whether Controller has a strategy that guaran-
tees an upper bound on the limit-cost for a reachability objective.

Definition 2. The limit strategy (strict) upper-bound problem for the excess per-
turbation semantics asks, given a weighted timed gameA, a location �, and a ratio-
nal λ, whether there exists a strategy σ ∈ S1(Ge

δ (A)) such that lim-costexsσ (A, �) ≤ λ
(resp. lim-costexsσ (A, �) < λ). Similarly, we define the limit strategy (strict) upper-
bound problem for the conservative perturbation semantics.

We define the limit-value as the infimum of the limit-cost that can be guar-
anteed by Controller: lim-valueexs(A, �) = infσ∈S1(Ge

δ (A)) lim-costexsσ (A, �), and
lim-valuecons(A, �) = infσ∈S1(Gc(A)) lim-costconsσ (A, �). We also consider deciding
upper bounds on values:

Definition 3. The limit value upper-bound problem for the excess (resp. con-
servative) perturbation semantics asks whether given a weighted timed automa-
ton A, a target location �, and a rational λ, it holds lim-valueexs(A, �) ≤ λ (resp.
lim-valuecons(A, �) ≤ λ)?

Notice that the strategy strict upper-bound problem is equivalent to deciding
whether the strict upper bound holds for the value, that is the infimum of the
limit cost over all possible strategies. We will consider the restriction of both
problems on WTA.

Example 1 (Cont’d). We come back to the WTG of Fig. 1. We have seen the
impact of the choice of the semantics on the possible behaviors of the system. In
particular, the limit-optimal cost in the conservative (resp. excess) semantics is
equal to 12 (resp. 10).
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Theorem 1. The limit strategy upper-bound problem for WTA (and WTG) is
undecidable under the excess perturbation semantics, for a fixed number of clocks.

Theorem 1 is a rather surprising result. It reveals that adding perturbations can
render problems intractable, which is the opposite of a common belief [5,18].
In this case, optimal reachability is PSPACE-complete for weighted timed au-
tomata under the exact semantics, but becomes undecidable under the excess
perturbation semantics.

The conservative robust semantics is more restrictive than the excess pertur-
bation semantics. In timed automata, reachability under the conservative seman-
tics is PSPACE-complete [23], in contrast with the EXPTIME-completeness under
the excess perturbation semantics [11]. For weighted timed automata, the con-
servative semantics renders the problem tractable; the limit value upper-bound
problem is PSPACE-complete:

Theorem 2. The limit value upper-bound problem is PSPACE-complete on WTA
under the conservative perturbation semantics.

The algorithm is based on the corner-point abstraction [8], but requires elimi-
nating punctual regions, following the ideas in [23]. However the conservative
semantics does not allow the treatment of weighted timed games:

Theorem 3. The limit strategy strict upper-bound problem is undecidable for
WTG under the conservative perturbation semantics, for a fixed number of clocks.

The undecidability also holds in both semantics on WTGs when δ is fixed:

Theorem 4. The following problem is undecidable: For any fixed 0 ≤ δ ≤ 1
3 ,

given a WTG A, a target location �, and a rational λ, decide whether it holds
infσ∈S1(G) supσ′∈S2(G) cost

�
σ,σ′(G) < λ, where G denotes either Ge

δ (A) or Gc
δ(A).

In Section 4, we present our results on WTA, that is, the algorithm of Theorem 2
and the undecidability result of Theorem 1. The long version [12] of this paper
contains the detailed proofs of these results, and of Theorems 3 and 4.

4 Weighted Timed Automata

4.1 Algorithm in the Conservative Semantics

We present a polynomial-space algorithm for the limit value upper-bound prob-
lem, based on a variant of the corner-point abstraction [8]. The idea behind our
algorithm is that Perturbator can always avoid punctual regions by adding an
infinitesimal perturbation. Thus, one needs to remove punctual delay transitions
from the corner-point abstraction. It turns out that the resulting construction
suffices to solve the limit-cost value for a given WTA.

A finite weighted automaton over (Z,+) is a tuple F = (S, s0, Σ, T,W ),
where S is the set of states, s0 ∈ S the initial state, T ⊆ S × Σ × S the set
of transitions, and W : E → Z is the weight function. A path (or run) of a fi-
nite weighted automaton is a (finite or infinite) sequence q1t1q2t2 . . . alternating
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states and transitions and such that for all i ≥ 1, ti = (qi, σi, qi+1) for some σi.
We write Runs(F) for the set of runs of F starting in the initial state s0. The
length, first and last states and sub-runs are defined in the same way as for runs of
a game structure. A finite weighted automaton then associates to any finite path
the sum of the weights of the edges it visits. Given any path π = q1t1q2 . . . qn,
the weight of π is defined as W (π) =

∑
1≤i<n W (ti).

Let us consider a weighted timed automaton A = (L, �0, C, E1, ∅,S). Notice
that, following Def. 1, we write it as a weighted timed games with no edges
belonging to Player 2. The corner-point abstraction of A is a finite weighted
automaton, denoted Rcp(A). The states of Rcp(A) are triples (�, r, v), where � is
a location, r a region, and v ∈ V(r) a vertex of r. Edges are defined as follows:

we have (�, r, v)
delay−−−→ (�, r′, v′) if (�, r)

delay−−−→ (�, r′) in the region automaton, and
v′ = v+k for some natural number k. In other terms, v′ is a time-successor of v,
and is a vertex of region r′. The weight associated to this transition is k × S(�).

Further, we have an edge (�, r, v)
e−→ (�′, r′, v′) if e = (�, g, σ,R, �′) is an edge of A

such that r |= g, and r′ = r[R ← 0], v′ = v[R ← 0]. Such an edge has weight 0.
Observe that Rcp(A) is finite since all clocks are assumed to be bounded. Notice
that a path in the corner-point abstraction corresponds to a path of the WTA
that runs arbitrarily close to vertices of the regions it visits.

Let the non-punctual corner-point abstraction, denoted Rnp
cp(A), be the finite

weighted automaton obtained from the corner-point abstraction by removing any

transition of the form (�, r, v)
delay−−−→ (�, r′, v′), where r′ is punctual. Thus, any

path in the non-punctual corner-point abstraction corresponds to a non-punctual
path in the region automaton.

For any path π of the region automaton R(A) of A, we denote by Runs(π),
the set of runs of �A� that follow π. If π is a path of the corner-point abstraction
Rcp(A), then we say that a run follows π if it follows the path projected to R(A)
(that is, obtained by removing vertices in each state). We extend the notation
Runs(π) to paths π of the corner-point abstraction. For any path π of R(A)
or Rcp(A), let us define π̄ obtained from π by replacing all regions by their
topological closures. We will consider Runs(π̄) which is the set of runs visiting
the topological closures of the regions of π. In other terms, this is the topological
closure of the set Runs(π).

We define value(F , s) for a finite weighted automaton F and state s as the cost
of the shortest path from the initial state to s. Formally, for any finite weighted
automaton F = (S, s0, Σ, T,W ), and s ∈ S, we let value(F , s) = inf{W (π) | π ∈
Runs(F), last(π) = s}. For corner-point abstractions, we extend this notation to
locations: value(Rcp(A), �) = inf{W (π) | π ∈ Runs(Rcp(A)), loc(last(π)) = �}.

In the exact semantics, results of [8] show that the infimum of the cost of
the runs of a WTA following a given path π of the corner-point abstraction is
achieved by a run that follows π̄, and only visits vertices. Hence, to compute the
infimum cost, it suffices to compute the value of the corner-point abstraction.
In the conservative perturbed case, we prove that the same algorithm can be
applied, once we discard punctual paths.
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Lemma 1. For any weighted timed automaton A and target location �, we have
lim-valuecons(A, �) = value(Rnp

cp (A), �).

Theorem 2 follows from the previous lemma. In fact, to compute the optimal
cost on A, it suffices to consider the finite weighted automaton Rnp

cp(A), and find
the shortest path to location �. To decide whether the limit value is less than
some given constant λ, one can guess a path in Rnp

cp(A) in polynomial-space
(such a path can be constructed on-the-fly in polynomial space, see e.g. [8]), and
check whether its weight is less than or equal to λ. Note that the problem is
PSPACE-hard since it already is in the unweighted case.

4.2 Undecidability under Excess Perturbation

We present the proof of Theorem 1, showing the undecidability of the limit
strategy upper-bound problem for WTA with excess perturbation. Our proof is
based on a reduction from the halting problem of Minsky machines, following the
encoding of [9]. Compared to the reductions of earlier work [13,9], special care
needs to be taken when dealing with perturbations, since the present semantics
disables precise moves.

We consider a Minsky machine with counters c1 and c2, and a list of instruc-
tions I1, . . . , In. Here, each instruction Ii, for 1 ≤ i ≤ n−1, is an incrementation
for cb as, cb = cb + 1; goto Ij , for b = 1 or 2, or a decrementation with zero-
test for cb as, if (cb = 0) goto Ij else ci = ci − 1; goto Ij′. The instruc-
tion In is the ending instruction, that is, the final state. The halting problem asks
whether the instruction In is reachable, starting from the configuration c1 = 0,
c2 = 0, at instruction I1.

Our reduction uses 10 clocks x, x′, y, y′, u, u′, t, t′, z, z′. A counter of a Minsky
machine with value n will be encoded by a pair of clocks x, x′ with values kx+ 1

2n

and kx′ + 1
2n for some integers kx, kx′ . Here, kx is called the shift of x. If α

denotes the clock x′, we let α′ = x, and α′′ = x′, and similarly for other clocks.
A configuration of a Minsky machine with counter values n,m ≥ 0, is entirely
encoded by four clocks:

x = kx +
1

2n
x′ = kx′ +

1

2n
y = ky +

1

2m
y′ = ky′ +

1

2m
(1)

for some shifts kx, kx′ , ky, ky′ . The redundancy in this encoding is necessary
to cope with perturbations; this will be clear in the constructions. We denote
by k the vector of shifts, for all clocks, and by codek(n,m) the set of valuations
satisfying (1). We also define codeεk(n,m) the set of valuations ν such that ν+η ∈
codek(n,m), where |η(α)| ≤ ε, η(α) = η(α′) for all clocks α, and moreover
η(x) = η(x′) = 0 whenever n = 0, and η(y) = η(y′) = 0 whenever m = 0.
In other terms, codeεk(n,m) is the set of valuations that encode a configuration
with an error bounded by ε, except that the encoding of the counter value 0 is
exact. Given shifts k and a valuation ν ∈ codeεk(n,m), we denote fracp(ν) = ν−k.
This gives the fractional part of the clocks, except when n = 0, in which case the
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�1 �2

˙cost=−1

x=kx+2

x′:=0

x=kx+3
∧x′ �=1

(a) An unperturbed edge.

�1 �2
x=kx+2

x′:=0

(b) A simpler representation of that edge.

Fig. 3. Unperturbed edges. Perturbator has interest in not perturbing these transitions,
since otherwise Controller can go to the target location and win with cost −∞.

�1

�2

�3

t,u,u′:=0 t=1

t:=0

t=1∧u≤2

t=1∧u>2

u=3

u′:=0

u=3

u′:=0

(a) Letting Perturbator decide.

�1
t,u,u′:=0

�2

�3

(b) A simpler representation.

Fig. 4. Module that lets Perturbator decide a successor among 
2 and 
3

components x and x′ are equal to 1, and similarly for y. We say that a valuation ν
encodes a configuration (n,m) of the machine if it satisfies (1) for some k.

We define modules for incrementation and decrementation with zero-test in-
structions, which will, once combined, yield the reduction. The modules will
be defined on a given list of clocks. For instance, if we describe a module
M(x, y, z, u, t) that uses the clocks x, y, z, u, and t in its definition, then
M(z, y, x, t, u) is obtained simply by exchanging x and z, and u and t.

Unperturbed edges. Let us first present a construction that prevents Perturbator
from perturbing the delays along an edge. The construction only applies to deter-
ministic transitions (with equality constraints) and requires resetting one of the
two clocks used in the encoding of a counter. Consider the timed automaton of
Fig. 3(a). At �2, Controller can go to the accepting state where the cost decreases
to −∞ if, and only if Perturbator has perturbed by a nonzero amount the tran-
sition from �1 to �2. Thus, Perturbator does not have interest in perturbing since
its objective is to maximize the cost. If there has been no perturbation, the clock
values are only increased or decreased by some integers. More precisely, the shifts
of all clocks but x′ increase by 2, and the shift of x′ becomes 0. In the rest, we will
use this trick extensively to construct our modules. For better readability, we will
represent such unperturbed edges by dashed arrows; when clear from context, we
may omit the edges leading to accepting sink states (see Fig. 3(b)).

Ask-Perturbator module. In weighted timed automata, unlike in weighted timed
games, Perturbator cannot suggest moves since it controls no edges. However,
a special construction allows letting Perturbator decide the successor location.
We describe in Fig. 4(a) such a construction, which also ensures that the config-
uration is preserved, up to shifts.

The first edge is deterministic, and Perturbator can add any perturbation.
Controller then distinguishes between positive and negative perturbations, and
only has one possible move accordingly. We disallow perturbations (using
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�1

˙cost=1

�2

˙cost=−1

u,u′:=0

x=kx+2

x:=0

u=3

u,t,t′:=0

(u=1∧u′ �=4)

∨(x=3∧x′ �=k
x′+5)

Fig. 5. Module Add1+x
k (x, u, t)

unperturbed edges) at the edges leading to �2 or �3, so that the configuration is
preserved up to shifts. More precisely, the shifts of all clocks x, x′, y, y′ increase
by 3. To simplify the presentation of more complex modules, we will represent
this module more compactly as in Fig. 4(b).

Reduction module. In the above modules, we have seen that configurations are
preserved up to shifts, but shifts could grow. We present a module that reduces
the shifts of all clocks. The module Reducek(x, y, u, t) is constructed for each shift
vector k (there will be a finite number of these), is deterministic, and constructed
using unperturbed edges. The definition of the module is omitted (see [12]); the
following lemma summarizes its properties.

Lemma 2. Let δ < 1
2 . Assume Reducek(x, y, u, t) is entered with valuation ν ∈

codeεk(n,m) for some ε < 1
2 . Controller has a strategy to either go to the target

location with cost −∞ or to reach location �2 with valuation ν′ satisfying ν′ =
fracp(ν) + k′ where k′ is defined as follows: k′x = 6, k′x′ = 2, k′y = 5, k′y′ = 1.

Test Module. In order to verify the incrementation and decrementation, we use
the cost variable. We first show how one can add 1+ fracp(x) and 2− fracp(x) to
the cost variable, without changing the configuration. The construction is similar
to [9]; we adapt it using unperturbed edges. The module Add1+x

k (x, u, t) depicted
in Fig. 5 adds 1+fracp(x) to the cost, leaving the configuration unchanged (up to
shifts).

Lemma 3. Let δ < 1
2 . Assume module Add1+x

k (x, u, t) is entered with valuation
ν ∈ codeεk(n,m) for some ε < 1

2 . Controller has a strategy that ensures either
reaching a target location with cost −∞ or location �2 with valuation ν′ satisfying
ν′ = fracp(ν) + k′ where k′x = 1, and k′α = kα + 3 for all α ∈ {x′, y, y′, z, z′},
while the cost increases by 1 + fracp(x).

We define similarly a module Add2−x
k (x, u, t) that adds 2 − fracp(x) to the cost

variable. The module is similar to the one of Fig. 5, except that cost only increases
(with slope 1) at location �1.

Lemma 4. Let δ < 1
2 . Assume module Add2−x

k (x, u, t) is entered with valuation
ν ∈ codeεk(n,m) for some ε < 1

2 . Controller has a strategy that ensures either
reaching a target location with cost −∞ or location �2 with valuation ν′ satisfying
ν′ = fracp(ν) + k′ where k′x = 1, and k′α = kα + 3 for all α ∈ {x′, y, y′, z, z′},
while the cost increases by 2− fracp(x).

Concatenating modules Add1+x
k (x, u, t), Add2−x

k′ (z, t, u) and Add2−x
k′′ (z, u, t), we

obtain the module Add5+x−2z
k (x, z, u, t), which adds 5 + fracp(x) − 2fracp(z) to
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the cost and leads to a target location (we make the last location accepting).
Similarly, using concatenation, we define Add4+2z−x

k (x, z, u, t), which increases
the cost by 4 + 2fracp(z)− fracp(x). One can append at the end of module
Add4+2z−x

k (x, z, u, t) an edge that increments the cost by 1, which yields module
Add5+2z−x

k (x, z, u, t). Finally, module Test2z=x(x, z, u, t) is defined by letting Per-
turbator choose whether to go to Add5+2z−x

k′ (x, z, t, u) or to Add5+x−2z
k′ (x, z, t, u)

(here the new shift vector k′ is due to the shift added by the ask-Perturbator
module). Note that in both cases, the run ends in a target location. The following
property follows from Lemmas 3 and 4.

Lemma 5. Let δ < 1
2 . If module Test2z=x(x, z, u, t) is entered with valuation ν ∈

codeεk(n,m) for some ε < 1
2 , Controller has a strategy to ensure reaching a target

location with cost at most 5 + |2fracp(z)− fracp(x)|.

Incrementation Module Autk
c1,+. We define module Autk

c1,+, given in Fig. 6,
which simulates the incrementation of counter c1. We assume first that there are
no perturbation. When the module is entered with a valuation in codek(n,m),

we expect Controller to choose the delays so that z = 1 + fracp(x)
2 at location D.

From this point on, the clocks z and z′ will switch roles with x and x′. Thus,
this corresponds to incrementing the counter c1 by 1. At location D, Perturbator
can either decide to “test” the incrementation has been correctly performed by
going to the test module, or to continue the simulation by first passing through
the reduction module. Here, Instrjk′′ refers to a module among Autk

cb,+, Autk
cb,−

for b ∈ {1, 2} (to be defined next) according to the instruction Ij . Now, in the
presence of perturbations, Perturbator can perturb the value of z chosen by Con-
troller by δ. So at D, if Perturbator goes to the test module the cost is 5 +O(δ),
provided that Controller has played correctly. Otherwise, the simulation carries

on with
∣∣∣z − fracp(x)

2

∣∣∣ ≤ δ. The following lemma states this formally.

Lemma 6. Let δ < 1
2 . Assume module Autk

c1,+ is entered with valuation ν ∈
codeεk(n,m) for some ε > 0 with δ + ε/2 < 1

2 , and cost 0. Then, Controller

has a strategy that ensures that either module Instrk
j is entered with a valuation

ν′ ∈ code
δ+ε/2

k′ (n + 1,m) for some k′, or the target location is reached with cost
at most 5 + 2δ.

A decrementation module can be defined following the same ideas.

Lemma 7. Assume module Autk
c1,− is entered with valuation ν ∈ codeεk(n,m)

and cost 0. Then,

A B C D Reduce
k′ Instrj

k′′

Test2z=x
k′ (x,z,u,t)

u,u′:=0

x=kx+2

x:=0

1≤x≤2

z,z′:=0

1≤z≤2∧u=4

u:=0

u=
5

u=5

Fig. 6.Module Autk
c1,+(x, y, z, u, t). The module Reducek′ refers to Reducek′(z, y, u, t),

and the module Instrj
k′′ to Instrj

k′′(z, y, x, u, t).
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– If n = 0, Controller has a strategy to ensure reaching either Instrk
j with the

same configuration up to shifts and cost, or an accepting location with cost 0.
– If n ≥ 1, and ε < 1

2 , the play cannot reach Instrk
j.

– If n ≥ 1, Controller has a strategy that ensures that either module Instrk
j′ is

reached with a valuation ν′ ∈ codeδ+2ε
k′ (n − 1,m) for some k′, or the target

location is reached with cost at most 5 + ε + 2δ. Moreover, if n = 1, then
Controller can ensure that ν′(x) = k′x + 1.

Complete reduction. To construct the complete reduction, we define for each
instruction Ij of the Minsky machine, a module Instrk

j as one of the incremen-
tation or decrementation modules according to the type of Ii. We mark the first
location of Instrk

1 as the initial location. The halting state Instrk
n of the ma-

chine is an accepting location of the timed automaton. For any machine M , let
AM denote the weighted timed automaton constructed in this manner, and let �
denote the target location obtained by merging all target locations presented in
the above construction. Theorem 1 follows from the following proposition.

Proposition 1. The Minsky machine M halts if, and only if, there is a strategy
σ ∈ SC(Gexs(AM )) such that lim-costexsσ (AM , �) ≤ 5.

Discussion. One can argue that the undecidability in the excess perturbation
game semantics is due to the ability of Controller to test clock values with preci-
sion using equality constraints, and in particular in detecting perturbations. This
allows for instance letting Perturbator make a discrete choice, as in the above
reduction. Hence, this ability and the possibility of disallowing perturbations on
some edges make the semantics of weighted timed automata somehow close to
that of two-player weighted timed games in the exact semantics for which the
optimal-cost reachability is undecidable.

The conservative perturbation game semantics disallows both abilities since
Controller is required to suggest delays whose perturbations satisfy the guard of
the chosen edge. This excludes equality constraints from guards. Therefore, one
cannot encode unperturbed edges nor define the ask-Perturbator module as pre-
viously. The decidability proof presented in Section 4 confirms these intuitions.

5 Conclusion

In this paper, we showed “robust undecidability” results for weighted timed
games: optimal reachability problems remain undecidable under perturbation
game semantics. Moreover, the problem even becomes undecidable for weighted
timed automata in the excess perturbation game semantics. The undecidability
in both cases is due to the ability of either of the players to play precisely,
and the other one to check previous delays with precision. We conclude that
game semantics does not introduce enough “fuzziness” in the semantics to avoid
encoding undecidable languages.

We did not study the value upper-bound problems for the excess perturbation
game semantics; we conjecture that it should be undecidable. We believe we could
also recover decidability by restricting to closed guards, since then players would
not be able to check the non-equality of the clock values.
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Abstract. One clock alternating timed automata (OCATA) have been recently
introduced as natural extension of (one clock) timed automata to express the
semantics of MTL [12]. We consider the application of OCATA to problem of
model-checking MITL formulas (a syntactic fragment of MTL) against timed
automata. We introduce a new semantics for OCATA where, intuitively, clock
valuations are intervals instead of single values in R. Thanks to this new seman-
tics, we show that we can bound the number of clock copies that are necessary
to allow an OCATA to recognise the models of an MITL formula. Equipped with
this technique, we propose a new algorithm to translate an MITL formula into
a timed automaton, and we sketch several ideas to define new model checking
algorithms for MITL.

1 Introduction

Automata-based model-checking [5,16] is a well-established technique for proving the
correctness of computer systems. In this framework, the system to analyse is modeled
by means of a finite automaton A whose accepted language consists of all the traces
of the system. The property to prove is usually expressed using a temporal logic for-
mula Φ, whose set of models is the language of all correct executions. For instance,
the LTL formula �(p ⇒ ♦q) says that every p-event should eventually be followed
by a q-event. Then, establishing correctness of the system amounts to showing that the
language L(A) of the automaton is included in the language �Φ� of the formula. In
practice, automata-based model checking algorithms first negate the formula and trans-
late ¬Φ into an automaton A¬Φ that recognises the complement of �Φ�, i.e., the set of
all erroneous traces. Then, the algorithm computes the synchronous product A× A¬Φ

and check whether L(A×A¬Φ) = ∅, in which case the system respects the property.
While those techniques are now routinely used to prove the correctness of huge sys-

tems against complex properties [3], the model of finite automata and the classical tem-
poral logics such as LTL are sometimes not expressive enough because they can model
the possible sequences of events, but cannot express quantitative properties about the
(real) time elapsing between successive events. To overcome these weaknesses, Alur
and Dill [1] have proposed the model of timed automata, that extends finite automata
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with a finite set of (real valued) clocks. A real-time extension of LTL is the Metric Tem-
poral Logic (MTL) that has been proposed by Koymans [9] and consists in labeling the
modalities with time intervals. For instance �(p ⇒ ♦[1,2]q) means ‘all p-event must
be followed by a q-event that occurs between 1 and 2 time units later’. Unfortunately,
the satisfiability and model-checking of MTL are undecidable on infinite words [8], and
non-primitive recursive on finite words [13], with the pointwise semantics.

An interesting alternative is the Metric Interval Temporal Logic (MITL), that has
been proposed by Alur et al. [2]. MITL is a syntactic fragment of MTL where singular
intervals are disallowed on the modalities. Thanks to this restriction, MITL model-
checking is EXPSPACE-c, even on infinite words. MITL thus seems a good compromise
between expressiveness and complexity. In their seminal work, Alur et al. provide a
construction to translate an MITL formulaΦ into a timed automatonBΦ, from which the
automaton-based model checking procedure sketched above can be applied. Although
this procedure is foundational from the theoretical point of view, it does not seem easily
amenable to efficient implementation: the construction is quite involved, and requests
that BΦ be completely built before the synchronous product with the system’s model
can be explored. Note that an alternative technique, based on the notion of signal has
been proposed by Maler et al. [11]. However the semantics used there slightly differs
from that of [2], whereas we stick to the classical pointwise semantics.

Since MITL is a syntactic fragment of MTL, all the techniques developed by Ouak-
nine and Worrell [12] for MTL can be applied to MITL. Their technique relies on the
notion of alternating timed automaton with one clock (OCATA), an extension of timed
automata. Intuitively an OCATA can create several copies of itself that run in parallel
and must all accept the suffix of the word. For example, Fig. 1 displays an OCATA. Ob-
serve that the arc starting from �0 has two destinations: �0 and �1. When the automaton
is in �0 with clock valuation v, and reads a σ, it spawns two copies of itself: the first
reads the suffix of the word from (�0, v), and the latter from (�1, 0) (observe that the
clock is reset on the branch to �1). Then, every MITL formula Φ can be translated into
an OCATA AΦ that recognises its models [12]. The translation has the advantage of be-
ing very simple and elegant, and the size ofAΦ is linear in the size of Φ. Unfortunately,
one cannot bound a priori the number of clock copies that need to be remembered at
all times along runs of an OCATA. Hence, OCATA cannot, in general, be translated to
timed automata [10]. Moreover, the model-checking algorithm of [12] relies on well-
quasi ordering to ensure termination, and has non-primitive recursive complexity.

In the present work, we consider only the point-wise semantics and exploit the trans-
lation of MITL formulas into OCATA [12] to devise new, optimal, – hopefully – ele-
gant and simple algorithms to translate an MITL formula into a timed automaton. To
achieve this, we rely on two technical ingredients. We first propose (in Section 3) a
novel interval-based semantics for OCATA. In this semantics, clock valuations can be
regarded as intervals instead of single points, thus our semantics generalises the stan-
dard one [12]. Intuitively, a state (�, I) of an OCATA in the interval-based semantics
(where � is a location and I is an interval) can be regarded as an abstraction of all
the (possibly unbounded) sets of states {(�, v1), (�, v2), . . . , (�, vn)} of the standard se-
mantics with vi ∈ I for all i. Then, we introduce a family of so-called approximation
function that, roughly speaking, associate with each configuration C of the OCATA in
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the interval-based semantics, a set of configurations that are obtained from C by merg-
ing selected intervals in C. We rely on approximation functions to bound the number of
clock copies that are present in all configurations. Our main technical contribution (Sec-
tion 4) then consists in showing that, when considering an OCATA AΦ obtained from
an MITL formula Φ, combining the interval semantics and a well-chosen approxima-
tion function is sound, in the sense that the resulting semantics recognises L(Φ), while
requesting only a bounded number of clock copies. Thanks to this result, we provide an
algorithm to translate AΦ into a plain timed automaton that accepts L(Φ).

Observe that the idea of grouping clock values within intervals to define the seman-
tics of an MITL formula is not new. Because the syntax of MITL forbids punctual
intervals, it is easy to observe that, if a formula of the form ϕ1U[a,b]ϕ2 holds at some
instant t, it will also hold in other points in time, namely in some (non-singular) interval
[t′, t′ + b − a] that contains the instant t. This crucial observation is arguably the main
idea that has lead to the definition of MITL, and is formalised in the seminal paper
of Alur et al. [2], by the notion of witnessing interval, which is central to prove the
correctness of the construction. The same observation has been relied upon in several
other works on MITL or similar logics, such as the Event-Clock Logic (see for instance
[15,14]). Our contribution is thus rather to show how this observation can be formalised
in the context of OCATA, and to provide a systematic way to bound the number of clock
copies necessary to recognise the models of an MITL formula with such an automaton.

From our point of view, the benefits of this new approach are as follows. From the
theoretical point of view, our construction is the first that relies on OCATA to translate
MITL formulas into timed automata. We believe our construction is easier to describe
(and thus, hopefully, easier to implement) than the previous approaches. The translation
from MITL to OCATA is very straightforward. The intuitions behind the translation of
the OCATA into a timed automaton are also quite natural (although the proof of cor-
rectness requires some technicalities). From the practical point of view, our approach
allows us, as we briefly sketch in Section 5, to envision efficient model checking algo-
rithms for MITL, in the same spirit of the antichain approach [6] developed for LTL
model checking. Note that the key ingredient to enable this antichain approach is the
use of alternating automata to describe the LTL formula. Our contribution thus lay the
necessary theoretical basis to enable a similar approach in a real-time setting.

Remark. Owing to lack of space, the reader is referred to the companion technical
report [4] for the missing proofs and additional details.

2 Preliminaries

Basic notions. Let R (R+, N) denote resp. the sets of real (non-negative real, natural)
numbers. We call interval a convex subset of R. We rely on the classical notation 〈a, b〉
for intervals, where 〈 is ( or [, 〉 is ) or ], a ∈ R and b ∈ R ∪ {+∞}. For an interval
I = 〈a, b〉, we let inf(I) = a be the infimum of I , sup(I) = b be its supremum (a
and b are called the endpoints of I) and |I| = sup(I) − inf(I) be its length. We note
I(R) the set of all intervals. Similarly, we note I(R+) (resp. I(RN)) the set of all
intervals whose endpoints are in R+ (resp. in N ∪ {+∞}). Let I ∈ I(R) and t ∈ R,
we note I + t for {i + t ∈ R | i ∈ I}. Let I and J be two intervals, we let I < J iff
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∀i ∈ I, ∀j ∈ J : i < j. For I ∈ I(R), v ∈ R and  ! ∈ {<,>}, we note: I  ! v iff
∀i ∈ I, i  ! v.

Let Σ be a finite alphabet. A word on a set S is a finite sequence s = s1 . . . sn of ele-
ments in S. We denote by |s| = n the length of s. A time sequence τ̄ = τ1τ2τ3 . . . τn is
a word on R+ s.t. ∀i < |τ̄ |, τi ≤ τi+1. A timed word over Σ is a pair θ = (σ̄, τ̄)
where σ̄ is a word over Σ, τ̄ a time sequence and |σ̄| = |τ̄ |. We also note θ as
(σ1, τ1)(σ2, τ2)(σ3, τ3) . . . (σn, τn), and let |θ| = n. A timed language is a (possibly
infinite) set of timed words.

Metric Interval Temporal Logic. Given a finite alphabet Σ, the formulas of MITL are
defined by the following grammar, where σ ∈ Σ, I ∈ I(RN) :

ϕ := � | σ | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1UIϕ2.

We rely on the following usual shortcuts ♦Iϕ stands for �UIϕ, ��Iϕ for ¬♦I¬ϕ,
ϕ1ŨIϕ2 for ¬(¬ϕ1UI¬ϕ2), ��ϕ for ��[0,∞)ϕ and ♦ϕ for ♦[0,∞)ϕ.

Given an MITL formula Φ, we note Sub(Φ) the set of all subformulas of Φ, i.e. :
Sub (Φ) = {Φ} when Φ ∈ {�} ∪ Σ, Sub (¬ϕ) = {¬ϕ} ∪ Sub (ϕ) and Sub (Φ) =
{Φ} ∪ Sub (ϕ1) ∪ Sub (ϕ2) when Φ = ϕ1UIϕ2 or Φ = ϕ1 ∧ϕ2. We let |Φ| denote the
size of Φ, defined as the number of U or Ũ modalities it contains.

Definition 1 (Semantics of MITL). Given a timed word θ = (σ̄, τ̄ ) over Σ, a position
1 ≤ i ≤ |θ| and an MITL formula Φ, we say that θ satisfies Φ from position i, written
(θ, i) |= Φ iff the following holds :

– (θ, i) |= �
– (θ, i) |= σ ⇔ σi = σ
– (θ, i) |= ϕ1 ∧ ϕ2 ⇔ (θ, i) |= ϕ1 and (θ, i) |= ϕ2

– (θ, i) |= ¬ϕ⇔ (θ, i) � ϕ
– (θ, i) |= ϕ1UIϕ2 ⇔ ∃i ≤ j ≤ |θ|, such that (θ, i) |= ϕ2, τj − τi ∈ I and ∀i ≤

k < j, (θ, k) |= ϕ1

We say that θ satisfies Φ, written θ |= Φ, iff (θ, 1) |= Φ. We note �Φ� = {θ | θ |= Φ}.

Observe that, for all MITL formulaΦ, �Φ� is a timed language and that we can transform
any MITL formula in an equivalent MITL formula in negative normal form (in which
negation can only be present on letters σ ∈ Σ) using the operators : ∧,∨,¬, UI and ŨI .

Example 2. We can express the fact that ‘every occurrence of p is followed by an oc-
currence of q between 2 and 3 time units later’ by: �(p ⇒ ♦[2,3]q). Its negation,
¬
(
�(p ⇒ ♦[2,3]q)

)
, is equivalent to the following negative normal form formula:

�U[0,+∞)(p∧ ⊥ Ũ[2,3]¬q).

Alternating timed automata. Let us now recall [13] the notion of (one clock) alternating
timed automaton (OCATA for short). As we will see, OCATA define timed languages,
and we will use them to express the semantics of MITL formula. Let Γ (L) be a set of
formulas defined by the following grammar:

γ := � | ⊥ | γ1 ∨ γ2 | γ1 ∧ γ2 | � | x  ! c | x.γ
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0 
1 
2

σ, x �= 1 σ

σ, x = 1σ x := 0

Fig. 1. OCATAA

where c ∈ N,  ! ∈ {<,≤, >,≥} and � ∈ L. We call x  ! c a clock constraint. Intu-
itively, the expression x.γ means that clock x must be reset to 0.

Definition 3 ([13]). A one-clock alternating timed automaton (OCATA) is a tupleA =
(Σ,L, �0, F, δ) where Σ is a finite alphabet,L is a finite set of locations, �0 is the initial
location, F ⊆ L is a set of accepting locations, δ : L × Σ → Γ (L) is the transition
function.

We assume that, for all γ1, γ2 in Γ (L): x.(γ1 ∨ γ2) = x.γ1 ∨ x.γ2, x.(γ1 ∧ γ2) =
x.γ1 ∧ x.γ2, x.x.γ = x.γ, x.(x  ! c) = 0  ! c, x.� = � and x. ⊥=⊥. Thus,
we can write any formula of Γ (L) in disjunctive normal form, and, from now on, we
assume that δ(�, σ) is written in disjunctive normal form. That is, for all �, σ, we have
δ(�, σ) =

∨
j

∧
k

Aj,k, where each term Aj,k is of the form �, x.�, x  ! c or 0  ! c, with

� ∈ L and c ∈ N. We call arc of the OCATA A a triple (�, σ,
∧

k Aj,k) s.t.
∧

k Aj,k is a
disjunct in δ(�, σ).

Example 4. As an example, consider the OCATA A in Fig. 1, over the alphabet Σ =
{σ}. A has three locations �0, �1 and �2, such that �0 is initial and �0 and �1 are final.
A has a unique clock x and its transition function is given by : δ(�0, σ) = �0 ∧ x.�1,
δ(�1, σ) = (�2 ∧ x = 1) ∨ (�1 ∧ x �= 1) and δ(�2, σ) = �2. The arcs of A are thus
(�0, σ, �0 ∧ x.�1), (�1, σ, �2 ∧ x = 1), (�1, σ, �1 ∧ x �= 1) and (�2, σ, �2). Observe that,
in the figure we represent the (conjunctive) arc (�0, σ, �0 ∧ x.�1) by an arrow splitting
in two branches connected resp. to �0 and �1 (possibly with different resets: the reset of
clock x is depicted by x := 0). Intuitively, taking the arc (�0, σ, �0 ∧ x.�1) means that,
when reading a σ from location �0 and clock value v, the automaton should start two
copies of itself, one in location �0, with clock value v, and a second in location �1 with
clock value 0. Both copies should accept the suffix for the word to be accepted. This
notion will be defined formally in the next section.

3 An Intervals Semantics for OCATA

The standard semantics for OCATA [12,10] is defined as an infinite transition system
whose configurations are finite sets of pairs (�, v), where � is a location and v is the
valuation of the (unique) clock. Intuitively, each configuration thus represents the cur-
rent state of all the copies (of the unique clock) that run in parallel in the OCATA. The
transition system is infinite because one cannot bound, a priori, the number of different
clock valuations that can appear in a single configuration, thereby requiring peculiar
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techniques, such as well-quasi orderings (see [13]) to analyse it. In this section, we in-
troduce a novel semantics for OCATA, in which configurations are sets of states (�, I),
where � is a location of the OCATA and I is an interval, instead of a single point in R+.
Intuitively, a state (�, I) is an abstraction of all the states (�, v) with v ∈ I , in the stan-
dard semantics. We further introduce the notion of approximation function. Roughly
speaking, an approximation function associates with each configuration C (in the inter-
val semantics), a set of configurations that approximates C (in a sense that will be made
precise later), and contains less states than C. In section 4, we will show that the inter-
val semantics, combined to a proper approximation function, allows us to build, from
all MITL formula Φ, an OCATA AΦ accepting �Φ�, and whose reachable configura-
tions contain a bounded number of intervals. This will be the basis of our algorithm to
build a timed automaton recognising Φ (and hence performing automata-based model-
checking of MITL).

We call state of an OCATA A = (Σ,L, �0, F, δ) a couple (�, I) where � ∈ L and
I ∈ I(R+). We note S = L × I(R+) the state space of A. A state (�, I) is accept-
ing iff � ∈ F . When I = [v, v] (sometimes denoted I = {v}), we shorten (�, I) by
(�, v). A configuration of an OCATA A is a (possibly empty) finite set of states of A
whose intervals associated with a same location are disjoint. In the rest of the paper,
we sometimes see a configuration C as a function from L to 2I(R

+) s.t. for all � ∈ L:
C(�) = {I | (�, I) ∈ C}. We note Config (A) the set of all configurations of A. The
initial configuration of A is {(�0, 0)}. A configuration is accepting iff all the states it
contains are accepting (in particular, the empty configuration is accepting). For a con-
figurationC and a delay t ∈ R+, we note C+t the configuration {(�, I+t)|(�, I) ∈ C}.
From now on, we assume that, for all configurationsC and all locations �: when writing
C(�) as {I1, . . . , Im} we have Ii < Ii+1 for all 1 ≤ i < m. Let E be a finite set of
intervals from I(R+). We let ‖E‖ = |{[a, a] ∈ E}|+ 2× |{I ∈ E | inf(I) �= sup(I)}
denote the number of clock copies of E. Intuitively, ‖E‖ is the number of individual
clocks we need to encode all the information present in E, using one clock to track sin-
gular intervals, and two clocks to retain inf(I) and sup(I) respectively for non-singular
intervals I . For a configuration C, we let ‖C‖ =

∑
�∈L ‖C(�)‖.

Interval semantics. Our definition of the interval semantics for OCATA follows the
definition of the standard semantics as given by Ouaknine and Worrell [12], adapted
to cope with intervals. Let M ∈ Config (A) be a configuration of an OCATA A, and
I ∈ I(R+). We define the satisfaction relation ”|=I” on Γ (L) as:

M |=I �
M |=I γ1 ∧ γ2 iff M |=I γ1 and M |=I γ2
M |=I γ1 ∨ γ2 iff M |=I γ1 or M |=I γ2

M |=I � iff (�, I) ∈M
M |=I x  ! c iff ∀x ∈ I, x  ! c
M |=I x.γ iff M |=[0,0] γ

We say that M is a minimal model of the formula γ ∈ Γ (L) with respect to the interval
I ∈ I(R+) iff M |=I γ and there is no M ′ � M such that M ′ |=I γ. Remark that
a formula γ can admit several minimal models (one for each disjunct in the case of a
formula of the form γ =

∨
j

∧
k

Aj,k). Intuitively, for � ∈ L, σ ∈ Σ and I ∈ I(R+),

a minimal model of δ(�, σ) with respect to I represents a configuration the automaton
can reach from state (�, I) by reading σ. The definition of M |=I x  ! c only allows to
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take a transition δ(�, σ) from state (�, I) if all the values in I satisfy the clock constraint
x  ! c of δ(�, σ).

Example 5. Let us consider again the OCATA of Fig. 1. A minimal modelM of δ(�1, σ)
with respect to [1.5,2] must be such that : M |=[1.5,2] (�1 ∧ x �= 1) ∨ (�2 ∧ x = 1).
As ∃v ∈ [1.5, 2] s.t. v �= 1, it is impossible that M |=[1.5,2] x = 1. However, as
∀v ∈ [1.5, 2], v �= 1, M |=[1.5,2] x �= 1 and so M |=[1.5,2] (�1 ∧ x �= 1) ∨ (�2 ∧ x = 1)
iff M |=[1.5,2] �1, i.e. (�1, [1.5, 2]) ∈ M . So, {(�1, [1.5, 2])} is the unique minimal
model of δ(�1, σ) wrt [1.5, 2].

Approximation functions. As stated before, our goal is to define a semantics for OCATA
that enables to bound the number of clock copies. To this end, we define the notion
of approximation function: we will use such functions to reduce the number of clock
copies associated with each location in a configuration. An approximation function as-
sociates with each configurationC a set of configurationsC′ s.t. ‖C′(�)‖ ≤ ‖C(�)‖ and
s.t. the intervals in C′(�), cover those of C(�), for all �. Then, we define the semantics
of an OCATA A by means of a transition system TA,f whose definition is parametrised
by an approximation function f .

Definition 6. Let A be an OCATA A. An approximation function is a function f :
Config (A) �→ 2Config(A) s.t. for all configurations C, for all C′ ∈ f(C), for all lo-
cations � ∈ L: (i) ‖C′(�)‖ ≤ ‖C(�)‖, (ii) for all I ∈ C(�), there exists J ∈ C ′(�)
s.t. I ⊆ J , (iii) for all J ∈ C′(�), there are I1, I2 ∈ C(�) s.t. inf(J) = inf(I1) and
sup(J) = sup(I2). We note APPA the set of approximation functions for A.

Definition 7. Let A be an OCATA and let f ∈ APPA be an approximation function.
The f -semantics of A is the transition system TA,f = (Config (A) ,�,
−→f ) on configurations of A defined as follows:

– the transition relation � takes care of the elapsing of time : ∀t ∈ R+, C
t�

C′ iff C′ = C + t. We let� =
⋃

t∈R+

t�.

– the transition relation −→ takes care of discrete transitions between locations and
of the approximation : C = {(�k, Ik)k∈K} σ−→ C′ iff there exists a configuration
C” =

⋃
k∈K

Mk s.t. (i) for all k: Mk is a minimal model of δ(�k, σ) with respect to

Ik, and (ii) C′ ∈ f(C”). We let −→f=
⋃

σ∈Σ

σ−→f .

We can now define the accepted language of an OCATA (parametrised by an approxi-
mation function f ). Let θ = (σ̄, τ̄) be a timed word s.t. |θ| = n, and let f ∈ APPA
be an approximation function. Let us note ti = τi − τi−1 for all 1 ≤ i ≤ |θ|, assuming
τ0 = 0. An f -run ofA on θ is a finite sequence of discrete and continuous transitions in

TA,f that is labelled by θ, i.e. a sequence of the form: C0
t1� C1

σ1−→f C2
t2� C3

σ2−→f

...
tn� C2n−1

σn−→f C2n. We say that an f -run is accepting iff its last configuration
C2n is accepting and we say that a timed word is f -accepted by A iff there exists an
accepting f -run of A on this word. We note Lf (A) the language of all finite timed
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words f -accepted by A. In the rest of the paper, we (sometimes) use the abbreviation

Ci
t,σ−→f Ci+2 for Ci

t� Ci+1 = Ci + t
σ−→f Ci+2.

Observe that this interval semantics generalises the standard OCATA semantics [12].
This standard semantics can be recovered by considering TA,Id, where Id is the approx-
imation function such that Id(C) = {C} for all C. Indeed, in TA,Id, all the reachable
configurations contain only states of the form (�, [a, a]), i.e., all intervals are singular.
So, each state (�, [a, a]) can be naturally mapped to a state (�, a) in the standard seman-
tics. From now on, we denote LId(A) by L(A).

Example 8. Let us consider again the OCATA A in Fig. 1, and the timed word θ =
(σ, 0)(σ, 0.2)(σ, 0.5), with |θ| = 3. Let f be the approximation function s.t. for all
C ∈ Config (A): f(C) =

{
C(�0) ∪ C(�2) ∪ {(�1, [inf(I1), sup(Im)])}

}
if C(�1) =

{I1, I2, . . . Im} �= ∅ (assuming, as mentioned before, that I1 < I2 < · · · < Im); and
f(C) = {C} if C(�1) = ∅. Thus, roughly speaking, f(C) always contains one con-
figuration, which is obtained from C by merging all the intervals in C(�1) and keeping

the rest of the configuration untouched. Then, an f -run on θ is: ρ1 = {(�0, 0)} 0,σ−−→
{(�0, 0), (�1, 0)} 0.2,σ−−−→ {(�0, 0.2), (�1, [0, 0.2])} 0.3,σ−−−→ {(�0, 0.5), (�1, [0, 0.5])}. Also,

an Id-run on θ is: ρ2 = {(�0, 0)} 0,σ−−→ {(�0, 0), (�1, 0)} 0.2,σ−−−→ {(�0, 0.2), (�1, 0),

(�1, 0.2)} 0.3,σ−−−→ {(�0, 0.5), (�1, 0), (�1, 0.3), (�1, 0.5)}. Now, consider the timed word

θ′ = θ(σ, 1.1). An Id-run on θ′ is ρ3 = ρ2
0.6,σ−−−→ {(�0, 1.1), (�1, 0), (�1, 0.6), (�1, 0.9),

(�1, 1.1)} (hence θ′ is Id-accepted by A), but A has no f -run on θ′. Indeed, letting 0.6
t.u. elapse from ρ1’s last configuration yields {(�0, 1.1), (�1, [0.6, 1.1])} from which no
transition can be fired, because [0.6, 1.1] satisfies neither x �= 1 nor x = 1, which are
the respective guards of the arcs from �1.

In the rest of the paper we will rely mainly on approximation functions that enable to
bound the number of clock copies in all configurations along all runs of an OCATA
A. Let k ∈ N be a constant. We say that fk ∈ APPA is a k-bounded approximation
function iff for all C ∈ Config (A), for all C′ ∈ fk(C): ‖C′‖ ≤ k.

Accepted language and approximations. Let us now study the relationship between the
standard semantics of OCATA and the family of semantics obtained when relying on
an approximation function that is different from Id. We show that introducing approxi-
mations does not increase the accepted language:

Proposition 9. For all OCATA A, for all f ∈ APPA: Lf(A) ⊆ L(A).

Proof (sketch). Let C0
t1� C1

σ1−→f C2
t2� C3 · · ·

σn−−→f C2n be an accepting f -run

of A on θ, and let us build, inductively, an accepting Id-run D0
t1� D1

σ1−→Id D2
t2�

D3 · · ·
σn−−→Id D2n on θ s.t. the following invariant holds: for all 0 ≤ i ≤ 2n, for all

(�, [v, v]) ∈ Di, there is (�, I) ∈ Ci s.t. v ∈ I . The base case is trivial since C0 = D0.
For the inductive case, we first observe that the elapsing of time maintains the invariant.
Thus, we have to show that each discrete step in the f -run can be simulated by a discrete
step in the Id-run that maintains the invariant. A σ labeled discrete step from some
configuration C2j+1 in the f -run consists in selecting an arc as of the form (�, σ, γ)
for each s = (�, I) in C2j+1, whose guard is satisfied by I . Then, firing all these arcs
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yields a configuration E, and C2j+2 ∈ f(E). From each s′ = (�, [v, v]) in D2j+1,
we fire the arc as where s = (�, I) is a state in C2j+1 s.t v ∈ I . Such an s exists by
induction hypothesis. Since the effects of the arcs are the same, and by properties of
the approximation function, we conclude that D2j+2 and C2j+2 respect the invariant.
In particular D2n and C2n respect it, hence D2n is accepting. ��

4 From MITL to Timed Automata

In this section, we present our new technique to build, from any MITL formula Φ, a
timed automaton that accepts �Φ�. Our technique relies on two ingredients. First, we
recall [13] how to build, from all MITL formula Φ, and OCATA AΦ s.t. L(AΦ) = �Φ�.
This is not sufficient to obtain a timed automaton, as, in general, the semantics of an
OCATA needs an unbounded number of clock copies, which prevents us from translat-
ing all OCATA into timed automata. The second ingredient is the definition of a fam-
ily of bounded approximation functions f�

Φ, s.t., for all MITL formula Φ, Lf�
Φ

(AΦ) =
L(AΦ). Since each f�

Φ is a bounded approximation function, the number of clock copies
in the f�

Φ-semantics of AΦ is bounded, which allows us to build a timed automaton BΦ

with the same semantics (thus, BΦ accepts �Φ�).

From MITL to OCATA. We begin by recalling1 [13] how to build, from any MITL
formula Φ (in negative normal form), an OCATA AΦ s.t. L(AΦ) = �Φ�. We let AΦ =
(Σ,L, �0, F, δ) where: L is the set containing the initial copy of Φ, noted ‘Φinit’, and
all the formulas of Sub(Φ) whose outermost connective is ‘U ’ or ‘Ũ ’; �0 = Φinit; F is
the set of the elements of L of the form ϕ1ŨIϕ2. Finally δ is defined2 by induction on
the structure of Φ:

– δ(Φinit, σ) = x.δ(Φ, σ)
– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ); δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ)
– δ(ϕ1UIϕ2, σ) = (x.δ(ϕ2, σ) ∧ x ∈ I) ∨ (x.δ(ϕ1, σ) ∧ ϕ1UIϕ2 ∧ x ≤ sup(I))
– δ(ϕ1ŨIϕ2, σ) = (x.δ(ϕ2, σ) ∨ x /∈ I) ∧ (x.δ(ϕ1, σ) ∨ ϕ1ŨIϕ2 ∨ x > sup(I))

– ∀σ1, σ2 ∈ Σ: δ(σ1, σ2) =

{
true if σ1=σ2

false if σ1 �= σ2
and δ(¬σ1, σ2) =

{
false if σ1=σ2

true if σ1 �= σ2

– ∀σ ∈ Σ: δ(�, σ) = � and δ(⊥, σ) = ⊥.

To simplify the following proofs, we deviate slightly from that definition, and assume
that if a formula of type ϕ1UIϕ2 or ϕ1ŨIϕ2 appears more than once as a sub-formula
of Φ, the occurrences of this formula are supposed different and are encoded as different
locations. With this definition, we have:

Theorem 10 ([13]). For all MITL formula Φ: L(AΦ) = �Φ�.

1 Remark that in [13], the authors are concerned with MTL, but since MITL is a syntactic frag-
ment of MTL, the procedure applies here.

2 Remark that the x ≤ sup(I) and x > sup(I) conditions in the resp. definitions of
δ(ϕ1UIϕ2, σ) and δ(ϕ1ŨIϕ2, σ) have been added here for technical reasons. This does not
modify the accepted language. Indeed, in [13], these conditions are given in the infinite word
semantics of OCATA.
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� 
♦

b a, b

b
x ∈ [1, 2]

a x := 0 0 1 2 3 time

aa ab b

Fig. 2. (left) OCATAAΦ1 with Φ1 = ��(a⇒ ♦[1,2]b). (right) The grouping of clocks.

Example 11. As an example consider the formula Φ1 = �(a ⇒ ♦[1,2]b), which is
a shorthand for ⊥Ũ[0,+∞)

(
a ⇒ (�U[1,2]b)

)
. The OCATA AΦ1 is given in Fig. 2

(left), where the location �� corresponds to Φ1 and the location �♦ corresponds to
�U[1,2]b. One can check that this automaton follows strictly the above definition, af-
ter simplification of the formulas, except that we have remove the Φinit location and
used the �� location as initial location instead, to enhance readability of the exam-
ple (this does not modify the accepted language, in the present case). Observe the
edge labeled by b, x ∈ [1, 2] from �♦, without target state: it depicts the fact that:
δ(�U[1,2]b, b) = (x ∈ [1, 2]) ∨ (�U[1,2]b). Intuitively, when the automaton has a copy
in location ‘♦’ with a clock valuation in [1, 2], the copy can be removed, because a
minimal model of x ∈ [1, 2] wrt to a valuation v with v ∈ [1, 2] is ∅.

To help us build an intuition of the f�
Φ1

function, let us consider the Id-run ρ1 ofAΦ1

on θ1 = (a, 0.1)(a, 0.2)(a, 0.3)(b, 2) depicted in Fig. 3. Observe that θ1 |= Φ1, and that
ρ1’s last configuration is indeed accepting. Also note that, as in the example of Fig. 1,
the number of clock copies necessary in the Id-semantics cannot be bounded. Now, let
us discuss the intuition behind f�

Φ1
by considering θ1 again. Consider ρ′1 the run prefix

of ρ1 ending in {(��, 0.2), (�♦, 0), (�♦, 0.1)}. Clearly, the last configuration of ρ′1 can
be over-approximated by grouping the two clock values 0 and 0.1 into the smallest
interval that contains them both, i.e. [0, 0.1]. This intuitions is compatible with the
definition of bounded approximation function, and yields the accepting run ρ′′1 depicted
in Fig. 3. Nevertheless, we must be be careful when grouping clock copies. Let us
consider θ2 = (a, 0.1)(a, 0.2)(a, 1.9)(b, 2)(b, 3) ∈ �Φ1�, as witnessed by ρ2 depicted
in Fig. 3. When grouping in the same interval, the three clock copies created in �♦
(along ρ2) by the reading of the three a’s (and letting further 0.1 time unit elapse) yields
the run prefix of ρ′2 depicted in Fig. 3 ending in {(��, 2), (�♦, [0.1, 1.9])}. From the last
configuration of this run, the edge with guard x ∈ [1, 2] and origin �♦ cannot be taken.
Thus, the only way to extend this prefix is through ρ′2 (depicted in Fig. 3) which yields
a run that does not accept θ2. Obviously, by grouping the two clock copies created in
�♦ by the two first a’s, and by keeping the third one apart, one obtains the accepting
run ρ′′2 (depicted in Fig. 3). Fig. 2 (right) shows the intuition behind the grouping of
clocks. The two first positions (with σ1 = σ2 = a) of the word satisfy Φ1, because of
the b in position 4 (with τ4 = 2), while position 3 (with σ3 = a) satisfies Φ1 because
of the b in position 5 (with τ5 = 3). This explains why we group the two first copies
(corresponding to the two first a’s) and keep the third one apart.
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ρ1
��
�♦

{0} {0.1}

{0}

{0.2}

{0},{0.1}

{0.3}

{0},{0.1},{0.2}

{2}0.1,a 0.1,a 0.1,a 1.7,b

ρ′′1
��
�♦

{0} {0.1}

{0}

{0.2}

[0,0.1]

{0.3}

[0,0.2]

{2}0.1,a 0.1,a 0.1,a 1.7,b

ρ2
��
�♦

{0} {0.1}

{0}

{0.2}

{0},{0.1}

{1.9}

{0},{1.7},{1.8}

{2}

{0.1}

{3}0.1,a 0.1,a 1.7,a 0.1,b 1,b

ρ′2
��
�♦

{0} {0.1}

{0}

{0.2}

[0,0.1]

{1.9}

[0,1.8]

{2}

[0.1,1.9]

{3}

[2.1,2.9]

0.1,a 0.1,a 1.7,a 0.1,b 1,b

ρ′′2
��
�♦

{0} {0.1}

{0}

{0.2}

[0,0.1]

{1.9}

{0},[1.7,1.8]

{2}

{0.1,}

{3}0.1,a 0.1,a 1.7,a 0.1,b 1,b

Fig. 3. Several OCATA runs

The approximation functions f�
Φ. Let us now formally define the family of bounded

approximation functions that will form the basis of our translation to timed automata.
We first give an upper bound M(Φ) on the number of clock copies (intervals) we need
to consider in the configurations to recognise an MITL formulaΦ. The precise definition
of the boundM(Φ) is technical and is given by induction on the structure of the formula.
It can be found in the companion technical report [4]. Yet, for all MITL formula Φ:

M(Φ) ≤ |Φ| × max
I∈IΦ

(
4×

{⌈
inf(I)

|I|

⌉}
+ 2, 2×

{⌈
sup(I)

|I|

⌉}
+ 2

)
where IΦ is the set of all the intervals that occur in Φ3.

Equipped with this bound, we can define the f�
Φ function. Throughout this descrip-

tion, we assume an OCATA A with set of locations L. Let S = {(�, I0), (�, I1),
. . . , (�, Im)} be a set of states of A, all in the same location �, with, as usual I0 <
I1 < · · · < Im. Then, we let Merge (S) = {(�, [0, sup(I1)]), (�, I2), . . . , (�, Im)} if
I0 = [0, 0] and Merge (S) = S otherwise, i.e., Merge (S) is obtained from S by group-
ing I0 and I1 iff I0 = [0, 0], otherwise Merge (S) does not modify S. Observe that, in
the former case, if I1 is not a singleton, then ‖Merge (S)‖ = ‖S‖− 1. Now, we can lift
the definition of Merge to configurations. Let C be a configuration of A and let k ∈ N.
We let:

Merge (C, k) =
{
C′ | ‖C′‖ ≤ k and ∀� ∈ L : C′(�) ∈ {Merge (C(�)) , C(�)}

}
Observe that Merge (C, k) is a (possibly empty) set of configurations, where each con-
figuration (i) has at most k clock copies, and (ii) can be obtained by applying (if pos-
sible) or not the Merge function to each C(�). Let us now define a family of k-bounded

3 The first component of the maximum comes from U and the second from Ũ .
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approximation functions, based on Merge. Let k ≥ 2 × |L| be a bound and let C be a
configuration, assuming that C(�) = {I�1, . . . , I�m�

} for all � ∈ L. Then:

F k(C) =

{
Merge (C, k) If Merge (C, k) �= ∅{

(�, [inf(I�1), sup(I�m�
)]) | � ∈ L

}
otherwise

Roughly speaking, the F k(C) function tries to obtain configurations C′ that approxi-
mate C and s.t. ‖C′‖ ≤ k, using the Merge function. If it fails to, i.e., when
Merge (C, k) = ∅, F k(C) returns a single configuration, obtained from C by group-
ing all the intervals in each location. The latter case occurs in the definition of F k for
the sake of completeness. When the OCATA A has been obtained from an MITL for-
mula Φ, and for k big enough (see hereunder) each θ ∈ �Φ� will be recognised by
at least one F k-run of A that traverses only configurations obtained thanks to Merge.
We can now finally define f�

Φ for all MITL formula Φ, by letting f�
Φ = FK , where

K = max{2× |L|,M(Φ)}. It is easy to observe that f�
Φ is indeed a bounded approxi-

mation function. Then, we can show that, for all MITL formula Φ, the f�
Φ-semantics of

AΦ accepts exactly �Φ�. To obtain this result, we rely on the following proposition4:

Proposition 12. Let Φ be an MITL formula, let K be a set of index and, ∀k ∈ K , let
Φk = ϕ1,kUIkϕ2,k be subformulas of Φ. For all k ∈ K , let �Φk

be their associated
locations in AΦ. Let θ = (σ̄, τ̄ ) be a timed word and let Jk ∈ I(R+) be closed in-
tervals. The automaton AΦ Id-accepts θ from configuration {(�Φk

, Jk)k∈K} iff ∀k ∈
K, ∃mk ≥ 1 : (θ,mk) |= ϕ2 ∧ τmk

∈ Ik − inf(Jk) ∧ τmk
∈ Ik − sup(Jk) ∧ ∀1 ≤

m′
k < mk : (θ,m′

k) |= ϕ1.

To illustrate this proposition, let us consider Φ2 ≡ �U[2,3]b, the associated automa-
ton AΦ2 and the timed word θ = (a, 0)(b, 1)(b, 2). Assume that AΦ2 is in config-
uration C = {(�Φ2 , [0, 2])} and we must read θ from C. Observe that for all value
y ∈ [0, 2], there is a position m in θ s.t. τm ∈ [2, 3] − y (i.e., τm satisfies the tem-
poral constraint of the modality), (θ,m) |= b and all intermediate positions satisfy �:
∀1 ≤ m′ < m, (θ,m′) |= �. In other words, ∀y ∈ [0, 2], (θ, 1) |= �U[2,3]−yb. Yet, the
conditions of the propositions are not satisfied and, indeed, there is no accepting Id-run
of AΦ2 from C. Indeed, after reading the first (resp. second) b, the resulting configura-
tion contains (�Φ2 , [1, 3]) (resp. (�Φ2 , [2, 4])). In both cases, the interval associated with
�Φ2 does not satisfy the clock constraint x ∈ [2, 3] of the transition x.δ(�, b)∧x ∈ [2, 3]
of AΦ2 that enables to leave location �Φ2 . This example also shows that Proposition 12
cannot be obtained as a corollary of the results by Ouaknine and Worrell [13] and de-
serves a dedicated proof as part of our contribution.

The property given by Proposition 12 is thus crucial to determine, given an accepting
run, whether we can group several intervals and retain an accepting run or not. This
observation will be central to the proof of our main theorem:

Theorem 13. For all MITL formula Φ, f�
Φ is a bounded approximation function and

Lf�
Φ

(AΦ) = L(AΦ) = �Φ�.

Proof (sketch). By definition, f�
Φ is a bounded approximation function. Hence, by Propo-

sition 9, Lf�
Φ

(AΦ) ⊆ L(AΦ). Let θ = (σ̄, τ̄ ) be a timed word in L(AΦ), and let us show

4 Stated here for the U modality, a similar proposition holds for Ũ .
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that θ ∈ Lf�
Φ

(AΦ), by building an accepting f�
Φ-run ρ′ on θ. Since, θ ∈ L(AΦ), there

is an accepting Id-run ρ of AΦ on θ. We assume that ρ = C0
τ1,σ1−−−→Id C1

τ2−τ1,σ2−−−−−−→Id

C2 · · ·
τn−τn−1,σn−−−−−−−−→ Cn.

We build, by induction on the length of ρ, a sequence of runs ρ0, ρ1, . . . , ρn s.t. for

all 0 ≤ j ≤ n, ρj = Dj
0

τ1,σ1−−−→Id · · ·
τn−τn−1,σn−−−−−−−−→ Dj

n is an accepting run on θ with

the following properties: (i) for all 0 ≤ k ≤ j:
∥∥∥Dj

k

∥∥∥ ≤ 4 ×
⌈
inf(Ii)
|Ii|

⌉
+ 2, and (ii)

assuming τ0 = 0: Dj
j

τj+1−τj ,σj+1−−−−−−−−−→Id · · ·
τn−τn−1,σn−−−−−−−−→Id Dj

n is an accepting Id-run
on θj+1 = (σj+1σj+2 . . . σn, τ

′), where τ ′ = (τj+1 − τj)(τj+2 − τj) . . . (τn − τj),
assuming τ−1 = 0, i.e., θj is the suffix of length n− j of θ, where all the timed stamps
have been decreased by τj . Clearly, letting ρ0 = ρ satisfied these properties. We build
ρk+1 from ρk, by first letting Dk+1

0 , Dk+1
1 , . . . , Dk+1

k = Dk
0 , D

k
1 , . . . , D

k
k , and then

showing how to build Dk+1
k+1 from Dk

k+1 by merging intervals. Let � ∈ L. We use the
criterion given by Proposition 12 to decide when to group intervals in Dk

k+1(�). Assume
Dk

k+1(�) = {J1, J2, . . . , Jm}. Then:

– If Dk
k+1(�) is either empty, or a singleton, we let Dk+1

k+1(�) = Dk
k+1(�).

– Else, if J1 �= [0, 0], then the reading of σk+1 has not created a new copy in � and
we let Dk+1

k+1(�) = Dk
k+1(�) too.

– Else, J1 = [0, 0] and we must decide whether we group this clock copy with J2 or
not. Assume5 � corresponds to the sub-formula ϕ1UIϕ2. Then:
1. if ∃m ≥ 1 such that : (θk+1, τk+1

m ) � ϕ2 ∧ τk+1
m ∈ I − sup(J2) ∧ τk+1

m ∈ I ∧
∀1 ≤ m′ < m : (θk+1, τk+1

m′ ) |= ϕ1, then, we letDk+1
k+1(�)=Merge

(
Dk

k+1(�)
)
,

2. else, we let Dk+1
k+1(�) = Dk

k+1(�).

We finish the construction of ρk+1 by firing, from Dk+1
k+1 the same arcs as in the Dk

k+1

Dk
k+2 . . . D

k
n suffix of ρk, using the Id-semantics. Proposition 12 guarantees that we

have grouped the intervals in such a way that this suffix is an Id-accepting run on θk+1.
Finally, we let ρ′ = ρn which is an accepting run on θ. We finish the proof by a technical
discussion showing that ρn is an f�

Φ-run. ��

From OCATA to timed automata. Let us show how we can now translate AΦ into a
timed automaton that accepts �Φ�. The crucial point is to define a bound, M(Φ), on the
number of clocks that are necessary to recognise models of Φ.

A timed automaton (TA) is a tuple B = (Σ,L, �0, X, F, δ), where Σ is a finite
alphabet, L is finite set of locations, �0 ∈ L is the initial location, X is a finite set of
clocks, F ⊆ L is the set of accepting locations, and δ ⊆ L × Σ × G(X) × 2X × L is
a finite set of transitions, where G(X) denotes the set of guards on X , i.e. the set of all
finite conjunctions of clock constraints on clocks from X . For a transition (�, σ, g, r, �′),
we say that g is its guard, and r its reset. A configuration of a TA is a pair (�, v), where
v : X �→ R+ is a valuation of the clocks in X . We denote by Config (B) the set of all
configurations of B, and we say that (�, v) is accepting iff � ∈ F . For all t ∈ R+, we

5 When 
 corresponds to the sub-formula ϕ1ŨIϕ2, we use the proposition similar to Proposition
12 for Ũ to decide whether we group J1 with J2 or not.
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have (time successor) (�, v)
t� (�′, v′) iff � = �′ and v′ = v + t where v + t is the

valuation s.t. for all x ∈ X : (v + t)(x) = v(x) + t. For all σ ∈ Σ, we have (discrete
successor) (�, v)

σ−→ (�′, v′) iff there is (�, σ, g, r, �′) ∈ δ s.t. v |= g, for all x ∈ r:

v′(x) = 0 and for all x ∈ X \ r: v′(x) = v(x). We write (�, v)
t,σ−−→ (�′, v′) iff there

is (�′′, v′′) ∈ Config (B) s.t. (�, v)
t� (�′′, v′′)

σ−→ (�′, v′). A timed word θ = (σ̄, τ̄)
with σ̄ = σ1σ2 · · ·σn and τ̄ = τ1τ2 · · · τn is accepted by B iff there is an accepting
run of B on θ, i.e. a sequence of configurations (�1, v1),. . . , (�n, vn) s.t. �n ∈ F and for

all 0 ≤ i ≤ n − 1: (�i, vi)
τi−τi−1,σi−−−−−−−→ (�i+1, vi+1), where v0 assigns 0 to all clocks,

and assuming that τ−1 denotes 0. We denote by L(B) the language of B (set of words
accepted by B).

We can now sketch the translation (see [4] for the details). Let Φ be an MITL
formula, and assume AΦ = (Σ,LΦ, �Φ0 , F

Φ, δΦ). Let us show how to build the TA
BΦ = (Σ,L, �0, X, F, δ) s.t. L(BΦ) = Lf�

Φ
(AΦ). The TA BΦ is built as follows. For

a set of clocks X , we let loc(X) be the set of functions S that associate with each
� ∈ LΦ a finite sequence (x1, y1), . . . , (xn, yn) of pairs of clocks from X , s.t. each
clock occurs only once in all the S(�). Then, L = loc(X). Observe that L is indeed a
finite set. Intuitively, a configuration (S, v) of BΦ encodes the configuration C of AΦ

s.t. for all � ∈ LΦ: C(�) = {[v(x), v(y)] | (x, y) ∈ S(�)}. The other components of
BΦ are defined as follows. �0 is s.t. �0(�Φ0 ) = (x, y), where x and y are two clocks
arbitrarily chosen from X , and �0(�) = ∅ for all � ∈ LΦ \ {�Φ0 }. X is a set of clocks
s.t. |X | = M(Φ). F is the set of all locations S s.t. {� | S(�) �= ∅} ⊆ FΦ. Finally,
δ allows BΦ to simulate the f�

Φ-semantics of AΦ : the non determinism of δ enables to
guess which clocks must be grouped to form appropriate intervals (see [4] for details).

Theorem 14. For all MITL formula Φ, BΦ has M(Φ) clocks and O((|Φ|)(m.|Φ|)) loca-

tions, where m = maxI∈IΦ

{
2×

⌈
inf(I)
|I|

⌉
+ 1,

⌈
sup(I)
|I|

⌉
+ 1

}
.

5 Future Works: Towards Efficient MITL Model Checking

Let us close this work by several observations summarising what we believe are the
benefits of using an OCATA based characterisation of MITL formulas, and that could
yield efficient model checking algorithm for MITL. Let C be a timed automaton, and let
Φ be an MITL formula. Obviously, one can perform automaton-based model checking
by computing a TA B¬Φ accepting �¬Φ� (using the technique presented in Section 4,
or the technique of [2]), and explore their synchronous product C ×B¬Φ using classical
region-based or zone-based techniques [1]. This approach could not be practical, as the
number M of clocks of the TA B¬Φ is usually very high, and the algorithm exploring
C × B¬Φ will have to maintain data structures (regions or zone) ranging over N + M
clocks, where N is the number of clocks of C.

A way to avoid this blow up in the number of clocks is to perform the model-checking
using the OCATA A¬Φ (using its f�

¬Φ semantics) instead of the TA B¬Φ. First, the size
ofA¬Φ is linear in the size of Φ, and is straightforward to build. Second, a configuration
of C × A¬Φ stores only the clocks that correspond to active copies of A¬Φ, which, in
practice, can be much smaller than the number of clocks of B¬Φ. Third, this approach
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allows to retain the structure of the OCATA in the transition system of C ×A¬Φ, which
allows to define antichain based algorithms [7], that rely on a partial order on the state
space to detect redundant states and avoid exploring them. Such an approach, has been
applied in the case of LTL model-checking [6]. It relies crucially on the translation
of LTL formulas to alternating automata, and yields dramatic improvements in the
practical performance of the algorithm.

