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Abstract. We pursue the principles of duality and symmetry building
upon Pratt’s idea of the Stone Gamut and Abramsky’s representations of
quantum systems. In the first part of the paper, we first observe that the
Chu space representation of quantum systems leads us to an operational
form of state-observable duality, and then show via the Chu space formal-
ism enriched with a generic concept of closure conditions that such op-
erational dualities (which we call “T1-type” as opposed to “sober-type”)
actually exist in fairly diverse contexts (topology, measurable spaces, and
domain theory, to name but a few). The universal form of T1-type du-
alities between point-set and point-free spaces is described in terms of
Chu spaces and closure conditions. From the duality-theoretical perspec-
tive, in the second part, we improve upon Abramsky’s “fibred” coalge-
braic representation of quantum symmetries, thereby obtaining a finer,
“purely” coalgebraic representation: our representing category is prop-
erly smaller than Abramsky’s, but still large enough to accommodate
the quantum symmetry groupoid. Among several features, our represen-
tation reduces Abramsky’s two-step construction of his representing cat-
egory into a simpler one-step one, thus rendering the Grothendieck con-
struction redundant. Our purely coalgebraic representation stems from
replacing the category of sets in Abramsky’s representation with the cat-
egory of closure spaces in the light of the state-observable duality telling
us that closure is a right perspective on quantum state spaces.

1 Introduction

It is not uncommon these days to hear of applications of (the methods of) the-
oretical computer science to foundations of quantum physics; broadly speaking,
theoretical computer science seems to be taking steps towards a new kind of “plu-
ralistic unified science” (not monistic one in logical positivism) via the language
and methodology of category theory. Among them, Abramsky [1,2] represents
quantum systems as Chu spaces and as coalgebras, giving striking characterisa-
tions of quantum symmetries based upon the classic Wigner Theorem. Revisiting
his work, in the present paper, we develop a Chu-space-based theory of dualities
encompassing a form of state-observable duality in quantum physics, and there-
after improve upon his coalgebraic characterisation of quantum symmetries from
our duality-theoretical perspective, in order to exhibit the meaning of duality.
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In Pratt’s Stone Gamut paper [16], he analyses Stone-type dualities in the
language of Chu spaces, saying boldly, but with good reasons, “the notoriously
difficult notion of Stone duality reduces simply to matrix transposition.” The
concept of Chu spaces has played significant roles in fairly broad contexts, includ-
ing concurrency and semantics of linear logic; similar concepts have been used in
even more diverse disciplines, like Barwise-Seligman’s classifications, Sambin’s
formal topology and basic pairs, Scott’s information systems, and state-property
systems in quantum foundations. This work is inspired by Pratt’s perspective
on Chu spaces, extending the realm of duality theory built upon the language
of Chu spaces by enriching it with a generic concept of closure conditions.

In general, we have two types of dualities, namely sober-type and T1-type
ones, between set-theoretical concepts of space and their point-free, algebraic
abstractions, which shall be called point-set spaces and point-free spaces re-
spectively. The difference between the two types of dualities in fact lies in the
difference between maximal and primal spectra. Our duality theory in this paper
focuses upon T1-type dualities between point-set and point-free spaces. The logi-
cal concept of closure conditions is contrived to the end of treating different sorts
of point-set and point-free spaces in a unified manner, allowing us to discuss at
once topological spaces, measurable spaces, closure spaces, convexity spaces, and
so fourth. In a nutshell, the concept of closure conditions prescribes the notion of
space. Whilst a typical example of sober-type duality is the well-known duality
between sober spaces and spatial frames, an example of T1-type duality is a du-
ality between T1 closure spaces and atomistic meet-complete lattices, including
as particular instances state-observable dualities between quantum state spaces
(with double negation closures) and projection operator lattices in the style of
operational quantum mechanics (see Coecke and Moore [5] or Moore [14]).

Our theory of T1-type dualities enables us to derive a number of concrete
T1-type dualities in various contexts, which include T1-type dualities between
Scott’s continuous lattices and convexity spaces, between σ-complete boolean
algebras and measurable spaces, and between topological spaces and frames, to
name but a few. Let us illustrate by a topological example a striking difference
between sober-type and T1-type dualities. The T1-type duality in topology is a
duality between T1 spaces and coatomistic frames in which continuous maps cor-
respond not to frame homomorphisms but to maximal homomorphisms, which
are frame homomorphisms f : L→ L′ such that, given a maximal join-complete
ideal M ⊂ L′, f−1(M) is again a maximal join-complete ideal. Although the
duality for T1 spaces is not mentioned in standard references such as Johnstone
[9], nevertheless, we consider it important for the reason that some spaces of
interest are not sober but T1: e.g., affine varieties in kn with k an ACF (i.e.,
algebraically closed field) are non-sober T1 spaces (if they are not singletons).
Note that Bonsangue et al. [4] shows a duality for T1 spaces via what they call
observation frames, which are frames with additional structures, yet the T1-type
duality above only relies upon plain frame structures.
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Whilst sober-type dualities are based upon prime spectrum “Spec”, T1-type
dualities are based upon maximal spectrum “Spm”. Different choices of spectrum
lead to different Chu representations of algebras A concerned: maximal spectrum
gives (A, Spec(A), e) and prime spectrum gives (A, Spm(A), e) where e is two-
valued and defined in both cases by: e(a,M) = 1 iff a ∈ M . Accordingly, the
corresponding classes of Chu morphisms are distinctively different: e.g., in locale
theory, the Spec-based representation characterises frame homomorphisms as
Chu morphisms (as shown in Pratt [16]), and the Spm-based representation
characterises maximal homomorphisms as Chu morphisms (as shown in this
paper for general point-free spaces encompassing frames as just a particular
instance). In this way, the Chu space formalism yields a natural account of why
different concepts of homomorphisms appear in sober-type and T1-type dualities.

