
Farhad Arbab
Marjan Sirjani (Eds.)

 123

LN
CS

 8
16

1

5th International Conference, FSEN 2013
Tehran, Iran, April 2013
Revised Selected Papers

Fundamentals
of Software Engineering

Lecture Notes in Computer Science
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

8161

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/558

Farhad Arbab Marjan Sirjani (Eds.)

Fundamentals
of Software Engineering

5th International Conference, FSEN 2013
Tehran, Iran, April 24-26, 2013
Revised Selected Papers

123

Volume Editors

Farhad Arbab
CWI Amsterdam, The Netherlands
E-mail: Farhad.Arbab@cwi.nl

Marjan Sirjani
Reykjavik University, Iceland
E-mail: marjan@ru.is

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40212-8 e-ISBN 978-3-642-40213-5
DOI 10.1007/978-3-642-40213-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013946950

CR Subject Classification (1998): F.3, D.2, F.1, D.4, F.4, C.2, J.7

LNCS Sublibrary: SL 2 – Programming and Software Engineering

� IFIP International Federation for Information Processing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal
reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in
its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright
Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present volume contains the proceedings of the 5th IPM International
Conference on Fundamentals of Software Engineering (FSEN), held in Tehran,
Iran, April 24–26, 2013. FSEN 2013 was organized by the School of Computer
Science at the Institute for Research in Fundamental Sciences (IPM) in Iran, in
cooperation with the ACM SIGSOFT and IFIP WG 2.2.

The topics of interest in FSEN span all aspects of formal methods, especially
those related to advancing the application of formal methods in software
industry and promoting their integration with practical engineering techniques.
The Program Committee (PC) of FSEN 2013 consisted of 50 top researchers
from 37 different academic institutes in 17 countries. We received 65 submissions
from 33 countries, out of which the PC accepted 17 regular papers for the con-
ference program. Each submission was reviewed by at least three independent
referees, for its quality, originality, contribution, clarity of presentation, and its
relevance to the conference topics.

Three distinguished keynote speakers delivered their lectures at FSEN 2013.
Jose Meseguer gave a talk on ‘‘Symbolic Formal Methods: Combining the Power
of Rewriting, Narrowing, SMT Solving and Model Checking.’’ Holger Hermanns
spoke on ‘‘Stochastic, Hybrid and Real-Time Systems: From Foundations to
Applications with Modest.’’ Wolfgang Reisig presented ‘‘Service-Oriented
Computing: Forthcoming Challenges.’’

We thank the Institute for Research in Fundamental Sciences (IPM), Teh-
ran, Iran, for their financial support and local organization of FSEN 2013. We
thank the members of the PC for their time, effort, and contributions to making
FSEN a quality conference. We thank Hossein Hojjat for his help in preparing
this volume. Last but not least, our thanks go to our authors and conference
participants, without whose submissions and participation FSEN would not
have been possible.

June 2013 Farhad Arbab
Marjan Sirjani

Contents

Unbounded Allocation in Bounded Heaps . 1
Jurriaan Rot, Frank de Boer, and Marcello Bonsangue

On the Complexity of Adding Convergence. 17
Alex Klinkhamer and Ali Ebnenasir

Deadlock Checking by Data Race Detection . 34
Ka I Pun, Martin Steffen, and Volker Stolz

Delta Modeling and Model Checking of Product Families 51
Hamideh Sabouri and Ramtin Khosravi

Lending Petri Nets and Contracts . 66
Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna

On Efficiency Preorders. 83
Manish Gaur and S. Arun-Kumar

Compiling Cooperative Task Management to Continuations 95
Keiko Nakata and Andri Saar

Extending UPPAAL for the Modeling and Verification
of Dynamic Real-Time Systems . 111

Abdeldjalil Boudjadar, Frits Vaandrager, Jean-Paul Bodeveix,
and Mamoun Filali

Efficient Operational Semantics for EB3 for Verification
of Temporal Properties . 133

Dimitris Vekris and Catalin Dima

Interval Soundness of Resource-Constrained Workflow Nets:
Decidability and Repair . 150

Elham Ramezani, Natalia Sidorova, and Christian Stahl

Statistical Model Checking of a Clock Synchronization
Protocol for Sensor Networks. 168

Luca Battisti, Damiano Macedonio, and Massimo Merro

A New Representation of Two-Dimensional Patterns
and Applications to Interactive Programming 183

Iulia Teodora Banu-Demergian, Ciprian Ionut Paduraru,
and Gheorghe Stefanescu

Push-Down Automata with Gap-Order Constraints 199
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Giorgio Delzanno,
and Andreas Podelski

Model Checking MANETs with Arbitrary Mobility 217
Fatemeh Ghassemi, Saeide Ahmadi, Wan Fokkink,
and Ali Movaghar

Validating SCTP Simultaneous Open Procedure 233
Somsak Vanit-Anunchai

Improving Time Bounded Reachability Computations
in Interactive Markov Chains . 250

Hassan Hatefi and Holger Hermanns

Checking Compatibility of Web Services Behaviorally 267
Kais Klai and Hanen Ochi

Author Index . 283

VIII Contents

Organization

General Chair

Hamid Sarbazi-azad IPM, Iran; Sharif University of Technology, Iran

Steering Committee

Farhad Arbab CWI, The Netherlands; Leiden University,
The Netherlands

Christel Baier University of Dresden, Germany
Frank de Boer CWI, The Netherlands; Leiden University,

The Netherlands
Ali Movaghar IPM, Iran; Sharif University of Technology, Iran
Hamid Sarbazi-azad IPM, Iran; Sharif University of Technology, Iran
Marjan Sirjani Reykjavik University, Iceland
Jan Rutten CWI, The Netherlands; Radboud University

Nijmegen, The Netherlands

Program Chairs

Farhad Arbab CWI, The Netherlands; Leiden University,
The Netherlands

Marjan Sirjani Reykjavik University, Iceland

Program Committee

Mohammad Abdollahi
Azgomi Iran University of Science and Technology, Iran

Gul Agha University of Illinois at Urbana-Champaign, USA
Marco Aiello University of Groningen, The Netherlands
Farhad Arbab CWI and Leiden University, The Netherlands
Christel Baier Technical University of Dresden, Germany
Jan Bergstra University of Amsterdam, The Netherlands
Maria Paola Bonacina Università degli Studi di Verona, Italy
Borzoo Bonakdarpour University of Waterloo, Canada
Marcello Bonsangue Leiden University, The Netherlands
Mario Bravetti University of Bologna, Italy
Michael Butler University of Southampton, UK
Frank De Boer CWI and Leiden University, The Netherlands

Erik De Vink Technische Universiteit Eindhoven,
The Netherlands

Klaus Dräger Oxford University, UK
Wan Fokkink Vrije Universiteit Amsterdam,

The Netherlands
Lars-Ake Fredlund Universidad Politécnica de Madrid, Spain
Masahiro Fujita University of Tokyo, Japan
Maurizio Gabbrielli University of Bologna, Italy
Fatemeh Ghassemi University of Tehran, Iran
Carlo Ghezzi Politecnico di Milano, Italy
Jan Friso Groote Eindhoven University of Technology,

The Netherlands
Radu Grosu Stony Brook University, USA
Hassan Haghighi Shahid Beheshti University, Iran
Mohammad Izadi Sharif University of Technology, Iran
Mohammad Mahdi

Jaghoori CWI, The Netherlands
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen, Germany
Narges Khakpour KTH, Sweden
Ramtin Khosravi University of Tehran, Iran
Joost Kok Leiden University, The Netherlands
Kim Larsen Aalborg University, Denmark
Zhiming Liu United Nations University—International

Institute for Software Technology, Macao
Sun Meng Peking University, China
Hassan Mirian-Hosseinabadi Sharif University of Technology, Iran
Ugo Montanari Università di Pisa, Italy
Peter Mosses Swansea University, UK
Mohammadreza Mousavi Eindhoven University of Technology,

The Netherlands
Ali Movaghar Sharif University of Technology, Iran
Peter Olveczky University of Oslo, Norway
Hiren D. Patel University of Waterloo, Canada
Jose Proenca Katholieke Universiteit Leuven, Belgium
Philipp Ruemmer Uppsala University, Sweden
Jan Rutten CWI and Radboud University Nijmegen,

The Netherlands
Gwen Salaün Grenoble INP—INRIA—LIG, France
Cesar Sanchez IMDEA Software Institute, Spain
Davide Sangiorgi University of Bologna, Italy
Wendelin Serwe INRIA Rhône-Alpes/VASY, France
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, USA
Tayssir Touili LIAFA, CNRS and University Paris

Diderot, France

X Organization

Local Organization

Hamidreza Shahrabi IPM, Iran

Proceedings Manager

Hossein Hojjat EPFL, Switzerland

Additional Reviewers

Attiogbe, Christian
Bacci, Giovanni
Balliu, Musard
Basold, Henning
Bentea, Lucian
Berg, Manuela
Bulanov, Pavel
Buscemi, Marzia
Chen, Zhenbang
Churchill, Martin
Corradini, Andrea
Cranen, Sjoerd
Dalla Preda, Mila
de Gouw, Stijn
Dubslaff, Clemens
Echenim, Mnacho
Emerencia, Ando
Faber, Johannes
Fox, Anthony
Fu, Hongfei
Gadducci, Fabio
Gerakios, Prodromos
Ghassemi, Fatemeh
Guan, Nan
Guanciale, Roberto
Hafez Qorani, Saleh
Harkjær Møller, Mikael
Helpa, Christopher
Helvensteijn, Michiel
Höftberger, Oliver
Isakovic, Haris

Jongmans, Sung-Shik T. Q.
Khamespanah, Ehsan
Khiri, Johan
Kokash, Natallia
Lampka, Kai
Lisser, Bert
Lluch Lafuente, Alberto
Macedo, Hugo
Madeira, Alexandre
Mauro, Jacopo
Mousavi, Mohammad Reza
Mukkamala, Raghava Rao
Nizamic, FarisParkinson,
Matthew
Patrignani, Marco
Qamar, Nafees
Roohi, Nima
Salehi Fathabadi, Asieh
Sharma, Arpit
Snook, Colin
Soleimanifard, Siavash
Srba, Jiri
Subotic, Pavle
Tanhaei, Mohammd
Timmer, Mark
Torrini, Paolo
Wang, Shuling
Warriach, Ehsan
Wu, Stephen
Yautsiukhin, Artsiom
Ye, Lina

Organization XI

Invited Talks
(Abstracts)

Symbolic Formal Methods: Combining
the Power of Rewriting, Narrowing, SMT

Solving and Model Checking

Jose Meseguer

University of Illinois at Urbana-Champaign, Urbana, USA

Symbolic techniques that represent possibly infinite sets of states by symbolic
constraints and support decision or semi-decision procedures based on such
constraints have become essential to automate large parts of the verification
effort and make verification much more scalable. They include: (i) SMT solving;
(ii) rewriting- and unification-based techniques, including rewriting and
narrowing modulo theories; and (iii) automata-based model checking techniques,
which describe infinite sets of states and/or system traces symbolically by
various kinds of automata. However, a key problem limiting the applicability of
current symbolic techniques is lack of, or limited support for, extensibility. That
is, although certain classes of systems can be formalized in ways that allow the
application of specific symbolic analysis techniques, many other systems of
interest fall outside the scope of such techniques. There is a real need to extend
and combine the power of symbolic analysis techniques to cover a much wider
class of systems. The talk will present some recent advances towards the goal of
combined, extensible symbolic formal methods within the context of rewriting
logic and Maude.

Stochastic, Hybrid and Real-Time Systems:
From Foundations to Applications with Modest

Holger Hermanns

Saarland University–Computer Science,
Saarbrücken, Germany

Our reliance on complex safety-critical or economically vital systems such as
networked automation systems or ‘‘smart’’ power grids increases at an
everaccelerating pace. The necessity to study the reliability and performance
of these systems is evident, but purely functional models and properties are
insufficient in many cases. This has led to the development of integrative
approaches that combine probabilities, real-time aspects and continuous
dynamics with formal verification.

Today, formal quantitative modelling and analysis is supported by a wide
range of tools and formalisms such as PRISM with probabilistic guarded
commands, UPPAAL for graphical modelling and verification of timed automata,
or hybrid system model checkers like PHAVER. This variety of different languages
and tools, however, is a major obstacle for new users seeking to apply formal
methods in their field of work.

To overcome these problems, the MODEST [4,6] modelling language and its
underlying semantic model of stochastic hybrid automata (SHA) have been
designed as an overarching formalism of which many well-known and extensively
studied models such as Markov decision processes, probabilistic timed systems or
hybrid automata are special cases. The construction and analysis of SHA models
is supported by the MODEST TOOLSET [1], which supports analysis with a range of
different methods. At the current stage, the following analysis components are
available: prohver [6] handles probabilistic safety properties for SHA; mcpta
performs model checking of probabilistic timed automata using PRISM; mctau [2]
connects to UPPAAL for model checking of timed automata, for which it is more
efficient than mcpta; and modes [3] performs statistical model checking and
simulation of stochastic timed automata with an emphasis on the sound handling
of nondeterministic models.

The MODEST TOOLSET has been used for a variety of applications with
different levels of complexity and of expressiveness. These include really cool
safety critical hard real-time wireless control applications for bicycles [5] as well

as high-speed trains [6], and innovative electric power grid control strategies [7].
The applications combine different abstraction and analysis techniques sup-
ported by the MODEST TOOLSET.

Joint work with Arnd Hartmanns, Saarland University

References

1. The Modest Toolset website, http://www.modestchecker.net
2. Bogdoll, J., David, A., Hartmanns, A., and Hermanns, H.: mctau: Bridging the gap

between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012)

3. Bogdoll, J., Hartmanns, A., and Hermanns, H.: Simulation and statistical model
checking for Modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB & DFT
2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)

4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., and Katoen, J.-P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE
Transactions on Software Engineering 32(10), 812–830 (2006)

5. Graf, H.B., Hermanns, H., Kulshrestha, J., Peter, J., Vahldiek, A., and Vasudevan,
A.: A verified wireless safety critical hard real-time design. In: WOWMOM, pp. 1–9.
IEEE (2011)

6. Hahn, E.M., Hartmanns, A., Hermanns, H., and Katoen, J.-P.: A compositional
modelling and analysis framework for stochastic hybrid systems. Formal Methods in
System Design (2012)

7. Hartmanns, A., Hermanns, H., and Berrang, P.: A comparative analysis of
decentralized power grid stabilization strategies. In: Winter Simulation Conference
(2012)

XVIII Stochastic, Hybrid and Real-Time Systems

Service Oriented Computing:
Forthcoming Challenges

Wolfgang Reisig

Humboldt-Universität zu Berlin,
Berlin, Germany

Service-oriented Computing has established itself as a core paradigm of modern
software architectures. Nevertheless, some obstacles prevent even more wide-
spread use of service oriented architectures (SOAs). To overcome those
obstacles, in particular the following questions have to be addressed:

1. SOAs are more and more implemented in the cloud. To what extent are the
stakeholders affected by this change of technology?

2. It turned out useful to conceive not only software components, but also
humans and technical systems as service providers and service requesters.
How can a unified approach to SOA cope with this?

3. Basic notions such as correctness and equivalence are clear cut and undis-
puted for classical programs. Are there corresponding generally acceptable
and manageable such notions for SOAs?

4. Quick assignment of needed data, software and hardware to services is
inevitable for smoothly running SOAs. How can a small, flexible infra-
structure guarantee this kind of elasticity?

Those questions cannot seriously be answered on an intuitive, informal level. It is
inevitable to model services in a formal framework, with the decisive properties
of the services be represented as properties of their formal models. The above
questions are then addressed and faithfully solved in the framework of the formal
models. To this end we suggest methods and principles of formally modeling and
analyzing SOAs.

Unbounded Allocation in Bounded Heaps

Jurriaan Rot1,2,�, Frank de Boer1,2, and Marcello Bonsangue1,2

1 LIACS—Leiden University, Leiden, Netherlands
2 Centrum voor Wiskunde en Informatica (CWI), Amsterdam, Netherlands

{jrot, marcello}@liacs.nl, frb@cwi.nl

Abstract. In this paper we introduce a new symbolic semantics for a
class of recursive programs which feature dynamic creation and
unbounded allocation of objects. We use a symbolic representation of
the program state in terms of equations to model the semantics of a
program as a pushdown system with a finite set of control states and a
finite stack alphabet. Our main technical result is a rigorous proof of the
equivalence between the concrete and the symbolic semantics.

Adding pointer fields gives rise to a Turing complete language. How-
ever, assuming the number of reachable objects in the visible heap is
bounded in all the computations of a program with pointers, we show
how to construct a program without pointers that simulates it. Conse-
quently, in the context of bounded visible heaps, programs with pointers
are no more expressive than programs without them.

1 Introduction

In this paper we investigate the interplay between dynamic creation of objects
and recursion. To this end we introduce a core programming language which
features dynamic object creation, global variables, static scope and recursive
methods with local variables, but which does not include (abstract) pointers. In
order to focus on the main issue of dynamic object creation in the context of
recursion, we further restrict the data types to that of objects. Other finite data
domains could have been added without problem, but would have increased the
complexity of the model without strengthening our main result.

We first define a concrete operational semantics for our language based on
a standard implementation of recursion using a stack. This semantics uses an
explicit representation of objects which immediately gives rise to an infinite
name space because an unbounded number of objects can be stored on the stack
using local variables. Consequently, decidability results for pushdown systems
(for which the stack alphabet is finite) and existing model checking techniques
of pushdown systems against temporal formulas [2] are not applicable.

Our solution is to abstract from the concrete representation of objects by
representing states, i.e., assignments of objects to the program variables, sym-
bolically as conjunctions of equations over the program variables, identifying
� The research of this author has been funded by the Netherlands Organisation for

Scientific Research (NWO), CoRE project, dossier number: 612.063.920.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 1–16, 2013.
DOI: 10.1007/978-3-642-40213-5 1,
c© IFIP International Federation for Information Processing 2013

2 J. Rot, F. de Boer, and M. Bonsangue

those variables which refer to the same object. In this symbolic setting we show
how to describe the basic computation steps, e.g., object allocation, recursive
calls and returns, in terms of a strongest postcondition semantics. The result-
ing symbolic semantics can be modeled formally as a pushdown system with a
finite set of control states and a finite stack alphabet. Our main technical result
is a rigorous proof of the equivalence between the concrete and the symbolic
semantics.

Adding (abstract) pointers however allows to program dynamically linked
data structures, like lists or trees, and allows the simulation of a 2-counter
machine. As such, reachability is undecidable [9] for this extended language.
We show in this paper that if a (recursive) program with pointers gives rise to
computations in which the number of reachable objects in the heap is bounded
a priori, then it can be simulated by a program without pointers. Therefore, in
the context of bounded visible heaps, (recursive) programs with pointers are no
more expressive than programs without them.

Related work. Our main contribution is a new symbolic semantics and a corre-
sponding direct proof of decidability of a class of recursive programs which fea-
ture dynamic creation and unbounded allocation of objects, but do not include
(abstract) pointers. The decidability of our core language itself follows from the
general result of [3] for recursive programs with (abstract) pointers which gen-
erate only bounded visible heaps. On the other hand, the general result of [3]
concerning pointers can be derived from our basic decidability result by our simu-
lation of programs with pointers. In fact, our simulation shows that restricting to
bounded (visible) heaps basically boils down to restricting to programs without
pointers! Moreover, the general result of [3] is based on a complex mechanism
for “merging” upon the return of a method the local part of the “old” heap
(the heap before the call) and the current heap (see [11] for a more extensive
discussion). This is because a reuse is required in order to model the seman-
tics as a pushdown system with a finite stack alphabet (as explained above, by
means of the local variables an unbounded number of objects can be stacked).
In contrast, in the absence of pointers in our strongest postcondition semantics
such name clashes are resolved symbolically by a simple substitution of fresh
variables. The underlying equational logic then allows for a simple elimination
of these implicitly existentially quantified variables.

More recently, [1] introduces an algorithm for reachability in pushdown
automata with gap-ordered constraints, a model which allows to represent the
behavior of our language. The symbolic semantics introduced in this paper is
based on ordinary pushdown systems and therefore we can use standard algo-
rithms for model checking [2]. Furthermore, it is similar in spirit to the one
used in high level allocation Büchi automata [6] for model checking of a possibly
unbounded number of objects with pointers but for a language with a restricted
form of recursion (tail recursion) and no block structure. Full recursion, but with
a fixed-size number of objects is instead considered in jMoped [7], using a push-
down structure to generate an infinite state system. Similar and even stronger
restrictions limiting either size of heap and stack, or the number of objects are
considered by current model checkers for object-oriented languages, such as Java

Unbounded Allocation in Bounded Heaps 3

Path Finder [8], JCAT [5], Bandera [4] (possibly combined with the Symbolic
Analysis Laboratory model checker [10]).

Plan of the paper. In Section 2 we introduce the syntax of our language and
give an informal description of its semantics. Section 3 provides a concrete exe-
cution model using a transition system with infinite states and a symbolic model
based on pushdown systems. We end the section by studying the relationship
between these two models. In Section 4 we discuss the extension with point-
ers. Finally, the last section discusses some possible future research and tool
development.

2 A Core Language for Allocation

We introduce a core programming language that focuses on dynamic allocation,
global and local variables, and recursive procedures. To simplify the presenta-
tion it is restricted to a single data structure, that of objects. Objects can be
dynamically allocated and referenced. A program consists of a finite set of pro-
cedures, each acting on some global and local state. Procedures can store object
references in global or local variables, compare them, and call other procedures.

We assume a finite set of program variables V ranged over by x, y, v, w such
that V = G ∪ L, where G is a set of global variables {g1, g2, . . . , gn} and L is a
set of local variables {l1, l2, . . . , lm}, with G and L disjoint. We often write l̄ for
the sequence of all local variables. We assume a distinguished element nil ∈ G,
used as a constant to refer to the undefined object. For a finite set P of proce-
dure names {p0, . . . , pk}, a program is a set of procedure declarations of the form
pi ::Bi, where Bi, denoting the body of the procedure pi, is a statement defined
by the following grammar:

B ::= x := y | x := new | call p | B;B | [x = y]B | [x �= y]B | B +B

The language is statically scoped. The assignment statement x := y assigns the
reference stored in y (if any) to x. The statement x := new allocates a new object
that will be referenced by the program variable x. As for the ordinary assignment,
the old value of x is lost. For this reason we will consider only programs in which
the variable nil does not appear at the left-hand side of an assignment or allo-
cation statement. Sequential composition B1;B2, guarded statements [x = y]B
and [x �= y]B, and nondeterministic choice B1 + B2 have the standard inter-
pretation. Execution of a procedure call call p consists of the execution of the
associated body B with its local variables initialized to nil. Upon termination of
the body B of a procedure the previous local state (from which the procedure
has been called) is restored.

Example 1. As a basic example of storing an unbounded number of objects,
consider the procedure

p :: l := new; ((call p; g1 := l) + g2 := l)

A call to p allocates a number of objects not bounded a-priori and stores them
in the several copies of the local variable l in the call-stack. The global variable

4 J. Rot, F. de Boer, and M. Bonsangue

g2 refers to the last allocated object (or nil), whereas g1 refers to the first one
(or nil). Note that if all variables are initially nil, then g1 �= g2 eventually holds
if and only if the program terminates.

The usual while, skip, if-then-else statements, and more general boolean
expressions, can easily be encoded in this sequential setting. Procedures with
call-by-value parameters and return values can also be modeled using assign-
ments to global variables.

3 A Concrete and a Symbolic Semantics

In this section, we introduce a semantics of the programming language which is
defined in terms of an explicit representation of objects by natural numbers. This
representation allows a simple implementation of object allocation. A program
state is a variable assignment s : V −→ N, where 0 is used to represent the
“undefined” object, and thus we assume s(nil) = 0. To model allocation we
distinguish a global “system” variable cnt which is used as a counter, and is not
used by programs. We implicitly assume that s(x) < s(cnt), for every state s
and variable x different from cnt. Note that this implies that s(cnt) �= 0, as this
is the value of nil.

A configuration of a program is a tuple 〈s, S〉 where s is the current pro-
gram state and S is a stack of statements and stored return states. The current
statement to be executed is on the top of the stack. An execution step of a pro-
gram is a transition from a configuration C to a configuration C ′, denoted by
C −→ C ′. A computation is a (possibly infinite) sequence C1 −→ C2 −→ . . . of
execution steps. The possible execution steps are given below. For modeling func-
tion updates we use multiple assignments of the form f [x1, . . . , xk := y1, . . . , yk],
where xi and xj are distinct elements of the domain of f for i �= j, and all yi’s are
in the codomain of f . It denotes the function mapping xi to yi if i ∈ {1, . . . , k},
and otherwise x is mapped to the old value f(x). The head of a stack is separated
from the tail by means of the right-associative operator •: for example, B • S is
a stack consisting a statement B and tail S, whereas s • S is a stack consisting
a state s as head and tail S.

When an assignment is the current statement to be executed, then the cur-
rent program state is updated accordingly. The tail of the stack is not changed.

〈s, x := y • S〉 −→ 〈s[x := s(y)], S〉
Dynamic allocation is similar to an assignment, but it uses the system variable
cnt, which is now increased.

〈s, x := new • S〉 −→ 〈s[x, cnt := s(cnt), s(cnt) + 1], S〉
The execution of the sequential composition of two statements updates the stack
so that they are executed in the right order.

〈s,B1;B2 • S〉 −→ 〈s,B1 •B2 • S〉

Unbounded Allocation in Bounded Heaps 5

Guarded statements are executed only if the current program state satisfy their
respective conditions, otherwise they block.

s(x) = s(y)
〈s, [x = y]B • S〉 −→ 〈s,B • S〉

s(x) �= s(y)
〈s, [x �= y]B • S〉 −→ 〈s,B • S〉

A non-deterministic choice updates the stack so that only one of the two state-
ments becomes the current one.

〈s,Bi • S〉 −→ C

〈s,B1 +B2 • S〉 −→ C
(i ∈ {1, 2})

In a procedure call the entire current state is pushed onto the stack so that the
local variables can be restored when the procedure returns (we push the entire
state only for notational convenience, to avoid irrelevant case distinctions). In
the new current state all local variables are set to 0 and the current program on
the stack becomes the body of the called procedure.

〈s, call pi • S〉 −→ 〈s[l̄ := 0̄], Bi • s • S〉
Here Bi is the body of pi, l̄ denotes the sequence of local variables l1, . . . , lm and
0̄ is a sequence of length m of 0’s, where m is the number of local variables.

When the top of the stack is a program state, a procedure return is executed.
The local variables are restored using the state stored on the stack.

〈s, s′ • S〉 −→ 〈s[l̄ := s′(l̄)], S〉
Again, l̄ denotes the sequence of local variables l1, . . . , lm, while s′(l̄) denotes the
sequence of old values s′(l1), . . . , s′(lm).

3.1 A Symbolic Semantics

The concrete semantics introduced in the previous section clearly cannot be mod-
eled as a pushdown system because it uses the infinite set of natural numbers to
represent objects. However, at any moment of a computation, only finitely many
objects are referenced by program variables. In this section we exploit this basic
fact and represent a program state symbolically as a finite conjunction of equali-
ties, identifying program variables referring to the same object. Subsequently, we
define program steps based on a strongest postcondition calculus, which requires
the introduction of fresh global variables for assignments. It suffices to assume
a distinct logical variable z for each variable in V . We denote by Var the set
of program variables V extended with their logical variables. Note that Var is
finite. A symbolic state ϕ is a finite conjunction of equalities as given by the
grammar

ϕ ::= x = y | ϕ ∧ ϕ
where x and y range over Var . A symbolic state ϕ gives rise to a relation r(ϕ) ⊆
Var ×Var , inductively defined by

r(x = y) = {(x, y)} r(ϕ1 ∧ ϕ2) = r(ϕ1) ∪ r(ϕ2).

6 J. Rot, F. de Boer, and M. Bonsangue

Next we let r∗(ϕ) ⊆ Var × Var denote the reflexive, symmetric and transitive
closure of r(ϕ). This way, any symbolic state ϕ gives rise to a partitioning of Var .
We define ϕ |= x = y if and only if (x, y) ∈ r∗(ϕ), and extend it to disequalities
by the closed world assumption, i.e., ϕ |= x �= y iff ϕ �|= x = y.

We describe the effect of a basic statement S on a symbolic state ϕ in terms
of its strongest postcondition SP(S, ϕ), i.e., SP(S, ϕ) will be the strongest state
formula such that whenever we start from a program state satisfying ϕ (under
the obvious satisfaction relation), after executing S the resulting state satisfies
SP(S, ϕ). We denote by t[z/x] the syntactic substitution of x in t by a corre-
sponding fresh (logical) variable z.

SP(x := new, ϕ) = ϕ[z/x]
SP(x := y, ϕ) = ϕ[z/x] ∧ x = (y[z/x])

Note that z in the above two clauses represents the “old” value of x. In an
assignment statement x := y as well as in a dynamic allocation x := new we have
for all variables v, w (syntactically) different from x that ϕ |= v = w if and only
if SP(x := y, ϕ) |= v = w. Further, for dynamic allocation, SP(x := new, ϕ) |=
x = y if and only if x and y are the same variable (and thus by the closed world
assumption SP(x := new, ϕ) |= x �= y, for every y different from x).

For procedure calls, we assume without loss of generality that for each global
variable g ∈ G there exists a unique local variable g′ ∈ L which does not occur in
the given program. These so-called freeze variables are used to represent locally
the global variables before a call. This information is needed to relate logically
the state before the call and the return state. In the strongest postcondition of a
procedure call we model logically the initialization of the local program variables
(thus not the freeze variables) to nil, and the assignment to each freeze variable
g′ of the value of its corresponding global variable g:

SP(call p, ϕ) = ϕ[z̄/l̄] ∧
∧

g∈G
(g = g′) ∧

∧

l∈L′
l = nil,

where z̄ is a sequence of logical variables corresponding to a sequence l̄ of all
local variables appearing in ϕ; z̄ is used to represent the old values of l̄. L′ is the
set of local variables that are not freeze variables.

To describe the strongest postcondition of the return of a procedure we intro-
duce an auxiliary statement “retψ” for each symbolic state ψ. The global vari-
ables in ψ thus represent the old values of the global variables before the call.
On the other hand, in the current symbolic state ϕ the old equalities between
the global variables before the call are represented by their corresponding freeze
variables. We can identify these simply by replacing the freeze variables in ϕ and
the global variables in ψ by the same logical variables. This explains the main
idea underlying the following rule:

SP(retψ,ϕ) = ϕ[z̄/ḡ′][z̄′/l̄] ∧ ψ[z̄/ḡ]

where z̄ and z̄′ are disjoint sequences of fresh logical variables, ḡ′ is the sequence
of freeze variables and l̄ is the sequence of all local variables. So in ϕ, first the

Unbounded Allocation in Bounded Heaps 7

freeze variables are renamed to z̄, and then the other local variables in ϕ, which
are no longer valid, are renamed away into fresh logical variables z̄′.

We use the above postcondition calculus to define a symbolic semantics for
our programs. An (abstract) configuration of a program is a pair 〈ϕ,S〉 where
ϕ is a symbolic state restricted to the program variables V and S is a stack
of statements and symbolic states also restricted to the program variables V .
This restriction is justified because logical variables are implicitly existentially
quantified and as such can be eliminated (in each step): for any symbolic state
ϕ we can construct a formula ϕ ↓V which only contains variables in V such that
r∗(ϕ) restricted to V × V equals r∗(ϕ ↓V).

Now for dynamic allocation and assignment statements we lift the strongest
postconditions defined above to transitions as follows:

〈ϕ,B • S〉 −→ 〈SP(B,ϕ) ↓V ,S〉 (1)

where B is either x := new or x := y for some program variables x and y.
The transition rules for sequential composition, non-deterministic choice and

guarded statements are similar to the corresponding transition rules in the con-
crete semantics. As an illustration, we give below the two rules for guarded
statements:

ϕ |= x = y

〈ϕ, [x = y]B • S〉 −→ 〈ϕ,B • S〉
ϕ |= x �= y

〈ϕ, [x �= y]B • S〉 −→ 〈ϕ,B • S〉 (2)

On a procedure call pi, we push the procedure body and current state onto the
stack:

〈ϕ, call pi • S〉 → 〈SP(call pi, ϕ) ↓V , Bi • ϕ • S〉. (3)

The transition for procedure return is similar to that of an assignment:

〈ϕ,ψ • S〉 → 〈SP(retψ,ϕ) ↓V ,S〉. (4)

Example 2. As a simple example of a symbolic computation, consider the pro-
cedure declaration

p :: l := new

where l is a local variable. Let g be some global variable. We will consider the
execution of the statement call p starting from a symbolic state where g equals l.
During the execution of p, l is assigned a new object; however, since l is a local
variable, it is restored when the procedure returns, so then we should again have
that g is equal to l. We restrict the above definition of the strongest postcondi-
tion of a procedure call to the local variable l and some global variable g; then
SP(call p, l = g) is

z = g ∧ g = g′ ∧ l = nil,

and thus by eliminating the logical variable z we derive the transition step

〈l = g, call p〉 −→ 〈g = g′ ∧ l = nil, l := new • l = g〉.

8 J. Rot, F. de Boer, and M. Bonsangue

Next we compute SP(l := new, g = g′ ∧ l = nil):

g = g′ ∧ z = nil,

and again eliminating the logical variable z we now derive the transition

〈g = g′ ∧ l = nil, l := new • l = g〉 −→ 〈g = g′, l = g〉.

As above, restricting the above definition of SP(ret l = g, g = g′) to the local
variable l and the global variable g, we obtain

g = z ∧ l = z.

Finally, eliminating the logical variable z we arrive at the final transition

〈g = g′, l = g〉 −→ 〈l = g, ε〉,

where indeed l and g are again identified.

The above semantics gives rise to a finite pushdown system. A pushdown system
is a triple P = (Q,Γ,Δ) where Q is a finite set of control locations, Γ is a finite
stack alphabet, and Δ ⊆ (Q × Γ) × (Q × Γ ∗) is a finite set of productions. A
transition (q, γ, q′, γ̄) is enabled if control is at location q and γ is at the top of
the stack – then control can move to location q′ by replacing γ by the possible
empty word of stack symbols γ̄.

In our case, for a given program p1 ::B1, . . . , pn ::Bn, the set of control loca-
tions is given by the set of state formulas restricted to V . In order to define
the stack alphabet we introduce the finite set

⋃k
i=1 cl(Bi) of possible reachable

statements where the closure of a statement B, denoted as cl(B), is defined as
follows:

cl(A) = {A} cl([x = y]B) = {[x = y]B} ∪ cl(B)
cl(B1; B2) = {B1; B2} ∪ cl(B1) ∪ cl(B2) cl([x �= y]B) = {[x �= y]B} ∪ cl(B)
cl(B1 + B2) = {B1 + B2} ∪ cl(B1) ∪ cl(B2)

where A is an assignment, an allocation or a procedure call. The stack alphabet
Γ is then defined by the union of the abstract state space and the above set
of possible reachable statements. Finally, it is straightforward to transform the
rules of the above semantics into rules of a pushdown system, simply by removing
the common stack tail from the left- and righthand sides. For a pushdown system
both the halting problem and reachability are decidable. In fact, it is possible to
model check pushdown systems against linear-time or branching-time temporal
formulas. For linear-time temporal formulas the complexity is even of the same
order as for finite state systems [2,7].

3.2 Correctness of the Symbolic Semantics

In this section we show that the concrete and the abstract semantics are equiva-
lent. First we identify the relevant properties of the concrete semantics satisfied

Unbounded Allocation in Bounded Heaps 9

by any reachable configuration. Basically, (1) on a procedure call, all local vari-
ables must be initialized to 0. Thus if an object is referenced by a variable in the
current state s and in a stacked state s′, then there must be a global variable
referencing it in that stacked state s′. Moreover (2) the system variable cnt is
greater than all objects currently referenced by variables stored somewhere in
the stack. Formally this is the content of the next definition.

Definition 3. A stack S is proper if either S is the empty stack, or S = B •S′

for some statement B and proper stack S′, or S = s •S′ for some program state
s and proper stack S′ such that for any state s′ occurring in S′:

(1) s(V) ∩ s′(V) ⊆ s′(G),
(2) ∀v ∈ V.s(cnt) > s′(v).

A configuration 〈s, S〉 is proper if s ◦ S is proper.

Properness is preserved by all computation steps:

Lemma 4. If 〈s, S〉 is proper and 〈s, S〉 → 〈s′, S′〉 then 〈s′, S′〉 is proper.

For example, the configuration 〈s, p0〉 is proper, where p0 is the main proce-
dure name, and s is the state mapping cnt to 1 and all other variables (including
nil) to 0. From the above Lemma, any configuration in a computation starting
from this initial one is a proper configuration.

Next we give some basic properties of the concrete semantics of the procedure
return. Informally, global variables are not affected by a procedure returns, and
local variables get the values they had before the procedure call.

Lemma 5. If 〈s, s′ • S〉 −→ 〈sr, S〉 then for every x, y ∈ V :

1. x, y ∈ G⇒ (sr(x) = sr(y) iff s(x) = s(y))
2. x, y ∈ L⇒ (sr(x) = sr(y) iff s′(x) = s′(y))
3. x ∈ G, y ∈ L⇒ (sr(x) = sr(y) iff s(x) = s′(y))

We proceed with the following relevant properties of the symbolic semantics.
First we make precise what is the relation between global variables in the caller’s
state ψ and freeze variables in the callee’s state ϕ: freeze variables can be equal
if and only if their corresponding global variables were equal in the first place.

Definition 6. We define ψ � ϕ iff for any two globals g1, g2 ∈ G,

ϕ |= g′
1 = g′

2 iff ψ |= g1 = g2

The definition of properness of abstract configurations is based on the above.

Definition 7. A stack S (of symbolic states and statements) is proper if either
S is the empty stack, or S = B • S ′ for some statement B and proper stack S ′,
or S = ϕ • S ′ for some symbolic state ϕ and proper stack S ′ such that for the
topmost state ϕ′ occurring in S ′, if it exists: ϕ′ � ϕ. An abstract configuration
〈ϕ,S〉 is proper if ϕ • S is proper.

10 J. Rot, F. de Boer, and M. Bonsangue

Properness of abstract configurations is preserved by all computation steps:

Lemma 8. If 〈ϕ,S〉 is proper and 〈ϕ,S〉 → 〈ϕ′,S ′〉 then 〈ϕ′,S ′〉 is proper.

We state the main properties of the procedure return in the abstract semantics.

Lemma 9. If 〈ϕ,ψ • S〉 is proper, and 〈ϕ,ψ • S〉 −→ 〈ϕr,S〉 then for every
x, y ∈ V :

1. x, y ∈ G implies ϕr |= x = y iff ϕ |= x = y,
2. x, y ∈ L implies ϕr |= x = y iff ψ |= x = y,
3. x ∈ G, y ∈ L implies ϕr |= x = y iff ∃g ∈ G s.t. ψ |= y = g and ϕ |= x = g′

In order to prove the equivalence between the symbolic semantics and the con-
crete semantics, we extend the latter so that each procedure body starts with
the initialization of the freeze variables to their corresponding global variables.
Note that this does not affect the behaviour of a program, since freeze variables
by assumption do not occur in it.

Let s be a concrete state, and ϕ a symbolic state. We define s ∼ ϕ if and
only if for all variables x, y ∈ V : s(x) = s(y) iff ϕ |= x = y. Next this relation
is extended to stacks S of statements and (concrete) program states and stacks
S of statements and symbolic states. We define S ∼ S iff S and S are proper
stacks, and one of the following cases hold:

1. S, S are both empty
2. S = B • S′ and S = B • S ′ for some statement B, and S′ ∼ S ′
3. S = s′ • S′, S = ϕ • S ′, s ∼ ϕ and S′ ∼ S ′

Finally we lift the relation to proper configurations as follows: 〈s, S〉 ∼ 〈ϕ,S〉 iff
s • S ∼ ϕ • S.

In our setting a bisimulation is a relation R, between concrete- and abstract
configurations, such that for every (C,D) ∈ R: if C −→ C ′ then there is a
configuration D′ such that D −→ D′ and (C ′,D′) ∈ R, and vice versa; where
C −→ C ′ is a transition between concrete configurations, given by the concrete
semantics (augmented with the initialization of freeze variables), and D −→ D′

is a transition between abstract configurations, given by the symbolic semantics.
Our main result states the equivalence between the operational and the symbolic
semantics, based on this notion.

Theorem 10. The above relation ∼ between proper configurations is a (strong)
bisimulation.

Proof. Suppose 〈s, S〉 ∼ 〈ϕ,S〉. The proof proceeds by cases on top of the stacks,
i.e., the program constructs; we only treat the case of procedure return. In this
case S = s′ • S′ and S = ψ • S ′ for some s′ and ψ, and there are sr and ϕr such
that

〈s, s′ • S′〉 −→ 〈sr, S′〉 and 〈ϕ,ψ • S ′〉 −→ 〈ϕr,S ′〉
Note that we have s′ ∼ ψ, s ∼ ϕ and S′ ∼ S ′ by assumption. Further note that
we can apply Lemma 9 since by assumption 〈ϕ,S〉 is proper. We must show that
sr ∼ ϕr holds. Let x, y ∈ V . We distinguish three cases:

Unbounded Allocation in Bounded Heaps 11

1. x, y ∈ G (both global variables):

sr(x) = sr(y) iff s(x) = s(y) Lemma 5.1
iff ϕ |= x = y assumption
iff ϕr |= x = y Lemma 9.1

2. x, y ∈ L (both local variables):

sr(x) = sr(y) iff s′(x) = s′(y) Lemma 5.2
iff ψ |= x = y assumption
iff ϕr |= x = y Lemma 9.2

3. x ∈ G and y ∈ L. Recall that we have augmented the concrete semantics
with the initialization of the freeze variables. It is easy to see that as a
consequence s(g′) = s′(g) holds, which we will use below.

sr(x) = sr(y)
iff s(x) = s′(y) Lemma 5.3
iff ∃g ∈ G.s(x) = s′(g) and s′(g) = s′(y) properness
iff ∃g ∈ G.s(x) = s(g′) and s′(g) = s′(y) above argument
iff ∃g ∈ G.ϕ |= x = g′ and ψ |= g = y assumption
iff ϕ |= x = y Lemma 9.3

�

4 Adding Pointers

In this section we extend our programming language with fields and correspond-
ing updates for modeling linked object structures. In particular we investigate
k-bounded heaps, in which the number of reachable objects is at most k. This
notion is extended to k-bounded programs, in which during execution, the heap
is always k-bounded. We show that every k-bounded program P including fields
can be rewritten into a program P ′ without fields and equivalent to P .

The language of Section 2 is extended with statements x := y.f and x.f := y,
where f ranges over a finite set of (pointer) fields F . Note that the only type of
field is that of a pointer to another object. Informally, the statement x := y.f
is a basic assignment, updating x to point to (the location referred to by) y.f .
Field update x.f := y changes to y the field of the object to which x refers via
the field f . These two basic operations are sufficient; more general expressions
and updates can be encoded. For example, a statement x := y.fi1 .fi2 .fi3 . . . fik
is encoded as x := y.fi1 ;x := x.fi2 ;x := x.fi3 ; . . . ;x := x.fik .

To give a semantics to this language we introduce a heap H as a pair 〈s, h〉
of a variable assignment s : V → N such that s(nil) = 0, and a field assignment
h : F → (N→ N) such that for all f , h(f)(0) = 0. We write H(x) for s(x), and
H(f) for h(f).

For a set of variables X we denote with RH(X) ⊆ N the set of objects
reachable from these variables in H, defined as the least fixpoint of the equation

RH(X) = {H(x) | x ∈ X} ∪ {H(f)(n) | f ∈ F, n ∈ RH(X)}

12 J. Rot, F. de Boer, and M. Bonsangue

We abbreviate RH(V), where as before V denotes the set of program variables,
by RH . We denote an assignment to a variable by H[x := n], a global field
update by H[f := ρ] with ρ : N → N s.t. ρ(0) = 0, and local field update by
H[f := ρ[n := m]]. We use the standard notation and definition of simultaneous
assignments and updates.

A configuration is a tuple 〈H,Γ 〉 where H is a heap and Γ is a stack of
statements and heaps. We only give the transitions for dynamic allocation, and
for assignments of the form x.f := y and x := y.f . All other transitions are
similar to the semantics of the language without fields, and are not repeated
here. Again we assume a system variable cnt for the implementation of dynamic
allocation. On a dynamic allocation all fields of the new object are set to point
to 0.

〈H,x := new • Γ 〉 −→ 〈H[x, cnt := H(cnt),H(cnt) + 1][f̄ := ρ̄], Γ 〉

where ρ̄ is a sequence such that ρi = H(fi)[H(x) := 0]. A field update x.f := y
is as follows:

H(x) �= H(nil)
〈H,x.f := y • Γ 〉 −→ 〈H[f := H(f)[H(x) := H(y)], Γ 〉

Finally an assignment of the form x := y.f is as follows:

H(y) �= H(nil)
〈H,x := y.f • Γ 〉 −→ 〈H[x := H(f)(H(y))], Γ 〉

It is not hard to see that reachability is undecidable for this language. For
instance, we can simulate a 2-counter machine [9] by using three variables c1, c2, t
and a single field f . An increment of ci is then implemented as a statement
t := new; t.f := ci; ci := t, a decrement is a simple ci := ci.f and we can test
for zero by using a guard [ci = nil]. It is thus not possible to devise, in the same
fashion as in Section 3, a precise abstraction of the semantics of our extended
language for which reachability is decidable.

In [3] an abstraction of heaps in terms of isomorphic graphs is given, which
is applied in a semantics with the property that reachability is decidable for
programs in which every heap is k-bounded for some a priori fixed k.

Definition 11. A heap H is k-bounded if |RH | ≤ k. A computation 〈H1, Γ1〉 →
〈H2, Γ2〉 → . . . is k-bounded if |RHi

| is k-bounded for all i. A program P with
main procedure p0 is k-bounded if every computation 〈H0, p0〉 → . . . is k-bounded,
for some initial heap H0.

We show that k-bounded programs with fields can be simulated by programs
without fields in our basic language. We do so by means of a transformation
from k-bounded programs to equivalent programs not containing any fields.

We first show how to represent k-bounded heaps using only plain variable
assignments of the form s : V → N. To this end let k be a given bound. The
correspondence between a k-bounded heapH and a state s is based on an explicit

Unbounded Allocation in Bounded Heaps 13

enumeration of the objects in the visible heap, represented by k global variables
1̄, . . . , k̄ such that s(̄i) �= s(j̄), for i �= j. Notice that the undefined object 0 is
already represented by the variable nil, and as such we have, in fact, a series
nil, 1̄, . . . , k̄ of k+ 1 variables to represent k objects, which will turn out to be of
technical convenience. Further, we introduce for each i = 1, . . . , k and field f ∈ F
a global variable īf which represents H(f)(s(̄i)). Without loss of generality we
assume that these variables do not appear in the given program. In the sequel
we denote by I the set of global variables 1̄, . . . , k̄ and by V (P) the (global and
local) variables which do occur in P . We next define when a k-bounded heap H
is represented by a variable assignment s, denoted by H ≡ s.
Definition 12. Given a k-bounded heap and a variable assignment s we define
H ≡ s by

1. s(̄i) �= s(j̄) and s(̄i) �= 0, for i �= j, i = 1, . . . , k and j = 1, . . . , k,
2. for every n ∈ RH(V (P)) s.t. n �= 0 there is i = 1, . . . , k such that s(̄i) = n,
3. H(f)(s(̄i)) = s(̄if), for every i = 1, . . . , k and f ∈ F ,
4. H(cnt) = s(cnt).

The actual program transformation now is defined in terms of a function t
which takes a k-bounded program P with fields and translates it into an equiv-
alent program t(P) without fields.

For each of the procedures except the initial one, we define t(pi ::Bi) =
pi :: t(Bi), where t(B) will be defined by structural induction. We append in
front of the initial procedure p0 ::B0 a series of allocations and assignments to
initialize the representation of the heap:

p0 :: Πī∈I (̄i := new;Πf∈F īf := nil;)
true := new; false := new;
t(B0)

where the for all -construct Πl∈LB is a shorthand for a sequential composition
of the statements Bl′ , for l′ ∈ L, where Bl′ is obtained from B by substituting l′

for l in B. For a better readability we omit the parenthesis in a for-all construct
and assume its scope is clear from the context. The fresh global variables true
and false, which are assumed not appear in the given program, will be used to
encode boolean values.

We proceed to discuss for each of the statements in the language its trans-
lation. A simple assignment x := y remains unchanged and the translation of a
sequential composition or choice between two statements consists of the sequen-
tial composition or choice between the translated statements. Since the condi-
tional statements refer only to plain variables, we simply have

t([x = y]B) = [x = y]t(B).

For an assignment of the form x := y.f , in order to find the variable representa-
tion of y.f , we must find the variable ī which represents the object denoted by y.

14 J. Rot, F. de Boer, and M. Bonsangue

The variable īf then represents y.f . This search and corresponding assignment
is described simply by the following non-deterministic choice:

t(x := y.f) = Σī∈I [̄i = y]x := īf .

Note that this “n-ary” non-deterministic choice generalizes binary choice in the
usual manner. A field update x.f := y is treated in a similar way:

t(x.f := y) = Σī∈I [̄i = x]̄if := y.

Notice that both for field updates x.f := y and x := y.f , the condition H(x) �=
H(nil) of the semantic rules are enforced by only considering variables from I,
which represent non-null objects.

To simulate a dynamic allocation x := new, we non-deterministically select a
variable ī ∈ I which denotes an object that is not reachable from any variables
in V (P). This variable will be (re)used to represent the newly created object
assigned to x. Reachability in a k-bounded heap can be implemented by the
following statement using for each ī ∈ I a fresh variable īb to indicate that ī is
reachable from the variables in X:

RX = Πī∈I īb := false; Πx∈XΣk
i=1 [̄i = x]̄ib := true; Bk

where B denotes the statement

Πī∈I([̄ib = false]skip + [̄ib = true]Πf∈FΣj̄∈I [̄if = j̄]j̄b := true)

and Bk denotes the sequential composition of k copies of B. Note that because
the visible heap is k-bounded we need to iterate the statement B only k times.
Further notice that since the undefined object is always reachable by the variable
nil, and the heap is k-bounded, there can only be k − 1 other reachable objects.
So there will always be a representative ī ∈ I of a non-null object which is not
reachable, i.e., īb = false after executing the above reachability algorithm. This
motivates the following translation of object creation:

t(x := new) = RV (P);Σī∈I([̄ib = false]̄i := new;x := ī;Πf∈F īf := nil).

It is worthwhile to note that this translation is based on the reuse of a variable
ī ∈ I which in fact can be seen as a canonical representative of those variables
which refer to the same object.

Finally we consider the case of a procedure call. It is not so difficult to see that
upon the return of a procedure call in the translated program some objects which
are reachable from the restored local variables may no longer be represented by
a global variable ī ∈ I because their representation may have been reused by the
creation of new objects. In order to restore the representation of such objects we
introduce for each ī ∈ I fresh variables ī′ ∈ I ′ and ī′f , for f ∈ F , which are used
to store before the call a copy of the heap (as represented by the variables in I)
by the following statement

copy = Πī′∈I′ (̄i′ := ī;Πf∈F ī′f := īf).

Unbounded Allocation in Bounded Heaps 15

After the call we first compute which variables ī′ ∈ I ′ represent objects which
are reachable from the (restored) local variables L(P) of P in the “old” heap
represented by the variables ī′ ∈ I ′ and ī′f , for f ∈ F . Assuming for each variable
ī′ ∈ I ′ an additional fresh variable ī′b, this is computed by the statement R′

L(P)

which is obtained from RL(P), as defined above, by replacing simply the variables
ī , īf and īb by ī′, ī′f and ī′b, respectively, for ī ∈ I and f ∈ F . Next we compute
by RG(P) which variables ī ∈ I do not represent objects reachable from the
global variables G(P) of P in the current heap. The statement

Rī′ = b := true;Πj̄∈I([j̄ �= ī′]skip + [j̄ = ī′]b := false)

checks whether the object denoted by ī′ is already represented by some variable
ī ∈ I. If the object denoted by ī′ is not yet represented the following statement

restore = Σj̄∈I([j̄b = false]j̄ := ī′;Πf∈F j̄f := ī′f ; j̄b := true)

restores the representation of ī′. Putting the above statements together

return = R′
L(P);RG(P);

Πī′∈I′Rī′ ; ([b = false]skip + [b = true]restore)

restores upon return the representation of the old local heap by the variables I.
Summarizing, we have the following translation of procedure calls:

t(call p) = copy; call p; return.

In order to state the correctness of the translation in terms of a bisimulation
relation we first extend pointwise the (representation) relation H ≡ s to the
corresponding stacks:

1. if H ≡ s and Γ ≡ S then H • Γ ≡ s • S,
2. if Γ ≡ S then B • Γ ≡ t(B) • S.

Let =⇒ denote the concrete semantics where the translations of assignments,
procedure calls and returns are executed atomically (i.e., in one step).

Theorem 13. Given a program P with fields, let H • Γ ≡ s • S. We have

1. if 〈H,Γ 〉 −→ 〈H ′, Γ ′〉 then 〈s, S〉 =⇒ 〈s′, S′〉, for some 〈s′, S′〉 such that
H ′ • Γ ′ ≡ s′ • S′, and

2. if 〈s, S〉 =⇒ 〈s′, S′〉 then 〈H,Γ 〉 −→ 〈H ′, Γ ′〉, for some 〈H ′, Γ ′〉 such that
H ′ • Γ ′ ≡ s′ • S′.

5 Conclusion

The interplay between unbounded allocation of objects and recursion with local
variables gives rise to an infinite state space. By representing the state space
symbolically, we have shown that reachability, as well as model checking, is

16 J. Rot, F. de Boer, and M. Bonsangue

decidable. Further, we have shown that adding pointer fields to our core language
with the restriction that the number of reachable objects is bounded, does not
increase the expressiveness of the language.

Our symbolic semantics greatly simplifies the basic mechanism of recursion
with local variables in the presence of dynamic object allocation, as is also exem-
plified by a neat formalization of dynamic deallocation, a feature that is typically
problematic in the context of model checking. Consider for example a dealloca-
tion statement “delx” that sets x and all of its aliases to nil. Note that this is
different from an assignment x := nil, as the latter statement does not affect
any alias of x. Symbolically, the effect of a deallocation statement is formalized
in terms of its strongest postcondition SP(delx, ϕ) simply as ϕ ∧ x = nil. An
equivalent concrete semantics for deallocation is much more complex because the
stack may contain variables still referencing deallocated objects and a program
has only access to the top of the stack. One way of implementing a concrete
semantics of deallocation is by an explicit recording of the deleted objects.

Finally, the symbolic nature of our semantics provides a promising basis for
future model checking tool development using, for example, the Maude imple-
mentation of rewriting logic.

References

1. Abdulla, P.A., Atig, M.F., Delzanno, G., Podelski, A.: Push-Down Automata with
Gap-Order Constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol.
8161, pp. 191–206. Springer, Heidelberg (2013)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

3. Bouajjani, A., Fratani, S., Qadeer, S.: Context-Bounded Analysis of Multithreaded
Programs with Dynamic Linked Structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

4. Corbett, J., Dwyer, M.B., Hatcliff, J., Laubach, S., Pǎsăreanu, C.S., Robby, Zheng,
H.: Bandera: Extracting finite-state models from Java source code. In: Proc. of Int.
Conf. on Software Engineering, pp. 439–448. IEEE (2000)

5. Demartini, C., Iosif, R., Sisto, R.: A deadlock detection tool for concurrent Java
programs. Software-Practice and Experience 29(7), 577–603 (1999)

6. Distefano, D., Katoen, J.-P., Rensink, A.: Who is Pointing When to Whom? In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 250–262.
Springer, Heidelberg (2004)

7. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

8. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. Jour. on Softw. Tools for Technology Transfer 2(4), 366–381 (2000)

9. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
10. Park, D., Stern, U., Skakkebaek, J., Dill, D.: Java Model Checking. In: Proc. of the

15th Int. Conf. on Automated Software Engineering, pp. 253–256. IEEE (2000)
11. Rot, J., Asavoae, I.M., de Boer, F., Bonsangue, M.M., Lucanu, D.: Interacting

via the Heap in the Presence of Recursion. In: Proc. of the 5th Interaction and
Concurrency Experience, ICE 2012. EPTCS, vol. 104, pp. 99–113 (2012)

On the Complexity of Adding Convergence�

Alex Klinkhamer and Ali Ebnenasir

Department of Computer Science,
Michigan Technological University,

Houghton, MI 49931, U.S.A.
{apklinkh, aebnenas}@mtu.edu

Abstract. This paper investigates the complexity of designing Self-
Stabilizing (SS) distributed programs, where an SS program meets two
properties, namely closure and convergence. Convergence requires that,
from any state, the computations of an SS program reach a set of legit-
imate states (a.k.a. invariant). Upon reaching a legitimate state, the
computations of an SS program remain in the set of legitimate states
as long as no faults occur; i.e., Closure. We illustrate that, in general,
the problem of augmenting a distributed program with convergence, i.e.,
adding convergence, is NP-complete (in the size of its state space). An
implication of our NP-completeness result is the hardness of adding non-
masking fault tolerance to distributed programs, which has been an open
problem for the past decade.

Keywords: Self-Stabilization, Convergence, NP-Completeness

1 Introduction

Today’s distributed programs are subject to a variety of transient faults due
to their inherent complexity, human errors and environmental factors, where
transient faults perturb program state without causing any permanent damage
(e.g., bad initialization, loss of coordination, soft errors). Distributed applications
should guarantee service availability even in the presence of faults. However,
providing global recovery in distributed programs is difficult in part due to (1)
no central point of control/administration; (2) lack of knowledge about the global
state of the program by program processes/components, and (3) the need for
global recovery using only the local actions of processes. To design programs
that recover from any arbitrary configuration/state without human intervention,
Dijkstra [1] proposed self-stabilization as a property of distributed programs.
A Self-Stabilizing (SS) program meets two requirements, namely closure and
convergence. Convergence requires that, from any state, the computations of an
SS program reach a set of legitimate states (a.k.a. program invariant). Upon
reaching an invariant state, the computations of an SS program remain in its
� This work was sponsored in part by the NSF grant CCF-1116546 and a grant from

Michigan Technological University.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 17–33, 2013.
DOI: 10.1007/978-3-642-40213-5 2,
c© IFIP International Federation for Information Processing 2013

18 A. Klinkhamer and A. Ebnenasir

invariant as long as no faults occur; i.e., Closure. Indeed, self-stabilization is
a special case of nonmasking fault tolerance [2,3], where instead of providing
recovery from any state, designers identify a subset of the state space from where
recovery to the invariant can be provided. While there are several approaches in
the literature for the design of SS algorithms for specific problems, we are not
aware of a general case complexity analysis of designing SS programs.

Several researchers have investigated the problem of adding nonmasking fault
tolerance to programs [1,2,4,3,5,6]. For instance, Liu and Joseph [4] present a
method for the transformation of an intolerant program to a fault-tolerant ver-
sion thereof by going through a set of refinement steps. Arora and Gouda [2,3]
use the notions of closure and convergence to define three levels of fault tolerance
based on the extent to which safety and liveness specifications [7] are satisfied in
the presence of faults. In their setting, a failsafe fault-tolerant program ensures
its safety at all times even if faults occur, whereas, in the presence of faults, a
nonmasking program provides recovery to its invariant; no guarantees on meet-
ing safety during recovery. A masking fault-tolerant program is both failsafe and
nonmasking. Arora et al. [5] design nonmasking fault tolerance by creating a
dependency graph of the local constraints of program processes, and by illus-
trating how these constraints should be satisfied so global recovery is achieved.
Kulkarni and Arora [6] demonstrate that adding failsafe/nonmasking/masking
fault tolerance to high atomicity programs can be done in polynomial-time in
program’s state space, where a high atomicity program can read/write all pro-
gram variables in an atomic step. Nonetheless, they illustrate that adding mask-
ing fault tolerance to low atomicity programs – where processes have read/write
restrictions with respect to variables of other processes – is NP-complete (in the
size of the state space).1 Moreover, Kulkarni and Ebnenasir [8] show that adding
failsafe fault tolerance to low atomicity programs is also an NP-complete prob-
lem. Nonetheless, while adding nonmasking fault tolerance is known to be in NP,
no polynomial-time algorithms are known for efficient design of nonmasking fault
tolerance for low atomicity programs; nor has there been a proof of NP-hardness!

In this paper, we illustrate that adding nonmasking fault tolerance to low
atomicity programs is NP-complete (in the size of the state space). Our hardness
proof is based on a reduction from the 3-SAT problem [9] to the problem of
adding convergence to non-stabilizing programs. Since adding convergence is a
special case of adding nonmasking fault tolerance, it follows that, in general, it is
unlikely that adding nonmasking fault tolerance to low atomicity programs can
be done efficiently (unless P = NP). The significance of our NP-hardness proof
is multi-fold. First, our proof provides a solution for a problem that has been
open for more than a decade. Second, illustrating the NP-completeness of adding
convergence is particularly important since the proof requires the construction
of the entire state space of the instance of the problem of adding convergence,
yet such a mapping should be polynomial in the size of the instance of the source
NP-complete problem (in our case 3-SAT). Devising such a reduction has been
another open problem in the literature. Third, our proof illustrates that even if
1 Low atomicity programs enable the modeling of distributed programs.

On the Complexity of Adding Convergence 19

we have a process in a program that can atomically read the global state of the
program and can update its own local state, the addition of recovery still remains
a hard problem. Fourth, the presented hardness proof lays the foundation for the
design of a new family of synthesis algorithms inspired by the DPLL algorithm
[10], which we are currently investigating. We conjecture that such synthesis
algorithms will be more efficient than existing methods of SAT-based synthesis
of fault tolerance [11] where one formulates the sub-problems of adding fault
tolerance in terms of CNF formulas and invokes off-the-shelf SAT solvers.
Organization. Section 2 presents the basic concepts of programs, faults and
fault tolerance. Section 3 formally states the problem of adding nonmasking
fault tolerance and convergence. Section 4 illustrates that adding convergence in
particular and adding nonmasking fault tolerance in general are NP-complete.
Section 5 discusses related work. Finally, Section 6 makes concluding remarks
and discusses future work.

2 Preliminaries

In this section, we present the formal definitions of programs, faults, fault toler-
ance and self-stabilization, and our distribution model (adapted from [6]). Pro-
grams are defined in terms of their set of variables, their transitions, and their
processes. The definitions of fault tolerance and self-stabilization are adapted
from [1,3,12,13]. For ease of presentation, we use a simplified version of Dijk-
stra’s token ring protocol [1] as a running example.
Programs as (non-deterministic) finite-state machines. A program in our
setting is a representation of any system that can be captured by a (finite-state)
non-deterministic state machine (e.g., network protocols). Formally, a program
p is a tuple 〈Vp, δp,Πp, Tp〉 of a finite set Vp of variables, a set δp of transitions,
a finite set Πp of k processes, where k ≥ 1, and a topology Tp. Each variable
vi ∈ Vp, for i ∈ Nm where Nm = {0, 1, · · · ,m− 1} and m > 0, has a finite non-
empty domain Di. A state s of p is a valuation 〈d0, d1, · · · , dm−1〉 of variables
〈v0, v1, · · · , vm−1〉, where di ∈ Di. A transition t is an ordered pair of states,
denoted (s0, s1), where s0 is the source and s1 is the target/destination state
of t. A deadlock state is a state with no outgoing transitions. For a variable v
and a state s, v(s) denotes the value of v in s. The state space of p, denoted
Sp, is the set of all possible states of p, and |Sp| denotes the size of Sp. A state
predicate is any subset of Sp specified as a Boolean expression over Vp. We say a
state predicate X holds in a state s (respectively, s ∈ X) if and only if (iff) X
evaluates to true at s.
Read/Write model. We adopt a shared memory model [14] since reasoning
in a shared memory setting is easier, and several (correctness-preserving) trans-
formations [15,16] exist for the refinement of shared memory fault-tolerant pro-
grams to their message-passing versions. We model the topological constraints
(denoted Tp) of a program p by a set of read and write restrictions imposed on
variables that identify the locality of each process. Specifically, we consider a
subset of variables in Vp that a process Pj (j ∈ Nk) can write, denoted wj , and

20 A. Klinkhamer and A. Ebnenasir

a subset of variables that Pj is allowed to read, denoted rj . We assume that for
each process Pj , wj ⊆ rj ; i.e., if a process can write a variable, then it can also
read that variable.
Impact of read/write restrictions. Every transition of a process Pj belongs
to a group of transitions due to the inability of Pj to read variables that are
not in rj . Consider two processes P0 and P1 each having a Boolean variable
that is not readable for the other process. That is, P0 (respectively, P1) can read
and write x0 (respectively, x1), but cannot read x1 (respectively, x0). Let 〈x0, x1〉
denote a state of this program. Now, if P0 writes x0 in a transition (〈0, 0〉, 〈1, 0〉),
then P0 has to consider the possibility of x1 being 1 when it updates x0 from
0 to 1. As such, executing an action in which the value of x0 is changed from
0 to 1 is captured by the fact that a group of two transitions (〈0, 0〉, 〈1, 0〉)
and (〈0, 1〉, 〈1, 1〉) is included in P0. In general, a transition is included in the
set of transitions of a process iff its associated group of transitions is included.
Formally, any two transitions (s0, s1) and (s′

0, s
′
1) in a group of transitions formed

due to the read restrictions of a process Pj , denoted rj , meet the following
constraints: ∀v : v ∈ rj : (v(s0) = v(s′

0)) ∧ (v(s1) = v(s′
1)) and ∀v : v /∈ rj :

(v(s0) = v(s1)) ∧ (v(s′
0) = v(s′

1)).
Due to read/write restrictions, a process Pj (j ∈ Nk) includes a set of tran-

sition groups Pj = {gj0, gj1, · · · , gj(max−1)} created due to read restrictions rj ,
where max ≥ 1. Due to write restrictions wj , no transition group gji (i ∈ Nmax)
can have a transition (s0, s1) that updates a variable v /∈ wj . Thus, the set of
transitions δp of a program p is equal to the union of the transition groups of
its processes; i.e., δp = ∪k−1

j=0Pj . (It is known that the total number of groups is
polynomial in |Sp| [6]). We use p and δp interchangeably.

To simplify the specification of δp for designers, we use Dijkstra’s guarded
commands language [17] as a shorthand for representing the set of program
transitions. A guarded command (action) is of the form grd→ stmt, and includes
a set of transitions (s0, s1) such that the predicate grd holds in s0 and the atomic
execution of the statement stmt results in state s1. An action grd → stmt is
enabled in a state s iff grd holds at s. A process Pj ∈ Πp is enabled in s iff there
exists an action of Pj that is enabled at s.
Example: Token Ring (TR). The Token Ring (TR) program (adapted from [1])
includes three processes {P0, P1, P2} each with an integer variable xj , where
j ∈ N3, with a domain {0, 1, 2}. The process P0 has the following action (addition
and subtraction are in modulo 3):

A0 : (x0 = x2) −→ x0 := x2 + 1
When the values of x0 and x2 are equal, P0 increments x0 by one. We use

the following parametric action to represent the actions of processes Pj , for
1 ≤ j ≤ 2:

Aj : (xj �= x(j−1)) −→ xj := x(j−1)

Each process Pj copies xj−1 only if xj �= xj−1, where j = 1, 2. By definition,
process Pj has a token iff xj �= xj−1. Process P0 has a token iff x0 = x2. We
define a state predicate ITR that captures the set of states in which only one
token exists, where ITR is

On the Complexity of Adding Convergence 21

((x0 = x1) ∧ (x1 = x2)) ∨ ((x1 �= x0) ∧ (x1 = x2)) ∨ ((x0 = x1) ∧ (x1 �= x2))

Each process Pj (1 ≤ j ≤ 2) is allowed to read variables xj−1 and xj but can
write only xj . Process P0 is permitted to read x2 and x0 and can write only x0.
Thus, since a process Pj is unable to read one variable (with a domain of three
values), each group associated with an action Aj includes three transitions. For
a TR protocol with n processes and with n values in the domain of each variable
xj , each group includes nn−2 transitions. �
Computations. Intuitively, a computation of a program p = 〈Vp, δp,Πp, Tp〉 is
an interleaving of its actions. Formally, a computation of p is a sequence σ =
〈s0, s1, · · · 〉 of states that satisfies the following conditions: (1) for each transition
(si, si+1) in σ, where i ≥ 0, there exists an action grd → stmt in some process
Pj ∈ Πp such that grd holds at si and the execution of stmt at si yields si+1, and
(2) σ is maximal in that either σ is infinite or if it is finite, then σ reaches a state
sf where no action is enabled. A computation prefix of a program p is a finite
sequence σ = 〈s0, s1, · · · , sz〉 of states, where z > 0, such that each transition
(si, si+1) in σ (i ∈ Nz) belongs to some action grd → stmt in some process
Pj ∈ Πp. The projection of a program p on a non-empty state predicate X,
denoted as δp|X, is the program 〈Vp, {(s0, s1) : (s0, s1)∈δp ∧ s0, s1∈X},Πp, Tp〉.
In other words, δp|X consists of transitions of p that start in X and end in X.
Closure and invariant. A state predicate X is closed in an action grd→ stmt
iff executing stmt from any state s ∈ (X ∧ grd) results in a state in X. We say
a state predicate X is closed in a program p iff X is closed in every action of p.
In other words, closure [13] requires that every computation of p starting in X
remains in X. We say a state predicate I is an invariant of p iff I is closed in p.
TR Example. Starting from a state in the predicate ITR, the TR protocol generates
an infinite sequence of states, where all reached states belong to ITR. �
Faults. Intuitively, we capture the impact of faults on a program as state pertur-
bations. Formally, a class of faults f for a program p = 〈Vp, δp,Πp, Tp〉 is a subset
of Sp×Sp. We use p[]f to denote the transitions obtained by taking the union of
the transitions in δp and the transitions in f . We say that a state predicate T is
an f -span (read as fault-span) of p from a state predicate I iff the following two
conditions are satisfied: (1) I ⊆ T , and (2) T is closed in p[]f . Observe that for all
computations of p that start in I, the state predicate T is a superset of I in Sp up
to which the state of p may be perturbed by the occurrence of f transitions. We
say that a sequence of states, σ = 〈s0, s1, ...〉 is a computation of p in the presence
of f iff the following conditions are satisfied: (1) ∀j : j > 0 : (sj−1, sj)∈ (p[]f);
(2) if σ is finite and terminates in state sl, then there is no state s such that
(sl, s)∈δp, and (3) ∃n : n ≥ 0 : (∀j : j > n : (sj−1, sj)∈δp). The first requirement
captures that in each step, either a program transition or a fault transition is
executed. The second requirement captures that faults do not have to execute.
That is, if the only transition that starts from sl is a fault transition (sl, sf)
then as far as the program is concerned, sl is still a deadlock state because the
program does not have control over the execution of (sl, sf); i.e., (sl, sf) may or

22 A. Klinkhamer and A. Ebnenasir

may not be executed. Finally, the third requirement captures that the number
of fault occurrences in a computation is finite. This requirement is the same as
that made in previous work (e.g., [1,18,3,19]) to ensure that eventually recovery
can occur. In the same way that we use guarded commands to represent program
transitions, we use them to specify fault transitions. That is, the impact of faults
can be captured as a set of actions that update program variables.
TR Example. The TR protocol is subject to transient faults that can perturb its
state to an arbitrary state. For instance, the following action captures the impact
of faults on x0, where | denotes non-deterministic assignment of values to x0:

F0 : = true −→ x0 := 0|1|2;

The impact of faults on x1 and x2 are captured with two actions F1 and F2

symmetric to F0. �
Nonmasking fault tolerance and self-stabilization. Let I be a state predi-
cate closed in a program p and f be a class of faults. We say that p is nonmasking
f -tolerant from I iff there exists an f -span of p from I, denoted T , such that T
converges to I in p. That is, from any state s0 ∈ T , every computation of p that
starts in s0 reaches a state where I holds. We say that p is self-stabilizing from
I iff p is nonmasking f -tolerant from I, where T = true. That is, the f -span
of p is equal to Sp, and convergence to I is guaranteed from any state in Sp.
Notice that, to design recovery, one has to ensure that no deadlock states exist
in T−I, and no non-progress cycles exist in δp | (T−I). A non-progress cycle
(a.k.a. livelock) in δp | (T −I) is a sequence of states σ = 〈s0, s1, · · · , sm, s0〉,
where m ≥ 0, (si, si⊕1) ∈ δp and si ∈ (T −I), for i ∈ Nm+1 and ⊕ denotes
addition modulo m+ 1.

Proposition 1. A program p is nonmasking f-tolerant from I with a f-span T
iff there are no deadlock states in T−I and no non-progress cycles in δp | (T−I).
Note. In this paper, we analyze the complexity of adding convergence under the
assumption of no fairness.

3 Problem Statement

In this section, we represent the problem of adding nonmasking fault-tolerance
from [6]. Consider a fault-intolerant program p = 〈Vp, δp,Πp, Tp〉, a class of faults
f , and a state predicate I, where I is closed in p. Our objective is to generate
a revised version of p, denoted p′, such that p′ is nonmasking f -tolerant from
an invariant I ′. To separate fault tolerance from functional concerns, we would
like to preserve the behaviors of p in the absence of f during the addition of
fault tolerance. For this reason, during the synthesis of p′ from p, no states
(respectively, transitions) are added to I (respectively, δp|I). Thus, we have
I ′ ⊆ I and p′|I ′ ⊆ p|I ′. This way, if p′ starts in I ′ in the absence of faults, then
p′ will preserve the correctness of p; i.e., the added recovery does not interfere
with normal functionalities of p in the absence of faults. Moreover, if p′ starts
in a state outside I ′, then only recovery to I ′ will be provided by p′. Thus, we
formally state the problem as follows:

On the Complexity of Adding Convergence 23

Problem 1. Adding Nonmasking Fault Tolerance

– Input: (1) A program p = 〈Vp, δp,Πp, Tp〉; (2) A class of faults f ; (3) A
state predicate I such that I is closed in p, and (4) topological constraints
of p captured by read/write restrictions.

– Output: A program p′ = 〈Vp′ , δp′ ,Πp′ , Tp′〉 and a state predicate I ′ such
that the following constraints are met: (1) I ′ is non-empty and I ′ ⊆ I;
(2) δp′ |I ′ ⊆ δp|I ′; (3) Πp and Πp′ have the same number of processes and
Tp = Tp′ , and (4) p′ is nonmasking f -tolerant from I ′. ��
We state the corresponding decision problem as follows:

Problem 2. Decision Problem of Adding Nonmasking Fault Tolerance

– INSTANCE: (1) A program p = 〈Vp, δp,Πp, Tp〉; (2) A class of faults f ; (3)
A state predicate I such that I is closed in p, and (4) topological constraints
of p captured by read/write restrictions.

– QUESTION: Does there exist a program p′ = 〈Vp′ , δp′ ,Πp′ , Tp′〉 and a state
predicate I ′ such that the constraints of Problem 1 are met? ��
A special case of Problem 2 is where f denotes a class of transient faults,

I = I ′, δp′ |I ′ = δp|I ′, and p′ is self-stabilizing to I.

Problem 3. Decision Problem of Adding Convergence

– INSTANCE: (1) A program p = 〈Vp, δp,Πp, Tp〉; (2) A state predicate I such
that I is closed in p, and (3) topological constraints captured by read/write
restrictions.

– QUESTION: Does there exist a program pss with an invariant Iss such that
I = Iss, δpss

|Iss = δp|Iss, and pss is self-stabilizing to Iss? ��

4 Hardness Results

In this section, we illustrate that adding convergence to low atomicity programs
is NP-complete (in the size of the state space). This hardness result implies the
hardness of general case addition of nonmasking fault tolerance to low atom-
icity programs (i.e., Problem 2). Specifically, we demonstrate that, for a given
intolerant program p with an invariant I, adding convergence from Sp to I is an
NP-hard problem. Section 4.1 presents a polynomial-time mapping from 3-SAT
to an instance of Problem 3. Section 4.2 shows that the instance of 3-SAT is
satisfiable iff a self-stabilizing version of the instance of Problem 3 exists.

Problem 4. The 3-SAT decision problem.

– INSTANCE: A set V of n propositional variables (v0, · · · , vn−1) and k clauses
(C0, · · · , Ck−1) over V such that each clause is of the form (lq∨ lr∨ ls), where
q, r, s ∈ Nk and Nk = {0, 1, · · · , k − 1}. Each lr denotes a literal, where a
literal is either ¬vr or vr for vr ∈ V. We assume that ¬(q = r = s) holds for
all clauses; otherwise, the 3-SAT instance can efficiently be transformed to
a formula that meets this constraint.

24 A. Klinkhamer and A. Ebnenasir

– QUESTION: Is there a satisfying truth-value assignment for the variables in
V such that each Ci evaluates to true, for all i ∈ Nk?

Notation. We say lr is a negative (respectively, positive) literal iff it has the
form ¬vr (respectively, vr), where vr ∈ V. Consider a clause Ci = (lq ∨ lr ∨ ls).
We use a binary variable bij , where i ∈ Nk and j ∈ N3, to denote the sign of
the first, second, and the third literal in Ci. For example, if lq = ¬vq, lr = vr

and ls = ¬vs, then we have bi0 = 0, bi1 = 1 and bi2 = 0. Accordingly, for each
clause Ci, we define a tuple Bi = 〈bi0, bi1, bi2〉. Notice that, the binary variable bij
is independent from the indices of the literals in clause Ci and represents only
the positive/negative form of the three literals in Ci.

4.1 Polynomial Mapping

In this section, we present a polynomial-time mapping from an instance of 3-SAT
to the instance of Problem 3, denoted p = 〈Vp, δp,Πp, Tp〉. That is, correspond-
ing to each propositional variable and clause, we illustrate how we construct a
program p, its processes Πp, its variables Vp, its read/write restrictions and its
invariant I. We shall use this mapping in Section 4.2 to demonstrate that the
instance of 3-SAT is satisfiable iff convergence from Sp can be added to p.
Processes, variables, and read/write restrictions. We consider three
processes, P0, P1, and P2 in p. Each process Pj (j ∈ N3) has two variables
xj and yj , where the domain of xj is equal to Nn = {0, 1, · · · , n− 1} and yj is a
binary variable. (Notice that n denotes the number of propositional variables in
the 3-SAT instance.) The process Pj can read both xj and yj but can write only
yj . We also consider a fourth process P3 that can read all variables and write
a binary variable sat ∈ N2. The variable sat can be read by processes P0, P1,
and P2, but not written. That is, we have rj = {xj , yj , sat}, and wj = {yj} for

Fig. 1. Instance of Problem 3

On the Complexity of Adding Convergence 25

j ∈ N3, and r3 = {x0, y0, x1, y1, x2, y2, sat} and w3 = {sat} (see Figure 1). We
also have Vp = {x0, y0, x1, y1, x2, y2, sat}, and Πp = {P0, P1, P2, P3}.
Invariant/legitimate states. Inspired by the form of the 3-SAT instance and
its requirements, we define a state predicate Iss that denotes the invariant of p.

– Corresponding to each clause Ci = (lq∨lr∨ls), we construct a state predicate
PredCi ≡ (x0 = q =⇒ y0 = bi0) ∨ (x1 = r =⇒ y1 = bi1) ∨ (x2 = s =⇒
y2 = bi2). In other words, we have PredCi ≡ ((x0 = q) ∧ (x1 = r) ∧ (x2 =
s)) =⇒ ((y0 = bi0) ∨ (y1 = bi1) ∨ (y2 = bi2)). This way, we construct a state
predicate Clauses ≡ (∀i ∈ Nk : PredCi). Notice that we check the value of
each xj with respect to the index of the literal appearing in position j in Ci,
where j ∈ N3. This is due to the fact that the domain of xj is equal to the
range of the indices of propositional variables (i.e., Nn).

– A literal lr may appear in positions i and j in distinct clauses of 3-SAT,
where i, j ∈ N3 and i �= j. Since each propositional variable vr ∈ V gets
a unique truth-value in 3-SAT, the truth-value of lr is independent from
its position in the 3-SAT formula. Given the way we construct the state
predicate Clauses, it follows that, in the instance of Problem 3, whenever
xi = xj we should have yi = yj . Thus, we construct the state predicate
Iden ≡ (∀i, j ∈ N3 : (xi = xj =⇒ yi = yj)), which is conjoined with the
predicate Clauses.

– In the instance of Problem 3, we require that (sat = 1) holds in all invariant
states.

Thus, the invariant of p is equal to the state predicate Iss, where

Iss ≡ Iden ∧ Clauses ∧ (sat = 1)

Notice that, the size of the state space of p is equal to 2 (2n)3; i.e., |Sp| is
polynomial in the size of the 3-SAT instance.

Example 1. Example Construction

Let us consider the 3-SAT formula φ ≡ (v0 ∨ v1 ∨ v2) ∧ (¬v1 ∨ ¬v1 ∨ ¬v2) ∧
(¬v1 ∨ ¬v1 ∨ v2)∧ (v1 ∨ ¬v2 ∨ ¬v0). Since there are three propositional variables
and four clauses, we have n = 3 and k = 4. Moreover, based on the mapping
described before, we have C0 ≡ (v0 ∨ v1 ∨ v2), C1 ≡ (¬v1 ∨ ¬v1 ∨ ¬v2), C2 ≡
(¬v1∨¬v1∨v2) and C3 ≡ (v1∨¬v2∨¬v0). We have B0 = 〈1, 1, 1〉, B1 = 〈0, 0, 0〉,
B2 = 〈0, 0, 1〉 and B3 = 〈1, 0, 0〉. The state predicate Iden is defined as before
and Clauses is the conjunction of each PredCi (i ∈ N4) defined as follows:

PredC0 ≡ (x0 = 0 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 1 ∨ y1 = 1 ∨ y2 = 1)
PredC1 ≡ (x0 = 1 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 0 ∨ y1 = 0 ∨ y2 = 0)
PredC2 ≡ (x0 = 1 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 0 ∨ y1 = 0 ∨ y2 = 1)
PredC3 ≡ (x0 = 1 ∧ x1 = 2 ∧ x2 = 0) =⇒ (y0 = 1 ∨ y1 = 0 ∨ y2 = 0)

26 A. Klinkhamer and A. Ebnenasir

4.2 Correctness of Reduction
In this section, we illustrate that Problem 3 is NP-complete. Specifically, we
show that the instance of 3-SAT is satisfiable iff convergence from Sp to Iss can
be added to the instance of Problem 3, denoted p.

Lemma 1. If the instance of 3-SAT has a satisfying valuation, then convergence
from Sp can be added to the instance of Problem 3; i.e., there is a self-stabilizing
version of p, denoted pss.

Let there be a truth-value assignment to the propositional variables in V such
that every clause evaluates to true; i.e., ∀i : i ∈ Nk : Ci. Initially, δp = ∅ and δp =
δpss

. Based on the value assignments to propositional variables, we include a set
of transitions (represented as convergence actions) in pss. Then, we illustrate that
the following three properties hold: the invariant Iss ≡ Clauses∧Iden∧(sat = 1)
remains closed in pss, deadlock-freedom in ¬Iss, and livelock-freedom in pss|¬Iss.

– If a propositional variable vr (where r ∈ Nn) is assigned true, then we include
the following action in each process Pj , where j ∈ N3: xj = r∧yj = 0∧sat =
0→ yj := 1.

– If a propositional variable vr (where r ∈ Nn) is assigned false, then we include
the following action in each process Pj , where j ∈ N3: xj = r∧yj = 1∧sat =
0→ yj := 0.

– We include the following actions in P3: (Iden ∧ Clauses)∧sat = 0→ sat :=
1 and ¬ (Iden ∧ Clauses) ∧ sat = 1→ sat := 0.

Now we illustrate that closure, deadlock-freedom, and livelock-freedom hold.
That is, the resulting program is self-stabilizing to Iss.
Closure. Since the first three processes can execute an action only in states
where sat = 0, their actions are disabled where sat = 1. Thus, the first three
processes exclude any transition that starts in Iss; i.e., preserving the closure
of Iss and ensuring pss|Iss ⊆ p|Iss. Moreover, P3 takes an action only when its
guards are enabled; i.e., in illegitimate states. Therefore, none of the included
actions violate the closure of Iss, and the second constraint of the output of
Problem 1 holds.
Livelock Freedom. To show livelock-freedom, we illustrate that the included
actions have no circular dependencies. That is, no set of actions can enable
each other in a cyclic fashion. Due to read/write restrictions, none of the three
processes P0, P1, and P2 executes based on the local variables of another process.
Moreover, each process can update only its own y value. Once any one of the
processes P0, P1, and P2 updates its y value, it disables itself. Thus, the actions of
one process cannot enable/disable another process. Moreover, since each action
disables itself, there are no self-loops either. The guards of the actions of P3 can-
not be simultaneously true. Moreover, once one of them is enabled, the other one
is certainly disabled, and the execution of one cannot enable another (because
they only update the value of sat). Only processes P0, P1, and P2 can make the
predicate (Iden∧Clauses) true when sat = 0. Once P3 sets sat to 1 from states

On the Complexity of Adding Convergence 27

(Iden ∧ Clauses) ∧ (sat = 0), a state in Iss is reached. Therefore, there are no
cycles that start in ¬Iss and exclude any state in Iss.
Deadlock Freedom. We illustrate that, in every state in ¬Iss ≡ (¬(Iden ∧
Clauses) ∨ (sat = 0)), there is at least one action that is enabled.