To obtain such algorithms, we need a symbolic data structure to encode the config-
urations of C × A¬Φ. Such a data structure can be achieved by lifting, to our interval
semantics, the technique from [12] that consists in encoding regions of OCATA config-
urations by means of finite words. Remark that this encoding differs from the classical
regions for TA [1], in the sense that the word encoding allows the number of clocks to
change along paths of the transition system.
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Abstract. We address the problem of predicting events’ occurrences in
partially observable timed systems modelled by timed automata. Our
contribution is many-fold: 1) we give a definition of bounded predictabil-
ity, namely k-predictability, that takes into account the minimum delay
between the prediction and the actual event’s occurrence; 2) we show
that 0-predictability is equivalent to the original notion of predictability
of S. Genc and S. Lafortune; 3) we provide a necessary and sufficient
condition for k-predictability (which is very similar to k-diagnosability)
and give a simple algorithm to check k-predictability; 4) we address the
problem of predictability of events’ occurrences in timed automata and
show that the problem is PSPACE-complete.

1 Introduction

Monitoring and fault diagnosis aim at detecting defects that can occur at run-
time. The monitored system is partially observable but a formal model of the
system is available which makes it possible to build (offline) a monitor or a
diagnoser. Monitoring and fault diagnosis for discrete event systems (DES) have
been have been extensively investigated in the last two decades [1,2,3]. Fault
diagnosis consists in detecting a fault as soon as possible after it occurred. It
enables a system operator to stop the system in case something went wrong,
or reconfigure the system to drive it to a safe state. Predictability is a strong
version of diagnosability: instead of detecting a fault after it occurred, the aim is
to predict the fault before its occurrence. This gives some time to the operator
to choose the best way to stop the system or to reconfigure it.

In this paper, we address the problem of predicting event occurrences in par-
tially observable timed systems modelled by timed automata.

The Predictability Problem. A timed automaton [4] (TA) generates a timed lan-
guage which is a set of timed words which are sequences of pairs (event, time-
stamp). Only a subset of the events generated by the system is observable. The
objective is to predict occurrences of a particular event (observable or not) based
on the sequences of observable events. Automaton G, Fig. 1, is a timed version
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Council through the ICT Centre of Excellence program.
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l0

[x ≤ 1]

l3

[x ≤ 1]

l1

[x ≤ 2]
l2

[x ≤ 3]

l4

[x < 1]

lf

[x ≤ 1]

x = 1
a

x := 0

x < 1
d

x = 2,c,x := 0

x ≤ 1,a,x := 0
b;x := 0

x ≥ 2,f ,x := 0 a, b, c
x := 0

Fig. 1. Example G from [5]

of the example of automaton G1 of [5]. The set of observable events is {a, b, c}.
We would like to predict event f without observing event d. First consider the
untimed version of G by ignoring the constraints on clock x. The untimed au-
tomaton can generate two types of events’ sequences: d.a.b∗ and a.c.f.{a, b, c}∗.
Because d is unobservable, after observing a we do not know whether the system
is in location l4 or l1 and cannot predict f as, according to our knowledge, it is
not bound to occur in all possible futures from locations l4 or l1. However, after
the next observable event, b or c, we can make a decision: if we observe a.c, G
must be in l2 and thus f is going to happen next. After observing a.c we can
predict event f . Note that there is no quantitative duration between occurrences
of events in discrete event systems and thus we can predict f at a logical time
which is before f occurs. The time that separates the prediction of f from the
actual occurrence of f is measured in the number of discrete steps G can make.
In this sense G is 0-predictable as when we predict f , it is the next event to
occur. The untimed version of G is an abstraction of a real system, and in the
real system, it could be that f is going to occur 5 seconds after we observe c.

Timed automata enable us to capture quantitative aspects of real-time sys-
tems. We can use clocks (like x) to specify constraints between the occurrences
of events. Moreover invariants (like [x ≤ 1]) ensure that G changes location
when the upper bound of the invariant is reached. In the timed automaton
G, the (infinite) sequences with no f are of the form (d, δd)(a, δa)(b, δb) · · ·
with δd < 1, δa ≤ 1 and δb < 2. The sequences with event f are of the form
(a, 1)(c, 3)(f, δf ) with 5 ≤ δf ≤ 6. Thus if we do not observe a “b” within the
first two time units, we know that the system is in location l1. This implies that
f is going to occur, and we know this at time 2. But f will not occur before
1+2 time units, the time for c to occur (from time 2) and the minimum time for
f to occur after c. G is thus 3-predictable. In the sequel we formally define the
previous notions and give efficient algorithms to solve the predictability problem.

Related Work. Predictability for discrete event systems was first proposed by
S. Genc and S. Lafortune in [6]. Later in [5] they gave two algorithms to de-
cide the predictability problem, one of them is a polynomial decision procedure.
T. Jéron, H. Marchand, S. Genc and S. Lafortune [7] extended the previous re-
sults to occurrences of patterns (of events) rather than a single event. L. Brandán
Briones and A. Madalinski in [8] studied bounded predictability without relating
it to the notion defined by S. Genc and S. Lafortune.
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Predictability is closely related to fault diagnosis [1,2,3]. The objective of fault
diagnosis is to detect the occurrence of a special event, a fault, which is unobserv-
able, as soon as possible after it occurs. Fault diagnosis for timed automata has
first been studied by S. Tripakis in [9] and he proved that the diagnosis problem
is PSPACE-complete. P. Bouyer, F. Chevalier and D. D’Souza [10] later stud-
ied the problem of computing a diagnoser with fixed resources (a deterministic
TA) and proved that this problem is 2EXPTIME-complete. To the best of our
knowledge the predictability problem for TA has not been investigated yet.

Our Contribution. We give a new characterization of bounded predictability
and show it is equivalent to the definition of S. Genc and S. Lafortune. This
new characterization is simple and dual to the one for the diagnosis problem;
we can derive easily algorithms to decide predictability, bounded predictability,
and to compute the largest anticipation delay to predict a fault. We also study
the bounded predictability problem for TA and prove it is PSPACE-complete.
We investigate implementability issues, i.e., how to build a predictor, and solve
the sampling predictability problem which ensures an implementable predictor
exists. We show how to compute bounded predictability with Uppaal [11].

Omitted proofs and further details can be found in the extended version of
this paper [12].

2 Preliminaries

B = {true, false} is the set of boolean values, N the set of natural numbers, Z
the set of integers and Q the set of rational numbers. R is the set of real numbers
and R≥0 is the set of non-negative reals.

Let X be a finite set of variables called clocks. A clock valuation is a mapping
v : X → R≥0. We let RX

≥0 be the set of clock valuations over X . We let 0X

be the zero valuation where all the clocks in X are set to 0 (we use 0 when
X is clear from the context). Given δ ∈ R, v + δ denotes the valuation defined
by (v + δ)(x) = v(x) + δ. We let C(X) be the set of convex constraints on X
which is the set of conjunctions of constraints of the form x  ! c with c ∈ N and
 !∈ {≤, <,=, >,≥}. Given a constraint g ∈ C(X) and a valuation v, we write
v |= g if g is satisfied by v. Given R ⊆ X and a valuation v, v[R] is the valuation
defined by v[R](x) = v(x) if x �∈ R and v[R](x) = 0 otherwise.

A finite (resp. infinite) timed word over Σ is a word in R≥0.(Σ.R≥0)∗ (resp.
(R≥0.Σ)ω). We write timed words as 0.4 a 1.0 b 2.7 c · · · where the real values are
the durations elapsed between two events: thus c occurs at global time 4.1. We
let Dur(w) be the duration of a timed word w which is defined to be the sum of
the durations (in R≥0) which appear in w; if this sum is infinite, the duration is
∞. Note that the duration of an infinite word can be finite, and such words which
still contain an infinite number of events, are called Zeno words. An infinite timed
word w is time-divergent if Dur(w) = ∞. We let Unt(w) be the untimed version
of w obtained by erasing all the durations in w, e.g., Unt(0.4 a 1.0 b 2.7 c 0) = abc.
Given w a timed word and a ∈ Σ, |w|a is the number of occurrences of a in w
(∞ if a occurs infinitely often in w.)
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TW ∗(Σ) is the set of finite timed words over Σ, TW ω(Σ), the set of infinite
timed words and TW∞(Σ) = TW ∗(Σ) ∪ TW ω(Σ). We use Σ∗ and Σω for
the corresponding sets of untimed words. A timed language is any subset of
TW∞(Σ). For L ⊆ TW∞(Σ), we let Unt(L) = {Unt(w) | w ∈ L}.

For w ∈ TW ∗(Σ) and w′ ∈ TW∞(Σ), w.w′ is the concatenation of w and
w′. A finite timed word w is a prefix of w′ ∈ TW∞(Σ) if w′ = w.w′′ for some
w′′ ∈ TW∞(Σ). In the sequel we also the prefix operator and L is the set of
finite words that are prefixes of words in L.

Let Σ1 ⊆ Σ. π/Σ1
is the projection of timed words of TW∞(Σ) over timed

words of TW∞(Σ1). When projecting a timed word w on a Σ1 ⊆ Σ, the dura-
tions elapsed between two events are set accordingly: π/{a,c}(0.4 a 1.0 b 2.7 c) =
0.4 a 3.7 c (projection erases some events but preserves the time elapsed be-
tween the non-erased events). It follows that π/Σ1

(w) = π/Σ1
(w′) implies that

Dur(w) = Dur(w′). For L ⊆ TW∞(Σ), π/Σ1
(L) = {π/Σ1

(w) | w ∈ L}.
Timed automata (TA) are finite automata extended with real-valued clocks

to specify timing constraints between occurrences of events. For a detailed pre-
sentation of the fundamental results for timed automata, the reader is referred
to the seminal paper of R. Alur and D. Dill [4]. As usual we use the symbol ε to
denote the silent (invisible) action in an automaton.

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple (L,
l0, X,Σ ∪ {ε}, E, Inv, F,R) where: L is a finite set of locations; l0 is the initial
location; X is a finite set of clocks; Σ is a finite set of events; E ⊆ L×C(X)×
Σ ∪ {ε} × 2X × L is a finite set of transitions; for (�, g, a, r, �′) ∈ E, g is the
guard, a the event, and r the reset set; Inv : L → C(X) associates with each
location an invariant; as usual we require the invariants to be conjunctions of
constraints of the form x � c with �∈ {<,≤}. F ⊆ L and R ⊆ L are respectively
the final and repeated sets of locations. �

A state of A is a pair (�, v) ∈ L×RX
≥0. A run " of A from (�0, v0) is a (finite or

infinite) sequence of alternating delay and discrete moves:

" = (�0, v0)
δ0−→ (�0, v0 + δ0)

a1−→ (�1, v1) · · · an−−→ (�n, vn)
δn−→ (�n, vn + δn) · · ·

s.t. for every i ≥ 0:

– vi + δ |= Inv(�i) for 0 ≤ δ ≤ δi (Def. 1 implies that vi + δi |= Inv(�i) is
equivalent);

– there is a transition (�i, gi, ai+1, ri, �i+1) ∈ E s.t. : (i) vi + δi |= gi and (ii)
vi+1 = (vi + δi)[ri] (by the previous condition we have vi+1 |= Inv(�i+1).)

If " is finite and ends in sn, we let tgt(") = sn. We say that event a ∈ Σ ∪ {ε} is
enabled in s = (�, v), written a ∈ en(s), if there is a transition (�, g, a, R, �′) ∈ E
s.t. v |= g and v[R] |= Inv(�′). The set of finite (resp. infinite) runs from a
state s is denoted Runs∗(s, A) (resp. Runsω(s, A)) and we define Runs∗(A) =
Runs∗((l0,0), A) and Runsω(A) = Runsω((l0,0), A).
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We make the following boundedness assumption on timed automata: time-
progress in every location is bounded. This is not a restrictive assumption as
every timed automaton that does not satisfy this requirement can be transformed
into a language-equivalent one that is bounded [13]. This implies that every
infinite run has an infinite number of events. We further assume1 that every
infinite run has an infinite number of discrete transitions with a �= ε.

The trace, tr("), of a run " is the timed word δ0a1δ1a2 · · · anδn · · · where ε is
removed (and durations are updated accordingly). We let Dur(") = Dur(tr(")).
For V ⊆ Runs∗(A) ∪ Runsω(A), we let Tr(V ) = {tr(") | " ∈ V }.

A finite (resp. infinite) timed word w is accepted by A if w = tr(") for some
" ∈ Runs∗(A) that ends in an F -location (resp. for some " ∈ Runsω(A) that
reaches infinitely often an R-location). L∗(A) (resp. Lω(A)) is the set of traces
of finite (resp. infinite) timed words accepted by A. In the sequel we often omit
the sets R and F in TA and this implicitly means F = L and R = L.

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σ∪{ε}, Ei, Invi, Fi, Ri),

i ∈ {1, 2}, be TA s.t. X1 ∩X2 = ∅. The product of A1 and A2 is the TA A1 ×
A2 = (L, l0, X,Σ ∪ {ε}, E, Inv, R, F ) defined by: L = L1 × L2; l0 = (l10, l

2
0); X =

X1∪X2; and E ⊆ L×C(X)×Σ∪{ε}×2X×L and ((�1, �2), g1,2, σ, r1,2, (�
′
1, �

′
2)) ∈

E if:

– either σ �= ε, and (i) (�k, gk, σ, rk, �
′
k) ∈ Ek for k = 1 and k = 2; (ii)

g1,2 = g1 ∧ g2 and (iii) r1,2 = r1 ∪ r2;
– or σ = ε and for k ∈ {1, 2}, (i) (�k, gk, σ, rk, �

′
k) ∈ Ek; (ii) g1,2 = gk, (iii)

r1,2 = rk and (iv) �′3−k = �3−k;

Inv(�1, �2) = Inv(�1)∧Inv(�2), F = F1×F2 and R is defined 2 such that Lω(A1)∩
Lω(A2) = Lω(A1 ×A2). �
A finite automaton (FA) is a TA with X = ∅: guards and invariants are vacu-
ously true and time elapsing transitions do not exist.

We write A = (L, l0, Σ ∪ {ε}, E, F,R) for a FA. A run of a FA A is thus a

sequence of the form: " = �0
a1−−−→ �1 · · · · · · an−−−→ �n · · · where for each i ≥ 0,

(�i, ai+1, �i+1) ∈ E. Definitions of traces and languages are inherited from TA
but the duration of a run " is the number of steps (including ε-steps) of ": if "
is finite and ends in �n, Dur(") = n and otherwise Dur(") = ∞. The product
definition also applies to finite automata.

3 Predictability Problems

Predictability problems are defined on partially observable TA. Given a TA
A = (L, �0, X,Σ,E, Inv, L, L), Σo ⊆ Σ a set of observable events, and a bound

1 Otherwise the trace of an infinite word can have a finite number of events in Σ but
still infinite duration which cannot be defined in our setting. This is not a compulsory
assumption and can be removed at the price of longer (not more complex) proofs.

2 The product of Büchi automata requires an extra variable to keep track of the
automaton that repeated its state. For the sake of simplicity we ignore this and
assume the set R can be defined to ensure Lω(A1) ∩ Lω(A2) = Lω(A1 × A2).
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Δ ∈ N, we want to predict the occurrences of event f ∈ Σ at least Δ time
units before they occur. Without loss of generality, we assume 1) that the target
location of the f -transitions is lf , and they all reset a dedicated clock of A, x,
which is only used on f -transitions; 2) A has transitions (lf ,true, a, {x}, lf) for
every a ∈ Σo. We let Inv(lf ) = x ≤ 1. In the remaining of this paper, Σo is fixed
and we use π for π/Σo

.
We again make the assumption that every infinite run of A contains infinitely

many Σo events: this is not compulsory but simplifies some of the proofs.

3.1 Δ-Predictability

A run ρ of A is non-faulty if Unt(tr(ρ)) does not contain event f ; otherwise it
is faulty. We write NonFaulty(s, A) for the non-faulty runs from s and define
NonFaulty(A) = NonFaulty((l0,0), A). Let " ∈ NonFaulty(A) be a finite non-
faulty run:

" = (l0, v0)
δ0−→ (l0, v0 + δ0)

a1−→ (l1, v1) · · · an−−→ (ln, vn)
δn−→ (ln, vn + δn).

" is Δ-prefaulty, if it can be extended by a run "′ as follows:

"′′ = (l0, v0)
δ0−→ · · · δn−→ tgt(")

δ′0−−→ s′1
a′
1δ

′
1−−−−→ · · · a′

kδ
′
k−−−−→ · · ·

a′
jδ

′
j−−−−→ sj︸ ︷︷ ︸

run �′

where the extended run "′′ ∈ NonFaulty(A) satisfies: (i) f ∈ en(sj) and (ii)

Dur(ρ′) ≤ Δ (i.e.,
∑j

k=0 δ
′
k ≤ Δ.) In words, f can occur within Δ time units

from tgt("). We let PreFaulty≤Δ(A) be the set of Δ-prefaulty runs of A. Note
that if Δ ≤ Δ′ then PreFaulty≤0(A) ⊆ PreFaulty≤Δ(A) ⊆ PreFaulty≤Δ′(A).

We want to predict the occurrence of event f at least Δ time units before it
occurs and it makes sense only if Δ ≤ κ(A) where κ(A) is the minimum duration
to reach a state where f is enabled. If f is never enabled, we let κ(A) = ∞. If
κ(A) is finite, let 0 ≤ Δ ≤ κ(A) and define the following timed languages:

Lω
¬f = Lω(A) ∩Tr(NonFaulty(A)) (1)

L−Δ
f = Tr(PreFaulty≤Δ(A)). (2)

If κ(A) = ∞ then we let L−Δ
f = ∅. Lω

¬f contains the infinite non-faulty traces of

A. L−Δ
f contains the finite traces w of A that can be extended into w.x.f with

f occurring less then Δ time units after w.
A Δ-Predictor is a device that predicts the occurrence of f at least Δ time

units before it occurs. It should do it observing only the projection π(w) of the
current trace w. Thus for every word w ∈ L−Δ

f , the predictor predicts f by
issuing a 1. On the other hand, if a trace w can be extended as an infinite trace
without any event f , i.e., it is in Lω

¬f , the predictor must not predict f and thus

should issue a 0. For a trace which is in L−Δ′
f with Δ′ > Δ and not in Lω

¬f , we
do not require anything from the predictor: it can predict f or not and this is
why we define a predictor as a partial mapping.
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Definition 3 (Δ-Predictor). A Δ-predictor for A is a partial mapping P :
TW ∗(Σo) −→ {0, 1} such that:

– ∀w ∈ L−Δ
f , P (π(w)) = 1,

– ∀w ∈ Lω
¬f , P (π(w)) = 0.

A is Δ-predictable if there exists a Δ-predictor for A and is predictable if there
is some Δ such that A is Δ-predictable. �

It follows that if f is never enabled in A, A is Δ-predictable for any Δ: a predictor
is a mapping P (·) = 0. In the sequel we assume that A contains a state where f
is enabled and thus κ(A) is finite.3

In the dual problem of diagnosability [9], it is required that the infinite words
in Lω

¬f be non-Zeno. This is required by the problem statement that time must
advance beyond any bound. For predictability, this is not a requirement and we
could accept non time-divergent runs in Lω

¬f . However for realistic systems we
should add this requirement. This can be easily done and we discuss how to do
this in section 5.2.

3.2 PSPACE-Hardness of Bounded Predictability

We are interested in the two following problems:

Problem 1 (Δ-Predictability (Bounded Predictability))
Input: A TA A = (L, �0, X,Σ,E, Inv) and Δ ∈ N.
Problem: Is A Δ-predictable?

Problem 2 (Predictability)
Input: A TA A = (L, �0, X,Σ,E, Inv).
Problem: Is A predictable?

Notice that predictability problems for finite automata are defined using the
number of steps in the automaton A (including unobservable steps) for the du-
ration of a run. A first result is the PSPACE-hardness of the Bounded Pre-
dictability problem. This is obtained by reducing the reachability problem for
TA to the Bounded Predictability problem. The location reachability problem
for TA asks, given a location l, whether (l, v) (for some valuation v) is reachable
from the initial state of A. This problem is PSPACE-complete for TA [4].

Theorem 1. The Bounded Predictability problem is PSPACE-hard for TA.

Proof. We can reduce the location reachability problem for bounded TA to the
predictability problem as follows (the reduction is similar to [9]): let A be a
bounded TA and l a location of A. We can build A′ by adding transitions to
A: let END by a new location. We add a transition (l,true, f, {x},END), and
another one (l,true, u, {x},END) with u unobservable, assuming A has at least

3 Checking whether a state where f is enabled is reachable and the computation of
κ(A) can be done in PSPACE [14] for TA and linear time for FA.
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one clock x. We then add loops on location END (END, x = 1, a, {x},END), for
each a ∈ Σ. Moreover Inv(END) = x ≤ 1. It follows from our definition of
predictability that l is reachable in A iff A′ is not predictable, and A′ has size
polynomial in A.

3.3 Necessary and Sufficient Condition for Δ-Predictability

We now give a necessary and sufficient condition (NSC) for Δ-predictability
which is similar in form to the condition used for Δ-diagnosability [9].

Lemma 1. A is Δ-predictable iff π(L−Δ
f ) ∩ π(Lω

¬f ) = ∅.

Proof. Only If. Assume A is Δ-predictable. There exists a partial mapping P
s.t. ∀w ∈ L−Δ

f , P (π(w)) = 1, ∀w ∈ Lω
¬f , P (π(w)) = 0. Assume w ∈ π(L−Δ

f ) ∩
π(Lω

¬f) �= ∅. Then w = π(w1) = π(w2) with w1 ∈ L−Δ
f and w2 ∈ Lω

¬f . By
definition of P we must have P (w) = P (π(w1)) = 1 and P (w) = P (π(w2)) = 0
which is a contradiction.

If. If π(L−Δ
f ) ∩ π(Lω

¬f) = ∅ define P (w) = 1 if w ∈ π(L−Δ
f ) and P (w) = 0

otherwise. If P does not exist, we must have w = π(w1) = π(w2) with w1 ∈ L−Δ
f

and w2 ∈ Lω
¬f . In this case w ∈ π(L−Δ

f ) ∩ π(Lω
¬f ) which is a contradiction. ��

From Lemma 1 we can prove the following Proposition and Theorem:

Proposition 1. if Δ ≤ Δ′ and A is Δ′-predictable, then A is Δ-predictable.

Proof. L−Δ
f ⊆ L−Δ′

f and thus π(L−Δ
f ) ∩ π(Lω

¬f ) ⊆ π(L−Δ′
f ) ∩ π(Lω

¬f ). ��

Theorem 2. A is predictable iff A is 0-predictable.

In the next section, we focus on the Δ-predictability problem for finite automata
and discuss how it generalizes the previous notion introduced by S. Genc and
S. Lafortune in [5]. Section 5 tackles the Δ-predictability problem for TA.

4 Predictability for Discrete Event Systems

In this section, we address the predictability problems for discrete event systems
specified by FA. We first show that the definition of predictability (Def. 3) we
introduced in Section 3 is equivalent to the original definition of predictability
by S. Genc and S. Lafortune in [5].

4.1 Original Definition of Predictability (S. Genc and S. Lafortune)

Let Lf = Tr(PreFaulty≤0(A)) be the set of non-faulty traces that can be ex-

tended with a fault in one step, and L¬f = Tr(NonFaulty(A)) be the set of
finite prefixes of non-faulty traces. S. Genc and S. Lafortune originally defined
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predictability for discrete event systems in [5] and we refer to GL-predictability
for this definition. GL-predictability is defined as follows4:

∃n ∈ N, ∀w ∈ Lf , ∃t ∈ w such that P(t) (3)

with P(t) defined by:

P(t) : ∀u ∈ L¬f , ∀v ∈ L(A)/u,π(u) = π(t) ∧ |v| ≥ n =⇒ |v|f > 0.

From [5], A is GL-predictable iff Equation (3) is satisfied. GL-predictability as
defined by Equation (3) is equivalent to our notion of predictability:

Theorem 3. A is GL-predictable iff A is 0-predictable.

4.2 Checking k-Predictability

To check whether A is k-predictable, 0 ≤ k ≤ κ(A), we can use the NSC we
established in Lemma 1: A is k-predictable iff π(L−k

f ) ∩ π(Lω
¬f ) = ∅. To check

this condition, it suffices to build a twin plant (similar to [5] and to what is
defined for fault diagnosis [2]). We define two automata A1(k) and A2 that accept
π(L−k

f ) and π(Lω
¬f) and synchronize them to check whether the intersection is

empty. The first automaton A1(k) accepts finite words which are in π(L−k
f ) and

is defined as follows:

1. in A, we compute the set of states Fk that can reach a state where f is
enabled within k steps (this can be done in linear time using a backward
breadth-first search from states where f is enabled.)

2. A1(k) is a copy of A where the set of final states is Fk, and every a �∈ Σo is
replaced by ε.

It follows that A1(k) accepts π(L−k
f ).

The second automaton A2 accepts π(Lω
¬f). To compute it, we merely need to

compute the states from which there is an infinite path without any state where
f is enabled. This can be done in linear time again (e.g., computing the states
that satisfy the CTL formula EG¬en(f).) A2 is defined as follows:

1. let F¬f be the set of states in A from which there exists an infinite path with
no states where f is enabled.

2. A2 is a copy of A restricted to the set of states F¬f , and every a �∈ Σo is
replaced by ε (this implies that the target state of the f transitions cannot
be in A2).

From the previous construction with sets of accepting states Fk for A1(k) and
F¬f for A2 (every state in A2 is accepting), L∗(A1(k)×A2) = π(L−k

f )∩π(Lω
¬f)

and we can check k-predictability in quadratic time in the size of A.

Example 1. For the untimed version of Automaton G (Fig. 1, page 63), we obtain
G1(0) and G2 as depicted on Fig. 2. Recall that d is unobservable.
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l0

l1

l2

a

c

a, b, c

(a) G1(0)

l0

l3

l4

ε

a

b

(b) G2

l0, l0

l0, l3

l1, l4

ε

a

(c) G1(0) ×G2

Fig. 2. Construction of G1 and G2 for automaton G ((Fig. 1)

Computing the largest k such that A is k-predictable can also be done in
quadratic time. In A, we can compute, in linear time, the shortest distance
df (q) (going backwards) from q to a state where f is enabled (it is ∞ if q is
unreachable going backwards in A). In the product A1(k)×A2, if there is a run
from the initial state to (s1, s2) and d(s1) = k′, k′ ≤ k, this implies that A is
not k′-predictable. To determine the largest k such that A is k-predictable, it
suffices to perform the following steps:

1. compute the shortest distance df (q) to an f -enabled state for each q ∈ Q;

2. build the product A1(0)×A2;
3. let S be the set of reachable states in A1(0)×A2 and M = min(s1,s2)∈S df (s1).

The largest k such that A is k-predictable is M − 1.

Example 2. On automaton G of Fig. 1: d(l2) = 0, d(l1) = 1, d(l0) = 2, d(l3) =
d(l4) = ∞. The minimum value reachable in G1(0) ×G2 is obtained for l1 and
is d(l1) = 1. Thus G is 0-predictable.

5 Predictability for Timed Automata

In this section we address the predictability problems for TA. We first rewrite
the NSC of Lemma 1 using infinite languages. This enables us 1) to deal with
time-divergent runs and 2) to design an algorithm to solve the predictability
problems for TA.

5.1 Checking Δ-Predictability

We can reformulate Lemma 1 without the prefix operator by extending L−Δ
f

into an equivalent language of infinite words: let Lω,−Δ
f = L−Δ

f .(Σo × R≥0)ω.

Lemma 2. π(L−Δ
f ) ∩ π(Lω

¬f ) = ∅ ⇐⇒ π(Lω,−Δ
f ) ∩ π(Lω

¬f ) = ∅.

4 Technically S. Genc and S. Lafortune let w range over Lf .f and impose that |t|f = 0;
the definition we give in Equation (3) is equivalent to Definition 1 of [5].
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To check Δ-predictability we build a product of timed automata A1(Δ) × A2,
and reduce the problem to Büchi emptiness on this product. This construction
is along the lines of the twin plant introduced in [2,9]. The difference in the
predictability problem lies in the construction of A1(Δ) which is detailed later.
The twin plant idea is the following:

– A1(Δ) accepts π(Lω,−Δ
f ) i.e., (projections of) infinite timed words of the

form w.(R≥0 ×Σo)ω with w ∈ L−Δ
f ;

– A2 accepts π(Lω
¬f) i.e., (projections of) infinite non-faulty timed words in

Lω
¬f ;

– the product A1(Δ)×A2 accepts the language π(Lω,−Δ
f ) ∩ π(Lω

¬f );
– thus checking Δ-predictability of A reduces to Büchi emptiness checking on

the product A1(Δ)×A2.

A1(Δ) itself is made of two copies of A: the original A and a twin copy (see
Fig. 3). A1 starts in the initial location of A, �0, and at some point in time
switches to the twin copy (grey area on Fig. 3). The purpose of the twin copy is
to extend the previously formed timed word with a timed word of duration less
than Δ time units that reaches a state where f is enabled. The actions performed
in the copy do not matter as we only have to check that f is reachable within
Δ time units since we switched to the copy. In this case the timed word built in
the original A is in L−Δ

f .

A1(Δ) = (L∪ L̃∪{END}, l10, X∪{y}, Σ∪{ε}, E1, Inv1,∅, {END}) is formally
defined as follows5 (see Fig. 3):

– L̃ = {�̃, � ∈ L} is the set of twin locations;
– l10 = l0; A1(Δ) starts in the same initial state as A.
– Inv1(�) = Inv1(�̃) = Inv(�); invariants are the same as in the original au-

tomaton A including the twin locations;
– the transition relation is defined as follows:

• original transitions of A: (�, g, a′, R, �′) ∈ E1 iff (�, g, a, R, �′) ∈ E and
a ∈ Σo \ {f}; a′ = a if a ∈ Σo and a′ = ε otherwise; this renaming hides
the unobservable events by renaming them in ε.

• transitions to the twin locations: (�,true, ε, {y}, �̃) ∈ E1 for each � ∈ L;
A1 can switch to the twin copy at any time and doing so preserves the
values for the clocks in X but resets y;

• equivalent unobservable transitions inside the twin copy: (�̃, g, ε, R, �̃1) ∈
E1 iff (�, g, a, R, �1) ∈ E for some a �= f ;

• equivalent of f -transitions in the twin copy: (�̃′, g ∧ y ≤ Δ, ε,R,END) ∈
E1 iff (�′, g, f, R, lf) ∈ E.

• loop transitions on observable events in the twin copy: (�̃,true, a,∅, �̃) ∈
E1 for each a ∈ Σo. This enables A2 (defined below) to synchronize with
A1 on Σo after A1 has chosen to switch to the twin copy of A.

5 For now ignore the NZ location in the Figure and the invariants [y ≤ k]. Their sole
purposes is to ensure time-divergence.
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l l1

l̃ l̃1

l′ lf

l̃′ END

[y ≤ 1]
NZ

[y ≤ 0]

X
g1, a1, r1

g1, ε, r1

g2, a2, r2

g2, ε, r2

g, f

g ∧ y ≤ Δ, ε
y := 0

y = 1, ε
y := 0

εΣo Σo Σo

Σo Σo

y := 0 y := 0 y := 0

Fig. 3. Construction of Automaton A1

Finally, A2 is simply of copy of A without the f -transitions and the clocks are
renamed to be local to A2. Every location in A2 is a repeated location. Notice that
the only repeated location in A1(Δ) is END. By definition of the synchronized
product, Lω(A1(Δ)×A2) = Lω(A1(Δ)) ∩ Lω(A2).

Lemma 3. π(Lω,−Δ
f ) ∩ π(Lω

¬f ) = Lω(A1(Δ)×A2).

Theorem 4. Problems 1 and 2 are PSPACE-complete.

Proof. PSPACE-easiness of Problem 1 is established as follows: checking Büchi
emptiness for timed automata is in PSPACE [4]. The product A1(Δ) × A2 has
size polynomial in the size of A and thus checking Büchi emptiness of the product
is in PSPACE as well. Problem 1 is thus in PSPACE. By Theorem 2, Problem 2
is in PSPACE as well. Theorem 1 establishes PSPACE-hardness for Problem 1,
and as it is equivalent to Problem 2, it is PSPACE-hard as well. ��

5.2 Restriction to Time-Divergent Runs of Lω
¬f

To deal with time-divergence and enforce the runs in Lω
¬f to have infinite du-

ration, we can add another automaton in the product with a Büchi condition
that enforces time-divergence (this is how this kind of requirements is usually
addressed). In our setting, we can re-use the fresh clock y of A1(Δ) after loca-
tion END is visited: it is not useful anymore to check whether a timed word is
in L−Δ

f . The modifications to A1(Δ) required to ensure time-divergence in A2

are the following:

– add a new location NZ, which is now the repeated location of A1(Δ);
– add two transitions as depicted on Fig. 3 between END and NZ.

This way infinite timed words accepted by A1(Δ) must be time-divergent and
with the synchronization with A2 this forces the runs of A2 to be time-divergent.

Finally, once we know how to solve Problem 1, we can compute the optimal
(maximum) anticipation delay by performing a binary search on the possible
values of 0 ≤ Δ ≤ κ(A).
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5.3 Implementability of the Δ-Predictor

In the previous sections, we defined a predictor as a mapping from timed words
to {0, 1}. To build an implementation of this mapping (an actual predictor) we
still have some key problems to address: 1) we have to recognize when a timed
word is in L−Δ

f ; and 2) we have to detect that a timed word is in L−Δ
f as soon

as possible. S. Tripakis addressed similar problems in [9] in the context of fault
diagnosis where a diagnoser is given as an algorithm that computes a state
estimate of the system after reading a timed word w. The diagnoser updates
its status after the occurrence of an observable event or after a timeout (TO)
has occurred, which means some timed elapsed since the last update and no
observable event occurred. The value of the timeout period (TO) is required to
be less than the minimum delay between two observable events to ensure that
the diagnoser works as expected. However, point 2) above still poses problem in
our context, as demonstrated by the TA B of Fig. 4.

The set of observable events is {a} and B is 4-predictable. To see this, define
the predictor P as follows: for a timed word w = δ.w′ with δ ≥ 2, P (w) = 1
and otherwise P (w) = 0. Indeed if 2 time units elapse and we see no observable
events, for sure the system is still is l0 and thus a fault f is bound to happen,
but not before 4 time units. An implementation of a 4-predictor has to observe
the state of the system exactly at time 2 otherwise it cannot predict the fault 4
time units in advance.

Now assume the platform on which we

l0

[x ≤ 8]
l1

[x ≤ 1]

6 ≤ x ≤ 8,f

x < 1
ε

x := 0

x = 1; a ;x := 0

a

Fig. 4. The Timed Automaton B

implement the predictor can make an ob-
servation every 3

5 time units. The first ob-
servation of the predictor occurs at time 3

5 ;
the third at 9

5 and we cannot predict the
fault as we still don’t know whether the
system is in l0 or has made a silent move
to l1. The next observation is at 12

5 : if we
have seen no a so far, for sure the system is
in l0 and we can predict the fault. However
the fault may now occur in 18

5 time units
i.e., less than 4 time units from the current

time. Such a platform cannot implement the 4-predictor. The maximal antic-
ipation delay we computed in the previous section is thus an ideal maximum
that can be achieved by an ideal predictor that could monitor the system con-
tinuously. In a realistic system, there is a sampling rate, or at least a minimum
amount of time between two observations [15]. In the sequel we address the sam-
pling predictability problem that takes into account the speed of the platform.

5.4 Sampling Predictability

Let α ∈ Q and L be a timed language. We let L modα be the set of timed words
in L with a duration multiple of α: L mod α = {w ∈ L, ∃k ∈ N,Dur(w) = k ·α}.
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Given a sampling rate α ∈ Q, the sampling predictability problem is defined
by refining the definition of a Δ-predictor: an (α,Δ)-predictor for A is a partial
mapping P : TW ∗(Σo) modα −→ {0, 1} such that:

– ∀w ∈ L−Δ
f modα, P (π(w)) = 1,

– ∀w ∈ Lω
¬f modα, P (π(w)) = 0.

A timed automaton A is (α,Δ)-predictable if there exists a (α,Δ)-predictor for
A and is α-predictable is there is some Δ such that A is (α,Δ)-predictable.

Remark 1. The problem of deciding whether there exists a sampling rate α such
that A is α-predictable is also interesting but very likely to be undecidable as the
existence of a sampling rate s.t. a location is reachable in a TA is undecidable [16].

The solution to the sampling predictability problem is a simple adaptation of
the solution we presented in Section 5: in the construction of automaton A1(Δ)
(Fig. 3, page 73), it suffices to restrict the transitions from the original A to the
twin copy (those resetting y) to happen at time points multiple of α. This can
be achieved by adding a sampler timed automaton, and a common fresh clock,
s, that sampler resets every α time units. The transitions resetting y in A1 are
now guarded by s = 0.

We can now safely define an implementation for an (α,Δ)-predictor along the
lines of the diagnoser defined in [9]. The implementation performs an observation
every α time units. It computes a state estimate of the system. If one of the
states in the state estimate can reach a state where f is enabled within Δ time
units, the predictor predicts f and issue a 1. Otherwise it issues 0. Computing a
representation of the state estimate as a set of polyedra is a standard operation
and can be done given an observed timed word w, and the timed automaton
model A. Checking that one of the states in the estimate can reach an f -enabled
state within Δ time units can also be done using standard reachability algorithm.
It can be performed on-line or off-line by computing a polyedral representation
of this set of states.

6 Conclusion and Future Work

In this paper we have proved some new results for predictability of events’ oc-
currences for timed automata. We also contributed a new and simpler definition
of bounded predictability for finite automata. In [10], P. Bouyer, F. Chevalier
and D. D’Souza proposed an algorithm to decide the existence of a diagnoser
with fixed resources (number of clocks and constants). The very same question
arises for the existence of a predictor in timed systems. Dynamic observers [17]
have been proposed in the context of fault diagnosis and opacity [18]; in [19] it
is shown how to compute a most permissive observer that ensures diagnosability
(or opacity [20]) and also how to compute an optimal observer [21] (w.r.t. to a
given criterion). We can define the same problems for predictability. Given the
similarities between the fault diagnosis and predictability problems, it would be
interesting to state these two problems in a similar and unified way and design
an algorithm that can solve the unified version.
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7. Jéron, T., Marchand, H., Genc, S., Lafortune, S.: Predictability of sequence pat-
terns in discrete event systems. In: IFAC WC, Seoul, Korea, pp. 537–543 (2008)

8. Brandán Briones, L., Madalinski, A.: Bounded predictability for faulty discrete
event systems. In: 30th Int. Conf. of the Chilean Computer Science Society (2011)

9. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–224. Springer, Heidelberg (2002)

10. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer,
Heidelberg (2005)

11. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

12. Cassez, F., Grastien, A.: Predictability of Event Occurrences in Timed Systems.
CoRR/abs arXiv:1306.0662 [cs.SY] (2013), http://arxiv.org/abs/1306.0662

13. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

14. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Formal Methods in System Design 1(4), 385–415 (1992)

15. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

16. Cassez, F., Henzinger, T.A., Raskin, J.-F.: A Comparison of Control Problems for
Timed and Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

17. Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic diagnosers. Fun-
damenta Informaticae 88(4), 497–540 (2008)

18. Cassez, F., Dubreil, J., Marchand, H.: Synthesis of opaque systems with static and
dynamic masks. Formal Methods in System Design 40(1), 88–115 (2012)

19. Cassez, F., Tripakis, S., Altisen, K.: Sensor minimization problems with static or
dynamic observers for fault diagnosis. In: ACSD 2007, pp. 90–99. IEEE Comp.
Soc. (2007)

20. Cassez, F., Dubreil, J., Marchand, H.: Dynamic observers for the synthesis of
opaque systems. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
352–367. Springer, Heidelberg (2009)

21. Cassez, F., Tripakis, S., Altisen, K.: Synthesis of optimal-cost dynamic observers
for fault diagnosis of discrete-event systems. In: TASE 2007, pp. 316–325. IEEE
Comp. Soc. (2007)

http://arxiv.org/abs/1306.0662


Transience Bounds for Distributed Algorithms

Bernadette Charron-Bost1, Matthias Függer2, and Thomas Nowak1
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Abstract. A large variety of distributed systems, like some classical
synchronizers, routers, or schedulers, have been shown to have a periodic
behavior after an initial transient phase (Malka and Rajsbaum, WDAG
1991). In fact, each of these systems satisfies recurrence relations that
turn out to be linear as soon as we consider max-plus or min-plus algebra.
In this paper, we give a new proof that such systems are eventually peri-
odic and a new upper bound on the length of the initial transient phase.
Interestingly, this is the first asymptotically tight bound that is linear in
the system size for various classes of systems. Another significant benefit
of our approach lies in the straightforwardness of arguments: The proof
is based on an easy convolution lemma borrowed from Nachtigall (Math.
Method. Oper. Res. 46) instead of purely graph-theoretic arguments and
involved path reductions found in all previous proofs.

1 Introduction

A large variety of distributed systems, like the network synchronizers in [13], or
the distributed link reversal algorithms [22] which can be used for routing [14],
scheduling [4], distributed queuing [21,2], or resource allocation [7] have been
shown to have a periodic behavior after an initial transient phase. Each of these
systems satisfies a recurrence relation [16] that turns out to be linear as soon as
one considers max-plus or min-plus algebra. Indeed, the fundamental theorem
in these algebras—an analog of the Perron-Frobenius theorem—shows that any
linear system with irreducible system matrix is periodic from some index, called
the transient of the system. For all the above mentioned systems, the study of
the transient plays a key role in characterizing performances: For example, in the
case of link reversal routing, the system transient is equal to the time complexity
of the routing algorithm.

Hartmann and Arguelles [17] have shown that the transients of linear sys-
tems are computable in polynomial time. However, their algorithms provide no
analysis of the transient phase, and do not hint at the parameters that influence
system transients. Conversely, upper bounds involving these parameters help
to predict the duration of the transient phase, and to define strategies to re-
duce transients during system design. From both numerical and methodological
viewpoints, it is therefore important to determine accurate transience bounds.
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The problem of bounding the transients has already been studied [1,5,8,13,17,20].
A polynomial bound has been established by Even and Rajsbaum [13] for a large
class of synchronizers in the specific case of integer delays, and Hartmann and Ar-
guelles [17] have established an upper bound on the transients of general linear sys-
tems. More recently, Charron-Bost et al. [8] have given two new transience bounds,
called the repetitive and the explorative bound, which both improve on the Even
and Rajsbaum’s synchronizer bound, and are incomparable with Hartmann and
Arguelles’ bound. In each of the above mentioned works [13,17,8], the approach
is graph-theoretic in nature: The problem of bounding from above the transient
is reduced to the study of long walks in a specific weighted graph, and the key
technical point is then to design sophisticated walk transformers that do not
modify the weights of some walks. On the contrary, our approach here is more
algebraic in the sense that instead of walk transformers, we use a convolution
lemma borrowed from [18]. Based on simpler and more direct arguments than
the classical one, we thus obtain an easy proof that linear systems are eventually
periodic, and a new upper bound on the length of the initial transient phase
which is in O(N4) for linear systems of dimension N with integer matrices.

Interestingly, the proof simplification does not damage the resulting bound:
Our new transience bound is of the same order as the repetitive and explo-
rative bounds, and so is incomparable with Hartmann and Arguelles’ bound,
and better than Even and Rajsbaum’s bound. Moreover, like the repetitive and
explorative bounds by Charron-Bost et al., it is linear in the size of the system
in various classes of linear systems whereas both Even and Rajsbaum’s bound
and Hartmann and Arguelles’ bounds are both intrinsically at least quadratic.

Finally, we demonstrate how our general transience bound enables the perfor-
mance analysis of a large variety of distributed systems. First, we immediately
derive a general transience bound for a large class of synchronizers, and we quan-
tify how our synchronizer bound is better than that of Even and Rajsbaum [13]
in the specific case of integer delays. From this synchronizer example, we show
that our transience bound is asymptotically tight. Our result also applies to the
analysis of the performance of distributed routers and schedulers based on the
link-reversal algorithms: We obtain an O(N3) transience bound, improving the
O(N4) bound established by Malka and Rajsbaum [16], and an O(N) bound
for such routers and schedulers when running in trees. For link-reversal routers,
eventual periodicity actually corresponds to termination, and an O(N2) bound
on time complexity [6] directly follows from our transience bound.

2 Preliminaries

This section introduces max-plus linear systems, their graph interpretation, and
discusses general properties of eventually periodic sequences.

As observed in [16], the behavior of distributed systems like network synchro-
nizers and distributed link reversal algorithms can be described by a sequence
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(x(n))n�0 of N -dimensional vectors that satisfy a recurrence relation of the
following form:

∀i ∈ [N ], ∀n � 0, xi(n + 1) = max
j∈Ni

(
xj(n) + aij

)
(1)

where the aij ’s are reals, and Ni is a subset of [N ] = {1, . . . , N}. Trivially, a
system of this form corresponds to the recurrence relation

∀i ∈ [N ], ∀n � 0, xi(n + 1) = max
j∈[N ]

(
xj(n) + Aij

)
(2)

with Aij = aij if j in Ni and −∞ otherwise. Recurrence (2) turns out to be
linear system in the max-plus algebra, i.e., when replacing ‘+’ by ‘max’ and ‘×’
by ‘+’, over the set R = R ∪ {−∞}. Let us recall that the max-plus product
of two matrices A and B is defined by (AB)ij = maxk(Aik + Bkj). With this
definition, (2) is equivalent to

∀n � 0, x(n + 1) = Ax(n) . (3)

Given an initial vector v ∈ RN , recurrence (3) admits a unique solution given
by

∀n � 0, x(n) = Anv . (4)

Thus the analysis of distributed systems whose behaviors are controlled by a
recurrence relation of the form (1) leads to study the systems (4).

To every matrix A naturally corresponds a weighted digraph which we denote
by G(A): Its node set is [N ] and there exists an edge from node i to node j with
weight Aij if and only if Aij is finite. Matrix A is irreducible if G(A) is strongly
connected. A walk consists of a sequence of successive edges, as well as a start
and an end node. We denote by �(W ) the length of walk W . A path is a walk
without node repetition. A closed walk is a walk whose start node is equal to its
end node. A cycle is a closed walk in which the only node repetition is the start
and end node. The circumference Γ (G) of graph G is the maximum cycle length
in G.1 We write W(i, j) for the set of walks from node i to node j, and W(i→)
for the set of walks starting from i. Further, Wn(i, j) and Wn(i→) denote the
set of walks in W(i, j) and W(i→) of length n, respectively.

We write p(W ) for the edge weight of walk W , i.e., the sum of the weights of
its edges. Given a vector v, the edge-node weight pv(W ) is equal to p(W ) + vj ,
where j is W ’s end node. These definitions yield a correspondence between the
matrix power An as well as the vector Anv, and the maximum weight of walks
of length n in G(A), namely:

(An)ij = max{p(W ) : W ∈ Wn(i, j)}
(Anv)i = max{pv(W ) : W ∈ Wn(i→)}

(5)

1 The computation of the circumference of a graph is NP-hard in the number of nodes.
However, the circumference is always upper bounded by the number of nodes.
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In the following, we write An
ij instead of (An)ij , as no confusion can arise. A

closed walk is critical if its average edge weight is maximum, i.e., if it is equal
to the rate of A defined by

λ(A) = max {p(C)/�(C) : C is a closed walk in G(A)} , (6)

and simply denoted λ when no confusion can arise. The set of critical closed
walks induces the critical subgraph Gc whose nodes are called critical nodes. It
is well-known (e.g., see [15]) that every closed walk in Gc is necessarily critical.

Let p be a strictly positive integer and " a real number. A sequence f : N→ R

is eventually periodic with period p and ratio " if there exists an integer T such
that:

∀n � T : f(n + p) = f(n) + p · " (7)

Obviously if q is any multiple of p, then f is eventually periodic with period q and
ratio ". Hence, there always exists a common period of two eventually periodic
sequences.

For every period p, there exists a unique minimal transient Tp that satisfies
Equation (7). The next lemma shows that these minimal transients do, in fact,
not depend on p. We will henceforth call this common value the transient of f .
Due to limitation of space, its proof is postponed to the appendix.

Lemma 1. Let f : N → R be eventually periodic. Let p and q be two periods
of f with respective minimal transients Tp and Tq. Then Tp = Tq.

The next two elementary lemmas both play an important role in our approach:
They state transience bounds for a sequence obtained by the element-wise com-
position of two eventually periodic sequences f and g with common ratio in
terms of the transients of f and g.

Lemma 2. Let f, g : N→ R be eventually periodic with common ratio " and re-
spective transients Tf and Tg. Then the sequence max{f, g} is eventually periodic
with ratio " and transient at most max{Tf , Tg}.

In analogy to classical convolution, one defines the max-plus convolution f ⊗ g
of two sequences f and g as

(f ⊗ g)(n) = max
n1+n2=n

(
f(n1) + g(n2)

)
. (8)

Nachtigall [18] then proved a bound on the transient of the max-plus convolution
of two eventually periodic sequences f and g with the same ratio.

Lemma 3 ([18, Lemma 6.1]). Let f, g : N → R be eventually periodic with
common ratio " and respective transients Tf and Tg. Then the convolution f ⊗ g
is eventually periodic with ratio " and transient at most equal to Tf +Tg + p− 1
if p denotes a common period to f and g.

The notion of eventual periodicity naturally extends to vectors: a sequence of
vectors (x(n))n�0 is eventually periodic with period p and ratio " if each sequence
(xi(n))n�0 is eventually periodic with period p and ratio ". Its transient is the
maximum transient of the (xi(n))n�0’s.
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3 Transience Bound

The fundamental theorem in max-plus algebra [11] shows that any linear system
as defined in (4) is eventually periodic with ratio equal to the rate λ of A if A is
irreducible. In this section, we establish an effective upper bound on the transient
of these systems. In this way, we also give an alternative proof of the fundamental
theorem that is simpler and more direct than the classical one.

3.1 Proof Strategy

By definition of the max-plus matrix product, the i-th component of x(n) is
equal to

xi(n) = max
j∈[N ]

(
An

ij + vj

)
.

In view of Lemma 2, our strategy will thus consist in showing that each sequence
(An

ij +vj)n�0 is eventually periodic. In the case either i or j is a critical node, the
question is solved by Nachtigall [18, Lemma 3.2] and Even and Rajsbaum [13,
Theorem 6]: they independently showed that in this case, the sequence (An

ij)n�0

is eventually periodic, and gave effective upper bounds on the transients. For
simplicity, every sequence (An

ij)n�0 will be denoted by Aij in the following.

Lemma 4. Let A be an irreducible N × N matrix, and λ the rate of A. If k
is a node of a critical cycle C of length �, then both sequences Aik and Aki are
eventually periodic with period �, ratio λ, and transient at most � · (N − 1).

In the appendix, we give a proof of this lemma that essentially follows the one
by Nachtigall [18].

In the general case where neither i nor j is critical, we observe that for any
pair of nonnegative integers (n1, n2) such that n = n1 + n2, we have

An
ij = max

k∈[N ]

(
An1

ik + An2

kj

)
.

It trivially follows that

An
ij = max

n1+n2=n

(
max
k∈[N ]

(
An1

ik + An2

kj

))
= max

k∈[N ]

(
max

n1+n2=n

(
An1

ik + An2

kj

))
,

and so
An

ij = max
k∈[N ]

(
(Aik ⊗Akj)(n)

)
.

So we can write

xi(n) = max
j∈[N ]

max
k∈[N ]

(
(Aik ⊗Akj)(n) + vj

)
. (9)

If k is a critical node which lies on a critical cycle of length �k, then Lemmas 3
and 4 imply that each sequence Aik⊗Akj is eventually periodic, with period �k,
ratio λ, and a transient that is bounded from above by 2�k · (N − 1) + �k − 1.
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Thus, if we could show that the range of the second maximum in Equation (9)
can be restricted to the critical nodes, i.e.,

xi(n) = max
j∈[N ]

max
k∈Gc

(
(Aik ⊗Akj)(n) + vj

)
, (10)

we would readily obtain a bound on the transience of the sequence xi from
Lemma 2. We will, indeed, show in Section 3.2 that Equation (10) holds for n
at least equal to some integer nc. An effective upper bound on nc finally allows
us to conclude with a bound on the transience of xi.

The following lemma provides a condition ensuring that Equation (10) holds.

Lemma 5. If there exists a walk of maximum pv-weight in Wn(i→) that con-
tains a critical node, then

xi(n) = max
j∈[N ]

max
k∈Gc

(
(Aik ⊗Akj)(n) + vj

)
.

Proof. From (9), we trivially derive that

xi(n) � max
j∈[N ]

max
k∈Gc

(
(Aik ⊗Akj)(n) + vj

)
.

Conversely, let W be a walk of maximum pv-weight in Wn(i→) that contains
a critical node k0, and let j0 be the end node of W . By (5), we have xi(n) =
p(W ) + vj0 . Let us decompose W into W = W1 ·W2 such that W1 ends at k0.
Setting �1 = �(W2) and �2 = �(W2), we get

xi(n) = p(W1) + p(W2) + vj0 � A�1
ik0

+ A�2
k0j0

+ vj0 .

Therefore,

xi(n) � max
n1+n2=n

(
An1

ik0
+ An2

k0j0
+ vj0

)
= (Aik0 ⊗Ak0j0)(n) + vj0 .

It follows that

xi(n) � max
j∈[N ]

max
k∈Gc

(
(Aik ⊗Akj)(n) + vj

)
,

which concludes the proof.

3.2 Critical Bound

We next show that there always exists an integer nc such that the condition in
Lemma 5 holds for all n � nc, and we give an effective upper bound Bc on nc

which we call the critical bound. For that, we compare a maximum pv-weight
walk Ŵ in Wn(i→) that does not visit a critical node with a walk W constructed
from Ŵ such that it “pumps” its weight in a critical cycle as often as possible,
but still has the same length n as Ŵ . Since Ŵ may not use critical cycles, it will,
when compared to W , on average lose weight in each of its cycles. We arrive at
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a bound Bc, such that, if Ŵ has length n � Bc then Ŵ has weight less than W
and thus cannot be a maximum pv-weight walk in Wn(i→).

Let ‖v‖ = maxi∈[N ](vi) −mini∈[N ](vi). Denote by δ the minimal finite entry
of A and by Δnc the maximum Aij where both i and j are non-critical nodes.
Further let

λnc = max {p(C)/�(C) : C is a closed walk with no critical node in G(A)} .

Lemma 6 (Critical Bound). For all i ∈ [N ] and n � 0, each walk with
maximum pv-weight in Wn(i→) contains a critical node if

n � Bc = max

{
N ,

‖v‖+ (Δnc − δ) (N − 1)

λ− λnc

}
.

Proof. We first reduce the case of a graph G with arbitrary λ to the case where
λ = 0: Let G0 be the graph constructed from G by subtracting λ from all of G’s
edge weights. Clearly then G0 has λ = 0 and the (unweighted) critical subgraphs
of G and G0 are the same. Further W is a walk with maximum pv-weight in G if
and only if it is a walk with maximum pv-weight in G0. The graph parameters δ,
Δnc, and λnc of G0 are obtained by subtracting G’s λ from the respective graph
parameters of G. The lemma’s bound Bc thus is the same for graphs G and G0,
and we may safely assume that λ = 0.

If λnc = −∞, then every nonempty cycle contains a critical node. Because
every walk of length greater or equal to N necessarily contains a cycle as a
subwalk and because Bc � N , in particular every walk with maximum pv-weight
in Wn(i→) contains a critical node if n � Bc and λnc = −∞.

We now consider the case λnc �= −∞. We proceed by contradiction: Suppose
that there exists an integer n such that n � Bc, a node i and a walk of maximum
pv-weight in Wn(i→) with non-critical nodes only; let Ŵ be such a walk. Let W0

be the acyclic part of Ŵ , defined in the following manner: Starting at Ŵ , we
repeatedly remove nonempty subcycles from the walk until we arrive at a path.
In general there are several possible choices of which subcycles to remove, but
we fix some global choice function to make the construction of W0 deterministic.

Next choose a critical node k, and then a prefix Wc of W0, such that the
distance between k and the end node of Wc is minimal. Let W2 be a path of
minimal length from the end node of Wc to k. Let W3 be the walk such that
W0 = Wc ·W3. Further let C be a critical cycle starting at k.

We distinguish two cases for n, namely (a) n � �(Wc) + �(W2), and (b)
n < �(Wc) + �(W2).

Case A: Let m ∈ N be the quotient in the Euclidean division of n− �(Wc)−
�(W2) by �(C), and choose W1 to be a prefix of C of length n−

(
�(Wc)+�(W2)+

m · �(C)
)

(see Figure 1). Clearly W1 starts at k. If we set W = Wc ·W2 ·Cm ·W1,
we get �(W ) = n and

pv(W ) � min
1�j�N

(vj) + p(Wc) + p(W2) + p(W1) (11)

since we assume λ = 0.
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Fig. 1. Walk W in proof of Lemma 6

For the pv-weight of Ŵ , we have

pv(Ŵ ) � pv(W0) + λnc·
(
�(Ŵ )− �(W0)

)
� max

1�j�N
(vj) + p(W0) + λnc·

(
�(Ŵ )− �(W0)

) (12)

By assumption pv(Ŵ ) � pv(W ), and from (11), (12), and λnc < 0 we therefore
obtain

�(Ŵ ) � ‖v‖+ p(W3)− p(W1)− p(W2)

−λnc
+ �(W0)

� ‖v‖+ Δnc �(W3)− δ (�(W1) + �(W2))

−λnc
+ �(W0)

(13)

Denote by Nnc the number of non-critical nodes. The following three inequalities
trivially hold: �(W3) � Nnc−1, λnc � δ, and �(W1) < N−Nnc. Since there is at
least one critical node, we have �(W3) < N − 1. Moreover from the minimality
constraint for the length of W2 follows that �(W2) + �(W0) � Nnc. Thereby

�(Ŵ ) <
‖v‖+ (Δnc − δ) (N − 1)

−λnc
, (14)

a contradiction to n � Bc. The lemma follows for case A.

Case B: In this case �(Wc) � n < �(Wc) + �(W2), and we set W = Wc ·W ′
2,

where W ′
2 is a prefix of W2, such that �(W ) = n. Hence,

pv(W ) � min
1�j�N

(vj) + p(Wc) + p(W ′
2) . (15)

We again obtain (12). By assumption pv(Ŵ ) � pv(W ), and by similar arguments
as in case A we derive

�(Ŵ ) � ‖v‖+ p(W3)− p(W ′
2)

−λnc
+ �(W0)
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and since W ′
2 is a prefix of W2 with �(W ′

2) < �(W2),

�(Ŵ ) <
‖v‖+ Δnc �(W3)− δ �(W2)

−λnc
+ �(W0) ,

which is less or equal to the bound obtained in (13) of case A. By similar argu-
ments as in case A, the lemma follows in case B.

3.3 Transience Bound

By combination of the above lemmas, we finally obtain the following transience
bound.

Theorem 1. Let A be an irreducible N×N matrix and let v be a vector in RN .
Then the sequence of vectors x(n) = Anv is eventually periodic with ratio λ, and
its transient is at most

max

{
‖v‖+ (Δnc − δ) (N − 1)

λ− λnc
, Γc · (2N − 1)− 1

}
,

where Γc is the circumference of the critical graph Gc.

Proof. From Lemmas 5 and 6, we know that each i-th component of x(n) equals

xi(n) = max
j∈[N ]

max
k∈Gc

(
(Aik ⊗Akj)(n) + vj

)
when n � Bc. For each critical node k, let �k denote the length of a critical cycle
containing k. By Lemmas 1 and 4, we obtain that all sequences Aik and Akj

are eventually periodic, with period �k, ratio λ, and a transient less or equal
to Γc · (N − 1) because �k � Γc. Lemma 3 shows that the sequence

(
(Aik ⊗

Akj)(n) + vj
)
n�0

is eventually periodic, with ratio λ, and a transient less or

equal to 2Γc · (N − 1) + Γc − 1. By Lemma 2, the same property holds for the
sequence

(
maxj∈[N ] maxk∈Gc((Aik ⊗ Akj)(n) + vj

)
n�0

. This proves that each

sequence xi is eventually periodic, with ratio λ, and a transient at most equal
to

max
{
Bc , Γc · (2N − 1)− 1

}
. (16)

This concludes the proof.

In the case each finite A’s entry is an integer, the term λ − λnc cannot become
arbitrarily small: If Nnc denotes the number of non-critical nodes, then

1

λ− λnc
� (N −Nnc) ·Nnc �

N2

4
. (17)

From that, we immediately derive that our critical bound, and so our transient
bound for linear systems with integer matrices is in O(N3).
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3.4 Comparison with Previous Bounds

Hartmann and Arguelles [17] stated the following bound on the transient of the
linear system:

BHA = max

{
‖v‖+ N · (Δ− δ)

λ− λ0
, 2N2

}
(18)

Here, λ0 is a parameter of the max-balanced reweighted graph [19] of G and Δ
is the maximum edge weight in G.

The first term in (18) corresponds to our critical bound, but is incomparable
with it in general. The second term in (18), namely 2N2, is always greater than
the second term in the maximum in our bound, Γc · (2N − 1)− 1, because of the
trivial estimate Γc � N . As demonstrated in the next section, a major difference
to our bound is that (18) is inherently quadratic in N and hence prohibits a
subquadratic analysis of the transient.

Charron-Bost et al. [8] gave two transience bounds for linear systems—the
repetitive and the explorative bound—which both allow for a subquadratic anal-
ysis of the transient. The repetitive bound is equal to max{Bc , ĝ · (2N − 1)− 1}
where ĝ is the maximum girth of strongly connected components of the critical
graph Gc. It is always smaller than our bound in Theorem 1 because ĝ � Γc.
The explorative bound is equal to max{Bc , γ̂ · (2N − 1) − 1 + êp} where γ̂ is
the maximum cyclicity and êp the maximum exploration penalty of strongly con-
nected components of the critical graph Gc. The exploration penalty of a graph
is the transient of the sequence of matrix powers of its unweighted adjacency
matrix. The explorative bound is, in general, incomparable with our bound in
Theorem 1.

4 Applications

As stated in the Introduction, various distributed algorithms correspond to linear
max-plus systems. In this section, we explain how our transience bound imme-
diately applies to such distributed algorithms, and allows us to analyze their
performances.

4.1 Synchronizers

Even and Rajsbaum [13] presented a transience bound for a type of network
synchronizers in a system with constant integer communication delays. They
considered a variant of the α-synchronizer [3] in a centrally clocked distributed
system of N processes that communicate by message passing over a strongly
connected network graph G. Each link has constant transmission delay, specified
in terms of central clock ticks. Processes execute the α-synchronizer after an
initial boot-up phase: After receiving round n messages from all its neighbors, a
process proceeds to round n+ 1 and broadcasts its round n+ 1 message. Denote



Transience Bounds for Distributed Algorithms 87

C Ĉ
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by t(n) the vector such that ti(n) is the clock tick at which process i broadcasts
its round n message. Even and Rajsbaum showed, by a subtle graph-theoretic
approach, that the synchronizer becomes periodic by time BER = l0 +N + 2N2,
where l0 is always greater or equal to our critical bound Bc.

One can easily establish that t is in fact a linear max-plus system: t(n + 1) =
At(n) where A is the adjacency matrix of the network delay graph. Our bounds
hence directly apply and we obtain a bound on the transient of (t(n))n�0 strictly
better than BER.

As an example, let us consider the graph family H�,c, � � 2 and c � 1,
introduced by Even and Rajsbaum [13] to study the asymptotic behavior of BER:
Let Ĉ and C be cycles of length � and � + 1 respectively, with edge weights 3c,
except for one link per cycle with weight 3c + 1. There exists for both Ĉ and C
a path of length � to a distinct node s, and an antiparallel path back. Hereby
the edges in the path from s to C and from s to Ĉ have weight c, the edges in
the path from C to s have weight 3c, and from Ĉ to s, 4c. As an example, H3,2

is depicted in Figure 2.
Observing that the nodes of Ĉ are the critical nodes, Δ = 4c, δ = c, N = 4�,

λ = 3c + 1/�, and l0 = 112c�3 − 16�3 − 12c�2 + 4� − 1, Even and Rajsbaum’s
bound is

(112c− 16)�3 + (32− 12c)�2 + 8�− 1 .

For Δnc = Δ and λnc = 3c + 1/(� + 1), we obtain for the critical bound Bc =
3c�(�+1)(N−1)+1 = 12c�3+9c�2−3c�+1. Since the circumference of the critical
subgraph is Γc = �, we may bound the transient of (t(n))n�0 with Theorem 1
by

max{Bc, 2�N − �− 1} = max{Bc, 8�
2 − �− 1} = 12c�3 + 9c�2 − 3c� + 1 .

Since Even and Rajsbaum have shown that the transient for the graph family
H�,c, � � 2, is in Ω(�3) = Ω(N3), this proves that our transience bound in O(N3)
for integer matrices is asymptotically tight.

4.2 Full Reversal Routing and Scheduling

Link reversal is a versatile algorithm design paradigm, which was, in particular,
successfully applied to routing [14] and scheduling [4]. Charron-Bost et al. [10]
showed that the analysis of a general class of link reversal algorithms can be re-
duced to the analysis of Full Reversal, a particularly simple algorithm on directed
graphs.
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The Full Reversal algorithm comprises a single rule: Each sink reverses all its
(incoming) edges. Given a weakly connected initial graph G0 without antiparallel
edges, we consider a greedy execution of Full Reversal as a sequence (Gt)t�0 of
graphs, where Gt+1 is obtained from Gt by reversing the edges of all sinks in Gt.
As no two sinks in Gt can be adjacent, Gt+1 is well-defined. For each t � 0 we
define the work vector W (t) by setting Wi(t) to the number of reversals of node i
until iteration t, i.e., the number of times node i is a sink in the execution prefix
G0, . . . , Gt−1.

Charron-Bost et al. [9, Corollary 2] have shown that the sequence of work
vectors can be described as a max-plus linear system. More precisely, we have
W (0) = 0 and −W (t + 1) = (−A) · (−W (t)), where Ai,j = 1 and Aj,i = 0 if
(i, j) is an edge of G0; otherwise Ai,j = +∞. Observe that −A is a matrix with
integer weights, Δnc ∈ {0,−1} and δ = −1. Our results, in particular, imply the
eventual periodicity of the Full Reversal algorithm.

Full Reversal Routing. In the routing case, the initial graph G0 contains a
nonempty set of destination nodes, which are characterized by having a self-loop.
The initial graph without these self-loops is required to be weakly connected and
acyclic [9,14]. It was shown that for such initial graphs, the execution terminates
(eventually all Gt are equal), and after termination, the graph is destination-
oriented, i.e., every node has a walk to some destination node. We now show
how the previously known results that the termination time of Full Reversal
routing is quadratic in general [6] and linear in trees [9] directly follows from
Theorem 1.

The set of critical nodes is equal to the set of destination nodes and each
strongly critical component of Gc consists of a single node. Hence λ = 0 and
λnc � −1/Nnc � −1/(N − 1), i.e., (N − 1)2 is an upper bound on the critical
bound. Since Γc = 1, we obtain from Theorem 1 that the termination time is at
most (N − 1)2, which improves the asymptotic quadratic bound given by Busch
and Tirthapura [6].

If the undirected support of initial graph G0 without the self-loops at the
destination nodes is a tree, we can use our transience bound to give a new proof
that the termination time of Full Reversal routing is linear in N [9, Corollary 5].
Indeed, in that particular case either λnc = −1/2 or λnc = −∞, which both give
a critical bound at most equal to 2(N−1). From Theorem 1 we obtain the linear
transience bound of 2(N − 1), whereas Hartmann and Arguelles’ bound is 2N2.

Full Reversal Scheduling. When using the Full Reversal algorithm for schedul-
ing, the undirected support of the weakly connected initial graph G0 is inter-
preted as a conflict graph: nodes model processes and an edge between two
processes signifies the existence of a shared resource whose access is mutually
exclusive. The direction of an edge signifies which process is allowed to use the
resource next. A process waits until it is allowed to use all its resources—that
is, it waits until it is a sink—and then performs a step, that is, reverses all edges
to release its resources. To guarantee liveness, the initial graph G0 is required to
be acyclic.
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Contrary to the routing case, critical components have at least two nodes, be-
cause there are no self-loops. By using (17), our critical bound is upper-bounded
by N2(N − 1)/4+1, which shows that the transient for Full Reversal scheduling
is at most cubic in the number N of processes. Malka and Rajsbaum [16, Theo-
rem 6.4] proved by reduction to Timed Marked Graphs that the transient is at
most in the order of O(N4). Thus, our bound allows to improve this asymptotic
result by an order of N .

In the case of Full Reversal scheduling on trees we even obtain a linear bound
in N : In this case it holds that λ = −1/2, λnc = −∞, and so our critical
bound is 1. Further, Gc = G and Γc = 2. Theorem 1 thus implies a linear upper
bound on the transient of Full Reversal scheduling on trees of 4N − 3, which
establishes a new result for these distributed schedulers. By contrast, Hartmann
and Arguelles again can only obtain the quadratic bound of 2N2.
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Report 191 (1983)

12. Dubois, D., Stecke, K.E.: Dynamic Analysis of Repetitive Decision-Free Discrete
Event Processes: The Algebra of Timed Marked Graphs and Algorithmic Issues.
Ann. Oper. Res. 26, 151–193 (1990)

13. Even, S., Rajsbaum, S.: The Use of a Synchronizer Yields Maximum Computation
Rate in Distributed Systems. Theor. Comput. Syst. 30, 447–474 (1997)



90 B. Charron-Bost, M. Függer, and T. Nowak
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Abstract. The time progress assumption is at the core of the semantics
of real-time formalisms. It is also the major obstacle to the development
of partial-order techniques for real-time distributed systems since the
events are ordered both by causality and by their occurrence in time.
Anyway, extended free choice safe time Petri nets (TPNs) were already
identified as a class where partial order semantics behaves well. We show
that, for this class, the time progress assumption can even be dropped
(time may go back in case of concurrency), which establishes a nice
relation between partial-order semantics and time progress assumption.

1 Introduction

Time Petri nets [10] are now a well established model to describe dynamic sys-
tems present in many areas. They are restricted to control aspects, but have
the following interesting features: – it is a hybrid model mixing discrete state
changes with the inclusion of continuous timed constraints; – it makes explicit
the causal dependency relationships between state transitions; – it defines exclu-
sive choices (conflicts) between transitions and by complementation, transitions
that can be executed independently (in concurrency).

The standard semantics of time Petri nets is sequential and defines timed
words formed by a succession of discrete transitions interspersed with timed
transitions representing the passage of time. The consequence is that time pro-
gresses throughout the execution of the sequence.

However, in a sequence of transitions, it is possible that transitions are in
concurrency (we say they are “concurrent”). The result in general (modulo the
satisfaction of time constraints) is that the ordering of these transitions is ar-
bitrary and that the reverse order is also possible. This observation led to the
definition of a concurrent semantics for Petri nets in which the behaviors are
defined by partial orders (processes in the jargon of Petri nets). This new se-
mantics is mapped with the sequential semantics by considering the total orders
compatible with the partial order (the “interleavings”).