As in the case above, Chu morphisms can capture different sorts of homo-
morphisms by choosing different Chu representations. This is true even in quan-
tum contexts, and in particular we can represent quantum symmetries as Chu
morphisms by a suitable Chu representation. Coalgebras are Chu spaces with
dynamics, and we have a coalgebraic representation of quantum symmetries as
well. To be precise, in moving from Chu space to coalgebras, Abramsky [2] re-
lies upon a fibred category

∫
F obtained by gluing categories Coalg(FQ)’s for

every Q ∈ Set where FQ is an endofunctor on Set. He uses the Grothendieck
construction to “accommodate contravariance” within a coalgebraic framework,
fully embedding the groupoid of symmetries into the fibred category

∫
F.

Looking at the
∫
F representation from a duality-theoretical perspective, we

consider it odd that there is no structural relationship taken into account between
quantum state spaces and projection operator lattices: both are seen as mere
sets. For the very reason, Q (which is a projection lattice in a quantum context)
first have to be fixed in the endofunctor FQ on Set (objects of which are state
spaces in a quantum context), and thereafter Coalg(FQ)’s are glued together
to accommodate contravariance regarding Q ∈ Set. This two-step construction
is reduced in the present paper into a simpler, one-step one as follows.

First of all, there is actually a dual, structural relationship between quantum
state spaces and projection lattices with the latter re-emerging as the fixpoints
(or algebras) of double negation closures (or monads) on the former. This means
that Q above can be derived, rather than independently assumed, from a clo-
sure structure, if one works on the base category of closure spaces, rather than
mere sets. The closure-based reformulation of the

∫
F representation leads us

to a “Born” endofunctor B on closure spaces, and to its coalgebra category
Coalg(B), which turns out to be strictly smaller than fairly huge

∫
F, but

still large enough to represent the quantum symmetry groupoid, thus yielding a
purely coalgebraic representation and enabling to accommodate contravariance
within the single colagebra categoryCoalg(B) rather than the fibred

∫
F glueing

different Coalg(FQ)’s for all sets Q; notice that contravariance is incorporated
into the dualisation process of taking the fixpoints (or algebras) of closures.



From Operational Chu Duality to Coalgebraic Quantum Symmetry 223

2 Duality and Chu Space Representation

We first review basic concepts and notations on Chu spaces and closure spaces.

Chu Spaces. Let us fix a set Ω. A Chu space over Ω is a triple (S,A, e) where S
and A are sets, and e is a map from S×A to Ω. Ω is called the value set, and e the
evaluation map. A Chu morphism from (S,A, e) to (S′, A′, e′) is a tuple (f∗, f∗)
of two maps f∗ : S → S′ and f∗ : A′ → A such that e(x, f∗(a′)) = e′(f∗(x), a′).
The category of Chu spaces and Chu morphisms is self-dual, and forms a ∗-
autonomous category, giving a fully complete model of linear logic.

For a Chu space (S,A, e : S × A → Ω) and a ∈ A, e(-, a) : S → Ω is called a
column of (S,A, e). We denote the set of all columns of (S,A, e) by Col(S,A, e).
On the other hand, e(x, -) : A→ Ω is called a row of (S,A, e). We denote the set
of all rows of (S,A, e) by Row(S,A, e). If Ω is ordered, then we equip Col(S,A, e)
and Row(S,A, e) with the pointwise orderings: e.g., in the case of Col(S,A, e),
this means that, for a, b ∈ A, e(-, a) ≤ e(-, b) iff e(x, a) ≤ e(x, b) for any x ∈ S.

A Chu space (S,A, e) is called extensional iff all the columns are mutually
different, i.e., if e(x, a) = e(x, b) for any x ∈ S then a = b. On the other hand,
a Chu space (S,A, e) is called separated iff all the rows are mutually different,
i.e., if e(x, a) = e(y, a) for any a ∈ A then x = y.

Closure Spaces. Closure spaces may be seen as either a set with a closure
operator or a set with a family of subsets that is closed under arbitrary inter-
sections. We denote by C(S) the set of closed subsets of a closure space S, and
by cl(-) the closure operator of S. In this paper we always assume ∅ ∈ C(S) or
equivalently cl(∅) = ∅. Note then that there is a unique closure structure on
a singleton. A map f : S → S′ is called closure-preserving iff f−1(C) ∈ C(S)
for any C ∈ C(S′) iff f(cl(A)) ⊂ cl(f(A)). We denote by Clos the category of
closure spaces and closure-preserving maps, which has products and coproducts.
A closure space is called T1 iff any singleton is closed.