– Case 1: ((Iden∧Clauses)∧(sat = 0)) holds. In these states, the first action
of P3 is enabled. Thus, there are no deadlocks in this case.

– Case 2: (¬(Iden ∧ Clauses) ∧ (sat = 1)) holds. In this case, the second
action of P3 is enabled. Thus, there are no deadlocks in this case.

– Case 3: (¬(Iden ∧ Clauses) ∧ (sat = 0)) holds. None of the actions of P3

are enabled in this case. Nonetheless, since ¬(Iden ∧ Clauses) holds, either
¬Iden or ¬Clauses, or both are true. When ¬Clauses holds, there must be
some state predicate PredCi (i ∈ Nk) that is false. (Recall that, the invariant
Iss includes a state predicate PredCi ≡ (x0 = q =⇒ y0 = bi0) ∨ (x1 =
r =⇒ y1 = bi1) ∨ (x2 = s =⇒ y2 = bi2) corresponding to each clause
Ci ≡ (lq ∨ lr ∨ ls) in the instance of 3-SAT.) This means that the following
three state predicates are false: (x0 = q =⇒ y0 = bi0), (x1 = r =⇒ y1 = bi1)
and (x2 = s =⇒ y2 = bi2). Since the instance of 3-SAT is satisfiable, at least
one of the literals lq, lr, or ls must be true. As a result, based on the way we
have included the actions depending on the truth-values of the propositional
variables, at least one of the following actions must have been included in
pss: (x0 = q ∧ y0 �= bi0 ∧ sat = 0)→ y0 := bi0, (x1 = r ∧ y1 �= bi1 ∧ sat = 0)→
y1 := bi1, and (x2 = s ∧ y2 �= bi2 ∧ sat = 0) → y2 := bi2. Thus, there is some
action that is enabled when ¬Clauses holds. A similar reasoning implies
that there exists some action that is enabled when ¬Iden holds. Thus, there
are no deadlocks in Case 3.

Based on the closure of the invariant Iss in all actions, deadlock-freedom in
¬Iss, and lack of non-progress cycles in pss|¬Iss, it follows that the resulting
program pss is self-stabilizing to Iss. ��
Example 2. Example Construction
In the example discussed in this section, the formula φ has a satisfying assign-
ment for v0 = 1, v1 = 0, v2 = 0. Using this value assignment, we include the
following actions in the first three processes Pr where r ∈ N3:

xr = 0 ∧ yr = 0 ∧ sat = 0→ yr := 1
xr = 1 ∧ yr = 1 ∧ sat = 0→ yr := 0
xr = 2 ∧ yr = 1 ∧ sat = 0→ yr := 0

The actions of P3 are as follows:

(Iden ∧ Clauses) ∧ sat = 0→ sat := 1
¬(Iden ∧ Clauses) ∧ sat = 1→ sat := 0

Figure 2 illustrates the transitions of the stabilizing program pss originating
in the state predicate (x0 = 0 ∧ x1 = 1 ∧ x2 = 2). Each state is represented

28 A. Klinkhamer and A. Ebnenasir

Fig. 2. Transitions originating in the state predicate x0 = 0 ∧ x1 = 1 ∧ x2 = 2

by four bits which signify the respective values of y0, y1, y2, sat. Invariant states
are depicted by ovals, and the label on each transition denotes the executing
process.

Lemma 2. If there is a self-stabilizing version of the instance of Problem 3,
then the corresponding 3-SAT instance has a satisfying valuation.

By assumption, we consider a program pss to be a self-stabilizing version of
p from Iss. That is, pss satisfies the requirements of Problem 3.
Only P3 can correct (sat = 0). Clearly, pss must preserve the closure of Iss,
and should not have any deadlocks or livelocks in the states in ¬Iss ≡ (¬(Iden∧
Clauses) ∨ (sat = 0)). Thus, pss must include actions that correct ¬(Iden ∧
Clauses) and (sat = 0). Since pss must adhere to the read/write restrictions of
p, only P3 can correct (sat = 0) to (sat = 1). For the same reason, P3 cannot
contribute to correcting ¬(Iden ∧ Clauses); only P0, P1, and P2 have the write
permissions to do so by updating their own y values.

The rest of the reasoning is as follows: We first illustrate that P0, P1, and P2 in
pss must not execute in states where (sat = 1). Then, we draw a correspondence
between actions included in pss and how propositional variables get unique truth-
values in 3-SAT and how the clauses are satisfied.
P0, P1, and P2 can be enabled only when (sat = 0). We observe that
no process Pj (j ∈ N3) can have a transition that starts in the invariant Iss;
otherwise, the constraint δpss

|Iss ⊆ δp|Iss would be violated. We also show that
no recovery action of P0, P1, and P2 can include a transition that starts in a
state where sat = 1. By contradiction, assume that some Pj (j ∈ N3) includes
a transition (s0, s1) where s0 ∈ ¬Iss and sat(s0) = 1 for some fixed values of xj

and yj . Since Pj cannot read xi and yi of other processes Pi, where (i ∈ N3)∧(i �=
j), the transition (s0, s1) has a groupmate (s′

0, s
′
1), where xi(s′

0) = xj(s′
0) and

yi(s′
0) = yj(s′

0) for all i ∈ N3 where (i �= j). Thus, Iden is true at s′
0. Moreover,

due to the form of the 3-SAT instance, no clause (lq ∨ lr ∨ ls) exists such that

On the Complexity of Adding Convergence 29

(q = r = s). Thus, Clauses holds at s′
0 as well, thereby making s′

0 an invariant
state. As a result, (s0, s1) is grouped with a transition that starts in Iss, which
again violates the constraint δpss

|Iss ⊆ δp|Iss. Hence, P0, P1, and P2 can be
enabled only when (sat = 0).
Actions of P3. We show that P3 must set sat to 0 when ¬(Iden ∧ Clauses) ∧
sat = 1 and may only assign sat to 1 when (Iden ∧ Clauses) ∧ sat = 0. As
shown above, P0, P1, and P2 cannot act when sat = 1, forcing P3 to execute
from ¬(Iden∧Clauses)∧ (sat = 1). P3 must therefore have the action ¬(Iden∧
Clauses) ∧ sat = 1 → sat := 0. Consequently, P3 cannot assign sat to 1 when
¬(Iden ∧ Clauses) ∧ sat = 0; otherwise, it would create a livelock with the
previous action. From states where (Iden ∧ Clauses) ∧ sat = 0 holds, P3 is the
only process which can change sat to 1, thereby reaching an invariant state.
Thus, P3 must include the actions ¬(Iden ∧Clauses) ∧ sat = 1→ sat := 0 and
(Iden ∧ Clauses) ∧ sat = 0→ sat := 1.
Each Pj , for j ∈ N3 must have exactly one action for each unique value
of xj . When sat = 0, fixing the value of xj to some a ∈ Nn reduces the possible
local states for process Pj to 2, where yj = 0 or yj = 1 for j ∈ N3. (Notice that
both of these states are illegitimate since sat = 0.) Thus, when (xj = a∧sat = 0)
holds, process Pj has 4 possible actions: yj = 0 → yj := 0, yj = 0 → yj := 1,
yj = 1→ yj := 0, and yj = 1→ yj := 1. It is clear that the first and last of those
actions are self-loops and cannot be included. Thus, Pj can have either action
yj = 0→ yj := 1 or yj = 1→ yj := 0, but not both without creating a livelock.
That is, Pj cannot have more than 1 action. Additionally, to make Iden true,
Pj must include some action. By contradiction, assume that Pj has no actions.
Another process Pi (i ∈ N3, i �= j) can have xi = xj in a non-invariant state.
There are two possibilities for the y values in this state, yj = 0 ∧ yi = 1 or
yj = 1∧ yi = 0. Pi can resolve either scenario with an action but cannot resolve
both as this would require 2 actions. That is, to resolve both cases Pi needs the
cooperation of Pj . Thus, Pj must have some action. Since Pj cannot have more
than one action, it follows that Pj has exactly one action.
Truth-value assignment to propositional variables. Based on the above
reasoning, for each value a ∈ Nn, if a process Pj includes the action xj = a∧yj =
0 ∧ sat = 0 → yj := 1, then we assign true to the propositional variable va. If
Pj includes the action xj = a ∧ yj = 1 ∧ sat = 0 → yj := 0, then we assign
false to va. Let Pj include the action xj = a ∧ yj = 0 ∧ sat = 0 → yj := 1. By
contradiction, if another process Pi, where i ∈ N3 ∧ i �= j, includes the action
xi = a∧ yi = 1∧ sat = 0→ yi := 0, then Iden would be violated and pss would
never recover from the state xj = a ∧ xi = a ∧ yj = 1 ∧ yi = 0 ∧ sat = 0; i.e.,
a deadlock state, which is a contradiction with pss being self-stabilizing. Thus,
each propositional variable gets a unique truth-value assignment and these value
assignments are logically consistent.
Satisfying the clauses. Since pss is self-stabilizing from Iss, eventually Iss

becomes true. This means that every PredCi in the Clauses predicate becomes
true. The one-to-one correspondence created by the mapping between each state
predicate PredCi and each clause Ci implies that PredCi holds iff at least

30 A. Klinkhamer and A. Ebnenasir

one literal in Ci holds. Therefore, all clauses are satisfied with the truth-value
assignment based on the actions of pss. ��
Theorem 1. Adding convergence to low atomicity programs is NP-complete.

Proof. The NP-hardness of adding convergence follows from Lemmas 1 and 2.
The NP membership of adding convergence has already been established in [6];
hence the NP-completeness. ��
Corollary 1. Adding nonmasking fault tolerance to low atomicity programs is
NP-complete.

Corollary 1 follows from Theorem 1 and the fact that Problem 3 is a special
case of Problem 2.

5 Discussion

This section discusses extant work in three most related categories: algorithmic
design of fault tolerance in general, algorithmic design of self-stabilization in par-
ticular, and complexity of algorithmic design. Several researchers have investi-
gated the problem of algorithmic design of fault-tolerant systems [6,20,21,22,23],
where a specific level of fault tolerance (e.g., failsafe, nonmasking or masking)
is systematically incorporated in an existing program. Kulkarni and Arora [6]
present a family of polynomial-time algorithms for the addition of different levels
of fault tolerance to high atomicity programs, while demonstrating that adding
masking fault tolerance to low atomicity programs is NP-complete. In our pre-
vious work [20], we establish a foundation for the addition of fault tolerance to
low atomicity programs using efficient heuristics and component-based methods.
Jhumka et. al [21,22] investigate the addition of failsafe fault tolerance under effi-
ciency constraints. Bonakdarpour and Kulkarni [23] exploit symbolic techniques
to increase the scalability of the addition of fault tolerance.

Existing methods for the algorithmic design of convergence include constraint-
based methods [24] and sound heuristics [25,26]. Abujarad and Kulkarni [24] con-
sider the program invariant as a conjunction of a set of local constraints, each
representing the set of local legitimate states of a process. Then, they synthesize
convergence actions for correcting the local constraints without corrupting the
constraints of neighboring processes. Nonetheless, they do not explicitly address
cases where local constraints have cyclic dependencies (e.g., maximal matching
on a ring), and their case studies include only acyclic topologies. In our previous
work [25,26], we present a method where we partition the state space to a hier-
archy of state predicates based on the length of the shortest computation prefix
from each state to some state in the invariant. Then, we systematically explore
the space of all candidate recovery transitions that could contribute in recovery
to the invariant without creating non-progress cycles outside the invariant.

Most hardness results [6,8,27] presented for the addition of fault tolerance
lack the additional constraint of recovery from any state, which we have in the
addition of convergence. The proof of NP-hardness of adding failsafe fault toler-
ance presented in [8] is based on a reduction from 3-SAT, nonetheless, a failsafe
fault-tolerant program does not need to recover to its invariant when faults occur.

On the Complexity of Adding Convergence 31

While a masking fault-tolerant program is required to recover to its invariant in
the presence of faults, the problem of adding masking fault tolerance relies on
finding a subset of the state space from where such recovery is possible; no need
to provide recovery from any state. As such, the hardness proof presented in [6]
is based on a reduction in which such a subset of state space is identified along
with corresponding convergence actions if and only if the instance of 3-SAT is
satisfiable. This means that some states are allowed to be excluded from the fault
span; this is not an option in the case of adding convergence. The essence of the
proof in [27] also relies on the same principle where Bonakdarpour and Kulka-
rni illustrate the NP-hardness of designing progress from one state predicate to
another for low atomicity programs.

6 Conclusions and Future Work

This paper illustrates that adding convergence to low atomicity programs is
an NP-complete problem, where convergence guarantees that from any state
program computations recover to a set of legitimate states; i.e., invariant. In
other words, we demonstrated that designing self-stabilizing programs from their
non-stabilizing versions is NP-complete in the size of the state space. Since
self-stabilization is a special case of nonmasking fault tolerance, it follows that
adding nonmasking fault tolerance to intolerant distributed programs is also NP-
complete. When faults occur, a nonmasking program guarantees recovery from
states reached due to the occurrence of faults to its invariant. In the absence of
faults, the computations of a nonmasking program remain in its invariant. Thus,
this paper solves a decade-old open problem [6]. As an extension of this work,
we will investigate special cases where the addition of convergence/nonmasking
can be performed efficiently. That is, for what programs, classes of faults and
invariants the addition of convergence/nonmasking can be done in polynomial
time? Moreover, while we analyzed the general case complexity of adding conver-
gence/nonmasking tolerance under no fairness assumption, it would be interest-
ing to investigate the impact of different fairness assumptions on the complexity
of adding convergence.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

2. Arora, A.: A foundation of fault-tolerant computing. PhD thesis, The University
of Texas at Austin (1992)

3. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

4. Liu, Z., Joseph, M.: Transformation of programs for fault-tolerance. Formal Aspects
of Computing 4(5), 442–469 (1992)

5. Arora, A., Gouda, M., Varghese, G.: Constraint satisfaction as a basis for designing
nonmasking fault-tolerant systems. Journal of High Speed Networks 5(3), 293–306
(1996)

32 A. Klinkhamer and A. Ebnenasir

6. Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems, pp. 82–93. Springer, London
(2000)

7. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21,
181–185 (1985)

8. Kulkarni, S.S., Ebnenasir, A.: Complexity issues in automated synthesis of failsafe
fault-tolerance. IEEE Transactions on Dependable and Secure Computing (TDSC)
2(3), 201–215 (2005)

9. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

10. Davis, M., Putnam, H.: A computing procedure for quantification theory. Commu-
nications of the ACM 7(3), 201–215 (1960)

11. Ebnenasir, A., Kulkarni, S.S.: SAT-based synthesis of fault-tolerance. In: Fast
Abstracts of the International Conference on Dependable Systems and Networks
(2004)

12. Gouda, M.: The triumph and tribulation of system stabilization. In: Helary, J.-M.,
Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 1–18. Springer, Heidelberg
(1995)

13. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

14. Lamport, L., Lynch, N. : Handbook of Theoretical Computer Science: Chapter 18,
Distributed Computing: Models and Methods. Elsevier Science Publishers B. V.
(1990)

15. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal
of Parallel and Distributed Computing 62(5), 766–791 (2002)

16. Demirbas, M., Arora, A.: Convergence refinement. In: Proceedings of the 22nd
International Conference on Distributed Computing Systems, pp. 589–597. IEEE
Computer Society, Washington, DC (2002)

17. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1990)
18. Arora, A., Kulkarni, S.S.: Designing masking fault-tolerance via nonmasking fault-

tolerance. IEEE Transactions on Software Engineering 24(6), 435–450 (1998)
19. Varghese, G.: Self-stabilization by local checking and correction. PhD thesis,

MIT/LCS/TR-583 (1993)
20. Ebnenasir, A.: Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan State

University (May 2005)
21. Jhumka, A.: Automated design of efficient fail-safe fault tolerance. PhD thesis,

Darmstadt University of Technology (2004)
22. Jhumka, A., Freiling, F.C., Fetzer, C., Suri, N.: An approach to synthesise safe

systems. International Journal of Security and Networks 1(1/2), 62–74 (2006)
23. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic techniques in automated

synthesis of distributed programs with large state space. In: Proceedings of the
27th International Conference on Distributed Computing Systems, pp. 3–10. IEEE
Computer Society, Washington, DC (2007)

24. Abujarad, F., Kulkarni, S.S.: Automated constraint-based addition of nonmasking
and stabilizing fault-tolerance. Theoretical Computer Science 412(33), 4228–4246
(2011)

25. Farahat, A., Ebnenasir, A.: A lightweight method for automated design of con-
vergence in network protocols. ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 7(4), 38:1–38:36 (2012)

On the Complexity of Adding Convergence 33

26. Ebnenasir, A., Farahat, A.: Swarm synthesis of convergence for symmetric proto-
cols. In: Proceedings of the Ninth European Dependable Computing Conference,
pp. 13–24 (2012)

27. Bonakdarpour, B., Kulkarni, S.S.: Revising distributed UNITY programs is NP-
complete. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol.
5401, pp. 408–427. Springer, Heidelberg (2008)

Deadlock Checking by Data Race Detection

Ka I Pun1, Martin Steffen1, and Volker Stolz1,2

1 University of Oslo, Norway
2 United Nations University—Intl. Inst. for Software Technology, Macao, China

Abstract. Deadlocks are a common problem in programs with lock-
based concurrency and are hard to avoid or even to detect. One way for
deadlock prevention is to statically analyze the program code to spot
sources of potential deadlocks.

We reduce the problem of deadlock checking to race checking, another
prominent concurrency-related error for which good (static) checking
tools exist. The transformation uses a type and effect-based static analy-
sis, which analyzes the data flow in connection with lock handling to find
out control-points that are potentially part of a deadlock. These control-
points are instrumented appropriately with additional shared variables,
i.e., race variables injected for the purpose of the race analysis. To avoid
overly many false positives for deadlock cycles of length longer than two,
the instrumentation is refined by adding “gate locks”. The type and effect
system and the transformation are formally given. We prove our analysis
sound using a simple, concurrent calculus with re-entrant locks.

1 Introduction

Concurrent programs are notoriously hard to get right and at least two factors
contribute to this fact: Correctness properties of a parallel program are often
global in nature, i.e., result from the correct interplay and cooperation of mul-
tiple processes. Hence also violations are non-local, i.e., they cannot typically
be attributed to a single line of code. Secondly, the non-deterministic nature of
concurrent executions makes concurrency-related errors hard to detect and to
reproduce. Since typically the number of different interleavings is astronomical
or infinite, testing will in general not exhaustively cover all behavior and errors
may remain undetected until the software is in use.

Arguably the two most important and most investigated classes of concur-
rency errors are data races [3] and deadlocks [9]. A data race is the simultane-
ous, unprotected access to mutable shared data with at least one write access. A
deadlock occurs when a number of processes are unable to proceed, when waiting
cyclically for each other’s non-shareable resources without releasing one’s own
[7]. Deadlocks and races constitute equally pernicious, but complementary haz-
ards: locks offer protection against races by ensuring mutually exclusive access,
but may lead to deadlocks, especially using fine-grained locking, or are at least
detrimental to the performance of the program by decreasing the degree of par-
allelism. Despite that, both share some commonalities, too: a race, respectively

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 34–50, 2013.
DOI: 10.1007/978-3-642-40213-5 3,
c© IFIP International Federation for Information Processing 2013

Deadlock Checking by Data Race Detection 35

a deadlock, manifests itself in the execution of a concurrent program, when two
processes (for a race) resp. two or more processes (for a deadlock) reach respec-
tive control-points that when reached simultaneously, constitute an unfortunate
interaction: in case of a race, a read-write or write-write conflict on a shared
variable, in case of a deadlock, running jointly into a cyclic wait.

In this paper, we define a static analysis for multi-threaded programs which
allows reducing the problem of deadlock checking to race condition checking.
The analysis is based on a type and effect system [2] which formalizes the data-
flow of lock usages and, in the effects, works with an over-approximation on
how often different locks are being held. The information is used to instrument
the program with additional variables to signal a race at control points that
potentially are involved in a deadlock. Despite the fact that races, in contrast
to deadlocks, are a binary global concurrency error in the sense that only two
processes are involved, the instrumentation is not restricted to deadlock cycles
of length two. To avoid raising too many spurious alarms when dealing with
cycles of length > 2, the transformation adds additional locks, to prevent that
already parts of a deadlock cycle give raise to a race, thus falsely or prematurely
indicating a deadlock by a race.

Our approach widens the applicability of freely available state-of-the-art sta-
tic race checkers: Goblint [20] for the C language, which is not designed to
do any deadlock checking, will report appropriate data races from programs
instrumented through our transformation, and thus becomes a deadlock checker
as well. Chord [15] for Java only analyses deadlocks of length two for Java’s
synchronized construct, but not explicit locks from java.util.concurrent, yet
through our instrumentation reports corresponding races for longer cycles and
for deadlocks involving explicit locks.

The remainder of the paper is organised as follows. Section 2 presents syntax
and operational semantics of the calculus. Afterwards, Section 3 formalizes the
data flow analysis in the form of a (constraint-based) effect system. The obtained
information is used in Sections 4 and 5 to instrument the program with race
variables and additional locks. The sections also prove the soundness of the
transformation. We conclude in Section 6 discussing related and future work.

2 Calculus

In this section we present the syntax and (operational) semantics for our cal-
culus, formalizing a simple, concurrent language with dynamic thread creation
and higher-order functions. Locks likewise can be created dynamically, they are
re-entrant and support non-lexical use of locking and unlocking. The abstract
syntax is given in Table 1. A program P consists of a parallel composition of
processes p〈t〉, where p identifies the process and t is a thread, i.e., the code
being executed. The empty program is denoted as ∅. As usual, we assume ‖ to
be associative and commutative, with ∅ as neutral element. As for the code we
distinguish threads t and expressions e, where t basically is a sequential compo-
sition of expressions. Values are denoted by v, and let x:T = e in t represents

36 K. I. Pun, M. Steffen, and V. Stolz

Listing 1. Dining Philosophers

let l1 = new L; . . .; ln = new L /* create all locks */

phil = fun F(x,y) . (x.lock; y.lock; /* eat */

y.unlock; x.unlock; /* think */

F(x,y))

in spawn(phil(l1,l2)); . . . ; spawn(phil(ln,l1))

Table 1. Abstract syntax

the sequential composition of e followed by t, where the eventual result of e, i.e.,
once evaluated to a value, is bound to the local variable x. Expressions, as said,
are given by e, and threads are among possible expressions. Further expressions
are function application, conditionals, and the spawning of a new thread, writ-
ten spawn t. The last three expressions deal with lock handling: new L creates a
new lock (initially free) and gives a reference to it (the L may be seen as a class
for locks), and furthermore v. lock and v. unlock acquires and releases a lock,
respectively. Values, i.e., evaluated expressions, are variables, lock references,
and function abstractions, where we use fun f :T1.x:T2.t for recursive function
definitions. Note that the grammar insists that, e.g., in an application, both the
function and the arguments are values, analogously when acquiring a lock, etc.
This form of representation is known as a-normal form [11].

Listing 1 shows the paraphrased code for the well-known Dining Philosopher
example. The recursive body used for each philosopher is polymorphic in the
lock locations.

The grammar for types, effects, and annotations is given Table 2, where
π represents labels (used to label program points where locks are created), r
represents (finite) sets of πs, where ρ is a corresponding variable. Labels π are
an abstraction of concrete lock references which exist at run-time (namely all
those references created at that program point) and therefore we refer to labels
π as well as lock sets r also as abstract locks. Types include basic types B
such as integers, booleans, etc., left unspecified, function types T̂1

ϕ−→ T̂2, and in
particular lock types L. To capture the data flow concerning locks, the lock types
are annotated with a lock set r, i.e., they are of the form Lr. This information will
be inferred, and the user, when using types in the program, uses types without
annotations (the “underlying” types). We write T, T1, T2, . . . as meta-variables
for the underlying types, and T̂ and its syntactic variants for the annotated types,
as given in the grammar. Furthermore, polymorphism for function definition is
captured by type schemes Ŝ, i.e., types prefix-quantified over variables ρ and
X, under some constraints. We let Y abbreviate either variables ρ or X, where

Deadlock Checking by Data Race Detection 37

Table 2. Types

X is a variable for effect which is introduced later. Any specialization of the
type scheme ∀�Y :C.T̂ has to satisfy the constraints C. For the deadlock and
race analysis we need not only information which locks are used where, but
also an estimation about the “value” of the lock, i.e., how often the abstractly
represented locks are taken.

Estimation of the lock values, resp. their change is captured in the behavioral
effects ϕ in the form of pre- and post-specifications Δ1 → Δ2. Abstract states
(or lock environments) Δ are of the form r0:n0, r1:n1, The constraint based
type system works on lock environments using variables only, i.e., the Δ are of
the form ρ0:n0, ρ1:n1, . . ., maintaining that each variable occurs at most once.
Thus, in the type system, the environments Δ are mappings from variables ρ
to lock counter values n, where n ranges from +∞ to −∞. As for the syntactic
representation of those mappings: we assume that a variable ρ not mentioned
in Δ corresponds to the binding ρ:0, e.g. in the empty mapping •. Constraints
C finally are finite sets of subset inclusions of the forms ρ 	 r and X ≥ Δ.
We assume that the user provides the underlying types, i.e., without location
and effect annotation, while our type system in Section 3 derives the smallest
possible type in terms of originating locations for each variable of lock-type L in
the program.

Semantics

Next we present the operational semantics, given in the form of a small-step
semantics, distinguishing between local and global steps (cf. Tables 3 and 4).
The local semantics deals with reduction steps of one single thread of the form
t1 −→ t2. Rule R-Red is the basic evaluation step which replaces the local
variable in the continuation thread t by the value v (where [v/x] represents
capture-avoiding substitution). The Let-construct generalizes sequential compo-
sition and rule R-Let restructures a nested let-construct expressing associativity
of that construct. Thus it corresponds to transforming (e1; t1); t2 into e1; (t1; t2).
Together with the first rule, it assures a deterministic left-to-right evaluation
within each thread. The two R-If-rules cover the two branches of the condi-
tional and the R-App-rules deals with function application (of non-recursive,
resp. recursive functions).

The global steps are given in Table 4, formalizing transitions of configurations
of the form σ � P , i.e., the steps are of the form σ � P −→ σ′ � P ′, where P is a

38 K. I. Pun, M. Steffen, and V. Stolz

Table 3. Local steps

Table 4. Global steps

program, i.e., the parallel composition of a finite number of threads running in
parallel, and σ is a finite mapping from lock identifiers to the status of each lock
(which can be either free or taken by a thread where a natural number indicates
how often a thread has acquired the lock, modelling re-entrance). Thread-local
steps are lifted to the global level by R-Lift. Rule R-Par specifies that the
steps of a program consist of the steps of the individual threads, sharing σ.
Executing the spawn-expression creates a new thread with a fresh identity which
runs in parallel with the parent thread (cf. rule R-Spawn). Globally, the process
identifiers are unique. A new lock is created by new L (cf. rule R-NewL) which
allocates a fresh lock reference in the heap. Initially, the lock is free. A lock l
is acquired by executing l.lock. There are two situations where that command
does not block, namely the lock is free or it is already held by the requesting
process p. The heap update σ +p l is defined as follows: If σ(l) = free, then
σ +p l = σ[l �→ p(1)] and if σ(l) = p(n), then σ +p l = σ[l �→ p(n + 1)]. Dually
σ −p l is defined as follows: if σ(l) = p(n + 1), then σ −p l = σ[l �→ p(n)], and
if σ(l) = p(1), then σ −p l = σ[l �→ free]. Unlocking works correspondingly, i.e.,
it sets the lock as being free resp. decreases the lock count by one (cf. rule
R-Unlock). In the premise of the rules it is checked that the thread performing
the unlocking actually holds the lock.

Deadlock Checking by Data Race Detection 39

To analyze deadlocks and races, we specify which locks are meant statically
by labelling the program points of lock creations with π, i.e., lock creation state-
ments new L are augmented to newπ L where the annotations π are assumed
unique for a given program. We assume further that the lock references l are
also labelled lρ; the labelling is done by the type system presented next.

3 Type and Effect System

Next we present a constraint-based type and effect system for information which
locks are being held at various points in the code. The analysis works thread-
locally, i.e., it analyzes the code of one thread. In Section 4, we will use this infor-
mation to determine points in a program, that globally may lead to deadlocks
and which are then instrumented appropriately by additional race variables. The
judgments of the system are of the form

Γ � e : T̂ :: ρ;C , (1)

where ρ is of the form Δ1 → Δ2. Equivalently, we write also Γ ;Δ1 � e : T̂ ::
Δ2;C for the judgment. The judgment expresses that e is of type T̂ , where
for annotated lock types of the form Lr the r expresses the potential points
of creation of the lock. The effect ϕ = Δ1 → Δ2 expresses the change in the
lock counters, where Δ1 is the pre-condition and Δ2 the post-condition (in a
partial correctness manner). The types and the effects contain variables ρ and
X; hence the judgement is interpreted relative to the solutions of the set of
constraints C. Given Γ and e, the constraint set C is generated during the
derivation. Furthermore, the pre-condition Δ1 is considered as given, whereas
Δ2 is derived.

The rules for the type system are given in Table 5. The rule TA-Var com-
bines looking up the variable from the context with instantiation, choosing fresh
variables to assure that the constraints θC, where C is taken from the vari-
able’s type scheme, are most general. As a general observation and as usual,
values have no effect, i.e., its pre- and post-condition are identical. Also lock
creation in rule TA-NewL does not have an effect. As for the flow: π labels
the point of creation of the lock; hence a new constraint is generated, requiring
ρ 	 {π} for the ρ-annotation in the lock type. The case for lock references lρ in
rule TA-LRef works analogously, where the generated constraint uses the lock
variable ρ instead of the concrete point of creation.

For function abstraction in rule TA-Abs1, the premise checks the body e of
the function with the typing context extended by x:T �A, where the operation
T �A turns all occurrences of lock types L in T into their annotated counter-
parts using fresh variables, as well as introducing state variables for the latent
effects of higher-order functions. Also for the pre-condition of the function body,
a fresh variable is used. The recursive function is also formulated similarly. It
uses in addition a fresh variable for the post-condition of the function body,
and constraints requiring X2 ≥ Δ2 and T̂2 ≥ T̂ ′

2 are generated. For function
application (cf. rule TA-App), the subtyping requirement between the type T̂2

40 K. I. Pun, M. Steffen, and V. Stolz

Table 5. Constraint based type and effect system

of the argument and the function’s input type T̂ ′
2 is used to generate additional

constraints. Furthermore, the precondition Δ of the application is connected
with the precondition of the latent effect Δ1 and the post-condition of the latent
effect with the post-condition of the application, the latter one using again a fresh
variable. The corresponding two constraints Δ ≤ Δ1 and Δ2 ≤ X represent the
control flow when calling, resp. when returning to the call site. The treatment of
conditionals is standard (cf. rule TA-Cond). To assure that the resulting type
is an upper bound for the types of the two branches, two additional constraints
C and C ′ are generated.

The let-construct (cf. rule TA-Let) is combined with the rule for general-
ization, such that for checking the body e2, the typing context is extended by
a type scheme Ŝ1 which generalizes the type T̂1 of expression e1. The close-
operation is defined as close(Γ,C, T̂) = ∀�Y :C.T̂ where the quantifier binds all
variables occurring free in C and T̂ but not in Γ . Spawning a thread in rule
TA-Spawn has no effect, where the premise of the rule checks well-typedness of
the thread being spawned. The last two rules deal with locking and unlocking,

Deadlock Checking by Data Race Detection 41

simply counting up, resp. down the lock counter, setting the post-condition to
over-approximate Δ⊕ ρ, resp. Δ� ρ.

The type system is basically a single-threaded analysis. For subject reduction
later and soundness of the analysis, we also need to analyse processes running in
parallel. The definition is straightforward, since a global program is well-typed
simply if all its threads are. For one thread, p〈t〉 : p〈ϕk;C〉, if � t : T̂ :: ϕ;C for
some type T̂ . We will abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 by Φ.

Constraints C come in two forms: r � ρ and X1 ≤ X2 ⊕ (ρ:n) resp. X1 ≤
X2 � (ρ:n). We consider both kinds of constraints as independent, in particular
a constraint of the form X1 ≤ X2 ⊕ (ρ:n) is considered as a constraint between
the two variables X1 and X2 and not as a constraint between X1, X2, and
ρ. Given C, we write Cρ for the ρ-constraints in C and CX for the constraints
concerning X-variables. Solutions to the constraints are ground substitutions; we
use θ to denote substitutions. analogous to the distinction for the constraints,
we write θρ for substitutions concerning the ρ-variables and θX for substitutions
concerning the X-variables. A ground θρ-substitution maps ρ’s to finite sets
{π1, . . . , πn} of labels and a ground θX -substitution maps X’s to Δ’s (which are
of the form ρ1:n1, . . . , ρk:nk); note that the range of the ground θX -substitution
still contains ρ-variables. We write θρ |= C if θρ solves Cρ and analogously
θX |= C if θX solves CX . For a θ = θXθρ, we write θ |= C if θρ |= C and
θX |= C. Furthermore we write C1 |= C2 if θ |= C1 implies θ |= C2, for all
ground substitutions θ. For the simple super-set constraints of the form ρ 	 r,
constraints always have a unique minimal solution. Analogously for the CX -
constraints. A heap σ satisfies an abstract state Δ, if Δ over-approximates the
lock counter for all locks in σ: Assuming that Δ does not contain any ρ-variables
and that the lock references in σ are labelled by π’s, σ |= Δ if

∑
π∈r σ(lπ) ≤ Δ(r)

(for all r in dom(Δ)). Given a constraint set C, an abstract state Δ (with lock
references lρ labelled by variables) and a heap σ, we write σ |=C Δ (“σ satisfies
Δ under the constraints C”), iff θ |= C implies θσ |= θΔ, for all θ. A heap σ
satisfies a global effect Φ (written σ |= Φ), if σ |=Ci

Δi for all i ≤ k where
Φ = p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 and ϕi = Δi −→ Δ′

i.

Soundness

Next we prove soundness of the analysis wrt. the semantics. The core of the proof
is the preservation of well-typedness under reduction (“subject reduction”). The
static analysis does not only give back types (as an abstraction of resulting val-
ues) but also effects (in the form of pre- and post-specification). While types are
preserved, we cannot expect that the effect of an expression remains unchanged
under reduction. As the pre- and post-conditions specify (upper bounds on) the
allowed lock values, the only steps which change are locking and unlocking steps.
To relate the change of pre-condition with the steps of the system we assume the
transitions to be labelled. Relevant is only the lock set variable ρ; the identity p of
the thread, the label π and the actual identity of the lock are not relevant for the
formulation of subject reduction, hence we do not include that information in the
labels here. The steps for lock-taking are of the form σ1 � p〈t1〉 p〈ρ.lock〉−−−−−→ σ2 � p〈t2〉;

42 K. I. Pun, M. Steffen, and V. Stolz

Fig. 1. Subject reduction (case of unlocking analogous)

unlocking steps analogously are labelled by ρ. unlock and all other steps are
labelled by τ , denoting internal steps. The formulation of subject reduction can
be seen as a form of simulation (cf. Figure 1): The concrete steps of the system
—for one process in the formulation of subject reduction— are (weakly) simu-
lated by changes on the abstract level; weakly, because τ -steps are ignored in the
simulation. To make the parallel between simulation and subject reduction more
visible, we write Δ1

ρ.lock−−−→ Δ2 for Δ2 = Δ1 ⊕ ρ (and analogously for unlocking).

Lemma 1. (Subject reduction) Assume Γ � P ‖ p〈t1〉 :: Φ ‖ p〈Δ1 →
Δ2;C1〉, and furthermore θ |= C1 for some ground substitution and σ1 |= θΔ1

and σ1 |= Φ.

1. σ1 � P ‖ p〈t1〉 p〈τ〉−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′
1 −→

Δ′
2, C2〉 where C1 � Δ1 ≤ Δ′

1 and C1 � Δ′
2 ≤ Δ2. Furthermore, C1 |= C2

and σ2 |= θΔ1 and σ2 |= Φ.
2. σ1 � P ‖ p〈t1〉 p〈ρ.lock〉−−−−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′

1 −→
Δ2, C2〉 where C1 � Δ1 ⊕ ρ ≤ Δ′

1 and C1 � Δ′
2 ≤ Δ2. Furthermore C1 |= C2

and σ2 |= θΔ′
1 and σ2 |= Φ.

3. σ1 � P ‖ p〈t1〉 p〈ρ.unlock〉−−−−−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′
1 −→

Δ2, C2〉 where C1 � Δ1 � ρ ≤ Δ′
1 and C1 � Δ′

2 ≤ Δ2. Furthermore C1 |= C2

and σ2 |= θΔ′
1 and σ2 |= Φ.

The property of the lemma is shown pictorially in Figure 1.

As an immediate consequence, all configurations reachable from a well-typed
initial configuration are well-typed itself. In particular, for all those reachable
configurations, the corresponding pre-condition (together with the constraints)
is a sound over-approximation of the actual lock counters in the heap.

Corollary 1. (Soundness of the approximation) Let σ0 � p〈t0〉 be an initial
configuration. Assume further Γ � p〈t0〉 :: p〈Δ0 → Δ2;C〉 and θ |= C and where
Δ0 is the empty context. If σ0 � p〈t0〉 −→ ∗σ � P , then Γ � P :: Φ, where
Φ = p1〈Δ1 → Δ′

1;C1〉 ‖ . . . ‖ pk〈Δk → Δ′
k;Ck〉 and where σ |= θΔi (for all i).

4 Race Variables for Deadlock Detection

Next we use the information inferred by the type system in the previous section
to locate control points in a program which potentially give rise to a deadlock.

Deadlock Checking by Data Race Detection 43

As we transform the given program after analyzing it, for improved precision, we
assume that in the following all non-recursive function applications are instanti-
ated/ inlined: a unique call-site per function ensures the most precise type- and
effect information for that function, and correspondingly the best suitable instru-
mentation. The polymorphic type system gives a context-sensitive representa-
tion, which can then be instantiated per call-site. Note that this way, we need to
analyze only the original program, and each function in there once, although for
the next step, we duplicate methods. Recursive functions are instantiated once
with (minimal) effects capturing all call-sites.

Those points are instrumented appropriately with assignments to additional
shared variables, intended to flag a race. To be able to do so, we slightly need
to extend our calculus. The current formulation does not have shared variables,
as they are irrelevant for the analysis of the program, which concentrates on the
locks. In the following we assume that we have appropriate syntax for accessing
shared variables; we use z, z′, z1, . . . to denote shared variables, to distinguish
them from the let-bound thread-local variables x and their syntactic variants. For
simplicity, we assume that they are statically and globally given, i.e., we do not
introduce syntax to declare them. Together with the lock references, their values
are stored in σ. To reason about changes to those shared variables, we introduce
steps of the form p〈!z〉−−−→ and

p〈?z〉−−−→, representing write resp. read access of process p
to z. Alternatives to using a statically given set of shared variables, for instance
using dynamically created pointers to the heaps are equally straightforward to
introduce syntactically and semantically, without changing the overall story.

4.1 Deadlocks and Races

We start by formally defining the notion of deadlock used here, which is fairly
standard (see also [16]): a program is deadlocked, if a number of processes are
cyclically waiting for each other’s locks.

Definition 1. (Waiting for a lock) Given a configuration σ � P , a process
p waits for a lock l in σ � P , written as waits(σ � P, p, l), if (1) it is not the
case that σ � P p〈l.lock〉−−−−→, and furthermore (2) there exists σ′ s.t. σ′ � P p〈l.lock〉−−−−→
σ′′ � P ′. In a situation without (1), we say that in configuration σ � P , process
p tries for lock l (written tries(σ � P, p, l)).
Definition 2. (Deadlock) A configuration σ � P is deadlocked if σ(li) =
pi(ni) and furthermore waits(σ � P, pi, li+k1) (where k ≥ 2 and for all 0 ≤ i ≤
k− 1). The +k is meant as addition modulo k. A configuration σ � P contains
a deadlock, if, starting from σ � P , a deadlocked configuration is reachable;
otherwise it is deadlock free.

Thus, a process can only be deadlocked, i.e., being part of a deadlocked
configuration, if p holds at least one lock already, and is waiting for another
one. With re-entrant locks, these two locks must be different. Independent from
whether it leads to a deadlock or not, we call such a situation —holding a lock

44 K. I. Pun, M. Steffen, and V. Stolz

and attempting to acquire another one— a second lock point. More concretely,
given a configuration, where we abbreviate the situation where process p holds
lock l1 and tries l2 by slp(σ � P)l1→l2

p . The abstraction in the analysis uses
program points π to represent concrete locks, and the goal thus is to detect in
an approximate manner cycles using those abstractions π. As stated, a concrete
deadlock involves a cycle of processes and locks. We call an abstract cycle ΔC

a sequence of pairs �p:�π with the interpretation that pi is holding πi and wants
πi+1 (modulo the length of the cycle). Next we fix the definition for being a
second lock point. At run-time a process is at a second lock point simply if it
holds a lock and tries to acquire a another, different one.

Definition 3. (Second lock point (runtime)) A local configuration σ � p〈t〉
is at a second point (holding l1 and attempting l2, when specific), written slp(σ �
p〈t〉)l1→l2 , if σ(l1) = p(n) and tries(σ � p〈t〉, l2). Analogously for abstract locks
and heaps over those: slp(σ � p〈t〉)π1→π2 , if σ(π1) = p(n) and tries(σ � p〈t〉, π2).
Given an abstract cycle ΔC a local configuration is at a second lock point of
ΔC , if slp(σ � p〈t〉)π1→π2 where, as specified by ΔC , p holds π1 and wants π2.
Analogously we write for global configurations e.g., slp(σ � P)π1→π2

p , where p is
the identity of a thread in P .

Ultimately, the purpose of the static analysis is to derive (an over-
approximation of the) second lock points as a basis to instrument with race
variables. The type system works thread-locally, i.e., it derives potential sec-
ond lock points per thread. Given a static thread, i.e., an expression t without
run-time syntax, second lock points are control points where the static analysis
derives the danger of attempting a second lock. A control-point in a thread t
corresponds to the occurrence of a sub-expression; we write t[t′] to denote the
occurrence of t′ in t. As usual, occurrences are assumed to be unique.

Definition 4. (Second lock point (static)) Given a static thread t0[t], a
process identifier p and Δ0 �p t0 : Δ, where Δ0 = •. The occurrence of t in t0
is a static slp if:

1. t = let x:L{...,π,...} = v. lock in t′.
2. Δ1 �p t :: Δ2, for some Δ1 and Δ2, occurs in a sub-derivation of Δ0 �

t0 :: Δ.
3. there exists π′ ∈ Δ1 s.t. ΔC � p has π′, and ΔC � p wants π .

Assume further σ0 � p〈t0〉 −→∗ σ � p〈t〉. We say σ � p〈t〉 is at a static second
lock point if t occurs as static second lock point in t0.

Lemma 2. (Static overapproximation of slp’s) Given ΔC and σ � P be a
reachable configuration where P = P ′ ‖ p〈t〉 and where furthermore the initial
state of p is p〈t0〉. If σ � p〈t〉 is at a dynamic slp (wrt. ΔC), then t is a static
slp (wrt. ΔC).

Proof. A direct consequence of soundness of the type system (cf. Corollary 1).
��

Deadlock Checking by Data Race Detection 45

Next we define the notion of race. A race manifests itself, if at least two
processes in a configuration attempt to access a shared variables at the same
time, where at least one access is a write-access.

Definition 5. (Race) A configuration σ � P has a (manifest) race, if σ �
P

p1〈!x〉−−−→, and σ � P p2〈!x〉−−−→ or σ � P p2〈?x〉−−−−→, for two different p1 and p2. A
configuration σ � P has a race if a configuration is reachable where a race
manifests itself. A program has a race, if its initial configuration has a race; it
is race-free else.

Race variables will be added to a program to assure that, if there is a dead-
lock, also a race occurs. More concretely, being based on the result of the sta-
tic analysis, appropriate race variables are introduced for each static second
lock points, namely immediately preceding them. Since static lock points over-
approximate the dynamic ones and since being at a dynamic slp is a necessary
condition for being involved in a deadlock, that assures that no deadlock remains
undetected when checking for races. In that way, that the additional variables
“protect” the second lock points.

Definition 6. (Protection) A property ψ is protected by a variable z starting
from configuration σ � p〈t〉, if σ � p〈t〉 −→∗ a−→ σ′ � p〈t′〉 and ψ(p〈t′〉) implies
that a =!z. We say, ψ is protected by z, if it is protected by z starting from an
arbitrary configuration.

Protection, as just defined, refers to a property and the execution of a single
thread. For race checking, it must be assured that the local properties are pro-
tected by the same, i.e., shared variable are necessarily and commonly reached.
That this is the case is formulated in the following lemma:

Lemma 3. (Lifting) Assume two processes p1〈t1〉 and p2〈t2〉 and two thread-
local properties ψ1 and ψ2 (for p1 and p2, respectively). If ψ1 is protected by x
for p1〈t1〉 and ψ2 for p2〈t2〉 by the same variable, and a configuration σ � P with
P = p1〈t1〉 ‖ p2〈t2〉 ‖ P ′′ is reachable from σ′ � P ′ such that ψ1 ∧ψ2 holds, then
σ′ � P ′ has a race.

4.2 Instrumentation

Next we specify how to transform the program by adding race variables. The
idea is simple: each static second lock point, as determined statically by the type
system, is instrumented by an appropriate race variable, adding it in front of the
second lock point. In general, to try to detect different potential deadlocks at
the same time, different race variables may be added simultaneously (at different
points in the program). The following definition defines where to add a race
variable representing one particular cycle of locks ΔC . Since the instrumentation
is determined by the static type system, one may combine the derivation of the
corresponding lock information by the rules of Table 5 such that the result of the
derivation not only derives type and effect information, but also transforms the

46 K. I. Pun, M. Steffen, and V. Stolz

program at the same time, with judgments of the form Γ � t � t′ : T̂ :: ϕ, where t
is transformed to t′. Note that we assume that a solution to the constraint set has
been determined and applied to the type and the effects. Since the only control
points in need of instrumentation are where a lock is taken, the transformation
for all syntactic constructs is trivial, leaving the expression unchanged, except
for v.lock-expressions, where the additional assignment is added if the condition
for static slp is satisfied (cf. Definition 4).

Definition 7. (Transformation) Given an abstract cycle ΔC . For a process
p from that cycle, the control points instrumented by a !z are defined as follows:

Γ � v : L
r

:: Δ1 −→ Δ1 Δ2 = Δ1 ⊕ r π ∈ r π
′ ∈ Δ1 ΔC � p wants π ΔC � p has π

′

Γ � v. lock : L
r

:: Δ1 −→ Δ2 Γ, x:L
r � t � t

′
: T :: Δ2 → Δ3

Γ � let x:T = v. lock in t � let x:T = (!z; v. lock) in t
′
: T :: Δ1 −→ Δ3

By construction, the added race variable protects the corresponding static
slp, and thus, ultimately the corresponding dynamic slp’s, as the static ones
over-approximate the dynamic ones.

Lemma 4. (Race variables protect slp’s) Given a cycle ΔC and a corre-
sponding transformed program. Then all static second lock points in the program
are protected by the race variable (starting from the initial configuration).

The next lemma shows that there is a race “right in front of” a deadlocked
configuration for a transformed program.

Lemma 5. Given an abstract cycle ΔC , and let P0 be a transformed program
according to Definition 7. If the initial configuration σ0 � P0 has a deadlock wrt.
ΔC , then σ0 � P0 has a race.

Proof. By the definition of deadlock (cf. Definition 2), some deadlocked config-
uration σ′ � P ′ is reachable from the initial configuration:

σ0 � P0 −→∗ σ′ � P ′ where P ′ = . . . pi〈t′i〉 ‖ . . . ‖ pj〈t′j〉 ‖ . . . , (2)

where by assumption, the processes pi and the locks they are holding, resp. on
which they are blocked are given by ΔC , i.e., σ(li) = pi(ni) and waits(σ′ �
P ′, pi, li+k1). Clearly, each participating process σ′ � pi〈t′i〉 is at a dynamic slp
(cf. Definition 3). Since those are over-approximated by their static analogues
(cf. Lemma 2), the occurrence of t′i in t0i resp. of t′j in t0j is a static slp. By
Lemma 4, all static slp (wrt. the given cycle) are protected, starting from the
initial configuration, by the corresponding race variable. This together with the
fact that σ′ � pi〈t′i〉 is reachable from σ0 � pi〈t0i 〉 implies that the static slp in
each process pi is protected by the same variable x. Hence, by Lemma 3, σ0 � P0

has a race between pi and pj . ��

Deadlock Checking by Data Race Detection 47

The previous lemma showed that the race variables are added at the “right
places” to detect deadlocks. Note, however, that the property of the lemma was
formulated for the transformed program while, of course, we intend to detect
deadlocks in the original program. So to use the result of Lemma 5 on the orig-
inal program, we need to convince ourselves that the transformation does not
change (in a relevant way) the behavior of the program, in particular that it
neither introduces nor removes deadlocks. Since the instrumentation only adds
variables which do not influence the behavior, this preservation behavior is obvi-
ous. The following lemma shows that transforming programs by instrumenting
race variables preserves behavior.

Lemma 6. (Transformation preserves behavior) P is deadlock-free iff PT

is deadlock-free, for arbitrary programs.

Next, we state that with the absence of data race in a transformed program,
the corresponding original one is deadlock-free:

Lemma 7. (Data races and deadlocks) P is deadlock-free if PT is race-free,
for arbitrary programs.

5 Gate Locks

Next we refine the transformation to improve its precision. By definition, races
are inherently binary, whereas deadlocks in general are not, i.e., there may be
more than two processes participating in a cyclic wait. In a transformed pro-
gram, all the processes involved in a specific abstract cycle ΔC share a common
race variable. While sound, this would lead to unnecessarily many false alarms,
because already if two processes as part of a cycle of length n > 2 reach simul-
taneously their race-variable-instrumented control-points, a race occurs, even if
the cycle may never be closed by the remaining processes. In the following, we
add not only race variables, but also additional locks, assuring that parts of a
cycle do not already lead to a race; we call these locks gate locks. Adding new
locks, however, needs to be done carefully so as not to change the behavior of
the program, in particular, not to break Lemma 6.

We first define another (conceptual) use of locks, denoted short-lived locks. A
process which is holding a short-lived lock has to first release it before trying any
other lock. It is obvious to see that transforming a program by adding short-lived
locks does not lead to more deadlocks.

A gate lock is a short-lived lock which is specially used to protect the access
to race variables in a program. Since gate locks are short-lived, no new dead-
locks will be introduced. Similar to the transformation in Definition 7, we still
instrument with race variables at the static second lock points, but also wrap the
access with locking/unlocking of the corresponding gate lock (there is one gate
lock per ΔC). However, we pick one of the processes in ΔC which only accesses
the race variable without the gate lock held. This transformation ensures that
the picked process and exactly one of the other processes involved in a deadlock

48 K. I. Pun, M. Steffen, and V. Stolz

cycle may reach the static second lock points at the same time, and thus a race
occurs. That is, only the race between the process which could close the dead-
lock cycle and any one of the other processes involved in the deadlock will be
triggered.

Observe that depending on the chosen process, the race checker may or may
not report a race—due to the soundness of our approach, we are obviously inter-
ested in the best result, which is “no race detected”. Therefore, we suggest to
run the analysis with all processes to find the optimal result. Note that checks
for different cycles and with different “special” processes for the gate lock-based
instrumentation can easily be run in parallel or distributed. It is also possible
to instrument a single program for the detection of multiple cycles: even though
a lock statement can be a second lock point for multiple abstract locks, the
transformations for each of them do not interfere with each other, and can be
analyzed in a single race checker-run.

Theorem 1. Given a program P , PT is a transformed program of P instru-
menting with race variables and gate locks, P is deadlock-free if PT is race-free.

6 Conclusion

We presented an approach to statically analyze multi-threaded programs by
reducing the problem of deadlock checking to data race checking. The type and
effect system statically over-approximates program points, where deadlocks may
manifest themselves and instruments programs with additional variables to sig-
nal a race. Additional locks are added to avoid too many spurious false alarms.
We show soundness of the approach, i.e., the program is deadlock free, if the
corresponding transformed program is race free.

Numerous approaches have been investigated and implemented over the years
to analyze concurrent and multi-threaded programs (cf. e.g. [18] for a survey of
various static analyses). Not surprisingly, in particular approaches to prevent
races [3] and/or deadlocks [8] have been extensively studied for various lan-
guages and are based on different techniques. (Type-based) analyses for race
detection include [1] [10] [6] [19] [13] to name a few. Partly based on similar
techniques, likewise for the prevention of deadlocks are [21] [14]. Static detection
of potential deadlocks is a recurring topic: traditionally, a lock-analysis is car-
ried out to discover whether the locks can be ordered, such that subsequent locks
can only be acquired following that order [4]. Then, a deadlock is immediately
ruled out as this construction precludes any “deadly embrace”. The lock order
may be specified by the user, or inferred [5]. To the best of our knowledge, our
contribution is the first formulation of (potential) deadlocks in terms of data
races. Due to the number of race variables introduced in the transformation,
and assuming that race checking scales linearly in their number, we expect an
efficiency comparable to explicit-state model checking.

In general, races are prevented not just by protecting shared data via locks; a
good strategy is to avoid also shared data in the first place. The biggest challenge

Deadlock Checking by Data Race Detection 49

for static analysis, especially when insisting on soundness of the analysis, is to
achieve better approximations as far as the danger of shared, concurrent access
is concerned. Indeed, the difference between an overly approximate analysis and
one that is usable in practice lies not so much in obtaining more refined conditions
for races as such, but to get a grip on the imprecision caused by aliasing, and
the same applies to static deadlock prevention.

Future work A natural extension of our work would be an implementation of
our type and effect system to transform concurrent programs written in e.g. C
and Java. Complications in those languages like aliasing need to be taken into
account, although results from a may-alias analysis could directly be consumed
by our analysis. The potential blowup of source code-size through instantiation
of function applications can be avoided by directly making use of context in the
race-checker, instead of working on a source-based transformed program. As a
first step, we intend to make our approach more applicable, to directly integrate
the transformation-phase into Goblint, so that no explicit transformation of C
programs needs to take place.

For practical applications, our restriction on a fixed number of processes will
not fit every program, as will the required static enumeration of abstract cycle
information. We presume that our approach will work best on code found e.g.
in the realm of embedded system, where generally a more resource-aware pro-
gramming style means that threads and other resources are statically allocated.

For lack of space, most of the proofs have been omitted here. Further details
can be found in the accompanying technical report [17].

Acknowledgements. We are grateful for detailed discussion of Goblint to Kalmer
Apinis, and Axel Simon, from TU München, Germany.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for Java. ACM Transactions on Programming Languages and Systems 28(2), 207–
255 (2006)

2. Amtoft, T., Nielson, H.R., Nielson, F.: Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press (1999)

3. Beckman, N.E.: A survey of methods for preventing race conditions (May 2006),
http://www.nelsbeckman.com/publications.html

4. Birrell, A.D.: An introduction to programming with threads. Research Report 35,
Digital Equipment Corporation Research Center (1989)

5. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Prevent-
ing data races and deadlocks. In: Object Oriented Programming: Systems, Lan-
guages, and Applications, OOPSLA 2002, Seattle, USA. ACM (November 2002);
SIGPLAN Notices

6. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java pro-
grams. In: Object Oriented Programming: Systems, Languages, and Applications,
OOPSLA 2001. ACM (2001)

http://www.nelsbeckman.com/publications.html

50 K. I. Pun, M. Steffen, and V. Stolz

7. Coffman Jr., E.G., Elphick, M., Shoshani, A.: System deadlocks. Computing Sur-
veys 3(2), 67–78 (1971)

8. Corbett, J.: Evaluating deadlock detection methods for concurrent software. IEEE
Transactions on Software Engineering 22(3), 161–180 (1996)

9. Dijkstra, E.W.: Cooperating sequential processes. Technical Report EWD-123,
Technological University, Eindhoven (1965); Reprinted in [12]

10. Flanagan, C., Freund, S.N.: Type inference against races. In: Giacobazzi, R. (ed.)
SAS 2004. LNCS, vol. 3148, pp. 116–132. Springer, Heidelberg (2004)

11. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: ACM Conference on Programming Language Design and Imple-
mentation, PLDI. ACM (June 1993); SIGPLAN Notices 28(6)

12. Genyus, F.: Programming Languages. Academic Press (1968)
13. Grossman, D.: Type-safe multithreading in Cyclone. In: TLDI 2003: Types in Lan-

guage Design and Implementation, pp. 13–25. ACM (2003)
14. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Infor-

matica 42(4–5), 291–347 (2005)
15. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: ACM

Conference on Programming Language Design and Implementation, PLDI, Ottawa,
Ontario, Canada, pp. 308–319. ACM (June 2006)

16. Pun, K.I., Steffen, M., Stolz, V.: Deadlock checking by a behavioral effect system for
lock handling. Journal of Logic and Algebraic Programming 81(3), 331–354 (2012);
A preliminary version was published as University of Oslo, Dept. of Computer
Science Technical, Report 404 (March 2011)

17. Pun, K.I., Steffen, M., Stolz, V.: Deadlock checking by data race detection. Tech-
nical report 421, University of Oslo, Dept. of Informatics (October 2012)

18. Rinard, M.: Analysis of multithreaded programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

19. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.: Automated type-based analysis
of data races and atomicity. In: Ferrante, J., Padua, D.A., Wexelblat, R.L. (eds.)
PPoPP 2005, pp. 83–94. ACM (2005)

20. Seidl, H., Vojdani, V.: Region analysis for race detection. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 171–187. Springer, Heidelberg (2009)

21. Vasconcelos, V., Martins, F., Cogumbreiro, T.: Type inference for deadlock detec-
tion in a multithreaded polymorphic typed assembly language. In: Beresford, A.R.,
Gay, S.J. (eds.) Pre-Proceedings of the Workshop on Programming Language
Approaches to Concurrent and Communication-Centric Software, PLACES 2009.
EPTCS, vol. 17, pp. 95–109 (2009)

Delta Modeling and Model Checking
of Product Families�

Hamideh Sabouri1 and Ramtin Khosravi1,2

1 School of Computer Science and Electrical Engineering, College of Engineering,
University of Tehran, Tehran, Iran

2 School of Computer Science, Institute for Research in Fundamental
Sciences (IPM), Tehran, Iran

Abstract. Software product line engineering focuses on proactive reuse
to reduce the cost of developing families of related systems. A recently
proposed method to develop software product lines is delta modeling
where a set of deltas specify modifications that should be applied to
a core product to achieve other products. The main advantage of this
technique is its modularity and flexibility. In this paper, we propose an
approach to model check delta-oriented product lines. To this end, we
transform a delta model to a corresponding annotated model where an
application condition is associated to each statement. An application
condition specifies the set of products that a statement is included in
them. We present the semantics of the resulting model in form of a
featured transition system where each transition is annotated with an
application condition. Featured transition systems are supported by a
variability-aware model checking technique that can be used to verify
the annotated model.

1 Introduction

Software product line (SPL) engineering enables proactive reuse by developing a
family of related products instead of developing individual products separately.
To this end, the commonalities and differences between products should be mod-
eled explicitly [1]. Feature models are widely used to model the variability in
SPLs. A feature model is a tree of features containing mandatory and optional
features as well as other constraints among them, e.g., mutual exclusion. A prod-
uct is defined as a valid combination of features, and a family is the set of all
possible products [2] (section 3).

Delta modeling [3] is a modular, flexible, and expressive modeling approach
that is recently proposed to develop SPLs. In this approach, an SPL is repre-
sented by a core product and a set of deltas. Deltas represent modifications that
must be applied to the core product to derive other products of the product line.
Each delta has an application condition that specifies the feature configurations
on which the modifications are applicable.
� This research was in part supported by a grant form IPM. (No.CS1390-4-02).

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 51–65, 2013.
DOI: 10.1007/978-3-642-40213-5 4,
c© IFIP International Federation for Information Processing 2013

52 H. Sabouri and R. Khosravi

As SPL engineering is increasingly used in the development of mission-critical
and safety-critical systems such as embedded systems [4], formal verification
of software product lines is essential. Recently, a number of approaches has
been proposed to deductively verify delta-oriented SPLs using theorem proving
[5,6,7,8]. However, to the best of our knowledge, there is no approach applying
model checking technique [9] to verify delta-oriented models of software product
lines. On the other hand, in [10] model checking algorithm is adapted to be
applicable to SPLs (which we refer to it as variability-aware model checking). The
drawback of this approach is that it does not support modular modeling of SPLs
as the underlying formal model of product family is annotative. In annotative
modeling approaches, each transition/statement of the model is annotated by
an application condition to indicate the feature combinations that enable the
transition/statement. The model checker uses the annotations to determine the
set of products that satisfy/violate a property.

In this paper, we propose an approach to model check delta-oriented models
of product families. Due to the compositional nature of delta models, develop-
ing a technique to analyze the entire family is not reasonable. A simple strat-
egy is to generate all products of an SPL and model check each individually.
However, this strategy may involve redundant computations due to similarities
among the products. An alternative is to take benefit from the variability-aware
model checking techniques. To this end, we transform a delta model to a cor-
responding annotative model. The annotated model can then be verified using
variability-aware model checking technique. We select Rebeca [11] for formal
modeling which is an actor-based language with a formal foundation to model
and verify concurrent and distributed systems (section 4.1). Recently, the ABS
language [12] is developed to model the behavior of configurable and distributed
systems using delta modeling. However it is not supported by a model check-
ing tool yet. Therefore, we choose Rebeca which is supported by an accessible
model checker Afra [13]. Due to modularity, object-based nature, and Java-like
syntax of Rebeca, its adaptation to support delta modeling is straightforward
(considering the work on delta-oriented modeling of object-oriented SPLs like
Java [3]).

To provide an approach to model check delta-oriented product families, we
extend Rebeca to support delta modeling (section 4.2). We also introduce anno-
tations in Rebeca and define the semantics of annotated Rebeca models using
featured transition systems (FTS) [10] to which the variability-aware model
checking algorithm is applicable (section 4.3). In FTS, an application condition
determines the feature combinations that enable a transition. Then, we propose a
method to transform a delta model to a corresponding annotated model (section
5.1). We also justify the correctness of our proposed approach intuitively (section
5.2). There are two possible approaches to model check the resulting annotated
Rebeca model: using its underlying FTS or generating a plain Rebeca model
from it to use the existing model checker of Rebeca for verification (section 5.3).

The main contribution of our work is developing SPLs in a high-level and
modular manner by employing delta-oriented modeling concept while taking

Delta Modeling and Model Checking of Product Families 53

advantage of variability-aware model checking which is currently only applicable
to annotative models of product families. The contributions of our paper can be
summarized as follows:

– We extend Rebeca to support delta modeling which enables us to model
families of actor systems.

– We extend Rebeca with annotations along with its semantics based on FTS
to apply the existing variability-aware model checking techniques.

– We propose a method to transform delta models to annotated models which
enables us to use existing techniques for annotated models of SPLs.

The Coffee Machine Example. We use Coffee Machine family as the running
example in the paper. A coffee machine may serve coffee or tea or both. Adding
extra milk and extra sugar may be supported optionally. The payment method
of a coffee machine is either by coin or by card. �

2 Related Work

Several approaches has been proposed for formal modeling of SPLs using SMV
[14], automata and transition based systems [15,10,16,17], process algebra [18],
Petri nets [19], and Promela [20]. These approaches capture the behavior of the
entire product family in a single model by including the variability information
in it using annotations. Annotating a transition/statement with an application
condition indicates the configurations that enable the transition/statement. In
[18], an operator is added to CCS to specify alternative processes.

To model check annotated models, model checking technique has been adapted
in [10] to verify featured transition systems. In FTS, an application condition
determines the feature combinations that enable a transition. To explore the
state space of an FTS, the track of products should be kept. Thus, a reachabil-
ity relation is constructed while exploring the state space which is a set of pairs
(s, px). Such couple indicates that state s is reachable by products in px.

Recently, a number of methods has been proposed to deductively verify delta-
oriented SPLs. In [5], all derivable products of a delta-oriented SPL are verified
incrementally using interactive theorem proving. In the first step, the core prod-
uct is verified completely. Then, for each other product, the invalidated proofs
and some new obligation proofs are proven. In [6], a family-based technique is
proposed to reduce the cost of deductive verification for SPLs. For modular ver-
ification of software families, a Liskov principle is developed for delta-oriented
programming in [7]. In [8], a transformational proof system is developed for
delta-oriented programs which supports modular verification.

3 Background: Software Product Lines

Software product line engineering is a paradigm to develop software applications
using platforms and mass customization. To this end, the commonalities and

54 H. Sabouri and R. Khosravi

differences between products should be modeled explicitly. Feature models [2]
are widely used for this purpose. A feature model represents all possible products
of a software product line in terms of features and relationships among them. A
feature model is a tree of features that allows the mandatory, optional, or, and xor
relationships among features. It also includes requires and excludes constraints
between features. A product is derived from a feature set by making a decision to
include/exclude each feature. A valid product conforms to the constraints that
are specified in the feature model.

A configuration keeps track of including/excluding features. The root feature
can be omitted in a configuration as it is included in all products. Having feature
set F with n features, a configuration is defined as c ∈ {true, false, ?}n where
ci = true/false represents inclusion/exclusion of the ith feature. The value ‘?’
indicates that a feature is not included nor excluded yet. A configuration is
decided if it does not contain any ‘?’ values. In other words, a decision is made
about inclusion/exclusion of all features. Otherwise, the configuration is partial.

Sets of products can be described using application conditions. An application
condition ϕ is a propositional logic formula over a set of features F , defined by
ϕ : : = true | f | ϕ1 ∧ ϕ2 | ¬ϕ where f ∈ F .

Fig. 1. The feature model of the coffee machine example

The Coffee Machine Example: Feature Model. The corresponding feature
model of the coffee machine is depicted in Figure 1. Coffee and tea features
have an or relationship implying that the machine serves one of these drinks
at least. Adding extra milk and extra sugar is optional. However, when adding
extra milk feature is available, the machine should be able to serve coffee because
of the requires constraint between the milk and coffee features. Finally, the coin
and card features have an xor relationship meaning that each product supports
one and only one of them. A configuration that includes milk and excludes cof-
fee is not a valid configuration. An example of a valid configuration is one that
includes coffee, payment, and coin features and excludes the rest. �

4 Modeling Product Families in Rebeca

In this section, we describe two approaches to model product families in Rebeca:
delta-oriented approach and annotative approach.

Delta Modeling and Model Checking of Product Families 55

Fig. 2. Rebeca model of a coffee machine

4.1 Rebeca

Rebeca is an actor-based language for modeling concurrent and distributed sys-
tems as a set of reactive objects which communicate via asynchronous message
passing. A Rebeca model consists of a set of reactive classes. Each reactive class
contains a set of state variables and a set of message servers. Message servers exe-
cute atomically, and process the receiving messages. The initial message server
is used for initialization of state variables. A Rebeca model has a main part,
where a fixed number of objects are instantiated from the reactive classes and
execute concurrently. We refer to these objects as rebecs. The rebecs have no
shared variable. Each rebec has a single thread of execution that is triggered by
reading messages from an unbounded message queue. When a message is taken
from the queue, its corresponding message server is invoked.

The Coffee Machine Example: Rebeca Model. Figure 2 shows the Rebeca
model of a product from the coffee machine family that only includes coffee,
payment, and coin features. In this model, the controller manages the payment
as well as incoming orders and sends message to coffee maker accordingly. In the
first step, the payment is received which can be at most three coins. Then, the
drink may be ordered (the only option is coffee in this product). The controller
is informed of the completion of serving the requested drink as well as the final
cost so it can return the change and prepare for another order. Note that the
cost of a drink may increase by adding extra milk or sugar in those products
that support the corresponding features. �

56 H. Sabouri and R. Khosravi

4.2 Delta-Oriented Modeling in Rebeca

In delta modeling, an SPL is represented by a core product and a set of deltas.
The core product is a valid product and deltas represent the modifications that
should be applied to the core product to derive other products. In [21], the delta
modeling technique is applied to object-oriented implementations of software
product lines. Due to object-based nature of Rebeca language, we take a similar
approach to [21] to introduce delta modeling in Rebeca.

Core Product A core product is a Rebeca model that captures the behavior
of a product for a valid and decided feature configuration. Therefore, it contains
a set of reactive classes and the main part where rebecs are instantiated.

The Coffee Machine Example: Core Product. We consider the product depicted
in Figure 2 as the core product. As we mentioned earlier, it includes coffee, pay-
ment, and coin features and excludes other features. �

Deltas A delta represents the modification that must be applied to the core
product to derive another product from the family. Deltas may add, remove, or
modify reactive classes. Modifying a reactive class may add or remove known
rebecs, state variables, and message servers. It may also change the behavior of
an existing message server. Furthermore, an application condition is associated
with each delta to specify the configurations for which the delta is applicable to
the core product:
delta 〈name〉 [after 〈delta names〉] when 〈application condition〉{

removes 〈reactive class name〉
adds 〈reactive class definition〉
modifies 〈reactive class name〉 {

removes 〈state variable/known rebec/message server name〉
adds 〈state variable/known rebec/message server definition〉
modifies 〈message server name〉 〈message server definition〉

}
}

In the above description of a delta, the when clause represents the application
condition and the after clause is used to specify the order of applying deltas.

The Coffee Machine Example: Deltas. A number of deltas that can be defined
to describe a family of coffee machines are:

delta δ1 after δ3, δ4 when ¬coffee{
removes CoffeeMaker

modifies Controller {
modifies nextOrder {I1}

}
}

delta δ3 when milk {
modifies CoffeeMaker {

modifies makeCoffee {I3}
}

}

delta δ2 when tea {
adds reactiveclass TeaMaker {...}
modifies Controller {

adds TeaMaker tm

modifies nextOrder {I2}
}

}

delta δ4 when sugar {
modifies CoffeeMaker {

modifies makeCoffee {I4}
}

}

Delta Modeling and Model Checking of Product Families 57

Delta δ1 defines the products without the coffee feature. Delta δ2 adds the facility
to serve tea. Deltas δ3 and δ4 are applied when adding extra milk and sugar are
supported. �

Resolving Conflicts Conflicts among deltas may happen when they manipu-
late the same program entity in different ways. This leads to different implemen-
tations for one product when deltas are applied in different order. To achieve a
unique product for a certain configuration, an order must be defined to apply
deltas. A conflict-resolving delta δij should be introduced to avoid conflict between
two unordered deltas δi and δj . The application condition of δij is the conjunc-
tion of the application conditions of δi and δj and δij is applied later than both
conflicting deltas (δij has a higher priority than δi and δj).

The Coffee Machine Example: Conflicts. Deltas δ1 and δ2 are unordered and
they are both modifying the implementation of the nextOrder message server.
Another conflict exists between δ3 and δ4 which both modify the makeCoffee
message server. Assume that in I3 we add milk to coffee and increase the cost
of the drink. In I4 sugar is added and the cost is increased. When both features
are available, the ultimate behavior of makeCoffee is determined by the delta
that is applied later. To handle these issues, two conflict resolving deltas should
be defined as δ12 and δ34:

delta δ34 after δ3, δ4
when milk ∧ sugar {

modifies CoffeeMaker {
modifies makeCoffee {I5}

}
}

delta δ12 after δ1, δ2
when ¬coffee ∧ tea {

modifies Controller {
modifies nextOrder {I6}

}
}

In I5 we add sugar and milk to coffee and determine the cost accordingly.�
Delta Model We define a delta model as a set of deltas along with their

application conditions and priorities. A delta model is a triple (Δ,Γ,≺) where

– Δ is a finite set of deltas,
– Γ : Δ → ΦF is function that associates an application condition with each

delta,
– ≺⊆ Δ×Δ is a partial order on Δ. δi ≺ δj states that δi should be applied

before (not necessarily directly before) δj , when both deltas are applicable.

In the above definition, ΦF is the set of all possible application conditions over
feature set F . In our approach, we assume that we have an unambiguous delta
model where all the conflicts among unordered deltas are resolved by defining
appropriate conflict resolving deltas.

4.3 Annotated Rebeca Models

Syntax A fine-grained approach to represent variability in Rebeca model is to
annotate the model with application conditions. We denote an annotation by
@ϕ where ϕ represents an application condition. In a Rebeca model, we may

58 H. Sabouri and R. Khosravi

annotate reactive classes, known rebecs, state variables, message servers, and
statements (collectively referred to as model entities). Annotating an entity with
an application condition specifies the set of products that include the entity.
However, annotations on statements are enough to model SPLs. We can express
annotations on other types of entities just by using annotations on statements,
as shown below.

– A reactive class R annotated by @ϕ is modeled by associating @ϕ to every
statement sending a message to a rebec r where r is an instance of R.

– A known rebec r annotated by @ϕ is modeled by associating @ϕ to every
statement that sends message to r.

– A state variable v annotated by @ϕ is modeled by associating @ϕ to every
statement that assigns to v or uses the value of v.

– A message server m annotated by @ϕ is modeled by associating @ϕ to every
statement that sends the message m.

Hence, in the rest of this paper, we assume that only statements of message
servers are annotated with application conditions when presenting the semantics
of annotated Rebeca models.

The Coffee Machine Example: Annotations. We can annotate the Coffee
maker reactive class as @coffee reactiveclass CoffeeMaker, to indicate that
the reactive class is only available in the products supporting the coffee fea-
ture. An alternative way is to annotate the statement cm.makeCoffee(cash)
with application condition @coffee. As a result, no message is sent to the coffee
maker, thus it would be excluded from the model implicitly. �

Semantics The semantics of annotated Rebeca models can be described using
a featured transition system (FTS). In [22], Rebeca semantics is described in
form of labeled transition systems (LTS). In this work, we extend such LTS to
an FTS to capture the notion of variability within an annotated Rebeca model.
An FTS [10] is a transition system where the transitions are annotated using
application conditions. Assuming that ΦF is the set of all possible application
conditions over feature set F , we define the semantics of an annotated Rebeca
model as a featured transition system (S, I,A, T, γ) where

– S is a set of global states
– I is the initial state
– A is a set of actions (message servers)
– T ⊆ S ×A× S is a set of transitions
– γ : T → ΦF associates an application condition to each transition

Each rebec has a local state composed of the values of its variables and the
state of its queue: ς = 〈V, q〉. A Rebeca model consists of a number of rebecs
executing concurrently. Thus, the global state is defined as the combination of
the local states of all rebecs: s =

∏
ςi. In the initial state, all of the queues only

contain the initial message and all of the state variables have their default values.
Message servers in Rebeca are executed in one atomic step, therefore an action
corresponds to the execution of a message server. Variability in the behavior of

Delta Modeling and Model Checking of Product Families 59

a model is realized through annotating the statements of message servers. The
concept of variability is reflected in the semantics of Rebeca as follows.

We define message server m as a sequence of statements 〈st1; ...; stn〉 where
ϕi is the application condition of sti. To describe the semantics of variability in
message servers easier, we consider that a sub-transition labeled by a sub-action
from a sub-state to another, represents the execution of a single statement. In
state s, execution of statement sti has two possible outcomes. If ϕi does not hold,
sti is skipped without changing the local state of any rebecs. Otherwise when ϕi
holds, execution of sti may affect the local state of the currently executing rebec
by changing the value of its state variables or putting a message in its queue
(when the rebec sends a message to itself). Moreover, it may change the local
state of other rebecs by putting messages in their queue. A possible path that
denotes execution of m is: s

st1,ϕ1−−−−→ α1
st2,¬ϕ2−−−−−→ α′

2
st3,ϕ3−−−−→ ...

stn,ϕn−−−−→ s′.
Note that from each sub-state αi−1, two sub-transitions with application

conditions ϕi and ¬ϕi are possible: αi
sti,ϕi−−−−→ αi+1 and αi

sti,¬ϕi−−−−−→ α′
i+1. Due

to atomic execution of message servers, we can compactly represent each exe-

cution path of m as a transition t : s
m,γ(t)−−−−→ s′ to denote removing message m

from the queue of a rebec and executing it. Consequently, execution of message
server m with n annotated statements leads to 2n potential transitions from the
current state s. The application condition of t is the conjunction of the applica-
tion conditions of sub-transitions that constitute the path that t represents. For
example, four possible transitions that represent execution of m : 〈st1, st2〉 are:
s
m,¬ϕ1∧¬ϕ2−−−−−−−−→ s′, s

m,¬ϕ1∧ϕ2−−−−−−−→ s′′, s
m,ϕ1∧¬ϕ2−−−−−−−→ s′′′, and s

m,ϕ1∧ϕ2−−−−−−→ s′′′′.

4.4 Product Generation

Given a decided configuration c, a product can be derived from the model of the
product family automatically. For this purpose, every application condition ϕ is
evaluated by substituting all of its variables (each corresponds to a feature) by
true/false based on c. By c � ϕ we denote that configuration c makes application
condition ϕ true, otherwise c � ϕ.

Delta Model Having a core Rebeca model M0 along with a delta model
D = (Δ,Γ,≺), a product with configuration c is obtained by applying every
delta δ ∈ Δ such that c � Γ (δ) to M0 considering the application order of
deltas specified by ≺. The result is a plain Rebeca model for configuration c.
We define Δ|c ⊆ Δ to contain all deltas that are applicable in c: Δ|c = {δi |
δi ∈ Δ ∧ c � δi}. Moreover, we assume that if i < j, either δi ≺ δj or δi
and δj are unordered. Accordingly, we denote the model of the derived product
corresponding to configuration c by MΔ|c = δck

(...(δc1(M0))...) where Δ|c =
{δc1 , ..., δck

}.
Annotated Model The projection of an annotated Rebeca model R over

a decided configuration c, denoted by R|c, is a plain Rebeca model where the
application conditions of every annotated reactive class, known rebec, state vari-
able, message server, and statement are evaluated and those entities that their
application condition does not hold for c are removed.

60 H. Sabouri and R. Khosravi

Note that the result of product generation (for delta-oriented or annotated
models) may be a model that is not syntactically correct. For example, a rebec
may send a message to another rebec that does not exists in the current con-
figuration because it is removed by a delta (in case of delta modeling) or it is
annotated with an application condition that does not hold (in case of annota-
tive modeling). These inconsistencies can be detected by analyzing the model of
product family statically. In this paper, we assume that every product that is
derivable from the model of the product family is syntactically correct.

5 Model Checking Delta-Oriented Rebeca Models

A naive approach to model check SPLs is to generate the Rebeca model of every
possible valid product (as we described in 4.4), then model check each product
individually. This way, we lose the benefit of having commonalities among the
products in the family. In this section, we propose an approach to transform
a delta model to an annotated Rebeca model. Given the underlying FTS of
an annotated Rebeca model, we can take benefit from variability-aware model
checking technique proposed in [20] to model check delta-oriented actor systems.
We can also use the late feature binding approach, proposed in [17] to handle
variability in the model itself and use the existing model checker of Rebeca.

5.1 Transforming Deltas to Annotations

To transform delta model D = (Δ,Γ,≺) to the corresponding annotated model,
we modify the core model M0 (which is a plain Rebeca model), according to
the deltas defined in D. We assume that deltas with smaller identifiers has lower
priority than deltas with greater identifiers. We start by changing the core model
M0 based on the modifications specified by delta δ1 which results in the model
M1. Likewise, the modelMi is obtained by applying δi toMi−1. Due to our earlier
assumption on unambiguity and correctness of delta models, the transformation
results in a unique annotated model. Moreover, it is not required to deal with
cases such as removing an entity that does not exits.

We define a model to be the set of all entities that exist in it. An entity is a
reactive class, message server, state variable, known rebec, or statement. Each
entity e is represented by a pair e = (n, d) where n is the name of the entity and d
is its definition. For simplicity, we do not discuss the formal definition of d in this
paper. Informally, known rebecs and state variables are defined by their types.
A message server is defined by its parameters and its sequence of statements.
Finally, a reactive class is defined by its set of state variables, known rebecs, and
message servers. We assume unique names for every known rebec, state variable,
and message servers. Unique names for these entities can be obtained by adding
the name of their corresponding reactive class as a prefix to their names.

Having F as the feature set, we assume that function Ai : Mi → ΦF returns
the application condition by which each entity is annotated in Mi. Function A0

returns true for all entities in M0. By applying δi+1 on Mi, we may add new

Delta Modeling and Model Checking of Product Families 61

Fig. 3. The annotated Rebeca model of the coffee machine family

entities to Mi or change the annotations of existing ones. We do not eliminate
any entity from Mi as removing or modifying an entity is handled by updating
its corresponding annotation. Thus, all the definitions of an entity specified by
different deltas, coexist in the annotated model. These definitions are distin-
guished by their annotations. Having an unambiguous delta model, only one of
these definitions is applicable for a specific configuration. The effect of delta δi+1

on model Mi is captured in the annotated model as follows.
Adding an Entity Suppose δi+1 adds entity e = (n, d) to the model. Note

that Mi may include one or more entities with the same name. This happens
when for some j < i, δj−1 adds an entity which is then removed by δj and added
again in δj+1. In this case, we compare definition d with every definition for n
in Mi. To handle adding an entity e = (n, d) we consider the following cases:

– When e does not exist in Mi (there is no entity in Mi with name n), we
add e to Mi and annotate it with its corresponding application condition:
Ai(e) = Γ (δi+1).

– If d is different from all existing definitions in Mi (for the entities with name
n), a new entity is added to Mi along with its annotation Ai(e) = Γ (δi+1).

62 H. Sabouri and R. Khosravi

– Otherwise, if there exists an entity e′ = (n, d′) where d and d′ are the same,
we update the annotation of e′ as: Ai(e′) = Ai−1(e′) ∨ Γ (δi+1).

We consider the definition of two message servers the same if they have the same
parameters and the same sequence of statements. Two state variables/known
rebecs with the same name are equal if they have the same type. Definitions of
two reactive classes are equal if they have the same set of state variables, known
rebecs, and message servers with identical definitions.

Removing an Existing Entity To handle removing an entity (n, d), we mod-
ify the annotation of all entities in Mi with the name n. For each ek = (n, dk) ∈
Mi, we conjunct its annotation with ¬Γ (δi+1): Ai(ek) = Ai−1(ek) ∧ ¬Γ (δi+1).

Note that by the above conjunction, we preserve the higher priority of δi+1

over previously applied deltas as when Γ (δi+1) holds, it makes the entire formula
false. On the other hand, if we apply another delta δj later (j > i) to add an
entity with the same name and definition again, the new annotation will be
(Ai−1(ek) ∧ ¬Γ (δi+1)) ∨ Γ (δj). Consequently, the entity would be included in
the model if a delta with higher priority adds the entity again.

Modifying the Implementation of a Message Server We assume that I0
is the initial implementation of message server m. We consider δmi

to be the
ith delta that changes the implementation of m. By applying δmk+1 , the imple-
mentation of m changes from Ik to Ik+1. If δmk+1 specifies Iδk+1 as the new
implementation of m, then Ik is obtained by the sequential composition of Ik
and Iδk+1 annotated by ¬Γ (δmk+1) and Γ (δmk+1) respectively. This way, Iδk+1

is executed only when Γ (δmk+1) holds. Consequently, that the body of message
server m is defined recursively as: Ik+1 = { @¬Γ (δmk+1)Ik; @Γ (δmk+1)Iδk+1 }

The Coffee Machine Example: Transformation. Figure 3 shows the annotated
Rebeca model after applying the deltas δ2, δ3, δ4, δ1, δ12, and δ34. We omit the
details of each implementation Ii. �

5.2 Justification

In this section, we explain how our proposed approach may be justified intu-
itively. Proving the correctness of the approach formally is in our future agenda.
Note that the following arguments only holds for decided configurations.

A model of a product family consists of a core Rebeca model M0 along with
its corresponding delta model D. By applying the applicable deltas to M0 with
respect to their predefined order, MΔ|c is obtained which is the model of the
individual product with configuration c. The semantics of the resulting Rebeca
model can be described using an LTS which we denote it by [[MΔ|c]]. We may
transform the delta-oriented model of the product family to its corresponding
annotative model Ma. The semantics of Ma, denoted by [[Ma]]�, is defined using
an FTS. Moreover, we may project Ma over a configuration c to obtain the
Rebeca model of an individual product which [[Ma|c]] represents its semantics.

The correctness of the proposed transformation can be established by proving
that the underlying transition systems of MΔ|c and Ma|c are bisimilar: [[MΔ|c]] ≈
[[Ma|c]]. According to the transformation rules, both transition systems have

Delta Modeling and Model Checking of Product Families 63

the same set of message servers with same the behaviors as their action set.
Therefore, starting from the initial states, both transition systems have the same
set of enabled actions where taking each action implies the same behavior in both
transition systems.