In this concurrent semantics, however, the time continues to evolve sequen-
tially in a monotonic way. But regarding concurrent transitions, this can be
disputable. From the point of view of modeling, concurrent transitions can be
executed in parallel, even on remote computers distributed over a communica-
tion network. In such an execution environment, it is not necessary to consider
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that an exact global clock is shared by the entire system. It is even realistic to
consider that there is no shared clock in such a system and that time constraints
must only be considered for transitions that are causally related. The original
idea developed in this paper is to question the existence of a global clock. We
keep of course the property that the execution of causally related transitions is
totally ordered in time, but this constraint is released for execution of concurrent
transitions. One way to do this is to ask what would happen if we allowed
the time to go back in the firing of a concurrent transition?

We want that such “back in time” semantics preserves nevertheless the concur-
rent semantics. We show in this paper that it is possible in the case of extended
free choice time Petri nets.

To do this, we begin by expressing the standard semantics by equipping tokens
with their date of birth. In this new formulation, the constraint of time progres-
sion is made explicit. The elimination of this constraint defines a back in time
semantics. We first show that it produces executions that are correct with respect
to the standard semantics (Theorem 1). But the semantics does not exploit all
the possibilities offered by the non-temporal sequencing of the execution of con-
current transitions. We thus develop the notion of completeness to suggest that
the semantics must produce all linear extensions of timed processes. We propose
a new back in time semantics, which is both correct and complete (Theorem 3).

Related Work. There are several variants of semantics for time Petri Nets, ac-
cording the fact that the time constraints are placed on transitions or places (see
the survey [5]). They are not always comparable. An important point, however,
is to take into account or not the notion of urgency. The absence of urgency (the
“weak”-semantics [12]) substantially alters the theoretical power of the model as
well as its ability to model temporal phenomena. All these variants did not have
the audacity to question the linear flow of time, which could go back in time
in some cases. The closest idea to be compared is that expressed by P. Niebert
[11] in a model-checking method for timed automata. In his approach, time is
seen as a ordinary symbolic variable that may regress in some transitions at the
Time Transition System level associated with the model. The goal is to have a
more compact representation of the state space.

Time and causality does not necessarily blend well in a non deterministic
model such as Petri nets. The reason is that the mixture of conflict and urgency
breaks the locality of the standard firing rule of transitions. This is the main
difficulty that had to be overcome in recent years to finally define the notion of
unfolding of time Petri nets [7]. It is therefore understandable why the subclass of
extended free-choice Petri nets is often used when applied to timed and stochastic
model [2] net. In this class, in fact, we just have to look at the considered
transition and transitions in conflict with it to decide its firing: decision appears
to be local, while in the general case one must consider all firable transitions
(those in conflict, but also those concurrent). It is therefore natural to use it
when authorizing time to go back for concurrent transitions.

The rest of the paper is organized as follows. We first recall the standard
semantics of time Petri nets with a special emphasis on the extended free-choice
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• p1 • p2

p3 p4

a [0,∞) b [0, 5] c [3, 4]

d [2, 4]

Fig. 1. An extended free choice safe time Petri net

subclass. Then we propose an alternative semantics based on tokens, which we
prove to be equivalent. In section 4, we present the partial order semantics
(definition of processes). Section 5 presents two new (back in time) semantics.
The first is proved to be correct (consistent with the processes). The second is
proved to be correct and complete (defines all the linearizations of the processes).
We end with a discussion and perspectives for the general case.

2 Time Petri Nets

2.1 Definition

Definition 1 (Time Petri Net (TPN) [10]). A time Petri net is a tuple
(P, T, pre, post , efd , lfd ,M0) where P and T are finite sets of places and transi-
tions respectively, pre and post map each transition t ∈ T to its (nonempty)

preset denoted •t
def
= pre(t) ⊆ P and its (possibly empty) postset denoted

t•
def
= post(t) ⊆ P ; efd : T −→ Q and lfd : T −→ Q ∪ {∞} associate the

earliest firing delay efd(t) and latest firing delay lfd(t) with each transition t;
M0 ⊆ P is the initial marking.

A time Petri net is represented as a graph with two types of nodes: places
(circles) and transitions (rectangles). The interval [efd(t), lfd (t)] is written near
each transition (see Figure 1).

2.2 Standard Clocks-on-Transitions Semantics

State. A state of a time Petri net is given by a triple (M, ν, θ), where

– M ⊆ P is a marking (ususally reprensented graphically by tokens in the

places), from which we define the set of enabled transitions En(M)
def
= {t ∈

T | •t ∈M};
– ν : En(M) → R assigns a clock value to every enabled transition;
– θ ∈ R is the current time. It is not required for defining the semantics, but we

use it here for convenience and to ease the comparison with the alternative
semantics that we give later.
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A time Petri net starts in an initial state (M0, ν0, 0), which is given by the initial

marking M0. Initially, all the clocks are reset: for every t ∈ En(M0), ν0(t)
def
= 0.

From state (M, ν, θ), two types of actions are possible:

Time Delay. The TPN can wait until time θ′ and reach state (M, ν′, θ′) with

ν′(t)
def
= ν(t) + (θ′ − θ) for every t ∈ En(M), provided

– time progresses: θ′ ≥ θ; and
– no enabled transition overtakes its maximum delay:
∀t ∈ En(M) ν′(t) ≤ lfd(t).

The time delay is written (M, ν, θ)
θ′
−→ (M, ν′, θ′).

Discrete Action. Transition t can fire from state (M, ν, θ), if:

– t is enabled: t ∈ En(M);
– t has reached its minimum firing delay: ν(t) ≥ efd(t);

Firing transition t from state (M, ν, θ) leads to state (M ′, ν′, θ), with M ′ def
=

(M \ •t) ∪ t• and ν′(t)
def
= ν(t) if t ∈ En(M \ •t) and ν′(t)

def
= 0 if t ∈ En(M ′) \

En(M \ •t) (t is called “newly enabled”). We write (M, ν, θ)
t−→ (M ′, ν′, θ).

Timed Words. When representing an execution, we often forget the informa-
tion about the intermediate states and delays, and remember only the sequence
((t1, θ1), . . . , (tn, θn)) of transitions with their firing dates. This representation
is called a timed word. The empty timed word is denoted ε.

2.3 Assumptions

Boundedness. All the TPNs we consider in this article are 1-bounded, or safe,
i.e. in every reachable state (M, ν, θ), if a transition t can fire from (M, ν, θ),
then t• ∩ (M \ •t) = ∅. Hence there is never more than one token in a place.
This assumption is generally done in TPNs. Considering several tokens in places
requires to define complex service policies [4].

Moreover, for technical simplicity, we require that even the untimed support
is safe, i.e. the TPN remains safe if one replaces all the earliest firing delays by
0 and all the latest firing delays by ∞.

Time Divergence. Finally we assume that time diverges: in every infinite
timed word accepted by the TPN, time diverges to infinity. This assumption is
very usual and comes from the intuition that no physical system can execute
infinitely many action in finite time.

2.4 Extended Free Choice Time Petri Nets

In this article we will focus on a common class of TPNs which have many in-
teresting properties, among which some concerning partial-order semantics and
time.
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Two transitions t and t′ are in conflict if they share an input place. An
extended free choice Petri net is a Petri net where every two transitions in
conflict, have exactly the same input places.

Definition 2 (extended free choice [3,8]). An extended free choice (time)
Petri net is a (time) Petri net such that:

∀t, t′ ∈ T •t ∩ •t′ �= ∅ =⇒ •t = •t′ .

It is technically convenient to focus on normalized extended free choice TPNs,
where every two transitions in conflict have the same latest firing delay.

Definition 3 (Normalization of an Extended Free Choice TPN). Given
an extended free choice TPN N = (P, T, pre, post , efd , lfd ,M0), for every transi-

tion t we define lfd ′(t)
def
= min({lfd(t′) | t′ ∈ T ∧ •t ∩ •t′ �= ∅}). Then we define

the set T ′ ⊆ T of transitions satisfying efd (t) ≤ lfd ′(t). The normalization of N

is the TPN N ′ def
= (P, T ′, pre |T ′ , post |T ′ , efd |T ′ , lfd ′

|T ′ ,M0).

For the TPN of Figure 1, normalization lowers lfd(b) from 5 to 4 because tran-
sition d which is in conflict with b, has a smaller latest firing delay than b.

Lemma 1. The semantics of extended free choice safe TPNs is unchanged by
normalization: the original TPN and its normalized have the same set of states,
and the possible delays and discrete actions are the same (they induce exactly
the same timed transition system).

Proof. Replacing lfd(t) by lfd ′(t) does not change the behaviour: in an extended
free choice TPN, the transitions in conflict with t are enabled at the same time
as t. So one of them has to fire before the minimum of their latest firing delays
expires. This firing disables the others.

Finally it is obvious that transitions having efd(t) > lfd ′(t) can never fire. ��

3 Clocks-on-Tokens Semantics

In the previous section we have defined the semantics of TPNs in the usual way.
But our work is based on another way to express it, where the clocks are assigned
to the tokens instead of the enabled transitions. This semantics is equivalent to
the previous one (at least in the case of safe Petri nets) in the sense that both
semantics are timed bisimilar.

State. A state of a time Petri net is now given by a triple (M, dob, θ), where
M ⊆ P is the marking, θ ∈ R is the current time and dob : M −→ R associates
a date of birth dob(p) ∈ R with each token (marked place) p ∈M .

The marking and the current time play exactly the same role as in the clocks-
on-transitions semantics, and the set of enabled transitions is defined the same
way. But for every transition t enabled in a state (M, dob, θ), we define its date
of enabling doe(t) as the date of birth of the youngest token in its input places:

doe(t)
def
= max

p∈•t
dob(p) .
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The initial state is now (M0, dob0, 0) and initially, all the tokens carry the date

0 as date of birth: for all p ∈M0, dob0(p)
def
= 0.

Time Delay. The TPN can wait until time θ′ provided

– time progresses: θ′ ≥ θ;
– no enabled transition overtakes its maximum delay:
∀t ∈ En(M) θ′ ≤ doe(t) + lfd(t).

The reached state is simply (M, dob, θ′), and we write (M, dob, θ)
θ′
−→

(M, dob, θ′).

Discrete Action. Transition t can fire from state (M, dob, θ) if:

– t is enabled: t ∈ En(M);
– t has reached its minimum firing delay: θ ≥ doe(t) + efd(t);

Firing transition t from state (M, dob, θ) leads to state (M ′, dob ′, θ), with M ′ def
=

(M \ •t) ∪ t• and dob ′(p)
def
= dob(p) if p ∈ M \ •t and dob ′(p)

def
= θ′ if p ∈ t• (by

assumption the two cases are exclusive). We write (M, dob, θ)
t−→ (M ′, dob ′, θ).

3.1 Timed Bisimulation between the Two Semantics

Definition 4 (Timed Transition System). A timed transition system (TTS)
is a tuple (S, s0, Σ,→) where S is a set of states, s0 ∈ S is the initial state, Σ
is a finite set of actions disjoint from R≥0 (for the case of the semantics of a
TPN, Σ is the set T of transitions), and → ⊆ S × (Σ ∪ R≥0) × S is a set of

edges. We write s
e→ s′ for (s, e, s′) ∈ →.

Definition 5 (Timed bisimulation). Let T1 = (S1, s
0
1, Σ,→1) and T2 =

(S2, s
0
2, Σ,→2) be two TTS. We say that T1 and T2 are timed bisimilar if there

exists a binary relation ≈ between S1 and S2, called timed bisimulation relation,
such that:

– s01 ≈ s02,
– if s1

a→1 s′1 with a ∈ Σ ∪R≥0 and s1 ≈ s2, then ∃s′2 such that s2
a→2 s′2 and

s′1 ≈ s′2; conversely if s2
a→2 s′2 with a ∈ Σ∪R≥0 and s1 ≈ s2, then ∃s′1 such

that s1
a→1 s′1 and s′1 ≈ s′2.

Lemma 2. For every safe TPN, the TTS induced by the clocks-on-tokens se-
mantics is timed bisimilar to the TTS induced by the clocks-on-transitions se-
mantics.

Proof. Every state S = (M, dob, θ) of the clocks-on-tokens semantics maps to a

state f(S)
def
= (M, ν, θ) with ν(t)

def
= θ− doe(t). Note that f may not be injective.

Then we define the relation ≈ as:

(M, ν, θ) ≈ (M, dob, θ) ⇐⇒ (M, ν, θ) = f((M, dob, θ))

and we show that ≈ is a timed bisimulation relation. The relation between initial
states is immediate. Consider now related states (M, ν, θ) ≈ (M, dob, θ).
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– (M, ν, θ)
θ′
−→ (M, ν′, θ′)

iff ∀t ∈ En(M) ν(t) + (θ′ − θ) ≤ lfd(t)
iff ∀t ∈ En(M) θ′ − doe(t) ≤ lfd(t)

iff (M, dob, θ)
θ′
−→ (M, dob, θ′)

– If (M, dob, θ)
t−→ (M ′, dob ′, θ), then (M, ν, θ)

t−→ f((M ′, dob ′, θ)) (this is im-
mediate by the definition of f).

– If (M, ν, θ)
t−→ (M ′, ν′, θ), then (M, dob, θ)

t−→ (M ′, dob ′, θ) with dob ′(p) =
dob(p) for every p ∈ M \ •t and dob ′(p) = θ for every p ∈ t•. We only need
to check that f((M ′, dob ′, θ)) = (M ′, ν′, θ). ��

4 Partial Order Representation of Runs: Processes

We will define the mapping Π from the timed words of a safe time Petri net
to their partial order representation as processes. These processes are those de-
scribed in [1]. We use a canonical coding like in [9].

Coding of Events and Conditions. Each process will be a set E of pairs
(e, E(e)), where e is an event and E(e) ∈ R is its firing date. We denote EE (or
simply E) the set of events in E . Each event e is itself a pair (•e, τ(e)) that
codes an occurrence of the transition τ(e) in the process. •e is a set of pairs

b
def
= (•b, place(b)). Such a pair is called a condition and refers to the token that

has been created by the event •b in the place place(b). We say that the event

e
def
= (•e, τ(e)) consumes the conditions in •e. Symmetrically the set {(e, p) | p ∈

τ(e)
•} of conditions that are created by e is denoted e•. A virtual initial event ⊥

is used as •b for initial conditions. By convention ⊥• def
= {⊥}×M0 and E(⊥)

def
= 0.

We write E⊥ for E ∪ {⊥}.
For all set B of conditions, we denote Place(B)

def
= {place(b) | b ∈ B}, and

when the restriction of place to B is injective, we denote place−1
|B its inverse,

and for all P ⊆ Place(B), Place−1
|B (P )

def
= {place−1

|B (p) | p ∈ P}. The set of

conditions that remain at the end of the process E (meaning that they have

been created by an event of E, and no event of E has consumed them) is ↑(E)
def
=⋃

e∈E⊥ e• \
⋃

e∈E
•e.

To summarize the coding of the processes, it is convenient to define a set
DN , such that all the events that appear in the processes of a Petri net N , are
elements of DN .

Definition 6 (DN). We define DN as the smallest set such that

∀B ⊆
⋃

e∈DN⊥

e• ∀t ∈ T Place(B) = •t =⇒ (B, t) ∈ DN .

Notice that this inductive definition is initialized by the fact that ⊥ ∈ DN⊥.
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p1 p2

p3 p4

p1 p2

p3

e1 a(3) e2 c(3)

e3 b(5)

e4 a(9)

Fig. 2. A representation of a process of the time Petri net of Figure 1. The dates of
the events are in brackets.

Causality. We define the relation → on the events as: e→ e′ ⇐⇒ e•∩•e′ �= ∅.
The reflexive transitive closure →∗ of → is called the causality relation. Two
events of a process that are not causally related are called concurrent. For all

event e, we denote &e' def
= {f ∈ E | f →∗ e}, and for all set E of events,

&E' def
=

⋃
e∈E&e'.

Dates. We define the date of birth of the token which stands in a place p ∈
Place(↑(E)) after a process E as dobE(p)

def
= E(•(place−1

|↑(E)(p))).
This allows us to define the state that is reached after a process E of N as:

RS(E)
def
= (Place(↑(E)), dobE ,maxe∈E⊥ E(e)). Actually we will use this definition

even for sets E of dated events which are not processes.

Definition 7. The function Π that maps each timed word ((t1, θ1), . . . , (tn, θn))
to a process is defined as follows:

– Π(ε)
def
= ∅

– Π(((t1, θ1), . . . , (tn+1, θn+1)))
def
= E ∪ {(e, θn+1)}, where

• E def
= Π(((t1, θ1), . . . , (tn, θn))) and

• the event e
def
= (Place−1

|↑(E)(
•tn+1), tn+1) represents the last firing of the

sequence.

In the representation of a process, the rectangles represent the events, and the
circles represent the conditions. An arrow from a condition b to an event e means
that b ∈ •e. An arrow from an event e to a condition b means that e = •b.

Figure 2 shows a process of the TPN of Figure 1, which is the image by Π
of the two timed words ((a, 3), (c, 3), (b, 5), (a, 9)) and ((c, 3), (a, 3), (b, 5), (a, 9)):
permuting the concurrent events corresponding to the first occurrences of a and
c yields two different timed words for the same process. Yet these permutations
are very limited because the sequential semantics forces time to progress. We
will obtain much more permutations in Section 5 with our relaxed semantics.
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4.1 Characterization of Processes

Since timed processes are defined as sets of dated events (the events being taken
from the set DN defined above), a natural problem is to decide whether a subset
of dated events is a process. In the general case, the answer is nontrivial and
was treated in [1]. But the case of extended free choice time Petri nets behaves
much better and we recall here how to characterize processes in this case. We
assume that the net is normalized, which simplifies even more the formulation.

Lemma 3 (Characterization of processes). Let N be a normalized safe ex-
tended free choice TPN and let E ⊆ DN × R be a finite set of dated events (we
denote E the set of events in E). E is a process of N iff:

– E is causally closed: &E' = E;
– E is conflict free: �e, e′ ∈ E e �= e′ ∧ •e ∩ •e′ �= ∅;
– firing delays are met: ∀e ∈ E efd(τ(e)) ≤ E(e)− doe(e) ≤ lfd(τ(e));
– E is temporally complete: every transition t enabled in the state RS(E)

reached after E, satisfies doe(t) + lfd(t) ≤ maxe∈E⊥ E(e).

Example. Consider the process of Figure 2 and replace the firing dates by
parameters E(e1), E(e2), E(e3), E(e4). The values of the parameters that cor-
respond to processes accepted by the TPN of Figure 1 are those satisfying the
following constraints, given by earliest and latest firing delays of the events⎧⎪⎪⎨⎪⎪⎩

0 ≤ E(e1) ≤ ∞
3 ≤ E(e2) ≤ 4
0 ≤ E(e3)−max{E(e1), E(e2)} ≤ 4 (after normalization lfd(b) is set to 4)
0 ≤ E(e4)− E(e3) ≤ ∞

plus the constraint that the process is temporally complete:

max{E(e1), E(e2), E(e3), E(e4)} − E(e3) ≤ 4

i.e., here, that transition c, which is enabled in the final state, has not fired yet
at the time of the end of the process.

It is worth noticing that every set E satisfying all the conditions but the last,
is a prefix (i.e. a causally closed subset) of a process. The following lemma is
a corollary of Theorem 3.2 of [6] and a strong property of extended free choice
TPNs. The fact that it does not hold for general safe TPNs is at the origin of
the difficulties to define their unfoldings.

Lemma 4 (Characterization of prefixes of processes). Let N be a nor-
malized safe extended free choice TPN satisfying the diverging time assumption
and let E ⊆ DN ×R be a finite set of dated events (we denote E the set of events
in E). E is a prefix of a process of N iff:

– E is causally closed: &E' = E;
– E is conflict free: �e, e′ ∈ E e �= e′ ∧ •e ∩ •e′ �= ∅;
– firing delays are respected: ∀e ∈ E efd(τ(e)) ≤ E(e)− doe(e) ≤ lfd(τ(e)).
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Proof. By construction (and by Lemma 3), all the prefixes of the processes satisfy
the constraints. We show the converse by induction on the number of events in
E . The case of the empty process is immediate.

Consider now a nonempty process E satisfying the constraints. Choose an
event e of E with maximal date; if there are several candidates, choose one
which is also maximal w.r.t. causality (causality is acyclic by construction of
DN ). The selected event e is maximal w.r.t. causality among all the events of E :
the inequality about the earliest firing delays, with the fact that earliest firing
delays are non negative, prevent events with strictly smaller date than e from
being causal successors of e.

Process E without event e is causally closed, conflict free and satisfies the
inequalities about the firing delays. Assume, by the induction hypothesis, that it
is a prefix of a process F . This process can be truncated if necessary so that all
the events that are in F and not in E have a date strictly smaller than the date
E(e) of e. This means that the current date in the state RS(F) reached after F ,
is smaller or equal to E(e). Therefore, if F contains an event f in conflict with
e, then f can be dropped (together with its causal successors, if any): this still
yields an acceptable F because, N being extended free choice and normalized,
e and f have exactly the same input conditions, the same date of enabling and
the same latest firing delay and this delay is not expired at time E(e).

Hence we can assume that F has no event in conflict with e. The idea is to
add e to F . But, because of their latest firing delay, some transitions enabled in
RS(F) may not be allowed to wait until time E(e). We can simply fire them and
complete process F with the corresponding events, as long as such transitions
remain. The diverging time assumption ensures that this terminates; and, for
the same reason as before, no event in conflict with e needs to be added (they
can wait until E(e)). Finally e can be added, and E is a prefix of the process that
we obtain. ��

5 Back in Time Semantics

We now explore the semantics of time Petri nets when the time progress assump-
tion is dropped.

Of course dropping the time progress assumption will generate new timed
words. But we will show that for free choice TPNs, the relaxed clocks-on-tokens
semantics remains related to the classical semantics in the sense that it produces
the same partial-order executions.

5.1 Relaxed Clocks-on-Tokens Semantics

Definition 8 (relaxed clocks-on-tokens semantics). The relaxed semantics
is obtained simply by dropping the constraint of time progress θ′ ≥ θ in the time
delays. The constraint that no enabled transition overtakes its maximum delay,
remains: ∀t ∈ En(M) θ′ ≤ doe(t) + lfd(t).
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Hence time may go back in the past without any restriction. On the other hand,
the constraint about maximum delays prevents time from progressing too much.

Timed Words and Processes. We define timed words like for the classical se-
mantics, as sequences ((t1, θ1), . . . , (tn, θn)) of transitions with their firing dates.
Simply, now, the ordering θ1 ≤ · · · ≤ θn may not hold. This does not prevent
us from defining processes from these timed words, using the same mapping Π
as for the classical semantics. We show that the processes that we obtain are
prefixes of processes of the classical semantics.

Example. As an example, consider the TPN of Figure 1. The timed word
(a, 4), (c, 3) is accepted by the relaxed clocks-on-tokens semantics: after firing a
at time 4, p2 and p3 are marked, with dob(p2) = 0 and dob(p3) = 4, and the
current time is 4. After that, time may go back to 3, and c can fire.

Theorem 1 (Correctness). Let N be an extended free choice TPN. Every
process of N under the relaxed clocks-on-tokens semantics, is a prefix of a process
of N under the classical semantics.

Proof. We show, by induction on the length, that for every timed word w ac-
cepted by N under the relaxed clocks-on-tokens semantics, all the events of Π(w)
satisfy the conditions of Lemma 4 and that the state RS(w) reached after Π(w)
is the state reached after w. The case of the empty timed word is immediate.

Now, assume that transition t fires at time θ from the state reached after a
timed word w that satisfies the induction hypothesis. Let e be the event corre-
sponding this firing of t = τ(e) at time θ = E(e). The constraint that no enabled
transition overtakes its maximum delay during the delay to time θ, is satisfied in
particular by θ, and guarantees that E(e)− doe(e) ≤ lfd(t). And the constraint
about the earliest firing delay of t is checked when t fires, which implies that
E(e)− doe(e) ≥ efd(t). ��

Definition 9 (Linearization). Let E be a process or a prefix of a process and
let L be a bijection from E to {1, . . . , |E|} such that for every i, j, L(i) →
L(j) =⇒ i < j (i.e. L respects the causal ordering). Then the timed word
((τ(L(1)), E(L(1))), . . . , (τ(L(n)), E(L(n)))) is called a linearization of E.

Corollary 1. Every timed word accepted by N under the relaxed clocks-on-
tokens semantics, is a prefix of a permutation of a timed word accepted by N
under the classical clocks-on-tokens semantics.

Proof. By construction of the processes, every timed word w accepted by N
under the relaxed clocks-on-tokens semantics, is a linearization of the process
Π(w), which is also a process of N under the classical semantics. ��

Example. As an example, consider again the TPN N of Figure 1. The timed
word ((a, 4), (c, 3)), which is accepted by the relaxed clocks-on-tokens semantics,
is a linearization of Π((c, 3), (a, 4)), represented on Figure 3, which is a process
of N under the classical semantics.
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p1 p2

p3 p4

e1 a(4) e2 c(3)

Fig. 3. A process of the time Petri net of Figure 1. The dates of the events are in
brackets. This process has two linearizations: ((c, 3), (a, 4)) and ((a, 4), (c, 3)). Only the
first one is accepted by the classical semantics, but both are accepted by the relaxed
clocks-on-tokens semantics.

5.2 More Relaxed Clocks-on-Tokens Semantics

Our previous subsection was based on a minimalist modification of the classical
semantics: we have simply dropped the time progress assumption. We have shown
that this preserves the partial order behaviour and that the timed words accepted
under the relaxed semantics are linearizations of processes under the classical
semantics.

Yet not all linearizations of processes are accepted by the relaxed clocks-
on-tokens semantics. For example, for the TPN N of Figure 1, (a, 5), (c, 3) is
a linearization of a process, but it is not accepted by the relaxed semantics.
The reason is that lfd(c) < 5, i.e. the latest firing delay of c prevents time
from progressing up to 5 while c is enabled. Still a and c are concurrent, which
suggests that, if one makes abstraction of the temporal ordering, they can fire
independently in any order: in particular one could fire a and then – after possibly
going back in time – fire c.

For this we need to relax a bit more the constraints about time progress, and
let time go back, but also go forth without any restriction as long as discrete
actions are not concerned. Hence, only when firing a transition t, one checks that
the earliest and latest firing delays are respected, and this check can be done
only locally (on the transitions in conflict with t) since concurrent transitions
are not concerned.

Definition 10 (more relaxed clocks-on-tokens semantics). The more re-
laxed clocks-on-tokens semantics is defined from the clocks-on-tokens semantics,
with the following changes.

Time delay. All the constraints on θ′ for the time delay are dropped: the TPN
can now reach any time θ′ from any state.

Discrete action. But transition t can fire from state (M, dob, θ) if:
– t is enabled: t ∈ En(M);
– t has reached its minimum firing delay: θ ≥ doe(t) + efd(t);
– no transition in conflict with t overtakes its maximum firing delay:
∀t′ ∈ T •t′ ∩ •t �= ∅ =⇒ θ ≤ doe(t′) + lfd(t′).

Notice that after normalization of an extended free choice TPN, the constraint
about latest firing delays can simply be checked on the transition t itself: θ ≤
doe(t) + lfd(t).
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Example. Consider again the TPN of Figure 1. It can now wait until time 5
without firing any transition, fire a, and then go back to time 3 and fire c.

Again correctness of the more relaxed clocks-on-tokens semantics is expressed
in terms of preservation of processes.

Theorem 2 (Correctness). Let N be an extended free choice TPN. Every
process of N under the more relaxed clocks-on-tokens semantics, is a prefix of a
process of N under the classical clocks-on-tokens semantics.

Proof. Like for Theorem 1, we show, by induction on the length, that for every
timed word w accepted by N under the more relaxed clocks-on-tokens semantics,
all the events of Π(w) satisfy the conditions of Lemma 4 and that the state
RS(w) reached after Π(w) is the state reached after w. The difference is that,
with the more relaxed semantics, the condition about the latest firing delay is
not checked during the delay to θ, but when firing t. ��

Theorem 3 (Completeness). The timed words accepted by the more relaxed
clocks-on-tokens semantics of an extended free choice TPN coincide precisely
with the linearizations of the prefixes of its processes under the classical seman-
tics.

Proof. That the more relaxed clocks-on-tokens semantics generates only lin-
earizations of prefixes of its processes under the classical semantics, is a direct
corollary of Theorem 2.

It remains to check that it generates all of them. We proceed by induc-
tion on the number of events in the prefix. The case of the empty prefix is
immediate. Let E be a nonempty process under the classical semantics, and
((t1, θ1), . . . , (tn, θn)) be a linearization of E . By definition of the linearization,
((t1, θ1), . . . , (tn−1, θn−1)) is also a linearization of a prefix. Assume, by the induc-
tion hypothesis, that it is accepted under the more relaxed semantics. It remains
to show that the more relaxed semantics lets transition tn fire at time θn from
the state reached after ((t1, θ1), . . . , (tn−1, θn−1)). The constraint of Lemma 4
applied to E gives precisely this constraint for the last event of the linearization
(the one corresponding to the firing of tn at time θn). ��

6 Discussion and Perspectives

Relaxed Clocks-on-Transitions Semantics. As an alternative to our relaxed
clocks-on-transitions semantics, one could envisage starting from the classical
clocks-on-transitions semantics and dropping the constraint θ ≤ θ′.

But even for free choice TPNs, timed words accepted by the relaxed
clocks-on-transitions semantics are not necessarily permutations of timed words
accepted by the classical clocks-on-transitions semantics. For the TPN of
Figure 4(a), the relaxed clocks-on-transitions semantics accepts the timed word
((a, 3), (b, 2), (c, 2)): it allows one to fire a at time 3, followed by b at time 2. In the
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•

a[1, 3]

•

b [2, 4]

c [0, 0]

(a) Counter-example for the clocks-
on-transitions semantics

•

a[1, 2] c [0, 0]

•

b [0, 3]

(b) Counter-example for non free
choice TPNs

Fig. 4. Counter-examples

reached state, c is enabled and its clock has value ν(c) = 0 since it was enabled by
the firing of b. As a result, c fires at time 2. In the classical clocks-on-transitions
semantics, firing b at time 2 and a at time 3 implies firing c at time 3.

This shows that the clocks-on-tokens semantics, although equivalent to the
clocks-on-transitions semantics in the classical setting, is more robust to varia-
tions of the semantics. Another argument in this sense is given in [4] for the case
of unbounded time Petri nets.

Counter-Example for Non Free Choice TPNs. The TPN of Figure 4(b) is
not free choice since transitions a and b are in conflict, but do not have the same
presets. With any of the relaxed semantics that we defined, a can fire at time 1
from the initial state, and then b can fire at time 0. This is not a linearization
of any process because in the classical semantics, firing b at time 0 implies firing
c at time 0 and thus prevents a from firing.

Perspectives. We believe that our result can be adapted quite easily to other
formalisms for real-time concurrent systems (arc-timed Petri nets, networks of
timed automata. . . ) provided a restriction on local choices is done (correspond-
ing to the extended free choice assumption for TPNs). Without this assumption,
the previous counter-example already shows how transitions that are apparently
concurrent can influence one the other. Then a back in time semantics for the
general case should be constrained by these dependencies. Some of these depen-
dencies played a role in the definition of unfoldings for TPNs, but identifying
them precisely remains a challenge.

Finally, the algorithms for the analysis of timed models construct and solve
systems of linear constraints on temporal parameters (like occurrence time, value
of clock. . . ) By relaxing the constraints about time progress, our back in time
semantics would generate fewer inequalities and fewer symbolic states. And it
preserves properties like fireability of a transition or reachability of a place. We
plan to experiment the construction of the symbolic state graph generated by
our semantics and evaluate how much it improves the analysis algorithms.
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Abstract. Concurrent systems consist of many components which may
execute in parallel and are complex to design, to analyze, to verify, and
to implement. The complexity increases if the systems have real-time
constraints, which are very useful in avionic, spatial and other kind of
embedded applications. In this paper we present a logical framework for
defining and validating real-time formalisms as well as reasoning meth-
ods over them. For this purpose, we have implemented in the Coq proof
assistant well known semantic domains for real-time systems based on
labelled transitions systems and timed runs. We experiment our frame-
work by considering the real-time CSP-based language fiacre, which has
been defined as a pivot formalism for modeling languages (aadl, sdl,
...) used in the TOPCASED project. Thus, we define an extension to the
formal semantic models mentioned above that facilitates the modeling
of fine-grained time constraints of fiacre. Finally, we implement this
extension in our framework and provide a proof method environment to
deal with real-time system in order to achieve their formal certification.

1 Introduction

Real-time concurrent systems consist of many components which may execute
in parallel and communicate data or synchronize at a specified time. Therefore,
these systems are complicated to design, to analyze, to verify, and finally to
implement. The complexity arises from the nondeterminism of behaviors, time
constraints and the combinations of ways in which the components can interact.
In order to be able to prove or verify properties on such systems one needs to
formalize their semantics.

Formal semantics of specification and programming languages are mathemat-
ical descriptions of the meaning of programs (and their behaviors) written in
these languages. They play a very important role in many areas of computer
science such as verification of critical systems because they enable us to for-
mally prove that these systems meet their specifications. Formal semantics of
component-based languages, which are useful to design distributed or concurrent
systems, are commonly defined in terms of transition systems. If the language
has also real-time features, then its semantics can be expressed as timed tran-
sition systems [4] (tts for short, see Definition 3). For this paper, we address
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the challenge of providing a framework that allows to build mechanized reason-
ings over timed systems within a proof assistant. Doing so requires to mechanize
the semantics of timed systems in adapted mathematical terms, which are here
theories of transition systems and execution runs (or traces) which include time
aspects.

The present work proposes also an extension to the semantic model of tran-
sition systems with time constraints proposed by T.Henzinger et al [16] that we
call time constrained transition systems (tcts for short, see Definition 7) since
the term tts is overloaded and already used here. The purpose of this extension
is to model more directly and easily some real-time constructs of specification
languages and then be able to prove timed temporal properties over critical em-
bedded systems. We define semantic interpretations of systems modeled as tcts
in terms of tts and timed runs (see Section 2.2) that enable to reason over these
models and their time properties. Those semantic interpretations correspond to
arrows 2 and 3 of Figure 1 which describes the global architecture of our frame-
work. Arrow 1, which addresses the semantics interpretation of the syntactical
constructs of our component-based language (namely fiacre), goes beyond our
current purpose and is not presented here (this is our long term goal).

Time Constrained Transition Systems (tcts)

Timed Transition Systems (tts)

2 (Section 4.1)

4 (Section 2.3)

1

Execution Runs

Real-Time Component-Based Languages (abstract syntax)

(Section 4.2) 3

Fig. 1. Schematic description of the architecture of our semantic framework

There are several reasons for wanting to mechanize such theories based on
transition systems and timed runs in an interactive theorem-prover rather than
building a dedicated automatic tool [13]. The most important reason is certainly
that proof assistants like Coq [7], hol [18] or pvs [22], provide a generic and
very expressive proof environment for dealing with problems which cannot be
automatically decided. We claim also that the results which are encoded and
checked with such tools reach probably the currently highest level of confidence
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in formal software verification. In other words, proofs built and then checked
with, for example Coq, avoid to a very high extent fallacious and incomplete
arguments that are so easy and so common to find in standard mathematical
proofs. Then, all the proofs that we provide in this paper have been encoded in
the calculus of inductive constructions (cic for short) using the Coq proof assis-
tant, and then automatically checked to guarantee the mathematical soundness
of the proofs 1. However, although all of this formalization work (shaded part
of Figure 1) has been carried out in Coq, we refrained from displaying Coq
syntax here. We adopt standard mathematical notations as much as possible for
the sake of clarity and because a large part of this work is about semantics of
real-time systems that is widely independent of Coq.

Overview. The remainder of this paper is structured as follows: Section 1.1 in-
troduces the general principles of component-based languages. We describe their
timed semantics through a toy example. Section 2 recalls the basis of transition
systems and execution runs. Section 3 defines an extension of transition systems
with time constraints. Section 4 is dedicated to the semantic interpretations of
transition systems in two distinct models that address the dynamic time aspects
of real-time systems. Then, in Section 5 we explain why our work has been im-
plemented in the interactive theorem prover Coq and how it can be used for
formal verification. We draw a conclusion and present some directions for future
works in Section 6.

1.1 Timed Semantics of Component-Based Languages

Existing specification languages inspired by [17] are useful to represent both
behavioral and timing aspects of concurrent (or distributed) real-time systems.
For example, fiacre [6] is defined over two main notions : (1) processes that
describe the behavior of sequential components. A process is defined by a set
of control states (or positions), each associated with a piece of program built
from deterministic constructs available in classical programming languages, non-
deterministic constructs (nondeterministic choice of the transition to take, for
example), communication events on ports, and jumps to next position; (2) com-
ponents that describe the composition of processes. A component is defined as
a parallel composition of components and/or processes communicating through
ports and shared variables.

In this paper we focus only on nondeterministic transitions and timing con-
straints of synchronizations (composition and priorities are adressed in [12]).
fiacre allows to model real-time behaviors by using timed ports, i.e. ports with
their own timer (or clock). A timed transition connects two control states using
such a port. Moreover, fiacre allows to code such transitions in two ways : the
first one preserves the clocks of other enabled transitions whereas the second one
resets the clock of other enabled transitions.

1 We invite the interested reader to browse the sources of our development at the web
address : http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13.

http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13.
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The example presented in Figure 2 describes a process which declares three
local ports, p, q and r, and two variables of type nat, namely x and y. In this
specification language, local ports are only used to temporize transitions and
processes which use those ports do not get “synchronized” with others through
those ports. The port p is time constrained by the interval [1, 3[, q by ]3,∞[ and
r by [1, 1]. Considering p, it means that when a transition which synchronizes
on it is enabled, it must fire after waiting at least one (included) and at most
three (not included) time units. In the same way, q delays the process P for at
least three (not included) time units 2 and r exactly one unit of time.

Then, we see that in the process P, there are two control states, namely s0

and s1. Only s0 is an initial one, which means that the process has to start its
execution from it. But let us first take a look at s1 : from this control state,
a nondeterministic choice is defined with the construction select. This choice
includes two concurrent transitions : the first one that synchronizes on p then
adds to y the value of x; the second one that synchronizes on q then assigns to
x the value of y plus 2. Afterward, each of those transitions jumps to a next
control state with the construction to, i.e. it jumps back to s1 in the case of
an action on p and goes to s0 in the other case. The timed-semantics of the
construction to, consists in resetting the timer of all transitions included in the
same nondeterministic choice (we provide in comments the set of ports that
have to be reset for each transition). This notion will be formalized in Section 3,
thanks to an extension of the semantic model introduced in [16]. Consequently,
from the control state s1 the process P is never synchronized on q, so the variable
x will never be assigned and it never goes back to s0. Indeed, after every single
unit of time the process will be synchronized on p before strictly two more time
units, after which it resets the timer of q before having waited enough time to
synchronize on it. Thus, the second transition of the nondeterministic choice
from s1 of P is dead code due to the time constraints of P.

Now, through the same example we present another construction that loops
to the current control state but with a different timed-semantics. This construc-
tion is still related to the nondeterministic choice of transitions and is defined
with the keyword loop. It consists in going back to the current control state
while preserving the time already waited by other transitions (which were not
taken) included in the same nondeterministic choice as the one that has been
taken. The clock of the taken transition is reset however. For example, in the
nondeterministic choice from the control state s0 of P, the first transition loops
after synchronizing on r and then increments x. This transition occurs after ex-
actly every single time unit and then only resets its own timer. On the other
hand, the nondeterministic choice allows the process to synchronize on q at any
time after being continuously enabled for at least three units of time. Note that
the transition through q from s0 may never occur because of its unconstrained
maximal delay. Proving such semantics properties on the value of x and y or
that the transition through q from s1 is dead code, can be as much crucial as
difficult.

2 Time bounds are either integral or infinite. Elapsing of time is continuous.
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process P i s

ports p in [ 1 , 3 [ , q in ] 3 ,∞[ , r in [ 1 , 1 ]
var x , y : nat := 0
states s0 s1
in i t to s0

from s0 select
/∗1∗/ r ; x := x+1; loop /∗ re se t = {r} ∗/
/∗2∗/ [ ] q ; to s1 /∗ re se t = {r , q} ∗/

end

from s1 select
/∗3∗/ p ; y := x+y ; to s1 /∗ re se t = {p , q} ∗/
/∗4∗/ [ ] q ; x := y+2; to s0 /∗ re se t = {p , q} ∗/

end

Fig. 2. An example real-time process specified in fiacre

Related Work. Starting with the work of T. Henzinger et al. [16, 15], we extend
their mathematical semantic model for specifying real-time processes such as the
one presented in Figure 2. All definitions and theorems presented in the following
are directly derived from a mechanization developed in Coq. This part of our
contributions connects to the previous work of R. Cardell-Oliver et al. [14] about
the embedding in hol of [16] and C. Paulin-Mohring about the formalization
of timed automata in Coq [20]. With respect to the Petri Net community, our
work is in the spirit of B. Berard et al. [4]. However, we are concerned by a
component-based language with states and ports and we go further since we
adress its mechanization. Morever, our work is not in the same scope as [13]
because our goal is not to develop an automatic verification tool certified in
Coq. Our purpose is to provide a real-time semantic framework which can be
used to formalize real-time patterns and more generally real-time specification
languages. As a matter of fact, we present in the following the formalization of the
fiacre language where we are especially interested in the semantic differences
between the contructs loop and to (see Section 1.1). Also, the proof environment
of our framework allows to certify transformations between real-time formalisms.
For instance in [8], we are concerned by the transformation from aadl to fiacre,
which requires formal certification for avionic or spatial applications.

2 Semantics Kernel

This section is dedicated to the basis of classical semantic notions we use in
our work. These notions are of two kinds: timed transition systems and timed
execution runs [4]. Moreover, both include time and since time is dense in most
real-time specification languages (including fiacre), we formalize time in this
paper with non-negative real numbers : R+. However, in our Coq mechanization
we have developed an axiomatic theory of time 3 which can be instantiated by
constructive reals [13] as well as by nat to encode discrete time (if necessary).

3 http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13/time.html.

http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13/time.html
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These semantic models enable us to describe formally the dynamics of real-
time systems, mixing the evolution of their states and the progress of time, to
reason over those with rigorous logical methods.

2.1 Transition Systems

First of all, we remind the basic model of labelled transition systems [2] that is
usually used to give a mathematical representation of computer programs.

Definition 1 (Labelled Transition Systems). A labelled transition system

( lts for short) is a 4-tuple lts
def
= 〈L, S, init,next〉, where : L is the set of labels

of lts; S is a set of states (or stores); init is a non-empty subset of S that
defines the initial states of lts; and next defines the set of transitions of lts that

are triplets of the form (sto, �, sto′) ∈ S × L × S, also denoted as sto
�−→ sto′,

where sto ∈ S is the source state, � ∈ L is the label and sto′ ∈ S the target state
of the transition.

Definition 2. Assuming a lts, lts
def
= 〈L, S, init,next〉, a label � ∈ L is en-

abled from a state sto ∈ S, if there exists a state sto′ ∈ S such that the triplet
(sto, �, sto′) belongs to next. Formally, we define the predicate enb over S × L

as enbsto(�)
def
= ∃sto′ ∈ S,next(sto, �, sto′)

Definition 3 (Timed Transition Systems). A timed transition system (tts
for short) over a set of labels L, is a lts over L∪R+, 〈L∪R+, S, init, t next〉,
that satisfies the following properties :

– zero delay : ∀sto ∈ S, sto
0−→ sto

– time-determinism : ∀sto, sto′, sto′′ ∈ S, ∀δ ∈ R+,

sto
δ−→ sto′ ⇒ sto

δ−→ sto′′ ⇒ sto′ = sto′′

– additivity : ∀sto, sto′, sto′′ ∈ S, ∀δ, δ′ ∈ R+,

sto
δ−→ sto′ ⇒ sto′

δ′−→ sto′′ ⇒ sto
δ+δ′−→ sto′′

– continuity : ∀sto, sto′′ ∈ S, ∀δ′, δ′′ ∈ R+,

sto
δ′+δ′′−→ sto′′ ⇒ ∃sto′, sto δ′−→ sto′ ∧ sto′

δ′′−→ sto′′

2.2 Executions

We remind now the classical representation of runs in a timed context, that is
useful to represent the behaviors of systems and then reason with temporal linear
logic [21] about those.

Definition 4 (Timed execution states). With respect to a set of states S
and a set of events L, a timed execution state (tes for short), s, is a triplet of
the form 〈sto, evt, now〉 where :

– stos ∈ S, is the state (or store) reached in s
– evts ∈ L ∪ {start} ∪ {div}, is the event that has reached s.
– nows ∈ R+ gives the current global time (or date) in s.
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Remarks. The two special events start and div are seen, respectively, at the
beginning of a run and whenever time is diverging (in case of deadlock, for
instance) in a run.

Definition 5 (Runs). A run (or execution sequence) is a function σ, from N
to tes, that represents a (possibly finite) sequence of events all of which reach a
state at a given date. For a tes s reached at a position i of σ, we have σi = s.

Remarks. For the sake of conciseness, we allow ourselves to substitute s (σi)
by i in the following whenever it might simplify the notations (as below). Also,
according to our representation of runs, finite ones are encoded using a repetition
of the special event div after the last state.

Definition 6 (Well formed runs). According to the previous definition, a
run σ is well formed if it satisfies the following properties : start : evt0 =
start ∧ now0 = δ0σ; and monotonicity : ∀i ∈ N, nowi ≤ nowi+1, where δ0σ is
the initial delay associated to the beginning (the event start) of the run σ.

Remark. This definition of timed runs does not satisfy the progress property
(∀r ∈ R+, ∃i ∈ N, r ≤ nowi) [16] because of Zeno behaviors (that include
an infinite number of discrete steps in a finite amount of time) that may be
generated from the component-based source language, as for instance in fiacre,
that we want to capture.

2.3 Semantics of Timed Transition Systems in Terms of Runs

We define now the semantics of tts in terms of runs (arrow 4 of Figure 1).

Predicates. In order to describe the semantics of ttss in terms of runs, we have
to define two predicates that express when a given label may be taken and when
a label is taken. Assume a given run σ at some position i, σ-enbi(�) means that
the label � may be taken at i and takeni(�) means that � is taken at i. Formally :

– σ-enbi(�)
def
= ∃sto, sto′ ∈ S, ∃δ ∈ R+,next(stoi, �, sto) ∧ next(sto, δ, sto′)

– takeni(�)
def
= evti+1 = � (stoi+1 corresponds to one of the sto′ above)

Remark. The intermediate state, sto, used in the definition of σ-enb is needed
because the runs that we consider do not include explicit duration. There are
other formalisms of execution runs where time passing is explicit (mixing du-
rations and events) but here, to avoid Zeno phenomena (coming from the ttss
and not from the systems theirselves) in runs, we only consider events.

Semantic Interpretation in Terms of Runs. The run-semantics of a tts,

tts
def
= 〈L∪R+, S, init, t next〉, is a set of well formed runs Σ(tts), that expresses

all possible behaviors of tts at execution, such as each of those has to fulfill that
init(sto0) and the following step condition :

∀i, either
∃� such that ∃sto ∈ S, ∃δ ∈ R+, t next(stoi, �, sto)∧t next(sto, δ, stoi+1)
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and nowi+1 = nowi + δ and takeni(�) (a label is taken)
or ¬∃� such that σ-enbi(�) and ∀j > i, stoj = stoi ∧ evtj = div (time is

diverging).
Graphically, when a label � is taken at some position i, it can be represented

as σi
�−→ s

δ−→ σi+1, where s is an implicit intermediate tes which is not visible
in the run, defined as 〈stoi+1, evti+1, nowi〉.

3 A Time Constrained Model for Real-Time Systems

We give in this section an extended definition of the semantics model proposed
by T. Henzinger et al. in [16] that deals with advanced (i.e. fine-grained) timed
constructs such as the ones presented in Section 1.1. As in [16], we incorporate
real-time constraints to lts in order to ensure that a labelled transition is fired
neither too early nor too late. An extension to their initial model is the so-called
reset relation that specifies which clocks (or timers) are reset after the firing of a
given transition. We call this model Time Constrained Transition Systems (tcts
for short) since time features are only expressed as syntactic timed constraints
on transitions. We have introduced this semantics model in order to verify real-
time processes such as the one presented in Figure 2 more easily. Moreover,
the exhibited semantic model is interesting by itself since it can be reused to
define the semantics of real-time component-based langages such as fiacre [11]
or bip[3] or even high-level specification models such as Timed Petri Nets with
read-arcs [4]. We also present two timed-semantic interpretations, corresponding
to arrows 2 and 3 of Figure 1.

3.1 Time Constrained Transition Systems

In order to reason about timing of transitions, we identify each transition by
its name. For instance, according to the process P of Figure 2, its corresponding
tcts include four names, one for each of the four possible transitions from its
two nondeterministic choices, even if the number 2 and 4 synchronize both on
q. Moreover, we suppose that there is an implicit clock (while time is explicit
in tts) associated to every transition. Then, this model allows to specify static
time constraints over the transitions of a given system.

Definition 7. A Time Constrained Transition System, namely tcts, is a 8-tuple
〈L, T, S, lbl, init,next,R, I〉, where 〈L, S, init,next〉 is a lts, and :

– T is the set of (the names of) transitions of tcts.
– lbl is a function from T to L, that associates to every transition a label.
– R is the reset transition relation. (tr, tr′) ∈ R states that at execution,

the firing of tr resets the implicit clock of tr′. Otherwise, the implicit clock
associated to tr′ keeps running. For all tr ∈ T , (tr, tr) ∈ R (R is refelexive).

– I is a function that assigns to every label � ∈ L a non-empty interval of
R+. I� (or I(�)) specifies both minimal (lower) and maximal delay (upper
bound) to elapse once � has been enabled (see Definition 2).
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We introduce the downward and the upward closure of an interval I� defined

respectively by
←
I�

def
= {t | ∃r ∈ I�, t ≤ r} and

→
I�

def
= {t | ∃r ∈ I�, r ≤ t}. For example,

if I� is defined by the interval [min,max] then
←
I� is [0,max] and

→
I� is [min,∞[.

Example 1. Consider the process given in Figure 2, we define its corresponding
tcts as 〈L, T, S, lbl, init,next,R, I〉, where :

– L
def
= {�p, �q, �r}

– S
def
= {(x, y, loc) | x, y ∈ N ∧ loc ∈ {l0, l1}}

– ∀sto ∈ S, init(sto)
def
= sto(x) = 0 ∧ sto(y) = 0 ∧ sto(loc) = l0

– next(sto, �, sto′)
def
=

∧⎛⎜⎜⎝ sto(loc) = l0 ⇒
∨(

� = �r ∧ sto′ = sto[sto(x) + 1/x]
� = �q ∧ sto′ = sto[l1/loc]

)
sto(loc) = l1 ⇒

∨(
� = �p ∧ sto′ = sto[sto(x) + sto(y)/y]
� = �q ∧ sto′ = sto[sto(y) + 2/x][l0/loc]

)
⎞⎟⎟⎠

– T
def
= {tr1, tr2, tr3, tr4}

– lbl(tr1)
def
= �r | lbl(tr2)

def
= �q | lbl(tr3)

def
= �p | lbl(tr4)

def
= �q

– R def
= {(tri, tri) | 1 ≤ i ≤ 4} ∪ {(tr2, tr1), (tr3, tr4), (tr4, tr3)}

– I�p
def
= [1, 3[, I�q

def
= ]3,∞[ and I�r

def
= [1, 1].

Remarks. Because of the functional relation from T to L, we consider (by abuse
of notation) in the remaining that, for any tcts, next is also defined over S ×
T × S. Furthermore, assuming a tcts, tcts

def
= 〈L, T, S, lbl, init,next,R, I〉, a

transition tr ∈ T is enabled from a state sto ∈ S, if there is a state sto′ ∈ S such
that the triplet (sto, tr, sto′) belongs to next. Formally, we extend the predicate

enb over S × T as enbsto(tr)
def
= ∃sto′ ∈ S,next(sto, tr, sto′). Also, considering a

transition tr ∈ T , we write Itr instead of Ilbl(tr) in order to simplify notations.
As we have seen, tcts is a mathematical model that allows to specify time

aspects of real-time systems. We have also defined the composition of tcts to
model concurrent or distributed aspects of systems in the same formalism (see
[12]). The semantics of this composition is based on the composition of lts.
However, due to lack of space, we choose to focus on the real-time aspects here.

4 Semantic Interpretations

We consider in this section two models to interpret tcts w.r.t. time semantic
aspects. The first one is tts with explicit time steps together with time assump-
tions (see Definition 3). This model allows to reason over behaviors of a given
tcts using a branching time logic as [10] or (bi-)simulation relations [4].

Secondly, tcts timing aspects are also interpreted as sets of runs, that de-
scribe the executions of a tcts as sequences of timed events. This model allows
to define and to prove the satisfaction of temporal properties expressed in a
linear temporal logic [21] by a given tcts.
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4.1 Semantics of TCTSs in Terms of TTSs

Now, we want to give the semantics of tcts in terms of tts, interpreting time
constraints by timed transitions. The purpose, among others, is to be able to
reason on tctss at the tts level.

So, given a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, we define a corre-

sponding tts through the semantics function [[ ]] : tcts → tts, such that
[[tcts]] = 〈L ∪ R+,S, init, t next〉 ∈ tts, where :

– a state of s ∈ S is a pair over S × (T → R+), such that s
def
= 〈sto, clk〉 with :

( stos ∈ S is a store of the underlying tcts.
( clks : T → R+ associates to every transition tr ∈ T an explicit clock that

is needed to count elapsed time since tr is enabled.

( and for every tr ∈ T, if enbstos(tr) then clks(tr) ∈
←
Itr

– t next is a predicate over S × (L ∪R+)× S defined as :

∀s ∈ S, ∀s′ ∈ S, ∀� ∈ L ∪R+,
∧(

� ∈ L⇒ discrete(s, �, s′)
� ∈ R+ ⇒ delay(s, �, s′)

)
, with :

( ∀s ∈ S, ∀s′ ∈ S, ∀� ∈ L, discrete(s, �, s′)
def
= ∃tr ∈ T, lbl(tr) = � and

next(stos, tr, stos′) and clks(tr) ∈
→
Itr

and ∀tr′, clks′(tr′) =

{
0 if ¬enbstos(tr′) ∨ (tr, tr′) ∈ R
clks(tr

′) else

In other words, considering two timed states s and s′ of [[tcts]], the label
of a discrete transition tr links them if (1) tr is a transition between
stos and stos′ in the source tcts; (2) since enabled, tr is delayed enough
time units (according to the specification Itr); and (3) for every other
enabled transition tr′, its clock is preserved if and only if tr does not
reset it (clocks are set to 0 for all other transitions, tr included since
(tr, tr) ∈ R).

( ∀s ∈ S, ∀s′ ∈ S, ∀δ ∈ R+, delay(s, δ, s′)
def
= ∀tr ∈ T,

clks′(tr) = clks(tr) + δ

and if enbstos(tr) then we must have clks(tr) + δ ∈
←
Itr

and stos′ = stos

In other words, considering two timed states s and s′ of [[tcts]], time passes
(δ units) between them if for all transitions tr of tcts, (1) its clock goes
δ time units from s to s′ (2) after being enabled δ more units time, the
maximal delay to take tr is not reached; and (3) stores are the same.

Theorem 1. ∀tcts : tcts, [[tcts]] : tts.

The proof consists in proving for any tcts ∈ tcts, that its semantic interpreta-
tion, [[tcts]], satisfies the four properties of ttss (see Definition 3).
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4.2 Semantics of TCTSs in Terms of Timed Runs

The behavior of a tcts can be expressed by a set of runs (see Definition 5) in
order to reason about real-time systems using temporal logics. Here, according
to the definition of tcts with the set R, we need to extend tess of runs in order
to deal with resetting of clocks. Runs of a tcts are now sequences of tess as in
Definition 8, but with an additional predicate on the names of transitions.

Definition 8. Assuming a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, a timed

execution state of tcts, s, is now a 4-tuple 〈sto, evt,now,σ-reset〉 where :
– stos ∈ S, is the state (or store) reached in s
– evts ∈ L ∪ {start} ∪ {div}, is the event by which s is attained.
– nows ∈ R+ gives the global time in s.
– σ-resets is a function from T to B (or a predicate over T ) that indi-

cates which transitions have had their implicit clock reset when s has been
reached.

Predicates. Assume a given run σ at some position i, σ-enbi(tr) means that the
transition tr ∈ T may be taken at i and takeni(tr) means that tr is taken at i.
Formally :

– σ-enbi(tr)
def
= ∃sto ∈ S,next(stoi, tr, sto)

– takeni(tr)
def
=
∧⎛⎝ evti+1 = lbl(tr)

next(stoi, tr, stoi+1)
∀tr′, σ-reseti+1(tr′) ⇔ (tr, tr′) ∈ R

⎞⎠
Remark. Here, the predicate taken() is more sophisticated than in Section 2.3
because it deals with T and no more with L. Indeed, the first condition of the
conjunction above is not enough because two transitions of T might satisfy it.

Run-Semantics of a TCTS. Now, we are able to express the semantic in-
terpretation of a tcts in terms of runs, as we did in Section 2.3 with tts.

Consider a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, we define below the set of

well formed runs that we call Σ(tcts). Every run σ of Σ(tcts), which expresses
a behavior of tcts, has to fulfill the four following conditions :

Initial timed execution state condition : init(sto0) ∧ now0 ∈
→

Ievt1
In other words, any run must start from an initial state of its underlying tcts

and the taken transition at position 0 has been delayed enough.

Next timed execution state condition :
∀i ∈ N, either ∃tr ∈ T such that takeni(tr) (a discrete transition is taken)

or ¬∃tr ∈ T such that σ-enbi(tr) and stoi = stoi+1 = stoi+2 = ... ∧
σi

div−→ σi+1
div−→ ... (time diverging)

In other words, a next timed execution state can be reached from a state at
position i of σ if either a discrete transition can be taken or a deadlock is met
and time goes to infinity (the tag event div was introduced especially for this
purpose in order to distinguish deadlock from the identity transition).
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Lower bound condition : ∀tr ∈ T , and ∀j ∈ N, if takenj(tr) then

nowj ∈
→
Itr and

∀i ∈ N such that i < j,

if nowj − nowi �∈
→
Itr then σ-enbi(tr) ∧ ¬σ-reseti+1(tr)

In other words, a transition tr can be taken only after being continuously enabled
for enough (means that it is delayed for at least the lower bound of Itr) time
units without being reset by the execution of another transition. The condition

nowj ∈
→
Itr is required in the case where tr is enabled since the start of the

execution. Indeed, in this case the premise nowj − nowi �∈
→
Itr is useless and we

need to know that tr has been continuously enabled even before the position σ0.
It seems that this case has been omitted in [16].

Upper bound condition : ∀tr ∈ T and ∀i ∈ N,

∃j ∈ N such that i ≤ j and nowj − nowi ∈
←
Itr

and if σ-enbj(tr) then takenj(tr) ∨ σ-resetj(tr)

In other words, once enabled, a transition tr is not delayed for too long or it
has been reset meanwhile. A transition cannot be continuously enabled for more
than the upper bound of Itr without being taken or reset.

4.3 Soundness of the Semantic Interpretations

Now we want to establish the soundness of our semantic interpretations by prov-
ing that the runs built straight from a given tcts are the same that those built
from its semantic interpretation in terms of a tts. To do so, we must first define
a semantic interpretation from timed execution state associated to tctss to the
ones associated to their corresponding ttss . So, we introduce the function γ

from Σ(tcts) to Σ([[tcts]]), where states are in S def
= S × (T → R+) (see Section

4.1), i.e. every state associates a clock to every transition.

Definition 9. ∀tcts : tcts, ∀σ ∈ Σ(tcts), ∀i ∈ N, γ(σi)
def
=⎧⎪⎪⎨⎪⎪⎩

〈〈sto0, (λtr ∈ T. δ0σ)〉, start, now0〉 if i = 0,

〈
〈
stoi,

λtr ∈ T.

(
δ if ¬σ-enbi−1(tr) or σ-reseti(tr)
clkγ(σi−1)(tr) + δ otherwise

)〉
, evti, nowi〉 else

where δ
def
= (nowi − nowi−1) and δ0σ is the initial delay of σ, which is now0.

Then, we define the semantics interpretation of runs of tctss in terms of

runs of corresponding ttss as ∀tcts ∈ tcts, ∀σ ∈ Σ(tcts), γ(σ)
def
= ∀i ∈ N, γ(σi).

Theorem 2. ∀tcts : tcts, ∀σ : N→ tes, σ ∈ Σ(tcts) ⇔ γ(σ) ∈ Σ([[tcts]]).

5 Mechanizing and Reasoning with a Proof Assistant

We explain in this section why we have implemented during the last two years
the formalization work presented in this paper in an interactive theorem prover
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based on type-theory. First of all, the purpose is to validate with a very high
level of confidence all the theorems about semantic interpretations of tcts that
we have presented previously. Moreover, using formal fundational proofs can also
be useful to go beyond model-checking techniques and capabilities [13], when it
is needed for example to check parameterized systems. To make that practical,
we have deeply embedded in Coq a timed linear temporal logic 4 (called timed-
SELTL) which is an extension of the State/Event linear temporal logic (SE-LTL)
[9] since it embeds time intervals within temporal operators, together with a proof
methodology dedicated to the formal certification of real-time systems.

Definition 10. A timed-SELTL formula f is defined inductively as follows
(where ϕS is a predicate over S, e is label of L and I is a time interval) :

f ::= ϕS | e |
.¬ f | f

.
∧ f | f UIf

Remarks. As usual, we define the three temporal operators ♦ (eventually),

� (always) and W (weak until) as ♦If
def
= � UIf , �If

def
= ¬(� UI¬f) and

f1 WIf2
def
= (f1 UIf2)

.
∨ (�←

I
f1), where UI is the until operator constrained with

a time interval. We introduce as well the connectors
·⇒ and

.
∨. The semantics

of this logic is defined over our formalization of runs and its implementation is
available in our Coq framework.

Then, in order to reason and prove the correctness of real-time specifications
modelled as tctss , we have embedded in our Coq framework a proof methodol-
ogy very close to the one proposed in [15], based on the same class of real-time
properties they consider (bounded response, bounded unless and bounded invari-
ance properties) expressed as timed-SELTL formulæ. To do so, we have estab-
lished several Coq theorems such as the two given below, where p, q, r and Φ are
predicates over S. These theorems provide efficient proof rules since they enable
us to certify in Coq real-time specifications expressed as timed-SELTL formulæ
over runs (their conclusion), but reasoning locally (thanks to their premises) on
tctss with Hoare triple and logical formulae. We have also proved transitivity
and disjunction lemmas which are essential to make the method usable.

(1) ∀s, p(s) ⇒ ¬enbs(tr)
(2) ∀s, p(s) ⇒ Φ(s)
(3) ∀tr′ �= tr, {Φ} tr′ {Φ}
(4) ∀s, Φ(s) ⇒ q(s)
(5) ∀s, Φ(s) ∧ enbs(tr) ⇒ r(s)

∀σ, ∀i, σ |=i p
·⇒ q W→

Itr
r

(1) ∀s, p(s) ⇒ Φ(s) ∨ q(s)
(2) ∀s, Φ(s) ⇒ enbs(tr)
(3) ∀s, ∀tr′ �= tr, Φ(s) ∧ enbs(tr

′)
⇒ min(Itr′) > 0 ∧ (tr′, tr) �∈ R

(4) ∀tr′ �= tr, {Φ} tr′ {Φ ∨ q}
(5) {Φ} tr {q} ∧max(Itr) <∞

∀σ, ∀i, σ |=i p
·⇒ ♦←

Itr
q

6 Conclusions

We have presented a mathematical model for specifying and reasoning over real-
time systems. This model enables us to specify some very subtle timed-semantic

4 Carlos D.Luna has defined in Coq the TCTL tree logic :
http://coq.inria.fr/pylons/contribs/view/CTLTCTL/v8.4

http://coq.inria.fr/pylons/contribs/view/CTLTCTL/v8.4
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differences of fine-grained constructs (see Section 1.1) allowed by modern real-
time component-based languages such as fiacre. Also, we provide logical and
functional definitions to give semantic interpretations of real-time systems spec-
ified as tctss in terms of well known formalisms that allow to reason over their
timing and temporal aspects. All definitions and theorems presented in this pa-
per have been fully formalized and established in the Coq proof assistant 5.

We stress also in this conclusion that we do not address the whole fiacre
language [6] semantics in this paper. However, we consider the introduced model
of tcts (together with [12]) as the semantic kernel of fiacre and the corner-
stone of future research and developments. Transition systems with real-time
constraints and priorities are very complicated and reasoning about them is te-
dious. But on the other hand such systems are widely used in real-life embedded
systems, especially in spatial and avionics domains, which is a good motivator
for developing a fully mechanized framework. This makes the presented work a
very useful starting point for further theoretical or applied developments.

Future work will consist in certifying through the use of Coq some existing
patterns used in the design of avionic embedded applications, such as the periodic
controller presented in [8]. Also, an application of this work is to certify within
Coq the translation of timed temporal formulæ into fiacre observers [1]. An-
other envisioned application of our semantic framework concerns the verification
of transformations between timed formalisms such as the one presented in [5], or
model simplification, as for example, the flattening operator of component-based
languages. At last, we are convinced that this work together with [12] could be
a good basis for the certified compilation [19] of the fiacre language.
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7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
(Coq’Art: The Calculus of Inductive Constructions). Texts in Theoretical Com-
puter Science. Springer (2004)

5 Available at http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13.

http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13


120 M. Garnacho, J.-P. Bodeveix, and M. Filali-Amine

8. Bodeveix, J.-P., Filali, M., Garnacho, M., Spadotti, R., Yang, Z.: On the Mecha-
nization of an AADL Subset. Science of Computer Programming: special issue on
Architecture Design Language (submitted, 2013)

9. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based
Software Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)

10. Emerson, E.A., Halpern, J.Y.: Decision Procedures and Expressiveness in the Tem-
poral Logic of Branching Time. In: STOC, pp. 169–180 (1982)

11. The FIACRE Specification Language for Real-Time Concurrent Systems,
http://projects.laas.fr/fiacre/

12. Garnacho, M., Bodeveix, J.-P., Filali, M.: Mechanized Semantics of Concurrent
Systems with Priorities. IRIT Research Report–2013-16–FR (2013),
http://www.irit.fr/~Manuel.Garnacho/Publications/MechPrio.pdf

13. Geuvers, H., Koprowski, A., Synek, D., van der Weegen, E.: Automated Machine-
Checked Hybrid System Safety Proofs. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 259–274. Springer, Heidelberg (2010)

14. Hale, R., Cardell-Oliver, R., Herbert, J.: An Embedding of Timed Transition Sys-
tems in HOL. FMSD 3(1/2), 151–174 (1993)

15. Henzinger, T.A., Manna, Z., Pnueli, A.: Temporal Proof Methodologies for Real-
time Systems. In: POPL, pp. 353–366 (1991)

16. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed Transition Systems. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 226–251. Springer, Heidelberg (1992)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
18. The ISABELLE System, http://isabelle.in.tum.de/
19. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In: 33rd Symposium Principles of Programming Languages,
pp. 42–54. ACM Press (2006)

20. Paulin-Mohring, C.: Modelisation of Timed Automata in Coq. In: Kobayashi, N.,
Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg
(2001)

21. Pnueli, A.: The Temporal Logic of Programs. In: FOCS, pp. 46–57 (1977)
22. Rushby, J.: Mechanized Formal Methods: Progress and Prospects. In: Chandru, V.,

Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 43–51. Springer, Heidelberg
(1996)

http://projects.laas.fr/fiacre/
http://www.irit.fr/~Manuel.Garnacho/Publications/MechPrio.pdf
http://isabelle.in.tum.de/


Quantitative Analysis of AODV

and Its Variants on Dynamic Topologies
Using Statistical Model Checking
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Abstract. Wireless Mesh Networks (WMNs) are self-organising ad-hoc
networks that support broadband communication. Due to changes in
the topology, route discovery and maintenance play a crucial role in
the reliability and the performance of such networks. Formal analysis of
WMNs using exhaustive model checking techniques is often not feasible:
network size (up to hundreds of nodes) and topology changes yield state-
space explosion. Statistical Model Checking, however, can overcome this
problem and allows a quantitative analysis.

In this paper we illustrate this by a careful analysis of the Ad hoc On-
demand Distance Vector (AODV) protocol. We show that some optional
features of AODV are not useful, and that AODV shows unexpected
behaviour—yielding a high probability of route discovery failure.

1 Introduction

Route finding and route maintenance are critical for the performance of networks.
Efficient routing algorithms become even more important when mobility of net-
work nodes lead to highly dynamic and unpredictable environments. The Ad hoc
On-Demand Distance Vector (AODV) routing protocol [15] is such an algorithm.
It is widely used and particularly designed for Wireless Mesh Networks (WMNs),
self-organising ad-hoc networks that support broadband communication.

Formal analysis of routing protocols is one way to systematically analyse
protocols for flaws and to present counterexamples to diagnose them. It has
been used in locating problems in automatic route-finding protocols, e.g. [1,4].
These analyses are performed on tiny static networks (up to 5 nodes). However,
formal validation of protocols for WMNs remains a challenging task: network size
(usually dozens, sometimes even hundreds of nodes) and topology changes yield
an explosion in the state space, which makes exhaustive model checking (MC)
techniques infeasible. Another limitation of MC is that a quantitative analysis
is often not possible: finding a shortcoming in a protocol is great but does not
show how often the shortcoming actually occurs.

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 121–136, 2013.
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Statistical model checking (SMC) [19,18] is a complementary approach that
can overcome these problems. It combines ideas of model checking and simula-
tion with the aim of supporting quantitative analysis as well as addressing the
size barrier. SMC trades certainty for approximation, using Monte Carlo style
sampling, and hypothesis testing to interpret the results.

In this paper we demonstrate that SMC can be used for formal reasoning of
routing protocols in WMNs. We perform a careful analysis of different versions
of the AODV protocol. In particular, we analyse how dynamic topologies can
affect the protocol behaviour. In other words, we analyse the performance of
the protocol while the network topology evolves. We show that some optional
features provided by AODV should be avoided since they affect the performance
of the protocol. Moreover, we show that in some scenarios the behaviour of
AODV is not as intended yielding a high probability of route discovery failure.
When possible we suggest improvements of the protocol.

The paper is organised as follows: in Sect. 2 we give an overview of AODV,
present optional features such as the resending of route requests, and sketch
the encoding of AODV in SMC-Uppaal, the statistical extension of Uppaal. In
Sect. 3 we describe the mobility model, which is used for our analysis of AODV.
Sect. 4 discusses the experiments performed, the main contribution of this paper:
(i) We show that a single mobile node can have a massive impact on the success
of route discovery. Moreover we show that some options of AODV should not
be used in combination, unless the protocol specification is adapted (changed).
(ii) A second category of experiments reveals a surprising observation: adding
“noise” (for example an additional data packet) to a network can increase the
success of route discovery. (iii) The third category discusses the consequences of
different speeds of mobile nodes. The paper closes with a discussion of related
work in Sect. 5 and a short outlook in Sect. 6.

2 AODV, Its Variants and Their Uppaal Models

2.1 The Basic Model

The AODV routing protocol [17] is a widely used routing protocol, particularly
tailored for WMNs. It is currently standardised by the IETF MANET working
group and forms the basis of new WMN routing protocols, including HWMP in
the upcoming IEEE 802.11s wireless mesh network standard [12].