2.1 Chu Representation of Quantum Systems

Abramsky [2] represents a quantum system as a Chu space defined via the
Born rule, which provides the predictive content of quantum mechanics. Given
a Hilbert space H , he constructs the following Chu space over the unit interval
[0, 1]: (P(H),L(H), eH : P(H) × L(H) → [0, 1]) where P(H) denotes the set of
quantum states as rays (i.e., one-dimesional subspaces) in H , L(H) denotes the
the set of projection operators (or projectors) on H , and finally the evaluation

map eH is defined as follows (let [ϕ] = {αϕ | α ∈ C}): eH([ϕ], P ) = 〈ϕ|Pϕ〉
〈ϕ|ϕ〉 .

We consider that Chu spaces have built-in dualities, or they are dualities
without structures: whilst S and A have no structure, e still specifies duality.
The category of Chu spaces has duals in terms of monoidal categories; this is
internal duality. Can we externalise internal duality in Chu spaces by restoring
structures on S and A through e? It is an inverse problem as it were. In the
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quantum context, it amounts to explicating the structures of P(H) and L(H)
that give (external) duality.

The first observation is the bijective correspondences: P(H) � {e(ϕ, -) | ϕ ∈
P(H)} � {c ∈ Col(P(H),L(H), eH) | the precisely one 1 appears in c}. So, the
states are the atoms of L(H): in this way we can recover P(H) from L(H). This
means L(H) should be equipped with the lattice structure as in Birkhoff-von-
Neumann’s quantum logic. Although we have L(H) � {e(-, P ) | P ∈ L(H)}, it is
not clear at this stage what intrinsic structure of P(H) enables to recover L(H)
from P(H). Let us see that a double negation operator on P(H) does the job.

Define (-)⊥ : P(P(H)) → P(P(H)) as follows: for X ⊂ P(H), let X⊥ =
{[ϕ] ∈ P(H) | ∀[ψ] ∈ P(H) 〈ϕ|ψ〉 = 0}. It is straightforward to see that (-)⊥⊥

is a closure operator on P(H). Categorically, (-)⊥⊥ is a sort of double negation
monad. Taking the closed sets or algebras of (-)⊥⊥ enables us to recover L(H):

Proposition 1. The lattice of closed subsets of P(H), i.e., {X ⊂ P(H) | X⊥⊥ =
X}, is isomorphic to L(H). Schematically, C(P(H)) � L(H).

We thus have a duality between P(H) qua closure space and L(H) qua lattice.
We can reconstruct P(H) from L(H) by taking the atoms on the one hand, and
L(H) from P(H) by taking the closed sets (or algebras) of (-)⊥⊥ on the other.
This dualising construction generally works for T1 closure spaces and atomistic
meet-complete lattices, in particular including P(H) and L(H) respectively; or-
thocomplements can be added to this duality.

Categorically, we have a dual equivalence between the category of T1 closure
spaces with closure-preserving maps and the category of atomistic meet-complete
lattices with maximal homomorphisms (defined below). This duality is basically
known at the object level in operational quantum mechanics (see Moore [14] or
Coecke and Moore [5]); nevertheless, our dualisation of arrows, i.e., the concept
of maximality, may be new. In this section we aim at developing a theory of such
T1-type dualities in full generality, thereby deriving T1-type dualities in various
concrete contexts as immediate corollaries (which include the state-projector
duality). We embark upon this enterprise in the next subsection.

2.2 Chu Theory of T1-Type Dualities via Closure Conditions

In the following part of this section, we consider two-valued Chu spaces (S,A, e :
S ×A→ 2) only, where 2 denotes {0, 1} (with ordering 0 < 1). This is because
in the duality between states P(H) and property observables L(H) we do not
need other intermediate values in [0, 1]; when considering duality, it suffices to
take into account whether a value equals 1 or not. On the other hand, interme-
diate values in [0, 1] play an essential role in characterising quantum symmetries
coalgebraically; we need at least three values (i.e., 1, 0, and “neither 0 nor 1”).
In a nutshell, duality is possibilistic, whilst symmetry is probabilistic.

In this subsection, we think of (Chu representations of) “point-set” spaces
(S,F) where F ⊂ P(S), and of their “point-free” abstractions L which do not
have an underlying set S whilst keeping algebraic structures corresponding to
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closure properties of F . Especially, we discuss Top, Set, Clos, Conv, andMeas
where Conv denotes the category of convexity spaces, which are sets S with
C ⊂ P(S) closed under arbitrary intersections and directed unions (quite some
convex geometry can be developed based upon such abstract structures; see, e.g.,
van de Vel [18]); Meas denotes the category of measurable spaces, which are
sets with B ⊂ P(S) closed under complements and countable intersections.

Morphisms in all of these categories of point-set spaces are defined in the same
way as continuous maps, closure-preserving maps, and measurable maps (a.k.a.
Borel functions): i.e., they are f : (S,F) → (S′,F ′) such that f−1(X) ∈ F for
any X ∈ F ′. Note that Set may be seen as the category of (S,F) such that F
is maximally closed, i.e., F = P(S), with “continuous” maps as morphisms; in
such a situation, any map satisfies the condition that f−1(X) ∈ F for X ∈ F ′.

Their point-free counterparts are respectively: Frm (frames), CABA (com-
plete atomic boolean algebras), MCLat (meet-complete lattices), ContLat
(Scott’s continuous lattices), and σBA (σ-complete boolean algebras). Con-
tinuous lattices may be defined as meet-complete lattices with directed joins
distributing over arbitrary meets (this is equivalent to the standard definition
via way-below relations; see [6, Theorem I-2.7]); in the light of this, we see con-
tinuous lattices as point-free convexity spaces; later, duality justifies this view.