The variability-aware model checking is applicable on the FTS [[Ma]]�. We
can justify that such FTS includes the behavior of all products of the delta
model by defining a refinement relation between two FTSs and proving that for
every configuration c, [[MΔ|c]] � [[Ma]]�. Given two featured transition systems
TA and TB , we say TA refines TB , denoted TA � TB, if and only if there is a
relation R between the states of their underlying transition systems such that
R(sA0 , sB0). Moreover, If R(sA, sB) and there exist transition t : sA

a−→ s′
A then

there exists transition t′ : sB
a−→ s′

B such that R(s′
A, s

′
B) and γ(t) ⇒ γ(t′).

According to the proposed transformation rules and the presented semantics for
annotated Rebeca models, [[MΔ|c]] � [[Ma]]� can be justified intuitively for every
configuration c. Note that every transition system (such as [[MΔ|c]]) is trivially
an FTS with γ(t) = true for every transition t.

5.3 Model Checking

We can use the model checking algorithm tailored for product families in [20]
or use the late feature binding approach proposed in [17] to model check the
resulting annotated model.

Variability Aware Model Checking In this approach, we use the underlying
FTS of a Rebeca model to apply the variability-aware model checking technique
developed to verify product families. This way, the model checker returns all
the products that satisfy the given property along with counter-examples for
those products that violate the property. To take benefit from such technique,
we should alter the current compiler of Rebeca and adapt its model checker
accordingly. This is one of our future work.

Traditional Model Checking To use the existing compiler and model checker
of Rebeca, we transform the annotated model to a plain Rebeca model which
handles variability within the model itself. Annotation @ϕ for a statement s can
be modeled using conditional statement if(ϕ) s; itself. To decide on including
or excluding feature f , we use the late feature binding approach proposed in [17]
where such decision is made just before using a feature to optimize the number
of generated states. For this purpose, we model each feature f using an integer
variable vf where its value represent if it is included (vf = 1), excluded (vf = 0),
or it is not included nor excluded (vf = −1) yet. We decide on the value of a
feature variable by adding if(vf == -1) vf = ?(0,1), just before its usage in
the application condition of a statement. Such statement non-deterministically
includes or excludes f when no decision is made for it yet. After transforming
the annotated Rebeca model to a plain model, we model check it using existing
model checker.

Result We have applied our approach on an extended version of the cof-
fee machine example presented in this paper. We verified the annotated model
against deadlock by replacing annotations with conditional statements, then

64 H. Sabouri and R. Khosravi

using the existing model checker of Rebeca. Deriving every product from the
delta model and model checking it separately leads to 20, 596 total states for all
products. However, by transforming the delta model to an annotated model and
applying the late binding technique, 1, 360 states are generated for the entire
family.

6 Conclusion

In this paper, we presented an approach to model product families in a high-
level and modular manner, using delta-oriented modeling. To model check such
a model, we transform it to a corresponding annotated model with its semantics
defined by featured transition systems. Such transition systems can be verified
using a variability-aware model checking technique to obtain the products that
satisfy the given property. We may also apply the late feature binding technique
to verify the entire family using existing model checking techniques. The result
of applying our proposed approach on a coffee machine case study shows that
it is more efficient to transform a delta model to an annotated one, then model
check the entire family, rather than deriving each product from the delta model
and verify them individually.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc. (2005)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

3. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

4. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42,
42–52 (2009)

5. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

6. Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verifica-
tion of software product lines. In: Proc. Generative Programming and Component
Engineering, GPCE 2012, pp. 11–20. ACM (2012)

7. Hähnle, R., Schaefer, I.: A liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012)

8. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A transfor-
mational proof system for delta-oriented programming. In: Proc. Software Product
Line Conference, SPLC 2012, vol. 2, pp. 53–60. ACM (2012)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
10. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking

lots of systems: efficient verification of temporal properties in software product
lines. In: Proc. Int’l Conf. on Software Eng., ICSE 2010, pp. 335–344 (2010)

Delta Modeling and Model Checking of Product Families 65

11. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inf. 63(4), 385–410 (2004)

12. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS
abstract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

13. Rebeca research group: Afra integrated verification environment for Rebeca,
http://www.rebeca-lang.org

14. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

15. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

16. Sabouri, H., Khosravi, R.: An effective approach for verifying product lines in
presence of variability models. In: Proc. Software Product Lines, vol. 2, pp. 113–
120 (2010)

17. Sabouri, H., Jaghoori, M.M., de Boer, F.S., Khosravi, R.: Scheduling and analysis
of real-time software families. In: Proc. Computer Software and Applications. IEEE
Computer Society (2012)

18. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

19. Muschevici, R., Clarke, D., Proença, J.: Feature Petri Nets. In: Proc. Software
Product Lines, vol. 2, pp. 99–106 (2010)

20. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. International Journal on Software Tools for
Technology Transfer, 1–24 (2012)

21. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: Proc. Gen-
erative Programming and Component Engineering, GPCE 2010, pp. 13–22 (2010)

22. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Khamespanah, E., Movaghar, A.:
Symmetry and partial order reduction techniques in model checking Rebeca. Acta
Inf. 47(1), 33–66 (2010)

http://www.rebeca-lang.org

Lending Petri Nets and Contracts

Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari,
Cagliari, Italy

Abstract. Choreography-based approaches to service composition typ-
ically assume that, after a set of services has been found which correctly
play the roles prescribed by the choreography, each service respects his
role. Honest services are not protected against adversaries. We propose
a model for contracts based on an extension of Petri nets, which allows
services to protect themselves while still realizing the choreography. We
relate this model with Propositional Contract Logic, by showing a trans-
lation of formulae into our Petri nets which preserves the logical notion
of agreement, and allows for compositional verification.

1 Introduction

Many of today’s human activities, from business and financial transactions, to
collaborative and social applications, run over complex interorganizational sys-
tems, based on service-oriented computing (SOC) and cloud computing tech-
nologies. These technologies foster the implementation of complex software sys-
tems through the composition of basic building blocks, called services. Ensuring
reliable coordination of such components is fundamental to avoid critical, pos-
sibly irreparable problems, ranging from economic losses in case of commercial
activities, to risks for human life in case of safety-critical applications.

Ideally, in the SOC paradigm an application is constructed by dynamically
discovering and composing services published by different organizations. Services
have to cooperate to achieve the overall goals, while at the same time they have
to compete to achieve the specific goals of their stakeholders. These goals may be
conflicting, especially in case of mutually distrusted organizations. Thus, services
must play a double role: while cooperating together, they have to protect them-
selves against other service’s misbehavior (either unintentional or malicious).

The lack of precise guarantees about the reliability and security of services is
a main deterrent for industries wishing to move their applications and business
to the cloud [3]. Quoting from [3], “absent radical improvements in security
technology, we expect that users will use contracts and courts, rather than clever
security engineering, to guard against provider malfeasance”.

Indeed, contracts are already a key ingredient in the design of SOC appli-
cations. A choreography is a specification of the overall behavior of an interor-
ganizational process. This global view of the behavior is projected into a set of
local views, which specify the behavior expected from each service involved in
the whole process. The local views can be interpreted as the service contracts: if
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 66–82, 2013.
DOI: 10.1007/978-3-642-40213-5 5,
c© IFIP International Federation for Information Processing 2013

Lending Petri Nets and Contracts 67

the actual implementation of each service respects its contract, then the overall
application must be guaranteed to behave correctly.

There are many proposals of formal models for contracts in the literature,
which we may roughly divide into “physical” and “logical” models. Physical
contracts take inspiration mainly from formalisms for concurrent systems (e.g.
Petri nets [21], event structures [15,5], and various sorts of process algebras
[8,9,10,12,16]), and they allow to describe the interaction of services in terms of
response to events, message exchanges, etc. On the other side, logical contracts
are typically expressed as formulae of suitable logics, which take inspiration and
extend e.g. modal [1,14], intuitionistic [2,7], linear [2], deontic [18] logics to model
high-level concepts such as promises, obligations, prohibitions, authorizations,
etc.

Even though logical contracts are appealing, since they aim to provide formal
models and reasoning tools for real-world Service Level Agreements, existing log-
ical approaches have not had a great impact on the design of SOC applications.
A reason is that there is no evidence on how to relate high-level properties of a
contract with properties of the services which have to realize it. The situation
is decidedly better in the realm of physical contracts, where the gap between
contracts and services is narrower. Several papers, e.g. [9,10,11,16,21], address
the issue of relating properties of a choreography with properties of the services
which implement it (e.g. deadlock freedom, communication error freedom, session
fidelity), in some cases providing automatic tools to project the choreography to
a set services which correctly implements it.

A common assumption of most of these approaches is that services are honest,
i.e. their behavior always adheres to the local view. For instance, if the local view
takes the form of a behavioral type, it is assumed that the service is typeable,
and that its type is a subtype of the local view. Contracts are only used in the
“matchmaking” phase: once, for each local view projected from the choreography,
a compliant service has been found, then all the contracts can be discarded.

We argue that the honesty assumption is not suitable in the case of interor-
ganizational processes, where services may pursue their providers goals to the
detriment to the other ones. For instance, consider a choreography which pre-
scribes that a participant A performs action a (modeling e.g. “pay $100 to B”),
and that B performs b (e.g. “provide A with 5GB disk storage”). If both A and
B are honest, then each one will perform its due action, so leading to a correct
execution of the choreography. However, since providers have full control of the
services they run, there is no authority which can force services to be honest.
So, a malicious provider can replace a service validated w.r.t. its contract, with
another one: e.g., B could wait until A has done a, and then “forget” to do b.
Note that B may perform his scam while not being liable for a contract violation,
since contracts have been discarded after validation.

In such competitive scenarios, the role of contracts is twofold. On the one
hand, they must guarantee that their composition complies with the choreogra-
phy: hence, in contexts where services are honest, the overall execution is correct.
On the other hand, contracts must protect services from malicious ones: in the

68 M. Bartoletti, T. Cimoli, and G.M. Pinna

example above, the contract of A must ensure that, if A performs a, then B will
either do b, or he will be considered culpable of a contract violation.

In this paper, we consider physical contracts modeled as Petri nets, along the
lines of [21]. In our approach we can both start from a choreography (modeled
as a Petri net) and then obtain the local views by projection, as in [21], or
start from the local views, i.e. the contracts published by each participant, to
construct a choreography which satisfies the goals of everybody. Intuitively, when
this happens the contracts admit an agreement.

A crucial observation of [6] is that if contracts admit an agreement, then
some participant is not protected, and vice-versa. The archetypical example is
the one outlined above. Intuitively, if each participant waits until someone else
has performed her action, then everyone is protected, but the contracts do not
admit an agreement because of the deadlock. Otherwise, if a participant does
her action without waiting, then the contracts admit an agreement, but the
participant who makes the first step is not protected. This is similar to the proof
of impossibility of fair exchange protocols without a trusted third party [13].

To overcome this problem, we introduce lending Petri nets (in short, LPN).
Roughly, an LPN is a Petri net where some places may give tokens “on credit”.
Technically, when a place gives a token on credit its marking will become nega-
tive. This differs from standard Petri nets, where markings are always nonneg-
ative. The intuition is that if a participant takes a token on credit, then she is
obliged to honour it — otherwise she is culpable of a contract violation.

Differently from the Petri nets used in [21], LPNs allow for modeling contracts
which, at the same time, admit an agreement (more formally, weakly terminate)
and protect their participants. LPNs preserve one of the main results of [21],
i.e. the possibility of proving that an application respects a choreography, by
only locally verifying the services which compose it. More precisely, we project a
choreography to a set of local views, independently refine each of them, and be
guaranteed then the composition of all refinements respects the choreography.
This is stated formally in Theorem 8.

The other main contribution is a relation between the logical contracts of [7]
and LPN contracts. More precisely, we consider contracts expressed in (a frag-
ment of) Propositional Contract Logic (PCL), and we compile them into LPNs.
Theorem 23 states that a PCL contract admits an agreement if and only if its
compilation weakly terminates. Summing up, Theorem 24 states that one can
start from a choreography represented as a logical contract, compile it to a phys-
ical one, and then use Theorem 8 to project it to a set services which correctly
implement it, and which are protected against adversaries. Finally, Theorem 25
relates logical and physical characterizations of urgent actions, i.e. those actions
which must be performed in a given state of the contract.

2 Nets

We briefly review Petri nets [19] and the token game. We consider Petri nets
labeled on a set T, and (perhaps a bit unusually) the labeling is also on places.

Lending Petri Nets and Contracts 69

A labeled Petri net is a 5-tuple 〈S, T, F, Γ, Λ〉, where S is a set of places, and T
is a set of transitions (with S∩T = ∅), F ⊆ (S×T)∪(T ×S) is the flow relation,
and Γ : S → T, Λ : T → T are partial labeling function for places and transitions,
respectively. Ordinary (non labeled) Petri nets are those where the two labeling
functions are always undefined (i.e. equal to ⊥). We require that for each t ∈ T ,
F (t, s) > 0 for some place s ∈ S, i.e. a transition cannot happen spontaneously.
Subscripts on the net name carry over the names of the net components. As
usual, we define the pre-set and post-set of a transition/place: •x = {y ∈ T ∪S |
F (y, x) > 0} and x• = {y ∈ T ∪ S | F (x, y) > 0}, respectively. These are
extended to subsets of transitions/places in the obvious way.

A marking is a function m from places to natural numbers (i.e. a multiset
over places), which represents the state of the system modeled by the net. A
marked Petri net is a pair N = (〈S, T, F, Γ, Λ〉,m0), where 〈S, T, F, Γ, Λ〉 is a
labelled Petri net, and m0 : S → N is the initial marking.

The dynamic of a net is described by the execution of transitions at markings.
Let N be a marked net (hereafter we will just call net a marked net). A transition
t is enabled at a marking m if the places in the pre-set of t contains enough
tokens (i.e. if m contains the pre-set of t). Formally, t ∈ T is enabled at m if
m(s) ≥ F (s, t) for all s ∈ •t. In this case, to indicate that the execution of t in
m produces the new marking m′(s) = m(s)−F (s, t)+F (t, s), we write m [t〉m′,
and we call it a step1. This notion is lifted, as usual, to multisets of transitions.

The notion of step leads to that of execution of a net. LetN = (〈S, T, F, Γ, Λ〉,
m0) be a net, and let m be a marking. The firing sequences starting at m are
defined as follows: (a) m is a firing sequence, and (b) ifm [t1〉m1 · · ·mn−1 [tn〉mn

is a firing sequence and mn [t〉m′ is a step, then m [t1〉m1 · · ·mn−1 [tn〉mn [t〉m′

is a firing sequence. A marking m is reachable iff there exists a firing sequence
starting at m0 leading to it. The set of reachable markings of a net N is denoted
with M(N). A netN = (〈S, T, F, Γ, Λ〉,m0) is safe when each markingm ∈ M(N)
is such that m(s) ≤ 1 for all s ∈ S.

A trace can be associated to each firing sequence, which is the word on T∗

obtained by the firing sequence considering just the (labels of the) transitions
and forgetting the markings: if m0 [t1〉m1 · · ·mn−1 [tn〉mn is a firing sequence of
N , the associated trace is Λ(t1t2 . . . tn). The trace associated to m0 is the empty
word ε. If the label of a transition is undefined then the associated word is the
empty one. The traces of a net N are denoted with Traces(N).

A subnet is a net obtained by restricting places and transitions of a net, and
correspondingly the flow relation and the initial marking. LetN = (〈S, T, F, Γ, Λ〉,
m0) be a net, and let T ′ ⊆ T . We define the subnet generated by T ′ as the net
N |T ′ = (〈S′, T ′, F ′, Γ ′, Λ′〉,m′

0), where S′ = {s ∈ S | F (t, s) > 0 or F (s, t) > 0
for t ∈ T ′}∪ {s ∈ S | m0(s) > 0}, F ′ is the flow relation restricted to S′ and T ′,
Γ ′ is obtained by Γ restricting to places in S′, Λ′ is obtained by Λ restricting to
transitions in T ′, and m′

0 is obtained by m0 restricting to places in S′.

1 The word step is usually reserved to the execution of a subset of transitions, but
here we prefer to stress the computational interpretation.

70 M. Bartoletti, T. Cimoli, and G.M. Pinna

A net property (intuitively, a property of the system modeled as a Petri net)
can be characterized in several ways, e.g. as a set of markings (states of the
system). The following captures the intuition that, notwithstanding the state
(marking) reached by the system, it is always possible to reach a state satisfying
the property. A net N weakly terminates in a set of markings M iff ∀m ∈ M(N),
there is a firing sequence starting at m and leading to a marking in M. Hereafter,
we shall sometimes say that N weakly terminates (without referring to any M)
when the property is not relevant or clear from the context.

We now introduce occurrence nets. The intuition behind this notion is the
following: regardless how tokens are produced or consumed, an occurrence net
guarantees that each transition can occur only once (hence the reason for calling
them occurrence nets). We adopt the notion proposed by van Glabbeek and
Plotkin in [22], namely 1-occurrence nets. For a multiset M , we denote by [[M]]
the multiset defined as [[M]](a) = 1 if M(a) > 0 and [[M]](a) = 0 otherwise. A
state of a net N = (〈S, T, F, Γ, Λ〉,m0) is any finite multiset X of T such that the
function mX : S → Z given by mX(s) = m0(s) +

∑
t∈T X(t) · (F (t, s)−F (s, t)),

for all s ∈ S, is a reachable marking of the net. We denote by St(N) the states
of N . A state contains (in no order) all the occurrence of the transitions that
have been fired to reach a marking. Observe that a trace of a net is a suitable
linearization of the elements of a state X. We use the notion of state to formalize
occurrence nets. An occurrence net O = (〈S, T, F, Γ, Λ〉,m0) is a net where each
state is a set, i.e. ∀X ∈ St(N). X = [[X]].

A net is correctly labeled iff ∀s.∀t, t′ ∈ •s. Γ (s) �= ⊥ =⇒ Λ(t) = Λ(t′) = Γ (s).
Intuitively, this requires that all the transitions putting a token in a labeled place
represent the same action.

3 Nets with Lending Places

We now relax the conditions under which transitions may be executed, by allow-
ing a transition to consume tokens from a place s even if the s does not contain
enough tokens. Consequently, we allow markings with negative numbers. When
the number of tokens associated to a place becomes negative, we say that they
have been done on credit. We do not permit this to happen in all places, but
only in the lending places (a subset L of S). Lending places are depicted with a
double circle.

Definition 1. A lending Petri net (LPN) is a triple (〈S, T, F, Γ, Λ〉,m0,L) where
(〈S, T, F, Γ, Λ〉,m0) is a marked Petri net, and L ⊆ S is the set of lending places.

Example 1. Consider the LPN N1 in Fig. 1. The places p2 and p4 are lending
places. The set of labels of the transitions is T = {a, b, c}, and the set of labels of
the places is G = T. The labeling is Γ (p1) = c, Γ (p2) = a and Γ (p4) = Γ (p3) = b
(the place p0 is unlabeled).

The notion of step is adapted to take into account this new kind of places.
Let N be an LPN, let t be a transition in T , and let m be a marking. We say that

Lending Petri Nets and Contracts 71

Fig. 1. Two lending Petri nets

t is enabled at m iff ∀s ∈ •t. m(s) ≤ 0 =⇒ s ∈ L. The evolution of N is defined
as before, with the difference that the obtained marking is now a function from
places to Z (instead of N). This notion matches the intuition behind of lending
places: we allow a transition to be executed even when some of the transitions
that are a pre-requisite have not been executed yet.

Definition 2. Let m be a reachable marking of an LPN N . We say that m is
honored iff m(s) ≥ 0 for all places s of N .

An honored firing sequence is a firing sequence where the final marking is hon-
ored. Note that if the net has no lending places, then all the reachable markings
are honored.

Example 2. In the net of Ex. 1, the transition c is enabled even though there
are no tokens in the places p2 and p4 in its pre-set, as they are lending places.
The other transitions are not enabled, hence at the initial marking only c may
be executed (on credit). After firing c, only b can be executed. This results in
putting one token in p3 and one in p4, hence giving back the one taken on credit.
After this, only a can be executed. Upon firing c, b and a, the marking is honored.
The net is clearly a (correctly labeled) occurrence net.

We now introduce a notion of composition of LPNs. The idea is that the
places with a label are places in an interface of the net (though we do not put
any limitation on such places, as done instead e.g. in [21]) and they never are
initially marked. The labelled transitions of a net are connected with the places
bearing the same label of the other.

Definition 3. Let N = (〈S, T, F, Γ, Λ〉, m0,L) and N ′ = (〈S′, T ′, F ′, Γ ′, Λ′〉,
m′

0, L′) be two LPNs. We say that N,N ′ are compatible whenever (a) they have
the same set of labels, (b) S ∩ S′ = ∅, (c) T ∩ T ′ = ∅, (d) m0(s) = 1 implies
Γ (s) = ⊥, and (e) m′

0(s
′) = 1 implies Γ ′(s′) = ⊥. If N and N ′ are compatible,

their composition N ⊕N ′ is the LPN (〈Ŝ, T ∪ T ′, F̂ , Γ̂ , Λ̂〉, m̂0, L̂) in Fig. 2.

The underlying idea of LPN composition is rather simple: the sink places in
a net bearing a label of a transition of the other net are removed, and places
and transitions with the same label are connected accordingly (the removed sink
places have places with the same label in the other net). All the other ingredients

72 M. Bartoletti, T. Cimoli, and G.M. Pinna

Fig. 2. Composition of two LPNs

of the compound net are trivially inherited from the components. Observe that,
when composing two compatible nets N and N ′ such that Γ (S) ∩ Γ ′(S′) = ∅,
we obtain the disjoint union of the two nets. Further, if the common label a ∈
Γ (S) ∩ Γ ′(S′) is associated in N to a place s with empty post-set and in N ′ to
a place s′ with empty post-set (or vice versa) and the labelings are injective, we
obtain precisely the composition defined in [21]. If the components N and N ′

may satisfy some properties (sets of markings M and M′), the compound net
N ⊕ N ′ may satisfy the compound property (which is the set of markings M̂

obtained obviously from M and M′).

Example 3. Consider the nets in Fig. 3. Net N fires a after b has been performed;
dually, netN ′ waits for b before firing a. These nets model two participants which
protect themselves by waiting the other one to make the first step (the properties
being that places p3 and p′

3, respectively, are not marked). Clearly, no agreement
is possible in this scenario. This is modelled by the deadlock in the composition
N ⊕N ′, where neither transitions a nor b can be fired. Consider now the LPN
N ′′, which differs from N only for the lending place p′′

1 . This models a participant
which may fire a on credit, under the guarantee that the credit will be eventually
honoured by the other participant performing b (hence, the participant modeled
by N ′′ is still protected), and the property is then place p′′

3 unmarked and p′′
1

with a non negative marking. The composition N ′′ ⊕N ′ weakly terminates wrt
the above properties, because transition a can take a token on credit from p′′

1 ,
and then transition b can be fired, so honouring the debit in p′′

1 .

Lending Petri Nets and Contracts 73

Fig. 3. Three LPNs (top) and their pairwise compositions (bottom)

The operation ⊕ is clearly associative and commutative.

Proposition 4. Let N1, N2 and N3 be three compatible LPNs. Then, N1⊕N2 =
N2 ⊕N1 and N1 ⊕ (N2 ⊕N3) = (N1 ⊕N2)⊕N3.

The composition ⊕ does not have the property that, in general, considering
only the transitions of one of the components, we obtain the LPN we started
with, i.e. (N1 ⊕ N2)|Ti

�= Ni. This is because the number of places with labels
increases and new arcs may be added, and these places are not forgotten when
considering the subnet generated by Ti. However these added places are not
initially marked, hence it may be that the nets have the same traces.

Definition 5. Let N and N ′ two LPNs on the same sets of labels. We say that
N approximates N ′ (N � N ′) iff Traces(N) ⊆ Traces(N ′). We write N ∼ N ′

when N � N ′ and N ′ � N .

Proposition 6. For two compatible LPNs N1, N2, Ni ∼ (N1 ⊕N2)|Ti
, i = 1, 2.

Following [21] we introduce a notion of refinement (called accordance in [21])
between two LPNs. We say that M (with a property MM) is a strategy for an
LPN N (with a property M) if N ⊕M is weakly terminating. With S(N) we
denote the set of all strategies for N . In the rest of the paper we assume that
properties are always specified, even when not done explicitly.

Definition 7. An LPN N ′ refines N if S(N ′) ⊇ S(N).

Observe that if N ′ refines N and N weakly terminates, then N ′ weakly
terminates as well.

If a weakly terminating LPN N is obtained by composition of several nets,
i.e. N =

⊕
iNi, we can ask what happens if there is an N ′

i which refines Ni, for
each i. The following theorem gives the desired answer.

Theorem 8. Let N =
⊕

iNi be a weakly terminating LPN, and assume that
N ′
i refines Ni, for all i. Then, N ′ =

⊕
iN

′
i is a weakly terminating LPN.

74 M. Bartoletti, T. Cimoli, and G.M. Pinna

The theorem above gives a compositional criterion to check weak termination
of a SOC application. One starts from an abstract specification (e.g. a choreog-
raphy), projects it into a set of local views, and then refines each of them into a
service implementation. These services can be verified independently (for refine-
ment), and it is guaranteed that their composition still enjoys weak termination.

We now define, starting from a marking m, which actions may be performed
immediately after, while preserving the ability to reach an honored marking. We
call these actions urgent.

Definition 9. For an LPN N and marking m,we say a urgent at m iff there
exists a firing sequence m [t1〉 · · · [tn〉mn with Λ(t1) = a and mn honored.

Example 4. Consider the nets in Ex. 3. In N ′′⊕N ′ the only urgent action at the
initial marking is a, while b is urgent at the marking where p′

1 is marked. In N ′′

there are no urgent actions at the initial marking, since no honored marking is
reachable. In the other nets (N , N ′, N ⊕N ′) no actions are urgent in the initial
marking, since these nets are deadlocked.

4 Physical Contracts

We now present a model for physical contracts based on LPNs. Let a, b, . . . ∈ T

be actions, performed by participants A,B, . . . ∈ Part . We assume that actions
may only be performed once. Hence, we consider a subclass of LPNs, namely
occurrence nets, where all the transitions with the same label are mutually exclu-
sive. A physical contract is an LPN, together with a set A of participants bound
by the contract, a mapping π from actions to participants, and a set Ω modeling
the states where all the participant in A are satisfied.

Definition 10. A contract net D is a tuple (O,A, π,Ω), where O is an occur-
rence LPN (〈S, T, F, Γ, Λ〉, m0,L) labeled on T, A ⊆ Part, π : T → Part,
Ω ⊆ ℘(T) is the set of goals of the participants, and where:

(a) ∀s ∈ S. (m0(s) = 1 =⇒ •s = ∅ ∧ Γ (s) = ⊥) ∧ (s ∈ L =⇒ Γ (s) ∈ T),
(b) ∀t ∈ T. (∀s ∈ t•. Λ(t) = Γ (s)) ∧ (∃s ∈ •t. s �∈ L),
(c) ∀t, t′ ∈ T . Λ(t) = Λ(t′) =⇒ ∃s ∈ •t ∩ •t′. m0(s) = 1,
(d) π(Λ(T)) ⊆ A.

The last constraint models the fact that only the participants in A may
perform actions in D.

Given a state X of the component O of D, the reached marking m tells us
which actions have been performed, and which tokens have been taken on credit.
The configuration μ(m) associated to a marking m is the pair (C, Y) defined as:

– C = {a ∈ T | ∃s ∈ S. {s} =
⋂
t∈T { •t | Λ(t) = a} and m(s) = 0}, and

– Y = {a ∈ T | ∃s ∈ S. a = Γ (s) and m(s) < 0}

Lending Petri Nets and Contracts 75

The first component is the set of the labels of the transitions in X. The marking
m is honored whenever the second component of μ(m) is empty.

We now state the conditions under which two contract nets can be composed.
We require that an action can be performed only by one of the components (the
other may use the tokens produced by the execution of such action).

Definition 11. Two contracts nets D = (O,A, π,Ω) and D′ = (O′,A′, π′, Ω′)
are compatible whenever O ⊕O′ is defined and A ∩A′ = ∅.
The composition of D and D′ is then the obvious extension of the one on LPNs:

Definition 12. Let D = (O,A, π,Ω) and D′ = (O′,A′, π′, Ω′) be two compat-
ible contract nets. Then D ⊕ D′ = (O ⊕ O′,A ∪ A′, π ◦ π′, Ω′′) where Ω′′ =
{X ∪X ′ | X ∈ Ω,X ′ ∈ Ω′}.

We lift the notion of weak termination to contract nets D = (O,A, π, ok , Ω).
The set of markings obtained byΩ is MΩ = {m ∈ M(O)|μ(m) = (C, ∅), C ∈ Ω}.
We say that D weakly terminates w.r.t. Ω when O weakly terminates w.r.t. MΩ .

We also extend to contract nets the notion of urgent actions given for LPNs
(Def. 9). Here, the set of urgent actions UCD is parameterized by the set C of
actions already performed.

Definition 13. Let D be a contract net, and let C ⊆ T. We define:

UCD = {a ∈ T | ∃Y ⊆ T. ∃m. μ(m) = (C, Y) ∧ a is urgent at m}

Example 5. Interpret the LPN N ′
1 in Fig. 1 as a contract net where the actions a,

b, c are associated, respectively, to participants A, B, and C, and Ω is immaterial.
Then, a and c are urgent at the initial marking, whereas b is not (the token
borrowed from p1 cannot be given back). In the state where a has been fired,
only b is urgent; in the state where c has been fired, no actions are urgent.

5 Logical Contracts

In this section we briefly review Propositional Contract Logic (PCL [7]), and we
exploit it to model contracts. PCL extends intuitionistic propositional logic IPC
with a connective �, called contractual implication. Intuitively, a formula b � a
implies a not only when b is true, like IPC implication, but also in the case that
a “compatible” formula, e.g. a � b, holds. PCL allows for a sort of “circular”
assume-guarantee reasoning, hinted by (b � a) ∧ (a � b) → a ∧ b, which is a
theorem in PCL. We assume that the prime formulae of PCL coincide with the
atoms in T. PCL formulae, ranged over greek letters ϕ,ϕ′, . . ., are defined as:

ϕ ::= ⊥ | � | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ϕ � ϕ

Two proof systems have been presented for PCL : a sequent calculus [7], and
an equivalent natural deduction system [4], the main rules of which are shown

76 M. Bartoletti, T. Cimoli, and G.M. Pinna

Fig. 4. Natural deduction for PCL (rules for �)

in Fig. 4. Provable formulae are contractually implied, according to rule (�I1).
Rule (�I2) provides � with the same weakening properties of →. The cru-
cial rule is (�E), which allows for the elimination of �. Compared to the rule
for elimination of → in IPC, the only difference is that in the context used to
deduce the antecedent ϕ, rule (�E) also allows for using as hypothesis the con-
sequence ψ. The decidability of the provability relation of PCL has been proved
in [7], by exploiting the cut elimination property enjoyed by the sequent calculus.

To model contracts, we consider the Horn fragment of PCL, which comprises
atoms, conjunctions, and non-nested (intuitionistic/contractual) implications.

Definition 14. A PCL contract is a tuple 〈Δ,A, π,Ω〉, where Δ is a Horn PCL
theory, A ⊆ Part, π : T → Part associates each atom with a participant, and
Ω ⊆ ℘(T) is the set of goals of the participants.

The component A of C contains the participants which can promise to do some-
thing in C. Consequently, we shall only consider PCL contracts such that if
α ◦ a ∈ Δ, for ◦ ∈ {→,�}, then π(a) ∈ A.

Example 6. Suppose three kids want to play together. Alice has a toy airplane,
Bob has a bike, and Carl has a toy car. Each of the kids is willing to share
his toy, but they have different constraints: Alice will lend her airplane only
after Bob has allowed her ride his bike; Bob will lend his bike after he has
played with Carl’s car; Carl will lend his car if the other two kids promise to
eventually let him play with their toys. Let π = {a �→ A, b �→ B, c �→ C}. The kids
contracts are modeled as follows: 〈b→ a, {A}, π, {{b}}〉, 〈c→ b, {B}, π, {{c}}〉,
and 〈(a ∧ b) � c, {C}, π, {{a, b}}〉.
A contract admits an agreement when all the involved participants can reach
their goals. This is formalized in Def. 15 below.

Definition 15. A PCL contract admits an agreement iff ∃X ∈ Ω. Δ � ∧
X.

We now define composition of PCL contracts. If C′ is the contract of an
adversary of C, then a näıve composition of the two contracts could easily lead
to an attack, e.g. when Mallory’s contract says that Alice is obliged to give him
her airplane. To prevent from such kinds of attacks, contract composition is a
partial operation. We do not compose contracts which bind the same participant,
or which disagree on the association between atoms and participants.

Lending Petri Nets and Contracts 77

Fig. 5. Proof traces of Horn PCL

Definition 16. Two PCL contracts C = 〈Δ,A, π,Ω〉 and C′ = 〈Δ′,A′, π′, Ω′〉
are compatible whenever A ∩ A′ = ∅, and ∀A ∈ A ∪ A′. π−1(A) = π′ −1(A). If
C, C′ are compatible, the contract C | C′ = 〈Δ ∪Δ′,A ∪A′, π ◦ π′, Ω | Ω′〉, where
Ω | Ω′ = {X ∪X ′ | X ∈ Ω, X ′ ∈ Ω′}, is their composition.

Example 7. The three contracts in Ex. 6 are compatible, and their composition
is C = 〈Δ, {A,B,C}, {a �→ A, b �→ B, c �→ C}, {{a, b, c}}〉 where Δ is the theory
{b → a, c → b, (a ∧ b) � c}. C has an agreement, since Δ � a ∧ b ∧ c. The
agreement exploits the fact that Carl’s contract allows the action c to happen
“on credit”, before the other actions are performed.

We now recap from [4] the notion of proof traces, i.e. the sequences of atoms
respecting the order imposed by proofs in PCL . Consider e.g. rule (→ E):

Δ � α→ a Δ � α
Δ � a

(→ E)

The rule requires a proof of all the atoms in α in order to construct a proof of a.
Accordingly, if σ is a proof trace of Δ, then σa if a proof trace of Δ. Instead,
in the rule (�E), the antecedent α needs not necessarily be proved before a: it
suffices to prove α by taking a as hypothesis.

Definition 17. (Proof traces [4]) For a Horn PCL theory Δ, we define the
set of proof traces [[Δ]] by the rules in Fig. 5, where for σ, η ∈ E∗ we denote with
σ the set of atoms in σ, with ση the concatenation of σ and η, and with σ | η the
interleavings of σ and η. We assume that both concatenation and interleaving
remove duplicates from the right, e.g. aba | ca = ab | ca = {abc, acb, cab}.
The set UXC in Def. 18 contains, given a set X of atoms, the atoms which may
be proved immediately after, following some proof trace of C.

Definition 18. (Urgent actions [4]) For a contract C = 〈Δ, . . .〉 and a set
of atoms X, we define UXC = {a �∈ X | ∃σ, σ′. σ = X ∧ σ aσ′ ∈ [Δ,X]}.
Example 8. For the contract C specified by the theory Δ = a → b, b � a, we
have [[Δ]] = {ε, ab}, and U∅

Δ = {a}, U
{a}
Δ = {b}, U

{b}
Δ = {a}, and U

{a,b}
Δ = ∅.

6 From Logical to Physical Contracts

In this section we show, starting from a logical contract, how to construct a
physical one which preserves the agreement property. Technically, we shall relate

78 M. Bartoletti, T. Cimoli, and G.M. Pinna

Fig. 6. Translation from logical to physical contracts

provability in PCL to reachability of suitable configurations in the associated
LPN. The idea of our construction is to translate each Horn clause of a PCL
formula into a transition of an LPN, labelled with the action in the conclusion
of the clause.

Definition 19. Let C = 〈Δ,A, π,Ω〉 be a PCL contract. We define the contract
net P(C) as ((〈S, T, F, Γ, Λ〉,m0,L),A, π,Ω) in Fig. 6.

The transitions associated to C are a subset T of ℘(T) × T × {�,©}. For each
intuitionistic/contractual implication, we introduce a transition as follows. A
clause

∧
X � a maps to (X, a,�) ∈ T , while

∧
X → a maps to (X, a,©) ∈ T . A

formula a is dealt with as the clause
∧ ∅ → a. Places in S carry the information

on which transition may actually put/consume a token from them (even on
credit). The lending places are those places (a, t) where t = (X, c,�). Observe
that a transition t = (X, a, z) puts a token in each place (a, x) with x �= ∗, and all
the transitions bearing the same labels, say a, are mutually excluding each other,
as they share the unique input place (a, ∗). The initial marking will contains all
the places in T × {∗}, and if a token is consumed from one of these places then
the place will be never marked again. Furthermore the lending places are never
initially marked.

Example 9. Consider the PCL contract with formula a � a (the other compo-
nents are immaterial for the sake of the example). The associated LPN is in

Fig. 7. Two contract nets constructed from PCL contracts

Lending Petri Nets and Contracts 79

Fig. 7, left. The transition ({a}, a,�)), labeled a, can be executed at the initial
marking, as the unmarked place in the preset is a lending place. The reached
marking contains no tokens, hence it is honored. This is coherent with the fact
that a � a � a holds in PCL .

Example 10. Consider the PCL contract specified by the theory

Δ = {b � a, a→ c, a→ b}

The associated LPN is the one on the right depicted in Fig. 7. The transitions
are t1 = ({b}, a,�), t2 = ({a}, c,©) and t3 = ({a}, b,©). Initially only t1 is
enabled, lending a token from place (b, t1). This leads to a marking where both
t2 and t3 are enabled, but only the execution of t3 ends up with an honored
marking. The marking reached after executing all the actions is honored. This
is coherent with the fact that Δ � a ∧ b ∧ c holds in PCL .

Since all the transitions consume the token from the places (a, ∗) (where a is
the label of the transition), and these places cannot be marked again, it is easy
to see that each transition may occur only once. Hence, the net associated to a
contract is an occurrence net. If two transitions t, t′ have the same label (say a),
then they cannot belong to the same state of the net. In fact, transitions with
the same label share the same input place (a, ∗). This place is not a lending one,
and has no ingoing arcs, hence only one of the transitions with the same label
may happen. The notion of correctly labeled net lifts obviously to contract nets.

Proposition 20. For all PCL contracts C, the net P(C) is correctly labeled.

A relevant property of P is that it is an homomorphism with respect to con-
tracts composition. Thus, since both | and ⊕ are associative and commutative,
we can construct a physical contract from a set of logical contracts C1 · · ·Cn
componentwise, i.e. by composing the contract nets P(C1) · · ·P(Cn).

Proposition 21. For all C1,C2, we have that P(C1 | C2) ∼ P(C1)⊕ P(C2).

In Theorem 23 below we state the main result of this section, namely that our
construction maps the agreement property of PCL contracts into weak termina-
tion of the associated contract nets. To prove Theorem 23, we exploit the fact
that C is a set of provable atoms in the logic iff (C, ∅) is a configuration of the
associated contract net.

Lemma 22. Let C = 〈Δ,A, π,Ω〉 be a PCL contract, and let P(C) = (O,A, π,Ω).
For all C ⊆ T, Δ � ∧

C iff there exists m ∈ M(O) such that μ(m) = (C, ∅).
Theorem 23. C admits an agreement iff P(C) weakly terminates in Ω.

We now specialize Theorem 8, which allows for compositional verification of
choreographies. Assuming a choreography specified as a PCL contract C, we
can (i) project it into the contracts C1 · · ·Cn of its participants, (ii) construct

80 M. Bartoletti, T. Cimoli, and G.M. Pinna

the corresponding LPN contracts P(C1) · · ·P(Cn), and (iii) individually refine
each of them into a service implementation. If the original choreography admits
an agreement, then the composition of the services weakly terminates, i.e. it is
correct w.r.t. the choreography.

Theorem 24. Let C = C1 | · · · | Cn admit an agreement, with Ωi goals of
Ci. If Di refines P(Ci) for i ∈ 1..n, then D1 ⊕ · · · ⊕ Dn weakly terminates in
Ω1 ∪ · · · ∪ Ωn.
The notion of urgency in contract nets correspond to that in the associated PCL
contracts (Theorem 25).

Theorem 25. For all PCL contracts C, and for all X ⊆ T, UXC = UXP(C).

Example 11. Recall from Ex. 8 that, for C = 〈{a→ b, b � a}, . . .〉, we have:

U∅
C = {a} U

{a}
C = {b} U

{b}
C = {a} U

{a,b}
C = ∅

This is coherent with the fact that, in the corresponding contract net N ′′ ⊕N ′

in Fig. 3, only a is urgent at the initial marking, while b becomes urgent after a
has been fired.

7 Related Work and Conclusions

We have investigated how to compile logical into physical contracts. The source
of the compilation is the Horn fragment of Propositional Contract Logic [7],
while the target is a contract model based on lending Petri nets (LPNs). Our
compilation preserves agreements (Theorem 23), as well as the possibility of
protecting services against misbehavior of malevolent services. LPN contracts
can be used to reason compositionally about the realization of a choreography
(Theorem 24), so extending a result of [21]. Furthermore, we have given a logical
characterization of those urgent actions which have to be performed in a given
state. This notion, which was only intuitively outlined in [7], is now made formal
through our compilation into LPNs (Theorem 25).

Contract nets seem a promising model for reasoning on contracts: while hav-
ing a clear relation with PCL contracts, they may inherit as well the whole realm
of tools that are already available for Petri nets.

The notion of places with a negative marking is not a new one in the Petri
nets community, though very few papers tackle this notion, as the interpretation
of negative tokens does not match the intuition of Petri nets, where tokens are
generally intended as resources. In this paper we have used negative tokens
to model situations where actions are in a circular dependency, like the ones
arising in PCL contracts. Lending places model the intuition that an action can
be performed on a promise, and a negative token in a place can be interpreted
as the promise made, which must be, sooner or later, honored. Indeed, the net
obtained from a PCL contract is an occurrence net which may contain cycles,

Lending Petri Nets and Contracts 81

e.g. in the net of Ex. 10 the transition t1 depends on t3, which in turn depends
on t1 (and to execute t1 we required to lend a token which is after supplied
by t3). In [20] the idea of places with negative marking is realized using a new
kind of arc, called debit arcs. Under suitable conditions, these nets are Turing
powerful, whereas our contract nets do not add expressiveness (while for LPNs
the issue has to be investigated). In [17] negative tokens arise as the result of
certain linear assumptions. The relations with LPNs have to be investigated.

Acknowledgements. We thank Philippe Darondeau, Eric Fabre and Roberto Zunino
for useful discussions and suggestions. This work has been partially supported by Aut.
Reg. of Sardinia grants L.R.7/2007 CRP2-120 (TESLA) CRP-17285 (TRICS) and
P.I.A. 2010 (“Social Glue”), and by MIUR PRIN 2010-11 project “Security Horizons”.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM TOPLAS 4(15) (1993)

2. Abadi, M., Plotkin, G.D.: A logical view of composition. TCS, 114(1) (1993)
3. Armbrust, M., et al.: A view of cloud computing. Comm. ACM 53(4), 50–58 (2010)
4. Bartoletti, M., Cimoli, T., Di Giamberardino, P., Zunino, R.: Contract agreements

via logic. In: Proc. ICE (2013)
5. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: An event-based model for

contracts. In: Proc. PLACES (2012)
6. Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection.

In: Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 186–205.
Springer, Heidelberg (2013)

7. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
8. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for

distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

9. Bravetti, M., Lanese, I., Zavattaro, G.: Contract-driven implementation of chore-
ographies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp.
1–18. Springer, Heidelberg (2009)

10. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer,
Heidelberg (2007)

11. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

12. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems 31(5) (2009)

13. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Computer Science Department, Technion, Haifa (1980)

14. Garg, D., Abadi, M.: A modal deconstruction of access control logics. In: Amadio,
R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 216–230. Springer, Heidelberg
(2008)

82 M. Bartoletti, T. Cimoli, and G.M. Pinna

15. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distrib-
uted dynamic condition response graphs. In: Proc. PLACES (2010)

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

17. Mart́ı-Oliet, N., Meseguer, J.: An algebraic axiomatization of linear logic models.
In: Topology and Category Theory in Computer Science (1991)

18. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. The
Journal of Logic and Algebraic Programming (JLAP) 81(4) (2012)

19. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science. An EATCS Series, vol. 4. Springer (1985)

20. Stotts, P.D., Godfrey, P.: Place/transition nets with debit arcs. Inf. Proc. Lett.
41(1) (1992)

21. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
53(1) (2010)

22. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: LICS (1995)

On Efficiency Preorders�

Manish Gaur1,2 and S. Arun-Kumar3

1 School of Computing, University of Glasgow, Glasgow, Scotland
2 Department of Computer Science and Engineering,

Institute of Engineering and Technology, Lucknow
3 Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, New Delhi, India

Abstract. Theories of efficiency preorders and precongruences for con-
current systems have been described in various papers. We describe a
procedure to implement two of these precongruences. Considering the
extra information that is needed to be maintained while computing effi-
ciency preorders, our procedure with a complexity O(n3m), compares
favourably with that for deciding observational equivalence (O(nαm)).
Further, the algorithm may be plugged in to existing model-checkers such
as the Concurrency-Workbench of the New Century (CWB-NC) without
any significant overheads of space or time.

1 Introduction

Research in process algebra has focused on the use of behavioural relations such
as equivalences and refinement orderings as a basis for establishing system cor-
rectness. In the process algebraic framework, both specifications and implemen-
tations are defined in the same language; the intuition is that a specification
describes the desired high level behaviour, while the implementation details the
proposed means for achieving this behaviour. One then uses an appropriate
equivalence or preorder to establish that an implementation behaves as defined
in the specification. In the case of equivalence based reasoning, an implementa-
tion is correct if its behaviour is indistinguishable from that of its specification.
Refinement (or Preorder) relations, on the other hand, typically embody a notion
of comparison: an implementation conforms to (or refines) a specification if the
behaviour of the former is “at least as good as” that stipulated by the specifica-
tion. The benefits of such process algebraic approaches include the following:

– Users as well as testing and verification tools work within a single formalism
for specification and implementation.

– The algebra provides explicit support for compositional specification and
implementation, allowing the specification (implementation) of a system to
be built up from the specification (implementation) of its components.

– Specifications include information about what is disallowed as well as what
is allowed.

� With support from Sun Microsystems Inc. USA

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 83–94, 2013.
DOI: 10.1007/978-3-642-40213-5 6,
c© IFIP International Federation for Information Processing 2013

84 M. Gaur and S. Arun-Kumar

Consequently, a number of different process algebras have been studied, and
a variety of different equivalences and refinement relations capturing different
aspects of behaviour have been developed. The simplest of these equivalences
is the notion of bisimulation and there exist efficient algorithms and tools to
implement various bisimulation-based preorders and equivalences. In general,
algorithms for computing semantic equivalences and preorders usually consist of
two steps. In the first step, the entire state space is generated and the second
step then manipulates this space to determine whether an appropriate rela-
tion exists. Such algorithms are usually referred to as “global”, as opposed to
“on-the-fly” or “local” algorithms which work on a partially generated state
space in an attempt to mitigate the state explosion problem in verification.

Refinements could come in several flavours. One of the earliest refinement
relations ([10], [11]) in the process algebra framework related refinement to the
level of indeterminacy in the specification i.e. a more determinate process was
considered a refinement of a less determinate one in terms of behaviour. Other
notions of refinement such as action refinement yield various other preorders.

One such method is efficiency prebisimulation for processes ([4], [2], [3]). It is
based on the simple idea of, essentially, counting the number of internal moves by
a process. It has also been shown that it can be incorporated within the general
frame work of bisimulation, to obtain a mathematically tractable preorder, which
in common with the standard notions of bisimulation equivalence, is sensitive to
the branching structure of processes.

Hence in the context of verification and development methodology it is more
fruitful to regard these preorders as particular refinement relations. Due to the
state explosion problem in verifying concurrent systems, it makes more sense
to adopt a top-down methodology in both the development and verification of
concurrent systems.

An alternative method to alleviate the state explosion problem is to use
congruences and precongruences on the specification language as detailed below.

Consider a specification S0 of a system. An initial refinement of this system
would typically split the specification into (specifications of) subsystems

S1, S2, . . . , Sn

combined in some fashion to obtain a first refinement

S1 = o(S1, S2, . . . , Sn)

where o is some appropriately defined combinator. Under a typical precongruence
≤c as defined in ([4], [2], [3]) we would have S1≤cS0. The problem now reduces
to obtaining refinements (S1

1 , S
1
2 , . . ., S

1
n) such that for each i, 1 ≤ i ≤ n, S1

i≤cSi.
It is then clear from the properties of ≤c that

S2 = o(S1
1 , . . . , S

1
n) ≤c o(S1, . . . , Sn) ≤c S0

Hence the problem of developing and verifying a large system to satisfy a
specification S may be broken down to the problem of performing n smaller
verification problems viz. S1

i ≤c Si(1 ≤ i ≤ n).

On Efficiency Preorders 85

The above verification methodology has the following advantages:

1. It closely follows the development methodology rather than postponing the
problem of verification of a possible complex system to the end.

2. This methodology allows for the verification of the large system to be directly
inferred from the verification of the smaller subsystems (without actually
performing the verification).

A characteristic of process-oriented behavioural relations is that they are
usually defined on labeled transition systems, which forms the semantic model of
systems, rather than with respect to a particular syntax of process descriptions.
This style of definition permits notions of equivalence and refinement to be
applied to any algebra with a semantics given in terms of labeled transition
systems. If in addition, these labeled transition systems are finite state, then
the relation may be calculated in a purely mechanical manner: algorithms may
then be developed for automatically checking that an implementation satisfies a
specification.

In this paper we propose a method for computing efficiency prebisimulations
for processes which are in fact bisimulation-based refinement relations called
efficiency preorders. There exist very good algorithms [17,13,9] and tools such
as [18] to construct strong and weak bisimulations on labeled transition systems.
But little attention is given in computing the efficiency preorders. We believe
that incorporating the feature of computation of efficiency preorder on a labeled
transition system will add significant power to the verification tools like CWB-
NC [18].

Theories of efficiency preorders (which combine both correctness and effi-
ciency considerations into a single preorder) have been developed in various
papers ([2], [4], [3]). The largest precongruences contained in these preorders
have also been characterized and axiomatized for finite CCS [15] processes. The
notion of efficiency in these cases is abstract enough to be interpreted loosely
as based on timing, communication or even energy consumed in a computation.
Efficiency Preorder has been studied in modeling various distributed systems,
where a notion of comparison is used reflect the fact one implementation is at
least as good as another. Most recently the concept of efficiency preorder has
been used in [8] in context of an extension of asynchronous pi-calculus[16].

Many equivalence and preorder checking problems on labelled transition sys-
tems may be reduced to the problem of constructing a strong bisimulation. In
any labeled transition system of finite state processes if n is the total number
of states and m the number of transitions then Paige and Tarjan [17] gave an
O(m log(n)) solution to the generalised partitioning problem on some relation
E on states of FSPs. Kanellakis and Smolka studied the problem of equivalence
checking of CCS expression and gave O(m log(n)+n) and O(n2m log(n)+mnα)
time algorithms for strong bisimulation and weak bisimulation respectively [13].
Here the smallest such α known is 2.376 [7]. We propose a method running in
O(mn3) time complexity for deciding efficiency preorders.

The organization of the paper is as follows: In section 2 we give the basic
definitions of labeled transition systems and various equivalences and preorders

86 M. Gaur and S. Arun-Kumar

relevant to our purpose and characterize them. In Section 3 we describe a method
for constructing efficiency preorder. It is a polynomial time algorithm whose
complexity is no more than that of deciding weak bisimulation. Section 4 is the
conclusion. It briefly compares the time complexty of our method with that of
deciding weak bisimulation.

2 Basic Definitions and Characterization

In this section we will define and characterize a general framework in which
the labelled transition system (LTS) on processes will be used to present an
algorithm for deciding efficiency prebisimulations.

Definition 1. A Finite State Process (FSP) is a 5-tuple

〈K, p0, A,−→,X〉
where

– K is a finite set of states,
– p0 ∈ K is the start state,
– A is a finite set of labels,
– −→⊆ K ×A×K is the transition1 relation,
– X ⊆ K × {x}, where x �∈ A, is the extension relation2.

LTSs tell us what behaviour of process is. The next question now is: when
should two behaviours be considered equal? That is, what does it mean that
two processes are equivalent? Intuitively, two processes should be equivalent if
they cannot be distinguished by interacting with them. It’s easy to observe that
LTSs resemble graphs and the standard equality on graphs is graph isomorphism.
In [15,20] it has been shown that graph isomorphism is too strong as a behav-
ioural equivalences for processes. It prevents us equating processes that should
be considered equal.

Another important notion of equivalence is present by the automata theory
in computer science. The notion of automata and LTS are very similar and two
automata are considered equal if they accept same set of labels (actions)[12].
The analogous equivalence on processes is called trace equivalence. But the trace
equivalence as behaviour equality for processes is also not acceptable [15]. In fact
for process equivalence we need a loose equality than graph isomorphism but a
tighter correspondence between transitions than trace equivalence. Intuitively
when some transition is done by a process the other must be able to mimic it
and the evolved process out of these transitions must in turn be able to do the
same again. This idea of equality, known as bisimilarity has been extensively
studied[15,5] in process algebra. We will formally define this in the following
definition.
1 we write p −→α q to denote 〈p, α, q〉 ∈−→.
2 The extension relation has been kept for completeness and will not be used in the

paper except to be referred in the conclusion.

On Efficiency Preorders 87

Definition 2. Let P = 〈K, p0, A,−→,X〉 be a FSP and let ρ and σ be binary
relations on Σ. A binary relation R on K is a (ρ, σ)-induced bisimulation if pRq
implies the following conditions hold, for all α, β ∈ Σ.

1. p −→α p′ ⇒ ∃β, q′ : αρβ ∧ q −→β q′ ∧ p′Rq′, and
2. q −→β q′ ⇒ ∃α, p′ : ασβ ∧ p −→α p′ ∧ p′Rq′.

A (=,=)-induced bisimulation will sometimes be called a natural bisimulation
on a finite-state process.

A FSP may be represented by a labeled directed graph whose nodes are
states and whose arcs have labels from A. We will be particularly interested in
the case where the the set of labels of a FSP is a finite set A of symbols called
actions such that τ ∈ A is a distinguished action called the invisible action and
V = A− {τ} is the set of visible actions.

Let A∗ denote the set of all finite sequences of actions (including the empty
sequence ε). We write ŝ to denote the sequence obtained from s ∈ A∗ by deleting
all occurrences of τ . If s contains no visible action then ŝ yields ε. Finally |s|
denotes the length of the sequence s. We write s=̂t if ŝ = t̂.

For s, t ∈ A∗ and a ∈ A, the transitions p −→s p′ and p =⇒s p′ are defined
by induction on the length of s as follows

– p −→ε p for all p,
– p −→s p′ for s = ta iff ∃p′′ : p −→t p′′ −→a p′,
– p =⇒ε p′ iff ∃m ≥ 0 : p −→τm

p′,
– p =⇒a p′ iff ∃p′′, p′′′ : p =⇒ε p′′ −→a p′′′ =⇒ε p′, and
– p =⇒s p′ for s = ta iff ∃p′′ : p =⇒t p′′ =⇒a p′.

Let be the relation on A∗ generated by the inequations s s and τs s,
i.e. is closed under reflexivity, transitivity and substitution under catenation
contexts. It is clear that ε τ , sτ s for all s and that is antisymmetric.
Hence is a partial order on A∗ and s = t iff s t and t s. We will be
particularly interested in the set of extended actions defined by EA = {u ∈ A∗ |
|û| ≤ 1}, viz. the set of sequences which contain at most one visible action. It is
easy to see that for any a ∈ V and v ∈ EA, a v implies v = a. Also τ i τ j

iff i ≥ j.
Bisimulations can be regarded as one of the most important contributions

of concurrency theory to computer science. Nowadays, bisimulation and co-
inductive techniques [20] developed from the idea of bisimulation are widely
used. Here we define two earliest discovered bisimulations called as strong and
weak bisimualtion.

Definition 3. A binary relation R on the states of a FSP 〈K, p0, A,−→,X〉, is

– a strong bisimulation (also ∼-bisimulation) if pRq implies for every a ∈ A,
1. p −→a p′ ⇒ ∃q′ : q −→a q′ ∧ p′Rq′, and
2. q −→a q′ ⇒ ∃p′ : p −→a p′ ∧ p′Rq′.

88 M. Gaur and S. Arun-Kumar

– a weak bisimulation (also ≈-bisimulation) if pRq implies for every a ∈ A
1. p −→a p′ ⇒ ∃q′ : q =⇒â q′ ∧ p′Rq′ and
2. q −→a q′ ⇒ ∃p′ : p =⇒â p′ ∧ p′Rq′.

Some enhancements were proposed shortly after discovery of strong and weak
bisimulation. The best known example is Milner’s bisimulation up to bisimilarity
technique [14], in which the closure of the bisimulation relation is achieved up to
bisimilarity itself. The up to bisimilarity is basically achieved with the fact that
∼ is a transitive relation. A problem with up to bismilarity is that the it fails for
weak bisimulation despite it being transitive [19,21]. In its place, a number of
variations have been proposed; for instance allowing only uses of strong bisimi-
larity with in the upto bisimilarity [14]. The most important variation, however,
involves a relation called expansion [3,21]. Expansion is a preorder derived from
weak bismilarity by, essentially, comparing the number of silent actions. The
idea underlying expansion is roughly that if Q expands P , then P and Q are
bisimilar, except that in mimicking P ’s behaviour, Q cannot perform more τ
transitions than P . We can think of P uses at least as many resources as Q.
An interest of expansion derives from the fact that, in practice, most of weak
bisimilarity are indeed instances of expansion. Expansion is preserved by all CCS
[15] operators but sum, and has a complete proof system for finite terms based
of a modification of the standard τ laws for CCS. Expansion is also a powerful
auxiliary relation for up to techniques involving weak forms of behaviour equiva-
lences. Now we define following two expansions called efficiency prebisimulation
and elaboration. These expansions typically embody a notion of efficiency where
one process is at least as efficient as the other provided they are behaviourally
equivalent.

Definition 4. A binary relation R on the states of a FSP 〈K, p0, A,−→,X〉, is

– an efficiency prebisimulation (also �-bisimulation) if pRq implies for every
u, v ∈ EA,
1. p −→u p′ ⇒ ∃v, q′ : u v ∧ q −→v q′ ∧ p′Rq′, and
2. q −→v q′ ⇒ ∃u, p′ : u v ∧ p −→u p′ ∧ p′Rq′.

– an elaboration (also �-bisimulation) if pRq implies for every a ∈ A,
1. p −→a p′ ⇒ ∃q′ : q =⇒â q′ ∧ p′Rq′, and
2. q −→a q′ ⇒ ∃p′ : p =⇒a p′ ∧ p′Rq′.

Definitions 3 and 4 are from [2,4]. The following proposition is a direct con-
sequence of these definitions. In Proposition 5, strong bisimulation, weak bisim-
ulation, efficiency prebisimulation and elaboration are expressed over a sequence
of actions.

Proposition 5. A binary relation R on the states of a FSP, is

– a strong bisimulation if pRq implies for every s ∈ A∗,
1. p −→s p′ then ∃q′ : q −→s q′ ∧ p′Rq′ and
2. q −→s q′ then ∃p′ : p −→s p′ ∧ p′Rq′.

On Efficiency Preorders 89

– a weak bisimulation if pRq implies for every s, t ∈ A∗

1. p −→s p′ ⇒ ∃q′, t : ŝ = t̂ ∧ q −→t q′ ∧ p′Rq′, and
2. q −→t q′ ⇒ ∃p′, s : ŝ = t̂ ∧ p −→s p′ ∧ p′Rq′.

– an elaboration if pRq implies for every s, t ∈ A∗,
1. p −→s p′ ⇒ ∃q′, t : ŝ = t̂ ∧ q −→t q′ ∧ p′Rq′,
2. q −→t q′ ⇒ ∃p′, s : ŝ = t̂, |s| ≥ |t| ∧ p −→s p′ ∧ p′Rq′.

– an efficiency prebisimulation if pRq implies for every s, t ∈ A∗,
1. p −→s p′ ⇒ ∃q′, t : ŝ = t̂, |s| ≥ |t| ∧ q −→t q′ ∧ p′Rq′,
2. q −→t q′ ⇒ ∃p′, s : ŝ = t̂, |t| ≤ |s| ∧ p −→s p′ ∧ p′Rq′.

Proposition 6. The following facts are then easily proven [2,4].

1. Every strong bisimulation is an efficiency prebisimulation.
2. Every efficiency prebisimulation is an elaboration.
3. Every elaboration is a weak bisimulation.
4. For � ∈ {∼, �, �, ≈}, the largest �-bisimulation, denoted �, is a preorder.
5. For � ∈ {∼, �, �, ≈}, p � q iff there exists a �-bisimulation containing

(p, q).
6. The largest ∼- and ≈-bisimulations, are equivalence relations.

The following simple examples in CCS syntax [15] give some idea of the
distinctions between the relations discussed above. For CCS operators none of
the relations �,�,≈, preserves summation. It is therefore necessary to consider
the largest (pre)congruence contained in � (and denoted �c) in order to be able
to use refinement effectively.

Example 7. Let a be a visible action. Then

1. a.τ.0 �c a.0 but the converse does not hold.
2. a.0 + a.τ.0 �c a.0 but the converse does not hold.
3. a.0 + a.τ.τ.0 �c a.τ.0 but a.0 + a.τ.τ.0 �<

∼
ca.τ.0

For s, t ∈ A∗, let s · t if ŝ = t̂ and |s| ≥ |t| and s
.= t if s · t and t · s.

Clearly =̂ is a strictly coarser relation than .=. Also for any a ∈ V and v ∈ EA,
a · v implies v = a, and τ i · τ j iff i ≥ j. Further, · is coarser than (i.e.
u v implies u · v but not the converse). We are now ready with the following
lemma which is used in the characterization of Theorem 10.

Lemma 8. Let R be a binary relation on the states of a FSP and pRq. The
following are equivalent.

1. For all a ∈ A, p −→a p′ ⇒ ∃q′ : q =⇒a q′ ∧ p′Rq′.
2. For all u ∈ EA, p −→u p′ ⇒ ∃v ∈ EA, q′ : u v ∧ q −→v q′ ∧ p′Rq′.
3. For all u ∈ EA, p −→u p′ ⇒ ∃v ∈ EA, q′ : u · v ∧ q −→v q′ ∧ p′Rq′.
4. For all s ∈ A∗, p −→s p′ ⇒ ∃t ∈ A∗, q′ : s t ∧ q −→t q′ ∧ p′Rq′.
5. For all s ∈ A∗, p −→s p′ ⇒ ∃t ∈ A∗, q′ : s ·t ∧ q =⇒t q′ ∧ p′Rq′.

90 M. Gaur and S. Arun-Kumar

Proof. In [2] it has been shown that (1) is equivalent to (2). It is also clear that
(2) implies (3) since u v implies u · v.

It is easy to see that (2),(3), (4) and (5) all imply (1) since â = a for a ∈ V
and â = ε if a = τ . Similarly it is easy to see that (4) implies (2) and (5) implies
(3) by restricting (4) and (5) respectively to extended actions.

By similar reasoning, (4) implies (5). That (2) implies (4) and (3) implies (5)
may be easily shown by splitting up the transition p −→s p′ into a sequence of
transitions over extended actions.

(3 ⇒ 2). Assume p −→u p′. If û = ε, then u = τ i for some i ≥ 0. It follows
that for some m ≥ i, q −→τm

q′∧p′Rq′ and the case is proved. On the other hand
if û = a ∈ V , then u = τ iaτ j for some i, j ≥ 0. Hence there exist pi, pj , such that
p −→τ i

pi −→a pj −→τj

p′. By the conditions of (3) it follows that there exist
m ≥ i, n ≥ j and states qm, qn and q′ such that q −→τm

qm −→a qn −→τn

q′

and piRqm, pjRqn and p′Rq′. Clearly therefore for v = τmaτn, q′, we have that
(2) holds. ��

From Definitions 2, 3, 4 and Lemma 8 it is easy to see the following corollary

Corollary 9. In any graph representing a FSP,

1. a strong bisimulation is a natural bisimulation,
2. an efficiency prebisimulation is a (,)-induced bisimulation,
3. an elaboration is a (=̂,·)-induced bisimulation, and
4. a weak bisimulation is a (=̂, =̂)-induced bisimulation.

We then have the following characterization of the two prebisimulations
which will be used to present the algorithm to decide them in next section.

Theorem 10. (Characterization).

– The following are equivalent for any binary relation R on the states of a
FSP.
1. R is an efficiency prebisimulation.
2. pRq implies for all u, v ∈ EA,

p −→u p′ ⇒ ∃v, q : u · v ∧ q −→v q′ ∧ p′Rq′ and
q −→v q′ ⇒ ∃u, p′ : u · v ∧ p −→u p′ ∧ p′Rq′.

3. pRq implies for all s, t ∈ A∗,
p −→s p′ ⇒ ∃q′, t : s · t ∧ q −→t q′ ∧ p′Rq′ and
q −→t q′ ⇒ ∃p′, s : s · t ∧ p −→s p′ ∧ p′Rq′.

– and so are the following.
1. R is an elaboration.
2. pRq implies for all u, v ∈ EA,

p −→u p′ ⇒ ∃v, q : u=̂v ∧ q −→v q′ ∧ p′Rq′ and
q −→v q′ ⇒ ∃u, p′ : u · v ∧ p −→u p′ ∧ p′Rq′.

3. pRq implies for all s, t ∈ A∗,
p −→s p′ ⇒ ∃q′, t : s=̂t ∧ q −→t q′ ∧ p′Rq′ and
q −→t q′ ⇒ ∃p′, s : s · t ∧ p −→s p′ ∧ p′Rq′.

On Efficiency Preorders 91

The above characterization shows that the nature of efficiency prebisimula-
tions remains unchanged even when the preorder is weakened to ·. This fact
provides us a convenient handle on which to base our algorithm.

Corollary 11. A binary relation R on the states of a FSP 〈K, p0, EA,−→,X〉,
is

– an efficiency prebisimulation iff it is a (·,·)-induced bisimulation
– an elaboration iff it is a (=̂,·)-induced bisimulation.

3 The Algorithm

For finite state processes with n the number of states and m the number of
transitions Paige and Tarjan [17] gave an O(mlog2(n)) solution to a generalised
partitioning problem. Kanellakis and Smolka studied the problem of checking
equivalences of CCS expressions and gave O(mlog2(n)+n) and O(n2mlog2(n)+
mnα) (where 2 < α ≤ 3) algorithms for strong and weak bisimulation respec-
tively. In this section we present a method for computing prebisimulations.

A direct consequence of Theorem 10 is that the extended actions τ iaτ j and
τmaτn are indistinguishable whenever i + j = m + n. It suffices therefore to
consider the set EA′ = {(V ∪ {ε}) × N} (where N is the set of naturals) as
representing the set of extended actions. For any 〈a,m〉 ∈ EA′, we define p =⇒a

m

p′ to mean ∃i, j : i+ j = m∧ p −→τ iaτj

p′ and reserve the notation p =⇒a p′ to
mean ∃m : p =⇒a

m p′.
Consider the FSP P = 〈K, p0, A,−→,X〉 and the underlying directed graph

G = 〈K,−→τ 〉 represented by a function λ : K ×K −→ (N ∪ {∞}) defined as

λ(p, q) =

⎧
⎨

⎩

0 ifi = j
1 ifi −→τ j
∞ otherwise

For any path π = (p1, . . . , pk) in G we define the length of the path π as
len(π) =

∑k−1
j=1 λ(pj , pj+1). Let Qki,j be the set of paths from vertex pi to pj with

all intermediate vertices in the set {p1, . . . , pk}. Let lenki,j = minπ∈Qk
i,j
len(π). It

follows that
lenki,j = min(lenk−1

i,j , lenk−1
i,k + lenk−1

k,j) (1)

We may use dynamic programming [22,1] to solve the recurrence (1) for all
values of i, j and k. If λ is represented by an n× n adjacency matrix, then the
solution to recurrence (1) yields a n× n-matrix Mτ∗ , where |K| = n.

For each α ∈ V ∪{ε}, let Mα be an n×n matrix of ordered pairs, whose first
component is a boolean value and the second component is a natural number.
Then we have

Mε(i, j) =
{

(0, 0) ifMτ∗(i, j) =∞
(1,Mτ∗(i, j)) otherwise

92 M. Gaur and S. Arun-Kumar

and for each a ∈ V ,

Ma(i, j) =
{

(1, 0) if i −→a j
(0, 0) otherwise

For each a ∈ V we may then compute the matrix Δa as follows. Δa(i, l) =
Mε(i, j).Ma(j, k).Mε(k, l), where (b, x).(c, y) = (b ∧ c, x + y). Let Δ∗

a be the
matrix containing only the first components of Δa.

It is easy to see that pi =⇒a
m pk iff Δa(i, l) = (1,m). Let Δ† =

⋃
a∈V ∪{ε}Δa

and Δ∗ =
⋃
a∈V ∪{ε}Δ

∗
a. Given an FSP P = 〈K, p0, A,−→,X〉, we may therefore

construct the FSP P † = 〈K, p0, EA
′,Δ†,X〉 by the above procedure. By simply

ignoring the second component in each element of the matrix Δ† we obtain also
the FSP P ∗ = 〈K, p0, V ∪{ε},Δ∗,X〉. For α = 〈a,m〉, β = 〈b, n〉 ∈ Δ†, let α ≤·β
if and only if a = b and m ≤ n. Further let α=̂β if and only if a = b. Then

Proposition 12. Let P = 〈K, p0, A,−→,X〉 be a FSP and let P † and P ∗ be the
FSPs obtained by from P by the above procedure. Then for any states p, q ∈ K,

1. p ∼ q in P iff there exists a natural bisimulation R on the states of P † with
pRq.

2. p � q in P iff there exists a (≤·,≤·)-induced bisimulation R on the states of
P † with pRq.

3. p � q in P iff there exists a (=̂,≤·)-induced bisimulation R on the states of
P † with pRq.

4. p ≈ q in P iff there exists a natural bisimulation R on the states of P ∗ with
pRq.

Proof. Directly follows from the construction of the transition relation Δ†. Note
that comparison under · involves comparing second components, whenever the
transitions exist under Δ†. By ignoring the second component in each element
of Δ†, we may compare two elements in Δ† under =̂. ��
Theorem 13. Let p, q be states of a FSP and assume that the FSP to which
these states belong have a total of n states and m transitions. Then both the
relations � and � may be decided in O(mn3) time.

Proof. The correctness follows from proposition 12. As for the time complexity,
equation (1) requires O(n3) time to solve. Since there may be at most m distinct
actions, the computation of Δ† would require O(mn3) time (here O(n3) is the
matrix multiplication time). We also know that a natural bisimulation may be
computed in O(mn2log(n)) time since the size of Δ† is O(mn2). And finally
the comparison of all tuples for deciding both efficiency prebisimulation and
elaboration will not take more than O(mn2) time. Therefore the total time
complexity for the algorithm is O(mn3 + n2mlog(n) +mn2) = O(mn3). ��

4 Conclusion

What we have described is essentially a “global” preorder checking method [6]
which may be smoothly integrated into a tool which implements natural bisim-
ulation.

On Efficiency Preorders 93

Our algorithm for efficiency prebisimulation reduces the given problem in
O(n3m) time to another problem for which the solution is known and some
extra processing whose time complexity is absorbed in the total time complexity
of the reduction step. We compare the time complexity of the described method
for efficiency prebisimulation, O(n3m+n2mlog(n)+n2m), with that of the weak
bisimulation algorithm [13], which is O(nαm+n2mlog(n)), 2 < α ≤ 3. For weak
bisimulation, the transitive closure of a directed graph having n nodes is com-
puted in O(nα) time using boolean matrix multiplication for which very elegant
algorithms [7] are available. However, in the case of efficiency prebisimulation
we are interested not just in finding transitive closure but in the number of τ
moves padding each visible action, as well. Therefore it requires a time of O(n3)
to compute both transitive closure as well as the total number of invisible moves.

The entire computation of efficiency prebisimulation and elaboration is done
in two steps, where the first step is to reduce the FSP P to another FSP P †

and the second step is to compute the natural bisimulation relation in P † while
comparing pairs of elements.

Rather than verifying a complete system specification against a complete
implementation, congruence and precongruence properties may be usefully
employed to split up a problem into several smaller individual sub-problems.
Verification may then be carried out on the sub-problems.

In the case of CCS, the following result proved in [2] may be used to compute
the precongruence relations for CCS processes.

Proposition 14. For � ∈ {�,�,≈}, p �c q, iff for some visible action α not
occurring in p or q, p+ α � q + α.

p �c q may be determined by using a special action that is not available
to the user in the system specification language but is internal to the model
checker.

There may exist other methods for tackling state explosion that may be
worth exploring. One such is the use of the extension in FSPs as a naming device
that abstracts away from complex internal structure and names structurally or
behaviourally equal components by the same name. Thus far extensions were
used only to distinguish deadlock/termination from other states. But the use
of names in extensions may facilitate factoring out parts of systems and thus
produce a collection of smaller graphs on which global algorithms may be run
locally to check equivalences, congruences, preorders and precongruences.

References

1. Hopcroft, J.E., Aho, A.V., Ullman, J.D.: Design and Analysis of Computer Algo-
rithms. Addison-Wesely, Reading (1974)

2. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 152–175. Springer, Heidelberg
(1991)

3. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737–760 (1992)

94 M. Gaur and S. Arun-Kumar

4. Arun-Kumar, S., Natarajan, V.: Conformance: A precongruence close to bisim-
ilarity. In: Structures in Concurrency Theory. Springer Workshops in Computer
Science Series, Springer (1995)

5. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Formal Aspects of Computing 5(1), 1–20 (1993)

6. Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state
system. In: Handbook of Process Algebra (2001)

7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Com-
puting (1987)

8. Gaur, M., Hennessy, M.: Counting the cost in the picalculus (extended abstract).
Electronic Notes in Theoretical Computer Science (ENTCS) 229(3), 117–129
(2009)

9. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990)

10. Hennessy, M.: Algebraic Theory of Processes. The MIT Press, Cambridge (1990)
11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Hopcroft, J.E., Ullman, J.D.: Intoduction to Automata Theory, Langauages and

Computation. Narosa Publishing House (1987)
13. Kanellakis, P.C., Smolka, S.: Ccs expressions, finite state processes and three prob-

lem of equivalence. Information and Computation 86(1), 43–68 (1990)
14. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
15. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,

Heidelberg (1980)
16. Milner, R.: Communicating and mobile systems: The π-Calculus. Cambridge

University Press (1999)
17. Paige, R., Tarjan, R.E.: Three partition refinement refinement algorithms. SIAM

J. Compt. 16(6), 973–989 (1987)
18. Parrow, J., Cleaveland, R., Steffen, B.: The concurrency workbench: A semantic

based tool for the verification of the concurrent systems. ACM Transactions of
Programming Languages and Systems 15(1) (1993)

19. Sangiorgi, D.: Beyond bisimulation: The “up-to” techniques. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 161–171. Springer, Heidelberg (2006)

20. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press (2012)

21. Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up-to”. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Hei-
delberg (1992)

22. Leiserson, C.E., Cormen, T.H., Rivest, R.L.: Introduction to Algorithms. Eastern
Economy Edition. Prentice-Hall India (1990)

Compiling Cooperative Task Management
to Continuations

Keiko Nakata and Andri Saar

Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract. Although preemptive concurrency models are dominant for
multi-threaded concurrency, they may be criticized for the complexity of
reasoning because of the implicit context switches. The actor model and
cooperative concurrency models have regained attention as they encap-
sulate the thread of control. In this paper, we formalize a continuation-
based compilation of cooperative multitasking for a simple language and
prove its correctness.

1 Introduction

In a preemptive concurrency model, threads may be suspended and activated
at any time. While preemptive models are dominant for multi-threaded con-
currency, they may be criticized for the complexity of reasoning because of the
implicit context switches. The programmer often has to resort to low-level syn-
chronization primitives, such as locks, to prevent unwanted context switches.
Programs written in such a way tend to be error-prone and are not scalable.
The actor model [2] addresses this issue. Actors encapsulate the thread of con-
trol and communicate with each other by sending messages. They are also able
to call blocking operations such as sleep, await and receive, reminiscent of coop-
erative multi-tasking. Erlang and Scala actors support actor-based concurrency
models.

Creol [8] and ABS [7] combine a message-passing concurrency model and a
cooperative concurrency model. In Creol, each object encapsulates a thread of
control and objects communicate with each other using asynchronous method
calls. Asynchronous method calls, instead of messages-passing, provide a type-
safe communication mechanism and are a good match for object-oriented lan-
guages [4,3]. ABS generalizes the concurrency model of Creol by introducing
concurrent object groups [10] as the unit of concurrency. The concurrency model
of ABS can be split in two: in one layer, we have local, synchronous and shared-
memory communication1 in one concurrent object group (COG) and on the
second layer we have asynchronous message-based concurrency between differ-
ent concurrent object groups as in Creol. The behavior of one COG is based
on the cooperative multitasking of external method invocations and internal
1 In ABS, different tasks originating from the same object may communicate with

each other via fields of the object.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 95–110, 2013.
DOI: 10.1007/978-3-642-40213-5 7,
c© IFIP International Federation for Information Processing 2013

96 K. Nakata and A. Saar

method activations, with concrete scheduling points where a different task may
get scheduled. Between different COGs only asynchronous method calls may be
used; different COGs have no shared object heap. The order of execution of
asynchronous method calls is not specified. The result of an asynchronous call
is a future; callers may decide at run-time when to synchronize with the reply
from a call. Asynchronous calls may be seen as triggers that spawn new method
activations (or tasks) within objects. Every object has a set of tasks that are
to be executed (originating from method calls). Among these, at most one task
of all the objects belonging to one COG is active; others are suspended and
awaiting execution. The concurrency models of Creol and ABS are designed to
be suitable in the distributed setting, where one COG executes on its own (vir-
tual) processor in a single node and different COGs may be executed on different
nodes in the network.

In this paper, we are interested in the compilation of cooperative multi-
tasking into continuations, motivated to execute a cooperative multi-tasking
model on the JVM platform, which employs a preemptive model. The basic idea
of using continuations to manage the control behavior of the computation has
been known from 80’s [12,6], and is still considered as a viable technique [9,11,1].
This is particularly so, if the programming language supports first-class contin-
uations, as in the case of Scala, and hence one can obviate manual stack man-
agement. The contribution of the paper is a correctness proof of such a compi-
lation scheme. Namely, we create a simplified source language, by extending the
While language with (synchronous) procedure calls and operations for coopera-
tive multi-tasking (i.e., blocking operations and creation of new tasks) and define
a compilation function from the source language into the target language, which
extends While with continuation operations—the target language is sequential.
We then prove that the compilation preserves the operational behavior from the
source language to the target language.

The remainder of the paper is organized as follows. We define the source
language and its operational semantics in the next section, and the target lan-
guage and its operational semantics in Section 3. In Section 4, we present the
compilation function from the source language to the target language and, in
Section 5 we prove its correctness. We conclude in Section 6.

2 Source Language

In Figure 1, we define the syntax for the source language. We use the overline
notation to denote sequences, with ε denoting an empty sequence. It is the
While language extended with (local) variable definitions, var x = e, procedure

Fig. 1. Syntax of the source language

Compiling Cooperative Task Management to Continuations 97

calls f(e), the await statement await e, creation of a new task spawn f e, and
the return statement return. For simplicity, we syntactically distinguish local
variable assignment x := e and global variable assignment u := e. The statement
var x = e defines a (task) local variable x and initializes it with the value of e.
The statement f(e) invokes the procedure f with arguments e, to be executed
within the same task. The procedure does not return the result to the caller, but
may store the result in a global variable. The statement await e suspends the
execution of the current task, which can be resumed when the guard expression
e evaluates to true. The statement spawn f e spawns a new task, which executes
the body of f with arguments e. (Hence, in contrast to procedure calls, which
are synchronous, spawn f e is like an asynchronous procedure call executed in a
new task.) The return statement is a runtime construct, not appearing in the
source program, and will be explained later.

We assume disjoint supplies of local variables (ranged over by x), global vari-
ables (ranged over by u), and procedure names (ranged over by f). We assume
a set of (pure) expressions, whose elements are ranged over by e. We assume
the set of values to be the integers, non-zero integers counting as truth and zero
as falsity. The metavariable v ranges over values. We have two kinds of states –
local states and global states. A local state, ranged over by ρ, maps local vari-
ables to values; a global state, ranged over by σ, maps global variables to values.
We denotes by ∅ an empty mapping, whose domain is empty. Communication
between different tasks is achieved via global variables. For simplicity, we assume
a fixed set of global variables. The notation ρ[x �→ v] denotes the update of ρ
with v at x, when x is in the domain of ρ. If x is not in the domain, it denotes a
mapping extension. The notation σ[u �→ v] denotes similar. We assume given an
evaluation function [[e]](ρ,σ), which evaluates e in the local state ρ and the global
state σ. We write (ρ, σ) |= e and (ρ, σ) �|= e to denote that e is true, resp. false
with respect to ρ and σ. A stack Π is a non-empty list of local states, whose
elements are separated by semicolons. A stack grows leftward, i.e., the leftmost
element is the topmost element.

A program P consists of a procedure environment envF which maps proce-
dure names to pairs of a formal argument list and a statement, and a global
state which maps global variables to their initial values. The entry point of the
program will be the procedure named main.

We define the operational semantics of the source language as a transition
system on configurations, in the style of structural operational semantics. A
configuration cfg consists of an active task identifier n, a global variable mapping
σ and a set of tasks Θ. A task has an identifier and may be in one of the three
forms: a triple 〈e, S,Π〉, representing a task that is awaiting to be scheduled,
where e is the guard expression, S the statement and Π its stack; or, a pair
〈S,Π〉, representing the currently active task; or, a singleton 〈Π〉, representing
a terminated task.

Configuration cfg ::= n, σ � Θ
Task sets Θ ::= n〈e, S,Π〉 | n〈S,Π〉 | n〈Π〉 | Θ ‖ Θ

98 K. Nakata and A. Saar

The order of tasks in the task set is irrelevant: the parallel operator ‖ is commu-
tative and associative. Formally, we assume the following structural equivalence:

Θ ≡ Θ Θ ‖ Θ′ ≡ Θ′ ‖ Θ Θ ‖ (Θ′ ‖ Θ′′) ≡ (Θ ‖ Θ′) ‖ Θ′′

Transition rules in the semantics are in the form envF
 cfg → cfg ′, shown in
Figure 2. The first two rules (S-Cong and S-Equiv) deal with congruence and
structural equivalence. The rules for assignment, skip, if-then-else and while are
self-explanatory. For instance, in the rule S-Assign-Local, the task is of the
form n〈S,Π ′〉 where S = x := e and Π ′ = ρ;Π. Note that the topmost element
of the stackΠ is the current local state. The rules for sequential composition may
deserve some explanation. If the first statement S1 suspends guarded by e in the
stack Π ′ with the residual statement S′

1 to be run when resumed, then the entire
statement S1;S2 suspends in 〈e, S′

1;S2,Π
′〉, where the residual statement now

contains the second statement S2 (S-Seq-Grd). If S1 terminates in Π ′, then S2

will run next inΠ ′ (S-Seq-Fin). Otherwise, S1 transfers to S′
1 with the stackΠ ′,

so that S1;S2 transfers to S′
1;S2 with the same stack (S-Seq-Step). The await

statement immediately suspends (S-Await) the currently active task, enabling
us to switch to some other task in accordance to the scheduling rules. An example
of the await statement (and the scheduling rules) at work can be found in the
example in Figure 3. The statement spawn f e creates a new task n′〈true, S, [x �→
v]〉 with n′ a fresh identifier (S-Spawn). The caller task continues to be active.
The newly created task is suspended, guarded by true, and may get scheduled
at scheduling points by the scheduling rules (see below). Procedure invocation
f(e) evaluates the arguments e in the current state, pushes into the stack the
local state [x �→ v], mapping the formal parameters to the actual arguments,
and transfers to S; return, where S is the body of f (S-Call). The return
statement pops the topmost element from the stack (S-Return). The local
variable definition var x = e extends the current local state with the newly
defined variable and initializes it with the value of e (S-Var).

The last three rules deal with scheduling. If the current active task has ter-
minated, then a new task whose guard evaluates to true is chosen to be active
(S-Sched-Fin). When the active task suspends, a scheduling point is reached.
The rule (S-Sched-Same) considers the case in which the same task is sched-
uled; the rule (S-Sched-Other) considers the case in which a different task is
scheduled.

As an example, we will look at a program containing one global variable u
with the initial value 0 and the following procedures:

f �→ u := 1
main �→ u := 3; spawn f ε; await u = 1;u := 2

A detailed step, showing the full derivation, can be seen in Figure 4. A full
execution trace, showing all intermediate configurations, is shown in Figure 3.