AODV is a reactive protocol, meaning that a route discovery process is only
initiated when a node S in the network has to send data to a destination D for
which it does not have a valid entry in its own routing table. The route discov-
ery process starts with node S broadcasting a route request (RREQ) message,
which is received by all nodes within S’s transmission range. If a node, which
is different to the destination, receives a RREQ message and does not have a
valid entry for the destination in its routing table, the request is forwarded by
re-broadcasting the RREQ message. During this forwarding process, the inter-
mediate node updates its routing table and adds a “reverse route” entry with
destination S into its routing table, indicating via which next hop the node S can
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be reached, and the distance in number of hops. To avoid unnecessary message
sending each RREQ has a unique identifier which allows nodes to ignore RREQ
messages that they have handled before.

As soon as the RREQ is received by the destination itself or by a node that
knows a valid route to the destination, a route reply (RREP) is generated. In
contrast to RREQ messages, a RREP message is unicast, i.e., it is only sent to
a single node, not to all nodes within transmission range. The RREP message
travels from its generator (either D or an intermediate node knowing a route
to D) back along the established route towards S, the originator of the RREQ
message. All intermediate nodes on the selected route will process the RREP
message and, in most cases, forward it towards S. However, there are scenarios
where RREP message are discarded (see below). By passing a RREP message
towards S, a node adds a “forward route” entry to its routing table.

The route discovery process is completed when the RREP reaches node S; an
end-to-end route from S to D has been established, and data packets can start to
flow. If any link breaks down (e.g. by a node moving out of transmission range),
the node that detects the break broadcasts a route error (RERR) message.1 All
notified nodes invalidate their routing table entries that use the broken link and
forward the RERR message if necessary.

Full details can be found in RFC 3561 [15], the de facto standard of AODV.

2.2 Variants of AODV

The specification of AODV [15] offers optional features, which yield different
variants of the routing protocol. One aim of this paper is to compare versions of
AODV with different features turned on.

Destination Only (D) Flag. Each RREQ message contains a field called
destination only flag. If the value of this Boolean flag is true, it indicates that
only the destination node is allowed to respond to this RREQ. That means that
the RREQ travels through the entire network until it reaches the destination.
Only then a reply is sent back. By this a bi-directional link between the source
and the destination is (usually) established.

Resending a Route Request. The basic version of AODV, as presented in the
previous section, suffers the problem that some routes, although they do exist,
are not discovered. Reasons for route discovery failure can be message transmis-
sion failures (the receiver of a unicast message has moved out of transmission
range) or the dropping of RREP messages, that should be forwarded. With re-
spect to the latter, the problem is that a node only forwards a RREP message if
it is not the originator node, and it has created or updated a routing table entry
to the destination node described in the RREP message. [15]

1 Following the RFC, a node uses precursor lists to store those nodes that are interested
in some particular routes—when sending an RERR message only those neighbours
are informed. However, precursor lists do not contain all neighbours that are inter-
ested in a particular route (e.g. [8]); that is why we model an improved version of
AODV where RERR messages are broadcast.
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Fig. 1. Route Discovery Failure

An example for route discovery failure, taken from [10], is sketched in Fig. 1.2

On the 4-node topology depicted in Part (a) nodes S and T , resp., initiate a route
discovery process to search for a route to D. The messages travel through the
network and reach the destination D (Part (b)). We assume that RREQS�D, the
request stemming from S, reaches node D first. In Part (c), D handles RREQS�D,
creates an entry for S in its routing table3 and unicasts a RREP message to A.
Node A updates its routing table (creates an entry for D) and forwards the
message to the source S. In Part (d), D handles RREQT�D, creates an entry
for T in its routing table and unicasts a RREP message to A. Since RREPT�D

does not contain new information for A (a route to D is already known), node
A does not update its routing table and, according to the specification, will not
forward the RREP message to the source T . This leads to an unsuccessful route
discovery process for node T .

The solution proposed by the RFC is to initiate a new route discovery process,
if no route has been established 2 seconds after the first request was sent; the
number of retries is flexible, but the specification recommends one retry only. In
the example node T would initiate another route request; node A, which receives
the RREQ message, will immediately unicast a RREP message back to T .

Local Repair. In case of a link break, the node upstream of that break can
choose to repair the link locally if the destination was no farther away than a
predefined number of hops (the number is specified by the user and often depends
on the network size). When a node receives a RREP message or a data packet
destined for a node for which it does not have a valid route, the node buffers
the message and initiates a new route discovery process. As soon as a route has
been re-established, the buffered message is sent.

2.3 Modelling AODV and Its Variants in Uppaal

Table 1 lists all variants of AODV that are modelled, analysed and compared in
this paper. The analysis is performed by SMC-Uppaal, the statistical extension

2 A similar example has been published at the IETF mailing list in 2004;
http://www.ietf.org/mail-archive/web/manet/current/msg05702.html .

3 Routing tables are not presented in the figure.

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
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Table 1. Different Variants of AODV

name optional features remark

basic none follows description of Sect. 2.1

resend resending RREQ “standard” configuration of AODV

dflag D-flag the flag is set for all route discovery processes

dflag res D-flag and resending this configuration has a flaw (see below)

dflag res’ D-flag and resending not following the RFC literally, but flaw fixed

repair local repair use local repair

of Uppaal [3]. The modelling language for SMC-Uppaal is the same as for “stan-
dard” Uppaal, namely networks of guarded, timed and probabilistic automata.

Our 6 models of (all variants of) AODV are based on a single untimed Up-
paal model that was used to analyse some basic qualitative properties [7].4 Since
we are interested in a quantitative analysis of the protocol, the model had to
be equipped with time and probability. The latter is needed to model dynamic
topologies and mobile nodes. Hence, the (untimed) model was significantly re-
designed and extended to include timing constraints on sending messages be-
tween nodes. Both the untimed and the timed model were systematically derived
from an unambiguous process-algebraic model that models the intention of the
RFC and does not contain contradictions. Communication between nodes had
to be modelled so that the unicast behaviour of AODV was correctly rendered
using SMC-Uppaal’s (only) broadcast mechanism.

Each node of a network is modelled by two timed automata: the first models
a message queue that buffers received messages, the other models the AODV
routine. This main routine consists of ∼ 20 locations, 1 clock measuring the
sending time, and a complicated data structure with approx. 10 variables. The
latter includes an array rt of length N modelling the routing table, where N is
the number of nodes in the network. The overall structure of the main automaton
is depicted in Fig. 2(a), it consists of 7 regions. If the automaton is in the region
Idle, which consists of one location only, then AODV does not perform any
action in the moment and the automaton is ready to receive messages. This
happens in Rec if there is at least one message buffered. The regions Rreq,
Rrep, Rerr and Pkt perform actions depending on the type of the received
message. Rreq for example handles route request messages. Init initiates the
transmission of data injected by the user as soon as the route is established.

Message handling often contains actions for updating the internal data (such
as routing tables) and sending of a message. Fig. 2(b) gives an impression of such
an update by showing a snippet of the automaton modelling the forwarding of
a RREQ message.

Message sending is the only action that takes time: according to the spec-
ification of AODV [15], the most time consuming activity is the communica-
tion between nodes, which takes on average 40 milliseconds; all other times are
marginal and assumed to be 0.

4 Our models can be found at http://www.hoefner-online.de/formats2013/ .

http://www.hoefner-online.de/formats2013/
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(b) Detail: updating data and forwarding a message

Fig. 2. Overall structure of the SMC-Uppaal model of AODV

Our models cover all core components of AODV. However, we encoded one
main assumption: whenever a message is sent and the receiver of the message
is within transmission range, the message will be received. In reality message
loss during transmission happens regularly, for example due to communication
failures or packet collisions. This loss could easily be modelled using Uppaal’s
broadcast mechanism in combination with probabilistic automata. However, this
abstraction enables us to interpret a failure of guaranteed message delivery as an
imperfection in the protocol, rather than as a result of a chosen formalism not
allowing guaranteed delivery. Due to lack of space we cannot give more details
about the modelling; more details about the model basic can be found in [11].

Next to the automata modelling the behaviour of the node, two additional
automata are needed: the first is a scenario generator initiating the route discov-
ery process, i.e., it forces one of the nodes to generate and broadcast a RREQ
message. The second automaton models the mobility within the network.

3 Modelling Dynamic Topologies

To analyse quantitative properties of AODV and to compare different variants
in a dynamic network, we use a topology-based mobility model [9]. It reflects the
impact of mobility on the network topology and distinguishes static and mobile
nodes; only connections to and from mobile nodes can change. Each movement
is characterised either by adding a new link to or by removing an existing link
from the connectivity graph. Whenever a mobile node M enters the transmission
range of a node A, a new link is established between M and A. If M leaves the
transmission range, the link between these two nodes is removed.

To decrease the number of possible topology changes due to a large number
of mobile nodes, we set up the topology as follows: the network consists of 16
static and one mobile node.5 The static nodes form a 2-dimensional rectangular
grid with grid size 1, i.e. the smallest distance between two nodes is 1 unit
(cf. Fig. 3(a)); the transmission range is set to 1.25. In reality, 1 unit might
correspond to 100 metres, the transmission range to 125 m, a realistic value.

5 We also performed experiments with more than one mobile node; but these experi-
ments do not show new (odd) results.
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(a) grid with 16 nodes (static topology)
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(b) node moving between zones
(transmission ranges are indicated)

Fig. 3. Topology-based mobility model

The transmission ranges of the nodes Aij (1 ≤ i, j ≤ 4) split the grid into 102
different zones. The different zones are shown in Fig. 3(a). When a mobile node
M moves within a zone, the exact position of the node does not matter, since
it does not enter or leave the transmission range of any node—the connectivity
graph stays the same. For example any node that is within the central zone is
connected to nodes A22, A23, A32 and A33 (cf. Fig. 3(b)) When M transits the
border of a zone, it triggers a network topology change. Only the change of the
connectivity graph is considered, other details such as the exact direction and
angle of transmitting are not needed for characterising the dynamic network. In
the example given in Fig. 3(b), M moves to the left and enters the transmission
range of A21. Next, in fainter colours, the node enters transmission range of A31

and leaves the range of A23.
The topology-based model captures the topology changes as a Markovian

transition function prob(T1, T2), that assigns to two topologies T1 and T2 a
transition probability. The probability of moving from one zone to a neighbouring
zone is based on the ratio of the length the two zones share compared to the
overall border length of the zone in which the node is in. For instance, the
probability of transiting from the central segment of the grid to any adjacent
zone is 1

8 , due to equal segment lengths.
Our model sets the speed of the mobile node in such a way that the node has

to change zones every 35–45 time units, where the probability to leave the zone
at time t is equally distributed in the interval.

The zones can be grouped by their shapes; each shape forms an equivalence
class. The Uppaal model reflects this observation. Each mobile node is modelled
by a separate timed and probabilistic automaton; each location of the automaton
characterises exactly one equivalence class. (See [9] for details.)

4 Experiments

Our experiments analyse the impact of mobile nodes and dynamic topologies on
AODV; they are grouped into several categories: the first category analyses the
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probability of route establishment for a single route discovery process, i.e., an
originator node oip is searching for a route to dip; the second category analyses
the likelihood of route establishment between oip and dip when additional route
discovery processes occur; the last category changes the speed of the mobile node.

Before discussing the experiments, we briefly describe some foundations of
statistical model checking. SMC [19,18] combines ideas of model checking and
simulation with the aim of supporting quantitative analysis as well as addressing
the size barrier that prevents useful analysis of large models. By trading certainty
for approximation, it uses Monte Carlo style sampling, and hypothesis testing to
interpret the results. The sampling follows the probability distribution defined by
the non-deterministic and probabilistic automata. Parameters setting thresholds
on the probability of false negatives (α) and on probabilistic uncertainty (ε)
can be used to specify the statistical confidence on the result. SMC-Uppaal
computes the number of simulation runs needed by using Chernoff-Hoeffding
bounds, which is independent of the size of the model; it generates an interval
[p− ε, p+ ε] for estimating p, the probability of CTL-property ψ holding w.r.t.
the underlying probability distribution.

For most of our experiments we use “only” a confidence level of 95% and allow
a large probabilistic interval of 10%—this is the default setting of SMC-Uppaal
and means that both α and ε are set to 5%. When using this set up, SMC-Uppaal
simulates 738 runs to determine the probability of a property.

Experiments with α= ε= 1% (26492 runs) are also feasible with a standard
desktop machine, but require much more time. While an experiment using a
confidence level of 95% takes only a couple of minutes; an experiment using a
level of 99% takes more than 3 hours. We illustrate this by our first experiment.

4.1 Single Route Discovery Process

Our first experiment is based on 17 nodes; 16 forming a grid (Fig. 3(a)) and one
mobile node M which is located in the middle of the grid at the beginning of
the experiment. After a delay between 140 and 160 time units (the time that
the mobile node needs to perform four movements) the first RREQ message is
broadcast. By this delay, the location of M is random at the point the route
discovery process is initiated.

In the experiment A11 searches for a route to A44, that means it initiates
a route discovery process. We are interested whether (and at which time) A11

establishes a route to A44. In Uppaal syntax this reachability property is

Pr[<=2000](<>A11.rt[A44].nhop!=0) . (1)

Checking this query determines the probability (Pr) satisfying the CTL-path
expression <>(A11.rt[A44].nhop!=0) with a time bound of 2000 time units;
we choose this bound as a conservative upper bound to ensure that the analyser
explores paths to a depth where the protocol is guaranteed to have terminated.
The term ip.rt[dip] refers to a route to dip stored inside the routing table of
node ip. Whenever the next hop nhop is set (�= 0), a route has been established.

The results are summarised in Table 2. From an experimental point of view,
the table shows that a confidence level of 99% does not yield much better results



Quantitative Analysis of AODV Using Statistical Model Checking 129

Table 2. Single Route Discovery Ratio (confidence level 95% and 99%)6

probability time Uppaal
model conf. level route discovery route discovery running time

1. basic 95% [55.4336,65.4336] 595.67 4m 18s
2. basic 99% [59.7806,61.7806] 597.52 157m 44s
3. resend 95% [95.00,100.00] 847.04 6m 03s
4. resend 99% [98.9623,100.00] 836.87 209m 43s
5. dflag 95% [54.4851,64.4851] 597.50 4m 52s
6. dflag 99% [59.5655,61.5655] 597.63 164m 21s
7. dflag res 95% [64.5122,74.5122] 698.70 7m 47s
8. dflag res 99% [68.2133,70.2133] 688.79 249m 12s
9. dflag res’ 95% [81.3144,91.3144] 822.89 7m 08s

10. dflag res’ 99% [83.4104,85.4104] 807.43 230m 57s
11. repair 95% [59.7696,69.7696] 607.86 7m 31s
12. repair 99% [63.5742,65.5742] 606.53 165m 11s

than a confidence level of 95%; but the running times of Uppaal (last column)
are much higher (in average by a factor of 33.6).

Next to the running times of Uppaal the table lists the model (first column),
the probability of a successful route discovery (third column) and the average
time needed to establish a route between A11 and A44 (fourth column). It is no
surprise that the models basic and dflag yield the same results—in this setting
they behave identically. Furthermore, it is obvious that the probability for suc-
cessful route discovery increases when using the resend option, while at the same
time the discovery time increases as well. However, the experiments reveal three
surprising and unexpected observations concerning AODV.

Observation 1. A single mobile node can already have a massive impact on
the success of route discovery. In our setting the probability of route discovery
can decrease by about 40%.

A32 A33 A34

A44

M

Fig. 4. Mobile node shortens
distance

Using the same setting without mobility (e.g.,
the mobile node does not exist or keeps sit-
ting in the centre of the grid), the probability
of route discovery success is 100%. The success
rate in our experiment using AODV basic, is
only 60.78±1% (Row 2 of Table 2). The setting
of the experiment guarantees that the RREQ
reaches the destination A44 and that A44 will

6 We use a standard computer equipped with a 3.1GHz Intel Pentium 5 CPU, 16GB
memory, running a Mac OS operating system. As SMC-tool, we use SMC-Uppaal,
the Statistical extension of Uppaal (release 4.1.11) [3], which supports both timed
and probabilistic systems. Timing aspects are heavily needed to model AODV (cf.
Sect. 2); the topology-based mobility model relies on probabilistic choices to deter-
mine the movement of the node.
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generate a route reply. It means that the route reply, which is unicast back via
a previously established path gets lost. Since the experiment consists of a single
request only, RREP messages are not dropped and situations as the one sketched
in Fig. 1 cannot occur. As a consequence, failure in route discovery means that
a RREP message could not be unicast, which means that the established route
from A44 to A11 uses the mobile node.

At first glance it seems to be impossible that 40% of all established routes
use the mobile node as intermediate hop. But a closer analysis on time interval
when a route for A11 is discovered shows that this is in fact the case since a route
via a mobile node can shorten the distance between originator and destination.
In general, AODV prefers shorter routes, hence it would choose the route via
the mobile node M . Fig. 4 illustrates how a mobile node decreases the distance
between A32 and A44 from 3 hops to 2. The lesson learned is that static nodes
should be set up in a way that it is unlikely for a mobile node to shorten the
distance, or static and mobile nodes should be distinguished and routes via static
nodes only should be preferred, even if they are longer.

Observation 2. The model dflag res does not yield much improvement w.r.t.
route discovery compared to basic and is much worse than using resend alone.

The chance that a route is established by the first route discovery process is
around 60% (cf. basic). In case no route is established (chance ∼ 40%), a new re-
quest is issued; the chance that this second request yields a route establishment
between A11 and A44 is again 60%. Putting these numbers together the success
rate for dflag res should be 0.6 + 0.4 · 0.6≈ 0.84 = 84%. Surprisingly, the prob-
ability determined by our experiments is only around 70% in case of dflag res
(Row 7 and 8 of Table 2). That means that many RREP messages are lost (using
the same reasoning as before, no RREQ message is lost). The explanation lies
in the RREP-forwarding mechanism of AODV. As explained in Sect. 2, RREP
messages are not forwarded if they do not contain new information. Let us now
assume that the first RREQ reaches the destination A44, which unicasts a RREP
message to the next hop on the route back to A11, say to node A34. This reply
gets lost afterwards. Since the resend-option is set, the originator issues another
request, which also reaches A44. In case the route to A11 is not changed in A44’s
routing table, A44 sends another RREP message to A34. This message does not
contain new information and is dropped by the intermediate node.

To repair this flaw, we change the RREP-generation procedure. Whenever a
RREP message is generated, a counter (the sequence number), which indicates
the freshness of the message is incremented.7 This change is implemented in
dflag res’ ; the evaluation results for this model are now as expected.

Observation 3. AODV’s option of intermediate route reply should be used.

Let us have a look at the models resend and dflag res’. The difference between the
two models is that in the former model intermediate nodes are allowed to reply.

7 In fact AODVv2 and LOADng, the successor protocols of AODV (still under devel-
opment), implement exactly this variant.
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Looking at the results, we notice a dramatic difference in the likelihood of route
discovery. In the model resend the second request is followed by the generation
of more than one RREP message. In fact, each node that established a route to
A44 during the first RREQ-RREP-cycle (before the reply was lost), will generate
a RREP message. Due to this, route establishment is guaranteed. In contrast,
there is only one RREP message for each and every request in dflag res’. This
observation clearly indicates that intermediate route reply is a useful feature.
Interestingly, there seems to be the tendency of preferring protocols without
this feature: the two successors of AODV, AODVv2 [16] and LOADng [6] follow
this philosophy and set the D-flag as default—if at all, they allow intermediate
route reply as an optional feature.
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Fig. 5. Probability of route-establishment

The first set of experiments con-
sidered a route discovery from
A11 to A44, the largest distance
a packet can travel in our set
up. We expected to see the clear-
est results by using this distance.
However, we also performed ex-
periments with all other pairs of
nodes. Fig. 5 summarises some
results. It illustrates the proba-
bility of route-discovery (y-axis)
depending on the distance be-
tween originator and destination
(x-axis). Of course, the larger
the distance between originator
and destination, the smaller the
chance of route establishment. Interestingly, there is a clear drop down at a dis-
tance of four nodes. It seems that from this point on resending guarantees the
success. Moreover, the graph illustrates that exhaustive MC cannot help: MC is
usually limited to topologies of up to 6 nodes, distances of 5 hops and more are
not possible if one considers a non-linear topology.

4.2 Two Independent Route Discovery Processes

In order to evaluate the performance of variants of AODV under different net-
work (traffic) load, we check the probability of route discovery when two route
discovery processes are performed in parallel. For this second set of experiments,
we are again interested in a route from A11 to A44. However, shortly (35-45 mil-
liseconds) after the packet is handed over to A11, a second data packet is injected
at another node, destined for some destination; in fact we did experiments for
all destinations, but present only two observations—due to lack of space.

Observation 4. RREP messages are dropped more often than expected.
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Table 3. Two route discovery processes looking for the same destination A44

distance orginator class probability
between orig. of 2nd request (avg.)

1 {A12, A21} nodes at border 43.36%

2 {A13, A31} nodes at border 17, 75%
{A22} inner node 13.28%

3 {A14, A41} nodes at border 43, 10%
{A23, A32} inner nodes 29.74%

4 {A24, A42} nodes at border 71, 61%
{A33} inner node 47.29%

5 {A34, A43} nodes at border 80.42%

We consider the scenario where the second request is sent from A22 to A44.
Since some nodes drop RREP messages (cf. Sect. 2.2), the probability of route
establishment between A11 and A44 should decrease (compared to the 60% of
Table 2). However, SMC-Uppaal shows that the probability of A11 finding a route
to A44 is in the probability interval [8.27913, 18.2791], i.e., a route discovery is
unlikely. More results for the basic model are summarised in Table 3, grouped
by the distance between the two originators. The table lists only the originator
of the second route request; both the originator (A11) of the first request and
the destination (A44) of both requests are fixed.

There is a correspondence between the success of route discovery and the
distance between the two originators; moreover inner nodes have more influence
on route discovery than nodes lying on the border of the network. This shows that
the example of Fig. 1 occurs regularly. However, if the second originator oip2 is
far away from the first originator A11 no RREP message is dropped, since a route
between oip2 and A44 is established before the RREQ from A11 reaches oip2. In
the case of oip2 ∈ {A24, A42, A34, A43}, the probability even increases. This is in
line with Observation 3: when intermediate route reply is enabled, more RREP
message are generated and the probability of route discovery success grows.

Observation 5. “Busy” mobile nodes increase the chance of route discovery.

One could rephrase this observation to “adding noise sometimes increases per-
formance”. At first glance it seems that adding additional network traffic—here
a second route discovery processes—should not increase performance. But, let
us look the scenario where the first data packet needs to be send from A11 to
A44 (as before); the second packet is sent from A31 to the mobile node M . While
handling the second RREQ most of the nodes will not learn about A44 and A11.
However it turns out that in the basic model, the probability of route discovery
increases from around 60% to 72%. One reason is that the mobile node handles
the request and generates a RREP message. While doing this it cannot handle
the first RREQ; in case the first RREQ is sent to M and it is handling a different
messages (is busy), the message is buffered. If the message is buffered for a while,
the chance that the RREQ from A11 reaches A44 via a path without M as an
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Table 4. different mobile node speed and impact on AODV variants

model probabilityfast probabilitymoderate probabilityslow

basic [48.5230,58.5230] [55.4336,65.4336] [61.9377,71.9377]

resend [94.8645,100.00] [95.00,100.00] [94.3225,100.00]

dflag [50.0136,60.0136] [54.4851,64.4851] [63.2927,73.2927]

dflag res [60.1762,70.1762] [64.5122,74.5122] [70.6098,80.6098]

dflag res’ [75.8943,85.8943] [81.3144,91.3144] [85.5149,95.5149]

repair [54.0786,64.0786] [57.6016,67.6016] [65.5962,75.5962]

intermediate hop, increases. Hence not the shortest, but the “fastest” route is
established from A44 to A11; this route is then used to send the RREP, since it
does not use the mobile node as intermediate hop, the RREP is not lost.

4.3 Influence of Speed of Mobile Nodes

In our experiments the topology changes within a time frame of 35 to 45 mil-
liseconds; This also determines the speed of the mobile node. One might argue
that the speed of the mobile node affects our analysis and that other speeds
could yield different behaviour. As shown in Table 4, this is not the case—the
probabilities slightly change, but stay in the same ball park. Moreover the re-
lationship between the different variants stays the same; a variant that is more
reliable with a fast mobile node, is also more reliable with a slower node. For
this category of experiments we enforce a topology change within the interval
[25, 35] (fast), [35, 45] (moderate), and [95, 105] (slow), respectively.

5 Related Work

Model checking has been used to analyse routing protocols in general and AODV
in particular. For example, Bhargavan et al. [1] were amongst the first to use
model checking—they used the SPIN model checker—on a draft of AODV,
demonstrating the feasibility and value of automated verification of routing pro-
tocols. Musuvathi et al. [14] introduced the CMC model checker primarily to
search for coding errors in implementations of protocols written in C. They used
AODV as an example and, as well as discovering a number of errors, they also
found a problem with the specification itself, which has since been corrected.
Chiyangwa and Kwiatkowska [4] used the timing features of UPPAAL to study
the relationship between the timing parameters and the performance of route
discovery. None of these studies performed a quantitative analysis of AODV.

Statistical model checking techniques [19,18] are rather new. So far they have
been used in a couple of case studies. Bulychey et al. [2] for example apply
the SMC-Uppaal to an analysis of an instance of the Lightweight Media access
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Control (LMAC) protocol; by this they are able to analyse ring topologies of
up to 10 nodes.8 Applications of SMC within biological systems are discussed
in [5,13]. To the best of our knowledge, SMC was not used for the analysis of
routing protocols so far—except in [11], where SMC-Uppaal is used to compare
AODV and DYMO and to illustrate that even large topologies (up to 100 nodes)
can be analysed by SMC. Our experiments are in line with this. However, it is
unique in the sense that we carefully study variants of AODV.

6 Conclusion and Future Work

The aim of this paper has been a careful (quantitative) analysis of AODV and
its variants using statistical model checking techniques. By this, we have made
surprising observations on the behaviour of AODV. We have shown for exam-
ple that some optional features (D-flag) should not be combined with others
(resending). Another result shows that a well-known shortcoming occurs more
often than expected and has a tremendous effect on the success of route estab-
lishment. One challenge we faced while performing our experiments has been the
interpreting the data.

The results were often surprising and hard to interpret, particularly when
they indicate odd behaviour. Unfortunately SMC-Uppaal does not store traces
during analysis, thus it is difficult to recover counterexamples to explain the
observations. At the moment counter examples are constructed “by hand” by
formulating more probing queries beyond looking at overall performance. This
suggests that more powerful statistical analysis such as “rare event simulation”
in combination with multiple queries could be used to compile better evidence.

Next to this careful analysis, we also showed that SMC is a suitable tool for
analysing WMNs. In this setting classical MC was limited to topologies with up
to 6 nodes and therefore having a realistic mobility model was not possible.

Future work will be a continuation of our case study. In particular we want
to look at topologies of up to 100 nodes—it has been shown that an analysis
of such networks is possible [11]. However, choosing the right scenario is crucial
here: Since one cannot analyse all scenarios, one has to pick the right topologies
and the right mobility model(s); but in some sense finding the correct setting
becomes a “stab in the dark”. We hope that our previous experience helps to
set the experiments right.
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Abstract. Discounted Computation Tree Logic is a logic that measures
utility (as a real value in the interval [0,1]) instead of discrete truth
(only 0 or 1). It is able to express properties that give more weight to
the near future than to the far future. This article extends earlier work
on DCTL with time, to continuous-time Markov chains and continuous-
time Markov decision processes. It presents model checking algorithms
for the two possible semantics of DCTL.
A long version of this article containing full proofs is available as [4].

1 Introduction

In what context is it appropriate to announce: “It is going to rain”? Unless the
world goes away in the meantime, one could say that this statement is always
true: it will eventually rain again, perhaps this afternoon, perhaps next week, or
perhaps in three months. However, we are tempted to say that the statement is
more appropriate in a situation where we expect rain very soon.

Similarly, all computer systems will fail eventually. Therefore, a requirement
like “The system will forever fulfil its task” is, in some sense, never satisfied.
Models to verify requirements on reactive systems (which engage in an ongoing
interaction with their environment and are not meant to terminate) typically
assume that the system has infinitely long behaviours, while every implemen-
tation will stop fulfilling its task at some time. In such situations, it is more
appropriate to abandon speaking about absolute truth and rather look at the
utility of a system. The longer a system fulfils its task, the higher its utility.

In another situation, namely testing, engineers are satisfied if the system fulfils
its requirements for a certain amount of time. An error appearing after tenthou-
sand successful tests is perhaps ascribed to mistyping some input, or it may just
end up in the list of known bugs. An error appearing in the third test will cause
a much stronger response: the system will have to be repaired.

In these situations, the point is that utility requirements give more weight to
the near future than to the far future. The logic Discounted Computation Tree
Logic (DCTL) was defined in [1] to express this kind of utility requirements.
DCTL is interpreted in a quantitative setting, where any real number between
0 and 1 is a truth value (0 corresponding to “false” or “useless” and 1 to “true”

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 137–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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or “most useful”), similar to a “degree of truth” in fuzzy logic [8]. To achieve
the difference in weight between near and far future, it introduces discounting:
an influence on the utility (a rainy state, an error in the system under test) is
weighted by the length of the path to reach it.

Another possibility to regard DCTL properties is to think of an impatient
game player. Assume somebody plays a (single-player) game that may involve
both random choices and strategic or nondeterministic choices, to be resolved by
the player. In some states, the player wins a reward. The player, however, is not
ready to play the game infinitely long, but decides at any moment to abort the
game with some probability. The utility expressed by a suitable DCTL property
is a measure of the expected reward from the game.

DCTL was defined in [1] for discrete-time Markov decision processes (MDP),
and their special cases discrete-time Markov chains (DTMC) and labelled tran-
sition systems (LTS). In these models, the only way to measure the length of
a path is to count the number of transitions. While this works well when each
step takes approximately the same amount of time, it becomes unexact when
step timings differ.

Contributions. In this article, I therefore undertake to extend the work of [1]
to continuous-time Markov decision processes (CTMDP) and their special case
continuous-time Markov chains (CTMC). These formalisms equip each transition
with a rate indicating how fast (on average) the transition is taken.

DCTL temporal operators, interpreted over DTMCs, were shown in [1] to
have two differing semantics: a fixpoint and a path semantics. I show that these
variants also exist in the continuous-time model and provide model checking
algorithms for both. To resolve the nondeterminism in CTMDPs, one needs a
scheduler or a strategy. The fixpoint semantics by definition only allows so-called
positional schedulers, i. e. schedulers that always choose the same action in a
given state. In the path semantics, in principle, several classes of schedulers are
possible. However, as in the discrete-time case, I only provide a model checking
algorithm for CMTCs, systems without nondeterminism.

2 Preliminaries

Notations. We denote the minimum of two values by r � s := min{r, s} and
their maximum by r � s := max{r, s}. For a n × n-matrix A, let A|i...j be the
n× n-matrix where all rows except the rows i, i + 1, . . . , j have been set to 0.

Definition 1. A continuous-time Markov decision process (CTMDP) is a tuple
M = (S,A,R,AP , L) consisting of

– a nonempty set of states S;
– a nonempty, finite set of actions A;
– a transition rate matrix R : S ×A× S → R≥0, written Ra(s, s′).
– a nonempty, finite set of atomic propositions AP;
– a labelling function L : S×AP → [0, 1] (here we extend the usual definition).
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s t u
3

1

3

L(s, black) = 0.1 L(t, black) = 0.4 L(u, black) = 0.9

Fig. 1. Example CTMC

We denote the components of M by SM, AM, RM, APM, LM, repectively, and
we omit the subscript M if M is clear from the context.

Informally speaking, the behaviour of a CTMDP is as follows: It is always
in a state, say s. The atomic proposition p has utility L(s, p) ∈ [0, 1]. Transi-
tions are triggered according to the following rule: The CTMDP first chooses
nondeterministically an action a. Then, the probability that the transition to
s′ becomes enabled within at most t time units is 1 − e−Ra(s,s′)t. If there
are several states s′ with Ra(s, s′) > 0, the first transition that becomes en-
abled is taken. In effect, this leads to an exponential distribution with the
so-called exit rate of Ea(s) :=

∑
s′∈S Ra(s, s′). Its cumulative density func-

tion is Pr
(
s

≤t−−→
a

| a
)

= 1 − e−Ea(s)t and its probability density function is

pdf
(
s

t−→
a

| a
)

= Ea(s)e−Ea(s)t.

The probability to go to state s′, if in state s action a is chosen, is then
P a(s, s′) := Ra(s, s′)/Ea(s). Together, the transition to s′ will be taken in time
at most t with probability

Pr
(
s

≤t−−→
a

s′ | a
)

= P a(s, s′)(1− e−Ea(s)t) .

We will also use EM(s) := max
a∈A

Ea
M(s) and EM := max

s∈S
EM(s).

It may happen that for some states and actions, Ea(s) = 0. In that case, we
say that s is a-absorbing. If the CTMDP is in state s and chooses action a, the
behaviour stops, and the CTMDP stays in s forever. If state s is a-absorbing for
each action a ∈ A, we call s (strictly) absorbing.

A continuous-time Markov chain (CTMC) is a CTMDP that does not contain
nondeterministic choices, i. e., a CTMDP M with |AM| = 1.

Example 2. Figure 1 depicts an example of a simple continuous-time Markov
chain. The proposition black denotes the “blackness” of a state. There is, a. o.,
a transition from s to t with rate Ra(s, t) = 3. State u is absorbing. The unique
action has been omitted from the figure.

A path is a (finite or infinite) sequence of the form

s0
t0−→
a0

s1
t1−→
a1

s2 → · · ·

where si ∈ S, ai ∈ A such that Rai(si, si+1) > 0, and ti ∈ R≥0. It represents a
possible behaviour of the CTMDP. We denote the set of paths by Path and the
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set of maximal paths by Pathmax. (Maximal paths are paths that are infinite or
that end in an absorbing state.)

A cylinder set is a set of maximal paths of the following form:

C (s0, a0, I0, s1, a1, I1, . . . , an−1, In−1, sn) :={
s0

t0−→
a0

s1
t1−→
a1

· · · tn−1−−−→
an−1

sn → · · ·
∣∣∣ ti ∈ Ii for all i < n

}
where Ii are intervals in R≥0.

The Probability Space of Paths. A scheduler is a function that resolves the
nondeterministic choices in a CTMDP. A CTMDP together with a measurable
scheduler induces a fully probabilistic process, where a probability space can be
defined.

A scheduler in principle bases its choices on the history of the system. Re-
stricted scheduler classes only check a part of the history. The most powerful
schedulers, history-dependent schedulers, are functions from non-maximal paths
to actions D : (Path \ Pathmax) → A. See [7] for details. However, in the rest of
this article, we will mostly look at (time-abstract) positional schedulers, which
base the choice on the current state only. They are functions D : S → A.

A CTMDP (S,A,R,AP , L) and a positional scheduler D together induce
a CTMC (S, {∗}, R̃,AP , L). Its transition relation is defined by R̃∗(s, s′) =
RD(s)(s, s′). From this, one can define a probability space (Pathmax, C,PrDs ).
Here, C is the smallest σ-algebra that contains all cylinder sets. Its probability
measure is the unique measure induced by:

PrDs0(C(s0)) := 1

PrDs0 (C (s0, D(s0), I0, s1, a1, I1, . . . , an, In, sn+1)) :=

:= Pr
(
s0

∈I0−−−−→
D(s0)

s1 | D(s0)
)
· PrDs1 (C (s1, a1, I1, . . . , an, In, sn+1)) .

Lemma 3. The function defined above is a measure.

Proof. This lemma has been shown in [7, Theorem 2]. ��

A CTMDP M is uniform if all exit rates are equal, i. e. for all states s and
actions a, Ea

M(s) = EM. For a CTMDP M, we can find a uniform CTMDP
having a similar probability distribution as follows.

We first define the CTMDP Munif = (S,A, R̃,AP , L) which is almost the
same as M, except that we add to each state a self-loop such that the total exit
rate becomes E ≥ EM for every state and action:

R̃a(s, s′) :=

{
Ra(s, s′) if s �= s′

E −
∑

t�=s R
a(s, t) if s = s′ .

For a uniform (or uniformised) CTMDP, we can define its embedded discrete-
time MDP as follows: P = PM is given by (S,A, P,AP , L), where the transition
probabilities P a(s, s′) are given by P a(s, s′) = Ra(s, s′)/EM.
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Lemma 4. Positional schedulers are invariant under uniformisation, i. e. for
every scheduler on M there is one on Munif and vice versa, such that the prob-
ability measures of the respective induced CTMCs are equal up to stuttering in
the same state.

Proof. As the Munif-scheduler corresponding to D on M, we choose D again.
This is possible as the state space and the set of actions do not change. The
(short) remainder of the proof is in the technical report [4]. ��

3 The Logic DCTL

DCTL consists of state formulas, denoted ϕ, ψ, and path formulas, denoted Ψ .
The syntax of state and path formulas is given by the following grammar:

ϕ ::= 1 | p | ¬ϕ | ϕ ∧ ϕ | ϕ⊕w ϕ | ∃Ψ | ∀Ψ

Ψ ::= (α ϕ | �αϕ | +αϕ

where p is an atomic proposition, w ∈ [0, 1] is a weight, and α ∈ R>0 is a discount
rate. We call (α ϕ the discounted maximum, �αϕ the discounted minimum, and
+αϕ the discounted average over paths.

3.1 Semantics

The semantics of a DCTL state formula ϕ is a mapping [[ϕ]] : S → [0, 1] from
states to utilities. It can be defined by:

1 true [[1]] (s) = 1

p atomic proposition, p ∈ AP [[p]] (s) = L(s, p)

¬ϕ negation [[¬ϕ]] (s) = 1− [[ϕ]] (s)

ϕ ∧ ψ conjunction [[ϕ ∧ ψ]] (s) = [[ϕ]] (s) � [[ψ]] (s)

ϕ⊕w ψ weighted sum, w ∈ [0, 1] [[ϕ⊕w ψ]] (s) = (1− w) [[ϕ]] (s) + w [[ψ]] (s)

The interpretation of ∃Ψ and ∀Ψ is closely linked to the interpretation of path
formulas. Informally, the semantics of ∃Ψ is the expected utility of Ψ under the
best scheduler and ∀Ψ is its expected utility under the worst scheduler. (α ϕ
is the maximum of all ϕ-values along the path, where we apply a discount: if a
value appears after time t, it is reduced with the factor e−αt, with the result that
earlier states can more easily influence the maximum than later ones. �αϕ is
the minimum of all discounted ϕ-values along the path, and +αϕ is the average
over all ϕ-values, where the value after time t now gets relative weight e−αt, in
accordance with the idea that earlier states are more important than later ones.

There are two possibilities to formalise the semantics of path formulas: either
as the fixpoint of an operator, or via a look at the complete path at once. In the
following sections, we will give the detailed definition of the two semantics.
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[[∃(α ϕ]]f (s) = μu. [[ϕ]]f (s) �max
a∈A

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

[[∀(α ϕ]]f (s) = μu. [[ϕ]]f (s) �min
a∈A

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

[[∃�αϕ]]
f (s) = μu. [[ϕ]]f (s) �max

a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

[[∀�αϕ]]
f (s) = μu. [[ϕ]]f (s) �min

a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

[[∃�αϕ]]
f (s) = μu.max

a∈A

α

Ea(s) + α
[[ϕ]]f (s) +

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

[[∀�αϕ]]
f (s) = μu.min

a∈A

α

Ea(s) + α
[[ϕ]]f (s) +

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)

Fig. 2. Fixpoint semantics for CTMDPs

3.2 Fixpoint Semantics

The fixpoint semantics arises by lifting the classical connection between CTL
and the μ-calculus to a quantitative setting. For a transition system, we denote
by ∃Pre(u) the set of all states that have a transition into the set u. Then the
set [[∃(ϕ]] of all states satisfying ∃(ϕ is the smallest fixpoint of the equation
u = [[ϕ]] ∪ ∃Pre(u), written as μu. [[ϕ]] ∪ ∃Pre(u).

As explained in [1], one can lift these fixpoint equations to a quantitative
setting by interpreting ∪ as the pointwise maximum and ∃Pre(u) as the expected
value of u, achievable in one step, under the best scheduler. Then, the semantics
of ∃(α ϕ is the greater of the current utility of ϕ and the expected utility after
one transition. When we formalise this idea, we get the equations in Fig. 2 for
the fixpoint semantics. Some remarks on them are in order.

Discounted Maximum Operator. For a CTMCM, the discounted semantics
of ∃(α ϕ is obtained as follows. Let α be a discount rate and u : S → [0, 1] be a
state utility function. Then ∃PreMα (u) : S → [0, 1] yields at state s the expected
discounted utility immediately after the first jump. That is, if we move to s′ at
time t, we get e−αtu(s′). Thus, ∃PreMα (u)(s) is the expected value of the random
variable e−αTu(X), where T is the random variable denoting the time of the first
jump and X the random variable denoting the state reached by the first jump.

For CTMDPs, we additionally maximize over all actions a ∈ A, i. e. we choose
the action with the maximal expected discounted utility. Let X0 be the current
state, and A0 the action taken in this state. A simple calculation shows that

∃PreMα (u)(s) = max
a∈A

E[e−αTu(X)|X0 = s, A0 = a]

= max
a∈A

1

Ea(s) + α

∑
s′∈S

Ra(s, s′)u(s′).
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Inserting these results in [[∃(α ϕ]]f = μu. [[ϕ]]f � ∃PreMα (u) and [[∀(α ϕ]]f =

μu. [[ϕ]]
f � ∀PreMα (u) yields the equations in Fig. 2.

Discounted Minimum Operator. The operator ∀�αϕ should be equivalent
to ¬∃(α ¬ϕ. Therefore, we derive the semantics as follows:

[[∀�αϕ]]f (s) = 1− μu.(1− [[ϕ]]f (s)) �max
a∈A

E[e−αTu(X)|X0 = s, A0 = a]

= νû. [[ϕ]]
f
(s) �min

a∈A
E[1 − e−αT (1− û(X))|X0 = s, A0 = a]︸ ︷︷ ︸

=:∀̂PreM
α (û)

.

Then,

∀P̂reMα (û)(s) = min
a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑
s′∈S

Ra(s, s′)û(s′).

We will see shortly that the fixpoint is unique. Therefore, we can write μ in
Fig. 2 instead of ν.

Discounted Average Operator. To calculate [[∃+αϕ]]
f
, we have to take an

average between [[ϕ]]f and the utility after one step, giving more weight to the
near future than to the far one. The natural candidate to choose the weight is the
pdf of the probability to lose patience, t �→ αe−αt. This leads to the definition:

[[∃+αϕ]]
f
M (s) = μu.max

a∈A

∑
s′∈S

∞∫
0

pdf
(
s

t−→
a

s′ | a
)
·

·

⎡⎣ t∫
0

αe−ατ dτ [[ϕ]]
f
M (s) +

∞∫
t

αe−ατ dτu(s′)

⎤⎦ dt

Properties. The fixpoints are unique because the respective functions are con-
tractions:

Lemma 5. The functions under the fixpoint operators are contractions accord-
ing to the L∞-norm.

Proof. See the technical report version [4]. ��

Proposition 6 (Duality Laws). For all DCTL formulas ϕ and all CTMDPs
M, we have

[[¬∃(α ϕ]]
f
M = [[∀�α¬ϕ]]

f
M [[¬∃�αϕ]]

f
M = [[∀(α ¬ϕ]]

f
M

[[¬∃+αϕ]]
f
M = [[∀+α¬ϕ]]

f
M
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Theorem 7. Let M be a CTMDP and Munif be its uniformization. Then we
have for all DCTL formulas ϕ that [[ϕ]]

f
M = [[ϕ]]

f
Munif

.

Proof. The probability to be in a specific state at any given time, under a given
scheduler, is the same for M and Munif (Lemma 4). Only the number of times a
state is reentered changes, and so also the number of times that an action can be
chosen. However, a positional scheduler has to choose the same action whenever
the same state is reentered, so the scheduler cannot make a different choice in
Munif than in M. ��

We will see later that so-called late schedulers, that choose the action to take not
when entering, but when leaving a state, can deliver better results (higher values
for ∃(α, lower values for ∀(α) than positional schedulers. Late schedulers may
decide the action not only on the current state, but also on the sojourn time in
this state. A scheduler that can distinguish between entering a state for the first
time and reentering a state can get an estimate of the sojourn time and improve
over a positional scheduler based on this estimate. This was a problem for model
checking of non-uniform CTMDPs in [3].

3.3 Path Semantics

Another way to define a CTL semantics is to look at the set of (maximal) paths.
A path satisfies (ϕ if it contains at least one ϕ-state; a state s satisfies ∃(ϕ
if the set of paths starting in s contains some path satisfying (ϕ. If we lift
this principle to a quantitative setting, we reinterpret “at least one ϕ-state” as
“the maximum of [[ϕ]]”, and we reinterpret “existence of a path” as “supremum
over all paths”. This leads to [[∃(ϕ]] = supσ∈Path maxs∈σ [[ϕ]] (s). In a Markov
decision process, one would additionally consider the probabilities of paths.

In the path semantics of DCTL, we give separate semantics to the operators
∃ and (α. Let us first look at ∃ and ∀: Assume given a class of schedulers D.
Then, we define:

[[∃Ψ ]]
p
M (s) = sup

D∈D
ED
σ∈C(s) [[Ψ ]]

p
M (σ)

[[∀Ψ ]]
p
M (s) = inf

D∈D
ED
σ∈C(s) [[Ψ ]]

p
M (σ)

The expected value E in these formulas is of course taken over the probability
space of paths, under the mentioned scheduler.

The semantics of path formulas is:

[[(α ϕ]]
p
M (σ) = max

t≥0
e−αt [[ϕ]]

p
M (σ@t) (1)

[[�αϕ]]
p
M (σ) = min

t≥0
1− e−αt(1− [[ϕ]]

p
M (σ@t)) (2)

[[+αϕ]]pM (σ) =

∞∫
0

αe−αt [[ϕ]]pM (σ@t) dt
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Existence of Maximum. In an undiscounted setting and with a finite LTS,
[[ϕ]] can only take a finite number of values on any path, so it is clear that
[[(ϕ]] is not only a supremum, but really a maximum. However, with continuous
discounting, we have to prove existence of the maximum.

Lemma 8. The discounted maximum and minimum are well-defined, i. e., the
maximum (1) and minimum (2) actually do exist.

Proof. Basically, one still can find a finite subset of all e−αt [[ϕ]]pM (σ@t) in (1)
that contains the supremum, and therefore the maximum. See [4] for details. ��
Example 9. Let us calculate [[∃(2 black ]]p (s) in the Markov chain of Fig. 1. As
it does not contain nondeterminism, there is only the trivial scheduler. There
are two time-abstract maximal paths in this Markov chain: s → u and s →
t → u. We calculate Eσ∈C(s) [[(2 black ]]p (σ) by summing over these two paths
separately. For the path s→ u,

Eσ=(s→u) [[(2 black ]]p (σ) =

∞∫
0

[[(2 black ]]p
(
s

t−→ u
)

pdf
(
s

t−→ u
)
dt

=

∞∫
0

max
τ≥0

e−2τ [[black ]]
p
([

s
t−→ u

]
@τ

)
R(s, u)e−E(s)t dt

=

∞∫
0

max
{
e−2t 9

10 ,
1
10

}
e−4t dt = 1459

9720 ≈ 0.15

Similarly, for the path s→ t→ u, we have that

Eσ=(s→t→u) [[(2 black ]]
p

(σ) = 1591
5400 ≈ 0.29

So, in the end,

[[∃(2 black ]]
p

(s) = 1459
9720 + 1591

5400 = 10807
24300 ≈ 0.44.

Lemma 10.

[[(α ϕ]]
p
M (σ) = max

t≥0
[[0⊕e−αt ϕ]]

p
M (σ@t)

[[�αϕ]]pM (σ) = min
t≥0

[[1⊕e−αt ϕ]]pM (σ@t)

Proposition 11. The following dualities between (α and �α hold. +α is its
own dual.

[[∃(α ¬ϕ]]
p

= [[¬∀�αϕ]]
p

[[∀(α ¬ϕ]]
p

= [[¬∃�αϕ]]
p

[[∃+α¬ϕ]]p = [[¬∀+αϕ]]p

Proposition 12. The fixpoint and path semantics of +α coincide.

Proof. The proof of this property exactly follows the lines of [1, Thm. 2]. ��
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4 Model Checking DCTL

The model checking problem for DCTL consists in computing the value of
[[ϕ]]

f
M (s), given a formula ϕ and a state s in a CTMDP M. Based on the

equations found in the previous section, we propose the following algorithms to
solve this problem.

Finding the utility of the formulas 1 and p (for p ∈ AP) is trivial. Checking
the formulas ¬ϕ, ϕ ∧ ψ, and ϕ ⊕w ψ is easy and straightforward, if we have
already found the truth values of the subformulas. We will not treat them in the
rest of the article, but concentrate on the operators ∃(α, ∃�α and ∃+α. The
duality laws (Props. 6 and 11) can be used to check the operators ∀(α, ∀�α

and ∀+α.

4.1 Model Checking the Fixpoint Semantics

Reduction to DCTL Semantics for MDPs. The fixpoint equations in Fig. 2,
expressing the semantics for DCTL over CTMDPs, are very similar to the fix-
point equations for discrete-time MDPs. For example, in the discrete-time case,
we have

[[∃�ρϕ]]fP (s) = μu. [[ϕ]]fP (s) �
[
(1− ρ) + ρmax

a∈A

∑
s′∈S

P a(s, s′)u(s′)
]

In fact, they are so analogous that the DCTL model checking problem for CT-
MDPs reduces to the DCTL model checking problem for MDPs: We can model
check a DCTL formula ϕ over a uniform CTMDP M by model checking a for-
mula ϕ′ over the embedded Markov decision process. Here ϕ′ arises from ϕ by
changing the discount factors (α etc. to (ρ in ϕ, where ρ = EM/(EM + α).
Note that, as the fixpoint semantics only uses positional schedulers, it is possible
to analyse other CTMDPs after uniformising them.

Theorem 13. Let M be a CTMDP, let P be its embedded discrete-time MDP
(possibly after uniformisation) and let ρ = EM/(EM +α). Then we have for all
DCTL formulas ϕ that

[[∃(α ϕ]]fM = [[∃(ρ ϕ
′]]
f

P [[∃�αϕ]]fM = [[∃�ρϕ
′]]
f

P [[∃+αϕ]]fM = [[∃+ρϕ
′]]
f

P

[[∀(α ϕ]]
f
M = [[∀(ρ ϕ

′]]
f

P [[∀�αϕ]]
f
M = [[∀�ρϕ

′]]
f

P [[∀+αϕ]]
f
M = [[∀+ρϕ

′]]
f

P

Since the reduction above is clearly linear in the size of M, the complexity
of model checking the DCTL fixpoint semantics is the same for CTMDPs and
discrete-time MDPs. Thus, we obtain the following corollary from [1, Thm. 7].

Corollary 14. The problem of model checking [[ϕ]]
f
M can be solved in nondeter-

ministic polynomial time in the size of M and exponential in |ϕ|.
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4.2 Model Checking the Path Semantics

The article [1] proposes a model checking procedure for discrete-time Markov
chains of ∃(α ϕ that can be adapted to continuous-time Markov chains. (Note
that we assume there is no nondeterminism here.) For any path σ, the value
[[(α ϕ]]

p
(σ) is reached at a time when σ enters a state that is better than σ@0

(i. e., e−αt [[ϕ]]p (σ@t) > [[ϕ]]p (σ@0) for some t). We therefore order the states
according to their value [[ϕ]]

p
:

[[ϕ]]
p

(s1) ≥ [[ϕ]]
p

(s2) ≥ · · · ≥ [[ϕ]]
p

(sn)

In state s1, no other state can improve [[ϕ]]
p
, so we know that [[∃(α ϕ]]

p
(s1) =

[[ϕ]]
p

(s1).
In state s2, the only possible improvement is to reach s1 at some time t

with [[ϕ]]
p

(s2) < [[ϕ]]
p

(s1)e−αt = [[∃(α ϕ]]
p

(s1)e−αt. We calculate the prob-
ability that s1 is reached early enough and the resulting discounted value of
[[∃(α ϕ]]

p
(s2) via a variant of time-bounded reachability.

In general, if a path starts in si, improvements occur if some state sj is reached
at a time t such that [[ϕ]]p (si) < [[∃(α ϕ]]p (sj)e

−αt. We can base our algorithm
on the observation that after the first such state sj, no more improvement is
possible: any further improvement is already taken into account by [[∃(α ϕ]]

p
(sj).

The second idea used in the algorithm is that of cutoff time: After some time,
the discount factor e−αt is so small that reaching si−1 will no longer improve
over si. From that moment on, we could as well presume that any state sj (for
j = i, . . . , n) had [[ϕ]]

p
(sj) = [[ϕ]]

p
(si−1). Therefore, it is enough to regard the

current path until the cutoff time, after which we can continue analysis in a
simplified Markov chain.

This allows to use a sequence of CTMCs M1,M2, . . . ,Mn where Mi has the
same structure as M but change [[ϕ]]

p
to:

[[ϕ]]
p
Mi

(sj) := [[ϕ]]
p
M (smin{i,j}).

Note that one can easily prove that [[∃(α ϕ]]pMi
(sj) = [[∃(α ϕ]]pM (sj) if j ≤ i.

We now calculate [[∃(α ϕ]]
p
Mi

recursively:

Base case. Trivial: [[∃(α ϕ]]
p
M1

(si) = [[ϕ]]
p
M (s1) for all 1 ≤ i ≤ n.

Iteration step. Assume that [[∃(α ϕ]]
p
Mi

(sj) has been calculated. We know that

it is equal to [[∃(α ϕ]]pM (sj) if j ≤ i.
One can calculate of [[∃(α ϕ]]

p
Mi+1

by solving a reachability problem in a

(slightly modified) CTMC M′
i+1. First, select some path σ through M′

i+1 and
at a suitable moment titer take the utility [[∃(α ϕ]]pMi

(σ@titer). If σ starts in
s1, . . . , si, we can pick titer = 0. To simplify the choice, these states are absorbing
in M′

i+1, so that any value for titer is equivalent to picking titer = 0.
Otherwise, we follow the transitions of σ until it reaches some state in s1, . . . , si;

then, titer is the time of reaching such a state for the first time. To take into
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account the discount factor, we add an (absorbing) state s⊥ with [[ϕ]]pM′
i+1

(s⊥) :=

0, and from each state in si+1, . . . , sn, we add a transition with rate α to s⊥.
However, we never wait longer than tcut := [ln [[ϕ]]

p
M (si)− ln [[ϕ]]

p
M (si+1)]/α: If

no such state is reached before tcut, we pick titer = tcut.
Overall, M′

i+1 has state space SM ∪ {s⊥}, rate matrix

RM′
i+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
0

(RM)i+1...n

α
...
α

0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭ i zero rows

⎫⎪⎬⎪⎭ n− i rows from RM = RMi+1

} zero row for s⊥

(3)

and the other parts of M′
i+1 coincide with Mi+1. This rate matrix has the

additional property that we can wait until tcut in all cases: one only chooses
an earlier moment for titer if one has reached s1, . . . , si, and these states are
absorbing. This leads to the following lemma:

Lemma 15. With the sequence of Mi introduced above, and Q = RM−EM · I
the infinitesimal generator of M,

[[∃(α ϕ]]
p
Mi+1

= exp
(

(Q − αI)|i+1...n tcut
)

[[∃(α ϕ]]
p
Mi

Proof. See the technical report version [4]. ��

Time Complexity. Checking one ∃(α operator requires to solve a sequence of
related CTMC reachability problems. Using Jensen’s method (similar to checking
CSL properties of CTMCs, see [3,9]), we know that it takes O((EM+α)t|R| · |S|)
arithmetic operations, where t is the maximal time bound. This is comparable
to [1, Lemma 19]: The time bound for checking the corresponding formula in a
DTMC is in O(|S|3 ·K), where K is the maximal step bound. The time bound t is,
in principle, the total of all cutoff times; however, if it is very large, the discount
e−αt becomes so small that one can abort the calculation before all cutoff times
have passed. For an error bound ε, we have that e−αt < ε iff t > 1

α ln 1
ε .

Proposition 16. The problem of model checking [[ϕ]]
p
M (not containing +α op-

erators) can be solved in time O(|ϕ| · |R| · |S|E+α
α ln 1

ε ).

5 Other Scheduler Classes

The article [1] uses the best and worst history-dependent scheduler. In the above
definitions, we looked for the best and worst positional scheduler. In this section,
we illustrate how the choice of scheduler class influences the semantics. To make
the scheduler class more clear, we will add a subscript D to ∃, the main operator
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s3

L(s3, black) =
1
4

s4

L(s4, black) =
1
4

s1 L(s1, black) = 1

s5 L(s5, black) = 0

s2 L(s2, black) =
3
4

1

a, 1

a, 1

b, 2

Fig. 3. Timed schedulers are better than positional ones

that chooses from the set of schedulers D. In the following, we will give some
examples for the ∃D operator for several classes of schedulers. The treatment of
the ∀D operator always follows the same lines and does not enlighten more.

We designate the (time-abstract) positional schedulers used above by P, and
we will introduce the classes TTP of total-time positional schedulers and LP of
late time-abstract positional schedulers.

5.1 Late Schedulers (LP)

A CTMDP is locally uniform if in every state, the exit rate does not depend on
the action chosen (i. e., ∀s ∈ S : ∀a, b ∈ A : Ea(s) = Eb(s)). In a locally uniform
CTMDP, it is possible to delay the choice for one action or another until the
moment that the sojourn time in a state has passed. So-called late schedulers,
defined in [6], are functions from the current state and the sojourn time in this
state to an action that is enabled: D : S × R≥0 → A. As in time-bounded
reachability [6], a late scheduler can improve on the value of a formula.

Example 17. Consider the CTMDP in Fig. 3, with initial state s4. The best po-
sitional scheduler for [[∃(1 black ]]

p
(s4) always chooses action b, as the expected

utility is higher than when choosing a. However, a late scheduler can base its
choice also on t4, the sojourn time in state s4. For times t4 ∈ [ln 3, ln 4), choosing
b will not improve [[∃(1 black ]]p (s4) because e−t4 [[black ]]p (s2) ≤ [[black ]]p (s4),
but by choosing a, it improves with probability of 1

2 , because e−t4 [[black ]]
p

(s1) >
[[black ]]

p
(s4). For very short sojourn times t4 ∈ [0, S), for some S ≤ ln 3, it is

more advantageous to choose b. To find S, one solves the integral:

[[∃LP (1 black ]]p (s4) =

∞∫
0

pdf
(
s4

t4−→
) (

1
2

(
1
4 � e−t4

)
+ 1

2 ·
1
4︸ ︷︷ ︸

action a is chosen

� 3
4e

−t4︸ ︷︷ ︸
action b

)
dt4

The exact switching point is therefore S = ln 2.

5.2 Total-Time Positional Schedulers (TTP)

A total-time positional scheduler bases its choice not only on the current state,
but also on the total time that the path has taken until now. Formally, such a
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scheduler is a function D : S × R≥0 → A but the real parameter now indicates
the total time spent before entering the current state.

Example 18. Consider the CTMDP in Fig. 3 again. We now regard s3 as the
initial state. Similar to Example 17, the best positional scheduler would always
choose b in s4, but a TTP-scheduler can improve on this value because it bases its
decision also on t3, the sojourn time in state s3. A similar integral as above shows
that an optimal scheduler chooses b for times t3 ∈ [0, R), where R ≈ 0.41903,
and chooses a for t3 ∈ (R, ln 4). Note that this scheduler has to estimate how
long the sojourn time in s4 will be when it makes its decision; therefore, it is less
exact than the late scheduler of Example 17.

5.3 History-Dependent Schedulers (H)

A history-dependent scheduler, in principle, has access to the full history, i. e. to
the complete path to make a decision. In practice, it is enough to use the highest
utility umax achieved until now to decide which actions still could improve on the
utility of [[∃H (α ϕ]]

p
. Additionally, similar in Example 18, the decision should

take into account the discount incurred between the time tmax when that utility
was achieved and the current time t. Therefore, a history-dependent scheduler
has enough information if it knows the value umaxe

α(t−tmax).
This is basically the idea used by [1] to find a model checking algorithm for the

path semantics of MDPs with history-dependent schedulers. Why can’t we use
this idea for CTMDPs? The problem is that in discrete-time systems, discount
factors are powers of a constant ρ ∈ (0, 1). As a consequence, only a finite number
of the powers umax, ρ

−1umax, ρ
−2umax, . . . is relevant to find [[∃H (ρ ϕ]]

p
P . This

allows to define a linear program with finitely many variables to calculate the
utilities. However, in the continuous-time case, the corresponding linear program
would have infinitely many variables, so one cannot prove termination.

6 Conclusion

It is possible to extend the DCTL semantics with time, to continuous-time
Markov chains and MDPs. No big surprises have happened; the extension is
pretty much straightforward. The distinction between the fixpoint and the path
semantics known from the discrete-time case also applies to the continuous-time
case. Properties interpreted under the fixpoint semantics can be easily checked
using the same algorithms as in the discrete-time case; because fixpoint seman-
tics do not look further ahead than one step, a variation on the expected time
to take a transition (the reciprocal of the exit rate) is the discount per step.
Properties interpreted under the path semantics are more difficult to verify; this
article provides an algorithm for CTMCs (without nondeterminism).

To simplify the analysis, I have chosen to fix a single discount rate per prop-
erty. This corresponds to an exponential decay of utility over time. One can
without much work extend the current presentation and give each state its own
discount rate (e. g. by adapting the matrix (3)).
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Another way to make analysis of such temporal properties possible is taking
a finite horizon. Everything before the time limit is equally relevant, and every-
thing after is equally irrelevant. For example, time-bounded until formulas in
CSL [3,9] use a finite horizon. Depending on the situation, one or the other way
of giving more weight to the near future is better-suited. If one does not want
to predict for how long exactly a computer system will be used, it seems advan-
tageous to use an analysis method that does not completely ignore a possible
breakdown shortly after some deadline.

Rewards in Markov chains can also be used to express quantitative proper-
ties [2]. DCTL still allows to combine multiple aspects of utility in ways that are
not normally offered by analysis methods for chains with (multiple) rewards.
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AIT Austrian Institute of Technology GmbH
Vienna, Austria

Abstract. Checking the language inclusion between two models is a fun-
damental problem arising in application areas such as formal verification
or refinement in top-down design. We propose an incremental procedure
for checking the language inclusion between two real-time specifications,
modeled as networks of deterministic timed automata, where the two
specifications are equivalent up to one component. For such classes of
systems we aim to improve the efficiency of the language inclusion check
by exploiting the compositional nature of the problem and avoiding the
explicit parallel composition of the timed automata in the network. We
first develop a generic procedure that gives freedom to specific implemen-
tation choices. We then propose an instantiation of the procedure that is
based on bounded model checking techniques. We illustrate the applica-
tion of our approach in a case study and discuss promising experimental
results.

1 Introduction

In formal methods theory and applications, deciding language inclusion is a
fundamental problem. Checking language inclusion between two models A′ and
A, denoted by L(A′) ⊆ L(A), consists in checking whether the set of traces of
A′ is included in the set of traces specified by A. The problem naturally arises
in several applications, such as model checking or refinement checking in a top-
down design process. In model checking we are interested in verifying whether a
formal model of a system A satisfies a high-level property P , denoted by A |= P .
This amounts to checking the language inclusion L(A) ⊆ L(P ). In a top-down
design process, language inclusion can be used as a refinement relation between
a system represented at two levels of abstraction. It follows that a model A′ is
a refinement of A if and only if L(A′) ⊆ L(A), meaning that A′ is more precise
and closer to an actual implementation of the design than A. We note that if
the model A satisfies a property P and A′ refines A, then A′ also satisfies P .
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In the context of real-time systems, the language inclusion problem L(A′) ⊆
L(A) between two timed automata (TA) models A′ and A is decidable if A
is deterministic [3]. In addition, we have the following compositionality result
for timed automata distinguishing between input and output actions (TAIO).
Suppose we are given three receptive TAIOs A′, A, and B. If A′ refines A then
A′ ‖ B refines A ‖ B (see [11]).

In this paper we consider the problem of language inclusion between two
TAIO models A′ and A. We assume that both models are given as networks
of communicating deterministic and receptive TAIOs. We consider the setting
where the two specifications are equivalent up to one component, that is A′ =
A′

1 ‖ A2 ‖ · · · ‖ An and A = A1 ‖ A2 · · · ‖ An. The problem of checking language
inclusion for this class of specifications is motivated by practical considerations as
it arises in several application areas such as mutation-based test case generation
and top-down incremental design.

Mutation-based test case generation [1,14,7,10] is a special instance of model-
based test case generation [16], in which a specification model A is deliberately
altered by inserting a small fault, resulting in a mutant A′ of the original model.
The inserted fault plays the role of a test purpose and is used to guide the test
case generation process. The main step in mutation-based test case generation
consists in checking L(A′) ⊆ L(A). If the language of the mutant A′ is not
included in the language of the original model A, a witness trace σ ∈ L(A′)\L(A)
is obtained and is used to create a test case.

In top-down incremental design, the problem arises whenever an individual
component A1 of the specification model A = A1 ‖ A2 ‖ · · · ‖ An is refined to
a more precise component A′

1, resulting in a new specification model A′ = A′
1 ‖

A2 ‖ · · · ‖ An. Given this case, it is sufficient to show that A′
1 refines A1 in order

to infer that A′ refines A.
We propose a procedure for incrementally checking the language inclusion

problem L(A′) ⊆ L(A) for networks of timed automata, where A′ = A′
1 ‖ A2 ‖

· · · ‖ An and A = A1 ‖ A2 ‖ · · · ‖ An. The main motivation is to improve
the performance of finding witnesses for language inclusion violation, as wit-
nesses are used to construct test cases. Intuitively, the procedure exploits the
compositional structure of the model and avoids taking the full composition of
the automata, thus aiming at improving the efficiency of the language inclu-
sion check for this class of real-time models. It first checks the simpler problem
L(A′

1) ⊆ L(A1). If the check is successful, then we use the compositionality re-
sult to infer that L(A′) ⊆ L(A). Otherwise, a trace σ ∈ L(A′

1)\L(A1) witnessing
the non language inclusion between A′

1 and A1 is obtained. Given σ, we check
whether it can be extended to a counter-example witnessing L(A′) �⊆ L(A). If
such an extension exists, we are done. Otherwise we refine A′

1 by removing a set
of spurious behaviors extrapolated from σ and repeat the procedure.

We first develop a generic incremental procedure for checking language inclu-
sion (Section 3). This procedure uses abstract operations defined in terms of the
properties they need to satisfy. In other words, the operations used in the generic
procedure are non-effective and allow for various implementation choices. Then,
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we refine the generic algorithm and propose its instantiation based on bounded
symbolic model checking techniques (Section 4). We illustrate the approach on
a real-time variant of the dining philosophers problem and present promising
experimental results (Section 5). We show that the algorithm can be used to in-
crementally check timed input/output conformance (tioco) [11] between a specifi-
cation and an implementation. Finally, we illustrate how this concrete procedure
is applied in the context of mutation-based testing (Section 6) .

This paper complements [17] and [11], which derive compositionality results
for language inclusion checking of untimed and timed systems, respectively, but
do not consider incremental checking of the problem. In [4], the authors propose
another variant of incremental language inclusion checking for timed systems.
They check whether a timed specification, expressed as a network of timed com-
ponents satisfies an ω-regular property. In their iterative algorithm, the timed
specification is first abstracted to an untimed approximation, and in every suc-
cessive step, some of the time constraints are re-added to the model. Our frame-
work is similar to the general counter-example guided abstraction refinement
(CEGAR) [8]. In our case the original system is naturally abstracted by leaving
out components from the original model in the language inclusion check, and
then the abstracted model is refined in successive steps from spurious counter-
examples. Finally, a similar approach using a satisfiability modulo theory (SMT)
solver is developed in [15] to incrementally synthesize time-triggered schedules.

2 Timed Automata with Inputs and Outputs

The time domain that we consider is the set R≥0 of non-negative reals. We
denote by Σ the finite set of actions, partitioned into disjoint sets ΣI and ΣO of
input and output actions. A time sequence is a finite non-decreasing sequence of
non-negative reals. A timed trace σ defined over Σ is a finite alternating sequence
of time delays and actions of the form t1 · a1 · · · tk · ak, where for all 1 ≤ i ≤ k,
ai ∈ Σ and (ti)i≥1 is a time sequence. We denote by ε the empty timed trace.

Let C be a finite set of clock variables. Clock valuation v(c) is a function
v : C → R≥0 assigning a real value to every clock c ∈ C. We denote by H
the set of all clock valuations and by 0 the valuation assigning 0 to every clock
in C. Let v ∈ H be a valuation and t ∈ R≥0, we then have v + t defined by
(v + t)(c) = v(c) + t for all c ∈ C. For a subset ρ of C, we denote by v[ρ]
the valuation such that for every c ∈ ρ, v[ρ](c) = 0 and for every c ∈ C\ρ,
v[ρ](c) = v(c). A clock constraint ϕ is a conjunction of predicates over clock
variables in C defined by the grammar ϕ ::= c ◦ k | ϕ1 ∧ ϕ2, where c ∈ C, k ∈ N
and ◦ ∈ {<,≤,=,≥, >}. Given a clock valuation v ∈ H, we write v |= ϕ when v
satisfies ϕ. We are now ready to formally define input/output timed automata.

Definition 1 (TAIO). An input/output timed automaton (TAIO) A is a tuple
(QA, q̂A, Σ

I
A, Σ

O
A , CA, IA, ΔA, FA), where:

– QA is a finite set of locations and q̂A ∈ QA is the initial location;



Incremental Language Inclusion Checking for Networks of Timed Automata 155

– ΣI
A is a finite set of input actions and ΣO

A is a finite set of output actions,
such that ΣI

A ∩ΣO
A = ∅; we denote by ΣA the set of actions ΣI

A ∪ΣO
A ;

– CA is a finite set of clock variables;

– IA is the location invariant, a conjunction of constraints of the form c < d
or c ≤ d, where c ∈ CA and d ∈ N;

– ΔA is a finite set of transitions of the form (q, a, g, ρ, q′), where

• q, q′ ∈ QA are the source and the target locations;

• a ∈ ΣA is the transition action;

• g is a guard, a conjunction of constraints of the form c◦d, where c ∈ CA,
◦ ∈ {<,≤,=,≥, >} and d ∈ N;

• ρ ⊆ CA is a set of clocks to be reset;

– FA ⊆ QA is the set of accepting locations.

We say that a TAIO A is deterministic if for all transitions (q, a, g1, ρ1, q1) and
(q, a, g2, ρ2, q2) in ΔA, q1 �= q2 implies that g1 ∧ g2 = ∅. Given an arbitrary
location q ∈ QA, and an arbitrary action a ∈ ΣI

A, let gq,a = (g1 ∨ . . . ∨ gk),
where {gi}i are guards of the outgoing transitions of q labeled by a. We say that
a TAIO A is receptive if and only if for all q ∈ QA and a ∈ ΣI

A, IA(q) → gq,a.
From now on, we restrict our attention to deterministic and receptive TAIOs.