We emphasise that closure conditions on each type of point-set structures
correspond to (possibly infinitary) algebraic operations on each type of point-
free structures. An insight from our theory is that such a relationship between
point-set and point-free spaces always leads us to duality; indeed, we shall show
T1-type dualities between Top and Frm; Set and CABA; Clos and MCLat;
Conv and ContLat; Meas and σBA; and even more (e.g., dcpos).

In order to treat different sorts of point-set spaces in a unified manner, we
introduce a concept of closure conditions. A closure condition on F ⊂ P(S) is a
formula of the following form:

∀X ⊂ F (ϕ(X ) ⇒ BC(X ) ∈ F)

where BC(X ) is a (possibly infinitary) boolean combination of elements of X and
ϕ(X ) is a closed formula in the language of propositional connectives, quantifiers,
equality, a binary, inclusion predicate ⊂, and nullary, cardinality predicates1,
card≤κ(X ) and card≥κ(X ), for each countable cardinal κ; you may include arbi-
trary cardinals, though the language becomes uncountable. The domain of the
intended interpretation of this language is X , and predicates are to be inter-
preted in the obvious way: X ⊂ Y with X,Y ∈ X is interpreted as saying that
X is a subset of Y , card≤κ(X ) as saying that the cardinality of X is less than
or equal to κ, and so fourth. Note that predicates card=κ(X ), card<κ(X ), and
card>κ(X ) are definable in the above language.

1 First-order logic allows us to express “there are n many elements” for each positive
integer n, but cannot express certain cardinality statements (e.g., “there are at most
countably many elements”; we need this when defining measurable spaces). For the
very reason, we expand the language with the afore-mentioned cardinality predicates.



226 Y. Maruyama

In this setting, for example, measurable spaces are (S,F) such that F ⊂ P(S)
satisfies the following closure conditions: ∀X ⊂ F (card≤ω(X ) ⇒ ⋂X ∈ F) and
∀X ⊂ F (card(X ) = 1 ⇒ X c ∈ F) where X c denotes the complement of the
unique element of X . and notice that by letting X = ∅ we have

⋂ ∅ = S ∈ F .
Likewise, convexity spaces are (S,F) with F satisfying the following: ∀X ⊂
F ( ⇒ ⋂X ∈ F) and ∀X ⊂ F (“X is directed w.r.t. ⊂ ” ⇒ ⋃X ∈ F) where
 is any tautology and “X is directed w.r.t. ⊂” is expressed as “∀X ∀Y ∃Z (X ⊂
Z ∧ Y ⊂ Z)”. It is straightforward to find closure conditions for other sorts of
point-set spaces. We denote by Xtop the closure conditions for Top, by Xmeas

those for Meas, by Xclos those for Clos, and by Xconv those for Conv.
Let us denote by X a class of closure conditions, and (S,F) with F ⊂ P(S)

satisfying X is called a point-set X-space. We always assume that X contains:
∀X ⊂ F (card=0(X ) ⇒ ⋃X ∈ F). This ensures that ∅ is in F . We denote by
PtSpX the category of point-set X-spaces with X-preserving maps (i.e., maps
f : (S,F) → (S′,F ′) such that f−1(X) ∈ F for any X ∈ F ′). If this setting
looks too abstract, PtSpX in the following discussion may be thought of as any
of our primary examples: Top, Clos, Conv, and Meas.

It plays a crucial role in our duality theory that ϕ in a closure condition can be
interpreted in a point-free setting: in other words, it only talks about the mutual
relationships between elements of X , and does not mention elements of elements
of X or any point of an observable region X ∈ X (which may be an open set,
convex set, measurable set, or the like), thus allowing us to interpret it in any
abstract poset (L,≤) by interpreting the subset symbol ⊂ as a partial order ≤,
and lead to the concept of point-free X-spaces as opposed to point-set ones. We
call this interpretation of ϕ in a poset (L,≤) the point-free interpretation of ϕ.
Note that the above language for ϕ is actually nothing but the language of the
first-order theory of posets enriched with the cardinality predicates.

A point-set X-space (S,F) can be regarded as a Chu space (S,F , e(S,F) :
S ×F → 2) where e is defined by: e(S,F)(x,X) = 1 iff x ∈ X.

A special focus of the paper is on T1 point-set spaces: a point-set X-space
(S,F) is T1 iff any singleton is in F . When applying this definition to topology,
we see a topological space as a set with a family of closed sets rather than open
sets. The T1 property of a Chu space is defined as follows.

Definition 2. A Chu space (S,A, e) is called T1 iff for any x ∈ S, there is
a ∈ A such that e(x, a) = 1 and e(y, a) = 0 for any y �= x.

Intuitively, a above may be thought of as a region in which there is only one
point, namely x, or a property that x does satisfy and any other y ∈ S does not.

Lemma 3. A point-set X-space (S,F) is T1 iff the corresponding Chu space
(S,F , e(S,F)) defined above is a T1 Chu space.