Compiling Cooperative Task Management to Continuations 99

Fig. 2. Semantics of the source language

100 K. Nakata and A. Saar

Fig. 3. The full execution trace of the example program

Fig. 4. Example of a derivation in the source language

3 Target Language

We proceed to the target language. In Figure 5, we present the syntax of the
target language. Expressions of the target language contain, besides pure expres-
sions, continuations [S,Π], which are pairs of a statement S and a stack Π, and
support for guarded (multi)sets: collections which contain pairs of an expression
and a value. The expression stored with each element is called a guard expression,
and is evaluated when we query the set: only elements whose guard expressions
hold may be returned. There are five expressions in the language to work with
guarded sets: an empty set ∅, checking whether a set is empty (isEmpty es),
adding an element (add es eg e), fetching an element (get es) and removing an
element (del es e).

Similar to the source language, for the target language we extend While with
local variable definitions and procedure calls. We also add delimited control
operators, shift k {S}, reset {S}, invoke k [5]. The statement shift k {S}
captures the rest of the computation, or continuation, up to the closest surround-
ing reset {}, binds it to k, and proceeds to execute S. In shift k {S}, k is a
binding occurrence, whose scope is S. Hence, the statement reset {S} delimits
the captured continuation. The statement invoke k invokes, or jumps into, the
continuation bound to the variable k. The statement R {S}, where R is a new
constant, is a runtime construct to be explained later.

The target language is sequential and, unlike the source language, it contains
no explicit support for parallelism. Instead, we provide building blocks – contin-
uations and guarded sets – that are used to switch between tasks and implement
an explicit scheduler in Section 4.

Compiling Cooperative Task Management to Continuations 101

Fig. 5. Syntax of the target language

We assume given an evaluation function [[e]](Π,σ) for pure expressions, which
evaluates e with respect to the stack Π (the evaluation only looks at the cur-
rent local state, which is the topmost element of Π) and the global state σ. In
Figure 6, the evaluation function is extended to operations for guarded sets.

We define an operational semantics for the target language as a reduction
semantics over configurations, using evaluation contexts. A configuration 〈S,Π, σ〉
is a triple of a statement S, a stack Π and a global state σ.

Evaluation contexts E are statements with a hole, specifying where the next
reduction may occur. They are defined by

E ::= [] | E;S | R {E}

We denote by E[S] the statement obtained by placing S in the hole of E.
We define basic reduction rules in Figure 6. reset {S} inserts a marker †

into the stack, just below the current state, and reduces to R {S} to continue the
execution of S (T-Reset). We use a marker to delimit the portion of the stack
captured by shift and to align the stack when exiting from R {}. The runtime
construct R {} is used to record that the marker has been set. shift k {S}
captures the rest of the execution up to and including the closest surrounding
R {} together with the corresponding portion of the stack, binds it to a fresh
variable k′ in the local state, and continues with the statement S′ obtained by
substituting k by k′ in S (T-Shift). The surrounding R {} is kept intact. F is
an evaluation context that does not intersect R {}, formally,

F ::= [] | F ;S

Note that shift k {S} captures the stack up to and including the topmost
†, which has been inserted by the closest surrounding reset. Once the body of
R {} terminates, i.e., reduces to skip, then we remove the R {} and pop the
stack until the topmost †, but leaving the state just above † in the stack (T-R).
invoke k invokes the continuation bound to k (T-Invoke). Namely, if k is bound
to [S,Π ′] in the local or global state, then the statement reduces to S; return
and the stack Π ′ is pushed into the current stack. S must be necessarily of the
form R {S′}, where S′ does not contain R, and Π ′ contains exactly one † at the
bottom. When exiting from the R {}, the state immediately above † in Π ′ will
be left in the stack, which is popped by the trailing return. An example of how
to capture and invoke a continuation is shown in Figure 7. In the example, we
assume that the variables u and u′ are global.

102 K. Nakata and A. Saar

Fig. 6. Semantics of the target language

Compiling Cooperative Task Management to Continuations 103

Fig. 7. Capturing and invoking a continuation

Procedure call f(e) reduces to S; return where S is the body of the proce-
dure f , and pushes a local state [x �→ v], binding procedure’s formal arguments
to actual arguments, into the stack (T-Call). The trailing return ensures that,
once the execution of S; return terminates, the stack is aligned to the originalΠ.
return pops the topmost element from the stack (T-Return). The remaining
rules are self-explanatory.

Given the basic reduction rules, we now define a standard reduction, denoted
by �→, by

envF
 〈S,Π, σ〉 → 〈S′,Π ′, σ′〉
envF
 〈E[S],Π, σ〉 �→ 〈E[S′],Π ′, σ′〉

stating that the configuration 〈S,Π, σ〉 standard reduces to 〈S′,Π ′, σ′〉 if there
exist an evaluation context E and statement S0 and S′

0 such that S = E[S0]
and S′ = E[S′

0] and envF
 〈S0,Π, σ〉 → 〈S′
0,Π

′, σ′〉. The standard reduction is
deterministic.

4 Compilation

When compiling a program P into the target language, we compile expressions
and statements according to the scheme shown in Figure 8. Expressions are trans-
lated into the target language as-is, and statements that have a corresponding
equivalent in the target language are also translated in a straightforward manner.
The two statements that have no direct correspondence in the target language
are await and spawn. We look at how these statements are translated and how
they interact with the scheduler later.

The central idea of the compilation scheme is to use continuations to han-
dle the suspension of tasks, and have an explicit scheduler (for brevity, in the
examples we use Sched to denote the scheduler), shown in Figure 9. The control
will pass to the scheduler every time a task either suspends or finishes, and the

104 K. Nakata and A. Saar

Fig. 8. Compilation of source programs

Fig. 9. Scheduler

scheduler will pick up a new task to execute. During runtime, we also use a global
variable T , which we assume not to be used by the program to be compiled. The
global variable T stores the task set, corresponding to Θ in the source semantics,
that contains all the tasks in the system. The tasks are stored as continuations
with guard expressions.

The scheduler loops until the task set is empty (all tasks have terminated),
in each iteration picking a continuation from T where the guard expression
evaluates to true, removing it from T and then invoking the continuation using
invoke k. The body of the scheduler is wrapped in a reset, guaranteeing that
when a task suspends, the capture will be limited to the end of the current task.
After the execution is completed – either by suspension or by just finishing the
work – the control comes back to the scheduler.

Suspension (await e in the source language) is compiled to a shift state-
ment. When evaluating the statement, the original computation until the end
of the enclosing R {} will be captured and stored in the continuation k, and the
original program is replaced with the body of the shift. The enclosing R {}
guarantees that we capture only the statements up until the end of the current
task, thus providing a facility to proceed with the execution of the task later.
The body of the shift statement simply takes the captured continuation, k,
and adds it to the global task set, with the appropriate guard expression. After
adding the continuation to the task set, the control passes back to the scheduler.

Compiling Cooperative Task Management to Continuations 105

Fig. 10. Compilation of configurations

Procedures in envF will get translated into two different procedures for syn-
chronous and asynchronous calls, as follows:

fS �→ [[S]]
fA �→ reset {shift k {T := add T true k}; [[S]]}

When making an asynchronous call, the body of the procedure will be imme-
diately captured in a continuation, added to the global task set, and the control
passes back to the invoker via the usual synchronous call mechanism.

The entry point of a program in the source language, main, is a regular pro-
cedure and will get translated according to the usual rules into two procedures,
mainA and mainS . In the target language, we must invoke the scheduler, and
thus we use a different entry point:

T := ∅;mainA();Sched

After initializing the task set to be empty, the first statement will add an
asynchronous call to the original entry point of the program, and passes control
to the scheduler. As there is only one task in the task set – the task that will
invoke the original entry point – the scheduler will immediately proceed with
that.

5 Correctness

In this section, we prove that our compilation scheme is correct in the sense
that it preserves the operational behavior from the source program into the
(compiled) target program. Specifically, we prove that reductions in the source
language are simulated by corresponding reductions in the target language. To
do so, we extend the compilation scheme to configurations in Figure 10.

The compilation scheme for configurations follows the idea of the compilation
scheme detailed in Section 4. We have two compilation functions: [[·]]2, which
generates a task set from Θ, and [[·]], which generates a configuration in the
target semantics.

Every suspended task in the task set Θ is compiled to a pair consisting of the
compiled guard expression and a continuation that has been constructed from

106 K. Nakata and A. Saar

Fig. 11. Alternative rule for invoke

the original statement and stack. The statement is wrapped in a R {} block and
we prepend a skip statement, just as it would happen when a continuation is
captured in the target language.

If the active task is finished or is suspended (but no new task has been
scheduled yet), the generated configuration will immediately contain the sched-
uler. If the task has suspended, the task is compiled according to the previously
described scheme and appended to T . Active tasks are wrapped in two R {}
blocks and the stack Π is concatenated on top of the local state of the
scheduler.

When the scheduler invokes a continuation k, the continuation will stay in
the local state of the scheduler until control comes back to the scheduler. This
is unnecessary, as the value is never used after it has been invoked; further-
more, the variable is immediately assigned a new value after control passes back
to the scheduler. Thus, as an optimization, we may switch to an alternative
reduction rule for invoke k, which only allows a continuation to be used once,
T-InvokeOnce, shown in Figure 11. Although the behavior of the program is
equivalent under both versions, using the one-shot version also allows us to state
the correctness theorem in a more concise and straightforward manner, as the
local state of the scheduler will always be empty when we are currently executing
some task. In the proof, we assume this rule to be used instead of the original
T-Invoke rule.

The following lemma states that the compilation of statements is compo-
sitional with respect to evaluation contexts, where evaluation contexts for the
source language are defined inductively by

K := [] | K;S.

Lemma 1.
[[K[S]]] = [[K]]

[
[[S]]

]

Proof. By induction on the structure of K. ��
The correctness theorem below states that a one-step reduction in the source

language is simulated by multiple-step reductions in the target language.
As an example, in Figure 12 we show the compiled form for both the initial

and final configurations shown for the step in Figure 4 and in Figure 13, we show
how to reach the compiled equivalent of the configuration in multiple steps in
the target semantics.

Theorem 1. For all configurations cfgS and cfg ′
S such that

envF
 cfgS → cfg ′
S

Compiling Cooperative Task Management to Continuations 107

Fig. 12. Example of compiling a configuration

Fig. 13. Reduction of the compiled configuration

holds, then the following must also hold:

[[envF]]
 [[cfgS]] �→+ [[cfg ′
S]].

Proof. By induction over the derivation, analyzing the step taken. The possible
steps have one of the following forms:

– Case
envF
 n, σ � n〈S,Π〉 ‖ Θ → n′, σ′ � n〈Π ′〉 ‖ Θ′

Rules matching this pattern are S-Assign-Local, S-Assign-Global, S-
While-False, S-Spawn, S-Return, S-Var. As a representative example,
we will look at S-Spawn in detail.

envF f = (x, S) v = [[e]](ρ,σ) n′ is fresh

envF � n, σ � n〈spawn f e, ρ;Π〉 → n, σ � n〈ρ;Π〉 ‖ n′〈true, S, [x 	→ v]〉

In this case, the source and target configurations are compiled to:

[[cfgS]] = 〈R {R {fA(e)}; return};Sched, ρ;Π†; ∅†, σ[T 	→ [[Θ]]2]〉
[[cfg

′
S]] = 〈Sched, ∅, σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉

108 K. Nakata and A. Saar

Let the bottommost element of Π be ρ′, where ρ = ρ′ if Π is empty. The
compiled source configuration will reduce as follows:

[[envF]] � 〈R {R {fA(e)}; return};Sched, ρ;Π†; ∅†, σ[T 	→ [[Θ]]2]〉
	→ 〈R {R {reset {shift k {T := add T true k}; [[S]]}; return}; return};Sched,

[x 	→ v]; ρ;Π†; ∅†, σ[T 	→ [[Θ]]2]〉
	→ 〈R {R {R {shift k {T := add T true k}; [[S]]}; return}; return};Sched,

[x 	→ v]†; ρ;Π†; ∅†, σ[T 	→ [[Θ]]2]〉
	→ 〈R {R {R {T := add T true k}; return}; return};Sched,

[x 	→ v, k 	→ [R {skip; [[S]]}, [x 	→ v]†]†; ρ;Π†; ∅†, σ[T 	→ [[Θ]]2]〉
	→ 〈R {R {R {skip}; return}; return};Sched, [x 	→ v, k 	→ [R {skip; [[S]]}, [x 	→ v]†]†; ρ;Π†; ∅†,

σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉
	→ 〈R {R {return}; return};Sched, [x 	→ v, k 	→ [R {skip; [[S]]}, [x 	→ v]†]; ρ;Π†; ∅†,

σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉
	→ 〈R {R {skip}; return};Sched, ρ;Π†; ∅†, σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉
	→ 〈R {return};Sched, ρ

′
; ∅†, σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉

	→ 〈R {skip};Sched, ∅†, σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉
	→ 〈Sched, ∅, σ[T 	→ [[Θ]]2 ∪ {(true, [R {skip; [[S]]}, [x 	→ v]†])}]〉

The configuration we obtain from evaluation is exactly equal to the compiled
configuration, thus for this case our claim holds.

– Case
envF
 n, σ � n〈S,Π〉 ‖ Θ → n′, σ′ � n〈e, S′,Π ′〉 ‖ Θ′

There are only two possible rules: S-Seq-Grd and S-Await. In both cases,
it must be that σ = σ′, Π = Π ′, Θ ≡ Θ′ and there exists some K such that
S = K[await e] and S′ = K[skip]. Therefore, taking into account Lemma 1,
the source and target configurations are compiled to:

[[cfgS]] = 〈R {R {[[K]][[[await e]]]}; return};Sched, Π†; ∅†, σ[T 	→ [[Θ]]2]〉
= 〈R {R {[[K]][shift k {T := add T [[e]] k}; skip]}; return};Sched, Π†; ∅†, σ[T 	→ [[Θ]]2]〉

[[cfg
′
S]] = 〈Sched, ∅, σ[T 	→ [[Θ]]2 ∪ {([[e]], R {[[K]][skip]}, Π†)}〉

An example of this reduction can be seen in Figure 13.
– Case

envF
 n, σ � n〈S,Π〉 ‖ Θ → n′, σ′ � n〈S′,Π ′〉 ‖ Θ′

Rules matching this pattern are S-Seq-Fin, S-Seq-Step, S-If-True,
S-If-False, S-While-True, S-Call. In the case of S-Seq-Step, we know
that S = S0;S1 and S′ = S′

0;S1. By induction hypothesis, we get that

[[envF]]
 [[n, σ � n〈S0,Π〉 ‖ Θ]]→ [[n′, σ′ � n〈S′
0,Π

′〉 ‖ Θ′]]

As by the definition of the compilation function [[S]] = [[S0]]; [[S1]] and [[S′]] =
[[S′

0]]; [[S1]], we obtain the needed result:

[[envF]]
 [[n, σ � n〈S0;S1,Π〉 ‖ Θ]]→ [[n′, σ′ � n〈S′
0;S1,Π

′〉 ‖ Θ′]]

For S-Seq-Fin, we know that S = S0;S1 and S′ = S1. Then the case follows
by analyzing the step taken to reduce S0.
The other cases are straightforward.

Compiling Cooperative Task Management to Continuations 109

– One of the following three:

envF � n, σ � n〈Π′〉 ‖ n′〈e, S,Π〉 ‖ Θ → n
′
, σ � n〈Π′〉 ‖ n′〈S,Π〉 ‖ Θ

envF � n, σ � n〈e′
, S

′
, Π

′〉 ‖ n′〈e, S,Π〉 ‖ Θ → n
′
, σ � n〈e′

, S
′
, Π

′〉 ‖ n′〈S,Π〉 ‖ Θ
envF � n, σ � n〈e, S,Π〉 ‖ Θ → n, σ � n〈S,Π〉 ‖ Θ

These three patterns match each of the scheduling rules. We will look only
at the first one.

(ρ, σ) |= e

envF � n, σ � n〈Π′〉 ‖ n′〈e, S, ρ;Π〉 → n′, σ � n′〈S, ρ;Π〉 ‖ n〈Π′〉S-Sched-Fin

[[cfgS]] = 〈Sched, ∅, σ[T 	→ {([[e]], [R {skip; [[S]]}, ρ;Π†])}]〉
[[cfg

′
S]] = 〈R {R {[[S]]}; return};Sched, ρ;Π†; ∅†, σ[T 	→ ∅]〉

The initial configuration will reduce as (with some of the steps omitted):

[[envF]] � 〈While(¬isEmpty T)doreset {k := get T ;T := del T k; invoke k},
∅, σ[T 	→ {([[e]], [R {skip; [[S]]}, ρ;Π†])}]〉

	→ 〈reset {k := get T ;T := del T k; invoke k};Sched,

∅, σ[T 	→ {([[e]], [R {skip; [[S]]}, ρ;Π†])}]〉
	→ 〈R {k := get T ;T := del T k; invoke k};Sched, ∅†, σ[T 	→ {([[e]], [skip; R {[[S]]}, ρ;Π†])}]〉
	→∗ 〈R {invoke k}; , [k 	→ [R {skip; [[S]]}, ρ;Π†]]†, σ[T 	→ ∅]〉
	→ 〈R {R {skip; [[S]]}; return};Sched, ρ;Π†; ∅†, σ[T 	→ ∅]〉
	→ 〈R {R {[[S]]}; return};Sched, ρ;Π†; ∅†, σ[T 	→ ∅]〉

6 Conclusion

In this paper, we formalized a compilation scheme for cooperative multi-tasking
into delimited continuations. For the source language, we extend While with
procedure calls and operations for blocking and creation of new tasks. The target
language extends While with shift/reset—the target language is sequential. We
then proved that the compilation scheme is correct: reductions in the source
language are simulated by corresponding reductions in the target language. We
have implemented this compilation scheme in our compiler from ABS to Scala.
The compiler covers a much richer language than our source language, including
object-oriented features, and employs the experimental continuations plugin for
Scala. The compiler is integrated into the wider ABS Tool Suite, available at
http://tools.hats-project.eu/. We are currently formalizing the results of
the paper in the proof assistant Agda.

Acknowledgements. This research was supported by the EU FP7 ICT project no.
231620 (HATS), the Estonian Centre of Excellence in Computer Science, EXCS, fi-
nanced mainly by the European Regional Development Fund, ERDF, the Estonian
Ministry of Education and Research target-financed research theme no. 0140007s12,
and the Estonian Science Foundation grant no. 9398.

http://tools.hats-project.eu/

110 K. Nakata and A. Saar

References

1. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative
task management without manual stack management. In: ATEC 2002: Proceedings
of the General Track of the Annual Conference on USENIX Annual Technical
Conference, pp. 289–302. USENIX (2002)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press (1986)

3. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

4. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
ACM SIGPLAN Notices - POPL 2004 39(1), 123–134 (2004)

5. Danvy, O., Filinski, A.: Abstracting control. In: LFP 1990: Proceedings of the 1990
ACM Conference on LISP and Functional Programming, pp. 151–160. ACM (1990)

6. Haynes, C.T., Friedman, D.P., Wand, M.: Continuations and coroutines. In: LFP
1984: Proceedings of the 1984 ACM Symposium on LISP and Functional Program-
ming, pp. 293–298. ACM (1984)

7. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

8. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

9. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a
comparative analysis. In: PPPJ 1909: Proceedings of the 7th International Confer-
ence on Principles and Practice of Programming in Java, pp. 11–20. ACM (2009)

10. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

11. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek,
J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

12. Wand, M.: Continuation-based multiprocessing. In: LFP 1980: Proceedings of the
1980 ACM Conference on LISP and Functional Programming, pp. 19–28. ACM
(1980)

Extending UPPAAL for the Modeling
and Verification of Dynamic Real-Time Systems

Abdeldjalil Boudjadar1, Frits Vaandrager2, Jean-Paul Bodeveix3,
and Mamoun Filali3

1 CISS, Aalborg University, Aalborg, Denmark
2 ICIS, Radboud University Nijmegen, Nijmegen, The Netherlands

3 IRIT, Université de Toulouse, Toulouse, France

Abstract. Dynamic real-time systems, where the number of processes
is not constant and new processes can be created on the fly like in object-
based systems and ad-hoc networks, are still lacking a formal framework
enabling their verification. Different toolboxes like Uppaal [21], Tina
[10], Red [28] and Kronos [29] have been designed to deal with the
modeling and analysis of real-time systems. Nevertheless, a shortcom-
ing of these tools is that they can only describe static topologies. Other
tools like Spin [18] allow the dynamic creation of processes, but do not
consider time aspects. This paper presents a formal framework for model-
ing and verifying dynamic real-time systems. We introduce callable timed
automata as a simple but powerful extension of standard timed automata
in which processes may call each other. We show that the semantics of
each call event can be interpreted either as an activation of the existing
instance of the corresponding automaton (static instantiation), or a cre-
ation of a new concurrent instance (dynamic instantiation). We explore
both semantical interpretations, static and dynamic, and give for each
one the motivation and benefits with illustrating examples. Finally, we
report on experiments with a prototype tool, which translates (a subset
of) callable timed automata to UPPAAL systems.

Keywords: Dynamic real-time systems, timed automata, callable timed
automata

1 Introduction

Timed automata (TA) [1] have been proposed as a powerful model for both timed
and concurrent systems modelling. However, a dynamic framework for timed
automata instantiation and applicability, to model dynamic system topologies
like object-based systems and ad-hoc networks in which processes are created and
triggered on the fly, is still lacking. Moreover, the modelling of timed automata as
functional values, whereby a timed automaton can be called and applied to given
parameters to generate outputs, instead of an independent component making
computations and updating the system control is not explored. UPPAAL [6]
is an integrated tool environment for editing, simulating and model checking

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 111–132, 2013.
DOI: 10.1007/978-3-642-40213-5 8,
c© IFIP International Federation for Information Processing 2013

112 A. Boudjadar et al.

real-time systems modeled as networks of timed automata. The tool has been
used successfully and routinely for many industrial case studies. Nevertheless, a
shortcoming of UPPAAL is that it can only describe static network topologies,
and does not incorporate a notion of dynamic process creation.

Unlike UPPAAL’s C-function actions performing local sequential compu-
tations, this study consists of encoding the call mechanism into interacting
processes, whereby communication on shared variables and synchronization with
the external environment are enabled. The modelling of a timed automaton as
a callable function which performs communications and interactions with the
external environment enables it to be callable and triggerable by any other
automaton. We introduce callable timed automata (CTA) as a formal framework
for the modelling and analysis of dynamic timed systems, where the number
of components (processes) may vary. The concept of callable timed automata
enables, for a set of processes, to model a common behavior as an automaton
callable by any other process originally performing such a behavior.

Syntactically, a callable timed automaton is a finite timed automaton [4]
parameterized by a set of data, and triggered through the execution of a calling
transition from another automaton. Moreover, a callable automaton may return
results to its calling component. Semantically, we interpret this syntactical exten-
sion in different ways by considering different criteria like (1) concurrency : the
activation of a callable process may be blocking for the corresponding calling
process, wherein the former cannot progress while the callee one is running. Will
both calling and callee components progress concurrently? (2) instantiation: the
UPPAAL template’s instantiation is static. Will the instantiation of callable TA
be static (a constant number of instances initially created) or dynamic (for each
call, a new instance is created on the fly)?

The ultimate goal of this paper is to provide a new formal framework for
the modelling and verification of dynamic timed systems, where the number of
processes is not constant, in terms of timed automata. To this end, we introduce
an extension for structuring UPPAAL systems by integrating callable timed
automata.

The rest of the paper is organized as follows. In Section 2, we cite exist-
ing related work. Section 3 motivates our proposal through a set of examples.
In Section 4, we define callable timed automata and give their translation to
UPPAAL TA. In Section 5, we review timed transition systems as a semantic
basis. In Section 6, we define the semantics of both static and dynamic instantia-
tions of CTA. Section 7 shows the implementation of CTA in UPPAAL. Section 8
presents the conclusion.

2 Related Work

In the literature, several frameworks [5,12,15,22,23,25,26] have been proposed to
generalize the operational model of functions to a model of concurrent processes.
Most of these proposals work on the encoding of the functional computation
model λ-Calculus into the concurrent computation model π-Calculus. In [22],

Extending UPPAAL for the Modeling and Verification 113

Milner showed that λ-Calculus could be precisely encoded into π-Calculus. The
Spin tool [18] enables the verification of dynamic systems where concurrent
processes can be created on the fly. Both creating and created processes progress
together. The creation of a new process does not block the creating component
execution i.e., a return is not needed to unlock the creating component. Similarly,
the Ada language [13] enables the creation of tasks on the fly. After the cre-
ation of each task, the calling process waits until the new process is elaborated.
Each process may perform a return immediately to unlock its calling compo-
nent via action accept, or executes some actions then performs a return via
statement accept do (RPC-like protocol1). Recently, there has been an amount
of work focusing on recursive extensions of timed automata. Without consid-
ering synchronization, the authors of [27] define a restricted notion of recursive
timed automata where their decidability results impose strong limitations on the
number of clocks (at most 2 clocks). Moreover, either all clocks are passed by
reference or none is passed by reference.

In our proposal, we introduce callable timed automata whereby we extend
UPPAAL timed automata transition actions to concurrent process creation.
Callable timed automata are referenced like functions and may interact with
their environment. The semantics of each call event can be interpreted either as
the activation of an existing instance of the corresponding template, or by the
creation of a new concurrent instance of the callee automaton.

3 Callable Timed Automata

In this section, we introduce an extension of timed automata named callable
automata where automata call each other. Unlike functions which are local com-
putations getting their inputs as parameters before being triggered, a callable
timed automaton is an open process which can interact with its external envi-
ronment at anytime by accepting inputs, producing outputs and updating the
system state. Syntactically, callable timed automata (CTA) are an extension of
finite automata where transitions can be equipped by either a particular event
call, to trigger the execution of another automaton, or again a return event
to yield results. The call of a callable timed automaton can be parameterized
by a set of expressions. Both call and return actions are used as a synchroniza-
tion event instead of an update action. The execution of call T corresponds
to the activation of an instance of template T. Obviously, the activation of an
instance is preceded by its creation which can be performed either when the
system starts or on the fly, i.e. when an automaton calls another one, it induces
both instantiation and activation of the corresponding template.

In the semantical interpretations of call events, we may distinguish static and
dynamic instantiations of callable timed automata. In fact, the interpretation of
each call event depends on the nature of the callee template. To distinguish
1 RPC is an acronym for Remote Procedure Call. It states the activation of a process

(server) by another (client) such that the client process cannot progress while the
server process does not perform a return.

114 A. Boudjadar et al.

between static and dynamic interpretations, we associate to each CTA signature
either a finite number n or an infinite one ∞. Namely, if the template signature
states a finite number n of instances, then each call event for that template
is considered to be static. Otherwise, in the case of ∞, the call event will be
considered to be dynamic.

3.1 Static Instantiation

In this subsection, we consider the situation that each callable timed automaton
is instantiable through a constant number of instances, that may be initially
created when the system starts. The execution of each call event corresponds
to the activation of an instance of the callee template, which may delay and
interleave with the execution of other components. That is the same case as for
UPPAAL-Port [17] where components trigger each others. Each of the instances
will be reinitialized for each activation (call) with the corresponding parameters.
In fact, the callable automaton instances are considered as any other instance
associated to a normal UPPAAL template. Moreover, with such an interpre-
tation, a callable automaton T can be called concurrently in the limits of its
number of instances I(T).

Formally, the call event is blocking where the calling component cannot run
any other transition while its callee automaton has not performed a return.
Likewise, a CTA may block call events from components other than the current
callers if free instances are not available. The calling component gets the control
back when the execution of the callee instance emits a return event. The return
event of a callee instance does not state its termination. The execution of a callee
instance can be atomic, which agrees with the UPPAAL action semantics.

The static instantiation applicability of callable timed automata covers a
large spectrum of the RPC-based systems. An example of such an instantiation
can be found in UPPAAL-Port, where a system is structured as a set of hierar-
chical components executed in a sequence. When the execution of a component
has completed, it triggers the (non-atomic) execution of another component by
activating its trigger-ports. Without considering hierarchy, one can distinguish
that an UPPAAL-port system can be translated to a set of callable automata
in a systematic way. Such a translation consists of replacing the activation of
trigger-ports of each component by a call made by the last transition of its
triggering component.

3.2 Example 1 (Static Instantiation)

We reuse the UPPAAL expression of the well known Train-Gate example [6],
depicted in Figure 1. In fact, such an example models the train crossing con-
currency, where a set of trains request concurrently access to a unique crossing
point, the critical section, in order to continue on their respective routes. The
crossing point is governed by a gate which each train must signal to gain crossing
authorization.

Extending UPPAAL for the Modeling and Verification 115

Fig. 1. The Train-Gate Example

In order to distinguish between
train instances, each one has a unique
identifier Id. As the access request is
the same for all trains, we model this
common behavior (access request) by
a new parameterized callable timed
automaton named Register, and by
that trains get rid of requesting
their own access authorization. The
automaton Register can be called by
any train intending to cross the gate.

When a train Id approaches the
crossing point, it calls the automa-
ton Register with its own identifier
Id. The automaton Register noti-
fies the Gate, which the train Id is
approaching, through a synchroniza-
tion on channel appr, and inserts Id
into the waiting list list. Whenever
the execution of automaton Register
is over for a given call by reaching the return action, the corresponding calling
train can resume. Depending on the availability of the Gate, such a train (Id)
crosses immediately or stops for a delay specified by a constraint on clock x,
waiting to be on the front of list then crosses the gate. Accordingly, the automa-
ton Register becomes available for accepting other calls by any train intending
to cross the gate.

3.3 Dynamic Instantiation

In this interpretation, a varying number of instances can be dynamically associ-
ated to each callable automaton: each call event corresponds to the creation of a
new instance of the callee automaton. Template instances are created on the fly
through the execution of the corresponding calls. Each newly created instance
will be simultaneously triggered. Hence, the call event is not blocking for other
calling components. Moreover, both calling and callee instances may progress
concurrently, after performing a return. In fact, in the dynamic instantiation
the return event of an instance enables to yield its results but does not state
its termination. i.e. an instance may run other transitions after performing a
return. The termination of an instance execution is stated by reaching a final
location. The dynamic instantiation of callable timed automata leads to build-
ing the structure of the system on the fly: the system has different numbers of
instances on different executions and at different dates.

The dynamic feature of such an instantiation is suitable to model object-
based systems, ad-hoc networks, fault tolerant and DataBase Management sys-
tems (DBMS) where components (objects, hosts, processes) are created on the

116 A. Boudjadar et al.

fly. For example, in the case of DataBase Management systems, when the exe-
cution of a process requires to read data from a database, it calls the Reader
module of DBMS by creating an instance of the former to fetch data.

3.4 Example 2 (Dynamic Instantiation)

The sieve of Eratosthenes is a simple algorithm for finding all prime numbers up
to a given integer M . Given a list of numbers, the algorithm iteratively marks
as a non-prime the multiples of each prime, starting with the multiples of 2. It
runs across the table until the only numbers left are prime.

Fig. 2. The sieve of Eratosthenes

As depicted in Figure 2, we have imple-
mented this algorithm by the parallel com-
position of 2 automata: main and element.
In fact, we model the table elements by
the automaton so-called element. Each
instance of template element is parame-
terized by a natural number (1 of tem-
plate main) which states its identifier, and
another integer number (2 of template
main) to retrieve its prime number. More-
over, each instance has 2 local variables:
self to store its identifier (parameter), and
myprime to store the value of the corre-
sponding prime number (parameter). To
allow the communication of instances, we
declare a vector next of M channels.

The system is managed by another
automaton so-called main, which creates
the first instance of automaton element.
Such an instance gets as effective parame-
ters the identifier of the first instance (1),
and the corresponding prime number (2).
After that, automaton main increments
iteratively the number n to be checked and
sends it to that instance (of template element) through channel next[1] 2.

Once the system is triggered, the automaton main moves from location start
to location gen (generate) by executing the call action call element(1, 2), and
updating n to 3. Such a call creates the first instance of template element, which
is identifiable by self = 1 and myprime = 2. This instance performs a return to
unlock its caller and moves to its location own. The automaton main sends the
first value n to be checked to the newly created instance, of template element,
on channel next[1]. Through the reception of the first message next[self]?m, the

2 In fact, channels next are parameterized by the number to be checked. We may
consider shared variables to implement the data communication over channels.

Extending UPPAAL for the Modeling and Verification 117

current element instance checks whether or not the received value of m is a
multiple of its own prime number myprime.

If m is a multiple of myprime then the received value of m will be ignored,
and the current instance of element moves back from location check1 to location
own. Otherwise, the current instance of template element requests the creation
of another instance, through the statement call element(self + 1,m), and moves
to location succ (successor). At this level, the first instance of element is waiting
for the reception of another number to be checked, sent by main. On a reception
next[self]?m of a new value which is not a multiple of myprime, the instance
of element sends that value to its successor instance via channel next[self + 1],
which corresponds in this case to next[2]. Similarly, each new instance of element
behaves in the same way as the first one. Herein, one can distinguish that each
new number, sent by automaton main, crosses a sequence of element instances
until it is dropped, the case of a multiple of a discovered myprime, or registered
as a new prime number with the creation of a new instance of template element.

4 Timed Automata Extension

The modeling and verification of real-time systems, via timed automata, are
mature topics to which a large amount of work has been devoted during the
last two decades. However, the modeling and verification of dynamic real-time
systems, where the topology (global architecture and number of components)
may change during the execution of systems, constitute a perspective and an
active field of research.

Fig. 3. Semantics and translation of CTA

In this section, we give the for-
mal basis of callable timed automata
(CTA) where transition actions can
be internal, external, a call of
another callable timed automaton, or
again a return. Then, we show how
callable timed automata can be trans-
lated to UPPAAL ones, and estab-
lish an important result stating that
the semantics of CTA and that of
their translation to UPPAAL timed
automata are bisimilar (Figure 3). In
fact, the translation enables us to reuse
the UPPAAL toolbox for the verifica-
tion of dynamic timed systems mod-
eled with CTA. Let us introduce the
following notation.

Notation. We assume a universe V of variables. To each variable v ∈ V we
associate a nonempty set of values, referred to as the type of v and denoted
type(v). Moreover, we associate to each variable v ∈ V a default initial value

118 A. Boudjadar et al.

d0
v ∈ type(v). A variable v whose type equals the set R≥0 of non-negative real-

numbers is called a clock. We assume that the default initial value of all clocks
equals 0. Let V ⊆ V be a set of variables.

– A valuation of V is a function that maps each variable to an element of its
type. We use V al(V) to denote the set of valuations of V .

– E(V) defines the set of expressions built over V . To each expression e ∈ E(V)
we assign a type type(e). Each expression induces a state transformer, that
is, [[e]] : V al(V)→ V al(V). We call an expression side effect free if [[e]] is the
identity function. Each expression also denotes a value for any valuation:
〈〈e〉〉 : V al(V)→ type(e).

– P(V) defines the set of predicates built over V . If φ is a predicate over V
then [[φ]] : V al(V)→ Bool gives the truth value of φ for any given valuation
of V .

– For a function f defined on a domain dom(f), we write f�X the restriction
[8] of f to X, that is the function g with dom(g) = dom(f) ∩X such that
g(z) = f(z) for each z ∈ dom(g).

– Two functions f and g are compatible [8], denoted f♥g, if they agree on
the intersection of their domains, that is, f(z) = g(z) for all z ∈ dom(f) ∩
dom(g).

– We denote by f � g the left overriding function defined on dom(f � g) =
dom(f) ∪ dom(g) where f overrides g for all elements in the intersection of
their domains. For all z ∈ dom(f � g),

(f � g)(z) �
{
f(z) if z ∈ dom(f)
g(z) if z ∈ dom(g)− dom(f)

Similarly, we define the dual right overriding operator by f � g � g � f .
– We define f ‖ g � f � g when f and g are compatible.

4.1 UPPAAL Timed Automata

UPPAAL is an integrated tool environment for editing, simulating and model
checking real-time systems modeled as networks of timed automata. The tool
has been used successfully and routinely for many industrial case studies. Nev-
ertheless, a shortcoming of UPPAAL is that it can only describe static network
topologies, and does not incorporate a notion of dynamic process creation. More-
over, UPPAAL does not incorporate a notion of one automaton calling another,
like a function, even though this last concept can be encoded within UPPAAL
using a pair of handshakes.

In fact, UPPAAL timed automata [6] are extensions of the classical ones [1]
where one level hierarchy of local/global variables, committed locations, commu-
nication and priorities have been introduced. Besides, in the UPPAAL language
timed automata are defined within a global common context.

Definition 1. (Global context) A global context C = 〈Σ,V g, Initg, C〉 con-
sists of a finite set of automata names Σ ⊆ T , a finite set of global variables

Extending UPPAAL for the Modeling and Verification 119

V g ⊆ V, the initial valuation Initg of global variables V g and a finite set of
channels C.

Throughout this paper we do not distinguish between clock and normal variables.
Each variable of V is either a clock or a normal variable. By now, we give the
structure of a timed automaton defined on a global context.

Definition 2. (Timed automaton) Given a global context C, a timed automa-
ton (TA) is a tuple 〈Q, q0,K, V l, Initl, Inv,→〉 where Q is the set of locations,
q0 ∈ Q is the initial location, V l is the set of local variables, Initl is the ini-
tial valuation of local variables, Inv : Q→ P(V) associates an invariant to each
location, K ⊆ Q is a set of committed locations, and→⊆ Q×P(V)×Λ×E(V)×Q
is the transition relation, where V = V l ∪ V g and Λ = C? ∪ C! ∪ {τ}.

For the sake of simplicity, we write q
G/λ/a−−−−→ q′ for (q,G, λ, a, q′) ∈→. The

composition of timed automata, so-called networks of timed automata (NTA),
enables to model a system as a flat set of interconnected components. Each
component (TA) interacts with its external environment through communication
on shared variables and synchronization of actions.

In a variant of UPPAAL called UPPAAL-Port [17], hierarchical compositions
are enabled whereby the system can be modeled as a set of components. Each
component may encapsulate other components. Several proposals [6,8,11,14]
studying the composition of UPPAAL timed automata have analyzed their prop-
erties. The authors of [6] define a non compositional semantics of UPPAAL NTA.
In [8,11], the authors define a compositional semantics of NTA and establish some
properties like the preservation of system invariants. In [14,20], the semantics of
TA composition is not compositional because the product of TA semantics is
not associative. Counter-examples are given in [7,9].

4.2 Callable Timed Automata

Callable timed automata provide a formal framework for the modelling and
analysis of dynamic timed systems. In fact, the concept of callable timed
automata enables, for a set of processes, to model a common behavior as an
automaton callable by any other process originally performing such a behavior.

Unlike UPPAAL callable C-functions, a callable timed automaton can inter-
act with the other components and call other callable automata. However, in the
case of static instantiation, in order to avoid deadlock due to mutually dependent
executions, a callable timed automaton cannot call its own hierarchical calling
components. In fact, for the static interpretation, the calling component cannot
progress while its current callee component is running. Once the callee TA exe-
cution is over, the corresponding calling component may resume the control and
continue its execution. However, for the dynamic instantiation, after perform-
ing a return to unlock its calling component, a callee component may progress
together with the execution of its calling component. Thus, in the static instan-
tiation, the return action represents the end of the call execution of callable TA

120 A. Boudjadar et al.

whereas, in the dynamic instantiation, it is considered as an ordinary action.
Obviously, a system of CTA must contain at least one triggering TA (root) to
activate CTA.

We assume a universe T of automata names, and associate to each automaton
name T ∈ T a return type R(T), the number of instances to be created I : T →
N>0 ∪ {∞} and a formal parameter pT ∈ V. In fact, the maximal number of
instances to be created for each template is either a strictly positive number
(> 0) if the template is statically instantiable, or an infinity (∞) in the case of
dynamic instantiation.

In this paper, we only consider automata with a single formal parameter.
Automata with multiple parameters may be encoded using variables of type
vector, record or union in the same way as simple types and without affecting
our framework.

We introduce expressions of type automaton and write E(T ,V) for the set of
expressions {T (e) | T (pT) ∈ Σ ∧ e ∈ E(V) ∧ type(e) = type(pT) ∧ e is side effect
free}. Formally, a callable timed automaton is given by:

Definition 3. (Callable timed automaton) Let C = 〈Σ,V g, Initg, C〉 be a
global context. A callable timed automaton (CTA) for C is a tuple 〈T,Q, q0, F, V l,
Init, Inv,→〉 where Q, q0, Initl and Inv are the same as for TAs:

– T ∈ Σ is the automaton name,
– F ⊆ Q a set of final locations,
– V l ⊆ V is a set of local variables; we require V g ∩ V l = ∅, pT ∈ V l, and

write V = V g ∪ V l,
– →⊆ Q × P(V) × Λ × E(V) × Q is the transition relation which, for each

transition, consists of a source location, a guard, a label, an action and a
target location. Here Λ = C? ∪ C! ∪ {τ} ∪ (V × Σ × E(V)) ∪ E(V) is the
set of transition labels. Each transition label can be a synchronization on a
channel, an internal event, a call of another automaton, or a return action.

We write q
G/λ/a−−−−→ q′ for (q,G, λ, a, q′) ∈→. Moreover, if λ = (x, T ′, e) ∈

V × Σ × E(V) then we refer to the transition as a call transition and write

q
G/x:=call T ′(e)/a−−−−−−−−−−−−→ q′. In this case, we require that type(e) = type(pT ′) and

type(x) = R(T ′). Similarly, if λ = e ∈ E(V) then we refer to the transition

as a return transition and use the notation q
G/return(e)/a−−−−−−−−−→ q′. In this case we

require that type(e) = R(T). Intuitively, via a call T ′(e)-transition automaton
T calls automaton T ′ with a parameter value that can be obtained by evaluat-
ing expression e. A return(e)-transition is used to return the value of expres-
sion e. If the return type of an automaton T is void, we use return() and just
keep call T (E) to call the automaton T , omitting the assignment “x :=”. Fur-
thermore, callable timed automata should satisfy the following wellformedness
conditions: final locations do not have outgoing transitions, and return actions
are side effect free. We call subprogram a CTA of which each return transition
leads to a final location. Moreover, we associate to each automaton name a CTA
template (record): D : T → CTA.

Extending UPPAAL for the Modeling and Verification 121

4.3 Translation of Callable TA to UPPAAL TA

In order to reuse the UPPAAL toolbox, we translate callable timed automata to
UPPAAL TA. Hence, as stated in the previous section, to make the translation
and implementation of CTA easier the user provides the nature of each template
instantiation. In fact, through I(T) the user states whether the template T is
instantiable statically or dynamically. Moreover, the user specifies the number
of instances to be created, for each template, in the case of static instantiation.
Since calling and callee components may not access each others local variables,
we consider the UPPAAL communication through shared variables.

As shown in Figure 4, for translating the calling transition q
x<=0/y:=call T (e)/−−−−−−−−−−−−−→

q′, the expression e is assigned to a new shared variable param 3. Thereafter,
the value of such a shared variable will be copied into the local variable pT ∈ V l
of the callee automaton (T (pT) ∈ Σ), as depicted in the bottom of Figure 5.

Fig. 4. The translation
of calls

Mainly, the translation consists of splitting each
calling transition of CTA into two synchronizing tran-
sitions, as shown in Figure 4. The first transition is an
output on a particular channel cal, to activate the cor-
responding callee CTA, which engages with the assign-
ment of expression e to shared variable param, whereas
the second transition is an input on a particular chan-
nel ret, with the assignment of value result to variable
y requesting the call. The execution of the former tran-
sition states the termination of the call execution. Both
transitions, resulting from the translation of a call, are
linked through a new intermediate location qint rela-
tive to each pair (y, t), where t is the original calling
transition and y is the variable requesting the call. In

fact, we use the notation t : q
G/λ/a−−−−→ q′ to state that t is the current transition

name, which will be used to reference this transition.
In Figure 5, we show how the structure of a callable automaton (top) can

be translated to that of an UPPAAL one (bottom). The translation consists
of adding a new initial location qinit as the triggering point (activation) of the
corresponding UPPAAL TA. This location will be linked to the original ini-
tial location q0 of CTA through an input synchronizing transition on channel
cal[T], engaging with the assignment of shared variable param to the CTA local
variable p, dedicated to receive the parameter value.

When it meets a return event, the callee CTA yields its result to its calling
through a synchronizing transition on channel ret[T], which assigns the result r
to shared variable result and unlocks the calling component. Moreover, all CTA
final locations are linked to newly inserted location qinit via an empty committed
transition in order to make CTA available for other calls.
3 In fact, the type type(param), resp type(result), is the union of all of the parameter,

resp return, types used in the model.

122 A. Boudjadar et al.

Remark. We have associated to each callable timed automaton T a pair of chan-
nels (cal[T], ret[T]). Such channels can be used by any other automaton T ′

intending to call automaton T . Moreover, the set of parameters {param}, respec-
tively {result}, depends on the number and types of call, respectively return,
parameters. Such variables are re-used for the whole model because the synchro-
nizations on cal and ret channels are atomic transitions.

Definition 4. (TA corresponding to a CTA) Given a CTA 〈T,Q, q0, F, V l,
Initl, Inv,→T 〉 for a global context C = 〈Σ,V g, Initg, C〉 with T (pT) ∈ Σ, its
translation to a TA is defined by 〈Q ∪Qint ∪ {qinit}, qinit, F, V l, Initl, Inv′,→〉
over the global context 〈Σ,V g ∪ {param, result}, Initg, C ∪ {cal, ret}〉 where
Inv′(q) = Inv(q) if q ∈ Q else true and → is the smallest relation such that:

q
G/λ/a−−−−→T q′ λ ∈ C! ∪ C? ∪ {τ}

q
G/λ/a−−−−→ q′

Action
q ∈ F

q
�/τ/skip−−−−−−→ qinit

Restart

qinit
�/cal[T]?/pT :=param−−−−−−−−−−−−−−→ q0

Activate
q
G/return(e)/a−−−−−−−−−→T q

′

q
G/ret[T]!/result:=e,a−−−−−−−−−−−−−−→ q′

Return

t : q
G/x:=call T ′(e)/a−−−−−−−−−−−−→T q

′

q
G/cal[T ′]!/param:=e−−−−−−−−−−−−−−→ qt

�/ret[T ′]?/x:=result,a−−−−−−−−−−−−−−−→ q′
Call

where skip is an empty action (identity), Qint = {qt | t : q
G/x:=call T ′(e)/a−−−−−−−−−−−−→ q′}

is a set of intermediate locations introduced when splitting the calling transitions
as shown in Figure 4, and qinit is the new initial location of the resulting TA,
again illustrated in Figure 5.

Fig. 5. TA of a CTA

In fact, this definition translates a CTA and its global
context to a timed automaton, where the final locations
are marked committed in order to get instances immedi-
ately available after the end of each call. Each instance of
the template T is processed in the same way. Therefore,
the translation of a CTA is a network of timed automata
defined on the translation of the global context C where
to each instance of the CTA T corresponds a TA.

Transition rule Action states that non calling transi-
tions of the CTA are held without any change in the cor-
responding translation. Rule Restart enables the result-
ing TA to join its new initial location qinit from each final
location. Via rule Activate, the execution of a callable
TA translation is activated through an enabled (guard =
�) synchronizing transition. The former leads to reach
the old initial location q0 of the CTA, and updates the
value of parameter pT according to value of variable

Extending UPPAAL for the Modeling and Verification 123

param. Rule Return states that whenever a callable automaton emits a return
event, its translation yields the results to its calling (parent) TA through a syn-
chronization on channel ret, with the assignment of result e to shared variable
result. Finally, rule Call is explained via Figure 4.

In the same way, the translation of a network of CTA, defined by a root CTA,
a set of template definitions D and the maximal number of instances associated
to each template I which is supposed to be bounded, is a NTA containing the
translation of each CTA replicated according to their number of instances.

In the case of dynamic-instantiable CTA (infinite number of instances), for
each CTA T we choose a finite number nT of instances for each infinite number
I(T), then we translate the new CTA model to UPPAAL. Thus, if the number
of simultaneously active instances of each T is lower than the corresponding
chosen number, the properties of the checked TA model are those of the original
CTA model. In order to check that the chosen numbers are sufficient, we use the
UPPAAL model-checker to prove that for each T there always exists an instance
in its initial state.

Otherwise, we retry with higher values nT , for each T whose the number
of instances has been reached, and redo the checking process. However, such a
process may not terminate. A perspective of this section is to provide a tool
for inferring automatically the sufficient number of instances for each dynamic-
instantiable CTA. Such a tool could be based on the decision procedure for the
boundedness of Petri nets.

5 Semantical Model: TTSs

In order to ensure the translation correctness, we define the semantics of both
UPPAAL timed automata and callable TA in terms of timed transition systems
(TTS). We study then the bisimilarity between the CTA direct semantics and the
translation-based one. In fact, we study the bisimilarity between the semantics
of CTA composition and that of their translation, defined in a compositional
way. To this end, we extend timed transition systems with local and global
variables, and review their timed bisimulation relation and associative product,
according to [8]. Moreover, we consider the static priority Committedness, which
is useful to specify that certain behaviors need to be executed atomically, without
interleaving of lower priority behaviors from other components. In general, the
states of a TTS constitute a proper subset of the set of all valuations of the
state variables. This feature is used to model the concept of location invariants
in timed automata.

Definition 5. (TTS) A Timed Transition System over a set of channels C is
a tuple 〈G,L, S, s0,→〉 where G and L are respectively the sets of global and local
variables, S ⊆ V al(V) is the set of states with V = G∪L, s0 ∈ S the initial state
and →∈ S× (C!∪C?∪{τ}∪Δ)×B×S is the transition relation. Δ is the time
domain and B states whether or not a transition is committed. A state s of a
TTS is called committed, denoted Comm(s), if it enables an outgoing committed
transition (s, l,�, s′).

124 A. Boudjadar et al.

Furthermore, a TTS must satisfy a wellformedness condition : in a commit-
ted state neither time-passage steps nor uncommitted τ may occur. Thus, time
transitions (with labels in Δ) are non committed.

In fact, the state space S will be used to encode the location invariants of timed
automata. Here and elsewhere, we write s

λ,b−−→ s′ for a transition 〈s, λ, b, s′〉 ∈→
linking the state s to another state s′ through an event λ and having the commit-
tedness priority b. This former is considered to be false (⊥) if absent. Formally,
the predicate Comm is defined by:

Comm(s) =

{
� If ∃ λ s′ | s λ,�−−→ s′

⊥ Otherwise

Through location committedness, certain (lower-priority) behavior are ruled out
which may lead to serious reductions in the state space of a model. By now, we
define the simulation relation of TTSs [8]. In fact, such a relation is used to show
whether a TTS implements another. The simulation relation can be established
through the inclusion of traces where, from a common state, we check that each
transition of the simulated system can be triggered in the simulating one.

Definition 6. (Timed step simulation) Given two TTSs T1 and T2 having
the same set of global variables, we say that a relation R ⊆ S1 × S2 is a timed
step simulation from T1 to T2, provided that s01Rs

0
2 and if s R r then

– s�G1 = r�G2,
– ∀u ∈ V al(G1) : s[u]R r[u],
– if Comm(r) then Comm(s),

– If s
λ,b−−→ s′ then either there exists an r′ such that r

λ,b−−→ r′ and s′Rr′, or
λ = τ and s′Rr.

where s[u] states the update of state s according to valuation u. We write T1 � T2

when there exists a timed step simulation from T1 to T2. In fact, such a definition
maps each transition of T1 to a transition of T2 given that global variables have
the same valuations. Accordingly, T1 and T2 are bisimilar if there exists a timed
step simulation R from T1 to T2 such that R−1 is a timed step simulation from
T2 to T1. In order to study the semantics of timed automata composition, we
define the product of TTSs, according to [8], which is a partial operation that is
only defined when TTSs initial states are compatible, i.e. s01♥s02.
Definition 7. (Parallel composition of TTSs) Given two TTSs T1 and T2

with s01♥s02, their parallel composition T1 ‖ T2 is defined by the tuple 〈G,L, S,
s0i ,→〉 where G = G1 ∪ G2, L = L1 ∪ L2, S = {r ‖ s | r ∈ S1 ∧ s ∈ S2 ∧ r♥s},
s0 = s01 ‖ s02 and → is the smallest relation such that:

Extending UPPAAL for the Modeling and Verification 125

r
λ,b−−→i r

′

r ‖ s λ,b−−→ r′ � s
Ext

r
τ,b−−→i r

′ Comm(s)⇒ b

r ‖ s τ,b−−→ r′ � s
Tau

r
c!,b−−→i r

′ s[r′]
c?,b′
−−−→j s

′ i �= j
Comm(r) ∨ Comm(s)⇒ b ∨ b′

r ‖ s τ,b∨b′−−−−→ r′ � s′
Sync

r
δ−→i r

′ s
δ−→j s

′ i �= j

r ‖ s δ−→ r′ ‖ s′
Time

i, j range over {1, 2} and b, b′ range over B. The set of variables of the product is
simply obtained by the union of both component variables. Moreover, the states,
respectively initial states, of the product are obtained by merging the states,
respectively initial states, of individual TTSs. The notation Comm(q)⇒ b with

t : s
λ,b−−→i s

′ states that t must be committed if there exists another outgoing
committed transition from s. Otherwise stated: a transition cannot be hidden
by a lower-priority transition.

Rule Ext represents potential synchronizations that the TTS Ti may be
willing to engage in with its environment. The committedness of such transitions
is not checked because it may be that a compatible committed transition will
synchronize with the current transition of Ti making then the resulting transition
committed. Rule Tau induces an internal transition of the composition from an
internal transition of a component Ti. Rule Sync describes the synchronization
of components Ti and Tj on channels c ∈ C if their labels are compatible, and
the input transition is still triggerable according to the valuation associated to
the output transition target state r′. The resulting transition, labelled by the
internal event τ , is committed if at least one of the involved transitions (output,
input) is committed. Hence, a non-committed synchronization may only occur if
both components are in uncommitted states. Finally, rule TIME states that a
delay δ of the composition may occur when both components perform a delay δ.

Theorem 1. (Associativity) Let T1, T2 and T3 be TTSs with their initial
states pairwise compatible, then (T1 ‖ T2) ‖ T3 = T1 ‖ (T2 ‖ T3).

In the following, we define the semantics of UPPAAL timed automata
through TTS where committed transitions of TTS are those outgoing from TA
committed locations.

Definition 8. (TTS semantics of a TA) Given a global context C = 〈Σ,V g,
Initg, C〉, the TTS associated to a timed automaton 〈Q, q0,K, V l, Initl, Inv,→ta〉
is defined by 〈V g, V l ∪ {loc}, S, s0,→〉 where loc is a fresh variable with type
Q, W = V g ∪ V l ∪ {loc}, S = {v ∈ V al(W) | v |= Inv(v(loc))}, s0 =
Initg ∪ Initl ∪ {loc �→ q0} and the transition relation is defined by:

q
G/λ/a−−−−→ta q

′ s(loc) = q s |= G b⇔ (q ∈ K)

s
λ,b−−→ a(s � {loc �→ q′})

Act
s(loc) �∈ K
s
δ,⊥−−→ s⊕ δ

Time

126 A. Boudjadar et al.

We have introduced a new local variable loc to state the TA current location.
Each state of the TTS corresponds to a valuation of TA variables where the
invariant of the corresponding location holds. Moreover, the TTS transitions are
inferred from the transitions and locations of TA. In fact, rule Act states that
to each TA transition, we associate a TTS transition if the current location loc
corresponds to the source location q of TA transition, and the TTS current state
s satisfies the guard G of the TA transition. Through rule Time, we associate
to each non-committed location of TA a TTS non-committed transition. The
former adds an amount δ to all clock variables. One may distinguish that Time
transitions do not update local states and non-clock variables.

6 Semantical Interpretations

By now, we define the semantics of callable timed automata instantiation in
terms of TTS. In fact, such a semantics considers a callable automaton (tem-
plate) together with its instances. Mainly, we distinguish two different instan-
tiations: static and dynamic. In fact, the static instantiation corresponds to
implement each callable template through a finite (constant) number of instances,
may be initially created, whereas the dynamic instantiation of a callable automa-
ton consists of creating a (possibly infinite) set of instances on the fly when
executing the system. Each instantiation mechanism is suitable for a given kind
of applications, whereby the modelling of systems becomes much more natural.
Let us introduce the following elements:

– We extend the set of locations by introducing, for each calling transition t a
new location t. Such a location will be used to wait for a return of the call
made over transition t.

– In order to distinguish between different instances of the same template, a
fresh identifier Id is assigned to each instance.

– We introduce a new local variable templ such that, an instance Id is an
instantiation of the template T if Id.templ = T .

– We have also introduced a new local variable ParId in order to identify for
whom (parent identifier) an instance (Id) performs a return. In fact, the
variable Id.ParId stores the identifier of the current caller of Id.

– The local variables of instance Id are renamed by prefixing each one by the
identifier Id.

– The notation [[e]]Ids states the valuation of expression e according to state s,
where the template local variables occurring in e are replaced by the corre-
sponding local variables of instance Id.

Definition 9. (CTA instantiation semantics) Given a global context C =
〈Σ,V g, Initg, C〉, the instantiation semantics of the callable timed automaton
〈T (pT), Q, q0, F, V l, Initl, Inv,→T 〉 is defined by the TTS 〈V g, Id.V l ∪ Id.

Extending UPPAAL for the Modeling and Verification 127

{loc, templ,ParId}, S, s0,→〉 4 over the set of channels C where Id = fresh(∅)
is the identifier of the initial instance, S = {s ∈ V al(W) | s |= Inv(s(locT))},
s0 = Initg ∪ Initl ∪ {Id.loc �→ q0}, W = V g ∪⋃

i∈I(T){Idi.V l ∪ {Idi.loc, Idi.
templ, Idi.ParId} and → is the smallest relation such that:

q
G/λ/a−−−−−→T q′ s(Id.templ) = T s(Id.loc) = q s |= G

s
λ,⊥−−−→ aId(s � {Id.loc �→ q′})

Act
s(Id.loc)

return
�

s
δ,⊥−−→ s ⊕ δ

Time

t : q
G/v:=call T ′(e)/a−−−−−−−−−−−−−→T q′ s(Id.templ) = T s(Id.loc) = q

s |= G Card{Id | Id.loc ∈ dom(s)} < I(T ′) Id′ := fresh(s)

s
τ,⊥−−→ s � {Id.loc �→ t } ‖ Init Id′ ‖ fInitl(Id′, T ′)

Call

s(Id.loc) ∈ D(s(Id.templ)).F

s
τ/⊥−−−→ s/Id

Destroy

s(Id.loc) = t s(Id′.loc) = q s(Id′.templ) = T

q
G/return e/a−−−−−−−−−−→T q′ s |= G s(Id′.ParId) = Id

s
τ,�−−→ t.aId(aId′ (s � {Id.loc �→ t.q′, Id′.loc �→ q′, t.v �→ [[e]]Id′

s }))
Return

where Init Id′ = {Id′.pT ′ �→ [[e]]Ids , Id
′.ParId �→ Id, Id′.templ �→ T ′, Id′.loc

�→ D(T ′).q0} is the initialization of parameters and newly created variables of
instance Id′ (rule Call), and the function fInitl(Id′, T ′) =‖v∈D(T ′).V l {Id′.v �→
D(T ′).Initl(v)} is the initialization of the instance original local variables accord-
ing to the initial valuation Initl of its template D(T ′) identified by T ′.

The semantics of the CTA instantiation is given through the former defini-
tion together with the TTS product. It consists of compiling dynamically CTA
instances to TTSs and computing simultaneously the parallel product of these
TTSs. In fact, the semantics of a CTA T creates the first instance of T . Such
an instance is recognizable by a fresh identifier Id = fresh(∅). The set of local
variables of the underlying TTS corresponds to the union of the local variables
of all instances of T that can be created according to the maximal number of
instances I(T) i.e., (

⋃
i∈I(T){Idi.V l), together with the newly introduced vari-

ables (Idi.loc, Idi.templ, Idi.ParId). Moreover, TTS states are partial func-
tions where only variables of created instances are valued.

About transitions, rule Act states a non-calling transition of an instance Id
of template T (Id.templ = T) if the current location of Id corresponds to q.
Such a transition is enabled if the current source state s satisfies the guard G,
and consists of updating local and global variables according to action aId, with
a jump to location q′. The update action aId is a rewriting of action a where the
local variables of template T , occurring in a are replaced by that of instance Id.
4 Id.E = {Id.e | e ∈ E} consists of prefixing each variables e ∈ E by the identifier
Id of a CTA instance. Such a renaming is used to distinguish between variables
of different instances, in particular between instances of the same template where
variables have the same original names.

128 A. Boudjadar et al.

Rule Time corresponds to a delay of an instance Id from state s. The notation
q
return

� states the absence of outgoing transitions labelled with a return event,
from location q. Implicitly, return events have priority over others. Thus, we do
not allow delays from locations having outgoing transitions labelled by a return.
Such a restriction is useful to enable instances unlocking their callers once they
reach a state having an outgoing return.

After checking that the current location loc of an instance Id of template
T corresponds to location q, the current state s satisfies the guard G, and the
cardinality of the current set of the callee template (T ′) instances does not
cross up the maximal number allowed for this template i.e., Card{Id | Id.loc ∈
dom(s)} < I(T ′), rule Call creates a new instance Id′ of the callee template T ′.
Such a newly created instance is concurrently run with its calling instance Id of
template T , and has the parent (calling) instance identifier ParId = Id. Without
executing the update action a, the calling instance Id moves to an intermediate
location t waiting for a return. The update action a is stored in location t, and
will be applied after assigning the result returned by Id′ to variable v. On its
creation, the instance Id′ initializes its parameter and its new local variables
(loc, templ,ParId) according to Init Id′, and also initializes its original local
variables V l according to fInitl.

Rule Destroy states that an instance Id will be destroyed when it reaches a
final location. Such a destruction consists of removing the variables and locations
of Id from the system state.

Rule Return specifies how an instance Id′ of template T performs a return,
for its calling instance Id waiting on an intermediate location t. In fact, after
ensuring for whom (Id′.ParId = Id) the return action should be made, the
instance Id′ yields the result expression e, evaluated to [[e]]Id

′
s according to the

valuation of state s, to its calling (parent) instance Id. The former joins the
target location q′, stored in t.q′, of its calling transition t after the reception
of the returned value t.v = [[e]]Id

′
s . Through such a transition, from location t

to t.q′, the update action t.a 5 of the transition t, originally performing the call
of Id′, is applied after the execution of the local action aId′ of the returning
transition and the assignment of [[e]]Id

′
s to local variable v of Id.

Remark. One may remark that we have unified both static and dynamic instan-
tiations in one semantics. The difference between both instantiation semantics
can be clearly distinguished over the following condition Card{Id | Id.loc ∈
dom(s)} < I(T ′) of rule Call. In fact, in the dynamic instantiation we can cre-
ate an infinite set of instances because the above condition is always satisfied,
i.e., the maximal number (I(T ′) = ∞) of instances to be created cannot be
reached. Whereas in the static instantiation semantics, we are allowed to create
a new instance if the number of the current active instances does not cross up
the maximal (finite) bound I(T ′).

5 The notation t.v refers to variable v occurring in the left side of the calling transition
t label. Similarly, t.a is the update action of transition t.

Extending UPPAAL for the Modeling and Verification 129

Theorem 2. (Subprogram call safety) An instance of a subprogram CTA T
is either in its own initial location q0 or there exists a unique component which
is in a waiting location t associated to a call to T . Formally, the property P
such that P (s) ≡ ∀Id s(Id.loc) �= D(s(Id.templ)).q0 ⇒ ∃!Id′ ∃!t s(Id′.loc) =
t ∧ s(Id.ParId) = Id′ is an invariant of the system.

Theorem 3. (Instantiation semantics and translation) The semantics of
a system of CTA and TA, defined by the product of TTS associated to its indi-
vidual components and that based on the translation of CTA to TA are bisimilar.

Theorem 4. (Liveness) For an instance Id, a location q with a call as unique
outgoing transition which is locally enabled and such that time elapse is bounded 6,
then the call is eventually accepted. Formally, for each calling location q, we
have: (s(Id.loc) = q) ∧ G � ∃Id′ ∃s, (Id′. ParId = Id) ∧ (s(Id′.loc) =
D(s(Id′.templ)).q0), where � is the UPPAAL Leads to operator.

Theorem 5. If the NTA translation of a CTA system has always a free instance
for each template i.e., ∀s ∀T ∨

i(s(Idi.loc) = D(T).q0 | Idi.templ = T),
then the TTS associated to the NTA translation and the TTS associated to the
dynamic instantiation semantics of the CTA system are bisimilar.

7 Implementation and Experiments

In order to make our extension profitable, we have designed a Python script
program converting callable timed automata systems to UPPAAL NTA. In fact,
our converter uploads an XML file designed using UPPAAL graphical editor, as
an input where the interface of each CTA states a finite number of instances.
After performing a deeper analysis of callable automata syntax, in particular
template interfaces, call and return transitions, the converter generates the cor-
responding UPPAAL NTA format, written in a new XML file that will be then
reloaded in the UPPAAL tool, as an ordinary system to be analyzed and checked.

The interface of each callable TA is given by the number of instances, the type
of return, the name of template and the set of parameters. That is an example
of a template signature with 3 instances, a void return type, the template name
Use Case and a set of parameters.

3;void Use Case(int ind, int arrival time, int memory usb)

After replicating template instances in the system declaration, according to
the template signatures, the source XML file will be explored template by tem-
plate and transition by transition. For each callable template occurring in a
calling transition, both that transition and the callee template will be translated
as stated in Section 4.3.
6 In UPPAAL, such a property can be enforced by assigning clock ≤ B as an invariant

to this location.

130 A. Boudjadar et al.

The converter translates each callable TA, occurring in a calling transition,
to a UPPAAL TA by adding an extra synchronizing transition (from qinit to
q0) to activate the automaton, another transition (from a final location to qinit)
to get the instances available for other calls after reaching final locations, a
shared variable to hold the name of the current calling template, and splitting
each calling transition to a sequence of call and return transitions as shown in
Figure 5.

In the case of dynamic interpretation where templates have an infinite num-
ber of instances, we infer a finite (sufficient) number simulating the infinite bound
of each CTA instantiation as stated in Section 4.3. Then, for each call, we reuse
an existing instance instead of creating a new one.

As an application, we have remodeled the Océ printer system using callable
timed automata, where each job (use-case) is modeled by a callable automa-
ton. We consider 6 templates where only 3 are callable (3 CTA). We have
also introduced another template USER to manage the system. The USER
triggers dynamically different jobs at different respective dates. We have suc-
cessfully translated the new model of the Océ system to an UPPAAL NTA,
and also proceeded on the verification of the property stating that all jobs
reach their final locations DONE. Such a property is satisfied by both orig-
inal model [19] and the translation. The Oce protocol with CTA is available
on http://www.irit.fr/ Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-model.
xml. The corresponding translation is also available on http://www.irit.fr/
∼Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-translation.xml.

8 Conclusion and Perspectives

Throughout this paper, we have introduced and formalized the concept of
callable timed automata for the modelling and structuring of real-time and
interactive systems. Such a syntactical extension can be interpreted in different
semantical ways: static and dynamic. In the dynamic case, we propose to reuse
UPPAAL by giving bounds to the numbers of simultaneously active instances
of templates. Such a technique can be interesting for the study of population
protocols [3] when the population happens to be bounded.

Thanks to the UPPAAL translation, we have validated our proposal through
an UPPAAL “plugin”.

As a challenging continuation of our work, we envision to consider existing
work related to Petri nets as well as to logics that take into account call and
return like CaRet [2] and Spade [24]. Moreover, we have in mind model
checking support for architecture description languages, where subprograms with
their own resources are considered [16]. Another point worth studying is related
to compositionality. It would be interesting to study how the results of [8] and
[11] could be extended to the context of CTA.

http://www.irit.fr/~Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-model.xml
http://www.irit.fr/~Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-model.xml
http://www.irit.fr/~Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-translation.xml
http://www.irit.fr/~Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-translation.xml

Extending UPPAAL for the Modeling and Verification 131

References

1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

3. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science 93, 98–117 (2007)

4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 43–54. Springer,
Heidelberg (2009)

5. Beffara, E.: Functions as proofs as processes. CoRR, abs/1107.4160 (2011)
6. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal 4.0. Department of

computer science, Aalborg university (2006)
7. Berendsen, J., Vaandrager, F.: Parallel composition in a paper of Jensen,

Larsen and Skou is not associative (2007), Technical note available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html

8. Berendsen, J., Vaandrager, F.: Compositional Abstraction in Real-Time Model
Checking. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
233–249. Springer, Heidelberg (2008)

9. Berendsen, J., Vaandrager, F.: Parallel composition in a paper by
de Alfaro e.a. is not associative (2008), Technical note available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html

10. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina-construction of abstract
state spaces for petri nets and time petri nets. Intl Journal of Production Research
42 (2004)

11. Bodeveix, J.-P., Boudjadar, A., Filali, M.: An alternative definition for timed
automata composition. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 105–119. Springer, Heidelberg (2011)

12. Boudol, G.: Towards a lambda-calculus for concurrent and communicating sys-
tems. In: Dı́az, J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 351, pp. 149–161.
Springer, Heidelberg (1989)

13. Burns, A., Wellings, A.: Concurrency in Ada, 2nd edn. Cambridge University Press
(1998)

14. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

15. Engberg, U., Nielsen, M.: A calculus of communicating systems with label passing.
Technical report, Computer Science Department, University of Aarhus (1986)

16. Feiler, P.H., Lewis, B., Vestal, S.: The Sae architecture analysis and design language
(AADL) standard: A basis for model-based architecture-driven embedded systems
engineering. In: RTAS, Workshop, pp. 1–10 (2003)

17. H̊akansson, J., Pettersson, P.: Partial order reduction for verification of real-time
components. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS,
vol. 4763, pp. 211–226. Springer, Heidelberg (2007)

18. Holzmann, G.: Spin model checker, the: primer and reference manual, 1st edn.
Addison-Wesley Professional (2003)

http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html

132 A. Boudjadar et al.

19. Igna, G., et al.: Formal modeling and scheduling of datapaths of digital document
printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
170–187. Springer, Heidelberg (2008)

20. Jensen, H.E., Guldstr, K., Skou, A.: Scaling up Uppaal:Automatic Verification of
Real-Time Systems using Compositionality and Abstraction. In: Joseph, M. (ed.)
FTRTFT 2000. LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

21. Larsen, K.G., Pettersson, P., Wang, Y.: Uppaal in a nutshell. Journal on Software
Tools for Technology Transfert (1997)

22. Milner, R.: Functions as processes. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol.
443, pp. 167–180. Springer, Heidelberg (1990)

23. Nielson, F.: The typed λ-calculus with first-class processes. In: Odijk, E., Rem, M.,
Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 357–373. Springer, Heidelberg
(1989)

24. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

25. Thomsen, B.: A calculus of higher order communicating systems. In: Proceedings
of the 16th ACM Conference POPL 1989, pp. 143–154. ACM (1989)

26. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. CoRR
(2011), Paper available on http://ctp.di.fct.unl.pt/∼lcaires/papers/

27. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin,
W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg
(2010)

28. Warn, F.: Red: Model-checker for timed automata with clock-restriction diagram.
In: Workshop on Real-time Tools (2001)

29. Yovine, S.: Kronos: A verification tool for real-time systems. Journal of Software
Tools for Technology Transfer, 123–133 (1997)

http://ctp.di.fct.unl.pt/~lcaires/papers/

Efficient Operational Semantics for EB3

for Verification of Temporal Properties

Dimitris Vekris and Catalin Dima

LACL, Université Paris-Est,
61 av. du Général de Gaulle,

94010 Créteil, France
{dimitrios.vekris, dima}@u-pec.fr

Abstract. EB3 is a specification language for information systems. The
core of the EB3 language consists of process algebraic specifications de-
scribing the behaviour of the entity types in a system, and attribute
function definitions describing the entity attribute types. The verifica-
tion of EB3 specifications against temporal properties is of great interest
to users of EB3. We give here an operational semantics for EB3 programs
in which attribute functions are computed during program evolution and
their values are stored into program memory. By assuming that all enti-
ties have finite domains, this gives a finitary operational semantics. We
then demonstrate how this new semantics facilitates the translation of
EB3 specifications to LOTOS NT (LNT for short) for verification of
temporal properties with the use of the CADP toolbox.

Keywords: Information Systems, EB3, Process Algebras, Operational
Semantics, Bisimulation, Verification, Model Checking.

1 Introduction

The EB3 [10] method is an event-based paradigm for information systems (ISs)
[17]. A typical EB3 specification defines entities, associations, and their respec-
tive attributes. The process algebraic nature of EB3 permits the explicit defin-
ition of intra-entity constraints. Yet its specificity against common state-space
specifications, such as the B method [1] and Z, lies in the use of attribute func-
tions, a special kind of recursive functions on the system trace, which combined
with guards, facilitate the definition of complex inter-entity constraints involv-
ing the history of events. The use of attribute functions is claimed to simplify
system understanding, enhance code modularity and streamline maintenance.

In this paper, we present part of our work regarding the verification of EB3,
i.e. the detection of errors inherent in EB3 specifications. Specification errors in
EB3 can be detected with the aid of static properties also known as invariants
or dynamic properties known as temporal properties. From a state-based point
of view, an invariant describes a property on state variables that must be pre-
served by each transition or event. A temporal property relates several events.
Tools such as Atelier B [7] provide methodologies on how to define and prove
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 133–149, 2013.
DOI: 10.1007/978-3-642-40213-5 9,
c© IFIP International Federation for Information Processing 2013

134 D. Vekris and C. Dima

invariants. In [12], an automatic translation of EB3’s attribute functions into B
is attempted. Although the B Method [1] is suitable for specifying static prop-
erties, temporal properties are very difficult to express and verify in B. Hence,
in our attempt to verify temporal properties of EB3 specifications we move our
attention to model-checking techniques.

The verification of EB3 specifications against temporal properties with the
use of model checking has been the subject of some work in the recent years. [9]
compares six model checkers for the verification of IS case studies. The specifi-
cations used in [9] derive from specific industrial case studies, but the prospect
of a uniform translation from EB3 program specifications is not studied. [6]
casts an IS specification into LOTOS NT (LNT for short) [5] that serves as
an input language to the verification suite CADP [11]. In short, the majority
of these works treat specific case studies drawn from the information systems
domain leading to ad-hoc verification translations, but nonetheless lacking in
generalization capability.

But the main problem in verifying EB3 specifications against temporal-logic
properties relies in the difficulty to handle the recursive definition of attribute
functions if one relies on the classical, trace-based semantics. This type of se-
mantics necessitates an unbounded memory model, and therefore only bounded
model-checking can be achieved, in the absence of good abstractions that al-
low constructing finite-state models. This restriction is present in the original
approach [10] and the subsequent model-checking attempt [9] even if all the
entities utilized in the specification are finite.

We propose a formal semantics for EB3 that treats attribute functions as
state variables (we call these variables attribute variables). This semantics will
serve as the basis for applying a simulation strategy of state variables in LNT.
Intuitively, coding attribute functions as part of the system state is beneficial
from a model-checking point of view as the new formalisation dispenses with
the system trace. Our main contribution is an operational semantics in which
attribute functions are computed during program evolution and stored into pro-
gram memory. We show that this operational semantics is bisimilar with the
original, trace-based operational semantics.

Furthermore, we explore the implications of this result to the translation of
EB3 specifications into LNT. LNT is a process algebra specification that derived
from LOTOS [4]. As a process algebra, it shares many common features with
EB3 and it is one of the input languages of CADP, a toolbox with state-of-the-
art verification features. CADP permits the verification of system specifications
against action-based temporal properties.

Translating EB3 specifications to LNT is not evident. The fundamental dif-
ficulties for designing a compiler from EB3 into LNT are summarized in [6].
In particular, LNT does not feature global variables. Accesses to local variables
is restricted in parallel processes of the form “par proc1 || proc2 end par”,
so that every variable written in proc1 cannot be accessed in proc2 . Although,
EB3 programmers cannot define global variables explicitly, EB3 permits the use
of a single state variable, the system trace, in predicates of guard statements.

Efficient Operational Semantics for EB3 135

Attribute functions can express the evolution of entity attributes in time, option
which introduces an indirect notion of state to the language. As a result, EB3

expressions of the form “C (T)⇒ E” can be written, where C (T) is a predicate
that refers to the system trace (the history of events) and E is a valid EB3

expression.
We then present how EB3 specifications can be translated to LNT for ver-

ification with CADP through an intuitive example and give some conclusions
and lines for future work. The automatic translation of EB3 specifications into
LNT is studied in the companion paper [18]. We note that the translation of our
example into LNT is produced using the tool presented in [18].

2 EB3

The EB3 method has been specially designed to specify the functional behaviour
of ISs. A standard EB3 specification comprises (1) a class diagram representing
entity types and associations for the IS being specified, (2) a process algebra
specification, denoted by main, describing the IS, i.e. the valid traces of execution
describing its behaviour, (3) a set of attribute function definitions, which are
recursive functions on the system trace, and (4) input/output rules, to specify
outputs for input traces, or SQL used to specify queries on the business model.
We limit the presentation to the process algebra and the set of attribute functions
used in the IS.

We then give three operational semantics for EB3. The first, named Trace
Semantics (SemT), is the standard semantics defined in [10]. The second, called
Trace/Memory Semantics (SemT/M), is the alternative semantics, where at-
tribute functions are computed during program evolution and their values are
stored into program memory. By removing the trace from each state in SemT/M ,
we obtain the third semantics for EB3 specifications, which we name Memory
Semantics, SemM . The relevance of the SemT/M semantics stems from the fact
that it is pivotal in proving the bisimulation between SemT and SemM .
Case Study. We start by providing a simple case study which serves for in-
troducing both the syntax and the semantics of EB3. In Fig. 1, we give the
functional requirements of a library management system and the correspond-
ing EB3 specification.The library system contains two entity types: books and
members. The process main is the parallel interleaving between m instances of
process book and p instances of processes describing operations on members. To
avoid confusion, action names begin with uppercase letters, while process and
attribute function names begin with lowercase letters.

The member mId registers to the library in order to start borrowing books,
i.e. the action Register(mId). By the action Unregister(mId), (s)he relinquishes
membership from the library. The book bId is acquired by the library so as
to become available for lending, i.e. Acquire(bId). The inverse operation is ex-
pressed by the action Discard(bId). The member mId borrows the book bId ,
i.e. Lend(bId ,mId) and returns it to the library after use, i.e. Return(bId).
The process book(bId) denotes the lifecycle of the book entity bId from the

136 D. Vekris and C. Dima

Fig. 1. EB3 Specification and Attribute Function Definitions

moment of its acquisition until its eventual discard from the library. The process
member(mId) denotes the lifecycle of the member entity mId from the point
of its registration up until its membership drop. In the body of member(mId),
the process expression “|||bId : BID : loan(mId , bId)∗” denotes the interleaving
of m instances of the process expression loan(mId , bId)∗ that, according to
the standard semantics of the Kleene Closure operator (∗), denotes the exe-
cution of loan(mId , bId), bId = {b1 , . . . , bm} an arbitrary, but bounded number
of times. The attribute function borrower(T , bId), where T is the current trace,
returns the current borrower of book bId or ⊥ (meaning undefined) if the book
is not lent, by looking for actions of the form Lend(bId ,mId) or Return(bId)
in the trace. In process book(bId), the action Discard(bId) is thus guarded by
borrower(T , bId) = ⊥ to guarantee that the book bId cannot be discarded if it
is currently lent.

The use of attribute functions is not adherent to standard process algebra
practices as it may naively trigger the complete traversal and inspection of the
system trace. Alternatively, one may come up with simpler specifications based
solely on process algebra operations (without attribute functions) when the func-
tional requirements imply loose interdependence between entities and associa-
tions. For instance, if all books are acquired by the library before any other
action occurs and are eventually discarded (given that there are no more de-
mands), main’s code can be modified in the following manner:

main = (||| bId : BID : Acquire(bId)). (||| mId : MID : member(mId)∗).
(||| bId : BID : Discard(bId))

Note that the functional requirements are not contradicted, though the system’s
behaviour changes dramatically. Programming naturally in a purely process-
algebraic style without attribute functions in EB3 may not always be

Efficient Operational Semantics for EB3 137

Fig. 2. Sample execution

obvious. In some cases, ordering constraints involving several entities are quite
difficult to express without guards and lead to less readable specifications than
equivalent guard-oriented solutions in EB3 style. For instance in the body of
loan(mId : MID , bId : BID), writing the specification without the use of the
guard:

borrower(T, bId) = ⊥ ∧ nbLoans(T,mId) < NbLoans

that illustrates the conditions under which a Lend can occur (notably when the
book is available and nbLoans is less than the fixed bound NbLoans), is not
trivial.
Execution. As a means to provide the operational intuition behind the three
semantics introduced later in this section, we show how the EB3 specification
above is transformed through a four-step trace, assuming that the library may
contain at most two books and at most two members, that is, BID = {b1 , b2}
and MID = {m1 ,m2}.

First, we associate with the attribute function borrower two “memory cells”,
bor [b1] and bor [b2], meant to encode the value computed by the function for
each book ID after each trace T . Similarly, we associate two memory cells
nbL[m1],nbL[m2] to the attribute function nbLoans . We also set NbLoans = 2
for the constant used in the definition of the process term loan.

Fig. 3. States for the sample execution

Figure 2 shows how the process term main evolves by executing the valid trace
TD = Acq(b2).Acq(b1).Reg(m2).Reg(m1).Lend(b1 ,m1), in which Acq stands for

138 D. Vekris and C. Dima

Acquire and Reg for Register , respectively. During this evolution, the two at-
tribute functions are computed according to their specifications in Fig. 2, in-
ductively on the length of the trace. Hence, initially and after the execution of
actions Acq(b2).Acq(b1), the two attribute functions are undefined for both their
arguments, while after the execution of the sequence of actions Reg(m2).Reg(m1)
we have “nbLoans(T [C],m1) = nbLoans(T [C],m2) = 0” and borrower(T , .) re-
mains undefined. These values are employed in order to check “borrower(T, b1) =
⊥∧ nbLoans(T,m1) < 2”, which leads to the possibility for member m1 to lend
book b1 , and therefore to transform the process term at (C) in the process term
at (D).

On the other hand, the table in Fig. 3 indicates the memory status after
each (pair of) actions in the given trace. Initially, all memory cells carry the
undefined value. After the trace T [C], the value of memory cell nbLC [m1]
equals nbLoans(T [C],m1), and, similarly, “nbLC [m2] = nbLoans(T [C],m2)”.
Note that the constraint checked at step C → D gives the same value regardless
of the utilization of the value computed recursively for the attribute functions
borrower and nbLoans , or by using the corresponding memory cells. Further-
more, the execution of action Lend(b1 ,m1) triggers the update of the memory
cell bor [b1] to m1 and the incrementation of nbL[m1] to 1. This is modeled
by the application of a function next , which defines the evolution of the sys-
tem memory, and which is defined as follows: “borD [b1] = next(borC [b1]) 1=
m1 2”,“borD [b2] = borC [b2] = ⊥”, “nbLD [m1] = nbLC [m1] + 1 = 1” and also
“nbLD [m2] = 0”.
EB3 Syntax and SemT. We proceed with the formal definition of EB3. We de-
fine a set of attribute function names AtFct = {f1 , . . . , fn} and a set of process
function names PFct = {P1 , . . . ,Pm}. Let ρ ∈ Act stand for an action of ei-
ther form α(p1 :T1 , . . . , pn :Tn), where α ∈ lab 3 is the label of the action and
pi , i ∈ 1 ..n are elements of type Ti , or λ, which stands for the internal action.
To simplify the presentation, we assume that all attribute functions fi have the
same formal parameters x . An EB3 specification is a set of attribute function
definitions AtF and a set of process definitions ListPE .

SemT [10] is given in Fig. 4 as a set of rules named RT−1 to RT−11 . Each
state is represented as a tuple (E ,T), where E stands for an EB3 expression and
T for the current trace. An action ρ is the simplest EB3 process, whose semantics
are given by rules RT − 1 , 1 ′. Note that λ is not visible in the EB3 execution
trace, i.e., it does not impact the definition of attribute functions. The symbol√

denotes successful execution. EB3 processes can be combined with classical
process algebra operators such as the sequence (RT−2 , 3), the choice (RT−4)
and the Kleene Closure (RT−5 , 6) operators. Rules (RT−7 , 8 , 9) refer to the
parallel composition E1 |[Δ]|E2 of E1 ,E2 with synchronization on Δ⊆ lab. The
condition in(ρ,Δ) is true, iff the label of ρ belongs to Δ. The symmetric rules

1 here notation next(xC) denotes the modification on x ’s value in state (C) after
executing transition C → D

2 see borrower ’s script for “T = T ′.Lend(bId ,mId)” in Fig. 1
3 we assume lab = {α1 , . . . , αq}

Efficient Operational Semantics for EB3 139

Fig. 4. EB3 Syntax and SemT

for choice and parallel composition have been omitted. Expression E1 |||E2 is
equivalent to E1 |[∅]|E2 and E1 ||E2 to E1 |[lab]|E2 .