Semantics. The semantics of a TAIO is given by the timed input/output tran-
sition system (TIOTS) [[A]] = (SA, ŝA,R≥0, ΣA, TA,FA), where

– SA = {(q, v) ∈ QA ×H | v |= IA(q)} and ŝA = (q̂A,0);

– TA ⊆ SA × (ΣA ∪ R≥0)× SA is the transition relation consisting of discrete
and timed transitions such that:

• Discrete transitions: ((q, v), a, (q′, v′)) ∈ TA, where a ∈ ΣA, if there
exists a transition (q, a, g, ρ, q′) in ΔA, such that: (1) v |= g; (2) v′ = v[ρ]
and (3) v′ |= IA(q′); and

• Timed transitions: ((q, v), t, (q, v + t)) ∈ TA, where t ∈ R≥0, if v + t |=
IA(q);

– FA ⊆ SA such that (q, v) ∈ FA iff q ∈ FA.

A run r of a TAIO A is the sequence of alternating timed and discrete transitions
of the form

(q1, v1)
t1−→ (q1, v1 + t1)

δ1−→ (q2, v2)
t2−→ · · · tk−→ (qk, vk + tk)

δk−→ (qk+1, vk+1),

where q1 = q̂A, v1 = 0 and δi = (qi, ai, gi, ρi, qi+1) ∈ ΔA. A run r is accepting
if the last location qk+1 is accepting. The run r of A induces the timed trace
σ = t1 · a1 · t2 · · · tk · ak defined over ΣA. We denote by L(A) the set of timed
traces induced by all accepting runs of A.
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Parallel Composition. In order to model a network of interacting compo-
nents, we need the parallel composition operator. We first define the notion of
composabilty of two TAIOs, where two TAIOs A and B are composable if their
sets of output actions are disjoint.

Definition 2 (Composability). Let A and B be two TAIOs. We say that A
and B are composable if ΣO

A ∩ΣO
B = ∅.

Definition 3 (Parallel composition). Let A and B be two composable TAIOs.
Then their parallel composition, denoted by A ‖ B, is the TAIO (QA‖B, q̂A‖B,
ΣI

A‖B, Σ
O
A‖B, CA‖B, IA‖B , ΔA‖B, FA‖B), where

– QA‖B = QA ×QB and q̂A‖B = (q̂A, q̂B);
– ΣO

A‖B = ΣO
A ∪ΣO

B and ΣI
A‖B = (ΣI

A ∪ΣI
B)\ΣO

A‖B;
– CA‖B = CA ∪ CB;
– IA‖B(qA, qB) = IA(qA) ∧ IB(qB);
– ΔA‖B is the smallest set of transitions such that:

• For (qA, qB) ∈ QA×QB and a ∈ (ΣI
A\ΣO

B )∪(ΣO
A\ΣI

B), if (qA, a, g, ρ, q
′
A) ∈

ΔA, then ((qA, qB), a, g, ρ, (q′A, qB)) ∈ ΔA‖B;
• For (qA, qB) ∈ QA×QB and a ∈ (ΣI

B\ΣO
A )∪(ΣO

B\ΣI
A), if (qB , a, g, ρ, q

′
B) ∈

ΔB, then ((qA, qB), a, g, ρ, (qA, q
′
B)) ∈ ΔA‖B;

• For (qA, qB) ∈ QA ×QB and a ∈ (ΣA ∩ ΣB), if (qA, a, gA, ρA, q
′
A) ∈ ΔA

and (qB, a, gB, ρB, q
′
B) ∈ ΔB , then ((qA, qB), a, gA∧gB, ρA∪ρB, (q′A, q′B)) ∈

ΔA‖B;
– FA‖B = {(qA, qB) | qA ∈ FA and qB ∈ FB}.

The refinement expressed as language inclusion is compositional for deterministic
and receptive TAIOs1.

Proposition 1. Let A and A′ be two receptive TAIOs defined over the same
alphabet, and B be a receptive TAIO composable with A and A′. Then, we have

L(A′) ⊆ L(A) → L(A′ ‖ B) ⊆ L(A ‖ B)

Product. We define the product of two TAIOs A and B defined over the same
alphabet Σ = ΣI ∪ ΣO and denoted by A × B, as the TAIO that contains all
the traces which are both traces of A and B.

Definition 4 (Product). Let A and B be two TAIOs defined over the alpha-
bet ΣI ∪ ΣO. Then the product of A and B, denoted by A × B, is the TAIO
(QA×B, q̂A×B, Σ

I , ΣO, CA×B, IA×B, ΔA×B, FA×B), where

– QA×B = QA ×QB and q̂A×B = (q̂A, q̂B);
– CA×B = CA ∪ CB;
– IA×B(qA, qB) = IA(qA) ∧ IB(qB);

1 A similar result is shown in [11] for TAIOs with urgent transitions.
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– ΔA×B is the smallest set of transitions such that for (qA, qB) ∈ QA × QB

and a ∈ Σ, if (qA, a, gA, ρA, q
′
A) ∈ ΔA and (qB, a, gB, ρB, q

′
B) ∈ ΔB, then

((qA, qB), a, gA ∧ gB, ρA ∪ ρB, (q
′
A, q

′
B)) ∈ ΔA×B;

– FA×B = {(qA, qB) | qA ∈ FA and qB ∈ FB}.

Proposition 2. Let A and B be two TAIOs defined over the alphabet ΣI ∪ΣO.
Then, we have that L(A×B) = L(A) ∩ L(B).

3 Incremental Language Inclusion - A Generic Algorithm

In this section, we propose a generic incremental language inclusion checking
algorithm for networks of timed automata. Given three deterministic and recep-
tive TAIOs A, A′ and B, the algorithm checks whether L(A′ ‖ B) ⊆ L(A ‖ B)
and gives a counter-example in the failing case. The algorithm is generic due to
the fact that it applies abstract operations which are defined in terms of their
properties. Abstract operations allow for different implementations, as long as
their instantiation satisfies the required properties. We first introduce abstract
operations which are used in the algorithm, and then present the algorithm itself.

Language Inclusion. Given two TAIOs A and A′ defined over the same alpha-
bet, the language inclusion operation LI(A,A′) is a function that checks whether
the language of A′ is contained in the language of A. It gives a counter-example
in the case of non-containment.

Definition 5. Let A and A′ be two TAIOs defined over the alphabet Σ. The
language inclusion operation LI is a function such that

LI(A′, A) =

{
(true, ε) if L(A′) ⊆ L(A)

(false, σ) otherwise
,where σ ∈ L(A′)\L(A).

Trace Extrapolation Given two TAIOs A and A′ sharing the same alphabet
and σ ∈ L(A′)\L(A), the trace extrapolation operation, denoted by T , trans-
forms σ into a TAIO which contains σ together with the set of other witnesses
of non-containment of L(A′) in L(A).

Definition 6. Let A′ and A be two TAIOs defined over the alphabet Σ such that
L(A′) �⊆ L(A), and let σ ∈ L(A′)\L(A). Then, the trace extrapolation operation,
denoted by T , is a function B = T (A′, A, σ), where B is a TAIO defined over
Σ such that σ ∈ L(B) and L(B) ⊆ L(A′)\L(A).

Emptiness. Given two composable TAIOs A and B, the emptiness operation
checks if the parallel composition A ‖ B is empty, and returns a witness of
non-emptiness in the failing case.

Definition 7. Let A and B be two composable TAIOs. Then the emptiness
operation, denoted by Emp, is a function such that

Emp(A,B) =

{
(true, ε) if L(A ‖ B) = ∅

(false, σ) otherwise
,where σ ∈ L(A ‖ B).
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TAIO Difference given two TAIOs A and A′ defined over the same alphabet,
the difference operation, denoted by Diff, computes a new TAIO which contains
all of the behaviors that are in A′ but not in A.

Definition 8. Let A and A′ be two TAIOs defined over the alphabet Σ. Then,
the difference operation, denoted by Diff, transforms A and A′ into a TAIO B,
such that B is defined over the alphabet Σ and L(B) = L(A′)\L(A).

Algorithm. We are now ready to describe the incremental language inclusion
generic algorithm2 IncLI, shown in Algorithm 1, which works as follows:

1. Check L(A′) ⊆ L(A) with LI (line 3). If the language of A′ is contained in
the one of A, then the language of A′ ‖ B is also included in the language of
A ‖ B (Proposition 1) and the algorithm terminates giving an empty witness
trace. Otherwise, a trace σ′ witnessing non-containment of traces of A′ in A
is returned and the algorithm proceeds to step 2.

2. The witness trace σ′ is transformed into a TAIO A′′ by applying T (line 7),
and A′′ defines a set of traces which are all in A′ but not in A.

3. The algorithm checks with Emp whether A′′ ‖ B is empty (line 8). If the
composition is non-empty, then there exists a trace σ which is in A′ ‖ B but
not in A ‖ B, thus witnessing violation of language inclusion of A′ ‖ B into
A ‖ B. In that case, the algorithm terminates and gives the witness trace σ.
Otherwise, the algorithm proceeds to step 4.

4. Applying Diff, the TAIO A′ is replaced by A′\A′′ (line 10), thus removing
the behaviors of A′′ in A′. The algorithms backtracks to step 1.

Theorem 1 (Partial correctness). Let A, A′ and B be TAIOs such that A
and A′ are defined over the same alphabet and B is composable with A and A′

and let (b, σ) = IncLI(A,A′, B). We have that

1. if b = false, then L(A′ ‖ B) �⊆ L(A ‖ B), σ ∈ L(A′ ‖ B) and σ �∈ L(A ‖ B);

2. if b = true, then L(A′ ‖ B) ⊆ L(A ‖ B).

4 k-Bounded Incremental Language Inclusion

In this section, we develop an instantiation of Algorithm 1 based on bounded
model checking techniques. It extends the language inclusion procedure for flat
TAIOs presented in [2]. Similar encodings for TA decision problems were pro-
posed in [13,5] for reachability and in [6] for language inclusion.

2 We restrict the algorithm to networks of 2 automata for simplicity of presentation,
its extension to a network of n automata is straight-forward.
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Algorithm 1. IncLI

Input: A,A′, B
Output: (b, σ)
1: done← false
2: while ¬done do
3: (b, σ′)← LI(A′, A)
4: if b then
5: done← true
6: else
7: A′′ ← T (A,A′, σ′)
8: (b, σ)← Emp(A′′, B)
9: if b then
10: A′ ← Diff(A′, A′′)
11: else
12: done← true
13: end if
14: end if
15: end while
16: return (b, σ)

Preliminaries. Let A be a TAIO and k
a bound. We denote by locA : QA →
{1, . . . , |QA|} the function assigning a unique
integer to every location in A. We denote by
actA : ΣA → {1, . . . , |ΣA|} the function as-
signing a unique integer to every action in A.
Let A = {α1, . . . , αk} be the set of variables
ranging over ΣA, where αi encodes the ac-
tion in A applied in the ith discrete step. We
denote by D = {d1, . . . , dk} the set of real-
valued variables, where di encodes the delay
action in A applied in the ith time step. XA

the set of variables {x1, . . . , xk+1} that range
over the domain {1, . . . , |Q|}, where xi en-
codes the location of A after the ith step. Let
accA(xi) be a predicate which is true iff xi en-
codes an accepting location. Let Ci

A denote
the set of real variables obtained by renam-
ing every clock c ∈ CA by ci. We denote by
CA =

⋃k+1
i=1 Ci

A ∪
⋃k+1

i=1 C∗,i
A the set of real

(clock valuation) variables, where c∗,i ∈ C∗,i
A and ci ∈ Ci

A encode the valuation
of the clock c ∈ CA after the ith timed and discrete step, respectively.

Path Predicate. Let A be a TAIO. We encode a valid path in A of size k with
the pathk

A predicate, defined as

pathk
A(A, D,XA, CA) ≡ initA(XA, CA) ∧

∧k
i=1 stepi

A(A, D,XA, CA). (1)

Formally, we have the initial state predicate defined as

initA(XA, CA) ≡ x1 = locA(q̂A) ∧
∧

c∈CA
(c1 = 0). (2)

A step in the path of A consists of a timed step followed by a discrete step,
formalized by the predicate

stepi
A(A, D,XA, CA) ≡

∨
q∈QA

tStepi
A,q(D,XA, CA) ∧∨

δ∈ΔA
dStepi

A,δ(A, XA, CA).
(3)

The ith time step in a location q ∈ Q is expressed with

tStepi
A,q(D,XA, CA) ≡ xi = locA(q) ∧ tDelayi

A(D,CA) ∧ IA(q)[CA\C∗,i
A ], (4)

where IA(q)[CA\C∗,i
A ] is the invariant of q, and every clock c ∈ CA appearing in

the invariant is replaced by c∗,i, while tDelayi
A(D,CA) is the predicate expressing

the passage of time:

tDelayi
A(D,CA) ≡

∧
c∈CA

(c∗,i − ci) = di. (5)
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Finally, a discrete step in A is formalized with the predicate

dStepi
A,δ(A, XA, CA) ≡ xi = locA(q) ∧ αi = actA(a) ∧ g[CA\C∗,i

A ]∧
resiA,ρ(CA) ∧ xi+1 = locA(q′) ∧ IA(q′)[CA\Ci+1

A ],
(6)

where g[CA\C∗,i
A ] denotes the guard of δ, in which every clock c ∈ C is substituted

by c∗,i, and the reset action is expressed with

resiA,ρ(CA) ≡
∧
c∈ρ

ci+1 = 0 ∧
∧
c �∈ρ

ci+1 = c∗,i. (7)

k-Bounded Language Inclusion. Let A and A′ be two TAIOs defined over
the same alphabet Σ. Given an integer k > 0, we define the predicate BndLIkA,A′

as follows:

BndLIkA,A′ ≡
∧k

i=1(di ≥ 0 ∧ αi ≥ 1 ∧ αi ≤ |Σ|) ∧
i ≥ 1 ∧ i ≤ k ∧
pathi

A′(A, D,XA′ , CA′) ∧ accA′(xi+1
A′ ) ∧

pathi−1
A (A, D,XA, CA) ∧

((stepi
A(A, D,XA, CA) ∧ ¬accA(xi+1

A )) ∨
step

i
A(A, D,XA, CA))

(8)

where step
i
A expresses the fact that no transition is enabled in the last step3 in

A and is defined as

step
i
A(A, D,XA, CA) ≡

∧
q∈QA

tStep
i

A,q(D,XA, CA) ∨∧
δ∈ΔA

dStep
i

A,δ(A, XA, CA).

tStep
i

A,q(D,XA, CA) ≡ xi �= locA(q) ∨ (tDelayi
A(D,CA) ∧ ¬IA(q)[CA\C∗,i

A ]),

dStep
i

A,δ(A, XA, CA) ≡ xi �= locA(q) ∨ αi �= actA(a) ∨ ¬g[CA\C∗,i
A ] ∨

(xi+1 = locA(q′) ∧ resiA,ρ(CA) ∧ ¬IA(q′)[CA\Ci+1
A ]).

(9)
Since A is deterministic, if the formula BndLIkA,A′ is satisfiable, then L(A′) �⊆
L(A) and for σ = d1 · α1 · · · di · αi, we have σ ∈ L(A′) and σ �∈ L(A).

k-Bounded Emptiness. Let A be a TAIO. Given an integer k > 0, we define
the predicate BndEmpkA as follows:

BndEmpkA ≡
∧k

i=1(di ≥ 0 ∧ αi ≥ 1 ∧ αi ≤ |ΣA|) ∧
i ≥ 1 ∧ i ≤ k ∧
pathi

A(A, D,XA, CA) ∧
accA(xi+1

A )

If the formula BndEmpkA is satisfiable, then L(A) �= ∅ and for σ = d1·α1 · · · di·αi,
we have σ ∈ L(A).

3 Note that it is not equivalent to ¬stepiA because special care must be given to time
delay and clock updates.
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Witness Extrapolation. Let A and A′ be two TAIOs such that L(A′) �⊆
L(A), and σ = σ′ · t · a a timed trace of size k such that σ′ ∈ L(A′) ∩ L(A),
σ ∈ L(A′) and σ �∈ L(A). Let rA′ = q1A′ , δ1A′ , . . . , qkA′ , δkA′q

k+1
A′ be the run of A′

induced by the timed word σ, and rA = q1A, δ
1
A, . . . , q

k−1
A , δk−1

A qkA be the run of
A induced by the timed word σ′. We define the witness extrapolation function
B = witness#(σ,A,A′), where B = (QB, q̂B, Σ

I
B, Σ

O
B , CB, IB , ΔB, FB) such that:

– QB = {q1B, . . . , qk+1
B } such that q̂B = q1B and qiB = (qiA′ , qiA) for all i ≤ k;

– ΣI
B = ΣI

A and ΣO
B = ΣO

A ;
– CB = CA ∪ CA′ ;
– IB(qiB) = IA(qiA) ∧ IA′(qiA′);
– ΔB = {δ1B, . . . , δkB}, where δi is of the form

• (qiB , a
i, giB, ρ

i
B, q

i+1
B ), where giB = giA ∧ giA′ , and ρiB = ρiA ∪ ρiA′ , for all

i < k; and
• (qkB , a

k, gkB, {}, qk+1
B ), where gkB = gkA′ ∧

∧
i∈I ¬g

k,i
A , such that

∧
i∈I ¬g

k,i
A

negates guards gk,iA in all outgoing transitions from qkA labeled by ak;
– FB = {qk+1

B }.

We illustrate B = witness#(σ,A,A′) in Figure 1. In this example, σ = 1 ·a ·3 ·b is
a trace that is included in the language of A′ but not in the language of A. This
trace is extrapolated to the TAIO B, which accepts a set of traces, including
σ, which are all included in the language of A′, but not in the language of A.
This example highlights the need for having only the last location in B being
accepting. If all the locations were accepting, then B would also accept prefixes
of witness traces, such as σ′ = 1·a, which are included in both languages of A and
A′, thus violating the desired property of the witness extrapolation procedure.

B

cA := 0

a!
cA ≥ 1

cA ≥ 5
b!b!

cA ≤ 3

cA ≤ 2

cA′ ≥ 1

1

3

a

b

σ

cA′ ≤ 2

a!

b!

cA′ := 0
cA := 0

cA ≤ 2

cA ≥ 1 ∧ cA′ ≥ 1

cA′ := 0

cA′ ≤ 2

a!

b!
cA′ ≤ 4 cA′ ≤ 4 ∧ cA > 3 ∧ cA < 5

A A′

Fig. 1. Witness extrapolation example

TAIO Difference. We instantiate the operation B ← Diff(A,A′) such that
L(B) = L(A)\L(A′), by using the standard construction B = A × Ā′, where
Ā′ is the complement of A′. The complement of A′ can be computed because
we require A′ to be deterministic, and it consists of completing A′ followed by
inversing the set of accepting locations in the completed TAIO [3].
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Algorithm. BndIncLI(A,A′, B, k, k′) takes in addition two bounds k and k′,
and consists of replacing abstract operations in IncLI(A,A′, B) by the concrete
ones as follows: (1) unsat(BndLIkA′,A) replaces LI(A′, A); (2) witness#(σ,A,A′)

replaces T (A,A′, σ); (3) unsat(BndEmpk+k′
A′′‖B) replaces Emp(A′′ ‖ B); (4) A′ ×

Ā′′ replaces Diff(A′, A′′).
Given three TAIOs A, A′ and B such that A and A′ are defined over

the same alphabet and B is composable with both A and A′ and (b, σ) =
BndIncLI(A,A′, B, k, k′), we have that if b = false, then L(A′ ‖ B) �⊆ L(A ‖ B),
σ ∈ L(A′ ‖ B) and σ �∈ L(A ‖ B).

5 Case Study and Experimental Results

We have implemented the bounded language inclusion checking procedure pre-
sented in Section 4. In our implementation we rely on Uppaal [12] to model
the timed automata components and Z3 [9] to solve SMT formulas. We use a
real-time variant of the Dining Philosophers (DP) problem as our case study.

Thinking
x<=(id+200)

Digesting

Eating
x<=(id+200)

RightFork
x<=(id+1)

Hungry

brainteaser[(id+1) % N]!

leftFork[id]?

leftFork[id]? rightFork[id]?

leftFork[id]?

rightFork[id]?

x>=(id+100)
releaseForks[id]!

brainteaser[id]?

brainteaser[id]?

leftFork[id]?
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rightFork[id]?x=0

Fig. 2. Real-time dining philosopher Pid: N denotes the total number of philosophers

The DP problem consists of n interacting philosophers sitting around a table
that has a single fork per guest. In order to eat, each philosopher needs to get hold
of two forks. This setting likely leads to a deadlock situation: each philosopher
picks the fork to his right, resulting in all forks being in the possession of one
philosopher, and then waits forever for the fork to his left to become available.
We depict our real-time variant of the DP problem in Figure 2. To avoid the
deadlock situation, each DP is required to release the right fork after a time-out
period of waiting for the fork to his left. We extend the classical DP problem with
additional behavior: philosophers exchange brainteasers with their immediate
neighbors. Our model of a philosopher is deterministic and receptive. The latter
explains the number of self-loops in the model as philosophers ignore brainteasers
in locations Hungry, RightFork and Digesting, any presented fork in Eating and
Thinking, the right fork in the RightFork and the left fork in the LeftFork locations.

For the experimental evaluation we consider a network P =‖ni=1 Pi of n
philosophers. We conduct several experiments in which we alter the behavior
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of the last philosopher Pn, resulting in the modified network M =‖n−1
i=1 Pi ‖Mn.

We use our incremental procedure (Incremental) and the one implemented in [2]
(Classic) to find a trace allowed in M but not in P . Classic first computes the par-
allel compositions P and M explicitly before checking the trace containment of
M in P . Tests were done on a machine with 8GB RAM, SSD, an Intel i5-2520M
@ 2.50GHz running in a full power setting, Windows 7 and Z3 4.3 64 bit.

First Experiment. We changed Pn into Mn by making the philosopher Pn

ignore the brainteaser in location Thinking, resulting in L(Mn) �⊆ L(Pn) and the
witness Short of size 6. A similar mutation resulted in another witness Long of size
11. We compared the time needed to find the two witnesses by the Incremental
and Classic approaches for an increasing number of philosophers, as depicted in
Figure 3. In this experiment, the Incremental approach achieved an impressive
speedup of several orders of magnitude compared to the Classic one. While Classic
could scale up to 3 and 4 philosophers for the Long and Short witnesses respec-
tively, the Incremental procedure could scale up to 10 philosophers with ease. In
the scenario with 3 philosophers and the Long witness it took Classic 255494s
(∼ 71h) to find the witness while Incremental found the same witness in 31s.
Similarly, in the scenario with 4 philosophers and the Short witness, the witness
was found in 32176s (∼ 9h) by Classic and in 5s by the Incremental procedure.
The Incremental procedure was able to achieve this impressive speedup in this
experiment because it could directly extend the witness of L(Mn) �⊆ L(Pn) into
the witness of L(M) �⊆ L(P ) without backtracking.
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Fig. 3. First experiment: run time for Incremental and Classic

Second Experiment. We altered Pn into a model Mn, such that Mn contains
two types of traces witnessing L(Mn) �⊆ L(Pn): (1) “spurious” traces which
could not be extended to witnesses of L(M) �⊆ L(P ); and (2) traces that could
be extended to witnesses of L(M) �⊆ L(P ). The Incremental procedure was able
to find the witness of size 5 of L(M) �⊆ L(P ) in 178s after a single backtracking
operation in the scenario with 10 philosophers. This is better than the 214s
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Fig. 4. Size of Mn × P̄n over multiple backtrackings compared to M × P̄

Incremental needed to come up with the witness of size 6 in our first experiment
in the same setting. Hence this experiment hints that a single backtracking in
the Incremental procedure might not induce a lot of overhead.

Third Experiment. In this final setting, we explored the effect of multiple
backtrackings in the Incremental procedure. We altered Pn into Mn, in a way
that L(Mn) �⊆ L(Pn), but L(M) ⊆ L(P ). It follows that Incremental was finding
“local” witnesses of L(Mn) �⊆ L(Pn) that could not be extended to a witness
of L(M) �⊆ L(P ), resulting in an increasing number of backtrackings in which
these spurious witnesses were removed from Mn. Each backtracking consists in
computing the product of Mn with the negation of the extrapolated witness,
resulting in an exponential growth of the size of Mn in the number of iterations.
This means that after each backtracking, checking L(Mn) ⊆ L(Pn) becomes
computationally more expensive: the efficiency of Incremental is highly sensitive
to the number of backtracking iterations needed before finding a witness of trace
non containment. In our example we could backtrack five times before the local
inclusion check reached a complexity comparable to that of Classic (c.f. Figure 4).

6 Application to Mutation-Based Test Case Generation

This work was mainly motivated by its application to model-based mutation
testing [1,14,7,10]. It is a specific type of model-based testing [16], in which
faults are deliberately injected into the specification model. The aim of mutation-
based testing techniques is to generate test cases that can detect the injected
errors. This means that a generated test case shall fail if it is executed on a
(deterministic) system-under-test (SUT) that implements the faulty model.

We developed a framework for real-time mutation-based test case generation
(TCG) in [2]. The overview of the framework is illustrated in Figure 5. Given a
specification S of the SUT, expressed as a deterministic TAIO, S is altered using
predefined mutation operators, resulting in a set of mutants. In order to generate
a test case from the high-level specification S and its mutant M , the mutant is
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no +
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L(M) ⊆ L(d(S))

Input-enabled
Deterministic TAIO”equivalent” mutamt

Fig. 5. Mutation-based Test Case Generation Framework for TAIOs - Overview

checked for tioco conformance [11] to the original specification. If M tioco S, we
say that M is an equivalent mutant to S, and no test case is generated. Otherwise,
a witness of non-conformance is obtained, and it is used as a skeleton to build the
actual test case. Checking tioco directly is not easy, and the problem is effectively
solved in two steps. In the first step, the original non-receptive specification S
is completed using a procedure called demonic completion, resulting in another
TAIO d(S), which preserves all essential properties of S with respect to the
tioco relation. In fact, one can show that the problem of conformance checking
M tioco S can be reduced to a simpler problem of language inclusion checking
L(M) ⊆ L(d(S)). In the second step, L(M) ⊆ L(d(S)) is actually checked.
The framework in [2] proposes an algorithm for k-bounded language inclusion
checking between two flat TAIOs based on bounded model checking techniques.

Given a specification S consisting of a network S1 ‖ S2 ‖ . . . ‖ Sn, its mutant
M is of the form M1 ‖ S2 ‖ . . . ‖ Sn, since M has by definition a single altered
feature. The TCG procedure from [2] first needs to flatten S and M by com-
puting the parallel composition before checking language inclusion. We instead
propose to replace the language inclusion check from [2] with its incremental
variant from Section 3. As a consequence, mutation-based TCG represents a
natural application domain for incremental language inclusion checking.

7 Conclusion

In this paper, we proposed an incremental language inclusion checking proce-
dure for networks of timed automata and applied it to a real-time variant of the
Dining Philosophers problem. The experimental results look promising and indi-
cate that the procedure finds witnesses of language inclusion violation efficiently
when the number of backtracking operations is limited to a small number. The
approach seems in particular effective in the context of mutation-based test case
generation, where a mutant is typically expected to have behaviors not con-
tained in the original specification. These preliminary results suggest that the
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incremental approach will enable us to generate test cases for larger systems
which we could not handle with the classical approach.

In the future, we plan to evaluate our procedure on other examples. In addi-
tion, we plan to develop different variants of the witness extrapolation operation,
and study the criteria that would guarantee termination of our procedure.

Acknowledgements. We would like to thank Cezara Dragoi, Oded Maler and
anonymous reviewers for their comments and suggestions.
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Abstract. This paper proposes a new timed model named nested timed
automata (NeTAs). A NeTA is a pushdown system whose stack symbols
are timed automata (TAs). It either behaves as the top TA in the stack,
or switches from one TA to another by pushing, popping, or chang-
ing the top TA of the stack. Different from existing component-based
context-switch models such as recursive timed automata and timed re-
cursive state machines, when time passage happens, all clocks of TAs
in the stack elapse uniformly. We show that the safety property of Ne-
TAs is decidable by encoding NeTAs to the dense timed pushdown au-
tomata. NeTAs provide a natural way to analyze the recursive behaviors
of component-based timed systems with structure retained. We illustrate
this advantage by the deadline analysis of nested interrupts.

1 Introduction

Due to the rapid development of large and complex timed systems, require-
ments to model and analyze complex real-time frameworks with recursive con-
text switches have been stresses. Difficulty comes from two dimensions of infinity,
a stack with unbounded number of symbols, and clocks recording dense time.

Timed automata (TAs) [1] are a finite automaton with a finite set of clocks
that grow uniformly. A typical timed model with context switches is timed push-
down automata (TPDAs) [2], equipped with an unbounded stack, where clocks
are not updated in the stack. This limitation is found unnatural in analyzing
the timed behavior of programs since clock values should be updated in suspen-
sion. Recently, a new timed pushdown model, dense timed pushdown automata
(DTPDAs) [3] has been proposed, where each symbol in the stack is equipped
with local clocks named “ages”, and all ages in the stack are updated uniformly
for time passage. Reachability problem of DTPDAs is in EXPTIME [3].

This paper proposes a new timed model named nested timed automata (Ne-
TAs). A NeTA is a pushdown system whose stack symbols are TAs. It either
behaves as the top TA in the stack, or switches from one TA to another following
three kinds of transitions: pushing a new TA, popping the current TA when ter-
minates, or replacing the top TA of the stack. This hierarchical design captures

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 168–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the dynamic feature of functionally independent component-based structure of
timed systems. The existing models, such as recursive timed automata [4], and
timed recursive state machines [5] do not update clocks in the stack when time
passage happens, while in NeTAs, all clocks elapse uniformly. When a TA is
pushed into the stack, a set of fresh local clocks is introduced to the system. In
this respect, NeTAs may have to handle an unbounded number of local clocks.
NeTAs are shown to be encoded to DTPDAs preserving the state reachability.
All transitions of NeTAs are simulated by DTPDAs, and vice versa. We illustrate
that NeTAs are adopted to analyze the timely deadline of nested interrupts.

The rest of the paper is organized as follows. Section 2 gives an introduction of
TAs and DTPDAs. Section 3 gives the formal definition and semantics of NeTAs.
Section 4 presents an encoding method from NeTAs to DTPDAs, and proves its
correctness. Section 5 illustrates the usages of NeTAs by an application example.
Section 6 gives the related work and Section 7 concludes the paper.

Due to the lack of space, we omit proofs of theorems, detailed explanations
and nations, which can be found in its extended version [6].

2 Preliminaries

Let R≥0 and N denote the sets of non-negative real numbers and natural num-
bers, respectively. We define Nω := N ∪ {ω}, where ω is the first limit ordinal.
Let I denote the set of intervals. An interval is a set of numbers, written as
(a, b), [a, b], [a, b) or (a, b], where a ∈ N and b ∈ Nω. For a number r ∈ R≥0 and
an interval I ∈ I, we use r ∈ I to denote that r belongs to I.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R≥0,
assigns a value to each clock x ∈ X . ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X . A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if
x = y, and ν(x) otherwise.

2.1 Timed Automata

A timed automaton is an automaton augmented with a finite set of clocks [1,7].
Time can elapse in a location, while switches are instantaneous.

Since we focus on the safety properties (i.e., emptiness problem of a TA, or
reachability problem of a timed transition system), we omit input symbols for
all concerned automata, following the formalization in [3].

We adopt the TA definition style from that in [3], which looks different from
the one in [1,7]. The main difference is that we do not adopt invariant, a time
constraint assigned to each control location. The reason lies that invariants cause
time lock problems. When context switches back, it may occur that the system
can neither stay in the current control location since the invariant is violated nor
transit to other control location since all constraints on transitions are violated.
Nondeterministic clock updates are also taken from [9] with interval tests as
diagonal free time constraints where decidability results are not affected.
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Definition 1 (Timed Automata). A timed automaton is a tuple A = (Q, q0,
F,X,Δ) ∈ A , where

– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X is a finite set of clocks,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition δ ∈ Δ is a

triplet (q1, φ, q2), written as q1
φ−→ q2, in which φ is either of

Local ε, an empty operation,
Test x ∈ I? where x ∈ X is a clock and I ∈ I is an interval, and
Assignment x← I where x ∈ X and I ∈ I.

Given a TA A ∈ A , we use Q(A), q0(A), F (A), X(A) and Δ(A) to represent its
set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Definition 2 (Semantics of TAs). Given a TA A = (Q, q0, F,X,Δ), a con-
figuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν on
X. The transition relation of the TA is represented as follows,

– Progress transition: (q, ν)
t−→A (q, ν + t), where t ∈ R≥0.

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,
• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment φ = x← I, ν2 = ν1[x← r] where r ∈ I.

The initial configuration is (q0, ν0). The transition relation is → and we define

→=
t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure of →.

Remark 1 (Sound Simulation). The TA definition in Definition 1 follows the
style in [3]. In [1], a TA allows a logical connection of several constraint tests,
e.g. x ≤ 15∧ y > 20, and several resets operations of different clocks during one
discrete transition. Only one test or assignment (a generalization of the reset) is
allowed during one discrete transition in the definition. Since a discrete transition
is followed by a progress transition where time elapses, the main ambiguity of
two definitions is whether a conjunction of two tests can be checked one by one,
between which the time elapses. It is shown that TA with our definition soundly
simulates the timed traces in the original definition, as follows,

For ≥ or >, c
x∈[a,+∞)?−−−−−−−→A c′

t−→A c′ is safely converted to c
t−→A c

[a,+∞)?−−−−−→A

c′, for some configurations c and c′.

For ≤ or <, c
t−→A c

x∈[0,a]?−−−−−→A p′ is safely converted to c
x∈[0,a]?−−−−−→A c′

t−→A c′,
for some configurations c and c′.

For test transitions, a general simulation strategy is, firstly, checking the ≥,
and > one by one, then check ≤ and < later. If there exists a “=” constraint,

decomposed it into ≥ ∧ ≤. For example, a transition p
x≤15∧y>20−−−−−−−−→ q in the

original definition is simulated by two transitions p
y∈(20,+∞)?−−−−−−−−→ p′

x∈[0,15]?−−−−−−→ q
under the new definition, where p′ is a fresh control location.



Nested Timed Automata 171

For reset transitions, a group of clocks are reset simultaneously can be simu-
lated by resetting clocks one by one, with a zero test of the first reset clock on

the tail. For example, a transition p
{x,y}−−−→ q, resetting x and y simultaneously, in

the original definition is simulated by p
x←[0,0]−−−−−→ p′

y←[0,0]−−−−−→ p′′
x∈[0,0]?−−−−−→ q, where

p′, p′′ are fresh control locations.
If a transition contains both test and reset operations, we firstly simulate test

operation, then reset operation, following the above rules.

2.2 Dense Timed Pushdown Automata

Dense Timed Pushdown Automata (DTPDAs) [3] extend TPDAs with time
update in the stack. Each symbol in the stack is equipped with a local clock
named age, and all ages in the stack elapse uniformly.

Definition 3 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple D = 〈S, s0, Γ, C,Δ〉 ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is a finite stack alphabet,
– C is a finite set of clocks, and
– Δ ⊆ S ×O × S is a finite set of transitions.

A transition δ ∈ Δ is a triplet (s1, φ, s2), written as s1
φ−→ s2, in which φ is

either of

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assignment x← I where x ∈ C and I ∈ I,
– Push push(γ, I), where γ ∈ Γ is a stack symbol and I ∈ I. It pushes γ to

the top of the stack, with the age in the interval I.
– Pop pop(γ, I), where γ ∈ Γ and I ∈ I. It pops the top-most stack symbol

provided that this symbol is γ, and its age belongs to I.
– PushA push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ C, and
– PopA pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ C.

Definition 4 (Semantics of DTPDAs). For a DTPDA 〈S, s0, Γ, C,Δ〉, a
configuration is a triplet (s, w, ν) with s ∈ S, w ∈ (Γ × R≥0)∗, and a clock
valuation ν on X. Time passage of the stack w + t = (γ1, t1 + t). · · · .(γn, tn + t)
for w = (γ1, t1). · · · .(γn, tn).

The transition relation of the DTPDA is defined as follows:

– Progress transition: (s, w, ν)
t−→D (s, w + t, ν + t), where t ∈ R≥0.

– Discrete transition: (s1, w1, ν1)
φ−→D (s2, w2, ν2), if s1

φ−→ s2, and one of the
following holds,
• Local φ = ε, then w1 = w2, and ν1 = ν2.
• Test φ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment φ = x← I, then w1 = w2, ν2 = ν1[x← r] where r ∈ I.
• Push φ = push(γ, I), then ν1 = ν2, and w2 = (γ, r).w1 for some r ∈ I.
• Pop φ = pop(γ, I), then ν1 = ν2, and w1 = (γ, r).w2 for some r ∈ I.
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• PushA φ = push(γ, x), then ν1 = ν2, and w2 = (γ, ν1(x))w1.
• PopA φ = pop(γ, x), then ν2 = ν1[x← t], and w1 = (γ, t)w2.

The initial configuration κ0 = (q0, ε, ν0). We use ↪−→ to range over these tran-
sitions, and ↪−→∗ is the transitive closure of ↪−→, conventionally.

Example 1. Fig. 1 shows transitions between configurations of a DTPDA con-
sisting of a singleton state set S = {•} (omitted in the figure), clocks C =
{x1, x2, x3}, and stack symbols Γ = {a, b, d}. From κ1 to κ2, a discrete transi-
tion push(d, x3) pushes (d, 2.3) into the stack. A time transition from κ2 to κ3

elapses 2.6 time units, and each value grows older for 2.6. From κ3 to κ4, the
value of x2 is reset to 3.8, which lies in the interval (2, 5], and the last transition
pops (d, x1) and resets x1 to 4.9.

(a, 1.9)

(b, 6.7)

(a, 3.1)

(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d, 2.3)

(a, 1.9)

(b, 6.7)

(a, 3.1)

(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,4.9)

(a,4.5)

(b,9.3)

(a,5.7)

(d,6.8)

x1 ← 3.1
x2 ← 6.5
x3 ← 4.9

(d, 4.9)

(a, 4.5)

(b, 9.3)

(a, 5.7)

(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

(a, 4.5)

(b, 9.3)

(a, 5.7)

(d, 6.8)

x1 ← 4.9
x2 ← 3.8
x3 ← 4.9

κ1
push(d,x3)−−−−−−−−−→D κ2

2.6−−−−−−−−→D κ3
x2←(2,5]−−−−−−−−−→D κ4

pop(d,x1)−−−−−−−−→D κ5

Fig. 1. An Example of DTPDA

Remark 2. Definition 3 extends the definition in [3] by adding PushA and PopA,
which stores and recovers from clocks to ages and vice versa. This extension does
not destroy decidability of state reachability of DTPDAs [8], since its symbolic
encoding is easily modified to accept PushA and PopA. For instance, PushA is
encoded similar to Push, except for the definition on Reset [3]. Reset(R)[a← I]
symbolically explores all possibility of the fraction of an instance in I. Instead,
Reset(R)[a ← x] will assign the same integer and fraction parts to x, which
means an age is simply placed at the same position to x in the region.

3 Nested Timed Automata

Nested Timed Automata (NeTAs) aim to give an operation strategy to a group
of TAs, in which a TA is able to preempt the other ones. All clocks in a NeTA
are local clocks, with the scope of their respective TAs. These clocks in the stack
elapse simultaneously. An unbounded number of clocks may be involved in one
NeTA, due to recursive preemption loops.

Definition 5 (Nested Timed automata). A nested timed automaton is a
triplet N = (T,A0, Δ) ∈ N , where
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– T is a finite set of timed automata, with the initial timed automaton A0 ∈ T .
– Δ ⊆ T×P×(T∪{ε}), where P = {push, pop, internal}. A rule (Ai, Φ,Aj) ∈

Δ is written as Ai
Φ−→ Aj, where

Push Ai
push−−−→ Aj,

Pop Ai
pop−−→ ε, and

Internal Ai
internal−−−−−→ Aj .

The initial state of NeTAs is the initial location inA0, s.t. q0(A0). We also assume
that X(Ai) ∩X(Aj) = ∅, and Q(Ai) ∩Q(Aj) = ∅ for Ai,Aj ∈ T and i �= j.

The operational semantics of NeTAs is informally summarized as follows. It
starts with a stack with the only symbol of the initial TA. The system has the
following four behaviors: when there exists time passage, all clocks in the stack
elapse simultaneously; it is able to behave like the top TA in the stack; when
there exists a push transition from the top TA of the stack to the other TA, a
new instance of the latter TA is pushed into the stack at any time and executed,
while the suspended location of the former TA is recorded in the stack; when
the top TA in the stack reaches the final location and a pop transition happens,
it will be popped from the stack, and the system will run the next TA beginning
with the suspended location; if an internal transition from the top TA to the
other TA occurs, the top TA in the stack will be changed to a new instance of
the latter TA when it reaches some final location.

Definition 6 (Semantics of NeTAs). Given a NeTA (T,A0, Δ), a configura-
tion is a stack, and the stack alphabet is a tuple 〈A, q, ν〉, where A ∈ T is a timed
automaton, q is the current running control location where q ∈ Q(A), and ν is
the clock valuation of X(A). For a stack content c = 〈A1, q1, ν1〉〈A2, q2, ν2〉 . . .
〈An, qn, νn〉, let c + t be 〈A1, q1, ν1 + t〉〈A2, q2, ν2 + t〉 . . . 〈An, qn, νn + t〉.

The transition of NeTAs is represented as follows:

– Progress transitions: c
t−→N c + t.

– Discrete transitions: c
φ−→N c′ is defined as a union of the following four

kinds of transition relations,

• Intra-action 〈A, q, ν〉c φ−→N 〈A, q′, ν′〉c, if q φ−→ q′ ∈ Δ(A), and one of
the following holds,
∗ Local φ = ε, then ν = ν′.
∗ Test φ = x ∈ I?, ν = ν′ and ν′(x) ∈ I holds.
∗ Assignment φ = x← I, ν′ = ν[x← r] where r ∈ I.

• Push 〈A, q, ν〉c push−−−→N 〈A′, q0(A′), ν′0〉〈A, q, ν〉c, if A push−−−→ A′, and
q ∈ Q(A).

• Pop 〈A, q, ν〉c pop−−→N c, if A pop−−→ ε, and q ∈ F (A).

• Inter-action 〈A, q, ν〉c internal−−−−−→N 〈A′, q0(A′), ν′0〉c, if A internal−−−−−→ A′,
and q ∈ F (A).

The initial configuration c0 = 〈A0, q0(A0), ν0〉. We use −→ to range over these
transitions and −→∗ is the transitive closure of −→, conventionally.
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In followings, we focus on the state reachability that is regarded as the most
important property in modelling software behavior.

Definition 7 (Safety Property). A safety property of NeTAs is defined as
the state reachability problem: Given a NeTA N = (T,A0, Δ), and a control
location pf ∈ Q(A) for some A ∈ T , decide whether there exists a configuration
c of N and a clock valuation ν, such that c0 −→∗ 〈A, pf , ν〉c.
Example 2. We take a simple example to show the usage of NeTAs. Assume that
two processes access a shared buffer. One is to read from the buffer periodically
each 4 time units. It accomplishes after it reads one or more data. The other is to
write to the buffer periodically. The execution time is between 3 and 5 time units.
It will return after writes one or more data. The writing process may overtake the
reading process which initially starts running. The NeTA is shown in Fig. 2, with
three TAs. A0 is an empty TA for the idle state. A1 and A2 are for reading and

writing processes, respectively. We have three transition rules: A0
internal−−−−−→ A1,

A1
push−−−→ A2, and A2

pop−−→ ε. The pop transition is not explicitly represented in
the figure. We use dash-line frames to represent the border of TAs in the NeTA,
double-line arrows to indicate the initial location/TA, and double-line circles to
represent the final locations of TAs.

q1
0

q1
1

q1
r

x←
[0

,0]

x∈
(0

,4]?

x←
[0

,0]

idle

idle

wt

y←
[0

,2]

y∈
(0

,5]?

y←
[0

,2]

internal

push

A1 A2

A0

Fig. 2. An Example of NeTA

Remark 3 (Composition with timed automata). A NeTA is composed with a TA
by synchronization with shared actions in Σ, where we are allowed to add input
symbols as actions on transitions of NeTA. A composed TA presents behavioral
properties independent of recursive context switches such as the environment.
Although this extension does not increase the expressiveness of NeTAs, it is very
useful to model and analyze the behavioral properties in the component-based
manner [10,11]. A formal definition of the parallel composition, between a NeTA
N and a TA A, written as N‖A, is formally defined in [6].

4 Decidability of Safety Property

In this section we prove the safety property problem of NeTAs is decidable by
encoding it into DTPDAs, of which state reachability is decidable.
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4.1 Encoding NeTA to DTPDA

The idea to encode a NeTA to a DTPDA is straightforward, dealing with multiple
clocks at push and pop operations. We adopt extra fresh locations and transitions
to check whether a group of push/pop actions happens instantly.

Given a NeTA N = (T,A0, Δ), we define E(N ) = 〈S, s0, Γ, C,∇〉 as the target
of DTPDA encoding of N . Each element is described as,

The set of states S = SN ∪ Sinter , where SN =
⋃

Ai∈T Q(Ai) is the set of
all locations of TAs in T (N ). Sinter is the set of intermediate states during the
simulation of push, pop, and internal rules of NeTAs. We assume that SN and
Sinter are disjoint.

Let n = |T | and mi = |X(Ai)| for each Ai ∈ T . Sinter is

Sinter = (
⋃

Ai∈T

Si
reset) ∪ (

⋃
Ai

push−→Aj∈Δ

Si,j
push) ∪ {o}

– For every Ai ∈ T , we define Si
reset = (

⋃
k∈{1···mi+1} r

i
k) ∪ ti. rik ∈ Si

reset is

the start state of a transition to initialize the k-th clock of Ai to 0. ti is the
start state of a testing transition to make sure that no time is elapsed during
the sequence of initializing transitions.

– For every push rule Ai
push−→ Aj , we define Si,j

push =
⋃

k∈{1···mi+1} p
i,j
k . pi,jk

is the start state of a push transition that push the pair of the k-th clock
of Ai and its value. After all clock values are stored in the stack, the last
destination is the initial state q0(Aj) of Aj .

– o is a special state for repeat popping.

The initial state s0 = q0(A0) is the initial location of the initial TA of N .
The set of clocks C = {d} ∪

⋃
A∈T X(A) consists of all clocks of TA in

T (N ) and the special dummy clock d only to fulfill the field of push and pop
rules, like push(q, d) and pop(q, d). (The value of d does not matter.)

The stack alphabet Γ = C ∪ SN .
The set of transitions ∇ is the union of

⋃
Ai∈T Δ(Ai) (as Local transitions

of E(N )) and the set of transitions described in Fig. 3. For indexes, we assume
0 ≤ i, j ≤ n− 1 and 1 ≤ k ≤ mi (where i is specified in a context).

Local pi,jmi+1
ε−→ rj1, rimi+1

ε−→ ti, qi
ε−→ rj1, qi

ε−→ o for qi ∈ F (Ai).

Test ti
xi
1∈[0,0]?−−−−−−→ q0(Ai).

Assignment rik
xi
k←[0,0]−−−−−−→ rik+1.

Push qi
push(qi,d)−−−−−−−→ pi,j1 , pi,jk

push(xi
k,x

i
k)−−−−−−−−→ pi,jk+1 if k ≤ mi, for qi ∈ Q(Ai).

Pop o
pop(x,x)−−−−−→ o, o

pop(q,d)−−−−−→ q forall x ∈ X(Ai). q ∈ Q(Ai).

Fig. 3. Transition Rules ∇ of E(C )
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Definition 8. For a NeTA N = (T,A0, Δ), its encoding into a DTPDA E(N )
is as follows.

Ai
push−→ Aj qi

push(qi,d)−−−−−−→ pi,j1
push(xi

1,x
i
1)−−−−−−−−→ · · · pi,jmi

push(xi
mi

,xi
mi

)
−−−−−−−−−−→ pi,jmi+1

ε−→

rj1
xj
1←[0,0]−−−−−→ rj2 · · · r

j
mj+1

ε−→ tj
xj
1∈[0,0]?−−−−−−→ q0(Aj)

Ai
pop−→ ε qi

ε−→ o
pop(xi

mi+1,x
i
mi+1)−−−−−−−−−−−−→ · · · pop(xi

1,x
i
1)−−−−−−−→ o

pop(q,d)−−−−−→ q

Ai
internal−→ Aj qi

ε−→ rj1
xj
1←[0,0]−−−−−→ rj2 · · · r

j
mj+1

ε−→ tj
xj
1∈[0,0]?−−−−−−→ q0(Aj)

For a push transition Ai
push−→ Aj , E(N ) simulates, by storing current state of

Ai into the stack, pushing each clock with its current value as an age, and
switching to the initial configuration of Aj (which consists of initializing each
clock x ∈ X(Aj), testing that no timed transitions interleaved, and move to the
initial state q0(Aj)).

For a pop transition Ai
pop−→ ε, Ai has finished its run at a final state and

restores the previous context. E(N ) simulates, first popping and setting each
clock (of E(N )), and set a state to q being stored in the stack.

Note that clocks of E(N ) are used for currently running TA (at the top of the
stack), and ages are used to store values of clocks of suspended TAs.

Example 3. A NeTA is shown in Fig. 4, which includes two TAs A1 and A2.
p1, p2 ∈ Q(A1), x1, x2 ∈ X(A1), q1, q2 ∈ Q(A2), and y1, y2 ∈ X(A2), respec-
tively. A push transition from A1 to A2 occurs at the location p2, and the value
of x1 and x2 are 2.9 and 3.3, respectively. After pushing, y1 and y2 are reset to
zero, and the system begins with q1. The encoding DTPDA is shown in Fig. 5.
p2 is firstly pushed into the stack, and afterwards, x1 and x2 in A1 is pushed
into the stack one by one, with the initial value of the age as their respective
value. Then after y1 and y2 in A2 are reset to 0 through the states r21 , r22 , and
r23 , the system moves to q1 provided the value of y1 is kept as 0.

Example 4. The NeTA in Fig. 2 is encoded into a DTPDA in Fig. 6.

– The larger circles are the original states from the NeTA, while the smaller
ones are intermediate states.

p1 p2

x1 ← 2.9
x2 ← 3.3

push−−→N

q1 q2

y1 ← 0
y2 ← 0

p1 p2 x1 ← 2.9
x2 ← 3.3

Fig. 4. A Push Transition on a Nested Timed Automaton
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p2

x1 ← 2.9
x2 ← 3.3

y1 ← 4.1
y2 ← 0.5

push(p2,d)−−−−−−−−−−→D p1,21

x1 ← 2.9
x2 ← 3.3

y1 ← 4.1
y2 ← 0.5 (p2, 0)

push(xi,xi)−−−−−−−−−−→
∗
D

r21

y1 ← 4.1
y2 ← 0.5

x1 ← 2.9
x2 ← 3.3

(x2,3.3)

(x1,2.9)

(p2, 0)

y1←[0,0]−−−−−−−−−→D r22

y1 ← 0
y2 ← 0.5

x1 ← 2.9
x2 ← 3.3

(x2, 3.3)

(x1, 2.9)

(p2, 0)

y2←[0,0]−−−−−−−−→D

r23

y1 ← 0
y2 ← 0

x1 ← 2.9
x2 ← 3.3

(x2, 3.3)

(x1, 2.9)

(p2, 0)

y1∈[0,0]?−−−−−−−−→
∗
D q1

y1 ← 0
y2 ← 0

x1 ← 2.9
x2 ← 3.3

(x2, 3.3)

(x1, 2.9)

(p2, 0)

Fig. 5. Encoding the Push Transition in DTPDA

– Since A0
internal−−−−−→ A1, before q00 connects to q10 , all clocks in A1 are reset to

zero and kept uniformly. q00 firstly is connected to r11 . r11 and r12 reset clocks
and t1 tests the uniformity of clocks.

– Since A1
push−−−→ A2, each state in A1 connects to p1,21 by a transition to push

itself. p1,21 and p1,22 push each clock in A1. Before connecting to q20 ∈ A2, all
clocks in A2 are similarly reset and tested, through r21 , r22 and t2.

– Since A2
pop−−→ ε, after some final state of A2 is reached, each clock in the

stack should be popped, through an extra state o. After that, o will connect
each state in A1, by which the respective suspended state is popped.

4.2 Correctness of the Encoding

To reduce state reachability problem of NeTAs to that of DTPDAs, we show
that transitions are preserved and reflected by the encoding.

Definition 9 (Encoded Configuration). For a NeTA N = (T,A0, Δ), its
DTPDA encoding E(N ) = 〈S, s0, Γ, C,∇〉. and a NeTA configuration

c = 〈A1, q1, ν1〉〈A2, q2, ν2〉 . . . 〈An, qn, νn〉

let chd = 〈A1, q1, ν1〉 and ctl = 〈An, qn, νn〉. A clock valuation of c, ν(c) : C →
R≥0 is defined as ν(c)(x) = ν1(x) if x ∈ X(A1), and any, otherwise. 1 Let
w(c) = w1 · · ·wn, where wi = (xi

mi
, νi(x

i
mi

)) · · · (xi
1, νi(x

i
1))(qi, 0).

We denote a configuration (q1, w(ctl), ν(c)) of E(N ) by �c�. A configuration κ
of DTPDA with some c and κ = �c� is called an encoded configuration.

1 any means any value, since except for a clock in the top stack frame of a nested
timed automaton, its value does not matter.
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Fig. 6. Encoding the NeTA to DTPDA

Lemma 1. Given a NeTA N , its encoding E(N ), and configurations c, c′ of N .

– (Preservation) if c −→ c′, then �c� ↪−→∗ �c′�;

– (Reflection) if �c� ↪−→∗ κ,

1. there exists c′ such that κ = �c′� and c −→∗ c′, or

2. κ is not an encoded configuration, and there exists c′ such that κ ↪−→∗

�c′� by discrete transitions (of E(N )) and c −→∗ c′.

From Lemma 1, we have the decidability of the safety property of NeTAs.

Theorem 1. The state reachability problem of NeTAs is decidable.

Remark 4 (Global clocks). We can assign a disjoint finite set of global clocks
to a NeTA. These global clocks are tested and reassigned during push, pop
and internal transitions, to control time conditions for push, pop and internal
actions. Global clocks do not affect the safety property of a NeTA, since during
the encoding to DTPDA, we just include these clocks to the set of clocks in
DTPDA, keeping the copies of global clocks for all stack elements.

Fact 1 A parallel composition of a NeTA and a TA can be encoded into a NeTA
with global clocks by forgetting the synchronizing actions.

Remark 5 (Encode DTPDAs into NeTAs). We can also encode a DTPDA into
a NeTA with global clocks by regarding each state of the DTPDA as a TA with
only one (local) clock. These TAs and their respective clocks can thus be used
to represent pairs of stack symbols and ages.
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5 Deadline Analysis for Nested Interrupts

Timely interrupt handling is part of correctness for real-timed, interrupt-driven
system. It is vital for a deadline analysis [12,13] in such systems to check that all
specified deadlines for interrupt handling will be met. Such analysis is a daunting
task because of large number of different possible interrupt arrival scenarios.
An interrupt signal from outside transfers the control to an interrupt handler
deferring the interrupted execution. When there are more than one interrupts,
an interrupt controller provides priorities for them according to urgency of each
interrupt. An interrupt handler is suspended by another handler with higher
priority. After the high priority handler is done, the previous handler is resumed.
In the followings NeTA combined with TA is shown to be useful for deadline
analysis with such nested interrupt handling.

The time and frequency of interrupt signals can be represented by a TA, with
input actions as events that trigger interrupt handlers. For instance, Fig. 7 gives
an example of a TA that trigger three interrupt handlers, by comingP , comingQ,
and comingR, respectively.

C
om

ing
P , x←

[0, 1)

y ∈
[45,+∞

)? x ∈ (15,+∞)?

comingQ, x ← [0, 1)

x ∈ (12,+∞)?

comingR, x ← [0, 1)
ComingP , x ← [0, 1)

y
∈ [

60
,+
∞)

?

Fig. 7. A Timed Automata as an Environment

Assume a finite set of interrupt handler specifications H . Each handler is
specified by P (A, D), where A is a TA to describe its behavior, and D is its
relative deadline. A system should guarantee that each executed handler p of
P (A, D) is executed as A and reached to some final location of A within D time
units. If the handler misses the deadline, it raises an error.

An interrupt handler with relative deadline D is transformed from A to
another TA with error location. Guarded : H → A is defined by Guarded

(P (A, D)) = (QG, qG0 , F
G, XG, ΔG). Each element is shown as follows,

– QG = Q(A) ∪QΔ ∪ {qerr}, where QΔ = {qδ | for each δ ∈ Δ(A)}.
– qG0 = q0(A), and FG = F (A).
– XG = X(A) ∪ {xsch}.
– ΔG = Δsch ∪Δerr, where

• Δsch = {q o−→ qδ, qδ
xsch∈[0,D]?−−−−−−−−→ q′ | δ = (q, o, q′) ∈ Δ(A)}.

• Δerr = {q xsch∈(D,+∞)?−−−−−−−−−−→ qerr | q ∈ Q(A) ∪QΔ}.
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Given a finite set of handler specifications H , a priority policy is described by a
relation ≺ on H . For instance, the most common policy is fixed priority strategy
(FPS), where ≺ is a strict partial order (irreflexive, asymmetric and transitive).
An interrupt controller Sch(H ,≺) with ≺ as a FPS is defined by a nested timed
automaton (T,A0, Δ) over a set of input symbols Σ where,

– Σ = {ComingP | for each P ∈ H }.
– T = {Guarded(P ) | for each P ∈ H } ∪ {Aidle}, where Aidle is a singleton

timed automaton without any transitions.
– A0 = Aidle.
– Δ is defined by Δidle ∪Δpush ∪Δpop ∪Δinternal, where

• Δidle = {Aidle
ComingP ,push−−−−−−−−→ A | ∀P ∈ H ,A = guarded(P )}.

• Δpush = {A ComingP ′ ,push−−−−−−−−−→ A′ | ∀P, P ′ ∈ H , P ≺ P ′∧A = guarded(P )∧
A′ = guarded(P ′)}.

• Δpop = {A pop−−→ ε | ∀P ∈ H ,A = guarded(P )}.
• Δinternal = {A ComingP ′ ,internal−−−−−−−−−−−→ A′ | ∀P, P ′ ∈ H , P �≺ P ′∧P �. P ′∧A =
guarded(P ) ∧ A′ = guarded(P ′)}.

After performing parallel composition with a TA as an environment, we are al-
lowed to check the deadline of each interrupt handler Pi through the reachability
problem on the error location in Guarded(Pi), considering the fact that a finite
number of interrupt handlers are effectively invoked.

6 Related Work

After TAs [1] had been proposed, lots of researches were intended timed con-
text switches. TPDAs were firstly proposed in [2], which enjoys decidability of
reachability problem. Dang proved in [14] the decidability of binary reachability
of TPDAs. All clocks in TPDAs were treated globally, which were not effected
when the context switches.

Our model relied heavily on a recent significant result, named dense timed
pushdown automata (DTPDAs) [3]. The difference between DTPDAs and Ne-
TAs was the hierarchical feature. In NeTAs, a finite set of local clocks were
pushed into the stack at the same time. When a pop action happens, the val-
ues of clocks belonging to popped TA were popped simultaneously and reused.
This feature eased much for modelling the behavior of time-aware software. In
DTPDAs, local clocks must be dealt within some proper bookkeeping process,
which was not essential part of the analysis. In [15], a discrete version of DTP-
DAs, named discrete timed pushdown automata was introduced, where time was
incremented in discrete steps and thus the ages of clocks and stack symbols are
in the natural numbers. This made the reachability problem much simpler, and
easier for efficient implementation.

Based on recursive state machines [16], two similar timed extensions, timed
recursive state machines (TRSMs) [5] and recursive timed automata (RTAs) [4],
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were given independently. The main differences from NeTAs were, the two models
had no stack time-update during progress transitions, and the number of clocks
was essentially finite. The hierarchical timed automata (HTAs) [17] kept the
similar structure of clocks, where only a bounded number of levels were treated,
while NeTAs treated an unbounded number of levels.

The class of extended timed pushdown automata (ETPDAs) was proposed
in [5]. An ETPDA was a pushdown automaton enriched with a set of clocks,
with an additional stack used to store/restore clock valuations. Two stacks were
independently. ETPDAs have the same expressiveness with TRTMs via weak
timed bisimulation. The reachability problem of ETPDAs was undecidable, while
the decidability held with a syntactic restriction on the stack.

Controller automata (CAs) [18,11], was proposed to analyze interrupts. In a
CA, a TA was assigned to each state. A TA at a state may be preempted by
another state by a labeled transition. The number of clocks of CAs were finite,
and thus when existing preemption loop, only the newest timed context were
kept. Given a strict partial order over states, an ordered controller automaton
was able to be faithfully encoded into a TA, and thus safety property of the
restrictive version was preserved.

The updatable timed automata (UTAs) [9] proposed the possibility of updating
the clocks in a more elaborate way, where the value of a clock could be reassigned
to a basic arithmetic computation result of values of other clocks. UTAs raised up
another way to accumulate time when timed context switches, and thus updatable
timed pushdown automata (UTPDAs) could be an interesting extension.

7 Conclusion

This paper proposed a timed model called nested timed automata (NeTAs). A
NeTA was a pushdown system with a finite set of TAs as stack symbols. All
clocks in the stack elapse uniformly, capable to model the timed behavior of the
suspended components in the stack. The safety property of NeTAs was shown to
be decidable by encoding NeTAs to DTPDAs. As an example of its application,
behavior of multi-level interrupt handling is concisely modelled and its deadline
analysis is encoded as a safety property.

We are planning to develop a tool based on NeTAs. Instead of general NeTAs,
we will restrict a class such that a pop action occurs only with an integer-valued
age. We expect this subclass of NeTAs can be encoded into updatable TPDAs
(without local age), which would be more efficiently implemented.
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Abstract. We ask whether strictly causal components form well de-
fined systems when arranged in feedback configurations. The standard
interpretation for such configurations induces a fixed-point constraint on
the function modelling the component involved. We define strictly causal
functions formally, and show that the corresponding fixed-point problem
does not always have a well defined solution. We examine the relationship
between these functions and the functions that are strictly contracting
with respect to a generalized distance function on signals, and argue that
these strictly contracting functions are actually the functions that one
ought to be interested in. We prove a constructive fixed-point theorem
for these functions, and introduce a corresponding induction principle.

1 Introduction

This work is part of a larger effort aimed at the construction of well defined
mathematical models that will inform the design of programming languages and
model-based design tools for timed systems. We use the term “timed” rather
liberally here to refer to any system that will determinately order its events
relative to some physical or logical clock. But our emphasis is on timed compu-
tation, with examples ranging from concurrent and distributed real-time software
to hardware design, and from discrete-event simulation to continuous-time and
hybrid modelling, spanning the entire development process of what we would
nowadays refer to as cyber-physical systems. Our hope is that our work will lend
insight into the design and application of the many languages and tools that
have and will increasingly come into use for the design, simulation, and analy-
sis of such systems. Existing languages and tools to which this work applies, to
varying degrees, include hardware description languages such as VHDL and Sys-
temC, modeling and simulation tools such as Simulink and LabVIEW, network
simulation tools such as ns-2/ns-3 and OPNET, and general-purpose simulation
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F
F (s)s

Fig. 1. Block-diagram of a functional component F in feedback. The input signal s
and the output signal F (s) are but the same signal; that is, s = F (s).

Considering the breadth of our informal definition for timed systems, we can-
not hope for a comprehensive formalism or syntax for such systems at a gran-
ularity finer than that of a network of components. We will thus ignore any
internal structure or state, and think of any particular component as an opaque
flow transformer. Formally, we will model such components as functions, and use
a suitably generalized concept of signal as flow. This point of view is consistent
with the one presented by most of the languages and tools mentioned above.

The greatest challenge in the construction of such a model is, by and large,
the interpretation of feedback. Feedback is an extremely useful control mech-
anism, present in all but the most trivial systems. But it makes systems self-
referential, with one signal depending on another, and vice versa (see Fig. 1).
Mathematically, this notion of self-reference manifests itself in the form of a
fixed-point problem, as illustrated by the simple block-diagram of Fig. 1: the
input signal s and the output signal F (s) are but the same signal transmitted
over the feedback wire of the system; unless F has a fixed point, the system has
no model; unless F has a unique or otherwise canonical fixed point, the model
is not uniquely determined; unless we can construct the unique or otherwise
canonical fixed point of F , we cannot know what the model is.

In this work, we consider the fixed-point problem of strictly causal functions,
namely functions modelling components whose output at any time depends only
on past values of the input. After a careful, precise formalization of this folklore,
yet universally accepted, definition, we show that the property of strict causality
is by itself too weak to accommodate a uniform fixed-point theory. We then
consider functions that are strictly contracting with respect to a suitably defined
generalized distance function on signals, and study their relationship to strictly
causal ones, providing strong evidence that the former are actually the functions
that one ought to be interested in. Finally, we consider the fixed-point problem
of these functions, which is not amenable to classical methods (see [2, thm. A.2
and thm. A.4]), and prove a constructive fixed-point theorem, what has resisted
previous efforts (e.g., see [3], [4]). We also introduce a corresponding induction
principle, and discuss its relationship to the standard ones afforded by the fixed-
point theories of order-preserving functions and contraction mappings.

For lack of space, we omit all proofs; they can be found in [2]. We also assume
a certain level of familiarity with the theory of generalized ultrametric spaces
(e.g., see [5]) and order theory (e.g., see [6]).
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2 Signals

We postulate a non-empty set T of tags, and a total order relation � on T.
We use T to represent our time domain. The order relation � is meant to play
the role of a chronological precedence relation, and therefore, it is reasonable to
require that � be a total order. We note, however, that such a requirement is
often unnecessary, and in fact, all results of Sect. 5 remain valid when 〈T,�〉 is
only partially ordered.

We would like to define signals as functions over an independent variable
ranging over T. But being primarily concerned with computational systems, we
should expect our definition to accommodate the representation of variations
that may be undefined for some instances or even periods of time. In fact, we
think of such instances and periods of time as part of the variational information.
Such considerations lead directly to the concept of partial function.

We postulate a non-empty set V of values.

Definition 1. An event is an ordered pair 〈τ, v〉 ∈ T×V.

Definition 2. A signal is a single-valued set of events.

We write S for the set of all signals.
Our concept of signal is based on [7]. But here, unlike in [7], we restrict signals

to be single-valued.
Notice that the empty set is vacuously single-valued, and hence, a signal,

which we call the empty signal.
We adopt common practice in modern set theory and identify a function with

its graph. A signal is then a function with domain some subset of T, and range
some subset of V, or in other words, a partial function from T to V.

For every s1, s2 ∈ S and τ ∈ T, we write s1(τ) / s2(τ) if and only if one of
the following is true:

1. τ �∈ dom s1 and τ �∈ dom s2;
2. τ ∈ dom s1, τ ∈ dom s2, and s1(τ) = s2(τ).

There is a natural, if abstract, notion of distance between any two signals, corre-
sponding to the largest segment of time closed under time precedence, and over
which the two signals agree; the larger the segment, the closer the two signals.
Under certain conditions, this can be couched in the language of metric spaces
(e.g., see [7], [8], [9]). All one needs is a map from such segments of time to
non-negative real numbers. But this step of indirection excessively restricts the
kind of ordered sets that one can use as models of time (see [4]), and can be
avoided as long as one is willing to think about the notion of distance in more
abstract terms, and use the language of generalized ultrametric spaces instead
(see [5]).
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We write d for a map from S× S to L 〈T,�〉 such that for every s1, s2 ∈ S,1

d(s1, s2) = {τ | τ ∈ T, and for every τ ′ � τ , s1(τ ′) / s2(τ ′)} .

Proposition 1. 〈S,L 〈T,�〉,⊇,T, d〉 is a generalized ultrametric space.

The following is immediate, and indeed, equivalent:

Proposition 2. For every s1, s2, s3 ∈ S, the following are true:

1. d(s1, s2) = T if and only if s1 = s2;
2. d(s1, s2) = d(s2, s1);
3. d(s1, s2) ⊇ d(s1, s3) ∩ d(s3, s2).

We refer to clause 1 as the identity of indiscernibles, clause 2 as symmetry, and
clause 3 as the generalized ultrametric inequality.

Proposition 3. 〈S,L 〈T,�〉,⊇,T, d〉 is spherically complete.

Spherical completeness implies Cauchy-completeness, but the converse is not
true in general (see [10, prop. 10], [2, exam. 2.6]). The importance of spherical
completeness will become clear in Section 4 (see Theorem 2).

There is also a natural order relation on signals, namely the prefix relation on
signals.

We write 1 for a binary relation on S such that for every s1, s2 ∈ S,

s1 1 s2 ⇐⇒ for every τ, τ ′ ∈ T, if τ ∈ dom s1 and τ ′ � τ , then
s1(τ ′) / s2(τ ′).

We say that s1 is a prefix of s2 if and only if s1 1 s2.
It is easy to see that for every s1, s2 ∈ S, s1 1 s2 if and only if there is

L ∈ L 〈T,�〉 such that s1 = s2 	 L,3 and in particular, s1 1 s2 if and only if
s1 = s2 	 d(s1, s2) (see [2, prop. 2.12 and thm. 2.13]).

Notice that for every s ∈ S, ∅ 1 s; that is, the empty signal is a prefix of every
signal.

Proposition 4. 〈S,1〉 is a complete semilattice.

For every C ⊆ S such that C is consistent in 〈S,1〉, we write
⊔

C for the least
upper bound of C in 〈S,1〉.

For every s1, s2 ∈ S, we write s1 � s2 for the greatest lower bound of s1 and
s2 in 〈S,1〉.
1 For every ordered set 〈P,�〉, we write L 〈P,�〉 for the set of all lower sets2 of
〈P,�〉.

2 For every ordered set 〈P,�〉, and every L ⊆ P , L is a lower set (also called a
down-set or an order ideal) of 〈P,�〉 if and only if for any p1, p2 ∈ P , if p1 � p2 and
p2 ∈ L, then p1 ∈ L.

3 For every function f and every set A, we write f 	 A for the restriction of f to A,
namely the function {〈a, b〉 | 〈a, b〉 ∈ f and a ∈ A}.
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3 Causal and Strictly Causal Functions

Causality is a concept of fundamental importance in the study of timed systems.
Informally, it represents the constraint that, at any time instance, the output
events of a component do not depend on its future input events. This is only
natural for components that model or simulate physical processes, or realize
online algorithms; an effect cannot precede its cause.

Assume a non-empty partial function F on S.
We say that F is causal if and only if there is a partial function f such that

for every s ∈ domF and every τ ∈ T,

F (s)(τ) / f(s 	 {τ ′ | τ ′ � τ}, τ) .