Lemma 4. For point-set X-spaces (S,F) and (S′,F ′), a tuple of maps (f, g) :
(S,F , e(S,F)) → (S′,F ′, e(S′,F ′)) is a Chu morphism iff g = f−1 : F ′ → F iff
f : (S,F) → (S′,F ′) is X-preserving.
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Lemma 5. If a Chu space (S,A, e) is T1 and extensional, then for any x ∈ S
there is a unique a ∈ A such that e(x, a) = 1 and e(y, a) = 0 for any y �= x.

Each column e(-, a) of a Chu space (S,A, e) can be regarded as a subset of S,
i.e., as {x ∈ S | e(x, a) = 1}.We say that Col(S,A, e) satisfies closure conditions
iff the corresponding family of subsets of S satisfies them. The same property
can be defined for Row(S,A, e) as well. The following proposition shows that a
broad variety of point-set spaces can be represented as Chu spaces.

Proposition 6. The category PtSpX is equivalent to the category of extensional
Chu spaces (S,A, e) such that Col(S,A, e) satisfies the closure conditions X,
denoted by ExtChuX. In particular, this can be instantiated for Xtop, Xmeas,
Xclos, and Xconv.

In the following, we focus on a more specific class of closure conditions. A closure
condition ∀X ⊂ F (ϕ(X ) → BC(X ) ∈ F) is called pure iff BC(X ) contains
precisely one of unions, intersections, and complements. A pure closure condition
is monolithic, and does not blend different operations; this is true in any major
example mentioned above.

In order to define point-free X-spaces, we let X be a class of pure closure
conditions satisfying the following: if a closure condition in X contains comple-
mentation in its boolean combination part, then the following two closure con-
ditions are in X: ∀X ⊂ F (card<ω(X ) → ⋂X ∈ F) and ∀X ⊂ F (card<ω(X ) →⋃X ∈ F). These additional conditions ensure that once we have complementa-
tion on the point-set side we can define boolean negation on the point-free side.
Note that, although complementation on sets is, and should be, interpreted as
boolean negation on posets of subsets, nevertheless, we are not excluding intu-
itionistic negation (or interiors of complements of opens), which does not arise
from complements in closure conditions (i.e., complements without interiors are
boolean), but from unions and finite intersections in them, by which we can
define intuitionistic implication, and so intuitionistic negation.

We then define a point-free X-space as a bounded poset (L,≤, 0, 1) satisfying
the following. If a closure condition in X have unions (intersections, comple-
ments) in its BC(X ) under the condition ϕ, then we require L to have joins
(meets, boolean negation) under the point-free interpretation of ϕ (i.e., the sub-
set symbol ⊂ is interpreted as ≤). If one closure condition in X contains unions
and another contains intersections under the conditions ϕ(X ) and ψ(X ) respec-
tively, then we require L to satisfy the following (possibly infinitary) distributive
law: for any doubly indexed family {xi,j | i ∈ I, j ∈ Ji} ⊂ L with F :=

∏
i∈I Ji,

if {xi,j | j ∈ Ji} denoted by L1 and {∧i∈I xi,f(i) | f ∈ F} denoted by L2 sat-
isfy ϕ(L1) and ϕ(L2) respectively, and if {xi,f(i) | i ∈ I} denoted by L3 and
{∨j∈Ji

xi,j | i ∈ I} denoted by L4 satisfy ψ(L3) and ψ(L4) respectively, then∧
i∈I

∨
j∈Ji

xi,j =
∨
f∈F

∧
i∈I xi,f(i). Note that this reduces to the ordinary infi-

nite distributive law in the case of frames, and to distributivity between meets
and directed joins in the case of continuous lattices.

There is a subtlety in defining maps f preserving possibly partial operations:
e.g., even if

∧
X is defined,

∧
f(X) is not necessarily defined. In the case of
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directed joins of continuous lattices, however, this causes no problem, since di-
rectedness is preserved under monotone maps, i.e., if X is directed then

∧
f(X)

is directed as well. This is also true in the case of σ-complete boolean algebras,
since card≤ω(-) is always preserved. With these in mind, we assume: ϕ in each
closure condition in X is preserved under monotone maps, i.e., for a monotone
map f : L→ L′ between point-free X-spaces L and L′, if ϕ(X) holds for X ⊂ L
then ϕ(f(X)) holds as well. Homomorphisms of point-free X-spaces are defined
as monotone maps preserving (in general partial) operations induced from the
closure conditions in X. The category of point-free X-spaces and homomorphisms
is denoted by PfSpX.

For a point-free X-space L, we denote the set of atoms in L by Spm(L), which
is called the maximal spectrum of L for the following reason. In the cases of Frm,
ContLat, and MCLat, Spm(L) is actually isomorphic to the maximal filters or
ideals with suitable completeness conditions; furthermore, the maximal spectrum
of the coordinate ring of an affine variety V in kn with k an ACF is homeomorphic
to Spm(L) by taking L to be the closed set lattice of V . To exemplify the
meaning of “completeness conditions”, let us considerMCLat. A meet-complete
filter is defined as a filter that is closed under arbitrary meets. Since the meet-
complete filters of L ∈ MCLat bijectively correspond to the principal filters of
L, we have an isomorphism between Spm(L) and the maximal meet-complete
filters of L, which holds even in the presence of natural closure structures on
them. Alternatively, we may also define Spm(L) = {↑ a | a is an atom} where
↑ a = {x ∈ L | a ≤ x}. This definition is sometimes more useful than the former.