In RT−10, the guarded expression process “C (T)⇒E” can execute E if the
predicate C (T) holds. The syntax of C (T) is given below:

C (T) :: = true | false | op (C (T), . . . , C (T)) | fi (T, . . .), i ∈ 1..n, op ∈ {∧,∨}
This syntax is simplified in the sense that certain expressions cannot be sup-
ported in practice, e.g. “nbLoans(T ,mId) < NbLoans” in Fig. 1. To palliate
this, we need to add an attribute function name nbLoans lt NbLoans to AtFct
and a corresponding attrribute function definition that implements this inequal-
ity. Finally, “nbLoans(T ,mId) < NbLoans” has to be replaced by nbLoans lt
NbLoans in the EB3 specification. Note also that this syntax makes strictly use
of those “fi (T , . . .), i ∈ 1 ..n” with Boolean return-type. Thus, the interpretation
function of guarded expressions ‖ . ‖ is the standard Boolean interpretation.

Quantification is permitted for choice and parallel composition. If V is a
set of attributes {t1 , . . . , tn}, |x :V :E and |[Δ]|x : V : E stand respectively for

140 D. Vekris and C. Dima

Fig. 5. SemT/M

E [x := t1]| . . . |E [x := tn] and E [x := t1]|[Δ]| . . . |[Δ]|E [x := tn], where E [x := t]
denotes the replacement of all occurrences of x by t . For instance, ||x :{1 , 2 , 3} :
a(x) stands for a(1)||a(2)||a(3). By convention, |x :∅ :E = |[Δ]|x :∅ :E =

√
.

Attribute functions are defined in AtFDef 4 in Fig. 4, where expj ,k
i are ex-

pressions, cond j ,k
i are boolean expressions, hd(T) denotes the last element of the

trace, and tl(T) denotes the trace without its last element. Expressions can be
constructed from objects and operations of user-defined domains, such as inte-
gers, booleans and more complex domains that we do not give formally. We also
assume that for each 1 ≤ i ≤ n, all calls to an attribute function fl occurring
in expj ,k

i or cond j ,k
i are parameterized by T if l ≤ i or by tl(T) if l > i . Such

an ordering can be constructed if the EB3 specification does not contain circu-
lar dependencies between function calls, which would lead to infinite attribute
function evaluation. This restriction on AtFct is satisfied in our case study as
both nbLoans and borrower contain calls to nbLoans and borrower parameter-
ized on tl(T). Also, nbLoans makes call to borrower parameterized on T . Hence,
f1 = borrower and f2 = nbLoans .
SemT/M. SemT/M is given in Fig. 5 as a set of rules named TT/M−1 upto
TT/M−11 . Each state is represented as a tuple (E ,T ,M). Mi(x) is the variable

4 This notation is different from the standard pattern-matching notation for attribute
functions [10], but more compact

Efficient Operational Semantics for EB3 141

Fig. 6. SemM

that keeps the current valuation for attribute function fi with parameter vector x .
Mi refers to attribute function fi . Given that the EB3 specification is valid, there
is at least one cond j ,k

i that is evaluated true on every run. The action ρj to occur
“chooses” the corresponding cond j ,k

i non-deterministically (in the sense that
there may be many k that make cond j ,k

i evaluate to true). Function next updates
Mi by making use of Ml for l ≥ i and the freshly computed next(Ml)(ρj) for
l < i . The classic intepretations for Peano Arithmetic, Set Theory and Boolean
Logic suffice to evaluate them. In (TT/M−10), C [fi ← Mi] denotes replacing all
calls to fi in C by Mi . The notation ‖ .‖ in ‖C [fi ← Mi]‖ corresponds to the
standard interpretation of Boolean operators.
SemM. SemM is given in Fig. 6 as a set of rules named SM−1 to SM−11 . SemM

derives from SemT/M by simple elimination of T from each tuple (E ,T ,M) in
rules TT/M−1 upto TT/M−11 . It gives a finite state system. Intuitively, this
means that the information on the history of executions is kept in M , thus
rendering the presence of trace T redundant.

3 Bisimulation Equivalence of SemT , SemT/M and SemM

We present the proof of the bisimulation equivalence for the three semantics:
SemT , SemT/M and SemM .
LTSs. We consider finite labeled transition systems (LTSs) as interpretation
models, which are particularly suitable for action-based description formalisms
such as EB3. Formally, an LTS is a triple (S , { a−→}a∈Act , I), where: (1) S is a set
of states, (2) a−→⊆ S × S, for all a ∈ Act, (3) I ⊆ S is a set of initial states.

142 D. Vekris and C. Dima

Bisimulation. Bisimulation is a fundamental notion in the framework of con-
current processes and transition systems. A system is bisimilar to another sys-
tem if the former can mimic the behaviour of the latter and vice-versa. In this
sense, the associated systems are considered indistinguishable. Given two LTSs
TSi = (Si , { a−→i}a∈Act , Ii), where i = 1 , 2 and a relation R ⊆ S1 × S2 , R is said
to be a bisimulation and TSi are said to be equivalent w.r.t. bisimulation iff

1. ∀ s1 ∈ I1 ∃s2 ∈ I2 such that (s1, s2) ∈ R.
2. ∀ s2 ∈ I2 ∃s1 ∈ I1 such that (s1, s2) ∈ R .
3. ∀(s1, s2) ∈ R :

(a) if s1
a−→1 s

′
1 then ∃s′

2 ∈ S2 such that s2
a−→2 s

′
2 and (s′

1, s
′
2) ∈ R ;

(b) if s2
a−→2 s

′
2 then ∃s′

1 ∈ S1 such that s1
a−→1 s

′
1 and (s′

1, s
′
2) ∈ R .

LTS Construction. For a given EB3 process E , we associate three LTSs w.r.t.
SemT , SemT/M and SemM respectively. These correspond to the LTSs gener-
ated inductively by the rules given in Fig. 4–6. The whole process mimicks the
construction of a transition system associated with a transition system specifi-
cation, as in [16]. For the rest, we denote TST , TST/M and TSM for TSE w.r.t.
SemT , SemT/M and SemM respectively.

Theorem 1. TST and TST/M are equivalent w.r.t. bisimulation.

Proof. Let→1 be the transition relation for TST and→2 be the transition rela-
tion for TST/M . The relation, which will give the bisimulation between TST and
TST/M , is: R = {〈(E ,T ,M), (E ,T)〉 | (E ,T ,M) ∈ ST/M ∧ (E ,T) ∈ ST}. Note
first that 〈(E0 , [],M 0), (E0 , [])〉∈R. We show that for any 〈(E, T,M), (E, T)〉∈
R and (E, T,M)

ρ−→1 (E′, T ′,M ′) ∈ δT/M , we obtain (E, T)
ρ−→2 (E′, T ′)∈ δT and

vice-versa. We proceed with structural induction on E and present the proof for
some cases.

For (TT/M−1), suppose (ρ, T,M)
ρ−→1 (
√
, T ·ρ, next(M)(ρ)) ∈ δT/M . The rule

(RT−1) allows us to conclude that also (ρ, T)
ρ−→2 (
√
, T · ρ) ∈ δT . Conversely,

suppose (ρ, T)
ρ−→2 (
√
, T · ρ) ∈ δT . Note that each state (E, T,M)∈ ST/M is of

the form:

(E, T, next′(T,M0)),where
next′ (T,M) = match T with []→ M | T ′ · ρ→ next′ (T ′, next (M,ρ))

Thus, there exists (ρ, T, next′ (T,M0))
ρ−→1 (
√
, T · ρ, next′ (T · ρ,M0)) ∈ δT/M ,

which establishes rule (TT/M−1) by replacing next ′(T ,M 0) with M as well as
next ′(T · ρ,M 0) with next (M) (ρ).

For (TT/M−2), suppose (E1 .E2 ,T ,M)
ρ−→1 (E ′

1 .E2 ,T ′,M ′) ∈ δT/M , which
relies on the existence of a transition (E1 ,T ,M)

ρ−→1 (E ′
1 ,T

′,M ′) ∈ δT/M . By
the induction hypothesis, (E1 ,T)

ρ−→2 (E ′
1 ,T

′) ∈ SemT and by (RT−2), we get
(E1 .E2 ,T)

ρ−→2 (E ′
1 .E2 ,T ′) ∈ δT . Vice-versa, by virtue of (RT−2) a transition

(E1 .E2 ,T)
ρ−→2 (E ′

1 .E2 ,T ′) ∈δT necessitates (E1 ,T)
ρ−→2 (E ′

1 ,T
′) ∈ δT . Using

Efficient Operational Semantics for EB3 143

the induction hypothesis, (E1 ,T ,M)
ρ−→1 (E ′

1 ,T
′,M ′). Finally, by (TT/M−2)

we obtain (E1 .E2 ,T ,M)
ρ−→1 (E ′

1 .E2 ,T ′,M ′).
For (TT/M−10), we must prove that ‖C (T)‖=‖C [fi ← Mi]‖. Making use

of the syntactic definition of C (T) and the interpretation of ‖ . ‖, it suffices to
prove that fi (T , x) = Mi(x), i ∈ 1 ..n for any parameter vector x and trace T .
We prove this by induction on T .

For T = [], it is trivially fi (T , x) = M 0
i (x) =‖exp0

i (x)‖, as exp0
i (x) contains

no calls to other attribute functions. If fi (tl (T), x) = Mi(x), i ∈ 1 ..n, we need
to prove that:

fi (T, x) = next (Mi)(hd (T))(x), i ∈ 1..n. (1)

which we do again by induction on i.
Starting with i = 1 , next (Mi)(hd (T))(x), can be written as:

‖ expj,k1 (x)[fl ← if l < 1 then next(Ml)(hd (T)) else Ml] ‖,
where k is specified by hd(T) 5 and all calls to fl , l ∈ 2 ..n are replaced by Ml .
Thus, due to the inductive hypothesis, it will be:

‖ expj,k1 (x) ‖=‖ expj,k1 (x)[fl ←Ml] ‖

A similar result holds for cond j ,k
1 .

For i > 1 , we rely on fl = next(Ml)(ρj), l < i , which guarantees that the
property 1 holds for all values l < i .

This completes the proof of the case (TT/M−10). ��
Theorem 2. TST/M and TSM are equivalent w.r.t. bisimulation.

Proof. The proof is straightforward, because the effect of the trace on the at-
tribute functions and the program execution is coded in memory M . Hence,
intuitively the trace is redundant. ��
Corollary 1. TST and TSM are equivalent w.r.t. bisimulation.

Proof. Combining the two Theorems and the transitivity of bisimulation. ��

4 Demonstration in LNT

The translation of EB3 specifications is formalized in [18]. We show here how
SemM facilitates the translation of EB3 specifications to LNT for verification
with the toolbox CADP. To this end, we present the translation of the EB3 spec-
ification of Fig. 1 into LNT for BID={b1} and MID={m1,m2} as was produced
by the EB32LNT compiler [18].
LNT. LNT combines, in our opinion, features of imperative and functional pro-
gramming languages and value-passing process algebras. It has a user-friendly
syntax and formal operational semantics defined in terms of labeled transition
5 see Fig. 5

144 D. Vekris and C. Dima

Fig. 7. Syntax of LNT

systems (LTSs). LNT is supported by the LNT.OPEN tool of CADP, which
allows the on-the-fly exploration of the LTS corresponding to an LNT specifi-
cation. We present the fragment of LNT that is useful for this translation. Its
syntax is given in Fig. 7. LNT terms denoted by B are built from actions, choice
(select), conditional (if), sequential composition (;), breakable loop (loop and
break) and parallel composition (par). Communication is carried out by ren-
dezvous on gates G with bidirectional transmission of multiple values. Gates in
LNT (denoted with letter G with or without subscripts) correspond to the no-
tion of labels in EB3. Their parameters are called offers 6. An offer O can be
either a send offer (!) or a receive offer (?). Synchronizations may also contain
optional guards (where) expressing boolean conditions on received values. The
special action δ is used for defining the semantics of sequential composition. The
internal action is denoted by the special gate i, which cannot be used for syn-
chronization. The parallel composition operator allows multiway rendezvous on
the same gate. Expressions E are built from variables, type constructors, func-
tion applications and constants. Labels L identify loops, which can be stopped
using “breakL” from inside the loop body. The last syntactic construct defines
calls to process P that take gates G1, . . . , Gn and variables E1, . . . , En as actual
parameters. The semantics of LNT are formally defined in [5].
Formalization. The principal gain from SemM lies in the use of attribute vari-
ables, the memory that keeps the values to all attribute functions. We need a
mechanism that simulates this memory in LNT. The theoretical foundations of
our approach are developed in [18]. In particular, we explicitly model in LNT a
memory, which stores the attribute variables and is modified each time an action
is executed. We model the memory as a process M placed in parallel with the rest
of the system (a common approach in process algebra). To read the values of at-
tribute variables, processes need to communicate with the memory M , and every
action must have an immediate effect on the memory (so as to reflect the imme-
diate effect on the execution trace). To achieve this, the memory process syn-
chronizes with the rest of the system on every possible action of the system, and
updates its attribute variables accordingly. Additional offers are used on each ac-
tion, so that the current value of attribute variables can be read by processes dur-
ing communication, and used to evaluate guarded expressions wherever needed.
6 Offers are not explicitely mentioned in the syntactic rules for par and for procedural

calls

Efficient Operational Semantics for EB3 145

Fig. 8. Memory in LNT

These ideas are implemented in a tool called EB32LNT, presented in the
companion paper [18]. We provide here the translation of the case study of library
(with two members and two books) into LNT, obtained using EB32LNT.

Process M is given in Fig. 8. It runs an infinite loop, which “listens” to all
possible actions of the system. We define two instances of the attribute variable
nbLoans (one for each member) and one instance for borrower (one book). In the
LNT expression nbLoans [ord (mid)], ord (mid) denotes the ordinate of value
mid , i.e., a unique number between 0 and the cardinal of mid ’s type minus
1. nbLoans [ord (mid)] is incremented after a Lend and decremented after a
Return 7. The action Lend(mId , bId) takes, besides mid and bid , nbLoans and
borrower as parameters, because the latter are used in the evaluation of the
guarded expression preceding Lend (where statement in Fig. 8). Note how upon
synchronisation on Lend , nbLoans and borrower are offered (!) by M and received
(?) by loan (Fig. 8).

The main program is given in Fig. 9. All parallel quantification operations
have been expanded as LNT is more structured and verbose than EB3. For
most EB3 operators, there are equivalent LNT operators [18]. Making use of
the expansion rule E∗ = λ |E.E∗, the Kleene Closure (as in member(mId)∗ in
Fig. 1) can be written accordingly. The full LNT program is in the appendix.

5 Conclusion

In this paper, we presented an alternative, traceless semantics SemM for EB3

that we proved equivalent to the standard semantics SemT . We showed how
SemM facilitates the translation of EB3 specifications to LNT for verification of
temporal properties with CADP, by means of a translation in which the memory
used to model attribute functions is implemented using an extra process that
computes at each step the effect of each action on the memory. We presented the
LNT translation of a case study involving a library with a predefined number
7 see the definition of nbLoans in Fig. 1

146 D. Vekris and C. Dima

Fig. 9. Main program and the process associated with the computation of the attribute
function Loan in LNT

of books and members, translation obtained with the aid of a compiler called
EB32LNT. The EB32LNT tool is presented in detail in [18].

A formal proof of the correctness of the EB32LNT compiler is under prepa-
ration. The proof strategy is by proving that the memory semantics of each
EB3 specification and its LNT translation are bisimilar, and works by provid-
ing a match between the reduction rules of SemM and the corresponding LNT
rules [5].

As future work, we plan to study abstraction techniques for the verification
of properties regardless of the number of components e.g. members, books that
participate in the IS (Parameterized Model Checking). We will observe how
the insertion of new functionalities to the ISs affects this issue. Finally, we will
formalize this in the context of EB3 specifications.

References

1. Abrial, J.-R.: The B-Book - Assigning programs to meanings. Cambridge Univer-
sity Press (2005)

2. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier
(2001)

Efficient Operational Semantics for EB3 147

3. Bergstra, J.A., Klop, J.W.: Algebra of Communicating Processes with Abstraction.
Journal of Theor. Comput. Sci. 37, 77–121 (1985)

4. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems 14(1), 25–59 (1987)

5. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS
Translator - Version 5.4. INRIA/VASY (2011)

6. Chossart, R.: Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Master’s thesis, Université de Sherbrooke (2010)

7. ClearSy. Atelier B, http://www.atelierb.societe.com
8. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation (extended

abstract). In: Proc. of LICS, pp. 118–129 (1990)
9. Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., Ouenzar, M.: Com-

parison of model checking tools for information systems. In: Dong, J.S., Zhu, H.
(eds.) ICFEM 2010. LNCS, vol. 6447, pp. 581–596. Springer, Heidelberg (2010)

10. Frappier, M., St.-Denis, R.: EB3: an entity-based black-box specification method
for information systems. In: Proc. of Software and System Modeling (2003)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

12. Gervais, F.: Combinaison de spécifications formelles pour la modélisation des
systèmes d’information. PhD thesis (2006)

13. Kozen, D.: Results on the propositional mu-calculus. Journal of Theor. Comput.
Sci. 27, 333–354 (1983)

14. Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306.
Springer, Heidelberg (2006)

15. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

16. Mousavi, M.R., Reniers, M.A.: Congruence for Structural Congruences. In: Sas-
sone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 47–62. Springer, Heidelberg
(2005)

17. Symons, V., Geoff, W.: The Evaluation of Information Systems: A Critique. Journal
of Applied Systems Analysis 15 (1988)

18. Vekris, D., Lang, F., Dima, C., Mateescu, R.: Verification of EB3 specifications
using CADP, http://hal.inria.fr/hal-00768310

A LTS Construction

The construction is given by structural induction on E. In particular, we show
how to construct:

TSE = (SE , δE , IE)

w.r.t. SemM for several cases of E. We refer to the initial memory as M0∈M
(M is the set of memory mappings in the IS) defined upon the fixed body of
attribute function definitions. It is IE = {(E,M0)}. More precisely:

http://www.atelierb.societe.com
http://hal.inria.fr/hal-00768310

148 D. Vekris and C. Dima

Sρ = {(ρ,M0)} ⋃ {(√, next(M0))}, δρ = {(ρ,M0)
ρ−→ (
√
, next(M0))}, ρ �= λ

Sλ = {(λ,M0)} ⋃ {(√,M0)}, δλ = {(λ,M0)
λ−→ (
√
,M0)}

SE1.E2 = {(E′
1.E2,M) | (E′

1,M) ∈ SE1}
⋃ {⋃(

√
,M1)∈SE1

SM1
E2
}

δE1.E2 = {(E′
1.E2,M)

ρ−→ (E′′
1 .E2,M

′) | (E′
1,M)

ρ−→ (E′′
1 ,M

′) ∈ δE1}
⋃

{⋃(
√

,M1)∈SE1
δM1

E2
}

TSE∗ = lfpF , where F (TSEx) = TSE·Ex ∪ TSλ, E∗ = λ |E.E∗

TSE1|[Δ]|E2 , where E1|[Δ]|E2
.
=
∑r

i=1 C (T)i ⇒ ρi(ai).Ei

SC (T)⇒E =

{
{(C (T)⇒ E,M0)}⋃SE \ {(E,M0)}, if ‖C[fi ←M0

i]‖
{(C (T)⇒ E,M0)}, otherwise

δC (T)⇒E =

{
δE [(E,M0) ← (C (T)⇒ E,M0)], if ‖C[fi ←M0

i]‖
∅, otherwise

For (E ′
1 ,M)∈SE1

, it will be (E ′
1 .E2 ,M)∈SE1 ·E2

. For (
√
,M1)∈SE1

, we obtain
(E ′

2 ,M)∈SM1

E2
, where SM1

E2
stands for state space SE2

with initial memory M1 .
For TSE∗ , we need to compute the least fix point of function F : TS → TS w.r.t.
the lattice T S = (TS ,⊆), where TS is the possibly infinite set of LTSs simulating
EB3 specifications w.r.t. SemT/M and ⊆ denotes inclusion. For TSE1|[Δ]|E2 ,
E1 |[Δ]|E2 is written as a sum of EB3 expressions. The first action of each
summand would be ρi(a i) for all possible execution paths picking this summand.
This action would be taken under C i (=true in the absence of condition):

E1|[Δ]|E2
.=

∑r

i=1
C (T)i ⇒ ρi(ai).Ei

This form is known as head normal form (HNF) in the literature. The construc-
tion of HNFs for process algebra expressions is discussed in [2]. It is a common
practice developed principally in the context of the Algebra of Communicating
Processes (ACP) [3] as a means to analyse the behaviour of recursive process
algebra definitions. Note that the rules (SM − 8) and (SM − 9) for SemM ensure
the existence of this normal form. In the last case, for ‖C [fi ← M 0

i]‖ = true, we
need to construct SE and replace (E ,M 0) with (C (T)⇒ E ,M 0).

B LNT code for the Library Management System

module Libr_Manag_Syst is

type MEMBERID is m1, m2, m_bot with "eq", "ne", "ord" end type

type BOOKID is b1, b_bot with "eq", "ne", "ord" end type

type ACQUIR is array [0..1] of BOOL end type

type NB is array [0..2] of NAT end type

type BOR is array [0..1] of MEMBERID end type

process M [ACQ, DIS, REG, UNREG, LEND, RET : ANY] is

var mId : MEMBERID, bid : BOOKID, borrower : BOR, nbLoans : NB in

(* attribute variables initialized *)

Efficient Operational Semantics for EB3 149

mId := m_bot; borrower := BOR(m_bot); nbLoans := NB(0);

loop select

ACQ (?bid) [] DIS (?bid, ?borrower)

[] REG (?mid) [] UNREG (?mid)

[] LEND (?bid, ?mid, !nbLoans, !borrower); borrower[ord (bid)] := mid;

nbLoans[ord (mid)] := nbLoans[ord (mid)] + 1

[] RET (?bid); mId := borrower[ord (bid)]; borrower[ord (bid)] := m_bot;

nbLoans[ord (mid)] := nbLoans[ord (mid)] - 1

end select end loop

end var end process

process loan [LEND, RET : ANY] (mid : MEMBERID, bid : BOOKID) is

var borrower : BOR, nbLoans : NB in (* NbLoans is set to 1 *)

LEND (bid, mid, ?nbLoans, ?borrower) where

((borrower[ord (bid)] eq m_bot) and (nbLoans[ord (mid)] eq 1));

RET (bid)

end var end process

process book [ACQ, DIS : ANY] (bid : BOOKID) is

var borrower: BOR in

ACQ (bid); DIS (bid, ?borrower) where (borrower[ord (bid)] eq m_bot)

end var end process

process member [REG, UNREG, LEND, RET : ANY] (mid : MEMBERID) is

REG (mid);

loop L in select break L [] loan [LEND, RET] (mid, b1)

end select end loop; UNREG (mid)

end process

process Main [ACQ, DIS, REG, UNREG, LEND, RET : ANY] () is

par ACQ, DIS, REG, UNREG, LEND, RET in

par

book [ACQ, DIS] (b1)

||

par

loop L in select break L [] member [REG, UNREG, LEND, RET] (m1)

end select end loop

||

loop L in select break L [] member [REG, UNREG, LEND, RET] (m2)

end select end loop

end par

end par

|| M [ACQ, DIS, REG, UNREG, LEND, RET]

end par

end process

end module

Interval Soundness of Resource-Constrained
Workflow Nets: Decidability and Repair

Elham Ramezani, Natalia Sidorova, and Christian Stahl

Department of Mathematics and Computer Science,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven,

The Netherlands
{E.Ramezani, N.Sidorova, C.Stahl}@tue.nl

Abstract. Correctness of workflow design cannot be evaluated by check-
ing the execution for one single instance of the workflow, because in-
stances, even when being independent from the data perspective, depend
on each other with respect to the resources they rely on for executing
tasks. The resources are shared among the instances of the same work-
flow; moreover, other workflows can use the same resources. Therefore,
we enrich the workflow model with the model of its environment that
captures the resource perspective. This allows us to investigate the ver-
ification of workflows extended with resources in a more general setting
than it was previously done. We focus on the soundness property, which
means the ability to terminate properly from any reachable state of the
system, for every instance of the system. We show the decision procedure
for soundness and how to repair a workflow that is unsound from the re-
source perspective by synthesizing a controller such that the composition
of the workflow and the controller is sound by design.

1 Introduction

A workflow consists of a set of coordinated tasks describing a flow of work for
accomplishing some business process within an organization. The occurrence
of those tasks may depend on resources, such as machines, manpower, and raw
material. Often, several cases (i.e., instances) of a workflow coexist, and they may
all concurrently access the resources. In that sense, the execution of a workflow
is similar to executing several threads of a piece of software.

Correctness of classical and resource-constrained workflows has been formal-
ized in terms of the soundness property [1,14]. Soundness guarantees that given
a finite number of cases and a number of resources of each type, every case has
always the possibility to terminate. As we restrict ourselves to durable resources
in this paper—that is, resources that can neither be created nor destroyed—
soundness also ensures that the number of resources initially available remains
invariant.

The current notion of soundness for resource-constrained workflows assumes
a workflow to be executed in isolation. However, workflows increasingly cross or-
ganizational boundaries and are usually intertwined. As a consequence, resources
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 150–167, 2013.
DOI: 10.1007/978-3-642-40213-5 10,
c© IFIP International Federation for Information Processing 2013

Interval Soundness of Resource-Constrained Workflow Nets 151

are no longer internal for a workflow but shared among different workflows. This,
in fact, requires a different way of modeling workflows. To do so, we propose to
enrich the workflow model with an environment capturing the resource perspec-
tive of the workflow. The environment is generic in the sense that it can be
parameterized, thereby enabling the modeling of relevant instances of practical
scenarios. More precisely, the environment allows for borrowing, lending, and
permanently adding and removing of resources of each type up to an initially
specified number. Moreover, it also creates the cases of the workflow that are to
be executed, with the number of cases taken from a specified interval.

We formalize correctness of workflows with shared resources with the notion
of interval soundness, as it considers intervals of cases and resources. Interval
soundness is defined for the composition of the workflow and the corresponding
instance of the generic environment. We show that the verification of soundness
reduces to check whether for the workflow it is always possible to terminate
in the composition with the environment. The state of the environment can
thereby be neglected because several invariant properties hold in the environment
model which are necessary for interval soundness. To further support the design
of interval-sound workflows, we present an approach for repairing an unsound
workflow by synthesizing a controller (if exists) such that the composition of the
workflow and the controller is interval sound.

Our contributions can be summarized as follows:

– A generalization of the model for workflows extended with resources to deal
with shared resources;

– A notion of correctness considering intervals of instances and resource vectors
and two procedures to decide correctness; and

– An approach to repair an incorrect workflow based on controller synthesis.

We continue by providing the background in Sect. 2. In Sect. 3, we introduce
our model of resource-constrained workflow nets, the generic environment for
modeling the resource perspective, and define interval soundness. In Sect. 4, we
show how interval soundness can be decided, and repairing unsound workflows is
studied in Sect. 5. We discuss related work in Sect. 6 and close with a conclusion.

2 Preliminaries

In this section, we provide the basic notations used in this paper, such as Petri
nets and workflow nets.

For two sets P and Q, let P � Q denote the disjoint union; writing P � Q
expresses the implicit assumption that P and Q are disjoint. A multiset or bag
m over P is a mapping m : P → IN; for example, [p1, 2p2] denotes a multiset
m with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. We define
operations +,−,=, <,>,≤,≥ on multisets in the standard way. We overload the
set notation, writing ∅ for the empty multiset and ∈ for the element inclusion.
We canonically extend the notion of a multiset over P to supersets Q ⊇ P ; that
is, for a mapping m : P −→ IN, we extend m to the multiset m : Q −→ IN so that

152 E. Ramezani, N. Sidorova, and C. Stahl

for all p ∈ Q\P , m(p) = 0. Analogously, a multiset can be restricted to a subset
Q ⊆ P . For a mapping m : P −→ IN, the restriction of m to the elements in Q is
denoted by m|Q : Q −→ IN.

Definition 1. (labeled Petri net) A net N = 〈P, T,W 〉 consists of

– a finite set P of places,
– a finite set T of transitions such that P and T are disjoint, and
– a weight function W : (P × T) � (T × P)→ IN.

A labeled net N = 〈P, T,W, l,Σ〉 is a net 〈P, T,W 〉 together with an alphabet
Σ of actions and a labeling function l : T → Σ � {τ}, where τ represents
an invisible, internal action. A (labeled) Petri net 〈N,mN 〉 is a (labeled) net
N together with an initial marking mN , where a marking m : P → IN is a
distribution of tokens over the places. The incidence matrix C of N is defined
by ∀(p, t) ∈ P × T : C(p, t) = W ((t, p))−W ((p, t)).

For a transition t ∈ T , we define the preset •t and the postset t• of t as the
multisets of places where every p ∈ P occurs W ((p, t)) times in •t and W ((t, p))
times in t•. Analogously, we define for a place p ∈ P its preset •p and its postset
p•. We also lift pre- and postsets to sets of places and of transitions. A place p
is a source place if •p = ∅ and a sink place if p• = ∅.

A transition t ∈ T is enabled at a marking m, denoted by m t−→ , if •t ≤ m.
If t is enabled at m, it can fire, thereby changing the marking m to a marking
m′ = m−•t+t•. The firing of t is denoted by m t−→ m′; that is, t is enabled at m
and firing t results in m′. Depending on the context, we interpret a marking m
of N either as a multiset over P or as a vector from P → IN. Firing transitions
can be extended to sequences: m1

t1−−→ . . .
tk−1−−−→ mk is a run of N if for all

0 < i < k, mi
ti−→ mi+1. A marking m′ is reachable from a marking m if there

exists a (possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and m′ = mk;
for v = t1 . . . tk−1, we also write m v−→ m′. Marking m′ is reachable if mN = m.
The set R(m) represents all markings of N that are reachable from m.

A marking m of N is b-bounded for a bound b ∈ IN, if m(p) ≤ b for all
p ∈ P . N is bounded if every reachable marking is b-bounded for some b ∈ IN. A
transition t ∈ T is live if from every reachable marking m there is a marking m′

such that t is enabled at m′. If all transitions are live, then N is live. A marking
m is a home-marking if from every reachable marking we can reach m. A set HS
of markings of N is a home-space if for every reachable marking m, there exists
a marking m′ ∈ HS such that m′ is reachable from m.

A place invariant is a row vector I : P → Q such that I · C = 0. When
talking about invariants, we consider markings as vectors.

In the following, we define two composition operators for labeled Petri nets to
model asynchronous composition based on place fusion and synchronous parallel
composition based on transition fusion. The composition operator ⊕ merges
common places of two labeled Petri nets.

Interval Soundness of Resource-Constrained Workflow Nets 153

Definition 2. (asynchronous composition) Two labeled nets N1 and N2 are
a-composable if (Σ1 ∪T1)∩ (Σ2 ∪T2) = ∅. The asynchronous composition of two
a-composable labeled nets is the labeled net N1 ⊕N2 = 〈P1 ∪ P2, T1 � T2,W1 �
W2, l, Σ1 �Σ2〉 and l(t) = li(t) for t ∈ Ti, i = 1, 2.

If N1 and N2 are labeled Petri nets with initial markings mN1 and mN2 , then
the composition is a labeled Petri net with initial marking m0 = mN1 +mN2 .

We define a synchronous composition operator ‖ where, for each common
action a, an a-labeled transition of one labeled Petri net is merged with an a-
labeled transition of the other. If there is more than one a-labeled transition in
one of the labeled Petri nets, then each of these transitions is merged with a
copy of the respective transition of the other labeled Petri net.

Definition 3. (synchronous composition) Two labeled nets N1 and N2 are
s-composable if (P1�T1)∩(P2�T2) = (Σ1∩Σ2). The synchronous composition of
two s-composable labeled nets is the labeled net N1‖N2 = 〈P, T,W, l,Σ〉, where

– P = P1 � P2,
– T = {t ∈ T1 ∪ T2 | l1(t) = τ ∨ l2(t) = τ},

� {(t1, t2) ∈ T1 × T2 | l1(t1) = l2(t2) ∧ l1(t1) �= τ},

– W ((p, t)) =

⎧
⎪⎨

⎪⎩

Wi((p, t)), p ∈ Pi, t ∈ Ti, li(t) = τ, i = 1, 2,
Wi((p, ti)), p ∈ Pi, t = (t1, t2), i = 1, 2,
0, otherwise,

W ((t, p)) =

⎧
⎪⎨

⎪⎩

Wi((t, p)), p ∈ Pi, t ∈ Ti, li(t) = τ, i = 1, 2,
Wi((ti, p)), p ∈ Pi, t = (t1, t2), i = 1, 2,
0, otherwise

– l(t) =

{
li(t), t ∈ Ti, i = 1, 2,
l1(t1), t = (t1, t2),

– Σ = Σ1 ∪Σ2.

If N1 and N2 are labeled Petri nets with initial markings mN1 and mN2 , then
composition yields a labeled Petri net with initial marking m0 = mN1 +mN2 .

The labeled transition system (LTS) TSN = 〈Q, δ, q̂, Σ〉 of a labeled Petri net
N = 〈P, T,W, l,Σ,mN 〉 consists of a set Q = R(mN) of states, a set δ of labeled
edges with (q, l(t), q′) ∈ δ iff q

t−→ q′ and q, q′ ∈ Q, and an initial state q̂ = mN .
We define the synchronous product of two labeled transition systems in the

standard way: common visible actions are synchronized, all other actions are
not. In fact, we have TSN1‖N2 and TSN1‖TSN2 are isomorph.

Definition 4. (synchronous product) The synchronous product of two LTSs
TS1 and TS 2 is the LTS TS 1‖TS 2 = 〈Q1 ×Q2, δ, (q̂1, q̂2), Σ1 ∪Σ2〉 with

δ = {((q1, q2), x, (q′
1, q

′
2)) | (q1, x, q′

1) ∈ δ1, (q2, x, q′
2) ∈ δ2, x ∈ Σ1 ∪Σ2}

� {((q1, q2), τ, (q′
1, q2)) | (q1, τ, q′

1) ∈ δ1}
� {((q1, q2), τ, (q1, q′

2)) | (q2, τ, q′
2) ∈ δ2}.

154 E. Ramezani, N. Sidorova, and C. Stahl

Workflow Nets A workflow refers to the automation of processes by an IT in-
frastructure, in whole or in part [3]. Workflows are case-based; that is, every
piece of work is executed for a specific case. The workflow definition specifies
which tasks need to be executed for a case and in what order.

We can model a workflow definition as a (labeled) net, thereby modeling
tasks by transitions and conditions by places; the state of a case is captured by
a marking of the net. The assumption that a typical workflow has a well-defined
starting point and a well-defined ending point imposes syntactic restrictions on
Petri nets that result in the following definition of a workflow net [2].

Definition 5. (WF-net) A labeled net N = 〈P, T,W, l,Σ〉 is a workflow net
(WF-net) if it has a nonempty set of transitions, a single source place i, a single
sink place f , and every place and every transition is on a path from i to f .

The short-circuited net Ns of N is the labeled net obtained from N by adding
a transition ts with W ((t, i)) = W ((f, t)) = 1 and l(ts) = τ .

In the first instance, researchers were interested in workflow correctness with
respect to a single case. One of the most established correctness properties of
WF-nets is soundness, as introduced by Van der Aalst [1] in the context of one
case. Soundness guarantees that the workflow has always the possibility to termi-
nate. Later on, multi-instance behavior attracted researchers’ attention, where
WF-nets are considered as parameterized systems modeling the processing of
batches of tasks, as introduced in [14]. While in classical workflows cases are
considered to be independent and the modeling of multiple cases in one WF-net
requires the introduction of id tokens, in batch workflows cases are considered to
be undistinguishable and mixable (e.g., it does not matter which employee works
on which order) and, as a consequence, cases are modeled with undistinguishable
black tokens. Under certain conditions on the workflow structure, called separa-
bility, the behavior of the WF-net with undistinguishable cases (black tokens)
is equivalent (up to trace equivalence) to the behavior of the WF-net with id
tokens [14,8,7]. Moreover, every net with id tokens can be transformed into an
up-to-bisimulation-equivalent net with black tokens only [14,17].

Capturing the correctness notion for batch workflow nets requires the use of
the generalized notion of soundness, as proposed in [14].

Definition 6. (WF-net soundness) Let k ∈ IN. A WF-net N is k-sound if,
for every marking m reachable from marking [k · i], we can reach marking [k · f].

The next definition gives a requirement for the correct design of a workflow
that can be checked using structural properties of the net [15]. Nonredundancy
of a place p ∈ P guarantees that p can potentially be marked with a token in
some reachable marking.

Definition 7. Let N = 〈P, T,W, l,Σ〉 be a WF-net. A place p ∈ P is nonre-
dundant if there exist k ∈ IN and m ∈ INP such that [k · i] ∗−→ m ∧ p ∈ m.

Interval Soundness of Resource-Constrained Workflow Nets 155

3 Generalizing Resource-Constrained Workflow Nets

We use the notion of resource-constrained workflow nets (RCWF-nets) [16] to
extend the definition of the workflow with resource dependencies of the tasks.
The production net of an RCWF-net is a WF-net in its traditional sense, defining
the order of task execution, resource places model the resource types used by
the workflow, and resource consumption and production are modeled by the arcs
from the resource places to the transitions of the production net, and vice versa.

Definition 8. (RCWF-net) A labeled net N = 〈Pp � Pr, T,Wp �Wr, l, Σ〉 is
a resource-constrained workflow net (RCWF-net) if

– Np = 〈Pp, T,Wp, l, Σ〉 is a WF-net, the production net of N ;
– Pp is the set of production places, and Pr is the set of resource places; and
– Wr : (Pr × T) ∪ (T × Pr)→ IN is the resource weight function.

The short-circuited net Ns of N is the labeled net obtained from N by replacing
Np with its short-circuit net.

The initial marking mN = [k · i] + R of an RCWF-net N consists of k ∈
IN tokens in place i, specifying the number of cases in the workflow that are
concurrently executed, and an initial marking for the set Pr of resources places,
denoted as a resource vector R ∈ INPr .

Example 1. We illustrate the previously introduced concepts using Fig. 1. The
nets N1 and N2 are RCWF-nets with one resource place r. Arc weights are
depicted on the respective arc unless they are equal to 1. Erasing r and its
adjacent arcs from N1 and N2 yields the (same) production net, a WF-net. This
WF-net is k-sound, for any k > 0.

3.1 The Generic Environment

To consider RCWF-nets in the setting where the workflow works within some en-
vironment that can borrow resources from the workflow or lend more resources to
it, we introduce patterns capturing typical behavior of the resource environment.
We consider the following actions of the environment: borrowing resources (the
borrowed resources are then used by other workflows and they can eventually
be returned and made available for the workflow again), lending resources (i.e.,

Fig. 1. Example of an unsound and a sound RCWF-net

156 E. Ramezani, N. Sidorova, and C. Stahl

Fig. 2. Generic resource environment for the resource place r and case environment
for a workflow with initial place i and final place f

making some additional resources temporarily available, and eventually taking
them back, when unused by the workflow), permanently removing resources, and
permanently adding resources. Actual environments allow for a (possibly empty)
subset of these actions.

We define the generic environment, built as a union of generic environments
defined for every resource type (i.e., place). All the patterns can be obtained by
choosing an appropriate initial marking for the generic environment. The generic
environment of a resource place r is captured in Fig. 2(a). The transitions t↑r and
t↓r model permanent addition and removal of resources correspondingly. Their
counterparts t̄↑r and t̄↓r model the decision of the environment not to lend/borrow
a certain number of resources, but removing the tokens from places r↑ and r↓.
The number of tokens in places r↑ and r↓ in the initial marking gives the bounds
for the number of resources that can be added and removed, respectively. Clearly,
choosing 0 as initial marking of r↑ and r↓ makes the corresponding transitions
dead, so they might be removed for the corresponding pattern, but for the sake
of readability, we prefer to use only the initial marking for configuring the generic
environment into a pattern.

Transitions t+r and t−r together with places r+ and r− model lending and
borrowing resources in the following way: The number of tokens in r+ and r− in
the initial marking corresponds to the number of resources the environment may
lend and borrow, respectively. Thus having 0 for the initial marking on r+ means
that the environment cannot lend any resource of type r. When the resources are
borrowed, the marking of r+ is increased by the number of borrowed resources,
and the firings of t+r will then correspond to returning those resources by the
environment.

The initial marking of the places r↑, r↓, r+, and r− serves thus as the con-
figuration parameter defining the behavior of the environment. In principle, it
is possible to elaborate the model further by linking, for example, r↓ and r− by
means of choosing the bound for the total number of resources that can be re-
moved permanently or temporarily. We can model this by introducing the place
r−↓ and the arcs depicted by the dashed lines in Fig. 2(a). The same can be done

Interval Soundness of Resource-Constrained Workflow Nets 157

for other configuration components. Variations on the environment construction
are also possible by linking the scheme for adding and removing resources for
different resource types. We restrict our attention further to the main structure,
without linking the configuration components to each other, although the results
hold for environments restricted in this way, too.

Since borrowing is temporary—that is, under the fairness assumption, the
environment will eventually return the borrowed resources—the choice of the
initial marking for r− does not change the set of markings reachable in the com-
position of the workflow and the environment projected on the workflow places:
The workflow can always wait until the environment returns the resources bor-
rowed and then proceed. The same applies to lending resources: The workflow
can always wait until the environment will lend it the maximal amount of the
resources possible, meaning that the behavior of the composition is defined by
r+. The borrowing/lending part of the environment model becomes important
when time is taken into consideration, also for transitions t+r and t−r , since bor-
rowing/lending then changes the set of markings reachable in the workflow. Note
that also transition t̄↓r , decreasing the amount of resources the environment might
remove permanently, only has influence on the set of markings reachable in the
workflow when we take time into account.

To create cases of the workflow, we add a generic case environment to our
generic environment, allowing for an arbitrary number of cases from the interval
[k1, k2], for some k1, k2 ∈ IN, k1 ≤ k2. Figure 2(b) shows the construction. The
place c (creation) contains initially k1 tokens (i.e., the lower bound of cases to
be created), the place d (dismissable) contains k2−k1 tokens (i.e., cases that can
but do not have to be created), and place e (end) is empty. For every case that
is not created, a token is produced in the place e by firing te. Thus, if all created
cases terminate (modeled by a token in f for each case), the place e contains on
the termination k2 tokens.

Definition 9. (generic environment) Let N = 〈Pp � Pr, T,Wp � Wr, l, Σ〉
be an RCWF-net. The generic environment of N is a labeled Petri net E such
that E and N are a-composable with ((Pp � Pr) ∩ PE) = Pr � {i, f} and E =
〈PE , TE ,W,mE , lE , {τ}〉 is defined as

– PE = Pr � Pe � {i, f, c, d, e} with Pe = {r−, r+, r↑, r↓, r̄↑
1 , r̄

↑
2 , r̄

↓
1 , r̄

↓
2 | r ∈ Pr},

– TE = {t−r , t+r , t↑, t↓, t̄↑r , t̄↓r | r ∈ Pr} � {tc, td, te, tf},
– W ((r−, t−r)) = W ((r, t−r)) = W ((t−r , r

+)) = W ((t+r , r
−)) = W ((t+r , r)) =

W ((r+, t+r)) = W ((r↑, t↑r)) = W ((t↑r , r̄
↑
2)) = W ((t↑r , r)) = W ((r↑, t̄↑r)) =

W ((t̄↑r , r̄
↑
1 ,)) = W ((r↓, t↓r)) = W ((t↓r , r̄

↓
2)) = W ((r, t↓r)) = W ((r↓, t̄↓r)) =

W ((t̄↓r , r̄
↓
1 ,)) = 1 for r ∈ Pr and

W ((c, tc)) = W ((tc, i)) = W ((d, td)) = W ((d, te)) = W ((td, i)) =
W ((te, e)) = W ((f, tf)) = W ((tf , e)) = 1,

158 E. Ramezani, N. Sidorova, and C. Stahl

– mE(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mN (p), p ∈ Pr
m−
r , p = r− and m−

r is the maximal number of
resources r the environment can borrow

m+
r , p = r+ and m+

r is the maximal number of
resources r the environment can lend

m↓
r , p = r↓ and m↓

r is the maximal number
resources r the environment can remove

m↑
r , p = r↑ and m↑

r is the maximal number of
resources r the environment can add

k1 ∈ IN, p = c

k2 − k1 ∈ IN, p = d

An environment 〈E,mE〉 of N consists of E and a concrete initial marking mE .

3.2 Interval Soundness for RCWF-nets with an Environment

We adapt the definition of soundness for WF-nets to RCWF-nets with an en-
vironment. Soundness of an RCWF-net N with an environment 〈E,mE〉 guar-
antees that the underlying production net of N is k-sound, for every k in the
interval; that is, also in the presence of resources, a case has always the possi-
bility to terminate. In addition, we put two conditions on the resources: First,
all resources that are initially available in N and E are again available when all
cases are terminated. Second, at any reachable marking, the number of available
resources does not increase the number of initially available resources. These two
criteria are a consequence of our restriction to durable resources, because they
ensure that no resources are created or removed.

To guarantee the previous conditions, we define four necessary conditions that
are captured in the notion of a well-defined composition of N and an arbitrary
environment 〈E,mE〉. The first condition ensures that the production net of N
is k-sound, for every k in the interval. The second condition ensures that no
resource tokens can be created by the WF-net; that is, for every firing sequence,
the number of resource tokens put by N on the resource places does not exceed
the number of tokens taken by N from the resource places (meaning that then
every reachable marking has a resource vector R′ ≤ R, unless the environment
can add tokens to the resource places). The third condition states that there
exists a place invariant for the places c, d and e, guaranteeing that the number
of cases remains constant. Likewise, the fourth condition requires that, for every
resource place, there exists a place invariant, guaranteeing that the number of
resources remains constant.

Definition 10. (well-defined) Let N be an RCWF-net such that the produc-
tion net of N does not have redundant places. Let 〈E,mE〉 be an environment of
N . The composition N ⊕E is well-defined if the following four properties hold:

Interval Soundness of Resource-Constrained Workflow Nets 159

1. The production net of N is k-sound, for all mE(c) ≤ k ≤ mE(c) +mE(d).
2. ∀x ∈ ZZT : (C · x)|Pp�{e} ≥ 0 implies (C · x)|Pr

≤ 0.
3. There exists a place invariant Ip such that Ip(c) = Ip(d) = Ip(e) = 1 and,

for all p′ ∈ PE \ {c, d, e}, Ip(p′) = 0.
4. For each r ∈ Pr, there exists a place invariant Ir satisfying Ir(c) = Ir(d) =
Ir(e) = 0, Ir(r) = 1, and ∀r′ ∈ Pr \ {r} : Ir(r′) = 0.

The absence of redundant places is necessary for applying invariant tech-
niques. The next lemma shows that a well-defined composition is bounded.

Lemma 11. Let N be an RCWF-net and 〈E,mE〉 be an environment of N . If
N ⊕ E is well-defined, then it is bounded.

Proof. Boundedness of the resource environment follows from Definitions 10(2),
(4) and of the case environment from Definition 10(3). The latter argument
and Definition 10(1), which implies boundedness of the production net, implies
boundedness of N . ��

For a well-defined compositionN⊕E, we can define interval soundness, which
is a more general variant of the soundness notion as defined in [13,5].

Definition 12. (interval soundness) Let N be an RCWF-net and 〈E,mE〉
be an environment of N such that N ⊕E is well-defined. Then, N is sound with
〈E,mE〉 if for all m ∈ R(mN⊕E) : m ∗−→ m′ such that m′(e) = mE(c) +mE(d).
If mE is not relevant, we say N is interval sound.

Definition 12 captures at least the following relevant instances of interval
soundness:

– (k,R)-soundness [13,5] (i.e., we consider a fixed number k of cases and a fixed
resource vector R) if mE(p) = 0, for all p ∈ Pe � {d} and mE(r) = R(r), for
all r ∈ Pr;

– up-to (k, [R,R+])-soundness (i.e., (k,R′)-soundness for all R ≤ R′ ≤ R+

but the initial resource vector R can be increased up to R+ at runtime) if
mE(d) = 0 and mE(r↓) = 0, for all r ∈ Pr and mE(r↑) = R+(r) − R(r),
mE(r) = R(r) for all r ∈ Pr;

– down-to (k, [R−, R])-soundness (i.e., (k,R′)-soundness for all R− ≤ R′ ≤ R
but the initial resource vector R can be reduced down to R− at runtime) if
mE(d) = 0 and mE(r↑) = 0, for all r ∈ Pr and mE(r↓) = R(r) − R−(r),
mE(r) = R(r) for all r ∈ Pr;

– up-to, down-to (k, [R−, R+])-soundness (i.e., (k,R)-soundness for all R− ≤
R ≤ R+ but the initial resource vector R can be reduced down to R− or
increased up to R+ at runtime) if mE(d) = 0 and mE(r↑) = R+(r)− R(r),
mE(r↓) = R(r)−R−(r), mE(r) = R(r).

We now relate the previous variants of interval soundness, thereby general-
izing them from a fixed number k of cases to an interval [k1, k2] of cases.

Lemma 13. For any RCWF-net N and k1, k2 ∈ IN with k1 ≤ k2, we have

160 E. Ramezani, N. Sidorova, and C. Stahl

1. N is ([k1, k2], R′)-sound for all R ≤ R′ ≤ R+ iff N is up-to ([k1, k2], [R,R+])-
sound.

2. N is down-to ([k1, k2], [R−, R])-sound implies N is ([k1, k2], R′)-sound for
all R− ≤ R′ ≤ R.

3. Let R = R+. N is down-to ([k1, k2], [R−, R])-sound iff N is up-to, down-to
([k1, k2], [R−, R+])-sound.

Proof. (Sketch) It suffices to prove the three statements for k, k1 ≤ k ≤ k2.
(1) ⇒: Let m0 be the initial marking for (k,R′)-soundness with R′ = R+

and m′
0 be the initial marking for up-to (k, [R,R+])-soundness. Clearly, we have

m0|Pr
≥ m′

0|Pr
. Let m′

0
σ−→ m′. Then by the monotonicity of the firing rule and

construction of E, we have m0

σ|TN−−−−→ m and m|Pr
≥ m|Pr

. Thus, if we consider
the projection of markings to N , then every marking that is reachable for up-to
(k, [R,R+])-soundness is also reachable for (k,R′)-soundness.
⇐: Any resource vector R′ within the interval can be reached by firing transi-

tions t↑r , for all r ∈ Pr. Then, every run in the composition for (k,R′)-soundness
can be replayed in the net for up-to (k, [R,R+])-soundness.

(2) Similar argumentation as in the reverse implication of (1), but this time
transitions t↓r and t̄↓r have to be fired.

(3) ⇒: Similar argumentation as for the implication of(1).
⇐: Use argumentation in (2) to decrease the resource vector to R. ��
The next lemma gives a necessary condition for interval soundness, thereby

justifying the restriction to well-defined compositions of N and E.

Lemma 14. (necessary condition). Let N be an RCWF-net and 〈E,mE〉 be
an environment of N . If N is sound with 〈E,mE〉, then N ⊕ E is well-defined.

Proof. (1) k-soundness of the production net of N follows from [16, Cor. 4.1].
(2) Follows from [16, Thm. 4.4].
(3) Existence of an invariant I follows from [16, Thm. 4.8] and by the con-

struction of E, we have I + (c+ d+ e) is also an invariant.
(4) By [16, Thm. 4.8], a resource invariant exists for all r ∈ Pr. Moreover,

we have the following invariant: r + r− + 2r+ + 2r↑ + 2r̄↑
1 + r̄↑

2 + r↓ + r̄↓
1 + 2r̄↓

2 ,
for r ∈ Pr. So the sum of these two invariants is the resource invariant we are
looking for. ��
Example 2. Consider the RCWF-net N1 in Fig. 1(a) and its environment E (see
Fig. 4(a) for the entire composition). The production net of N1 is k-sound, for
k > 0, and i + p + q + f + c + d + e is a place invariant in the production net.
Furthermore, no resource token is created in N1, and r + p + 2q + r− + 2r+ +
2r↑ + 2r̄↑

1 + r̄↑
2 + r↓ + r̄↓

1 + 2r̄↓
2 an invariant for resource place r. Thus, N1 ⊕ E

is well-defined. For the same reason, N2 ⊕E is well-defined. However, N1 is not
(k,R)-sound for all k = R(r). For example, for k = r = 2, firing transition t twice
yields a deadlock [2 · p]. In contrast, N2 is (k,R)-sound for R(r) > 1 and any k.
This example exemplifies that well-definedness is only a necessary condition for
interval soundness.

Interval Soundness of Resource-Constrained Workflow Nets 161

4 Deciding Interval Soundness

Definition 12 (interval soundness) gives an immediate decision procedure: An
RCWF-net N is sound with 〈E,mE〉 if the set {m | m(e) = mE(c) +mE(d)} of
markings is a home-space in N ⊕E or respectively m = [(mE(c) +mE(d)) · e] is
a home-marking in the projection of reachable markings of N ⊕E to the places
of N .

Theorem 15. (decision I) Let N be an RCWF-net and 〈E,mE〉 be an envi-
ronment of N such that N ⊕E is well-defined. Then, N is sound with 〈E,mE〉
if the set {m | m(e) = mE(c) +mE(d)} of markings is a home-space in N ⊕ E.

Note that we have one decision algorithm, for every instance of interval sound-
ness. As checking a home-space property is decidable [12], we can conclude:

Theorem 16. (decidability) Let N be an RCWF-net and 〈E,mE〉 be an en-
vironment of N . Checking whether N is sound with 〈E,mE〉 is decidable.

In the literature, soundness is often reduced to showing that the short-
circuited (RC)WF-net is live and bounded. The reduction works if the transition
ts consumes all k cases from the place f and produces k tokens on the place i.
Figure 3 illustrates this. The drawback of this construction is that it requires
to check a different net for every k. As we consider N with an environment, we
propose the following generic reduction to liveness and boundedness:

Theorem 17. (decision II) Let N be an RCWF-net and 〈E,mE〉 be an en-
vironment of N such that N ⊕ E is well-defined. Let Es be obtained from E by
adding a transition ts with W ((e, ts)) = X(c) + X(d), W ((ts, d)) = X(d), and
W ((ts, c)) = X(c). Then, N is sound with 〈E,mE〉 iff all transitions TN � {ts}
of N ⊕ Es are live.

Proof. ⇒: As N does not have redundant places, it does not have dead tran-
sitions in its production net and ts is not dead either, so we conclude that all
transitions in TN � {ts} are live.

Fig. 3. The RCWF-net N is not (3, 1)-sound: The firing sequence t1t2t4t1 yields the
marking [2 · f, p1] which is a deadlock. Nevertheless, the short-circuited net of N is
bounded and live. However, if the transition ts consumes all k cases from the place f
and produces k token on the place i, then the short-circuited net of N is not live

162 E. Ramezani, N. Sidorova, and C. Stahl

⇐: From liveness of the transition ts, we conclude that it is always possible
to reach a marking m with m(e) ≥ mE(c) +mE(d). The number of tokens in e
at m cannot be greater than mE(c)+mE(d) by the invariant in Definition 10(3).
Moreover, all places of the production net Np of N are unmarked in m by the
k-soundness of Np. Firing ts at m yields m′ where the places c and d contain
the same number of tokens as in the initial marking mZ . Because of the invari-
ants covering all places of E (Definition 10(3) and (4)), we conclude that m′ is
reachable from mZ . Hence, markings m are a home-space in N ⊕ Es, and N is
sound with 〈E,mE〉. ��
Example 3. Using Theorem 17, we can show that the RCWF-net N1 is not
(k,R)-sound whereas the RCWF-net N2 is.

5 Repairing Interval Unsound RCWF-Nets

In the previous section, we presented an algorithm to decide interval soundness
of an RCWF-net N . However, designing an interval-sound workflow or adjust-
ing a workflow if some functionality or the environment has been changed is a
nontrivial and error-prone task even for experienced process designers. In order
to support process designers, we introduce an approach to repair an interval-
unsound RCWF-net N if possible so that interval soundness is achieved by de-
sign. Clearly, the repaired workflow should be seen as a suggestion to the process
designer rather than the ultimate solution.

Requiring the composition N ⊕ E to be well-defined reduces the cause of
unsoundness to a deadlock or a livelock due to the lack of resources during the
production process (see Lemma 11). To repair an RCWF-net N , we therefore
propose to automatically construct a controller C that controls those transitions
of N that produce tokens on or consume tokens from a resource place. This way,
we control the order in which certain tasks may occur and prevent the workflow
from getting stuck.

Technically, a controller is a labeled Petri net C and will be composed with
N⊕E by merging transitions of N only. These merged transitions of N are then
controlled by C in the composition. Another technicality that we leave out in
the following is ensuring that the nodes of E and C are pairwise disjoint.

Definition 18. (controller, repairable) LetN be an RCWF-net and 〈E,mE〉
be an environment of N . A labeled Petri net C is a controller of N ⊕ E if C
and N are s-composable and replacing Z in Definition 12 with C‖N ⊕E yields
soundness of N with 〈E,mE〉. If there exists a controller of N ⊕E, then N ⊕E
is repairable.

The following algorithm synthesizes a controller of N ⊕E. It takes the state
space of N and the environment E as its input, and it outputs an LTS which
can, in a next step, be easily transformed into a labeled Petri net.

Definition 19. (controller construction) Let N be an RCWF-net and and
〈E,mE〉 be an environment of N such that Z = N ⊕ E is well-defined and has

Interval Soundness of Resource-Constrained Workflow Nets 163

a finite state space. Let Σ ⊆ ΣN be the set of synchronized actions, and let
TSZ = 〈QZ , δZ , q̂Z , Σ〉 be the LTS of Z after relabeling all actions x ∈ ΣN \Σ
to τ . Define a sequence of LTSs TS i, i = 0, 1, . . . inductively as follows:

Base : TS0 = 〈Q0, δ0, Q0, Σ〉 with
− Q0 = 2QZ ,

− δ0 = {(Q, x,Q′) ∈ Q0 ×Σ ×Q0 | Q′ = {q′
Z | ∃qZ ∈ Q : qZ

τ∗xτ∗−−−−→ q′
Z}},

− Q0 = {qZ | q̂Z
τ∗−−→ qZ}.

Step : TS i+1 = 〈Qi+1, δi+1, Q0, Σ〉 with
− Qi+1 = Qi \ {Q ∈ Qi | ∃(qZ , Q) ∈ TSZ‖TS i :

(qZ , Q) � ∗−→ (q′
Z , Q

′) ∧ q′
Z |{e} = k1 + k2}1,

− δi+1 = δi ∩ (Qi+1 ×Σ ×Qi+1).

Let j be the smallest number with TS j = TS j+1. If Q0 ∈ Qj , then the corre-
sponding labeled Petri net C of TS j is a controller of N ⊕ E.

The construction of C allows some level of flexibility: We do not assume all
transitions of N to be controllable as we restrict the set of labels of TS j in the
construction to a subset Σ of the alphabet ΣN . That way, we take into account
that not all tasks in a workflow can be controlled. We assume the nodes of C
and E to be pairwise disjoint; that is, the controller cannot control actions of the
environment. (If one would find it possible to control actions of the environment,
we could adapt our construction by labeling certain transitions of E and adding
those actions to the alphabet of C.)

Note that C is not necessarily a WF-net, because it may have more than one
sink place; thus, the composition N‖C is not an RCWF-net but a labeled Petri
net.

Our main result of this section is that a composition N ⊕ E is repairable
if and only if the algorithm in Definition 19 outputs an LTS with at least one
state.

Theorem 20. (justification) Let N be an RCWF-net, 〈E,mE〉 be an environ-
ment of N , and C be the labeled Petri net constructed according to Definition 19.
Then, C exists iff N ⊕ E is repairable.

Proof. ⇒: Suppose C is a controller of N ⊕ E. As TS0 is the largest structure,
there must be a largest i such that there exists a simulation relation of (the
state space) of C by TS i. If there is no simulation relation of C by TS i+1,
then (N ⊕E)‖C must violate soundness because this is the reason for removing
further states from TS i.
⇐: The construction of TS j and thus of C terminates because finiteness of

TSZ ensures that TS 0 is also finite and only removes states and transitions
from TS 0 when constructing TS j . If the resulting TS j is nonempty, it must be
a controller of N⊕E because all reasons not to be a controller have been erased:
We removed all states from which N cannot reach a final state and we iteratively
check this. ��
1 For the sake of readability, we see the state q′

Z as its corresponding marking in Z.

164 E. Ramezani, N. Sidorova, and C. Stahl

Fig. 4. Illustration of the controller construction (see Definition 19) for N1⊕E, assum-
ing an initial marking [3 · i, 3 · r, r↓] (i.e., the transition tc has been fired three times)
for purposes of simplification. The state Q2 contains a deadlock and will be removed
in one of the iterations

So, Definition 19 yields the most permissive controller of N⊕E. Other, more
specific controllers that have less behavior can also be constructed, for example,
by assigning costs to each transition in N and constructing a controller that has
the least cost.

Example 4. Figure 4 illustrates the controller construction for N1 ⊕ E. For the
sake of readability, we keep the size of each controller state (i.e., the number of
markings N1 ⊕ E can be in) small by choosing [3 · i, 3 · r, r↓] to be the initial
marking of N1⊕E—the state space of the controller remains the same. Initially,
N1⊕E can be in any of the three markings of the initial state Q0 of TS . Firing
the transition t, yields the three markings depicted in the state Q1 of TS . The
state Q2 (depicted by a dashed frame) is removed in one of the iterations of the
construction, because the marking [i, 2 ·p, r̄↓

2] is a deadlock and no final marking.
The complete LTS TS , the controller, has 12 states and realizes tu(tv+vt)u(tv+
vt)uv. Composing the resulting labeled Petri net C of TS with N1 ⊕E yields a
sound net C‖N1 ⊕ C. Note that the composition operator ‖ requires one copy
for each occurrence of the transition t, u, and v in C.

6 Related Work

The verification of soundness for RCWF-nets has been investigated by many
researchers. On the one hand, interval soundness is a more restrictive instance
compared to soundness in [21,13,5], as we assume the number of cases and re-
sources to be fixed within an interval. On the other hand, it is more general

Interval Soundness of Resource-Constrained Workflow Nets 165

because we assume resources to be shared among workflows rather than inter-
nal to a workflow. We incorporated this in our model by enriching the model
of RCWF-nets as proposed in [6,13] with a generic environment modeling the
resource perspective of a WF-net. Moreover, we are neither restricted to one re-
source type as [13] nor to certain subclasses of WF-nets as [5]. Resource problems
with an unbounded number of resource items have been studied in [9].

RCWF-nets can be seen as parameterized (or multi-threaded) systems with
two parameters: the number of cases to be executed and the number of available
resources. Verification of parameterized systems is a popular topic, but must
approaches investigate safety properties with unbounded parameters (e.g., [18])
whereas we assume fixed bounds but consider with soundness a liveness property.
A resource interface in [11] defines a safety property over the resources for open
system; we defined the generic environment E and hence deal with a closed
system. There also exist extensions of the temporal logics CTL and ATL to
reason about resources [10,4]. Although the problem instances considered in
this paper can be expressed in terms of those logics, verification would require
to check the system for all parameters.

Our approach to repair unsound workflows is based on classical controller
synthesis [20] and has been defined for Petri nets and soundness in [22]. For
an overview of Petri net-based controller synthesis approaches, we refer to [19].
Most of these works focus on the net structure and properties different from
soundness; moreover, the main application are manufacturing systems where
one tries to construct a scheduler. In contrast, we construct a controller such
that the net is robust and thus sound.

7 Conclusion

We investigated the correctness of workflows with shared resources, called in-
terval soundness. To do so, we proposed to enrich the workflow model with
a generic environment capturing the resource perspective. An instance of this
generic environment models a specific environment that specifies an interval of
workflow instances to be created and available resources for each resource type.
The generic environment generalizes the existing workflow model extended with
resources and captures environments of practical relevance. To decide interval
soundness for every instance of the generic environment, we presented two de-
cision procedures, both using invariant properties of the environment. Further-
more, we showed a way to support the design of correct workflows by automat-
ically synthesizing a controller such that the composition of the workflow and
the controller is interval sound.

In ongoing work, we are interested in determining a smallest resource vector
(based on given requirements) that guarantees soundness. Likewise, we aim at
determining the largest resource vector that guarantees soundness or proving
that increasing some resource vector does not influence the soundness result.
Constructing more specific controllers by assigning costs to transitions is another
direction of future work.

166 E. Ramezani, N. Sidorova, and C. Stahl

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

3. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge (2002)

4. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Resource-bounded alternating-time
temporal logic. In: AAMAS 2010, pp. 481–488. IFAAMAS (2010)

5. Barkaoui, K., Benayed, R., Sbai, Z.: Workflow Soundness Verification Based on
Structure Theory of Petri Nets. International Journal of Computing & Information
Sciences 5(1), 51–62 (2007)

6. Barkaoui, K., Petrucci, L.: Structural Analysis of Workflow Nets with Shared
Ressources. In: WFM 1998, pp. 82–95 (1998)

7. Best, E., Darondeau, P.: Separability in persistent petri nets. Fundam. Inform.
113(3–4), 179–203 (2011)

8. Best, E., Esparza, J., Wimmel, H., Wolf, K.: Separability in conflict-free petri
nets. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 1–18.
Springer, Heidelberg (2007)

9. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition
systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

10. Bulling, N., Farwer, B.: Expressing properties of resource-bounded systems: The
logics rTL∗ and RTL. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS,
vol. 6214, pp. 22–45. Springer, Heidelberg (2010)

11. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

12. Escrig, D.F., Johnen, C.: Decidability of home space property. LRI report 503,
Université Paris-Sud (1989)

13. van Hee, K.M., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Soundness of resource-
constrained workflow nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 250–267. Springer, Heidelberg (2005)

14. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and separability of work-
flow nets in the stepwise refinement approach. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

15. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Generalised soundness of workflow
nets is decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol.
3099, pp. 197–215. Springer, Heidelberg (2004)

16. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Resource-constrained workflow nets.
Fundam. Inform. 71(2–3), 243–257 (2006)

17. Juhás, G., Kazlov, I., Juhásová, A.: Instance deadlock: A mystery behind frozen
programs. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128,
pp. 1–17. Springer, Heidelberg (2010)

18. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

Interval Soundness of Resource-Constrained Workflow Nets 167

19. Li, Z.W., Wu, N.Q., Zhou, M.C.: Deadlock control of automated manufacturing
systems based on petri nets–a literature review. IEEE Transactions on Systems,
Man, and Cybernetics, Part C 42(4), 437–462 (2012)

20. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control and Optimization 25(1), 206–230 (1987)

21. Sidorova, N., Stahl, C.: Soundness for resource-constrained workflow nets is decid-
able. IEEE Transactions on Systems, Man and Cybernetics, Part A 43(3), 724–729
(2013)

22. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

Statistical Model Checking of a Clock
Synchronization Protocol for Sensor Networks�

Luca Battisti, Damiano Macedonio, and Massimo Merro

Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy

Abstract. This paper uses the statistical model checking tool in the
UPPAAL toolset to test the robustness of a distributed clock synchro-
nization algorithm for wireless sensor networks (WSN), in the case of
lossy communication, i.e., when the WSN is deployed in an environ-
ment with significant multi-path propagation, leading to interference.
More precisely, the robustness of the gMAC protocol included in the
Chess WSN platform is tested on two important classes of regular net-
work topologies: cliques (networks with full connectivity) and small grids
(where all nodes have the same degree). The paper extends previous
work by Hedaraian et al. that only analyzed this algorithm in the ideal
case of non-lossy communication, and only in the case of cliques and
line topologies. The main contribution is to show that the original clock
synchronization algorithm is not robust to changing the quality of com-
munication between sensors. More precisely, with high probability the
algorithm fails to synchronize the nodes when considering lossy com-
munication over cliques of arbitrary size, as well as over small grid
topologies.

1 Introduction

Wireless sensor networks (WSNs) are (possibly large-scale) networks of sensor
nodes deployed in strategic areas to gather data. Sensor nodes collaborate using
wireless communications with an asymmetric many-to-one data transfer model.
Typically, they send their sensed data to a sink node which collects the rel-
evant information. WSNs are primarily designed for monitoring environments
that humans cannot easily reach (e.g., motion, target tracking, fire detection,
chemicals, temperature); they are used as embedded systems (e.g., biomedical
sensor engineering, smart homes) or mobile applications (e.g., when attached to
robots, soldiers, or vehicles).

In wireless sensor networks, the basic operation is data fusion, whereby data
from each sensor is agglomerated to form a single meaningful result. The fusion
of individual sensor readings is possible only by exchanging messages that are
timestamped by each sensor’s local clock. This mandates the need for a common
notion of time among the sensors which is achieved by means of so called clock
synchronization protocols [13,15].

� Work partially supported by the PRIN 2010-2011 project “Security Horizons”.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 168–182, 2013.
DOI: 10.1007/978-3-642-40213-5 11,
c© IFIP International Federation for Information Processing 2013

Statistical Model Checking of a Clock Synchronization Protocol 169

In this paper we do model checking of a distributed algorithm of clock
synchronization for WSNs that has been developed by the Dutch company
CHESS [12]. In order to realize an energy efficient communication mechanism,
CHESS developed a gossip-based MAC algorithm [14] (abbreviated gMAC)
which is responsible for regulating the access to the wireless shared channel.
Here we are interested in verifying the robustness of the gMAC algorithm in the
presence of packet loss. Packet loss is particularly relevant in wireless sensor net-
works which are deployed in environments with significant multi-path distortion
(when part of the signal goes to the destination while another part bounces off
an obstruction and then goes on to the destination). Most of sensor platforms
do not have enough frequency diversity to reject multi-path propagation.

Our work has been strongly inspired by a recent analysis [8] of the gMAC
synchronization protocol on clique and line topologies, in the ideal case of non-
lossy communication. In the case of line topologies, paper [8] shows that the
protocol fails to synchronize all nodes, when the number of nodes grows. On the
other hand, on clique topologies the protocol behaves quite well and the paper
provides constraints on guard times (delays added before and after the trans-
mission of sync messages) to guarantee clock synchronization, independently on
the clique size. In [8] the protocol is modeled as a network of timed automata
and verified using the UPPAAL model checker [2,3]. However, the model in [8]
does not incorporate several features such as dynamic slot allocation, uncer-
tain communication delays, and unreliable radio communication. In the current
paper we extend their analysis by adopting a probabilistic model of radio com-
munication that takes into account message loss according to the measurement
of packet delivery suggested in [17]. As our model is a network of probabilistic
timed automata, we decided to do our analysis by applying Statistical Model
Checking (SMC) [7] within the UPPAAL toolset [2,3]. SMC consists in moni-
toring a proper number of runs of the system and then applying a statistical
algorithm to obtain an estimate of the result of the desired query.

Our analysis shows that low guard times (within the safety range proposed
in [8]) are not sufficient to guarantee clock synchronization in clique topologies
of arbitrary size. More precisely, in the case of lossy communication, the size of
the clique does play a crucial role in the effectiveness of the protocol: the bigger
is the clique the higher must be the guard time to ensure clock synchronization
with high probability. Here it is important to notice that guard times cannot be
arbitrary increased without dramatically affecting the duration of the battery life
of the sensor nodes [1]. Finally, we move our analysis on grid topologies, with
increasing neighbor degree, to better simulate a uniform node distribution of
sensor nodes in a given area. Our simulations show that high values of the guard
times may be not sufficient to guarantee clock synchronization in the presence of
message loss, even in small 5× 5 grid networks. On the other hand, we observe
that the efficiency of the protocol improves when the number of neighbours, and
hence node connectivity, increases.

Outline Section 2 introduces the gMAC protocol. Section 3 illustrates the corre-
sponding UPPAAL probabilistic model. Section 4 details our analysis on cliques

170 L. Battisti, D. Macedonio, and M. Merro

and grid topologies. Section 5 concludes the paper with final remarks, future and
related work.

2 The gMAC Protocol

The gMAC protocol is a Time Division Multiple Access (TDMA) protocol, where
time is divided into fixed length frames, and each frame is subdivided into slots.
Slots can be either active or idle. During active slots, a node is either listening
for incoming messages from neighbouring nodes (RX slot) or it is sending a
message (TX slot). During idle slots a node is switched to energy saving mode.
Active slots are gathered in a contiguous sequence placed at the beginning of
each frame.

Structure of a time frame: RX · · · RX TX RX · · · RX idle slots

Structure of an active slot: ← g→ sending/receiving ← t→

Since energy efficiency is a major concern in the design of wireless sensor
networks, the number of active slots is typically much smaller than the total
number of slots. In the implementation of gMAC the number of slots within a
frame is 1129 out of which 10 are active. A node can only transmit a message
once per time frame in its TX slot. If two neighbouring nodes choose the same
send slot then a communication collision will occur in the intersection of their
transmission ranges preventing message delivery. In the original protocol a node
randomly chooses an active slots as send slot (TX slot) considering all other
active slots as receive slots (RX slots). However, for the sake of simplicity, as in
[8], in our analysis we assume that the TX slots are fixed and have been chosen
in such a way that no collision occurs.

In order to ensure that when a node is sending all its neighbours are listening,
guard times are introduced. This means that each sender waits for some time
(g clock cycles) at the beginning of its TX slot to ensure that all its neighbours
are ready to receive messages; similarly, a sender does not transmit for a certain
amount of time (t clock cycles) at the end of its TX slot. Guard times cannot be
arbitrary increased without dramatically affecting the duration of the battery
life of the sensor nodes [1]. So, the choice of proper guard time values is crucial
in the protocol design. In the current implementation, each slot consists of 29
clock cycles, out of which 18 cycles are used as guard time.

The CHESS sensor nodes come equipped with a 32 kHz crystal oscillator
that drives an internal clock used to determine the beginning and the end of
each slot. Sensor nodes are also equipped with an ATMega64 micro-controller
and a Nordic nRF24L01 [10] packet radio. Depending on the environment, the
Nordic nRF24L01 radio has a transmission range between 0.5m and 50m, For
the sake of simplicity we assume that all nodes have the same transmission range;
this means that the transmission between nodes is assumed to be symmetric.

Statistical Model Checking of a Clock Synchronization Protocol 171

3 UPPAAL Probabilistic Model for gMAC

In this section, we provide a small extension of the UPPAAL model for gMAC
of [8] in which a probabilistic choice to model message loss is introduced. The
model assumes a finite, fixed set of sensor nodes Nodes = {0, . . . ,N − 1}. The
behaviour of each individual node i ∈ Nodes is described by means of three
different timed automata: Clock(i), WSN(i), Synchronizer(i). Automaton
Clock(i) models the hardware clock of the node, WSN(i) takes care of sending
messages, and Synchronizer(i) re-synchronizes the hardware clock upon receipt
of a message. The automaton Synchronizer(i) is the only one where probabil-
ities are introduced to model packet loss. The complete model consists of the
composition of the three automata Clock(i), WSN(i) and Synchronizer(i),
for each i ∈ Nodes.

For each node i there are two state variables: clk[i], which records the value
of the hardware clock (initially 0), and csn[i], which records the current slot
number (initially 0). Furthermore, there are two broadcast channels: tick[i], used
to synchronize the activities within the node i, and start message[i], used to
inform all neighbours of the beginning of i’s transmission. Table 1 reports the
protocol parameters.

Figure 1 depicts the automaton Clock(i) of [8] modeling the hardware clock
of node i. The local clock variable x measures the time between two consecutive
clock ticks. A tick[i]! action is enabled when x reaches the value min and must
fire before x reaches the value max. When the action tick[i]! occurs the variable
x is reset to 0 and the variable clk[i] is incremented by 1. As explained in [8], the
state variable clk[i] is reset after k0 clock ticks for the model checking to become
feasible. A realistic clock drift rate is about 20 ppm (parts-per-million). Such a
rate is achieved in the model by setting min = 105 − 2 and max = 105 + 2. In
the model of [8] ticks may nondeterministically occur within the time interval
[min,max]; thus the delay between two tick[i]! actions is nondeterministic. The
stochastic semantics for timed automata of UPPAAL SMC excludes nondeter-

Table 1. Protocol parameters

Parameter Description Constraints

N number of nodes 0 < N
C number of slots in a time frame 0 < C
n number of active slots in a time frame 0 < n ≤ C
k0 number of clock ticks in a time slot 0 < k0

csn[i] current slot number for node i 0 ≤ csn[i] < n
tsn[i] TX slot number for node i 0 ≤ tsn[i] < n
clk[i] clock value for node i 0 ≤ clk[i] < k0

g guard time 0 < g
t tail time 0 < t
min minimal time between two clock ticks 0 < min
max maximal time between two clock ticks min ≤ max
loss message loss probability 0 ≤ loss ≤ 100

172 L. Battisti, D. Macedonio, and M. Merro

Fig. 1. Clock(i)

Fig. 2. WSN(i)

minism; thus the delay between two tick[i]! actions is implemented as a uniformly
distributed stochastic delay. This may be non-realistic in general: clocks usually
run either too fast or too slow for long periods of time, due to environmental
differences. However in our analysis we will focus on small networks and we will
assume all sensors being in the same environmental conditions. Thus we exploit
UPPAAL SMC’s random clock speed jitter.

Figure 2 describes automaton WSN(i) of [8] devoted to message sending.
The automaton waits in the initial location WAIT until the current slot num-
ber csn[i] equals the TX slot tsn[i], and g ticks occur in that slot. Then the
automaton moves to the location GO SEND which is immediately left by per-
forming a start message[i]! action. This action leads the automaton to the loca-
tion SENDING. The automaton remains in this location until the beginning of
the tail interval (which starts after k0−t ticks). Then the automaton returns to
the location WAIT where it increments the current slot number csn[i] every k0

ticks.
Figure 3 contains the automaton Synchronizer(i) which is devoted to syn-

chronize the hardware clock. We enrich the corresponding automaton of [8] with a
simulation of message loss on the channel start message[i]. The UPPAAL model
checker features branching edges with associated weights for the probabilistic
extension. Thus we define an integer constant loss, with 0 ≤ loss ≤ 100, and
every node can either lose a message with weight loss or receive it with weight
(100−loss). The automaton Synchronizer(i) waits in its initial location S0 until
it detects, in an active slot (csn[i] < n), the beginning of a new message from a
neighbor j (action start message[j]?). When this happens the automaton moves
to a committing location C and it immediately goes to a branching edge where:
(i) with weight loss it returns in its initial location S0 and (ii) with weight
100−loss it goes to location S1. Case (i) formalizes the loss of the starting mes-
sage from node j, while case (ii) formalizes the reception of the same message.
Notice that UPPAAL requires input determinism to ensure that the system to be
tested always produces the same outputs on any given sequence of inputs. Thus
we need an extra intermediate location instead of branching immediately on

Statistical Model Checking of a Clock Synchronization Protocol 173

Fig. 3. Synchronizer(i)

the start message[j]! action. Notice also that the start message[j]! action occurs
exactly when clk[j] = g (as a result of the synchronization of automata WSN(j)
and CLOCK(j)); while the node i, by means of automaton Synchronizer(i),
resets the variable clk[i] to g + 1 after a further tick. The guard neighbor(i, j)
indicates that i and j are in the transmission range of each other. Formally,
neighbor() is a symmetric function related to the slot allocation in the following
manner [8]:

neighbor(i, j) =⇒ tsn[i] �= tsn[j]
neighbor(i, j) ∧ neighbor(i, k) =⇒ tsn[j] �= tsn[k] (1)

This means that whenever two nodes are neighbours or have a common neighbor
then they must have distinct TX slot numbers. The function neighbor() is helpful
to provide a formal definition of synchronized sensor networks. Intuitively, a
sensor network is said to be synchronized if, whenever a node is sending in a
given slot number then all neighbouring nodes are in the same slot number.

Definition 1. A network is said to be synchronized if for all reachable states
(∀i, j ∈ Nodes)((SENDINGi ∧ neighbor(i, j)) =⇒ (csn[i] = csn[j])).

4 Our Analysis

UPPAAL Statistical Model Checker [7] evaluates properties on execution runs of
a network of probabilistic timed automata. The execution time of these runs is
represented by a variable time. It is left to the user to set a bound to this variable.
In particular, fixed a constant value bound, the Statistical Model Checker can
reply to queries of the following shape

Pr[time<=bound] (<> expr)

by performing an adequate number of runs to estimate the probability to reach
a state which satisfies the property expr, within the time bound. The user must
fix two main statistical parameters, α and ε, both in the real interval]0, 1[.
The answer provided by the tool is a confidence interval [p − ε, p + ε] where
α represents the probability of the answer of being wrong. The higher is the
precision of the analysis the bigger must be the number of runs performed by
the simulator. Thus the waiting time for a reply of a query depends both on

174 L. Battisti, D. Macedonio, and M. Merro

the length of runs, i.e. on the parameter bound, and on the statistical parameters
ε and α.

In order to make feasible our analysis we try to understand if we can change
some system parameters without affecting the quality of the analysis. In par-
ticular, we focus on the parameter C that is the number of slots composing a
frame. The effectiveness of any synchronization protocol is crucially based on
the exchange of some timing information to synchronize neighbor nodes. Said
in other words, the longer nodes remain silent the quicker they get out of sync,
because they do not get enough information to synchronize with each other. As
consequence, once fixed the number of active slots, if the system gets out of sync
with probability p, for a certain value of C, then the same system will get out of
sync more quickly (or with higher probability) for a bigger value of C.

The parameter loss expresses the probability of message loss at the physical
level due to the unreliability of the wireless medium. In our analysis, we will
instantiate loss according to the results appeared in [17], where packet delivery
performances of WSNs have been studied at physical layer under different trans-
mission powers and physical-layer encodings. In that analysis, 60 Mica motes
have been used to measure packet delivery under three different environmental
settings: office building, open parking lot, habitat with moderate foliage. Under
these settings, results show that the physical layer contributes to the packet-
delivery performance, which is defined as the fraction of packets not successfully
received by the receiver within a time window.

For the sake of simplicity, all nodes of our networks will be instantiated with
the same value of the parameter loss. According to [17] this parameter will be set
to: 10, to approximate the average message loss in a parking lot; 20, to model the
average message loss in a office building; and 30, which represents the average
message loss in an habitat setting with moderate foliage.

4.1 Verifying Clique Topologies

Paper [8] derives necessary and sufficient constraints on the guard times to guar-
antee the correctness of the protocol on clique topologies in the case of perfect
communication. These constraints depend on the clock ratio min/max, on the
parameter k0 and on the maximal distance M between two transmitting slots1;
they do not depend on the size N of the network. They are:

g >
(
1− min

max

) ·M · k0 + min
max

g <
(
1− max

min

) ·M · k0 + k0 − 2

t >
(
1− min

max

) · (k0 − g) + min
max

(2)

From an analysis of these conditions, paper [8] demonstrates that guard time
values g = t = 3 are sufficient to guarantee clock synchronization in a clique of
arbitrary size.
1 For a formal definition of parameter M we refer to [8].

Statistical Model Checking of a Clock Synchronization Protocol 175

Table 2. On the parameter C

g N C bound frames p ε α

3 10 12 0.07 · 109 2 0.025 0.02 0.01
3 10 48 0.28 · 109 2 0.029 0.02 0.01
3 10 192 1.12 · 109 2 0.031 0.02 0.01
3 10 336 2.00 · 109 2 0.031 0.02 0.01

4 15 17 0.50 · 109 10 0.022 0.01 0.05
4 15 34 1.00 · 109 10 0.027 0.01 0.05
4 15 68 2.00 · 109 10 0.027 0.01 0.05

Here we want to demonstrate that, in the presence of packet loss, the size of
the clique network does play a crucial role. In particular, the bigger is the clique
the higher must be the value of g (and t) to ensure clock synchronization. Said
in other words: in the presence of message loss, fixed a value of g (and t), there
is always a clique which gets out of sync with high probability.

For networks with full connectivity clock synchronization means that all
nodes of the network agree on the current slot. As a consequence, Definition 1
can be rephrased as in [8] in the following manner:

Definition 2. A clique network is said to be synchronized if for all reachable
states it holds the following: (∀i, j ∈ Nodes)(SENDINGi =⇒ csn[i]=csn[j]).