Example 1. Suppose that T = R, and � is the standard order on R. Let p be a
positive real number, and F a function on S such that for every s ∈ S and every
τ ∈ T,

F (s)(τ) /
{
s(τ) if there is i ∈ Z such that τ = p · i;
undefined otherwise.

Clearly, F is causal.

The function of Example 1 models a simple sampling process.
Now, as explained in Section 1, due to its relevance to the interpretation of

feedback, of special interest is whether any particular partial function F on S has
a fixed point, that is, whether there is s ∈ S such that s = F (s) (see Fig. 1), and
whether that fixed point is unique. The function of Example 1 has uncountably
many fixed points, namely every s ∈ S such that

dom s ⊆ {τ | there is i ∈ Z such that τ = p · i} .

And it is easy to construct a causal function that does not have a fixed point.

Example 2. Let τ be a tag in T, v a value in V, and F a function on S such that
for every s ∈ S,

F (s) =

{
∅ if τ ∈ dom s;

{〈τ, v〉} otherwise.

It is easy to verify that F is causal. But F has no fixed point; for F ({〈τ, v〉}) = ∅,
whereas F (∅) = {〈τ, v〉}.

The function of Example 2 models a component whose behaviour at τ resembles
a logical inverter, turning presence of event into absence, and vice versa.

Strict causality is causality bar instantaneous reaction. Informally, it is the
constraint that, at any time instance, the output events of a component do not
depend on its present or future input events. This operational definition has its
origins in natural philosophy, and is of course inspired by physical reality: every
physical system, at least, in the classical sense, is a strictly causal system.
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We say that F is strictly causal if and only if there is a partial function f
such that for every s ∈ domF and every τ ∈ T,

F (s)(τ) / f(s 	 {τ ′ | τ ′ ≺ τ}, τ) .

Proposition 5. If F is strictly causal, then F is causal.

Of course, the converse is false. For example, the sampling function of Example 1
is causal but not strictly causal.

Example 3. Suppose that T = R, and � is the standard order on R. Let F be a
function on S such that for every s ∈ S and every τ ∈ T,

F (s)(τ) / s(τ − 1) .

Clearly, F is stricty causal.

The function of Example 3 models a simple constant-delay component. It is in
fact a “delta causal” function, as defined in [7] and [8], and it is not hard to see
that every such function is strictly causal (as is every “Δ-causal” function, as
defined in [11] and [12]). The function of our next example models a variable
reaction-time component, and is a strictly causal function that is not “delta
causal” (nor “Δ-causal”).

Example 4. Suppose that T = [0,∞), � is the standard order on [0,∞), and
V = (0,∞). Let F be a function on S such that for every s ∈ S and any τ ∈ T,

F (s)(τ) /
{

1 if there is τ ′ ∈ dom s such that τ = τ ′ + s(τ ′);

undefined otherwise.

Clearly, F is strictly causal.

Now, the function of Example 3 has uncountably many fixed-points, namely
every s ∈ S such that for every τ ∈ R,

s(τ) / s(τ + 1) .

And the function of Example 4 has exactly one fixed point, namely the empty
signal. And having ruled out instantaneous reaction, the reason behind the lack
of fixed point in Example 2, one might expect that every strictly causal function
has a fixed point. But this is not the case.

Example 5. Suppose that T = Z, � is the standard order on Z, and V = N. Let
F be a function on S such that for every s ∈ S and every τ ∈ T,

F (s)(τ) /
{
s(τ − 1) + 1 if τ − 1 ∈ dom s;

0 otherwise.

Clearly, F is strictly causal. However, F does not have a fixed point; any fixed
point of F would be an order-embedding from the integers into the natural
numbers, which is of course impossible.

Example 5 alone is enough to suggest that the classical notion of strictly causality
is by itself too general to support a useful theory of timed systems.
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4 Contracting and Strictly Contracting Functions

There is another, intuitively equivalent way to articulate the property of causal-
ity: a component is causal just as long as any two possible output signals differ
no earlier than the input signals that produced them (see [8, p. 36], [13, p. 11],
and [14, p. 383]). And this can be very elegantly expressed using the generalized
distance function of Section 2.

We say that F is contracting if and only if for every s1, s2 ∈ domF ,

d(F (s1), F (s2)) ⊇ d(s1, s2) .

In other words, a function is contracting just as long as the distance between any
two signals in the range of the function is smaller than or equal to that between
the signals in the domain of the function that map to them.

In [4, def. 5], causal functions were defined to be the contracting functions.
Here, we prove that indeed they are.

Theorem 1. F is causal if and only if F is contracting.

Following the same line of reasoning, one might expect that a component is
strictly causal just as long as any two possible output signals differ later, if at
all, than the signals that produced them (see [8, p. 36]).

We say that F is strictly contracting if and only if for every s1, s2 ∈ domF
such that s1 �= s2,

d(F (s1), F (s2)) ⊃ d(s1, s2) .

Proposition 6. If F is strictly contracting, then F is contracting.

In [3, p. 484], Naundorf defined strictly causal functions as the functions that we
here call strictly contracting, and in [4, def. 6], that definition was rephrased using
the generalized distance function to explicitly identify strictly causal functions
with the strictly contracting functions. But the relationship between the pro-
posed definition and the classical notion of strict causality was never formally
examined. The next theorem, which is a direct application of the fixed-point
theorem of Priess-Crampe and Ribenboim for strictly contracting functions on
spherically complete generalized ultrametric spaces (see [5, thm. 1]), implies that,
in fact, the two are not the same.

Assume non-empty X ⊆ S.

Theorem 2. If 〈X,L 〈T,�〉,⊇,T, d〉 is spherically complete, then every
strictly contracting function on X has exactly one fixed point.

By Theorem 2, the function of Example 5 is not strictly contracting. What is
then the use, if any, of strictly contracting functions in a fixed-point theory for
strictly causal functions? The next couple of theorems are key in answering this
question.

Theorem 3. If F is strictly contracting, then F is strictly causal.



190 E. Matsikoudis and E.A. Lee

F causal

Fig. 2. A functional component realizes a strictly contracting function F if and only if
the cascade of the component and any arbitrary causal component has a unique, well
defined behaviour when arranged in a feedback configuration.

Theorem 4. If 〈domF,L 〈T,�〉,⊇,T, d〉 is spherically complete, then F is
strictly contracting if and only if for every causal function F ′ from ranF to
domF , F ′ ◦ F has a fixed point.

An informal but informative way of reading Theorem 4 is the following: a func-
tional component realizes a strictly contracting function if and only if the cas-
cade of the component and any arbitrary causal filter has a unique, well defined
behaviour when arranged in a feedback configuration (see Fig. 2); that is, the
components that realize strictly contracting functions are those functional com-
ponents that maintain the consistency of the feedback loop no matter how we
chose to filter the signal transmitted over the feedback wire, as long as we do so
in a causal way.

Theorem 4 completely characterizes strictly contracting functions in terms
of the classical notion of causality, identifying the class of all such functions as
the largest class of functions that have a fixed point not by some fortuitous
coincidence, but as a direct consequence of their causality properties.

The implication of Theorem 3 and 4, we believe, is that the class of strictly
contracting functions is the largest class of strictly causal functions that one can
reasonably hope to attain a uniform fixed-point theory for.

Finally, if we further require that the domain of any signal in the domain of
a function is well ordered under ≺, then the difference between a strictly causal
function and a strictly contracting one vanishes.

Theorem 5. If for every s ∈ domF , 〈dom s,≺〉 is well ordered, then F is
strictly causal if and only if F is strictly contracting.

For example, the variable-reaction-time function of Example 4 is not strictly
contracting, as can be witnessed by the signals {〈 1

2n+1 ,
2

4n2−1 〉 | n ∈ N} and

{〈 1
2n ,

1
2n(n−1) 〉 | n ∈ N and n ≥ 2}, but its restriction to the set of all discrete-

event signals, for instance, is.
Theorem 5, immediately applicable in the case of discrete-event systems, is

most pleasing considering our emphasis on timed computation. It implies that
for all kinds of computational timed systems, where components are expected
to operate on discretely generated signals, including all programming languages
and model-based design tools mentioned in the beginning of the introduction,
the strictly contracting functions are exactly the strictly causal ones.
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5 Fixed-Point Theory

We henceforth concentrate on the strictly contracting functions, and begin to
develop the rudiments of a constructive fixed-point theory for such functions.

For every partial endofunction F on S, and any s ∈ domF , we say that s is a
post-fixed point of F if and only if s 1 F (s).

Assume non-empty X ⊆ S.

Lemma 1. If 〈X,1〉 is a subsemilattice of 〈S,1〉, then for every contracting
function F on X, and every s ∈ X, the following are true:

1. F (s) � F (F (s)) is a post-fixed point of F ;
2. if s is a post-fixed point of F , then s 1 F (s) � F (F (s)).

Lemma 2. If 〈X,1〉 is a subsemilattice of 〈S,1〉, then for every contracting
function F on X, and any set P of post-fixed points of F , if P has a least upper
bound in 〈X,1〉, then

⊔
X P is a post-fixed point of F .

Lemma 1 and 2 contain nearly all the ingredients of a transfinite recursion facil-
itating the construction of a chain that will converge to the desired fixed point.
We may start with any arbitrary post-fixed point of the function F , and iterate
through the function λx : X . F (x) � F (F (x)) to form an ascending chain of
such points. Every so often, we may take the supremum in 〈X,1〉 of all sig-
nals theretofore constructed, and resume the process therefrom, until no further
progress can be made. Of course, the phrase “every so often” is to be interpreted
rather liberally here, and certain groundwork is required before we can formalize
its transfinite intent.

We henceforth assume some familiarity with transfinite set theory, and in
particular, ordinal numbers. The unversed reader may refer to any introductory
textbook on set theory for details (e.g., see [15]).

Assume a subsemilattice 〈X,1〉 of 〈S,1〉, and a function F on X .
We write 1m2F for a function on X such that for any s ∈ X ,

(1m2F )(s) = F (s) � F (F (s)) .

In other words, 1m2F is the function λx : X . F (x) � F (F (x)).
Assume a directed-complete subsemilattice 〈X,1〉 of 〈S,1〉, a contracting

function F on X , and a post-fixed point s of F .
We let

(1m2F )
0
(s) = s ,

for every ordinal α,

(1m2F )
α+1

(s) = (1m2F )((1m2F )
α

(s)) ,

and for every limit ordinal λ,

(1m2F )λ(s) =
⊔

X {(1m2F )α(s) | α ∈ λ} .

The following implies that for every ordinal α, (1m2F )
α

(s) is well defined:
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Lemma 3. If 〈X,1〉 is a directed-complete subsemilattice of 〈S,1〉, then for
every contracting function F on X, any post-fixed point s of F , and every
ordinal α,

1. (1m2F )
α

(s) 1 F ((1m2F )
α

(s));

2. for any β ∈ α, (1m2F )
β
(s) 1 (1m2F )

α
(s).

By Lemma 3.2, and a simple cardinality argument, there is an ordinal α such
that for every ordinal β such that α ∈ β, (1m2F )

β
(s) = (1m2F )

α
(s). In fact, for

every directed-complete subsemilattice 〈X,1〉 of 〈S,1〉, there is a least ordinal
α such that for every contracting function F on X , any post-fixed point s of F ,
and every ordinal β such that α ∈ β, (1m2F )

β
(s) = (1m2F )

α
(s).

We write oh 〈X,1〉 for the least ordinal α such that there is no function ϕ
from α to X such that for every β, γ ∈ α, if β ∈ γ, then ϕ(β) 
 ϕ(γ).

In other words, oh 〈X,1〉 is the least ordinal that cannot be orderly embedded
in 〈X,1〉, which we may think of as the ordinal height of 〈X,1〉. Notice that the
Hartogs number of X is an ordinal that cannot be orderly embedded in 〈X,1〉,
and thus, oh 〈X,1〉 is well defined, and in particular, smaller than or equal to
the Hartogs number of X .

Lemma 4. If 〈X,1〉 is a directed-complete subsemilattice 〈X,1〉 of 〈S,1〉,
then for every contracting function F on X, any post-fixed point s of F , and
every ordinal α, if (1m2F )

α
(s) is not a fixed point of 1m2F , then α + 2 ∈

oh 〈X,1〉.

By Lemma 4, (1m2F )
oh 〈X,�〉

(s) is a fixed point of 1m2F . Nevertheless,

(1m2F )oh 〈X,�〉(s) need not be a fixed point of F as intended. For example, if F
is the function of Example 2, then for every ordinal α, (1m2F )

α
(∅) = ∅, even

though ∅ is not a fixed point of F . This rather trivial example demonstrates how
the recursion process might start stuttering at points that are not fixed under
the function in question. If the function is strictly contracting, however, progress
at such points is guaranteed.

Lemma 5. If 〈X,1〉 is a subsemilattice of 〈S,1〉, then for every strictly con-
tracting function F on X, s is a fixed point of F if and only if s is a fixed point
of 1m2F .

We may at last put all the pieces together to obtain a constructive fixed-point
theorem for strictly contracting functions on directed-complete subsemilattices
of 〈S,1〉.

Theorem 6. If 〈X,1〉 is a directed-complete subsemilattice of 〈S,1〉, then for
every strictly contracting function F on X, and any post-fixed point s of F ,

fixF = (1m2F )oh 〈X,�〉(s) .

To be pedantic, Theorem 6 does not directly prove that F has a fixed point;
unless there is a post-fixed point of F , the theorem is true vacuously. But by
Lemma 1.1, for every s ∈ X , (1m2F )(s) is a post-fixed point of F .
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This construction of fixed points as “limits of stationary transfinite iteration
sequences” is very similar to the construction of extremal fixed points of mono-
tone operators in [16] and references therein, where the function iterated is not
1m2F , but F itself. Notice, however, that if F preserves the prefix relation, then
for any post-fixed point of F , (1m2F )(s) = F (s).

The astute reader will at this point anticipate the following:

Theorem 7. If 〈X,1〉 is a non-empty, directed-complete subsemilattice of
〈S,1〉, then for every strictly contracting function F on X,

fixF =
⊔

X {s | s ∈ X and s 1 F (s)} .

The construction of Theorem 7 is identical in form to Tarski’s well known con-
struction of greatest fixed points of order-preserving functions on complete lat-
tices (see [17, thm. 1]).

We note here that 1m2F is not, in general, order-preserving under the above
premises (see [2, exam. 5.15]), as might be suspected, and thus, our fixed-point
theorem is not a reduction to a standard order-theoretic one.

Now, having used transfinite recursion to construct fixed points, we may use
transfinite induction to prove properties of them. And in particular, we may use
Theorem 6 to establish a special proof rule.

Assume P ⊆ S.
We say that P is strictly inductive if and only if every non-empty chain in

〈P,1〉 has a least upper bound in 〈P,1〉.
Note that P is strictly inductive if and only if 〈P,1〉 is directed-complete (see

[18, cor. 2]).

Theorem 8. If 〈X,1〉 is a non-empty, directed-complete subsemilattice of
〈S,1〉, then for every strictly contracting function F on X, and every non-
empty, strictly inductive P ⊆ X, if for every s ∈ P , (1m2F )(s) ∈ P , then
fixF ∈ P .

Theorem 8 is an induction principle that one may use to prove properties of fixed
points of strictly contracting endofunctions. We think of properties extensionally
here; that is, a property is a set of signals. And the properties that are admissible
for use with this principle are those that are non-empty and strictly inductive.

It is interesting to compare this principle with the fixed-point induction prin-
ciple for order-preserving functions on complete partial orders (see [19]), which
we will here refer to as Scott-de Bakker induction, and the fixed-point induction
principle for contraction mappings on complete metric spaces (see [20]), which
we will here refer to as Reed-Roscoe induction (see also [21], [22], [23]).

For a comparison between our principle and Scott-de Bakker induction, let
F be a function of the most general kind of function to which both our prin-
ciple and Scott-de Bakker induction apply, namely an order-preserving, strictly
contracting function on a pointed, directed-complete subsemilattice 〈X,1〉 of
〈S,1〉. Now assume a property P ⊆ X . If P is admissible for use with Scott-de
Bakker induction, that is, closed under suprema in 〈X,1〉 of arbitrary chains in
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〈P,1〉, then {s | s ∈ P and s 1 F (s)} is non-empty and strictly inductive. And
if P is closed under F , then {s | s ∈ P and s 1 F (s)} is trivially closed under
1m2F . Therefore, given any reasonable property-specification logic, our princi-
ple is at least as strong a proof rule as Scott-de Bakker induction. At the same
time, the often inconvenient requirement that a property P that is admissible for
use with Scott-de Bakker induction contain the least upper bound in 〈X,1〉 of
the empty chain, namely the least element in 〈X,1〉, and the insistence that the
least upper bound of every non-empty chain in 〈P,1〉 be the same as in 〈X,1〉
make it less likely that every property true of fixF that can be proved using our
principle can also be proved using Scott-de Bakker induction. For this reason,
we are inclined to say that, given any reasonable property-specification logic,
our principle is a strictly stronger proof rule than Scott-de Bakker induction, in
the case, of course, where both apply.

The relationship between our principle and Reed-Roscoe induction is less
clear. 〈S,L 〈T,�〉,⊇,T, d〉 being a generalized ultrametric space rather than
a metric one, it might even seem that there can be no common ground for a
meaningful comparison between the two. Nevertheless, it is possible to general-
ize Reed-Roscoe induction in a way that extends its applicability to the present
case, while preserving its essence. According to the generalized principle, then,
for every strictly contracting function F on any Cauchy complete, non-empty,
directed-complete subsemilattice of 〈S,1〉 such that every orbit under F is a
Cauchy sequence, every non-empty property closed under limits of Cauchy se-
quences that is preserved by F is true of fixF . One similarity between this
principle and our own, and an interesting difference from Scott-de Bakker in-
duction, is the lack of an explicit basis for the induction; as long as the property
in question is non-empty, there is some basis available. In terms of closure and
preservation of admissible properties, however, the two principles look rather
divergent from one another. For example, the property of a signal having only
a finite number of events in any finite interval of time is Cauchy complete, but
not strictly inductive. On the other hand, by Lemma 1.1 and Theorem 7, our
principle is better fit for proving properties that are closed under prefixes, such
as, for example, the property of a signal having at most one event in any time
interval of a certain fixed size. And for this reason, we suspect that, although
complimentary to the generalized Read-Roscoe induction principle in theory, our
principle might turn out to be more useful in practice, what can of course only
be evaluated empirically.

6 Related Work

Fixed points have been used extensively in the construction of mathematical
models in computer science. In most cases, ordered sets and monotone functions
have been the more natural choice. But in the case of timed computation, metric
spaces and contraction mappings have proved a better fit, and Tarski’s fixed-
point theorem and its variants have given place to Banach’s contraction principle.

Common to all approaches using this kind of modeling framework that we
know of is the requirement of a positive lower bound on the reaction time of each
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component in a system (e.g., see [20], [24], [12], [25], [7], [8], [9]). This constraint
is used to guarantee that the functions modelling these components are actually
contraction mappings with respect to the defined metrics. The motivation is of
course the ability to use Banach’s fixed-point theorem in the interpretation of
feedback, but a notable consequence is the absence of non-trivial Zeno phenom-
ena, what has always been considered a precondition for realism in the real-time
systems community. And yet in modelling and simulation, where time is repre-
sented as an ordinary program variable, Zeno behaviours are not only realizable,
but occasionally desirable as well. Simulating the dynamics of a bouncing ball,
for example, will naturally give rise to a Zeno behaviour, and the mathematical
model used to study or even define the semantics of the simulation environment
should allow for that behaviour. This is impossible with the kind of metric spaces
found in [20], [24], [12], [25], [7], [8], and [9] (see [4, sec. 4.1]).

Another limiting factor in the applicability of the existing approaches based
on metric spaces is the choice of tag set. The latter is typically some unbounded
subset of the real numbers, excluding other interesting choices, such as, for ex-
ample, that of superdense time (see [4, sec. 4.3]).

Naundorf was the first to address these issues, abolishing the bounded reaction
time constraint, and allowing for arbitrary tag sets (see [3]). He defined strictly
causal functions as the functions that we here call strictly contracting, and used
an ad hoc, non-constructive argument to prove the existence of a unique fixed
point for every such function. Unlike that in [7], [8], and [9], Naundorf’s defi-
nition of strict causality was at least sound (see Theorem 3), but nevertheless
incomplete (e.g., see Example 5). It was rephrased in [4] using the generalized
distance function to explicitly identify strictly causal functions with the strictly
contracting ones. This provided access to the fixed-point theory of generalized ul-
trametric spaces, which, however, proved less useful than one might have hoped.
The main fixed-point theorem of Priess-Crampe and Ribenboim for strictly con-
tracting endofunctions offered little more than another non-constructive proof
of Naundorf’s theorem, improving only marginally on the latter by allowing the
domain of the function to be any arbitrary spherically complete set of signals,
and the few constructive fixed-point theorems that we know to be of any rele-
vance (e.g., see Proof of Theorem 9 for ordinal distances in [10], [26, thm. 43])
were of limited applicability.

There have also been a few attempts to use complete partial orders and least
fixed points in the study of timed systems. In [11], Yates and Gao reduced the
fixed-point problem related to a system of so-called “Δ-causal” components to
that of a suitably constructed Scott-continuous function, transferring the Kahn
principle to networks of real-time processes, but once more, under the usual
bounded reaction-time constraint. A more direct application of the principle in
the context of timed systems was put forward in [27]. But the proposed definition
of strict causality was still incomplete, unable to accommodate components with
more arbitrarily varying reaction-times, such as the one modelled by the function
of Example 4 restricted to the set of all discrete-event signals, and ultimately,
systems with non-trivial Zeno behaviours. Finally, a more naive approach was
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proposed in [28], where components were modelled as Scott-continuous functions
with respect to the prefix relation on signals, creating, of course, all kinds of
causality problems, which, however, seem to have gone largely unnoticed.

7 Conclusion

Strictly contracting functions form the largest class of strictly causal functions
for which fixed points exist uniformly and canonically. More importantly, they
coincide with strictly causal function in the case of discrete-event computation.
The constructive fixed-point theorem for such functions presented in this work
is, we believe, a leap forward in our understanding of functional timed systems.
But a complete treatment of such systems should allow for arbitrarily complex
networks of components. What we need, then, is an abstract characterization
of a class of structures that will support the development of the theory, and
stay closed under the construction of products and function spaces of interest,
enabling the treatment of arbitrary, even higher-order composition in a uniform
and canonical way. This is the subject of future work.
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Abstract. A recent optimizations technique for timed model checking
starts with a given specification of quasi-equal clocks. In principle, the
zone graph can used to detect which clocks are quasi-equal; the construc-
tion of the zone graph would, however, defeat its very purpose (which
is the optimization of this construction). In this paper, we present an
abstraction that is effective for the goal of the optimization based on
quasi-equal clocks: it is coarse enough to yield a drastic reduction of
the size of the zone graph. Still, it is precise enough to identify a large
class of quasi-equal clocks. The abstraction is motivated by an intuition
about the way quasi-equalities can be tracked. We have implemented the
corresponding reasoning method in the Jahob framework using an SMT
solver. Our experiments indicate that our intuition may lead to a useful
abstraction.

1 Introduction

Timed automata and timed model checking [1,12,18] have been very successfully
applied for the verification of real-time systems. Still, the number of clocks in
a timed automaton will always be an issue for scalability, and the optimization
of timed model checking will always be a topic of research. Optimization tech-
niques for timed model checking are often based on some notion of redundancy
in the representation of the timed model and its behavior in terms of clock val-
uations. The detection of the corresponding redundancies is then a prerequisite
for applying the optimization.

An example of a redundancy which gives the opportunity of a provably very
effective optimization is the notion of quasi-equal clocks [11]. Two clocks x and y
in a given timed automaton are quasi-equal if the invariant x = y∨x = 0∨y = 0
holds. That is, in every step in every transition sequence, the two clocks x and
y have equal value except for steps where one of them has been reset but not
the other. As a consequence, the invariant x = y can be violated only at single
time points (i.e., during time periods of length zero). In a way, the violation of
the invariant is an artefact of the model of the behavior of a timed systems by
discrete sequences.

The optimization presented in [11] starts with a given specification of quasi-
equal clocks. In principle, the zone graph can be used to detect which clocks
are quasi-equal; the construction of the zone graph would, however, defeat its
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very purpose (which is the optimization of this construction). In this paper, we
present an abstraction that is coarse enough to yield a drastic reduction of the
zone graph and precise enough to identify a large class of quasi-clocks.

The abstraction is motivated by an intuition about the way quasi-equalities
can be tracked. The intuition is that the behavior of a timed automaton over
a non-zero period of time (without resets) will neither introduce new quasi-
equalities nor “destroy” a quasi-equality, and hence we can apply the most coarse
abstraction there. In contract, when different values for quasi-equal clocks arise
in a sequence of configurations where time does not elapse, we must track the
constants for the values of the clocks as precisely as possible (i.e., apply no
proper abstraction). Thus, as an intermediate step for computing abstract zones,
we must apply logical reasoning in order to infer whether the zone accounts for
behavior of zero (as opposed to: non-zero) periods of time.

Our abstraction methods amounts to computing an abstraction of the zone
graph. We use the abstract zone graph to detect quasi-equal clocks.

We have implemented our method in the Jahob verification framework. This
allows us to represent zones (and abstract zones) by linear real arithmetic for-
mulas and to perform the required logical reasoning (on the duration of the
corresponding period of time) through calls of an SMT solver.

We have used our implementation to conduct preliminary experiments. The
results indicate that the abstraction is effective for the goal of the optimization
based on quasi-equal clocks: it is coarse enough to yield a drastic reduction of
the size of the zone graph. Still, the abstraction is precise enough to identify a
large class of quasi-clocks.

Related work. In [13], a syntactical pattern for timed automata is proposed.
Automata constructed under this pattern are called sequential timed automata.
There, the so-called master clocks will be reset at exactly the same point of
time. Thus, master clocks are quasi-equal by construction. Unfortunately, the
class of sequential timed automata is rather restricted. Therefore, one would like
to be able to use the general class of timed automata and apply a method for
detecting or checking quasi-equal clocks. This motivates the present work.

In [7] an abstraction method is proposed for detecting equal clocks (at a par-
ticular location). Once equal clocks at a particular location have been detected,
a substitution method can be used to reduce the number of clocks in that loca-
tion. Thus, the method can effectively reduce the number of clocks per location
and also in the whole timed automaton. In this sense, the method [7] is similar
wrt. its goal to our method. The difference lies in technical details. Computing
quasi-equal clocks requires to detect zero time paths. For this, our method tracks
the actual valuations of clocks, which the method [7] does not. As a consequence,
it will not be able to detect quasi-equal clocks when they are not equal.

Outline of the paper. In Section 2, we use an example to recall and illustrate
the notion of quasi-equal clocks. We also investigate the issue of zero time be-
haviors and we present the abstract transition system for detecting quasi-equal
clocks. In Section 3, we present the formal setting. In Section 4, we formalize our
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�0x ≤ 60 ∧ y ≤ 60

�1

x ≤ 60 ∧ y ≤ 60

�2

x ≤ 60 ∧ y ≤ 60

�3 x ≤ 60 ∧ y ≤ 60

x ≥ 50 y ≥ 40

y ≥ 40 x ≥ 50

y ≥ 60 y := 0

x ≥ 60 x := 0

x ≥ 60 x := 0

y ≥ 60 y := 0

Fig. 1. Automaton with quasi-equal clocks x, y

abstraction by means of an abstract zone graph and a simulation relation. In
Section 5, we present an example that illustrates effectiveness of the abstraction,
i.e., the reduction of size through the abstraction. In Section 6, we present an
algorithm for computing the reachable abstract zone graph ( on the fly). The out-
put of the algorithm is a relation that identifies which clocks are quasi-equal. We
present the result of our experiments using an implementation of the algorithm.

2 Example

In this section, we illustrate our approach with help of the automaton in Figure 1.
First, we refresh the notion of quasi-equal clocks. Next, we show the importance
of the zero time behavior for detecting quasi-equal clocks. Finally, we show the
corresponding abstract zone graph in which quasi-equal clocks can be efficiently
detected.

Quasi-equal clocks. two clocks are quasi-equal if for all computations their values
are equal or if one clock was reset then a reset must eventually occur for the
other clock in zero time. Quasi-equal clocks are formally defined in Section 3.
Consider the timed automata presented in Figure 1 with clocks x and y. Clearly,
clocks x and y are not equal since for example in the computation 〈�0, {ν0}〉 →∗

〈�1, x = 60 ∧ y = 0〉 the configuration 〈�1, x = 60∧ y = 0〉 yields different values
for clocks x and y. However, note that the invariant I(�1) = x ≤ 60 ∧ y ≤ 60
will prevent time to elapse at this configuration and thus the only successor of
this configuration is 〈�0, x = 0 ∧ y = 0 ∧ x ≤ 60 ∧ y ≤ 60〉 in which the values
for clocks x and y are equal. Indeed, it is the case that for all computations
from the automaton in Figure 1, the values for clocks x and y are either equal
or the value of one clock is zero and a reset in zero time for the other clock
occurs. Therefore, clocks x and y are quasi-equal. Clearly, the behavior of timed
automata in Figure 1, can be simulated by using one clock, which yields an
important speed up in the verification time.
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〈�0, x = y〉

〈�1, x = y〉

〈�2, x = y〉

〈�0, P1〉

〈�0, P2〉

〈�1, P2〉

〈�2, P1〉

〈�3, x = y〉

Fig. 2. Abstract zone graph corresponding to TA in Figure 1

Zero time behavior. As shown above, the zero time behavior of a timed au-
tomaton may cause quasi-equal clocks to arise. Therefore, zero time behavior is
important for detecting quasi-equal clocks.

In the computation given above, first a reset for clock x occurs, then in the
next transition a reset for clock y occurs. In this case, the length of the zero
time computation is just one transition. However, this does not need to be the
case. Consider the computation 〈�0, {ν0}〉 →∗ 〈�0, x = 0 ∧ y ≤ 60 ∧ y ≥ 60〉, the
invariant I(�0) = x ≤ 60∧ y ≤ 60 will not let time elapse and the only successor
is 〈�2, x = 0 ∧ y ≤ 60 ∧ y ≥ 60〉. The invariant I(�2) = x ≤ 60 ∧ y ≤ 60 will not
let time elapse and the only successor is 〈�0, x = 0 ∧ y = 0 ∧ x ≤ 60 ∧ y ≤ 60〉,
where time may elapse but the values for clocks x and y are equal. In general,
the number of transitions that may occur in zero time might be infinite.

Abstract zone graph. Given a timed automaton, our method will construct an
abstract transition system, which preserves as much as possible the zero time
behavior of a timed automaton. The configurations of the abstract transition
system are pairs consisting of locations and zones. The zones that we compute
are of two types. Either a zone for which time is guaranteed not to elapse or a
conjunction of equalities for clocks for which time may elapse.

Figure 2 shows the abstract transition system corresponding to the abstraction
defined in Section 4 applied to the automaton in Figure 1, where zones P1, P2

are P1 := x ≤ 60 ∧ x ≥ 60 ∧ y = 0 and P2 := y ≤ 60 ∧ y ≥ 60 ∧ x = 0.
Note, that in configurations where time may elapse the corresponding zone is
x = y. In the transition induced by the edge (�1, x ≥ 60, x := 0, �0) from the
automaton in Figure 1 and configuration 〈�1, P1〉. The successor configuration
〈�0, P ′〉 with zone P ′ = (P1∧x ≥ 60)[{x} := 0]∧I(�0) is not zero time. Therefore,
(P1 ∧ x ≥ 60)[{x} := 0] ∧ I(�0) is relaxed to x = y, leading to configuration
〈�0, x = y〉. Since, every zone in the set of reachable configurations implies that
x = y ∨ x = 0 ∨ y = 0, our abstraction allow us to soundly conclude that x and
y are quasi-equal.
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3 Preliminaries

The formal basis for our work are timed automata [1]. Let X be a set of clocks.
The set Φ(X) of simple clock constraints over X is defined by the grammar
ϕ ::= x ∼ y | x − y ∼ C | ϕ1 ∧ ϕ2 where x, y ∈ X, C ∈ Q+

0 , and ∼∈ {<,≤,=
,≥, >}. Constraints of the form x− y ∼ C are called difference constraints. We
assume the canonical satisfaction relation “|=” between valuations of the clocks
ν : X→ R+

0 and simple clock constraints.
A timed automaton A is a tuple (L,X, I, E, �0), which consists of a finite

set of locations L, with typical element �, a finite set of clocks X, a mapping
I : L→ Φ(X), that assigns to each location a clock constraint, and a set of edges.
E ⊆ L×Φ(X)×P(X)×L. An edge e = (�, ϕ, Y, �′) ∈ E from � to �′ involves a guard
ϕ ∈ Φ(X), and a reset set Y ⊆ X. For easiness of presentation our definition of
timed automaton does not include synchronizations or data variables. However,
our idea can be extended to such “richer models” in a straight forward manner.
For the rest of the paper, let us fix a timed automaton A = (L,X, I, E, �0).

A zone is the maximal set of clock valuations satisfying a clock constraint.
Given timed automaton A, for a clock constraint Z ∈ Φ(X), let [Z] denote the
maximal set of valuations satisfying Z. In the following we shall use Z to stand
for [Z] as a shorthand. Then, Φ(X) denotes the set of zones for A. For zone Z,
we define Z↑ = {ν + d | ν ∈ Z, d ∈ R+} and Z[Y := 0] = {ν[Y := 0] | ν ∈ Z}
where ν[Y := 0] denotes the valuation obtained from ν by resetting exactly the
clocks in Y .

The symbolic semantics for timed automaton A is defined by the zone graph
S(A) = (Conf (A),→, c0) where Conf (A) ⊆ L×Φ(X) is the set of configurations
consisting of pairs of a location � ∈ L and a zone Z ∈ Φ(X), c0 = 〈�0, {ν0}〉 is the
initial configuration where ν0(x) = 0 for all clocks x ∈ X and →⊆ Conf (A) ×
Conf (A) is the transition relation with delay transitions 〈�, Z〉 → 〈�, Z↑ ∧ I(�)〉,
and action transitions 〈�, Z〉 → 〈�′, (Z∧ϕ)[Y := 0]∧I(�′)〉 if there exists an edge
(�, ϕ, Y, �′) ∈ E.

The quasi-equal relation ≡ for timed automaton A introduced in [11,13] is the
relation containing all pairs of clocks for which in all computations of A their
values are equal, except at points of time where they are reset and time is not al-

lowed to elapse. Formally, it is defined as≡def
= {(x, y) | x, y ∈ X and 〈�0, {ν0}〉 →∗

〈�, Z〉 =⇒ ∀ν ∈ Z. ν |= x = y ∨ x = 0 ∨ y = 0}. This notion is illustrated by
the Example Section 2.

A normalization operator norm defined on zones is used to construct a finite
representation of the transition relation →. Maximal bound normalization [15,8],
lower and upper bound zone based abstractions [3] and normalization using dif-
ference constraints [5] are some normalization procedures we may use to present
our idea. Since our model for timed automata includes diagonal constraints we
will define norm to be the normalization operator presented in [5]. We now for-
mally define the norm operator. For timed automaton A, let G be a finite set
of difference constraints, and k : X → Q+

0 be a function mapping each clock x
to the maximal constant k(x) appearing in the guards or invariants in A con-
taining x. For a real d let {d} denote the fractional part of d and 3d4 denote its
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integer part. Two valuations ν, ν′ are equivalent, denoted ν ∼ ν′ iff (1) for all
x, either 3ν(x)4 = 3ν′(x)4 or both ν(x) > k(x) and ν′(x) > k(x),(2) for all x, if
ν(x) ≤ k(x) then {ν(x)} = 0 iff {ν(x)} = 0 and (3) for all x, y if ν(x) ≤ k(x)
and ν(y) ≤ k(y) then {ν(x)} ≤ {ν(y)} iff {ν(x)} ≤ {ν′(x)} ≤ {ν′(y)} (4) for all

ϕ ∈ G, ν ∈ ϕ iff ν′ ∈ ϕ. Then norm(Z)
def
= {ν | ν ∼ ν′, ν′ ∈ Z}.

4 Zero Time Behavior Abstraction

In this section, we present our method for detecting quasi-equal clocks. The main
observation is that if two clocks x and y are quasi-equal then for all computations
if one clock, say x is reset then a reset for the other clock y must appear in
some future configuration in the computation path. In particular, for all the
configurations in the computation fragment between the resets of x and y time
cannot elapse (i.e. all the delay successors of a configuration have a delay of
zero). Another key observation is that if in a configuration time is allowed to
elapse, clocks x and y must be strictly equal. Therefore, to detect quasi-equal
clocks. We do not only need to consider resets of clocks but also configurations in
which time is allowed to elapse and configurations in which time is not allowed to
elapse. The following definition formalizes our notion of zero time configurations,
i.e. configurations for which time cannot elapse.

Definition 1 (Zero time configuration). A configuration 〈�, Z〉 is zero time
if the invariant of location � precludes time to elapse. Formally,

zt(�, Z)
def
= ∀ν ∈ Z, d ∈ R+

0 . ν + d |= I(�) =⇒ d = 0.

Our method preserves as much as possible the information corresponding to zero
time configurations and abstracts away much information from the non-zero time
configurations. If a configuration 〈�, Z〉 is zero time, our method will preserve
all the information in Z. However, if the configuration 〈�, Z〉 is non-zero time,
our method will abstract Z by means of the relax operator rlx to a much bigger
zone rlx(Z), which preservers the strict equalities entailed by the zone Z. The
following definition formalizes the relax operator.

Definition 2 (Relax operator). Given a zone Z ∈ Φ(X). The relax operator
rlx applied to the zone Z over-approximates Z by a conjunction of the clock
equalities it entails. Formally,

rlx(Z)
def
=

∧
{x = y | x, y ∈ X and ∀ν ∈ Z. ν |= x = y}.

As an example of the relax operator, consider the zone Z in Figure 3 left. It is
the case that all the valuations in Z satisfy the constraint x = y. However, there
are valuations in Z which satisfy x �= z and also valuations which satisfy y �= z.
Therefore, the result of applying the relax operator to Z yields the zone x = y
as shown in Figure 3 right. Note, that the zone rlx(Z) has no constraints on the
unequal clocks. Another important property of rlx(Z) is that it contains only
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Fig. 3. The relax operator on zone Z := x−y ≤ 0∧x−y ≥ 0∧x ≥ 1∧y ≤ 5∧y−z ≤ 1.

positive equalities and thus will remain unaffected by passage of time. That is
rlx(Z) = rlx(Z)↑. Note, that rlx(Z) is much bigger than Z and it is closed with
respect to delays. If a configuration is zero time our method will abstract the
configuration by means of the normalization norm operator. On the contrary, if
a configuration is non-zero time, our method will abstract the configuration by
means of the relax rlx operator. The normalization operator norm is increasing,
idempotent and yields a finite number of zones. Since our method relies on both
the normalization operator norm and the relax operator rlx it is important that
the relax operator exhibits the above mentioned properties.

Lemma 1. The relax operator is increasing, idempotent and yields a finite ab-
straction. Formally, the following hold:

– Z ⊆ rlx(Z) for any Z ∈ Φ(X)
– rlx(rlx(Z)) = rlx(Z) for any Z ∈ Φ(X)
– the set {rlx(Z) | Z ∈ Φ(X)} is finite.

Our goal is to construct an abstract zone graph in which quasi-equalities can
be soundly and efficiently computed. We now continue with the formal definition
of our method.

Definition 3 (Abstract zone graph). Timed automaton A induces the ab-

stract zone graph S#(A) = (Conf (A),�, c#0 ) where:

– Conf (A) ⊆ L× Φ(X) is the set of configurations

– c#0 = (�0,
∧

x,y∈X
x = y) is the initial configuration

– �⊆ Conf (A) × Conf (A) is the transition relation defined as:

〈�, P 〉�
{
〈�′, norm(F )〉 if zt(�′, F )

〈�′, rlx(F )〉 otherwise

if there is an edge (�, ϕ, Y, �′) ∈ E, where F = (P ∧ϕ∧ I(�))[Y := 0]∧ I(�′).
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The initial abstract configuration is a conjunction asserting all clocks to be equal.
Given a configuration and an edge, the successor zone F is computed. If the
destination configuration is zero time, the zone F will be normalized to norm(F ).
This is because in zero time it is important to preserve as much information as
possible. This information is useful for detecting zero time paths in which quasi-
equal clocks may arise. If the destination configuration is not zero time, the zone
F will be relaxed to rlx(F ). The zone rlx(F ) consist of conjuncts asserting all
strict equalities of clocks in zone F . In addition, the relax operator will remove
inequalities introduced by clock resets. Note that the abstract zone graph only
performs discrete transitions. This is because if a configuration is “detected” as
non-zero time, the relax operator will be applied and the corresponding zone is
closed with respect to delays. For easiness of presentation we use norm(F ) to
ensure the relation� to be finite. We remind the reader that any normalization
operator norm′ such that norm′(Z) ⊇ Z, norm′(norm′(Z)) = norm′(Z) and the
set {norm′(Z) | Z ∈ Φ(X)} is finite, will be suitable for our method.

For a timed automaton A, we formalize the behavior of the corresponding
abstract zone graph S#(A) with respect to the zone graph S(A) via a simulation
relation.

Definition 4 (Simulation relation). Given a timed automaton A, a simula-
tion relation for the zone graph S(A) = (Conf (A),→, c0) and the abstract zone

graph S#(A) = (Conf (A),�, c#0 ), is a binary relation � on Conf (A) such that:

1. c0 � c#0
2. if 〈�, Z〉 � 〈�1, P 〉 then:

(a) � = �1 and Z ⊆ P

(b) if 〈�, Z〉 → 〈�′, Z ′〉 with edge (�, ϕ, γ, �′) ∈ E, then there exists 〈�′, P ′〉
such that 〈�, P 〉� 〈�′, P ′〉 with edge (�, ϕ, γ, �′) and 〈�′, Z ′〉 � 〈�′, P ′〉

(c) if 〈�, Z〉 → 〈�, Z↑ ∧ I(�)〉, then 〈�, Z↑ ∧ I(�)〉 � 〈�, P 〉.

If a simulation relation � exists, we say that the abstract zone graph S#(A)
simulates the zone graph S(A).

In the rest of the paper we will consistently use Z and P to refer to zones
in the zone and abstract zone graph respectively. The definition of simulation
relation given above is quite specific. This allow us to better explain the relation
between the zone graph and the abstract zone graph. If two configurations are
in relation, the zone in the abstract zone graph is always bigger or equal than
the corresponding zone in the zone graph. If there is a discrete transition in the
zone graph then there is a discrete transition in the abstract zone graph as well.
If there is a delay transition in the zone graph, meaning that the configuration
is non-zero time, the abstract zone graph “remains” at its current configuration.
In the latter case, since zones in the abstract zone graph are bigger or equal
than zones in the zone graph, the corresponding abstract configuration is also
non-zero time and closed with respect to delays. The following lemma guarantees
the existence of a simulation relation.
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Lemma 2. For a timed automaton A, the abstract zone graph S#(A) simulates
the zone graph S(A).

Our goal is to find the set of quasi-equal clocks for a given timed automaton
A. We now define the quasi-equal relation induced by the abstract zone graph
S#(A) as the set of quasi-equalities implied by all the zones in the set of its
reachable configurations.

Definition 5. Given timed automaton A. The abstract quasi-equal relation ≡#

induced by the abstract zone graph S#(A), is the set of pairs of clocks such that
for all pairs, their values in the reachable configurations are equal or one clock
is equal to zero. Formally,

≡#def
= {(x, y) | x, y ∈ X and c#0 �∗ 〈
, P 〉 =⇒ P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}}.

Our method is sound in the sense that if two clocks are quasi-equal in the abstract
zone graph, then they are quasi-equal in the concrete zone graph. Our method
is not complete in the sense that if two clocks are quasi-equal in the zone graph,
then they might not be quasi-equal in the abstract zone graph. As an example
consider the timed automaton A′ = (L,X, I, E, �0) with L = {�0, �1, �2}, X =
{x, y}, I(�) = � for all � ∈ L and E = {(�0, x ≥ 5, {}, �1), (�1, x ≤ 2, {x}, �2)}.
Then x ≡ y but x �≡# y. This is because the edge e = (�1, x ≤ 2, {x}, �2) is
an unfeasible edge, i.e. it does not induce a reachable transition in the zone
graph. Edge e will cause clocks x, y to be unequal in the abstract zone graph.
Surprisingly, we have not been able to find an example for which the abstraction
is not complete given that the considered timed automaton contains only feasible
edges. The following theorem states formally the soundness of the abstraction.

Theorem 1 (Zero time abstraction is sound). Given timed automaton A.
If two clocks are quasi-equal in the abstract zone graph S#(A), then they are
quasi-equal in the zone graph S(A). Formally,

∀x, y ∈ X. x ≡# y =⇒ x ≡ y.

For implementation purposes, it is important that the relation� is finite. Given
a timed automaton A and by definition of the transition relation �. A con-
figuration has two possible successors. Either a successor corresponding to the
application of the norm operator, or a successor corresponding to the application
of the rlx operator. The set of zones generated by norm is finite. Further, the set
of zones generated by rlx is in O(2|X|), since it contains only positive equalities
for the clocks in X. Thus, we obtain the following theorem.

Theorem 2. The transition relation � is finite.
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y ≤ 1
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x ≥ 1

x := 0
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z ≥ 106 y := 0

〈�0, x = y = z〉

〈�1, x = 0 ∧ y = z ∧ y ≤ 1 ∧ y ≥ 1〉

〈�0, x = y〉

〈�1, x = 0 ∧ y ≤ 1 ∧ y ≥ 1〉

〈�2, x = y〉

Fig. 4. Left: a timed automaton with clocks, x, y and z. Clocks x, y are quasi-equal.
Right: the corresponding abstract zone graph.

5 Size of the Abstract Zone Graph

In this section we characterize the size of the abstract zone graph based on
the number of reachable configurations. We show that when an automaton A
contains only feasible edges i.e. for each edge e in the timed automaton there
exists a computation path in which the edge e induces a transition, then the size
of the zone graph S(A) is an upper bound for the size of the abstract zone graph
S#(A).

Definition 6 (Size). For timed automaton A we defined the size of the zone
graph S(A) = (Conf (A),→, c0) and the size of the abstract zone graph S#(A) =

(Conf (A),�, c#0 ) to be the number of reachable configurations. Formally,

|S(A)| = |{c | c0 →∗ c}| and |S#(A)| = |{c | c#0 �∗ c}| respectively.

The following theorem shows that when in the input automaton all edges induce
a reachable configuration in the zone graph S(A). Then the number of config-
urations from the corresponding abstract zone graph S#(A) is smaller or equal
than the number of configurations in the zone graph S(A). The theorem follows
from the following facts. First, if the abstract zone graph S#(A) performs an
action transition with edge e then the zone graph S(A) also performs a transi-
tion with edge e. Second, by Lemma 2 it is the case that S#(A) simulates S(A)
and all zones in the configurations of S#(A) are bigger than the corresponding
ones in S(A).

Theorem 3 (|S#(A)| ≤ |S(A)|). Given a timed automaton A, the zone graph
S(A) = (Conf (A),→, c0) and the abstract zone graph S#(A) = (Conf (A),�
, c#0 ). If A is such that for all e = (�, ϕ, Y, �′) ∈ E there is a transition 〈�, Z〉 →
〈�′, Z ′〉 with edge e and c0 →∗ 〈�, Z〉 then |S#(A)| ≤ |S(A)|.

The feasibility of edges is not a strong condition, since in practice unfeasible
edges will not occur intentionally, except in the cases when the modeler makes a
mistake. Theorem 3 gives an upper bound on the size of the abstract zone graph.
In practice for a timed automaton the difference on the size of the abstract and
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Algorithm 1. High level algorithm for detecting quasi-equal clocks

Input: timed automaton A = (L,X, I, E, 
0)
Output: a binary relation QE ⊆ X× X containing quasi-equal clocks in A
1: W := {c#0 }, V := ∅
2: QE := {(x, y) | x, y ∈ X and x is different than y}
3: while W �= ∅ and QE �= ∅ do
4: take 〈
, P 〉 from W
5: for all (x, y) ∈ QE do
6: if P �⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0} then
7: QE := QE \ {(x, y)}
8: end if
9: end for
10: if P �⊆ P ′ for all 〈
, P ′〉 ∈ V then
11: add 〈
, P 〉 to V
12: for all 〈
′, P ′〉 with 〈
, P 〉� 〈
′, P ′〉 do
13: add 〈
′, P ′〉 to W
14: end for
15: end if
16: end while
17: return QE

the size of the concrete system can be exponential. To illustrate this, consider
the automaton A in Figure 4 left. We observe that the zero time behavior occurs
at points of time where x = 1 ∧ y = 1 ∧ z = n with n ∈ {1, 2, . . . , 106}. The
normalized zone graph using maximal constant over approximation will contain
at least 106 configurations. In Figure 4 right the complete full abstract zone
graph S#(A) is illustrated. At point of time x = 1 ∧ y = 1 ∧ z = 1 our method
detects a zero time configuration and computes the exact successor zone Z1 :=
x = 0∧y = z∧y ≤ 1∧y ≥ 1. Note that zt(�1, Z1) is valid, then there is a transition
with edge (�1,�, {y}, �0). Our method computes F := x = 0∧ y = 0∧ z = 1 and
the formula zt(�0, F ) is not valid, thus F is relax to rlx(F ) := x = y leading to
configuration 〈�0, x = y〉. Since F does not imply a quasi-equality for clock z, the
clock z is abstracted away. The resulting abstraction has only 5 configurations.

6 Algorithm and Experiments

In this section, first we present a high level algorithm for performing a reacha-
bility analysis on the abstract zone graph induced by a given timed automaton.
Next, we give some details on our implementation and compare the results ob-
tained by our implementation to the ones obtained by using a model checker.

6.1 Algorithm for Detecting Quasi-equal Clocks

Algorithm 1 lists a high level algorithm for finding quasi-equal clocks in a given
timed automaton. The idea of Algorithm 1 is to traverse the reachable state
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space of S#(A) while maintaining a relation QE containing quasi-equal clocks.
The reachable state space is computed on the fly.

We continue by describing Algorithm 1 in detail. At line 2 the set QE is
initialized to have all non reflexive quasi-equalities. At line 3 the while condition
ensures that the algorithm will terminate either when we have visited the whole
reachable space of S#(A) or when there are no quasi-equal clocks in QE. At
lines 4 to 8 the algorithm picks a configuration 〈�, P 〉 to be explored and checks
that all the quasi-equalities (x, y) in QE are implied by P . If this is not the case,
then it will remove (x, y) from QE. Note that in the algorithm the size of QE
only decreases. Finally, at lines 10 to 14 the algorithm computes the successor
of 〈�, P 〉 using the transition relation �.

Note, that all the operations needed in Algorithm 1 can be implemented using
difference bound matrices [4,10] and thus our approach can be implemented in
tools like Kronos [18] or Uppaal [12]. The check in line 6 for two clocks can
be implemented by checking independently whether P satisfies any disjunct in
x = y ∨ x = 0 ∨ y = 0. For computing the successor in line 12 by definition of
� it is necessary to compute zt(�′, F ) where F is a convex zone. This can be
computed by checking the inclusion F ∧ I(�′) ⊇ F ↑ ∧ I(�′).

If the set QE is never empty, Algorithm 1 computes the reachable space of
S#(A) and if a pair of clocks (x, y) are in QE by Theorem 1 it follows that they
are quasi-equal in A.

Theorem 4 (Partial correctness). For any timed automaton A, if two clocks
are in relation QE from Algorithm 1, then they are quasi-equal in the correspond-
ing zone graph. Formally,

∀x, y ∈ X.(x, y) ∈ QE =⇒ x ≡ y.

Algorithm 1 will terminate whenever the relation QE is empty or whenever the
wait list W is empty. By Theorem 2, the relation � is finite, meaning that the
list W will be eventually empty. Thus we obtain the following theorem.

Theorem 5 (Termination). Algorithm 1 terminates for all inputs.

6.2 Experiments

As a proof of concept we have implemented our approach in our prototype tool
Saset. Saset is implemented in the Jahob [19,16] verification system. Our imple-
mentation represents zones as linear real arithmetic formulae and uses logical
implications to ensure a finite number of representatives. As Saset constructs the
abstract zone graph a number of constraints will arise, Saset will use an SMT
solver to solve them. In our experiments we used the solver Z3 [9].

In general our results show that the size of the transition system computed
using our abstraction is very small in comparison to the one computed by Uppaal.
Therefore, the verification times for Saset are fast in spite of the number of SMT
calls which are time costly.
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Table 1. Results for detecting quasi-equal clocks using tools Saset and Uppaal. Saset
returns the set of quasi-equal clocks whereas Uppaal performs a single query asserting
clocks to be quasi-equal. Note, that for detecting quasi-equal clocks multiple queries
are needed. The zero time behavior for automata in classA remains constant, in classB
grows linearly and in classC grows exponentially.

Automaton clocks qe-clocks max k
Saset Uppaal

SMT-calls states t (s) Q states t (s)

classA1 3 2 104 26 5 0.3 ϕ1 20k 7.3

classA2 3 2 105 26 5 0.3 ϕ1 200k 1200

classA3 3 2 106 26 5 0.3 ϕ1 t.o. t.o.

classB2 4 2 104 72 8 0.8 ϕ1 20k 7.4

classB3 5 3 104 105 10 1.3 ϕ2 30k 12.5

classB4 6 4 104 144 12 2.2 ϕ3 40k 21.0

classB5 7 5 104 193 14 3.5 ϕ4 50k 34.8

classB6 8 6 104 248 16 5.16 ϕ5 60k 45.2

classC2 3 2 5000 63 7 1.2 ϕ1 5k 5.2

classC3 4 3 5000 237 14 8.3 ϕ2 35k 31.8

classC4 5 4 5000 809 26 44.05 ϕ3 75k 202.3

classC5 6 5 5000 2389 47 195.3 ϕ3 150k 1007.3

classC6 7 6 5000 8515 85 844 ϕ4 t.o. t.o.

In Table 1, we present a number of results obtained by using our tool and the
model checker Uppaal [12]. Our intention is not to outperform Uppaal in terms
of time but to show that the abstraction method that we propose for detecting
quasi-equalities is a good abstraction. Thus, we encourage the reader to focus on
the number of states generated by the tools for each automaton. Note, that for
Uppaal to detect n clocks to be quasi-equal it would need to perform 2n queries
whereas our tool compute them directly. In Table 1, max k is the number of
the maximal constant appearing in the corresponding timed automaton and the
queries ϕ are TCTL formulae asserting a number of clocks to be quasi-equal,
e.g. ϕ1 := AG x0 = x1 ∨ x0 = 0 ∨ x1 = 0, ϕ2 := AG (x0 = x1 ∨ x0 = 0 ∨ x1 =
0) ∧ (x0 = x2 ∨ x0 = 0 ∨ x2 = 0). The experiments were executed in a AMD
Phenom II X6 3.2Ghz Processor with 8GB RAM running Linux 3.2.

We use three classes of timed automata which are relevant for our abstraction.
For classA the zero time behavior is constant and the non zero time behavior
grows. For classB the zero time behavior grows linear and the non-zero time be-
havior remains constant. For classC, the zero time behavior grows exponentially.

The automata in classA correspond to the automaton in Figure 4. We only
change the maximal constant appearing in the automaton and observe that the
size of the abstraction remains the same. For the automata in classB the num-
ber of quasi-equal clocks is increased but there is an order on the reset of the
quasi-equal clocks. We observe a linear increase in the number of states for both
tools. For the automata in classC the number of quasi-equal clocks is increased
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Fig. 5. Verification times and number of states explored for automata in classC

but there is no order in the reset of the clocks. We observe an exponential
increase in the number of states for both tools. In Table 1, the construction of
the abstraction for automaton classC6 required 8515 SMT calls, according to
our tool these SMT calls took 695.2 seconds, which is 82% of the time cost.
Thus, a more efficient implementation is desirable. Since our algorithm can be
implemented using difference bound matrices a much efficient implementation is
possible. Figure 5 illustrates the results for automata in classC.

Once the quasi-equal clocks in a timed automaton have been detected. A
reduction on the number of clocks might take place, leading to a major speed
up. As an example we have reduced all the quasi-equal clocks for the automaton
classC6 by replacing them with a representative clock. The resulting zone graph
computed by Uppaal consists of 5003 states and invariant properties can be
verified in few seconds, which is an exponential gain.

7 Conclusion

In this paper, we have presented an abstraction that is effective for the goal of an
already established optimization technique which is based on quasi-equal clocks.
The abstraction is motivated by an intuition about the way quasi-equalities
can be tracked. We have implemented the corresponding reasoning method in
the Jahob framework using an SMT solver. Our experiments indicate that our
intuition may lead to a useful abstraction. I.e., the is coarse enough to yield
a drastic reduction of the size of the zone graph. Still, it is precise enough to
identify a large class of quasi-clocks.

The goal of our prototypical implementation is to be able to evaluate the
effectiveness of our abstraction for the goal of the optimization. An orthogonal
issue is the optimization of the execution time of the abstraction method itself.
In our experiments, the execution time is acceptable. Possibly the execution
time can be improved by exchanging the general-purpose SMT solver with a
specialized machinery, i.e., difference bound matrices [4,10]. We leave this aspect
to future work.
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FORMATS 2012. LNCS, vol. 7595, pp. 155–170. Springer, Heidelberg (2012)

12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)
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Abstract. Timed discrete-event (DE) is an actor-oriented formalism
for modeling timed systems. A DE model is a network of actors consum-
ing/producing timed events from/to a set of input/output channels. In
this paper we study a basic DE model, called deterministic DE (DDE),
where actors are simple constant-delay components, and two extensions
of DDE: NDE, where actors are non-deterministic delays, and DETA,
where actors are either deterministic delays or timed automata. We in-
vestigate verification questions on DE models and examine expressive-
ness relationships between the DE models and timed automata.

1 Introduction

Timed automata, introduced by Alur and Dill [2,7] are one of the prominent for-
malisms for timed systems. In this paper we study another formalism for model-
ing dense-time systems, which we call timed discrete-event (DE). DE is inspired
by the DE domain of the tool Ptolemy [9], which is itself inspired by established
fields such as discrete-event simulation and queueing models. More recently, DE
has been proposed as a programming abstraction for cyber-physical systems and
used in the Ptides framework [8] for the design of distributed real-time systems,
e.g. control systems for electric power stations and correct shutdown mechanisms
for industrial controllers.

DE is an actor-oriented formalism, in the sense of Agha [1], where a model
consists of a collection of actors, each consuming and producing messages from
input and to output channels. In the case of DE a model is a network of actors.
Ptolemy DE models can be hierarchical, but for the purposes of this paper we
only consider flat models. We also abstract away message values, thereby leaving
actors to communicate only via timed events. A timed event is characterized by
a single value, its timestamp.
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Even though discrete-event simulation is widespread in system design, includ-
ing, for instance, hardware system simulation methods based on languages such
as Verilog, VHDL, and SystemC, the exhaustive verification of DE models has
received little attention, to our knowledge. In this paper we take a step towards
remedying this, by studying three versions of DE models in terms of expressive-
ness and model-checking.

First, we introduce a basic, deterministic DE (DDE) model, where actors are
simple constant (and known) delays. An actor in DDE delays every input event
by a constant delay Δ, which means that if the input event has timestamp τ
then the actor produces a corresponding output event with timestamp τ +Δ. A
constant delay actor cannot be represented by an equivalent timed automaton,
as the latter would need an unbounded number of clocks, one for every input
event that may arrive within an interval Δ.

Nevertheless, we can show that the strong deterministic properties of DDE
allow its state space to be reduced to a finite lasso. The latter can be used
for exhaustive model-checking of both signal and state queries. An example of
a signal query is “is there an execution where an event with timestamp > 10
occurs in channel c.” An example of a state query is “is there a reachable state
where channels c1 and c2 contain two events with timestamps τ1, τ2, such that
|τ1 − τ2| ≤ 2.” The lasso can also be used to show that every DDE model can
be transformed to an equivalent timed automaton (TA) model.

We also introduce two extensions to the basic DDE model: non-deterministic
DE (NDE) and DE with timed automata (DETA). In NDE, actors are non-
deterministic delays, specified by an interval, say, [l, u], so that an input event
is delayed by some arbitrary δ ∈ [l, u]. In DETA, actors are either constant
delays, or timed automata. A timed automaton M can be viewed as an actor
which reacts to input events arriving on a given channel c by taking a discrete
transition labeled with input c (we require that M be receptive, that is, always
be able to accept any input). M can spontaneously choose to generate an output
event on a given channel c′ by taking a discrete transition labeled with c′.

Finally, we discuss expressiveness of the above models. We show that DDE
⊂ NDE and DDE ⊂ TA ⊂ DETA, where all inclusions are strict. We also show
that NDE �⊆ TA, and conjecture that TA �⊆ NDE and NDE �⊆ DETA.

2 Deterministic Timed Discrete-Event Models

We abstract away event values, so events are only timestamped tokens. Formally,
an event is represented by a timestamp τ ∈ R≥0, where R≥0 is the set of non-
negative reals. The set of naturals is denoted N = {0, 1, 2, ...}.

2.1 Syntax

A DDE model is a finite labeled directed graph G = (A,C,D) such that

– A is the set of nodes of G. Each node is called a DE actor or actor in short.
– C ⊆ A×A is the set of edges of G. Each edge c ∈ C is called a channel.
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– D : A→ N is a (total) function mapping each actor a ∈ A to a non-negative
integer number called the delay of a. Note that D(a) may be 0.

Let c = (a, b) ∈ C. Then c is an output channel of a and an input channel of b.
We use Cin (a) and Cout (a) to denote the sets of input and output channels of an
actor a, respectively. Let C(a) = Cin (a) ∪ Cout (a). By definition, G is a closed
model, in the sense that all input channels are connected. In fact, every channel
has a unique writer and a unique reader. An actor without input (respectively,
output) channels is called a source (respectively, sink).

An example of a DDE model is given Figure 1. The model has three actors,
a1, a2, a3, with delays 1, 1, 0, respectively, and four channels (the four arrows).

A channel state for a DE model G is a total function r : C → 2R≥0 which
maps every channel c ∈ C to a finite set of events initially pending on c. In
Figure 1, the bullets annotating channels c1, c2 specify an initial channel state.
In this case there are two initial events, both with timestamp 3.

1

a1

1

a2

0

a3

c1 : {3}

c2 : {3}

Fig. 1. A DDE model

Partial order: Our model allows cyclic graphs and
zero-delay actors. However, we require that every cy-
cle visits at least one actor a such that D(a) > 0.
This condition effectively allows to “break” zero-delay
loops, and to define a partial order ≺ on the set of ac-
tors A, so that a ≺ a′ iff there exists a path from
a to a′ such that for any actor a′′ in the path (in-
cluding a but excluding a′) we have D(a′′) = 0. The
order ≺ is essential for ensuring that actors are fired
in timestamp order (Lemma 1) which in turn yields
important deterministic properties of the DDE model.
For the example of Figure 1, the order ≺ is a3 ≺ a2.

2.2 Operational Semantics

To a given DDE model G and initial channel state r0, we will associate a timed
transition system TTS (G, r0) = (S, s0,→), where S is its set of states, s0 =
(r0, 0) is its (unique) initial state, and → ⊆ S ×A× S is its transition relation,
defined below. A state s ∈ S is a pair (r, t), where r is a channel state and
t ∈ R≥0 is a global timestamp. The initial global timestamp is 0.

Given a channel state r : C → 2R≥0 , let τmin(r) = min
⋃

c∈C r(c). That is,
τmin(r) is the minimum timestamp among all currently pending events in r.
Given actor a ∈ A and r, we denote by τmin(a, r) the minimum timestamp
among all currently pending events in the input channel(s) of a at r. That is,
τmin(a, r) = min

⋃
c∈Cin(a) r(c). Note that τmin(a, r) ≥ τmin(r) for any a, r. By

convention we set min ∅ = ∞. This implies that for an empty channel state r,
we have τmin(r) = ∞. Also, if Cin (a) = ∅, that is, if a has no input channels,
then τmin(a, r) = ∞ for all r.

We say that an actor a ∈ A is enabled at state s = (r, t), denoted enabled(a, s),
if τmin(a, r) = τmin(r) = t. That is, a is enabled at s if there is at least one event
pending in one of the inputs of a which has timestamp τ no greater than the



216 C. Stergiou et al.

smallest timestamp in r and τ agrees with the global time t. We say that a
is strongly enabled at s if enabled(a, s) and there is no actor b �= a such that
enabled(b, s) and b ≺ a. That is, a is strongly enabled at s if it is enabled and
there is no actor b which is also enabled at s and which comes before a according
to ≺.

We next define the operation of firing an actor, and the effect that this has on
the state. Intuitively, firing an actor a at state s = (r, t) consists in removing the
event τmin(a, r) from all input channels of a that contain this event, and adding
the event τmin(a, r) + D(a) to each output channel of a. Formally, we define an
auxiliary function f(a, r, d) which, given actor a ∈ A, channel state r, and delay
d ∈ R≥0, returns a channel state r′ defined as follows:

r′(c) =

⎧⎨⎩ r(c) − {τmin(a, r)} if c ∈ Cin(a)
r(c) ∪ {τmin(a, r) + d} if c ∈ Cout(a)
r(c) otherwise.

(1)

We are now ready to define the transition relation → of TTS (G, r0). → has

two types of transitions: discrete transitions of the form s
a→ s′, such that a is

strongly-enabled in state s = (r, t) and s′ = (r′, t) with r′ = f(a, r,D(a)), and

timed transitions of the form s
δ→ s′, where s, s′ ∈ S, a ∈ A, and δ ∈ R≥0.

Timed transitions are enabled at a state s = (r, t) when no discrete transition is
enabled at s and when r is not empty. In that case, it must be t < τmin(r) and

τmin(r) �= ∞. Then, a timed transition s
δ→ (r, t′) occurs, with δ = τmin(r) − t

and t′ = t + δ = τmin(r).

Remarks: (1) Global time is not affected by a discrete transition and channel
state is not affected by a timed transition. (2) In TTS (G, r0) there cannot be
two timed transitions in a row. (3) According to the rule τmin(a, r) = ∞, source
actors are never enabled, and therefore never fire. We use source actors simply
to allow for initial events at the inputs of some actors.

A state s = (r, t) is a deadlock, that is, has no outgoing transitions, iff r is
empty, that is, for every c ∈ C, r(c) = ∅.

An execution of TTS (G, r0) is a sequence of states ρ = s0, s1, ... such that
there is a (discrete or timed) transition from every si to si+1. We require ρ to
be maximal, that is, either infinite or ending in a deadlock state. Note that if
the DDE model contains a loop that is reachable from some initial event, there
will not be a deadlock state.

Lemma 1. Let ρ = s0, s1, ... be an execution of TTS (G, r0) and let a be an actor

of G. For any transitions si
a→ si+1 and sj

a→ sj+1 in ρ such that si = (ri, ti),
sj = (rj , tj), and i < j, we have ti < tj.

Lemma 1 states that every actor is fired in timestamp order, and in particular,
that it cannot be fired more than once before time elapses.

TTS (G, r0) has several deterministic properties. First, by definition, if s
a→ s′

then there is no s′′ �= s′ such that s
a→ s′′. Second, TTS (G, r0) has the so-called

“diamond property”:
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Lemma 2. If s
a→ s1 and s

b→ s2, then there is a unique s′ such that s1
b→ s′

and s2
a→ s′.

Let ρ = s0, s1, . . . be an execution of TTS (G, r0) where G = (A,C,D) and
si = (ri, ti). The signal of a channel c ∈ C under execution ρ, denoted σρ

c ,
is defined to be the set of all events occurring in c along the entire execution:
σρ
c =

⋃
i∈N

ri(c).

Lemma 3 (Kahn property [12]). For any c ∈ C and any two executions ρ1
and ρ2, σ

ρ1
c = σρ2

c .

Because of the Kahn property, we can write σc for the unique signal of a channel
c. This can be viewed as the denotational semantics of DDE models.

3 Boundedness of DDE

P

a1
a2

c1

{0}

c2

Fig. 2. Periodic clock

In this section we study boundedness of the state-
space of DDE models. Let us begin with an illustrative
example. Figure 2 shows a DDE model G = (A,C,D),
with A = {a1, a2}, C = {c1 : (a1, a1), c2 : (a1, a2)},
D(a1) = P , and D(a2) = 0. This model captures a
periodic source with period P , generating events at
times P, 2P, · · · . The model includes actor a1 which
delays its input by P and a sink actor a2. If the delay
of an actor is non-zero, it is drawn inside the actor.
Zero delays are not drawn. The model has two channels, c1, c2. Channel c1, a
self-loop of a1, contains an initial event with timestamp 0. This is the only initial
event in the system (empty initial event sets on channels are not drawn). The
initial event models the seed of the periodic source. Actor a1 adds a delay of P
to the event’s timestamp, outputs the event to c2, which represents the source’s
output, and starts anew a cycle where the initial event is replaced with an event
with timestamp P .

The initial channel state is r0 = {(c1, {0}), (c2, {})}. A prefix of a path in the
transition system TTS (G, r0) is the following:

s0 : (c1 : {0}, c2 : {}, t = 0)
a1→ s1 : (c1 : {P}, c2 : {P}, t = 0)

P→
s2 : (c1 : {P}, c2 : {P}, t = P )

a2→ s3 : (c1 : {P}, c2 : {}, t = P )
a1→

s4 : (c1 : {2P}, c2 : {2P}, t = P )
P→ s5 : (c1 : {2P}, c2 : {2P}, t = 2P )

a1→
s6 : (c1 : {3P}, c2 : {2P, 3P}, t = 2P )

a2→ s7 : (c1 : {3P}, c2, {3P}, t = 2P )
P→ · · ·

Note that in state s2 there are two events with timestamps equal to τmin = P
but they are both strongly enabled since it is neither the case that a1 ≺ a2 nor
a2 ≺ a1. Furthermore, it is easy to see that the signal in c1 is σc1 = {i ·P | i ∈ N}
and the signal in c2 is σc2 = {i · P | i ∈ N>0}.

As it can be seen from the above example, TTS (G, r0) is generally infinite-
state. There are two potential sources of infinity of state-space in DE models.
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First, the timestamps may grow unbounded, as is the case with the above ex-
ample. Second, it is unclear whether the set of events on each channel remain
bounded. This is true in the above example, but is it generally true? In Sec-
tion 3.1 we show that this is true for all DDE models. Then in Section 3.2 we
show how timestamps can also be bounded.

3.1 Bounding the Number of Events in the Channels

Let us begin by providing some intuition about why the number of events in an
execution of TTS (G, r0) remains bounded.

P D

c2c1

{0}

loop1 loop2

Fig. 3. Loop example

Consider the example in Figure 3. The set of
events produced by “loop1” in channel c1 is {i ·
P | i ∈ N}. Each new event with timestamp t
that enters “loop2” from “loop1”, will result in
an infinite set of events {t + j · D | j ∈ N>0}
in channel c2. Therefore the set of all events in
channel c2 will be {i · P + j ·D | i, j ∈ N>0}.