The continuous maps between T1 spaces (e.g., affine varieties in Cn) do not
correspond to the frame homomorphisms between their open set frames, but to
a more restricted class of frame homomorphisms; this exhibits a sharp difference
from the case of sober spaces. A maximal homomorphism of point-free X-spaces
is a homomorphism f : L → L′ of them satisfying the maximality condition:
for any b ∈ Spm(L′) there is a ∈ Spm(L) such that ↑ a = f−1(↑ b), where
note that such an a ∈ Spm(L) is necessarily unique. If Spm(L) is defined as
{↑ a | a is an atom}, then we may state maximality in a more familiar manner:
f−1(M) ∈ Spm(L) for any M ∈ Spm(L′). The category of atomistic point-free
X-spaces and maximal homomorphisms is denoted by AtmsPfSpX where recall
that a poset with the least element is called atomistic iff any element can be
described as the join of a set of atoms. Note that atomic posets and atomistic
posets are different in general.

The atomisticity of a Chu space is defined in the following way.

Definition 7. A Chu space (A,S, e) is called atomistic iff there are A′ ⊂ A and
a bijection η : S → A′ such that

1. any two elements of Row(A′, S, e′) are incomparable (with respect to its point-
wise ordering) where e′ is defined by e′(a, x) = e(a, x);

2. for any x ∈ S and a ∈ A, e(a, x) = 1 iff e(η(x), -) ≤ e(a, -).

The intended meaning of A′ above is Spm(A), or the set of atoms of A. In
the context of quantum mechanics, item 1 above means that any two quantum
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states, when seen as one-dimensional subspaces or projectors onto them, are in-
comparable, and item 2 means that there is a canonical correspondence between
the quantum state space P(H) and the projection lattice L(H), by mapping the
quantum states to the atoms of the lattice.

Proposition 8. A Chu space (S,A, e) is T1 and extensional iff its dual (A,S, ê)
is atomistic and separated where we define ê(a, x) = e(x, a).

It does not necessarily hold that (S,A, e) is T1 iff (A,S, ê) is atomistic. As a
corollary of the above proposition, we obtain:

Corollary 9. If a Chu space (A,S, e) is atomistic and separated, andRow(A,S, e)
has a least element, then Row(A,S, e) is an atomistic poset with its atoms given
by {e(η(x), -) | x ∈ S}.
Given a point-free X-space L, we can construct a Chu space (L, Spm(L), eL)
where eL is defined by: eL(b, a) = 1 iff a ≤ b. If we define Spm(L) = {↑
a | a is an atom}, the corresponding eL is specified by: eL(a,M) = 1 iff a ∈M.

Lemma 10. A point-free X-space L is atomistic iff (L, Spm(L), eL) is an atom-
istic Chu space.

If we define Spm(L) = {↑ a | a is an atom}, we can take f̃ in the following
lemma to be f−1; in this case, the alternative definition of Spm(L) seems more
transparent than the definition of it as the set of atoms themselves.

Lemma 11. Let L and L′ be atomistic point-free X-spaces. A pair of maps,
(f, g) : (L, Spm(L), eL) → (L′, Spm(L′), eL′), is a Chu morphism iff f is a max-
imal homomorphism and g = f̃ where f̃ : Spm(L′) → Spm(L) is such that, for
any b ∈ Spm(L′), f−1(↑ b) =↑ f̃(b) (note f̃ is well defined because f is maximal).

Proposition 12. The category AtmsPfSpX is equivalent to the category of
atomistic separated Chu spaces (A,S, e) such that Row(A,S, e) satisfies the clo-
sure conditions X, denoted by AtmsSepChuX.

We finally lead to the main duality theorem, exposing and unifying T1-type
dualities in diverse contexts, including sets, topology, measurable spaces, closure
spaces, domain theory, and convex geometry.

Theorem 13. T1ExtChuX is dually equivalent to AtmsSepChuX; therefore,
T1PsSpX is dually equivalent to AtmsPfSpX. In particular, this universal du-
ality can be instantiated for Xtop, Xmeas, Xclos, and Xconv.

Although many sorts of point-free spaces are complete, nevertheless, the case of
Xmeas is different, and only requires σ-completeness. In this case, the universal
duality above yields a duality between atomistic σ-complete boolean algebras
and T1 measurable spaces. As noted above, Set may be seen as the category of
(S,P(S))’s with measurable maps (note any map is measurable on (S,P(S))), so
that the duality for measurable spaces turns out to restrict to the classic Stone
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duality between Set and CABA (note “atomic” and “atomistic” are equivalent
in boolean algebras). It is thus a vast globalisation of the classic Stone duality.

Furthermore, we can apply the theorem above to dcpos (with 0), which is not
complete in general, by considering closure under directed unions, which yields
point-set spaces (S,F) with F closed under directed unions; dcpos are their
duals. Likewise, preframes fall into the picture as well. We are able to derive
even more dualities in the same, simple way; although some general theories
of dualities require much labour in deriving concrete dualities (this is a typical
complaint on abstract duality theory from the practicing duality theorist), the
universal duality above immediately gives us concrete dualities of T1-type.