So, in order to estimate the probability of going out of synchronization we will
use UPPAAL SMC to perform the following quantitative check:

Pr[time<=bound] (<> exists(i:Nodes) exists(j:Nodes)
(WSN(i).SENDING and not(csn[i]==csn[j]))

(3)

Simulation setting In our simulations on cliques, all protocol parameters will
satisfy the constraints in (2). As in [8], the guard time t is chosen to be the same
as g. Parameter tsn[i] is chosen equal to i, as fully connectivity implies a different
TX slot for each node. We set k0 = 29. Unfortunately, we cannot set C = 1129, as
in the real implementation, because the length of the runs that can be analyzed
by UPPAAL is limited: in order to avoid integer overflow, the parameter bound
cannot overtake the value 2 · 109. This means that if we would keep C close to
the real value, then our execution runs would last for just a single time frame
and they would be too short to provide any significant result. According to the
discussion done in the preface of this section we perform our analysis for low
values of the parameter C. This modification does not affect our analysis. As an
example, in Table 2 we consider cliques with N = 10, 15, loss = 20 and g = 3, 4.
We then perform the quantitative check (3) by varying C and keeping constant
the number of observed time frames. The value p represents the center of the
confidence interval computed by UPPAAL SMC. Every check required 6623 runs
of the protocol and lasted for about four days on a Intel core i5-2420M CPU
2.30GHz with 6G RAM. We gradually increased the precision of the parameter

176 L. Battisti, D. Macedonio, and M. Merro

Table 3. Cliques and node number. Maximal run length. α = 0.05, ε = 0.025

N = 10 frames: 60

g loss p

3 10 0.059
3 20 0.386
3 30 0.787

4 10 0.000
4 20 0.025
4 30 0.155

N = 15 frames: 40

g loss p

3 10 0.100
3 20 0.560
3 30 0.931

4 10 0.000
4 20 0.046
4 30 0.243

N = 20 frames: 30

g loss p

3 10 0.133
3 20 0.692
3 30 0.972

4 10 0.003
4 20 0.063
4 30 0.325

N = 30 frames: 20

g loss p

3 10 0.236
3 20 0.851
3 30 0.992

4 10 0.005
4 20 0.106
4 30 0.464

ε in order to achieve an interval which does not include the value 0 as a reply;
in other words we have looked for lower bounds p− ε > 0.

Table 2 outlines that when the number of time frames is fixed then the proba-
bility of going out of sync for the system does not decrease when the parameter C
increases (similar results can be obtained for different values of N, g, loss and for
different topologies). As a consequence, our simulations provide a lower bound
of the probability of getting out of sync in a setting with C = 1129.

In Table 3 we study the behaviour of the protocol on cliques up to 30 nodes.
We vary the number of nodes N, the guard time g and the parameter loss. Since
we consider fully connected networks and the transmitting slots are grouped at
the beginning of each time frame, we fix C = N+2, as in [8], to allow at least two
idle slots at the end of each frame. We set the statistical parameters ε = 0.025,
α = 0.05 to have meaningful results. We check property (3) on the maximal run
UPPAAL SMC can handle without incurring in integer overflow. The result of
the quantitative check is represented by the probability p, which is the center of
the confidence interval computed by UPPAAL SMC. Every check required 2952
runs of the protocol. In the following table we report the time required by our
simulations on a Intel core i3-2310M CPU 2.10GHz with 4G RAM.

nodes time
10 11 hours
15 1 day 7 hours
20 2 days 23 hours
30 9 days 4 hours

All runs in Table 3 are quite short (from 30 to 60 frames, depending on
N); however, they are long enough to deduce some significant observation. For
instance, we notice that once fixed the value of the guard time g, the probability
of going out of sync increases when either N or loss increase. Moreover, once fixed
both N and loss, the probability p decreases when the guard time g increases.
Since the probability of going out of sync cannot decrease when going to longer
runs, in Table 3 we compare probabilities associated to runs of different lengths.
In particular, we notice that if we fix loss and g then the probability of getting
out of sync increases when N increases. At the end of this section we will compare
runs of the same length.

Statistical Model Checking of a Clock Synchronization Protocol 177

Table 4. Module comparison – g = 4, α = 0.05, run length 30 frames –

N = 5

I p ε

[0] 0.019 0.01
[0, . . . , 4] 0.113 0.030
[0, . . . , 9] 0.665 0.050
[0, . . . , 14] 0.827 0.050

N = 10

I p ε

[0] 0.015 0.01
[0, . . . , 4] 0.113 0.030
[0, . . . , 9] 0.677 0.030
[0, . . . , 14] 0.816 0.030

The analysis provided in Table 3 says also that the protocol is certainly not
suitable in certain scenarios. For instance, in a clique of at least 10 nodes with
g = 3 the system will get immediately out of sync with high probability if the
loss probability is greater than 0.2. In other settings the results are not that
strong. This is the case of a clique with 10 nodes, g = 4 and loss = 20. In this
case, our analysis says that this system will get out of sync with probability
0.025. Such a value is ten times smaller than the loss probability, too small to
conclude anything, at least in a so short run. Unfortunately, a priori, we cannot
predict the behaviour of the system for longer runs as the probability p may
increase or stabilize. In the following we will try to overcome this limitation.

UPPAAL SMC can simulate the behaviour of our systems on runs limited
in size, called execution modules. At the beginning of an execution module all
nodes are in the same time slot and with the same value in their clock variables.
At the end of an execution module, UPPAAL SMC computes an estimate of the
probability p to reach a state which does not satisfy Definition 2. This definition
does not identify a single state of the system: nodes may have different clock
values while still being in the same time slot. We claim that the initial state,
where all nodes begin the execution module with the same clock value, is the
state which has the smallest probability to lead the system out of sync. In order
to support our argument, we provide an example in Table 4. We consider cliques
of 5 and 10 nodes, with g = 4, C = 7 and loss = 20. Table 4 shows experiments
in which the system starts from a state that satisfies Definition 2 while internal
clocks may have different values. The starting value of every internal clock is
randomly chosen from a fixed interval I of clock values. Runs are 30 time frames
long. We set α = 0.05. It can be noticed that the smallest desync probability is
obtained when the execution module starts in the initial state where all nodes
have the same clock value. Similar results can be obtained for other values of N,
g, C and loss.

In virtue of this observation, we can divide a long run in consecutive execution
modules, all starting in the initial state. Then, we can derive by composition a
lower bound of the probability of desynchronization for that run. Thus, if [p −
ε, p+ ε] is the confidence interval provided by UPPAAL SMC after performing
the quantitative check (3) within an execution module, then the probability of
going out of sync within n execution modules is at least

1− (1− (p− ε))n. (4)

178 L. Battisti, D. Macedonio, and M. Merro

Table 5. Quantitative check on cliques with loss = 20 and α = 0.05

g N C p− ε 300 frames 600 frames 900 frames

3 10 12 0.361 ≥ 0.893 ≥ 0.989 ≥ 0.999
3 15 17 0.535 ≥ 0.998 ≥ 0.999 ≥ 0.999
3 20 22 0.667 ≥ 0.999 ≥ 0.999 ≥ 0.999
3 30 32 0.826 ≥ 0.999 ≥ 0.999 ≥ 0.999
4 15 17 0.021 ≥ 0.156 ≥ 0.273 ≥ 0.373
4 20 22 0.038 ≥ 0.321 ≥ 0.539 ≥ 0.687
4 30 32 0.081 ≥ 0.718 ≥ 0.920 ≥ 0.980

Table 5 extends the results of Table 3 to longer runs which lasts for 300, 600
and 900 time frames, respectively. The forth column of Table 5 reports the lower
bound of the confidence interval of an execution module. When N = 10, 15, 20, 30
the execution module studied in Table 3 lasts for approximately 60, 40, 30 and 20
time frames respectively. Thus, by applying the formula (4) with n = 5, 8, 10, 15
we obtain a lower bound for the probability of being out of sync within 300
time frames in the cases of cliques with 10, 15, 20 and 30 nodes, respectively.
Analogously when n = 10, 15, 20, 30 and n = 15, 22, 30, 45 we obtain a lower
bound for the probability of being out of sync within 600 and 900 time frames,
respectively.

As discussed at the beginning of this section, the values of Table 5 represent
also lower bounds of the probability of desynchronization for the real implemen-
tation. In the real setting, with C = 1129 and clock frequency of 32 kHz, a time
frame lasts for about 1sec. As a consequence, Table 5 expresses a lower bound of
the probability of getting out of sync within 5, 10 and 15 min. Thus, when g = 3
the probability of getting out of sync is high also for small networks enough for
small networks (around 10 nodes), but when N = 15 we have a probability of
being out of sync of almost 0.4 in 15min. When N = 20 the probability reaches
0.7 in less than 15min. When N = 30 the probability reaches 0.7 in less than
5min. These results outline an increasing of the desync probability when the
number of nodes increases.

4.2 Verifying Grid Topologies

Clock synchronization in clique topologies has been studied in [8] as a first step
towards more realistic topologies. Usually sensor nodes have a limited number
of neighbours and do not have direct communication with the whole network.
In this section, we study how the gMAC synchronization protocol behaves on
regular topologies which better simulate a uniform node distribution in a given
area2. In particular, we will focus on grid topologies where nodes have a uniform
number of neighbours. Unlike cliques, there are no theoretical results suggesting
how to choose protocol parameters to guarantee the synchronization of grid
2 Regular topologies have been applied to WSNs to study coverage, connectivity and

energy-efficiency.

Statistical Model Checking of a Clock Synchronization Protocol 179

networks in the case of non-lossy communication. The implementation of gMAC
adopts an high guard time, g = 9, to ensure synchronization in networks with
arbitrary topologies. In this section, we study whether high values of g guarantee
node synchronization in grid-based networks, in the case of lossy communication.

In our simulations we focus on a small sensor network where nodes are placed
in a 5×5 grid, thus N = 25. Unlike cliques, grid topologies do not need a different
TX slot for each node: we can allocate the same TX slot to different nodes
provided that when two nodes are neighbours or have a common neighbor then
they get distinct TX slot numbers. According to the implementation of gMAC,
where the number of TX slots is limited, we consider the minimum number of
TX slots to be allocated to satisfy conditions (1). The number of transmission
slots depends on the number of neighbours for each single node; if a node v has
k neighbours then we need a TX slot in which v transmits and all its neighbours
listen, and k distinct slots in which each neighbor transmits and v listens. Thus
if k represents the maximum node degree, then we need at least k+ 1 TX slots.

In the following we analyze the behaviour of the protocol on grid topologies
by considering three possible maximum node degrees: 4, 6 and 8. These grid
networks require at least 5, 7 and 9 TX slots, respectively. Below we report the
three topologies we consider along with a simple slot allocation which satisfies
conditions (1) by using exactly k + 1 TX slots, where k is the maximum node
degree. The grid structures outlines the network topology while the identifiers
0, 1, . . . show the TX slot allocated for the corresponding node.

0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

3 4 0 1 2

0 1 2 3 0

2 3 4 5 6

5 6 0 1 2

0 1 2 3 4

3 4 5 6 0

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

0 1 2 0 1

3 4 5 3 4

6 7 8 6 7

0 1 2 0 1

3 4 5 3 4

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

As for cliques, our analysis does not loose in generality if we consider small
values of C. Thus we pick C = 7, 9, 11 for the three different cases, respectively.
Depending on the maximum node degree, a single time frame is composed by
5, 7, 9 TX slots plus 2 idle slots. TX slots are allocated according to the distrib-
utions depicted above. We set k0 = 29 and we vary the parameter loss, as done
for cliques. Then, we apply UPPAAL SMC to perform the following quantitative
check, according to Definition 1:

Pr[time<=bound](<> exists(i:Nodes) exists(j:Nodes)
(neighbor(i,j) and WSN(i).SENDING and not(csn[i]==csn[j]))

(5)

Again, we consider the longest run UPPAAL SMC can handle to avoid integer
overflow by setting bound = 2 · 109. This means that an execution module lasts
for almost 100, 80 and 65 time frames when the maximum node degree is 4, 6
and 8, respectively. These are quite short runs, but long enough to conclude that

180 L. Battisti, D. Macedonio, and M. Merro

Table 6. Grids 5× 5 and node degree. Maximal run length. α = 0.05, ε = 0.03

max degree 4

g C loss p

6 7 0 0
6 7 10 0.03
6 7 20 0.11
6 7 30 0.45

7 7 0 0
7 7 10 0.01
7 7 20 0.06
7 7 30 0.28

max degree 6

g C loss p

6 9 0 0
6 9 10 0.01
6 9 20 0.07
6 9 30 0.25

7 9 0 0
7 9 10 0
7 9 20 0.03
7 9 30 0.18

max degree 8

g C loss p

6 11 0 0
6 11 10 0
6 11 20 0.05
6 11 30 0.19

7 11 0 0
7 11 10 0
7 11 20 0.02
7 11 30 0.11

Table 7. Quantitative check on 5× 5 grids with loss = 20 and g = 6

degree C p− ε 900 frames 1800 frames 2700 frames 3600 frames

4 7 0.08 ≥ 0.53 ≥ 0.78 ≥ 0.90 ≥ 0.95
6 9 0.04 ≥ 0.39 ≥ 0.61 ≥ 0.76 ≥ 0.84
8 11 0.02 ≥ 0.25 ≥ 0.44 ≥ 0.58 ≥ 0.69

the system may get out of sync also for high values of the guard time g. The
result of the quantitative check is reported in Table 6. The value p represents
the center of the confidence interval computed by UPPAAL.

The compositional reasoning on execution modules adopted for cliques can
be easily generalized to grid topologies. Table 7 fixes loss = 20 and g = 6. It
reports lower bounds to the probability of getting out of sync within 900, 1800,
2700 and 3600 time frames. As said before, in the real implementation a time
frame lasts for around 1sec. Thus, when considering g = 6 and a message loss of
20%, we observe that the desync probability exceeds 0.5 in less than 15min for
degree 4, in less than 30min for degree 6, and in less than 45min for degree 8.
Table 7 outlines also how the performances of the protocol depend on the node
degree: the probability of getting out of sync decreases for grid topologies with
higher node degree.

Finally, let us give a taste of what happens when g = 7. Among the results
on Table 6 we extend the case of degree 4 and loss = 20, where the probability of
getting out of sync within 100 time frames lays in the interval [0.03 , 0.09]. The
projection to 2700 time frames says that the probability of getting out of sync
becomes greater than 0.54. In the real settings, this means that the probability
of getting out of sync exceeds 0.5 in less than 45min.

In conclusion, in the case of lossy communication, small grid topologies have
a high probability of getting out of sync even for high values of the guard time g
and for low values of the loss probability. Moreover the probability of getting out
of sync increases when decreasing the maximum node degree.

Statistical Model Checking of a Clock Synchronization Protocol 181

5 Conclusions, Future and Related Work

Our work has been strongly inspired by a recent analysis [8] of the gMAC syn-
chronization protocol on clique and line topologies, in the ideal case of non-lossy
communication. That analysis provides constraints on the protocol parameters
that are both necessary and sufficient for the correctness of the protocol for
cliques of arbitrary size. Here we have carried on the work of [8] in the case of
lossy communication. We have extended their model and obtained a network of
probabilistic timed automata [6] which has been used for doing Statistical Model
Checking within the UPPAAL toolset [7]. As a main result, we have showed that
in the presence of message loss the constraints provided in [8] may be not suffi-
cient to ensure clock synchronization of cliques of arbitrary size. Then, we have
extended our analysis of the protocol to small grid topologies and again found
that, in the case of lossy communication, the nodes of the grid may get out of
sync with high probability. More interestingly, grid topologies with higher node
degree have a smaller probability of desynchronization. This lets us to conjecture
that higher connectivity helps synchronization protocols. In this respect, among
the regular topologies, clique topologies are those with the best performances!

As in [8] we have assumed a fixed slot allocation. However, the implemen-
tation of gMAC includes a probabilistic dynamic slot allocation algorithm. The
only analysis we are aware of the probabilistic gMAC algorithm appears in [16].
In that paper, mobile sensors do not use a fixed schedule to control medium
access but instead employ gMAC’s full decentralized slot allocation: gossiping is
introduced to allow each node to decide when to send. Paper [16] analyzes the
energy-efficiency of gMAC under the assumption of perfect clock synchroniza-
tion. The protocol, formalised in the MoDeST language [4], is evaluated using the
discrete-event simulator of the Möbius tool suite. We are planning to study the
performance of the gMAC protocol with dynamic slot allocation in the case of
lossy communication and realistic clock. In doing that, we intend to adopt either
a (truncated) normal distribution or a (truncated) exponential distribution for
modeling a more realistic delay between consecutive ticks.

Statistical Model Checking allows us to study networks of bigger size with
respect to the state-of-the art model checking technology, such as PRISM [9,11].
SMC can be seen as a trade off between testing and formal verification: its
approach consists in performing an appropriate number of simulations which are
elaborated with statistical algorithms to verify if a given property is satisfied with
a certain probability. Unlike an exhaustive approach, a simulation-based solution
does not guarantee a correct result with a 100% confidence. It is only possible
to bound the probability of making an error. In order to study bigger systems
with an higher confidence, paper [5] proposes a distributed implementation of
UPPAAL SMC by means of a master/slave architecture where several computers
are used to generate simulations and a single master process is used to collect
those simulations and perform the statistical test. We are planning to employ
this approach to extend the confidence of the results we obtained in this paper.

Acknowledgments. The anonymous referees provided insightful comments.

182 L. Battisti, D. Macedonio, and M. Merro

References

1. Assegei, F.: Decentralized frame synchronization of a TDMA-based wireless sen-
sor network. Master’s thesis, Eindhoven University of Technology, Department of
Electrical Engineering (2008)

2. Behrmann, G., David, A., Larsen, K.G.: c. In: Bernardo, M., Corradini, F. (eds.)
SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer (2004)

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST 2006. pp. 125–126. IEEE Computer Society
(2006)

4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006)

5. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.:
Checking and distributing statistical model checking. In: Goodloe, A., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226. Springer (2012)

6. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer (2011)

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer (2011)

8. Heidarian, F., Schmaltz, J., Vaandrager, F.W.: Analysis of a clock synchronization
protocol for wireless sensor networks. Theor. Comput. Sci. 413(1), 87–105 (2012)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer (2011)

10. Nordic Semiconductors: nRF2401 Single-chip 2.4GHz Transceiver Data Sheet
(2002)

11. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods in System Design (2012), to appear

12. QUASIMODO: Preliminary description of case studies, deliverable 5.2 from the
FP7 ICT STREP project 214755 (January 2009)

13. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)

14. van Vessem, I.: WSN gMAC protocol specifications. Tech. rep., CHESS B.V., Haar-
lem, NL (2008), version 1.1. Patent pending US 12 / 250,040

15. Wu, Y.C., Chaudhari, Q.M., Serpedin, E.: Clock synchronization of wireless sensor
networks. IEEE Signal Process. Mag. 28(1), 124–138 (2011)

16. Yue, H., Bohnenkamp, H.C., Katoen, J.P.: Analyzing energy consumption in a
gossiping mac protocol. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E.P.
(eds.) MMB&DFT 2010. LNCS, vol. 5987, pp. 107–119. Springer (2010)

17. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: Akyildiz, I.F., Estrin, D., Culler, D.E., Srivastava, M.B.
(eds.) SenSys 2003. pp. 1–13. ACM (2003)

A New Representation of Two-Dimensional
Patterns and Applications to Interactive

Programming

I.T. Banu-Demergian1, C.I. Paduraru1, and G. Stefanescu1

Department of Computer Science, University of Bucharest, Bucharest, Romania
th iulia84@yahoo.com, ciprian.paduraru2009@gmail.com,

and gheorghe.stefanescu@fmi.unibuc.ro

Abstract. Regular expressions and the associated regular algebra pro-
vide a rich formalism for specifying and analysing sequential models
of computation. For parallel computation, extensions to handle two-
dimensional patterns are often required. In this paper we present a new
type of regular expressions for two-dimensional patterns based on con-
tours and their composition. Targeted applications comes from the area
of modelling, specification, analysis and verification of structured inter-
active programs via the associated scenario semantics.

Keywords: regular expressions, two-dimensional patterns, contours,
structured interactive programming, formal methods

1 Introduction

Regular expressions and the associated regular algebra provide a rich formalism
for specifying and analysing sequential models of computation. They were orig-
inally introduced by Kleene [17] in connection with neural networks and finite
automata - Kleene theorem states that finite automata and regular expressions
are equivalent (i.e., they specify the same language). In the meantime, regular
expressions became a core formalism for many other models used in computer
science. In particular, they provide the backbone of a rich algebraic theory of
automata, see, e.g. [28,11,20,18,6,19,8].

For parallel computation, enrichment of the sequential models with mecha-
nisms for modelling process interaction are needed. We only mention a Kleene
theorem for Petri nets [27,13]: Petri nets and a class of concurrent regular ex-
pressions are equivalent. The result is based on the following procedure: (1)
decompose the behaviour to have separate components where each transaction
has no more than one input and one output place; (2) decompose the behaviour
of a component to have an independent run for each initial token; (3) use the
classical Kleene theorem for these sequential runs; (4) use synchronization and
renaming to force the composition of these separate projected runs to behave as
a run of the initial overall system. However, as it was often noticed (see, e.g.,
[18]), renaming has bad algebraic properties and should be avoided.
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 183–198, 2013.
DOI: 10.1007/978-3-642-40213-5 12,
c© IFIP International Federation for Information Processing 2013

184 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

A natural semantics for parallel computation is provided by a kind of two-
dimensional patterns/languages - for instance, messages sequence charts or sce-
narios fall into this category. A robust class of “regular two dimensional lan-
guages” has been identified in 1990’s [14,22]; it may be specified by many equiv-
alent formalisms, in particular by a 2-dimensional version of regular expressions
2RE, including intersection and renaming.

In this paper we present a new type of regular expressions for two-dimensional
patterns n2RE based on contours and their composition. It avoids the use of
intersection and renaming, being closer in spirit with classical 1-dimensional
regular expressions. In this approach, the magic way of getting the intended
language by renaming and intersection is replaced by a steady work of tiling
shapes to build up the words step by step.

Our targeted applications comes from the area of modelling, specification,
analysis and verification of structured interactive programs via the associated
scenario semantics. Interactive computation [15] is becoming more and more
important in the recent years, in particular due to the advance of multicore
computation. We use a model rv-IS [35] based on space-time duality. In particu-
lar, finite interactive systems [34] are the space-time invariant extension of finite
automata in this context. Agapia programming [12] is a core interactive program-
ming language based on this model. We use the n2RE expressions to present a
relational semantics for Agapia programs; it may be seen as an extension to two
dimensions of the classical relational semantics of sequential computing models
[23,24].

The paper is organized as follows. Section 2 presents a known approach us-
ing two sets of regular algebra operators, intersection, and renaming. Section 3
presents the new approach based on contours and Section 4 shows an application
for getting a relational semantics for structured interactive programs. Related
and future works and references conclude the paper.

2 A Known Approach

2.1 Finite Interactive Systems (FIS’s) and Regular Expressions
(2RE’s)

Definition 1. A finite interactive system (FIS) [34,35] is defined by

– two types of nodes: states (denoted by numbers 1, 2, ...) and classes (denoted
by capital letters A,B, ...);

– transactions: (A, 1)−a→ (B, 2), where a is a letter of the considered alpha-
bet and A,B, 1, 2 are as above;

– specification of the initial/final states and classes. ��
A useful cross/tile representation may be used; is is based on showing the

transitions and stating which states and classes are initial/final. An example is

S1: with 1, A initial and 2, B final.

A New Representation of Two-Dimensional Patterns 185

Fig. 1. FIS recognizing procedure

FIS recognizing procedure. The FIS recognizing procedure is via accepted sce-
narios. A scenario alternates class/state information and letters according to
the FIS transitions. It is an accepting scenario if the northern border has initial
states, the western border has initial classes, the eastern border has final classes,
and the southern border has final states.

Graphically, a scenario may be easily obtained using the crosses representing
the transitions and identifying the matching classes or states of the neighbouring
cells. In Fig. 1 we show a few examples of scenarios for the FIS S1 above. Notice
that the recognizing procedure may be applied to non-rectangular words, as well.

Definition 2. First, simple 2-dimensional regular expressions (simple 2RE’s)
are defined by two sets of regular operators (one for the vertical, the other for
the horizontal direction) which share the additive part. Formally, they use:

1. the additive operators: 0 (for empty set) and + (for union);
2. the vertical composition operators: I v (vertical identity), ; v (vertical com-

position) and * v (iterated vertical composition); our preferred textual nota-
tion is: |, ; and *;

3. the horizontal composition operators: I h (horizontal identity), ; h (hori-
zontal composition) and * h (iterated horizontal composition); our preferred
textual notation is: -, > and ^.

Next, 2-dimensional regular expressions (2RE’s) are obtained adding intersec-
tion and renaming to simple 2RE’s. Formally, they use the following additional
operators

1. intersection: our preferred textual notation is /\;
2. renaming via a letter-to-letter homomorphism rho:V->V’ (V and V’ are the

old and the new vocabulary, respectively). ��

Examples. A few examples of 2RE expressions and typical specified words are
presented in Fig. 2. They are related to the following expression

E = (b* ; a ; c*)^ /\ (c^ > a > b^)*.

In Fig. 2.(1)–(4), typical words generated by the following expressions are pre-
sented: b* ; a ; c*; (b* ; a ; c*)^; c^ > a > b^; and (c^ > a > b^)*. It
can be proved that the intersection (b* ; a ; c*)^ /\ (c^ > a > b^)* has
only square words with a on the diagonal, b on the top right area and c on the

186 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

Fig. 2. A 2RE expression for the FIS S1

bottom left area, see Fig. 2.(5). The first part of the expression constrains the
column patterns, while the second the rows. Intersection does the magic action
of selecting only the square 2-dimensional words.

Theorem 1. (connecting 2RE’s to FIS’s [14,34,35,29]) The languages repre-
sented by finite interactive systems (FIS’s) and those specified by 2-dimensional
regular expressions (2RE’s) are the same.

Proof. (Sketch): As usual, more complicate is the passing from FIS’s to 2RE’s.
It is done in two steps:

– for a FIS S with transitions having distinct letters the procedure is:
• take a usual regular expression Es for the state-projected nondetermin-

istic finite automaton (NFA) of S and another one Ec for the class-
projected NFA of S (these NFA’s are obtained from S ignoring one di-
mension)
• an expression for S is (Es)^/\(Ec)*

– for an arbitrary FIS proceed as follows: first rename the transitions with new
letters to apply the above step; then, apply the previous result; finally, use
the renaming operator to rename back the new letters with their original
version in the resulting expression.

For the other part, one can use the result in [29] showing that FIS’s are equivalent
with tile systems, then the relation between 2RE’s and tile systems. ��

Example: Let us consider the FIS S2 defined by

, where 1,A are initial and 2,B are final.

The procedure is the following:

1. rename the 2-nd a as c and the 3-rd a as b to get different letters for tran-
sitions; actually, this way we get the FIS S1 above;

2. get a 2RE for this new FIS; using the projected NFA’s such an expression is

E1 = (b* ; a ; c*)^ /\ (c^ > a > b^)*

3. rename back to get an expression for S2

E2 = rho [(b* ; a ; c*)^ /\ (c^ > a > b^)*]

with rho mapping a,b,c into a,a,a, respectively.

A New Representation of Two-Dimensional Patterns 187

Problems. There are a few problems with this approach, the main critics being
the following:

– Intersection is a nonintuitive operator: Indeed, it is difficult to grasp what
you get by intersecting two or more languages.

– The formalism is not robust under renaming: As an example, notice that
the expression E3 = (a* ; a ; a*)^/\ (aˆ > a > aˆ)*, obtained by syn-
tactically renaming a,b,c as a into the expression E above, represents all
rectangular words of a’s, not only the square ones as one expects.

– Renaming is yet a still more nonintuitive operator: It’s like writing in Chinese
and getting an English text using a letter-to-letter morphism, losing most of
the information.

The solution we propose to the above problems is the following:

– Construct a formalism for handling words of arbitrary shapes in the 2-
dimensional plane;

– Introduce a powerful set of composition operators for these shapes (extending
vertical/horizontal compositions and their iterated versions)

In other word, the magic way of getting the intended language by re-
naming and intersection is to be replaced by a steady work of tiling
shapes to get the words step by step.

3 A New Approach

3.1 General 2-Dimensional Words

A (pointed) contour is a closed line, with a chosen starting point, on a rectangular
grid Z×Z that divide the space into two disjoint regions: the internal area (which
is required to be finite) and the external area. It will be represented using a
sequence of letters from the set {u,d,l,r} (u stands for “up”, d for “down”, l
for “left”, and r for “right”) and a placement (x, y) of the starting point. For
simplicity, by default one can consider the starting point to be (0, 0).

A few examples of contours are shown in Fig. 3. A representation for C1 is l 1
u 1 l 1 d 1 l 1 u 2 r 3 d 2. The numbers after the letters are used to count
repetitions. The contour starts at the chosen (black dot) point and travel clock-
wise. The interior area of a contour is the dashed (yellow) one. As the contour is
surrounded clockwise, the area on the right is internal, while the one on the left
is external. By changing the starting point, the representation is shifted circu-
larly; for instance, C2 is represented by l 1 d 1 l 1 u 2 r 3 d 2 l 1 u 1. Two
slightly more complicate contours are shown in C3 and C4 in Fig. 3. As the last
example shows, one can have contours with distinct disjoint components in its
internal area, connected via lines travelled forth and back in the representation.
The lines travelling into the internal areas are also called tunnels, while those
sitting in the external areas bridges. As one can see, the tunnels and the bridges
have a lot of freedom regarding both their forms and their physical placement;

188 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

Fig. 3. Contours

for instance, they may have branches going nowhere. From the 2-dimensional
words point of view, all these representations of contours are equivalent.

The formal definition of a contour requires quite a lot of preparation and it
is presented below. A closed line C is a string over the set {u,d,l,r}, obeying
the conditions no(C,u) = no(C,d) and no(C,r) = no(C,l), where no(C,x)
denotes the number of occurrences of x in C.

For a point p = (x, y) ∈ Z
2, pk

C specifies the information that C passes exactly
k time through p; notice that k ≥ 0. A vertical line segment ((x, y), (x, y + 1))
is specified by its middle point l = (x, y + 0.5); the notation lkC specifies that
the difference between the “up” and the “down” times C passes through this
segment is k; notice that k ∈ Z may be both positive or negative. Similarly,
for an horizontal line segment ((x, y), (x + 1, y)), denoted l = (x + 0.5, y), the
notation lkC says that k is the difference between the “right” and the “left” times
C passes through l. Finally, a unit cell with the corners {(x, y), (x + 1, y), (x +
1, y + 1), (x, y + 1)} is specified by its center point c = (x+ 0.5, y + 0.5).

For a cell c = (x + 0.5, y + 0.5), the notation ckC,w specifies how c is seen
in C from a western perspective. Formally, let z = max{w ∈ Z : w ≤ x and
l = (w, y+ 0.5) is such that lkC is true with k �= 0}; then ckC,w is true if lkC is true
for the line l = (z, y + 0.5). In words, starting from the center of the cell and
travelling horizontally towards the west there is a first line crossed and having a
unequal up/down passings and, moreover, the difference between the “up” and
the “down” passings along that line is k. The notations ckC,e, c

k
C,n, and ckC,s are

similarly introduced for the eastern, northern, and southern directions.
A cell is seen as internal if ckC,w and k > 0. For the external property the

condition is slightly different: either ckC,w and k < 0 (i.e., going horizontally
towards west, the there is a first line crossed with more down than up passings) or
there is no line crossed with unequal up/down passings. This additional condition
is needed to ensure the internal area of a valid contour is finite; for instance, drul
is not a valid contour (see below the formal definition of valid contours).

With these notations, the correctness criteria for a string to represent a valid
contour are the following: a closed line C represents a valid contour if:

– each cell is either internal from all directions, or external from all directions;
– for the internal cells, the conditions ckC,w, c

k
C,e, c

k
C,n, and ckC,s are all satisfied

with k = 1.

A New Representation of Two-Dimensional Patterns 189

Fig. 4. Contours composition

The last condition is needed to avoid overlapping by multiple surroundings of
the same internal area; for instance rdlurdlu is not valid, while rdlu is.

It is possible to replace the conditions here with conditions on the string
itself, rather than on the lattice cells. However, such an approach is less intuitive
(it is based on forbidden string configurations) and the details are quite complex;
see [3].

A general 2-dimensional word is specified by a contour and a filling of its
internal area with letters from the given alphabet. In the following we will mostly
ignore this additional information as most of the difficulties are posed by the
handling of the contours/shapes and not by the contents of their internal areas.

3.2 General Composition

A general composition operator ‘.’ on contours may be defined as follows: given
two contours, get a new contour by putting them together and identifying their
starting points (the black dots). This means, one has to travel along the first con-
tour and when he arrives back to the starting point, to travel along the next. In
the string representation of the contours, the operation actually is concatenation
C1 . C2 = C1 C2.

Comments: The condition to have a definite composite is to have a valid
non-overlapping contour after the concatenation of the representations of the
given contours (for instance, a pointed contour cannot be composed with itself).
In particular, this implies that there is no constraint on the contents of the
internal areas of the contours, hence the operation is straightforwardly extended
to general 2-dimensional words. This is a very powerful and general composition
operator, indeed.

For a graphical example, C1 . C3 in Fig. 4 shows a composition leading to
a valid contour, while C2 . C3 leads to a string representation which does not
represent a valid contour (it has overlapping areas).

This composition is extended to two-dimensional words as follows. For two
words W1, W2, consider arbitrary contours C1, C2 representing them (having
as internal areas the shapes of the words) and arbitrary positions as starting
points of these contours. Then, W1 . W2 consists of all words resulting from
valid compositions of such contours and placing the letters of the words W1, W2

190 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

in the corresponding positions of the resulting composites. E.g., the composite

a . a contains the words , etc.

3.3 Particular Composition Operators

The new type of 2-dimensional regular expressions, to be defined below, put
constraints on the contact elements of the composed words. These constraints
acts on the following three types of elements: side borders, land corners (turning
points on the contour having 3 neighbouring cells outside the word and one
neighbouring cell inside), and golf corners (turning points on the contour with at
least 2 neighbouring cells inside and one neighbouring cell outside). An example
is shown in Fig. 5(1). The resulting restricted composition operators extend the
usual vertical and horizontal composition operators used on rectangular words.

Points of interest on the words borders. Let us use the following notation (their
meaning is explained right after the listing):

– side borders: elements in C1={w,e,n,s}, where w stands for “west border”,
e for “east border”, n for “north border”, and s for “south border”;

– land corners: elements in C2={nw,ne,sw,se}, where nw stands for “north-
west land corner”, ne for “north-east land corner”, sw for “south-west land
corner”, and se for “south-east land corner”;

– golf corners: elements in C3={nw’,ne’,sw’,se’}, where nw’ stands for
“north-west golf corner”, ne’ for “north-east golf corner”, sw’ for “south-
west golf corner”, and se’ for “south-east golf corner”.

A line l = (x, y+0.5) is on the east border of a word f if the cell c = (x−0.5, y+
0.5) is in the internal area of f , while the cell c = (x + 0.5, y + 0.5) is in the
external area of f . For the other west, north, and south directions, the definition
is similar. A point p = (x, y) ∈ Z

2 is on the south-east land corner border of a
word f if the cell c = (x − 0.5, y + 0.5) is in the area of f , while the other 3
cells around are not in the area of f (they are in the external area of f). For the
other 3 types of land corners the definition is similar. A point p = (x, y) ∈ Z

2 is
on the south-east golf corner border of a word f if the cell c = (x− 0.5, y + 0.5)
is not in the area of f (it is in the external area of f), while at least 2 of the
other 3 cells around are in the area of f . For the other 3 types of golf corners
the definition is similar.

Glueing combinations. The constraints on glueing the borders of the words in
the composite word are independently put on one or more of the following com-
binations (x, y):

– x and y are different and either they are both in {e, w}, or both in {s, n}, or
both are land corners in {nw, ne, sw, se}, or both are combinations golf-land
corners for the same directions.

A New Representation of Two-Dimensional Patterns 191

Spelling out the resulting combinations we get the following lists:

– linking side borders: L1={(w,e),(e,w),(n,s),(s,n)};
– linking land corners: L2={(nw,ne),(nw,se),(nw,sw),(ne,nw),(ne,se),
(ne,sw),(se,nw),(se,ne),(se,sw),(sw,nw),(sw,ne),(sw,se)};

– linking golf-land corners: L3={(nw’,nw),(nw,nw’),(ne’,ne),(ne,ne’),
(se’,se),(se,se’),(sw’,sw),(sw,sw’)}.
The set of all combinations in L1 ∪ L2 ∪ L3 is denoted by Connect.

Constricting formulas. On each of the above eligible glueing combination (x, y)
we put a constrain given by a propositional logic formula1 F ∈PL(φ1, φ2, φ3, φ4),
i.e., a boolean formula built up starting with the following atomic formulas:

φ1(x, y) = “x < y”, φ2(x, y) = “x = y”, φ3(x, y) = “x > y”, φ4(x, y) = “x # y”.

The meaning of the connectors is the following: “<” - left is included into the
right; “=” - left is equal to the right; “>” - left includes the right; “x # y” - left
and right overlaps, but no one is included in the other.

For instance: f(e = w)g means “restrict the general composition of f and g
such that the east border of f is identified to the west border of g”; f(e > w)g -
the east border of f includes all the west border of g, but some east borders of
f may still be not covered by west borders of g; etc.

We also use the notation

φ0(x, y) = “x ! y”, where “!” means empty intersection.

Actually, this is a derived formula ¬(φ1(x, y) ∨ φ2(x, y) ∨ φ3(x, y) ∨ φ4(x, y)).

Particular composition operators. We are now in a position to introduce the
particular composition operators induced by the above constricting formulas.

Definition 3. (restricted compositions) A restriction formula φ is a boolean
combination in PL(F1, . . . , Fn), where Fi are constricting formulas involving
certain eligible glueing combinations (xi, yi) ∈ Connect. A restricted composition
operation (F) is the restriction of the general composition to composite words
satisfying F . A word h ∈ f . g belongs to f (F) g if for all glueing combinations
(xi, yi) occurring in F the contact of the xi border of f and yi border of g
satisfies Fi. ��

This interpretation shows the constricting formulas act on the involved glue-
ing combinations, while for the glueing combinations (xj , yj) not occurring in
the formula no constraints are imposed, at all. Other default conventions are
possible, too; for instance stating that what is not specified should not touch.

Notice that the restricted composition operations are not always associative;
e.g., ((a (s=n) a) (e>w) b) (e>w) c �= (a (s=n) a) (e>w) (b (e>w) c).
When some parentheses are missing, we suppose a left-parentheses order applies,
as in ((C1 op C2) op C3).
1 PL(Atom) denotes the set of propositional logic formulas built up with atomic for-

mulas in Atom. For typing reasons, the boolean operations “not”, “and”, and “or”
are denoted by “!”, “&”, and “|”, respectively.

192 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

Fig. 5. Particular composition operators

Examples. A few examples are shown in Fig. 5. Let g, b, and y represent
the green, blue, and yellow areas, respectively. Then, {(2)} (the word described
in Fig. 5(2)) is the result of g (e=w) b. Similarly: g (s< n) b is the set of
words {(3),(4),(5)}; b (ne<ne’) y is {(9)}; y (s#n & w#e) b is {(9),(10)}. The
words for y (e#w) b strictly include the set {(6),(7),(8),(10)}; one can use the
expression y (e#w & ne!nw & se!sw) b to exclude a few words from y (e#w)
b and to get precisely the set {(6),(7),(8),(10)}.
Definition 4. (iterated composition operators) The iterated composition oper-
ators are denoted by ∗(F), for a restriction formula F . ��
Definition 5. The set of expressions obtained using the operators defined so
far are denoted by n2RE’s; they represent our new type of regular expressions
for two-dimensional patterns/words. ��

Examples, related to S1. The examples in Fig. 6 are related to S1, the origi-
nal FIS we have considered in the beginning of the section. We first show the
expressions, then include samples of typical words associated to these expres-
sions. Combined with the constraint to have rectangular words, the final regular
expression Eabc specifies the language of S1.

Observation. The formalism is robust, in particular it commutes with renaming:
renaming letters either in the associated words or in the given expression leads
to the same set of general 2-dimensional words.

4 A Relational Semantics for Structured Interactive
Programs

In this section we show how the introduced regular expressions can be used
to get a relational semantics for structured interactive programs presented in

A New Representation of Two-Dimensional Patterns 193

Fig. 6. A n2RE expression for the FIS S1

Fig. 7. Two scenarios for computing perfect numbers

the rv-IS formalism [35,12]. The operational semantics of structured programs
is given in terms of scenarios. In Fig. 7(a) we illustrate an rv-IS scenario for
deciding whether the number 6 is a perfect number (i.e., it is equal to the sum
of its proper divisors); in (b) it is a scenario for testing if 7 is a perfect number.

In this representation, the actions to be performed are placed in the square
cells. One example is the cell with the identifier P placed in the 2nd row and
the 1st column in (a). On the top and the bottom of this cell there is the same
state variable x with its concrete values 3 and 2. Actually, the effect of P on the
memory state is to decrease x by 1. With respect to the interaction part, this cell
has no variables for its left border (a fact specified by the ‘.’ inserted there) and
has a variable tx at its right border. The effect of P on the interaction part is to
set in tx the input value 3 of x in order to be used in other columns/processes.

In Fig. 8 we present relational specifications for the cells used in Fig. 7. All
these cells have functional behaviour, hence the corresponding relations may be
specified as partial functions in the following way:

194 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

Cell(west,north) = (east,south), if Condition.

4.1 Example - Imperative Programming Style

We start with the following expression specifying scenarios checking if a number
n is perfect

[((IP (e=w) ID) (e=w) IM)
(s=n) (((P (e=w) D) (e=w) M) *(s=n))]
(s=n) ((IP (e=w) ID) (e=w) IM)

In this model we can imagine that we have three processes: one generates all
the numbers in the set {n/2, . . . , 1} (with module P), one checks if a number is a
divisor of n (module D) and the last one updates a variable z (module M). Modules
IP, ID and IM are used for initializations and TP, TD and TM for termination. At
the end of the program, if the variable z is 0, then the number n is perfect.

In order to show how we can construct a scenario using the expression above
let us consider a concrete example for n = 6. The scenario for n = 6 is presented
in Fig. 7 (a).

Fig. 8. Relational semantic specifications for the cells used in Fig. 7

In the first line of the scenario we initialize the processes with the needed
informations: module IP is reading the value n = 6 and provides the first process
with x = 3 and declare a temporal variant of n, namely tn = 6, that will be
used by modules ID and IM for the other initializations; modules ID and IM use
the temporal variable tn for initializing the other two processes with the initial
value of n, namely y = 6, z = 6, respectively.

In the next step, module P produces a temporal data tx = 3 (tx is equal
with the data x of the first process) and decrease x. Module D verifies if tx is a
divisor of y and, if no, it resets the value of tx to 0. Finally, module M decreases
the value of z by tx. Notice that module M decreases the value of z only with
the divisors of the initial variable n. We continue this steps until the variable x
becomes 0.

A final line contains terminating modules that rearrange some interfaces,
keeping only the relevant result z.

A New Representation of Two-Dimensional Patterns 195

4.2 Dataflow and Mixed Imperative-Dataflow Programming Styles

The above model corresponds to the construction of scenarios by rows and it
exhibits a (parallel) imperative programming style, illustrated in Fig. 9(a).

Fig. 9. Programming strategies

The same computing scenarios may be generated in many other ways. Below
is a model which constructs the same scenarios by columns, exhibiting a dataflow
computing style, illustrated in Fig. 9(b):

[((IP (s=n) (P *(s=n)) (s=n) TP)
(e=w) ((ID (s=n) (D *(s=n)) (s=n) TD)]
(e=w) ((IM (s=n) (M *(s=n)) (s=n) TM)

In this implementation, the processes corresponding to the 2nd and the 3rd
columns act as “services”: they receive initialization data (here the value of n),
then a stream of data to act individually on each one according to the service
function (for the 2nd process this function is the check for divisibility, while for
the 3rd is subtraction), and finally a termination token (represented here by -1).

Finally, we present a last model, illustrated in Fig. 9(c), which mixes the
imperative and dataflow styles

((IP (e=w) ID) (e=w) IM)
(s=n) [(((P (e=w) D) *(s=n)) (s=n) (TP (e=w) TD))

(e=w) ((M *(s=n)) (s=n) TM)]

In this version the construction of the scenarios is as follows. It starts by con-
structing the 1st line of the scenarios. Then, the remaining parts of the first two
columns are generating in the same way as with the initial model (that is, by an
imperative style). Moreover, the same is done separately for the remaining part
of the third column. Finally, these parts are composed horizontally (following a
dataflow style).

196 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

5 Related and Future Works

Related work. Regular expressions are introduced in the seminal paper by Kleene
[17] on the representation of events in neural nets and automata; it was published
in the early 1950s. Kleene theorem (i.e., the equivalence between finite automata
and appropriate regular expressions) was extended to cover other computing
models of interest and is a basis for the development of algebraic theories for
those models.

The algebraic theory of finite automata is based on semirings enriched with
an axiomatic iteration operator; often the term Kleene algebra is used in this
context. It was steadily developed since 1960s till now, including deep results
as Krob’s solution [19] for two deep conjectures of Conway [11]. We notice the
interest in getting complete equational axiomatizations; see, e.g., [28,18,6,19,8].
A few books recording the results are [11] and [20].

When (matrices over) semirings are replaced by more general algebraic struc-
tures as symmetric (strict) monoidal categories, the iteration operators may
have different expressive powers and axiomatisations. Trace monoidal categories
[30,9,16,33] are now recognized as a powerful formalism for iterative processes,
with wider applications than Kleene algebras; in particular they apply to circuits,
dataflow computation, quantum computation, etc. Translations between various
formalisms using axiomatic iteration operators may be found in [31,32,7,10,33].
Axiomatic iteration operators are also present in process calculi; a few papers
are [25,5,26].

Parallel computation often requires the enrichment of the sequential compu-
tation models with mechanisms for modelling process interaction. We mention
three examples of extensions of Kleene theorem into such a context: Kleene the-
orems for tile systems [14], for Petri nets [27,13], and for timed automata [1,2].
In all these contexts, the Kleene theorem is based on the following procedure: (1)
decompose/project the behaviour to have separate sequential runs; (2) use the
classical Kleene theorem for these sequential runs; (3) use synchronization and
renaming to force the composition of these separate projected runs to behave as
the initial overall system. It was noticed (see, e.g., [18]) that renaming has bad
algebraic properties and should be avoided.

The study of two dimensional languages has started in 1960’s; see [14,22]. In
1990’s, a robust class of “regular two dimensional languages” has been identified;
it may be specified either by tile systems, or by a type of cellular automata, or by
a class of monadic second-order formulas, etc. Unfortunately, the class is quite
complex - for instance, emptiness property is not decidable, see [21].

Interactive computation [15] is becoming more and more important in the
recent years, in particular due to the advance of multicore computation. We use
a model rv-IS [35] based on space-time duality. In particular, finite interactive
systems [34] are the space-time invariant extension of finite automata in this
context. A Kleene theorem for finite interactive systems follows directly from
their equivalence with tile systems [29]. Agapia programming [12] is a core in-
teractive programming language based on this model. The relational semantics
described in the present paper for Agapia programs may be seen as an exten-

A New Representation of Two-Dimensional Patterns 197

sion to 2 dimensions of the classical relational semantics of sequential computing
models [23,24].

Future work. There are many directions to continue the research presented in
this paper. We are particularly interested to develop the theoretical basis of
the model (e.g., to prove a Kleene theorem for finite interactive systems2; to
look for an associated algebraic theory; etc.) and to provide a software tool for
manipulating n2RE’s. Among the possible applications we mention:

– the study of massively parallel, interactive OO-programs (semantics, specifi-
cation, verification, etc.), in particular the programs written in the structured
interactive programming language Agapia;

– applications to image processing, in particular learning n2RE as a image
recognition procedure;

– modelling discrete physical or biological systems.

Acknowledgements. The research reported in this paper was partially supported by
Deploy Project, an FP7 Integrated Project supported by European Commission (Grant
No. 214158). We thank the anonymous reviewers for their suggestions for improving
the presentation of the results.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126, 183–235 (1994)

2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49, 172–206
(2002)

3. Banu-Demergian, I., Stefanescu, G.: On the contour representation of two-
dimensional patterns (2013), draft

4. Banu-Demergian, I., Stefanescu, G.: Representation of scenarios in finite interac-
tive systems (2013), draft, submitted

5. Bergstra, J., Bethke, I., Ponse, A.: Process algebra with iteration. The Computer
Journal 60, 109–137 (1994)

6. Bloom, S., Esik, Z.: Equational axioms for regular sets. Mathematical Structures
in Computer Science 3, 1–24 (1993)

7. Bloom, S., Esik, Z.: Iteration Theories: The Equational Logic of Iterative
Processes. Springer, Berlin (1993)

8. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras.
In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 122–136. Springer,
Heidelberg (2009)

9. Cazanescu, V., Stefanescu, G.: Towards a new algebraic foundation of flowchart
scheme theory. Fundamenta Informaticae 13, 171–210 (1990)

10. Cazanescu, V., Stefanescu, G.: Feedback, iteration and repetition. In: Păun, G.
(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 43–62. World
Scientific, Singapore (1995)

2 Recently, the first and the last authors presented a characterization theorem for FIS
languages in [4]. Their result shows that a slightly extended class of n2RE expressions
and a mechanism for solving recursive equations suffice to represent FIS languages.

198 I.T. Banu-Demergian, C.I. Paduraru, and G. Stefanescu

11. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
12. Dragoi, C., Stefanescu, G.: Agapia v0.1: A programming language for interactive

systems and its typing system. Electronic Notes in Theoretical Computer Science
203(3), 69–94 (2008)

13. Garg, V., Ragunath, M.: Concurrent regular expressions and their relationship to
Petri nets. Theoretical Computer Science 96, 285–304 (1992)

14. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of For-
mal Languages, pp. 215–267. Springer (1997)

15. Goldin, D., Smolka, S., Wegner, P.: Interactive computation: The new paradigm.
Springer (2006)

16. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In. Proceedings of
the Cambridge Philosophical Society, vol. 119 (1996)

17. Kleene, S.: Representation of events in nerve nets and finite automata. Automata
Studies (34), 3 (1956)

18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: LICS 1991, pp. 214–225. IEEE (1991)

19. Krob, D.: Complete systems of β-rational identities. Theoretical Computer Sci-
ence 89, 207–343 (1991)

20. Kuich, W., Salomaa, A.: Semirings, automata and languages. Springer, Berlin
(1985)

21. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable
picture languages. Information and Computation 138(2), 160–169 (1997)

22. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of Statistical Physics 91(5–6), 909–951 (1998)

23. Maddux, R.: Relation-algebraic semantics. Theoretical Computer Science 160,
1–85 (1996)

24. Manes, E., Arbib, M.: Algebraic approaches to program semantics. Springer,
Berlin (1986)

25. Milner, R.: Flowgraphs and flow algebras. Journal of the ACM (JACM) 26(4),
794–818 (1979)

26. Milner, R.: Action calculi V : Reflexive molecular forms (1994), draft, Department
of Computer Science, University of Edinburgh

27. Petri, C.: Kommunikation mit automaten. Ph.D. thesis, Instituts fur Instru-
mentelle Mathematik, Bonn, Germany

28. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Jour-
nal of the ACM (JACM) 13(1), 158–169 (1966)

29. Sofronia, A., Popa, A., Stefanescu, G.: Undecidability results for finite interactive
systems. Romanian Journal of Information Science and Technology 12(2), 265–279
(2009), also: Arxiv, CoRR abs/1001.0143 (2010)

30. Stefanescu, G.: Feedback Theories (A Calculus for Isomorphism Classes of Flow-
chart Schemes). Preprint Series in Mathematics, vol. 24. INCREST (1986); also
in: Revue Roumaine de Mathematiques Pures et Applique 35, 73–79 (1990)

31. Stefanescu, G.: On flowchart theories: Part I. The deterministic case. Journal of
Computer and System Sciences 35(2), 163–191 (1987)

32. Stefanescu, G.: On flowchart theories: Part II. The nondeterministic case. Theo-
retical Computer Science 52(3), 307–340 (1987)

33. Stefanescu, G.: Network algebra. Springer (2000)
34. Stefanescu, G.: Algebra of networks: Modeling simple networks as well as complex

interactive systems. In: Proof and System-Reliability, pp. 49–78. Springer (2002)
35. Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-

maticae 73(1), 285–305 (2006)

Push-Down Automata with Gap-Order
Constraints

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Giorgio Delzanno2,
and Andreas Podelski3

1 Uppsala University
2 University of Genova
3 University of Freiburg

Abstract. We consider push-down automata with data (Pdad) that
operate on variables ranging over the set of natural numbers. The con-
ditions on variables are defined via gap-order constraint. Gap-order con-
straints allow to compare variables for equality, or to check that the
gap between the values of two variables exceeds a given natural num-
ber. The messages inside the stack are equipped with values that are
natural numbers reflecting their “values”. When a message is pushed to
the stack, its value may be defined by a variable in the program. When
a message is popped, its value may be copied to a variable. Thus, we
obtain a system that is infinite in two dimensions, namely we have a
stack that may contain an unbounded number of messages each of which
is equipped with a natural number. We present an algorithm for solving
the control state reachability problem for Pdad based on two steps. We
first provide a translation to the corresponding problem for context-free
grammars with data (Cfgd). Then, we use ideas from the framework
of well quasi-orderings in order to obtain an algorithm for solving the
reachability problem for Cfgds.

1 Introduction

Model checking has become one of the main techniques for algorithmic verifi-
cation of computer systems. The original applications were found in context of
finite-state systems, such as hardware circuits, where the behavior of the system
can be captured by a finite state machine. In the last two decades, there has
also been a large amount of work devoted to extending model checking so that
its can handle models with infinite state spaces such as Petri nets, timed au-
tomata, push-down systems, counter automata, and channel machines. Recent
works have considered systems that are infinite in multiple dimensions. For in-
stance, many classes of timed protocols are parameterized (consist of unbounded
numbers of components), and hence they can be naturally modeled by timed
Petri nets [10]. Also, many message passing protocols have behaviors that are
constrained by timing conditions, giving rise to timed channel systems [5].

In particular, Push-Down Automata (Pda) have been studied extensively as
a model for the analysis of recursive programs (e.g., [12,33,23,25]). The model
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 199–216, 2013.
DOI: 10.1007/978-3-642-40213-5 13,
c© IFIP International Federation for Information Processing 2013

200 P. A. Abdulla et al.

of Pda has been extended to allow quantitative reasoning with respect to time
[1] and probabilities [26,24]. However, all existing models assume finite-state
control, which means that variables in the program are assumed to range over
finite domains. In this paper, we consider an extension of Pda, which we call
Pdad, that strengthens the model in two ways. First, in addition to the stack, a
Pdad also operates on a number of variables ranging over the natural numbers.
Furthermore, each message inside the stack is equipped with a natural number
which represents its “value”. Thus, we get a model that is possibly unbounded
in two dimensions, namely we have an unbounded number of messages inside the
stack each of which has an attribute that is a natural number. The operations
allowed on the stack are the standard push and pop operations. However, when
pushing a symbol to the stack, its value may be defined to be the value of a
program variable. Also, when a message is popped, then its value may be copied
to a variable. A Pdad allows comparing the values of variables according to the
gap-order constraint system, where two variables may be tested for equality, or
for checking that there is a minimal gap (defined by a natural number) between
the values of the two variables. Also, a variable may be assigned a new arbitrary
value, the value of another variable, or a value that is at least some (given)
natural number larger than the value of another variable. In this manner, the
model of Pdad subsumes two known models, namely that of Pda (which we
get by removing the variables in the program and by neglecting the values of
the symbols in the stack), and the model of Integral Relational Automata [15]
(which we get by removing the stack).

In this paper, we show decidability of the control reachability problem for
Pdad. Given a control (local) state of the automaton, we check whether the
automaton reaches the state from its initial configuration. We solve the problem
in two steps. We introduce a class of Context-Free Grammars with Data (Cfgd).
In a Cfgd, each non-terminal has an arity. The grammar generates terms each
of which is either a terminal or a non-terminal equipped with a tuple of natural
number (as many as its arity). An application of a production rewrites a term
to a set of terms. Such an application is constrained by the arguments of the
involved non-terminals. The constraints are defined by gap-order conditions. For
Cfgd, we solve a reachability problem in which we ask whether it is possible
to derive a set of terms each of which is a terminal belonging to a given set
of terminals. In the first step of our method, we give a reachability analysis
algorithm that solves the above mentioned problem for Cfgds.

The algorithm is based on a constraint representation of infinite sets of terms,
and it is formulated within the framework of well structured transition systems
[4,6].

The second step of our method translates a given Pdad into a Cfgd so as to
exploit the corresponding reachability analysis procedure to solve control state
reachability for Pdads.

To our knowledge our result yields a new decidable fragment of pushdown
automata with data (see Section 10).

Push-Down Automata with Gap-Order Constraints 201

2 Preliminaries

In this section, we introduce some notations and definitions that we will use in
the rest of the paper. We use N to denote the set of natural numbers.

We fix a finite set V of variables that range over N. A valuation is a mapping
Val : V→ N, i.e., it assigns a natural number to each variable. Given a variable
x ∈ V, a natural number c ∈ N, and a valuation Val : V→ N, we use Val [x← c]
to denote the valuation Val ′ defined as follows: Val ′(x) = c, and Val ′(y) = Val(y)
for all y ∈ (V \ {x}).

A renaming is a mapping Ren : V → V, i.e., it renames each variable to
another one. A renaming Ren does not need to be injective, i.e., several variables
may be renamed to the same variable by Ren. We say that Ren is a renaming
for W if Ren (x) ∈W for all x ∈ V.

For a set A, we use A∗ to denote the set of finite words over A. We use ε
to denote the empty word. For words α1, α2 ∈ A∗, we use α1 · α2 to denote the
concatenation of α1 and α2.

A transition system is a tuple 〈Υ, γinit ,−→〉 where Υ is a (potentially infinite)
set of configurations, γinit ∈ Υ is the initial configuration, and −→⊆ Υ × Υ is
the transition relation. As usual, we write γ −→ γ′ to denote that 〈γ, γ′〉 ∈−→,
and use ∗−→ to denote the reflexive transition closure of −→. For a configuration
γ ∈ Υ and a set Γ ⊆ Υ of configurations, we use γ ∗−→ Γ to denote that γ ∗−→ γ′

for some γ′ ∈ Γ .

3 Push-Down Automata with Data

In this section, we introduce Push-Down Automata with Data (Pdad) that are
extensions of the classical model of Push-Down Automata (Pda). First, we define
the model, then we define the operational semantics, i.e., the transition system
induced by a Pdad, and finally we introduce the reachability problem. As in
the case of a Pda a Pdad operates on an unbounded stack to which it can
push (append) messages and from which it can pop (remove) message in last-in-
first-out manner. The messages are chosen from a finite alphabet. Pdads extend
Pdas in two ways. First, in addition to the stack, the automaton is equipped
with a finite set of variables ranging over natural numbers. Second, each message
inside the stack is equipped by a natural number that represents its “value”. The
allowed operations on variables are defined by the gap-order constraint system
[15,31]. More precisely, the model allows non-deterministic value assignment,
copying the value of one variable to another, and assignment of a value v to
some variable such that v is larger of at least a given natural number than the
current value of another variable. The transitions may be conditioned by tests
that compare the values of two variables for equality, or that give the minimal
allowed gap between two variables. A push operation may copy the value of a
variable to the pushed message, and a pop operation may copy the value of the
popped message to a variable.

202 P. A. Abdulla et al.

Model. A Pdad A is a tuple〈Q, qinit , A,Δ〉 where Q is the finite set of states,
qinit ∈ Q is the initial state, A is the stack alphabet, and Δ is the transition
relation. We remark that the stack alphabet is infinite since it consists of pairs
〈a, �〉 where a is taken from a finite set and � is a natural number. A transition
δ ∈ Δ is a triple 〈q1, op, q2〉 where q1, q2 ∈ Q are states and op is an operation of
one of the following forms: (i) nop is an empty operation that does not change
the values of the variables or the content of the stack, (ii) x ← ∗ assigns non-
deterministically an arbitrary value in N to the variable x, (iii) y ← x copies
the value of variable x to y, (iv) y ← (>c x) assigns non-deterministically to y a
value that exceeds the current value of x by c (so the new value of y is > x+ c),
(v) y = x checks whether the value of y is equal to the value of x, (vi) x <c y
checks whether the gap between the values of y and x is larger than c, (vii)
push (a) (x) pushes the symbol a ∈ A to the stack and assigns to it the value of
x, and (viii) pop (a) (x) pops the symbol a ∈ A (if a is the top-most symbol at
the stack) and assigns its value to the variable x.

Transition System. A Pdad induces a transition system as follows. A configu-
ration γ is a triple 〈q,Val , α〉 where q ∈ Q is a state, Val : V 	→ N is a valuation,
and α ∈ (A× N)∗ defines the content of the stack (each element of the word is
a pair 〈a, c〉 where a is the symbol and c is its value).

We define the transition relation −→:= ∪δ∈Δ δ−→, where δ−→ describes the
effect of the transition δ. For configurations γ = 〈q,Val , α〉, γ′ =

〈
q′,Val ′, α′〉,

and a transition δ = 〈q1, op, q2〉 ∈ Δ, we write γ δ−→ γ′ to denote that q = q1,
q′ = q2, and one of the following conditions is satisfied:

– op is nop, Val ′ = Val , and α′ = α. The values of the variables and the stack
content are not changed.

– op is x ← ∗, Val ′ = Val [x← c] where c ∈ N, and α′ = α. The value of the
variable x is changed non-deterministically to some natural number. The
values of the other variables and the stack content are not changed.

– op is y ← x, Val ′ = Val [y ← Val (x)], and α′ = α. The value of the variable
x is copied to the variable y. The values of the other variables and the stack
content are not changed.

– op is y ← (>c x), Val ′ = Val [y ← c′], where c′ > Val (x) + c, and α′ = α.
The variable y is assigned non-deterministically a value that exceeds the
value of x by c. The values of the other variables and the stack content are
not changed.

– op is y = x, Val (y) = Val (x), Val ′ = Val , and α′ = α. The transition is
only enabled if the value of y is equal to the value of x. The values of the
variables and the stack content are not changed.

– op is x <c y, Val (y) > Val (x) + c, Val ′ = Val , and α′ = α. The transition
is only enabled if the value of y is larger than the value of x by more than
c. The values of the variables and the stack content are not changed.

– op is push (a) (x), Val ′ = Val , and α′ = 〈a,Val (x)〉 · α. The symbol a is
pushed onto the stack with a value equal to that of x.

Push-Down Automata with Gap-Order Constraints 203

– op is pop (x) (a), α = 〈a, c〉 · α′ for some c ∈ N, and Val ′ = Val [x← c]. The
symbol a is popped from the stack (if it is the top-most symbol), and its
value is copied to the variable x.

We define the initial configuration γinit := 〈qinit ,Val init , ε〉, where Val init(x) = 0
for all x ∈ V. In other words, we start from a configuration where the automaton
is in its initial state, the values of all variables are equal to 0, and the stack is
empty (the fact that we choose to initialize the variables to 0 is not crucial for
solving the problem).

For a configuration and a state q ∈ Q, we write γ
∗−→ q to denote that

γ
∗−→ γ′ = 〈q,Val , α〉 for some Val : V 	→ N and α ∈ (A× N)∗.
In other words, from γ we can reach a configuration whose state is q.

Reachability Problem. In the reachability problem Pdad-Reach, given a Pdad
A = 〈Q, qinit , A,Δ〉 and a state qtarget ∈ Q, we ask whether γinit

∗−→ qtarget .

4 Context-Free Grammars with Data

In this section, we introduce Context-Free Grammars with Data (Cfgd) that
are extensions of the classical model of Context-Free Grammars (Cfg) in which
(terminal and non terminal) symbols are defined by terms with free variables
and productions have conditions defined by gap order constraints. We define the
model, the operational semantics, and the reachability problem.

Model. A Context-Free Grammars with Data (Cfgd) is a tuple G = 〈S,Xinit , P 〉,
where S is a finite set of symbols. Xinit ∈ S is the start (or initial) symbol, and
P is the set of productions. Each symbol X has an arity ρ (X) ∈ N that is a
natural number. Without loss of generality, we assume that ρ (Xinit) = 1. A
term has the form X(x1, . . . , xn) where X ∈ S, ρ (X) = n and x1, . . . xn ∈ V are
variables. A ground term has the form X(c1, . . . , cn) where X ∈ S, ρ (X) = n and
c1, . . . cn ∈ N are natural numbers. For a term σ of the form X(x1, . . . , xn) we
define Sym (σ) = X and Var (σ) = {x1, . . . , xn}. We define Sym (σ) for a ground
term σ similarly. A (ground) sentence α is a finite set {σ1, σ2, · · · , σn}, where
each σi is a (ground) term. We define Sym (α) := {Sym (σ1) , . . . ,Sym (σn)},
i.e., it is the set of symbols that occur in α. For a term σ = X(x1, . . . , xn) and a
valuation Val , we define Val (σ) := X(Val (x1) , . . . ,Val (xn)) to be the ground
term we get by substituting each variable xi in σ by Val (xi). For a sentence α,
we define Val (α) similarly.

A condition θ is a finite conjunction of formulas of the forms: x <c y or x = y,
where x, y ∈ V and c ∈ N. Here x <c y stands for x + c < y. Sometimes, we
treat a condition θ as set, and write e.g. (x <c y) ∈ θ to indicate that x <c y
is one of the conjuncts in θ. For a valuation Val , we use Val (θ) to denote the
result of substituting each variable x in θ by Val (x). We use Val |= θ to denote
that Val (θ) evaluates to true. We use Var (θ) to denote the set of variables that
occur in θ.

204 P. A. Abdulla et al.

A production p is of the form σ � α : θ, where σ is a term, α is a non-empty
sentence, and θ is a condition. We often use the notation σ � σ1 · · ·σn : θ to
denote the production σ � {σ1, . . . , σn} : θ (i.e. a sequence in the right-
hand side denotes a set of terms). We use N to denote the set of non-terminals
consisting of symbols that occur in the left-hand side of a production (we say
that they are defined by a production). We use T to denote the set of terminals
consisting of symbols that do not occur in the left-hand side of a production.
Furthermore, we use AT to denote the set of ground terms with symbols in T.

Transition System. A configuration γ is a ground sentence. We define a transi-
tion relation −→G on the set of configurations by −→G:= ∪p∈P p−→ where

p−→
represents the effect of applying the production p. More precisely, for a produc-
tion p ∈ P of the form σ � α : θ, we have γ1

p−→ γ2 if there is a valuation
Val |= θ such that γ1 = α′ ∪ {Val (σ)} and γ2 = α′ ∪ {Val (α)}.

For a set S of ground terms, we define Pre (S) to be the set of ground
terms σ which can, through the single application of a production, generate a
configuration γ ⊆ S (i.e., σ −→G γ). Let Pre∗ (·) denote the transitive closure of
Pre (·).

We will use the following lemmata later in the paper.

Lemma 1. Let α be a ground sentence of G. Then, if for every ground term
σ ∈ α, we have σ ∗−→G α

′′ for some ground sentence α′′ such that Sym (α′′) ⊆ T,
then α

∗−→G α
′ for α′ such that Sym (α′) ⊆ T.

Lemma 2. Let S be a set of ground terms and σ be a ground term such that
σ ∈ Pre∗ (S). If σ /∈ S then there is a ground term σ′ ∈ (Pre (S) \ S).

Reachability Problem. In the reachability problem Cfgd-Reach, we are given a
Cfgd G = 〈S,Xinit , P 〉 and we are asked the question whether Xinit(0) ∗−→G α
for some ground sentence α such that Sym (α) ⊆ T. In other words, we start
from a configuration consisting of the start symbol with its parameter set to
zero, and ask whether the system can reach a configuration where all its ground
terms have symbols in T.

Cfgd vs Cfg A Context-Free Grammars (Cfg) is defined by production of the
form S → w where w is a word defined over terminal and non terminal symbols.
We can encode a Cfg as a Cfgd by associating to each terminal/non terminal
symbol X (except the initial) a term X(a, b) in which (a, b) are used to maintain
an order in the right-hand side of a rule. For instance, the production S → SaS
is encoded via the Cfgd production S(x, y) → {S(x, z), a(z, t), S(t, y)} : x <
z, z < t, t < y.

Cfgd vs CMRS Cfgd also differ from the CMRS model [7]. CMRS is obtained
by combining multiset rewriting and Gap Order constraints and it is aimed at
modeling concurrent processes. CMRS rules have multiple heads and work over
multisets of monadic terms (i.e. with a single argument, no nested terms). Dif-
ferently from CMRS, Cfgd productions have a single term in the left-hand side

Push-Down Automata with Gap-Order Constraints 205

and a set of terms in the right-hand side. This implies that multiple occurrences
(with the same variables) of a term like p(x, y) are counted only once. Further-
more, non-terminal symbols have arbitrary finite arity.

5 Symbolic Encoding

In this section, we define the symbolic representation used in the definition of
the reachability algorithm (Section 6). The algorithm operates on constraints,
where each constraint φ characterizes a (potentially) infinite set [[φ]] of ground
terms. A constraint φ is of the form σ : θ where σ is a term and θ is a condition.
We define Sym (φ) = Sym (σ) and Var (φ) = Var (σ) ∪Var (θ).

Definition 3. The constraint φ characterizes a set of ground terms defined by
[[φ]] = {σ′| ∃Val . (Val |= θ) ∧ (σ′ = Val(σ)}. For a finite set of constraints Φ,
[[Φ]] =

⋃
φ∈Φ [[φ]].

Without loss of generality, we can assume that Var (θ) = Var (σ), and that θ
is consistent (constraints with inconsistent conditions characterize empty sets
of configurations, and can therefore be safely discarded from the reachability
analysis). A term X(x1, . . . , xn) is said to be pure if xi = xj whenever i = j. A
constraint σ : θ is said pure if σ is pure. We can assume without loss of generality
that all constraints are pure. The reason is that if a variable x occurs (say)
twice then the two occurrences of x can be replaced by two different variables
y1 and y2 provided that we add a new conjunct y1 = y2 to the condition θ.
For constraints φ1, φ2, we use φ1 � φ2 to denote that φ1 subsumes φ2, i.e.,
[[φ1]] ⊇ [[φ2]]. Then, it is easy to see that checking whether φ1 � φ2 can be
reduced to the satisfiability problem for an existential Presburger formula (which
is known to be NP-complete [34]).

Lemma 4. For constraints φ1, φ2, the problem of checking whether φ1 � φ2 is
decidable.

The following lemma states that we can transform any constraint φ of the
form σ : θ to an equivalent constraint clean(φ) of the form σ : θ′ such that
Var (θ′) = Var (σ) (i.e., we remove the extra-variables (Var (θ) \ Var (σ)) from
θ in order to satisfy the assumption that Var (θ) = Var (σ)).

Lemma 5. [31] Given a constraint φ of the form σ : θ, we can construct
a constraint clean(φ) of the form σ : θ′ such that Var (θ′) = Var (σ) and
[[clean(φ)]] = [[φ]].

Given two terms σ1 and σ2, we say that σ1 matches σ2 iff Sym (σ1) =
Sym (σ2). For matching terms σ1 = X(x1, . . . , xn) and σ2 = X(y1, . . . , yn),
where σ2 is pure, we define Renσ2

σ1
to be a renaming such that Renσ2

σ1
(yi) = xi for

all i : 1 ≤ i ≤ n. Consider a production p = σ � σ1 · · ·σn : θ and constraints
φ1 = σ′

1 : θ1, . . . , φn = σ′
n : θn such that σi and σ′

i are matching, and such that
σ′
i is pure for all i : 1 ≤ i ≤ n. We define p⊗ φ1 ⊗ · · · ⊗ φn to be the constraint

206 P. A. Abdulla et al.

σ : θ ∧ Renσ
′
1
σ1

(θ1) ∧ · · · ∧ Renσ
′
n
σn

(θn). For a set Φ of constraints, and production
p ∈ P , we define Prep (Φ) := {clean(φ′)| ∃φ1, . . . , φn ∈ Φ. φ′ = p⊗ φ1 · · · ⊗ φn}.
We define Pre (Φ) := ∪p∈PPrep (Φ). Intuitively, Pre (Φ) defines a finite set of
constraints that characterize the terms which can, through the single applica-
tion of a production, generate a set of terms each of which belongs to Φ.

Lemma 6.
⋃
φ′∈Pre(Φ) [[φ′]] = Pre ([[Φ]]).

For the set T of terminals, we define

ΦT := {a(x1, . . . , xn) : true| a ∈ T, ρ (a) = n}

Notice that ΦT denotes the set of configurations whose symbols are in T.

6 Reachability Analysis

In this section, we present an algorithm for solving the reachability analysis prob-
lem for Cfgds, and prove its partial correctness. The algorithm (Algorithm 1)
inputs a Cfgd G = 〈S,Xinit , P 〉 and answers the question whether we can reach
a sentence where all the occurring terms are in AT (i.e. terms with symbols in T).
The algorithm maintains two sets of constraints: a set ToExplore, initialized to
ΦT, of constraints that have not yet been analyzed; and a set Explored, initial-
ized to the empty set, of constraints that contain constraints that have already
been analyzed.

The algorithm preserves the following four invariants:

1. For each σ ∈ [[ToExplore ∪ Explored]], σ ∗−→ α for some α s.t. Sym (α) ⊆ T.
2. If Xinit(0) ∗−→ α for some α s.t. Sym (α) ⊆ T, then there is a ground term
σ ∈ [[ToExplore]] such that σ ∈ [[Explored]].

3. Xinit(0) ∈ [[Explored]].
4. [[ΦT]] ⊆ [[ToExplore ∪ Explored]].

Algorithm 1: Reachability analysis for a Cfgd.
Input: A Cfgd G = 〈S, Xinit , P 〉
Output: Is there a subset of terminal symbols T ⊆ T reachable in G?
ToExplore← ΦT;1

Explored← ∅2

while ToExplore �= ∅ do3

remove some φ from ToExplore;4

if Xinit(0) ∈ [[φ]] then return true;5

else if ∃φ′ ∈ Explored. φ′
 φ then discard φ;6

else7

ToExplore← ToExplore ∪ Pre (Explored ∪ {φ});8

Explored← {φ} ∪ {φ′|φ′ ∈ Explored ∧ (φ �
 φ′)};9

return false10

Push-Down Automata with Gap-Order Constraints 207

It is easy to see that the third and fourth invariants will be preserved.
More precisely, for the third invariant, Explored is initially empty, and the
condition at line 5 prevents adding any constraint whose symbol is Xinit and
parameter equals to 0 to Explored. The fourth invariant holds initially since
ToExplore ∪ Explored = ΦT ∪ ∅ = ΦT. This invariant is preserved since each
time we remove a constraint from ToExplore (line 4), it is either eventually
moved to Explored (line 9), or (in case it is discarded at line 6) there is already
a constraint φ′ ∈ Explored with [[φ′]] ⊇ [[φ]]. Also, each time we remove a con-
straint φ′ from Explored (line 9), we add the constraint φ to Explored where
[[φ]] ⊇ [[φ′]].

Below, we show that the first two invariants are also preserved. Initially, the
first invariant holds since (ToExplore ∪ Explored) = ΦT. The second invariant
also holds initially since Explored = ∅ and [[ToExplore]] = [[ΦT]] = ∅. Due to
the first two invariants, the following two conditions can be checked during each
step of the algorithm:

– From the second invariant, if ToExplore becomes empty then the algorithm
terminates with a negative answer.

– From the first invariant, if a constraint φ is detected such that Xinit(0) ∈ [[φ]],
then the algorithm terminates with a positive answer.

If neither of the two conditions is satisfied, the algorithm proceeds by picking
and removing a constraint φ from ToExplore. Two possibilities arise depending
on the value of σ:

– If there exists a constraint φ′ ∈ Explored with φ′ � φ, then we discard φ. The
first invariant is preserved since this operation will not add any new elements
to [[ToExplore ∪ Explored]]. If Xinit(0) ∗−→ α for some α s.t. Sym (α) ⊆ T,
then the second invariant and the fact that [[φ]] ⊆ [[Explored]] imply that
there is still some σ ∈ ToExplore such that σ ∈ [[Explored]]. This means
that the second invariant will also be preserved by this step.

– Otherwise, we compute the elements of Pre (Explored ∪ φ), add them in
ToExplore, move φ to Explored, and remove all constraints in Explored
that are subsumed by φ. Let Exploredold and Explorednew be the con-
tents of the set Explored before resp. after performing the operation. Define
ToExploreold and ToExplorenew analogously. The operation preserves the
first invariant as follows. Pick any σ ∈ [[ToExplorenew ∪ Explorednew]]. If
σ ∈ [[ToExploreold ∪ Exploredold]] then the result follows by the first invari-
ant. Otherwise we know that σ ∈ [[Pre (Exploredold ∪ {φ})]], i.e., σ −→G

α where α ⊆ [[Exploredold ∪ {φ}]] (see Lemma 6). By the induction hy-
pothesis and the first invariant, we know that every ground term σ′ ∈ α,
σ′ ∗−→G α′ for some α′ s.t. Sym (α′) ⊆ T . Hence α ∗−→G α′′ for some α′′

s.t. Sym (α′′) ⊆ T (see Lemma 1). In other words, σ −→G α
∗−→G α′′ s.t.

Sym (α′′) ⊆ T. The operation also preserves the second invariant as fol-
lows. Assume that Xinit(0) ∗−→G α for some α s.t. Sym (α) ⊆ T. There
are two cases. If there is a σ ∈ [[ΦT]] such that σ ∈ [[Explorednew]], then

208 P. A. Abdulla et al.

by the fourth invariant σ ∈ [[ToExplorenew]] and the invariant holds im-
mediately. Otherwise, [[ΦT]] ⊆ [[Explorednew]]. Since Xinit(0) ∗−→G α we
have also that Xinit(0) ∈ Pre∗ ([[Explorednew]]). By the third invariant, we
know that Xinit(0) ∈ [[Explorednew]] . By Lemma 2 that there is a ground
term σ ∈ (Pre ([[Explorednew]]) \ [[Explorednew]]). Since [[Explorednew]] =
[[Exploredold ∪ {φ}]] it follows that σ ∈ [[Pre (Exploredold ∪ {φ})]] and hence
σ ∈ [[ToExplorenew]].

This give us the following theorem.

Theorem 7. Algorithm 1, under termination assumption, always return the
correct answer.

7 Termination

In this section, we show that Algorithm 1 is guaranteed to terminate. To do
that, we first recall some basics of the theory of well and better quasi-orderings.
Then, we introduce a new class of constraints that we call flat constraints and
show that they are better quasi-ordered. We show that each condition can be
translated into a number of flat constraints. We use this to show that the set of
conditions is well quasi-ordered under set inclusion. This leads to the well quasi-
ordering of the set of constraints (of Section 5). Finally, we show the termination
of the algorithm.

Wqos and Bqos. A Quasi-Ordering (or a Qo for short), is a pair 〈A,�〉 where
� is a reflexive and transitive binary relation on the set A. A QO 〈A,�〉 is a Well
Quasi-Ordering (Wqo), if for each infinite sequence a1, a2, a3, . . . of elements
of A , there are i < j such that ai � aj . The following lemma follows from the
definition of a Wqo.

Lemma 8. For Qos � and �′ on some set A, if �⊆�′ and � is a Wqo then
�′ is a Wqo.

Given a Qo 〈A,�〉, we define a Qo 〈A∗,�∗〉 on the set of words A∗ such that
a1a2 · · · am �∗ a′

1a
′
2 · · · a′

n if there is an injection h : {1, . . . ,m} 	→ {1, . . . , n}
such that i < j implies h(i) < h(j) for all i, j : 1 ≤ i, j ≤ m, and ai � a′

h(i) for
each i : 1 ≤ i ≤ m. We define the relation �P on the powerset P (A) (finite set
of elements in A) of A, so that A1 �P A2 if ∀a2 ∈ A2.∃a1 ∈ A1.a1 � a2.

We define the relation �p on the Cartesian product A1 × . . .×An of orders
〈Ai,≤i〉 for i : 1, . . . , n, so that 〈a1, . . . , an〉 �p 〈a′

1, . . . , a
′
n〉 if ai �i a′

i for
i : 1, . . . , n.

In the following lemma we state some properties of Bqos1 [10,28].

1 The technical definition of Bqos is quite complicated and can be found in e.g. [10].
The actual definition is not needed for understanding the rest of the paper, and is
therefore omitted here.

Push-Down Automata with Gap-Order Constraints 209

Lemma 9. – Each Bqo is Wqo.
– If A is finite, then 〈A,=〉 is a Bqo, and 〈P (A) ,⊆〉 is a Bqo.
– 〈N,≤〉 is a Bqo.
– If 〈Ai,≤i〉 is a Bqo for i : 1, . . . , n then 〈A1 × . . .×An,�p〉 is a Bqo.
– If 〈A,�〉 is a Bqo, then

〈
P (A) ,�P

〉
is a Bqo.

Flat Constraints. Fix a set V = {x1, . . . , xn} of variables. A flat constraint ψ over
V if of the form A0c1A1 · · · cmAm, where c1, . . . , cm ∈ N, and A0, A2, . . . , Am is
a partitioning of V, i.e., V = A0∪A1∪· · ·∪Am, Ai = ∅, and Ai∩Aj = ∅ if i = j.
In other words, a flat constraint is a word which alternatively contains sets of
variables and natural numbers, starting and ending with a set of variables. The
flat constraint ψ characterizes an infinite set [[ψ]] of vectors over N of length n,
i.e., [[ψ]] ⊆ N

n. More precisely, define hψ : {1, . . . , n} 	→ {0, . . . ,m} such that
hψ(i) = k if xi ∈ Ak. v = 〈d1, . . . , dn〉 ∈ [[ψ]] iff the following conditions are
satisfied for all i, j : 1 ≤ i, j ≤ n:

– di = dj if hψ(i) = hψ(j).
– If hψ(i) = k. and hψ(j) = k + 1 then ck+1 < dj − di.

In other words, the variable xi represents di in ψ. If two variables are mapped
to the same set then their values should be identical. Furthermore, the natural
numbers ci define the gaps between values of variables belonging to the different
sets. For flat constraints ψ = A0c1A1 · · · cmAm and ψ′ = A′

0c
′
1A

′
1 · · · c′mA′

m over
V, we write ψ � ψ′ to denote that (i) A′

i = Ai for all i : 0 ≤ i ≤ m, and (ii)
ci ≤ c′i for all i : 1 ≤ i ≤ m. The following lemma follows from the definitions.

Lemma 10. ψ � ψ′ implies that [[ψ]] ⊇ [[ψ′]].

By Lemma 9 it follows that

Lemma 11. � is a Bqo on the set of flat constraints.

Proof. We first observe that flat contraints can be viewed as tuples with at most
K = |V| partitions and |V| − 1 constants and we can always add finite sequences
such as 0∅0 . . . 0∅ to consider K-tuples only. From Lemma 9, we know that 〈N,≤〉
and 〈P (V) ,=〉 are Bqos. Thus, the Cartesian product (P (V) × N)K−1 × P (V)
with � is still a Bqo.

Flattening. Consider a condition θ with Var (θ) = {x1, . . . , xn} (recall the defi-
nitions of conditions and constraints from Section 5). We define [[θ]] to be the set
of vectors v = 〈d1, . . . , dn〉 ∈ N

n, such that there is a valuation Val with Val |= θ
and Val (xi) = di for all i : 1 ≤ i ≤ n. Furthermore, for two conditions on the
same set of variables we define θ � θ′ iff [[θ]] ⊇ [[θ′]]. A flattening of θ is a flat
constraint ψ over Var (θ), of the form A0c1A1 · · · cmAm where c1, . . . , cm ≥ 0
are minimal natural numbers such that the following conditions are satisfied:

– If (x = y) ∈ θ then x, y ∈ Ai for some i : 1 ≤ i ≤ m.
– If (x <c y) ∈ θ, x ∈ Ai, and y ∈ Aj then c ≤

(∑j
k=i+1(ck + 1)− 1

)
.

210 P. A. Abdulla et al.

Intuitively, variables which are required to be equal by θ, are put in the same Xi.
Also, variables which are ordered according to θ, are placed sufficiently far apart
to cover the corresponding gap. We define F (θ) to be the set of flattening of θ.
In general conditions induce a partial order between variables. The flattening
contains all linearizations with minimal gaps (constants) between variables. No-
tice that this set is finite. As an example, consider the condition x <2 y, x <1 z.
Since there are no constraints on y and z, we have three different flattening where
y < z or y = z or y > z, namely {x}2{y}0{z}, {x}2{y, z}, and {x}1{z}0{y}.

We define an ordering � on conditions such that θ � θ′ if for each ψ′ ∈ F (θ′)
there is a ψ ∈ F (θ) with ψ � ψ′. From Lemma 10 we get the following.

Lemma 12. θ � θ′ implies that [[θ]] ⊇ [[θ′]].

The following lemma follows from Lemma 9 and Lemma 11.

Lemma 13. � is a Bqo (and hence Wqo) on the set of conditions.

From Lemma 13, Lemma 12, and Lemma 8 we get the following lemma.

Lemma 14. The set of conditions is Wqo under �.

The following lemma then holds.

Lemma 15. The set of constraints is Wqo under �.

Proof. Consider an infinite sequence of constraints: φ1, φ2, φ3, Since the set
N ∪ T is finite, there is an infinite sequence i1 < i2 < i3 < · · · such that
Sym (φi1) = Sym (φi2) = Sym (φi3) = · · · . If Sym

(
φij

) ∈ T then the result fol-
lows immediately (since [[φij]] =

{
Sym

(
φij

)}
for all j ≥ 1). Otherwise, we can

assume, without loss of generality, that φij is of the form X(x1, . . . , xn) : θij .
Notice that each Var

(
θij

)
= {x1, . . . , xn} is a condition over {x1, . . . , xn}. By

Lemma 14, there are j < k such that θij � θik , and hence φij � φik .