Because P,D ∈ N, the timestamp of any event
that appears in c2 can be written as k · gcd(P,D)
for some k. In fact, there exists n, such that for
all k > n, there exist positive i and j such that k · gcd(P,D) = i · P + j ·D. So
eventually all multiples of gcd(P,D) appear as timestamps of events in c2.

Note that in every reachable state s = (r, t) of TTS (G, r0), for G = (A,C,D),
an upper bound on the timestamp of any event is τmin(r) + max{D(a) | a ∈
A}, and a lower bound is τmin(r). Hence, because event timestamps in c2 are
separated by at least gcd(D,P ), the number of events in c2 satisfies

|r(c2)| ≤
⌈

max{D(a) | a ∈ A}
gcd(D,P )

⌉
in any state s = (r, t).

In general, let G = (A,C,D) be a DE model and let r0 be an initial channel
state for G. Let TTS (G, r0) = (S, s0,→). Consider a state s = (r, t) ∈ S. Recall
that r is a function r : C → 2R≥0 . The size of r, denoted |r|, is defined to be

|r| :=
∑
c∈C

|r(c)|

Theorem 1 (Boundedness of channels). There exists K ∈ N such that for
every reachable state s = (r, t) of TTS (G, r0), |r| ≤ K.

3.2 Bounding Timestamps

In TTS (G, r0) timestamps of events can still grow unbounded. Moreover, there
is the additional global timestamp which grows unbounded too. Nevertheless,
it is easy to see how to transform TTS (G, r0) in order to obtain an equivalent
bounded timed transition system, which we will denote BTS (G, r0). To define
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BTS (G, r0), we introduce some notation. Let s = (r, t) be a state of TTS (G, r0).
Let δ ∈ R≥0 be such that δ ≤ τmin(r). Then we denote by r− δ the new channel
state r′ obtained from r by decrementing all timestamps in r by δ.

We are now ready to define BTS (G, s0). Its states are channel states, that
is, the global timestamp is dropped. On the other hand, BTS (G, r0) has both
discrete and timed transitions, like TTS (G, r0). A timed transition in BTS (G, r0)

has the form r
δ−→b r′ where δ = τmin(r) and r′ = r − τmin(r). A discrete

transition in BTS (G, s0) has the form r
a−→b r′ with r′ = f(a, r,D(a)), such

that τmin(a, r) = τmin(r) = 0. That is, in BTS (G, r0), we keep track of time
elapsing by appropriately decrementing the timestamps of pending events.

Theorem 2. The set of reachable states of BTS (G, r0) is finite.

Is it easy to show that a bisimulation exists between TTS and BTS. In particular, let
s = (r, t) be a reachable state of TTS (G, r0). It can be easily shown, by induction
on the transition relation of TTS (G, r0), that s satisfies t ≤ τmin(r). We define
the relation R between states of TTS (G, r0) and states of BTS (G, r0), so that R
contains all pairs ((r, t), r − t). It can be checked that R is a bisimulation relation.

4 Extended Discrete-Event Models

In this section we introduce extensions to the DDE model.

4.1 Non-deterministic DE

The non-deterministic DE model (NDE) extends DDE by allowing actors with
variable delays, specifically intervals.

The syntax of an NDE model is almost the same as that of a DDE model.
It is a labeled graph G = (A,C,D), with A and C being as in a DDE model,
and D associating an interval instead of a fixed value to each actor. Intervals
must be non-empty, and can be of the form [l, u], (l, u), (l,∞), and so on, for
l, u ∈ N. When the interval is [l, l] we simply write D(a) = l. We allow loops,
but require that every loop visits at least one actor a such that l(a) ≥ 1, where
l(a) is the lower bound of D(a). The partial order ≺ is also defined in NDE, so
that a ≺ a′ iff there exists a path from a to a′ such that for any actor a′′ in the
path (including a but excluding a′) we have l(a′′) = 0.

The semantics of NDE is defined as a timed transition system, as with DDE.
Given an NDE graph G, and an initial channel state r0, TTS (G, r0) is defined
to be the tuple (S, s0,→) where S and s0 are as in DDE, and the transition
relation → contains both discrete and timed transitions. A discrete transition of
TTS (G, r0) is of the form (r, t)

a→ (r′, t) where a is strongly enabled in (r, t) and
r′ = f(a, r, d), for some d ∈ D(a). The definition of strongly enabled for NDE is
the same as in DDE and uses the partial order ≺ as defined above. The timed
transitions of TTS (G, r0) are defined in the same way as in DDE.

We point out that the above semantics allows to “reorder” events, in the
sense that an event produced in a channel could have timestamp smaller than



220 C. Stergiou et al.

the events already in the channel. However, execution of actors is still guaranteed
to happen in timestamp order. Also, since we are not currently using multisets,
if an event is added to a channel which already has an event with the same
timestamp then the two events are merged into one.

4.2 DE with Timed Automata

The DE with timed automata model (DETA) extends DDE by allowing actors to
be modeled as timed automata. This extension allows actors in a discrete-event
program to model environment behavior as well as have more elaborate internal
behavior than DDE and NDE.

Like DDE and NDE, a DETA model is represented by a labeled graph. In
the case of DETA, a label is either a fixed delay or a timed automaton (TA).
Formally, a DETA model is a graph G = (A,C,L), with A and C being as in a
DDE model, and L being a labeling function which maps every actor a ∈ A to
either a delay d ∈ N, or a TA M = (Q, q0, X, I, E), where:

– Q is the set of locations of M , and q0 ∈ Q is its initial location.
– X is the set of clocks of M . Both Q and X are finite sets.
– I is the invariant function which maps every q ∈ Q to a simple convex

constraint of the form
∧

i xi ≤ ki, where xi ∈ X are clocks and ki ∈ N are
constants.

– E is the set of transitions of M . A transition is a tuple h = (q, c, q′, φ,X ′)
where:
• q, q′ ∈ Q: q is the source and q′ the destination location of h.
• c ∈ C(a), i.e., c is either an input or an output channel of actor a.
• φ is a simple constraint on clocks, called the guard of h.
• X ′ ⊆ X is a subset of clocks to be reset by h.

We require that every TA M in a DETA model be receptive, that is, able to
accept any input event at any state. Formally, for every location q of M , and
for every input channel c of a, the union of all guards of all outgoing transitions
from q labeled with c must cover the whole space of clock valuations, that is,
must be equivalent to the guard true.

We allow loops in DETA models, but we assume conservatively that the delay
introduced by TA actors could be zero. Therefore we require that every loop visits
at least one constant delay actor with delay≥ 1. The partial order≺ is defined for
DETA in the same way as for DDE, by treating TA actors like zero-delay actors.

Before defining the semantics of DETA models we briefly recall the semantics
of TA. A state of a TA M is a pair (q, v) where q ∈ Q is a location and v is a clock
valuation, that is, a function v : X → R≥0 mapping every clock of M to a non-
negative real value. We will use the term TA state for a pair (q, v), to avoid confu-
sion with states of DE models, which we sometimes for clarity call channel states.
The initial TA state of M is defined to be (q0,0), where 0 is the valuation assign-
ing 0 to all clocks. M defines two types of transitions on this state-space: discrete
and timed transitions. A discrete transition is possible from TA state (q, v) to TA

state (q′, v′), denoted (q, v)
c→M (q′, v′), if M has a transition h = (q, c, q′, φ,X ′)
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such that: (1) v satisfies the guard φ, denoted v |= φ; (2) v′ = v[X ′ := 0], which
means that v′(x) = 0 if x ∈ X ′ and v′(x) = v(x) otherwise; and (3) v′ satisfies
the invariant of the destination location q′, denoted v′ |= I(q′). A timed transi-
tion of delay δ ∈ R≥0 is possible from TA state (q, v) to TA state (q, v′), denoted

(q, v)
δ→M (q, v′), if: (1) v′ = v + δ, which means that v′(x) = v(x) + δ for all

x ∈ X ; and (2) v′ |= I(q). The latter condition, together with our assumption
on the form of invariants, ensures that the progress of time from v to v′ does not
violate any urgency constraints at location q. Note that, since I(q) is downwards-
closed, v + δ |= I(q) implies that for any δ′ ≤ δ, we also have v + δ′ |= I(q).

We are now ready to define the semantics of DETA models. Consider a DETA
model G = (A,C,L) and an initial channel state r0. Let ATA be the subset of
A such that a ∈ ATA iff L(a) is a TA. For a ∈ ATA, we denote the TA L(a) by
Ma. Then, G and r0 define the timed transition system TTS (G, r0). A state of
TTS (G, r0) is a triple (r, w, t) where r is a channel state, w is a total function
mapping actors in ATA to TA states, and t ∈ R≥0 is a global timestamp. For
given a ∈ ATA, w(a) represents the TA state which Ma is currently at.

Like the other timed transition systems defined earlier, TTS (G, r0) has two
types of transitions: discrete and timed. A discrete transition has the form
(r, w, t)

a→ (r′, w′, t), for a ∈ A, and is possible if:

– either a �∈ ATA, that is, L(a) ∈ N, in which case r′ = f(a, r, L(a)) and
w′ = w;

– or a ∈ ATA, in which case
1. either a has an input channel c such that t ∈ r(c), in which case:

(a) r′ is obtained from r by removing the event with timestamp t from
c, that is, r′(c) = r(c)− {t} and r′(c′) = r(c′) for all c′ �= c.

(b) w′ is obtained from w by having Ma take the discrete transition

w(a)
c→Ma w′(a) in reaction to the event in c, and having all other

TA retain their state, that is, w′(a′) = w(a) for all a′ ∈ ATA, a
′ �= a.

2. or a has an output channel c such that w(a)
c→Ma w′(a) and for all

a′ ∈ ATA s.t. a′ �= a, we have w′(a′) = w(a). In this case, r′(c) = r(c)∪{t}
and r′(c′) = r(c′) for all c′ �= c.

The case a �∈ ATA corresponds to the case where a standard DDE actor fires,
that is, an actor introducing a deterministic delay. The case a ∈ ATA corresponds
to the case where a TA actor fires, that is, makes a discrete transition. In this
case, the following subcases are possible:

– Either a consumes an event from an input channel and reacts to it (Case 1).

Note that since Ma is assumed to be receptive, the transition w(a)
c→Ma

w′(a) is guaranteed to exist. Also note that it is by definition impossible for
a TA actor to consume multiple events from multiple input channels in a
single transition. This is true even when all these events may have the same
timestamp. On the other hand, in that case the TA actor will consume all
these events in a series of discrete simultaneous transitions, that is, without
time passing in-between these transitions.

– Or a “spontaneously” produces an event to an output channel (Case 2).
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A timed transition in TTS (G, r0) has the form (r, w, t)
δ→ (r, w′, t + δ), for

δ ∈ R≥0, and is possible if:

1. t + δ ≤ τmin(r); and

2. for all a ∈ ATA, Ma has a timed transition by δ, that is, w(a)
δ→Ma w′(a) is

a valid transition.

That is, a timed transition by δ is possible if it is possible for every TA in the
system to let time elapse by δ, and also if this does not violate the urgency of any
pending event in the system. Note that it is possible in DETA to have several
timed transitions in a row.

An example of a DETA model is provided in the left part of Figure 4. There
are four actors in this model, one of which, a2, is a TA actor. The automaton for
a2 has two locations, q0, q1, and a single clock x. The invariant at q1 is x ≤ 1,
whereas the invariant at q0 is true and therefore not shown. The guard in the
transition from q0 to q1 is also true, and not shown either. The label x := 0
means that x is reset on the corresponding transition (absence of such a label
means that the clock is not reset). In the transitions of the automaton, we use
the label c? instead of c when c is an input channel, to emphasize the fact that
the actor consumes an event from c. Similarly, we use c! when c is an output
channel, to emphasize the fact that the actor produces an event in c. A sample
execution of this DETA model is provided in the right part of Figure 4.

Executions and signals in NDE and DETA: The notions of executions and signals
can be easily extended from DDE to NDE and DETA models. Because of non-
determinism in both NDE and DETA, Lemmas 2 and 3 do not hold in neither
NDE nor DETA. This means in particular that the signal σρ

c of a given channel
c in these models generally depends on the execution ρ. For NDE and DETA
models, we define σc to be the union of σρ

c over all executions ρ.

Unboundedness of NDE and DETA: Boundedness does not hold for neither NDE
nor DETA models. We can show that if we feed a variable delay with a periodic
stream of events we can construct a sporadic stream which, in turn, if fed into

2

a1 a2c0

{1}
c1 c2

q0 q1

x ≤ 1

c1?
x := 0

c2!
x = 1

c1?

s0 = c0 : {1} / q0 / t = 0

s1 = c0 : {1} / q0 / t = 1

s2 = c0 : {}, c1 : {3} / q0 / t = 1

s3 = c1 : {3} / q0 / t = 3

s4 = c1 : {} / q1, x = 0 / t = 3

s5 = c1 : {} / q1, x = 1 / t = 4

s6 = c2 : {4} / q0 / t = 4

δ = 1

a1

δ = 2

a2

δ = 1

a2

Fig. 4. A DETA model (left) and a sample execution (right)
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a periodic loop causes Theorem 1 to fail. Figure 5 illustrates the idea. In this
model, the variable delay is implemented as a TA, resulting in a DETA model.
The variable delay can also be implemented as an NDE actor a with D(a) = [l, u],
resulting in an NDE model.

More precisely, assume that the input stream of a has period P , as shown in
Figure 5, and that P > u. Then the TA shown in the figure correctly implements
a variable delay and every event coming out of the loop with period P will be
given a variable delay [l, u]. Let a add delay l + u−l

i to its ith input event. This

will result in an output stream of events {l+u− l, P + l+ u−l
2 , 2 ·P + l+ u−l

4 , . . .}.

P D

a
c1 c2

{0}

q0 q1

x ≤ u

c1?
x := 0

c2!
x ≥ l

c1?

Fig. 5. Unbounded DETA model

In general, if a signal of the form {i · P +
x
2i | i ∈ N} is fed into a loop with delay D,
then the signal in the loop will contain events
{i ·D+ j ·P + x

2j | i, j ∈ N}. This set of events
has the property that there is no bound K ∈ N
such that for every n the number of events in
window [n, n+1] is less than K. Intuitively the
reason is that for any K, an n can be found
such that the equation i · D + j · P = n has
more than K solutions, and since, for large
enough j, x/2j < 1, the window [n, n+ 1] will
contain more than K events.

5 Verification

We begin by defining the types of verification queries that we are interested in.
Let G be a DE model (i.e., a DDE, NDE, or DETA model) with set of channels

C and let r0 be an initial channel state. Let ρ be an execution of TTS (G, r0).
Recall that σρ

c , for channel c ∈ C, denotes the set of all events (timestamps)
that occur in c along execution ρ in TTS (G, r0). A signal query is a query of the
form “does σρ

c satisfy some property φ?”, where φ is a property written in (some
subclass of) first-order logic. For instance, the property “an event occurs in c” can
be written as φ := ∃τ : τ ≥ 0. The property “two events occur in c at two distinct
times in the interval [1, 2]” can be written as ∃τ1, τ2 : τ1 �= τ2 ∧ 1 ≤ τ1, τ2,≤ 2.
The property “two events occur in c separated by at most 1 time unit” can be
written as ∃τ1, τ2 : |τ1 − τ2| ≤ 1.

We are also interested in queries which involve states of TTS (G, r0). A state
query asks whether there exists a reachable state s = (r, t) such that r satisfies
some property ψ. Again, we can imagine various types of properties ψ. For
example, given constant k ∈ N, ψ could be the expression |r| > k, which states
that there are more than k events pending in the system, or the expression
|r(c)| > k, for given c ∈ C, which states that there are more than k events
pending on channel c. ψ could also be an expression such as those mentioned for
signal queries above, stating, for example, that r contains an event with a certain
timestamp or timestamp bounds, two events with a certain time difference, etc.

Channel signals are denotational semantics of DE models and signal queries
allow to express natural properties on these. State queries are also important, as
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they refer to system snapshots as well as to implementation properties such as
buffer space requirements. In the rest of this section we discuss how signal and
state queries can be automatically checked on DDE models.

First, consider signal queries. They can be checked with the help of a lasso
derived from BTS. This lasso is a finite and deterministic transition system (de-
terministic in the sense that every state has at most one successor), derived from
BTS by merging all enabled discrete transitions from a given state s into a sin-
gle supertransition where all corresponding actors fire. The diamond property
(which by the bisimulation property also holds on BTS) ensures that this trans-
formation is valid. We can analyze this lasso and compute, for every channel c, an
affine expression that describes σc. Then we can reduce the problem of checking
whether σc satisfies a signal query φ to an SMT (satisfiability modulo theory)
problem. For example, the affine expression for channel c2 for the example of
Figure 3 is i ·P + j ·D, with i, j ∈ N>0. Checking whether there exist two events
τ1, τ2 in σc2 such that τ1 − τ2 = 5, can then be reduced to checking satisfiability
of the expression τ1 = i1 · P + j1 ·D ∧ τ2 = i2 · P + j2 ·D ∧ τ1 − τ2 = 5.

Second, for state queries, we can again use the lasso and the bisimulation of
BTS and TTS to compute an affine expression characterizing the set of times-
tamps on a per state basis. We can then reduce the problem of whether there
exists a reachable state satisfying a property ψ to a series of SMT problems, one
for every affine expression computed for every state in the lasso.

6 Expressiveness

In this section we discuss how the various DE models introduced above are
related to each other, as well as to timed automata, in terms of expressiveness.
We write A ⊆ B if for every model G in formalism A there exists a model
G′ in formalism B such that G and G′ are equivalent in terms of denotational
semantics, i.e., channel signals. More precisely, G and G′ are equivalent if they
refer to the same set of channels C, and for every c ∈ C, σG

c = σG′
c , where

σG
c , σ

G′
c are the signals of c in G,G′, respectively.

To be able to compare the DE models with timed automata, we view TA as
a subclass of DETA models. Concretely, suppose M is a TA whose transitions
are labeled with c1, c2, ..., cn. Then M can be seen as a DETA model with n+ 1
actors, a, a1, ..., an, where a is a source actor labeled by M , and a1, ..., an are
sink actors connected to a. In this interpretation, every label ci of M is seen as
a distinct output channel of a.

The expressiveness results, summarized in Figure 6(f), are as follows:

DDE � NDE: DDE ⊆ NDE because the fixed delay d can be expressed as the
interval [d, d]. NDE �⊆ DDE because NDE allows non-deterministic behavior but
DDE does not. Indeed, the NDE model of Figure 6(a) produces a single event
on channel c at time t ∈ [0, 1], but this is impossible to express in DDE.

DDE � TA: TA �⊆ DDE because TA allows non-deterministic behavior but
DDE does not. The example of Figure 6(a) can be easily constructed with TA.
To see why DDE ⊆ TA, consider the lasso defining the signals of a DDE model,



On the Verification of Timed Discrete-Event Models 225

[0, 1]
{0}

c
1c1 c2

q0

c1!

1[0, 1]
c3

c1
{0}
c2

(a) NDE �⊆ DDE (b) DETA �⊆ TA (c) NDE �⊆ TA
x ≤ 2

x ≤ 2

a

x := 0
b

c

x ≥ 1 [0, 1] [1, 2]

{0}
DDE TA DETANDE

(d) TA �⊆ NDE (e) NDE �⊆ DETA (f) Model expressiveness

Fig. 6. Models used in expressiveness discussion

discussed in Section 5. The affine expressions describing the channel signals can
be directly transformed into parallel compositions of simple TA with periodic
self-loops. For example, (2 + 3 · i) ∪ (3 + 7 · j) can be trivially transformed into
the parallel composition of two TA.

DDE � DETA: DDE ⊆ DETA because every DDE model is by definition a
DETA model (one that has no TA actors). DETA �⊆ DDE again because of
non-determinism.

TA � DETA: As defined above, TA is by definition a subclass of DETA. To
see that DETA �⊆ TA, consider the DETA model shown in Figure 6(b). In this
model, every event produced by the TA on channel c1 is delayed by the constant
delay actor by exactly 1 time unit. Since there is no bound on the number of
events that can be produced on c1 in a time interval of size 1, an equivalent TA
model would require an unbounded number of clocks.

NDE �⊆ TA: To see this, consider the example of Figure 6(c). Similarly to the
model of Figure 6(b), in this model the number of events that can be produced
in an interval of size 1 on channel c2 is unbounded, and for every such event a
TA implementation would require a separate clock to produce the corresponding
event on channel c3.

We also conjecture that the TA of Figure 6(d) cannot be implemented in
NDE. This TA produces three events, a, b, c, in that order, with the constraint
that the distance between a and c is in the interval [1, 2]. This behavior requires
both non-deterministic delays and some form of synchronization to ensure that
b occurs before c, which does not appear to be implementable in NDE.

We finally conjecture that the NDE model of Figure 6(e) cannot be imple-
mented in DETA. The loop in the model can produce unbounded bursts of events
in a finite window. A variable delay needs to be introduced for every such event.
In DETA, variable delays can only be implemented using timed automata, which
only have a finite number of clocks.
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7 Related Work

The term discrete-event systems (DES) is often used to denote untimed models
based on automata, Petri nets, and related formalisms, with a focus on controller
synthesis and similar problems [17,4]. In this paper we study timed DE models.

Timed and actor-oriented DE models have been considered previously in a
number of works, but with a different focus than that of our paper. [20,14,16,5,15]
focus on the semantics of timed systems. [10] focuses on compositionality and
preservation of properties such as worst-case throughput or latency. [3] presents
a translation of Ptolemy DE models to Real-Time Maude for the purposes of ver-
ification, but does not study the verification problem per se. Rebeca is an actor-
oriented language where actors can specify timed behavior using statements such
as delay [18]. However, decidability of model-checking for timed Rebeca has not
been investigated. [6] extends finite-state automata with delay blocks and exam-
ines the expressiveness of the resulting timed languages.

A large body of research exists on the real time calculus (RTC) [19]. RTC
focuses on performance properties for which interesting analytic and modular
techniques can be derived. On the other hand, RTC models have relatively lim-
ited expressiveness compared to state-based models such as TA and the analysis
results are generally approximations. Recent works on RTC include techniques
for models combining analytic components as used in standard RTC with TA [13]
and techniques to handle networks with cyclic dependencies [11].

DE models have a significant difference from time(d) Petri nets, even though
at first sight they may appear similar. In Petri nets, a transition fires only if
enough tokens are available in every input place, whereas in DE, an actor fires
in timestamp order, and may consume tokens only from some input channels.

8 Perspectives

The verification problems for NDE and DETA remain open. We are currently
exploring ideas to constrain the model to regain, or statically check for, bound-
edness, which would enable transformation of bounded DETA models to timed
automata. We are also currently working on extracting affine expressions di-
rectly from DDE models (without the use of lassos) and then extending this
technique to NDE, which would allow verification of signal queries on NDE de-
spite unboundedness. TA are another possible symbolic representation of signals,
natural in DETA models. It is easy to see how to transform TA signal representa-
tions by fork, join, constant- and variable-delay actors, but not how to compute
fixpoints which seems needed for general cyclic networks.

Another direction for future work is investigating model-checking of general
temporal logics against DE models, or coming up with new logics especially
designed for DE models.

Another direction is to enrich expressiveness of DDE and NDE models, for in-
stance, by adding control-expressive actors such as synchronizers, which from the
comparison between NDE and TA appear important. Adding values to events is
another possibility for extending DE models in general, including DETA models.
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Symmetry Breaking for Multi-criteria Mapping
and Scheduling on Multicores

Pranav Tendulkar, Peter Poplavko�, and Oded Maler
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Abstract. Multiprocessor mapping and scheduling is a long-old difficult prob-
lem. In this work we propose a new methodology to perform mapping and schedul-
ing along with buffer memory optimization using an SMT solver. We target
split-join graphs, a formalism inspired by synchronous data-flow (SDF) which
provides a compact symbolic representation of data-parallelism. Unlike the tra-
ditional design flow for SDF which involves splitting of a big problem into smaller
heuristic sub-problems, we deal with this problem as a whole and try to compute
exact Pareto-optimal solutions for it. We introduce symmetry breaking constraints
in order to reduce the run-times of the solver. We have tested our work on a num-
ber of SDF graphs and demonstrated the practicality of our method. We validate
our models by running an image decoding application on the Tilera multicore
platform.

Keywords: synchronous data-flow, multiprocessor, multicore, mapping, schedul-
ing, SMT, SAT solver.

1 Introduction

This work is motivated by a key important problem in contemporary computing: how
to exploit efficiently the resources provided by a multicore platform while executing ap-
plication programs. The problem has many variants depending on the intended use of
the platform (general-purpose server or a dedicated accelerator), the specifics of the ar-
chitecture (memory hierarchy, interconnect), the granularity of parallelism (instruction
level, task level), the class of applications and the programming model. We focus on ap-
plications such as video, audio and other forms of signal processing which are naturally
structured in a data-flow style as a network of interconnected software components (ac-
tors, filters, tasks). Such a description already exposes the precedence constraints among
tasks and hence the task-level parallelism inherent in the application. More specifically
we address applications written as split-join graphs, which can be viewed as a vari-
ant of the Synchronous Data-Flow (SDF) formalism [13,20], or an abstract semantic
model of a subset of streaming languages such as StreaMIT [24]. Such formalisms, in
addition to precedence constraints, also provide a compact symbolic representation of
data-parallelism, namely, the presence of numerous tasks which have identical function
and can be executed in parallel for different data. Once the split-join graph is annotated
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with execution time figures and the data-parallel tasks have been explicitly expanded
we obtain a task graph [3] whose deployment on the execution platform is the subject
of optimization.

The deployment decisions that we consider and which may affect cost and perfor-
mance are the following. First we can vary the number of processors used which gives
a rough estimation of the cost of the platform (and its static power consumption). On
a given configuration it remains to map tasks to processors, and to schedule the execu-
tion order on each processor. The performance measures to evaluate such a deployment
are the total execution time (latency) and the size of the communication buffers which
depend on the execution order. This is a multi-criteria (cost, latency and buffer size)
optimization problem whose single-criterium version is already intractable. We take
advantage of recent progress in SMT (SAT modulo theory) solvers [17,7] to provide
a good approximation of the Pareto front of the problem. We encode the precedence
and resource constraints of the problem in the theory of linear arithmetic and, following
[15,14], we submit queries to the solver concerning the existence of solutions whose
costs reside in various parts of the multi-dimensional cost space. Based on the an-
swers to these queries we obtain a good approximation of the optimal trade-off between
these criteria. The major computational obstacle is the intractability of the mapping
and scheduling problems aggravated by the exponential blow-up while expanding the
graph from symbolic to explicit form. We tackle this problem by introducing “symme-
try breaking” constraints among identical processors and identical tasks. For the latter
we prove a theorem concerning the optimality of schedules where instances of the same
actor are executed according to a fixed lexicographical order.

The rest of the paper is organized as follows. In Section 2 we give some background
on split-join graphs and their transformation into task graphs and prove a useful prop-
erty of their optimal schedules. In Section 3 we write down in more detail the constraint-
based formulation of deployment and present our multi-criteria cost-space exploration
procedure. An experimental evaluation of our approach appears in Section 4, including
a validation on the Tilera multicore platform. We conclude by discussing related and
future work.

2 Split-Join Graphs

A parallelization factor is any number of the form α (split) or 1/α (join) for α ∈ N.
We use Σ∗ to denote the set of sequences over a set Σ and use � for the prefix relation
with ξ � ξ · ξ′, where ξ · ξ′ denotes concatenation.

Definition 1 (Split-Join and Task Graphs). A split-join graph is S = (V,E, d, r)
where (V,E) is a directed acyclic graph (DAG), that is, a set V of nodes, a set E ⊆
V × V of edges and no cyclic paths. The function d : V → R+ defines the execution
times of the nodes and r : E → Q assigns a parallelization factor to every edge. An
edge e is a split, join or neutral edge depending on whether r(e) > 1, < 1 or = 1.
A split-join graph with r(e) = 1 for every e is called a task-graph and is denoted by
T = (U, E , δ), where the three elements in the tuple correspond to V , E and d.

The decomposability of a task into parallelizable sub-tasks is expressed as a numerical
label (parallelization factor) on a precedence edge leading to it. A label α on the edge



230 P. Tendulkar, P. Poplavko, and O. Maler

from A to B means that every executed instance of task A spawns α instances of task
B. Likewise, a 1/α label on the edge from B to C means that all those instances of
B should terminate and their outputs be joined before executing C (see Fig. 1). A
task graph can thus be viewed as obtained from the split-join graph by making data
parallelism explicit . To distinguish between these two types of graphs we call the nodes
of the split-join graphs actors (task types) and those of the task graph tasks.

A B C A Bi

B1

Bα

C
α 1/α

Fig. 1. A simple split-join graph and its expanded task graph. Actor B has α instances.

The DAG structure naturally induces a partial-order relation ∠ over the actors such
that v∠v′ if there is a path form v to v′. The set of minimal elements with respect to ∠ is
V• ⊆ V consisting of nodes with no incoming edges. Likewise, the maximal elements
V • are those without outgoing edges. An initialized path in a DAG is directed path
π = v1 ·v2 · · · vk starting from some v1 ∈ V•. Such a path is complete if vk ∈ V •. With
any such path we associate the multiplicity signature

ξ(π) = (v1, α1) · (v2, α2) · · · (vk−1, αk−1)

where αi = r((vi, vi+1)). We will also abuse ξ to denote the projection of the signature
on the multiplication factors, that is ξ(π) = α1 · α2 · · ·αk−1.

To ensure that different instances of the same actor communicate with the match-
ing instances of other actors and that such instances are joined together properly, we
need an indexing scheme similar to indices of multi-dimensional arrays accessed inside
nested loops. Because an actor may have several ancestral paths, we need to ensure
that its indices via different paths agree. This will be guaranteed by a well-formedness
condition that we impose on the multiplicity signatures along paths.

Definition 2 (Parenthesis Alphabet). Let Σ = {1} ∪ Σ{ ∪ Σ} be any set of symbols
consisting of a special symbol 1 and two finite sets Σ{ and Σ} admitting a bijection
which maps every α ∈ Σ{ to α′ ∈ Σ} .

Intuitively α and α′ correspond to a matching pair consisting of a split α and its inverse
join 1/α. These can be viewed also as a pair of (typed) left and right parentheses.

Definition 3 (Canonical Form). The canonical form of a sequence ξ over a parenthe-
ses alphabet Σ is the sequence ξ̄ obtained from ξ by erasing occurrences of the neutral
element 1 as well as matching pairs of the form α · α′.

For example, the canonical form of ξ = 5 · 1 · 3 · 1 · 1 · 1/3 · 1 · 2 is ξ̄ = 5 · 2. Note
that the (arithmetic) products of the factors of ξ and of ξ̄ are equal and we denote this
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value by c(ξ) and let c(ε) = 1. A sequence ξ is well-parenthesized if ξ̄ ∈ Σ∗
{ , namely

its canonical form consists only of left parentheses. Note that this notion refers also to
signature prefixes that can be extended to well-balanced sequences, namely, sequences
with no violation of being well-parenthesized by a join not compatible with the last
open split.

Definition 4 (Well Formedness). A split-join graph is well formed if:

1. Any complete path π satisfies c(ξ(π)) = 1;
2. The signatures of all initialized paths are well parenthesized.

The first condition ensures that the graph is meaningful (all splits are joined) and that the
multiplicity signatures of any two paths leading to the same actor v satisfy c(ξ) = c(ξ′).
We can thus associate unambiguously this number with the actor itself and denote it by
c(v). This execution count is the number of instances of actor v that should be executed.

The second condition forbids, for example, sequences of the form 2 · 3 · 1/2 · 1/3.
It implies an additional property: every two initialized paths π and π′ leading to the
same actor satisfy ξ̄(π) = ξ̄(π′). Otherwise, if two paths would reach the same actor
with different canonical signatures, there will be no way to close their parentheses by
the same path suffix. Although split-join graphs not satisfying Condition 2 can make
sense for certain computations, they require more complicated mappings between tasks
and they will not be considered here, but see a brief discussion in Section 5. For well-
formed graphs, a unique canonical signature, denoted by ξ̄(v), is associated with every
actor.

Definition 5 (Indexing Alphabet and Order). An actor v with ξ̄(v) = α1 · · ·αk de-
fines an indexing alphabet Av consisting of all k-digit sequences h = a1 · · · ak such
that 0 ≤ ai ≤ αi − 1. This alphabet can be mapped into {0, . . . , c(v) − 1} via the
following recursive rule:

N (ε) = 0 and N (h · aj) = αj · N (h) + aj

We use 5v to denote the lexicographic total order over Av which coincides with the
numerical order over N (Av).

Every instance of actor v will be indexed by some h ∈ Av and will be denoted as vh. We
use notation h and Av to refer both to strings and to their numerical interpretation via
N . In the latter case vh will refer to the task in position h according to the lexicographic
order 5v. See for example, tasks B0, B1, . . . in Figure 1.

Definition 6 (Derived Task Graph). From a well-formed split-join graph S = (V,E,
d, r) we derive the task graph T = (U, E , δ) as follows: U = {vh|v ∈ V, h ∈ Av},
E = {(vh, v′h′) | (v, v′) ∈ E, (h 1 h′ ∨ h′ 1 h)} and ∀v, ∀h ∈ Av, δ(vh) = d(v).

Notation h 1 h′ indicates that string h′ is a prefix of h. To take an example, according
to the definition, a split edge (v, v′) is expanded to a set of edges {(vh, v′h·a) | a =
0 . . . α − 1}, where α = r((v, v′)). The tasks can be partitioned naturally according
to their actors, letting U =

⋃
v∈V Uv and Uv = {vh : h ∈ Av}. A permutation

ω : U → U is actor-preserving if it can be written as ω =
⋃

v∈V ωv and each ωv is a
permutation on Uv.
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Definition 7 (Deployment). A deployment for a task graph T = (U, E , δ) on an ex-
ecution platform with a finite set M of processors consists of a mapping function
μ : U → M and a scheduling function s : U → R+ indicating the start time of
each task. A deployment is called feasible if it satisfies precedence and mutual exclu-
sion constraints, namely, for each pair of tasks we have:

Precedence: (u, u′) ∈ E ⇒ s(u′)− s(u) ≥ δ(u)

Mutual exclusion: μ(u) = μ(u′) ⇒ [(s(u′)− s(u) ≥ δ(u)) ∨ (s(u)− s(u′) ≥ δ(u′))]

Note that μ(u) and s(u) are decision variables while δ(u) is a constant. The latency
of the deployment is the termination time of the last task, maxu∈U (s(u) + δ(u)). The
problem of optimal scheduling of a task-graph is already NP-hard due to the non-convex
mutual exclusion constraints. This situation is aggravated by the fact that the task-graph
will typically be exponential in the size of the split-join graph. On the other hand, it ad-
mits many tasks which are identical in their duration and isomorphic in their precedence
constraints. In the sequel we exploit this symmetry by showing that all tasks that cor-
respond to the same actor can be executed according to a lexicographic order without
compromising latency.

Definition 8 (Ordering Scheme). An ordering scheme for a task-graph T = (U, E , δ)
derived from a split-join graph G = (V,E, r, d) is a relation≺=

⋃
v∈V ≺v where each

≺v is a total order relation on Uv.

In the lexicographic ordering scheme 5, the tasks vh ∈ Uv are ordered in the lexico-
graphic order 5v of their indices ‘h’. We say that a schedule s is compatible with an
ordering scheme ≺ if vh ≺ vh′ implies s(vh) ≤ s(vh′). We denote such an ordering
scheme by ≺s and use notation v[h] for the task occupying position h in ≺s

v.

Lemma 1. Let s be a feasible schedule and let v and v′ be two actors such that (v, v′) ∈
E. Then

1. If r(v, v′) = α ≥ 1, then for every h ∈ [0, c(v) − 1] and every a ∈ [0, α − 1] we
have

s(v′[αh + a])− s(v[h]) ≥ d(v).

2. If r(v, v′) = 1/α then for every h ∈ [0, c(v)− 1] and every a ∈ [0, α− 1] we have

s(v′[h])− s(v[αh + a]) ≥ d(v).

Proof. The precedence constraints for Case 1 are in fact s(v′αh+a)− s(vh) ≥ d(v), and
we have to prove that in this expression the lexicographic index vh can be replaced by
schedule-compatible index v[h]. Let j = hα+ a and j′ = j + 1. Since each instance of
v is a predecessor of exactly α instances of v′, the execution of v′[j] must occur after
the completion of at least &j′/α' instances of v. By construction, this is not earlier than
the termination of the first &j′/α' instances of v to occur in schedule s. In our notation
this can be written as:

s(v′[j]) ≥ s(v[&j′/α' − 1]) + d(v)
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Substituting j and j′ into the above formula we obtain our thesis. A similar argument
holds for Case 2. ��

Theorem 1 (Lexicographic Ordering). Every feasible schedule s can be transformed
into a latency-equivalent schedule s′ compatible with the lexicographic order 5.

Proof. Let ωs be an actor-preserving permutation on U defined as ωs(vh) = v[h]. In
other words, ωs maps the task in position h according to 5 to the task occupying that
position according to ≺s. The new deployment is defined as

μ′(vh) = μ(ωs(vh)) and s′(vh) = s(ωs(vh)).

Permuting tasks of the same duration does not influence latency nor the satisfaction of
resource constraints. All that remains to show is that s′ satisfies precedence constraints.
Each vh is mapped into v[h] and each of its v′ sons (resp. parents) is mapped into
v′[αh + a], 0 ≤ a ≤ α− 1. Hence a precedence constraint for s′ of the form

s′(vh·a)− s′(vh) ≥ d(v)

is equivalent to
s(v[αh + a])− s(v[h]) ≥ d(v)

which holds by virtue of Lemma 1 and the feasibility of s. ��

For example, in Figure 2 we illustrate a task graph, a feasible schedule and the same
schedule transformed into a lexicographic-compatible schedule by a permutation of the
task indices.

The implication of this result is that we can introduce additional lexicographic con-
straints to the formulation of the scheduling problem without losing optimality and thus
significantly reduce the search space, i.e., we can do symmetry breaking.

A0 B1

B0

B2

C0

C1

C2

D0

(a) A task graph

A0 B0B1

B2 C2 C1

C0 D0

Time

P1

P2

(b) A schedule

A0 B2B1

B0 C0 C1

C2 D0

Time

P1

P2

(c) A lexicographic schedule

Fig. 2. Illustration of the lexicographic ordering theorem

3 Constraint-Based Feasible Cost-Space Exploration

In this section, to illustrate the effectiveness of the proposed symmetry breaking re-
sult, we encode the multicore deployment for split-join graphs as a quantifier-free SMT
problem, defined by a set of constraints in the theory of linear arithmetics. Expressing
scheduling problems using constraint solvers is fairly standard [1,2,27,15] and various
formulations may differ in the assumptions they make about the application and the
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architecture and the aspects of the problem they choose to capture. For clarity and page
limitation reasons, we present only the non-pipelined scheduling case.

To take advantage of symmetry breaking, we assume a multicore architecture where
all cores are symmetric (homogeneous) both in terms of the computation times and
the memory access times to the task communication data located in a shared mem-
ory. Fortunately, many advanced multicore architectures [16,25,11] either have a global
symmetric shared memory for all processors or contain large groups of processors –
so-called clusters – inside which this assumption holds. The access to the shared mem-
ory (including contentions and cache misses) is taken into account in the task execution
times δ. In accordance with a common practice in SDF literature, we assume that a
separate communication buffer is assigned to each edge (channel) (v, v′) of the split-
join graph so that tasks associated with the same actor read from and write to the same
buffer.

To take buffer storage into account, we enrich the split-join graph model to become
G = (V,E, d, w, r) with w(v, v′) assigning to any edge in E the amount of data (in
bytes) communicated from an instance of v to an instance of v′ (this is called token size
in the SDF literature). The corresponding task graph is T = (U, E , δ, w↑, w↓) where
w↑

v,v′ is the amount of data written on the channel (v, v′) by a task in Uv and w↓
v,v′ is

the amount read by a task in Uv′ . We assume that u allocates this memory space while
starting and that u′ releases it upon termination. The relation between w, w↑ and w↓

depends on the type of the edge: for a split edgew↑
v,v′ = αw(v, v′) andw↓

v,v′ = w(v, v′)

while for join edges we have w↑
v,v′ = w(v, v′) and w↓

v,v′ = αw(v, v′).
In the following we write down the constraints that define a feasible schedule and its

cost in terms of latency, number of processors and buffer size.

– Completion time and precedence: e(u) is the time when task u terminates and a
task cannot start before the termination of its predecessors.∧

u∈U

e(u) = s(u) + δ(u) ∧
∧

(u,u′)∈E
e(u) ≤ s(u′)

– Mutual exclusion: tasks running on same processor should not overlap in time.∧
u�=u′∈U

(μ(u) = μ(u′)) ⇒ (e(u) ≤ s(u′) ∨ (e(u′) ≤ s(u))

– Buffer: these constraints compute the buffer size of every channel (v, v′) ∈ E.
They are based on the observation that buffer utilization is piecewise-constant over
time, with jumps occurring upon initiation of writers and termination of readers.
Hence the peak value of memory utilization can be found among one out of finitely-
many starting points.
The first constraint defines W ↑

v,v′ (u, u∗), the contribution of writer u ∈ Uv to the
filling of buffer (v, v′) observed at the start of a writer u∗ ∈ Uv:

∧
(v,v′)∈E

∧
u∈Uv

∧
u∗∈Uv

(s(u) > s(u∗)) ∧ (W ↑
v,v′ (u, u∗) = 0) ∨

(s(u) ≤ s(u∗)) ∧ (W ↑
v,v′ (u, u∗) = w↑

v,v′)
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Likewise the valueW ↓
v,v′ (u′, u∗) is the (negative) contribution of reader u′ to buffer

(v, v′) observed at the start of writer u∗:

∧
(v,v′)∈E

∧
u′∈Uv′

∧
u∗∈Uv

((e(u′) > s(u∗)) ∧W ↓
v,v′(u′, u∗) = 0) ∨

(e(u′) ≤ s(u∗)) ∧ (W ↓
v,v′ (u′, u∗) = w↓

v,v′)

The total amount of data in buffer (v, v′) at the start of task u∗ ∈ Uv, denoted by
Rv,v′(u∗), is the sum of contributions of all readers and writers already executed:∧

(v,v′)∈E

∧
u∗∈Uv

Rv,v′(u∗) =
∑
u∈Uv

W ↑
v,v′ (u, u∗)−

∑
u′∈Uv′

W ↓
v,v′ (u

′, u∗)

The buffer size for (v, v′), denoted by Bv,v′ is the maximum over all the start times
of tasks in Uv: ∧

(v,v′)∈E

∧
v∗∈Uv

Rv,v′(u∗) ≤ Bv,v′

– Costs: The following constraints define the cost vector associated with a given
deployment, which is C = (Cl, Cn, Cb), where the costs indicate, respectively,
latency (termination of last task), number of processors used and total buffer size.∧

u∈U

e(u) ≤ Cl ∧
∧
u∈U

μ(u) ≤ Cn ∧
∑

(v,v′)∈E

Bv,v′ ≤ Cb

We refer to the totality of these constraints as ϕ(μ, s, C) which are satisfied by any
feasible deployment (μ, s) whose cost is C.

– Symmetry breaking: We add two kinds of symmetry-breaking constraints, which
do not change optimal costs. Firstly, we add the lexicographic task ordering con-
straints as implied from Theorem 1 – henceforth: task symmetry∧

v∈V

∧
vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

where vh denotes the instance of v at the h-th position in the order5v .
Secondly we add fairly standard constraints to exploit processor symmetry: proces-
sor 1 runs task 1, processor 2 runs the lowest index task not running on processor
2, etc.. Therefore, let us number all tasks arbitrarily with a unique index: u1, u2, etc.
The processor symmetry breaking is defined by the following constraint:

μ(u1) = 1 ∧
∧

2≤i≤|U|
μ(ui) ≤ max

1≤j<i
μ(uj) + 1

More details on how all constraints were encoded in Z3 solver can be found in [22].
SAT and SMT solvers were designed for deciding satisfiability, not for optimization.

However, such solvers can be used to find optimal costs by submitting queries concern-
ing the existence of solutions with specific costs, which can be viewed as a binary search
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in the cost space with the solver acting as an oracle. We focus on multi-criteria opti-
mization problems where we seek to find optimal trade-offs between latencyCl, number
of processors Cn and buffer storage Cb. Such problems [8] do not admit a unique opti-
mal solution but rather a set of efficient Pareto solutions [18] that cannot be improved in
one cost dimension without being worsened in others. The set of such solutions, known
as the Pareto front, represents the optimal trade-offs between the conflicting criteria.
Following [14] we use queries to an SMT solver to find an approximation of the Pareto
front. We summarize below the essence of the exploration methodology of [14], which
can be viewed as a multi-dimensional generalization of binary search. Other approaches
for multi-criteria optimization can be found in [8,28,6].

Let Q(c) be a shorthand for the satisfiability query ∃μ∃s s.t. ϕ(μ, s, c) which asks
whether there is a feasible deployment whose cost vector is equal to c. If the solver
answers affirmatively with some cost c we have a solution and may also conclude any
cost in forward cone of c set B+(c) = {c′ | c′ ≥ c} is feasible, which follows directly
from the cost constraints. If the answer is negative we can conclude that any cost in the
backward cone B−(c) = {c′ | c′ ≤ c} is infeasible. After submitting any number of
queries with different values of c we face a situation illustrated in Fig. 3. The sets C0
and C1 are, respectively, the maximal costs known to be infeasible (unsat) and minimal
costs found (sat). Sets C0 and C1 are defined as the sets of all points known to be
unsat and sat, they are equal to the forward/backward cone of the extremal points.
The feasibility of costs which are outside C0 ∪C1 is unknown. The set C1 constitutes an
approximation of the Pareto front and its quality, defined as a kind of Hausdorff distance
to the actual front, is bounded by its distance to the boundary of the backward cone of
C0.

C0 C1

C1 = B+(C1)

C0 = B−(C0)

C̃

(a) (b)

Fig. 3. (a) Sets C0 (unsat) and C1 (sat) represented by their extremal points C0 and C1; (b) The
state of our knowledge at this point as captured by C0 (infeasible costs) C1 (feasible costs) and C̃
(unknown). The actual Pareto front is contained in the closure of C̃.

Before we apply the exploration procedure we need to bound the cost space. For
latency Cl, a lower bound is the size of the the longest path (in terms of δ) through the
task graph. The upper bound is the total amount of work (sum of δ over all tasks).
The bounds on buffers size are obtained by the two extreme scenarios. The lower
bound is when each buffer is filled by the writer(s) to the minimal level required by the
reader(s) to execute, that is, Bv,v′ = αw(v, v′) for an edge with multiplicity α or 1/α.
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The upper bound should cover the execution of all instances of v before any instance
of v′, Bv,v′ = w(v, v′) · max(c(v), c(v′)). The number of processors ranges trivially
between 1 and the maximal number of processors on the platform. The width of the
task-graph, when smaller than the number of processors, can serve as a tighter upper-
bound as it limits the number of tasks that can execute in parallel.

Unlike the distance-oriented algorithm of [14], we use here a simpler exploration
algorithm based on grid refinement. At every stage of the algorithm we refine the grid
defined on the cost space and ask Q(c)-queries with c ranging over those newly-added
grid points which are outside C0∪C1. Note that not all these new points will necessarily
be queried because each query increases the size of C0∪C1 so as to include some of these
points. The description so far was based on the assumption that all queries terminate.
However it is well-known that as c gets closer to the boundary between sat and unsat,
the computation time may grow prohibitively and the solver can get stuck. To tackle
this problem we bound the time budget per query and when this bound is reached we
abort the query and interpret the result as unsat. Choosing the appropriate value for this
time-out bound is a matter of trial and error.

Fig. 4. Exploring the cost space via grid refinement. The dark points indicate the new candidates
for exploration after each refinement.

4 Experiments

In this section we investigate the performance of the cost-space exploration algorithm.
First, we assess the contribution of the symmetry reduction constraints on the execution
time and the quality of solutions for a synthetic example. Then we explore the cost
space for a split-join graph derived from a real video application. These experiments
use version 4.1 of the Z3 Solver [17] running on a Linux machine with Intel Core i7
processor at 1.73 GHz with 4 GB of memory. Finally, we validate the model used to
derive the solution by deploying a JPEG decoder on the Tilera platform [25] according
to the derived schedule. The measured performance is very close to the predicted model.

Finding Optimal Latency: We use the split-join graph of Fig. 1 with various values
of α to explore the effect of the symmetry reduction constraints on the performance of
the solver. We start with a single cost version of the problem and perform binary search
to find the minimum latency that can be achieved for a fixed number of processors.
We solve the same problem using four variations of the constraints: without symmetry
reduction, with processor symmetry, with task symmetry and with both. Figure 5 depicts
the computation times for finding the optimal latency as a function of α on platforms
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with 5 and 20 processors. We use time-out per query of 20 minutes, which is much
larger than the one minute we typically use because we want to find the exact optimum
in order to compare the effects of different symmetry constraints. Scheduling problems
are known to be easy when the number of processors approaches the number of tasks.
For the difficult case of 5 processors, task symmetry starts dominating beyond 10 tasks
and the combination of both gives the best results. It increases the size of graphs whose
optimal latency can be found (with no query executing more than 20 minutes) from
α = 12 to α = 48. Not surprisingly, for 20 processors, the relative importance of
processor symmetry grows. In Figure 5(b) we see no advantage from the task symmetry
presumably because we could not try large values of α.
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Fig. 5. Time to find optimal latency as a function of the number of tasks for 5 and 20 processors

Processor-Latency Trade-Offs: To demonstrate the effect of symmetry reductions on
the Pareto front exploration we fix α = 30 and seek trade-offs between latency and the
number of processors. We use a time budget of one minute per query. Fig. 6 depicts
the results obtained with and without symmetry breaking constraints. The square points
show the unsat points whereas the circle are the sat points. The black curve is the
approximation of the Pareto front, connecting all the minimal sat points. Points whose
queries took long time to answer are surrounded by a dark halo whose intensity is
proportional to the time (the darkest areas are around the timeout points). As one can
see from the figure, symmetry constraints reduce significantly the number of time-outs
with processor symmetry doing the job on the upper-left part of the curve while task
symmetry is useful around the middle. The total time to find the minimal latency for
each and every value of Cn is 42 minutes without symmetry, and 16 minutes with both
types of symmetry constraints.

Video Decoder: Next we perform a 3-dimensional cost exploration for a model of a
video decoder taken from [10] and described in more detail in [22]. The application
admits 11 actors expanding to 122 tasks. Without any symmetry constraints the solver
quickly times out for most queries of interest. Symmetry constraints do not completely
eliminate time-outs but reduce them significantly and therefore the quality of the Pareto
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(a) Without Symmetry Constraints (b) With Task and Proc Symmetry

Fig. 6. Pareto Exploration Result

front approximation is much better, as shown in Fig. 7. Note that for a sequential im-
plementation (Cn = 1) the constraints improve the buffer size from 276 to 182 and for
the most parallel deployment (Cn = 122) they reduce the latency from 10 K to 7 K and
the buffer size from 333 to 229. The Pareto point (14, 333, 62) found without symmetry
reduction is strongly dominated by the point (10, 229, 31) found with symmetry break-
ing. This solution improves the latency and buffer usage by roughly a third while using
half of the processors. We believe it is a promising indication of the applicability of our
approach and of the potential performance gains in treating the optimization problem
globally.
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Fig. 7. Video Decoder Pareto Points
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Jpeg Decoder: Finally we validate our model by deploying a JPEG decoder on the
Tilera platform [25] which is a 64-core symmetric multicore platform running at 862.5
MHz. The theoretical scheduling problem that we solve is deterministic where task du-
rations are assumed to be precisely known. The obtained schedule is time-triggered,
given in terms of the exact start time function s. In reality, there are variations in execu-
tion times and in our implementation we use static order schedules, preserving only the
order of task execution on each processor. This is a common way to generate sched-
ules for task graphs and SDF, see for example [20]. When task durations agree with
the nominal values used in the optimization problem, this scheduling policy coincides
with s. Unlike the traditional work on dataflow mapping, we support mappings where
the writers and readers of the same buffer storage can be spread over more than two
different processors. Our experience confirms that this dynamic scheduling policy can
be implemented with a reasonable amount of additional synchronization between the
cores. Note also that when the schedule is compatible with lexicographical task order
(justified by Theorem 1), the accesses to the channels automatically become FIFO and
this facilitates the implementation of cyclic buffers.

The split-join graph of the decoder can be found in in [22]. It has three main actors:
variable length decoding (vld), inverse quantization and inverse discrete cosine trans-
form (iq/idct) combined and color conversion (color). To measure execution times we
run the decoder several times on a single processor and measure the execution time
of each actor. To mitigate cache effects, we consider the average execution time rather
than worst case, which occurs only in the first execution due to cache misses. We use
these average execution times in the model we submit to the solver. We then deploy the
decoder on the platform and run it 100 times (again to dampen cache effects). The rela-
tion between the average latency (in μs) observed experimentally and the Pareto points
computed by the SMT solver is depicted below and the deviation is typically smaller
than 15%.

no. proc 1 3 4 6 8 12
predicted 506 314 278 261 243 226
measured 461 309 299 307 300 351

5 Discussion

The deployment of programs on parallel machines is a very old problem whose param-
eters change with the evolution of computer architecture. The problem exists in both
software [12] and hardware [5] and in the latter it is viewed as an instance of high-level
synthesis . Due to problem complexity the problem is often solved using heuristics such
as list scheduling and/or decomposed into separate phases, for example, optimizing la-
tency and buffers separately [21]. Recent advances in SAT and SMT solvers and other
constraint propagation techniques suggest an opportunity to formulate and solve the
problem in a monolithic way, avoiding the sub-optimality of decomposed solutions. For
example, [15] exploits SMT solvers to combine multiple deployment sub-problems: the
task-to-processor assignment, the ordering of tasks on each processor and the assign-
ment of scalable voltage per processor. For SDF graphs, [2] and [27] combine multiple
phases using a constraint programming (CP) engine. In the context of high-level syn-
thesis, the tool FACTS (see [9] for references) uses branch-and-bound approach com-
bined with constraint analysis, whereas [5] discusses various ILP formulations. In [26]
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a quantitative model checking engine is developed using a variant of timed automata
for combined scheduling and buffer storage optimization of SDF graphs.

Various approaches to facilitate the task of the solver by additional symmetry break-
ing constraints have been tried, for example [19] for graph coloring or an automated
method for discovering graph automorphism [4] which can lead to significant improve-
ments [9]. However, our deployment problem does not require complex detection of
isomorphic subgraphs. Instead we exploit the knowledge about the structure of the task
graphs coming from the original split-join graph and not relying in any way on the graph
automorphism. In fact, our approach leads to stronger symmetry reduction than could
be obtained by exploiting the automorphism in the task graph as done in [9]. Theorem 1
provides the necessary compact symmetry breaking constraints that do the job. As for
the restrictions that we imposed on the split-join graph compared to more general SDF
graphs admitting non-divisible token production and consumption rate, let us first re-
mark that Theorem 1 can be extended, somewhat less elegantly, to this more general
case. Moreover, the extensive study of StreaMIT benchmarks found in [23] reports that
most actors in most applications, fall into the category of well-formed split-join graphs
that we treat.

The contribution of the paper can be summarized as follows. We provide a frame-
work for multi-criteria optimization and cost-space exploration, not based on heuris-
tic sub-optimal decomposition. Using symmetry reduction justified by Theorem 1, we
could conduct a 3-dimensional cost-space exploration for a non-trivial problem with
122 tasks. The theorem itself generalizes the result of [9] which proves optimality of
lexicographic order for one level of nesting. We prove the result for arbitrary nesting
depth and give a simpler proof. In the future it might be interesting to apply this result
in various alternative solution space exploration methods for the scheduling problems,
e.g., ILP, model checking or genetic programming.

In future, we plan to extend this work in several directions. First we will employ
more refined models of data communication where different mappings imply differ-
ent data transfer costs. Secondly we will consider pipelined executions as was done in
[15,2,27,26], using e.g., a finite unfolding. This will increase the number of tasks but
will reduce the effect of precedence constraints. Thirdly we should adapt the methodol-
ogy to a more significant variability in task duration and this will require an implemen-
tation of scheduling under uncertainty that can deviate from the task execution order
provided by s. Finally we will seek ways for a more direct exploitation of the symbolic
representation of data-parallel tasks and a tighter interaction between the cost explo-
ration algorithm and the solver.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer international
series in engineering and computer science. Kluwer (2001)

2. Bonfietti, A., Benini, L., Lombardi, M., Milano, M.: An efficient and complete approach for
throughput-maximal SDF allocation and scheduling on multi-core platforms. In: DATE, pp.
897–902. IEEE (2010)

3. Coffman, E.G.: Computer and job-shop scheduling theory. Wiley (1976)



242 P. Tendulkar, P. Poplavko, and O. Maler

4. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of sym-
metries. DAC, pp. 149–154. ACM, New York (2008)

5. De Micheli, G.: Synthesis and optimization of digital circuits. Electrical and Computer En-
gineering Series. McGraw-Hill Higher Education (1994)

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback
series. Wiley (2009)

7. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

8. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
9. van Eijk, C.A.J., Jacobs, E.T.A.F., Mesman, B., Timmer, A.H.: Identification and exploitation

of symmetries in DSP algorithms. In: DATE. IEEE, New York (1999)
10. Fradet, P., Girault, A., Poplavko, P.: SPDF: A schedulable parametric data-flow MoC. In:

DATE, pp. 769–774. IEEE (2012)
11. Kalray: Kalray MPPA 256, http://www.kalray.eu/
12. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)
13. Lee, E., Messerschmitt, D.: Synchronous data flow. IEEE 75(9), 1235–1245 (1987)
14. Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the Pareto front of multi-

criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 69–83. Springer, Heidelberg (2010)

15. Legriel, J., Maler, O.: Meeting deadlines cheaply. In: ECRTS, pp. 185–194. IEEE (2011)
16. Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Clermidy, F., Du-

toit, D.: Platform 2012, a many-core computing accelerator for embedded SoCs: performance
evaluation of visual analytics applications. DAC, pp. 1137–1142. ACM, USA (2012)

17. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
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Abstract. Markov automata are a novel formalism for specifying sys-
tems exhibiting nondeterminism, probabilistic choices and Markovian
rates. Recently, the process algebra MAPA was introduced to efficiently
model such systems. As always, the state space explosion threatens the
analysability of the models generated by such specifications. We there-
fore introduce confluence reduction for Markov automata, a powerful
reduction technique to keep these models small. We define the notion of
confluence directly on Markov automata, and discuss how to syntacti-
cally detect confluence on the MAPA language as well. That way, Markov
automata generated by MAPA specifications can be reduced on-the-fly
while preserving divergence-sensitive branching bisimulation. Three case
studies demonstrate the significance of our approach, with reductions in
analysis time up to an order of magnitude.

1 Introduction

Over the past two decades, model checking algorithms were generalised to han-
dle more and more expressive models. This now allows us to verify probabilistic
as well as hard and soft real-time systems, modelled by timed automata, Markov
decision processes, probabilistic automata, continuous-time Markov chains, in-
teractive Markov chains, and Markov automata. Except for timed automata—
which incorporate real-time deadlines—all other models are subsumed by the
Markov automaton (MA) [14, 13, 12]. MAs can therefore be used as a seman-
tic model for a wide range of formalisms, such as generalised stochastic Petri
nets (GSPNs) [2], dynamic fault trees [9], Arcade [8] and the domain-specific
language AADL [10].

Before the introduction of MAs, the above models could not be analysed to
their full extent. For instance, the semantics of a (potentially nondeterministic)
GSPN were given as a fully probabilistic CTMC. To this end, weights had to
be assigned to resolve the nondeterminism between immediate transitions. As
argued in [20], it is often much more natural to omit most of these weights, retain-
ing rates and probability as well as nondeterminism, and thus obtaining an MA.
For example, consider the GSPN in Figure 1(a), taken from [13]. Immediate
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Fig. 1. A GSPN and the corresponding unreduced and reduced state spaces. For the
reduced model in (d) the weights of transitions t3 and t4 are assumed to be absent.

transitions are indicated in black, Markovian transitions in white, and we as-
sume a partial weight assignment. The underlying MA is given in Figure 1(b),
where s0 corresponds to the initial situation with one token in p1 and p4. We
added a selfloop labelled target to indicate a possible state of interest s4 (having
one token in p3 and p4), and for convenience labelled the interactive transitions
of the MA by the immediate transition of the GSPN they resulted from (except
for the probabilistic transition, which is the result of t3 and t4 together).

Recently, the data-rich process-algebraic language MAPA was introduced to
efficiently specify MAs in a compositional manner [23]. As always, though, the
state space explosion threatens the feasibility of model checking, especially in
the presence of data and interleaving. Therefore, reduction techniques for MAs
are vital to keep the state spaces of these models manageable. In this paper we
introduce such a technique, generalising confluence reduction to MAs. It is a
powerful state space reduction technique based on commutativity of transitions,
removing spurious nondeterminism often arising from the parallel composition
of largely independent components. Basically, confluent transitions never disable
behaviour, since all transitions enabled from their source states can be mimicked
from their target states. To the best of our knowledge, it is the first technique of
this kind for MAs. We give heuristics to apply confluence reduction directly on
specifications in the MAPA language, reducing them on-the-fly while preserving
divergence-sensitive branching bisimulation.

To illustrate confluence reduction, reconsider the MA in Figure 1(b) and as-
sume that t1 = t2 = t4 = τ , i.e., all action-labelled transitions, except for the
target -transition, are invisible. We are able to detect automatically that the
t1-transitions are confluent; they can thus safely be given priority over t4, with-
out losing any behaviour. Figure 1(c) shows the reduced state space, generated
on-the-fly using confluence reduction. If all weights are omitted from the specifi-
cation, an even smaller reduced state space is obtained (Figure 1(d)), while the
only change in the unreduced state space is the substitution of the probabilistic
choice by a nondeterministic choice.
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Outline of the Approach. First, we introduce the technical background of our
work (Section 2). Then, we define our novel notion of confluence for MAs (Sec-
tion 3). It specifies sufficient conditions for invisible transitions to not alter the
behaviour of an MA; i.e., if a transition is confluent, it could be given priority
over all other transitions with the same source state.

We formally show that confluent transitions connect divergence-sensitive
branching bisimilar states, and present a mapping of states to representatives to
efficiently generate a reduced MA based on confluence (Section 4). We discuss
how confluence can be detected symbolically on specifications in the MAPA lan-
guage (Section 5) and illustrate the significance of our technique using three case
studies (Section 6). We show state spaces shrinking by more than 80%, making
the entire process from MAPA specification to results more than ten times as
fast for some models.1

Related Work. Confluence reduction for process algebras was first introduced
for non-probabilistic systems [7], and later for probabilistic automata [24]. Also,
several types of partial order reduction (POR) have been defined, both for non-
probabilistic [26, 21, 16] and probabilistic systems [11, 4, 3]. These techniques
are based on ideas similar to confluence, and have been compared to confluence
recently, both in a theoretical [18] and in a practical manner [19]. The results
showed that branching-time POR is strictly subsumed by confluence, and that
the additional advantages of confluence can be employed nicely in the context
of statistical model checking.

Compared to the earlier approaches to confluence reduction for process alge-
bras [7, 24], our novel notion of confluence is different in three important ways:

– It can handle MAs, and hence is applicable to a larger class of systems.
– It fixes a subtle flaw in the earlier papers, which did not guarantee closure

under unions. We solve this by introducing an underlying classification of
the interactive transitions. This way we do guarantee closure under unions,
a key requirement for the way we detect confluence on MAPA specifications.

– It preserves divergences and hence minimal reachability probabilities, incor-
porating a technique used earlier in [18].

Since none of the existing techniques is able to deal with MAs, we believe that our
generalisation—the first reduction technique for MAs abstracting from internal
transitions—is a major step forward in efficient quantitative verification.

2 Preliminaries

Definition 1 (Basics). A probability distribution over a countable set S is
a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. For S′ ⊆ S, let μ(S′) =∑

s∈S′ μ(s). We define spt(μ) = {s ∈ S | μ(s) > 0} to be the support of μ, and
write 1s for the Dirac distribution for s, determined by 1s(s) = 1.

1 Due to space limitations, we discuss the notion of divergence-sensitive branching
bisimulation only on an intuitive level, deferring the formal definitions and proofs of
all our results to a technical report [25].
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We use Distr(S) to denote the set of all probability distributions over S, and
SDistr(S) for the set of all substochastic probability distributions over S, i.e.,
where 0 ≤

∑
s∈S μ(s) ≤ 1. Given a function f , we denote by f(μ) the lifting of

μ over f , i.e., f(μ)(s) = μ(f−1(s)), with f−1(s) the inverse image of s under f .
Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence

class of s induced by R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}. Given two probability
distributions μ, μ′ ∈ Distr(S) and an equivalence relation R, we write μ ≡R μ′

to denote that μ([s]R) = μ′([s]R) for every s ∈ S.

An MA is a transition system in which the set of transitions is partitioned into
probabilistic action-labelled interactive transitions (equivalent to the transitions
of a PA), and Markovian transitions labelled by the rate of an exponential dis-
tribution (equivalent to the transitions of a CTMC). We assume a countable
universe of actions Act, with τ ∈ Act the invisible internal action.

Definition 2 (Markov automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, ↪−→,�〉, where
– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions;
– ↪−→ ⊆ S ×A×Distr(S) is the interactive transition relation;
– � ⊆ S × R>0 × S is the Markovian transition relation.

If (s, a, μ) ∈ ↪−→, we write s
a

↪−→ μ and say that the action a can be executed from
state s, after which the probability to go to each s′ ∈ S is μ(s′). If (s, λ, s′) ∈�,
we write s λ� s′ and say that s moves to s′ with rate λ.

The rate between two states s, s′ ∈ S is rate(s, s′) =
∑

(s,λ,s′)∈� λ, and the
outgoing rate of s is rate(s) =

∑
s′∈S rate(s, s′). We require rate(s) < ∞ for

every state s ∈ S. If rate(s) > 0, the branching probability distribution after this
delay is denoted by Ps and defined by Ps(s

′) = rate(s,s′)
rate(s) for every s′ ∈ S.

By definition of the exponential distribution, the probability of leaving a state
s within t time units is given by 1 − e−rate(s)·t (given rate(s) > 0), after which
the next state is chosen according to Ps.

MAs adhere to the maximal progress assumption, prescribing τ -transitions to
never be delayed. Hence, a state that has at least one outgoing τ -transition can
never take a Markovian transition. This fact is captured below in the definition
of extended transitions, which is used to provide a uniform manner for dealing
with both interactive and Markovian transitions.

Definition 3 (Extended action set). Let M = 〈S, s0, A, ↪−→,�〉 be an MA,
then the extended action set of M is given by Aχ = A ∪ {χ(r) | r ∈ R>0}.
Given a state s ∈ S and an action α ∈ Aχ, we write s −α→ μ if either

– α ∈ A and s
α

↪−→ μ, or
– α = χ(rate(s)), rate(s) > 0, μ = Ps and there is no μ′ such that s

τ
↪−→ μ′.

A transition s −α→ μ is called an extended transition. We use s −α→ t to denote
s −α→ 1t, and write s → t if there is at least one action α such that s −α→ t. We
write s −α,μ−−→ s′ if there is an extended transition s −α→ μ such that μ(s′) > 0.
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Note that each state has an extended transition per interactive transition, while
it has only one extended transition for all its Markovian transitions together (if
there are any).

Example 4. Consider the MA M shown on the right.

s2s1 s3s0

s4 s5 s6

4

3 a

22
3

2

1
3

a

τ

τ
τ

b

For this system, rate(s2, s1) = 3 + 4 = 7,
rate(s2) = 7 + 2 = 9, and Ps2 = μ such
that μ(s1) = 7

9 and μ(s3) = 2
9 . There are

two extended transitions from s2: s2 −a→ 1s3

(also written as s2 −a→ s3) and s2 −χ(9)−−→ Ps2 . ��

We define several notions for paths and connectivity. These are based on ex-
tended transitions, and thus may contain interactive as well as Markovian steps.

Definition 5 (Paths). Given an MA M = 〈S, s0, A, ↪−→,�〉,
– A path inM is a finite sequence πfin = s0 −a1,μ1−−−→ s1 −a2,μ2−−−→ . . . −an,μn−−−→ sn from

some state s0 to a state sn (n ≥ 0), or an infinite sequence πinf = s0 −a1,μ1−−−→
s1 −a2,μ2−−−→ s2 −a3,μ3−−−→ . . . , with si ∈ S for all 0 ≤ i ≤ n and all 0 ≤ i, re-
spectively. We use prefix(π, i) to denote s0 −a1,μ1−−−→ . . . −ai,μi−−−→ si, and step(π, i)
for the transition si−1 −ai−→ μi. When π is finite we define |π| = n and
last(π) = sn. We use finpathsM for the set of all finite paths in M (not
necessarily starting in the initial state s0), and finpathsM(s) for all such
paths with s0 = s.

– We denote by trace(π) the sequence of actions of π while omitting all τ-
actions, and use ε to denote the empty sequence.

Definition 6 (Connectivity). Let M = 〈S, s0, A, ↪−→,�〉 be an MA, s, t ∈ S,
and consider again the binary relation → ⊆ S×S from Definition 3 that relates
states s, t ∈ S if there is a transition s −α→ 1t for some α.

We let  (reachability) be the reflexive and transitive closure of →, and we
let � (convertibility) be its reflexive, transitive and symmetric closure. We
write s t (joinability) if there is a state u such that s u and t u.

Note that the relation  is symmetric, but not necessarily transitive. Also
note that, intuitively, s� t means that s is connected by extended transitions
to t—disregarding the orientation of these transitions, but requiring them all to
have a Dirac distribution.

Clearly, s  t implies s  t, and s t implies s � t. These implica-
tions do not hold the other way.

Example 7. The system in Example 4 has infinitely many paths, for example

π = s2 −χ(9),μ1−−−−→ s1 −a,μ2−−→ s0 −
χ(2),1s1−−−−−→ s1 −a,μ2−−→ s4 −

τ,1s5−−−→ s5

with μ1(s1) = 7
9 and μ1(s3) = 2

9 , and μ2(s0) = 2
3 and μ2(s4) = 1

3 . We have

prefix(π, 2) = s2 −χ(9),μ1−−−−→ s1 −a,μ2−−→ s0, and step(π, 2) = s1 −a→ μ2. Also, trace(π) =
χ(9) aχ(2) a. It is easy to see that s2  s5 (via s3), as well as s3  s6 (at s5)
and s0 � s5. However, s0  s5 and s0  s5 do not hold. ��
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Fig. 2. An MA (left), and a tree demonstrating branching transition s
α
=⇒R μ (right)

2.1 Divergence-Sensitive Branching Bisimulation

To prove our confluence reduction technique correct, we show that it preserves
divergence-sensitive branching bisimulation. Basically, this means that there is
an equivalence relation R linking states in the original system to states in the
reduced system, in such a way that their initial states are related and all related
states can mimic each other’s transitions and divergences.