The duality obtained in the case of Xtop is not subsumed by the orthodox
duality between sober spaces and spatial frames, since “sober” does not imply
“T1”; there are important examples of non-sober T1 spaces, including affine
varieties in kn with the Zariski topologies where k is an ACF. As discussed
in the Introduction, furthermore, the morphism part of the T1-type duality is
distinctively different from that of the sober-type one.

In the case of Xconv, we obtain a duality between atomistic continuous lattices
and T1 convexity spaces, exposing a new connection between domains and con-
vex structures. Maruyama [12] also gives closely related dualities for convexity
spaces. Jacobs [8] shows a dual adjunction between preframes and algebras of the
distribution monad, which are abstract convex structures as well as convexity
spaces. We can actually relate the two sorts of abstract convex structures, and
thus dualities for them, by several adjunctions and equivalences, though here we
do not have space to work out the details.

In the case of sober-type dualities, we first have dual adjunctions for general
point-free spaces, which then restrict to dualities (i.e., dual equivalences). In the
case of T1-type dualities, however, we do not have dual adjunctions behind them
because we use maximal spectrum Spm rather than prime spectrum Spec. This
is the reason why in this paper we have concentrated on the Chu representation
of atomistic point-free spaces, rather than point-free spaces in general. We leave
it for future work to work out the dual adjunction between PsSpX and PfSpX

which restricts to the corresponding sober-type duality.

3 Quantum Symmetries and Closure-Based Coalgebras

We first review the Grothendieck construction for later discussion.

Grothendieck Construction. The Grothendieck construction enables us to
glue different categories together into a single category, or turn an indexed cat-
egory into a fibration. Given a functor I : Cop → CAT, we define a category

∫
I : Cop → CAT

as follows (CAT denotes the category of (small) categories and functors). The
objects of

∫
I consist of tuples (C,X) where C ∈ C and X ∈ I(C). An arrow
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from (C,X) to (D,Y ) in
∫
I is defined as a pair (f, g) where f : D → C and

g : I(f)(X) → Y . Finally, composition of (f : D → C, g : I(f)(X) → Y ) :
(C,X) → (D,Y ) and (p : E → D, q : I(p)(Y ) → Z) : (D,Y ) → (E,Z) is
defined as:

(f ◦ p, q ◦ I(p)(g)) : (C,X) → (E,Z).

Note that the type of I(p)(g) is I(p)(I(f)(X)) → I(p)(Y ), which in turn equals
I(f ◦ p)(X) → I(p)(Y ). We call

∫
I the fibred category constructed from the

indexed category I. The obvious forgetful functor from the fibred category
∫
I

to the base category C which maps (C,X) to C gives a fibration.

3.1 Born Coalgebras on Closure Spaces

Now, we define an endofunctor B : Clos → Clos on the category of closure
spaces. For a closure space X , let

B(X) := ({0}+ (0, 1]×X)C(X)

where ({0}+(0, 1]×X)C(X) is the product of C(X)-many copies of {0}+(0, 1]×X .
For a closure-preserving map f : X → Y , we define a map

B(f) : ({0}+ (0, 1]×X)C(X) → ({0}+ (0, 1]× Y )C(Y )

by

B(f)(h)(C) = (id{0} + id(0,1] × f) ◦ h ◦ f−1(C)

where h ∈ ({0}+ (0, 1]×X)C(X) and C ∈ C(Y ).

Lemma 14. For a closure-preservingmap f : X → Y ,B(f) is closure-preserving.

Lemma 15. Let X,Y, Z be closure spaces. (i) B(idX) = idB(X). (ii) B(g ◦f) =
B(g) ◦B(f) for closure-preserving maps f : X → Y and g : Y → Z.

Now, we describe primary examples of B-coalgebras, which are of central im-
portance in our investigation.

Example 16 Given a Hilbert space H, we define a B-coalgebra

(P(H), αH : P(H) → B(P(H)))

as follows. Let us define αH : P(H) → ({0}+ (0, 1]× P(H))C(P(H)) by

αH([ϕ])(S) =

{
0 if 〈ϕ|PSϕ〉 = 0

( 〈ϕ|PSϕ〉
〈ϕ|ϕ〉 , [PSϕ]) otherwise

where [ϕ] ∈ P(H), S ∈ L(H) (� C(P(H))), and PS is the projection operator
corresponding to S.
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The coalgebra (P(H), αH) expresses the dynamics of repeated Born-rule-based
measurements of a quantum system represented by a Hilbert space H .

As in Abramsky [2], we define the groupoid of quantum symmetries as follows.

Definition 17. QSym is the category whose objects are projective spaces of
Hilbert spaces of dimension greater than 2 and whose arrows are semi-unitary
maps identified up to a phase factor eiθ.

Wigner’s theorem (or Wigner-Bargmann’s theorem) clarifies the physical mean-
ing of QSym as follows. Note that “surjections” below are actually bijections,
since injectivity follows by the other properties.

Theorem 18. QSym is equivalent to the category whose objects are projec-
tive spaces of Hilbert spaces (i.e., quantum state spaces) and whose arrows are
symmetry transformations (i.e., those surjections between projective spaces that

preserve transition probabilities |〈ϕ|ψ〉|2
|ϕ|2|ψ|2 between quantum states [ϕ] and [ψ]).