Termination. The reason why the algorithm always terminates is that only a
finite set of constraints can be added to Explored. This can be explained as
follows. By definition, a new element φ is added to Explored only if φ′ � φ,
for each φ′ already added to Explored. This means that the constraints added
to Explored form a sequence φ1, φ2, φ3, . . ., such that φi � φj for all i < j.
By Wqo of � (Lemma 15) it follows that this sequence is finite. This gives the
following theorem.

Theorem 16. Algorithm 1 is guaranteed to terminate.

8 Translation

Reachability with Empty Stacks. We consider a different variant of Pdad-Reach
which we call Pdad-Reach-Empty. An instance of Pdad-Reach-Empty is
defined by a Pdad A = 〈Q, qinit , A,Δ〉 and a state qtarget ∈ Q, and we are

Push-Down Automata with Gap-Order Constraints 211

asked whether γinit
∗−→ γ for some γ of the form 〈qtarget ,Val , ε〉, i.e., we ask

whether we reach qtarget at a configuration where the stack is empty. Given an
instance of Pdad-Reach, defined by a Pdad A = 〈Q, qinit , A,Δ〉 and a state
qtarget ∈ Q, we derive an equivalent instance of Pdad-Reach-Empty as follows.
We construct a new Pdad A′ from A by adding a new state qnew to Q, and adding
a transition labeled with nop from qtarget to qnew . For each member a ∈ A of the
stack alphabet, we add a self-loop on qnew that pops a (with any value). The
two problem instances are equivalent as follows. Suppose that qnew is reachable
with an empty stack in A′. Then, the run of A′ reaching qnew must have passed
through qtarget (since qnew can only be reached from qtarget). This means that
qtarget is reachable in A. On the other hand, suppose that qtarget is reachable
in A. Then, A′ can simulate the run of A until it reaches qtarget . From there, it
takes the transition to qnew , and starts executing the self-loops, popping all the
symbols in the stack until the stack becomes empty.

From Pdad to Cfgd. Suppose that we are given an instance of Pdap-Reach-
Empty defined by a Pdad A = 〈Q, qinit , A,Δ〉 and a state qtarget ∈ Q. Let
{x1, . . . , xn} be the set of variables that occur in A. We derive an equivalent
instance of Cfgd-Reach defined by a Cfgd G = 〈S,Xinit , P 〉. The set T of G
is defined by the singleton set {t} and we assume that the arity of t is 0 (i.e.,
ρ (t) = 0). The set of N of G is defined as follows: For each pair of states q1, q2 ∈ Q
and symbol a ∈ A∪{⊥}, with ⊥ /∈ A, we have a nonterminal X(q1,a,q2) ∈ N with
arity 2n+ 1. The symbol ⊥ is used to denote that the stack of A is empty. The
set of non-terminal set N contains the initial symbol Xinit (by definition).

In the following, let ȳ denote a vector 〈y1, . . . , yn〉 of length n, and define
ȳ[i] := yi for i : 1 ≤ i ≤ n. For vectors z̄ = 〈z1, . . . , zn〉 and ȳ = 〈y1, . . . , yn〉,
we use z̄ = ȳ (resp. z̄ =j ȳ for some j : 1 ≤ j ≤ n) to denote the condi-
tion

∧
1≤i≤n zi = yi (resp.

∧
(1≤i≤n)∧(i�=j) zi = yi). Furthermore, for brevity, we

sometimes shorten a conjunction of conditions θ1 ∧ . . .∧ θn into a list θ1, . . . , θn.
Intuitively, a non-terminal of the form X(q1,a,q3)(ȳ, z̄, �) represents a run of A

from a configuration where the state is q1, the topmost stack symbol is a and its
corresponding value is given by the value � (if a = ⊥ then the stack is empty),
and the valuation of the shared variables of A is given by the valuation of ȳ, to a
configuration with a stack content where a has been popped and where the state
is q3 and the valuation of the shared variables of A is given by the valuation of
z̄.

The set P is derived from Δ, and it contains the productions of Fig. 1. Then
the following property holds.

Proposition 17. γinit
∗−→ γ for some γ = 〈qtarget ,Val , ε〉 iff Xinit

∗−→G α for
some sentence α such that Sym (α) ⊆ T.

As an immediate consequence of the above Proposition, Theorem 7, and Theorem
16, we get:

Theorem 18. The Pdad-Reach and Pdad-Reach-Empty problems are de-
cidable for Pdads.

212 P. A. Abdulla et al.

Fig. 1. From transitions of pushdown with data to productions

9 Extended Pdads

In this section, we present generalizations of the basic Pdad model for which
the results presented in this paper still hold.

The first extension consists in adding to conditions of the form x = c, x > c,
and x < c for a variable x and a constant value c ≥ 0. The resulting formulas
corresponds to the original Gap Order Constraints considered in [31].

The second extension consists in adding multiple data fields in each element
pushed to the stack. For fixed number of data fields k ≥ 0, the configuration of
Pdadk becomes a triple 〈q,Val , α〉 where q ∈ Q is a state, Val : V 	→ N is a
valuation, and α ∈ (

A× N
k
)∗ defines the content of the stack (each element of

the word is a pair 〈a, c1, . . . , ck〉 where a is the symbol and ci is its value for the
i-th field).

We now consider operations that manipulate the data fields. We first extend
the push operation and consider push (a) (x1, . . . , xk) to push the symbol a ∈ A
and to assign to the i-th field the value of xi for i : 1, . . . , k. We also consider
operation pop (a) (x1, . . . , xk) to pop the symbol a ∈ A from the stack and to
assign to xi the value of the i-th field on the top of the stack i : 1, . . . , k. The
operational semantics can be naturally extended in order to cope with tuples of
values instead of single one.

Push-Down Automata with Gap-Order Constraints 213

Finally, we consider operations that test and modify the data fields on the
stack. We can use special identifiers topx1, . . . , topxk to denote such data fields
and use them in conditions of transitions.

To encode the resulting model into Cfgd, we need to introduce non-terminals
with extra arguments that represent both the current value and the (guessed)
updated value of data fields. More specifically, we need non-terminals of the
form X(q1,a,q2)(x̄, ȳ, z̄, ū) to represent a run of a Ak from a configuration where
the state is q1, the topmost stack symbol is a and its corresponding data field
values are given by the vector z̄, and the valuation of the shared variables of A
is given by the valuation of x̄, to a configuration with the updated data fields ū
and where the state is q2 and the valuation of the shared variables is given by
the valuation of ȳ.

We leave a detailed treatment of this extension for future work.

10 Related Work and Conclusion

Decidability and complexity of reachability problems for pushdown systems with
or without data have been extensively studied in the literature. In [12] the au-
thors present an algorithm to compute Post∗ and Pre∗ for a pushdown automata
and a regular set of its configurations (represented as automata). Symbolic ver-
sions of the algorithms have been studied e.g. in [29]. In [11] the authors consider
approximated verification methods for subclasses of pushdown systems called fi-
nite indices in which it is possible to handle counters without zero test (i.e.
transitions of a Petri net). In [2,1] the authors present decidability results for
timed extensions of pushdown systems. In [14] the authors present decidability
results for pushdown systems with either a well-quasi ordered set of control lo-
cations or of data values. In our model we do not consider a well-quasi ordered
data domain, but introduce a well-quasi ordered relation over values pushed to
and popped from the stack in order to decide reachability. Our extensions of
pushdown system with Gap Order is orthogonal to the above mentioned models.
Furthermore, it subsumes the model presented in [32], where the authors con-
sider pushdown systems in which messages carry (object) identifiers that can be
compared by equality. In addition to equality tests, Gap Order can be used to
order messages in the stack.

Concerning our proof techniques, the algorithm for solving the Cfgd reach-
ability problem is inspired to the seminal results on Datalog and context-free
language reachability [35,30] and to the evaluation of Datalog with Gap Order
Constraints [31]. CLP programs with Gap Order constraints without conjunc-
tions in the body have been used to model transition systems in [27]. The fix-
point semantics of CLP programs has been used to characterize model checking
problems in [21] and applied to infinite-state systems in [18,16,17,20]. In [15]
extended automata with Gap Order conditions over variables are used as an
approximated model of counter systems. The model however does not have re-
cursion. The complexity of verification problems (expressed in temporal logic) for
transitions systems with Gap Order Constraints has been studied in [13]. Allow-
ing rules with sets of terms in the right-hand side, Gfgd are more general than

214 P. A. Abdulla et al.

the model in [13]. Multiset rewriting systems with Gap Order Constraints (i.e.
systems with an arbitrary number of integral variables) have been introduced in
[3] and applied to different types of systems in [8] extending the parameterized
models described in [9,22]. These systems are a subclass of multiset rewriting
with (linear) constraints applied to infinite state verification, e.g., in [19].

The evaluation procedure for Datalog with Gap Order Constraints in [31]
and its termination depend on specific data structures (weighted graphs kept in
normal form) used to represent relations between variables that occur in Data-
log clauses. In the present paper we formulate an algorithmic solution to Cfgd
reachability as an instance of the general framework of well-structured transi-
tion systems and apply the theory of better-quasi ordering to naturally infer its
termination. This approach has the great advantage of capturing the essential
ingredients needed for extending the algorithm to other classes of grammars with
data. For instance, under some restrictions on the arity of terms, a slightly mod-
ified algorithm can be applied to grammars with sets of terms in the left-hand
side of a production. A more formal treatment of this kind of generalization to-
gether with a deeper investigation of the complexity of the resulting algorithm
is part of our future work.

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
LICS. IEEE Computer Society (2012)

2. Abdulla, P.A., Atig, M.F., Stenman, J.: The minimal Cost reachability problem in
priced timed pushdown systems. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 58–69. Springer, Heidelberg (2012)

3. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: Proc. AVIS 2006, 5th Int. Workshop on on Automated Verification
of Infinite-State Systems (2006)

4. Abdulla, P.A.: Well (and Better) Quasi-Ordered Transition Systems. The Bulletin
of Symbolic Logic 16(4), 457–515 (2010)

5. Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In: Proc.
FSTTCS 2005, 32nd Conf. on Foundations of Software Technology and, Theoretical
Computer Science (2012)

6. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in
Computer Science, pp. 313–321 (1996)

7. Abdulla, P.A., Delzanno, G., Begin, L.V.: A classification of the expressive power
of well-structured transition systems. Inf. Comput. 209(3), 248–279 (2011)

8. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

9. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated parameterized verification
of infinite-state processes with global conditions. Formal Methods in System Design
34(2), 126–156 (2009)

10. Abdulla, P.A., Nylén, A.: Better is better than well: On efficient verification of
infinite-state systems. In: Proc. LICS 2000, 16th IEEE Int. Symp. on Logic in
Computer Science, pp. 132–140 (2000)

Push-Down Automata with Gap-Order Constraints 215

11. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS 2011. LIPIcs, vol. 13, pp. 152–163. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011)

12. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

13. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS,
vol. 7148, pp. 88–103. Springer, Heidelberg (2012)

14. Cai, X., Ogawa, M.: Well-structured extensions of pushdown systems. In: RP 2012
(2012)

15. Čerāns, K.: Deciding properties of integral relational automata. In: Shamir, E.,
Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg
(1994)

16. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68.
Springer, Heidelberg (2000)

17. Delzanno, G., Bultan, T.: Constraint-based verification of client-server protocols.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 286–301. Springer, Heidelberg
(2001)

18. Delzanno, G., Esparza, J., Podelski, A.: Constraint-based analysis of broadcast
protocols. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 50–66. Springer, Heidelberg (1999)

19. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic
protocols. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
342–356. Springer, Heidelberg (2004)

20. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design 23(3), 257–301 (2003)

21. Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

22. Delzanno, G., Rezine, A.: A lightweight regular model checking approach for pa-
rameterized systems. STTT 14(2), 207–222 (2012)

23. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

24. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. In: Proc. LICS 2004, 20th IEEE Int. Symp. on Logic in Computer Science,
pp. 12–21 (2004)

25. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

26. Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic
state machines. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 253–270. Springer, Heidelberg (2005)

27. Fribourg, L., Richardson, J.: Symbolic verification with gap-order constraints. In:
Gallagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 20–37. Springer, Hei-
delberg (1997)

28. Marcone, A.: Foundations of BQO theory. Transactions of the American Mathe-
matical Society 345(2) (1994)

216 P. A. Abdulla et al.

29. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.
58(1-2), 206–263 (2005)

30. Reps, T.: Program analysis via graph reachability. Information & Software Tech-
nology 40(11–12), 701–726 (1998)

31. Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)-order
constraints. TCS 116(1&2), 117–149 (1993)

32. Rot, J., de Boer, F.S., Bonsangue, M.M.: Pushdown System Representation For
Unbounded Object Creation. Tech. Rep. KIT-13, Karlsruhe Institute of Technology
(July 2010)

33. Schwoon, S.: Model-Checking Pushdown Systems. Ph.D. thesis, Technische Uni-
versität München (2002)

34. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005)

35. Yannakakis, M.: Graph-theoretic methods in database theory. In: PODS 1990,
pp. 230–242 (1990)

Model Checking MANETs
with Arbitrary Mobility

Fatemeh Ghassemi1, Saeide Ahmadi1, Wan Fokkink2, and Ali Movaghar3

1 University of Tehran, Tehran, Iran
2 VU University Amsterdam, Amsterdam, The Netherlands

3 Sharif University of Technology, Tehran, Iran

Abstract. Modeling arbitrary connectivity changes of mobile ad hoc
networks (MANETs) makes application of automated formal verifica-
tion challenging. We introduced constrained labeled transition systems
(CLTSs) as a semantic model to represent mobility. To model check
MANET protocol with respect to the underlying topology and connec-
tivity changes, we here introduce a branching-time temporal logic inter-
preted over CLTSs. The temporal operators, from Action Computation
Tree Logic with an unless operator, are parameterized by multi-hop con-
straints over topologies, to express conditions on successful scenarios of a
MANET protocol. We moreover provide a bisimilarity relation with the
same distinguishing power for CLTSs as our logical framework.

1 Introduction

In mobile ad hoc networks (MANETs), nodes communicate along multi-hop
paths using wireless transceivers. Wireless communication is restricted; only
nodes located in the range of a transmitter receive data. Due to e.g. noise in
the environment, interferences, and temporary communication link errors, wire-
less communication is unreliable, which together with mobility of nodes compli-
cates the design of MANET protocols. Formal methods provide valuable tools
to design, evaluate and verify such protocols.

We introduced Restricted Broadcast Process Theory (RBPT) [9] to specify
and verify MANETs, taking into account mobility. RBPT specifies a MANET by
composing nodes using a restricted local broadcast operator. A strong point of
RBPT is that the underlying topology is not specified in the syntax, which would
make it hard to set up the initial topology for each scenario in a verification.
In similar approaches, the mobility is modeled as arbitrary manipulation of the
underlying topology (given as part of the semantic state), which may make the
model infinite and insusceptible to automated verification techniques. Instead in
the semantic model of RBPT, a constraint labeled transition system (CLTS) [10],
transitions are enriched with so-called network constraints, to restrict the possi-
ble topologies. This symbolic representation of network topologies in the seman-
tics is more compact and allows automated verification techniques to investigate
families of properties on a unified model.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 217–232, 2013.
DOI: 10.1007/978-3-642-40213-5 14,
c© IFIP International Federation for Information Processing 2013

218 F. Ghassemi et al.

Properties in MANETs tend to be weaker than in wired networks, due to the
topology-dependent behavior of communication, and consequently the need for
multi-hop communication between nodes. For instance, an important property in
routing or information dissemination protocols is packet delivery : If there exists
an end-to-end route between two nodes A and B for a long enough period of time,
then packets sent by A will be received by B [7]. To reason about properties that
require such topology conditions, we introduce a temporal logic CACTL based
on ACTLW [16], which consists of Action CTL [3] with an until operator. Our
approach supports flexibility in verifying topology-dependent behavior (with-
out changing the model), and restricting the generality of mobility as opposed
to existing approaches. CACTL is interpreted over CLTSs. Path operators are
parameterized with multi-hop constraints over the underlying topologies. We
present a model checking algorithm for CACTL; a model checker for CACTL
is being implemented, using the rewrite logic Maude. This provides a frame-
work, supporting both equational reasoning [9] and model checking of MANET
protocols, to verify topology-dependent properties like “existence of a route”.

We moreover introduce a novel notion of branching network bisimilarity,
based on branching bisimilarity [24], that induces the same identification of
CLTSs as CACTL. This relation is finer than the one introduced in [10], due to
reliability of communication: A receiving node is not equivalent to a deadlocked
node anymore, since in parallel with a sending node, an unsuccessful communi-
cation cannot be matched to a communication with no enabled receiver (which
is the case in the lossy framework).

2 Related Work

MANET protocols have been studied either using existing formalisms such as
SPIN [1,5,26] and UPPAAL [8,15,26,27], or introducing specific frameworks
mainly with an algebraic approach [7,13,14,17,18,20,21,23]. Important model-
ing challenges in MANETs are local broadcast, underlying topology and mobility.
The modeling approach using existing formalisms can be summarized as follows:
The underlying topology is modeled by a two-dimensional array of Booleans,
mobility by explicit manipulation of this matrix, and local broadcast by uni-
casting to all nodes with whom the sending node is presently connected, using
the connectivity matrix. The verification approach tends to be based on model
checking techniques restricted to a pre-specified mobility scenario. Lack of sup-
port for compositional modeling and arbitrary topology changes has motivated
new approaches with a primitive for local broadcast and support of arbitrary
mobility. These approaches are CBS#, bKlaim, CWS, CMAN, CMN, ω-calculus,
RBPT, CSDT, and AWN [7,9,13,14,17,18,20,21,23]. The common point among
them (except RBPT) is implicit manipulation of the underlying topology in the
semantics to model arbitrary connectivity changes and mobility. The analysis
techniques supported by these frameworks, except bKlaim and AWN, are based
on a behavioral congruence relation. In [10] we provided an axiomatization to
derive that a specification of a MANET protocol is observably equal to a spec-
ification of its desired external behavior. Equational reasoning (applied at the

Model Checking MANETs with Arbitrary Mobility 219

syntactic or the semantic level) requires either abstraction from the actual speci-
fication of the MANET protocol, or knowledge about the overall behavior of the
MANET beforehand. The model checking approach is useful to investigate spe-
cific properties of MANET protocols with less effort and knowledge. The mix of
broadcast behavior and mobility leads to state-space explosion, hampering the
application of automated verification techniques like model checking. In bKlaim
[21], the semantic model is abstracted to a finite labeled transition system such
that the mobility information is preserved; a variant of ACTL is introduced to
determine which properties hold if movement of nodes is restricted. To this aim,
ACTL operators are parameterized by a set of possible network configurations
(topology). However, topology-dependent behavior cannot be checked. AWN [7]
verifies topology-dependent behavior properties using CTL [2], by treating a
transition label carrying (dis)connectivity information as a predicate of its suc-
ceeding state [7] and defining predicates over the topology as part of the syn-
tax. This approach can be extended to algebras, e.g. CMAN and ω-calculus,
with (dis)connectivity information on transition labels. However, this approach
needs auxiliary strategies to extract predicates from the states and transitions,
to restrict connectivity changes during model checking and thus limit the state
space. These challenges are tackled with the help of the model checker UPPAAL,
by transforming AWN specifications to automata and exploiting an auxiliary
automaton which statically restricts connectivity changes [8], similar to [15].

3 Background

Communication in wireless networks tends to be based on local broadcast: Only
nodes that are located in the transmission area of a sender can receive. A node
B is directly connected to a node A, if B is located within the transmission
range of A. This asymmetric connectivity relation between nodes introduces a
topology concept. A topology is a function γ : Loc → IP (Loc) where Loc denotes
a finite set of (hardware) addresses A,B,C. We extend Loc with the unknown
address ? to model open communications, which is helpful in giving semantics
to MANETs in a compositional way.

Constrained labeled transition systems (CLTSs) [10] provide a semantic model
for the operational behavior of MANETs. A transition label is a pair of an action
and a network constraint, restricting the range of possible underlying topologies.
A network constraint C is a set of connectivity pairs �: Loc × Loc, where only
the first address can be ?. In this setting, non-existence of connectivity infor-
mation between two addresses in a network constraint can imply three conse-
quences; we do not have any information about the link (this is helpful when
the link has no effect on the evolution of a network), the link was disconnected,
or the link exists, but due to unreliable communication, the communication was
unsuccessful. To distinguish these cases from each other, we extend the net-
work constraints of CLTSs with a set of disconnectivity pairs ��: Loc × Loc;
while B � A denotes that A is connected to B directly and consequently A
can receive data sent by B, B �� A denotes that A is not connected to B

220 F. Ghassemi et al.

Fig. 1. Modeling different communication behaviors: s0 represents a state in which A
broadcasts its data, while s1 represents a state in which data has been transferred from
A to B

directly and consequently cannot receive any message from B. In this setting,
non-existence of connectivity information between two addresses in a network
constraint means a lack of information. We write {B � A,C − B �� D,E}
instead of {B � A,B � C,B �� D,B �� E}.

A network constraint C is said to be well-formed if ∀� � �′ ∈ C (�′ �=? ∧ � ��
�′ �∈ C) and ∀� �� �′ ∈ C (�′ �=?∧ � � �′ �∈ C). Let C denote the set of well-formed
network constraints that can be defined over network addresses in Loc. Each
network constraint C represents the set of network topologies that satisfy the
(dis)connectivity pairs in C, i.e., {γ | C ⊆ CΓ (γ)}, where CΓ (γ) extracts all one-
hop (dis)connectivity information from γ. So the empty network constraint {}
denotes all possible topologies over Loc. Let Actτ be the set of actions (including
the silent action τ), ranged over by η.

A CLTS is of the form by 〈S,Λ,→, s0〉, with S a set of states, Λ ⊆ C×Actτ ,
→⊆ S × Λ × S a transition relation, and s0 ∈ S the initial state. A transition

(s, (C, η), s′) ∈→, denoted by s
(C,η)−−−→ s′, expresses that a MANET protocol in

state s with an underlying topology γ ∈ C can perform action η to evolve to state
s′. Extending network constraints with disconnectivity pairs enables us to define
different behaviors for the communication primitive (see Fig. 1). Furthermore,
it allows us to reason about existence of a communication path between nodes,
as will be explained in Section 4.1.

4 Constrained Action Computation Tree Logic

Properties of MANETs tend to be weaker than of wired networks, due to
topology-dependent behavior of communication, and consequently the require-
ment of existence of a multi-hop communication path between nodes. CLTSs
provide a suitable platform to verify topology-dependent properties, using the
(dis)connectivity information encoded into the transition labels: While transi-
tions are traversed to investigate a behavioral property, (dis)connectivity infor-
mation is collected to verify the topology conditions on which the behavior
depends. To this aim, we introduce a temporal logic based on Action CTL
(ACTL) [3] which includes the until and next operators from CTL [2], para-
meterized with a set of actions. Recently a more expressive variant of ACTL

Model Checking MANETs with Arbitrary Mobility 221

called ACTLW [16] was introduced, in which the next is replaced by an unless
operator.

4.1 Concepts

Since the behavior of MANET protocols depends on the underlying topology
of the network, many properties depend on constraints on this topology. For
example, to examine whether a routing protocol can find a route from node A
to node B, the existence of a multi-hop path from A to B is a pre-condition.
Viewing a network topology as a directed graph, the simplest form of constraint
consists of the (non-)existence of multi-hop relations between nodes.

As explained in Section 3, states in a CLTS do not hold information about
the underlying topology. E.g., from the transition sequence t0

({A�B},η1)−−−−−−−−−→ t1
({B�C},η2)−−−−−−−−−→ t2 we can infer that at the moment we reach t1, B was connected

to A, and at the moment we reach t2, C was connected to B. So we can conclude
that to reach t2 via this path, two links must exist (not essentially at the same
time). That is, a multi-hop communication link from A to C, denoted by A ���
C, must exist to reach t2. In general, to examine a property pre-conditioned by
a multi-hop constraint over the topology, we look for a path in the CLTS along
which the multi-hop relations are inferred.

Let T = 〈S,Λ,→, s0〉 be a CLTS. A path σ of T is a sequence of transitions
t0(C0, η0)t1(C1, η1)t2 . . . where ∀i ≥ 0 ((ti−1(Ci, ηi)ti) ∈→). A path is said to be
maximal if it either is infinite or ends in a deadlock state.

When a multi-hop relation is the pre-condition of a property, we are stating
a set of single-hop links (leading to a multi-hop connection) required for a set
of communications. Inversely, we can infer from the network constraints of such
communications over a path that the multi-hop connection exists. To this aim,
we determine multi-hop connections by collecting single-hop constraints along a
path in a forward fashion using a set of computations over network constraints.
The operator ⊕ : C × C → C allows to gather information along a path in a
CLTS. It merges connectivity information, where the second argument overwrites
conflicting information of the first argument:

C1 ⊕ C2 = C2 ∪ {p | ¬p �∈ C2 ∧ p ∈ C1}

where ¬(� � �′) = � �� �′ and ¬(� �� �′) = � � �′. This operator is left-associative
and non-commutative; {} is its identity element. Let ⊕jk=iCk denote (. . . ((Ck=i⊕
Ck=i+1)⊕Ck=i+2) . . .⊕Ck=j). We say ξ ∈ C conforms to C if ξ does not include
(dis)connectivity information that contradicts C, which can be formally tested by
C ⊆ C⊕ξ. Extending CLTSs with disconnectivity pairs allows to correctly update
topology information gathered along a path when the communication behavior
distinguishes lossy from disconnectivity by providing precise information in the
labels (see Fig. 1(b) and 1(c)) in the case of unsuccessful communication. For
instance, updating the connectivity information {A � B,C − B � C} with
A �� B results in {A � C,B � C,A �� B}.

A path t0(C0, η0)t1(C1, η1)t2 . . . is called C-path if Ci conforms to C for all
i ≥ 0.

222 F. Ghassemi et al.

Fig. 2. Restricted mobility, achieved through restricted transition traversal

4.2 CACTL Syntax

To provide a logic to verify topology-dependent properties of MANET protocols,
our modal path operator is parameterized with multi-hop constraints over the
topology. This parameter specifies the pre-condition required for inspecting the
property; if the pre-condition never holds, the property does not need to hold.
Moreover, to verify properties of MANETs with regard to different mobility
scenarios, the satisfaction relation is parameterized with single-hop constraints.
This parameter expresses the (non-)existence of communication links and also
restricts node mobility; nodes can only move in such a way that the specified
links do not change. This is achieved by only traversing transitions that conform
to the specified links. For instance, consider the CLTS in Fig. 2(a). We examine
properties under the network constraint {B �� C}, meaning that C is never in
the transmission range of B. To this aim we should traverse transitions with
network constraints C such that {B �� C} ⊆ {B �� C} ⊕ C (like s0 → s1 → s3 in
the CLTS in Fig. 2(a)). This can be explained by partially unfolding the CLTS,
as depicted in Fig. 2(b), with an initial topology γ0 where B ∈ γ0(A), D ∈ γ0(B)

and C �∈ γ0(B). Three possible mobility scenarios of state 〈s1, γ0〉 are shown: One
moves C in the transmission range of B, while another moves D out and C in
the transmission range of B. According to the mobility restriction, the resulting
topologies γ1 and γ2 do not satisfy {B � C}. Therefore only the middle scenario
to 〈s3, γ0〉 is possible.

Our logic borrows its temporal operators from ACTLW: AU, EU, AW, and
EW. Let η ∈ Actτ , �, �′ ∈ Loc, C ∈ C. Action formula χ, topology formula μ,
state formula φ (also called CACTL formula), and path formula ψ are defined
by the grammars:

χ ::= true | η | ¬χ | χ ∧ χ′

μ ::= true | � ��� �′ | ¬μ | μ ∧ μ′

φ ::= true | ¬φ | φ ∧ φ′ | Eψ | Aψ
ψ ::= φ {χ}U μ{χ′}φ′ | φ {χ}W μ{χ′}φ′

While action and state formulae are the same as in ACTLW, path formulae
carry a condition over topologies. Intuitively, a path formula φ {χ}U μ{χ′}φ′

Model Checking MANETs with Arbitrary Mobility 223

specifies a path along which states satisfying property φ perform actions from
χ, until the accumulated (dis)connectivity information along this path satisfies
the topology formula μ, and a state satisfying property φ′ is reached after an
action from χ′. An infinite path that never stabilizes to a situation where μ is
always satisfied, still satisfies this path formula if all its states satisfy φ and all
its transitions are from χ. But if a path does stabilize to such a situation, then
eventually a transition from χ′ must lead to a state where φ′ holds. Typically,
μ could define that there is a path from node A to node B, and φ′ could define
that some information broadcast by A reaches B.

The path formula based on the unless (weak until) operator φ {χ}W μ{χ′}φ′

specifies a path along which states satisfying property φ perform actions from χ
at least as long as either μ is never satisfied or no state satisfying φ′ is visited
by an actions from χ′. We note that EW cannot readily be defined in terms of
AU as opposed to CTL, due to actions of χ and χ′ that should be visited to
reach states satisfying φ and φ′.

4.3 CACTL Semantics

Let η′ ∈ Actτ , ζ ∈ C, and 〈S,Λ,→, s0〉 a CLTS. Satisfaction under network
constraint ζ of action formula χ by η ∈ Actτ (written η |=ζ χ), topology formula
μ by network constraint C (written C |=ζ μ), state formula φ by state t (written
t |=ζ φ), or path formula ψ by maximal path σ (written σ |=ζ ψ), is inductively
defined below. Let σsi , σ

C
i and σηi denote the i-th state, network constraint and

action on path σ. With ⊕∞
k=1σ

C
k �ζ μ we mean that ⊕mk=1σ

C
k |=ζ ¬μ for infinitely

many m ≥ 1.

η |=ζtrue always

η |=ζη
′ iff η = η′

η |=ζ¬χ iff η �ζ χ

η |=ζχ ∧ χ′ iff η |=ζ χ ∧ η |=ζ χ
′

C |=ζtrue always

C |=ζ� ��� �′ iff there are �0, . . . , �n ∈ Loc with �0 = �, �n = �′, and

�i � �i+1 ∈ ζ ⊕ C for all i = 0, . . . , n− 1

C |=ζ¬μ iff C �ζ μ

C |=ζμ ∧ μ′ iff C |=ζ μ ∧ C |=ζ μ
′

t |=ζtrue always

t |=ζ¬φ iff t �ζ φ

t |=ζφ ∧ φ′ iff t |=ζ φ ∧ t |=ζ φ
′

t |=ζEψ iff there exists a maximal ζ-path σ such that t = σs
0 ∧ σ |=ζ ψ

t |=ζAψ iff for all maximal ζ-paths σ, t = σs
0 ⇒ σ |=ζ ψ

σ |=ζφ {χ}U
μ
{χ′}φ

′ iff σs
0 |=ζ φ, and either ⊕∞

k=1σ
C
k �ζ μ, ∀j ≥ 1 (σs

j |=ζ φ∧
(ση

j |=ζ χ ∧ ζ ⊆ ζ ⊕ σC
j) ∨ (ση

j = τ ∧ σC
j = {}))) or there exists an i ≥ 1

224 F. Ghassemi et al.

such that σs
i |=ζ⊕(⊕i

k=1σC
k
) φ

′, ση
i |=ζ χ

′, ζ ⊆ ζ ⊕ σC
i , ⊕i

k=1σ
C
k |=ζ μ, and

∀1 ≤ j < i (σs
j |=ζ φ ∧ ((ση

j |=ζ χ ∧ ζ ⊆ ζ ⊕ σC
j) ∨ (ση

j = τ ∧ σC
j = {})))

σ |=ζφ {χ}W
μ
{χ′}φ

′ iff σ |=ζ φ {χ}U
μ
{χ′}φ

′, or σs
0 |=ζ φ and ∀j ≥ 1 (σs

j |=ζ φ

∧ ((ση
j |=ζ χ ∧ ζ ⊆ ζ ⊕ σC

j) ∨ (ση
j = τ ∧ σC

j = {})))

We use |= to denote |={} and {χ}U {χ′} to denote {χ}U
true

{χ′}. We remark that
the semantics of the until operator is somewhat different from CTL: E(φ{χ}U{χ′}φ

′) in
ACTLW (similar to ACTL) requires to perform at least one action from {χ′} to reach
a state satisfying φ′, while E(φUφ′) in CTL is satisfied if the first state satisfies φ′.
Furthermore, our semantics explicitly distinguishes silent actions τ (over all possible
topologies) and visible actions (similar to ACTL, in contrast to ACTLW).

For example, the state formula A(true {τ∨init}U
A���B

{get}true) indicates that if
there exists a path from A to B, the action init is followed by action get , after some
communication (specified by τ). E.g., the path

M0
({},init)−−−−−→M1

({A�C − A ��B,D},τ)−−−−−−−−−−−−−−−−−−→M2
({C�D − C ��A,B},τ)−−−−−−−−−−−−−−−−−−→M3

({D�B − D ��C},τ)−−−−−−−−−−−−−−−−−→M4
({},get)−−−−−→M5 → . . .

satisfies (true {τ∨init}U
A���B

{get}true) with no restriction on mobility of nodes (ζ =
{}), since get is observed after passing transitions with labels of init and τ , and the
accumulated network constraints over these transitions, {}⊕{A � C − A �� B,D}⊕
C � D − C �� A,B}⊕{D � B − D �� C}⊕{} induces that A ��� B via C and D.

4.4 CACTL Model Checking

We adapt the CTL model checking algorithm (see [6]) to CACTL. Model checking a
CACTL formula ϕ under ζ ∈ C starts with smallest sub-formulae and works outwards
toward ϕ. The model checking will operate by adding to each state a set of labels of
the form 〈φ,Ω,O〉, where φ is a subformula of ϕ, Ω a set of (dis)connectivity pairs, not
necessarily well-formed, and O a set of topology obligations. The set Ω maintains the
history of links experienced during exploration of ϕ, and is helpful in the verification
of state formulae based on (weak) until operators. A topology obligation is a pair of
a topology formula μ and a network constraint C. A topology obligation 〈μ, C〉 is said
to be satisfied when C |=ζ μ. Initially all states are labeled by 〈true, ∅, ∅〉. A state
satisfies ϕ iff at the end it includes a label 〈ϕ,Ω,O〉 with the topology obligations in
O all satisfied. The pseudo code of the model checking algorithm’s backbone is given
in Fig. 3.

We explain the idea of procedure CheckEU for the EU operator; other CACTL
operators can be dealt with in a similar way. The pseudo code of this procedure is
given in Appendix A. For simplicity we assume that CLTSs are deadlock-free. We
extend the application of ⊕ to topology obligations: C⊕O = {〈μ, C⊕C′〉 | 〈μ, C′〉 ∈ O}.
Two possible cases should be examined. In the first case, state s satisfies formula
E(φ {χ}U

μ
{χ′}φ

′) if there exists a path from s consisting of states satisfying prop-
erty φ under ζ and actions from χ, until a state satisfying φ′ under ζ ⊕ ξ is reached
after an action from χ′ and ξ induces μ, where ξ is the accumulated (dis)connectivity
information along this path. To check this case, we move backward starting from the
states where φ′ holds under ζ, first over a transition with an action from χ′, and then

Model Checking MANETs with Arbitrary Mobility 225

Fig. 3. Model checking algorithm

over transitions with an action from χ, passing over states where φ holds under ζ. We
record the status of links encountered during backward exploration of executions (note
that these links conform to ζ). To ensure conformability of the links recorded for φ′

to ζ ⊕ ξ, we incrementally check conformability of these links to the partial of ξ being
formed in the backward exploration. Since the yet unknown ξ should induce μ, we
initially include topology obligation 〈μ, {}〉 in the state label; its network constraint is
incrementally updated while moving backward. Furthermore, we record the topology
obligation generated during exploration of φ and φ′. To ensure φ′ holds under ζ ⊕ ξ,
we incrementally update its recorded topology obligation while moving backward.

Let Ω and Ω′ contain the links that occurred over executions during exploration
of φ and φ′, and O and O′ the topology obligations generated during exploration of
φ and φ′ (under ζ), respectively. Since first φ and only after that φ′ needs to hold,
these sets can be kept separate. The sets Ω and Ω′ may contain conflicting conditions,
and even if Ω′ conforms to the partial of ξ, Ω ∪Ω′ may not. To check conformability
of Ω′ to and update O′ with partial ξ, we postpone mixing these sets until the end,
and exploit a senary labeling 〈E(φ {χ}U

μ
{χ′}φ

′), Ω,Ω′, C, O,O′〉. Let C be the accu-
mulated value of network constraints over the traversed execution path. By moving
backward over a (C, η)-transition (where C conforms to ζ and η satisfies χ′) from the
state labeled with 〈φ′, Ω′, O′〉 to the state labeled with 〈φ,Ω,O〉, we add the label
〈E(φ {χ}U

μ
{χ′}φ

′), Ω ∪ C, Ω′, C, O, {〈μ, C〉} ∪ C ⊕O′〉 to states labeled with 〈φ, ω,O〉,
if Ω′ conforms to C; it should be noted that C is added to Ω (and Ω conforms to ζ),
O′ is updated with C, and the obligation {〈μ, C〉} (C ⊕ {〈μ, {}〉}) is generated during
model checking of E(φ {χ}U

μ
{χ′}φ

′). At the end of model checking, the senary labels
〈E(φ {χ}U

μ
{χ′}φ

′), Ω,Ω′, C, O,O′〉 are replaced by 〈E(φ {χ}U
μ
{χ′}φ

′), Ω∪Ω′, O∪O′〉.
Next we continue moving backward from the states with labels of the form 〈E(φ

{χ}U
μ
{χ′}φ

′), Ω,Ω′, C′, O,O′〉 over ({}, τ) or (C, η)-transitions of which their action
satisfies χ and their network constraint conforms to ζ, to reach states labeled by
〈φ,Ω′′, O′′〉 for some Ω′′ and O′′. We add the label 〈E(φ {χ}U

μ
{χ′}φ

′), Ω ∪ Ω′′ ∪

226 F. Ghassemi et al.

Fig. 4. The CLTS to be checked for E(true {a∨τ}U
A���B

{b}E(true {a∨τ}U
A���C

{c}
true))

Table 1. Labels of states in Fig. 4 while checking formula ϕ2 ≡
E(φ {a∨τ}U

A���B
{b}ϕ1), where ϕ1 ≡ E(φ {χ}U

A���C
{c}φ) and φ ≡ true

Steps Actions

1 〈true, ∅, ∅〉 are added to M0,11,12,2−7

2 L1 ≡ 〈ϕ1, ∅, ∅, {}, ∅, {〈A � C, {}〉}〉 is added to M6

3 L2 ≡ 〈ϕ1, {D � C}, ∅, {D � C}, ∅, {〈A ��� C, {D � C}〉}〉 is added to M5

4 L3 ≡ 〈ϕ1, {B � C, D � C}, ∅, {D � C, B � C}, ∅, {〈A ��� C, {D � C, B � C}〉}〉 is added to M4

5 L1 is replaced by 〈ϕ1, ∅, {〈A ��� C, {}〉}〉 in M6

6 L2 is replaced by 〈ϕ1, {D � C}, {〈A ��� C, {D � C}〉}〉 in M5

7 L3 is replaced by 〈ϕ1, {B � C, D � C}, {〈A ��� C, {B � C, D � C}〉}〉 in M4

8 L4 ≡ 〈ϕ2, ∅, {B � C, D � C}, {}, ∅, {〈A ��� C, {B � C, D � C}〉, 〈A ��� B, {}〉}〉 is added to M3

9 L5 ≡ 〈ϕ2, {A � D}, {B � C, D � C}, {A � D}, ∅, {〈A ��� C, {A � D, B � C, D � C}〉,

〈A ��� B, {A � D}〉}〉 is added to M2

10 L6 ≡ 〈ϕ2, {D � B, A � D}, {B � C, D � C}, {D � B, A � D}, ∅,

{〈A ��� C, {D � B, A � D, B � C, D � C}〉, 〈A ��� B, {D � B, A � D}〉}〉

is added to M11 and M0

11 L4 is replaced by 〈ϕ2, {B � C, D � C}, {〈A ��� C, {B � C, D � C}〉, 〈A ��� B, {}〉}〉 in M3

12 L5 is replaced by 〈ϕ2, {A � D, B � C, D � C}, {〈A ��� C, {A � D, B � C, D � C}〉,

〈A ��� B, {A � D}〉}〉 in M2

13 L6 is replaced by 〈ϕ2, {D � B, A � D, B � C, D � C},

{〈A ��� C, {D � B, A � D, B � C, D � C}〉, 〈A ��� B, {D � B, A � D}〉}〉 in M1 and M0

C, Ω′, C ⊕ C′, O ∪ O′′, C ⊕ O′〉 to these states, if Ω′ conforms to C ⊕ C′. We continue
moving backward until no new label is added to the states.

As an example, we verify E(true {a∨τ}U
A���B

{b}E(true {a∨τ}U
A���C

{c}true))
under {} over the CLTS given in Fig. 4. States are initially labeled by 〈true, ∅, ∅〉.
Table 1 includes the labels given to the states in each step; first we label states M7

to M4 for the inner until operator, and then we label states M4 to M0 for the outer
until operator. StateM12 is only labeled by 〈true, ∅, ∅〉 and cannot be labeled further,
because the set of links encountered during exploration of the inner until formula, i.e.
{B � C,D � C}, does not conform to {D � B,D �� C}. State M0 includes the
label 〈ϕ2, {D � B,A � D,B � C,D � C}, {〈A ��� C, {D � B,A � D,B �
C,D � C}〉, 〈A ��� B, {D � B,A � D}〉}〉, so it satisfies ϕ2 (under {}), since
{D � B,A � D,B � C,D � C} |= A ��� C and {D � B,A � D} |= A ��� B.
The topology formula A ��� C in the inner until formula is satisfied after the network

Model Checking MANETs with Arbitrary Mobility 227

Fig. 5. Two examples of infinite execution paths for which the accumulated network
constraints never induce A ��� B permanently

constraints A � D and D � B update their corresponding topology obligation while
moving backward to model check the outer formula.

In the second case, s satisfies E(φ {χ}U
μ
{χ′}φ

′) if there exists a path from s along
which the states satisfy φ, the actions are from χ, and the accumulated (dis)connectivity
information never induces μ permanently (see Fig. 5 for two simple examples). To check
the occurrence of this case, we decompose the CLTS into non-trivial strongly connected
components (SCCs), meaning that they contain at least one edge.

We first restrict to states that include a label 〈φ,Ω,O〉 for some Ω and O, and
to ({}, τ) and (C, η)-transitions where η satisfies χ and C conforms to ζ. Next, we
partition the new CLTS into SCCs using the algorithm explained in [2]. We initially
move backward in an SCC over (C, η)-transitions, and for any 〈φ,Ω1, O1〉 ∈ label(s) and
〈φ,Ω2, O2〉 ∈ label(t), where s and t are origin and destination of transition, we add
the label 〈E(φ {χ}U

μ
{χ′}φ

′), Ω1 ∪Ω2 ∪C, ∅, C, O1 ∪O2, {〈¬μ, C〉}〉 to s. The obligation
〈¬μ, C〉 indicates that the accumulated value of network constraints does not induce
μ. Then, similar to first case, we move backward out of the SCC until no new label is
added to the states, and at the end we replace senary labels by triples.

5 Protocol Analysis with CACTL

To illustrate the expressiveness of CACTL in the analysis of MANETs, we specify
properties for two important classes of protocols, namely routing and leader election.

The most fundamental error in routing protocol operations is failure to route cor-
rectly. The correct operation of MANET routing protocols is defined as follows [26]:
If from some point in time on there exists a path between two nodes, then the protocol
must be able to find some path between the nodes. Furthermore, when a path has been
found, and for the time it stays valid, it must be possible to send packets along the path
from the source node to the destination node. To verify the first part of property, let
init(src) and found(src) indicate initialization and completion respectively of the route
discovery protocol in a node with address src for a specific address dst . The property
“whenever there exists a path from src to dst and from dst to src, each init(src) is
proceeded by its corresponding found(src)”, for scr ∈ {A,C} and dst = B, is specified
by the CACTL formula

A(true {τ∨init(A)∨init(C)}U
A���B∧B���A

{found(A)}true) ∧
A(true {τ∨init(C)∨init(C)}U

C���B∧B���C
{found(C)}true)

where τ abstracts away from communications between nodes. By model checking the
CLTS model of a MANET in which the nodes deploy a routing protocol, we can verify

228 F. Ghassemi et al.

this property with respect to arbitrary topology changes. This property was examined
in [7] for the AODV protocol using CTL.

To verify the second part of the property, let insert(src) and delivery(src) indi-
cate submission and arrival of a data over the route found beforehand at src and dst
respectively. The property “whenever there exists paths from src to dst and from dst
to src, when a route is found from src to dst ; and while this path is valid each insert
is followed by deliver”, for src = C and dst = B, is specified by the CACTL formula

A(true {init(C)∨init(A)∨τ}U
C���B∧B���C

{found(C)}(A(true {insert∨τ}U
true

{deliver}true)))

The outer until formula looks for all maximal paths in which found is performed
after init while the accumulated network constraints ξ induce C ��� B and B ��� C
(or this topology formula is never induced), and by found reach a state of which all
maximal ξ-paths satisfy the inner until path formula. The network constraints over a
ξ-path do not violate the single-hop (dis)connectivity pairs in ξ. It can be said that
(dis)connectivity pairs are frozen, and consequently the route from src to dst is still
valid.

Classical leader election algorithms aim at electing a unique leader from a fixed set
of nodes. In the context of MANETs such protocols should consider arbitrary topology
changes, and aim at finding a unique leader which is the most-valued node within a
connected component [25]. Let leader(id , lid) indicate that a node with address id has
found its leader with address lid , and let node A be the most-valued node. We can
investigate correctness of such a leader election algorithm with the CACTL formula

A(true ActΛU

A ��� B ∧ A ��� C∧
B ��� A ∧ B ��� C∧
C ��� A ∧ C ��� B {leader(A,A),leader(B,A),leader(C,A)}true)

It expresses that in any connected component containing nodes A, B and C, eventually
A is chosen as the leader. Being in the same connected component is indicated by the
existence of multi-hop paths among them. We can also investigate scenarios in which
two disconnected components merge together with the help of a CACTL formula like

A(true ActΛU

A ��� B ∧ B ��� A∧
C ��� D ∧ D ��� C∧
¬A ��� C ∧ ¬A ��� D∧
¬B ��� C ∧ ¬B ��� D {leader(A,A),leader(B,A),leader(D,C)}(

A(true ActΛU C���B∧B���C
{leader(A,A),leader(B,A),leader(D,A),leader(C,A)}true))

meaning that nodes A,B and nodes C,D belong to the same component with leader
A and C respectively; if these two components get connected via B and C, then they
will eventually converge to the same leader, i.e. A.

6 Branching Network Bisimilarity

We define a novel notion of branching network bisimilarity that induces the same
identification of CLTSs as our logical framework.

Definition 1. Let 〈S,Λ,→, s0〉 be a CLTS. States r, s ∈ S are logically equivalent,
denoted by r ∼L s, iff ∀ζ ∈ C ∀ϕ ∈ CACTL (r |=ζ ϕ⇔ s |=ζ ϕ).

Intuitively, equivalent states in a CLTS exhibit the same behavior for any topology.
This behavior includes communication and internal actions. Communication actions

Model Checking MANETs with Arbitrary Mobility 229

carry a message and the address of the sender, which can be abstracted into the
unknown address ?. Two equivalent states must match on every internal action, receive
action, and send action with a known address. A send action with unknown address
can be mimicked by a send action with either a known or unknown address. Let =⇒
denote the reflexive-transitive closure of τ -transitions, over all possible topologies.

Definition 2. A binary relation R on states in a CLTS is a branching network sim-

ulation if t1Rt2 and t1
(C,η)−−−→ t′1 implies that:

– either (C, η) is ({}, τ), and t′1Rt2; or

– there are t′2 and t′′2 such that t2 =⇒ t′2
(C,η)−−−→ t′′2 , where t1Rt′2 and t′1Rt′′2 ; or

– η ≡ nsnd(m, ?), and there are t′2, t
′′
2 and � such that t2 =⇒ t′2

(C[�/?],nsnd(m,�))−−−−−−−−−−−−→ t′′2 ,
where t1Rt′2 and t′1Rt′′2 .

R is a branching network bisimulation if R and R−1 are branching network simula-
tions. Two terms t1 and t2 are branching network bisimilar, denoted by t1 �b t2, if
t1Rt2 for some branching network bisimulation relation R.

Theorem 1. �b is an equivalence relation.

This theorem can be proved in a similar fashion as for branching computed network
bisimilarity in [9]. As said, branching network bisimilarity and the equivalence relation
induced by CACTL coincide. This can be proved for CLTSs with so-called bounded-
nondeterminism following the approach of [4]. The result can be lifted to general CLTSs
in the same vein as [19], by resorting to infinitary logics (see [11] for the proof).

Theorem 2. Let 〈S,Λ,→, s0〉 be a CLTS. For any r, s ∈ S, r �b s iff r ∼L s.

7 Conclusion and Future Work

We introduced the branching-time temporal logic CACTL, interpreted over CLTSs, to
reason about topology-dependent behavior of MANET protocols. We can investigate
scenarios like after a route found and after two disconnected components merged with
the help of multi-hop constraints over topologies, which are specified as a part of path
operators in our logic. Advantages of our approach are flexibility in verifying topology-
dependent behavior (without changing the model), and restricting the generality of
mobility. By nesting until operators, a specific path can be found with the help of
topology constraints (without a need to specify how a topology constraint should be
inferred), and then fixed for further exploration. The (dis)connectivity information in
CLTS transitions makes it possible to restrict the generality of mobility as desired. By
contrast, in approaches like [7], the inferences leading to the establishment of topol-
ogy constraints should be embedded in the specification. Existing approaches to model
mobility either are insusceptible to model checking [7,13,23], or require separate model-
ing of mobility [8]. The logic in [21] does not support verification of topology-dependent
behavior.

A model checker for CACTL is being implemented, using the rewrite logic Maude.
We also intend to verify real-world MANET protocols.

230 F. Ghassemi et al.

References

1. Bhargavan, K., Obradovid, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

3. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

4. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. Journal of
the ACM 42(2), 458–487 (1995)

5. De Renesse, R., Aghvami, A.H.: Formal verification of ad-hoc routing protocols
using SPIN model checker. In: MELECON, pp. 1177–1182. IEEE (2004)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)
7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:

A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012)

8. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using Uppaal. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

9. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational reasoning on mobile ad hoc
networks. Fundamenta Informaticae 103, 1–41 (2010)

10. Ghassemi, F., Fokkink, W., Movaghar, A.: Verification of mobile ad hoc networks:
An algebraic approach. Theoretical Computer Science 412(28), 3262–3282 (2011)

11. Ghassemi, F., Ahmadi, S., Fokkink, W., Movaghar, A.: Model Checking MANETs
with Arbitrary Mobility. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS,
vol. 8161, pp. 214–228. Springer, Heidelberg (2013)

12. Godskesen, J.C.: Observables for mobile and wireless broadcasting systems. In:
Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 1–15.
Springer, Heidelberg (2010)

13. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

14. Kouzapas, D., Philippou, A.: A process calculus for dynamic networks. In: Bruni,
R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 213–227.
Springer, Heidelberg (2011)

15. McIver, A., Fehnker, A.: Formal Techniques for Analysis of Wireless Network. In:
ISoLA. LNCS vol. 6722, pp. 263–270. IEEE (2006)

16. Meolic, R., Kapus, T., Brezocnik, Z.: ACTLW - An action-based computation tree
logic with unless operator. Information Sciences 178(6), 1542–1557 (2008)

17. Merro, M.: An observational theory for mobile ad hoc networks. In: MFPS XXIII.
ENTCS, vol. 173, pp. 275–293. Elsevier (2007)

18. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. In: MFPS
XXII. ENTCS, vol. 158, pp. 331–353. Elsevier (2006)

19. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
20. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.

Theoretical Computer Science 367(1), 203–227 (2006)
21. Nanz, S., Nielson, F., Nielson, H.: Static analysis of topology-dependent broadcast

networks. Information and Computation 208(2), 117–139 (2010)

Model Checking MANETs with Arbitrary Mobility 231

22. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing.
In: WMCSA, pp. 90–100. IEEE (1999)

23. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad
hoc networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 296–314. Springer, Heidelberg (2008)

24. van Glabbeek, R., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3), 555–600 (1996)

25. Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of a leader election
algorithm for mobile ad hoc networks. In: ICNP, pp. 350–360. IEEE Computer
Society (2004)

26. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing pro-
tocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

27. Wibling, O., Parrow, J., Pears, A.: Ad hoc routing protocol verification through
broadcast abstraction. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 128–
142. Springer, Heidelberg (2005)

A Pseudo Code of Procedure CheckEU

232 F. Ghassemi et al.

Validating SCTP Simultaneous Open Procedure

Somsak Vanit-Anunchai�

School of Telecommunication Engineering, Institute of Engineering,
Suranaree University of Technology, Muang,

Nakhon Ratchasima, Thailand
somsav@sut.ac.th

Abstract. The Stream Control Transmission Protocol (SCTP) is a reli-
able unicast transport protocol originally specified by the Internet Engi-
neering Task Force (IETF) in RFC 2960. After years of implementing
and testing, defects and errors in RFC 2960 were reported and later
fixed in RFC 4460. Incorporating those suggested fixes, IETF revised the
SCTP specification and published RFC 4960, which replaces RFC 2960.
Despite of being the revised specification, the descriptions of the simul-
taneous open and the restart procedures are still unclear and difficult to
understand. To clarify this informal specification and gain insights, we
formally model and analyse the association management using Coloured
Petri Nets. In particular this paper focuses on the Tie-Tag operation and
the simultaneous open procedure operating over the simplest channels,
First In First Out (FIFO) with no loss. Our analysis reveals errors in
which both sides are in ESTABLISHED but the verification tags in both
Transmission Control Blocks do not match.

Keywords: Coloured Petri Nets, Procedure-based, Verification Tags,
Tie-Tags, COOKIE ECHO

1 Introduction

The Stream Control Transmission Protocol (SCTP), RFC 4960 [8] is a unicast
connection oriented transport protocol providing an error-free reliable flow of
data between a client and a server. Originally it was designed by the Signalling
Transport working group for transporting telephony signalling messages over
UDP. Foreseeing its significance and great potential to become a major transport
protocol, IETF decided to operate SCTP over IP instead.

After several years of implementation and testing, fifty-two defects in the
original specification (RFC 2960) and solutions were discussed in RFC 4460
[9]. The IETF has published a revised version of the SCTP informal specifi-
cation, RFC4960 [8], in September 2007, and RFC 2960 has become obsolete.
Despite many years of implementing and testing SCTP, it is still important to
have a proper formal model and to perform formal analysis of SCTP associa-
tion management, especially when SCTP is designed for reliable data transfer
� Supported by the the Thai Network Information Center Foundation and the

Thailand Research Fund Contract no.TRG 5380023.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 233–249, 2013.
DOI: 10.1007/978-3-642-40213-5 15,
c© IFIP International Federation for Information Processing 2013

234 S. Vanit-Anunchai

such as signalling in Public Switching Telephone Networks. Previously in [10] we
focused on modelling the typical procedure of SCTP association management.
This paper places emphasis on the exception handling procedure (handling an
unexpected packet) which is more complex. Analysis of a formal model in [10]
illustrated that SCTP simultaneous open procedure in RFC 4960 could fall into
an undesired final state in which both sides are in ESTABLISHED with mis-
matched VTAGs. However, it is arguable that these errors could happen only
if a packet is reordered and delayed too long so that these defects are unlikely
to occur. This paper discovers an error when SCTP operates over First in First
out (FIFO) channel without losses. Thus, this error is more likely to occur than
those errors previously found.

This paper is organised as follows. Section 2 provides an overview of SCTP
association set up. Section 3 discusses the related work and contributions. A
brief description of the CPN model of SCTP association management is given
in Section 4. Section 5 presents the analysis results and a discussion of terminal
markings. Section 6 presents conclusions and future work.

2 Overview of Stream Control Transmission Protocol

2.1 SCTP Packet Format

Figure 1(a) shows an SCTP packet comprising a common header and one or more
chunks. The SCTP header contains 16 bit source and destination port numbers,
a 32 bit verification tag (VTAG) and a 32 bit checksum. The VTAG is used to
protect an association from blind attacks. Each end point keeps two values of
VTAG: “local VTAG” and “peer’s VTAG”. “local VTAG” sometimes is called
“My VTAG”. In general, any received packets containing a VTAG differing from
“local VTAG” will be discarded. On the other hand, sent packets will carry
a VTAG equal to “peer’s VTAG”. These tag values are randomly selected at
initialization and exchanged between the end points during association set up.

A Chunk is an information unit. According to RFC 4960, there are 12 dif-
ferent control chunks but only one data chunk. The control chunks are Init1,
InitAck, SACK, Heartbeat, HeartbeatAck, Abort, Shutdown, ShutdownAck,
Error, CookieEcho, CookieAck and ShutdownComplete. Control chunks are used
to setup and shutdown the association, selectively acknowledge, report error mes-
sages, monitor reachability of the peer, etc. Association setup uses a four-way
handshake comprising four control chunks: Init; InitAck; CookieEcho and Cook-
ieAck. Graceful closing uses a three-way handshakes comprising three control
chunks: the Shutdown; ShutdownAck and ShutdownComplete chunks. The Data
transfer phase involves Data and SACK (Selective Acknowledgement) chunks.
Further detail of the structure of chunks can be found in [8].

1 Chunk names in the RFC are shown in all uppercase letters. To increase readability
and distinguish them from SCTP States, the chunk names in this paper are given
with only the first letters capitalized instead.

Validating SCTP Simultaneous Open Procedure 235

(a) (b)

Fig. 1. (a) SCTP packet format. (b) SCTP state diagram: association set up (redrawn
from [8])

2.2 SCTP Association Establishment Procedure

Normal Association Establishment Figure 1(b) shows the state diagram
when SCTP sets up the association. Figure 2 shows a typical procedure of asso-
ciation establishment. An association between two nodes, A and Z, is initiated by
an SCTP user on node “A” issuing an “ASSOCIATE” command. After receiving
the “ASSOCIATE” primitive, node A sends an SCTP packet with VTAG equal
to zero. This SCTP packet contains only an Init chunk with an initial tag to
specify the VTAG of returning packets. Then node A enters the COOKIE WAIT
state. On receiving the Init chunk, node Z replies with an InitAck chunk indi-
cating that it is willing to communicate with node A. The response includes
node Z’s initial tag number and encrypted cookie containing enough informa-
tion to create node Z’s Transmission Control Block (TCB). To prevent state
exhaustion attacks node Z is still in CLOSED after replying with an InitAck. To
acknowledge the InitAck, node A returns the cookie in a CookieEcho chunk and
enters COOKIE ECHOED. When carrying an Init or InitAck chunk, the SCTP
packet comprises only one chunk. When sending a CookieEcho chunk, the SCTP
packet may enclose Data chunks after the CookieEcho chunk. On receiving a
CookieEcho from node A, node Z creates its TCB from the received cookie,
enters the ESTABLISHED state, replies with CookieAck and is ready for data
transfer. After receiving CookieAck, node A enters ESTABLISHED indicating
that the association is established. During data transfer, endpoint nodes A and
Z may exchange Data and SACK chunks.

236 S. Vanit-Anunchai

Fig. 2. Typical message sequence charts association set up

Handling Unexpected Init Chunks The rules for handling duplicate or
unexpected Init, InitAck, CookieEcho, and CookieAck chunks are specified in
the Section 5.2 of RFC 4960. When SCTP receives an unexpected Init before
the association established, SCTP composes a state Cookie using its local VTAG
and the initial tag found in the unexpected Init. The Cookie is attached to the
outbound InitAck. When an unexpected Init is received after the association
established, SCTP composes a state Cookie using a new random number for local
VTAG and the initial tag found in the unexpected Init. This implies that the
Cookie contains state information of a new connection. When an unexpected Init
is received in SHUTDOWN ACK SENT, SCTP replies with ShuntDownAck.

Handling Unexpected CookieEcho Chunks This procedure specified in
RFC 4960 is unclear and subtle. With reference to Table 2 in RFC 4960 (Fig. 3),
VTAGs and Tie-Tags are compared to identify which action SCTP shall take.
If the conditions in Fig. 3 are not met, SCTP silently discards the received
CookieEcho chunk. However Section 5.2 of RFC 2960 and of RFC 4960 define
Tie-Tags differently.

According to RFC 2960, Tie-Tags are stored in a state Cookie. They are
copies of VTAGs from the existing TCB (local VTAG and peer’s VTAG). These
Tie-Tags are created when SCTP creates InitAck. Using the Tie-Tags in the
restart procedure (Section 5.2.4.1 of RFC 4960), a newly restarting association
can be tied to the original association without shutting down and starting a new
association. The first two columns of Fig. 3 compare a pair of VTAGs in Cookie
with a pair of VTAGs in existing TCB. The third and fourth columns of Fig. 3
compare a pair of Tie-Tags in Cookie with a pair of VTAGs in existing TCB.2

2 [10] uses this comparison which is incorrect.

Validating SCTP Simultaneous Open Procedure 237

Fig. 3. Table 2 in RFC 4960 from [8]

In order not to reveal the true VTAGs of the existing association, RFC
4960 defines Tie-Tags as two 32-bit random numbers or 64-bit nonce. They
are stored in both the state cookie and TCB. When we consider the third and
fourth columns of Fig. 3, it is incorrect to compare 64-bit nonce with VTAGs.
We should compare a pair of Tie-Tags (64-bit nonce) in Cookie with a pair of
Tie-Tags (64-bit nonce) in existing TCB instead.3

Each row in Fig. 3 identifies the SCTP’s action as follows:

– Action A is the restart scenario when the other side crashes and starts up
in CLOSED. SCTP shall continue the association by replacing the existing
VTAGs with the ones in Cookie and sending a CookieAck.

– Action B is the simultaneous open scenario when both sides attempt to start
an association at about the same time. SCTP shall enter the ESTABLISHED
state, update its peers VTAG from Cookie. and then send a CookieAck.

– Action C is when the Cookie is so delayed that SCTP has already sent an
Init, received an InitAck and then sent a CookieEcho. The delayed Cookie
arrives after the CookieEcho is sent. In this case the delayed Cookie is silently
discarded.

– Action D is when both local and peer’s VTAG in both Cookie and TCB
are matched, SCTP shall enter the ESTABLISHED state and reply with
CookieAck.

One subtle ambiguity is the meaning of the zero values in Fig. 3. The values
of Tie-Tags are set to zero indicating that no previous TCB existed. Action C
3 This paper uses this comparison.

238 S. Vanit-Anunchai

requires the conditions that the values of Tie-Tags in the received cookie are
zero. The value of peer’s tag in TCB can be zero or unknown only when SCTP
endpoint is in the COOKIE WAIT state. It implies that action B in the third
row of Fig. 3 occurs when SCTP endpoint is in COOKIE WAIT.

Handling Unexpected InitAck and CookieAck Chunks An unexpected
InitAck is simply discarded if SCTP is not in COOKIE WAIT. SCTP also dis-
cards the CookieAck if it is not in COOKIE ECHO.

3 Related Work

3.1 Modelling Approach

Coloured Petri Nets [5] are well known for modelling and analysing concurrent
and complex systems including validating various transport protocols such as
Wireless Application Protocol (WAP) [3], TCP [4], and Datagram Congestion
Control Protocol (DCCP) [11]. Our model has been created and maintained
using CPN Tools [2] which is a software package for the creation, editing, sim-
ulation and state space analysis of CPNs. It supports the hierarchical construc-
tion of CPN models [5], using constructs called substitution transitions. These
transitions hide the details of subnets and allow further nesting of substitution
transitions. This technique allows a complex specification to be managed as a
series of hierarchically related pages.

According to [1], the hierarchical structure of the CPN model can be classified
into three modelling styles: state-based; event-processing and procedure-based.
Similar to state tables, the state-based style groups actions in the same state
into a CPN page. ITU-T often describes their narrative specification based on
the state tables. This approach has the advantage of readability and unspecified
actions can be easily discovered during model construction. But its disadvantage
comes from redundant specification of the same actions that are common across
different states. Hence the event-processing style folds the similar actions across
different states into a transition. An example of specification that uses event-
processing style is RFC 793 [7] Transmission Control Protocol (TCP). While
the event processing style makes the CPN model smaller and easier to main-
tain, it has some drawbacks with respect to readability. Thus [1] proposed the
procedure-based modelling style, which structures the CPN model according to
the protocol’s functionality. Actually suitability of the modelling style depends
on how the narrative specification is written. As long as the model can be read
and understood easily alongside the narrative specification, it is a good modelling
style. We notice that IETF’s transport protocol specifications (TCP, SCTP and
DCCP) are more suitable to the procedure-based style. During modelling SCTP
association management [10], we discovered that this procedure-based style has
two merits. First, using a state-based or event processing style a CPN page con-
tains actions that are scattered in different sections of RFC 4960. Illustrated in
[10], with the procedure-based style actions in each CPN page are confined to

Validating SCTP Simultaneous Open Procedure 239

only a few sections in RFC 4960. Our SCTP-CPN model in [10] is easy to read
alongside RFC 4960. Second, the procedure-based CPN model comprises typical
procedures (straight forward) and unexpected procedures (complex). Beginners
can pay attention to the typical scenarios before getting into the complex pro-
cedures later.

3.2 Comparing to the SCTP-CPN Model by Others

Despite a lot of work on SCTP’s security, performance and multi-homing, we
have found only three works [12,6,10] that use Coloured Petri Nets to model
SCTP association management operating over reordering channels. The CPN
model in [6] followed the state-based style whereas [12] used the event-processing
style similar to [4]. Our CPN model in [10] was the procedure-based style follow-
ing the approach proposed in [1]. The work in [10] attempted to build the CPN
models according to the revised specification, RFC 4960 while [6,12] used RFC
2960 which was obsolete. The CPN models in [6,12] were incomplete because
[6] did not include the procedure when SCTP nodes receive duplicated or unex-
pected messages and [12] assumed no retransmission.

3.3 Contributions

The contribution of this paper is three-fold. First, while [10] illustrates a CPN
model of typical SCTP’s association management, it leaves out the model of
handling an unexpected CookieEcho chunk partly because it was not well under-
stood at that time. In this paper, we attempt to finish up the CPN model of
handing an unexpected CookieEcho chunk. Second, [10] followed Fig. 5 (a restart
example) of RFC 4960 and used the Tie-Tags as “old VTAGs” instead of 64-bit
nonce. We compared the pair of Tie-Tags in Cookie with the pair of VTAG in
existing TCB. Unfortunately, it turns out that Fig. 5 of RFC 4960 is incorrect4.
Nevertheless, those errors uncovered in [10] were not related to this mistake.
This paper attempts to rectify the mistake in [10]. We use Tie-Tags as 64-bit
nonce and compare the pair of Tie-Tags in Cookie with the pair of Tie-Tags
in existing TCB. This correction leads us to an undesired terminal marking in
which both sides are in ESTABLISHED with a mismatched VTAG. This error
scenario happens even when SCTP operates over FIFO channels without loss.

Third, after we have investigated the actions in Fig. 3 using state space
analysis, we found two implementation flaws. Firstly, the implementor does not
need to check the condition for action C because the Cookie will be discarded
anyway if the conditions in Fig. 3 are not met. Secondly, the condition of action
B in the third row (Fig. 3) has never been reached because the condition of
action B in the second row is always satisfied before reaching the third row. We
suggest the implementor checking the condition of the third row before checking
the second row.
4 See Transport Area Discussion Archive http://www.ietf.org/mail-archive/web/

tsvwg/current/msg08603.html.

http://www.ietf.org/mail-archive/web/tsvwg/current/msg08603.html
http://www.ietf.org/mail-archive/web/tsvwg/current/msg08603.html

240 S. Vanit-Anunchai

4 CPN Model of SCTP Association Management

Space limitation prevents us from including all CPN model pages. This paper
focuses on handling an unexpected CookieEcho which is excluded from [10].
However, for sake of completeness, we shall briefly describe the model starting
from the top level toward the Unexpected CookieEcho and CookieAck Page.
The rest of the model and its declarations can be found in [10].

The top-level page of the SCTP-CPN model is illustrated in Fig. 4. Two sub-
stitution transitions (SCTP A and SCTP Z) represent the SCTP end point nodes,
A and Z. Each side connects to five places. Places User A and User Z represent
application users represented by COMMAND. Places ITAG A and ITAG Z contain 32-
bit random values of the initial verification tags. Places TCB A and TCB Z model
Transmission Control Block represented by TCB. Both end points are connected
via two channel places, CH A2Z and CH Z2A. We assume that during association
set up and closing down a packet contains only one chunk represented by CHUNK.
To form a FIFO queue the channel places are represented by a list of CHUNK
(L CHUNK). The layout of the top level CPN page also reflects the well-known
model of the n-layer in a layered protocol architecture. The application layer is
placed on the top while the underlying medium layer is below the protocol entity.
The substitution transitions, SCTP A and SCTP Z in Fig. 4 are linked to the second
level page named SCTP Procedures (Fig. 5 (a)). We divide SCTP Procedures
into five categories: normal events; unexpected events; retransmission; abort;
and checking invalid tags. Substitution transition UnexpectedEvents in Fig. 5
(a) links to the CPN page Unexpected (Fig. 5 (b)). Handling unexpected recep-
tions of SCTP control chunks is modelled by three CPN pages: Int IntAck,
CookieEcho CookieAck, and Shutdown.

Fig. 4. The Top-level CPN page

Validating SCTP Simultaneous Open Procedure 241

(a) (b)

Fig. 5. (a) The SCTP Procedures page. (b) The Unexpected page

4.1 Unexpected Init and InitAck Page

Figure 6 shows the CPN page dealing with the unexpected events of receiving
Init and InitAck chunks in states other than CLOSED. Transitions RcvInit CK
WAIT and RcvInit CK ECHOED model the actions according to Section 5.2.1 of
RFC 4960 [8] when an endpoint receives an Init chunk in the COOKIE WAIT
or COOKIE ECHOED state. The difference between these actions is that the
Tie-Tags from the COOKIE WAIT state are set to zeros but from COOKIE
ECHOED, they are set to 64-bit nonce. Transitions Rcv InitOtherThan mod-
els the action according to Section 5.2.2 of RFC 4960 when the endpoints
receive unexpected Init chunks in states other than CLOSED, COOKIE WAIT,
COOKIE ECHOED and SHUTDOWN ACK SENT. The action is similar to
that of transition RcvInit CK ECHOED but the “local VTAG” in the cookie and
Initial Tag in the InitAck chunk are set to a new value instead of the old value
of the Initial tag. Transition RcvInit in SHUTDOWN ACK SENT models the action
according to the sixth paragraph of Section 9.2 of RFC 4960. After receiving
an Init chunk in SHUTDOWN ACK SENT, the SCTP node discards the Init
chunk but retransmits a ShutdownAck chunk. Transition Rcv InitAck models
the action according to Section 5.2.3 of RFC 4960. The SCTP node silently
discards any unexpected InitAck chunks if receiving them in states other than
COOKIE WAIT.

4.2 Unexpected CookieEcho and CookieAck Page

Substitution transition CookieEcho CookieAck in Fig. 5 (b) links to the CPN
page CookieEcho CookieAck (Fig. 7). The first four substitute transitions in

242 S. Vanit-Anunchai

Fig. 6. The Unexpected’Init InitAck page

Fig. 7 represent the actions when SCTP receives an unexpected CookieEcho
chunk. The last transition models when SCTP receives CookieAck in states
other than COOKIE ECHOED.

The Restart page Substitute transition Restart in Fig. 7 is linked to the
Restart page shown in Fig. 8. This page models action A of Fig. 3. SCTP
replaces its VTAGs with the VTAGs in the received Cookie and replies with
CookieAck. If SCTP is in SHUTDOWN ACK SENT, it retransmits Shutdow-
nAck.

The Simultaneous Open page Substitute transition Simultaneous Open in
Fig. 7 is linked to the Simultaneous Open page shown in Fig. 9. This page
models action B of Fig. 3. This page includes the actions when SCTP receives

Validating SCTP Simultaneous Open Procedure 243

Fig. 7. The Unexpected’CookieEcho CookieAck page

an unexpect CookieEcho in COOKIE WAIT. It also include the actions when
the conditions in Fig. 3 are not met (Case E).

The Delayed Cookie page Substitute transition Delayed Cookie in Fig. 7 is
linked to the Delayed Cookie page shown in Fig. 10. This page models action C
of Fig. 3. SCTP silently discarded the delayed Cookie.

The Tags match page Substitute transition Tags match in Fig. 7 is linked
to the Tags match page shown in Fig. 11. This page models action D of Fig. 3.
SCTP replies with CookieAck and enters ESTABLISHED.

Fig. 8. The Restart page

244 S. Vanit-Anunchai

Fig. 9. The Simultaneous Open page

Fig. 10. The Delayed Cookie page

Validating SCTP Simultaneous Open Procedure 245

Fig. 11. The Tags Matched page

5 Analysis of SCTP-CPN Association Management
Model

5.1 Initial configuration

We analyse our SCTP association management model using CPN Tools version
3.2.2 on an Intel(R)Core i5 2.67 GHz computer with 4GB RAM. The SCTP-
CPN model is initialised by distributing initial tokens to the places shown in
Fig. 4. No packet is in both channel places. Places ITAG A and ITAG Z store
initial verification tags which are randomly generated. Place Tie Tag Nonce in
Fig. 6 contains a pair of 32-bit random numbers for Tie-Tags.

5.2 Analysis Results

The analysis results of our SCTP simultaneous open CPN model are shown in
Table 1. The 2-tuple in the first column is the maximum retransmissions allowed
for Init and CookieEcho. The state space tool in CPN Tools provides the number
of nodes, arcs and terminal markings. In all cases the number of nodes and arcs
in the Strongly Connected Component (SCC) Graph are the same as the number
of nodes and arcs in the state space. Thus, no livelocks are found. We classify
the terminal markings into four categories based on the SCTP endpoint states.

TYPE-I terminal marking (CLOSED-CLOSED) is a desirable terminal mark-
ing when the association cannot be established thus both sides go to CLOSED
state (No connection). TYPE-III and TYPE-IV terminal markings5 occur when
one side is in ESTABLISHED while the other is in CLOSED. This can hap-
pen when the maximum number of retransmissions of the CookieEcho chunk
is reached and the node enters CLOSED before CookieAck arrives. An exam-
ple of this scenario is shown in Fig. 12. Although TYPE-III and TYPE-IV are
unwanted, they are not harmful. This is because SCTP in CLOSED will report
5 TYPE-III: node A terminates in CLOSED but node Z in ESTABLISHED.

TYPE-IV: node A terminates in ESTABLISHED but node Z in CLOSED.

246 S. Vanit-Anunchai

Table 1. State space analysis results

Case Nodes Arcs Time Terminal Markings

(sec) (I)CL-CL (II)EST-EST (III)CL-EST (IV)EST-CL
(0,0) 278 444 - 1 15(0) 8 8
(0,1) 663 1,158 - 1 19(2) 9 9
(0,2) 1,353 2,554 00:00:02 1 21(2) 10 10
(0,3) 2,458 4,892 00:00:04 1 23(2) 11 11
(0,4) 4,098 8,458 00:00:06 1 25(2) 12 12
(0,5) 6,405 13,564 00:00:15 1 27(2) 13 13
(0,6) 9,523 20,548 00:00:25 1 29(2) 14 14
(1,0) 10,242 18,820 00:00:28 1 74(0) 37 37
(0,7) 13,608 29,774 00:00:22 1 31(2) 15 15
(0,8) 18,828 41,632 00:00:40 1 33(2) 16 16
(1,1) 27,433 54,104 00:02:51 1 102(8) 47 47
(1,2) 65,589 135,134 00:17:13 1 122(8) 57 57
(1,3) 139,919 296,178 01:29:02 1 142(8) 67 67

the failure to its user so that the user may decide to re-initiate the ASSOCIATE
command. Thus the association can be restored as described in Fig. 5 of RFC
4960 (a restart example).

TYPE-II terminal markings should be desirable when both sides successfully
establish the association. However when we check the verification tags stored in
the TCBs, some terminal markings of TYPE-II are undesirable. “peer’s VTAG”
of node A must equal “local VTAG” of node Z and vice versa, otherwise received
data packets will be discarded. In column TYPE-II, the number in parenthesis
is the number of TYPE-II terminal markings in which verification tags between
both TCBs do not match each other.

Fig. 12. A scenario leads to a terminal marking TYPE III (half open state)

Validating SCTP Simultaneous Open Procedure 247

Fig. 13. A scenario leading to an undesired terminal marking TYPE II with mis-
matched VTAGs

Figure 13 shows a message sequence diagram leading to an undesired dead-
lock for case (0,1). Node A starts initiating the first connection (solid line).
After replying with InitAck (itag=78), node Z initiates the second connection
(dot line) using a different initial tag (itag=47). Node Z in COOKIE WAIT
keeps discarding the returned CookieEcho of the first connection (solid line)
because the conditions in Fig. 3 are not met. After receiving InitAck of the
second connection (dot line) and replying with CookieEcho, node Z stays in
COOKIE ECHOED state. Owing to the condition of action C in Fig. 3, node
Z in COOKIE ECHOED keeps discarding the returned CookieEcho of the first
connection (solid line). When the timer expires or an intermittent fault occurs,
node Z enters the CLOSED state. After node Z in CLOSED receives the Cook-
ieEcho of the first connection (solid line), it restores ESTABLISHED state from
the received cookie. After node A in COOKIE ECHOED, receives the Cook-
ieEcho of the second connection (dot line), it enters the ESTABLISHED state
(Action B). Note that in Fig. 13 the CookieEcho of the first connection (solid
line) is always sent by node A and the CookieEcho of the second connection (dot

248 S. Vanit-Anunchai

line) is always sent by node Z. After both sides are in ESTABLISHED, “peer’s
VTAG” of node A (47) is not equal to “local VTAG” of node Z (78). Node A
can receive data but will not receive any acknowledgement from node Z. Node
Z cannot receive any data from node A. Node Z cannot get into the restart
procedure immediately because it is not in CLOSED yet. Node Z and node A
have to wait for time-out before closing down the association.

6 Conclusions and Future Work

This paper has presented a Coloured Petri Nets model and analysis of SCTP
simultaneous open procedure. While constructing the SCTP-CPN model, we
identify the incorrect description of the Tie-Tags in RFC 4960. Our rigorous
analysis shows that SCTP simultaneous open procedure, operating over FIFO
channels with no loss, could fail into an undesired deadlock. Both sides in
ESTABLISHED could have mismatched verification tags in their TCBs. When
the server is located behind middle-boxes such as fire wall or Network Address
Translators (NAT), the transport protocols (UDP, TCP, DCCP and SCTP) nor-
mally use simultaneous open procedures. Nowadays NATs are widely deployed
so that these defects in simultaneous open procedures should not be overlooked.

Formal analysing connection management of the other transport protocols:
WAP [3], TCP [4] and DCCP [11], reveal no error when the protocols operate
over FIFO channels with no loss. Usually errors could appear when the protocols
operate over reordering and/or lossy channels. But the deadlock shown in Fig. 13
does not require any reordered or irregularly delayed packets. Although the odds
of this particular scenario is low, the number of terminal markings Type II in
Table 1 suggests that depending on the number of retransmitted Init Chunks,
there are a large number of possible scenarios leading to the similar deadlock.

SCTP includes various capabilities, such as the restart and multi-homing pro-
cedures, aiming for high reliability or fault tolerance applications. When SCTP
nodes enter the deadlock state, they have to wait for time-out before closing
down the association. This delay degrades SCTP performance. As far as we are
aware, this kind of errors has not been raised before. Given the above reasons and
the enormous number of potential SCTP connections in the Internet, we con-
sider that this problem could be a serious threat to SCTP applications especially
when the high reliability is required.

In future, we are interested in modelling SCTP operating via Network Address
Translators (NAT) with multi-homing functions.

Acknowledgements. This work is supported by Research Grant from the Thai Net-
work Information Center Foundation and the Thailand Research Fund. The author is
thankful to Jonathan Billington, Guy Gallasch and the anonymous reviewers. Their
constructive feedback has helped the author improve the quality of this paper.

Validating SCTP Simultaneous Open Procedure 249

References

1. Billington, J., Vanit-Anunchai, S.: Coloured Petri Net Modelling of an Evolving
Internet Standard: the Datagram Congestion Control Protocol. Fundamenta Infor-
maticae 88(3), 357–385 (2008)

2. CPN Tools home page, http://wiki.daimi.au.dk/cpntools-help/ home.wiki
3. Gordon, S.: Verification of the WAP Transaction Layer uisng Coloured Petri Nets.

PhD thesis, Institute for Telecommunications Research and Computer Systems
Engineering Centre, School of Electrical and Information Engineering, University
of South Australia, Adelaide, Australia (November 2001)

4. Han, B.: Formal Specification of the TCP Service and Verification of TCP Connec-
tion Management. PhD thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide,
Australia (December 2004)

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

6. Martins, M.G.M.: Modelagem e Análise Formal de algumas Funcionalidades de
um Protocolo de Transporte Atrvés das Redes de Petri. Master’s thesis, Instituto
Nacional de Telecomunicações (INATEL), Santa Rita do Sapucáı, Brazil (Decem-
ber 2003) (Only available in Portuguese)

7. Postel, J.: Transmission Control Protocol (TCP), RFC793 (September 1981),
http://www.rfc-editor.org/rfc/rfc793.txt

8. Stewart, R. (ed.): Stream Control Transmission Protocol (SCTP), RFC4960 (Sep-
tember 2007)

9. Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A., Tuexen, M.: Stream Control
Transmission Protocol (SCTP) Specification Errata and, Issues, RFC4460 (Sep-
tember 2007)

10. Vanit-Anunchai, S.: Toward Formal Modelling and Analysis of SCTP Connection
Management. In: The 9th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, Department of Computer Science, University of
Aarhus, October 20–23, pp. 163–182 (2008)

11. Vanit-Anunchai, S.: An Investigation of the Datagram Congestion Control Proto-
col’s Connection Management and Synchronisation Procedures. PhD thesis, Com-
puter Systems Engineering Centre, School of Electrical and Information Engineer-
ing, University of South Australia, Adelaide, Australia (November 2007)

12. Wang, J., Zhang, S., Chen, F.: Modelling and Verification of SCTP Association
Management Based on Coloured Petri Nets. In: 2008 ISECS International Col-
loquium on Computing, Communication, Control, and Management, Guangzhou,
China, August 3–4, pp. 379–383. IEEE Computer Society (2008)

http://wiki.daimi.au.dk/cpntools-help/_home.wiki
http://www.rfc-editor.org/rfc/rfc793.txt

Improving Time Bounded Reachability
Computations in Interactive Markov Chains�

Hassan Hatefi1,2 and Holger Hermanns1

1 Saarland University – Computer Science, Saarbrücken, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

hhatefi@depend.cs.uni-saarland.de, hermanns@cs.uni-saarland.de

Abstract. Interactive Markov Chains (IMCs) are compositional behav-
iour models extending both Continuous Time Markov Chain (CTMC)
and Labeled Transition System (LTS). They are used as semantic mod-
els in different engineering contexts ranging from ultramodern satellite
designs to industrial system-on-chip manufacturing. Different approxi-
mation algorithms have been proposed for model checking of IMC, with
time bounded reachability probabilities playing a pivotal role. This paper
addresses the accuracy and efficiency of approximating time bounded
reachability probabilities in IMC, improving over the state-of-the-art in
both efficiency of computation and tightness of approximation. Experi-
mental evidence is provided by applying the new method on a case study.

1 Introduction

Why IMCs? Over the last decade, a formal approach to quantitative performance
and dependability evaluation of concurrent systems has gained maturity. At its
root are continuous-time Markov chains for which efficient and quantifiably pre-
cise solution methods exist [3]. On the specification side, continuous stochastic
logic (CSL) [1,3] enables the specification of a large spectrum of performance
and dependability measures. A CTMC can be viewed as a labelled transition
system (LTS) whose transitions are delayed according to exponential distribu-
tions. Opposed to classical concurrency theory models, CTMCs neither support
compositional modelling [23] nor do they allow nondeterminism in the model.
Among several formalisms that overcome these limitations [7,21,24,25], interac-
tive Markov chains (IMCs) [22] stand out. IMCs conservatively extend classical
concurrency theory with exponentially distributed delays, and this induces sev-
eral further benefits [8]. In particular, it enables compositional modelling with
intermittent weak bisimulation minimisation [21] and allows to augment exist-
ing untimed process algebra specifications with random timing [7]. Moreover,
the IMC formalism is not restricted to exponential delays but allows to encode
� This work has been supported by the DFG as part of SFB/TR 14 AVACS, by

the DFG/NWO bilateral project ROCKS, and by the European Union FP7-ICT
projects MEALS, grant agreement no. 295261, and SENSATION, grant agreement
no. 318490.