More precisely, for R to be a divergence-sensitive branching bisimulation, it
is required that for all (s, t) ∈ R and every extended transition s −α→ μ, there
is a branching transition t

α
=⇒R μ′ such that μ ≡R μ′. The existence of such a

branching transition depends on the existence of a certain scheduler. Schedulers
resolve nondeterministic choices in an MA by selecting which transitions to take
given a history; they are also allowed to terminate with some probability.

Now, a state t can do a branching transition t
α

=⇒R μ′ if either (1) α = τ and
μ′ = 1t, or (2) there exists a scheduler that terminates according to μ′, always
schedules precisely one α-transition (immediately before terminating), does not
schedule any other visible transitions and does not leave the equivalence class [t]R
before doing an a-transition.

Example 8. Observe the MA in Figure 2 (left). We find that s
α

=⇒R μ, with

μ(s1) = 8
24 μ(s2) = 7

24 μ(s3) = 1
24 μ(s4) = 4

24 μ(s5) = 4
24

by the scheduling depicted in Figure 2 (right), assuming (s, ti) ∈ R for all ti. ��

In addition to the mimicking of transitions by branching transitions, we require
R-related states to either both be able to perform an infinite invisible path with
probability 1 (diverge), or to both not be able to do so. We write s �div

b t if two
states s, t are divergence-sensitive branching bisimilar, and M1 �div

b M2 if two
MAs are (i.e., if their initial states are so in their disjoint union).

3 Confluence for Markov Automata

In [24] we defined three variants of probabilistic confluence: weak probabilistic
confluence, probabilistic confluence and strong probabilistic confluence. They
specify sufficient conditions for τ -transitions to not alter the behaviour of an MA.
The stronger notions are easier to detect, but less powerful in their reductions.
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In a process-algebraic context, where confluence is detected heuristically over a
syntactic description of a system, it is most practical to apply strong confluence.
Therefore, in this paper we only generalise strong probabilistic confluence to
the Markovian realm. Although MAs in addition to interactive transitions may
also contain Markovian transitions, these are basically irrelevant for confluence.
After all, states having a τ -transition can never execute a Markovian transition
due to the maximal progress assumption. Hence, such transitions need not be
mimicked. For the above reasons, the original definition of confluence for PAs
might seem to still work for MAs. This is not true, however, for two reasons.

1. The old definition was not yet divergence sensitive. Therefore, Markovian
transitions in an MA that are disabled by the maximal progress assumption,
due to a divergence from the same state, may erroneously be enabled if
that divergence is removed. Hence, the old notion does not even preserve
Markovian divergence-insensitive branching bisimulation. We now improve
on the definition to resolve this issue, introducing τ -loops in the reduced
system for states having confluent divergence in the original system (inspired
by the way [18] deals with divergences). This not only makes the theory
work for MAs, it even yields preservation of divergence-sensitive branching
bisimulation, and hence of minimal reachability probabilities.

2. The old definition had a subtle flaw: earlier work relied on the assumption
that confluent sets are closed under unions [7, 24]. In practical applications
this was indeed a valid assumption, but for the theoretical notions of conflu-
ence this was not yet the case. We fix this flaw by classifying transitions into
groups, defining confluence over sets of such groups and requiring transitions
to be mimicked by a transition from their own group.

Additionally, compared to [7, 24] we improve on the way equivalence of distri-
butions is defined, making it slightly more powerful and, in our view, easier to
understand (inspired by the definitions in [19]).

Confluence Classifications and Confluent Sets. The original lack of closure
under unions was due to the requirement that confluent transitions are mimicked
by confluent transitions. When taking the union of two sets of confluent transi-
tions, this requirement was possibly invalidated. To solve this problem, we classify
the interactive transitions of an MA into groups—allowing overlap and not requir-
ing all interactive transitions to be in at least one group. Together, we call such a
set of groups P = {C1, C2, . . . , Cn} ⊆ P(↪−→) a confluence classification2. Now,
instead of designating individual transitions to be confluent and requiring conflu-
ent transitions to be mimicked by confluent transitions, we designate groups in P
to be confluent (now called Markovian confluent) and require transitions from a
group in P to be mimicked by transitions from the same group.

2 We use s −a→C μ to denote that (s −a→ μ) ∈ C, and abuse notation by writing (s −a→
μ) ∈ P to denote that s −a→C μ for some C ∈ P . Similarly, we subscript reachability,
joinability and convertibility arrows to indicate that they only traverse transitions
from a certain group or set of groups of transitions.
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Fig. 3. The confluence diagrams for s −τ→T t, and a simple state space. In (a,b): If the
solid transitions are present, then so should the dashed ones be.

For a set T ⊆ P to be Markovian confluent, first of all—like in the PA set-
ting [24, 3]—it is only allowed to contain invisible transitions with a Dirac distri-
bution. (Still, giving priority to such transitions may very well reduce probabilistic
transitions as well, as we will see in Section 4.) Additionally, each transition s −a→ μ
enabled before a transition s −τ→T t should have a mimicking transition t −a→ ν such
that μ and ν are connected by T -transitions, and mimicking transitions should be
from the same group. The definition is illustrated in Figure 3.

Definition 9 (Markovian confluence). Let M = 〈S, s0, A, ↪−→,�〉 be an MA
and P ⊆ P(↪−→) a confluence classification. Then, a set T ⊆ P is Markovian
confluent for P if it only contains sets of invisible transitions with Dirac distri-
butions, and for all s −τ→T t and all transitions (s −a→ μ) �= (s −τ→ t):{
∀C ∈ P . s −a→C μ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ μ ≡R ν , if (s −a→ μ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ μ ≡R ν , if (s −a→ μ) �∈ P

with R the smallest equivalence relation such that

R ⊇ {(s, t) ∈ spt(μ)× spt(ν) | (s −τ→ t) ∈ T }.

A transition s −τ→ t is Markovian confluent if there exists a Markovian confluent
set T such that s −τ→T t. Often, we omit the adjective ‘Markovian’.

Note that μ ≡R ν requires direct transitions from the support of μ to the support
of ν. Also note that, even though a (symmetric) equivalence relation R is used,
transitions from the support of ν to the support of μ do not influence R.

Remark 10. Due to the confluence classification, confluent transitions are always
mimicked by confluent transitions. After all, transitions from a group C ∈ P are
mimicked by transitions from C. So, if C is designated confluent by T , then all
these confluent transitions are indeed mimicked by confluent transitions.

Although the confluence classification may appear restrictive, we will see that in
practice it is obtained naturally. Transitions are often instantiations of higher-
level constructs, and are therefore easily grouped together. Then, it makes sense
to detect the confluence of such a higher-level construct. Additionally, to show
that a certain set of invisible transitions is confluent, we can just take P to consist
of one group containing precisely all those transitions. Then, the requirement for
P -transitions to be mimicked by the same group reduces to the old requirement
that confluent transitions are mimicked by confluent transitions.
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Properties of Confluent Sets. Since confluent transitions are always mim-
icked by confluent transitions, confluent paths (i.e., paths following only transi-
tions from a confluent set) are always joinable.

Proposition 11. Let M = 〈S, s0, A, ↪−→,�〉 be an MA, P ⊆ P(↪−→) a conflu-
ence classification for M and T ⊆ P a Markovian confluent set for P . Then,

s T t if and only if s�T t

Due to the confluence classification, we now also do have a closure result. Clo-
sure under union tells us that it is safe to show confluence of multiple sets of
transitions in isolation, and then just take their union as one confluent set. Also,
it implies that there exists a unique maximal confluent set.

Theorem 12. Let M = 〈S, s0, A, ↪−→,�〉 be an MA, P ⊆ P(↪−→) a confluence
classification for M and T1, T2 ⊆ P two Markovian confluent sets for P . Then,
T1 ∪ T2 is also a Markovian confluent set for P .

The next example shows why Theorem 12 would not hold without the use of a
confluence classification. It applies to the old notions of confluence as well.

Example 13. Consider the system in Figure 3(c). Without the requirement that
transitions are mimicked by the same group, the sets

T1 = {(s, τ, u), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}
T2 = {(s, τ, t), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}

would both be perfectly valid confluent sets. Still, T = T1 ∪ T2 is not an accept-
able set. After all, whereas t�T u, it fails to satisfy t T u. This property
was ascertained in earlier work by requiring confluent transitions to be mimicked
by confluent transitions or by explicitly requiring  T to be an equivalence
relation. This is indeed not the case for T , as the diamond starting with s −τ→ t
and s −τ→ u can only be closed using the non-confluent transitions between t
and u, and clearly  is not transitive. However, T1 and T2 do satisfy these
requirements, and hence the old notions were not closed under union.

By using a confluence classification and requiring transitions to be mimicked
by the same group, we ascertain that this kind of bad compositionality behaviour
does not occur. After all, for T1 to be a valid confluent set, the confluence clas-
sification should be such that s −τ→ t and its mimicking transition u −τ→ t are in
the same group. So, for s −τ→ t to be confluent (as prescribed by T2), also u −τ→ t
would need to be confluent. The latter is impossible, since the b-transition from
u cannot be mimicked from t, and hence T2 is disallowed. ��
The final result of this section shows that confluent transitions indeed connect
divergence-sensitive bisimilar states. This is a key result; it implies that con-
fluent transitions can be given priority over other transitions without losing
behaviour—when being careful not to indefinitely ignore any behaviour.

Theorem 14. Let M = 〈S, s0, A, ↪−→,�〉 be an MA, s, s′ ∈ S two of its states,
P ⊆ P(↪−→) a confluence classification for M and T ⊆ P a Markovian confluent
set for P . Then,

s�T s′ implies s �div
b s′.
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4 State Space Reduction Using Confluence

We can reduce state spaces by giving priority to confluent transitions, i.e., by
omitting all other transitions from a state that also enables a confluent tran-
sition (as long as no behaviour is ignored indefinitely). Better still, we aim at
omitting all intermediate states on a confluent path altogether; after all, they
are all bisimilar anyway by Theorem 14. Confluence even dictates that all visible
transitions and divergences enabled from a state s can directly be mimicked from
another state t if sT t. Hence, we can just keep following a confluent path and
only retain the last state. To avoid getting stuck in an infinite confluent loop,
we detect entering a bottom strongly connected component (BSCC) of confluent
transitions and choose a unique representative from this BSCC for all states that
can reach it. Since we showed that confluent joinability is transitive (as implied
by Proposition 11), it follows immediately that all confluent paths emanating
from a certain state s always end up in a unique BSCC.

Formally, we use the notion of a representation map, assigning a representative
state ϕ(s) to every state s. We make sure that ϕ(s) indeed exhibits all behaviour
of s due to being in a BSCC reachable from s.

Definition 15 (Representation map). Let M = 〈S, s0, A, ↪−→,�〉 be an MA
and T a Markovian confluent set for M. Then, a function ϕT : S → S is a
representation map for M under T if for all s, s′ ∈ S

– sT ϕT (s)
– s→T s′ =⇒ ϕT (s) = ϕT (s′)

Note that the first requirement ensures that every representative is reachable
by all states it represents, while the second takes care that all T -related states
have the same representative. Together, they imply that every representative is
in a BSCC. Since all T -related states have the same BSCC, as discussed above,
it is indeed always possible to find a representation map. We refer to [6] for the
algorithm we use to construct it in our implementation.

As representatives exhibit all behaviour of the states they represent, they can
be used for state space reduction. More precisely, it is possible to define the quo-
tient of an MA modulo a representation map. This system does not have any T -
transitions anymore, except for self-loops on representatives that have outgoing
T -transitions in the original system. These ensure preservation of divergences.

Definition 16 (Quotient). Given an MA M = 〈S, s0, A, ↪−→,�〉, a confluent
set T forM, and a representation map ϕ : S → S forM under T , the quotient of
M modulo ϕ is the smallest system M/ϕ = 〈ϕ(S), ϕ(s0), A, ↪−→ ϕ,�ϕ〉 such that

– ϕ(S) = {ϕ(s) | s ∈ S};
– ϕ(s)

a
↪−→ϕ ϕ(μ) if ϕ(s)

a
↪−→ μ;

– ϕ(s) λ�ϕ ϕ(s′) if λ =
∑

λ′∈Λ(s,s′) λ
′ and λ > 0,

where Λ(s, s′) is the multiset {|λ′ ∈ R | ∃s∗ ∈ S . ϕ(s) λ′
� s∗ ∧ ϕ(s∗) = ϕ(s′)|}.

Note that each interactive transition from ϕ(s) in M is lifted to M/ϕ by chang-
ing all states in the support of its target distribution to their representatives.
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Additionally, each pair ϕ(s), ϕ(s′) of representative states in M/ϕ has a con-
necting Markovian transition with rate equal to the total outgoing rate of ϕ(s)
in M to states s∗ that have ϕ(s′) as their representative (unless this sum is 0).
It is easy to see that this implies ϕ(s) −χ(λ)−−→ϕ ϕ(μ) if and only if ϕ(s) −χ(λ)−−→ μ.

Since T -transitions connect bisimilar states, and representatives exhibit all
behaviour of the states they represent, we can prove the following theorem. It
shows that we indeed reached our goal of providing a reduction that is safe with
respect to divergence-sensitive branching bisimulation.

Theorem 17. Let M = 〈S, s0, A, ↪−→,�〉 be an MA, T a Markovian confluent
set for M, and ϕ : S → S a representation map for M under T . Then,

M/ϕ �div
b M.

5 Symbolic Detection of Markovian Confluence

Although the definition of confluence in Section 3 is useful to show the correctness
of our approach, it is often not feasible to check in practice. After all, we want
to reduce on-the-fly to obtain a smaller state space without first generating the
unreduced one. Therefore, we use heuristics to detect Markovian confluence in
the context of the process-algebraic modelling language MAPA [23]. As these
heuristics only differ slightly from the ones in [24] for probabilistic confluence,
we discuss the basics and explain how the old techniques can be reused.

MAPA is data-rich and expressive, and features a restricted form: the Marko-
vian Linear Probabilistic Process Equation (MLPPE). Every MAPA specifica-
tion can be translated easily to an equivalent specification in MLPPE [23]. Hence,
it suffices to define our confluence-based reduction technique on this form.

The MLPPE Format. An MLPPE is a process with global variables, inter-
active summands (each yielding a set of interactive transitions) and Markovian
summands (each yielding a set of Markovian transitions). Its semantics is given
as an MA, whose states are valuations of the global variables. Basically, in each
state a nondeterministic choice is made between the summands that are enabled
given these values.

Each interactive summand has a condition (the guard) that specifies for which
valuations of the global variables it is enabled. If so, an action can be taken and the
next state (a new valuation for the global variables) is determined probabilistically.
The action and next state may also depend on the current state. The Markovian
summands are similar, except that they contain a rate and a unique next state in-
stead of an action and a probabilistic next state. We assume an implicit confluence
classification P = {C1, . . . , Ck} that, for each interactive summand, contains a
group consisting of all transitions generated by that summand. We note that this
classification is only given for theoretical reasons; it is not actually constructed.

For a precise formalisation of the language and its semantics, we refer to [23].

Confluent Summands. We check for confluent summands : summands that
are guaranteed to only yield confluent transitions, i.e., summands i such that
the set T = {Ci} is confluent. Whenever during state space generation such
a summand is enabled, all other summands can be ignored (continuing until
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reaching a representative in a BSCC, as explained in the previous section). By
Theorem 12, the union of all confluent summands is also confluent.

Since only τ -transitions can be confluent, the only summands that might be
confluent are interactive summands having action τ for all valuations of the
global variables. Also, the next state of each of the transitions they generate
should be unique. Finally, we verify whether all transitions that may result from
these summands commute with all other transitions according to Definition 9.

We only need to check commutativity with all transitions possibly generated
by the interactive summands, as the Markovian summands are never enabled at
the same time as an invisible transition due to the maximal progress assumption.
We overapproximate commutativity by checking whether, when two summands
are enabled, they do not disable each other and do not influence each other’s
actions, probabilities and next states. After all, that implies that each transition
can be mimicked by a transition from the same summand (and hence also that it
is indeed mimicked by the same group of P ). This can be formally expressed as
a logical formula (see [24] for the details). Such a formula can be checked by an
SMT solver, or approximated using heuristics. We implemented basic heuristics,
checking mainly whether two summands are never enabled at the same time
or whether the variables updated by one are not used by the other and vice
versa. Additionally, some laws from the natural numbers have been implemented,
taking for instance into account that x := x + 1 cannot disable x > 2. In the
future, we hope to extend this to more advanced theorem proving.

6 Case Studies

We implemented confluence reduction in our tool SCOOP [22]. It takes MAPA
specifications as input, is able to perform several reduction techniques and can
generate state spaces in multiple formats, among which the one for the IMCA
tool for model checking MAs [17]. We already showed in [23] the benefits of
dead variable reduction. Here, we apply only confluence reduction, to focus on
the power of our novel technique. We present the size of the state spaces with
and without confluence reduction, as well as the time to generate them with
SCOOP and to subsequently analyse them with IMCA. That way, the impact
of confluence reduction on both MA generation and analysis becomes clear3.

We conjecture that the (quantitative) behavioural equivalence induced by
branching bisimulation leaves invariant the time-bounded reachability probabil-
ities, expected times to reachability and long-run averages computed by IMCA.
This indeed turned out to be the case for all our models. A logic precisely char-
acterising Markovian branching bisimulation would be interesting future work.

Leader Election Protocol. The first case study is a leader election protocol
(Algorithm B from [15]), used in [24] as well to demonstrate confluence reduction
for probabilistic automata. It uses asynchronous channels and allows for multiple
nodes, throwing dice to break the symmetry. We added a rate 1 to a node

3 The tool (for download and web-based usage [5]), all MAPA models and a test script
can be found on http://fmt.cs.utwente.nl/~timmer/scoop/papers/formats.

http://fmt.cs.utwente.nl/~timmer/scoop/papers/formats


Confluence Reduction for Markov Automata 255

Table 1. State space generation and analysis using confluence reduction (on a 2.4 GHz
4 GB Intel Core 2 Duo MacBook). Runtimes in SCOOP and IMCA are in seconds.

Original state space Reduced state space Impact
Specification States Trans. SCOOP IMCA States Trans. SCOOP IMCA States Time
leader-3-7 25,505 34,257 4.7 102.5 5,564 6,819 5.1 9.3 -78% -87%
leader-3-9 52,465 71,034 9.7 212.0 11,058 13,661 10.4 17.8 -79% -87%
leader-3-11 93,801 127,683 18.0 429.3 19,344 24,043 19.2 31.9 -79% -89%
leader-4-2 8,467 11,600 2.1 74.0 2,204 2,859 2.5 6.8 -74% -88%
leader-4-3 35,468 50,612 9.0 363.8 7,876 10,352 8.7 33.3 -78% -89%
leader-4-4 101,261 148,024 25.8 1,309.8 20,857 28,023 24.3 94.4 -79% -91%
polling-2-2-4 4,811 8,578 0.7 3.7 3,047 6,814 0.7 2.3 -37% -32%
polling-2-2-6 27,651 51,098 12.7 91.0 16,557 40,004 5.4 49.0 -40% -48%
polling-2-4-2 6,667 11,290 0.9 39.9 4,745 9,368 0.9 26.6 -29% -33%
polling-2-5-2 27,659 47,130 4.0 1,571.7 19,721 39,192 4.0 1,054.6 -29% -33%
polling-3-2-2 2,600 4,909 0.4 7.1 1,914 4,223 0.5 4.8 -26% -29%
polling-4-6-1 15,439 29,506 3.1 330.4 4,802 18,869 3.0 109.4 -69% -66%
polling-5-4-1 21,880 43,760 5.1 815.9 6,250 28,130 5.1 318.3 -71% -61%
processor-2 2,508 4,608 0.7 2.8 1,514 3,043 0.8 1.2 -44% -43%
processor-3 10,852 20,872 3.1 66.3 6,509 13,738 3.3 23.0 -45% -62%
processor-4 31,832 62,356 10.8 924.5 19,025 41,018 10.3 365.6 -45% -60%

throwing a die to get an MA model based on the original case study, making the
example more relevant and interesting in the current situation. We computed the
minimal probability (with error bound 0.01) of electing the first node as leader
within 5 time units. The results are presented in Table 1, where we denote by
leader-i-j the variant with i nodes and j-sided dice. The computed probability
varies from 0.09 for leader-4-2 to 0.32 for leader-3-11. Confluence saved
almost 90% of the total time to generate and analyse the models. The substantial
reductions are due to extensive interleaving with little communication.

Queueing System. The second case study is the queueing system from [23].
It consists of multiple stations with incoming jobs, and one server that polls
the stations for work. With some probability, communication fails. There can
be different sizes of buffers in the stations, and multiple types of jobs with dif-
ferent service rates. In Table 1, we let polling-i-j-k denote the variant with
i stations, all having buffers of size j and k types of jobs. Note that, although
significant reductions are obtained, the reduction in states precisely corresponds
to the reduction in transitions; this implies that only trivially confluent transi-
tions could be reduced (i.e., invisible transitions without any other transitions
from the same source state). We computed the minimal and maximal expected
time to the situation that all buffers are full. This turns out to be at least 1.1—
for polling-3-2-2—and at most 124—for polling-2-5-2. Reductions were less
substantial, due to the presence of many probabilistic and Markovian transitions.

Processor Architecture. The third case study is a GSPN model of a 2×2 con-
current processor architecture, parameterised in the level k of multitasking, taken
from Figure 11.7 in [1]. We constructed a corresponding MAPA model, modelling
each place as a global variable and each transition as a summand. As in [1], we
computed the throughput of one of the processors, given by the long-run average
of having a token in a certain place of the GSPN. Whereas [1] resolved all non-
determinism and found for instance a throughput of 0.903 for k = 2, we can re-
tain the nondeterminism and obtain the more informative interval [0.811, 0.995].
(When resolving nondeterminism as before, we reproduce the result 0.903.)
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Our results clearly show the significant effect of confluence reduction on the
state space sizes and the duration of the heavy numerical computations by
IMCA. The generation times by SCOOP are not reduced as much, due to the
additional overhead of computing representative states. To keep memory usage
in the order of the reduced state space, the representative map is deliberately
not stored and therefore potentially recomputed for some states.

7 Conclusions

We introduced confluence reduction for MAs: the first reduction technique for
this model that abstracts from invisible transitions. We showed that it preserves
divergence-sensitive branching bisimulation, and hence yields quantitatively be-
havioural equivalent models. In addition to working on MAs, our novel notion
of confluence reduction has two additional advantages over previous notions.
First, it preserves divergences, and hence does not alter minimal reachability
probabilities. Second, it is closed under unions, enabling us to separately de-
tect confluence of different sets of transitions and combine the results. We also
showed that the representation map approach can still be used safely to reduce
systems on-the-fly, and discussed how to detect confluence syntactically on the
process-algebraic language MAPA. Case studies with our tool SCOOP on several
instances of three different models show state space reductions up to 79%. We
linked SCOOP to the IMCA model checker to illustrate the significant impact of
these reductions on the expected time, time-bounded reachability and long-run
average computations. Due to confluence reduction, for some models the entire
process from MAPA specification to results is now more than ten times as fast.

As future work we envision to search for even more powerful ways of using
commutativity for state space reduction, for instance by allowing confluent tran-
sitions to be probabilistic. Preferably, this would enable even more aggressive
reductions that, instead of preserving the conservative notion of bisimulation we
used, preserve the more powerful weak bisimulation from [14].

Acknowledgements. We thank Stefan Blom and Joost-Pieter Katoen for their
useful suggestions, and Dennis Guck for his help with the case studies.
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Abstract. Linear-Rate Multi-Mode Systems is a model that can be seen both as a
subclass of switched linear systems with imposed global safety constraints and as
hybrid automata with no guards on transitions. We study the existence and design
of a controller for this model that keeps at all times the state of the system within a
given safe set. A sufficient and necessary condition is given for such a controller
to exist as well as an algorithm that finds one in polynomial time. We further
generalise the model by adding costs on modes and present an algorithm that
constructs a safe controller which minimises the peak cost, the average-cost or
any cost expressed as a weighted sum of these two. Finally, we present numerical
simulation results based on our implementation of these algorithms.

1 Introduction

Optimisation of electricity usage is an increasingly important issue because of the grow-
ing energy prices and environmental concerns. In order to make the whole system more
efficient, not only the average electricity consumption should be minimised but also its
peak demand. The energy produced during the peak times, typically occurring in the af-
ternoon due to the heaters or air-conditioning units being switched on at the same time
once people come back from work, is not only more expensive because the number of
consumers outweighs the suppliers, but also the peaking power plants, which provide
the supply at that time, are a lot less efficient. Therefore, the typical formula that is used
for charging companies for electricity is a weighted average of its peak and average
electricity demand [15,1]. Optimisation of the usage pattern of heating, ventilation and
air-conditioning units (HVAC) not only can save electricity but also contribute to their
longer lifespan, because they do not have to be used just as much.

In [10] Nghiem et al. considered a model of a building consisting of a number of
decoupled zones whose temperatures have to remain within a specified comfort tem-
perature interval. Each zone has a heater with a number of possible output settings, but
only one of these setting can be in use. That is, the heater can either be on in that one
setting or it has to be off otherwise. A further restriction is that only some fixed number
of heaters can be on at any time. The temperature evolution in each zone is governed by
a linear differential equation whose parameters depend on the physical characteristics
of the zone, the outside temperature, the heater’s picked setting and whether it is on or
off. The aim is to find a safe controller, i.e. a sequence of time points at which to switch
the heaters on or off, in order for the temperature in each zone to remain in its comfort
interval, which is given as the input. In the end, it was shown that a sufficient condition
for such a controller to exist requires just one simple inequality to hold. This technique
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can be used to minimise the maximum number of heaters used simultaneously at any
point in time, but if the heaters have different energy consumption, then this may not
minimise the peak energy cost.

We strictly generalise the model presented in [10] and define linear-rate Multi-Mode
Systems (MMS). The evolution of our system is the same, i.e. it consists of a number
of zones, which we call variables, whose evolution do not directly influence each other.
However, we do not assume that all HVAC units in the zones are heaters, so the system
can cope with a situation when cooling is required during the day and heating during
the night. Moreover, rather than having all possible combinations of settings allowed,
our systems have a list of allowable joint settings for all the zones instead; we will
call such a joint setting a mode. This allows to model specific behaviours, for instance,
heat pumps, i.e. when the heat moves from one zone into another, and a central heating
system, which can only heat all the zones at the same time. Finally, we will be looking
for the actual minimum peak cost without restricting ourselves to just one setting per
heater nor the number of heaters being switched on at the same time, while keeping
the running time polynomial in the number of modes. We also show how to find the
minimum average-cost schedule and finally how to minimise the energy bill expressed
as a weighted sum of the peak and the average energy consumption.

Related Work. MMSs can be seen both as switched linear systems (see, e.g. [6,13])
with imposed global safety constraints or as hybrid automata ([4,7]) with no guards on
transitions. The analysis of switched linear systems typically focuses on several forms
of stabilisation, e.g. whether the system can be steered into a given stable region, which
the system will never leave again. However, all these analyses for switched systems are
done in the limit and do not impose any constraints on the state of the system before it
reaches the safe region. Such an analysis may suffice for systems where the constraints
are soft, e.g. nothing serious will happen if the temperature in a room will briefly be too
high or too low. However, it may not be enough when studying safety-critical systems,
e.g. when cooling nuclear reactors. Each zone in an MMS is given a safe value interval
in which the zone has to be at all times. This causes an interesting behaviour, because
even if the system stabilises while staying forever in any single mode, these stable points
may be all unsafe and therefore the controller has to constantly switch between different
modes to keep the MMS within the safety set. For instance, a heater in a room has to
constantly switch itself on and off as otherwise the temperature will become either
too high or too low. On the other hand, even the basic questions are undecidable for
hybrid automata (see, e.g. [8]) and therefore MMSs constitute its natural subclass with
decidable and even tractable safety analysis. Although, some existing techniques, such
as barrier certificates and differential invariants, used in safety verification of hybrid
systems (see, e.g. [3] for an overview) can check whether no trajectory of our system
enters the unsafe region, we are not aware of any existing technique applicable to our
model which could check in polynomial-time whether a safe trajectory exists.

As mentioned earlier, we strictly generalise the model in [10], which was then fur-
ther generalised by the same authors in several other papers with their most general
model appearing in [11]. In that model disturbances and interactions between zones
were added to the dynamics of the system. This makes it incomparable to our model, as
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we do not consider these aspects. Instead we allow each heater to have multiple settings
in use and allow for restricting the set of valid joint settings by utilising modes.

In [2] we recently studied a different incomparable class of constant-rate Multi-Mode
Systems where in each mode the state of a zone changes with a constant-rate as opposed
to being governed by a linear differential equation as in linear-rate MMS. Specifically,
for every mode m ∈ M and variable xi the value of xi after spending time t in mode
m increases by cm

i · t where cm
i ∈ R is the constant rate of change of xi in mode m.

Unlike linear-rate MMSs, that model is a subclass of linear hybrid automata ([4]),
which has constant-rate dynamics and linear functions as guards on transitions. We
showed a polynomial-time algorithm for the safe controllability and safe reachability
questions, as well as for finding optimal safe controllers in the generalised model where
each mode has an associated cost per time unit.

There are many other approaches to reduce energy consumption and peak usage in
buildings. One particularly popular one is model predictive control (MPC) [5]. In [12]
stochastic MPC was used to minimize building’s energy consumption, while in [9] the
peak electricity demand reduction was considered. The drawback of using MPC in our
setting is its high computational complexity and the fact it cannot guarantee optimality.

Results. The key contribution of the paper is a polynomial-time algorithm, which we
present in Section 3, that can check for any MMS and starting point in the interior of the
safety set whether a safe controller exists and is able to construct it. Unlike in [10], we
not only show a sufficient, but also necessary, condition for such a safe controller to ex-
ist. The condition is a system of linear inequalities that can be solved using polynomial-
time algorithms for linear programming (see, e.g. [14]) and because that system does
not depend on the starting state, this shows that either all points in the interior of the
safe set have a safe controller or none of them has one. Furthermore, we show that if
a safe controller exists then also a safe periodic controller exists with polynomial-size
minimum dwell time, i.e. the smallest amount of time between two mode switches. Such
a minimum dwell time may be still too small for practical purposes, because it may re-
quire too frequent switches between modes. However, we prove that the problem of
checking whether there is a safe controller with the minimum dwell time higher than
1 (or any other fixed constant) is PSPACE-hard. This means that any approximation of
the largest minimum dwell time among all safe controllers is unlikely to be tractable. It
should be noted that the definition of MMS allows for an arbitrary switching between
modes. However, it is possible to enrich the dynamics of the MMS model by adding a
restriction on the order in which the modes can be used. As formally stated in Corol-
lary 1, such an extended model can still be analysed in polynomial-time.

In Section 4 we generalise the MMS model by associating cost per time unit with
each mode and search for a safe schedule that minimises the peak cost or the long-
time average cost. Similarly as before, if there is at least one safe controller, then the
optimal cost do not depend on the starting point and there is always a periodic optimal
controller. To compute the minimum peak cost we use a binary search algorithm. On
the other hand, finding a controller with the minimum average-cost is more involved.
In order to prove that the controller that we construct has the minimum average-cost it
is crucial that the condition for the existence of a safe controller, which we describe in
Section 3, is both sufficient and necessary. Finally, we show how to find a controller
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with the minimum cost calculated as a weighted sum of the peak cost and the average
cost. The challenging part is that peak cost generally increases when the set of modes
is expanded while the average-cost decreases. Therefore, the weighted cost may not be
monotone in the size of the set of modes and so a binary search may not work and
finding the minimum cost may require checking many possible subsets of the set of
modes. Nevertheless, we show that all these safe optimal controllers can be constructed
in time polynomial in the number of modes.

On the other hand, if one considers the set of modes to be given implicitly as in [10],
where each zone has a certain number of settings and all their possible combinations
are allowed, then the number of modes becomes exponential in the size of the input. In
Algorithm 2, whose performance is tested in Section 5, we try to cope with this problem
by performing a bottom-up binary search in order to avoid analysing large sets of modes
and use other techniques to keep the running time manageable in practice.

Due to the space constraints most details of the proofs are omitted and can be found
in the full version of this paper [16].

2 Linear Multi-mode Systems

Let us set the notation first. We write N to denote the set of nonnegative integer numbers.
Also, we write R, R≥0, and R>0 for the sets of all, non-negative and strictly positive
real numbers, respectively. States of our system will be points in the Euclidean space
Rn equipped with the standard Euclidean norm ‖ · ‖. By x,y we denote points in this
state space, by (f ,(v vectors, while x(i) and (f (i) will denote the i-th coordinate of point
x and vector (f , respectively. For � ∈ {≤,<,≥,>}, we write x�y if x(i)�y(i) for all
i. For a n-dimensional vector(v by diag((v) we denote a n×n dimensional matrix whose
diagonal is(v and the rest of the entries are 0. We can now formally define our model.

Definition 1. A linear-rate multi-mode system (MMS) is a tuple H = (M,N,A,B)
where M is a finite nonempty set of modes, N is the number of continuous-time vari-
ables in the system, and A : M → RN

>0,B : M → RN give for each mode the coefficients
of the linear differential equation that governs the dynamics of the system.

Note that the number of modes of H is |M|. In all further computational complexity
considerations, we assume that all real numbers are rational and represented in the
standard way by writing down the numerator and denominator in binary. Throughout
the paper we will write am

i and bm
i as a shorthand for A(m)(i) and B(m)(i), respectively.

A controller of an MMS specifies a timed sequence of mode switches. Formally, a
controller is defined as a finite or infinite sequences of timed actions, where a timed
action (m, t) ∈ M ×R>0 is a tuple consisting of a mode and a time delay. We say
that an infinite controller 〈(m1, t1),(m2, t2), . . .〉 is Zeno if ∑∞

k=1 tk < ∞ and is periodic if
there exists l ≥ 1 such that for all k ≥ 1 we have (mk, tk) = (m(k mod l)+1, t(k mod l)+1).
Zeno controllers require infinitely many mode-switches within a finite amount of time,
and hence, are physically unrealizable. However, one can argue that a controller that
switches after tk = 1/k amount of time at the k-th timed action is also infeasible, be-
cause it requires the switches to occur infinitely frequently in the limit. Therefore, we
will call a non-Zeno controller feasible if its minimum dwell time, i.e. the smallest
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amount of time between two mode switches, can be bounded from below by a positive
constant. We will relax this assumption and allow for the modes that are not used at all
by a feasible controller to occur in its sequence of time actions with time delays equal
to 0. For a controller σ = 〈(m1, t1),(m2, t2), . . .〉, we write Tk(σ)

def
= ∑k

i=1 ti for the total
time elapsed up to step k of the controller σ , T m

k (σ)
def
= ∑i≤k:mi=m ti for the total time

spent in mode m up to step k, and finally tmin(σ) = inf{k : tk>0} tk defines the minimum
dwell time of σ . For any non-Zeno controller σ we have that limk→∞ Tk(σ) = ∞ and for
any feasible controller σ we also have tmin(σ) > 0. Finally, for any t ≥ 0 let σ(t) denote
the mode the controller σ directs the system to be in at the time instance t. Formally,
we have σ(t) = mk where k = min{i : t ≤ Ti(σ)}.

The state of MMS H initialized at a starting point x0 under control σ is a N-tuple
of continuous-time variables x(t) = (x1(t), . . . ,xN(t)) such that x(0) = x0 and

.
x(t) =

B(σ(t))− diag(A(σ(t)))x(t) holds at any time t ∈ R≥0. It can be seen that if H is
in mode m during the entire time interval [t0, t0 + t] then the following holds xi(t0 +
t) = bm

i /am
i + (xi(t0)− bm

i /am
i )e−am

i t . Notice that this expression is monotonic in t and
converges to bm

i /am
i , because based on the definition of MMS we have am

i > 0 for all m
and i.

Given a set S ⊆ RN of safe states, we say that a controller σ is S-safe for MMS
H initialised at x0 if for all t ≥ 0 we have x(t) ∈ S. We sometimes say safe instead
of S-safe if S is clear from the context. In this paper we restrict ourselves to safe sets
being hyperrectangles, which can be specified by giving lower and upper bound value
for each variable in the system. This assumption implies that controller σ is S-safe iff
x(t) ∈ S for all t ∈ {Tk(σ) : k ≥ 0}, because each xi(t) is monotonic when H remains
in the same mode and so if system is S-safe at two time points, the system is S-safe in
between these two time points as well. This fact is crucial to the further analysis and
allows us to only focus on S-safety at the mode switching time points of the controller.
Formally, to specify any hyperrectangle S, it suffices to give two points l,u∈RN , which
define this region as follows S = {x : l ≤ x≤ u}. The fundamental decision problem for
MMS that we solve in this paper is the following.

Definition 2 (Safe Controllability). Decide whether there exists a feasible S-safe con-
troller for a given MMS H , a hyperrectangular safe set S given by two points l and u
and an initial point x0 ∈ S.

The fact that am
i > 0 for all m and i make the system stable in any mode, i.e. if the system

stays in any fixed mode forever, it will converge to an equilibrium point. However, none
of these equilibrium points may be S-safe and as a result the controller may need to
switch between modes in order to be S-safe. We present an algorithm to solve the safe
controllability problem in Section 3 and later, in Section 4, we generalise the model
to MMS with costs associated with modes and the aim being finding a feasible S-safe
controller with the minimum average-cost, peak cost, or some weighted sum of these.
As the following example shows, safe controllability can depend on the starting point if
it lies on the boundary of the safe set. We will not consider this special case further and
assume instead that the starting point belongs to the interior of the safe set.

Example 1. Consider an apartment with two rooms and one heater. The heater can only
heat one room at a time. When it is off, the room temperature converges to the outside
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temperature of 12◦C, while if it is constantly on, the temperature of the room converges
to 30◦C. We assume the comfort temperature to be between 18◦C and 22◦C.

Modes m1 m2 m3

bm
1 (Room 1) 12 30 12

bm
2 (Room 2) 12 12 30

The table to the right shows the coefficients bm
i for all

modes m and rooms i, while all the am
i -s are assumed to

be equal to 1. Intuitively, when heating room 1 (mode m2)
and room 2 (mode m3) half of the time each, the tempera-
ture in each room should oscillate around (30◦C +12◦C)/2
= 21◦C and never leave the comfort zone assuming the switching occurs frequently
enough (every 0.005 as shown later). We will prove this intuition formally in Section
3. Therefore, as long as the temperature in one of the rooms is above 18◦C at the very
beginning, a safe controller exists. However, if the temperatures in both rooms start at
18◦C (a state which is safe), a safe controller does not exists, because the temperature
drops in at least one of the rooms in each mode and so the state becomes unsafe under
any control.

3 Safe Schedulability

Let us fix in this section a linear-rate MMS H = (M,N,A,B) and a safe set S given by two
points l,u∈RN , such that l < u and S = {x : l ≤ x≤ u}. We call any vector (f ∈RM

≥0 such

that ∑m∈M
(f (m) = 1 a frequency vector. Let us define Fi((f ,y) := ∑m∈M

(f (m)(bm
i − am

i y).
Intuitively Fi((f ,y) describes the trend of the value of the i-th variable when its value is y
and the frequency of each mode is given by (f , because it has the same sign as this vari-
able’s derivative. Notice that for a fixed i and frequency vector (f , function Fi((f ,y) is con-
tinuous and strictly decreasing in y. Moreover, Fi(α(f + β(g,y) = αFi((f ,y) + β Fi((g,y).
For a frequency vector(f , variable xi is called critical if Fi((f , li) = 0 or Fi((f ,ui) = 0 holds.

Definition 3. A frequency vector (f is good if for every variable xi the following condi-
tions hold (I) Fi((f , l) ≥ 0, and (II) Fi((f ,u)≤ 0. A frequency vector (f is implementable
if it is good and for every variable xi we additionally have (III) if Fi((f , l) = 0 then
(f (m) = 0 for every m ∈M such that bm

i /am
i �= li, and (IV) if Fi((f ,u) = 0 then (f (m) = 0

for every m ∈M such that bm
i /am

i �= ui.

Theorem 1. If there exists a feasible S-safe controller then there exists an implementable
frequency vector.

Proof (Sketch). Denote the feasible S-safe controller by σ . Let f (m)
k = T m

k (σ)/Tk(σ)
be the fraction of the time spent by σ in mode m up to its k-th timed action; note

that f (m)
k ∈ [0,1], and ∑m∈M f (m)

k = 1 for all k. Let us look at the sequence of vectors

〈(fk ∈ [0,1]M〉∞k=1 where we set (fk(m) = f (m)
k . Since this sequence is bounded, by the

Bolzano-Weierstrass theorem, there exists an increasing integer sequence j1, j2, . . . such
that limk→∞ (f jk exists and let us denote this limit by (f . The rest of the proof shows by
contradiction that (f is an implementable frequency vector. ��

Theorem 2. If there exists an implementable frequency vector then there exists a peri-
odic S-safe controller for any initial state in the interior of the safety set.
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Proof (Sketch). Let (f be an implementable frequency vector. We claim that the follow-
ing periodic controller σ = 〈(mk, tk)〉∞k=1 with period of length |M| is S-safe for suffi-
ciently small total time duration of each period, denoted by τ: mk = (k mod |M|) + 1
and tk = (f (mk) · τ . As we already know it suffices to check S-safety of the system at
time points Tk for all k. By induction we can show that

xi(Tk) =
bmk

i

amk
i

+
k−1

∑
n=1

(
bmn

i

amn
i
− bmn+1

i

amn+1
i

)
e−∑k

j=k−n+1 a
m j
i t j +

(
x0(i)− bm1

i

am1
i

)
e−∑k

j=1 a
m j
i t j

Now, let xl
def
= x(Tl|M|) for all l ∈N. Notice that since σ is periodic with period |M| from

this equation we get that xl+1(i) = αi(τ)xl(i) + βi(τ) for all l, αi(τ)
def
= e−τ·∑|M|j=1 a

m j
i

(f (mj)

and some βi : R>0 → R. Now, because 0 < αi(τ) < 1, the sequence xl(i) converges
monotonically to βi(τ)/(1−αi(τ)) as l → ∞ for any initial value x0(i). Looking at the
exact form of the functions αi and βi, we then find a τ such that this limit is in the safe
set as well as all the intermediate points along the way. ��

Coming back to Example 1, we can check that the suggested there frequency vector (f =
(0, 1

2 ,
1
2) is implementable, because F1((f ,18◦C) = F2((f ,18◦C) = 0 ·(12◦C−18◦C)+ 1

2 ·
(12◦C−18◦C)+ 1

2 ·(30◦C−18◦C) = 3◦C> 0 and F1((f ,22◦C) = F2((f ,22◦C) = -1◦C<
0. Also, assuming the initial temperature of each room is 20◦C, the total time duration
of each period τ can be computed to be 0.01, which gives rise to the following S-
safe periodic feasible controller 〈(m1,0),(m2,0.005),(m3,0.005),(m1,0),(m2,0.005),
(m3,0.005), . . .〉.

Theorem 3. Algorithm 1 returns in polynomial time a S-safe feasible controller from
x0 if there exists one.

Proof. We first need the following lemma.

Lemma 1. Either there is a variable which is critical for all good frequency vectors or
there is a good frequency vector in which no variable is critical.

Now, let σ be the controller returned by Algorithm 1. Notice that the frequency vec-
tor (f∗, the controller σ is based on, is implementable. This is because (f∗ satisfies the
constraints at line 12 which imply the conditions (I) and (II) of (f being implementable
and from Lemma 1 it follows that all modes that could violate the conditions (III) and
(IV) were removed in the loop between lines 5–11. Moreover, constant τ used in the
construction of σ is exactly the same as the one used in Theorem 2, which guarantees
σ to be S-safe.

On the other hand, from Theorem 1, if there exists a feasible S-safe controller then
there also exists an implementable frequency vector (f . Such a vector will satisfy the
constraints of being good at line 2 of the algorithm. In the loop between the lines 5–
11, all variables that are critical in (f are first checked whether they satisfy conditions
(III) and (IV), and they will satisfy them because (f is implementable, and after that
these critical variables are removed. Finally, (f consisting of just the remaining variables
will satisfy the constraints at line 7 of being implementable with no critical variables.
Therefore, Algorithm 1 will always return a controller if there exists a S-safe one.
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Algorithm 1. Finds a S-safe feasible controller from a given x0 ∈ S.

Input: MMS H = (M,N,A,B), two points l and u that define a hyperrectangle
S = {x : l ≤ x≤ u} and an initial point x0 ∈ S such that l < x0 < u.

Output: NO if no S-safe feasible controller exists from x0, and a periodic such controller,
with the corresponding implementable frequency vector (f∗, otherwise.

1 I := {1, . . . ,N};

2 Check whether the following linear program is satisfiable for some frequency vector (f :

Fi((f , li)≥ 0 for all i ∈ I

Fi((f ,ui)≤ 0 for all i ∈ I.

if no satisfying assignment exists then
3 return NO

4 Let (f ∗ be any frequency vector of polynomial size that satisfies conditions in step 2.
5 repeat
6 foreach j ∈ I do
7 Check whether the following linear program is satisfiable for some frequency

vector (f :

Fi((f , li)≥ 0 for all i ∈ I \{ j}
Fi((f ,ui)≤ 0 for all i ∈ I \{ j}
Fj((f , l j) > 0 and Fj((f ,u j) < 0.

if no satisfying assignment exists then
8 If Fj((f ∗, li) = 0, discard all modes m such that bm

i /am
i �= li and set (f∗(m) = 0.

9 If Fj((f ∗,ui)=0, discard all modes m such that bm
i /am

i �=ui and set (f∗(m) = 0.
10 Remove j from I.

11 until no variable was removed from I in this iteration;

12 Check whether the following linear program is satisfiable for some frequency vector (f :

Fi((f , li) > 0 for all i ∈ I

Fi((f ,ui) < 0 for all i ∈ I.

if no satisfying assignment exists or I = /0 then
13 return NO

14 Let (f∗ be any frequency vector of polynomial size that satisfies conditions in step 12.
15 Let

τ := min
i∈I

(
min{x0(i)− li,ui−x0(i)}

maxm |bm
i −am

i x0(i)| ,
min(Fi((f∗, li),−Fi((f∗,ui))

(|li|+ |ui|+ 2 ·maxm |bm
i /am

i |)(∑m am
i
(f∗(m))2

)
.

16 return the following periodic controller with period |M|: mk = (k mod |M|)+ 1 and

tk = (f∗(mk) · τ .
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It is easy to see that Algorithm 1 runs in polynomial time, because at least one crit-
ical variable is removed in each iteration of the loop between lines 5–11, one iteration
checks the satisfiability of the linear conditions for at most N remaining variables, and
each such a check requires calling a linear programming solver which runs in polyno-
mial time. Finally, the requirements of steps 4 and 14 are satisfiable, because if a linear
program has a solution then it has a solution of polynomial size (see, e.g. [14]). This
shows that the size of the returned controller is always polynomial. ��

Notice that the controller returned by Algorithm 1 has a polynomial-size minimum
dwell time. We do not know whether finding a safe controller with the largest possible
dwell time is decidable, nor is checking whether such a minimum dwell time can be
greater than ≥ 1. We now show that the latter is PSPACE-hard, so it is unlikely to
be tractable. Finally, this also implies PSPACE-hardness of checking whether a safe
controller exists in the case the system is controlled using a digital clock, i.e. when all
timed delays have to be a multiple of some given sampling rate Δ > 0.

Theorem 4. For a given MMS H , hyperrectangular safe set S described by two points
l,u, starting point x0 ∈ S, checking whether there exists a S-safe controller with mini-
mum dwell time ≥ 1 is PSPACE-hard.

The proof reduces from the acceptance problem for linear bounded automata (LBAs).
Now, notice that the periodic controller returned by Algorithm 1 just cycles forever over
the set of modes in some fixed order which can be arbitrary. This allows us to extend
the model by specifying an initial mode m0 and a directed graph G ⊆ M×M, which
specifies for each mode which modes can follow it. Formally, we require any controller
〈(m1, t1),(m2, t2), . . .〉 to satisfy (mi,mi+1) ∈ G for all i≥ 1 and m1 = m0.

Corollary 1. Deciding whether there exists a feasible S-safe controller for a given
MMS H with a mode order specification graph G, initial mode m0, a hyperrectan-
gular safe set S given by two points l and u and an initial point l < x0 < u can be done
in polynomial time.

4 Optimal Control

In this section we extend our results on S-safe controllability of MMS to a model with
costs per time unit on modes. We will call this model priced linear-rate multi-mode
systems. The aim is to find an S-safe controller with the minimum cost where the cost is
either defined as the peak cost, the (long-time) average cost or a weighted sum of these.

Definition 4. A priced linear-rate multi-mode system (MMS) is a tuple H = (M,N,A,
B,π) where (M,N,A,B) is a MMS and π : M →R≥0 is a cost function such that π(m)
characterises the cost per-time unit of staying in mode m.

We define the (long-time) average cost of an infinite controller σ = 〈(m1, t1),(m2, t2),
. . .〉 as the long-time average of the cost per time-unit over time, i.e.

AvgCost(σ)
def
= limsup

k→∞

∑k
i=1 π(mi) · ti

∑k
i=1 ti

.
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For the results to hold it is crucial that limsup is used in this definition instead of liminf.
In the case of minimising the average cost, it is more natural to minimise its limsup
anyway, which intuitively corresponds to its reoccurring maximum value. On the other
hand, the peak cost is simply defined as PeakCost(σ)

def
= sup{k : tk>0}π(mk).

The following example shows that the approach of [10] which minimises the number
of heaters being switched on at any time does not in general minimise the peak cost.

Example 2. Consider three zones, each with an identical heater inside. The heater can
either be off, or in setting 1 with energy cost 1, or in a higher output setting 2 with
energy cost 3. This generates a priced MMS with 3 variables x1,x2,x3 and 33 = 27
modes M = {m1,m2,m3, . . .}, but we will focus only on 10 modes important to us. The
table below shows for each mode m and variable xi the value of the constants bm

i as well
as the cost of that mode. We assume that all am

i -s are equal to 1. The safe value interval
for each variable is [1,2], i.e. li = 1, ui = 2 for all i.

Modes m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 . . .
bm

1 0 2 0 0 2 2 0 5 0 0 . . .
bm

2 0 0 2 0 2 0 2 0 5 0 . . .
bm

3 0 0 0 2 0 2 2 0 0 5 . . .
π (cost) 0 1 1 1 2 2 2 3 3 3 . . .

It is easy to see that just by using modes m1, m2, m3, m4, in which at most one heater
is in setting 1 and the rest are switched off, the system will not remain in the safe set,
because for any frequency vector (f we have ∑i Fi((f , li) = −1− 2(f (m1) < 0 and so
Fi((f , li) < 0 for some i while all of them should be > 0. This means that there is no
safe controller with peak cost 1. On the other hand, using only modes m8, m9, m10, in
which exactly one heater is in setting 2 and the others are off, has a safe controller. It
suffices to use frequency vector (f with 1

3 for each of these modes, and get Fi((f , li) = 2
3

and Fi((f ,ui) =− 1
3 for all i. This shows that the maximum number of heaters that has to

be on while the system is safe is 1. However, this controller has peak cost 3, while there
is a controller which has peak cost 2. It suffices to use the modes m5, m6, m7 instead,
in which exactly two heaters are on in setting 1, and using the same frequency vector (f
for these new modes get Fi((f , li) = 1

3 and Fi((f ,ui) =− 2
3 for all i.

We answer the following question for the priced MMSs.

Definition 5 (Optimal Controllability). Given a priced MMS H , a hyperrectangular
safe set S defined by two points l and u, an initial point x0 ∈ S such that l < x0 < u, and
constants ε,μavg,μpeak ≥ 0, find an S-safe controller σ for which μavg AvgCost(σ) +
μpeak PeakCost(σ) is at most ε higher than its minimum.

Another example priced MMS in [16] shows that such a weighted cost does not al-
ways increase with the increase in the peak cost. The algorithm that we devise for this
problem is designed to cope with systems where the set of modes is large and given im-
plicitly like in [10], where the input is a list of heaters with different output levels and
energy costs. Each heater is placed in a different zone and any possible on/off combina-
tion of the heaters gives us a different mode in our setting. This leads to exponentially
many modes in the size of the input. The cost of a mode is the sum of the energy cost of
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all heaters switched on in that particular mode. We try to deal with this setting by using
binary search and a specific narrowing down technique to consider only the peak costs
for which the weighted cost can be (ε-)optimal. Unfortunately our algorithm will not
run in time polynomial in the number of heaters, but the techniques used can reduce the
running time in practice. An algorithm that is only required to run in time polynomial
in the number of modes is much simpler and can be found in [16]. This is because the
number of different possible peak costs is at most equal to the number of modes, and for
each of such peak cost p checking the weighted cost of the subset of all the modes with
their cost at most equal to p can be done in time polynomial in the number of modes.
Let us now fix a MMS with costs H = (M,N,A,B,π), the safe set S and a starting
point x0 in the interior of S.

Algorithm 2. Finds an (ε-)optimal S-safe feasible controller from a given x0 ∈ S.

Input: A priced MMS H , two points l and u that define a hyperrectangle
S = {x : l ≤ x≤ u} and an initial point x0 ∈ S such that l < x0 < u, error bound
ε > 0, and constants μavg and μpeak which define the weighted cost of a controller.

Output: NO if no S-safe feasible controller exists from x0, and an periodic such controller
σ for which μpeak PeakCost(σ)+ μavg AvgCost(σ) is (ε-)optimal, otherwise.

1 min-size := 1;
2 repeat
3 min-size := 2 ·min-size;
4 Pick minimal p such that M≤p, the set of all modes with cost at most p, has size at

least min-size.
5 Call Algorithm 1 for the set of modes M≤p.
6 until min-size < |M| and the call returned NO;
7 if the last call to Algorithm 1 returned NO then
8 return NO.

9 Perform a binary search to find the minimal p such that M≤p is feasible using the just
found upper bound on the minimal feasible set of modes.

10 Modify Algorithm 1 by adding the objective function Minimise ∑m∈M
(fmπ(m) to the

linear program at line 12. Let OptAvgCost(M′) be the value of this objective when
Algorithm 1 is called for the set of modes M′.

11 p′ := p′+ μavg

μpeak
OptAvgCost(M≤p);

12 repeat
13 p′ := p′ + μavg

μpeak

(
OptAvgCost(M≤p)−OptAvgCost(M≤p′)

)
;

14 until p′ decreases;
15 Pick a peak value p∗ ∈ [p, p′] for which μpeak p∗+ μavg OptAvgCost(M≤p∗ ) is the smallest.
16 return a slightly perturbed version of the periodic controller returned by the modified

version of Algorithm 1 called for the set of modes M≤p∗ in order to make it safe without
increasing the objective by more than ε .

Theorem 5. Algorithm 2 finds a S-safe feasible periodic controller with the weighted
cost defined by the peak and average cost coefficients μpeak and μavg within ε of its
minimum.
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Proof. Let M≤p denote the set of modes with cost at most p. First, to find the minimum
peak cost among all S-safe controllers we can first order all the modes according to their
costs and then the algorithm makes a binary search on the possible peak cost p That is,
it guesses the initial p and checks whether M≤p has a S-safe controller; if it does not
then it doubles the value of p and if it does then halves the value of p. In may be best to
start with a small value of p first, because the bigger p is, the bigger is the set of modes
and the slower is checking its feasibility.

Second, to find the minimum average cost among all S-safe controllers, notice that
the average cost of the periodic controller returned by Algorithm 1 based on the fre-
quency vector (f∗ is ∑m∈M

(f∗(m)π(m). Therefore, if we find an implementable frequency
vector which minimises that value, then we will also find a safe controller with the
minimum average-cost among all periodic safe controllers. This can be easily done by
adding the objective Minimise ∑m

(f (m)π(m) to the linear program at line 12 of Algo-
rithm 1. However, using similar techniques as in Theorem 1 we can show that no other
controller can have a lower average-cost. Just like in the proof of Theorem 1, we denote

the frequency of being in mode m up to the k-th timed action by f (m)
k and pick such num-

bers 〈 jk〉k∈N so that f (m)
jk

converges for every m and denote this limit by (f (m). It can be

shown that (f is an implementable frequency vector. Now, the key observation is the

fact that AvgCost(σ) = limsupk→∞ ∑m∈M f (m)
k π(m) ≥ limsupk→∞ ∑m∈M f (m)

jk
π(m) =

∑m
(f (m)π(m), based on the fact that limsup of a subsequence is at most equal to the

limsup of the whole sequence. Therefore, the minimum average-cost of any controller
σ cannot be lower than the minimum value of ∑m

(f (m)π(m) over all an implementable
frequency vectors (f . Finally, it may happen that this minimum can only obtained on
the boundary of the region defined using strict inequalities at line 12 of Algorithm 1. In
such a case, one can perturb the solution so it satisfies all the strict inequalities and its
objective is within ε of the optimum (see, e.g. [14]).

For any set of modes M′ ⊆ M, let OptAvgCost(M′) denote the minimum average
cost when only modes in M′ can be used. Now, if μpeak = 0 then it suffices to compute
the optimal average cost for the whole set of modes to find the minimum weighted cost.
Otherwise, to find a safe controller with the minimum value of μpeak PeakCost(σ) +
μavg AvgCost(σ) the algorithm first finds a feasible set of modes with the minimum
peak cost and let us denote that peak cost by pmin. If μavg = 0 then this suffices.
Otherwise, observe that from the definition the cost of each mode is always nonneg-
ative and so the average cost has to be as well. Even if we assume that the average
cost is equal to 0 for some larger set of modes with peak cost p, the weighted cost
will at least be equal to μpeak p as compared to μpeak pmin + μavg OptAvgCost(M≤pmin),
which gives us an upper bound on the maximum value of p worth considering to be
p′ = pmin +

μavg
μpeak

(OptAvgCost(M≤pmin)). But now we can check the actual value of

OptAvgCost(M≤p′) instead of assuming it is = 0 and calculate again a new bound on
the maximum peak value worth considering and so on. To generate modes on-the-fly in
the order of increasing costs, we can use Dijkstra algorithm with a priority queue. ��
Coming back to Example 1, and assuming the cost of switching on a heater is equal
to 1 in both zones, we can compute (f = ( 1

3 ,
1
3 ,

1
3) to be the frequency vector with the

smallest possible average cost of 2/3. The controller which (f generates is not safe
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though as F1((f ,12◦C) = 0. However, by changing the frequencies in (f by a small
amount, we can obtain a safe controller. For instance, (f ′ = (0.3,0.35,0.35) has av-
erage cost 0.7 which is just 5% higher than the minimum. Assuming the initial tem-
perature of each room is 20◦C, the total time duration τ of each period of the peri-
odic controller σ based on (f ′ can be computed to be 0.003 and the controller itself
σ = 〈(m1,0.009),(m2,0.0105),(m3,0.0105), . . .〉.

5 Numerical Simulations

We have implemented Algorithms 1 and 2 in Java using a basic implementation of
the simplex algorithm as their underlying linear program solver. The tests were run on
Intel Core i5 1.7 GHz with 1GB of RAM. The examples are based on the model of a

Fig. 1. Comparison of the temperature evolution under the optimal and lazy control in a system
consisting of two zones. The safe temperature is between 18◦C and 22◦C. On the top, a periodic
controller with the minimum peak cost which was then optimised for the minimal average-cost.
On the bottom, the behaviour of the lazy controller. The y-axis is temperature in ◦C and the x-axis
measures time in hours. The optimal controller uses 3 modes and its minimum dwell time is 43
seconds. The lazy controller uses 5 different modes and its minimum dwell time is 180 seconds.
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building with decoupled zones as in [10] and were randomly generated with exactly
the same parameters as described there. We implemented also a simple lazy controller
to compare its peak and average energy consumption to our optimal controller. Simply
asking the lazy controller to let the temperature oscillate around the minimum comfort
temperature in each room is risky and causes high peak costs, so our “lazy” controller
uses a different approach. It switches any heater to its minimum setting if its zone has
reached a temperature in the top 5% of its allowable value range. On the other hand,
if the temperature in a zone is in the bottom 5% of its allowable value range, then the
lazy controller finds and switches its heater to the minimum setting that will prevent
the temperature in that zone dropping any further. However, before it does that, it first
checks whether there are any zones with their temperature above 10% of their allowable
value range and switches them off. This tries to minimise the number of heaters being
switched on at the same time and thus also tries to minimise the peak cost.

We have tested our systems for a building with eight zones and each heater having six
possible settings, which potentially gives 68 > 106 possible modes. Zones parameters
and their settings were generated using the same distribution as described in [10] and
the outside temperature was set to 10◦C. The simulation of the optimal and the lazy
controller was performed with a time step of three minutes and the total time duration
of nine hours.

First, in Figure 1 we can compare the difference in the behaviour of the optimal
controller as compared to the lazy one in the case of just two zones. In the case of the
optimal controller, we can see that the temperature in each zone stabilises around the
lower safe bound by using a constant switching between various modes. On the other
hand, for the lazy controller the temperature oscillates between the lower and upper safe
value, which wastes energy. The peak cost was 15 kW for the optimal controller and
18.43 kW for the lazy one, while the average energy usage was 13.4 kW and 15.7 kW,
respectively. This gives 23% savings in the peak energy consumption and 17% savings
in the average energy consumption. Note that any safe controller cannot use more than
16.9 kW of energy on the average, because otherwise it would exceed the upper comfort
temperature for one of the rooms, so the maximum possible savings in the average
energy consumption cannot exceed 26%. For a building with eight rooms, the running
time of our algorithm, which crucially depends on how many modes are necessary to
ensure safe controllability of the system, was between less than a second to up to a
minute with an average equal to 40 seconds. The lazy controller was found to have on
the average 40% higher peak cost than the optimal controller and 15% higher average-
cost. In the extreme cases it had 70% higher peak cost and 22% higher average-cost.
Again, the reason why the lazy controller did better in the average energy consumption
than the peak consumption is that the comfort zone is so narrow and any safe controller
cannot waste too much energy without violating the upper comfort temperature in one
of the rooms.

6 Conclusions

We have proposed and analysed a subclass of hybrid automata with dynamics govern by
linear differential equations and no guards on transitions. This model strictly generalises
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the models studied by Nghiem et al. in [10] in the context of peak minimisation for
energy consumption in buildings. We gave a sufficient and necessary condition for the
existence of a controller that keeps the state of the system within a given safe set at all
times as well as an algorithm that find such a controller in polynomial time. We also
analysed an extension of this model with costs per time unit associated with modes
and gave an algorithm that constructs a safe controller which minimises the peak cost,
the average cost or any cost expressed as a weighted sum of these two. Finally, we
implemented some of these algorithms and showed how they perform in practice.

From the practical point of view, the future work will involve turning the prototype
implementation of the algorithms in this paper into a tool. Our model could be extended
by adding disturbances and interactions between zones to the dynamics of the model
like in [11]. It is not clear whether the formula for the time duration of each period of
the safe controller can be stated explicitly in such a setting as it was done at line 15 of
Algorithm 1. The special cases which can be looked at are the initial state being on the
boundary of the safe set and checking whether Theorem 1 also holds for all non-Zeno
controllers not just for controllers with a positive minimum dwell time. An interesting
problem left open is the decidability of finding a safe controller with the minimum dwell
time above a fixed constant.
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Muñiz, Marco 198
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Tec, Loredana 152
Tendulkar, Pranav 228
Timmer, Mark 243
Tripakis, Stavros 213

van de Pol, Jaco 243

Westphal, Bernd 198
Wojtczak, Dominik 258

Yuen, Shoji 168


	Preface
	Organization
	Table of Contents
	Precise Robustness Analysis of Time Petri Nets with Inhibitor Arcs
	1 Introduction
	2 Preliminaries
	2.1 Firing Times, Parameters and Constraints
	2.2 Parametric Time Petri Nets with Inhibitor Arcs

	3 Covering Constraint
	4 The Inverse Method for Time Petri Nets
	4.1 Principle
	4.2 Results

	5 Precise Robustness Analysis
	5.1 Local Robustness
	5.2 Improving the System Robustness
	5.3 Comparison with Δ-Based Approaches

	6 FinalRemarks
	References

	Spectral Gap in Timed Automata
	1 Introduction
	2 Linear Operators and Finite Automata
	2.1 Two Decompositions
	2.2 Spectral Gap and Its Consequences

	3 Timed Automata, Volumes and Entropy
	3.1 Geometry, Volume and Entropy of Timed Languages
	3.2 Bounded Deterministic Timed Automata
	3.3 A Running Example
	3.4 Preprocessing Timed Automata
	3.5 Thick Languages and Forgetful Automata

	4 Timed Automata: Operators
	4.1 Recurrent Equations on Volume Functions
	4.2 Operator Ψ and Its Link to Volumes and Entropy
	4.3 Path Operators and Their Kernel Form
	4.4 Two Decompositions Again

	5 SpectralGap
	6 Computing the Entropy
	7 Perspectives
	References

	Robust Weighted Timed Automata and Games
	1 Introduction
	2 Preliminaries
	3 Robust Cost-Optimal Reachability
	4 Weighted Timed Automata
	4.1 Algorithm in the Conservative Semantics
	4.2 Undecidability under Excess Perturbation

	5 Conclusion
	References

	On MITL and Alternating Timed Automata
	1 Introduction
	2 Preliminaries
	3 An Intervals Semantics for OCATA
	4 From MITL to Timed Automata
	5 Future Works: Towards Efficient MITL Model Checking
	References

	Predictability of Event Occurrences in Timed Systems
	1 Introduction
	2 Preliminaries
	3 Predictability Problems
	3.1 Δ-Predictability
	3.2 PSPACE-Hardness of Bounded Predictability
	3.3 Necessary and Sufficient Condition for Δ-Predictability

	4 Predictability for Discrete Event Systems
	4.1 Original Definition of Predictability (S. Genc and S. Lafortune)
	4.2 Checking k-Predictability

	5 Predictability for Timed Automata
	5.1 Checking
	5.2 Restriction to Time-Divergent Runs of
	5.3 Implementability of the Δ-Predictor
	5.4 Sampling Predictability

	6 Conclusion and Future Work
	References

	Transience Bounds for Distributed Algorithms
	1 Introduction
	2 Preliminaries
	3 Transience Bound
	3.1 Proof Strategy
	3.2 Critical Bound
	3.3 Transience Bound
	3.4 Comparison with Previous Bounds

	4 Applications
	4.1 Synchronizers
	4.2 Full Reversal Routing and Scheduling

	References

	Back in Time Petri Nets
	1 Introduction
	2 TimePetriNets
	2.1 Definition
	2.2 Standard Clocks-on-Transitions Semantics
	2.3 Assumptions
	2.4 Extended Free Choice Time Petri Nets

	3 Clocks-on-Tokens Semantics
	3.1 Timed Bisimulation between the Two Semantics

	4 Partial Order Representation of Runs: Processes
	4.1 Characterization of Processes

	5 Back in Time Semantics
	5.1 Relaxed Clocks-on-Tokens Semantics
	5.2 More Relaxed Clocks-on-Tokens Semantics

	6 Discussion and Perspectives
	References

	A Mechanized Semantic Framework for Real-Time Systems
	1 Introduction
	1.1 Timed Semantics of Component-Based Languages

	2 Semantics Kernel
	2.1 Transition Systems
	2.2 Executions
	2.3 Semantics of Timed Transition Systems in Terms of Runs

	3 A Time Constrained Model for Real-Time Systems
	3.1 Time Constrained Transition Systems

	4 Semantic Interpretations
	4.1 Semantics of TCTSs in Terms of TTSs
	4.2 Semantics of TCTSs in Terms of Timed Runs
	4.3 Soundness of the Semantic Interpretations

	5 Mechanizing and Reasoning with a Proof Assistant
	6 Conclusions
	References

	Quantitative Analysis of AODV and Its Variants on Dynamic Topologies Using Statistical Model Checking
	1 Introduction
	2 AODV, Its Variants and Their Uppaal Models
	2.1 The Basic Model
	2.2 Variants of AODV
	2.3 Modelling AODV and Its Variants in Uppaal

	3 Modelling Dynamic Topologies
	4 Experiments
	4.1 Single Route Discovery Process
	4.2 Two Independent Route Discovery Processes
	4.3 Influence of Speed of Mobile Nodes

	5 Related Work
	6 Conclusion and Future Work
	References

	More or Less True DCTL for Continuous-Time MDPs
	1 Introduction
	2 Preliminaries
	3 The Logic DCTL
	3.1 Semantics
	3.2 Fixpoint Semantics
	3.3 Path Semantics

	4 Model Checking DCTL
	4.1 Model Checking the Fixpoint Semantics
	4.2 Model Checking the Path Semantics

	5 Other Scheduler Classes
	5.1 Late Schedulers (LB)
	5.2 Total-Time Positional Schedulers (TTB)
	5.3 History-Dependent Schedulers (H)

	6 Conclusion
	References

	Incremental Language Inclusion Checking for Networks of Timed Automata
	1 Introduction
	2 Timed Automata with Inputs and Outputs
	3 Incremental Language Inclusion - A Generic Algorithm
	4 k-Bounded Incremental Language Inclusion
	5 Case Study and Experimental Results
	6 Application to Mutation-Based Test Case Generation
	7 Conclusion
	References

	Nested Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Dense Timed Pushdown Automata

	3 Nested Timed Automata
	4 Decidability of Safety Property
	4.1 Encoding NeTA to DTPDA
	4.2 Correctness of the Encoding

	5 Deadline Analysis for Nested Interrupts
	6 Related Work
	7 Conclusion
	References

	On Fixed Points of Strictly Causal Functions
	1 Introduction
	2 Signals
	3 Causal and Strictly Causal Functions
	4 Contracting and Strictly Contracting Functions
	5 Fixed-Point Theory
	6 Related Work
	7 Conclusion
	References

	Detecting Quasi-equal Clocks in Timed Automata
	1 Introduction
	2 Example
	3 Preliminaries
	4 Zero Time Behavior Abstraction
	5 Size of the Abstract Zone Graph
	6 Algorithm and Experiments
	6.1 Algorithm for Detecting Quasi-equal Clocks
	6.2 Experiments

	7 Conclusion
	References

	On the Verification of Timed Discrete-Event Models
	1 Introduction
	2 Deterministic Timed Discrete-Event Models
	2.1 Syntax
	2.2 Operational Semantics

	3 Boundedness of DDE
	3.1 Bounding the Number of Events in the Channels
	3.2 Bounding Timestamps

	4 Extended Discrete-Event Models
	4.1 Non-deterministic DE
	4.2 DE with Timed Automata

	5 Verification
	6 Expressiveness
	7 Related Work
	8 Perspectives
	References

	Symmetry Breaking for Multi-criteria Mapping and Scheduling on Multicores
	1 Introduction
	2 Split-Join Graphs
	3 Constraint-Based Feasible Cost-Space Exploration
	4 Experiments
	5 Discussion
	References

	Confluence Reduction for Markov Automata
	1 Introduction
	2 Preliminaries
	2.1 Divergence-Sensitive Branching Bisimulation

	3 Confluence for Markov Automata
	4 State Space Reduction Using Confluence
	5 Symbolic Detection of Markovian Confluence
	6 Case Studies
	7 Conclusions
	References

	Optimal Control for Linear-Rate Multi-mode Systems
	1 Introduction
	2 Linear Multi-mode Systems
	3 Safe Schedulability
	4 Optimal Control
	5 Numerical Simulations
	6 Conclusions
	References

	Author Index