Our aim is to establish a purely coalgebraic understanding of QSym. We re-
mark that symmetries are of central importance in physics: they are higher
laws of conservation of various physical quantities (Nöther’s theorem); in quan-
tum mechanics in particular, we can even derive the Schrödinger-equation-based
dynamics of quantum systems from a continuous one-parameter group of sym-
metries (Stone’s theorem).

3.2 Quantum Symmetries Are Purely Coalgebraic

For an endofunctor G : C → C on a category C, let Coalg(G) denote the
category of G-coalgebras.

Let us briefly review Abramsky’s fibred category
∫
F of coalgebras in the

following. For a fixed set Q, we define a functor FQ : Set → Set. Given a set
X , let FQ(X) = ({0}+(0, 1]×X)Q. The arrow part is then defined canonically.

An indexed category
F : Setop → CAT

is then defined as follows. Given Q ∈ Set, let F(Q) = Coalg(FQ). For a map
f : Q′ → Q, we define a functor F(f) : Coalg(FQ) → Coalg(FQ

′
) in the

following way. Given an object (X,α : X → FQ(X)) in Coalg(FQ), let

F(f)(X,α) = (X, tfX ◦ α)

where tfX : FQ(X) → FQ
′
(X) is defined by tfX(g) = g ◦ f. Given an arrow

g : (X,α) → (Y, β), let F(f)(g) = g : (X, tfX ◦ α) → (Y, tfY ◦ β).
As Wigner’s theorem above has the assumption of surjectivity, Abramsky [2]

requires surjectivity on the first components f of morphisms (f, g) in
∫
F. Let us

denote by
∫
Fs the resulting category with the restricted class of morphisms. On

the other hand, we require injectivity on the morphisms f : (X,α) → (Y, β) of
Coalg(B), and denote by Coalgi(B) the resulting category with the restricted
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class of morphisms. The surjectivity/injectivity conditions ensure that QSym is
not only faithfully but also fully represented in

∫
Fs and in Coalgi(B).

In the following we observe that Coalg(B) is much smaller than
∫
F, but

still large enough to encompass the quantum symmetry groupoid QSym. To be
precise, it shall be shown that Coalg(B) is a non-full proper subcategory of

∫
F,

and that QSym is a full subcategory of Coalgi(B).
We then introduce a functor BF from Coalg(B) to

∫
F, which will turn out

to be a non-full embedding of categories.

Definition 19. The object part of BF : Coalg(B) → ∫
F is defined by

BF(X,α : X → B(X)) = (C(X), (X,α) ∈ Coalg(F C(X))).

The arrow part of BF : Coalg(B) → ∫
F is defined by

BF(f : (X,α) → (Y, β)) = (f−1 : C(Y ) → C(X), f̃ : F(f−1)(X,α) → (Y, β))

where f̃ has the same underlying function as f (i.e., f̃(x) = f(x) for any x ∈ X;
thus, the difference only lies in their types).

In order to justify the definition above, we have to verify that f̃ is actually a
morphism in Colag(F C(Y )).

The commutative diagram below would be useful to understand what is going
on in the definition above and the two lemmata below.

X F C(X)(X) F C(Y )(X)

Y F C(Y )(Y ) F C(Z)(Y )

Z F C(Z)(Z) F C(Z)(X)

�α

�

f

�
B(f)

�tf
−1

X

�
�
�
�
�
�
�
���

tg
−1

X

�
�

�
���

FC(Y )(f)

�β

�

g

�
B(g)

�
tg

−1

Y �
�

�
���

FC(Z)(g)

�
γ

�
FC(Z)(g◦f)

where α, β, γ are B-coalgebras, and f, g are morphisms of B-coalgebras.

Lemma 20. f̃ : F(f−1)(X,α) → (Y, β) is an arrow in Colag(F C(Y )).

Lemma 21. (i) BF(id(X,α)) = idBF(X,α). (ii) For f : (X,α) → (Y, β) and
g : (Y, β) → (Z, γ) in Coalg(B), BF(g ◦ f) = BF(g) ◦ BF(f) where the latter
composition is that in

∫
F.

Proposition 22. Coalg(B) can be embedded into
∫
F via the functor BF. This

is not a full embedding (i.e., BF is not full).

The non-fullness of BF implies that Coalg(B) is a smaller category than
∫
F

with respect to arrows as well as objects.
We now introduce a functor SC from QSym to Coalgi(B), which will turn

out to be a full embedding of categories.
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Definition 23. The object part of SC : QSym → Coalgi(B) is defined by

SC(P(H)) = (P(H), αH).

The arrow part of SC : QSym → Coalgi(B) is defined by

SC(U) = U : (P(H), αH) → (P(H ′), αH′)

where U : P(H) → P(H ′) is a semi-unitary map from H to H ′ (up to a phase).

Lemma 24. SC(U) is a morphism of B-coalgebras.

W finally obtain the purely coalgebraic representation of quantum symmetries
QSym via the non-fibred, single sort of coalgebra category Coalgi(B) based
upon closure spaces.

Theorem 25. The quantum symmetry groupoid QSym can be fully embedded
into the purely coalgebraic category Coalgi(B : Clos → Clos).

Our closure-based coalgebraic approach to representation of quantum systems
would allow us to develop “coalgebraic quantum logic” utilising existing work
on coalgebraic logic over (duality between) general concrete categories (see, e.g.,
Kurz [11] or Klin [10]); this is left for future work.
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