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 250–266, 2013.
DOI: 10.1007/978-3-642-40213-5 16,
c© IFIP International Federation for Information Processing 2013

Improving Time Bounded Reachability Computations in IMCs 251

arbitrary phase-type distributions such as hyper- and hypoexponentials [28].
Since IMCs smoothly extend classical LTSs, the model has received attention in
academic as well as in industrial settings [6,13,12,16].

Why time bounded reachability? The principles of model checking IMCs are by
now well understood. One analysis strand, implemented for instance in CADP
[17], resorts to CSL model checking of CTMCs. But this is only applicable if
the weak bisimulation quotient of the model is indeed a CTMC, which cannot
be always guaranteed. This is therefore a partial solution technique, albeit it
integrates well with compositional construction and minimisation approaches,
and is the one used in industrial applications. The approximate CSL model
checking problem for IMCs has been solved by Neuhäusser and Zhang [26,29].
Most of the solution resorts to untimed model checking [5]. The core innovation
lies in the solution of the time bounded model checking problem, that is needed
to quantify a bounded until formula subject to a (real-valued) time interval. The
problem is solved by splitting the time interval into equally sized digitisation
steps, each small enough such that with high probability at most one Markov
transition occurs in any step.

However, the practical efficiency and accuracy of this approach to evaluate
time bounded reachability probabilities turns out substantially inferior to the
one known for CTMCs, and this limits applicability to real industrial cases. As
a consequence, model checking algorithms for other, less precise, but still highly
relevant properties have been coined [19], including expected reachability and
long run average properties.

Our contribution. We revisit the approximation of time bounded reachability
probabilities so as to arrive at an improved computational approach. For this,
we generalise the digitisation approach of Neuhäusser and Zhang [26,29] by
considering the effect of multiple Markov transition firings in a time interval
of length δ. We show that this can be exploited by a tighter error bound, and
thus a more accurate computation. We put the theoretical improvement into
practice by proposing a new algorithm to solve time bounded reachability in
IMCs. Empirical results demonstrate that the improved algorithm can gain more
than one order of magnitude speedups.

2 Interactive Markov Chain

An Interactive Markov Chain (IMC) is a model that generalises both CTMC
and LTS. In this section, we provide the definition of IMC and the necessary
concepts relating to it.

Definition 1. (IMC) An IMC [21] is a tupleM = (S,Act,−→, ���, s0), where

– S is a finite set of states,
– Act is a set of actions, including τ , representing the internal invisible action,
– −→⊂ S ×Act× S is a set of interactive transitions,
– ���⊂ S × R≥0 × S is a set of Markov transitions,
– s0 is the initial state.

252 H. Hatefi and H. Hermanns

Maximum progress vs. urgency. States of an IMC are partitioned into interactive,
Markov and hybrid. Interactive (Markov) states have only interactive (Markov)
outgoing transitions, while hybrid states have transitions of both types. Let SI ,
SM and SH be the set of interactive, Markov and hybrid states respectively.
An IMC might have states without any outgoing transition. For the purpose of
this paper, any such state is turned into a Markov state by adding a self loop
with an arbitrary rate. We distinguish between closed and open IMCs. An open
IMC can interact with the environment and in particular, can be composed with
other IMCs, e.g. via parallel composition. For such models, a maximum progress
assumption [21] is imposed which implies that τ -transitions take precedence over
Markov transitions whenever both are enabled in a state. In contrast, a closed
IMC is not subject to any further communication and composition. In this paper,
we assume that the models we are going to analyse are closed, and impose
the stronger urgency assumption which means that any interactive transition
has precedence over Markov transitions, i.e. interactive transitions are taken
immediately whenever enabled in a state, leaving no chance for enabled Markov
transitions. Consequently, in a closed IMC, hybrid states can be regarded as
interactive states.

Branching probabilities. A (probability) distribution μ over a discrete set S is a
function μ : S � [0, 1] such that

∑
s∈S μ(s) = 1. If μ(s) = 1 for some s ∈ S, μ

is a Dirac distribution denoted by μs. Let Dist(S) be the set of all distributions
over set S. For uniformity of notations, we use a distinguished action ⊥ /∈ Act to
indicate Markov transitions and extend the set of actions to Act⊥ = Act ·∪ {⊥}.
For s ∈ S, we define Act⊥(s) as the set of enabled actions in state s. If s is
a Markov state, Act⊥(s) = {⊥}, otherwise Act⊥(s) = {α | (s, α, s′) ∈ −→}.
The rate between state s and s′ is defined by rate(s, s′) =

∑
(s,λ,s′)∈��� λ. Then

E(s) =
∑
s′∈S rate(s, s′) denotes the sum of outgoing rates of state s. Using

these concepts, we define the branching probability matrix for both interactive
and Markov states by

P(s, α, s′) =

⎧
⎪⎨

⎪⎩

1 s ∈ SI ∧ (s, α, s′) ∈−→
rate(s,s′)
E(s) s ∈ SM ∧ α = ⊥

0 otherwise

Example 1. Let M be the IMC in Figure 1. s1 and s3 are Markov states, while
s2 is an interactive state. Initial state s0 is a hybrid state, since it has both
interactive and Markov transitions enabled. Considering M as a closed IMC,
the urgency assumption allows us to ignore (s0, 0.5, s2) ∈��� and consider s0 as
an interactive state. Under this assumption, interactive transitions are instan-
taneously fired after zero time delay. Conversely, the sojourn time in a Markov
state s is exponentially distributed with rate E(s). For example, the probability
to leave s1 within δ time unit is 1 − e−5δ (E(s1) = 2 + 3 = 5). At this point,
branching probabilities determine the distribution of evolving to next states. For
s1, P(s1,⊥, s0) = 2

5 and P(s1,⊥, s3) = 3
5 , as a result the probabilities to go to s0

and s3 after spending at most δ time unit in s1 are 2
5 (1− e−5δ) and 3

5 (1− e−5δ)
respectively.

Improving Time Bounded Reachability Computations in IMCs 253

Fig. 1. An exemplary IMC

Behavioural aspects. Like in other
transition systems, an execution in an
IMC is described by a path. Formally,
a finite path is a finite sequence π =
s0

t0,α0�−−−→ s1 · · · sn−1
tn−1,αn−1�−−−−−−−→ sn with

αi ∈ Act⊥, ti ∈ R≥0, i = 0 · · ·n − 1.
We use |π| = n as the length of π
and last(π) = sn as the last state of
π. Each step of a path π describes
how the IMC evolves from one state
to the next, with what action and after
spending what state sojourn time. For
example, when the IMC is in an inter-
active state s ∈ SI , it must immediately (in zero time) choose some action
α ∈ Act⊥(s) and go to state s′. This gives rise to the finite path s

0,α�−−→ s′. On
the other hand, if s ∈ SM , the IMC can stay for t > 0 time units and then choose
the next state s′ based on the distribution P(s,⊥, ·) by s

t,⊥�−−→ s′. An infinite path
specifies an infinite execution of an IMC. We use Paths∗ and Pathsω to denote
the set of finite and infinite paths, respectively. By dropping the sojourn times
from a path, we obtain the time-abstract path. We use subscript ta to refer to
the set of time-abstract finite and infinite paths (i.e. Paths∗

ta and Pathsωta).

Resolving nondeterminism. In states with more than one interactive transitions,
the resolution of the transition to take is nondeterministic, just as in the LTS
setting. This nondeterminism is resolved by schedulers. The most general sched-
uler class maps a finite and possibly timed path to a distribution over the set of
interactive transitions enabled in the last state of the path:

Definition 2. (Generic Scheduler) A generic scheduler over IMC M = (S,
Act,−→, ���, s0) is a function, A : Paths∗ � Dist(−→), where the support of
A(π) is a subset of ({last(π)} ×Act× S)∩ −→ and last(π) ∈ SI .
For a finite path π, a scheduler specifies how to resolve nondeterminism on the
last state of π which is an interactive state. It gives a distribution over the set
of enabled transitions of last(π). We use the term Gen to refer to the set of all
generic schedulers. Following the definition of schedules, the probability measure
can be uniquely defined over the σ−algebra on Pathsω, given scheduler A and
initial state s, denoted by PrωA,s [26].

Non-zenoness. Owing to the presence of immediate state changes, an IMC
might exhibit Zeno behaviour, where infinitely many interactive transitions are
taken in finite or zero time. This is an unrealistic phenomenon, characterised
by an infinite path π, where the time spent on π does not diverge, called a
Zeno path. To exclude such unrealistic phenomena, we restrict our attention
to models where the probability of Zeno behaviour is zero. This means that
∀A ∈ Gen, ∀s∈S. PrωA,s(Π<∞) = 0, where Π<∞ is the set of all Zeno paths.

254 H. Hatefi and H. Hermanns

This condition implies that starting from any interactive states, we must reach
the set of Markov states with probability one. In the remainder of this paper,
we therefore restrict to such models.

3 Time Bounded Reachability

CSL model checking of time bounded until properties plays a pivotal role in
quantitative evaluation of IMCs. It can be reduced to time bounded reachabil-
ity analysis, by a well-known technique [2] of making target states absorbing.
This section reviews the current state-of-the-art [26,29] of solving time bounded
reachability problems in IMC. Section 4 will discuss how can we improve upon
that.

Fixed point characterisation. We first discuss the fixed point characterisation
for the maximum probability to reach a set of goal states within an interval of
time. For this, let I and Q be the set of all nonempty nonnegative real intervals
with real and rational bounds respectively. For I ∈ I and t ∈ R≥0, we define
I � t = {x− t | x ∈ I ∧ x ≥ t}. If I ∈ Q and t ∈ Q≥0, then I � t ∈ Q. Given
IMC M, a time interval I ∈ I and a set of goal states G ⊆ S, the set of
all paths that reach the goal states within interval I is denoted by ♦IG. Let
pM
max(s,♦IG) be the maximum probability of reaching the goal states within

interval I if starting in state s at time 0. In formal terms, it is the supremum
ranging over all possible Gen schedulers, of the probability measures on the
induced paths: pM

max(s,♦IG) = supA∈Gen PrωA,s(♦IG). The next lemma recalls a
characterisation of pM

max(s,♦IG) as a fixed point. That of pM
min(s,♦IG) is dealt

with similarly.

Lemma 1. (Fixed Point Characterisation for IMCs [26, Theorem 6.1])
Let M be an IMC, G ⊆ S be a set of goal states and I ∈ I with inf I = a and
sup I = b. pM

max : S×I � [0, 1] is the least fixed point of the higher-order operator
Ω : (S × I � [0, 1]) � (S × I � [0, 1]), which is:

1. For s ∈ SM

Ω(F)(s, I) =

⎧
⎪⎨

⎪⎩

∫ b
0
E(s)e−E(s)t

∑
s′∈S P(s,⊥, s′)F (s′, I � t) dt s /∈ G

e−E(s)a +
∫ a
0
E(s)e−E(s)t

∑
s′∈S P(s,⊥, s′)

× F (s′, I � t) dt s ∈ G

2. For s ∈ SI

Ω(F)(s, I) =

{
1 s ∈ G ∧ 0 ∈ I
max(s,α,s′)∈−→ F (s′, I) otherwise

Improving Time Bounded Reachability Computations in IMCs 255

Interactive Probabilistic Chain. The above characterisation provides an integral
equation system of the maximum time interval bounded reachability probability.
But this system is in general not directly tractable algorithmically [2]. To cir-
cumvent this problem, the fixed point characterisation can be approximated by
a digitisation [26,29] approach. Intuitively, the time interval is split into equally
sized subintervals, which we call digitisation steps. It is assumed that the digi-
tisation constant δ is small enough such that with high probability it carries
at most one Markov transition firing. This assumption reduces an IMC to an
Interactive Probabilistic Chain (IPC) [12]. An IPC is a digitised version of IMC,
obtained by summarising the behaviour of an IMC at equidistant time points.

Definition 3. An IPC is a tuple D = (S,Act,−→, ���d, s0), where S, Act, −→
and s0 are as Definition 1 and ���d⊂ S×Dist(S) is the set of digitised Markov
transitions.

A digitised Markov transition specifies with which probability a state evolves
to its successors after taking one time step. The notion of digitised Markov
transition resembles the one-step transition matrix in DTMC. The concepts
of closed and open models carry over to IPC. As we do not have the notion
of continuous time, paths in IPC can be seen as time-abstract paths in IMC,
implicitly still counting digitisation steps, and thus discrete time.

Digitisation from IMC to IPC. We now recall the digitisation that turns an IMC
into an IPC. Afterwards, we explain how reachability computation in an IMC
can be approximated by analysis on IPC, for which there exists a proved error
bound.

Definition 4. (Digitisation [26]) Given IMC M = (S,Act,−→, ���, s0) and
a digitisation constant δ, Mδ = (S,Act,−→, ���δ, s0) is an IPC constructed
from digitisation ofM with respect to digitisation constant δ and ���δ= {(s, μs)|
s ∈ SM}, where

μs(s′) =

{
(1− e−E(s)δ)P(s,⊥, s′) s′ �= s

(1− e−E(s)δ)P(s,⊥, s′) + e−E(s)δ s′ = s

The digitisation in Definition 4 approximates the original model by assuming
that at most one Markov transition inM can fire in each step of length δ. It is
specified by distribution μs, which contains the probability of having either one
or no Markov transition in M from state s within a time interval of length δ.
Using the fixed point characterisation above, it is possible to relate reachability
analysis in an IMC to reachability analysis in its associated IPC [26], together
with an error bound. We recall the result here:

Theorem 1. (Error Bound [26]) Given IMC M = (S,Act,−→, ���, s0), a
set of goal states G ⊆ S, a time interval I ∈ Q such that a = inf I and b = sup I
with 0 ≤ a < b. and λ = maxs∈SM

E(s). Assume digitisation step δ > 0 is

256 H. Hatefi and H. Hermanns

selected such that b = kbδ and a = kaδ for some kb, ka ∈ N. For all s ∈ S it
holds

pMδ
max(s,♦(ka,kb]G)−ka (λδ)2

2
≤ pM

max(s,♦IG) ≤ pMδ
max(s,♦(ka,kb]G)+kb

(λδ)2

2
+λδ

For the proof of Theorem 1 see [26, Theorem 6.5].

Time bounded computation in IPC. We briefly review the maximum time
bounded reachability computation in IPC [29]. At its core, a modified value
iteration algorithm is carried out. Given an IPC, a set of goal states and a step
interval, the algorithm iteratively proceeds by taking two different phases. In
the first phase, reachability probabilities starting from all interactive states are
updated. This is done by selecting the maximum from reachability probabilities
of Markov states that are reachable from each interactive state. The second phase
updates the reachability probabilities from Markov states by taking a digitised
time step. The algorithm iterates until the last digitised time step is processed.
For more details about the algorithm we refer to [29].

4 Improving Time Bounded Reachability Computation

In this section, we generalise the previously discussed technique for computing
maximum time bounded reachability. As before, we approximate the fixed point
characterisation of IMC using a digitisation technique. However instead of con-
sidering at most one, we consider at most n Markov transition firing(s) in a
digitisation step, for n being an arbitrary natural number. This enables us to
establish a tighter error bound. Alternatively, an increased n lets us to choose a
larger digitisation constant δ, without compromising the original error bound. A
larger digitisation constant implies fewer iterations, thus speeding up the overall
runtime of the algorithm.

Higher-order approximation. When developing an approximation of n-th order
of the maximum reachability probability, we first restrict ourselves to intervals
with zero lower bounds.

Definition 5. Given IMC M = (S,Act,−→, ���, s0), a set of goal states G ⊆
S, an interval I ∈ Q such that inf I = 0 and sup I = b. Assume digitisa-
tion step δ > 0 is selected such that b = kbδ for some kb ∈ N. We define
p

Mδ(n)
max (s,♦IG) = 1 if s ∈ G, and for s ∈ S \G:

pMδ(n)
max (s,♦IG) =

{
AnI,n(s, δ) s ∈ SM \G
max(s,α,s′)∈−→ p

Mδ(n)
max (s′,♦IG) s ∈ SI \G

and for 0 ≤ k ≤ n and 0 ≤ Δ ≤ δ:

AkI,n(s,Δ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫Δ
0
E(s)e−E(s)t

∑
s′∈SP(s,⊥, s′)Ak−1

I,n (s′,Δ
−t) dt+ e−E(s)Δp

Mδ(n)
max (s,♦I
δG) s ∈ SM \G ∧ k > 0

p
Mδ(n)
max (s,♦I
δG) s ∈ SM \G ∧ k = 0

max(s,α,s′)∈−→AkI,n(s,Δ) s ∈ SI \G

Improving Time Bounded Reachability Computations in IMCs 257

Intuitively AkI,n(s,Δ) is the maximum probability to reach G from state s
inside I�(δ−Δ) by having up to k Markov transition(s) in the first Δ time unit
and up to n Markov transition(s) in each digitisation step δ afterwards. This
approximation represents the behaviour of the original model more faithfully,
thus leading to a better error bound. Theorem 2 quantifies the quality of this
approximation.

Theorem 2. Given IMCM = (S,Act,−→, ���, s0), a set of goal states G ⊆ S,
an interval I ∈ Q with inf I = 0, sup I = b and λ = maxs∈SM

E(s). Assume
digitisation step δ > 0 is selected such that b = kbδ for some kb ∈ N and n > 0
is the order of approximation. For all s ∈ S it holds

pMδ(n)
max (s,♦IG) ≤ pM

max(s,♦IG) ≤ pMδ(n)
max (s,♦IG) + 1− e−λb

(n∑

i=0

(λδ)i

i!

)kb

The proof of Theorem 2 is tedious, basically following and generalising the proof
of [26, Theorem 6.3]. We provide the proof for the case n = 2 in the appendix
and discuss how it can be extended to the general case. The core insight is,
intuitively speaking, as follows. We can view the error as the probability of more
than n Markov transition(s) firing in at least one digitisation step. Due to inde-
pendence of the number of Markov transition occurrences in digitisation steps,
this probability can be upper bounded by kb independent Poisson processes, all
parametrised with the maximum exit rate exhibited in the IMC. In each Poisson
process the probability of at most n Markov transition(s) firing in one digiti-
sation step is e−λδ ∑n

i=0
(λδ)i

i! , therefore the probability of a violation of this

assumption in at least one digitisation step is 1− e−λb(∑n
i=0

(λδ)i

i!

)kb .
It is worthwhile to note that open and closed intervals of type (0, b] and [0, b]

are treated in the same manner based on Theorem 2. They lead to the same
fixed point computation of time bounded reachability, in contrast to bounded
until [30]. We can directly extend Definition 5 to intervals with non-zero lower
bounds and adapt Theorem 2 accordingly.

Theorem 3. Given IMCM = (S,Act,−→, ���, s0), a set of goal states G ⊆ S,
an interval I ∈ Q with inf I = a > 0, sup I = b > a and λ = maxs∈SM

E(s).
Assume digitisation step δ > 0 is selected such that a = kaδ and b = kbδ for
some ka, kb ∈ N and n > 0 is the order of approximation. For all s ∈ S it holds

pMδ(n)
max (s,♦IG)−

(
1− e−λa

(n∑

i=0

(λδ)i

i!

)ka
)
≤pM

max(s,♦IG) ≤ pMδ(n)
max (s,♦IG)

+
(
1− e−λb

(n∑

i=0

(λδ)i

i!

)kb
)

The proof of Theorem 3 combines the one of Theorem 2 and of [26, Theorem 6.4].
It is worth noting that the digitisation error decreases by decreasing digitisation
step δ or increasing the order of approximation n. Further, the error vanishes as
n goes to infinity or δ goes to zero.

258 H. Hatefi and H. Hermanns

Improved algorithm. In this section we describe how the result of Theorem 2
and 3 can improve the original time bounded reachability approximation [29].
The structure of the algorithm remains unchanged, but is parametrised with
natural n. It computes pMδ(n)

max as the approximation of the maximum reachability
probability.

Our objective is to compute maximum probability to reach a set of goal
states within a given step interval. First we restrict ourselves to the case that
the lower bound of the step interval is zero. Afterwards, we extend it to the
general case. Let M be an IMC, G ⊆ S be a set of goal state and I ∈ Q be a
nonempty interval with inf I = 0 and sup I = b. Assume digitisation step δ > 0
is selected such that b = kbδ for some kb ∈ N. We use pMδ(n)

max (s,♦IG) to denote
the approximate maximum probability of reaching the goal states inside I where
we only consider up to n Markov transition firing(s) within each digitisation
step. Let Reachi(s) be the set of states that can be reached from s by only using
interactive transitions.

The overall algorithm is depicted in Algorithm 1. It proceeds by backwards
unfolding the IMC in an iterative manner, starting from the goal states. At the
beginning, all goal states are made absorbing: all of their transitions are removed,
and replaced by a digitised Markov self loop (a transition to a Dirac distribution
over the source state). The initial value of probability vector is set to one for goal
states and to zero otherwise. The algorithm then proceeds by intertwining m-
phases and i∗-phases consecutively for kb steps. In each iteration, i∗-phase and
m-phase update reachability probabilities from interactive and Markov states
to the set of goal states respectively. After completing i∗-phase and m-phase at
the end of an iteration, the elements of pMδ(n)

max (·,♦I
jδG) are updated for both
interactive and Markov states.

Input : M is the given IMC, G ⊆ S is the set of goal state, I is the interval
with inf I = 0 and sup I = b, δ > 0 such that b = kbδ for some kb ∈ N

Output: Maximum reachability probabilities starting from all states

begin
make all s ∈ G in M absorbing ;
foreach s ∈ G do p

Mδ(n)
max (s,♦[0,0]G) := 1 ;

foreach s ∈ S \G do p
Mδ(n)
max (s,♦[0,0]G) := 0;

foreach s ∈ SI do
p

Mδ(n)
max (s,♦[0,0]G) := maxs′∈Reachi(s)∩SM

p
Mδ(n)
max (s′,♦[0,0]G);

for j := kb − 1 to 0 do
// m-phase ;

foreach s ∈ SM do calculate p
Mδ(n)
max (s,♦I�jδG) as in Definition 5;

// i∗-phase ;
foreach s ∈ SI do
p

Mδ(n)
max (s,♦I�jδG) := maxs′∈Reachi(s)∩SM

p
Mδ(n)
max (s′,♦I�jδG) ;

end
end

Algorithm 1: Computing maximum step bounded reachability

Improving Time Bounded Reachability Computations in IMCs 259

Phases of an iteration. In the following we explain the functioning of i∗-phase
and m-phase in more details. An i∗-phase maximises the reachability probabili-
ties starting from interactive states to the set of goal states. By the law of total
probability, this can split into two parts: (1) the probability of reaching Markov
states from interactive states in zero time and (2) the probability of reaching
goal states from Markov states. The latter has been computed by the m-phase
directly preceding the i∗-phase under consideration. The former can be com-
puted by a backward search in the interactive reachability graph underlying the
IMC [29]. The number of transitions taken does not matter in this case, because
they take zero time each. This step thus needs the set of all Markov states that
are reachable from each interactive state s via an arbitrary number of interactive
transitions. That set, Reachi(s)∩SM , can be precomputed prior to the algorithm.
From these sets, the i∗-phase selects states with maximum reachability proba-
bility. In an m-phase, we update the reachability probabilities starting from
Markov states by taking at most n Markov transitions. This step is performed
by solving the integral equation in Definition 5 for case s ∈ SM \G. Restricting
the number n of Markov transitions in a digitisation step makes the integral
equation in Definition 5 tractable, in contrast to Lemma 1. For instance, in the
first-order approximation (n = 1) it is enough to consider zero or one Markov
transition starting from a Markov state. Owing to this assumption the resulting
model (Mδ(1)) is equivalent to the induced IPC (Mδ) from the original model
with respect to digitisation step δ. For the second-order approximation we need
to consider up to two Markov transitions starting from a Markov state.

Example 2. We now discuss by example how i∗- and m-phases are performed
for n = 2. Assume Figure 2 is a fragment of an IMC C with a set of goal states
G. Given time interval I = [0, b] with b > 0 and digitisation step δ, the vector
p

Cδ(2)
max (·,♦I
δG) has been computed for all states of C. The aim is to compute
p

Cδ(2)
max (s0,♦IG). From Definition 5 we have:

pCδ(2)
max (s0,♦IG) = A2

I,2(s0,Δ) =
∫ δ

0

2e−2tA1
I,2(s1, δ−t)dt+e−2δpCδ(2)

max (s0,♦I
δG)

For s1 we have A1
I,2(s1, δ − t) = max{A1

I,2(s3, δ − t), A1
I,2(s5, δ − t)}, since

Reachi(s1) ∩ SM = {s3, s5}. From Definition 5 for s3 and s5 we have:

A1
I,2(s3, δ − t) =

∫ δ−t

0

3e−3t′A0
I,2(s4, δ − t− t′) dt′ + e−3(δ−t)pCδ(2)

max (s3,♦I
δG)

= (1− e−3(δ−t))pCδ(2)
max (s4,♦I
δG) + e−3(δ−t)pCδ(2)

max (s3,♦I
δG)

Similar calculations give:
A1
I,2(s5, δ − t) = (1− e−5(δ−t))pCδ(2)

max (s6,♦I
δG) + e−5(δ−t)pCδ(2)
max (s5,♦I
δG).

260 H. Hatefi and H. Hermanns

Fig. 2. An exemplary IMC fragment

Generalisation to intervals with non-
zero lower bound. We can gener-
alise time bounded reachability com-
putation just discussed to intervals
with non-zero error bound, following
a recipe discussed in [2]. Assume we
choose interval I such that inf I = a >
0 and sup I = b > a. We break the
interval into two parts, first from b
down to a and second from a down to zero. Within the first, we are interested
in reaching one of the goal states, as a result we make the goal states absorbing.
Nevertheless, within the second, it does not matter that the model is in one of
the goal states, which consequently leads us to ignore goal states and reintro-
duce them as before. Accordingly the algorithm proceeds as follows. In the first
part ([0, b−a]), goal states are made absorbing and reachability probabilities are
computed by running Algorithm 1. The result will be used as the initial vector
of the next step. Then, goal states are treated as normal states, so we undo
absorbing of goal states and set G = ∅. However other calculations remain the
same as before.

Complexity and efficiency. The key innovation of this approach lies in both the
precision and the efficiency of the computation. Following Theorems 2 and 3, the
number of iterations required to guarantee accuracy level ε can be calculated by
determining the least kb such that 1 − e−λb(∑n

i=0
(λδ)i

i!

)kb ≤ ε. The inequality
however does not have closed-form solution with respect to kb. Routine calculus
allows us to derive that 1−e−λb(∑n

i=0
(λδ)i

i!

)kb ≤ kb (λδ)n+1

(n+1)! which is tight in our

setting, since λδ is very small. Thus, we instead consider inequality kb
(λδ)n+1

(n+1)! ≤ ε
which leads to kb ≥ λb

(
λb

(n+1)!ε

) 1
n . This shows how the number of iterations

required to achieve a predefined accuracy level decreases by increasing the order
of approximation n. In other words, using higher-order approximations gives the
same error bound in less iterations.

To shed some light on this, we compare the complexity of the original first-
order and the second-order instance of the novel approximation. Given accuracy
level ε and IMC M as before, assume N = |S| and M = | −→ | + | ��� |. The
best known complexity for the precomputation of set Reachi(·) for all interactive
states and hence of Reachi(·)∩SM is O(N2.376) [11]. Instantiating the inequality

above for n = 2 gives O
(√

(bλ)3

ε

)
as the complexity of the iteration count. Since

the size of Reachi(s) ∩ SM for a given state s is at most N , the complexity of
the i∗-phase is O(N2). m-phase contains one step reachability computations
from Markov states by considering zero, one or two Markov transitions which
has the respective complexities O(N), O(MN) and O(M2). Thus the resulting

complexity is O
(
N2.376 +

(
M2 +MN +N2

)√
(bλ)3

ε

)
, while the complexity of

Improving Time Bounded Reachability Computations in IMCs 261

the first-order approximation is O
(
N2.376 + (M +N2) (bλ)2

ε

)
[29]. We observe

that the per iteration complexity of the second-order approximation is higher,
but since in almost all cases M is at least N this is a negligible disadvantage. At
the same time, the number of iterations (the respective last terms) is much less.
Therefore the efficiency of the second-order approximation compares favourably
to the original first-order approximation, at least in theory. In the next section
we compare the complexity of both algorithms in practice.

5 A Simplified Empirical Evaluation

This section reports on empirical results with an implementation that harvests
the theoretical advances established, but is simplified in one dimension: Our
current implementation keeps the scheduler decisions constant over each time
interval of length δ, even though a timed scheduler may perform slightly better
by adjusting the decision during the interval, and not at interval boundaries
only. We do not yet have an error bound for the deviation introduced by this
simplification. In light of the above discussion, we consider n = 2, thus we
use a second-order approximation, and compare with the original first-order
approximation.

Case study. As a case study we consider a replicated file system as it is used
as part of the Google search engine [10]. The IMC specification is available as
an example of IMCA tool [18]. The Google File System (GFS) splits files into
chunks of equal size maintained by several chunk servers. If a user wants to
access a chunk, it asks a master server which stores the address of all chunks.
Then the user can directly access the appropriate chunk server to read/write the
chunk. The model contains three parameters, Ncs is the number of chunk server,
Cs is the number of chunks a server may store, and Ct is the total number of
chunks.

Evaluation. We set Cs = 5000 and Ct = 100000 and change the number of
chunk servers Ncs. The set of goal states G is defined as states in which the
master server is up and there is at least one copy of each chunk available. We
compute minimum and maximum time bounded reachability with respect to the
set of goal states G using both the first- and the second-order approximations
on different intervals of time. The former has been implemented in the IMCA
tool [18], and our implementation is derived from that. All experiments were
conducted on a single core of a 2.5 GHz Intel Core i5 processor with 4GB RAM
running on Linux. The computation times of both algorithm under different
parameter settings are reported in Table 1.

As stated before, the second-order algorithm takes less iterations for com-
puting reachability to guarantee accuracy ε. The computation times reported
apparently show a beneficial effect, with the speedup depending on different
parameters. Table 1 indicates that the speedup gets higher with increasing λ
and with increasing interval upper bounds.

262 H. Hatefi and H. Hermanns

Table 1. Reachability computation time in the Google file system

Mδ time(s) Mδ(2) time(s)
Ncs |S| |G| ε I min max min max

10−3 [0, 0.1] 124.8 115.0 18.6 21.4
10−3 [0, 0.4] 2021.0 1823.6 145.0 165.1

10 1796 408 10−4 [0, 0.1] 1308.9 1188.1 56.7 66.0
10−4 [0.01, 0.04] 232.8 214.0 17.1 21.9

20 7176 1713
10−4 [0, 0.01] 319.9 308.5 52.2 54.0
10−5 [0.005, 0.015] 5564.9 6413.0 179.4 219.1

6 Conclusions

This paper has presented an improvement of time bounded reachability compu-
tations in IMC, based on previous work [29], which has established a digitisation
approach for IMC, together with a stable error bound. We have extended this
theoretical result by assuming at most n Markov transitions to fire in each digi-
tisation step, where previously n = 1 was assumed. In practice, setting n = 2
already provides a much tighter error bound, and thus saves considerable com-
putation time. We have demonstrated the effectiveness of the approach in our
empirical evaluation with speedups of more than one order of magnitude, albeit
for a simplified scheduler scenario.

Lately, model checking of open IMC has been studied, where the IMC is
considered to be placed in an unknown environment that may delay or influence
the IMC behaviour via synchronisation [9]. The approach resorts to the approx-
imation scheme laid out in [29], which we have improved upon in the present
paper. Therefore, our improvement directly carries over to the open setting. As
a future work, we intend to further generalise the proposed algorithm to Markov
Automata [15,14,20].

Acknowledgements. We thank Lijun Zhang for helpful discussions and comments,
and Dennis Guck for developing and sharing the original implementation of the algo-
rithm and the case study as a part of IMCA.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Towards Performance Prediction
of Verifying Continuous Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering
29(6), 524–541 (2003)

3. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theoretical Computer Science 345, 2–26 (2005)

Improving Time Bounded Reachability Computations in IMCs 263

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

6. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural
dependability evaluation with Arcade. In: DSN, pp. 512–521. IEEE (2008)

7. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Rakow, J., Wimmer, R., Becker, B.: Compositional Dependability Evaluation for
STATEMATE. IEEE Transactions on Software Engineering 35(2), 274–292 (2009)

8. Bravetti, M., Hermanns, H., Katoen, J.-P.: YMCA - Why Markov Chain Algebra?
Electronic Notes in Theoretical Computer Science 162, 107–112 (2006)

9. Brázdil, T., Hermanns, H., Krčál, J., Křet́ınský, J., Řehák, V.: Verification of Open
Interactive Markov Chains. In: FSTTCS, pp. 474–485 (2012)

10. Cloth, L., Haverkort, B.R.: Model Checking for Survivability. In: QEST, pp. 145–
154. IEEE (2005)

11. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
In: STOC, pp. 1–6 (1987)

12. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards Performance Pre-
diction of Compositional Models in Industrial GALS Designs. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg
(2009)

13. Coste, N., Garavel, H., Hermanns, H., Hersemeule, R., Thonnart, Y., Zidouni, M.:
Quantitative Evaluation in Embedded System Design: Validation of Multiprocessor
Multithreaded Architectures. In: DATE, pp. 88–89. IEEE (2008)

14. Deng, Y., Hennessy, M.: On the Semantics of Markov Automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318.
Springer, Heidelberg (2011)

15. Eisentraut, C., Hermanns, H., Zhang, L.: On Probabilistic Automata in Continuous
Time. In: LICS, pp. 342–351 (2010)

16. Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
correctness, safety, dependability and performance analysis of a satellite. In: ICSE,
pp. 1022–1031 (2012)

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

18. Guck, D.: Quantitative Analysis of Markov Automata. Master Thesis, RWTH
Aachen University (2012)

19. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative Timed Analysis
of Interactive Markov Chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012.
LNCS, vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

20. Hatefi, H., Hermanns, H.: Model Checking Algorithms for Markov Automata. ECE-
ASST 53 (2012)

21. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

22. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1–2), pp. 43–87 (2002)

23. Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation
for a plain-old telephone system. Science of Computer Programming 36(1), pp.
97–127 (2000)

264 H. Hatefi and H. Hermanns

24. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

25. Macià, H., Valero, V., Cuartero, F., Carmen Ruiz, M.: sPBC: A Markovian Exten-
sion of Petri Box Calculus with Immediate Multiactions. Fundamenta Informaticae
87(3–4), pp. 367–406 (2008)

26. Neuhäusser, M.R.: Model Checking Nondeterministic and Randomly Timed Sys-
tems. PhD Thesis, RWTH Aachen University and University of Twente (2010)

27. Haverkort, B.R., Kuntz, M., Remke, A., Roolvink, S., Stoelinga, M.: Evaluating
repair strategies for a water-treatment facility using Arcade. In: DSN, pp. 419–424
(2010)

28. Pulungan, R.: Reduction of Acyclic Phase-Type Representations. PhD thesis, Uni-
versität des Saarlandes, Saarbrücken, Germany (2009)

29. Zhang, L., Neuhäusser, M.R.: Model Checking Interactive Markov Chains. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68.
Springer, Heidelberg (2010)

30. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-Based CSL Model
Checking. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 271–282. Springer, Heidelberg (2011)

Appendix

Proof of Theorem 2

We present the proof of Theorem 2 in a restricted setting and afterwards briefly
discuss how to extend it to cover the entirety of the theorem. We assume that
I = [0, b] and focus on the case n = 2. Lemma 1 for s ∈ SM \ G can be
rewritten [26, Section 6.3.1] into

pM
max(s,♦IG) =

∫ δ

0

E(s)e−E(s)t
∑

s′∈S
P(s,⊥, s′)pM

max(s
′,♦I
tG) dt

+ e−E(s)δpM
max(s,♦I
δG) (1)

The following holds from Definition 5 for s ∈ SM \G and n = 2:

pMδ(2)
max (s,♦IG) = A2

I,2(s, δ) =
∫ δ

0

E(s)e−E(s)t
∑

s′∈S
P(s,⊥, s′)A1

I,2(s
′, δ − t) dt

+ e−E(s)δpMδ(2)
max (s,♦I
δG) (2)

We have to prove that:

pMδ(2)
max (s,♦IG) ≤ pM

max(s,♦IG) ≤ pMδ(2)
max (s,♦IG) + 1− e−λb

(2∑

i=0

(λδ)i

i!

)kb

In the following, we prove the upper bound of the approximation. For the proof
of lower bound see [26, Lemma 6.6].

Improving Time Bounded Reachability Computations in IMCs 265

Proof. The proof is by induction over kb:
1. kb = 1: We consider two cases:

a. s ∈ SM \ G: Let Πδ be the set of paths that reach G within δ time unit.
In the approximation we measure the set of paths that have at most two
Markovian jumps and then reach G. Let this set be denoted byΠδ

≤2. Since we
have Πδ = Πδ

≤2∪Πδ
>2 and Πδ

≤2 and Πδ
>2 are disjoint, we have: PrωA,s(Π

δ)−
PrωA,s(Π

δ
≤2) = PrωA,s(Π

δ
>2). The probability PrωA,s(Π

δ
>2) can be bounded by

the probability of more than two arrivals in a Poisson process with the largest
exit rate appearing in the IMC within a time interval of length δ. For the
Poisson process, this probability is 1− e−λδ(∑2

i=0
(λδ)i

i!

)
.

b. s ∈ SI \G: This case reduces to case 1.a as follows. We have

pM
max(s,♦I
tG) = max

s′∈Reachi(s)∩SM

pM
max(s

′,♦I
tG)

pMδ(2)
max (s,♦I
tG) = max

s′∈Reachi(s)∩SM

pMδ(2)
max (s′,♦I
tG)

From the above equations there exists s′ ∈ SM such that pM
max(s,♦IG) =

pM
max(s

′,♦IG). Because s′ is a Markov state, the upper bound for s′ is
deployed to s.

2. kb − 1 � kb: We assume the upper bound holds for kb − 1:

pM
max(s,♦I
δG) ≤ pMδ(2)

max (s,♦I
δG) + 1− e−λ(kb−1)δ
(2∑

i=0

(λδ)i

i!

)kb−1

(3)

Assume Bi(s, t) = pM
max(s,♦I
tG) − AiI,2(s, δ − t) for 0 ≤ t ≤ δ, i = {0, 1, 2}

and C(s) = pM
max(s,♦I
δG)− pMδ(2)

max (s,♦I
δG). We consider two cases:

a. s ∈ SM \G: From Eq. 1 and 2 we have:

B2(s, 0) = pM
max(s,♦IG)− pMδ(2)

max (s,♦IG)

=
∫ δ

0

E(s)e−E(s)t
∑

s′∈S
P(s,⊥, s′)B1(s′, t) dt+ e−E(s)δC(s) (4)

We try to find an upper bound for B1(s′, t) for s′ ∈ SM :

B1(s′, t) = pM
max(s

′,♦I
tG)−A1
I,2(s

′, δ − t)

=
∫ δ−t

0

E(s′)e−E(s′)τ
∑

s′′∈S
P(s′,⊥, s′′)B0(s′′, t+ τ) dτ

+ e−E(s′)(δ−t)C(s′) (5)

266 H. Hatefi and H. Hermanns

Now we find an upper bound for B0(s′′, t+ τ). For s′′ ∈ SM we have:

B0(s′′, t+ τ) = pM
max(s

′′,♦I
(t+τ)G)−A0
I,2(s

′, δ − t− τ)

=
∫ δ−t−τ

0

E(s′′)e−E(s′′)u
∑

v∈S
P(s′′,⊥, v)pM

max(v,♦I
(t+τ+u)G) du

+ e−E(s′)(δ−t−τ)pM
max(s

′′,♦I
δG)− pMδ(2)
max (s′′,♦I
δG)

=
∫ δ−t−τ

0

E(s′′)e−E(s′′)u
∑

v∈S
P(s′′,⊥, v)pM

max(v,♦I
(t+τ+u)G) du

− (1− e−E(s′)(δ−t−τ))pMδ(2)
max (s′′,♦I
δG)

+ e−E(s′′)(δ−t−τ)C(s′′) (6)

We know that:
∫ δ−t−τ

0

E(s′′)e−E(s′′)u
∑

v∈S
P(s′′,⊥, v)pM

max(v,♦I
(t+τ+u)G)du ≤ 1−e−E(s′′)(δ−t−τ)

Plugging the above inequality and 3 into 6 gives:

B0(s′′, t+ τ) ≤ 1− e−λ(kbδ−t−τ)
(2∑

i=0

(λδ)i

i!

)kb−1

(7)

Plugging 3 and 7 into 5 gives:

B1(s′, t) ≤ 1− e−λ(kbδ−t)
(2∑

i=0

(λδ)i

i!

)kb−1

(1 + λ(δ − t)) (8)

Note that Eq. 7 and 8 are still valid for s′, s′′ ∈ SI\G with the same argument
described in 1.b. Finally plugging 3 and 8 into 4 gives:

B2(s, 0) = pM
max(s,♦IG)− pMδ(2)

max (s,♦IG) ≤ 1− e−λb
(2∑

i=0

(λδ)i

i!

)kb

b. s ∈ SI \G: In this case the proof is similar to 1.a.
This proof can directly be extended to intervals with open bounds and to inter-
vals with nonzero lower bounds. Furthermore it can be embedded into an induc-
tion on n, thereby showing the theorem for any natural n. We need to skip these
cases because of space limitations.

Checking Compatibility of Web Services
Behaviorally

Kais Klai1 and Hanen Ochi2

1 Institut TELECOM SudParis, CNRS UMR Samovar,
9 rue Charles Fourier, 91011 Evry, France

kais.klai@telecom-sudparis.eu
2 LIPN, CNRS UMR 7030, Université Paris 13,

99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
hanen.ochi@lipn.univ-paris13.fr

Web services composition is an emerging paradigm for enabling application
integration within and across organizational boundaries. In this context, we pro-
pose an approach based on Symbolic Observation Graphs (SOG) allowing to
decide whether two (or more) web services can cooperate safely. The compati-
bility between two web services is defined by the well known soundness property
on open workflow nets. This property guarantees the absence of anomalies (e.g.
deadlock) that can appear after composition. We propose to abstract the con-
crete behavior of a web service using a SOG and show how composition of web
services as well as the compatibility check can be achieved through the com-
position of their abstractions (i.e. SOGs). This approach allows to respect the
privacy of the services since SOGs are based on collaborative activities only and
hide the internal structure and behavior of the corresponding service.

1 Introduction

Service oriented architecture (SOA) has evolved to become a promising technol-
ogy for the integration of disparate software components using Internet protocols.
These components, called Web Services, are available in the distributed environ-
ment of the Internet. Organizations attempt to provide their own services to be
matched with others following a request, their complex tasks are resolved using
a combination of several web services. For automatically selecting and compos-
ing services in a well-behaved manner, information about the services has to be
exposed. Usually, web services are published by giving their public description
behavior in a repository, such as Universal Description, Discovery and Integra-
tion UDDI, in order to make possible the collaboration with potential requesters.
In particular, this information must be sufficient to decide whether the compo-
sition of two services is possible. However, organizations usually want to hide
the trade secrets of their services and thus need to find a proper abstraction
which is published instead of the service itself in the repository. Thus, the pub-
lic abstraction should satisfy two contradictory requirements: on one hand, it
should respect the privacy of the underlying organization. On the other hand, it
should supply enough information to allow the collaboration and the communi-
cation with potential partners in a correct way. Thus, correctness of the original
F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 267–282, 2013.
DOI: 10.1007/978-3-642-40213-5 17,
c© IFIP International Federation for Information Processing 2013

268 K. Klai and H. Ochi

composite web service should be detected from the analysis of the composition
of the corresponding public abstractions. Among other abstraction approaches,
the Symbolic Observation Graph (SOG) based technique, initially introduced for
model checking of concurrent systems [4] and then applied to the verification of
inter enterprise business processes [8,11], is promising. A SOG is a graph whose
construction is guided by a subset of observed actions. The nodes of a SOG are
aggregates hiding a set of local states which are connected with non observed
actions. The arcs of a SOG are exclusively labeled with observed actions. Thus,
we propose to use SOGs as abstraction of web services. By observing the collab-
orative activities of a web service, publishing a SOG as an abstraction allows to
hide its internal behavior inside the aggregates. The strength of such approach
is that a SOG associated with a web service represents a reduced abstraction of
its reachable state space while preserving its behavioral properties (e.g. dead-
lock freeness, temporal properties, ...). Checking the compatibility of two web
services is reduced to check the compatibility on the composition of their SOGs.

In this paper, a web service is formally represented by an oWF-net [14]. Two
web services are said to be compatible if the composite oWF-net is sound [17].
The soundness property on a oWF-net is defined by three requirements: (1)
option to complete: starting from any reachable state, it is possible to reach a
final state, (2) proper completion: there is no reachable state strictly greater than
a final state, and, (3) no dead transitions: each action is executed at least in one
reachable state. Although, in practice, the behavior of web services is frequently
described using industrial description languages such as BPEL4WS, BPWL and
WSCI, several approaches allow to map these models to the formal description
languages [13][6] (Petri nets). Thus, our approach is relevant for a very broad
class of modeling languages and we can use an UDDI registry as a repository to
extract web service’s specifications for this purpose.

This paper is organized as follows: first, Section 2 presents some preliminary
notions on oWF-nets, their composition and the notion of soundness. Then, a
running example is presented in Section 3 allowing to illustrate our approach
through the paper. In Section 4, we present symbolic observation graphs and
how the soundness property is preserved by such an abstraction. Composition
of SOGs and checking the compatibility property is the issue of Section 5. In
Section 6, we discuss some related works. Finally, Section 7 concludes the paper
and presents some aspects of the future work.

2 Preliminaries

2.1 Description Models

Petri nets The need for formal methods and software tools for describing and
analyzing web services is widely recognized. Petri nets [15], a well known for-
malism for modeling real-time systems, can be used for describing and analyzing
the behavior of web services.

Checking Compatibility of Web Services Behaviorally 269

Definition 1. A Petri net is 4-tuple N = 〈P, T, F,W 〉 where:

– P is a finite set of places (circles) and T a finite set of transitions (squares)
with (P ∪ T) �= ∅ and P ∩ T = ∅,

– A flow relation F ⊆ (P × T) ∪ (T × P),
– W : F → N

+ is a mapping that assigns a positive weight to any arc.

Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respec-
tively as follows: •x = {y ∈ P∪T | (y, x) ∈ F}, and x• = {y ∈ P∪T | (x, y) ∈ F}.
Adjacent nodes are then denoted by •x• = •x ∪ x•. The incidence matrix
C associated with the net is defined as follows : ∀(p, t) ∈ P × T : C(p, t) =
W (t, p)−W (p, t)

A marking of a Petri net N is a function m : P → N. The initial marking of
N is denoted by M0. The pair (N,M0) is called a Petri net system.

A transition t is said to be enabled by a marking m (denoted by m t−→) iff
∀p ∈ •t, W (p, t) ≤ m(p). If a transition t is enabled by a marking m, then its
firing leads to a new marking m′ (denoted by m t−→m′) s.t. ∀p ∈ P : m′(p) =
m(p) + C(p, t). Given a set of markings S, we denote by Enable(S) the set
of transitions enabled by elements of S. The set of markings reachable from a
marking m in N is denoted by R(N,m). The set of markings reachable from a
marking m, by firing transitions of a subset T ′ only is denoted by Sat(m,T ′).
By extension, given a set of markings S and a set of transitions T ′, Sat(S, T ′) =⋃

m∈S Sat(m,T
′) . For a marking m, m �→ denotes that m is a dead marking,

i.e., Enable({m}) = ∅.

oWF-nets We define a web service by its behavior and its interface. An instance
of a given service corresponds to an execution of this service. The interface
consists of a set of ports. A pair of ports can be connected using a channel, thus
enabling the exchange of messages sent or received by services. A web service can
be viewed as a control structure describing its behavior according to an interface
to communicate asynchronously with other services in order to reach a final state
(i.e. a state representing a proper termination). We use a particular Petri net for
modeling the control-flow dimension of a web service, called open Work-Flow net
(oWF-net) and introduced in [14]. It is essentially a liberal version of workflow
nets [1], enriched with communication places representing the interface. Each
communication place models a channel to send (receive) messages to (from)
another oWF-net. Transitions in a oWF-net correspond to activities and places
represent pre-conditions for activities.

Definition 2. An open workflow net (oWF-net for short) is defined by a tuple
N = 〈P, T, F,W,m0, I, O,Ω〉 where:

– 〈P ∪ I ∪O, T, F,W 〉 is a Petri net;
– m0 is the initial marking;
– I (resp. O) is a set of input (resp. output) places (I ∪ O represents the set

of interface places) satisfying:
• (I ∪O) ∩ P = ∅
• ∀p ∈ I : •p = ∅ (input interfaces places)

270 K. Klai and H. Ochi

• ∀p ∈ O : p• = ∅ (output interface places)
– Ω is a set of final markings.

From now on, given an oWF-net N , the subnet N∗ = 〈P, T, F ∗,W ∗〉 is called
the inner net of N . F ∗ and W ∗ are derived (by projection) from F and W ,
respectively, by removing the input and the output interface places of N .

Based on the notion of oWF-nets, we have to analyze the behavior of web
services from the local point of view. So we can check the soundness property
[17] to detect the anomalies on web services. The soundness property on a oWF-
net N concerns its inner Petri net N∗ and is defined by three requirements: (1)
option to complete: starting from any reachable marking, it is possible to reach
a final marking, (2) proper completion: there is no reachable marking strictly
greater than a final marking, and, (3) no dead transitions: each transition is
firable at least in one reachable marking.

Definition 3. Let N = 〈P, T, F,W,m0, I, O,Ω〉 be an oWF-net. N is sound iff
the following requirements are satisfied:

– option to complete: ∀m ∈ R(N∗,m0), ∃mf ∈ Ω s.t. mf ∈ R(N∗,m);
– proper completion: ∀m ∈ R(N∗,m0), ∀mf ∈ Ω m ≥ mf =⇒ m = mf ;
– no dead transitions: ∀t ∈ T, ∃m ∈ R(N∗,m0) s.t. m t−→.

Composition of web services The basic web services infrastructure provides
simple interactions between a client and a web service. However, the implemen-
tation of a web service’s business needs generally the invocation of other web
services. Thus it is necessary to combine the functionalities of several web ser-
vices. The process of developing a composite service is called service composition.

Composite services are recursively defined as an aggregation of elementary
and composite services. The composition of two or more services generates a
new service providing both the original behavior of initial services and a new
collaborative behavior for carrying out a new composite task. From modeling
point of view, a composite service can be described as a recursive composition of
oWF-nets. Communication between services takes place by exchanging messages
via interface places. Thus, composing two oWF-nets is modeled by merging their
respective shared constituents which are the equally labeled input and output
interface places. Such a fused interface place models a channel and a token on
such a place corresponds to a pending message in the respective channel. As
it is convenient to require that all communications are bilateral and directed,
i.e., every interface place p ∈ (I ∪ O) has only one oWF-net that sends into p
and only one oWF-net that receives from p. Thereby, oWF-nets involved in a
composition are pairwise interface compatible.

Definition 4. Let N1 and N2 be two oWF-nets with pairwise disjoint con-
stituents except for interfaces. If only input places of one oWF-net overlap with
output places of the other oWF-net, i.e., I1 ∩ I2 = ∅ and O1 ∩O2 = ∅, then N1

and N2 are interface compatible.

Checking Compatibility of Web Services Behaviorally 271

Definition 5. Let Ni = 〈Pi, Ti, Fi,Wi,m0i, Ii, Oi, Ωi〉, for i ∈ {1, 2}, be two
interface compatible oWF-nets. Their composition, namely N1⊕N2, is the oWF-
net N = 〈P, T, F,W,m0, I, O,Ω〉 defined as follows:

– P = P1 ∪ P2, T = T1 ∪ T2, F = F1 ∪ F2, W = W1 ⊕W2

– I = (I1 ∪ I2) \ (O1 ∪O2), O = (O1 ∪O2) \ (I1 ∪ I2),
– m0 = m01 ⊕m02 and Ω = Ω1 ⊕Ω2.

The oWF-net composition is commutative and associative i.e. for interface com-
patible oWF-nets N1, N2 and N3: N1 ⊕N2 = N2 ⊕N1 and (N1 ⊕N2)⊕N3 =
N1 ⊕ (N2 ⊕ N3). An oWF-net with an empty interface (I = ∅ and O = ∅) is
called a closed net.

A composite web service modeled as a closed net is a service that consists of
the coordination of several conceptually autonomous but interface compatible
services (open nets). Although, it is not easy to specify how this coordination
should behave, we focus here on semantic compatibility between web services.

Definition 6. Let N1 and N2 be two interface compatible open nets and let
N = N1 ⊕N2. Then, N1 is said to be compatible with N2 iff N is sound.

3 Running Example

Throughout this paper, we use an example of three web services, inspired from
[16] (see Figure 1): an online shop and two different customers. The exam-
ple is modeled using oWF-nets. The dashed circles denote the interface places
(input/output places). While browsing an online shop, the first customer
(Figure 1(b)) selects items he is interested in, pays his bill and proceeds for
delivery step. For the online shop (Figure 1(a)), once the order is submitted,

(a) (b) (c)

Fig. 1. The oWF-nets of an online shop and two customers

272 K. Klai and H. Ochi

the subsequent payment handling and the verification process of delivery are
triggered. These two tasks can be done concurrently. After verifying information
about payment, the order is automatically delivered. Figure 1(c) represents a
customer who behaves in a different way, since he pays his bill only after receiv-
ing the goods already bought. Note that all these oWF-nets are sound locally,
and that the online shop’s model is interface compatible with both customers’
models.

4 Symbolic Observation Graph

4.1 Abstraction of web services

In this section we propose to use symbolic observation graphs (SOG) [4,12]
in order to abstract oWF-nets. Exposing a SOG related to a service allows to
hide internal activities while checking compatibility is still possible using locally
computed information. Before we give the definition of a SOG, let us give some
basic notations.

Observed actions Given an oWF-net N , we distinguish the transitions con-
nected to the interface places, called interface transitions, from the internal
transitions. The first are called observed transitions while the last are called
unobserved transitions.

Definition 7. Let N = 〈P, T, F,W,m0, I, O,Ω〉 be an oWF-net. The sets of
observed transitions (Obs) and unobserved transitions (UnObs) are respectively
defined as follows:

– Obs = {t ∈ T | (•t ∪ t•) ∩ (I ∪O) �= ∅},
– UnObs = T \Obs.

Observed behavior Given an oWF-net N , the observed behavior is defined
as a mapping applied on the reachable markings, R(N∗,m0), of the inner net
N∗. It is then extended progressively to sets of states. It will be established
that the observed behavior is the necessary and sufficient local information to
be retained so that compatibility between two web services can be checked. For
this purpose, and for the remaining part of this paper, we assume an additional
virtual observed transition term belonging to Obs. Observing term means that
the system properly terminates. In the following, we denote by Sat(S) the set of
markings reachable from a marking m ∈ S, by firing only unobserved transitions
(i.e., Sat(S,UnObs)).

Definition 8. Let N = 〈P, T, F,W,m0, I, O,Ω〉 be an oWF-net. The observed
behavior is progressively defined by :

1. λN : R(N∗,m0)→ 2Obs

λN (m) =

{
• (Enable(Sat(m)) ∩Obs) ∪ {term} if Sat(m) ∩Ω �= ∅
• Enable(Sat(m)) ∩Obs otherwise

Checking Compatibility of Web Services Behaviorally 273

2. λN : 2(R(N∗,m0)) → 22Obs

λN (S) = {λN (m) | m ∈ S}
3. λmin : 2R(N∗,m0) → 22Obs

λmin(S) = {X ∈ λN (S) |� ∃Y ∈ λN (S) : Y ⊂ (X \ {term})}
Informally, for each marking m in R(N∗,m0), the observed behavior of m,

λN (m), represents the set of observed actions which can be executed from m,
possibly via a sequence of unobserved actions. In addition, term is a member
of λN (m) if and only if a final marking is reachable from m using unobserved
actions only. The observed behavior λN associated with a set of markings S is
a set of sets of observed actions. This set contains the observed behavior of the
markings of S. Finally, the observed behavior mapping λmin applied to a set
of markings S is the minimal set of subsets (w.r.t. the set inclusion relation) of
λN (S). The inclusion relation does not concern the term action. For instance, if
there exist two markingsm,m′ ∈ S such that λN (m) = ∅ and λN (m′) = {term},
then both sets ∅ and {term} will belong to λmin(S). This way we distinguish a
dead marking from a final marking reached in S.

From now on, a state (marking)m is said to be dead if and only if its observed
behavior is the empty set. This generalizes the original definition of a dead state
since a terminal livelock (a livelock from which no observed action is enabled)
is considered as a deadlock as well.

Symbolic Observation Graph The construction of the SOG corresponding
to an oWF-net is guided by the set of observed transitions. A SOG is defined
as a graph where each node is a set of markings linked by unobserved transi-
tions and each arc is labeled by an observed transition. Nodes of the SOG are
called aggregates and may be represented and managed efficiently using decision
diagram techniques (BDDs, see e.g., [2]). In practice, due to the small number
of observed transitions in loosely coupled oWF-nets, the SOG has a very mod-
erate size and thus the time complexity of the verification process is negligible
in comparison to the building time of the SOG (see [4,10,9,8] for experimental
results). Before we define the SOG, let us define what an aggregate is.

Definition 9. Let N = 〈P, T = Obs ∪UnObs, F,W,m0, I, O,Ω〉 be an oWF-
net. An aggregate of N is a couple a = 〈S, λ〉 defined as follows:

1. S is a nonempty subset of R(N∗,m0) s.t.: m ∈ S ⇔ Sat(m) ⊆ S;
2. λ = λmin(S).

From now on, a.S and a.λ denote the attributes of a given aggregate a. Note that
the observed behavior attached to an aggregate allows to determine whether it
is a final aggregate or not and whether it contains a deadlock or not. Indeed, an
aggregate a contains a dead marking iff ∅ ∈ a.λ. It contains a final marking iff
∃Q ∈ a.λ : term ∈ Q. In practice, since an aggregate is represented by a BDD,
the computation of the corresponding observed behavior should be performed
symbolically (using sets operations). A symbolic algorithm for the computation
of the observed behavior is proposed in [7].

274 K. Klai and H. Ochi

Definition 10. A symbolic observation graph (SOG(N) for short) is a 5-tuple
〈A,Act ,→, a0, Ω

′〉 associated with an oWF-net N = 〈P, T, F,W,m0, I, O,Ω〉,
s.t. T = Obs ∪UnObs, where:

1. A is a finite set of aggregates satisfying:
– If for some a ∈ A and t ∈ Obs the set Ext(a, t) = {m′ �∈ a.S | ∃m ∈
a.S,m t−→m′} is not empty, then there exist non-empty pairwise disjoint
sets S1 . . . Sk s.t. Ext(a, t) = S1 ∪ . . . Sk, and ∀i = 1 . . . k, there exists
an aggregate ai ∈ A s.t. ai.S = Sat(Si,UnObs).

2. Act = Obs;
3. →⊆ A×Act ×A is the transition relation satisfying:

– if a �= a′, (a, t, a′) ∈→ iff Ext(a, t) �= ∅ and a′.S = Sat(S′,UnObs) for
some S′ ⊆ Ext(a, t).

– (a, t, a) ∈→ iff Sat({m′ ∈ R(N∗,m0) | ∃m ∈ a.S,m t−→m′},UnObs) =
a.S

4. a0 is the initial aggregate s.t. a0.S = Sat(m0,UnObs).
5. Ω′ is a set of final aggregates defined by Ω′ = {a ∈ A | a.S ∩Ω �= ∅}.

Notice that Definition 10 does not guarantee the uniqueness of a SOG for a
given open net. In fact, it supplies a certain flexibility for its implementation.
In particular, the SOG can be nondeterministic. It is clear that the canonical
minimal SOG is obtained when the SOG is deterministic. However, one can take
advantage of the nondeterminism to obtain smaller aggregates. Indeed, when
two (for instance) states within an aggregate a enable an observed transition
to, then a has one successor a′ if the SOG is deterministic and two successors
a′
1 and a′

2 (s.t. a′
1 ∪ a′

2 = a′) if not. Thus, even if the SOG obtained by this
way has more aggregates, its construction might consume less time and memory
(aggregate’s size is smaller). Our definition generalizes the one given in [12]. The
construction algorithm given in [4] is an implementation where the obtained
graph is deterministic.

Figure 2 shows the SOGs associated with the oWF-nets of Figure 1.
Figure 2(a) shows the SOG of the online shop model while Figure 2(b) (respec-
tively Figure 2(c)) illustrates the SOG of the customer model C1 (respectively
C2). Each aggregate is annotated with the corresponding observed behavior and
one can see that all these SOGs are sound. Moreover, the SOG of the online
shop is the one which most abstract the behaviors of the original model since
it has more local behaviors. Indeed, its reachability graph contains 12 reachable
markings and 15 arcs against 4 aggregates and 3 arcs in the corresponding SOG.

In the following, we establish that the soundness of a oWF-net can be checked
by analyzing the corresponding SOG. As for a marking m, the set of aggregates
reachable from a given aggregate a is denoted by R(a).

Theorem 1. Let G = 〈A,Act ,→, a0, Ω
′〉 be a SOG associated with an oWF-net

N . N is sound iff the following requirements are satisfied:

– option to complete: ∀a ∈ A, ∅ �∈ a.λ ∧ ∃af ∈ Ω′ | af ∈ R(a).
– proper completion: ∀a ∈ A, ∀m ∈ a.S, ∀mf ∈ Ω, m ≥ mf =⇒ m = mf ;

Checking Compatibility of Web Services Behaviorally 275

(a) (b) (c)

Fig. 2. SOGs of the running example modes

– no dead transitions :
⋃

a∈AEnable(a.S) = T

From the local point of view, the internal behaviors of a service are available.
Thus, states inside aggregates can be analysed to check the soundness require-
ments but this should be done symbolically so that the efficiency of the BDD-
based representation and management of the aggregates is preserved.

5 Synchronized Product of SOGs

5.1 Composition of SOGs

In this section, we tackle the main idea of this paper: we will define how we
compose two (ore more) web services (each ignoring internal details about the
other). Starting from two interface compatible oWF-nets N1 and N2 which are
already locally sound, this section shows how to check their compatibility using
their respective SOGs G1 and G2. Our objective is to reduce the verification of the
compatibility between N1 and N2 (structure of N1 ⊕N2 is unavailable anyway)
to the analysis of the composition of G1 and G2, namely G1 ⊕ G2. To reach this
goal, and in order to take into account the asynchronous composition between
N1 and N2, we assume that each oWF-net exposes its input and output places
(resp. transitions). Then we define a medium net N12 as an open net representing
the interface between N1 and N2.

Definition 11. Let Ni = 〈Pi, Ti, Fi,Wi,m0i, Ii, Oi, Ωi〉, for i = 1, 2, be two
interface compatible oWF-nets. The medium net related to N1 and N2, denoted
by N12 = 〈P12, T12, F12, F12,m012, Ω12〉, is the closed net defined as follows :

– P12 = (I1 ∩O2) ∪ (O1 ∩ I2)
– T12 = {t ∈ Ti; •t• ∩ ((Ii ∩Oj) ∪ (Oi ∩ Ij)) �= ∅} for i, j ∈ {1, 2} and i �= j
– F12 = F1|(P12×T12)∪(T12×P12) ∪ F2|(P12×T12)∪(T12×P12)

– W12 = W1|F12 ∪W2|F12

276 K. Klai and H. Ochi

– m012 = {0} i.e. all places are empty
– Ω12 = {m012}

The transitions of the medium net are the interface transitions of N1 and N2

while its places are their interface places.
It is clear that the set of reachable markings of the medium net is infinite.

However, if we assume that the composed net N1 ⊕ N2 is bounded, then the
number of states that are reachable by the interface places is finite. If the bound
of an interface place is n then this place can be in n+1 different states at most.
Under such an assumption and knowing the bound of each place of the medium
net, one can build a reachability graph that covers all the possible behaviors
related to the interface places in N1⊕N2. The obtained graph is called interface
graph and is defined as the following:

Definition 12. Consider two oWF-nets N1 and N2 and their medium net N12.
For each place pi (for i = 1 . . .m) of N12, let ni be the bound of pi in N1 ⊕N2.
For sake of simplicity, assume that each place pi has a single input transition
ini and a single output transition outi. Then, the interface graph is a a tuple
〈Γ,Act ,→,m0, Ω〉 s.t.:

1. Γ = {〈x1, . . . xm〉 | 0 ≤ x1 ≤ ni . . . 0 ≤ xm ≤ nm}
2. Act = {ini | i = 1, . . . ,m} ∪ {outi | i = 1, . . . ,m}
3. →⊆ Γ ×Act × Γ is a transition relation such that:

(a) m ini−→m′ iff m′(bi) = m(bi) + 1 ∧m′(bi) ≤ ni

(b) mouti−→m′ iff m′(bi) = m(bi)− 1 ∧m′(bi) ≥ 0
4. m0 = 〈0, . . . , 0〉 is the initial marking
5. Ω = {m0} is the set of final markings

The above definition constructs a reachability graph where each marking
represents a possible configuration of the interface places of N1 and N2. The
transition relation allows the evolution of the interface places’ states in the fol-
lowing manner: a successor of a given marking is a marking where the number
of tokens in one interface place has been increased or decreased (by one). More-
over, the initial marking (which is the final marking as well) is such that all the
interface places are empty.

By observing all the transitions of the medium net, the interface graph of the
medium net can be seen as a SOG. In this SOG, the aggregates are singletons
(each reachable marking is an aggregate) and the observed behavior of each
aggregate is also a singleton : the set of transitions appearing on the outgoing
arcs of the corresponding marking. Finally, the set of final aggregates is again a
singleton containing the initial aggregate.

Figure 4 illustrates the SOG associated with the medium net of Figure 3.
The binary representation of each state number gives the state of the interface
places (order, payment and delivery respectively). For instance, state number 5
stands for 101, i.e., only the interface place of payment is not marked. Unlike the
SOGs associated with N1 and N2, the SOG of the medium net is not supposed
to be built a priori. Thus, the bounds of the places of N12 are not supposed to

Checking Compatibility of Web Services Behaviorally 277

Fig. 3. The medium net of the running example

be known, as long as the composed net N1 ⊕N2 is bound. In the following, the
SOG of the medium will be computed on-the-fly during the composition of G1

and G2. The composition of G1 and G2, denoted by G1 ⊕ G2 is then defined as
a synchronized product between three SOGs corresponding to N1, N12 and N2

respectively. Before we define the composition of SOGs, it is important to first
show how, using observed behavior of three aggregates a1, a2 and a12 of G1, G2

and G12 respectively, one can compute the observed behavior of the aggregate
resulting from their composition.

Note that the set of states a.S of an aggregate a has not to be stored explicitly
within an aggregate. Once the SOG is built, it will not play any role in the
composition process. However, since our goal is to reduce the compatibility check
of two oWF-nets to the analyzing of their SOGs, we need to know which are
the enabled transitions (especially local transitions) in each aggregate. Given a
oWF-net N = 〈P, T, F,W,m0, I, O,Ω〉 and an associated SOG G with respect
to the set of observed transitions Obs, an aggregate of G is henceforth identified
by its observed behavior λ and the set of enabled local transitions, namely E.
Formally, a.E = {t ∈ T \Obs | ∃m ∈ a.S, m t−→}.
Definition 13. Let Gi, for i = 1, 2, be two SOGs associated with two oWF-
nets and let G12 be the SOG associated with their medium net. Let a1, a2 and
a12 be three aggregates of these SOGs respectively. The product aggregate a =
(a1, a12, a2) is defined by:

1. a.λ = {((x ∩ y) ∪ (x ∩ (Obs1 \ Obs12))) ∪ ((y ∩ z) ∪ (z ∩ (Obs2 \ Obs12))) |
x ∈ a1.λ, y ∈ a12.λ and z ∈ a2.λ};

2. a.E = a1.E ∪ a2.E

Note first that a12.λ is a singleton, that Obsi ∩Obs12, for i = 1, 2, is not empty
(because N1 and N2 are interface compatible) but Obsi is not necessarily a
subset of Obs12, and that Obs1 ∩Obs2 = {term}. When we compose a1 and a2,
if a1 (resp. a2) can progress in G1 (resp. G2) by using local observed transitions
(i.e., transitions in Obs1 \Obs12 (resp. Obs2 \Obs12)), the product aggregate a
should be able to do the same. If this is not the case, then a has to have the
same behavior as a1 (resp. a2) and a12 conjointly.

278 K. Klai and H. Ochi

Fig. 4. Interface graph of medium net

Definition 14. Let Gi = 〈Ai,Obsi,→i, a0i, Ωi〉, i = 1, 2 be two SOGs corre-
sponding to two oWF-nets N1 and N2. Let G12 = 〈A12,Obs12,→12, a012, Ω12〉
be the SOG of the medium net N12. The composition of G1 and G2, namely
G1 ⊕ G2 = 〈A,Act ,→, a0, Ω〉 is defined as follows:

1. A ⊆ A1 ×A12 ×A2;
2. Act = Obs1 ∪Obs2;
3. → is the transition relation, defined by:
∀(a1, a12, a2) ∈ A, ∀(a′

1, a
′
12, a

′
2) ∈ A, (a1, a12, a2) o−→(a′

1, a
′
12, a

′
2)⇔⎧

⎪⎪⎨

⎪⎪⎩

a1
o−→1a

′
1 ∧ a12

o−→12a
′
12 ∧ a′

2 = a2 if o ∈ (Obs1 ∩Obs12)
a′
1 = a1 ∧ a12

o−→12a
′
12 ∧ a2

o−→2a
′
2 if o ∈ (Obs2 ∩Obs12)

a1
o−→1a

′
1 ∧ a′

12 = a12 ∧ a′
2 = a2 if o ∈ (Obs1 \Obs12)

a′
1 = a1 ∧ a′

12 = a12 ∧ a2
o−→2a

′
2 if o ∈ (Obs2 \Obs12)

4. a0 = (a01, a012, a02);
5. Ω = Ω1 ×Ω12 ×Ω2.

The composition of the SOGs is similar to the classical synchronized product
between graphs, except the fact that nodes are aggregates (carrying additional
information) instead of single states. However, the asynchronous composition
of the corresponding oWF-nets has been reduced to a synchronous composition
involving the medium net. The evolution in G1 ⊕ G2 can stand for a local evo-
lution to G1 (resp. G2) by using point 3 (resp. 4) of the transition relation in
Definition 14, or a simultaneous evolution in G1 (resp. G2) and G12 by using
point 1 (resp. 2). Given a local transition t in N1, for instance, one can check
whether it remains enabled after composition or not. Indeed, the union of the E
attribute of each aggregate a1, being a part of an aggregate of G1 ⊕ G2, should
contain t. Otherwise, the transition t is not enabled by the composite net and the
transition t becomes dead in the composition. If all the local transitions remain
enabled, the other requirements of soundness can be deduced by analyzing the
synchronized product of the SOGs.

Figure 5 illustrates the two SOGs obtained by synchronizing the SOG of
online shop of Figure 2(a) with the SOGs of costumer C1 and C2 of Figure 2.

Checking Compatibility of Web Services Behaviorally 279

Fig. 5. the SOG synchronized product

Theorem 2. Let N1 and N2 be two oWF- nets and let G1 and G2 be the corre-
sponding SOGs respectively. Then, G1⊕G2 is a SOG of N1⊕N2 with respect to
Obs1 ∪Obs2.

5.2 Checking Services Compatibility

Our goal is to check compatibility between two interface compatible oWF-nets
N1 and N2 using their respective SOGs G1 and G2. We assume that the two
oWF-nets are already sound. For checking compatibility, we have to check the
soundness property of N1⊕N2. This verification will be reduced to the analysis
of the synchronized product of G1 and G2, denoted G1 ⊕ G2.

Theorem 3. Let N1 and N2 be two oWF-nets locally sound and let G1 and
G2 be the corresponding SOGs respectively. Assume that all the local transitions
remain enabled in the composition G1 ⊕ G2. Then, N1 ⊕N2 is sound ⇔
1. for each aggregate a in G1 ⊕ G2, ∅ �∈ a.λ,
2. for each aggregate a in G1 ⊕ G2, ∃ a final aggregate af such that af ∈ R(a),
3. for each observed transition t, ∃ two aggregates a, a′ in G1 ⊕G2 s.t. a t−→a′.

Corollary 1. Let N1 and N2 be two oWF-nets and let G1 and G2 be the corre-
sponding SOGs respectively. N1 is compatible with N2 ⇔ G1 ⊕ G2 satisfies the
three conditions of Theorem 3.

280 K. Klai and H. Ochi

By analyzing Figure 5, we can see that the composition of the online shop
with the first customer is possible while it is not with the second: the correspond-
ing composed SOG contains a deadlock (i.e., composite oWF-net not sound). For
this particular example, checking the soundness property on the composition of
SOGs (4 nodes and 3 edges) is easier than analyzing the original reachability
graph which contain 24 nodes and 32 edges.

6 Related Work

Several approaches investigated the issue of Web services composition. Even
with emergence of web service process technologies such as industrial language
BPEL4WS, WSCL, etc, this specification is still not the most suitable for the ver-
ification process of compatibility behavior on composition of web services. Thus,
many researchers have been interested in formal modeling and analyzing meth-
ods to better formalize the behavior of web services such as Petri net model and
its variants. Authors in [5] propose a Petri net-based Algebra for modeling web
services control flows. The model is expressive enough to capture the semantics
of complex service combinations. Formal semantics of each composition opera-
tor (e.g. sequence, selection, refinement) is expressed by a Petri net. Using this
mechanism, the analysis of web services supports the verification of web services
composition by checking properties like correct termination. An other technique
for modeling multiple web services interactions between BPEL processes is dis-
cussed in [19] using an extention of Petri net models called composition net
(C-net). Authors analyze the model through structural properties instead of the
reachability states space in order to check compatibility: the compatibility is
ensured when the composite net contains a non empty minimal siphon. They
impose constraints on the model to prevent it from reaching incompatible cases
by using a corresponding policy based on appending additional information to
channels. Then, these channels are transformed back to a BPEL description so
that a new compatible web service is obtained. An other approach [3] based on
mediation aided composition has been widely adopted when dealing with incom-
patibilities of services. In this work, given two services modeled by oWF-net, the
authors propose to compose them using Mediation Transitions (MTs). They
serve as information channel specifying the transferring relation of messages
between different services. Then composition compatibility is verified by auto-
matically constructing and analyzing the modular reachability graph (MRG) of
the composition which is an abstraction of the original state graph. It is true
that the performance of this approach is notable compared to classical ones, but
MRG is represented explicitly which can be expensive.

Finally a similar approach has been introduced in [18]. In this work, the
authors present a technique based on the Operating Guideline [14] for automat-
ically checking accordance between a private view and a public view associated
to each service involved in the overall process (composition of partners). A mul-
tiparty contract is specified in order to define the rules of engagement of each
partner without describing its internal behavior. It can be seen as the composi-
tion of the public views from all partners. Based on the resulting contract, all

Checking Compatibility of Web Services Behaviorally 281

participants implement their private view on the global process in such a way
that it agrees with the contract. Then, checking accordance guarantees that the
process is deadlock-free and that it will always terminate properly. The main
differences with our approach are: (1) this approach works only for oWF-net
with acyclic behaviors (and hence deadlock freedom coincides with weak termi-
nation), (2) It is an up-down approach in the sens that it starts from a public
composition (contract) whose components can be modified locally under con-
straints. In our case, each component ignores all about the possible partners and
we also allow local changes as long as the SOG is not modified. Finally, this
approach uses operating guidelines [14] to abstract services and we established
in [8] that, for most cases, the SOGs-based approach is more effective in terms
of memory and time consumption. In conclusion, to the best of our knowledge,
none of the existing approaches combine symbolic (using BDDs) abstraction and
modular verification to check the compatibility of services. They always deal with
an explicit representation of the system’s behavior, which accentuate the state
space explosion problem.

7 Conclusion

In this paper, we proposed an approach based on a suitable model, namely Sym-
bolic Observation Graph, to abstract web services and to analyze their composi-
tion. Such an abstraction allow to respect the privacy of each publisher by hiding
service’s details, and at the same time it represents the necessary information
to expose on a repository for possible collaboration with other web services.
We established that and how symbolic observation graphs can be extended and
efficiently used for that purpose. Using such abstraction, checking compatibility
between two web services (a requester and a provider) is reduced to checking
compatibility on the synchronized product of the corresponding SOGs.

We are currently developing a graph-based registry for abstract web services
advertisement and discovery. the next step would be to extend the presented
work in order (1) to deal with other compatibility criteria (e.g., other variants
of soundness, specific properties expressed with temporal logics, ...) and (2) to
deal with richer models (e.g. shared resources, the explicit time).

References

1. Aalst, V.D.: The application of petri nets to workflow management (1998)
2. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys 24(3), 293–318 (1992)
3. Du, Y., Li, X., Xiong, P.: A petri net approach to mediation-aided composition of

web services. IEEE T. Automation Science and Engineering 9(2), 429–435 (2012)
4. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and

abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004)

5. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: ADC 2003, pp. 191–200 (2003)

282 K. Klai and H. Ochi

6. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

7. Klai, K., Desel, J.: Checking soundness of business processes compositionally using
symbolic observation graphs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
2012. LNCS, vol. 7273, pp. 67–83. Springer, Heidelberg (2012)

8. Klai, K., Ochi, H.: Modular verification of inter-enterprise business processes. In:
eKNOW, pp. 155–161 (2012)

9. Klai, K., Petrucci, L.: Modular construction of the symbolic observation graph. In:
ACSD, pp. 88–97 (2008)

10. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic
observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008)

11. Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness verification
of inter-enterprise processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 294–309. Springer, Heidelberg (2009)

12. Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness verification
of inter-enterprise processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 294–309. Springer, Heidelberg (2009)

13. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol.
4102, pp. 17–32. Springer, Heidelberg (2006)

14. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the soa.
Annals of Mathematics, Computing and Teleinformatics 1, 35–43 (2005)

15. Petri, C.A.: Concepts of net theory. In: MFCS 1973, pp. 137–146. Mathematical
Institute of the Slovak Academy of Sciences (1973)

16. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of Services
with Operating Guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC
II. LNCS, vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

17. van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorho-
eve, M., Wynn, M.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing: Applicable Formal Methods 23(3), 333–
363 (2010)

18. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

19. Xiong, P., Fan, Y., Zhou, M.: A petri net approach to analysis and composition
of web services. IEEE Transactions on Systems, Man, and Cybernetics, Part A,
376–387 (2010)

Author Index

Abdulla, Parosh Aziz 199
Ahmadi, Saeide 217
Arun-Kumar, S. 83
Atig, Mohamed Faouzi 199

Banu-Demergian, Iulia Teodora 183
Bartoletti, Massimo 66
Battisti, Luca 168
Bodeveix, Jean-Paul 111
Bonsangue, Marcello 1
Boudjadar, Abdeldjalil 111

Cimoli, Tiziana 66

De Boer, Frank 1
Delzanno, Giorgio 199
Dima, Catalin 133

Ebnenasir, Ali 17

Filali, Mamoun 111
Fokkink, Wan 217

Gaur, Manish 83
Ghassemi, Fatemeh 217

Hatefi, Hassan 250
Hermanns, Holger 250

Khosravi, Ramtin 51
Klai, Kais 267
Klinkhamer, Alex 17

Macedonio, Damiano 168
Merro, Massimo 168
Movaghar, Ali 217

Nakata, Keiko 95

Ochi, Hanen 267

Paduraru, Ciprian Ionut 183
Pinna, G. Michele 66
Podelski, Andreas 199
Pun, Ka I. 34

Ramezani, Elham 150
Rot, Jurriaan 1

Saar, Andri 95
Sabouri, Hamideh 51
Sidorova, Natalia 150
Stahl, Christian 150
Stefanescu, Gheorghe 183
Steffen, Martin 34
Stolz, Volker 34

Vaandrager, Frits 111
Vanit-Anunchai, Somsak 233
Vekris, Dimitris 133

	Preface
	Contents
	Organization
	Symbolic Formal Methods: Combiningthe Power of Rewriting, Narrowing, SMTSolving and Model Checking
	Stochastic, Hybrid and Real-Time Systems:From Foundations to Applications with Modest
	Service Oriented Computing:Forthcoming Challenges
	Unbounded Allocation in Bounded Heaps
	Introduction
	A Core Language for Allocation
	A Concrete and a Symbolic Semantics
	A Symbolic Semantics
	Correctness of the Symbolic Semantics

	Adding Pointers
	Conclusion

	On the Complexity of Adding Convergence
	Introduction
	Preliminaries
	Problem Statement
	Hardness Results
	Polynomial Mapping
	Correctness of Reduction

	Discussion
	Conclusions and Future Work

	Deadlock Checking by Data Race Detection
	Introduction
	Calculus
	Type and Effect System
	Race Variables for Deadlock Detection
	Deadlocks and Races
	Instrumentation

	Gate Locks
	Conclusion

	Delta Modeling and Model Checking of Product Families
	Introduction
	Related Work
	Background: Software Product Lines
	Modeling Product Families in Rebeca
	Rebeca
	Delta-Oriented Modeling in Rebeca
	Annotated Rebeca Models
	Product Generation

	Model Checking Delta-Oriented Rebeca Models
	Transforming Deltas to Annotations
	Justification
	Model Checking

	Conclusion

	Lending Petri Nets and Contracts
	Introduction
	Nets
	Nets with Lending Places
	Physical Contracts
	Logical Contracts
	From Logical to Physical Contracts
	Related Work and Conclusions

	On Efficiency Preorders
	Introduction
	Basic Definitions and Characterization
	The Algorithm
	Conclusion

	Compiling Cooperative Task Management to Continuations
	Introduction
	Source Language
	Target Language
	Compilation
	Correctness
	Conclusion

	Extending UPPAAL for the Modeling and Verification of Dynamic Real-Time Systems
	Introduction
	Related Work
	Callable Timed Automata
	Static Instantiation
	Example 1 (Static Instantiation)
	Dynamic Instantiation
	Example 2 (Dynamic Instantiation)

	Timed Automata Extension
	UPPAAL Timed Automata
	Callable Timed Automata
	Translation of Callable TA to UPPAAL TA

	Semantical Model: TTSs
	Semantical Interpretations
	Implementation and Experiments
	Conclusion and Perspectives

	Efficient Operational Semantics for EB3 for Verification of Temporal Properties
	Introduction
	EB3
	Bisimulation Equivalence of SemT, SemT/M and SemM
	Demonstration in LNT
	Conclusion

	Interval Soundness of Resource-Constrained Workflow Nets: Decidability and Repair
	Introduction
	Preliminaries
	Generalizing Resource-Constrained Workflow Nets
	The Generic Environment
	Interval Soundness for RCWF-nets with an Environment

	Deciding Interval Soundness
	Repairing Interval Unsound RCWF-Nets
	Related Work
	Conclusion

	Statistical Model Checking of a Clock Synchronization Protocol for Sensor Networks
	Introduction
	The gMAC Protocol
	UPPAAL Probabilistic Model for gMAC
	Our Analysis
	Verifying Clique Topologies
	Verifying Grid Topologies

	Conclusions, Future and Related Work

	A New Representation of Two-Dimensional Patterns and Applications to Interactive Programming
	Introduction
	A Known Approach
	Finite Interactive Systems (FIS's) and Regular Expressions (2RE's)

	A New Approach
	General 2-Dimensional Words
	General Composition
	Particular Composition Operators

	A Relational Semantics for Structured Interactive Programs
	Example - Imperative Programming Style
	Dataflow and Mixed Imperative-Dataflow Programming Styles

	Related and Future Works

	Push-Down Automata with Gap-Order Constraints
	Introduction
	Preliminaries
	Push-Down Automata with Data
	Context-Free Grammars with Data
	Symbolic Encoding
	Reachability Analysis
	Termination
	Translation
	Extended Pdads
	Related Work and Conclusion

	Model Checking MANETs with Arbitrary Mobility
	Introduction
	Related Work
	Background
	Constrained Action Computation Tree Logic
	Concepts
	CACTL Syntax
	CACTL Semantics
	CACTL Model Checking

	Protocol Analysis with CACTL
	Branching Network Bisimilarity
	Conclusion and Future Work

	Validating SCTP Simultaneous Open Procedure
	Introduction
	Overview of Stream Control Transmission Protocol
	SCTP Packet Format
	SCTP Association Establishment Procedure

	Related Work
	Modelling Approach
	Comparing to the SCTP-CPN Model by Others
	Contributions

	CPN Model of SCTP Association Management
	Unexpected Init and InitAck Page
	Unexpected CookieEcho and CookieAck Page

	Analysis of SCTP-CPN Association Management Model
	Initial configuration
	Analysis Results

	Conclusions and Future Work

	Improving Time Bounded Reachability Computations in Interactive Markov Chains
	Introduction
	Interactive Markov Chain
	Time Bounded Reachability
	Improving Time Bounded Reachability Computation
	A Simplified Empirical Evaluation
	Conclusions

	Author Index

